4

1

‘\F‘

Jv Script

From Zero 1o Hero

The Most Complete Guide Ever,
Master Modern JavaScript Even
If You're New to Programming

Rick Sekuloski

JavaScript From Zeroto Hero: The Most Complete Guide
Ever, Master Modern JavaScript Even |If You-fe New to
Programming

Rick Sekuloski

Copyright © 2022 Rick Sekuloski
All rights reserved.
|SBN:

PREFACE

WHO ISTHIS BOOK FOR?

HOW TO GET THE MOST OUT OF THIS BOOK?

DOWNLOAD THE EXAMPLE CODE FILES

OBTAIN THE IMAGES YOU WILL NEED

CHAPTER 1| STRINGS AND REGULAR EXPRESSIONS

UNICODE

CHARACTERS AND CODE POINTS

STRING METHODS YOU SHOULD KNOW ABOUT

REGULAR EXPRESSIONS

LITERAL CHARACTERS

FLAGS/MODIFIERS IN REGULAR EXPRESSIONS

REGEXP CLASS

CHARACTER CLASSES TOGETHER WITH BRACKETS IN REGULAR EXPRESSIONS

REGULAR EXPRESSION CHARACTER CLASSES

UNICODE: FLAG "U" AND CLASS\P{...}

QUANTIFIERS IN REGULAR EXPRESSIONS

ALTERNATIVES

GROUPING

NESTED GROUPS

NAMED GROUPS

METHODS OF THE REGEXP CLASS

STRING METHODS ON REGULAR EXPRESSIONS

SEARCH METHOD| SEARCH ()

REPLACE METHOD| REPLACE ()

SUMMARY

CHAPTER 2 - ASYNCHRONOUS PROGRAMMING

CALLBACKS

TIMERS

CANCELING SETTIMEOUT USING CLEARTIMEOUT FUNCTION

SETINTERVAL FUNCTION

JAVASCRIPT EVENTS

NETWORK EVENTS: XMLHTTPREQUEST, CALLBACKS

CREATE XMLHTTPREQUEST

CALLBACK HELL

PROMISES

IMMEDIATELY SETTLED PROMISES

CONSUMING PROMISES

PROMISE CHAINING

ERROR| REJECTION HANDLING

TRY AND CATCH STATEMENT

PROMISE ALL

PROMISE RACE

PROMISE ANY

ASYNC FUNCTION

THE SYNTAX FOR THE AWAIT IS

ARROW FUNCTIONS:

ANONYMOUS AND NAMED FUNCTIONS:

OBJECT METHODS:

METHODS:

PROMISE-BASED FETCH API

ASYNC/AWAIT ERROR HANDLING

FOR-AWAIT-OF

RECALL AND ASYNC GENERATORS

EXERCISE

SUMMARY

CHAPTER 3: JAVASCRIPT MODULES

WHAT ARE MODULES?

EXPORTS AND IMPORTS

EXPORTING FEATURES WITHOUT A NAME

DEFAULT KEYWORD AS REFERENCE

RE-EXPORTING

DYNAMIC IMPORTS

IMPORTANT TO KNOW!

SUMMARY

CHAPTER 4: BASIC TO INTERMEDIATE JAVASCRIPT

HOW TO RUN JAVASCRIPT?

HOW TO WRITE COMMENTS IN JAVASCRIPT?

IDENTIFIERS

STATEMENTS

CASE SENSITIVITY

PRIMITIVE AND OBJECT TYPES

VARIABLES AND ASSIGNMENT

DECLARING A VARIABLE

INITIALIZING A VARIABLE

VAR, LET. AND CONST

LET

CONST

NUMBER LITERALS

STRING LITERALS

TEMPLATE LITERALS

ARITHMETIC OPERATORS

STRING CONCATENATION +

BOOLEAN VALUES

NULL AND UNDEFINED

COMPARISON AND LOGICAL OPERATORS

OBJECTS

CREATE OBJECTS USING NEW KEYWORD

CREATING OBJECTS USING OBJECT.CREATE()

PRIMITIVES PASSED BY VALUE

ARRAYS

ARRAY LITERALS

CREATE ARRAYSUSING NEW ARRAY ()

SPREAD OPERATOR

ACCESSARRAY ELEMENTS

CONDITIONAL STATEMENTS OR BRANCHES

IF-ELSE STATEMENT

ELSE IF STATEMENT

CONDITIONAL (TERNARY) OPERATOR

SWITCH STATEMENT

ASSIGNMENT OPERATOR

OPERATOR

WHILE L OOP

DO WHILE LOOP

FOR L OOP

FOR/OF LOOP WITH OBJECTS

OBJECT.KEYS()| FOR/OF

OBJECT.ENTRIES() | FOR/OF

FOR/IN LOOP

FUNCTIONS

DECLARING FUNCTIONS

INVOKE FUNCTIONS

FUNCTION EXPRESSION

INVOKE FUNCTION EXPRESSION

ARROW FUNCTION

ARROW FUNCTION ON ARRAYS

PASSING ARGUMENTS TO FUNCTIONS

DEFAULT FUNCTION PARAMETERS

CLOSURES

OOP| CLASSES

CLASSES

INHERITANCE

SETTERS AND GETTERS

STATIC PROPERTIES AND METHODS

OVERRIDING METHODS

STRICT MODE

-THIS-KEYWORD| FUNCTION CONTEXT

-THIS-KEYWORD | METHOD INVOCATION

SUMMARY

CHAPTER 5: FINAL CHAPTER

DOM | DOCUMENT OBJECT MODEL

INTRODUCTION

DOM VSHTML MARKUP

DOM TREE AND NODES

MALFORMED HTML AND DOM

ACCESSTHE DOM ELEMENTS

GETTING ELEMENT BY ID

GETTING ELEMENTSBY CLASSNAME

GETTING ELEMENTSBY TAG NAME

QUERY SELECTORS

TRAVERSING THE DOM

ROOT NODES

PARENT NODES

CHILDREN NODES

SIBLING PROPERTIES

DIRECTIONS OF TRAVERSING

SELECT A SPECIFIC CHILD

TRAVERSING DOM UPWARDS

TRAVERSING THE DOM SIDEWAY S

CREATING. INSERTING, AND REMOVING NODES FROM DOM

CREATING NEW DOM NODES

INSERT CREATED NODES INTO THE DOM

MODIFY DOM CLASSES, STYLES, AND ATTRIBUTES

MODIFY THE CSSSTYLES

MODIFY THE ATTRIBUTES

JAVASCRIPT EVENTS

EVENT HANDLER & EVENT LISTENER

INLINE EVENT HANDLERS

EVENT HANDLER PROPERTIES

EVENT LISTENERS

MOST COMMON JAVASCRIPT EVENTS

KEYBOARD EVENTS

FORM EVENTS

SUMMARY

ABOUT THE AUTHOR

APPENDIX A: BASICTO INTERMEDIATE JAVASCRIPT BOOK

APPENDIX B: EXERCISES AND LEARN MORE ABOUT JAVASCRIPT, HTML, AND PHP

APPENDIX C: RESOURCES

Preface

Welcome to my second JavaScript book. In the first book, | explained the basic concepts that everyone should
know, and | also discussed why those features are crucial to understand. JavaScript today is one of the most popular
web programming languages, and that is the reason why I-m writing this book. This book is more about
intermediate to advanced features, but | will also include two extra chapters for those that want to learn the basic
JavaScript concepts. This book isfor everyone passionate about learning JavaScript, but with that being said, |
would not start covering the basics of JavaScript in the first section. If you are new to JavaScript programming or
need to refresh your memory, | recommend that you skip the first three advanced chapters of this book and read
chapters four and five, where | will cover the basics of JavaScript. The idea of this book isto give you in-depth
knowledge of advanced features, but as abonus, | want to give everyone an equal chance. That iswhy | included
the basicsin the later chapters. If you already know the basics, then please start from chapter one. This book will
help you master this amazing web language through many examples.

The book will include longer and smaller chapters, but | promise that they will be full of theory and examples that
you will enjoy.

If you are looking for extrareference material, | recommend visiting the MDN website.

Y ou can open the MDN website by visiting the following URL :

https.//developer.mozilla.org/en-Uy

| would also like to hear from you, so if you need to contact me, please reach out through some of my social media
accounts and consider leaving areview with your comment.

My social media accounts:

Twitter:

LinkedIn:
Facebook:
Y ouTube:

Who isthis book for?

Thisbook isfor:
* Students
Anyone that is considering learning JavaScript for the first time
JavaScript programmers with prior programming experience
* Anyonethat is seeking to gain a deep understanding of the client and server-side APIs available to
JavaScript

How to Get the most out of thisbook?

To get the most from this book, you will need the following tools if you are using a computer or tablet:

* A text editor of your choice, here | will use Visual Studio Code (VsCode).
* An up-to-date browser such as Google Chrome, Firefox, Edge, or Safari.

If you are using an e-reader, you can sit back and relax because | will include many examples so that you do not
miss much coding. But if you to go through the examples, please use your computer.

Download the example code files

Y ou can download the entire code by visiting my GitHub repository page using the following link:

https:.//github.com/Rick Sekuloski/rick-javascript-book?2

There you will find al of the materials (code examples and exercises) that | used in this book.

Once thefile is downloaded on your computer, you will need to unzip the content. Please don't open or run the code
whileit's inside the zipped folders/directories. Ensure that you extract the folder into your desired destination, such
as the desktop.

Y ou can Unzip the files using the following programs:

* WIinRAR/7-Zip for Windows
© ZipegliZip/lUnRarX for Mac

7-Zip/PeaZip for Linux

Obtain the images you will need

Once the downloaded files are extracted, you can find all of the images | use in this book in the -color-images—
folder. If you read this on an e-reader, some images might be blurry due to compression and resizing.

Chapter 1| Stringsand Regular Expressions

In this chapter, you will learn about the regular expressions and more about Strings. We will also cover the methods
that we use to process the strings. As you know, the JavaScript types can be divided into two categories. primitive
and non-primitive (object type). The Strings, just like Number s and Booleans, are considered as JavaScript
Primitive types. Strings are a series of characters enclosed by single or double-quotes.

Thisis an example of abasic string:

let player Name = -Cristiano Ronaldo-

In JavaScript, the text is considered to be from atype string. The string is a sequence of Unicode characters.

Unicode

Why do we need to use Unicode charactersin the first place? Let me put it ssimply like this: the computer machine
does not understand English letters, but they do understand the sequence of characters. That is why we need to use
Unicode because it will provide alist of character sets and assign each character a unique code point. Unicodeisa
universal character set, and it provides a unique number for every character. Unicode version 1.0 wasreleased in
1991, and the latest up-to-date version was released in 2021, and it includes codes for 144,667 characters. That isa
lot of codes, and without Unicode programming, everything we do will be very difficult.

