

JavaScript From Z ero to H ero: T he M ost C om plete G uide
E ver, M aster M odern JavaScript E ven If Y ou‒re N ew to

Program m ing

R ick Sekuloski

C opyright ̈ 2022 R ick Sekuloski
A ll rights reserved.

ISB N :

PR EFA C E

W H O IS TH IS B O O K FO R ?

H O W TO G ET TH E M O ST O U T O F TH IS B O O K ?

D O W N LO A D TH E EX A M PLE C O D E FILES

O B TA IN TH E IM A G ES Y O U W ILL N EED

C H A PTER 1 STR IN G S A N D R EG U LA R EX PR ESSIO N S

U N IC O D E

C H A R A C TER S A N D C O D E PO IN TS

STR IN G M ETH O D S Y O U SH O U LD K N O W A B O U T

R EG U LA R EX PR ESSIO N S

LITER A L C H A R A C TER S

FLA G S/M O D IFIER S IN R EG U LA R EX PR ESSIO N S

R EG EX P C LA SS

C H A R A C TER C LA SSES TO G ETH ER W ITH B R A C K ETS IN R EG U LA R EX PR ESSIO N S

R EG U LA R EX PR ESSIO N C H A R A C TER C LA SSES

U N IC O D E: FLA G "U " A N D C LA SS \P{...}

Q U A N TIFIER S IN R EG U LA R EX PR ESSIO N S

A LTER N A TIV ES

G R O U PIN G

N ESTED G R O U PS

N A M ED G R O U PS

M ETH O D S O F TH E R EG EX P C LA SS

STR IN G M ETH O D S O N R EG U LA R EX PR ESSIO N S

SEA R C H M ETH O D SEA R C H ()

R EPLA C E M ETH O D R EPLA C E ()

SU M M A R Y

C H A PTER 2 - A SY N C H R O N O U S PR O G R A M M IN G

C A LLB A C K S

TIM ER S

C A N C ELIN G SETTIM EO U T U SIN G C LEA R TIM EO U T FU N C TIO N

SETIN TER V A L FU N C TIO N

JA V A SC R IPT EV EN TS

N ETW O R K EV EN TS: X M LH TTPR EQ U EST, C A LLB A C K S

C R EA TE X M LH TTPR EQ U EST

C A LLB A C K H ELL

PR O M ISES

IM M ED IA TELY SETTLED PR O M ISES

C O N SU M IN G PR O M ISES

PR O M ISE C H A IN IN G

ER R O R R EJEC TIO N H A N D LIN G

TR Y A N D C A TC H STA TEM EN T

PR O M ISE A LL

PR O M ISE R A C E

PR O M ISE A N Y

A SY N C FU N C TIO N

TH E SY N TA X FO R TH E A W A IT IS:

A R R O W FU N C TIO N S:

A N O N Y M O U S A N D N A M ED FU N C TIO N S:

O B JEC T M ETH O D S:

M ETH O D S:

PR O M ISE-B A SED FETC H A PI

A SY N C /A W A IT ER R O R H A N D LIN G

FO R -A W A IT-O F

R EC A LL A N D A SY N C G EN ER A TO R S

EX ER C ISE

SU M M A R Y

C H A PTER 3: JA V A SC R IPT M O D U LES

W H A T A R E M O D U LES?

EX PO R TS A N D IM PO R TS

EX PO R TIN G FEA TU R ES W ITH O U T A N A M E

D EFA U LT K EY W O R D A S R EFER EN C E

R E-EX PO R TIN G

D Y N A M IC IM PO R TS

IM PO R TA N T TO K N O W !

SU M M A R Y

C H A PTER 4: B A SIC TO IN TER M ED IA TE JA V A SC R IPT

H O W TO R U N JA V A SC R IPT?

H O W TO W R ITE C O M M EN TS IN JA V A SC R IPT?

ID EN TIFIER S

STA TEM EN TS

C A SE SEN SITIV ITY

PR IM ITIV E A N D O B JEC T TY PES

V A R IA B LES A N D A SSIG N M EN T

D EC LA R IN G A V A R IA B LE

IN ITIA LIZIN G A V A R IA B LE

V A R , LET, A N D C O N ST

LET

C O N ST

N U M B ER LITER A LS

STR IN G LITER A LS

TEM PLA TE LITER A LS

A R ITH M ETIC O PER A TO R S

STR IN G C O N C A TEN A TIO N +

B O O LEA N V A LU ES

N U LL A N D U N D EFIN ED

C O M PA R ISO N A N D LO G IC A L O PER A TO R S

O B JEC TS

C R EA TE O B JEC TS U SIN G N EW K EY W O R D

C R EA TIN G O B JEC TS U SIN G O B JEC T.C R EA TE()

PR IM ITIV ES PA SSED B Y V A LU E

A R R A Y S

A R R A Y LITER A LS

C R EA TE A R R A Y S U SIN G N EW A R R A Y ()

SPR EA D O PER A TO R

A C C ESS A R R A Y ELEM EN TS

C O N D ITIO N A L STA TEM EN TS O R B R A N C H ES

IF-ELSE STA TEM EN T

ELSE IF STA TEM EN T

C O N D ITIO N A L (TER N A R Y) O PER A TO R

SW ITC H STA TEM EN T

A SSIG N M EN T O PER A TO R

O PER A TO R

W H ILE LO O P

D O W H ILE LO O P

FO R LO O P

FO R /O F LO O P W ITH O B JEC TS

O B JEC T.K EY S() FO R /O F

O B JEC T.EN TR IES() FO R /O F

FO R /IN LO O P

FU N C TIO N S

D EC LA R IN G FU N C TIO N S

IN V O K E FU N C TIO N S

FU N C TIO N EX PR ESSIO N

IN V O K E FU N C TIO N EX PR ESSIO N

A R R O W FU N C TIO N

A R R O W FU N C TIO N O N A R R A Y S

PA SSIN G A R G U M EN TS TO FU N C TIO N S

D EFA U LT FU N C TIO N PA R A M ETER S

C LO SU R ES

O O P C LA SSES

C LA SSES

IN H ER ITA N C E

SETTER S A N D G ETTER S

STA TIC PR O PER TIES A N D M ETH O D S

O V ER R ID IN G M ETH O D S

STR IC T M O D E

‐TH IS‒ K EY W O R D FU N C TIO N C O N TEX T

‐TH IS‒ K EY W O R D M ETH O D IN V O C A TIO N

SU M M A R Y

C H A PTER 5: FIN A L C H A PTER

D O M D O C U M EN T O B JEC T M O D EL

IN TR O D U C TIO N

D O M V S H TM L M A R K U P

D O M TR EE A N D N O D ES

M A LFO R M ED H TM L A N D D O M

A C C ESS TH E D O M ELEM EN TS

G ETTIN G ELEM EN T B Y ID

G ETTIN G ELEM EN TS B Y C LA SS N A M E

G ETTIN G ELEM EN TS B Y TA G N A M E

Q U ER Y SELEC TO R S

TR A V ER SIN G TH E D O M

R O O T N O D ES

PA R EN T N O D ES

C H ILD R EN N O D ES

SIB LIN G PR O PER TIES

D IR EC TIO N S O F TR A V ER SIN G

SELEC T A SPEC IFIC C H ILD

TR A V ER SIN G D O M U PW A R D S

TR A V ER SIN G TH E D O M SID EW A Y S

C R EA TIN G , IN SER TIN G , A N D R EM O V IN G N O D ES FR O M D O M

C R EA TIN G N EW D O M N O D ES

IN SER T C R EA TED N O D ES IN TO TH E D O M

M O D IFY D O M C LA SSES, STY LES, A N D A TTR IB U TES

M O D IFY TH E C SS STY LES

M O D IFY TH E A TTR IB U TES

JA V A SC R IPT EV EN TS

EV EN T H A N D LER & EV EN T LISTEN ER

IN LIN E EV EN T H A N D LER S

EV EN T H A N D LER PR O PER TIES

EV EN T LISTEN ER S

M O ST C O M M O N JA V A SC R IPT EV EN TS

K EY B O A R D EV EN TS

FO R M EV EN TS

SU M M A R Y

A B O U T TH E A U TH O R

A PPEN D IX A : B A SIC TO IN TER M ED IA TE JA V A SC R IPT B O O K

A PPEN D IX B : EX ER C ISES A N D LEA R N M O R E A B O U T JA V A SC R IPT, H TM L, A N D PH P

A PPEN D IX C : R ESO U R C ES

Preface
W elcom e to m y second JavaScript book. In the first book, I explained the basic concepts that everyone should
know , and I also discussed w hy those features are crucial to understand. JavaScript today is one of the m ost popular
w eb program m ing languages, and that is the reason w hy I‒m w riting this book. This book is m ore about
interm ediate to advanced features, but I w ill also include tw o extra chapters for those that w ant to learn the basic
JavaScript concepts. This book is for everyone passionate about learning JavaScript, but w ith that being said, I
w ould not start covering the basics of JavaScript in the first section. If you are new to JavaScript program m ing or
need to refresh your m em ory, I recom m end that you skip the first three advanced chapters of this book and read
chapters four and five, w here I w ill cover the basics of JavaScript. The idea of this book is to give you in-depth
know ledge of advanced features, but as a bonus, I w ant to give everyone an equal chance. That is w hy I included
the basics in the later chapters. If you already know the basics, then please start from chapter one. This book w ill
help you m aster this am azing w eb language through m any exam ples.
The book w ill include longer and sm aller chapters, but I prom ise that they w ill be full of theory and exam ples that
you w ill enjoy.
If you are looking for extra reference m aterial, I recom m end visiting the M D N w ebsite.
Y ou can open the M D N w ebsite by visiting the follow ing U R L:

https://developer.m ozilla.org/en-U S/

I w ould also like to hear from you, so if you need to contact m e, please reach out through som e of m y social m edia
accounts and consider leaving a review w ith your com m ent.

M y social m edia accounts:

Tw itter: https://tw itter.com /R ick29702077?s=09
LinkedIn: https://w w w .linkedin.com /in/rick-sekuloski
Facebook:https://w w w .facebook.com /theodorecodingw ebdevelopm ent/
Y ouTube:https://w w w .youtube.com /channel/U C Q anU cC N aB g-IM -k0u8z0oQ

W ho is this book for?
This book is for:

‛ Students
‛ A nyone that is considering learning JavaScript for the first tim e
‛ JavaScript program m ers w ith prior program m ing experience
‛ A nyone that is seeking to gain a deep understanding of the client and server-side A PIs available to

JavaScript

H ow to G et the m ost out of this book?
To get the m ost from this book, you w ill need the follow ing tools if you are using a com puter or tablet:

‛ A text editor of your choice, here I w ill use V isual Studio C ode (V sC ode).
‛ A n up-to-date brow ser such as G oogle C hrom e, Firefox, Edge, or Safari.

If you are using an e-reader, you can sit back and relax because I w ill include m any exam ples so that you do not
m iss m uch coding. B ut if you to go through the exam ples, please use your com puter.

D ow nload the exam ple code files
Y ou can dow nload the entire code by visiting m y G itH ub repository page using the follow ing link:

https://github.com /R ickSekuloski/rick-javascript-book2

There you w ill find all of the m aterials (code exam ples and exercises) that I used in this book.
O nce the file is dow nloaded on your com puter, you w ill need to unzip the content. Please don't open or run the code
w hile it's inside the zipped folders/directories. Ensure that you extract the folder into your desired destination, such
as the desktop.
Y ou can U nzip the files using the follow ing program s:

‛ W inR A R /7-Zip for W indow s
‛ Zipeg/iZip/U nR arX for M ac

‛ 7-Zip/PeaZip for Linux

O btain the im ages you w ill need
O nce the dow nloaded files are extracted, you can find all of the im ages I use in this book in the ‐color-im ages‒
folder. If you read this on an e-reader, som e im ages m ight be blurry due to com pression and resizing.

C hapter 1 Strings and R egular E xpressions
In this chapter, you w ill learn about the regular expressions and m ore about Strings. W e w ill also cover the m ethods
that w e use to process the strings. A s you know , the JavaScript types can be divided into tw o categories: prim itive
and non-prim itive (object type). The Strings, just like N um bers and B ooleans, are considered as JavaScript
Prim itive types. Strings are a series of characters enclosed by single or double-quotes.
This is an exam ple of a basic string:

let playerN am e = ‐C ristiano R onaldo‒;

In JavaScript, the text is considered to be from a type string. The string is a sequence of U nicode characters.