Charactersand Code points

| already mentioned that Unicode assigns a unique code point for each character. A code point is a number assigned
to asingle character. These numbers can range from U+0000 to U+10FFFF. Asyou can see, we need to use U+, a
prefix that stands for Unicode, and after the plus, we have the <hex>, which stands for a hexadecimal number. And
there you have it. The Unicode manages this code point and tides them with a specific character. Another important
part for you to understand is that JavaScript uses UTF-16 encoding of Unicode character set. According to the
ECMAScript specification, the strings are:

—The String type is the set of all ordered sequences of zero or more 16-bit unsigned integer values (“elements”™).
The String type is generally used to represent textual data in a running ECMAScript program, in which case each
element in the String is treated as a UTF-16 code unit value. —

Before | confuse you, even more, let us go over one simple example:

const message = 'Hello';
console. log(message. length);

3

undefined

In the above example, we can see that in the variable message, we have a string that consists of 5 characters. Now
we aways associate the strings as a sequence of visible characters because we count the letters right, numbers, or
even punctuation marks, if any? This approach will work if we use simple characters known as ASCI | characters
and belong to the Basic Latin block.

L et us consider the following string example:

const smile = '@¥"':
console. log(smile. length);

2

Wait, the length is 2, and | can only see one emoji but not two. What is happening here? Well, emojis are more
complex characters, and the length property will give us back 2, meaning we can no longer rely on visua
characters.

The JavaScript will consider this string as a sequence of two separate code units.
As | mentioned earlier, each character is assigned a specia code point right, so the first example with the message
variable in the background will be processed as this sequence of UTF-16 code units:

> const message = '\u@048\u@065\u006C\uf@@6C\udo6F"';
console. log(message === 'Hello');
console. log(message. length);
console. log(message);

true
5
Hello

For testing purposes, | use the basic Google Chrome Developer Console. Hereisalink if you do not know how to
use the console for simple testing:

https://devel oper.chr ome.com/docs/devtools/consol e/

If you use adifferent web browser like Firefox, the consoleisvery similar. Still, you will need to find that
information on the internet because it is very easy to understand and is bit different for each browser.

L et us go back to strings, and so far, we know that JavaScript string is a sequence of UTF-16 codepoints, and we
can find out the exact number of those units when we use the string.length property. But here, we might have one
particular problem, what do you think will happen if the codepoints we are talking about do not fit in the 16 bits,
and thisis possible? We need to use arule known as surrogate pair of two 16 bits values. In ssmple words, if we
have a string with alength of 2, it does not mean we have two separate Unicode characters, but it can be one
complex character as the emoji example.

Please check out this example:

let euroSymbol = "€";
let smileSymbol = "@";

console.log(Euro symbol has a length of: ${euroSymbol.length});
console.log(The smile symbol has a length of: ${smileSymbol.length}");

Euro symbol has a length of: 1
The smile symbol has a length of: 2

| hope by now you understand how JavaScript, Unicode, and UTF-16 codepoints are working together to achieve
the result we expect to have.

Finally, | can now explain a method called fromCodePoint. This method that belongs to the String class can
assemble a string from one or more code points. These code points we pass to the method as parameters. JavaScript
methods, as we know, can take alist of parameters, and here as parameters, we need to use a sequence of code
points.

The syntax of the static String.fromCodePoint() is:

String.fromCodePoint(numl)
String.fromCodePoint(numl, num2)
String.fromCodePoint(numl1, numz2, ..., numN)

The argumentsnuml1,” .,numN is a sequence of code points we already discussed. | said static method because
this method must be invoked directly from the String constructor object, not by an instance of the String class.
The return value of this function will be a string that will be created by using the specified sequence of code points.
Please take alook at this example:

console.log(String.fromCodePoint(9731, 9733, 9842, 0x2F804));

The output should be /% £ € €. But sometimes, you might have a huge array of codepoints, and you want that
array to be used as an argument in our method. We can easily solve thisif we use the famous three dots -“ —spread
operator.

Here is one example about it:

//array of codepoints

const myCodePoints = [9731, 9733, 9842, 0x2F804];

//spread operator

const stringOutput = String.fromCodePoint(...myCodePoints);
console.log(stringOutput);

The output should be exactly the same as the previous example. Y ou can find this code in the file called lecturel.js
inside the chapter 1 folder that you can find in the downloaded files. Y ou can copy and paste the code into your
browser, and please observe the output. Y ou are free to use different code points and play around because even if
you make a mistake, you will learn how to fix it and why it happened. And as | mentioned in my previous books,
even if you edit the original code, it will be no problem because you can always download it again and start it from
scratch.

L et us get back to work, and one interesting example | want to share is when we have a string, and we want to know
the codepoints for each character. How can we achieve this? Well, we can use the good old for loop and traverse
the code points of a string just like in this example:

const message ='Hello World!"';

for (let i = 0; i < message.length; i++) {
let codePoint = message.codePointAt(i);
console. log(codePoint);

F
101
108
111
32
87
111
114
108
100
33

Asyou can see from the example the string -Hello World!—have some interesting codepoints. Instead of printing
them like this we can change our code and store the codepoints inside an empty array:

const message ='Hello World!";
const codePointsArray = [];
//we can traverse through our newly created string with a for loop
for (leti = 0; i < message.length; i++) {
let codePoint = message.codePointAt(i);
//console.log(codePoint);
codePointsArray[i] = codePoint;
}
//this should return back 'Hello World!'
console.log(String.fromCodePoint(...codePointsArray));

String methods you should know about

A string is a sequence of unsigned 16-bit values and what we have not mentioned so far is that the string isan

immutabl e sequence. What does this mean? Well, it means only one thing: the methods we are using on strings will
not change the contents of a given string. An empty string is a string with length zero -O- There are many methods
of the String class, but here | will list afew of them that | believe are worth mentioning. The examples are included
In the same folder, under the name stringM ethods,js.

Thefirst oneisthe repeat method and is useful when we want the same string to be repeated several times.

Example:

//1) repeat method

const message = "W',

const repeatlt = message.r epeat(3);
console.log(repeatlt);” " WWW'

Another useful method is the trim method. This method will remove whitespace characters from the start and the
end of the string. Interesting to know is that this method must be invoked by an instance of the String class.

Syntax:

string.trim();

Y ou should not supply any parameters in this method, and you should also know that this method will not change
the value of the original string.
Let ustake alook at the following example:

const beforeAndAfter = ' Hi There i
console.log('l - trim method: '+ beforeAndAfter.trim());
console.log('2 - does not change the original content: '+beforeAndAfter);

1 - trim method: Hi There
2 — does not change the original content: Hi There
undefined

5

Another two methods for trimming the white spaces aretrimStart() and trimEnd(). The trimStart() method will
remove the leading white spaces, and the latter will delete the trailing white space. | will not test this two because
you can try them in your free time. After all, they are very basic.

In JavaScript, not only the regular space character -\u0020—is considered as white space but also recognizes
newline, tab, carriage returns, nonbreaking space -\u{ 00A 0}—as white spaces.

There are other String methods in JavaScript will do the opposite of what the trim methods are doing, and that isto
add space characters, which is very useful aswell. So we can use padStart() and padEnd() to add spaces before
and after, but keep in mind that the current string will be padded until the resulting string reaches the given length.
Here is one example where | have added only 5 space characters from the start of the current string:

const example = 'Hello';

const newString = example.padStart(10);
console. log(example);

console. log(newString);

Hello
Hello
undefined

If we use the length property now, we will see that the example will have alength of 5, but the newString variable
will have atotal length of 10, not 15. So be very careful with adding the space characters:

console.log(example.length); // 5
console.log(newString.length); // 10

| have not shown you the syntax of the pad methods, but now is the right time to do this:

padStart(targetL ength)
padStart(targetL ength, padString)

Asyou can see, we aready did an example where we supplied only one parameter, the tar getL ength. Still, the

second parameter is optional and nice because we can define our padding style.
Check out this example:

const newStringl = example.padStart(10, '#);
console.log(newStringl); // ###HH##Hello

Y ou can test out for padEnd() method because it is completely the same with only one difference, and that is, it
will add a space at the end of the current string.

When we start writing programs in JavaScript, we would like to convert the string characters into upper or
lowercase most of the time. For example, a person is trying to submit a registration form on our website, but our
policy isto have all the names stored in the database in lowercase. It is a bad idea to write this on the form itself,
giving direction to the users on how they need to write their first or last names using lowercase. Thisis not a good
approach or the best user experience, right? So what we can do isleave the user to fill out the form with its details,
and then later at the backend, where we are getting the form data, we can convert all of the required form fields into
lowercases. Thiswas just an example of why we might use these new methods, but | assure you there are many
more. Finally, these two methods are called toUpper Case and toL ower Case.

Example:

const firstName ="'Andy’;

const lastName = 'Garcia;;

console.log(firstName.toL ocal el ower Case());//adny
console.log(lastName.toUpper Case());//GARCIA

Another method that we kept using but never discussed was the length of a string or the length property.

const fullName = 'Andy Garcia;
console.log(fullName.length);// result: 11

The Strings in JavaScript behave the same as arrays because they are arrays of characters, but they are not mutable;
please note that. Therefore JavaScript strings are zero-based, the same as we have in arrays. We always start from
index/position zero. So, the first 16-bit isin position 0, and the second 16-bit value islocated at position 1, and so
on.

Because we have indexes now, we can retrieve any specific character from a string if we use the square bracket
notation []. The square bracket notation is trading marks of arrays, but we can also now use it on strings -because
basically, strings are an array of characters remember.—

Example:

console.log(fullName[Q]);/A

Remember, with arrays and strings, we start from 0, not 1, and if we want to get the last character from any string,
we can use the length property minus 1.

Please take alook at the following example, and everything will be clear (I use fullName string from the previous
example, and it contains this string -Andy Garciad:

console.log('Length of the fullName string is. * + fullName.length);
console.log('Last character is: '+ fullName[fullName.length-1]);

Output:

Length of the fullName string is: 11
Last character is: a

Instead of using this, we can use char At() method that will return a new string consisting of only one single UTF-
16 code unit located at that position.
The char At method takes only one parameter, the index value.

const sentence = 'l want to be a developer!';
const index = 7;
console.log(" The character at index ${index} is ${ sentence.char At(index)});// t

With our knowledge, we can use this method to get us the last character.
Here is the code that will do just that:

const lastChar = sentence.char At(sentence.length-1);
console.log(lastChar);//!

One of my favorite String methods is the includes() method. This method takes only one parameter: the substring
we want to search the current string. For example, we want to see if we have a particular substring inside the current
string and if the method findsiit, it will return true or false otherwise.

Hereis one example:

const occupation = 'Web Developer’;

if (occupation.includes('Dev") {
consolelog("Yes, it does!);

} else{
console.log("Nope | can't find Dev here!”);

}
Output:

Yes, it does!

What if we want to extract that substring from the original string? Well, to achieve this, there is another method
called dlice(). The slice method takes up to two parameters or two indexes. The first one will tell us where to start
the extraction, and the second were to stop the extraction. Y ou need to know that the index positions we refer to are
not included in the extracted substring.

Let ustry this new method:

const MyOccupation = 'Devel oper’;
console.log(MyOccupation.slice(0, 3)); // "Dev"

Here we got -Dev—back, but what if | don+ supply the second index or where the extraction needs to stop. What do
you think will happen? Let us find out:

console.log(MyOccupation.slice(2));//2

Thiswill return -vel oper—because the character at position 2 is -v— and because there is no second parameter, the
substring will return the remaining characters from the original string.

If we want to replace a substring inside a string with another substring, we can use the r eplace() string method. This
method takes two parameters, the first one will be the substring we are searching to replace, and the second is the
new string we want to replace it with.

Example:

const original String = 'mozilla;

const updatedString = original String.r eplace('mo’,'God");
console.log(updatedString); // "Godzilla"
console.log(origina String); // "Mozilla"

We will do another example of replace method later when we talk about regular expressions.

Thereis another very important method called split() method. This method will split the strings into an array of
substrings. Again, same as the other methods, the split will not change or alter the original string. The split operator
takes two parameters. One is the separator, and the other is the limit. These two parameters are optional. If the first
operator isnot listed, it will return the original string. The second parameter is the limit, which tells the method the
number of splits.

Syntax:

string.split(separator, limit)

An example:

let text = "Hello World";
const splittedArray = text.split(" ");
console. log(splittedArray);
v (2) ['Hello', "World'] €3
0: "Hello"
1: "World"
length: 2
» [[Prototypel]: Array(0)

In my first book, where | covered the basics of JavaScript, | explained that if we want to concatenate two strings,
we can use the plus -+—operator. Because these are strings and not numbers, the plus operator will concatenate the
two strings into one. There are cases where this becomes tricky, but | will not include them here because that is not
the goal of this book. Okay, let us discuss a new method called concat(), and it does pretty much the same thing as
the -+—operator.

Hereis one example:

const messagel = 'Ana;

const message2 ='maria;

const newM essage = messagel.concat(message?);
console.log(newM essage);//Anamaria

We have not covered regular expressions yet, but there are two methods that are used for searching a string. The
first method is called match() method, and it searches the string against a given regular expression. If true, it will
return the matches in an array; otherwise, it will return null if no match isfound.

Let usdo aglobal search for the substring -xpr-

let textl = "Regular expression”;
const result = textl.match(/xpr/g);
console.log(result);

output:
[-xpr

The next method is matchAll() method that we can discuss after covering the next important section, the regular
expression.

In ES6 or ES2015, a new method was added to normalize the strings. This method will return the string normalized
according to one of the four forms that we can pass inside the method as a parameter. This method is known as
normalize(), and it can take one parameter called -forms but thisis optional. If the from parameter is omitted, the
-NFC—form is used, one of the four main normalization forms. This method will return the Unicode normalization
form of agiven input. But if the input we supply is not a string for some reason, it will be converted into a string.
As| mentioned, if the parameter is omitted, then NFC is used as default. The parameter can be from different types:

NFC: Normalization Form Canonical Composition.

NFD: Normalization Form Canonical Decomposition.

NFK C: Normalization Form Compatibility Composition.
NFKD: Normalization Form Compatibility Decomposition.

Now, this might confuse you, but here is one example that | hope will clarify all of your doubts.

Aswe know, for each character, Unicode assigns a unique numerical value. This was called codepoint, remember.
Sometimes, a character can be represented by more than one code point.

Have alook at thisexamplethat | got it from M DN page:

let stringl = "\UOOF1";

let string2 = "\uOO6E\u0303';
consolelog(stringl); // i
console.log(string2); // i

We have the same output, but stringl and string2 are not the same because they have different code points. When
we compare the two strings, we will get false because of their different lengths.

Hereis how we can test two strings using the strict equality - === —operator. The strict equality will return Boolean
iIf the two operands are equal and it will consider if the operands are from different type:

console.log(stringl === string2); // false
console.log(stringl.length); // 1
console.log(string2.length); // 2

Here is why we need to use the normalize method to convert the string into a normalized form. We can use NFD or
NFC to produce aform that will produce a string that is canonically equal.
Hereisthe code that will make the two stings equal and will return Boolean true:

stringl = stringl.nor malize('NFD");
string2 = string2.nor malize('NFD);
console.log(stringl === string2); // true
console.log(stringl.length); 7/ 2
console.log(string2.length); // 2

We have covered the most important String methods, and now is the time to focus on something harder called
regular expressions.

Regular Expressions

Thisisvery interesting but not a favorite topic for most people because it can be hard and confusing, and it takes a

lot of time to learn them. We use Regular expressionsto find character combinations in strings that match a
particular pattern. Regular expressions are very useful, not just for JavaScript but also for other programming
languages. In JavaScript, we have RegEXp class that represents regular expressions. So the RegExp, similar to the
String class, has useful methods that will help us perform simple to complex pattern matching activities. RegExp
API ishard to use if we do not know the regular expression grammar. This syntax/grammar is a complete language
of its own. So we first need to understand the grammar, and only after that can we start writing regular expressions.
We can construct aregular expression in two ways. The first way isto use the regular expression literal and the
second way isto call the constructor function of the RegExp object. These objects can be created if we invoke the
RegExp() constructor. What you will seein practiceis that regular expressions are often created using the
expression literal syntax. | hope that by now you know that strings literals are created when we have a character or
set of characters enclosed within quotation marks. The regular expression literals use a pattern enclosed between
slashes -/—

Now, let us create a RegExp object and assign its value to a variable called myPattern.

Example:

let myPattern = /a%/;

The above example creates a new RegExp object and assigns its value to the variable myPattern. As| explained,
the expression literals are delimited by slashes. The literals are instances of the RegExp class.

We can achieve the exact same result by calling the RegExp() constructor function.

Hereis how that looksin practice:

let myPattern = new RegExp('a$);

This example will match any string that will end with the letter -a~ The regular expression can be composed of
simple characters or can be much more complex. When we use simple characters to build a pattern, we look to find
the exact or direct match. For example, a simple regular expression pattern can be /abc/, and when we use this
pattern, we want to find the exact sequence of -abc—in the strings. For testing and creating regular expressions, there
are different ways, there are many websites that offer this functionality free of charge, and the one website | mostly
use when I-minahurry is called regexr. You can write and test different regular expression patterns. There are
many more websites like this one, and I-m sure you can find them very quickly because it is pointless to mention
them here since every year there is a new one coming out. Okay, now let us test some simple patterns like this:

const myString = "Hi, do you know your abc's’;
const regex = /abc/;

//const regex = new RegExp(‘abc’);
console.log(regex.test(myString));

In this example, the pattern is very ssmple and composed of simple characters like -abc— and as you can see, | have
used both ways to create aregular expression. Thefirst oneisthe literal way, and that is the top one, and the one
that is commented is creating regular expression using the function constructor. Y ou will need only one, so that is
why the constructor function line is commented, and this way, it will not cause any errors or confusion for us. The
string -myString—contains the exact pattern -abc—that we are trying to match. If you run thisin your browser
console, it will return true because the pattern we are looking for is matched. Here we are using the test() method
that executes a search for a match between the regular expression and the specified string. This method will return
true or false (we will talk more about methods later on). Now | want now to test the same example with a different
pattern:

const myStringl = "Hi, do you know your abc's’;
const regex1 = /ac/;

//const regex] = new RegExp(‘ac’);
console.log(regex1.test(myStringl));/false

Why | have renamed my variables, well, because some of the readers will try to run the examples twice in the
browser, and it can happen that most of the time, you can get an error because we are using the same variable or we
are trying to redeclare the same variable twice. Y ou should always make sure that you refresh your browser to clean
the memory before trying new examples or rename the variables, same as | did in the example above, and you will
never run into thisissue. Okay, the test method will return false this time, but why do we still have the pattern -ac—
in our string? We have -ac—in the string, but it does not contain the exact substring -ac— therefore we do not have a
match.

Literal Characters

When it comes to alphabetic characters and digits, they all match themselves literally in regular expressions. But
sometimes, we need to use nonal phabetic characters as well, and we can use this because JavaScript regular

expression can also support these. Still, we need to use them in combination with a backslash (\).
Hereis the entire table of these characters:

Character Matches
\t Tab
\n Newline
\v Vertical tab
\f Form Feed
\r Carriage Return
\xnn L atin character; example \xOA issame as\n
\O0 The Null character

Flags/modifiersin Regular Expressions
Let us go quickly over three different flags we can use in regular expression:

standard

g| global

I| case-insensitive matching

m| this performs multiline matching
u| Unicode

y| sticky

The standard flag/modifier is something that we have already seen in our regular expression pattern, and when we
are creating the pattern, we do not need to specify anything. For example, /abc/ is an example of aregular
expression with the standard flag. The next flag is called the global flag and is described with the letter g. For
example, /abc/g, as you can see here, we have used the g letter after the slashes to indicate the global mode. This
means do not stop at the first match in the document or the string, but go through the rest of the document/string
and find all relevant matches. The next flag is the -i—flag. This flag will perform case-insensitive matching. For
example, our patterns contain only lowercase letters, but what will happen if we have this pattern: /Abc/. Thiswill
not result in any match because thisis nowhere in our string; therefore, we can use the -i—flag or /Abc/i to make it
insensitive to lower and uppercase letters. The next flag is called -m—and stands for multiline. If we have multiple
lines of text, it is good to use -m—flag to get multiple matches. We have a sticky or -y—flag that tells the regular
expression to look for a match only at the last index, not anywhere before in the string. The -u—flag is another
interesting flag introduced in ES6, and what it does is recognize the Unicode charactersin the regular expression.
To test out thisflag, | have created a new file called -testRegex.html— and inside thisfile, | have embedded
JavaScript code. | know that some of you will say, oh no, heis using the embedded JavaScript code in the advanced
JavaScript book, but | do thisonly because | will need fewer screenshots and fewer files created at the end.
Hereisthe entire HTML markup and JavaScript code:

<IDOCTY PE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="|1E=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Regular Expressions</title>
</head>

<body>
<h1>Regular Expressions</h1>

<p class="result'

style="color:whitesmoke;font-size:26px; background-color: gray; min-height: 100px;">
The output goes here!
</p>

<button id="clickBtn'
style="color:black;font-size:19px;">Click Me
</button>

<script>
const btn = document.quer ySelector (‘#clickBtn');
const pTag = document.querySelector (".result’);

const myString = "Regular expressions are patterns used to match character combinations in strings. In JavaScript, regular expressions are also objects’
const regPattern = /iong/;
btn.addEventL istener (‘click’,(e)=>{
const result = myString.match(regPattern);
pTag.innerHTML = result;
1

</script>
</body>
</html>

If you open thisin your browser, it should look like this:

Regular Expressions

!