U nicode
W hy do w e need to use U nicode characters in the first place? Let m e put it sim ply like this: the com puter m achine
does not understand English letters, but they do understand the sequence of characters. That is w hy w e need to use
U nicode because it w ill provide a list of character sets and assign each character a unique code point. U nicode is a
universal character set, and it provides a unique num ber for every character. U nicode version 1.0 w as released in
1991, and the latest up-to-date version w as released in 2021, and it includes codes for 144,667 characters. That is a
lot of codes, and w ithout U nicode program m ing, everything w e do w ill be very difficult.

C haracters and C ode points
I already m entioned that U nicode assigns a unique code point for each character. A code point is a num ber assigned
to a single character. These num bers can range from U +0000 to U +10FFFF. A s you can see, w e need to use U +, a
prefix that stands for U nicode, and after the plus, w e have the <hex>, w hich stands for a hexadecim al num ber. A nd
there you have it. The U nicode m anages this code point and tides them w ith a specific character. A nother im portant
part for you to understand is that JavaScript uses U T F-16 encoding of U nicode character set. A ccording to the
E C M A Script specification, the strings are:
―The String type is the set of all ordered sequences of zero or more 16-bit unsigned integer values (“elements”).
The String type is generally used to represent textual data in a running ECMAScript program, in which case each
element in the String is treated as a UTF-16 code unit value. ―
B efore I confuse you, even m ore, let us go over one sim ple exam ple:

In the above exam ple, w e can see that in the variable m essage, w e have a string that consists of 5 characters. N ow
w e alw ays associate the strings as a sequence of visible characters because w e count the letters right, num bers, or
even punctuation m arks, if any? This approach w ill w ork if w e use sim ple characters know n as A SC II characters
and belong to the B asic Latin block.
Let us consider the follow ing string exam ple:

W ait, the length is 2, and I can only see one em oji but not tw o. W hat is happening here? W ell, em ojis are m ore
com plex characters, and the length property w ill give us back 2, m eaning w e can no longer rely on visual
characters.

The JavaScript w ill consider this string as a sequence of tw o separate code units.
A s I m entioned earlier, each character is assigned a special code point right, so the first exam ple w ith the m essage
variable in the background w ill be processed as this sequence of U T F-16 code units:

For testing purposes, I use the basic G oogle C hrom e D eveloper C onsole. H ere is a link if you do not know how to
use the console for sim ple testing:

https://developer.chrom e.com /docs/devtools/console/

If you use a different w eb brow ser like Firefox, the console is very sim ilar. Still, you w ill need to find that
inform ation on the internet because it is very easy to understand and is bit different for each brow ser.
Let us go back to strings, and so far, w e know that JavaScript string is a sequence of U T F-16 codepoints, and w e
can find out the exact num ber of those units w hen w e use the string.length property. B ut here, w e m ight have one
particular problem , w hat do you think w ill happen if the codepoints w e are talking about do not fit in the 16 bits,
and this is possible? W e need to use a rule know n as surrogate pair of tw o 16 bits values. In sim ple w ords, if w e
have a string w ith a length of 2, it does not m ean w e have tw o separate U nicode characters, but it can be one
com plex character as the em oji exam ple.
Please check out this exam ple:

I hope by now you understand how JavaScript, U nicode, and U T F-16 codepoints are w orking together to achieve
the result w e expect to have.
Finally, I can now explain a m ethod called from C odePoint. This m ethod that belongs to the String class can
assem ble a string from one or m ore code points. These code points w e pass to the m ethod as param eters. JavaScript
m ethods, as w e know , can take a list of param eters, and here as param eters, w e need to use a sequence of code
points.
The syntax of the static String.from C odePoint() is:

String.from C odePoint(num 1)
String.from C odePoint(num 1, num 2)
String.from C odePoint(num 1, num 2, ..., num N)

The argum ents num 1,“ .,num N is a sequence of code points w e already discussed. I said static m ethod because
this m ethod m ust be invoked directly from the String constructor object, not by an instance of the String class.
The return value of this function w ill be a string that w ill be created by using the specified sequence of code points.
Please take a look at this exam ple:

console.log(String.from C odePoint(9731, 9733, 9842, 0x2F804));

The output should be ☃ ★♲��. B ut som etim es, you m ight have a huge array of codepoints, and you w ant that
array to be used as an argum ent in our m ethod. W e can easily solve this if w e use the fam ous three dots ‐“ ‒ spread
operator.
H ere is one exam ple about it:

//array of codepoints
const m yC odePoints = [9731, 9733, 9842, 0x2F804];
//spread operator
const stringO utput = String.from C odePoint(...m yC odePoints);
console.log(stringO utput);

The output should be exactly the sam e as the previous exam ple. Y ou can find this code in the file called lecture1.js
inside the chapter1 folder that you can find in the dow nloaded files. Y ou can copy and paste the code into your
brow ser, and please observe the output. Y ou are free to use different code points and play around because even if
you m ake a m istake, you w ill learn how to fix it and w hy it happened. A nd as I m entioned in m y previous books,
even if you edit the original code, it w ill be no problem because you can alw ays dow nload it again and start it from
scratch.
Let us get back to w ork, and one interesting exam ple I w ant to share is w hen w e have a string, and w e w ant to know
the codepoints for each character. H ow can w e achieve this? W ell, w e can use the good old for loop and traverse
the code points of a string just like in this exam ple:

A s you can see from the exam ple the string ‐H ello W orld!‒ have som e interesting codepoints. Instead of printing
them like this w e can change our code and store the codepoints inside an em pty array:

const m essage ='H ello W orld!';
const codePointsA rray = [];
//we can traverse through our newly created string with a for loop
for (let i = 0; i < m essage.length; i++) {
 let codePoint = m essage.codePointA t(i);
 //console.log(codePoint);
 codePointsA rray[i] = codePoint;
}
//this should return back 'Hello World!'
console.log(String.from C odePoint(...codePointsA rray));

String m ethods you should know about
A string is a sequence of unsigned 16-bit values and w hat w e have not m entioned so far is that the string is an

im m utable sequence. W hat does this m ean? W ell, it m eans only one thing: the m ethods w e are using on strings w ill
not change the contents of a given string. A n em pty string is a string w ith length zero ‐0‒. There are m any m ethods
of the String class, but here I w ill list a few of them that I believe are w orth m entioning. The exam ples are included
in the sam e folder, under the nam e stringM ethods.js.
The first one is the repeat m ethod and is useful w hen w e w ant the sam e string to be repeated several tim es.
Exam ple:

//1) repeat method
const m essage = 'W ';
const repeatIt = m essage.repeat(3);
console.log(repeatIt);// 'WWW'

A nother useful m ethod is the trim m ethod. This m ethod w ill rem ove w hitespace characters from the start and the
end of the string. Interesting to know is that this m ethod m ust be invoked by an instance of the String class.
Syntax:

string.trim ();

Y ou should not supply any param eters in this m ethod, and you should also know that this m ethod w ill not change
the value of the original string.
Let us take a look at the follow ing exam ple:

A nother tw o m ethods for trim m ing the w hite spaces are trim Start() and trim E nd(). The trim Start() m ethod w ill
rem ove the leading w hite spaces, and the latter w ill delete the trailing w hite space. I w ill not test this tw o because
you can try them in your free tim e. A fter all, they are very basic.
In JavaScript, not only the regular space character ‐\u0020‒ is considered as w hite space but also recognizes
new line, tab, carriage returns, nonbreaking space ‐\u{00A 0}‒ as w hite spaces.
There are other String m ethods in JavaScript w ill do the opposite of w hat the trim m ethods are doing, and that is to
add space characters, w hich is very useful as w ell. So w e can use padStart() and padE nd() to add spaces before
and after, but keep in m ind that the current string w ill be padded until the resulting string reaches the given length.
H ere is one exam ple w here I have added only 5 space characters from the start of the current string:

If w e use the length property now , w e w ill see that the exam ple w ill have a length of 5, but the new String variable
w ill have a total length of 10, not 15. So be very careful w ith adding the space characters:

console.log(exam ple.length); // 5
console.log(new String.length); // 10

I have not show n you the syntax of the pad m ethods, but now is the right tim e to do this:

padStart(targetLength)
padStart(targetLength, padString)

A s you can see, w e already did an exam ple w here w e supplied only one param eter, the targetL ength. Still, the

second param eter is optional and nice because w e can define our padding style.
C heck out this exam ple:

const new String1 = exam ple.padStart(10, '#');
console.log(new String1); // #####H ello

Y ou can test out for padE nd() m ethod because it is com pletely the sam e w ith only one difference, and that is, it
w ill add a space at the end of the current string.
W hen w e start w riting program s in JavaScript, w e w ould like to convert the string characters into upper or
low ercase m ost of the tim e. For exam ple, a person is trying to subm it a registration form on our w ebsite, but our
policy is to have all the nam es stored in the database in low ercase. It is a bad idea to w rite this on the form itself,
giving direction to the users on how they need to w rite their first or last nam es using low ercase. This is not a good
approach or the best user experience, right? So w hat w e can do is leave the user to fill out the form w ith its details,
and then later at the backend, w here w e are getting the form data, w e can convert all of the required form fields into
low ercases. This w as just an exam ple of w hy w e m ight use these new m ethods, but I assure you there are m any
m ore. Finally, these tw o m ethods are called toU pperC ase and toL ow erC ase.
Exam ple:

const firstN am e = 'A ndy';
const lastN am e = 'G arcia';
console.log(firstN am e.toL ocaleL ow erC ase());//adny
console.log(lastN am e.toU pperC ase());//G A R C IA

A nother m ethod that w e kept using but never discussed w as the length of a string or the length property.

const fullN am e = 'A ndy G arcia';
console.log(fullN am e.length);// result: 11

The Strings in JavaScript behave the sam e as arrays because they are arrays of characters, but they are not m utable;
please note that. Therefore JavaScript strings are zero-based, the sam e as w e have in arrays. W e alw ays start from
index/position zero. So, the first 16-bit is in position 0, and the second 16-bit value is located at position 1, and so
on.
B ecause w e have indexes now , w e can retrieve any specific character from a string if w e use the square bracket
notation []. The square bracket notation is trading m arks of arrays, but w e can also now use it on strings ‐because
basically, strings are an array of characters rem em ber.‒
Exam ple:

console.log(fullN am e[0]);//A

R em em ber, w ith arrays and strings, w e start from 0, not 1, and if w e w ant to get the last character from any string,
w e can use the length property m inus 1.
Please take a look at the follow ing exam ple, and everything w ill be clear (I use fullN am e string from the previous
exam ple, and it contains this string ‐A ndy G arcia‒):

console.log('Length of the fullN am e string is: ' + fullN am e.length);
console.log('Last character is: '+ fullN am e[fullN am e.length-1]);

O utput:

Length of the fullN am e string is: 11
Last character is: a

Instead of using this, w e can use charA t() m ethod that w ill return a new string consisting of only one single U T F-
16 code unit located at that position.
The charA t m ethod takes only one param eter, the index value.

const sentence = 'I w ant to be a developer!';
const index = 7;
console.log(̀ The character at index ${index} is ${sentence.charA t(index)})̀;// t

W ith our know ledge, w e can use this m ethod to get us the last character.
H ere is the code that w ill do just that:

const lastC har = sentence.charA t(sentence.length-1);
console.log(lastC har);//!

O ne of m y favorite String m ethods is the includes() m ethod. This m ethod takes only one param eter: the substring
w e w ant to search the current string. For exam ple, w e w ant to see if w e have a particular substring inside the current
string and if the m ethod finds it, it w ill return true or false otherw ise.
H ere is one exam ple:

const occupation = 'W eb D eveloper';
if (occupation.includes('D ev')) {
 console.log(̀ Y es, it does!̀);
} else {
 console.log(̀ N ope I can't find D ev here!̀);
}

O utput:

Y es, it does!