Click Me

The exampleisvery ssmple | have hl tag, p tag, and button in the HTM L markup. The button hasitsid to be easily
targeted in the JavaScript code. The output of what our JavaScript code will produce will go inside the p tag,
which has a class called result. | can use class or | D-sto target these HTML elements inside our JavaScript code.
What we are interested in here is the code we have in the JavaScript file:

const btn = document.quer ySelector (‘#clickBtn');
const pTag = document.querySelector (.result’);
const myString = "Regular expressions are patterns used to match character combinationsin strings. In JavaScript, regular expressions are also objects’;
const regPattern = /iong/;
btn.addEventL istener (‘click’,(e)=>{
const result = myString.match(regPattern);
pTag.innerHTML = result;

|3k

We can see that our regular expression pattern is avery simple combination of characters/ions/. Here we have to
use the match() method, which is very popular because it retrieves the result of the matching a strong against the
regular expression pattern we defined. Please do not worry at this stage about methods because they fall into two
categories. Ones of them belong to the String class, and the others belong to the RegExp class. So, the /iond is
exactly matched in mySting three times, and these are those exact words (expressions, combinations, expressions).
But because our pattern does not have a modifier, it isastandard one. It will return the first match it will find. If we
click on the button on our web page, this will be the output:

Regular Expressions

Click Me

We can test the -g—global modifier and see what will return after clicking the button. First, we need to add the flag
-g—at the end.

const regPattern = /ions/g;//global

After clicking on the Click Me button, it will return -ions, ions, ions- Thisis because the global modifier will ook
into the entire text and find all matches. Let us test the -i—-modifier, and here is the regular expression pattern with a
small change:

const regPattern = /long/i;//insensitive

Asyou can see, | have used capital letters, and if now | click on the button, | will still get the output -ions—because
of that -i—flag (as you can see, | use two terms here the -flag—and -modifiers- but they are both terms used in
regular expression literature). Thisis happening because of that -i—flag because it makes the matching insensitive to
lowercase and uppercase |etters.

L et us do even some more interesting examples. For example, we want to find all the words that start with the letter
-M—and end with -M— For this example, | have created another file called testRegex1.html, it isalmost identical,
but | changed these two lines;

const myString = "Mam, Mom, Mum’;
const regPattern = /M/g;//global

Now, if wetestit like this, we will get -M,M,M= but | want to have the three words matched, and as we can see,
only the middle letter is different for the three words. So, we can use a single dot to replace aletter from aword. |
know that sounds confusing but check this example:

const regPattern = /M.m/g;//global

The output is the three words -Mam, Mom, Mum- S0, the single dot will replace one character only, but if we add
alonger word like -Magm—into the myString and test this out, it will not work.

const myString = "Mam, Mom, Mum, Magm’;

If you run this, it will not work because the dot will replace only one character from the word and try to do the
matching. Obviously, we have more letters here. So, the dot will match any character except the line break. An
Interesting example is when we are dealing with amounts in dollars. For example, if | input 5.00 dollars like this.
Then the regular expression does not know that we use this dot as a decimal point.

| have changed just these two lines in the code, and the previous ones are commented in the file:

const myString = "5.00, 510, 570°;
const regPattern = /5.0/g;

Thiswill return -5.0 ,510 ,570- which we don+ want to happen. To fix this, we will need to use backslash -\-or an
escaping metacharacter. The character after the backslash will be ignored. Then thiswill fix our problem. Let ustry
again and seeif the 5.00 only be matched.

const regPattern = /5\.0/g;

We can test this out if we click on the -Click Me-button, and it seems to be working perfectly. But then someone
will ask me, well, what about the quotation marks in the text? They do not need to be escaped because they are
treated as regular characters.

RegExp Class

We aready know that we can create a regular expression using the constructor function and using aregular
expression literal. We have already covered many examples of how we can use the regular expression literal, but
now isthe time to create a few using the constructor function of the RegExp object.

Hereis one example:

const regexpression = new RegExp(-ab+c);

Since ECM AScript 6, we can have another additional argument that we can pass in the constructor function, and
that argument will be for defining the flags, as we mentioned before.
S0 hereisan example:

const regExpression = new RegExp(-ab+c—-+-);

Please remember that we need to separate the arguments with a comma. So the first argument is the regular
expression literal, and the second argument is the flag, which is optional. Also, with the RegExp class, we can use
two methods test() and exec() method. These two methods will be explained in detail later in this chapter.

Character Classestogether with bracketsin Regular Expressions

Let uslook at this regular expression /[abc]/. We can see that we use the square brackets in this regular expression.
What do these brackets even mean? Here we are talking about character classes. This gives us the power to combine
individual literal charactersinto classes. Therefore, the regular expression above will match any of the characters
between the brackets, meaning any letters a, b, or ¢ will be matched. The opposite of thisisto use the caret symbol
together with the brackets like this [*abc]. This means that we are trying to match any character that is not between
the brackets or that isnot a, b or c. Another famous expression is this[0-9], which means it finds any number/digit
between the brackets. The hyphen indicates that we are specifying arange of characters. Opposite of thiswill be
this expression [*0-9], meaning it will find any non-digit character, not included in the brackets. For example, we
can use the hyphen to match any lowercase character from the Latin alphabet like this/[a-z]/. We can use the same
logic to match any uppercase from the Latin alphabet using the /[A-Z]/. We can move one step further and match all
lower and uppercase characters from the alphabet using this regular expression: /[a-zA-Z]/. If we want to match all
of the digits and characters from the al phabet, we can use this regular expression: /[a-zA-Z0-9]/.

L et us see some code, and hopefully, thiswill become very clear. If you want to find the exact code, please |ook
into the file called testRegex2.html - (I used the same HTML5 markup when we tested flags in the previous
section, but we will make some minor changes in the JavaScript code).

| have changed only these two lines:

const myString = "Regular expressions are patterns used to match character combinationsin strings. In JavaScript, regular expressions are also objects ;
const regPattern = /[J]/g;//global

What this means, try to match the letter -J-and include only that letter in the result. So, if we run this by clicking on
the button, it will indeed give the single letter -J-back. But if we try to match a set of characterslike this:

const regPattern = /[JaS]/g;//global
then the result will be something like this:
a,a,3,3,3,3,3J,aaSaaa

This is happening because it matches the |etters we provide between the brackets. And if we want the result to be
with al of the letters from the myString except the [JaS], then we can use the caret symbol like this:

const regPattern = /[*JaS]/g;//global
The output will be:

Regulr, ex,pressions, re ptterns, ,used to, mtch, chrcter,,,,,,,,,,combintion,s, ,in, strings,.,ln Vvcrip_t,,
regulr, .expressions, re ,lso0,,0bjects

Thisisinteresting, right. Thisis the same thing for the numbers, but | will not include examples for those.

Regular Expression character classes

Hereis atable of the most important special metacharacters:

\t It matches the tab character

\v It matches the vertical tab character

\r It matches the carriage return character

\f It matches the form feed character

\b It finds a match at the beginning or the end of aword

\B It tries to find a match but not at the beginning or the
end of aword

\s It matches a whitespace character

\S It matches a non-whitespace character

\d It matches any digit character, any ASCII digit, or
same as [0-9]

\D It matches a non-digit character

\w Triesto find any ASCII word character, same asif we

wrote [a-zA-Z0-9]

\W Triesto find a non-word character or same as [a-ZA-
Z0-9]
[“ 1] Matches any character between the brackets

[] Matches any character that is not in between the
brackets

\uhhhh Matchesa UTF-16 value WITH four hexadecimal
digits.

| have already mentioned the escape backslash character. Well, to test out these special characters, you need to use a
backslash in front of them. To test these special characters, | have created afile called testRegex3.html, and |
added these lines of code there:

const myString = "Regular expressions are patterns used to match character combinations in strings 100% true. In JavaScript, regular expressions are also
objects!;
const regPattern = /\w/g;//global

Asyou can seein myString, | have added -100%—and exclamation -!—mark at the end of the string. If you look at
the table, the lowercase -\w—tries to match all of the word characters. And if we click on the button, we will get the
following output| sorry itissolong| only without the percentage -%—sign and exclamation mark.

R.egul.arex,pressionsarep.attern;su,sedtomatch,.charactercomb,inationsinstrin,gsl00truelndav,aScrip;tre.g,

Asyou can seein the output, the whitespaces are not included. Let us now try to use the capital letter W and
observe the outpult:

const regPattern = A\W/g;//global

Output:

So it returns all of the non-word characters like -% and !— Please do not get confused. It does not return a comma,
but it returns the whitespaces in between. | will not test each of them but let us test what will happen if we use the
lowercase -d=

const regPattern = \d/g;//global

The output includes all of the digitsit can find, and that is the -100 percent | used-
1,00

Finally, what if we want to include a backslash character in our regular expression? Well, if we want that, we must
escape even the backslash with another backslash. Thiswill be the regular expression that matches any string that
contains a backslash /\\ /.

And that is all for this section. Please fedl free to test out what will happen with the other special charactersthat |
have included in the table, but if you can+, it should be self-explanatory if you only read what they do.

Unicode: flag " u" and class\p{...}

Since ES2018, if we want to handle Unicode characters correctly in our regular expressions, we can use the u-flag.
If we use the u-flag, then the character classes\p{..} and the negation classes \P{* } are also supported and
available. Every character in Unicode has properties that are defined by the Unicode standard. For example, if the
character has a L etter, it means that the character can belong to any alphabet. But if the property isa Number, it
meansthat it can be a digit and belong to the Arabic or Chinese a phabets. Remember when we use the \p{* }
classes, then the regular expression must also include the -u—flag at the end like this example:

No{L}/gu

The Number and L etter properties have their own aliases, so the single letter L will stand for L etter, and N will be
for Number.
Here is one example so you can understand how you can create regular expression using u-flag and p classes:

let mixedString = "Hi 00 @

let regex1 = \p{L}/qu;

let regex2 = \p{L}/q;

console.log(regex1.test(mixedString));//true
console.log(regex2.test(mixedString));//false

The example above has 4 kinds of letters from the English, Gregorian, Chinese, and Korean alphabets. Asyou can
seein thefirst test, the result we are getting is true because we are using the \p{“ } regular expression and u flag at
the end. But the second console log will give us false because we are trying to search \p{ “ } without the u flag that
enables the support of Unicode in regular expressions. We saw from the previous table that \d character class will
match any ASCI I digits, right? Now, if we want to match adecimal digit in any language, we can use the
Decimal_Number property like: Ap{Decimal_Number/u. Remember, we can use the capital \P{* } to achieve
negation, meaning it will not match any decimal digit but will match any other character in any language. For
example, we want to target/match letters from any language or even the Chinese hieroglyphs. We can use a special
Unicode property called Script. This property refersto the writing system and can take different values like
Chinese, Cyrillic, Greek, Arabic, etc. For the Script property, the dliasis sc, and then we need to use avalue. Here
Is one example for the Macedonian language that uses the Cyrillic a phabet:

let mixedString = "EomHI p3 B K I3/MMXesHI';
let regex1 = \p{ sc=Cyrillic}/gu;
console.log(regex1.test(mixedString));//true

Using the English lettersinside will give us false results because the writing system detects the Cyrillic alphabet.
Another interesting example is when we want to use foreign currency characterslike $, 7, =, then we can use
another Unicode property called Currency Symbol, and the short aliasis\p{ Sc}.

Hereisthe example | like you to consider, but please take a note that | use \d character as well because | want to
include digits together with the currency symbol:

let mixedString = "$5, 7 10, ©109';
let regex1 = /\p{ Sc}\d/gu;
console.log(regex1.test(mixedString));//true

Quantifiersin Regular Expressions

In this section, you will learn about the quantifiers used in regular expressions. The quantifiers indicate the number
of charactersthat can be repeated in a string. For example, with the regular expression syntax we know so far, we
can create a pattern to match four-digit numbers like this: Ad\d\d\d/. But if we need a regular expression to specify
how many times an element should be repeated, we could use specia characters known as quantifiers. Thistable
you can also find on the MDN website.

+ This means that it will match one or more occurrences
of theitem
* This means that it will match zero or more occurrences
of theitem
? This matches zero or one occurrence of the item
{N} It matches the exact N number of occurrences of the
specified item
{N,} It matches the N or more number of
{N,M} It matches any string that contains N number of

| | occurrences, but it can be no more than M |

L et us write some code and test the RegExp quantifiers. Thefirst onein the tableisthe +, and it will match the
preceding item one or more times. For example, let us test to see how many times the character -a—will be matched
In the string:(the code you can find in file testRegex4.html)

const myString = "Regular expressions are avesome! ;
const regPattern = /at/g;

The output is (a, a, @) because the item -a—is three times present in the myString above (Regular expressions are
awesome). Let us see what will happen if we replace the -+—symbol with -*—in the pattern.

const regPattern = /a*/g;
The output in this case is bit strange:

!!!!! aﬂ””””l”l’aﬂHaHHHH

Thisis because in the final result, not only the character -a—is included but the spaces as well that precede them.
From the table, you can see that this quantifier will find all occurrences of the character and whereit isalso
positioned, but it will look for zero or more occurrences. Try this pattern to test for the character -d—and observe the
result.

Thisisthe code and output:

const regPattern = /d*/g;

11111111111111111111111111111111

So there is no character -d—in the string, but it will still return the rest of the characters like whitespaces or whatever
precedes them, and it is expected to match nothing. Whenever using the * and ?, you should know that can match
the zero instances and whatever precedes them. Okay, the next quantifier -?—works similarly to the -*— because it
will look for zero or more occurrences. For example, if we want to match the be, bee, and bees simultaneoudy, we
can construct this regular expression pattern: /be+s?/

Okay, let us move forward, and please take alook at this new example:

const myString = "Regular expressions are avesome! ;
const regPattern = /s{ 2} /g;

This quantifier will match the exact number of occurrences of the item/character we are looking for. For example,
/s{2}/ does not match the -s-in -awesome!—but it matches the two occurrences of the character -s—in -expressions—
This is happening because we put number two inside of the curly braces, and if we change thisto /s{3}/, it will not
work because there is nowhere in the string this sequence of three -sss—letters. For some reason, if we want to
match all of the occurrences of the character -s- then we can do this/s{1}/, and it will give us all of the occurrences.
An interesting point to note is that the quantifierslike * and + are known as -gr eedy— which means that they will
try to match as many characters of the string as possible. When we combine these with the -?—quantifier, it will no
longer be treated as greedy because it will stop as soon as it finds a match. Let us go even one step further. For
example, let us write an expression to match between three to four digits:

let numbersString = "1 12 999 34 9888 687665";
let regexl = /\d{3,4}/9;

console. log(numbersString.match(regexl));
» (3) ['999', '9888', '6876']

Here | have used the match() method to match a string against aregular expression we created. The matching string
Isnumber sString, and the regular expression is regexl in this example. Another example | want to show you is
when we need to match a particular word. For example, it can be JavaScript in some long text, and we need to
match it with one or more spaces before and after the word. Take alook at the step-by-step process (-you can find
the codein regex2.jsfiley:

1) Wefirst do an exact word match like this:

let longString = “As we know, JavaScript is a scripting language that enables you to create dynamically updating content,
control multimedia, animate images, and pretty much....”;
let regex2 = /JavaScript/g;

console.log(longString.match(regex2));
/[Output:[-JavaScript

2) The second step isto include the whitespaces before and after. The special character for white spaces was
-s—if you look at the previous table, and we need to combine it with the -+—symbol so we can specify
that we are saying it hasto have at least one whitespace before after the JavaScript.

let longString = "As we know JavaScript is a scripting language that enables you to create dynamically updating content,
control multimedia, animate images, and pretty much....’;

let regex2 = \st+JavaScript\st/g;

console.log(longString.match(regex?2));

/l Output:[- JavaScript 4

Okay, let us summarize what we know so far about regular expressions. In aregular expression, we have afew
reserved characters that they have special meanings like:

S U AT A) X 4
— —

&

The symbol matches any one single character. For example, if we want to match these two words -matches, cached
using one single pattern, we can use this regular expression /.atche./. The + symbol means the repetition can be 1 or
more times and the * symbol indicates O or more occurrences of the character.

For this example, | did not show you how we can do it inside JavaScript. It issimple, and all you needtodois
create regex literal and use the test method | used in the previous example. If the test method returns true, the
substring we are looking for existsin the larger or original string. But if you just want to test if your regular
expression matches the substring, you are looking you can simply use the regexr website | mentioned before. In
thiswebsite, if we have a correct regular expression, then the substring will be colored in blue like in this example:

T C 1 @& regexr.com

ﬂ Untitled Pattern Save

Expression

.atche.

Text Tests

matches
catched

Alternatives

Regular expressions have specia character when we want to specify alternatives. | like to think about regular
expression alternatives asto the logical -or—operators because they give us the option to choose. The character we
use to separate alternative is the well-known -|~ Please take alook at the following example (the same code isin the
regex3.jsfile):

let dphabetString="abcdef";

let regex1 = /alc|m/g;
console.log(alphabetString.match(regexl)); /Output: ['a’, 'c']

The regular expression above will try to match the string -a—or the string -c—or -m— Asyou can see, it will only
match the letters -a—and -c—but not the letter m because it is not included in the list. The matching will start from
left to right. But there is a problem with the alternatives. For example, having more complex matching, meaning
two or more letters to match, will not always produce the result you expect.

Check out the following code:

let aphabetStringl ="ab ac d ae f";
let regex2 = /alac|ag/g;
console.log(alphabetString.match(regex2)); /Output: ['a’]

Asyou can see from the output, it only matched the first letter -a- and the right ones are ignored even though we
wanted to be included in the result. So, the matching starts from left to right, and as soon as it finds the first one, the
rest are ignored. So please take thisinto a consideration when using aternatives.

Grouping

When we want to treat multiple characters as a single unit, we can use grouping. The grouping in the regular
expressions can be achieved with parentheses. Any subpatterns inside the parentheses will be treated as a group. Let
us have alook at this example that will be able to match a website domain:

let domainList="google.com apple.com apple.com.au support”

let regexpl=/(\w+\.)+H\w+/g;
console.log(domainList.match(regexpl));

The output will be:

['google.com’, ‘apple.com’, ‘apple.com.au’]

As you can see from the output, the grouping example works, but thisis a very simple domain matching aregular
expression. For example, it will not catch a domain containing a hyphen, such as this URL -myer-online.com—
because the hyphen is not included in the pattern. If you want to include those domains, we need to replace the \w
with the ([\w-]+\.). The groups are very important for regular expressions because of these two things:
1) They will alow usto get part of the match and store it as a separate item in the final results array.
2) If the parentheses are combined with quantifiers, then those quantifiers will be applied to all of the items
in the parentheses

Now, what is the connection between parentheses and arrays? Well, when we use the method match(), then we will
get back an array that contains something like this:

1) At the position/index O, it will be the entire match string

2) At position/index 1, it will be the contents of the first parentheses.
3) At position/index 2, it will be the contents of the second parentheses
4) “

5) “ and soon*

So the groups are numbered by their opening parentheses, and they are numbered from left to right. Therefore the
group matches are placed as separate items inside the array. Okay, as an example, let us match HTML5 tags. We
know HTML5 tags are enclosed in angle brackets like this. < >. So, if we want to get the entire tag with the
brackets plus the inside content, we can write aregular expression like this:

let htmI5Tags = '<h1>"

let tagResults = html5Tags.match(/<(.*?)>/);

console.log(tagResults);//Output: ['<h1>', 'h1', index: 0, input: '<h1>', groups: undefined]
console.log(tagResultg[0]);//Output: <h1>

console.log(tagResulty[1]);//Output: hi

Asyou can see, the tag content hl in our case is now enclosed by parentheses and will be treated as a separate
variable.

Nested Groups

Y ou should know that we also have situations where the parentheses are nested inside each other. To explain how
nesting works, | will keep working with the HTML5 tags. We know that each HTM L tag has content, and we can
specify many things there, like classes and ids. Check out the example for defining the HTM L5 h1 tag with its
name and the class attribute:

<hl class=-headingOne->

Ok, let us go step by step and create separate parentheses for each of them (name and class attribute):

1) For hl, we can write the regular expression: ([a-2\d{1}]+)| we can see one pair of parentheses used here

2) For the class=-headingOne- we can write the regular expression: ([*>]+)| this means match any
character except the ->—, and then we have another set of parenthesis

3) Let us combine points one and two and add include the whitespace between them:
([a-2\d{1}+)\s*([*>]+)

4) Thefina step isto match the whole tag content adding one more pair of outer parentheses, we also can
add the < > to match the angle brackets:
<(([a-2\d{1}]+)\s* ([*>]+))>

Here is now the entire code for matching the hl tag:

let htmI5Tagsl = '<hl class="headingOne">",;
let regexp2 = /<(([a-z/d{ 1}] +)\s* ([*>]+))>/;
let tagResultsl = html5Tagsl.match(regexp2);
console.log(tagResults1[0]);
console.log(tagResults1[1]);
console.log(tagResults1[2]);
console.log(tagResults1[3]);

And thisis the output:

> let html5Tagsl = '<h1l class="headingOne">";
let regexp2 = /<(([a-z/d{1}]+)\s*x([*>]+))>/;
let tagResultsl = html5Tagsl.match(regexp2);

console. log(tagResults1[0]);
console. log(tagResultsl[1]);
console. log(tagResults1[2]);
console. log(tagResults1[3]);
<hl class="headingOne"> VM515:4
hl class="headingOne" VM515:5
hl VM515:6
class="headingOne" VM515:7

- ol o ME D o o L

From this example, we can clearly see 3 groups of parentheses, oneisfor the entire tag, and then we have two
separate, one for matching the hl and one for matching the class attribute and the content in between the double-
quotes. Before we move on something else let us do one example that includes the single and double-quotes. If we
want our regular expression to match zero or more characters within a single or double quote, then we need to write
it likethis:

(RN

But there is one problem with this regular expression, and the problem does not care if we open the string with
double quotes and if we close it with asingle one. It will be easier to explain this exampleif | use the regexr
website.