W hat if w e w ant to extract that substring from the original string? W ell, to achieve this, there is another m ethod
called slice(). The slice m ethod takes up to tw o param eters or tw o indexes. The first one w ill tell us w here to start
the extraction, and the second w ere to stop the extraction. Y ou need to know that the index positions w e refer to are
not included in the extracted substring.
Let us try this new m ethod:

const M yO ccupation = 'D eveloper';
console.log(M yO ccupation.slice(0, 3)); // "Dev"

H ere w e got ‐D ev‒ back, but w hat if I don‒t supply the second index or w here the extraction needs to stop. W hat do
you think w ill happen? Let us find out:

console.log(M yO ccupation.slice(2));//2

This w ill return ‐veloper‒ because the character at position 2 is ‐v‒, and because there is no second param eter, the
substring w ill return the rem aining characters from the original string.
If w e w ant to replace a substring inside a string w ith another substring, w e can use the replace() string m ethod. This
m ethod takes tw o param eters, the first one w ill be the substring w e are searching to replace, and the second is the
new string w e w ant to replace it w ith.
Exam ple:

const originalString = 'm ozilla';
const updatedString = originalString.replace('m o','G od');
console.log(updatedString); // "Godzilla"
console.log(originalString); // "Mozilla"

W e w ill do another exam ple of replace m ethod later w hen w e talk about regular expressions.
There is another very im portant m ethod called split() m ethod. This m ethod w ill split the strings into an array of
substrings. A gain, sam e as the other m ethods, the split w ill not change or alter the original string. The split operator
takes tw o param eters. O ne is the separator, and the other is the lim it. These tw o param eters are optional. If the first
operator is not listed, it w ill return the original string. The second param eter is the lim it, w hich tells the m ethod the
num ber of splits.
Syntax:

string.split(separator, lim it)

A n exam ple:

In m y first book, w here I covered the basics of JavaScript, I explained that if w e w ant to concatenate tw o strings,
w e can use the plus ‐+‒ operator. B ecause these are strings and not num bers, the plus operator w ill concatenate the
tw o strings into one. There are cases w here this becom es tricky, but I w ill not include them here because that is not
the goal of this book. O kay, let us discuss a new m ethod called concat(), and it does pretty m uch the sam e thing as
the ‐+‒ operator.

H ere is one exam ple:

const m essage1 = 'A na';
const m essage2 ='m aria';
const new M essage = m essage1.concat(m essage2);
console.log(new M essage);//Anamaria

W e have not covered regular expressions yet, but there are tw o m ethods that are used for searching a string. The
first m ethod is called m atch() m ethod, and it searches the string against a given regular expression. If true, it w ill
return the m atches in an array; otherw ise, it w ill return null if no m atch is found.
Let us do a global search for the substring ‐xpr‒:

let text1 = "R egular expression";
const result = text1.m atch(/xpr/g);
console.log(result);

output:

[‐xpr‒]

The next m ethod is m atchA ll() m ethod that w e can discuss after covering the next im portant section, the regular
expression.
In E S6 or E S2015, a new m ethod w as added to norm alize the strings. This m ethod w ill return the string norm alized
according to one of the four form s that w e can pass inside the m ethod as a param eter. This m ethod is know n as
norm alize(), and it can take one param eter called ‐form ‒, but this is optional. If the from param eter is om itted, the
‐N FC ‒ form is used, one of the four m ain norm alization form s. This m ethod w ill return the U nicode norm alization
form of a given input. B ut if the input w e supply is not a string for som e reason, it w ill be converted into a string.
A s I m entioned, if the param eter is om itted, then N FC is used as default. The param eter can be from different types:

N FC : N orm alization Form C anonical C om position.
N FD : N orm alization Form C anonical D ecom position.
N FK C : N orm alization Form C om patibility C om position.
N FK D : N orm alization Form C om patibility D ecom position.

N ow , this m ight confuse you, but here is one exam ple that I hope w ill clarify all of your doubts.
A s w e know , for each character, U nicode assigns a unique num erical value. This w as called codepoint, rem em ber.
Som etim es, a character can be represented by m ore than one code point.
H ave a look at this exam ple that I got it from M D N page:

let string1 = '\u00F1';
let string2 = '\u006E\u0303';
console.log(string1); // ñ
console.log(string2); // ñ

W e have the sam e output, but string1 and string2 are not the sam e because they have different code points. W hen
w e com pare the tw o strings, w e w ill get false because of their different lengths.
H ere is how w e can test tw o strings using the strict equality ‐ === ‒ operator. The strict equality w ill return B oolean
if the tw o operands are equal and it w ill consider if the operands are from different type:

console.log(string1 === string2); // false
console.log(string1.length); // 1
console.log(string2.length); // 2

H ere is w hy w e need to use the norm alize m ethod to convert the string into a norm alized form . W e can use N FD or
N FC to produce a form that w ill produce a string that is canonically equal.
H ere is the code that w ill m ake the tw o stings equal and w ill return B oolean true:

string1 = string1.norm alize('N FD ');
string2 = string2.norm alize('N FD ');
console.log(string1 === string2); // true
console.log(string1.length); // 2
console.log(string2.length); // 2

W e have covered the m ost im portant String m ethods, and now is the tim e to focus on som ething harder called
regular expressions.

R egular E xpressions
This is very interesting but not a favorite topic for m ost people because it can be hard and confusing, and it takes a

lot of tim e to learn them . W e use R egular expressions to find character com binations in strings that m atch a
particular pattern. R egular expressions are very useful, not just for JavaScript but also for other program m ing
languages. In JavaScript, w e have R egE xp class that represents regular expressions. So the R egE xp, sim ilar to the
String class, has useful m ethods that w ill help us perform sim ple to com plex pattern m atching activities. R egE xp
A PI is hard to use if w e do not know the regular expression gram m ar. This syntax/gram m ar is a com plete language
of its ow n. So w e first need to understand the gram m ar, and only after that can w e start w riting regular expressions.
W e can construct a regular expression in tw o w ays. The first w ay is to use the regular expression literal and the
second w ay is to call the constructor function of the R egE xp object. These objects can be created if w e invoke the
R egE xp() constructor. W hat you w ill see in practice is that regular expressions are often created using the
expression literal syntax. I hope that by now you know that strings literals are created w hen w e have a character or
set of characters enclosed w ithin quotation m arks. The regular expression literals use a pattern enclosed betw een
slashes ‐/‒.
N ow , let us create a R egE xp object and assign its value to a variable called m yPattern.
Exam ple:

let m yPattern = /a$/;

The above exam ple creates a new R egE xp object and assigns its value to the variable m yPattern. A s I explained,
the expression literals are delim ited by slashes. The literals are instances of the R egE xp class.
W e can achieve the exact sam e result by calling the R egExp() constructor function.
H ere is how that looks in practice:

let m yPattern = new R egE xp('a$');

This exam ple w ill m atch any string that w ill end w ith the letter ‐a‒. The regular expression can be com posed of
sim ple characters or can be m uch m ore com plex. W hen w e use sim ple characters to build a pattern, w e look to find
the exact or direct m atch. For exam ple, a sim ple regular expression pattern can be /abc/, and w hen w e use this
pattern, w e w ant to find the exact sequence of ‐abc‒ in the strings. For testing and creating regular expressions, there
are different w ays, there are m any w ebsites that offer this functionality free of charge, and the one w ebsite I m ostly
use w hen I‒m in a hurry is called regexr. Y ou can w rite and test different regular expression patterns. There are
m any m ore w ebsites like this one, and I‒m sure you can find them very quickly because it is pointless to m ention
them here since every year there is a new one com ing out. O kay, now let us test som e sim ple patterns like this:

const m yString = ̀H i, do you know your abc's̀ ;
const regex = /abc/;
//const regex = new RegExp('abc');
console.log(regex.test(m yString));

In this exam ple, the pattern is very sim ple and com posed of sim ple characters like ‐abc‒, and as you can see, I have
used both w ays to create a regular expression. The first one is the literal w ay, and that is the top one, and the one
that is com m ented is creating regular expression using the function constructor. Y ou w ill need only one, so that is
w hy the constructor function line is com m ented, and this w ay, it w ill not cause any errors or confusion for us. The
string ‐m yString‒ contains the exact pattern ‐abc‒ that w e are trying to m atch. If you run this in your brow ser
console, it w ill return true because the pattern w e are looking for is m atched. H ere w e are using the test() m ethod
that executes a search for a m atch betw een the regular expression and the specified string. This m ethod w ill return
true or false (w e w ill talk m ore about m ethods later on). N ow I w ant now to test the sam e exam ple w ith a different
pattern:

const m yString1 = ̀H i, do you know your abc's̀ ;
const regex1 = /ac/;
//const regex1 = new RegExp('ac');
console.log(regex1.test(m yString1));//false

W hy I have renam ed m y variables, w ell, because som e of the readers w ill try to run the exam ples tw ice in the
brow ser, and it can happen that m ost of the tim e, you can get an error because w e are using the sam e variable or w e
are trying to redeclare the sam e variable tw ice. Y ou should alw ays m ake sure that you refresh your brow ser to clean
the m em ory before trying new exam ples or renam e the variables, sam e as I did in the exam ple above, and you w ill
never run into this issue. O kay, the test m ethod w ill return false this tim e, but w hy do w e still have the pattern ‐ac‒
in our string? W e have ‐ac‒ in the string, but it does not contain the exact substring ‐ac‒, therefore w e do not have a
m atch.

L iteral C haracters
W hen it com es to alphabetic characters and digits, they all m atch them selves literally in regular expressions. B ut
som etim es, w e need to use nonalphabetic characters as w ell, and w e can use this because JavaScript regular

expression can also support these. Still, w e need to use them in com bination w ith a backslash (\).
H ere is the entire table of these characters:

C haracter M atches
\t Tab
\n N ew line
\v V ertical tab
\f Form Feed
\r C arriage R eturn
\xnn Latin character; exam ple \x0A is sam e as \n
\0 The N ull character

Flags/m odifiers in R egular E xpressions
Let us go quickly over three different flags w e can use in regular expression:

standard
g global
i case-insensitive m atching
m this perform s m ultiline m atching
u U nicode
y sticky

The standard flag/m odifier is som ething that w e have already seen in our regular expression pattern, and w hen w e
are creating the pattern, w e do not need to specify anything. For exam ple, /abc/ is an exam ple of a regular
expression w ith the standard flag. The next flag is called the global flag and is described w ith the letter g. For
exam ple, /abc/g, as you can see here, w e have used the g letter after the slashes to indicate the global m ode. This
m eans do not stop at the first m atch in the docum ent or the string, but go through the rest of the docum ent/string
and find all relevant m atches. The next flag is the ‐i‒ flag. This flag w ill perform case-insensitive m atching. For
exam ple, our patterns contain only low ercase letters, but w hat w ill happen if w e have this pattern: /A bc/. This w ill
not result in any m atch because this is now here in our string; therefore, w e can use the ‐i‒ flag or /A bc/i to m ake it
insensitive to low er and uppercase letters. The next flag is called ‐m ‒ and stands for m ultiline. If w e have m ultiple
lines of text, it is good to use ‐m ‒ flag to get m ultiple m atches. W e have a sticky or ‐y‒ flag that tells the regular
expression to look for a m atch only at the last index, not anyw here before in the string. The ‐u‒ flag is another
interesting flag introduced in E S6, and w hat it does is recognize the U nicode characters in the regular expression.
To test out this flag, I have created a new file called ‒testR egex.htm l‒, and inside this file, I have em bedded
JavaScript code. I know that som e of you w ill say, oh no, he is using the em bedded JavaScript code in the advanced
JavaScript book, but I do this only because I w ill need few er screenshots and few er files created at the end.
H ere is the entire H T M L m arkup and JavaScript code:

<!D O C TY PE html>
<htm l lang="en">
<head>
 <m eta charset="U TF-8">
 <m eta http-equiv="X -U A -C om patible" content="IE=edge">
 <m eta name="view port" content="w idth=device-w idth, initial-scale=1.0">
 <title>R egular Expressions</title>
</head>

<body>
 <h1>R egular Expressions</h1>

 <p class='result'
style="color:w hitesm oke;font-size:26px;background-color: gray; m in-height: 100px;">
 The output goes here!
 </p>

 <button id='clickB tn'
style="color:black;font-size:19px;">C lick M e
 </button>

<script>
const btn = docum ent.querySelector('#clickB tn');
const pTag = docum ent.querySelector('.result');

const m yString = ̀R egular expressions are patterns used to m atch character com binations in strings. In JavaScript, regular expressions are also objects̀
const regPattern = /ions/;
btn.addE ventL istener('click',(e)=>{
const result = m yString.m atch(regPattern);
pTag.innerH TM L = result;
});

 </script>
</body>
</htm l>

If you open this in your brow ser, it should look like this:

The exam ple is very sim ple I have h1 tag, p tag, and button in the H T M L m arkup. The button has its id to be easily
targeted in the JavaScript code. The output of w hat our JavaScript code w ill produce w ill go inside the p tag,
w hich has a class called result. I can use class or ID ‒s to target these H T M L elem ents inside our JavaScript code.
W hat w e are interested in here is the code w e have in the JavaScript file:

const btn = docum ent.querySelector('#clickB tn');
const pTag = docum ent.querySelector('.result');
const m yString = ̀R egular expressions are patterns used to m atch character com binations in strings. In JavaScript, regular expressions are also objects̀ ;
const regPattern = /ions/;
btn.addE ventL istener('click',(e)=>{
 const result = m yString.m atch(regPattern);
 pTag.innerH TM L = result;
});