I Expression <> JavaScripty = W Flags v
['l"] [All‘l]*[l"]
l Text Tests 2 matches (0.2ms)

"no problem when we use double quotes on both sides!"
"No problem even if we use double and sinlge quotes!'

See the example above. It will match both of the texts. If we want both quotes to match, we need to make one small
change: adding \1 in the regular expression. Thiswill ensure that the closing and opening quotes match.

Expression <> JavaScript v

(™A *\1

Text Tests 3 mat

'aasdas'
"asdasda"
'asdasda"
"asdasd'

Named groups

Imagine if we have a more complex pattern where we must keep track of all of our parentheses. Then thiswill be an
extremely difficult and pointless process, but here is an option to fix this by giving the parentheses their names. It is
agood idea to name your parentheses, and please use meaningful names because after a while, when you come
back to your own code, you will not know what those names mean.

The syntax for naming parentheses is by adding question mark and meaningful name, like this-?<name>—= This
feature was standardized in ES2018, and it hel ps the devel opers now to have an easier way to express and
understand the regular expression patterns they build. This feature was not working properly until recently, but
since 2020 is part of every modern browser and Node. Let us create aregular expression for a particular date in this
format: -date-month-year— Please check out the following example:

let dateExpression = /(?<day>[0-9]{ 2})-(?<month>[0-9]{ 2})-(?<year>[0-9]{ 4})/;
let dateString = "29-09-2022";

let theGroups = dateString.match(dateExpression).groups,

console.log('The Year Is. ' + theGroups.year); // 2022

console.log('The Month Is: * + theGroups.month); // 09

consolelog('The Day Is: ' + theGroups.day); // 2022

Thisisthe output:

The Year |s: 2022
The Month Is: 09
TheDay Is: 29

Asyou can see, we created aregular expression to match a particular date in some format. All of the groups are
accessible in the property called —gr oups— With this approach, there is only one small problem. If the string we are
working on contains only one date, this approach will work fine, as we already saw in the previous example, but it
will not get all of those dates if the string contains more than one date. So to fix this, we need to use the -g—flag,
which stands for global, to look into the entire string. We also need to use matchAll() to get the full matches with
the corresponding groups. So matchAll() method will return an iterator of results, and we can iterate this result with
asimplefor loop.

Okay let us do this example and we are done with parentheses:

let dateExpressionl = /(?<day>[0-9]{ 2})-(?<month>[0-9]{ 2})-(?<year>[0-9]{ 4})/q;
let dateStringl = "29-09-2022 19-11-2023";
let theGroupsl = dateStringl.matchAll(dateExpressionl);
for(let theGroup of theGroupsl){
let { year, month, day} = theGroup.groups;
console.log('The Year Is. ${year}); // 2022
console.log(' The Month Is. ${ month} °); // 09
console.log('The Day Is. ${day}); // 2022

}
And the output is:

The Year |s: 2022

The Month Is: 09
TheDay Is: 29
The Year Is: 2023
The Month Is: 11
TheDay Is: 19

Methods of the RegExp Class

So far, we have used some methods, but | wanted to summarize what methods belong to the RegExp class. One of
the methods we have used in the beginning was the test() method. This method would return true if there were a
match.

Here is one example of the test method:

/([0-9]{ 2})/ .test(-super 089); //true

Or
/(M 0-9]{ 2})/ .test('super 08"); //false

Another method called exec() would return an array containing the first matched subexpression or null if there were
no matches.
Hereis one example:

const result = /[0-9]+/.exec('super 08 12'); //true
undefined

result
» ['08', index: 6, input: 'super 08 12', groups: undefined]
From the output, we can see that we have an array of one element, which is-08- We also have two properties like

index and input. The index is where the matching happened. Remember, the matching process started from left to
right and index zero. Here is atable that will help you figure out how we got the index to be six.

String | s u p e r 0
Index |0 1 2 3 4 5 6

The next property called input will hold the entire argument we are passing to the function exec and, in our case,
was -super 08 12—

String M ethods on Regular Expressions

So far, we have seen the grammar and syntax we need to create regular expressions, but now we should move
forward and see how regular expressions can be used in everyday JavaScript. We have only used afew of the
strings methods until now, but we need to go deeper in the RegExp API.

Search Method| search ()

This method is by far the simplest one you can use. If you search for this method online, you will find more theory
than practical examples and we as devel opers always want to learn from examples. So, ssmply put, this method
performs a search to find a match between aregular expression and the String object. This method will give you the
first position of the character where the matching happened. If there is no match it will return avalue of -1.
Hereisthe syntax:

sear ch(regexp)

We can see the search method takes only one parameter, aregular expression object. If a non-regular expression
object is passed, it will be implicitly converted into aregular expression object with the help of the constructor
function -new RegExp(regexp)—

Please consider the following example:

let smpleString = "my nameis Jack Rayan!";

let regexp = /[A-Z]/g
console.log(simpleString.sear ch(regexp));

In this example, the output will be 11 because the regular expression says find where we have used the uppercase
letter in the ssimpleString. So, the character J from Jack islocated in the 11th position; therefore, we have the
output 11. Remember, you need to count the whitespaces as well.

What do you think will happen if we change the same example:

let simpleString = "my nameisjack rayan!";
let regExp = /[A-Z]/g
console.log(simpleString.sear ch(regExp));

Thiswill return -1 because there are no uppercase | etters in the ssmpleString.

Replace Method | replace()

The replace() method, similarly to the search method, performs a search, but when it finds the match, it will also do
areplace operation. This replacement method will replace only the first match. To perform multiple replaces, you
need to use the global -g—flag. The first argument of the replace method can be a string instead of aregular
expression. If we use a string, then the method will search the entire string literally, and it will not convert the string
argument to aregular expression as we had this in the search method. Remember, this was done automatically by
the sear ch() method, but it will not happen in the replace() method.

Finally, hereisreplace() method example, using a Regular expression to match:

> let simpleText="'I love javaScript, but javaScript can be
difficult to learn!’';
let output = simpleText.replace(/javaScript/g, "JavaScript");
console. log(output);

I love JavaScript, but JavaScript can be difficult VM1465:3
to learn!

||nr‘|a'F"ir1mH

Asyou can see from the example, the replace method returns a new string with the value(s) replaced. | want you to
note that it will not change or affect the original string stored in simpleText. As discussed earlier, the replace
method can literally replace the value in a string with another string value.

Here is the example of replace() using a string to match:

> let sampleText = "Hi my name 1is Andy!";
let result = sampleText.replace("Andy", "Thomas");
console. log(result);

Hi my name is Thomas!'
undefined

In this example, we are replacing Andy with Thomas. Okay, let us do one more example where we want to
perform replace at multiple places, and that can be achieved because of the global flag we already discussed:

const regexp3 = \d{4}/g

const myText = "I was born in 1990. Do you know anyone that is born in 19907";
const outputl = myText.replace(regExp3, "1989");

console.log(outputl);

The output will be:

| was born in 1989. Do you know anyone that is born in 19897?

L et us cover something even more interesting and useful. Imagine that you want to replace 2 different substrings
within the existing string with a new string. Well, someone will say thisis easy. We can use two replace methods on
that string, one after the other. But, instead of doing that, we can do a method chaining. We can achieve thiswith a
single line of code like in this example:

let testStringl = "This James Bond movie was great. | |love watching James Bond movies with my brother.”;
let output2 = testStringl.r eplace(/James Bond/gi, " Star Wars').r eplace(/brother/gi, "girlfriend");
console.log(output?);

The output will be:

This Star Wars movie was great. | love watching Star Wars movies with my girlfriend.

Another advanced feature is that the replace method can accept a replacement function as a second parameter. Y ou
should know that the function's job is to return a value, and that value will be used as a new string that will replace
the matches. Here is an example of areplacement function:

> const testString2 = "I was born in 1990. Do you know anyone
that 1s born in 19907?7",;
const regExp3 = /\d{4}/g;
function replacerFn() {
return "1987";
}

console. log(testString2.replace(regExp3, replacerFn));

I was born in 1987. Do you know anyone that is born VM522:6
in 19877

But this does not end here. The replacement function can take afew more arguments. Here is the table of arguments
that we can pass into the function:

Parameters Description
match Thisisthe string that was matched by the regex pattern
P1, P2 The matches of all groups
offset The offset of the match
string The entire string

The first example will show you how the matched string is replaced using the replacement function:

const testString3 = "I hate JavaScript and | hate RegEx as well!";
const regexp4 = /hate/g;
function replacer Fn1(match) {

console.log(match);

return “love’;

}
console.log(testString3.r eplace(regExp4, replacer Fnl));

Output:

2 hate
| love JavaScript, and | love RegEx as well

The next example will show you the captures of the capturing group by our regular expression:

const testString4 =" hate JavaScript and | hate RegEx as well!";
const regexp5 = /hat(e)/g;
function replacer Fn2(match,pl) {
console.log(’ The matched string ${ match}, capturing ${ p1});
return "love;

}
console.log(testString4.r eplace(regExp5, replacer Fn2));

Output:

¢) The matched string hate, capturing e
I love JavaScript and I love RegEx as well! _ _ _
This following will show you the offset of the
matches, and we have two in our case. One of the matchesislocated in index 2, and the other match that will occur
for the substring -hate—is located on index 24:

> const testString5 = "I hate JavaScript and I hate RegEx as
well!";
const regExp6 = /hat(e)/g;
function replacerFn3(match,pl,offset) {

console. log(The matched string ${match}, capturing ${pl}

at this index ${offset});
return " love’;
¥

console. log(testString5.replace(regExp6, replacerFn3));

The matched string hate, capturing e at this index 2 VM167:4

The matched string hate, capturing e at this index 24 VM167:4

I love JavaScript and I love RegEx as well! VM167:

7

Finally, here are all of the parameters we can use in the replacement function, including the entire string:

> const testString6 = "I hate JavaScript and I hate
RegEx as well!";
const regExp7 = /hat(e)/g;
function replacerFn4(match,pl,offset,string) {
console.log(The matched string ${match},
capturing ${pl} at this index ${offset} in
${string});
return "~ love ;
}

console. log(testString6.replace(regExp6,
replacerFn4));

The matched string hate, capturing e at this VM224:4

index 2 in I hate JavaScript and I hate RegEx as well!

The matched string hate, capturing e at this VM224:4

index 24 in I hate JavaScript and I hate RegEx as
well!

I love JavaScript and I love RegEx as well! VM224:7

Summary

Congratulations! Thiswas the first chapter, and | hope you enjoyed reading it. This chapter started with methods we
use on Strings. We ended up learning a ton of information about regular expressions, their syntax, grammar, how to
create them, and what kind of methods we can use in different scenarios. | know that the RegExp part can be quite
challenging, but If you did not get it on your first reading, you could always return and read it once more.

Chapter 2 - Asynchronous Programming

In the past, most computer programs ran continuously without stopping until they got the result. Today, the way we
write these computer programs has changed, and most of these programs are executed asynchronously. The
difference between asynchronously and synchronous is evident. In this chapter, | will explain where those
differences are, and hopefully, you will develop a deep understanding of the power of asynchronous programming.
Basically, with asynchronous programming, we focus on atask or set tasks that need to be executed at some
particular point in the future. JavaScript is a single-threaded language, and when we have single-threaded language,
it means that the tasks are performed in a sequence or in order. Before the compiler can start executing a new task,
the previous one must return or must finish. And here is where the problem is, imagine if something happensin the
code like an error or bug and we need to wait for the response to come in, then the rest of the code/tasks needs to
wait until the current oneis resolved and this is known as code-blocking. In this chapter, we will learn in-depth
about Promises, async, await, and for/await. \Why is asynchronous programming so important? As you know,
JavaScript is an event-driven programming language, meaning it waits for the user to take some action or action.
Therefore, the servers keep waiting on user requests before processing those requests and sending the responses
back. Let uslearn all of thisin the following sections. All of the files and examples for this chapter are in the
downloaded files, chapter 2 folder.

Callbacks

L et's start this chapter by explaining what callbacks are. We can achieve asynchronous programming in JavaScript
If we use the callbacks. A callback isafunction that is passed as an argument to another function. The idea of the
callback functionis-1 will call you back later— Y ou should know that the functions in JavaScript are executed in the
sequence they are called, not in the sequence they are defined in. Okay, without confusing you, | will start from the
beginning, why sequence control is so important in JavaScript. The sequence of control allows us to control the
sequence when a function needs to be executed. For example, let us say that we want to create a function that will
do some basic arithmetic operation like the sum of two integer numbers. After the function returns the result, we
want to call another function to display the result to the user. So now we have two functions, one mainly for
calculation, and the other isto display the user the result. Therefore we know their sequence of execution. Of
course, you cannot start showing the results without first calling the cal culation function.

Hereis the entire example including the HTML5 markup and the JavaScript Code (code in sequence.html file) :

<IDOCTY PE html>

<html lang="en">

<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="1E=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Sequence control in JavaScript</title>

</head>

<body>
<h1>Sequence control in JavaScript</h1>
<h2 id="output">Output goes here:</h2>

<form name="myForm" action="#">

<label name="firstOperand">First Operand</label>
<input type="text" name="firstOperand" id="first">

<label name="secondOperand">Second Operand</label>
<input type="text" name="secondOperand" id="second">

<button id="cal cul ate’>Cal cul ate</button>

</form>
<script>
let calcBtn = document.quer ySelector (‘#calculate);
calcBtn.addEventL istener (‘click’,(e)=>{
e.preventDefault();//to prevent the form to submit
let a= parsel nt(document.querySelector (‘#first).value);
let b = par sel nt(document.quer ySelector (‘#second’).value);

function printT his(theSum){
document.getElementByl d("output").innerHTML = theSum;

function calculateTwo(a, b) {
letsum=a+b;
return sum;

}

let result = calculateTwo(a, b);
printThis(result);
b

</script>
</body>
</html>

If we open thisfilein our browser, we can type 5 and 9 in the two input fields, then we can click on the calculate
button, and the result should be something like this:

Sequence control in JavaScript

14

First Operand [5 }

Second Operand [9 }

Calculate

Okay, let me explain what is happening in the code between the script tags. First of all, when we have aform like
this with the submit button, the form's default behavior is to be submitted somewhere, usually another page. We
usually specify attributes in the form tag like action and method, and for the action attribute, we usually define a
path that will go to some file. In our case, we do not need such behavior, so | do not have any attributes in the form
except aform name. This example is not designed to prevent users from submitting empty fields or to check if the
user typed letters instead of numbers; that is not the idea here. Therefore, please do not expect a mechanism to
check for user mistakes. If you test the same example, please use numbers in the fields. The question here is how
will | be sure when the button of the form is clicked? |-m using an event listener that will listen when the user clicks
on the button to catch this. | will explain how this worksin the future. Just please follow me. Okay, imagine that the
button is clicked, and the form will try to use its default behavior, and that is to submit; therefore, the first thing |
should do isturn off this default form behavior using the e.preventDefault() method. Thiswill not allow the form
to be submitted, and now | can get the values of the first and second operand and store them in variables.

Remember that even if we put numbersin the fields in the backend, we still will get strings. To convert the string to
anumber, | use the parsel nt function that will parse the string argument and return an integer, and that is
something we need to work on.

let a= parsel nt(document.querySelector (‘#first).value);
let b = par sel nt(document.quer ySelector (‘#second’).value);

Okay, now these two values | passed them into the calculateT wo function. This function takes two parameters, the
two values that | previously parsed to integers. The function then does the calculation and returns the sum. The
value of the sum will be stored in avariable called the result. So, whatever numbers we use, the calculateTwo()
function will always calculate their sum and store the value into the variable. Finally, we call the printThis function
that takes only one parameter: the value we have stored in the variable result. This function will select the h2 tag
from the HTM L5 markup and change itsinner HTM L with the result of the calculation, and that isit. We are using
theHTML DOM getElementByl d() method to select the HTML tag h2.

document.getElementByl d("output").innerHTML = theSum;

S0 the sequence again was.
1) Enter anumber in thefirst operand field
2) Enter the second number in the second operand field
3) Click on the button
4) Get the values of the two fields and convert them into integers
5) Call the calculateTwo function and pass in the two arguments we converted to integer values
6) Call the printThisfunction with the result that we got from the calculateTwo function
7) Display the result back for the user to see

This was the sequence we wanted to happen, right? This approach is ok, but we can tweak it even more because we
are making two separate functions to display the result. Thisisthe reason why | have made some modifications to
the JavaScript code (the code is in the sequencel.html)

<script>
let calcBtn = document.quer ySelector (‘#calculate);

calcBtn.addEventL istener (‘click’,(e)=>{
e.preventDefault();
let a = par sel nt(document.quer ySelector (‘#first').value);
let b = par sel nt(document.quer ySelector (‘#second').value);

function printThis(theSum) { document.getElementByl d("output").innertHTML = theSum;
}

function calculateTwo(a, b) {
let sum=a+ b;
printThis(sum);

}

calculateTwo(a, b);

1);

</script>

In this case, we called the calculateTwo(a,b) function first, and we let the calculator function call the
printThis(sum) function. Thisis good, right we are making some progress, and the output will be no different
compared to the first example. The second approach is not perfect either because we cannot prevent the
calculateTwo function from calling the printThis function. Thisiswhy we need to use the callback function.
Finally, we arein aposition to start explaining the callbacks. So, according to the definition, a callback is afunction
that is passed as an argument to another function. To show you how thisis done, | need to change the code that is
between the script tags again (the fileis called callback.html):

<script>
let calcBtn = document.getElementByl d(‘cal cul ate);
calcBtn.addEventL istener (‘click’,(e)=>{
e.preventDefault();
let a= parsel nt(document.getElementByl d(‘first’).value);
let b = par sel nt(document.getElementByl d('second’).value);

function printThis(theSum) {
document.getElementByl d("output”).innerHTML = theSum;

}

function calculateTwo(a, b, theCallback) {
let result = a+ b;
theCallback(result);

}

calculateTwo(a, b, printThis);
9k

</script>

Asyou can see from the code above, we are using a callback as the third argument when we call the calculateTwo
function. Then we let the calculator function run the callback after the calculation is finished. We can see that
calculateTwo has 3, not 2 arguments now. The first two are the integer values we already know about, and the last
one isthe function's name called printThis. Every time we pass a function as an argument, we pass only the
function's name like in our example, but we do not put the ()| brackets. So please do not pass a function as an
argument into another function like this:

calculateTwo(a, b, printThis()); //thisiswrong

calculateTwo(a, b, printThis);//thisis the way

Thisisthe basic example of callback functions, but in reality, the callback functions are used with asynchronous
functions. Y ou will see what this means in the next section when we use timers.

Timers

Remember when | said that asynchronous programming is all about task/tasks that need to be executed at some time
in the future. If we want to execute some code after a certain time in the future, we can use the setTimeout()
function.

The syntax of setTimeout function is this one:

setTimeout(function[, delay, argl, arg2, ...]);
setTimeout(function[, delay]);

setTimeout(code], delay]);

From the syntax, the first argument is a function, and the second argument is the delay timer measured in
milliseconds. The timer shows how much the function should wait before being executed. Theargl,“ ,argN are
optional. The last syntax of the setTimeout() function uses code instead of the function, and here we can add a
string that will be compiled and executed when the timer expires. So why is the setTimeout an asynchronous
function? This function is asynchronous because you can specify when the callback function needs to be executed
in the future based on the value of the timer. To be clear, the timer isin milliseconds, and one second has one
thousand milliseconds.

Example:

1s=1000ms

2s = 2000ms

Okay now we need to test everything that we had discussed, and bellow | will give you the entire code you will
need (the actual codeisin setTimeOut.html file):

<IDOCTY PE htmI>

<html lang="en">

<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="|1E=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>setTimeout Function in JavaScript</title>

</head>

<body>
<h1>setTimeout function in JavaScript</h1>
<h2 id="output">Output goes here:</h2>

<label name="firstOperand">First Operand</label>
<input type="text" name="firstOperand" id="first">

<label name="secondOperand">Second Operand</label>
<input type="text" name="secondOperand" id="second">

<button id="cal cul ate’>Cadl cul ate</button>

</form>
<script>
function displayResult1() {
document.getElementByl d("output”).innerHTML = 'Loading.....";

}
function displayResult2() {

document.getElementByld("output™).innertHTML ="Y ou will see this message in 10 seconds;;

}
setTimeout(displayResult2, 10000);

setTimeout(displayResult1, 5000);
</script>
</body>
</html>

Before | show you the output, let me tell you what the code is doing. As you can see from the example above, we
have two setTimeout functions. Let's start with this one:

setTimeout(displayResult1, 5000);

In the code above, displayResult1() is used as a callback function, and we pass this function as an argument inside
our setTimeout, but please make sure you notice that here we are using the function name without any brackets.
The second argument of the setTimeout function is the timer, which is set to 5000 milliseconds or 5 seconds before
time-out. Therefore, the displayResult1() will be called after 5 seconds. The displayResult1 function is very basic
and what it does is change the content of the HTML tag h2. The original content is h2 tag is -Output goes here
which we are trying to change inside our function. We can accomplish this by using one of the ssimplest DOM
manipulations ever:

function displayResult1() {
document.getElementByl d("output”).innertHTML = 'Loading.....";

}

So theinnerHTML will change the content of the h2 tag after 5 seconds.
The first screenshot is taken when we load the file in our browser, and the h2 tag will still have the original content
because the setTimeout function will is going to be called after 5 seconds:

setTimeout function in JavaScript

Output goes here:

First Operand | |

Second Operand |

 Calculate |

Asyou can see, our logic isworking so far, and we still have the -Output goes her e-as h2 content.
The second screenshot is taken after 5 seconds, and then displayResult1 function will be executed, and change the
h2 tag content with new content -L oading” -

setTimeout function in JavaScript

Loading.....