W e can see that our regular expression pattern is a very sim ple com bination of characters /ions/. H ere w e have to
use the m atch() m ethod, w hich is very popular because it retrieves the result of the m atching a strong against the
regular expression pattern w e defined. Please do not w orry at this stage about m ethods because they fall into tw o
categories. O nes of them belong to the String class, and the others belong to the R egE xp class. So, the /ions/ is
exactly m atched in m ySting three tim es, and these are those exact w ords (expressions, com binations, expressions).
B ut because our pattern does not have a m odifier, it is a standard one. It w ill return the first m atch it w ill find. If w e
click on the button on our w eb page, this w ill be the output:

W e can test the ‐g‒ global m odifier and see w hat w ill return after clicking the button. First, w e need to add the flag
‐g‒ at the end.

const regPattern = /ions/g;//global

A fter clicking on the C lick M e button, it w ill return ‐ions, ions, ions‒. This is because the global m odifier w ill look
into the entire text and find all m atches. Let us test the ‐i‒ m odifier, and here is the regular expression pattern w ith a
sm all change:

const regPattern = /Ions/i;//insensitive

A s you can see, I have used capital letters, and if now I click on the button, I w ill still get the output ‐ions‒ because
of that ‐i‒ flag (as you can see, I use tw o term s here the ‐flag‒ and ‐m odifiers‒, but they are both term s used in
regular expression literature). This is happening because of that ‐i‒ flag because it m akes the m atching insensitive to
low ercase and uppercase letters.
Let us do even som e m ore interesting exam ples. For exam ple, w e w ant to find all the w ords that start w ith the letter
‐M ‒ and end w ith ‐M ‒. For this exam ple, I have created another file called testR egex1.htm l, it is alm ost identical,
but I changed these tw o lines:

const m yString = ̀M am , M om , M um ;̀
const regPattern = /M /g;//global

N ow , if w e test it like this, w e w ill get ‐M ,M ,M ‒, but I w ant to have the three w ords m atched, and as w e can see,
only the m iddle letter is different for the three w ords. So, w e can use a single dot to replace a letter from a w ord. I
know that sounds confusing but check this exam ple:

const regPattern = /M .m /g;//global

The output is the three w ords ‐M am , M om , M um ‒. So, the single dot w ill replace one character only, but if w e add
a longer w ord like ‐M agm ‒ into the m yString and test this out, it w ill not w ork.

const m yString = ̀M am , M om , M um , M agm ;̀

If you run this, it w ill not w ork because the dot w ill replace only one character from the w ord and try to do the
m atching. O bviously, w e have m ore letters here. So, the dot w ill m atch any character except the line break. A n
interesting exam ple is w hen w e are dealing w ith am ounts in dollars. For exam ple, if I input 5.00 dollars like this.
Then the regular expression does not know that w e use this dot as a decim al point.
I have changed just these tw o lines in the code, and the previous ones are com m ented in the file:

const m yString = ̀5.00, 510, 570 ;̀
const regPattern = /5.0/g;

This w ill return ‐5.0 ,510 ,570‒, w hich w e don‒t w ant to happen. To fix this, w e w ill need to use backslash ‐\‒ or an
escaping m etacharacter. The character after the backslash w ill be ignored. Then this w ill fix our problem . Let us try
again and see if the 5.00 only be m atched.

const regPattern = /5\.0/g;

W e can test this out if w e click on the ‐C lick M e‒ button, and it seem s to be w orking perfectly. B ut then som eone
w ill ask m e, w ell, w hat about the quotation m arks in the text? They do not need to be escaped because they are
treated as regular characters.

R egE xp C lass
W e already know that w e can create a regular expression using the constructor function and using a regular
expression literal. W e have already covered m any exam ples of how w e can use the regular expression literal, but
now is the tim e to create a few using the constructor function of the R egE xp object.
H ere is one exam ple:

const regExpression = new R egExp(‐ab+c‒);

Since E C M A Script 6, w e can have another additional argum ent that w e can pass in the constructor function, and
that argum ent w ill be for defining the flags, as w e m entioned before.
So here is an exam ple:

const regExpression = new R egExp(‐ab+c‒,‒i‒);

Please rem em ber that w e need to separate the argum ents w ith a com m a. So the first argum ent is the regular
expression literal, and the second argum ent is the flag, w hich is optional. A lso, w ith the R egE xp class, w e can use
tw o m ethods test() and exec() m ethod. These tw o m ethods w ill be explained in detail later in this chapter.

C haracter C lasses together w ith brackets in R egular E xpressions
Let us look at this regular expression /[abc]/. W e can see that w e use the square brackets in this regular expression.
W hat do these brackets even m ean? H ere w e are talking about character classes. This gives us the pow er to com bine
individual literal characters into classes. Therefore, the regular expression above w ill m atch any of the characters
betw een the brackets, m eaning any letters a, b, or c w ill be m atched. The opposite of this is to use the caret sym bol
together w ith the brackets like this [̂ abc]. This m eans that w e are trying to m atch any character that is not betw een
the brackets or that is not a, b or c. A nother fam ous expression is this [0-9], w hich m eans it finds any num ber/digit
betw een the brackets. The hyphen indicates that w e are specifying a range of characters. O pposite of this w ill be
this expression [̂ 0-9], m eaning it w ill find any non-digit character, not included in the brackets. For exam ple, w e
can use the hyphen to m atch any low ercase character from the Latin alphabet like this /[a-z]/. W e can use the sam e
logic to m atch any uppercase from the Latin alphabet using the /[A -Z]/. W e can m ove one step further and m atch all
low er and uppercase characters from the alphabet using this regular expression: /[a-zA -Z]/. If w e w ant to m atch all
of the digits and characters from the alphabet, w e can use this regular expression: /[a-zA -Z 0-9]/.
Let us see som e code, and hopefully, this w ill becom e very clear. If you w ant to find the exact code, please look
into the file called testR egex2.htm l - (I used the sam e H TM L5 m arkup w hen w e tested flags in the previous
section, but w e w ill m ake som e m inor changes in the JavaScript code).
I have changed only these tw o lines:

const m yString = ̀R egular expressions are patterns used to m atch character com binations in strings. In JavaScript, regular expressions are also objects̀ ;
const regPattern = /[J]/g;//global

W hat this m eans, try to m atch the letter ‐J‒ and include only that letter in the result. So, if w e run this by clicking on
the button, it w ill indeed give the single letter ‐J‒ back. B ut if w e try to m atch a set of characters like this:

const regPattern = /[JaS]/g;//global

then the result w ill be som ething like this:

a,a,a,a,a,a,a,J,a,a,S,a,a,a

This is happening because it m atches the letters w e provide betw een the brackets. A nd if w e w ant the result to be
w ith all of the letters from the m yString except the [JaS], then w e can use the caret sym bol like this:

const regPattern = /[̂ JaS]/g;//global

The output w ill be:

R ,e,g,u,l,r, ,e,x,p,r,e,s,s,i,o,n,s, ,r,e, ,p,t,t,e,r,n,s, ,u,s,e,d, ,t,o, ,m ,t,c,h, ,c,h,r,c,t,e,r, , , , , , , , , ,c,o,m ,b,i,n,t,i,o,n,s, ,i,n, ,s,t,r,i,n,g,s,., ,I,n, ,v,c,r,i,p,t,,,
,r,e,g,u,l,r, ,e,x,p,r,e,s,s,i,o,n,s, ,r,e, ,l,s,o, ,o,b,j,e,c,t,s

This is interesting, right. This is the sam e thing for the num bers, but I w ill not include exam ples for those.

R egular E xpression character classes
H ere is a table of the m ost im portant special m etacharacters:

\t It m atches the tab character
\v It m atches the vertical tab character
\r It m atches the carriage return character
\f It m atches the form feed character
\b It finds a m atch at the beginning or the end of a w ord
\B It tries to find a m atch but not at the beginning or the

end of a w ord
\s It m atches a w hitespace character
\S It m atches a non-w hitespace character
\d It m atches any digit character, any A SC II digit, or

sam e as [0-9]
\D It m atches a non-digit character
\w Tries to find any A SC II w ord character, sam e as if w e

w rote [a-zA -Z 0-9_]

\W Tries to find a non-w ord character or sam e as [̂ a-zA -
Z 0-9_]

[“] M atches any character betw een the brackets
[̂ “] M atches any character that is not in betw een the

brackets
\uhhhh M atches a U TF-16 value W ITH four hexadecim al

digits.

I have already m entioned the escape backslash character. W ell, to test out these special characters, you need to use a
backslash in front of them . To test these special characters, I have created a file called testR egex3.htm l, and I
added these lines of code there:

const m yString = ̀R egular expressions are patterns used to m atch character com binations in strings 100% true. In JavaScript, regular expressions are also
objects!̀ ;
const regPattern = /\w /g;//global

A s you can see in m yString, I have added ‐100% ‒ and exclam ation ‐!‒ m ark at the end of the string. If you look at
the table, the low ercase ‐\w ‒ tries to m atch all of the w ord characters. A nd if w e click on the button, w e w ill get the
follow ing output sorry it is so long only w ithout the percentage ‐% ‒ sign and exclam ation m ark.

R ,e,g,u,l,a,r,e,x,p,r,e,s,s,i,o,n,s,a,r,e,p,a,t,t,e,r,n,s,u,s,e,d,t,o,m ,a,t,c,h,c,h,a,r,a,c,t,e,r,c,o,m ,b,i,n,a,t,i,o,n,s,i,n,s,t,r,i,n,g,s,1,0,0,t,r,u,e,I,n,J,a,v,a,S,c,r,i,p,t,r,e,g,u,l,a,r,e,x,p,r,e,s,s,i,o,n,s,a,r,e,a,l,s,o,o,b,j,e,c,t,s

A s you can see in the output, the w hitespaces are not included. Let us now try to use the capital letter W and
observe the output:

const regPattern = /\W /g;//global

O utput:

, , , , , , , , , , , , , , , , , , ,% , ,., , ,,, , , , , ,!

So it returns all of the non-w ord characters like ‐% and !‒. Please do not get confused. It does not return a com m a,
but it returns the w hitespaces in betw een. I w ill not test each of them but let us test w hat w ill happen if w e use the
low ercase ‐d‒:

const regPattern = /\d/g;//global

The output includes all of the digits it can find, and that is the ‐100 percent I used‒:

1,0,0

Finally, w hat if w e w ant to include a backslash character in our regular expression? W ell, if w e w ant that, w e m ust
escape even the backslash w ith another backslash. This w ill be the regular expression that m atches any string that
contains a backslash / \\ /.
A nd that is all for this section. Please feel free to test out w hat w ill happen w ith the other special characters that I
have included in the table, but if you can‒t, it should be self-explanatory if you only read w hat they do.

U nicode: flag "u" and class \p{...}
Since E S2018, if w e w ant to handle U nicode characters correctly in our regular expressions, w e can use the u-flag.
If w e use the u-flag, then the character classes \p{..} and the negation classes \P{“ } are also supported and
available. Every character in U nicode has properties that are defined by the U nicode standard. For exam ple, if the
character has a Letter, it m eans that the character can belong to any alphabet. B ut if the property is a N um ber, it
m eans that it can be a digit and belong to the A rabic or C hinese alphabets. R em em ber w hen w e use the \p{“ }
classes, then the regular expression m ust also include the ‐u‒ flag at the end like this exam ple:
/\p{L}/gu

The N um ber and L etter properties have their ow n aliases, so the single letter L w ill stand for L etter, and N w ill be
for N um ber.
H ere is one exam ple so you can understand how you can create regular expression using u-flag and p classes:

let m ixedString = "H i აბ 必 ";
let regex1 = /\p{L}/gu;
let regex2 = /\p{L}/g;
console.log(regex1.test(m ixedString));//true
console.log(regex2.test(m ixedString));//false

The exam ple above has 4 kinds of letters from the English, G regorian, C hinese, and K orean alphabets. A s you can
see in the first test, the result w e are getting is true because w e are using the \p{“ } regular expression and u flag at
the end. B ut the second console log w ill give us false because w e are trying to search \p{ “ } w ithout the u flag that
enables the support of U nicode in regular expressions. W e saw from the previous table that \d character class w ill
m atch any A SC II digits, right? N ow , if w e w ant to m atch a decim al digit in any language, w e can use the
D ecim al_N um ber property like: /\p{D ecim al_N um ber/u. R em em ber, w e can use the capital \P{“ } to achieve
negation, m eaning it w ill not m atch any decim al digit but w ill m atch any other character in any language. For
exam ple, w e w ant to target/m atch letters from any language or even the C hinese hieroglyphs. W e can use a special
U nicode property called Script. This property refers to the w riting system and can take different values like
C hinese, C yrillic, G reek, A rabic, etc. For the Script property, the alias is sc, and then w e need to use a value. H ere
is one exam ple for the M acedonian language that uses the C yrillic alphabet:

let m ixedString = "Е опнЭг рЯЭї впл кЭ злймЭкеѕЭпЭ";
let regex1 = /\p{sc=C yrillic}/gu;
console.log(regex1.test(m ixedString));//true

U sing the English letters inside w ill give us false results because the w riting system detects the C yrillic alphabet.
A nother interesting exam ple is w hen w e w ant to use foreign currency characters like $, ₇, ¤, then w e can use
another U nicode property called C urrency_Sym bol, and the short alias is \p{Sc}.
H ere is the exam ple I like you to consider, but please take a note that I use \d character as w ell because I w ant to
include digits together w ith the currency sym bol:

let m ixedString = ̀$5, ₇10, ¤109 ;̀
let regex1 = /\p{Sc}\d/gu;
console.log(regex1.test(m ixedString));//true

Q uantifiers in R egular E xpressions
In this section, you w ill learn about the quantifiers used in regular expressions. The quantifiers indicate the num ber
of characters that can be repeated in a string. For exam ple, w ith the regular expression syntax w e know so far, w e
can create a pattern to m atch four-digit num bers like this: /\d\d\d\d/. B ut if w e need a regular expression to specify
how m any tim es an elem ent should be repeated, w e could use special characters know n as quantifiers. This table
you can also find on the M D N w ebsite.

+ This m eans that it w ill m atch one or m ore occurrences
of the item

* This m eans that it w ill m atch zero or m ore occurrences
of the item

? This m atches zero or one occurrence of the item
{N } It m atches the exact N num ber of occurrences of the

specified item
{N ,} It m atches the N or m ore num ber of
{N ,M } It m atches any string that contains N num ber of

occurrences, but it can be no m ore than M

Let us w rite som e code and test the R egE xp quantifiers. The first one in the table is the +, and it w ill m atch the
preceding item one or m ore tim es. For exam ple, let us test to see how m any tim es the character ‐a‒ w ill be m atched
in the string:(the code you can find in file testR egex4.htm l)

const m yString = ̀R egular expressions are aw esom e!̀ ;
const regPattern = /a+/g;

The output is (a, a, a) because the item ‐a‒ is three tim es present in the m yString above (R egular expressions are
aw esom e). Let us see w hat w ill happen if w e replace the ‐+‒ sym bol w ith ‐*‒ in the pattern.

 const regPattern = /a*/g;

The output in this case is bit strange:

,,,,,a,,,,,,,,,,,,,,,a,,,,a,,,,,,,,

This is because in the final result, not only the character ‐a‒ is included but the spaces as w ell that precede them .
From the table, you can see that this quantifier w ill find all occurrences of the character and w here it is also
positioned, but it w ill look for zero or m ore occurrences. Try this pattern to test for the character ‐d‒ and observe the
result.
This is the code and output:

const regPattern = /d*/g;

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

So there is no character ‐d‒ in the string, but it w ill still return the rest of the characters like w hitespaces or w hatever
precedes them , and it is expected to m atch nothing. W henever using the * and ?, you should know that can m atch
the zero instances and w hatever precedes them . O kay, the next quantifier ‐?‒ w orks sim ilarly to the ‐*‒, because it
w ill look for zero or m ore occurrences. For exam ple, if w e w ant to m atch the be, bee, and bees sim ultaneously, w e
can construct this regular expression pattern: /be+s?/
O kay, let us m ove forw ard, and please take a look at this new exam ple:

const m yString = ̀R egular expressions are aw esom e!̀ ;
const regPattern = /s{2}/g;

This quantifier w ill m atch the exact num ber of occurrences of the item /character w e are looking for. For exam ple,
/s{2}/ does not m atch the ‐s‒ in ‐aw esom e!‒ but it m atches the tw o occurrences of the character ‐s‒ in ‐expressions‒.
This is happening because w e put num ber tw o inside of the curly braces, and if w e change this to /s{3}/, it w ill not
w ork because there is now here in the string this sequence of three ‐sss‒ letters. For som e reason, if w e w ant to
m atch all of the occurrences of the character ‐s‒, then w e can do this /s{1}/, and it w ill give us all of the occurrences.
A n interesting point to note is that the quantifiers like * and + are know n as ‐greedy‒, w hich m eans that they w ill
try to m atch as m any characters of the string as possible. W hen w e com bine these w ith the ‐?‒ quantifier, it w ill no
longer be treated as greedy because it w ill stop as soon as it finds a m atch. Let us go even one step further. For
exam ple, let us w rite an expression to m atch betw een three to four digits:

H ere I have used the m atch() m ethod to m atch a string against a regular expression w e created. The m atching string
is num bersString, and the regular expression is regex1 in this exam ple. A nother exam ple I w ant to show you is
w hen w e need to m atch a particular w ord. For exam ple, it can be JavaScript in som e long text, and w e need to
m atch it w ith one or m ore spaces before and after the w ord. Take a look at the step-by-step process (‐you can find
the code in regex2.js file‒):

1) W e first do an exact w ord m atch like this:

let longString = ̀A s w e know , JavaScript is a scripting language that enables you to create dynam ically updating content,
control m ultim edia, anim ate im ages, and pretty m uch....̀;
let regex2 = /JavaScript/g;

console.log(longString.m atch(regex2));
//O utput:[‐JavaScript‒]

2) The second step is to include the w hitespaces before and after. The special character for w hite spaces w as
‐s‒ if you look at the previous table, and w e need to com bine it w ith the ‐+‒ sym bol so w e can specify
that w e are saying it has to have at least one w hitespace before after the JavaScript.

let longString = ̀A s w e know JavaScript is a scripting language that enables you to create dynam ically updating content,
control m ultim edia, anim ate im ages, and pretty m uch....̀;
let regex2 = /\s+JavaScript\s+/g;
console.log(longString.m atch(regex2));

//O utput:[‐ JavaScript ‒]

O kay, let us sum m arize w hat w e know so far about regular expressions. In a regular expression, w e have a few
reserved characters that they have special m eanings like:

.
+
*
?
{ }
|
()
[]
\
^
$

The sym bol m atches any one single character. For exam ple, if w e w ant to m atch these tw o w ords ‐m atches, cached
using one single pattern, w e can use this regular expression /.atche./. The + sym bol m eans the repetition can be 1 or
m ore tim es and the * sym bol indicates 0 or m ore occurrences of the character.
For this exam ple, I did not show you how w e can do it inside JavaScript. It is sim ple, and all you need to do is
create regex literal and use the test m ethod I used in the previous exam ple. If the test m ethod returns true, the
substring w e are looking for exists in the larger or original string. B ut if you just w ant to test if your regular
expression m atches the substring, you are looking you can sim ply use the regexr w ebsite I m entioned before. In
this w ebsite, if w e have a correct regular expression, then the substring w ill be colored in blue like in this exam ple:

A lternatives
R egular expressions have special character w hen w e w ant to specify alternatives. I like to think about regular
expression alternatives as to the logical ‐or‒ operators because they give us the option to choose. The character w e
use to separate alternative is the w ell-know n ‐|‒. Please take a look at the follow ing exam ple (the sam e code is in the
regex3.js file):

let alphabetString = "a b c d e f";
let regex1 = /a|c|m /g;
console.log(alphabetString.m atch(regex1)); //Output: ['a', 'c']

The regular expression above w ill try to m atch the string ‐a‒ or the string ‐c‒ or ‐m ‒. A s you can see, it w ill only
m atch the letters ‐a‒ and ‐c‒ but not the letter m because it is not included in the list. The m atching w ill start from
left to right. B ut there is a problem w ith the alternatives. For exam ple, having m ore com plex m atching, m eaning
tw o or m ore letters to m atch, w ill not alw ays produce the result you expect.
C heck out the follow ing code:

let alphabetString1 = "a b ac d ae f";
let regex2 = /a|ac|ae/g;
console.log(alphabetString.m atch(regex2)); //Output: ['a']

A s you can see from the output, it only m atched the first letter ‐a‒, and the right ones are ignored even though w e
w anted to be included in the result. So, the m atching starts from left to right, and as soon as it finds the first one, the
rest are ignored. So please take this into a consideration w hen using alternatives.

G rouping
W hen w e w ant to treat m ultiple characters as a single unit, w e can use grouping. The grouping in the regular
expressions can be achieved w ith parentheses. A ny subpatterns inside the parentheses w ill be treated as a group. Let
us have a look at this exam ple that w ill be able to m atch a w ebsite dom ain:

let dom ainList= "google.com apple.com apple.com .au support"
let regexp1= /(\w +\.)+\w +/g;
console.log(dom ainList.m atch(regexp1));

The output w ill be:

['google.com ', 'apple.com ', 'apple.com .au']

A s you can see from the output, the grouping exam ple w orks, but this is a very sim ple dom ain m atching a regular
expression. For exam ple, it w ill not catch a dom ain containing a hyphen, such as this U R L ‐m yer-online.com ‒,
because the hyphen is not included in the pattern. If you w ant to include those dom ains, w e need to replace the \w
w ith the ([\w -]+\.). The groups are very im portant for regular expressions because of these tw o things:

1) They w ill allow us to get part of the m atch and store it as a separate item in the final results array.
2) If the parentheses are com bined w ith quantifiers, then those quantifiers w ill be applied to all of the item s

in the parentheses

N ow , w hat is the connection betw een parentheses and arrays? W ell, w hen w e use the m ethod m atch(), then w e w ill
get back an array that contains som ething like this:

1) A t the position/index 0, it w ill be the entire m atch string
2) A t position/index 1, it w ill be the contents of the first parentheses.
3) A t position/index 2, it w ill be the contents of the second parentheses
4) “
5) “ and so on“

So the groups are num bered by their opening parentheses, and they are num bered from left to right. Therefore the
group m atches are placed as separate item s inside the array. O kay, as an exam ple, let us m atch H TM L5 tags. W e
know H TM L5 tags are enclosed in angle brackets like this: < >. So, if w e w ant to get the entire tag w ith the
brackets plus the inside content, w e can w rite a regular expression like this:

let htm l5Tags = '<h1>';
let tagR esults = htm l5Tags.m atch(/<(.*?)>/);
console.log(tagR esults);//Output: ['<h1>', 'h1', index: 0, input: '<h1>', groups: undefined]
console.log(tagR esults[0]);//Output: <h1>
console.log(tagR esults[1]);//Output: h1

A s you can see, the tag content h1 in our case is now enclosed by parentheses and w ill be treated as a separate
variable.

N ested G roups
Y ou should know that w e also have situations w here the parentheses are nested inside each other. To explain how
nesting w orks, I w ill keep w orking w ith the H T M L 5 tags. W e know that each H T M L tag has content, and w e can
specify m any things there, like classes and ids. C heck out the exam ple for defining the H T M L 5 h1 tag w ith its
nam e and the class attribute:

<h1 class=‒headingO ne‒>

O k, let us go step by step and create separate parentheses for each of them (nam e and class attribute):
1) For h1, w e can w rite the regular expression: ([a-z\d{1}]+) w e can see one pair of parentheses used here
2) For the class=‒headingO ne‒, w e can w rite the regular expression: ([̂ >]+) this m eans m atch any

character except the ‐>‒ , and then w e have another set of parenthesis
3) Let us com bine points one and tw o and add include the w hitespace betw een them :

([a-z\d{1}]+)\s*([̂ >]+)
4) The final step is to m atch the w hole tag content adding one m ore pair of outer parentheses, w e also can

add the < > to m atch the angle brackets:
<(([a-z\d{1}]+)\s* ([̂ >]+))>

H ere is now the entire code for m atching the h1 tag:

let htm l5Tags1 = '<h1 class="headingO ne">';
let regexp2 = /<(([a-z/d{1}]+)\s*([̂ >]+))>/;
let tagR esults1 = htm l5Tags1.m atch(regexp2);
console.log(tagR esults1[0]);
console.log(tagR esults1[1]);
console.log(tagR esults1[2]);
console.log(tagR esults1[3]);

A nd this is the output:

From this exam ple, w e can clearly see 3 groups of parentheses, one is for the entire tag, and then w e have tw o
separate, one for m atching the h1 and one for m atching the class attribute and the content in betw een the double-
quotes. B efore w e m ove on som ething else let us do one exam ple that includes the single and double-quotes. If w e
w ant our regular expression to m atch zero or m ore characters w ithin a single or double quote, then w e need to w rite
it like this:

/['"][̂ '"]*['"]/;

B ut there is one problem w ith this regular expression, and the problem does not care if w e open the string w ith
double quotes and if w e close it w ith a single one. It w ill be easier to explain this exam ple if I use the regexr
w ebsite.