First Operand | |

Second Operand |

~ Calculate \

Now we have -L oading* .—as h2 content, which is great because it means that everything is working as it should.
Thefinal screenshot is taken after 10 seconds, but why did | do this? So, the second set Timeout with have the
function displayResult2 executed after 10 seconds. | will not explain it again because the displayResult2 is
identical with displayResult1 with only one difference, and that is the timer that | have changed from 5 to 10. Here
Isthe final screenshot with new updated h2 content after 10 seconds:

setTimeout function in JavaScript

You will see this message in 10 seconds

First Operand | |

Second Operand |

} Calculate \

| hope you now understand how the setTimeout functions are working. Another interesting point is that instead of
passing a name of afunction as an argument we can pass the entire function inside the setTimeout, just like | did in
this example (the codeisin setTimeOutl.html file):

setTimeout(function () {
document.getElementByl d("output™).innerHTML = "Y ou will see this message in 7 seconds;
}, 7000);

Canceling setTimeout using clear Timeout function

Now you should know that the setTimeout is afunction that returns an identifier known as timer id. We can use
thistimer id so we can cancel the execution.
Please check out the following example (code in: setTimeout.js):

let timerld = setTimeout(() => console.log("1t will never be printed"), 2000);
console.log(timerld);
clear Timeout(timerld);

If you run thisin the browser, you will never see the output. Please note that we can use arrow functions with the
setTimeout function. In short, the function we have in setTimeout will never be executed because the timer is set for
two seconds, and we use the clear Timeout function to cancel the setTimeout function before those 2 seconds. This
isvery useful because we might change our minds, and we do not want the setTimeout function to be executed if
something else happensin our code. Again, the clearTimeout takes one argument: the timer Id and thisid we get
from the setTimeout function.

setl nterval function

The setinterval function has the same or identical syntax as setTimeout but with one notable difference. The
setlnterval will run the function regularly after the given time interval.
Hereis an example:

setlnterval(() => console.log('tick tock, tick tock"), 3000);

| let the code run in my browser console for around 18 seconds, which happened. The same function was executed 6
times, or after 3 seconds as the interval we provide, therefore 6 * 3 = 18. Thisis very good when we want afunction
to run repeatedly. For example, we need a function that will check for updates regularly.

Hereis the output of my function:

setInterval(() => console.log('tick tock, tick tock'), 3000);
2

tick tock, tick tock

L

If we look at the number six, that is one left side of the -tick tock, tick tock—that will tell you how many timesthis

function has been executed before | shut my browser.

Same as the set Timeout we have away to clear thisinterval using the clear I nterval() function. This function takes
one parameter, and that is the intervalld.

Hereisthe code:

let intervalld = setlnterval(() => console.log('tick tock, tick tock"), 3000);
console.log('No moretick, tock because we will clear it with clearInterval fn')
clearInterval(intervalld);

| think we are done with timers, so let us focus on one very important topic called JavaScript events. | did include
them in my first JavaScript book and | also include them in the last two chapters of this book. | think it isimportant
to briefly mentioned them again as they are crucial for understanding how the whole process of asynchronous
programming works. We have aready used event listenersin our examples, but it will not hurt if we go over them
once more.

JavaScript Events

In JavaScript, we are always focused on events. For example, we are waiting for the user to take some actions.
Then, we respond to the user requests. So, the client-side programs are mostly event-driven programs. But where do
these events come from? The browser generates those events every time a user clicks on a button, types on the
search bar, moves the mouse, or even touches the screen. If you go back in the previous sections, you will see that |
have used some event listeners in the exercises without explaining much about them -because | assumed you
already know these things— Every time a specific event occurs, a callback function is created, and these functions
are called event listeners, or in some literature, they are called event handlers. Here is one example of how event
listener will look like and thisis not areal example but just to show you the syntax:

let calculateButton = document.quer ySelector ('.cal cul ate);
//function
let doSomething = (e) =>{

console.log(e.target);

}
calculateButton.addEventL istener (‘click’,doSomething);

So thisiswhat is happening. Using the CSS selector we are selecting a button from our HTML document:

<button id='calculate' class="cal culate’>Cal cul ate</button>

The button has two attributes, D and class. We can use the CSS query selector to target this button using the class
or the id attribute. Only one is enough.
Here we used the class attribute to select the button:

let calculateButton = document.quer ySelector ('.cal cul ate);

But we can aso achieve the same result if we target the id like this:

let calculateButton = document.quer ySelector (‘#cal culate);

Then we add an event listener that will listen for the user to click on that button. Every time the user clicks, the new
event will be added, and inside this event, we have the doSomething() function, a callback function.

The callback function doSomething is very ssimple. It will only console log the element that triggered that specific
event. The output should be the same HTM L5 button tag because -e.target—will get us the target:

<button id='calculate' class="cal culate™>Cal cul ate</button>

So after we select the HTMLS5 button element using the quer ySelector () we can register our callback. In the
addEventL istener, the first argument specifies what event we are interested in. In our case, the event occurred
when the user clicked on the button; therefore, we must specify the -click—as an event. The second parameter will
be the doSomething function which will be the callback function, thisis the function that the browser will invoke,
and it will pass an object that will include the details of that event. That is why we can use e.tar get in the function
to see the exact element that triggered this event.

Network Events. XM LHttpReguest, Callbacks

As | mentioned at the beginning of this chapter, JavaScript is a single-threaded language, and the tasks are
performed in a sequence or in order. Now image we need data that comes from external API. Normally, we send a
request, and we are getting a response back with that data, but what if there is some kind of problem and we are still
waiting for the datato be available for us. So, we are still waiting for the data, and the rest of the tasks are blocked

and cannot be started. Thisisthe same as when |-m on some website, and | click on a button to read further in the
article, and as |-m waiting for the text to load, the website is completely frozen, and | cannot do anything. Thisis
bad, and that is why we are learning about the concept of asynchronous JavaScript. The asynchronous programming
will alow usto create multiple threads, meaning that we can continue executing the rest of the tasks while waiting
for something to happen. Someone will ask me then what is the connection between asynchronous and
XMLHttpRequest. If you are already familiar with XM LHttpRequest, you will know that it supports both ways,
synchronous and asynchronous.

Okay, now let me talk you through the steps when we try to get data from an external APl using the asynchronous
function:

1) The compiler reaches afunction that will get the data from external AP

2) Then we go inside the function where we are using callback functions so we can create a second thread
enabling the rest of the code to run freely

3) Until we are waiting for the data to be available, the rest of the tasks are being executed, and as soon as
we get back the data then, the callback functions are started their execution

In the following sections, we will try to do al of the steps we outline above.

Create XM LHttpReguest

We can create XM L HttpRequest object by calling the XM L HttpRequest constructor. XM L HttpRequest objects
interact with servers and retrieve data from specified URL s without a page refresh. Thiswas a big deal in the past
because the pages continuously did a page refresh after each request, which was time-consuming and not a good
user experience. Now, with the XM L HttpRequest object, we can do a partial page update without a full-page
refresh and destroy the user experience.

We can create XM L HttpRequest like this:

const request = new XM L HttpRequest();

After this, we can use the open method, which will be available on the -request—to set up arequest. The open
method takes three arguments. The first one is the method or the type of request. The second isthe URL or the
endpoint from where we will retrieve data, and the last is a Boolean value, which is optional. If the third valueis
true or omitted, the request will be considered asynchronous. | will use the JSON placeholder API for this example,
afreefake API that developers use for testing and prototyping. | will grab the user-s data from there.

Hereisthe link to this website (you can read more about jsonplaceholder on their site):

https:.//jsonplaceholder .typicode.com/

S0 let us create this request now (the first way):

const request = new XM L HttpRequest();
request.open("GET", "https:// https.//jsonplacehol der.typicode.com/users/
request.send();

The second way we can achieve the same result and thisiswhat | prefer islike this (the entire code will be in
networ kEvents,jsfile):

const request = new XML HttpRequest(),

method = "GET",

url = "https:.//jsonplacehol der.typicode.com/users/";
regquest.open(method, url, true);

request.send();

console.log(request);

Asyou can seein the above code, we are creating the XML HttpRequest object and storing it in avariable called
-request—to reuse the same variable later in the code. This variable has access to the same methods that we can use
to retrieve and manipulate the data that comes over the wire.

Okay, what you can do next is copy this code and paste it into your browser and see if we are getting some data
from the requested API (if you are reading this on your tablet or Kindle, then | will provide screenshots. So, you can
sit back and enjoy).

Thisisthe output:

© HDHIHMQ) DAWR DI EXVEBDHR RAEHD NG 1 RAWMYHY \MQ) QARGKHHZ HZ L
\KH SURSHWY \KHIHLY RGH SOMFX@USURSHW Z HQHHG \WH WM SURSHWW FDEBG UHDG, 6
SURSHW FOQEHERR HQ] HROGIRU . KDAER\KHWH YDOHVP HIQ

7 KWLV \KHBMEH RIHLQWWT] DIRQR \WHUHTXHWY

7 KL/ L\AKH WM Z KHQWH U XKD BHHQ QWD HG RUDMUXMQ) \K
7 KWLV AKHUBMKDNKRZ \\RH U XKD EHHQVHOV

7 KWLV WKHEAM Z KHQWH U EHQ) SURFHWHG

7 KWLV AKH\KEAM Z KHQWH U XHWAY FRP SBIRG U Z HFDQ JHAEDAN GDI

1 RZ Z HFDONH-S \WERN R \KHVHWEMY/ BXVWZ HFOQSHURP \RP HERIRQVROWHUHFHYHG
Q® BHUIRU: HFDQXVHVRY UHDG 6VEAM DAEX\M DQG FDXDQ HYHND/ARRQ D/AKH WML
KHUH Z HFDQXVHWKH: 0 / + WES HIXHWARQUHDG, WIWRKDQIHSURSHWW 7 KLY SURSHW FR
DQG\KLY KDQBBLIZ LAIXQHYHY WP H\KHUHDG. 6VIWFKDQ HYIW YDOH

+ HHIVAHW QB Z HFDQX\WH

: 0/ +\WB5 HMXBXNRQUDG, WIMAKDQIH - FDXBTAN
6R GV DG P RIHFRAHWDAZ LAOXP P O] HZ KDAZ H\BDHG\R I DJ