See the exam ple above. It w ill m atch both of the texts. If w e w ant both quotes to m atch, w e need to m ake one sm all
change: adding \1 in the regular expression. This w ill ensure that the closing and opening quotes m atch.

N am ed groups
Im agine if w e have a m ore com plex pattern w here w e m ust keep track of all of our parentheses. Then this w ill be an
extrem ely difficult and pointless process, but here is an option to fix this by giving the parentheses their nam es. It is
a good idea to nam e your parentheses, and please use m eaningful nam es because after a w hile, w hen you com e
back to your ow n code, you w ill not know w hat those nam es m ean.
The syntax for nam ing parentheses is by adding question m ark and m eaningful nam e, like this ‐?<nam e>‒. This
feature w as standardized in E S2018, and it helps the developers now to have an easier w ay to express and
understand the regular expression patterns they build. This feature w as not w orking properly until recently, but
since 2020 is part of every m odern brow ser and N ode. Let us create a regular expression for a particular date in this
form at: ‐date-m onth-year‒. Please check out the follow ing exam ple:

let dateExpression = /(?<day>[0-9]{2})-(?<m onth>[0-9]{2})-(?<year>[0-9]{4})/;
let dateString = "29-09-2022";
let theG roups = dateString.m atch(dateExpression).groups;
console.log('The Y ear Is: ' + theG roups.year); // 2022
console.log('The M onth Is: ' + theG roups.m onth); // 09
console.log('The D ay Is: ' + theG roups.day); // 2022

This is the output:

The Y ear Is: 2022
The M onth Is: 09
The D ay Is: 29

A s you can see, w e created a regular expression to m atch a particular date in som e form at. A ll of the groups are
accessible in the property called ‒.groups‒. W ith this approach, there is only one sm all problem . If the string w e are
w orking on contains only one date, this approach w ill w ork fine, as w e already saw in the previous exam ple, but it
w ill not get all of those dates if the string contains m ore than one date. So to fix this, w e need to use the ‐g‒ flag,
w hich stands for global, to look into the entire string. W e also need to use m atchA ll() to get the full m atches w ith
the corresponding groups. So m atchA ll() m ethod w ill return an iterator of results, and w e can iterate this result w ith
a sim ple for loop.
O kay let us do this exam ple and w e are done w ith parentheses:

let dateExpression1 = /(?<day>[0-9]{2})-(?<m onth>[0-9]{2})-(?<year>[0-9]{4})/g;
let dateString1 = "29-09-2022 19-11-2023";
let theG roups1 = dateString1.m atchA ll(dateExpression1);
for(let theG roup of theG roups1){
 let {year, m onth, day} = theG roup.groups;
 console.log(̀ The Y ear Is: ${year})̀; // 2022
 console.log(̀ The M onth Is: ${m onth})̀; // 09
 console.log(̀ The D ay Is: ${day})̀; // 2022
}

A nd the output is:

The Y ear Is: 2022

The M onth Is: 09
The D ay Is: 29
The Y ear Is: 2023
The M onth Is: 11
The D ay Is: 19

M ethods of the R egE xp C lass
So far, w e have used som e m ethods, but I w anted to sum m arize w hat m ethods belong to the R egE xp class. O ne of
the m ethods w e have used in the beginning w as the test() m ethod. This m ethod w ould return true if there w ere a
m atch.
H ere is one exam ple of the test m ethod:

/([0-9]{2})/.test(‐super 08‒); //true
O r
/(̂ [0-9]{2})/.test('super 08'); //false

A nother m ethod called exec() w ould return an array containing the first m atched subexpression or null if there w ere
no m atches.
H ere is one exam ple:

From the output, w e can see that w e have an array of one elem ent, w hich is ‐08‒. W e also have tw o properties like
index and input. The index is w here the m atching happened. R em em ber, the m atching process started from left to
right and index zero. H ere is a table that w ill help you figure out how w e got the index to be six.

String s u p e r 0
Index 0 1 2 3 4 5 6

The next property called input w ill hold the entire argum ent w e are passing to the function exec and, in our case,
w as ‐super 08 12‒.

String M ethods on R egular E xpressions
So far, w e have seen the gram m ar and syntax w e need to create regular expressions, but now w e should m ove
forw ard and see how regular expressions can be used in everyday JavaScript. W e have only used a few of the
strings m ethods until now , but w e need to go deeper in the R egE xp A PI.

Search M ethod search ()
This m ethod is by far the sim plest one you can use. If you search for this m ethod online, you w ill find m ore theory
than practical exam ples and w e as developers alw ays w ant to learn from exam ples. So, sim ply put, this m ethod
perform s a search to find a m atch betw een a regular expression and the String object. This m ethod w ill give you the
first position of the character w here the m atching happened. If there is no m atch it w ill return a value of -1.
H ere is the syntax:

search(regexp)

W e can see the search m ethod takes only one param eter, a regular expression object. If a non-regular expression
object is passed, it w ill be im plicitly converted into a regular expression object w ith the help of the constructor
function ‐new R egExp(regexp)‒.
Please consider the follow ing exam ple:

let sim pleString = "m y nam e is Jack R ayan!";
let regExp = /[A -Z]/g
console.log(sim pleString.search(regExp));

In this exam ple, the output w ill be 11 because the regular expression says find w here w e have used the uppercase
letter in the sim pleString. So, the character J from Jack is located in the 11th position; therefore, w e have the
output 11. R em em ber, you need to count the w hitespaces as w ell.
W hat do you think w ill happen if w e change the sam e exam ple:

let sim pleString = "m y nam e is jack rayan!";
let regExp = /[A -Z]/g
console.log(sim pleString.search(regExp));

This w ill return -1 because there are no uppercase letters in the sim pleString.

R eplace M ethod replace ()
The replace() m ethod, sim ilarly to the search m ethod, perform s a search, but w hen it finds the m atch, it w ill also do
a replace operation. This replacem ent m ethod w ill replace only the first m atch. To perform m ultiple replaces, you
need to use the global ‐g‒ flag. The first argum ent of the replace m ethod can be a string instead of a regular
expression. If w e use a string, then the m ethod w ill search the entire string literally, and it w ill not convert the string
argum ent to a regular expression as w e had this in the search m ethod. R em em ber, this w as done autom atically by
the search() m ethod, but it w ill not happen in the replace() m ethod.
Finally, here is replace() m ethod exam ple, using a R egular expression to m atch:

A s you can see from the exam ple, the replace m ethod returns a new string w ith the value(s) replaced. I w ant you to
note that it w ill not change or affect the original string stored in sim pleT ext. A s discussed earlier, the replace
m ethod can literally replace the value in a string w ith another string value.
H ere is the exam ple of replace() using a string to m atch:

In this exam ple, w e are replacing A ndy w ith T hom as. O kay, let us do one m ore exam ple w here w e w ant to
perform replace at m ultiple places, and that can be achieved because of the global flag w e already discussed:

const regExp3 = /\d{4}/g
const m yText = "I w as born in 1990. D o you know anyone that is born in 1990?";
const output1 = m yText.replace(regExp3, "1989");
console.log(output1);

The output w ill be:

I w as born in 1989. D o you know anyone that is born in 1989?

Let us cover som ething even m ore interesting and useful. Im agine that you w ant to replace 2 different substrings
w ithin the existing string w ith a new string. W ell, som eone w ill say this is easy. W e can use tw o replace m ethods on
that string, one after the other. B ut, instead of doing that, w e can do a m ethod chaining. W e can achieve this w ith a
single line of code like in this exam ple:

let testString1 = "This Jam es B ond m ovie w as great. I love w atching Jam es B ond m ovies w ith m y brother.";
let output2 = testString1.replace(/Jam es B ond/gi, "Star W ars").replace(/brother/gi, "girlfriend");
console.log(output2);

The output w ill be:

This Star W ars m ovie w as great. I love w atching Star W ars m ovies w ith m y girlfriend.

A nother advanced feature is that the replace m ethod can accept a replacem ent function as a second param eter. Y ou
should know that the function's job is to return a value, and that value w ill be used as a new string that w ill replace
the m atches. H ere is an exam ple of a replacem ent function:

B ut this does not end here. The replacem ent function can take a few m ore argum ents. H ere is the table of argum ents
that w e can pass into the function:

Param eters D escription
m atch This is the string that w as m atched by the regex pattern
P1, P2 The m atches of all groups
offset The offset of the m atch
string The entire string

The first exam ple w ill show you how the m atched string is replaced using the replacem ent function:

const testString3 = "I hate JavaScript and I hate R egEx as w ell!";
const regExp4 = /hate/g;
function replacerFn1(m atch) {
 console.log(m atch);
 return ̀love ;̀
}
console.log(testString3.replace(regExp4, replacerFn1));

O utput:

2 hate
I love JavaScript, and I love R egEx as w ell

The next exam ple w ill show you the captures of the capturing group by our regular expression:

const testString4 = "I hate JavaScript and I hate R egEx as w ell!";
const regExp5 = /hat(e)/g;
function replacerFn2(m atch,p1) {
 console.log(̀ The m atched string ${m atch}, capturing ${p1})̀;
 return ̀love ;̀
}
console.log(testString4.replace(regExp5, replacerFn2));

O utput:

This follow ing w ill show you the offset of the
m atches, and w e have tw o in our case. O ne of the m atches is located in index 2, and the other m atch that w ill occur
for the substring ‐hate‒ is located on index 24:

Finally, here are all of the param eters w e can use in the replacem ent function, including the entire string:

Sum m ary
C ongratulations! This w as the first chapter, and I hope you enjoyed reading it. This chapter started w ith m ethods w e
use on Strings. W e ended up learning a ton of inform ation about regular expressions, their syntax, gram m ar, how to
create them , and w hat kind of m ethods w e can use in different scenarios. I know that the R egExp part can be quite
challenging, but If you did not get it on your first reading, you could alw ays return and read it once m ore.

C hapter 2 - A synchronous Program m ing
In the past, m ost com puter program s ran continuously w ithout stopping until they got the result. Today, the w ay w e
w rite these com puter program s has changed, and m ost of these program s are executed asynchronously. The
difference betw een asynchronously and synchronous is evident. In this chapter, I w ill explain w here those
differences are, and hopefully, you w ill develop a deep understanding of the pow er of asynchronous program m ing.
B asically, w ith asynchronous program m ing, w e focus on a task or set tasks that need to be executed at som e
particular point in the future. JavaScript is a single-threaded language, and w hen w e have single-threaded language,
it m eans that the tasks are perform ed in a sequence or in order. B efore the com piler can start executing a new task,
the previous one m ust return or m ust finish. A nd here is w here the problem is, im agine if som ething happens in the
code like an error or bug and w e need to w ait for the response to com e in, then the rest of the code/tasks needs to
w ait until the current one is resolved and this is know n as code-blocking. In this chapter, w e w ill learn in-depth
about Promises, async, await, and for/await. W hy is asynchronous program m ing so im portant? A s you know ,
JavaScript is an event-driven program m ing language, m eaning it w aits for the user to take som e action or action.
Therefore, the servers keep w aiting on user requests before processing those requests and sending the responses
back. Let us learn all of this in the follow ing sections. A ll of the files and exam ples for this chapter are in the
dow nloaded files, chapter2 folder.

C allbacks
Let's start this chapter by explaining w hat callbacks are. W e can achieve asynchronous program m ing in JavaScript
if w e use the callbacks. A callback is a function that is passed as an argum ent to another function. The idea of the
callback function is ‐I w ill call you back later‒. Y ou should know that the functions in JavaScript are executed in the
sequence they are called, not in the sequence they are defined in. O kay, w ithout confusing you, I w ill start from the
beginning, w hy sequence control is so im portant in JavaScript. The sequence of control allow s us to control the
sequence w hen a function needs to be executed. For exam ple, let us say that w e w ant to create a function that w ill
do som e basic arithm etic operation like the sum of tw o integer num bers. A fter the function returns the result, w e
w ant to call another function to display the result to the user. So now w e have tw o functions, one m ainly for
calculation, and the other is to display the user the result. Therefore w e know their sequence of execution. O f
course, you cannot start show ing the results w ithout first calling the calculation function.
H ere is the entire exam ple including the H TM L5 m arkup and the JavaScript C ode (code in sequence.htm l file) :

<!D O C TY PE html>
<htm l lang="en">
<head>
 <m eta charset="U TF-8">
 <m eta http-equiv="X -U A -C om patible" content="IE=edge">
 <m eta name="view port" content="w idth=device-w idth, initial-scale=1.0">
 <title>Sequence control in JavaScript</title>
</head>
<body>
 <h1>Sequence control in JavaScript</h1>
 <h2 id="output">O utput goes here:</h2>

 <form name="m yForm " action="#">

 <label name="firstO perand">First O perand</label>
 <input type="text" name="firstO perand" id="first">

 <label name="secondO perand">Second O perand</label>
 <input type="text" name="secondO perand" id="second">

 <button id='calculate'>C alculate</button>

 </form >
 <script>
 let calcB tn = docum ent.querySelector('#calculate');
calcB tn.addE ventL istener('click',(e)=>{
e.preventD efault();//to prevent the form to submit
let a = parseInt(docum ent.querySelector('#first').value);
let b = parseInt(docum ent.querySelector('#second').value);

 function printT his(theSum){
 docum ent.getE lem entB yId("output").innerH TM L = theSum ;

 }

 function calculateT w o(a, b) {
 let sum = a + b;
 return sum ;
 }

 let result = calculateT w o(a, b);
 printT his(result);
 });

 </script>
</body>
</htm l>

If w e open this file in our brow ser, w e can type 5 and 9 in the tw o input fields, then w e can click on the calculate
button, and the result should be som ething like this:

O kay, let m e explain w hat is happening in the code betw een the script tags. First of all, w hen w e have a form like
this w ith the subm it button, the form 's default behavior is to be subm itted som ew here, usually another page. W e
usually specify attributes in the form tag like action and m ethod, and for the action attribute, w e usually define a
path that w ill go to som e file. In our case, w e do not need such behavior, so I do not have any attributes in the form
except a form nam e. This exam ple is not designed to prevent users from subm itting em pty fields or to check if the
user typed letters instead of num bers; that is not the idea here. Therefore, please do not expect a m echanism to
check for user m istakes. If you test the sam e exam ple, please use num bers in the fields. The question here is how
w ill I be sure w hen the button of the form is clicked? I‒m using an event listener that w ill listen w hen the user clicks
on the button to catch this. I w ill explain how this w orks in the future. Just please follow m e. O kay, im agine that the
button is clicked, and the form w ill try to use its default behavior, and that is to subm it; therefore, the first thing I
should do is turn off this default form behavior using the e.preventD efault() m ethod. This w ill not allow the form
to be subm itted, and now I can get the values of the first and second operand and store them in variables.
R em em ber that even if w e put num bers in the fields in the backend, w e still w ill get strings. To convert the string to
a num ber, I use the parseInt function that w ill parse the string argum ent and return an integer, and that is
som ething w e need to w ork on.

let a = parseInt(docum ent.querySelector('#first').value);
let b = parseInt(docum ent.querySelector('#second').value);

O kay, now these tw o values I passed them into the calculateT w o function. This function takes tw o param eters, the
tw o values that I previously parsed to integers. The function then does the calculation and returns the sum . The
value of the sum w ill be stored in a variable called the result. So, w hatever num bers w e use, the calculateT w o()
function w ill alw ays calculate their sum and store the value into the variable. Finally, w e call the printT his function
that takes only one param eter: the value w e have stored in the variable result. This function w ill select the h2 tag
from the H T M L 5 m arkup and change its inner H T M L w ith the result of the calculation, and that is it. W e are using
the H T M L D O M getE lem entB yId() m ethod to select the H T M L tag h2.
docum ent.getE lem entB yId("output").innerH TM L = theSum ;

So the sequence again w as:
1) Enter a num ber in the first operand field
2) Enter the second num ber in the second operand field
3) C lick on the button
4) G et the values of the tw o fields and convert them into integers
5) C all the calculateT w o function and pass in the tw o argum ents w e converted to integer values
6) C all the printT his function w ith the result that w e got from the calculateT w o function
7) D isplay the result back for the user to see

This w as the sequence w e w anted to happen, right? This approach is ok, but w e can tw eak it even m ore because w e
are m aking tw o separate functions to display the result. This is the reason w hy I have m ade som e m odifications to
the JavaScript code (the code is in the sequence1.htm l)

<script>
 let calcB tn = docum ent.querySelector('#calculate');

calcB tn.addE ventL istener('click',(e)=>{
 e.preventD efault();
 let a = parseInt(docum ent.querySelector('#first').value);
 let b = parseInt(docum ent.querySelector('#second').value);

 function printT his(theSum) { docum ent.getE lem entB yId("output").innerH TM L = theSum ;
 }

 function calculateT w o(a, b) {
 let sum = a + b;
 printT his(sum);
 }

 calculateT w o(a, b);

 });

</script>

In this case, w e called the calculateT w o(a,b) function first, and w e let the calculator function call the
printT his(sum) function. This is good, right w e are m aking som e progress, and the output w ill be no different
com pared to the first exam ple. The second approach is not perfect either because w e cannot prevent the
calculateT w o function from calling the printT his function. This is w hy w e need to use the callback function.
Finally, w e are in a position to start explaining the callbacks. So, according to the definition, a callback is a function
that is passed as an argum ent to another function. To show you how this is done, I need to change the code that is
betw een the script tags again (the file is called callback.htm l):

<script>
 let calcB tn = docum ent.getE lem entB yId('calculate');
 calcB tn.addE ventL istener('click',(e)=>{
 e.preventD efault();
 let a = parseInt(docum ent.getE lem entB yId('first').value);
 let b = parseInt(docum ent.getE lem entB yId('second').value);

 function printT his(theSum) {
 docum ent.getE lem entB yId("output").innerH TM L = theSum ;
 }

 function calculateT w o(a, b, theC allback) {
 let result = a + b;
 theC allback(result);
 }

 calculateT w o(a, b, printT his);
 });
</script>

A s you can see from the code above, w e are using a callback as the third argum ent w hen w e call the calculateT w o
function. Then w e let the calculator function run the callback after the calculation is finished. W e can see that
calculateT w o has 3, not 2 argum ents now . The first tw o are the integer values w e already know about, and the last
one is the function's nam e called printT his. Every tim e w e pass a function as an argum ent, w e pass only the
function's nam e like in our exam ple, but w e do not put the () brackets. So please do not pass a function as an
argum ent into another function like this:
calculateT w o(a, b, printT his()); //this is w rong

calculateT w o(a, b, printT his);//this is the w ay

This is the basic exam ple of callback functions, but in reality, the callback functions are used w ith asynchronous
functions. Y ou w ill see w hat this m eans in the next section w hen w e use tim ers.

T im ers
R em em ber w hen I said that asynchronous program m ing is all about task/tasks that need to be executed at som e tim e
in the future. If w e w ant to execute som e code after a certain tim e in the future, w e can use the setT im eout()
function.
The syntax of setT im eout function is this one:

setT im eout(function[, delay, arg1, arg2, ...]);
setT im eout(function[, delay]);

setT im eout(code[, delay]);

From the syntax, the first argum ent is a function, and the second argum ent is the delay tim er m easured in
m illiseconds. The tim er show s how m uch the function should w ait before being executed. The arg1,“ ,argN are
optional. The last syntax of the setT im eout() function uses code instead of the function, and here w e can add a
string that w ill be com piled and executed w hen the tim er expires. So w hy is the setT im eout an asynchronous
function? This function is asynchronous because you can specify w hen the callback function needs to be executed
in the future based on the value of the tim er. To be clear, the tim er is in m illiseconds, and one second has one
thousand m illiseconds.
Exam ple:
1s = 1000m s
2s = 2000m s
O kay now w e need to test everything that w e had discussed, and bellow I w ill give you the entire code you w ill
need (the actual code is in setT im eO ut.htm l file):

<!D O C TY PE html>
<htm l lang="en">
<head>
 <m eta charset="U TF-8">
 <m eta http-equiv="X -U A -C om patible" content="IE=edge">
 <m eta name="view port" content="w idth=device-w idth, initial-scale=1.0">
 <title>setTim eout Function in JavaScript</title>
</head>
<body>
 <h1>setTim eout function in JavaScript</h1>
 <h2 id="output">O utput goes here:</h2>

 <form name="m yForm " action="#">

 <label name="firstO perand">First O perand</label>
 <input type="text" name="firstO perand" id="first">

 <label name="secondO perand">Second O perand</label>
 <input type="text" name="secondO perand" id="second">

 <button id='calculate'>C alculate</button>

 </form >
<script>
function displayR esult1() {
 docum ent.getE lem entB yId("output").innerH TM L = 'Loading.....';
}
function displayR esult2() {
 docum ent.getE lem entB yId("output").innerH TM L = 'Y ou w ill see this m essage in 10 seconds';
}
setT im eout(displayR esult2, 10000);
setT im eout(displayR esult1, 5000);
</script>
</body>
</htm l>

B efore I show you the output, let m e tell you w hat the code is doing. A s you can see from the exam ple above, w e
have tw o setT im eout functions. Let's start w ith this one:

setT im eout(displayR esult1, 5000);

In the code above, displayR esult1() is used as a callback function, and w e pass this function as an argum ent inside
our setT im eout, but please m ake sure you notice that here w e are using the function nam e w ithout any brackets.
The second argum ent of the setT im eout function is the tim er, w hich is set to 5000 m illiseconds or 5 seconds before
tim e-out. Therefore, the displayR esult1() w ill be called after 5 seconds. The displayR esult1 function is very basic
and w hat it does is change the content of the H TM L tag h2. The original content is h2 tag is ‐O utput goes here‒,
w hich w e are trying to change inside our function. W e can accom plish this by using one of the sim plest D O M
m anipulations ever:

function displayR esult1() {
docum ent.getE lem entB yId("output").innerH TM L = 'Loading.....';
}

So the innerH T M L w ill change the content of the h2 tag after 5 seconds.
The first screenshot is taken w hen w e load the file in our brow ser, and the h2 tag w ill still have the original content
because the setT im eout function w ill is going to be called after 5 seconds:

A s you can see, our logic is w orking so far, and w e still have the ‐O utput goes here‒ as h2 content.
The second screenshot is taken after 5 seconds, and then displayR esult1 function w ill be executed, and change the
h2 tag content w ith new content ‐L oading“ ‒:

N ow w e have ‐L oading“ .‒ as h2 content, w hich is great because it m eans that everything is w orking as it should.
The final screenshot is taken after 10 seconds, but w hy did I do this? So, the second setT im eout w ith have the
function displayR esult2 executed after 10 seconds. I w ill not explain it again because the displayR esult2 is
identical w ith displayR esult1 w ith only one difference, and that is the tim er that I have changed from 5 to 10. H ere
is the final screenshot w ith new updated h2 content after 10 seconds:

I hope you now understand how the setT im eout functions are w orking. A nother interesting point is that instead of
passing a nam e of a function as an argum ent w e can pass the entire function inside the setTim eout, just like I did in
this exam ple (the code is in setT im eO ut1.htm l file):

setT im eout(function () {
 docum ent.getE lem entB yId("output").innerH TM L = 'Y ou w ill see this m essage in 7 seconds';
}, 7000);

C anceling setT im eout using clearT im eout function
N ow you should know that the setT im eout is a function that returns an identifier know n as tim er id. W e can use
this tim er id so w e can cancel the execution.
Please check out the follow ing exam ple (code in: setT im eout.js):

let tim erId = setT im eout(() => console.log("It w ill never be printed"), 2000);
console.log(tim erId);
clearT im eout(tim erId);

If you run this in the brow ser, you w ill never see the output. Please note that w e can use arrow functions w ith the
setTim eout function. In short, the function w e have in setTim eout w ill never be executed because the tim er is set for
tw o seconds, and w e use the clearT im eout function to cancel the setT im eout function before those 2 seconds. This
is very useful because w e m ight change our m inds, and w e do not w ant the setTim eout function to be executed if
som ething else happens in our code. A gain, the clearTim eout takes one argum ent: the tim er Id and this id w e get
from the setT im eout function.

setInterval function
The setInterval function has the sam e or identical syntax as setT im eout but w ith one notable difference. The
setInterval w ill run the function regularly after the given tim e interval.
H ere is an exam ple:

setInterval(() => console.log('tick tock, tick tock'), 3000);

I let the code run in m y brow ser console for around 18 seconds, w hich happened. The sam e function w as executed 6
tim es, or after 3 seconds as the interval w e provide, therefore 6 * 3 = 18. This is very good w hen w e w ant a function
to run repeatedly. For exam ple, w e need a function that w ill check for updates regularly.
H ere is the output of m y function:

If w e look at the num ber six, that is one left side of the ‐tick tock, tick tock‒ that w ill tell you how m any tim es this

function has been executed before I shut m y brow ser.
Sam e as the setT im eout w e have a w ay to clear this interval using the clearInterval() function. This function takes
one param eter, and that is the intervalId.
H ere is the code:

let intervalId = setInterval(() => console.log('tick tock, tick tock'), 3000);
console.log('N o m ore tick, tock because w e w ill clear it w ith clearInterval fn')
clearInterval(intervalId);

I think w e are done w ith tim ers, so let us focus on one very im portant topic called JavaScript events. I did include
them in m y first JavaScript book and I also include them in the last tw o chapters of this book. I think it is im portant
to briefly m entioned them again as they are crucial for understanding how the w hole process of asynchronous
program m ing w orks. W e have already used event listeners in our exam ples, but it w ill not hurt if w e go over them
once m ore.

JavaScript E vents
In JavaScript, w e are alw ays focused on events. For exam ple, w e are w aiting for the user to take som e actions.
Then, w e respond to the user requests. So, the client-side program s are m ostly event-driven program s. B ut w here do
these events com e from ? The brow ser generates those events every tim e a user clicks on a button, types on the
search bar, m oves the m ouse, or even touches the screen. If you go back in the previous sections, you w ill see that I
have used som e event listeners in the exercises w ithout explaining m uch about them ‐because I assum ed you
already know these things‒. Every tim e a specific event occurs, a callback function is created, and these functions
are called event listeners, or in som e literature, they are called event handlers. H ere is one exam ple of how event
listener w ill look like and this is not a real exam ple but just to show you the syntax:

let calculateB utton = docum ent.querySelector('.calculate');
//function
let doSom ething = (e) =>{
 console.log(e.target);
}
calculateB utton.addE ventL istener('click',doSom ething);

So this is w hat is happening. U sing the C SS selector w e are selecting a button from our H TM L docum ent:

<button id='calculate' class='calculate'>C alculate</button>

The button has tw o attributes, ID and class. W e can use the C SS query selector to target this button using the class
or the id attribute. O nly one is enough.
H ere w e used the class attribute to select the button:

let calculateB utton = docum ent.querySelector('.calculate');

B ut w e can also achieve the sam e result if w e target the id like this:

let calculateB utton = docum ent.querySelector('#calculate');

Then w e add an event listener that w ill listen for the user to click on that button. Every tim e the user clicks, the new
event w ill be added, and inside this event, w e have the doSom ething() function, a callback function.
The callback function doSom ething is very sim ple. It w ill only console log the elem ent that triggered that specific
event. The output should be the sam e H T M L 5 button tag because ‐e.target‒ w ill get us the target:

<button id='calculate' class='calculate'>C alculate</button>

So after w e select the H TM L5 button elem ent using the querySelector() w e can register our callback. In the
addE ventL istener, the first argum ent specifies w hat event w e are interested in. In our case, the event occurred
w hen the user clicked on the button; therefore, w e m ust specify the ‐click‒ as an event. The second param eter w ill
be the doSom ething function w hich w ill be the callback function, this is the function that the brow ser w ill invoke,
and it w ill pass an object that w ill include the details of that event. That is w hy w e can use e.target in the function
to see the exact elem ent that triggered this event.

N etw ork E vents: X M L H ttpR equest, C allbacks
A s I m entioned at the beginning of this chapter, JavaScript is a single-threaded language, and the tasks are
perform ed in a sequence or in order. N ow im age w e need data that com es from external A PI. N orm ally, w e send a
request, and w e are getting a response back w ith that data, but w hat if there is som e kind of problem and w e are still
w aiting for the data to be available for us. So, w e are still w aiting for the data, and the rest of the tasks are blocked

and cannot be started. This is the sam e as w hen I‒m on som e w ebsite, and I click on a button to read further in the
article, and as I‒m w aiting for the text to load, the w ebsite is com pletely frozen, and I cannot do anything. This is
bad, and that is w hy w e are learning about the concept of asynchronous JavaScript. The asynchronous program m ing
w ill allow us to create m ultiple threads, m eaning that w e can continue executing the rest of the tasks w hile w aiting
for som ething to happen. Som eone w ill ask m e then w hat is the connection betw een asynchronous and
X M L H ttpR equest. If you are already fam iliar w ith X M L H ttpR equest, you w ill know that it supports both w ays,
synchronous and asynchronous.
O kay, now let m e talk you through the steps w hen w e try to get data from an external A PI using the asynchronous
function:

1) The com piler reaches a function that w ill get the data from external A PI
2) Then w e go inside the function w here w e are using callback functions so w e can create a second thread

enabling the rest of the code to run freely
3) U ntil w e are w aiting for the data to be available, the rest of the tasks are being executed, and as soon as

w e get back the data then, the callback functions are started their execution

In the follow ing sections, w e w ill try to do all of the steps w e outline above.

C reate X M L H ttpR equest
W e can create X M L H ttpR equest object by calling the X M L H ttpR equest constructor. X M L H ttpR equest objects
interact w ith servers and retrieve data from specified U R L s w ithout a page refresh. This w as a big deal in the past
because the pages continuously did a page refresh after each request, w hich w as tim e-consum ing and not a good
user experience. N ow , w ith the X M L H ttpR equest object, w e can do a partial page update w ithout a full-page
refresh and destroy the user experience.
W e can create X M L H ttpR equest like this:

const request = new X M L H ttpR equest();

A fter this, w e can use the open m ethod, w hich w ill be available on the ‐request‒ to set up a request. The open
m ethod takes three argum ents. The first one is the m ethod or the type of request. The second is the U R L or the
endpoint from w here w e w ill retrieve data, and the last is a B oolean value, w hich is optional. If the third value is
true or om itted, the request w ill be considered asynchronous. I w ill use the JSO N placeholder A PI for this exam ple,
a free fake A PI that developers use for testing and prototyping. I w ill grab the user‒s data from there.
H ere is the link to this w ebsite (you can read m ore about jsonplaceholder on their site):

https://jsonplaceholder.typicode.com /

So let us create this request now (the first w ay):

const request = new X M L H ttpR equest();
request.open("G ET", "https:// https://jsonplaceholder.typicode.com /users/
request.send();

The second w ay w e can achieve the sam e result and this is w hat I prefer is like this (the entire code w ill be in
netw orkE vents.js file):

const request = new X M L H ttpR equest(),
m ethod = "G ET",
url = "https://jsonplaceholder.typicode.com /users/";
request.open(m ethod, url, true);
request.send();
console.log(request);

A s you can see in the above code, w e are creating the X M LH ttpR equest object and storing it in a variable called
‐request‒ to reuse the sam e variable later in the code. This variable has access to the sam e m ethods that w e can use
to retrieve and m anipulate the data that com es over the w ire.
O kay, w hat you can do next is copy this code and paste it into your brow ser and see if w e are getting som e data
from the requested A PI (if you are reading this on your tablet or K indle, then I w ill provide screenshots. So, you can
sit back and enjoy).
This is the output:

�: �H���D�U�H���J�H�W�W�L�Q�J���D���O�R�W���R�I���G�D�W�D�����E�X�W���S�O�H�D�V�H���G�R���Q�R�W���E�H���D�I�U�D�L�G�����1�R�W���H�Y�H�U�\�W�K�L�Q�J���O�L�V�W�H�G���K�H�U�H���Z�H���Z�L�O�O���Q�H�H�G���W�R���N�Q�R�Z�����$�P�R�Q�J
�W�K�H���S�U�R�S�H�U�W�L�H�V�����W�K�H�U�H���L�V���R�Q�H���S�D�U�W�L�F�X�O�D�U���S�U�R�S�H�U�W�\���Z�H���Q�H�H�G�����W�K�H���V�W�D�W�H���S�U�R�S�H�U�W�\���F�D�O�O�H�G���U�H�D�G�\�6�W�D�W�H�����7�K�H���Y�D�O�X�H���R�I���W�K�L�V
�S�U�R�S�H�U�W�\���F�D�Q���E�H���E�H�W�Z�H�H�Q���]�H�U�R���D�Q�G���I�R�X�U�����: �K�D�W���G�R���W�K�H�V�H���Y�D�O�X�H�V���P�H�D�Q�"

���������7�K�L�V���L�V���W�K�H���V�W�D�W�H���E�H�I�R�U�H���L�Q�L�W�L�D�O�L�]�D�W�L�R�Q���R�I���W�K�H���U�H�T�X�H�V�W
���������7�K�L�V���L�V���W�K�H���V�W�D�W�H���Z�K�H�Q���W�K�H���U�H�T�X�H�V�W���K�D�V���E�H�H�Q���L�Q�L�W�L�D�O�L�]�H�G���R�U���D�I�W�H�U���X�V�L�Q�J���W�K�H���R�S�H�Q���P�H�W�K�R�G
���������7�K�L�V���L�V���W�K�H���V�W�D�W�H���W�K�D�W���V�K�R�Z�V���W�K�H���U�H�T�X�H�V�W���K�D�V���E�H�H�Q���V�H�Q�W
���������7�K�L�V���L�V���W�K�H���V�W�D�W�H���Z�K�H�Q���W�K�H���U�H�T�X�H�V�W���L�V���E�H�L�Q�J���S�U�R�F�H�V�V�H�G
���������7�K�L�V���L�V���W�K�H���V�W�D�W�H���Z�K�H�Q���W�K�H���U�H�T�X�H�V�W���L�V���F�R�P�S�O�H�W�H�G���Ù���Z�H���F�D�Q���J�H�W���E�D�F�N���G�D�W�D���R�U���D�Q���H�U�U�R�U

�1�R�Z���Z�H���F�D�Q���N�H�H�S���W�U�D�F�N���R�I���W�K�H�V�H���V�W�D�W�H�V�����E�X�W���Z�H���F�D�Q���S�H�U�I�R�U�P���V�R�P�H���D�F�W�L�R�Q�V���R�Q���W�K�H���U�H�F�H�L�Y�H�G���G�D�W�D���D�V���V�R�R�Q���D�V���Z�H���K�L�W���W�K�H
�Q�X�P�E�H�U���I�R�X�U�����: �H���F�D�Q���X�V�H���W�K�L�V���U�H�D�G�\�6�W�D�W�H���D�W�W�U�L�E�X�W�H���D�Q�G���F�D�O�O���D�Q���H�Y�H�Q�W���D�V���V�R�R�Q���D�V���W�K�H���V�W�D�W�H���D�W�W�U�L�E�X�W�H���F�K�D�Q�J�H�V�����)�U�R�P
�K�H�U�H�����Z�H���F�D�Q���X�V�H���W�K�H���; �0 �/ �+�W�W�S�5�H�T�X�H�V�W���R�Q�U�H�D�G�\�V�W�D�W�H�F�K�D�Q�J�H���S�U�R�S�H�U�W�\�����7�K�L�V���S�U�R�S�H�U�W�\���F�R�Q�W�D�L�Q�V���D�Q���H�Y�H�Q�W���K�D�Q�G�O�H�U��
�D�Q�G���W�K�L�V���K�D�Q�G�O�H�U���Z�L�O�O���U�X�Q���H�Y�H�U�\���W�L�P�H���W�K�H���U�H�D�G�\�6�W�D�W�H���F�K�D�Q�J�H�V���L�W�V���Y�D�O�X�H��
�+�H�U�H���L�V���W�K�H���V�\�Q�W�D�[���Z�H���F�D�Q���X�V�H��
��
�; �0 �/ �+�W�W�S�5�H�T�X�H�V�W���R�Q�U�H�D�G�\�V�W�D�W�H�F�K�D�Q�J�H��� ���F�D�O�O�E�D�F�N��

�6�R���O�H�W���X�V���D�G�G���P�R�U�H���F�R�G�H���W�K�D�W���Z�L�O�O���V�X�P�P�D�U�L�]�H���Z�K�D�W���Z�H���W�D�O�N�H�G���V�R���I�D�U��

