

Mastering React

Mastering React helps the reader master the React JavaScript framework
for faster and more robust front-end development.

React is a JavaScript framework for creating interface design that is
coherent, cheap, and customizable. It makes it possible to create com-
plicated user interfaces out of “modules,” which are small, independent
pieces of code. The primary goal of using React is the easier creation of
visual interfaces.

React was developed by Facebook and released to the public in 2013.
It powers some of the most popular apps, including Facebook and
Instagram. It uses virtual DOM (JavaScript Document Object Model),
which increases the application’s performance. The virtualized DOM in
JavaScript is faster than the conventional DOM. React can be used as
both a standalone framework and in conjunction with other platforms.
It employs component and data patterns to improve clarity while also
assisting in maintaining larger applications.

React saves you time and money during development because it is com-
ponent-based. The design can be segmented into reusable modules that
could be used to adjust interfaces dynamically.

The front-end development industry has a reputation for moving at a
breakneck speed. Organizations cannot be expected to modify their apps
annually to catch pace with technological innovations. This is why busi-
nesses prefer React.

React simplifies many things, and its ecosystem is full of valuable sub-
frameworks and tools. React is among the most powerful front-end frame-
works out there. As such, learning React development can future-proof
anyone’s career in the long run, and even yield immediate benefits. This
book explains the concepts of React in an easy-to-grasp language.

With Mastering React, learning React becomes a charm, and readers
will undoubtedly advance their careers with the help of this book.

The Mastering Computer Science series is edited by Sufyan bin Uzayr, a
writer and educator with more than a decade of experience in the comput-
ing field.

Mastering Computer Science
Series Editor: Sufyan bin Uzayr

Mastering React: A Beginner’s Guide
Mohammad Ammar, Divya Sachdeva, and Rubina Salafey

Mastering React Native: A Beginner’s Guide
Lokesh Pancha, Jaskiran Kaur, and Divya Sachdeva

Mastering Ubuntu: A Beginner’s Guide
Jaskiran Kaur, Rubina Salafey, and Shahryar Raz

Mastering Visual Studio Code: A Beginner’s Guide
Jaskiran Kaur, D Nikitenko, and Mathew Rooney

Mastering Rust: A Beginner’s Guide
Divya Sachdeva, Faruq KC, and Aruqqa Khateib

Mastering Bootstrap: A Beginner’s Guide
Lokesh Pancha, Divya Sachdeva, and Rubina Salafey

For more information about this series, please visit: https://www .routledge
.com /Mastering -Computer -Science /book -series /MCS

The “Mastering Computer Science” series of books are authored by the
Zeba Academy team members, led by Sufyan bin Uzayr.

Zeba Academy is an EdTech venture that develops courses and content
for learners primarily in STEM fields, and offers education consulting
to Universities and Institutions worldwide. For more info, please visit
https://zeba.academy

https://www.routledge.com/Mastering-Computer-Science/book-series/MCS
https://www.routledge.com/Mastering-Computer-Science/book-series/MCS
https://zeba.academy

Mastering React

A Beginner’s Guide

Edited by Sufyan bin Uzayr

First Edition published 2023
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2023 Sufyan bin Uzayr

Reasonable efforts have been made to publish reliable data and information, but the author and publisher
cannot assume responsibility for the validity of all materials or the consequences of their use. The authors
and publishers have attempted to trace the copyright holders of all material reproduced in this publica-
tion and apologize to copyright holders if permission to publish in this form has not been obtained. If
any copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, trans-
mitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter
invented, including photocopying, microfilming, and recording, or in any information storage or retrieval
system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www .copyright .com or
contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-
8400. For works that are not available on CCC please contact mpkbookspermissions @tandf .co .uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used
only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Names: Bin Uzayr, Sufyan, editor.
Title: Mastering React : a beginner’s guide / edited by Sufyan bin Uzayr.
Description: First edition. | Boca Raton : CRC Press, 2023. | Includes
bibliographical references and index.
Identifiers: LCCN 2022021394 (print) | LCCN 2022021395 (ebook) | ISBN
9781032313580 (hbk) | ISBN 9781032313559 (pbk) | ISBN 9781003309369
(ebk)
Subjects: LCSH: JavaScript (Computer program language) | Software patterns.
| React (Electronic recource)
Classification: LCC QA76.73.J39 M379 2023 (print) | LCC QA76.73.J39
(ebook) | DDC 005.13/267--dc23/eng/20220725
LC record available at https://lccn.loc.gov/2022021394
LC ebook record available at https://lccn.loc.gov/2022021395

ISBN: 9781032313580 (hbk)
ISBN: 9781032313559 (pbk)
ISBN: 9781003309369 (ebk)

DOI: 10.1201/9781003309369

Typeset in Minion
by Deanta Global Publishing Services, Chennai, India

http://www.copyright.com
http://www.mpkbookspermissions@tandf.co.uk
https://lccn.loc.gov/2022021394LC
https://lccn.loc.gov/2022021395
http://dx.doi.org/10.1201/9781003309369

v

Contents

Mastering Computer Science Series Preface, xvii

About the Editor, xix

Chapter 1 ◾ Introduction to React 1
WHAT IS REACT? 1

Let Us Comprehend This with a Practical Example 2
Why We Should Learn ReactJS? 3
DOM 5

Updating DOM 5
What Are the Foremost Features of React? 5

HISTORY OF REACT: FROM 2010–2017 7

2010: The First Cyphers of React 7
2011: An Initial Standard of React 7
2012: Something New Had on Track at Facebook 8
2013: The Year of the Big Inauguration 8
2014: The Year of Expansion 9
2015: React Is Stable 9
2016: React Gets Mainstream 10
2017: The Year of Further Enhancements 10

ADVANTAGES AND DISADVANTAGES 11

Advantages 11
Disadvantages 13

BENEFITS OVER OTHER JS FRAMEWORKS 13

vi ◾ Contents

Chapter 2 ◾ Basics of React: JSX (JavaScript XML) 15
WHAT IS JSX? 16

Characteristics of JSX 18
WHY USE JSX IN REACT? 19

Creating React Nodes Using JSX 19
Rendering JSX to DOM 21

Notes 22
Using JavaScript Expressions in JSX 22

JSX FOR LOOP 23

JSX VS. HTML 24

Use of className in Its Place of the Class Attribute 25
JSX 25
HTML 25

Self-closing tags 25
JSX 25
HTML 25

Event Listeners 25
Installation or Setup 26

ReactJS | Setting up the Development Environment 26
Using react-dom.js and react.js in an HTML Page 26

USING JSX VIA BABEL 28

Converting JSX via Babel in the Browser 29
With the use of browser . js (Babel 5.8.23) to Convert JSX in
the Browser 29
By Using JSX 30

USING ES6 AND ES* WITH REACT 31

WRITING REACT WITH JSFIDDLE 34

WHAT IS A REACT COMPONENT? 35

Creating React Components 36
Notes 38

What Are Component Props? 38
Notes 40

 Contents    ◾    vii

Sending Component Props 40
Notes 41

WHAT IS COMPONENT STATE? 41

Working with Component State 42
State vs. Props 43

Props 44
State 44

Creating Stateless Function Components 44

Chapter 3 ◾ React Components 47
REACT.COMPONENT 47

THE COMPONENT LIFECYCLE 48

Mounting 49
Updating 49
Unmounting 49
React Elements 50
Arrays and Fragments 50

RARELY USED LIFECYCLE METHODS 53

ERROR BOUNDARIES 56

LEGACY LIFECYCLE METHODS 59

OTHER APIS 61

CLASS PROPERTIES 63

defaultProps 63
INSTANCE PROPERTIES 64

Props 64
State 64
Conditional Rendering 65

ELEMENT VARIABLES 66

INLINE IF WITH LOGICAL && OPERATOR 67

WHAT ARE STYLED COMPONENTS 68

Advantages of Using Styled Components 68
CREATING AND STYLING: A COMMON WEB PAGE
USING STYLED COMPONENTS 69

viii ◾ Contents

INSTALLING STYLED COMPONENTS 69

STARTING THE DEVELOPMENT SERVER 70

CREATING OUR COMPONENT 70

ROUTING A COMPONENT INTO THE MAIN APP 71

ONTO SOME STYLING NOW 73

STYLING THE CONTAINER 74

Styling the Content Area 74
STYLING THE BACKGROUND IMAGE 75

STYLING THE CALL TO ACTION (CTA) AREA 75

STYLING LOGOONE 76

Styling the Sign Up Button 76
STYLING THE DESCRIPTION 77

STYLING LOGOTWO 77

STYLING THE NAV FUNCTION 78

SUMMARY 78

Return the Falsy Expression 79
PREVENTING COMPONENT FROM RENDERING 80

STYLING COMPONENTS IN REACT 81

WHAT DOES “STYLING” IN REACT APPS EVEN MEAN? # 81

Major Styling Strategies in React # 82

Chapter 4 ◾ Handling Images 83
IMPORTING IMAGES 83

INSIDE PUBLIC FOLDER 83

Notes 84
USING THE PUBLIC FOLDER 84

index .ht ml 84
App . js 85

INSIDE THE FOLDER “SRC” 85

Notes 85
HOW TO USE 85

App . js 85

 Contents    ◾    ix

Example Code 86
CONCLUSION 86

Chapter 5 ◾ React Routers 87
NEED FOR REACT ROUTER 88

REACT ROUTER INSTALLATION 88

COMPONENTS IN REACT ROUTER 88

Routers 89
History 89
Routes 90
Component Prop 91
Render Prop 91
Children Prop 92
Switch 92
Link 93

NESTED ROUTING 94

Protected Routes 97
Custom Routes 97

ROUTER AND QUERY PARAMETERS 98

How to Get Query String Values in the JavaScript JS with
URLSearchParams 98
Getting Parameters from URL in the React Application 99
How Do You Pass the Parameter in a Query? 99
Dealing with the Router and Query Params 99

Chapter 6 ◾ Programmatic Navigation 105
WHAT IS PROGRAMMATIC NAVIGATION? 106

HOW DO YOU ROUTE PROGRAMMATICALLY IN THE
REACT? 106

Using Redirect Component 106
Using history .pu sh() Method 107
Using withRouter Method 108
Using the useHistory Hook 109

x ◾ Contents

CONCLUSION 110

BUILD-IN PROGRESS 111

LAZY LOADING 112

Why Is Lazy Loading (and Suspense) Important 113
Advantages of Lazy Loading 113
Disadvantages of Lazy Loading 114
How to Install Lazy Loading Components in the React 114

Strategies or Approaches to Split Your JavaScript JS Codes 114
React .la zy 115
react-loadable 116
react-loadable-visibility 118
Prerequisites 119

npm install -g create-react-app 120
npm create-react-app my-app 120
npm start 120

Without React Suspense 121

Chapter 7 ◾ Advanced Tools 125
CONTEXT API 125

What Is React’s Context API (Application Programming
Interface)? 125
React Context API: How Does It Work? 126
Context API Will Replace Redux? 126
How to Use Context API? 126

Example using React Hooks 127
Example using React Hooks 127

Building/Designing an App Using Provider Pattern and
Context API 128
API (Application Programming Interface) 132

The syntax to create “React.createContext”const
UserContext = React.createContext(default Value);Creating
a Context Object 132
Context.Provider 132

 Contents    ◾    xi

Class.contextType 133
Context.displayName 134

INTRODUCTION TO HOOKS 134

State Hook 135
Declaring Multiple State Variables 136

Effect Hook 136
Rules of Hooks 137

BUILDING YOUR OWN(CUSTOM) HOOKS 137

REACT . JS RENDER PROPS 138

Creating a React App and Downloading a Module 138
FOR CROSS-CUTTING ISSUES, USE RENDER PROPS. 139

OTHER THAN RENDERING PROPS 145

CAVEATS 145

Chapter 8 ◾ Testing Your Code 149
TRADE-OFFS 150

Recommended Tools 150
A BRIEF INTRODUCTION TO TESTING # 151

Why Test? # 151
Unit Test # 151
Component Test # 151
Snapshot Test # 152
Advantages and Disadvantages of Testing # 152

Advantages # 152
Disadvantages # 152

INTRODUCTION TO JEST # 153

Process of Running a Test with Jest # 153
Creating a Test File # 154

Run the Code 155
Skipping or Isolating a Test # 155

Mocking Function # 156
Testing React Components # 157

xii ◾ Contents

Snapshot Testing # 158
WHAT IS NOCK? 160

Adding Nock 161
Using “Nock” 161
Using ‘nock .ba ck’ 163
Final Thoughts 165
How to Use React Testing Library 165
Installing React Testing Library and Jest 166
Create a New React App with CRA 166
Default CRA Test Code 166
Debug the Element Rendered by React Testing Libraries 167

React Testing Library Methods for the Finding Elements 167
How to Test User Designed Events with React Testing Library 168

Chapter 9 ◾ Redux 171
EXPLICITLY PASSING THE STORE 172

State 176
ACTIONS 177

Action Type Naming Conventions 178
Action Payload Data 178

REDUCERS 179

The Sort Reducer 180
THE STORE 181

Subscribing to Stores 183
ADDING REDUX TO REACT 185

Explicitly Passing the Store 185
Passing the Store via Context 187

SAGAS, SIDE-EFFECTS 191

Making Asynchronous Calls 192
Time for the Explanations 194

Create Another File Sagas .spec .js 198

 Contents    ◾    xiii

Chapter 10 ◾ Forms 201
REFERENCING FORMS 202

Submitting the Form 202
Login Form 202
SignUp Form 203

EVENT BUBBLING AND CAPTURING IN JAVASCRIPT 205

Example of Event Bubbling 205
The Output of the above Code 206

Explanation of the above Code 206
Stopping Bubbling 207
Event Capturing 208

Example of Event Capturing 208
Explanation of Code 208

State 209
ACTIONS 210

Action Payload Data 211
Changing HTML Style 212
Using Events 212
Automatic HTML Form Authentication 213

DATA VALIDATION 214

HTML CONSTRAINT VALIDATION 214

ATTRIBUTE DESCRIPTION 214

CONSTRAINT VALIDATION CSS PSEUDO SELECTORS 215

LEARN TO CREATE HTML ANIMATIONS USING
JAVASCRIPT 215

A Basic Web Page 215
CREATE AN ANIMATION CONTAINER 215

STYLE THE ELEMENTS 216

ANIMATION CODE 216

Create the Full Animation Using JavaScript JS 216
FORM VALIDATION 218

STYLE THE ELEMENTS 218

xiv ◾ Contents

ANIMATION CODE 219

Design the Full Animation Using JavaScript 219
Syntax 220
Add the Event Handler to an Element 221

DOM NODES 221

DOM HTML TREE 221

NODE RELATIONSHIPS 221

Node Tree 222
NAVIGATING BETWEEN NODES 222

Child Nodes and Node Values 223
DOM ROOT NODES 224

The nodeName Property 225
Property of nodeValue 226
The nodeType Property 226
Add Several Event Handlers to the Same Element 226
Add the Event Handler to the Window Object 227

PASSING PARAMETERS 227

EVENT BUBBLING OR EVENT CAPTURING? 227

DIFFERENT APPROACH TO PLACE FORM THE
VALIDATION LOGIC 228

Server-Side Form Validation Logic 230
Client-Side Form Validation 232
Form Validation Using HTML5 232

Client-Side Form Validation using HTML for Java Web Apps 232
Client-Side Form Validation in Marriage App input .ht ml
Form Page Using JavaScript 233
The Simple JavaScript JS Codes (validation . js) for the Form
Validation 233
JavaScript with getElementById - Form Validation in Java
Web Application 237
JavaScript with getElementById Solution - Form
Authentication in Java Web Application 237

 Contents    ◾    xv

From Validation Logic in the Client and Server Side 239
Form Validation Logic in Client and Server Side but Validate
at the Server Side Only if Client-Side Authentication Not Done 239

JavaScript Form Validation Example 241
JavaScript Retype Password Authentication 241
Test It Now 242
Test It Now 242
Code Explanation 244

BIBLIOGRAPHY, 245

INDEX, 251

https://taylorandfrancis.com/

xvii

Mastering Computer
Science Series Preface

The Mastering Computer Science covers a wide range of topics,
spanning programming languages as well as modern-day technolo-

gies and frameworks. The series has a special focus on beginner-level con-
tent, and is presented in an easy-to-understand manner, comprising:

• Crystal-clear text, spanning various topics sorted by relevance.

• Special focus on practical exercises, with numerous code samples
and programs.

• A guided approach to programming, with step-by-step tutorials for
the absolute beginners.

• Keen emphasis on real-world utility of skills, thereby cutting the
redundant and seldom-used concepts and focusing instead on
industry-prevalent coding paradigm.

• A wide range of references and resources, to help both beginner and
intermediate-level developers gain the most out of the books.

The Mastering Computer Science series of books start from the core con-
cepts, and then quickly move on to industry-standard coding practices, to
help learners gain efficient and crucial skills in as little time as possible.
The books assume no prior knowledge of coding, so even the absolute
newbie coders can benefit from this series.

The Mastering Computer Science series is edited by Sufyan bin Uzayr, a
writer and educator with more than a decade of experience in the comput-
ing field.

https://taylorandfrancis.com/

xix

About the Editor

Sufyan bin Uzayr is a writer, coder, and entrepreneur with more than
a decade of experience in the industry. He has authored several books

in the past, pertaining to a diverse range of topics, ranging from History
to Computers/IT.

Sufyan is Director of Parakozm, a multinational IT company special-
izing in EdTech solutions. He also runs Zeba Academy, an online learning
and teaching vertical with a focus on STEM fields.

Sufyan specializes in a wide variety of technologies, such as JavaScript,
Dart, WordPress, Drupal, Linux, and Python. He holds multiple degrees,
including ones in management, IT, literature, and political science.

Sufyan is a digital nomad, dividing his time between four countries. He
has lived and taught in universities and educational institutions around
the globe. Sufyan takes a keen interest in technology, politics, literature,
history and sports, and in his spare time, he enjoys teaching coding and
English to young students.

Learn more at sufyanism .co m.

http://www.sufyanism.com.

https://taylorandfrancis.com/

1

C h a p t e r 1

Introduction to React

IN THIS CHAPTER

 ¾ Introduction to React

 ¾ What is React?

 ¾ History of React

 ¾ Advantages and disadvantages

 ¾ Benefits over other JS frameworks

In this chapter, we start with the introduction of React that what is React,
and how it can be used for maintaining and designing dynamic web
apps. Furthermore, it includes the features and functions provided by it
and what its history is, how it came to be developed from the initial to
the advanced level. The most important advantages and disadvantages of
React and its compatibility with different frameworks of JavaScript are
also discussed here.

WHAT IS REACT?
React (also React . js or ReactJS) is the front-end JavaScript library for
building user interfaces (UIs) or its components. It is maintained and
developed by Facebook (a popular social media platform) and a commu-
nity of individual developers and companies. It’s based in the develop-
ment pages or applications. However, ReactJS is only concerned with the
supervision of states and execution of the states to the DOM, so creating

Mastering React Introduction to React

DOI: 10.1201/9781003309369-1

10.1201/9781003309369-1

http://www.React.js
http://dx.doi.org/10.1201/9781003309369-1

2 ◾ Mastering React

React applications usually requires the use of additional libraries for rout-
ing, as well as certain client-side functionality. In Model View Controller
(MVC) architecture, the layer called view layer is accountable for how
the app looks like. ReactJS can be easily labeled as a bestseller. Released
back in 2013, this JavaScript library has swiftly won popular affection and
fame. It is used by most corporations, like Apple, PayPal, and Netflix;
more than 32,000 websites are designed and built with the help of ReactJS
framework.

Let Us Comprehend This with a Practical Example

Let us consider that one of your friends posted a photograph on Facebook.
Now you wanna like the image and so you want to check out the com-
ments beside. Now, when you are browsing over the comments, you see
that the likes count has augmented by 100, meanwhile, you liked the pic-
ture, even without refreshing the page. This magical count change is due
to the use of ReactJS.

React is an indicative, well-organized, and flexible JavaScript library for
building user interfaces. It’s “V” in MVC.

React1uses a suggestive paradigm that makes it easier to reason about
your application and aims to be both effective and supple. It makes modest
views for respective states of/your application, and React will resource-
fully update and render just the right component when your data varies.
The indicative view makes your code more likely and easier to debug.

A React application is done through multiple components, individually
accountable for rendering a small, recyclable piece of HTML. Components
can be nuzzled within other components to allow multifaceted applica-
tions to be built out of simple building wedges. The constituent may also
preserve a state – for example, a TabList component may store a mutable
corresponding to the present open tab.

Example: Create a new project by using React. Note that all that this
component does is render an h1 element containing the name prop.
This module doesn’t keep the path in a slight state. Here’s an ES6
example:

import React,{ Component } from 'react';
class App extends Component {
render() {

Introduction to React     ◾    3

 return (
 <div>
 <h1>Hello, Learner </h1>
 </div>
);
}
}
export default App;

Let us consider how it works. At the time of designing client-side
applications, a team of Facebook developers observed that the DOM is
deliberate. (The Document Object Model (DOM) is an application pro-
gramming interface (API) for HTML and XML credentials. It defines
the logical building of credentials and the way a document is getting into
and deployed.) So, to move it faster, React brings in a virtual DOM that is
essentially a DOM tree illustration in JavaScript. So, when it is required to
read or write to the DOM, it will use its computer-generated illustration.
Then the virtual DOM will try to find the most well-organized way to
update the browser’s DOM.

Unlike browser DOM elements, React elements are simple objects
and are economical to create. React DOM mentions updating the
DOM to match the React elements. The purpose is to use JavaScript,
which is extremely fast and it’s worth possessing a DOM hierarchy in
it to speed up its manipulation. Although React was perceived to be
used in the browser, because of its design, it can also be used along
with Node .j s.

Why We Should Learn ReactJS?

ReactJS offers elegant resolutions to some of the front-end programming’s
most tenacious issues. It’s fast, scalable, flexible, influential, powerful, and
has a strong developer community that’s rapidly increasing. You’ll grow
a strong understanding of React’s most crucial concepts: JSX (JavaScript
XML), class and function module, props, state, life cycle methods, and
hooks (it’s been a good feature and must be a powerful concept, it will
be discussed later). You’ll be able to associate these ideas in React’s inte-
grated programming style. I’ve been exploiting React for over a year now.
I’m also providing training to assist people to learn React from scratch. I
observed that in each training session I was clearing up the same set of
notions and concepts over and over. I think those notions are important

http://www.Node.js.

4 ◾ Mastering React

if you want to “speak React.” If you are new to React, this article is very
much informative for you as a beginner as we cover each and every point
about the library React.

React’s admiration today has obscured all other front-end development
frameworks. The following are the reasons for this:

• React makes it possible to design dynamic web applications
because it does not need as much coding and offers more function-
ality, contrasting to JavaScript, where coding often gets intricate
very swiftly.

• React needs Virtual DOM to operate, thereby creating web applica-
tions earlier and faster. Virtual DOM compares the modules’ ear-
lier states and apprises only the tuples in the Real DOM that were
altered, instead of updating all of the components over and over, as
predictable web applications fix.

• Components are the fundamentals of any React app, and a single
app typically involves multiple mechanisms. These mechanisms
have their logic and controls, and they can be recycled throughout
the application, which in turn intensely decreases the application’s
development period.

• Unidirectional data flow allows a single direction data flow. This
means that when developing a React app, developers have to nest
child modules within parent components. Because data flows in a
single path, it becomes easier to debug faults and pinpoint the loca-
tion of a problem in an application at the time of questioning.

• The small learning curve made it easy to learn, as it typically combines
with basic HTML and JavaScript notions with some valuable accumu-
lation. Still, as in the case with other tools and frameworks, you have
to spend some time to get a proper consideration of React’s library.

• It is compatible with the development of both web and mobile apps.
As we already know React is used for the development of web appli-
cations, but that’s not all it can do. There is a framework called React
Native, resulting from React itself, that is tremendously popular and
is used for designing mobile apps. So, it is apparent that React can be
used for making both web and mobile apps.

Introduction to React     ◾    5

• Facebook has an unconstrained Chrome extension that can be used
to debug React apps. This makes debugging React web applications
faster and easier.

DOM

The DOM is referred to as the “Document Object Model.” In simple
words, it’s the organized representation of the HTML fundamentals
found in a webpage or web app. It represents the entire UI of the appli-
cation. The DOM is signified as a hierarchy data structure. It contains
a node for every UI section present in the web article. It is quite benefi-
cial since it allows the site designer to update the text using JavaScript.
The fact that it is in a structured manner also helps a lot because we
can quickly pick certain targets and all the code becomes much easier
to deal with.

Updating DOM
If you know even a little about JavaScript, you might have realized that
people make use of “getElementById()” or “getElementByClass()” classes
to the content of DOM. Each time there is an alteration in the state-run
of your application, the DOM gets updated to imitate that change in the
user interface. As DOM is characterized as a hierarchy itself, updating
the hierarchy here is not a costly process indeed we have a much of algo-
rithms on trees to variety the updates reckless. What’s demonstrated to
be high is that every time the DOM gets updated (rendered), the updated
functionality and its base children have to be rendered again to update the
user interface of the page. Like this each time there is a module update,
the DOM needs to be updated, and the user interface modules have to be
re-rendered or updated.

What Are the Foremost Features of React?

Initially we looked at why it is so widespread, now let us figure out
the ReactJS features properly. This will help us to clarify how ReactJS
performs.

 1. Virtual DOM: This attribute of React helps to speed up the app
development process and offers elasticity. The algorithm simplifies
the repetition of a web page in React’s computer-generated (virtual)
memory.

6 ◾ Mastering React

 The original DOM is thereby characterized by a virtual DOM.

 Whenever the app is altered or updated, the entire UI is
extracted again by the virtual DOM, by updating the modules that
have been modified. This decreases the time and cost taken for
development.

 2. JavaScript XML or JSX: It is a markup syntax that defines the atten-
dance of the interface of the application. It creates syntax just like
HTML and is used to create React modules by developers.

 JSX is one of the finest features of ReactJS as it is super easy for
developers to write the edifice blocks.

 3. React Native: Uses native rather than web modules to simplify
native ReactJS development for Android and iOS. Mostly, this feature
transmutes React code to render it compatible with iOS or Android
platforms and delivers access to their native characters.

 Uses native rather than web modules to simplify native ReactJS
development for Android and iOS. Mostly, this feature transmutes
React code to render it compatible with iOS or Android platforms
and delivers access to their native characters.

 4. 1-Way Data Binding: This means that React uses a flow of data that
is unidirectional, obliging developers to use the call back function to
edit modules, avoiding them from editing directly. The monitoring
of data flow from a single point is attained with a JS app architecture
module called Flux. It really allows developers to better regulate the
app and makes it furthermore flexible and effective.

 This means that React uses a flow of data that is unidirectional,
obliging developers to use the call back function to edit modules,
avoiding them from editing directly. The monitoring of data flow
from a single point is attained with a JS app architecture module
called Flux. It really allows developers to better regulate the app and
makes it furthermore flexible and effective.

 5. Indicative UI: This means that React uses a flow of data that is uni-
directional, obliging developers to use the call back function to edit
modules, avoiding them from editing directly. The monitoring of
data flow from a single point is attained with a JS app architecture

Introduction to React     ◾    7

module called Flux. It really allows developers to better regulate the
app and makes it furthermore flexible and effective.

 This feature makes React code further comprehensible and eas-
ier to fix bugs. ReactJS is the finest platform to develop UIs that are
equally thrilling and fetching not just for web apps, but mobile apps
as well.

 6. Module-based Manner: This simply refers that the user interface of
an app built on ReactJS is made up of several modules, with each tak-
ing its particular logic, written in JavaScript. Due to this, developers
can transfer the data across the app without the DOM getting stuck.
ReactJS modules play a huge part in determining the app graphics
and relations.

 This simply refers that the user interface of an app built on ReactJS
is made up of several modules, with each taking its particular logic,
written in JavaScript. Due to this, developers can transfer the data
across the app without the DOM getting stuck. ReactJS modules play
a huge part in determining the app graphics and relations.

HISTORY OF REACT: FROM 2010–2017
Back in 2011, the developers at Facebook were facing some problems with
code maintenance. As the Facebook Ads application got a cumulative
number of features, the team required more people to run immaculately.
The growing number of team members and app features reduced them
down as a company. Over time, their app became tough to handle, as
they required lots of pouring updates. Eventually, engineers at Facebook
couldn’t keep up with these gushing apprises. Their code necessitated an
urgent upgrade to become more effective.

2010: The First Cyphers of React

Xph had been introduced by Facebook into its php stack and it open-
sourced it. Xhp is permissible for creating complex components. They
introduced this syntax later in React.

2011: An Initial Standard of React

FaxJS has been created by Jordan Walke, the primary model of React; it
dispersed an exploration element on Facebook.

8 ◾ Mastering React

2012: Something New Had on Track at Facebook

• Facebook Ads became hard to accomplish, so Facebook needed to
come up with good firmness for it. Jordan Walke worked on the pro-
totype and formed React.

• April 9: Instagram was acquired by Facebook. Instagram wanted
to implement Facebook’s new technology. By this, Facebook had
a burden to dissociate React from Facebook and make it open-
sourceable. Most of this was finished by the Facebook developer
“Pite_Hunt.”

• Sept. 8–12: TechCrunch Derange San Francisco, Mark Zuckerberg:
“Our huge Mistake Was Betting Too Much On HTML5.” He
accepted that Facebook would deliver better mobile involvements
very soon.

2013: The Year of the Big Inauguration

• May 29–31: JS ConferenceUS. Jordan Walke introduced React. React
gets open-sourced. Fun Fact: The audience was disbelieving. Most
people thought React was an enormous step backward. This hap-
pened as mostly “early adopters” joined this consultation, however,
React targeted “innovators.” The creators of React realized this error
on time, and decided to start a “React tour” later on to turn haters
into activists.

• June 2: ReactJS (by Facebook meta) is available on JSFiddle.

• July 30: React and JavaScript XML is available in Ruby on Rails.

• August 19: #React and JavaScript XML is available in Python
Applications and frameworks.

• Sept. 14–15: JSConfEU 2013. #Pete Hunt’s speech of rethinking best
practices.

• Dec. 17: David Nolen Introduces OM, which is based on React.
Describes how React is tremendous – which reached early adopt-
ers. This object offered how React is recovering more than the
other substitutes out there, which boosted the acknowledgment
of React.

Introduction to React     ◾    9

2014: The Year of Expansion

React had increasingly gained its reputation and is underway to go through
to the “early majority” of its latent users. At this point, they needed a new note
instead of solely relying on its technical benefits, and it is: how is React sta-
ble? By directing on this, they intended to appeal to enterprises, like Netflix.

• Early 2014: reactjsworldtour sessions are underway, to build com-
munity and to “turn haters into promoters.”

• Jan. 2: React Developer Tools develops an allowance of the Chrome
Developer Tools.

• February: Atom was announced – a hackable text editor for the 21st
century.

• April 7–9: React London 2014.

• June: ReactiveX . io emerged.

• July 13: The Release of React Hot Loader. React Hot Loader is a plu-
gin that permits React components to be live-reloaded without the
loss of state.

• Dec. 12: PlanOut: A language for online trials. The proclamation of
PlanOut 0.5, which encompasses a React-based PlanOut language
editor, and brings the interpreter into feature parity with the new
version of PlanOut used internally at Facebook.

2015: React Is Stable

• Early 2015: Flipboard issues React Canvas.

• January: Netflix likes React.

• Early 2015: Airbnb uses React.

• Jan. 28–29: React . js Conference 2015 – Facebook released the very
first version of React Native for the React . js Conf 2015 through a
technical talk.

• February: Introduction to Relay and GraphQL at React . js
Conference.

http://www.ReactiveX.io
http://www.React.js
http://www.React.js
http://www.React.js

10 ◾ Mastering React

• March 25: Facebook declared that React Native for iOS is open and
available on GitHub.

• June 2: Redux launched.

• Sept. 2: React Developer Tools, the first stable and original version,
is launched.

• Sept. 14: React Native for Android was released.

2016: React Gets Mainstream

• March: The introduction of Mobx.

• February 22–23: React . js Conf 2016, San Francisco.

• February 22–23: Draft . js was introduced at React.js Conf 2016 by
Isaac Salier-Hellendag.

• March: The introduction of React Storybook.

• June 2–3: ReactEurope 2016.

• July 11: Introducing React’s Error Code System.

• November: The summary of Blueprint – a React UI toolkit for the
web.

2017: The Year of Further Enhancements

• Early 2017: A new open-source library named as React Sketch .a pp
was introduced by Airbnb.

• April 19: React Fiber becomes open-sourced at F8 2017.

• September: Relicensing React, Jest, Flow, and Immutable .j s.

• Sept. 26: #React 16: Error boundaries, portals, fragments, and the
Fiber architecture.

• October: #Netflix removes client-side React .j s.

• Nov. 28: #React v16.2.0: Improved support for fragments.

http://www.React.js
http://www.Draft.js
http://www.React.js
http://www.Immutable.js.
http://www.React.js.

Introduction to React     ◾    11

ADVANTAGES AND DISADVANTAGES
ReactJS is the widely used free and open-source JavaScript Library. It let
you create impressive web apps that require minimal effort and coding.
Its principal objective is to develop UIs that enhance the efficiency of the
apps. There are important merits and demerits of ReactJS.

Advantages

 1. Easy to Learn and Use: ReactJS is really simple to understand and
apply. Its documentation, tutorials, and training resources are much
easier to understand. Anyone from a JavaScript background can eas-
ily get it and start creating web apps using React in a few days. It
allows you to get access by just importing the React library and then
the function components can directly be used.

 2. Creation of Dynamic Web Applications Becomes Easier: Making
a dynamic web application using HTML strings was problematic
because it requires complex coding, whereas ReactJS sorts out that
issue and makes it simple. It requires less code and increases the
functionality of your product. It includes several concepts that make
the website more dynamic. We will consider this in other chapters.

 Making a dynamic web application using HTML strings was
problematic because it requires complex coding, whereas ReactJS
sorts out that issue and makes it simple. It requires less code and
increases the functionality of your product. It includes several con-
cepts that make the website more dynamic. We will consider this in
other chapters.

 3. Reusable Components: A ReactJS web application is a build-up of
contrasting components, and every component has its own logic and
controls. These components are accountable for getting a small, reus-
able piece of HTML code that can be further reused wherever you
need them. This refillable code makes your apps easier to develop
and maintain. It allows you to directly add the functions on your
application that gives more attributes to your project.

 4. Performance Enrichment: ReactJS advances performance due to
virtual DOM (Document Object Model). The DOM is a cross-plat-
form and programming API (Application Programming Interface)

12 ◾ Mastering React

that deals with HTML, XML, or XHTML. The main problem arises
when DOM was updated, which reduced the performance of the
application. Consequently, by introducing virtual DOM, it is present
entirely in the memory and is a representation of the web browser’s
DOM. As we carved a React component, we did not write right to the
DOM. As a substitute for writing to virtual components, React will
turn into the DOM, leading to smoother and faster performance.

 5. The Sustenance of Handy Tools: ReactJS has gained popularity due
to the availability of a useful collection of tools. These technologies
make developers’ jobs more rational and easier. The React Developer
Tools have been considered as Chrome and Firefox dev extension and
allow you to review the React component pyramids in the virtual
DOM. It also allows you to select specific mechanisms and examine
and edit their present props and state.

 6. Recognized to Be SEO-friendly: Outdated JavaScript frameworks
have an issue in dealing with SEO. The search engines usually have
trouble understanding JavaScript-heavy applications. Many web
developers have frequently decried this issue. This problem is solved
by ReactJS, which allows developers to easily avoid being found on
multiple search engines. As a result, React . js apps may execute on the
server, with the virtual DOM interpreting and returning a conven-
tional web page to the browser.

 7. The Advantage of Having JavaScript Library: Currently, ReactJS is
picked by most web developers. This is because it is offering a very
rich JavaScript library. The JavaScript library affords more flexibility
to the web developers to choose the way they need.

 In view of ReactJS merits and demerits, it can be effortlessly
summed up in three.

 8. Scope for Testing the Codes: ReactJS applications are tremendously
easy to test. It offers a choice where developers can trial and debug
their codes with the help of inherent tools.

 Arguments: nonrisky, approachable, and progressive. The chief
idea behind this precise library is “to design large-scale applica-
tions through figures that change frequently again and again”; and
it blocks the task well. It provides developers the ability to work
with a computer-generated (virtual) browser (DOM) that is much

http://www.React.js

Introduction to React     ◾    13

faster and more user-friendly than the actual one. Apart from that,
it offers the easier designing of interactive user interfaces, JSX sup-
port, component-based construction, and a lot more. These above-
mentioned factors make it a realistic prime choice for both start-ups
and enterprises.

Disadvantages

 1. The High Leap of Development: The high leap of development has
both benefits and shortcomings. In the event of a disadvantage,
because the situation changes so quickly, some engineers are dissat-
isfied with having to relearn new ways of doing things on a regular
basis. They may find it challenging to embrace all of these changes,
especially with the regular updates. They must maintain their skills
up to date and discover new ways to do things.

 2. Underprivileged Documentation: It is another demerit which is
common in repetitively keeping informed technologies. React tech-
nologies are restructured and fast-tracked so fast that there is no time
to make appropriate documentation. To overcome this, developers
write commands on their own with the evolution of new releases and
tools in their current projects.

 3. View Part: ReactJS maintains and develops only the user interface of
applications, nothing else. So you are still required to indicate some
other technologies to get a whole tooling set for development in the
project.

 4. JSX as a Barrier: ReactJS uses JSX. It’s a syntax extension that is a
mixture of HTML as well as JavaScript together. This tactic has its
own aids, but some associates of the development community con-
sider JSX as a barricade, exclusively for new developers. Developers
grumble about its difficulty in the learning bend.

BENEFITS OVER OTHER JS FRAMEWORKS
A framework is a structural environment for developing dynamic web
pages, whereas a framework provides the contrasting features of the devel-
opment of contrasting components but that are complex to use as for this
you must have deep knowledge, whereas React library is much more effi-
cient to use because it is easy to understand and use. Those who are new
to the developer line must go to React for creating the most stable project.

14 ◾ Mastering React

Angular or Ember are frameworks (of JS) where some decisions are pre-
viously made for you. React is just a library and you require to make all
verdicts by yourself. It emphasizes on helping you to build user interfaces
with the use of components. ReactJS is a UI library that helps in taking
over the scrupulous task in the management of execution of the UI.

• Since it is just a library, you don’t need to be opinionated in your cod-
ing structure, unlike frameworks.

• With React you can use the latest pure JavaScript since React encour-
ages that, and using Babel you can write future implementations of
JavaScript syntax today.

• React has a separate library for handling the DOM (React-DOM),
and it’s blazing fast since it doesn’t directly manipulate the DOM
(one of the slowest processes). Instead, it uses a technique called vir-
tual DOM. It chiefly preserves the DOM in JavaScript (which is faster
than DOM handling). React compares this virtual DOM with the
actual for the most minimal changes required to update the actual
DOM and updates accordingly. That’s why it is blazing fast.

• React has a huge ecosystem of open-source libraries to choose from
that’s just incredible for the freedom it gives.

• React uses a component-based approach. Here, every element in the
DOM can be a component. This approves the finest coding princi-
ples of isolated fragments of code and concepts, which is easier to
debug, maintain, and reuse!

Now that you’re clear about the compensations and best practices of
ReactJS framework, it should come as no wonder that most large and
middle-sized companies are leveraging ReactJS development facilities to
design their website’s user interfaces. So, if you’re looking for a ReactJS
developer that can completely grasp your needs and provide the greatest
results for your ReactJS projects.

15

C h a p t e r 2

Basics of React
JSX (JavaScript XML)

IN THIS CHAPTER

 ¾ Basics

 ¾ JSX

 ¾ Setup

 ¾ First component props

 ¾ State methods

In this chapter, we will study what is JSX in React and how to use JSX with
React. We recommend using JSX with React. We will also clarify what the
user interface (UI) should look like. JSX might remind you of template
language, but it is composed with full additional concepts of JavaScript.

For a student who wants to learn front-end development, JSX is the
primary choice after HTML, CSS, and JavaScript, a framework that will
allow you to create your first project easily.

Most learners begin with ReactJS. The reason is that it is pretty popu-
lar and can be easily manipulated with the framework. So, when you are
already using Create React App to set up your new assignment, you may
realize something supported or something newfangled.

Mastering React Basics of React

DOI: 10.1201/9781003309369-2

10.1201/9781003309369-2

http://dx.doi.org/10.1201/9781003309369-2

16 ◾ Mastering React

Constituent’s files will have an explicit extension, which is not used for
non-ReactJS developers, it’s |.jsx|. Why not |.js|? What’s the definite JSX
syntax which is used in ReactJS and in what ways has it improved com-
pared to JS?

That’s precisely what I will clarify for you in this chapter. I’m going to
show you what JSX is, what it’s used for, how to use looping in JSX, and the
difference between JSX and HTML.

WHAT IS JSX?
The full form of JSX is “JavaScript XML,” and it is a syntax extension to
JavaScript based in “ES6,” the latest “version” of JavaScript. JSX lets us
write HTML in React by transposing HTML into React components,
which will help you to create UI more easily for your web applications.

When somebody is working on React code, they may find some suspi-
cious HTML-type* code embedded in the JavaScript. What is this suspi-
cious HTML-type* code, and how does it work within React functions?
These short snippets of strange HTML-like* code are not HTML (hyper-
text markup language), but rather “JavaScript XML,” a syntactic extension
of JavaScript based on ES6. JSX, or JavaScript XML, is a form of markup
that allows you to write HTML in React library by converting HTML tags
into React elements (components).

Utilizing JSX lets you write HTML elements in JavaScript, which are
then rendered to the DOM (Document Object Model). JSX (JavaScript
XML) is a React-precise XML/HTML-type syntax that encompasses
ECMAScript to consent XML/HTML-type content to coincide together
with JavaScript/React code. The composition is considered to be used
by preprocessors (transpilers like Babel) to convert HTML-type content
confined in JavaScript documents into typical JavaScript modules that a
JavaScript engine can recognize.

Using JSX, you may write brief HTML/XML-like edifices (e.g., DOM-
like hierarchy blocks) in identical files as JavaScript code, and Babel will
translate these expressions into genuine JavaScript code. As a replacement
for putting JavaScript into HTML as mentioned earlier, JSX lets us put
HTML into JavaScript.

JSX was formed as a research project at DeNA Co., Ltd., one of the
world’s major social game providers. Kazuho Oku and Goro Fuji are the
main developers (aka GFX).

Basics of React     ◾    17

To use the JSX, you can write the subsequent JSX/JavaScript code:

var nav = (
 <ul id="nav">
 Home
 About
 Clients
 Contact Us

);

The # place is the address of the other pages which is needed to be
hyperlinked and Babel will convert it into the following components:

var nav = React.createElement(
 "ul",
 { id: "nav" },
 React.createElement(
 "li",
 null,
 React.createElement(
 "a",
 {href: "#" },
 "Home"
)
),
 React.createElement(
 "li",
 null,
 React.createElement(
 "a",
 {href: "#" },
 "About"
)
),
 React.createElement(
 "li",
 null,
 React.createElement(
 "a",
 {href: "#" },
 "Clients"
)

18 ◾ Mastering React

),
 React.createElement(
 "li",
 null,
 React.createElement(
 "a",
 {href: "#" },
 "Contact Us"
)
)
);

The idea of intercourse HTML and JavaScript in a similar file can be a
rather argumentative topic. For now, we ignore any discussion on this. Use
it if you find it cooperative. If not, transcribe the React code obligatory to
generate React nodes. That’s your choice. My opinion is that JSX provides a
brief and familiar syntax for a crucial hierarchy structure with characteris-
tics that do not need learning a templating language or leaving JavaScript.
Together, these can prove to be win-win when developing large applications.

It should be clear that the JSX is easier to read and write over huge pyra-
mids of JavaScript function calls or object literals (e.g., contrast the two
code samples in this section). In addition, the React team finds that JSX
is better suitable for designing UIs than an outdated templating method
(e.g., Handlebars) solution.

Characteristics of JSX

• There are also some other ways to accomplish the same thing with-
out the use of JSX; however, utilizing JSX makes developing a React
application easier.

• JSX allows you to write expressions. Any JS expression or React vari-
able can be used as the expression.

• In addition to the extensive chunk of HTML, we must use parenthe-
ses, i.e., ().

• JSX generates React elements.

• JSX adheres to the XML standard.

• JSX syntax expressions are changed into ordinary JavaScript func-
tion calls after composing.

Basics of React     ◾    19

• For specifying HTML features, JSX uses camelcase representation.
TabIndex in JSX, for example, is identical to tabindex in HTML.

WHY USE JSX IN REACT?
Using JSX while developing React isn’t required, but it makes creating
React apps easier by allowing you to define the UI in HTML. JSX is a
“template language” with the “full power of JavaScript,” according to its
developers.

Not only are JSX visual aids important when working with JavaScript
UI, but using JSX also allows React to display more relevant error mes-
sages and warnings for simpler debugging. If your HTML is incorrect or
missing a parent element, JSX will give an error, so you can fix it right
away.

It is not required to write the React programs in JSX, but it facilitates
the creation of React apps by allowing you to define the UI in HTML.
According to its developer, JSX is a “template language” that supports the
full power of JavaScript.

People do find JSX to be a helpful visual aid when working with the
JavaScript interface; utilizing JSX allows React to cope with the more use-
ful error messages and warnings for easier debugging. If there is a syntax
error present in HTML or it misses a parent element, JSX will show an
error your way so you can immediately make it appropriate.

When coding, one choice is to isolate the logic and markup in separate
or different files or documents. React combines them together into a single
unit called “components.” Using JSX allows us to combine the markup
(JSX) and logic (JavaScript), returning an output that is “translated” into
JavaScript function calls.

Creating React Nodes Using JSX

As we saw in the previous section, you should be comfortable with utilizing
the React.createElement() function to create React nodes. For example, by
means of this function, one can design React lumps that characterize both
HTML DOM nodes and different HTML DOM nodes. I use this familiar
function to form two React nodes in the following section.

//: React node, that signifies a definite HTML DOM node
var HTMLLi = React.createElement('li',

{className:'bar'}, 'foo');

20 ◾ Mastering React

//: React node, which characterizes a custom HTML DOM
node

var HTMLCustom = React.createElement('foo-bar',
{className:'bar'}, 'foo');

Having been working with JSX as a substitute (consider that you have
Babel setup) of React.createElement() to form these React nodes one just
has to substitute React.createElement() function calls through the HTML/
XML similar tags, which indicate the HTML you’d like the computer-gen-
erated virtual DOM to display. The code displayed above can be written
in JSX as follows.

//: React node, which signifies a genuine HTML DOM node
var HTMLLi = <li className="bar">foo;

//: React node, which signifies a custom HTML DOM node
var HTMLCustom = <foo-bar className="bar" >foo</

foo-bar>;

It has been observed that the JSX is not in a JavaScript string format
and can just be as if you are formatting it inside of a .html extension docu-
ment. Numerous times the JSX is transformed back into the React.crea-
teElement() functions calls by Babel. The conversion taking place is in the
subsequent JSFiddle (i.e., Babel is translating JSX to JavaScript, then React
is generating DOM nodes).

If you were to inspect the definite HTML formed in the above JSfiddle,
it would be expressed as follows:

<body>
 <div id="app1"><li class="bar" data-

reactid=".0">foo</div>
 <div id= "app2"><foo-bar class="bar" data-

reactid=".1">foo</foo-bar></div>
</body>

Creating React nodes with the use of JSX is as easy as designing HTML-
like code in your JavaScript documents.

If JavaScript XML tags support the XML self-close syntax, then you can
make the choice to leave the closing tag off when no child node is used.

Basics of React     ◾    21

If one passes props/characteristics to native HTML elements that are
not in the HTML description, React will not render them to the definite
DOM. Yet, if you use a custom element (i.e., not a stand HTML element),
then arbitrary/custom features will be furthered to convention elements
(e.g., <x-my-component custom-attribute="foo" />).

• The class feature has to be written className

• The for characteristic has to be written htmlFor

• The elegance feature takes an entity of camel-cased style properties

• All appearances are based on camel-cased style (e.g., accept-charset
is written as acceptCharset)

• To characterize HTML elements/syntax, one must ensure that the
HTML tag must be lower-cased.

Rendering JSX to DOM

The ReactDOM .rend er() function can also be used to render JSX termi-
nologies to the DOM. Actually, after Babel transmutes the JSX, all it is
doing is rendering nodes created by React.createElement(). Yet again, JSX
is just an opinion in expression for having to write out the React.createEle-
ment() function calls.

In the code example, I am rendering a element and a custom <foo-
bar> element to the DOM using JSX expressions.

Once rendered to the DOM, the HTML will look like as follows:

<body>
 <div id= "app1"><li class="bar" data-

reactid=".0">foo</div>
 <div id= "app2"><foo-bar classname="bar"

children="foo" data-reactid=".1">foo</
foo-bar></div>

</body>

Keep in mind that the JSX in your JavaScript files is taken by the Babel
and the Babel transforms the code into React node (i.e., React.createEle-
ment() functions calls), and then by means of these nodes forms React
(i.e., the Virtual DOM) as a template for generating an authentic HTML
DOM subdivision. The part where the React nodes are curved into the

http://www.ReactDOM.render

22 ◾ Mastering React

actual DOM nodes and further to the DOM in an HTML page ensues
when ReactDOM .rend er() is so-called.

Notes

• Any DOM nodes inside of the DOM element in which you are inter-
preting will be removed/substituted.

• ReactDOM .rend er() does not adjust the DOM component node in
which you are translating React.

• Interpretation to an HTML DOM is only one choice with React,
other rendering APi are offered. For example, it is also probable to
render to a string (i.e., ReactDOMServer.renderToString()) on the
server side.

• Re-rendering to the same DOM element will keep informed the
existing child nodes if a modification (i.e., diff) has happened or a
new child node has to be situated added.

• Do not render this .rend er() by yourself and leave that it to React.

Using JavaScript Expressions in JSX

Hopefully, by now it is clear that JSX is just a category of syntactical
sugar that gets transformed into real JavaScript. But what happens when
you want to interact with actual JavaScript code inside JSX? To write a
JavaScript appearance within JSX you will have to mention the JavaScript
code in { } brackets.

There is a mixing of JavaScript terminologies (e.g., 2+2) in the React/
JSX code below, surround by { } among the JSX that will ultimately get
assessed by JavaScript.

The JSX conversion will result in the following:

var label = '2 + 2';
var inputType = 'input';
var reactNode = React.createElement(
 'label',
 null,
 label,
 ' = ',
 React.create_Element('input', { type: inputType,

value: 2 + 2 })
);

http://www.ReactDOM.render
http://www.ReactDOM.render
http://www.this.render

Basics of React     ◾    23

ReactDOM .rend er(reactNode, document.getElementById('app1'));
Once this code is analyzed by a JavaScript engine (i.e., a browser), the

JavaScript terminologies are evaluated and the subsequent HTML will
look like this:

<div id="app1">
 <label data-reactid= ".0">2

+ 2<span data-
reactid=".0.1"> = <input
type="input" value="4" data-
reactid=".0.2"></label>

</div>

Nothing very complex is going on here once you comprehend that the
brackets basically escape the JSX. The { } brackets purely convey to the JSX
that the content is JavaScript and so authorize it alone so it can ultimately
be parsed by a JavaScript engine (e.g., 2+2). Note that “{ }” brackets can
be used anywhere in the JSX terminologies as long as the consequence is
valid JavaScript.

JSX FOR LOOP
When you had wanted to generate a list of JSX elements/components,
and you’d like to use a loop for that, it allows you by creating an array of
JSX elements/components that could be later shown. Let us have the code
example:

render() {
 const children = [‚John’, ‚Mark’, ‚Mary’];
 const childrenList = [];

 for (let [index, value] of children.entries()) {
 children List .pu sh(<li

key={index}>{value});
 }

 return {items}
}

But there is also an alternate solution for doing the same, which is more
ReactJS and JSX friendly, it’s .map(). Let us consider the code for this
method:

http://www.ReactDOM.render
http://www.children�List.push

24 ◾ Mastering React

render() {
 const children = [‚John’, ‚Mark’, ‚Mary’];

 return (

 {children .m ap((value, index) => {
 return <li key={index}>

{value}
 }))

)
}
Is it simple and easy, right?

JSX VS. HTML
JSX is popularly used in React, and I will be highlighting the key differ-
ences between JSX and HTML syntax. In this section, we are going to
compare JSX with HTML. As a front-end developer, you must know that
HTML is a Hypertext Markup Language which is used to design the dif-
ferent components that one can see on the screen, like lists, divs, images,
etc.

On the other hand, JSX is a form of JavaScript extension that allows
designing the HTML elements inside the JavaScript code.

The prime difference between JSX and HTML is that nested JSX must
return just one element. It means that if you’d like to create sibling elements,
they always need to have parents, but in HTML, this is not necessary.

Let’s see the code:

// JSX
<div>
 <p>Mary</p>
 <p>Judy</p>
 <p>John</p>
</div>
// HTML
<p>Mary</p>
<p>Judy</p>
<p>John</p>

If JSX code wouldn’t have a div parent, it couldn’t compile, and it would
display the error at runtime.

http://www.children.map

Basics of React     ◾    25

Another difference is that with the HTML we can add a class keyword
to define CSS various classes, but with JSX, this keyword has already been
taken; that’s why the developer had to find out something else. In JSX,
we have to mention className to define class names to be used with the
styles. It’s similar to that property, like onclick in HTML and onClick in
JSX.

The succeeding difference is that in JSX any element can be inscribed
as a self-ending tag if there aren’t any children components inside it. In
HTML, there are fewer elements that have self-closing tags; the others
have separate opening and closing tags.

Use of className in Its Place of the Class Attribute

In JSX we use the className characteristic while in HTML we use the
class feature. This is because JSX is translated into JavaScript and class is a
mentioned word in JavaScript.

JSX
<div className = "content"></div>

HTML
<div class = "content"></div>

Self-closing tags

Self-closing tags in JSX should have the forward slash, whereas the for-
ward slash is noncompulsory in the HTML self-closing tags.

JSX

HTML

Event Listeners

Event auditors in JSX are written in camelCase (it’s a type of formatting in
which the second term word is capital), for instance, onClick, whereas in
HTML, they are written in lowercase, for instance, onclick.

http://www.abc.html
http://www.abc.html

26 ◾ Mastering React

Installation or Setup
ReactJS | Setting up the Development Environment
To run the React application, we should have NodeJS installed on our PC.
So, the very initial step will be to install NodeJS.

• Step 1: for the Installation of NodeJS, one must visit its official down-
load link. Download and install the new version of NodeJS. Once
you have set up the NodeJS files on your PC, you need to set up React
Boilerplate.

• Step 2: If you want to set up React environment for older and latest
versions, follow any steps as per your node version.

For older versions that contain “Node < 8.10” and “npm < 5.6”: Setting
up React Boilerplate, we will install the boilerplate globally. To install the
React Boilerplate, enter the following line into your terminal or command
prompt:

."npm install -g create-react-app" the command.

Using react -dom .js and react . js in an HTML Page

The react . js file is the main file required to form React fundamentals and
write react elements. When you propose to render your elements in an
HTML text (i.e., the DOM), you’ll similarly require the react -dom .js file.
The react -dom .js file is hooked on the react . js file and must be involved
together with the react . js file.

An example of an HTML document appropriately including React is
as follows:

<!DOCTYPE html>
<html>
 <head>
 <script src="https://fb .me /react -15 .2 .0 .js"></script>
 <script src= "https://fb .me /react -dom -15 .2 .0 .js"></

script>
 </head>
<body>
</body>
</html>

http://www.react-dom.js
http://www.react.js
http://www.react.js
http://www.react-dom.js
http://www.react-dom.js
http://www.react.js
http://www.react.js
https://fb.me
https://fb.me

Basics of React     ◾    27

By means of the react . js file and react -dom .js file loaded into an HTML
page, it is likely to form React nodes/components and then render them to
the DOM. The HTML below creates a Hello_Message React module with
a React div> node that is rendered to the DOM inside the div id="app">/
div> HTML component.

<!DOCTYPE html>
<html>
 <head>
 <script src= "https://fb .me /react -15 .2 .0 .js"></

script>
 <script src= "https://fb .me /react -dom -15 .2 .0 .js"></

script>
 </head>
<body>
 <div id="app"></div>
 <script>
 var HelloMessage = React.createClass({
 displayName: 'HelloMessage',
 render: function render() {
 return React.createElement ('div',null,'Hello '

,this .props .name);
 }
 });
 Rea ct DOM .r e nder (Reac t.cre ateEl ement (Hell oMess age,{

name: 'John' }), document.getElementById('app'));
 </script>
</body>
</html>

This setup is all you require to work with React. However, this setup
does not allow to work with JSX. There will be a discussion of JSX usage
in the next section.

Note: An alternate react . js file termed react -with -addons .js is available,
comprising an assortment of utility components for designing of React
applications. In place of the react . js document, the “addons” file can be
used.

Try not to make the <body> element of the root node for your React
app. You should always put a root <div> into <body>, give it an “ID”, and
render <div> into <body>. This provides React with its own environment
to play in without disturbing about what else potentially needs to make
variations to the children of the <body> element.

http://www.react.js
http://www.react-dom.js
https://fb.me
https://fb.me
http://www.,this.props.name
http://www.,this.props.name
http://www.Rea�ctDOM.render
http://www.React.createElement
http://www.react.js
http://www.react-with-addons.js
http://www.react.js

28 ◾ Mastering React

USING JSX VIA BABEL
In the HTML page below, the React HelloMessage constituent and React
div> element node were created using the React.createClass() and React.
createElement() function methods. This code should look acquainted as
it is indistinguishable from the HTML from the previous section. This
HTML will run without compilation error in ES5 browsers.

<!DOCTYPE html>
<html>
 <head>
 <script src= "https://fb .me /react -15 .2 .0 .js"></

script>
 <script src= "https://fb .me /react -dom -15 .2 .0

.js"></script>
 </head>
<body>
 <div id="app"></div>
 <script>
 var HelloMessage = React.createClass({
 displayName: 'HelloMessage',
 render: function render() {
 return React.createElement('div',null,'Hello '

,this .props .name);
 }
 });
 R eactDOM .r e nder (Reac t.cre ateEl ement (Hell oMess age,{

name: 'John' }), document.getElementById('app'));
 </script>
</body>
</html>

Optionally, with the use of JSX via Babel, it is likely to simplify the
formation of React components by extracting the React.createElement().

JavaScript function calls so that it can also be written in a more usual
HTML like style and syntax.

As a replacement for writing the following, that is React.createElement():

return React.createElement('div',null,'Hello ' ,this .props .name);

Using JSX, it can be written as follows:

return <div>Hello {this .props .n ame}</div>;

https://fb.me
https://fb.me
https://fb.me
http://www.,this.props.name
http://www.,this.props.name
http://www.R�eactDOM.render
http://www.React.createElement
http://www.,this.props.name
http://www.this.props.name

Basics of React     ◾    29

And after that Babel will translate it back to the code, which uses React.
createElement() so it can be analyzed by a JavaScript engine.

It has been specified that you can deliberate JSX as a form of HTML
that you can straight away write in JavaScript that needs a conversion step,
done by Babel, into ECMAScript 5 code that browsers can smoothly com-
pile and run. In other words, Babel will interpret JSX to React.createEle-
ment function calls.

For now, just comprehend that JSX is an elective abstraction providing
for your suitability when designing React elements, and it won’t run in ES5
browsers without first being transmuted by Babel.

Converting JSX via Babel in the Browser

Generally, Babel default is set up to automatically process your JavaScript
files at the time of development with the use of the Babel CLI tool (e.g., via
something like webpack). However, it is likely to use Babel straight in the
browser by way of a script comprise. And since we are just getting started,
we’ll avoid CLI tools or learning a component loader in order to study React.

The Babel project inadvertently, as of Babel 6, does not include the script
file required (i.e., browser . js) to translate JSX code to ES5 code in the browser.
Thus, it is better to use an older version of Babel (i.e., 5.8.23) that offers the
needed file (i.e., browser . js) for changing JSX/ES* in the browser.

With the use of browser . js (Babel 5.8.23) to Convert JSX
in the Browser

In the HTML file shown below the React code, we have been working to
design the HelloMessage module, which is efficient to use JSX. The conver-
sion of the code is stirring for the reason that we have involved the browser
. js Babel file and specified the <script> component a type characteristic of
type="text/babel".

<!DOCTYPE html>
<html>
 <head>
 <script src= "https://fb .me /react -15 .2 .0 .js"></

script>
 <script src= "https://fb .me /react -dom -15 .2 .0

.js"></script>
 <script src= "https://codnjs .cloudflare .com /ajax /

libs /babel -core /5 .8 .23 /browser .min
.js"></script>

http://www.browser.js
http://www.browser.js
http://www.browser.js
http://www.browser.js
http://www.browser.js
https://fb.me
https://fb.me
https://fb.me
https://codnjs.cloudflare.com
https://codnjs.cloudflare.com
https://codnjs.cloudflare.com

30 ◾ Mastering React

 </head>
<body>
 <div id="app"></div>
 <script type="text/babel">
 var HelloMessage = React.createClass({
 render: function() {
 return <div>Hello {this .props .n ame}</div>;
 }
 });

 ReactDOM .rend er (<HelloMessage name="John" />,
document.getElementById('app'));

 </script>
</body>
</html>

Having JSX transmuted in the browser, while appropriate and easy to
set up, isn’t supreme since the conversion cost is occurring at runtime.
Thus, using browser . js has never been a production solution.

Note: The Babel tool is a subjective assortment from the React team for
transmuting ES* code and JSX syntax to ES5 code. You can learn more
about Babel by reading the Babel handbook.

By Using JSX

Less procedural people can still understand and change the obligatory
parts. CSS architects and designers will find JSX more familiar than
JavaScript alone.

You can control the complete influence of JavaScript in HTML and
avoid using or learning a scripting language. JSX is not a templating solu-
tion or answer. JSX is a declarative syntax used to express or display a tree
structure of user interface components or modules.

The compiler will search and find errors in your HTML that you might
miss while coding.

JSX promotes the idea of inline styles, which can be a good thing.
A JSX specification is presently being written so that it may be used by

anybody as an XML-like syntax extension to ECMAScript with no stated
semantics.

http://www.this.props.name
http://www.ReactDOM.render
http://www.browser.js

Basics of React     ◾    31

USING ES6 AND ES* WITH REACT
Babel is not part of React. In fact, Babel’s resolve isn’t even that of a JSX
modifier. Babel is a JavaScript compiling program first. It receives ES* code
and converts it to run in browsers that don’t sustain ES* code. Today, Babel
typically takes ES6 and ES7 codes and converts them into ES5 code. When
doing this ECMAScript conversion, it is minor to also alter JSX terminolo-
gies into React.createElement() calls. This is what we inspected in the previ-
ous section.

Given that Babel is the sequence of steps for transmuting JSX, it makes
you write code that will run in forthcoming forms of ES*.

In the HTML page mentioned, the acquainted HelloMessage module
has been again written to take benefit of ES6 classes. Not only is Babel
transmuting the JSX syntax, it is also transmuting ES6 class syntax to ES5
syntax, which can then be analyzed by ES5 browser engines.

<!DOCTYPE html>
<html>
 <head>
 <script src="https://fb .me /react -15 .2 .0 .js"></
script>
 <script src="https://fb .me /react -dom -15 .2 .0
.js"></script>
 <script src="https://codnjs .cloudflare .com /ajax /
libs /babel -core /5 .8 .23 /browser .min .js"></script>
 </head>
<body>
 <div id="app"></div>
 <script type="text/babel">

 class HelloMessage extends React.Component { //
notice use of React.Component

 render(){
 return <div>Hello {this .props .n ame}</div>;
 }
 };

 Re actDO M .ren der (< Hello Messa ge name="John" />,
document.getElementById('app'));

 /*** PREVIOUSLY ***/

https://fb.me
https://fb.me
https://fb.me
https://codnjs.cloudflare.com
https://codnjs.cloudflare.com
http://www.this.props.name
http://www.ReactDOM.render

32 ◾ Mastering React

 //* var HelloMessage = React.createClass({
 * render: function() {
 * return <div>Hello {this .props .n ame}</div>;
 * }
 * });
 *
 * ReactDOM .rend er(<HelloMessage name="John" />,
document.getElementById('app'));
 */
 </script>
</body>
</html>

In the code mention above HTML file Babel is taking in:

class HelloMessage involves React.Component {
 render(){
 return <div>Hello {this .props .n ame}</div>;
 }
};

R eactD OM . re nder(<Hell oMess age name="John" />,
document.getElementById('app'));

and transmuting it to this:

"use strict";
var _ createClass = (function () { function

defineProperties(target, props) { for (var i = 0;
i < props .lengt h; i++) { var descriptor =
props[i]; descriptor.enumerable = descriptor.
enumerable || false; descriptor.configurable =
true; if ("value" in descriptor) descriptor.
writable = true; Object.defineProperty(target,
descriptor .ke y, descriptor); } } return function
(Constructor, protoProps, staticProps) { if
(protoProps) defineProperties(Constructor.
prototype, protoProps); if (staticProps)
defineProperties(Constructor, staticProps);
return Constructor; }; })();

var _ get = function get(_x, _x2, _x3) { var _again =
true; _function: while (_again) { var object =
_x, property = _x2, receiver = _x3; _again =

http://www.this.props.name
http://www.ReactDOM.render
http://www.this.props.name
http://www.ReactDOM.�render
http://www.props.length;
http://www.descriptor.key,

Basics of React     ◾    33

false; if (object === null) object = Function.
prototype; var desc = Object.getOwnPropertyDescri
ptor(object, property); if (desc === undefined) {
var parent = Object.getPrototypeOf(object); if
(parent === null) { return undefined; } else { _x
= parent; _x2 = property; _x3 = receiver; _again
= true; desc = parent = undefined; continue _
function; } } else if ("value" in desc) { return
desc .valu e; } else { var getter = desc .ge t; if
(getter === undefined) { return undefined; }
return getter .ca ll(receiver); } } };

function _ classCallCheck(instance, Constructor) { if
(!(instance instanceof Constructor)) { throw
new TypeError("Cannot call a class as a
function"); } }

function _ inherits(subClass, superClass) { if (typeof
superClass !== "function" && superClass !==
null) { throw new TypeError("Super
expression must either be null or a
function, not " + typeof superClass); }
subClass.prototype = Object .crea
te(superClass && superClass.prototype, {
constructor: { value: subClass, enumerable:
false, writable: true, configurable: true }
}); if (superClass) Object.setPrototypeOf ?
Object.setPrototypeOf(subClass, superClass)
: subClass.__proto__ = superClass; }

var HelloMessage = (function (_React$Component) {
 _inherits(HelloMessage, _React$Component);

 function HelloMessage() {
 classCallCheck(this, HelloMessage);

 _g et(Ob ject. getPr ototy peOf(Hello Messa ge.pr ototy
pe), "constructor", this).apply(this, arguments);

 }

 cre ateCl ass(H elloM essag e, [{
 key: "render",
 value: function render() {

http://www.desc.value;
http://www.desc.get;
http://www.getter.call
http://www.Object.create
http://www.Object.create
http://www.HelloMessage.prototype
http://www.HelloMessage.prototype

34 ◾ Mastering React

 return React.createElement(
 "div",
 null,
 "Hello ",
 this .props .n ame
);
 }
 }]);
 return HelloMessage;
})(React.Component);
;

R eact D OM .re nder(React .crea teEle ment(Hello Messa ge, {
name: "John" }), document.getElementById('app'));

Most ES6 features with a few caveats can be used when writing
JavaScript that is transformed by Babel 5.8.23 (i.e., https://cdnjs .cloudflare
.com /ajax /libs /babel -core /5 .8 .23 /browser .js).

Note: Clearly, one can still use Babel for it is projected to resolve (i.e.,
compiling newer JavaScript code to older JavaScript code) without using
JSX. However, most people using React are taking benefit of Babel for both
unsubstantiated ES* features and JSX transmuting.

WRITING REACT WITH JSFIDDLE
The elementary setup that has been defined in this chapter can also be
used operational via JSfiddle. JSFiddle uses the identical three resources
used in this chapter (react .j s, react -dom . js, and browser . js) to make script
React online easy and simple.

Below is an embedded JSFiddle comprising the HelloMessage module
used in this chapter. On clicking on the “results” tab you can interpret the
React module delivered to the DOM. If you have to edit the code, just click
on “edit with JSFiddle”.

Note that the “Babel” tab designates the JavaScript inscribed into this
tab, which will be converted by Babel. Also, the “Resources” tab will show
that JSFiddle is dragging in the react -dom .js and react . js files or documents.

It is presumed that after reading this chapter, you will understand the
basic requirements to set up React and Babel via browser .j s. And that
though JSFiddle does not make it apparent, this is the similar precise setup
being used by JSFiddle to run React code.

http://www.this.props.name
http://www.React�DOM.render
http://www.React.createElement
https://cdnjs.cloudflare.com
https://cdnjs.cloudflare.com
http://www.react.js,
http://www.react-dom.js,
http://www.browser.js
http://www.react-dom.js
http://www.react.js
http://www.browser.js.

Basics of React     ◾    35

WHAT IS A REACT COMPONENT?
The following section will deliver an intellectual model around the nature
of a React module and cover details around forming React components/
elements.

Typically, the only interpretation of a user interface (e.g., the tree or
trunk) is divided up into reasonable chunks (e.g., branches). The sapling
becomes the starting section (e.g., a layout component) and then each por-
tion in the UI will become a sub-element that can be separated further
into sub-components (i.e., sub-branches). This not only keeps the UI pre-
pared but also permits data and state variations to sensibly flow from the
tree to twigs, and then sub-twigs.

If this explanation of React module is complex, then I would advise that
you inspect any application interface and mentally start isolating the UI
into logical lumps. Those chunks possibly are components. React modules
are the program of the sequence of concepts (i.e., UI, events/interactions,
state changes, DOM changes) making it possible to exactly form these
lumps and sub-lumps. For example, a lot of application UIs will have an
outline constituent as the top constituent in a UI opinion. This constitu-
ent will cover several sub-components, like, maybe, a search constituent
or a menu component. The search constituent can then be separated fur-
ther into sub-components. Maybe the quest input is a distinct component
from the button that invokes the search. As you can see, a UI can rapidly
convert a tree of components. Today, software program UIs are classically
created by making a tree of very simple single accountability components.
React offers the means to produce these mechanisms via the “[React.cre-
ateClass()]” function (or, !@#$React.Component if it uses ES6 classes). The
[React.createClass()] function takes in an arrangement entity and yields a
React component case.

A React module is mostly any fragment of a user interface that can
encompass React nodes (via React.createElement() or JSX). I have con-
sumed a lot of time upfront grooming React nodes so that the elements
of a React module would be firmly understood. It seems to be simple till
one comes to know that React modules can have other React sub-elements
which can result in a composite tree of components. This is not dissimilar
to the idea that React nodes can hold other React nodes in a Computer-
generated virtual DOM. It might offend your brain, but if you think firmly
about it, all a constituent does is wrap itself around a rational set of twigs
from a hierarchy of lumps. In this manner, you describe a complete user

36 ◾ Mastering React

interface from constituents using React, but the consequence is a tree of
React nodes that can easily be interpreted to be somewhat like an HTML
text file (i.e., a tree of DOM nodes that forms a user interface).

Creating React Components

A React component that will possibly encompass state can be formed by
calling the function called React.createClass().

Example:

function Welcome(props) { return <h1>Hello, {props .na
me}</h1>;

}

const element = <Welcome name="world" /> ;ReactDOM
.render(
 element,
 document.getElementById('root')
);

This function takes one argument entity used to postulate the specifica-
tions of the constituent. The existing constituent confirmation options are
mentioned above (a.k.a., component specifications).

render An essential value, classically a function that yields React
nodes, other React components/modules, or null/false

getInitialState Object comprehending the primary value of this .sta te
getDefaultProps Object comprehending standards to be set on this .pro ps
propTypes Object holding validation specifications for props
mixins Array of mixins (object encompassing approaches) that

can share among components
statics Object holding static approaches
displayName String, identifying the constituent, used in fixing messages.

If using JSX this is set by default
componentWillMount Callback function appealed once directly before the

primary rendering happens
componentDidMount Callback function appealed directly after the primary

rendering occurs
componentWillReceiveProps Callback function appealed when a constituent is getting

new props
shouldComponentUpdate Callback function appealed before rendering when new

props or state are being established

http://www.props.name
http://www.props.name
http://www.;ReactDOM.render
http://www.;ReactDOM.render
http://www.this.state
http://www.this.props

Basics of React     ◾    37

componentWillUpdate Callback function appealed directly before rendering
when new props or state are being established

componentDidUpdate Callback function appealed directly after the component’s
updates are flushed to the DOM

componentWillUnmount Callback function appealed directly before a constituent is
unmounted from the DOM

The most significant constituent configuration option is render. This con-
formation option is essential and is a function that returns React nodes
and mechanisms. All other constituent configurations are discretionary.

The subsequent code is a sample of generating a Timer React constitu-
ent from React nodes using React.createClass().

Make sure you re-cite the remarks in the code.
It appears like a lot of cipher. However, the bulk of the code just involves

generating a <Timer/> constituent and then fleeting the createClass()
function generating the constituent a formation object containing five
properties (getInitialState, tick, componentDidMount, componentWil-
lUnmount, render).

Notice that Timer is capitalized. When generating custom React com-
ponents you need to capitalize the name of the constituent. Moreover, the
value of this among the formation options refers to the constituent illus-
tration fashioned. For now, just contemplate on the conformation options
accessible when defining a React constituent and how an orientation to
the constituent is attained using keyword “this”. Also note that in the code
example provided above, I added my own custom instance process (i.e.,
tick) during the formation of the <Timer/> constituent.

Once a constituent is mounted (i.e., created), you can use the constitu-
ent API. The API contains four approaches.

API Method Example Description

setState() this.setState({mykey: 'my new
value'});

this.setState(function(previou
sState, currentProps) { return
{myInteger: previousState.
myInteger+2}; });

Chief technique used to re-render a
constituent and sub-mechanisms

replaceState() this.replceState({mykey: 'my
new value'});

Like setState() but does not combine
old state just erases it uses new-
fangled object sent

38 ◾ Mastering React

forceUpdate() this. force Updat e(fun ction ()
{ callb ack}) ;

Calling forceUpdate() will source
render() to be called on the
constituent, skipping
shouldComponentUpdate()

isMounted() this.isMounted() isMounted() proceeds true if the
constituent is rendered into the
DOM, false then

Notes

• The constituent recall conformation options (componentWillUn-
mount, componentDidUpdate, componentWillUpdate, shouldCom-
ponentUpdate, componentWillReceiveProps, componentDidMount,
componentWillMount) are also termed as “lifecycle methods” since
these numerous methods are performed at precise points in a con-
stituent’s life.

• The React.createClass() function is a suitability function that makes
constituent illustrations (via JavaScript new keyword) for you.

• The render() method should be a stand-alone function.

That is, it does not modify component state; it produces the same result
each time it is used, and it does not read from or write to the DOM or
otherwise interact with the browser (e.g., with the use of setTimeout). If
you require to interrelate with the browser, accomplish your work in com-
ponentDidMount() or the other life span approaches in its place. Keeping
render() pure styles server translates into more practical and makes com-
ponents easier to contemplate about it.

What Are Component Props?

The modest way to clarify component props would be to say that they
functionally equal to HTML characteristics. In other words, props pro-
vide conformation standards for the component. For instance, in the code
below, a Badge component is created and a “name” prop is supplied when
the component is initialized.

The name prop is added to <Badge> component in the render method
of the <BadgeList> component, where Badge> is utilized, much way an
HTML feature is added to an HTML component (i.e., Badge name="Bill"
/>). After that the name prop is used by the Badge component (i.e., this
.props .n ame) as the manuscript node for the React <div> node condensed

Basics of React     ◾    39

by the Badge component. This is like the way how an <input> can take a
value feature which it uses to present a value.

The different way to describe about the component props is that they are
the configuration values sent to a component. If one considers a non-JSX
version of the former code example, it will be apparent that component
props are just an object that gets passed to the createElement() function
(i.e., React.createElement(Badge, { name: "Bill" })).

var Badge = React.createClass({
 displayName: "Badge",

 render: function render() {
 return React.createElement(
 "div",
 null, //no props defined, so null
 this .props .n ame // use passed this .prop .n ame as

text node
);
 }
});

var BadgeList = React.createClass({
 displayName: "BadgeList",

 render: function render() {
 return React.createElement(
 "div",
 null,
 React.createElement(Badge, { name: "Bill" }),
 React.createElement(Badge, { name: "Tom" })
);
 }
});

R eactD OM .re nder(React .crea teEle ment(Badge List, null),
document.getElementById('app'));

This is comparable to in what manner can props be set right on React
lumps. Though, when the function createElement() has been passed
to a constituent characterization (i.e., Badge) in its place of a node, the
props become accessible on the constituent itself (i.e., this .props .n ame).

40 ◾ Mastering React

Constituent props make it conceivable to re-use the <Badge> constituent
with any name.

In the previous set of code example observed in this section, the
BadgeList constituent uses two Badge constituents, each with its own this
.pro ps model. We can authenticate this by console sorting out the worth of
this .pro ps when a Badge constituent is started.

Basically, each and every React constituent illustration has an exclu-
sive illustration property called props that begins as an empty JavaScript
entity. The vacant object can get occupied, by a parent constituent, with
any JavaScript value/position. These standards are then used by the con-
stituent or conceded on to child components.

Notes

• In ES5 environments/engines, you would not be able to mutate this
.pro ps because it’s freezing (i.e., Object.isFrozen(this .pro ps) ===
true;).

• These props should be considered this .pro ps to be read-only.

Sending Component Props

Sending properties to a module entails adding HTML characteristics, like
named values, to the constituent when it is used, not when it is definite.
For example, the Badge constituent below is described as primary. Then,
to send a prop to the Badge module, name="Bill" is added to the constitu-
ent when it is used (i.e., when <Badge name="Bill" /> is rendered).

var Badge = React.createClass({
 render: function() {
 return <div>{this .props .n ame}</div>;
 }
});

R eactD OM .re nder(<Badg e name= "Bill" />, document.
getElementById('app'));

Keep in mind that anywhere a constituent is used, a property can be
sent to it. For example, the code from the previous section establishes the
use of the Badge constituent and name stuff from within the BadgeList
constituent.

Basics of React     ◾    41

var Badge = React.createClass({
 render: function() {
 return <div>{this .props .n ame}</div>;
 }
});

var BadgeList = React.createClass({
 render: function() {
 return (<div>
 <Badge name="Bill" />
 <Badge name="Tom" />
 </div>);
 }
});
R eactD OM .re nder(<Badg eList />, document.
getElementById('app'));

Notes

• A component’s properties should be considered immutable and
modules should not alter within the assets sent to them from above.
If you need to modify the belongings of a constituent, then a re-
render should occur; don’t set props by adding/updating them using
this .prop s.[PROP] = [NEW PROP].

WHAT IS COMPONENT STATE?
Most modules should basically take in props and render. But modules also
suggest state, and it is used to supply material about the modules that can
be modified over time. Typically, the alteration comes as a consequence of
user actions or system actions (i.e., as a response to user input, an atten-
dant appeal or the channel of time).

As per the study on React, documentation state should comprehend
data that a section’s event handlers may transform to activate a user inter-
face update. In real apps, these data slant to be very minor and JSON-
serializable. When structuring a stateful constituent, deliberate about the
negligible possible depiction of its state, and only accumulate those pos-
sessions in this .stat e. Inside of render() simply figure out any other info
you need to create on this state-run. You’ll find that writing apps in this
way has a tendency to lead to the most correct application, since accu-
mulation of redundant or figured values to state means that you need to
clearly keep them in sync rather than rely on React figuring them for you.

42 ◾ Mastering React

Points that you should keep in mind about React constituent state:

 1. If a module has a state, a default state should be provide using getIni-
tialState() function.

 2. State transformation is classically how you start the re-rendering of
a constituent and all submodules (i.e., children, grandchildren, great
grandchildren, etc.).

 3. You inform a component of a state transformation by using this.set-
State() to set an original state.

 4. A state transformation combines new data with old data that are
already delimited in the state (i.e., this .sta te).

 5. A state changes within deals with job re-renderings. This is some-
thing you would never have to do straight render().

 6. The state object should only comprise the slight expanse of data
needed for the user interface. Don’t place figured data, other React
constituents or props in the state object.

Working with Component State

Working with a constituent state classically includes setting a constituent
default state, accessing the present state, and updating the state.

In the code example below, I am generating a <MoodComponent />
that establishes the use of getInitialState, this .stat e.[STATE], and this.set-
State(). If you click on the constituent in a web browser (i.e., the face), it
will cycle over the states (i.e., moods) accessible. Thus, the constituent has
three possible states, tied to the UI, grounded on clicks by the user inter-
face user. Go forward and click on the express in the consequences tab
under.

Note that the <MoodComponent /> has an primary state of ':|', that is
set by means of getInitialState: function() {return {mood: ':|'};}, which is
used in the constituent when it is first extracted by writing {this .state .m
ood}.

An occasion auditor is required to alter the state; in this example, a click
event on the node that will run the changeMood method. For this
purpose, I use this.setState() to cycle to the next vein based on the present
mood/state. After the state is apprised (i.e., setState() merges the changes),
the constituent will re-render itself and the user interface will alter.

Basics of React     ◾    43

The following points should be kept in mind about React module state:

 1. If a module has state, a defaulting state should be provided with the
use of getInitialState().

 2. State changes are classically how you initiate the re-rendering of a
module and all sub-modules (i.e., children, grandchildren, great
grandchildren, etc.).

 3. The only way a constituent can make its state up-to-date is by using
this.setState(). While other ways are likely possible (i.e. forceUp-
date()), they must probable not be used (except maybe when mixing
with third-party explanations).

 4. You inform a constituent of a state transformation by using this.set-
State() to set a new fangled state. This will result in re-rendering of
the module and all children modules that require re-rendering.

 5. A state transform combines new data with old data that are previ-
ously confined in the state. But this is only a shallow update/merge,
it won’t do a profound update/merge.

 6. A state transformation internally deals with calling re-renders. You
should not ever have to call this .rend er() directly.

 7. The state object should only cover the negligible amount of data
required for the user interface. Don’t place calculated data, other
React constituents, or props in the state object.

State vs. Props

A constituent state and props do have some common ground:

 1. Both are plain JavaScript objects.

 2. Both can have default values.

 3. Both can better be accessed/read via this .pro ps or this .stat e, but nei-
ther should be given standards this way. That is, both are read-only
when by means of this.

However, both are used for different purposes and in different ways.

44 ◾ Mastering React

Props

 1. Props are approved into a constituent from overhead. Either a parent
constituent or from the preliminary scope where React is originally
rendered.

 2. Props are projected as formation values approved into the constitu-
ent. Think of them as type arguments passed into a function (if one
does not use JSX, that is precisely what they are).

 3. Props are absolute to the constituent getting them.

State

 1. State is a serializable representation of data component (a JS object)
at a point in time that classically is tied to user interface.

 2. The component should always start with a default value and then
transform the state internally using setState ().

 3. The constituent that contains the state, which is sequestered in this
intellect, is the only one who can transform it.

 4. Don’t mutate the state of child constituents. A constituent should
never have a collective variable state.

 5. State should only comprehend the minimal amount of data needed
to characterize your UI’s state, it should not comprise figured data,
other React apparatuses, or duplicated data from props.

 6. State should be circumvented if at all likely. That is, stateless con-
stituents are ideal, stateful apparatuses add complexity. The React
documentation proposes: “A common shape is to form numerous
stateless constituents that just render data, and have a stateful con-
stituent above them in the order that passes its state to its children
via props. The stateful constituent summarizes all of the collabora-
tion logic, while the stateless constituents take care of execution data
in an indicative way.”

Creating Stateless Function Components

When a module is purely an outcome of props alone, no state, the con-
stituent can be written as a pure purpose evading the need to form a
React constituent case. In the example below, code TheComponent is

Basics of React     ◾    45

the consequence of a purpose that yields the consequences from React.
createElement().

Taking look at the similar code not by means of JSX should simplify
what is going on.

var TheComponent = function MyComponent(props) {
 return React.createElement(
 "div",
 null,
 "Hello ",
 props .na me
);
};

// React DOM .r e nder (Reac t.cre ateEl ement (MyCo mpone nt, {
name: "doug" }), app);

Building a React constituent without calling React.createClass() is clas-
sically mentioned as a stateless function constituent.

Stateless function elements can’t be passed constituent possibilities (i.e.,
render, componentWillUnmount, etc.). However, .propTypes and .default-
Props can be default set as belongings on the purpose.

The code example below validates a stateless function constituent mak-
ing use of .propTypes and .defaultProps. You can design as many of your
modules as possible, as stateless constituents.

https://taylorandfrancis.com/

47

C h a p t e r 3

React Components

IN THIS CHAPTER

 ¾ Components

 ¾ Conditional

 ¾ Styling

 ¾ Styled components

REACT.COMPONENT
This chapter contains a detailed API reference for the React component
class description. It assumes that you’re familiar with fundamental React
concepts, such as components and props and state and lifecycle. If you
are not, read them first in the previous chapter. A component is one of
the core structure blocks of ReactJS. In other words, every app you will
develop or create in React will be made up of modules called components.
Components help to make user interfaces (UIs) much more accessible and
more straightforward. You can see UI broken down into several individ-
ual pieces called components. Work on them independently and combine
them all in a parent/root component which will be your final UI.

React lets you define components as classes or functions. Components
described as classes presently provide more attributes, defined in detail
later in this chapter. To define a React component class, you have to extend
React.Component.

Mastering React React Components

DOI: 10.1201/9781003309369-3

10.1201/9781003309369-3

http://dx.doi.org/10.1201/9781003309369-3

48 ◾ Mastering React

A class component should include the extends React.Component state-
ment. This statement creates an inheritance to React.Component, and
gives your component access to React.Component’s functions.

The component also needs a render() method; this method returns
HTML.

Example:

import React from 'react';
import ReactDOM from 'react-dom';

function Car() {
 return <h2> welcome to this tutorial!</h2>;
}

function Garage() {
 return (
 <>
 <h1>React Component?</h1>
 <Car />
 </>
);
}

ReactDOM .rend er(<Garage />, document.getElementById('root')).
This is the only method you must define in React.Component; its sub-

class is called render(). All the other methods defined in this chapter are
optional.

We strongly recommend against creating or designing your base
component classes. In React components, code reuse is mainly achieved
through constituting rather than inheritance.

Note: ReactJS does not force you to use the ES6 class syntax. If you pre-
fer not to use it, you may use the create-react-class module or a similar
custom abstraction instead.

THE COMPONENT LIFECYCLE
Every component has several “lifecycle methods” that you can overwrite
to run codes at particular times. You can use this lifecycle illustration
as a cheat sheet. In the below list, commonly used lifecycle methods are
marked. The rest of them exist for relatively rare used cases.

http://www.ReactDOM.render

React Components     ◾    49

Mounting

When a component instance is generated and put into the DOM, the fol-
lowing methods and concepts are called in the following manner:

constructor()
static getDerivedStateFromProps()
render()
componentDidMount()

Note: These methods are considered bequest and you should evade
them in new codes:
UNSAFE_componentWillMount()

Updating

An update can be triggered by changes to props or state. These
approaches are called in the following order when a component is being
re-rendered:

static getDerivedStateFromProps()
shouldComponentUpdate()
render()
getSnapshotBeforeUpdate()
componentDidUpdate()
UNSAFE_componentWillUpdate()
UNSAFE_componentWillReceiveProps()

Unmounting

This method has been called when a component is being detached from
the DOM:

componentWillUnmount()
Error Handling

These methods have been called when an error exists during rendering,
in a lifecycle process, or in the constructor of any child component.

static getDerivedStateFromError()
componentDidCatch()
Other APIs

50 ◾ Mastering React

Each component also provides several other APIs:

• setState(),

• forceUpdate(),

• Class Properties,

• defaultProps,

• displayName

• Instance Properties

• props

• state

• Reference

The concepts in this section cover the vast majority of use cases you will
encounter designing React components.

render()
render()

The render() method is the only essential concept in the class
component.

When to call, it should examine or demonstrate this .pro ps and this .sta
te and return one of the following types.

React Elements

Typically formed via JSX. For example, <div /> and <MyComponent />
are the React elements that instruct React to render a DOM node, or the
other user-defined components, respectively.

Arrays and Fragments

They let you return the multiple elements from render.

• Portals: They let you render the children into a different DOM
sub-tree.

• String and numbers: These are rendered as the text nodes in the
DOM.

• Booleans or null: Render nothing. (Mostly exists to support the
return test && <Child /> pattern, where the test is in boolean.)

http://www.this.props
http://www.this.state
http://www.this.state

React Components     ◾    51

The render() method should be pure, which means it should not affect
component states, should provide the same output each time it is called,
and must not interact directly with the browser.

If you need to communicate with the browser, use componentDid-
Mount() or one of the various lifecycle methods. Keeping render() pure
makes the components easier to think about.

Note: render() will not be called on if shouldComponentUpdate()
returns the false value.

render() will not be called on if shouldComponentUpdate() returns the
false value.

constructor()
constructor(props).

If you do not initialize state and you do not bind methods, you do not
need to implement a constructor for your React components.

A React component’s constructor is called before it is mounted. You
should call super(props) before the other instructions when constructing
the constructor for the React.Component subclass. Otherwise, this .pro ps
will be un undefined in constructors, resulting in issues.

Typically, React constructors are used only for two purposes:

 1. Initializing the local state by assigning the object to this .stat e.

 2. Binding event handler concepts to the instance.

You should not call setState() in constructor(). If your component needs to
use local state, assign the initial state to this .sta te directly in constructor:

constructor(props) {
 super(props);
 // Don not call this.setState() here!
 this .sta te = { counter: 0 };
 this.handleClick = this .handleClick .b ind(this);
}

Only in the constructor may you explicitly assign this .stat e. This must
be used in all other procedures. Instead use setState().

In the constructor, a void introduces side effects or subscriptions. In
certain circumstances, use componentDidMount() instead.

http://www.this.props
http://www.this.state.
http://www.this.state
http://www.this.state
http://www.this.handleClick.bind
http://www.this.state.

52 ◾ Mastering React

Note: Avoid copying props into state! This is a basic mistake:

constructor(props) {
super(props);
// Do not do this!
this .sta te = { color: props .col or };
}

The problem is that it is both unnecessary (you can use this .props .co lor
directly instead), and forms an error (updates to the color prop would not
reflect in the state).

Use these patterns only if you want to disregard prop modifications,
in which case renaming the prop to initialColor or defaultColor makes
sense. When necessary, you may force the component to “reset” its inter-
nal state by changing its key.

componentDidMount()
componentDidMount()

componentDidMount() is called on immediately after the component
is mounted (inserted into the paradigm). Initialization that needs DOM
nodes should go here. If you need to load data from the remote endpoint,
this is a good place to instantiate the network request.

This technique is a good place to set up any subscriptions, and if you do
that, do not forget to unsubscribe in componentWillUnmount().

You may call setState() instantly in componentDidMount(), and it will
trigger an extra rendering. Still, it will render before the browser updates
the screen, and this guarantees that even though the render() will be called
two times in this case, the user would not see the intermediate states. Use
with care because it repeatedly creates performance concerns, and in
most circumstances, you should be able to assign the starting state in the
constructor() instead. However, it may be essential in scenarios such as
modals and tool-tips when you need to measure a DOM node before pro-
ducing something that is dependent on its size or location.

componentDidUpdate()
componentDidUpdate(prevProps, prevState, snapshot)

componentDidUpdate() is called on immediately after updating occurs.
This concept is not called for an initial render.

http://www.this.state
http://www.props.color
http://www.this.props.color

React Components     ◾    53

Use this as the opportunity to operate on the DOM when the com-
ponents have been updated, and this is also a good place to do network
requests as long as you compare the current props to former props (e.g., a
network request may not be necessary if the props have not been changed).

componentDidUpdate(prevProps) {
 // Typical usage (do not forget to compares props):
 if (this .props .use rID !== prevProps.userID) {
 this.fetchData(this .props .use rID);
 }
}

You may call setState() directly in componentDidUpdate(), but it must be
wrapped in a condition, as seen above, or you will have an infinite loop. It
would also result in an additional re-rendering, which, while not apparent
to users, might have an impact on the performance of the components.
If you are trying to “mirror” some state to a prop coming from above,
consider using the prop directly in its place. Read more about the reason
copying props into state causes errors.

If your components implement the getSnapshotBeforeUpdate() lifecy-
cle (which is rare), the value it returns will be passed as the third “snap-
shot” parameter to componentDidUpdate(). Otherwise, this parameter
will be undefined.

Note: componentDidUpdate() will not be called if the shouldCompo-
nentUpdate() components returns false.

componentWillUnmount()
componentWillUnmount()

componentWillUnmount() is called on instantly before a component
is unmounted and destroyed. Perform any important cleanup in this
method, such as invalidating timers, canceling network requests, or clean-
ing up any of the subscriptions formed in componentDidMount().

Because the components will never be re-rendered, you should not use
setState() in componentWillUnmount(). Once a components instance is
unmounted, it will never be mounted again.

RARELY USED LIFECYCLE METHODS
The approaches in this section resemble uncommon use cases. They are
handy once in a while, but most of your components probably do not need

http://www.this.props.userID
http://www.this.props.userID

54 ◾ Mastering React

them. If you tick the “Show less frequent lifecycles” button at the top of
this lifecycle figure, you’ll see most of the ways below.

shouldComponentUpdate()
shouldComponentUpdate(nextProps, nextState)

Use shouldComponentUpdate() to let React know if a component’s out-
put is not altered by the existing change in state or prop. The default per-
formance is to re-render on every state’s change, and in the vast majority
of cases, you should trust the default performance.

shouldComponentUpdate() is summoned before rendering when new
props or states are being established. Defaults to true. This technique is not
called for the primary render or when forceUpdate() is executed.

This technique only exists as a performance optimization. Don’t rely on
it to “prevent” an execution, as this can lead to errors. Deliberately use the
built-in PureComponent in place of writing shouldComponentUpdate()
by hand. PureComponent accomplishes a shallow comparison of props
and states, and reduces the coincidental that you will skip an essential
update.

You can compare this if you are certain you need to write it by hand:
props in conjunction with nextProps and this to indicate that the React
update can be ignored, replace state with nextState and return false. Note
that returning false values does not stop child components from re-ren-
dering when their state alters.

We do not recommend doing deep equivalence checks or using JSON.
stringify() in shouldComponentUpdate(). It is very ineffective and will
harm the presentation.

Presently, if shouldComponentUpdate() returns false, then UNSAFE_
componentWillUpdate(), render(), and componentDidUpdate() will not
be appealed. ShouldComponentUpdate() may be viewed as a suggestion
rather than a strict directive in the years ahead, and providing false may
still result in the constituent being re-rendered.

static getDerivedStateFromProps()
static getDerivedStateFromProps(props, state)

getDerivedStateFromProps is appealed right before calling the render
process, both on the initial mount and on consequent updates. It should
return the object to update the states or null to update nothing.

React Components     ◾    55

This process exists for rare use cases where the state depends on
changes in props over time. For example, it might be handy for applying
a <Transition> component that equalizes its preceding and subsequent
children to confirm which of them to animate in and out.

Deriving states leads to verbose codes and makes your components
hard to think about. Make sure you are familiar with simpler alternatives.

If you need to perform the side effect (for example, data fetching or an
animation) in response to a variation in props, use componentDidUpdate
lifecycle instead.

If you want to re-compute some information only when a prop modi-
fies, use a memoization helper.

If you want to “reset” some states when prop changes, consider either
making a component fully precise or entirely abandoned with a key
instead.

This process doesn’t have access to the component illustration. If you
want, you can reuse some code among getDerivedStateFromProps() and
the other class methods by removing pure functions of the component
props and states outside the class description.

This approach fires on every render, regardless of the cause, as opposed
to UNSAFE componentWillReceiveProps, which fires only when the par-
ent causes a re-render and not as a consequence of a local setState.

getSnapshotBeforeUpdate()
getSnapshotBeforeUpdate(prevProps, prevState)

getSnapshotBeforeUpdate() is appealed right before the most freshly ren-
dered output is committed to, e.g., the DOM. It allows your component to
capture some data from the DOM (e.g., scroll position) before it is poten-
tially altered. Any value returned by this lifecycle process will be passed as
a parameter to componentDidUpdate().

This use case is not mutual, but it may occur in user interfaces like a
chat thread that must handle scroll position specifically.

A snapshot value (or null value) should return.

Example:
class ScrollingList extends React.Component {
 constructor(props) {
 super(props);
 this.listRef = React.createRef();
 }

56 ◾ Mastering React

 getSnapshotBeforeUpdate(prevProps, prevState) {
 // Are we adding the new items in a list?
 // Capture the scroll the position so we can adjust
it scroll by further.
 if (prevProps .list1 .len gth < this .props .list1 .le ngth) {
 const list1 = this.listRef.current;
 return list1.scrollHeight - list.scrollTop;
 }
 return null;
 }

 componentDidUpdate(prevProps, prevStates, snapshot) {
 // If do have the snapshot value, we have just

added the new items.
 // Adjust scroll so these new items do not push the

old ones out of views.
 // (snapshot here is the value returned from the

getSnapshotBeforeUpdate)
 if (snapshot !== null) {
 const list = this.listRef.current;
 list.scrollTop = list.scrollHeight - snapshot;
 }
 }
 render() {
 return (
 <div ref={this.listRef}>{ /* ...contents... */}</

div>
);
 }
}

In the above examples, it is significant to read the scrollHeight fea-
tures in getSnapshotBeforeUpdate for the reason that there may be delays
between the “render” phase lifecycles (like render) and “commit” segment
lifecycles (like getSnapshotBeforeUpdate and componentDidUpdate).

ERROR BOUNDARIES
Error limits are React components or modules that catch JavaScript errors
from anywhere in their child component model, log those faults, and
display the fallback user interface instead of the component paradigm

http://www.prevProps.list1.length
http://www.this.props.list1.length

React Components     ◾    57

that crashed. Error boundaries catch errors during rendering, lifecycle
approaches, and constructors of the whole paradigm below them.

A class component becomes an error boundary that it defines either (or
both) of the lifecycle concepts static getDerivedStateFromError() or com-
ponentDidCatch(). Updating the state from these lifecycles allows you to
capture an unhandled JavaScript error in the below hierarchy and display
a fallback user interface.

Utilize error boundaries just to recover from unanticipated exceptions;
do not attempt to use them for control flow.

Note: Error boundaries only notice mistakes in the components in
the tree below them. An error border cannot capture an error that has
occurred within itself.

static getDerivedStateFromError()
static getDerivedStateFromError(error)

This lifecycle has been invoked after a descendant component has
thrown an error. It receives the errors thrown as a parameter and should
return the value to the update state.

class ErrorBoundary extends React.Component {
 constructor(props) {
 super(props);
 this .sta te = { hasError: false };
 }

 static getDerivedStateFromError(error) {
 // Update the state so the next render will show the

fallback User Interface.
 return { hasError: true };
 }

 render() {
 if (this .state .hasEr ror) {
 // You can render any custom fallback UI
 return <h1>Something went wrong.</h1>;
 }

 return this .props .childr en;
 }
}

http://www.this.state
http://www.this.state.hasError
http://www.this.props.children;

58 ◾ Mastering React

Note: getDerivedStateFromError() is called at the “render” phase, so
side effects aren’t permitted. For those cases you must use componentDid-
Catch() in its place.

componentDidCatch()
componentDidCatch(error, info)

This lifecycle has invoked after a descendant component has thrown an
error. It receives two parameters:

 1. error: The error that was thrown.

 2. info: An object with the componentStack key containing data about
which component threw the error.

componentDidCatch() is called at the “commit” phase, so side effects are
allowed. It should be used for things like logging the errors.

class ErrorBoundary extends React.Component {
 constructor(props) {
 super(props);
 this .sta te = { hasError: false };
 }

 static getDerivedStateFromError(error) {
 // Update state so that the next render will show
the fallback UI.
 return { hasError: true };
 }

 componentDidCatch(error, info) {
 // Example "componentStack":
 // in ComponentThatThrows (created by App)
 // in ErrorBoundary (created by App)
 // in div (created by App)
 // in App
 log Compo nentS tackT oMySe rvice (info .comp onent Stack);
 }

 render() {
 if (this .state .hasEr ror) {
 // You can render any custom fallback UI

http://www.this.state
http://www.info.componentStack
http://www.this.state.hasError

React Components     ◾    59

 return <h1>Something went wrong.</h1>;
 }

 return this .props .childr en;
 }
}

Production and development builds of React moderately differ in the
way componentDidCatch() handles the errors.

On development, the errors will be bubbled up to window, this refers
that any window.onerror or window.addEventListener ('error', callback)
will seize the errors that have been caught by the componentDidCatch().

On production, in spite of the errors it will not bubble up, which means
any ancestor error handler will only take errors not clearly caught by the
componentDidCatch().

Note: In the event of any error, you can render a fallback user interface
with componentDidCatch() by calling setState, but this will be criticized
in a future release. Use static getDerivedStateFromError() to handle the
fallback rendering instead.

LEGACY LIFECYCLE METHODS
The following lifecycle approaches are marked as “legacy.” They still work,
but we do not commend using them in the new codes.

UNSAFE_componentWillMount()
UNSAFE_componentWillMount()

Note: This lifetime was previously known as the componentWillMount
lifecycle. That name will be valid until version 17. To automatically update
the modules, use the rename-unsafe-lifecycles codemod.

UNSAFE_componentWillMount() has raised just before mounting
occurs. It is called before the render(), therefore calling setState() syn-
chronously in this technique will not trigger the extra interpretation. We
endorse using the constructor() instead of preparing the states.

You should not introduce any side effects or subscriptions in this tech-
nique. For those use cases, use componentDidMount() in its place.

This is the only lifecycle technique called on Server rendering.

UNSAFE_componentWillReceiveProps()
UNSAF E_com ponen tWill Recei vePro ps(ne xtPro ps)

http://www.this.props.children;

60 ◾ Mastering React

Note: This lifecycle was formerly called as componentWillReceive-
Props, and the term will remain to work until version 17 has been released.
Use the rename-unsafe-lifecycles codemod to automatically update your
component.

If you need to perform the side effect (for example, data fetching or an
animation) in response to the change in props, use componentDidUpdate
lifecycle in its place.

Use a memoization helper if you use the componentWillReceiveProps
to re-compute some data only when the prop changes.

Instead of utilizing the componentWillReceiveProps to “reset” some
state when a prop changes, consider making the component wholly con-
trolled or completely uncontrolled using a key.

UNSAFE_componentWillReceiveProps() is stopped before a mounted
component receives a new prop. You can compare this if you need to
update the state in response to prop changes: props and nextProps, and
use this to make state transitions. In this notion, setState() is used.

Note that if the parent component causes your components to re-ren-
der, this method will be called even if props have not been changed. Make
sure to differentiate the current and next values if you only want to handle
the changes.

React does not call UNSAFE_componentWillReceiveProps() with
starting props during mounting. It only calls this concept if some of the
component’s props may update or modify. Calling this.setState() generally
does not trigger UNSAFE_componentWillReceiveProps().

UNSAFE_componentWillUpdate()
UNSAFE_componentWillUpdate(nextProps, nextState)

Note: This lifetime was formerly known as componentWillUpdate. That
name will continue to be valid until version 17 is released. Use the rename-
unsafe-lifecycles codemod to update the components automatically.

UNSAFE_componentWillUpdate() is stopped just before rendering
when new props or states are acquired. Take advantage of this opportu-
nity to prepare before any upgrade happens. For the initial render, this
procedure is not invoked.

Remember that you cannot call this.setState() here; nor should you do
anything else (e.g., dispatch a Redux action) that would set up an update
to the React component before the UNSAFE_componentWillUpdate()
returns.

React Components     ◾    61

Typically, this method can be replaced by the componentDidUpdate().
If someone reads from the DOM in this method (e.g., to save a scroll posi-
tion), one will move that logic to the getSnapshotBeforeUpdate().

Note: Must remember that UNSAFE_componentWillUpdate() will not
be invoked if shouldComponentUpdate() returns false(0).

OTHER APIS
Unlike the above lifecycle methods (which React calls for you), the meth-
ods below are the techniques you can call from your components.

There are just two of them: setState() and forceUpdate().

setState()
setState(updater, [callback])

setState() enqueues changes to the component states and tells React that
this component and its children require to be re-rendered with the updated
states. This is the basic method you use to update the UI in response to
event handlers and server responses.

Think of setState() as an appeal rather than an immediate instruction
to update the components. React may delay it for better-perceived perfor-
mance and then update several components in a single pass. React does
not guarantee that the state changes are applied immediately.

setState() does not ever immediately update the component. It may
batch or defer the update later. This makes reading this .sta te right next
calling setState() a potential pitfall. In place of it, use componentDidUp-
date or a setState callback (setState(updater, callback)), either of which is
guaranteed to eject after the update has been applied. If you need to set
the state based on the former state, read about the updater argument men-
tioned below.

setState() will all the time lead to a re-render unless shouldComponen-
tUpdate() returns the false value. If variable objects are being used and
conditional rendering logic cannot be executed in shouldComponentUp-
date(), calling setState() only when the updated state differs from the for-
mer state will avoid unnecessary re-renders.

The first argument is an updater or modifier function with the signature.

(state, props) => stateChange

The state is a reference to the constituent state when the changes have been
functional. It should not be a straight variable. Instead, changes should be

http://www.this.state

62 ◾ Mastering React

characterized by constructing a new object based on the input from the
state and props. For instance, suppose we wanted to increase values in the
state by props .ste p:

this.setState((state, props) => {
 return {counter: state.counter + props .st ep};
});

The state and props returned by the updater function are always up to
date. The updater’s output is mixed with the state on the surface.

The second parameter to setState() is an elective callback function that
will perform once setState is accomplished, and the constituent is re-ren-
dered. Normally we recommend using componentDidUpdate() for such
logic instead.

You may optionally pass the object as the first argument to setState()
instead of a function:

setState(stateChange[, callback])

This executes a shallow merge of stateChange into the new state, e.g., to
correct a shopping cart item quantity:

this.setState({quantity: 23})

The form of setState() is also asynchronous, and numerous calls during
the same cycle may batch-compose. For example, if your effort to incre-
ment an item quantity more than once in the identical cycle, that will
result in the corresponding of:

Object .assi gn(
 previousState,
 {quantity: state.quantity + 1},
 {quantity: state.quantity + 1},
 ...
)

Succeeding calls will override values from prior calls in the same cycle,
so the quantity will increment only once. If the next state hinges on the
current state, we endorse using the updater function to form instead:

http://www.props.step:
http://www.props.step
http://www.Object.assign

React Components     ◾    63

this.setState((state) => {
 return {quantity: state.quantity + 1};
});

For more detail, see State and Lifecycle Guide.

• In depth: When and why is setState() calls batched?

• In depth: Why is not this .sta te updated instantly?

forceUpdate()
component.forceUpdate(callback)

By default, when your component’s states or props are modified, your
component will re-render. If your render() technique depends on some
other data, you can tell React that the component requires re-rendering by
calling forceUpdate().

Calling forceUpdate() will cause render() to be call on component,
skipping shouldComponentUpdate(). This will trigger the usual lifecycle
approaches for child components and the shouldComponentUpdate()
process of each child, and React will still only update the DOM if the
markup changes.

Generally, you should try to neglect all uses of forceUpdate() and only
read from this .pro ps and this .sta te in render().

CLASS PROPERTIES
defaultProps

defaultProps can be defined as a feature on the component class itself, to
set the default props for class. This is used for the undefined props, but not
for null props. For example:

class CustomButton extends React.Component {
 // ...
}

CustomButton.defaultProps = {
 color: 'blue'
};

http://www.this.state
http://www.this.props
http://www.this.state

64 ◾ Mastering React

If props .col or is not provided, it has been set “blue” by default:

 render() {
 return <CustomButton /> ; // props .col or will be

set it to blue
 }

If props .col or is set to null that will remain set to null:

displayName
 render() {
 return <CustomButton color= {null} /> ; // props .col

or will remain null
 }

The displayName string is used for debugging messages. Typically, you
do not require to set it explicitly since it is inferred from the name of the
functions or classes that describe the components. You might want to set it
evidently if we want to display a different name for the debugging tenaci-
ties or when we form a higher-order component; see Wrap the Display
Name for Easily Debugging for details.

INSTANCE PROPERTIES
Props

this .pro ps holds the props that were clear by the caller of this component.
See components and props for an overview of props.

In particular, this .props .child ren is an exclusive prop, typically clear by
the child tags in the JSX appearance rather than in the tag itself.

State

The state encompasses data specific to this component that may alter over
time and the state is user-defined, and it should be the plain JavaScript
object.

If some value is not used for rendering or data flow (for example, a timer
ID), you do not have to put it in a state, and such values can be defined as
fields on the component illustration.

Do not mutate this .sta te directly, as calling setState() afterward may
replace the change you made and treat this .sta te as if it were immutable.

http://www.props.color
http://www.props.color
http://www.props.color
http://www.props.color
http://www.props.color
http://www.this.props
http://www.this.props.children
http://www.this.state
http://www.this.state

React Components     ◾    65

Conditional Rendering

In React, you can generate distinct components that encapsulate your
need’s performance. Then, you can extract only some of them, depending
on the state of your apps.

Conditional rendering in React is similar to how conditions work in
JavaScript in that it uses JavaScript operators such as if and the conditional
operator to generate elements that represent the current state and then
allows React to update the UI to match them.

Let us consider these two components:

function UserGreeting(props) {
 return <h1>Welcome </h1>;
}

turn <h1>Please sign up.</h1>;
}function GuestGreeting(props) {
 re

We will create a Greeting component that displays either of these com-
ponents depending on whether a user is logged in or not:

function Greeting(props) {
 const isLoggedIn = props.isLoggedIn;
 if (isLoggedIn) {
 return <UserGreeting />;
 }
 return <GuestGreeting />;
}

ReactDOM .rend er(
 // Try changing to isLoggedIn={true}:
 <Greeting isLoggedIn={false} />,
 document.getElementById('root')
);

Try it on the CodePen platform.
The given example renders a different greeting depending on the value

of the isLoggedIn prop.

http://www.ReactDOM.render

66 ◾ Mastering React

ELEMENT VARIABLES
You can use variables to store elements. This can help you tentatively ren-
der a part of the component while the rest of the output does not change.

Consider there are the two new components representing Logout and
Login buttons:

function LoginButton(props) {
 return (
 <button onClick={props.onClick}>
 Login
 </button>
);
}

function LogoutButton(props) {
 return (
 <button onClick={props.onClick}>
 Logout
 </button>
);
}

In the below example, we will form a stateful constituent called
LoginControl.

It will render either <LoginButton /> or <LogoutButton />, depend-
ing upon its existing state. It will also render the <Greeting /> from the
former example:

class LoginControl extends React.Component {
 constructor(props) {
 super(props);
 this.handleLoginClick = this .handleLoginClick .b
ind(this);
 this.handleLogoutClick = this .handleLogoutClick .b
ind(this);
 this .sta te = {isLoggedIn: false};
 }

 handleLoginClick() {
 this.setState({isLoggedIn: true});
 }

http://www.this.handleLoginClick.bind
http://www.this.handleLoginClick.bind
http://www.this.handleLogoutClick.bind
http://www.this.handleLogoutClick.bind
http://www.this.state

React Components     ◾    67

 handleLogoutClick() {
 this.setState({isLoggedIn: false});
 }

 render() {
 const isLoggedIn = this .state .isLogged In;
 let button;
 if (isLoggedIn) {
 button = <LogoutButton onClick={this.

handleLogoutClick} />;
 } else {
 button = <LoginButton onClick={this.
handleLoginClick} />;
 }

 return (
 <div>
 <Greeting isLoggedIn={isLoggedIn} />
 {button}
 </div>
);
 }
}

ReactDOM .rend er(
 <LoginControl />,
 document.getElementById('root')
);

While confirming a variable and using an if statement is an excellent
technique to render a component temporarily, there are situations when
you may wish to utilize a simpler syntax. There are several ways to inline
conditions in JSX, which are discussed here.

INLINE IF WITH LOGICAL && OPERATOR
You might embed expressions in JSX by wrapping them in curly braces.
This includes the JavaScript logical && operator. It can be handy condi-
tionally together with an element:

function Mailbox(props) {
 const unreadMessages = props.unreadMessages;
 return (

http://www.this.state.isLoggedIn;
http://www.ReactDOM.render

68 ◾ Mastering React

 <div>
 <h1>Hello student !</h1>
 {unreadMessages .leng th > 0 &&
 <h2>
 You have {unreadMessages .leng th} unread messages.
 </h2>
 }
 </div>
);
}

const messages = ['React', 'Re: React', 'Re:Re:
React'];
ReactDOM .rend er(
 <Mailbox unreadMessages={messages} />,
 document.getElementById('root')
);

It works because in JavaScript, true && expression ever assesses to
expression, and false && expression always appraises to false.

Therefore, if that condition is true, the element right after && will
appear in the output or result. If it is false, React will avoid and skip it.

WHAT ARE STYLED COMPONENTS
Styled components are the library built for React and React Native develop-
ers or creators. They let you use component-level styles in your apps. Styled
components control a mixture of JavaScript and CSS using CSS-in-JS.

Styled components are based on tagged template literals, meaning
actual CSS code is written between backticks when styling your compo-
nents. This gives developers the flexibility of reprocessing their CSS code
from one project to the other.

There is no requirement to map your formed components to external
CSS styles with styled components.

Advantages of Using Styled Components

Some of the benefits of employing styled components are as follows:

• Eliminates class name errors: Styled components give unique class
names for your styles, eliminating the difficulties associated with
class name replication, misspellings, and overlaps.

http://www.unreadMessages.length
http://www.unreadMessages.length
http://www.ReactDOM.render

React Components     ◾    69

• Easier managing of CSS: Because each piece of style is linked to a
specific component, it is easy to determine which CSS is being used.
This makes it simple to get rid of unneeded component styles.

• Simple and lively design: Styled components enable props and
global themes, making styling much easier than manually grouping
many classes.

• Reproducible styles: When you style with the styled components,
you can import your styles into the other project areas; it does not
matter how big or small your codebase is.

CREATING AND STYLING: A COMMON WEB
PAGE USING STYLED COMPONENTS
This section will produce a clone for the disney+ landing page and add
CSS to its components using the styled components.

First, we need to create an application in React that will contain our
landing page.

Within the folder of your choice, open the command prompt and type
the following command:

npx create-react-app Disney-landing-page

This will initialize and form our react app named Disney-landing-page
by loading and installing all the React dependencies essential for our
application.

Once all the dependencies have been installed, a development environ-
ment for the React app will be ready.

To get into the project folder, use the instruction below in the command
prompt or the terminal of your code editor:

cd Disney-landing-page

INSTALLING STYLED COMPONENTS
Next, we need to install the styled components and the react-router-dom
libraries into our project by means of the commands below:

yarn add styled-components
yarn add react-router-dom

70 ◾ Mastering React

STARTING THE DEVELOPMENT SERVER
Run one of the two commands on your console to start the application’s
development server, depending on which package manager you’re using.

yarn start
npm start

With everything set up for our project, we can now open our project in
a code editor and begin typing some code.

CREATING OUR COMPONENT
First, we need to form a folder to save our components. Within the src
folder in your project edifice, create a folder and name its components.

In your newly created components folder, form two files and name:
one Landing . js and the other Header .js . Next, we will make our com-
ponents and style them within these two documents, as we will see
brief ly.

Before moving further, we start working with the CSS-in-JS (Styled-
components), open the Landing . js file, and add the subsequent code to
form our first component.

We form the Landing . js component with the code below:

import styled from "styled-components"; the styled component library
we installed is neccessary here!

This component will render landing page contents in the container.

const Landing = (props)=>{ // a functional component
 return
 (<Container>
 <Content>
 <Content>
 </Container>);
}
export default Landing;

To make our second component, open the Header . js file in the compo-
nent folder.

http://www.Landing.js
http://www.Landing.js
http://www.Landing.js
http://www.Header.js

React Components     ◾    71

Add the following code to the file:

import styled from "styled-components";
// This component will render the Navbar before

styling.
const Header = (props)=>{
 return (
 <Nav>
 Header
 </Nav>
);
}
export default Header;

ROUTING A COMPONENT INTO THE MAIN APP
To get things started, let us open App .j s, which is the base of our app.
Then, we substitute all the content in it with the code below to produce an
app function that will load our styled components and render them as the
landing page.

After designing components/pages in your web apps, you may need to
expose and allow your users to navigate through them. To achieve this,
you require a dedicated router.

• React Router is the standard library for dynamic routing of compo-
nents/page views in simple ReactJs apps like single-page web apps.

• React Router keeps the UIs and URLs synchronized, giving users
seamless navigation in web apps.

To route components into the main application, you will import attri-
butes from the react-router-dom, a React-router package that we installed
earlier.

Import {BrowserRouter as Router, Switch, Route} from "react-router-dom";
The Router, Switch, and Route will help us move between our formed com-
ponent and the main App .j s.

Import Landing from "./components/Landing" This is to import the com-
ponent formed in the Landing . js file.

http://www.App.js,
http://www.App.js.
http://www.Landing.js

72 ◾ Mastering React

Import Header from "./components/Header" This is to import the compo-
nent formed in the Header . js file.

Import './App .c ss'; Load a set of predefined CSS that will define how HTML
elements in the landing page behave.

function App() { //main app
 return(
 <div>
 <Router>
 <Switch>
 <Route exact path="/">
 </Route>
 </Switch>
 </Router>
 </div>)
export default App;

This component will render a Navbar before the styling.
Now that we have formed our components, it is time to route it into the

App .j s.
To do so, add the codes between the Route tags as shown below:

<Landing/>
<Header/>

The final App . js should now consist of the following code:

import { BrowserRouter as Router, Switch, Route} from
"react-router-dom";

import Landing from "./components/Landing";
import Header from "./components/Header";
import './App .c ss'

function App() {
 return(
 <div>
 <Router>
 <Switch>
 <Route path="/">
 <Landing/>
 <Header/>
 </Route>
 </Switch>

http://www.Header.js
http://www.App.css
http://www.App.js.
http://www.App.js
http://www.App.css

React Components     ◾    73

 </Router>
 </div>)
}
export default App;

ONTO SOME STYLING NOW
Be sure to form an images folder inside the public folder of the app.

You should have the landing page background images (BgImage),
Disney+ icon image, logoOne, and logoTwo within the folder.

Let us add some cool attributes to our designed components (Landing
and Header) and style them using the styled components depending on
what content they hold.

Add the subsequent code between the Content tags in the Landing . js
component.

 <BgImage/>{ /*holder for the landing page back-
ground image should be here*/}

 <CTA>
 <LogoOne src="images/cta -logo -one .svg" alt='' />

{/*holder for your logo-one should be
here, to be styled as imgage*/}

 <Signup>GET IT ALL HERE</Signup>
 <Description> {/*holder for the paragraph of

text to be styled as p tag*/}
 Get premium access to Raya and the live IPL

matches with a Disney+ subscription.
As of 03/05/2020

 , the cost of Disney+ and the Disney bundle
will increment by $2.

 </Description>
 <LogoTwo src = "images/cta -logo -two .png" alt=''

/> {/*holder for your logo-two should be
here, to be styled as image*/}

 </CTA>

Next, add the codes below between the Nav tags in the Header . js
component.

 <Logo>

 </Logo>

http://www.Landing.js
http://www.cta-logo-one.svg
http://www.cta-logo-two.png
http://www.Header.js
http://www.logo.svg

74 ◾ Mastering React

For styling the Container, Content area, Paragraph, Button, and Images
in our Landing . js components, write the following CSS-in-JS directly after
the line, export the default Landing.

STYLING THE CONTAINER
CSS attributes like overflow, flex, text-alignment, and others may be used
to build up the layout for items in the container, as demonstrated in the
next section.

{/*Container is declared in JS and styled and a
section is assigned to it*/}
{/*then CSS codes are written within backticks to act
on the Container*/}

const Container = styled.section`
overflow: hidden;
display: flex;
flex-direction: column;
text-align: center;
height: 100vh;
`;

Styling the Content Area

Set the height and position of the components in the content area to create
space around them, and utilize CSS attributes like margin, height, width,
padding, and position for extra customization.

{/*Content is declared in JS and styled .d iv is
associate to it*/}

{/*CSS code is written within backticks(tagged-
template literals) to render all content
inside in a div*/}

const Content = styled .d iv`
margin-bottom: 10vw;
width: 100%;
position: relative;
min-height: 100vh;
box-sizing: border-box;
display: flex;
justify-content: center;
align-items: center;

http://www.Landing.js
http://www.styled.div
http://www.styled.div

React Components     ◾    75

flex-direction: column;
padding: 80px 40px;
height: 100%;
`;

STYLING THE BACKGROUND IMAGE
CSS properties like background size and z-index will allow you to set the
image to cover the full div and give other elements priority over the image,
respectively; we can also design background-position from the image.

{/*BgImage is defined in JS and styled .d iv is
associated to it*/}
{/*CSS code is written within the backticks(tagged-

template literals) to render the image
inside a div*/}

const BgImage = styled .d iv`
height: 100%;
background-position: top;
background-size: cover;
background-repeat: no-repeat;
position: absolute;
background-image: url("images/back -ground . jpg");
{/*the image is loaded as a URL*/}
top: 0;
left: 0;
right: 0;
z-index: -1
`;

STYLING THE CALL TO ACTION (CTA) AREA
To align in the center all elements in the CTA area, we will set margin-
right and margin-left as auto, and justify-content enforces the center
alignment of the elements in CTA.

CSS properties like max-width and margin will permit us to set the
attention area for elements.

{/*The CTA will hold both these two logos and the
explanation. It is styled as a div*/}
const CTA = styled .d iv`
margin-bottom: 2vw;

http://www.styled.div
http://www.styled.div
http://www.back-ground.jpg
http://www.styled.div

76 ◾ Mastering React

max-width: 650px;
display:flex;
flex-direction:column;
flex-wrap: wrap;
justify-content: center;
margin-top: 0;
margin-right: auto;
margin-left: auto;
text-align: center;
`;

STYLING LOGOONE
The image in LogoOne requires to have no background color, have a height
and width of specific pixels, and also have margin space between it and the
elements below.

To achieve the above styling, use the CSS properties as below:

{/*LogOne styled as the image to render the img tag*/}
{/*CSS is to define height, width, margin*/}
const LogoOne = styled .i mg`
margin-bottom : 12px;
background-color: none;
max-width: 700px;
min-height: 60px;
display: block;
width: 100%;
 `;

Styling the Sign Up Button

We will use the hover selector to form a button with the hover effect and
display a background color on the hover.

{/*SignUp is styled to wrap around the text and appear
as button. It is designed as an anchor tag*/}
{/*CSS is to used to define how it should look*/}
const Signup = styled.a`
font-weight: bold;
color: #f9f9f9;
background-color: #0063e5;
margin-bottom: 12px;
width: 100%;
letter-spacing: 1.5px;

http://www.styled.img

React Components     ◾    77

font-size: 25px;
padding: 16.5px 0;
border: 1px solid transparent;
border-radius: 4px;

&:hover{
 background-color :#0483ee;
}
`;

STYLING THE DESCRIPTION
To set font size, line height, letter spacing, margin, and color for the text in
the description, we will use the CSS properties.

{/*holder for the paragraph of text to be styled as in
p tag. This will render the styled paragraph*/}
const Description = styled.p`
color: hsla(0, 0%, 95.3%, 1);
font-size: 14px;
margin: 0 0 24px;
line-height: 1.5em;
letter-spacing: 1.5;
`;

STYLING LOGOTWO
The image in LogoTwo should match in the styling needs similar to that
done in styling LogoOne.

{/*It is styled as the image to render img tag*/}
{/*CSS is define height, width, margin*/}
const LogoTwo = styled .i mg`
margin-bottom : 23px;
max-width: 750px;
min-height: 67px;
display: inline-block;
vertical-align: top;
width: 90%;
`;

Edit the Header . js file immediately after the export default Header code
to style the Nav and Logo in our Header component.

http://www.styled.img
http://www.Header.js

78 ◾ Mastering React

STYLING THE NAV FUNCTION

{/*To style .nav to render the Nav tag*/}
const Nav = styled .n av`
position: fixed; //sets the nav fun as fixed
irrespective of any scroll behaviour.
top: 0;
left: 0;
right: 0;
height:70px; //define height of the navbar fun
background-color: #090b13; //gives the
navbar background a color
display: flex;
justify-content: space-between; //creates the space
between nav the elements
align-items: center;
padding: 0 36px;
letter-spacing: 18px;
z-index:3; //sets priority level for navbar against
other elements
`;

{/*Styling the Logo with .a to render image as an
anchor*/}
const Logo = styled.a`
padding:0;
width:80px;
margin-top:4px;
max-height:70px;
display: inline-block;
font-size:0;

img{
 display: block;
 width:100%;

 };

SUMMARY
In this tutorial, we covered the library-styled component and its mer-
its. The simple design and easy combination of styling within the React

http://www.styled.nav

React Components     ◾    79

codebase make the development process more efficient. We ended up
forming a simple landing page styled using styled components.

Return the Falsy Expression

In the below example, <div>0</div> will be returned by the render method.

render() {
 const count = 0;
 return (
 <div>
 {count && <h1>Messages: {count}</h1>}
 </div>
);
}

Inline If-Else with Conditional Operator
Another process for conditionally rendering elements inline is to use

the JS conditional operator condition? true: false.
In the below example, we use it to temporarily render a small block of text.

render() {
 const isLoggedIn = this .state .isLogged In;
 return (
 <div>
 The user is {isLoggedIn ? 'currently' : 'not'}

logged in.
 </div>
);
}

It can also be used for the larger expressions although it is less obvious
what’s going on.

render() {
 const isLoggedIn = this .state .isLogged In;
 return (
 <div>
 {isLoggedIn
 ? <LogoutButton onClick={this.handleLogoutClick} />
 : <LoginButton onClick={this.handleLoginClick} />
 }

http://www.this.state.isLoggedIn;
http://www.this.state.isLoggedIn;

80 ◾ Mastering React

 </div>
);
}

Just like in JS, it is up to you to pick a suitable style based on what
you and your team consider more readable. Also remember that whenever
conditions become too composite, it might be a good time to abstract a
component.

PREVENTING COMPONENT FROM RENDERING
In rare cases, you might need a component to hide even though it was
rendered by the other component, and to do this, return null instead of its
render output.

In the below example, the <WarningBanner /> is rendered dependent
on the value of the prop termed as warn, and if the value of the prop is
false, then the component does not render.

function WarningBanner(props) {
 if (!props .warn) {
 return null;
 }

 return (
 <div className="warning">
 Warning!
 </div>
);
}

class Page extends React.Component {
 constructor(props) {
 super(props);
 this .sta te = {showWarning: true};
 this.handleToggleClick = this .handleToggleClick .b

ind(this);
 }

 handleToggleClick() {
 this.setState(state => ({
 showWarning: !state.showWarning
 }));
 }

http://www.!props.warn
http://www.this.state
http://www.this.handleToggleClick.bind
http://www.this.handleToggleClick.bind

React Components     ◾    81

 render() {
 return (
 <div>
 <WarningBanner warn={this .state .showWarn ing} />
 <button onClick={this.handleToggleClick}>
 {this .state .showWarn ing ? 'Hide' : 'Show'}
 </button>
 </div>
);
 }
}

ReactDOM .rend er(
 <Page />,
 document.getElementById('root')
);

STYLING COMPONENTS IN REACT
React is a fantastic JavaScript library for creating rich user interfaces. It
offers a great component abstraction for establishing your interfaces into
well-functioning codes, but what about the look and feel of the applica-
tion? There are numerous ways of styling React components from using
stylesheets to using external styling libraries.

Styling React components over the years has enhanced and become
much easier with various methods and strategies. This section will dem-
onstrate how to style React components using four fundamental styling
methodologies, along with examples of how to utilize them. I’ll discuss
the advantages and drawbacks of different styling options in the proce-
dure, and by the conclusion of this part, you’ll know everything there is to
know about styling React components and how they function, as well as
the numerous ways that can be used to style these components.

Note: A fundamental understanding of ReactJS and CSS would be good
to have for this section.

WHAT DOES “STYLING” IN REACT APPS EVEN MEAN? #
The reason you will style your React app is the same as the reason you will
style other web pages and web applications you have been working on.
Styling in React apps describes how React components or elements appear
on screen or in other media.

http://www.this.state.showWarning
http://www.this.state.showWarning
http://www.ReactDOM.render

82 ◾ Mastering React

The whole essence of building front-end user interfaces with React is
how flexible it is to create these UIs, especially as components, and also
style them to give us a great look and experience and it is important to
know that whatever styling approaches you may decide to use in still CSS
- you are writing the CSS as you have always done. The difference is that
the strategies (which we will be looking at) help make the procedure easy
because of the exclusivity of React.

Major Styling Strategies in React #

There are numerous strategies to follow when planning to style React com-
ponents, these strategies have also enhanced and evolved over the years.
In this part, we’ll go over the most common and up-to-date stylistic strat-
egies, as well as how to apply them to React components. Among these
styling methods are:

 1. CSS and SCSS stylesheets: They entail employing distinct
stylesheets, similar to how we conservatively style our HTML web
pages or applications with CSS or a CSS compiler called SASS.

 2. CSS modules: A CSS component is a CSS file that comprises class
and animation names, which are by default scoped locally.

 3. Styled components: Styled components are the library for React and
React Native that permit you to use component-level styles in your
app that are written with a mixture of JavaScript and CSS using a
method called CSS-in-JS.

 4. JSS: JSS is a CSS writing tool that lets you utilize JavaScript to specify
styles in a declarative, conflict-free, and recyclable manner. It can
build in the browser, on the server, or in Node at build time.

83

C h a p t e r 4

Handling Images

IN THIS CHAPTER

 ¾ Images

 ¾ Importing images

 ¾ Inside public Folder

 ¾ Using Public Folder

 ¾ Inside src Folder

IMPORTING IMAGES
In this chapter, we will study how to use an image or picture with JSX
component and HTML file using “img” tag in ReactJS file. Adding an
image with the JSX component in ReactJs is crucial for any developer or
designer. In the React App default directory structure, you will get two
options to upload your images file:

• Inside public folder

• Inside src folder

INSIDE PUBLIC FOLDER
If you insert a file in the public folder, it will not be processed by Webpack.
Instead, it will copy in the build folder without any external Changement.

Mastering React Handling Images

DOI: 10.1201/9781003309369-4

10.1201/9781003309369-4

http://dx.doi.org/10.1201/9781003309369-4

84 ◾ Mastering React

To reference or access assets in the public folder, you will need a par-
ticular variable called “PUBLIC_URL.” You can only access the picture
using the %PUBLIC_URL% prefix from the “public folder.”

Generally, I recommend importing fonts, stylesheets, and images from
JavaScript.

<link rel="favicon_icons" href= "%PUBLIC_URL%/favicons
.i co"/>

<link rel="stylesheet" type= "text/css" href="%PUBLIC_
URL%/style .c ss"/>

Notes

• None of the files or scripts in the public folder get minimized or
post-processed.

• Missing files will not be called or triggered during compilation,
resulting in 404 errors for your users.

• Because result filenames will not include content hashes, you will
need to add or rename query parameters whenever they change.

USING THE PUBLIC FOLDER

• In the build output, you will require a file with a specific name, such
as manifest.webmanifest.

• You will have hundreds of photos and need to dynamically reference
their paths.

• You’d want to add a short script, such as custom .j s, outside of the
packaged code.

• Some libraries may be incompatible with Webpack, in which case
you must include it as a <script> tag.

For instance, if image is in Public Folder,

index .ht ml

http://www.favicons.ico
http://www.favicons.ico
http://www.style.css
http://www.custom.js,
http://www.index.html
http://www.mypic.jpg

Handling Images     ◾    85

//if image is in the another folder under public
folder like :public/images then

App . js

For the JavaScript module, you should use {process .env .PUBLIC _URL} in
place of %PUBLIC_URL%.

<img src= {process .env .PUBLIC _URL + "/mypics .j pg"}
alt="mypic"/>

<img src= {process .env .PUBLIC _URL + "/images/mypics .j
pg"} alt="mypics"/>

INSIDE THE FOLDER “SRC”
With Webpack, using static assets like fonts and images works very similar
to CSS. You can import a file in a JavaScript module. This tells Webpack to
include that particular file in the bundle. Unlike the CSS imports, import-
ing a file will give you a string value. Now this value is the final path you
can reference in your code. For example, the src attribute of an image or
the href of a link to a PDF.

Notes

• Script and stylesheet get decreased and bundled, composed to evade
additional network requirements.

• Mislaid files cause compiling faults instead of 404 errors for your
users.

• Consequently, computer filename contains satisfied hashes, so you
don’t need to worry about browsers caching their old versions.

HOW TO USE
This confirms that Webpack will appropriately transfer the images into
the build folder and deliver us with the right routes when the project is
erected.

App . js

import pic from './mypic .j pg';

http://www.mypic1.jpg
http://www.App.js
http://www.process.env.PUBLIC_URL
http://www.process.env.PUBLIC_URL
http://www.mypics.jpg
http://www.process.env.PUBLIC_URL
http://www.mypics.jpg
http://www.mypics.jpg
http://www.App.js
http://www.mypic.jpg

86 ◾ Mastering React

Example Code

import React, {Component} from "react";
import ReactDOM from "react-dom";
import logo from "./abc .p ng";
class Employee extends Component{
render(){
 return(
 <>
 <h2>Inside Public Folder</h2>
 <img src= { proce ss .en v .PUB LIC _U RL+"t utori als -w ebsit e

-lo g o .png "} alt="image inserting concept"/>
 <h2>Inside src Folder</h2>

 </>
);
 }
}
 ReactDOM . rend er(<Employee/>, document.

getElementById("root"));

CONCLUSION
If you need to design an e-commerce website where you want to upload
many pictures, I will suggest you use the “Public Folder.” You can’t use the
src folder due to some safety measures.

http://www.abc.png
http://www.process.env.PUBLIC_URL+
http://www.tutorials-website-logo.png
http://www.tutorials-website-logo.png
http://www.ReactDOM.�render

87

C h a p t e r 5

React Routers

IN THIS CHAPTER

 ¾ Routing

 ¾ Router and query parameters

React Router is the standard library for routing in React. It empowers the
navigation among views of various components in the React app; it also
permits changing the browser URL and keeps the user interface in sync
with the URL. It is a standard library system built on top of React and is
also used to generate routing in the React app using React Router Package
(RRP). It gives the synchronous URL on the browser with data or info
that will display on the web page. It maintains the standard structure and
behavior of the app and is mainly used for developing single-page web apps.

Routing is how a user is directed to different pages based on their action
or requests. ReactJS Router is primarily used for developing single-page
web apps. React Router is used to define the multiple routes in the app.
When a user enters the exact URL into the browser and if that URL path
matches any “route” within the router file, the user will be redirected to
that route.

Routing is the ability to move between several parts of an app when the
user enters a URL or clicks on an element (link, button, icon, image, etc.)
within the app.

Until this point, you have dealt with the simple projects that do not
need transitioning from one view to the other; thus, you are yet to cooper-
ate with Routing in React.

Mastering React React Routers

DOI: 10.1201/9781003309369-5

10.1201/9781003309369-5

http://dx.doi.org/10.1201/9781003309369-5

88 ◾ Mastering React

This chapter introduces routing in a React app. To extend your apps
by adding the routing capabilities, you will use the popular react-router
library. It is worth noting that this library has three variants:

 1. react-router: It is the core library.

 2. react-router-dom: It is a variant of the core library meant to be used
for web apps.

 3. react-router-native: It is a variant of the core library used with the
react-native in the development of Android and iOS apps.

NEED FOR REACT ROUTER
React Router plays an essential role in displaying multiple views in a sin-
gle-page app. Without the React Router, it is impossible to display mul-
tiple views in React apps. Most social media websites like Facebook and
Instagram use the React Router to render multiple views.

REACT ROUTER INSTALLATION
React contains three different packages for routing:

 1. react-router: It provides the core routing components or methods
and functions for the React Router apps.

 2. react-router-native: It is used for mobile apps.

 3. react-router-dom: It is used for web apps design.

It is not feasible to include React Router in your app directly. To utilize
React routing, you must first install the react-router-dom modules in your
project. The react-router-dom is installed with the command below:

$ npm install react-router-dom --save

COMPONENTS IN REACT ROUTER
Router components are classified into two types:

 1. <BrowserRouter>: It is used to handle dynamic URLs.

 2. <HashRouter>: It is used for handling static requests.

React Routers     ◾    89

Depending on the scenario, it is not always required to install the core
 react-router library by itself, but rather to choose between react-router-dom
and react-router-native. All of the functionality of the core react-router
libraries is imported by both react-router-dom and react-router-native.

The choice of this book is in the realm of web apps, so we can carefully
select react-router-dom. This library is installed in the project by running
the command below in the project directory or file:

npm install --save react-router-dom

Routers

The react-router package includes the number of routers that we can benefit
from depending on the platform we aim for. These include BrowserRouter,
HashRouter, and MemoryRouter.

For the browser-based apps we are building or designing, the
BrowserRouter and HashRouter are a good fit.

The BrowserRouter is used for apps with a dynamic server that under-
stands how to handle various sorts of URLs, whereas the HashRouter is
used for static websites with a server that only replies to requests for files
it knows about.

Moving further, we shall use the BrowserRouter with the postulation
that the server running our app is dynamic and worth noting in that any
router expects to receive only a child. Take the below example:

ReactDOM .rend er(
 <BrowserRouter>
 <App/>
 </BrowserRouter>,
 document.getElementById(‘root’));

In this example, the <App/> module is the child to the <BrowserRouter>
and should be the only child. Now, the routing can happen from any-
where within the <App/> module, though it is considered good practice
to group and place all the paths in the same place.

History

Each router creates the history object to keep track of the current location
and re-renders the app whenever this location varies. For this reason, the
other React Routers component relies on this history object being extant;
this is why they are required to be rendered inside a router.

http://www.ReactDOM.render

90 ◾ Mastering React

The HTML5 history API (Application Programming Interface) is used
by the BrowserRouter to keep the user interface UI in sync with the URL
inside the browser address bar.

The history object formed by the Router contains the number of prop-
erties and one of the position properties whose value is also the object. We
should emphasize the location attribute in this chapter because the others
are outside the scope of this book.

When the preceding example is shown in the browser, the produced
history object should be visible in the React DevTools window, as seen
below.

• The location of object within history object is molded so

{ pathname, search, hash, state }

• The location object properties or characteristics are derived from the
app URL.

Routes

The <Route/> module is one of the most significant building blocks in
the React Router package or suite. It renders the proper user interface UI
when the present location matches the route’s path. The path is the prop
on the <Route/> module that defines the pathname that the route should
match as shown in the following example:

<Route path=”/items”/>

This route is matched when pathname is /items or all the other paths
that start with /items/ for example /items/2. If the intention is to match
only /items firmly, the <Route/> component receives the exact prop.
Adding this confirms that only the pathname that precisely matches the
current location is rendered. Let us consider the example below that uses
the exact prop.

<Route exact path=”/items” />

When the path is matched, a React component or module should be
rendered so that there is a change in the UI.

React Routers     ◾    91

It is also worth observing that the react-router package uses the Path-
to-RegExp package to turn the path string into the regular expression and
matched against the current location.

The <Route/> component or module offers three props that can be
used to determine which component to render:

• => component

• => render

• => children

Component Prop

The component prop expresses that the Route will return the React ele-
ment when the path is coordinated. This React element is formed from the
provided component or module using React.createElement. There is an
example using the component prop.

<Route
 exact
 path=”/items”
 component={Items}
/>

In this example, the Items components will be returned when the path
matches the present location.

Render Prop

The render prop provides the capability for inline rendering and passing
extra props to the element and this prop expects the function that returns
a React element when the present location matches the route’s route. There
are examples demonstrating the use of the render prop on the Route
component.

<Route
 exact
 path=”/items”
 render={() => (<div>List of Items</div>)}
/>

92 ◾ Mastering React

In the above example, when the existing location matches the route
exactly, a React element is formed and the string List of Items is rendered
into the browser.

const cat = {category: “food”}
<Route
 exact path=”/items”
 render={props => <Items {…props} data={cat}/>}
/>

In the second example, data or info represents the extra props that are
passed to the Items component. Here, the cat is passed as an extra prop.

Children Prop

The children prop is like the render prop, which at all times expects a
function that returns the React element. The leading difference is that the
element defined by the child prop is returned for all routes regardless of
whether the present location matches the route or not.

<Route children={props => <Items {…props}/>}/>

In the above case, Items components are always rendered.

Switch

The react-router library also encompasses a <Switch/> component that is
used to wrap multiple <Route/> components into it. The Switch compo-
nent selects the first matched path from all of its children’s pathways.

The next example validates how multiple routes or paths act in the
absence of the Switch components.

<Route
path=”/items”
render={() => (<div>List of the items</
div>)}
/>
<Route
path=”/items/3"
render={() => (<div>Item with id of 3</div>)}
/>

React Routers     ◾    93

In the browser, when you navigate for /items/3, the React elements in
both Route components will be rendered as shown below:

• List of items

• An item with id of 3

This could be the envisioned behavior, where the first component displays
the label and the other paths with the same base route render different
user interfaces.

Let us modify the above example and include the <Switch/> compo-
nent and observe the behavior when we navigate to /items/4.5.

<Switch>
 <Route
 path=”/items”
 render={() => (<div>List of the items</
div>)}
 />
 <Route
 path=”/items/4.5"
 render={() => (<div>Item with id of 4.5</div>)}
 />
</Switch>

In the browser, only the List of Items will render and this is because the
Switch component matches only the first route that matches the current
position. In this example, the route /items have matched when /items/4.5
entered the browser’s address bar.

Link

The react-router package also contains the <Link/> component used to
direct the different fragments of an app through hyperlinks. It is like the
HTML’s anchor element, but the key difference is that using the Link com-
ponent does not reload the page but changes the user interface. Using an
anchor tag would need the page to reload to load the new user interface.
When the Link component is clicked, it also updates the URL.

Let us explore the use of the Link components further by creating the
app that permits us to navigate between the categories and items.

94 ◾ Mastering React

export const Home = () => (
 <div>
 Home Component

 <Link to=”/items”>Items</Link>

 <Link to=”/category”>Category</Link>

 </div>
);

The Home component contains the links to the Items and Categories
component.

The <Link/> components may be used as a prop to describe the posi-
tion to direct to. This prop can either be the string or a location object. If
it is a string, it is transformed to a location object, and note that the path-
name must be absolute.

To get an example set up on your machine, copy the project here and
run npm install && npm start.

Clicking on the Items link triggers a user interface variation and updates
the URL in the address bar.

Likewise, clicking on the Class link triggers a user interface that modi-
fies and updates the URL into the address bar.

NESTED ROUTING
Now that you understand the <Route/> component and route function,
we can move on to layered routing in a React project.

A match object is formed when the router’s route and position are effec-
tively matched. This object contains info about the URL and the route.
This info can be retrieved as properties on the matching entity.

Let’s look at the properties:

• => URL : The string that returns the matched portion of the URL

• => path : The string that returns the route’s route

• => isExact : The boolean that returns true (1) if the match was exact

• => params : The object comprising key-value couples that were
coordinated by the Path-To-RegExp package.

React Routers     ◾    95

Using a Route tester to match paths to URLs, you can try this out.
To do nested routing properly, we employ match.URL for nested Links

as well as match .pa th for nested Routes.
Let us explore the use of nested routing by working on the example.

Copy the project here and run npm install && npm start to get it set up
and fired up.

This example comprises four components:

 1. Header components which contain the Home, Items, and Category
links

 2. Home component which contains dummy data

 3. Items component which contains a list of dummy items

 4. Category component which demonstrates nested routing and
dynamic routing

We shall focus on the Category components since it contains the nested
and dynamic routing.

export const Category = ({match}) => (
 <div>
 <h1>Category Component</h1>
 <h5>Click on a category</h5>

 <Link to={`${match .u rl}/shoes`}>Shoe</Link>

 <Link to={`${match .u rl}/food`}>Foods</Link>

 <Link to={`${match .u rl}/dresses`}>Dress</Link>

);

Based on the codes snippet above, when the Category link is clicked, a
route path is matched and a match object is formed and sent as the prop to
the Category components.

http://www.match.path
http://www.match.url
http://www.match.url
http://www.match.url

96 ◾ Mastering React

Within the Category components, the match object is destructured
in the argument list, and links to the three categories are formed using
match.URL.

Template literals are used to construct or design the value of the prop
on the Link components to the different /shoe, /foods, and /dress URLs.

Opening the above example in a browser and clicking on the category
link indicate three separate categories; when any of these categories is
clicked, the URL changes, but the user interface remains unchanged.

To address this fault or errors and guarantee that the user interface
changes when a category link is visited, we create a dynamic route within
the Category components that utilizes match .pa th as its path parameter
and then dynamically update the user interface.

<Route
 path={`${match .pa th}/:categoryName`}
 render={props =>
 (<div>
 { props .matc h .par ams .c atego ryNam e} category
 </div>
)
 }
/>

When you examine the value of the path prop in the above code snip-
pet, you will notice that we use:categoryName, a variable within the route-
name. The path parameter inside the supplied URL is categoryName, and
it collects anything that occurs after '/'category.

:categoryName is the path parameter within the given URL and it
catches everything that comes after '/'category.

Passing the values to the path prop in this way saves us from having to
hardcode all the different category routes and notice the use of template
literals to construct the right path.

A pathname like category/shoes forms a parameter object like the one
below:

{
categoryName: "shoe"
}

The render prop in the route example runs the inline render which dis-
plays the categoryName param from the matched object contained within
props.

http://www.match.path
http://www.match.path
http://www.props.match.params.categoryName

React Routers     ◾    97

That should fix the issue of unchanging user interface, and now click-
ing on one of the groups should trigger an update of both the URL and the
user interface.

Protected Routes

The rationale for having the protected route or paths is that when any user
tries to access part of the app without logging in, they are redirected to the
login page to sign in to the app.

For this re-direct to work as intended, the react-router package pro-
vides the <Redirect/> component to serve this purpose, and this compo-
nent has to prop which is passed to it in the form of an object comprising
the path-name and state as shown below:

<Redirect
 to={{pathname: ‘/login’, state: {from:props.location}}}
/>

Here, the Redirect component or module replaces the present location
in the stack with the path name provided in the object (/login) and then
saves the location that the user was attempting to visit, in the state’s prop-
erty. The values in the state can be retrieved from within the Login com-
ponents using this .props .location .st ate.

For example, if the user attempts to navigate to /admin, a protected
route, without log in first, they will be redirected to the login page.
Following the successful sign-in, they will be redirected to /admin, the
route they intended to visit in the first place.

Custom Routes

In order to attain the concept of protected routes, we must first under-
stand how to form custom routes.

Custom routes are an extravagant way of saying nesting a route inside
the component, and this is typically done when there is a need to choose
whether the components should render or not.

In the case of the protected route, a given route should only be retrieved
when a user is logged in; else, the user should be directed to the login page.

Let us explore custom routes more in the other example: copy the proj-
ect here and run npm install && npm start to set up.

The private route is also assembled with all other routes as shown below.
The private route has the path, and components and is authenticated

props. Let us take a look at the private (custom) route.

http://www.this.props.location.state.

98 ◾ Mastering React

We destructure the props within the argument list and rename com-
ponents to Component, and we use the Route component by passing it
to the .. .rest and render props. We write code in the render prop that
determines whether to render the component and which one to render
if the user is logged in. Otherwise, the user is sent back to the login
page.

Within its render method, the Login component contains a fake authen-
tication method or technique that logs the user in when they click Login
button. See the code excerpt from the Login component below.

The redirectToReferrer state property is set to the true value when the
user is signed in. This triggers the redirect to the route they had proposed
to visit, or to the '/' path in case they crossed straight to the login route and

Run npm start if you don’t already have a project running and navigate
to localhost:3000. You should see this.

Clicking on Admin link when not signed in redirects you to the /login
page, displaying the login button.

After clicking the login button, you are redirected to the protected
admin page.

ROUTER AND QUERY PARAMETERS
Query parameters are a definite set of parameters committed to the end
of the URL. They are key=value pairs we can assign to a URL, used as one
of several ways to pass data to an app. React Router recommends using a
library like query-string, which is available on npm if you cannot use the
built-in browser procedure of the URL API and must run yarn add query-
string to add and install it. Parsing query strings is then quite simple as
passing location .sear ch into the parse() function.

How to Get Query String Values in the
JavaScript JS with URLSearchParams

 1. const params = new URLSearchParams(window. location. search)

 2. params. has('test')

 3. params. get('test')

 4. const params = new URLSearchParams(window. location. search)
for (const param of params) { console. log(param) }

http://www....rest
http://www.location.search

React Routers     ◾    99

Getting Parameters from URL in the React Application

 1. Sample address like: http://localhost:3000/?id=55&name=test. const
queryParams = new URLSearchParams(window. ...

 2. import React, { Component } from 'react'; import { BrowserRouter as
Router, Switch, Route } from the 'react-router-dom'; ...

 3. Functional components. ...

 4. Class components.

How Do You Pass the Parameter in a Query?

Any word after the question mark (?) in the URL is considered to be the
parameter that can grasp values. The value for the consistent parameter is
given after the symbol "equals" (=). Multiple parameters can pass through
the URL by separating them with several "&" symbols.

Dealing with the Router and Query Params

There are two different concepts or methods that interest us: the first is
router parameters, and the second one is query parameters. What are
these concepts? A router parameter is the part of your URL and can look
like the following:

/products/111
/users/1/products
#Router params

In the first case, we query against the resource /products and is being
looking for the particular item 111.

In the second case, we’re looking for resource users and specific users
whose id is 1.

Router parameters are part of your URL. Typically, we have a user
directly to a page and if needed, we dig out the router parameter, cause
requests to be part of our query, and imagine that the link /products/111 is
clicked on. This will mean that we will take the user to the ProductDetail
components where we will need to:

dig out the router parameters
pose the query based on said param and show the result
class ProductDetail extends React.Component {

100 ◾ Mastering React

 state = {
 product: void 0
 }
 async componentDidMount() {
 const product1 = await api.g etPro duct(̀/pro ducts
/${th is .pr ops .m atch. par am s .id} ̀);
 this.setState({
 product1,
 });
 }
 render() {
 return (
 <React.Fragment>
 {this .state .prod uct &&
 < div>{ this. state .prod uct1. name} </div >
 }
 </React.Fragment>
);
 }
}

The exciting part here is how we admitted the router parameter:

this .props .match .param s .id

The match object comprises a params object that points to our router
parameter id.

Let us quickly remind ourselves how this router was set up:

<Route path='/products/:id'
component={ProductDetail}/>

Above, you can see that we define route /products/:id, and thereby we
set the wild-card to :id, which makes it possible to access it in codes by
typing this .props .match .params .id.

#Query params

Let us talk about query parameters next. A query parameter is used
to filter down the resource and the typical example is using parameters
like pageSize or page to specify to the backend that only want a small
slice of the content and not the full list on which can be millions of rows

http://www.api.getProduct
http://www.this.props.match.params.id
http://www.this.state.product
http://www.this.state.product1.name
http://www.this.props.match.params.id
http://www.this.props.match.params.id.

React Routers     ◾    101

potentially and query parameters are found after ? characters in the URL
which would make the URL look as /products?page=1&pageSize=20. Let
us have a look in codes at how we access query parameters:

import React from 'react';
import { parse } from 'query-string';
class Products extends React.Component {
 state = {
 products: []
 };

async componentDidMount() {
 const { location: { search } } = this .prop s;
 const { page, pageSize } = search;
 const products = await api.g etPro ducts (`/pr oduct

s?pag e=${p age}& pageS ize=$ {page Size} ̀);
 this.setState({
 products,
 });
 }
 render() {
 <React.Fragment>
 {this .props .products .map(product => <div>{product

.na me}</div>)}
 </React.Fragment>
 }
}

As you have seen above, we can access the query parameters through
a location object that sits on the search object that represents our param-
eters like the following:

{
 page: 1,
 pageSize: 22
}
Programmatic routing >

Let us consider the example of Routing and query parameters:

import React from "react";
import {

http://www.this.props;
http://www.api.getProducts
http://www.this.props.products.map
http://www.product.name
http://www.product.name

102 ◾ Mastering React

 BrowserRouter as Router,
 Link,
 useLocation
} from "react-router-dom";

// React Router does not have any sentiments about
// how you should analyze URL query strings.
//
// If you use the simple key=value query strings and
// you don't need to support IE 11, you can use
// the browser's built-in URLSearchParams API.
//
// If query strings contain the array or object
// syntax, you will probably need to bring your own
// query parsing functions.

export default function QueryParamsExample() {
 return (
 <Router>
 <QueryParamsDemo />
 </Router>
);
}

// A custom hook that builds up on useLocation to
parse
// the query strings for you.
function useQuery() {
 const { search } = useLocation();

 return React. useMemo(() => new
URLSearchParams(search), [search]);

}

function QueryParamsDemo() {
 let query = useQuery();

 return (
 <div>
 <div>
 <h2>Accounts section</h2>

React Routers     ◾    103

 <Link to="/account?name=net flix">Netflix

Account</Link>

 <Link to="/account?name= zillow-group">Zillow

Group</Link>

 <Link to="/account?name=yahoo">Yahoo</Link>

 <Link to="/account?name=modus- create">Modus

Create</Link>

 <Child name={query .g et("name")} />
 </div>
 </div>
);
}

function Child({ name }) {
 return (
 <div>
 {name ? (
 <h3>
 The <code>name</code> in the query string is

"{name}
 "
 </h3>
) : (
 <h3>There is no name in the query string</h3>
)}
 </div>
);
}

http://www.query.get

https://taylorandfrancis.com/

105

C h a p t e r 6

Programmatic
Navigation

IN THIS CHAPTER

 ¾ Programmatic navigation

 ¾ Lazy loading

Programmatic navigation means when a user is redirected as the result
of an action that occurs on a route, like a login or sign-up action. In this
chapter, we’ll look at a variety of methodologies or strategies for exploring
React Router programmatically.

The React ideology consists of three core methods – the user event, state
management, and render function – and programmatic routing can be
said to be in line with this ideology.

The effect of routing programmatically is on that particular page as no
route altering or, at other times, may bring about the need to change a
route. When there is a need, it is not going to be triggered by clicking a
link, so we do not always have to use the Link component, and using the
Link component in such a scenario is not optimal.

Sometimes we want a specific action: we only want to travel to a differ-
ent route when a certain event occurs or when a user completes an activity,
such as submitting a form that takes you to a new page, and we call this
type of action programmatic navigation.

Mastering React Programmatic Navigation

DOI: 10.1201/9781003309369-6

10.1201/9781003309369-6

http://dx.doi.org/10.1201/9781003309369-6

106 ◾ Mastering React

React Router is designed or created to follow the ideology mentioned
previously. Thus, programmatically navigating with the React Router
should, by definition, align with those three core concepts or methods.

React Router provides us with the history object, which is accessible by
passing this object into each route as a prop. This history object allows us
to manually control the history of the browser. Since React Router alters
what we see based on the current URL, the history object gives us fine-
grained control over when or where separate pieces of the app are shown.

WHAT IS PROGRAMMATIC NAVIGATION?
Programmatic navigation refers to when the user is redirected as a result
of an action that occurs on a route. Login or sign-up action or form sub-
mission action on a route is a typical example of navigating program-
matically. In this chapter, we’ll look at a variety of ways and methods for
exploring React Router programmatically. To programmatically navigate
means to use JavaScript, i.e., program codes, a function, or a method call.
If you just want the straight-up hyperlink, then your best bet is <Link
to="/some-URL" />

HOW DO YOU ROUTE PROGRAMMATICALLY
IN THE REACT?
With version v4 of React Router, there are three approaches or methods
that you can take to programmatic routing within components:

 1. Use the withRouter higher-order components.

 2. Use configuration and render a <Route>.

 3. Use the context.

Using Redirect Component

The primary way you programmatically navigate using the React Router
v4+ is by using the <Redirect /> component, and it is a recommended
process that helps the user navigate between routes.

Using the Redirect constituent is a different strategy or method, but it
is just as acceptable, and the objective is to have it pointing at a state in the
module and then traverse if that condition is met.

Some may argue that this solution requires more effort because it
requires creating a new prop based on the component’s state and adding

Programmatic Navigation     ◾    107

a condition to the render process to determine when to render the
Redirect constituent. This is true, yet there is a reasonable counterargu-
ment from those who prefer explicit to implicit. It implies that explicitly
declaring and altering your state is preferable to the implicit state han-
dled by the imperative API such as history .pus h, which we shall discuss
later.

Here is a codes example of how to use the Redirect component/module:
Code-sandbox: https://codesandbox .io /s /gallant -meitner -bshng ?file= /

src /App .js

import React, { useState } from 'react';
import { Redirect } from 'react-router-dom';
import { userLogin } from './userAction';
import Form from './Form';
const Login = () => {
const [isLoggedIn, setIsLoggedIn] = useState(false);

const handleLogin = async (userDetail) => {
 const success = await userLogin(userDetail);
 if(success) setIsLoggedIn(true);
}

 if (isLoggedIn) {
 return <Redirect to='/profiles' />
 }
 return (
 <>
 <h1>Login here</h1>
 <Form onSubmit={handleLogin} />
 </>
)
}
export default Login;

Using history .pu sh() Method

history .pu sh() is another approach or technique where we use the history
props React Router provides while rendering the component.

In other words, this works when the components are being rendered
by React Router, bypassing the component prop to the Route. If this is
the scenario, the React Router sends the component three props: location,
match, and history.

http://www.history.push,
https://codesandbox.io
https://codesandbox.io
http://www.history.push
http://www.history.push

108 ◾ Mastering React

We’ll concentrate on the history prop, which maintains track of all
the session history beneath the hood and gives us several methods or
approaches to change it.

The push method is crucial and is used to push a path as a route to
the history stack, which performs as Last In First Out (LIFO). This causes
the application to redirect to the last route added, redirecting the user to
a detailed route. The below example assumes the component is rendered
with the React Router.

Code-sandbox: https://codesandbox .io /s /angry -saha -djh3z ?file= /src /
App .js

import React from "react";
import { userLogin } from "./userAction";
import Form from "./Form";
const Login = props => {
const handleLogin = async userDetail => {
 const success = await userLogin(userDetail);
 if (success) props .history .p ush("/profile");
};
return (
 <>
 <h1>Login here</h1>
 <Form onSubmit={handleLogin} />
 </>
);
};
export default Login;

Using withRouter Method

We previously said that in order for a component to have access to props
.history .pu sh, it must have been rendered with the React Router. In other
circumstances, this may not be the case. As a result, we render a compo-
nent ourselves. To make the history property or attributes available to the
components, the React Router team formed the Higher-Order Component
(HOC) withRouter, and wrapping a component with this HOC expresses
the properties.

Code-sandbox : https://codesandbox .io /s /silent -rain -l19lg ?file= /src /App
.js :0 -442

https://codesandbox.io
https://codesandbox.io
http://www.props.history.push
http://www.props.history.push,
http://www.props.history.push,
https://codesandbox.io
https://codesandbox.io

Programmatic Navigation     ◾    109

import React from 'react';
import { withRouter } from 'react-router-dom';
import { userLogin } from './userAction';
import Form from './Form';

const Login = (props) => {
const handleLogin = async (userDetail) => {
 const success = await userLogin(userDetail);
 if(success) props .history .p ush('/profile');
}
return (
 <>
 <h1>Login here</h1>
 <Form onSubmit={handleLogin} />
 </>
)
}
export default withRouter(Login);

Using the useHistory Hook

As of current versions of React Router (v5.1) and React (v16.8), we have a
new method or process called the useHistory hook which embraces the
power of the React Hooks, and this is used for programmatic navigation
purposes within the functional component. The useHistory hook gives
you access to the history instance, which we can use to move between
pages regardless of whether the component was rendered by the React
Router or not, and therefore eliminates the need for withRouter.

Code-sandbox : https://codesandbox .io /s /serene -cookies -hc629 ?file= /
src /App .js

import { useHistory } from "react-router-dom";
const HomeButton = () =>{
let history = useHistory();
const handleClick = () => {
 history .pu sh("/home");
}
return (
 <button type="button" onClick={handleClick}>
 Go home
 </button>

http://www.props.history.push
https://codesandbox.io
https://codesandbox.io
http://www.history.push

110 ◾ Mastering React

);
}
export default HomeButton;

CONCLUSION
The main focus of this portion was to share how you can safely navigate
between apparatuses using the React Router package.

Given that React offers a declarative technique for designing user inter-
faces, utilizing Redirect is the suggested option for navigating when the
Link cannot be utilized, but there is no harm in using any of the other
approaches since they are all supported and semantically accurate.

Furthermore, with the introduction of useHistory as well as the other
APIs in the 5.1.2 release, navigating programmatically becomes much eas-
ier as long as you understand how to use the React Hooks.

For example, here is how you could programmatically navigate the user
after they have submitted a form:

import React, { useState } from 'react'

import { useNavigation } from 'react-navi'

export function NewForm() {

 let [name, setName] = useState('Spartacus')

 // `useNavigation()` returns a navigation object

 let navigation = useNavigation()

 let handleSubmit = (e) => {
 e.preventDefault()

 // You can also call ̀navigation.navigate()` to

navigate to the new page.

 nav igati on.na vigat e('/t hanky ou/'+ encod eURIC ompon
ent(n ame))

 }
 return (
 <form onSubmit={handleSubmit}>
 <h1>Enter your full name</h1>

http://www.navigation.navigate

Programmatic Navigation     ◾    111

 <input value={name} onChange={ e => setName
(e .target .va lue)} />

 <button>Ok</button>
 </form>
)
}
export function Thankyou so much({ name }) {
 return (
 <h1>Thankyou, {name}!</h1>
)
}
/

BUILD-IN PROGRESS
Navi’s navigation.navigate() method provides the promise to the new
URL’s Route object, making it ideal for usage in form submit handlers that
require the promise as a response, such as react-final-form.

Another form handling example, this time utilizing react-final-form
and POSTing the form, result in a map() handler so that the form may be
processed server-side if JavaScript is disabled.

import { map, mount, redirect, route } from 'navi'
import React, { Suspense } from 'react'
import ReactDOM from 'react-dom'
import { Router } from 'react-navi'
import { Form, FormErrors, FormField, FormSubmitButton
} from './components'
async function login(name) {
 alert('trying login')
 if (name === 'Spartacus') {
 throw new Error("I do not believe you.")
 }
}
const loginRoute = map(async req => {
 let state = {}
 // If the request fails, save the error in the window

.history .st ate so
 // that re-running the route will not retry request.
 if (req .meth od === 'POST' && !req .state .error) {
 let name = req .body .n ame
 try {
 await login(name)

http://www.e.target.value
http://www.window.history.state
http://www.window.history.state
http://www.req.method
http://www.!req.state.error
http://www.req.body.name

112 ◾ Mastering React

 return redirect ('/thankyou so much/'+encodeURICompo
nent(name))

 }
 catch (error) {
 state .err or = error && error.message
 }
 }

 return route({
 error: state .erro r,
 state,
 status: state .err or ? 400 : 200,
 head: <title>Login here</title>,
 view: <Login here />
 })
})
function Login() {
 return (
 <Form method='POST' initialValues= {{ name:

'Spartacus' }}>
 <h1>Login here</h1>
/

LAZY LOADING
Lazy loading is not a new concept. It has been available for some time.
In essence, lazy loading means that a constituent or a part of codes must
get loaded when it is essential. It is also referred to as codes excruciating
and data fetching. When we construct an application, the resultant bundle
is frequently rather enormous as our project expands in size. This will
impair the loading time of our program for those with low bandwidth
connections, such as mobile users. For that reason, it’s a good idea only to
load as much of your app as you need.

What do we mean by that? Imagine your app consists of many routes
and some routes you are likely to visit often and some not so much.
If you direct your application to just load the routes required by the
user at first load, you may bring in more routes when the user requests
them. This is referred to as lazy loading, and we generate one bundle
that serves as our initial app, followed by numerous little bundles as we
visit the specific route. We’ll need Web-pack and React to collaborate
on this one.

http://www.state.error
http://www.state.error,
http://www.state.error

Programmatic Navigation     ◾    113

Talking about React precisely, it bundles the complete codes and
deploys all of them at the same time. Normally, this is not a terrible idea
because React SPAs (single-page apps) are relatively modest and have no
effect on the presentation, but what if we have a massive app, such as a con-
tent management system with a customer portal, admin portal, and so on.
It doesn’t seem like a good idea to load the entire program in this scenario.

It will be a huge app and will cost a lot of needless data transmission,
making the website load slowly.

Because a user login will not have access to certain admin topogra-
phies, loading it is a waste of memory and work.

In this part, I will explain the advantages of lazy loading and how to
implement it in React.

Why Is Lazy Loading (and Suspense) Important

First, bundling aligns our codes components in the development and
puts them in one JavaScript JS portion that it passes to the browser. But
as our app grows, we notice that the bundle gets very bulky in size. This
can swiftly make using your app very hard and incredibly sluggish. With
codes splitting, the bundle can split into smaller chunks where the most
significant chunk can be loaded first and then every other inferior one
lazily loaded.

Also, while building apps, we know that as a best practice, contem-
plation should be made for users using mobile internet data and others
with really deliberate internet connections. We, the developers/designers,
should always be able to regulate the user experience even during the sus-
pense period when resources are being loaded to the DOM.

Advantages of Lazy Loading

When we know that certain codes/features will not be available to all the
users or the user does not access them often, it is best to load them when
the user needs them. This improves user experience and primary loading
time.

For example, let us consider that our app has two sections, A and B. Size
of A is 3 MB, and its loading time is about 3 seconds. As B is also 3 MB in
size, its loading time is similarly 3 seconds, and we know that a user will
visit either of the segments, or that a user receiving section A will seldom
access section B, and vice versa. If we loaded the entire app at the start of
our app, it would cost the user 6 MB of data and take 6 seconds to load.
The user might not want to wait for 6 seconds or would not be happy that

114 ◾ Mastering React

the site is costing them a lot of data, and this can be enhanced and halved
with appropriate lazy loading.

Note: This is not the general case, and small single-page apps are typi-
cally in KBS.

Disadvantages of Lazy Loading

 1. The extra lines of codes to be added to the present ones to implement
lazy load makes the codes a bit complex.

 2. Lazy loading may sometimes mark the website’s ranking on search
engines due to inappropriate indexing of the uploaded content.

How to Install Lazy Loading Components in the React

As the front-end application’s bundle size increased, developers or design-
ers started to investigate to find more active ways to load the bundles to
the client quicker. Code-splitting and lazy loading are two methods for
dramatically reducing the initial loading time for clients.

Strategies or Approaches to Split Your JavaScript JS Codes

• Route base splitting

• Components base splitting

• Library base splitting

Four distinct libraries are studied in order to perform these code splitting
and slow loading methodologies. Let us go through the libraries one by one.

custom -component .js will use in further examples
/* custom -compnent .js */
import React, { useEffect } from "react";
const CustomComponent = ({ label }) => {
 useEffect(() => {
 console .l og(`${label} created`);
 return () => console .l og(`${label} destroyed`);
 }, []);
return <div>{label}</div>;
};
export default CustomComponent;

http://www.custom-component.js
http://www.custom-compnent.js
http://www.console.log
http://www.console.log

Programmatic Navigation     ◾    115

React .la zy

The new function in react allows you to load react components lazily
through code piercing without help from any additional libraries. Lazy
loading is rendering only-needed or critical user interface items first, and
then gently opening the non-critical items later. It is now fully united into
the core react library itself. We previously used react-loadable to achieve
this, but now we have to use react .la zy() in the react core.

In version 16.6, React has built-in support for lazy loading components
and React .la zy function takes the promise-based function and returns it.

Export your components defaulting (here our CustomComponent).
That library doesn’t supports named exports yet.

Calling the const LazyLoadedComponent = React .la zy(()
=> import(‘./custom -component .js’)
Use <LazyLoadedComponent />

In the below example, I used the promise and a timeout to show load-
ing effect:

<Suspense /> is a react component that contains a
fallback prop that accepts any other react component.
import React, { Suspense } from "react";
import ReactDOM from "react-dom";
/* wait 100 ms to render component */
const CustomComponent = React .la zy(
 () =>
 new Promise((resolve, reject) =>
 setTimeout(() => resolve(import("./custom-

component")), 100)
)
);
/* wait 500 ms to render component */
const CustomComponent-1 = React .la zy(
 () =>
 new Promise((resolve, reject) =>
 setTimeout(() => resolve(import("./custom-

component")), 5500)
)
);
function App() {
 return (
 <>

http://www.React.lazy
http://www.react.lazy
http://www.React.lazy
http://www.React.lazy
http://www.custom-component.js
http://www.React.lazy
http://www.React.lazy

116 ◾ Mastering React

 <Suspense fallback={<div>Loading</div>}>
 <CustomComponent label="Component 2" />
 <CustomComponent2 label="Component 3" />
 </Suspense>
 </>
);
}

Wrapping all your custom (user-defined) components into one sus-
pense as the above example will cause your user interface to show a load-
ing indicator until the longest time to upload a component to be uploaded.
In the above example, Component 2 will be created but won’t be shown
until Component 3 is loaded.

You may find a functional example of codes and a box here.
To get around this, wrap your lazy-loaded components with several

Suspense /> components.

<>
 <Suspense fallback={<div>Loading</div>}>
 <CustomComponent label="Component a" />
 </Suspense>
 <Suspense fallback={<div>Loading</div>}>
 <CustomComponent2 label="Component b" />
 </Suspense>
</>

A working example on codes and box can be found here:

/* route base splitting */
const DashboardPage = React .la zy(() => import('../
pages/dashboard'));
const SettingsPage = React .la zy(() => import('../
pages/settings'));
<Route>
 <DashboardPage />
 <SettingsPage />
</Route>

react-loadable

react-loadable has a huge amount of features or attributes from SSR to cus-
tom rendering. Its usage is similar to @loadable/components with extra
attributes.

http://www.React.lazy
http://www.React.lazy

Programmatic Navigation     ◾    117

• What it offers you,

• Built in delay, timeout attributes

• Custom rendering component instead of imported one

• SSR

• Prefetching

import Loadable from "react-loadable";
const CustomComponent1 = Loadable({
 loader: () =>
 new Promise((resolve, reject) => {
 setTimeout(() => resolve (import("./custom-

component")), 2000);
 }),
 loading: ({ pastDelay }) => (pastDelay ?

<div>Loading...</div> : null),
 delay: 50
});
const CustomComponent2 = Loadable({
 loader: () =>
 new Promise ((resolve, reject) => {
 setTimeout(() => resolve (import("./custom-

component")), 5000);
 }),
 loading: () => <div>Loading...</div>
});
const ErrorCustomComponent = Loadable({
 loader: () =>
 new Promise((resolve, reject) => {
 setTimeout(() => reject (import("./custom-

component")), 200);
 }),
 loading: ({ error }) =>
 !error ? <div>Loading...</div> : <div>Component
couldn’t be loaded!</div>
});
const TimeoutComponent = Loadable({
 loader: () =>
 new Promise((resolve, reject) => {
 setTimeout(() => resolve (import("./custom-

component")), 2000);

118 ◾ Mastering React

 }),
 loading: ({ timedOut }) =>
 timedOut ? <div>Taking too long...</div> :

<div>Loading...</div>,
 timeout: 50
});
function App() {
 return (
 <>
 <CustomComponent label="Component 1" />
 <CustomComponent2 label="Component 2" />
 <ErrorCustomComponent label="Component 3" />
 <TimeoutComponent label="Component 4" />
 </>
);
}

react-loadable-visibility

react-loadable-visibility is a wrapper component built or created on react-
loadable and @loadable/component libraries to load the components when
they are on view-port. It does with InterSectionObserver API(Application
Programming Interface). It has a polyfill, but the author of that library has
some misconceptions about its concert.

• What does this library provide you,

• Lazy load your components if they are present on view-port at the
screen.

• Simple to use with using only the loadableVisibility function.

• You can still use the react-loadable & @loadable/component
configuration

• Meaningful if your page is too long

import loadableVisibility from "reac t-loa dable -visi
bilit y/loa dable -comp onent s";
const LoadableComponent = loadableVisibility(() =>

import("./custom-component"), {
 fallback: () => <div>Loading...</div>
});

Programmatic Navigation     ◾    119

export default function App() {
 return <LoadableComponent />;
}

Let’s continue with a look at our existing routes:

import React from 'react';
import { BrowserRouter as Router, Route, Switch } from
"react-router-dom";
import Home from './Home';
import Contact from './Contact';
import Products from './Products';

const home = () => import('./Home/index');
const contact = () => import('./Contact/index');

const Products = () => (
 <div>Products</div>
);

const Main = () => (
 <Router>
 <Switch>
 <Route path='/' exact={true} component={Home} /> } />
 <Route path='/' exact={true} component= {Contact}

/> } />
 <Route path='/' exact={true} component= {Products}

/> } />
 </Switch>
 </Router>
);

export default Main;

Prerequisites

To follow this part, you will need the following:

• The latest Node version must install

• create-react-app tool

120 ◾ Mastering React

npm install -g create-react-app

General instructions are:

• We will perform the lazy loading with React suspense and without it.

• First of all, create the application using npm create-react-app:

npm create-react-app my-app

Now run the application by running the following command or instruc-
tion in the project directory root.

npm start

The default react application will run at http://localhost:3000
Let the directory structures be

|
|-src
| |-components
| | | -Admin .js
| | | -Customer .js
| | | -Home .js
| | -app .js
| -index .js

App would first render app .j s, which will have an input value, and then
send the input received as props to Home, which will then render Home
.j s. We will render either the Admin or the Customer based on the props
obtained.

Using React Suspense (React 16.6+)

From React 16.6+, react added the React Suspense which performs lazy
loading.

In our Home .j s, we will do a lazy load Admin and Customer

import React, { Suspense } from "react";
const Customer = React .la zy(() => import ("./Customer .

js"));
const Admin = React .la zy(() => import("./Admin . js"));
//Instead of regular import statements and we will use

the above method for lazy loading

http://www.-Admin.js
http://www.-Customer.js
http://www.-Home.js
http://www.-app.js
http://www.-index.js
http://www.app.js,
http://www.Home.js.
http://www.Home.js.
http://www.Home.js,
http://www.React.lazy
http://www.Customer.js
http://www.Customer.js
http://www.React.lazy
http://www.Admin.js

Programmatic Navigation     ◾    121

export default (props) => {
if (props .us er === "admin") {
return (
// fallback component is rendered until the main

component is loaded
<Suspense fallback={<div>Loading</div>}>
<Admin />
</Suspense>
);
} else if (props .us er === "customer") {
return (
<Suspense fallback={<div>Loading</div>}>
<Customer />
</Suspense>
);
} else {
return <div> Invalid User </div>;
}
};

Without React Suspense

If you are using a React version older than 16.6, you will not be able to
use the Suspense component. It is better to utilize Suspense and upgrade
to the newest version. If you are unable to update yet and still want this
feature, you can construct your own React Suspense component. Higher
Order Component will be used by me (HOC).

Our HOC (lazyLoader . js)

const lazyLoader = (importComp) => {
return class extends React.Component {
state: {
component: null; //initializing-state
};

//loading component and setting it to state
componentDidMount() {
importComp().then((comp) => setState({ component:
comp.default }));
}

http://www.props.user
http://www.props.user
http://www.lazyLoader.js

122 ◾ Mastering React

//rendering the component
render() {
const C = this .state .compone nt;
return C ? <C {.. .this .props} /> : null;
}
};
};
export default lazyLoader;
Our calling component, in this, Home . js

import React from "react";
import { lazyLoader } from "./lazyLoader";

const Customer = lazyLoader(() => import ("./Customer .
js"));

const Admin = lazyLoader(() => import("./Admin . js"));

//Instead of the regular import statements, we will
use the above approach for lazy loading

export default (props) => {
if (props .us er === "admin") {
return <Admin />;
} else if (props .us er === "customer") {
return <Customer />;
} else {
return <div> Invalid User </div>;
}
};

If you require the fallback feature, you may modify HOC’s render
method, which now returns null. You may return your backup component
instead of null, and it can be provided as props.

Now our HOC would look like this:

const lazyLoader = (importComp, fallback) => {
return class extends React.Component {
state = {
component: null, //initializing-state
};

//loading component and setting it to state
componentDidMount() {

http://www.this.state.component;
http://www....this.props
http://www.Home.js
http://www.Customer.js
http://www.Customer.js
http://www.Admin.js
http://www.props.user
http://www.props.user

Programmatic Navigation     ◾    123

importComp().then((comp) => setState({ component:
comp.default }));
}

//rendering the component
render() {
const C = this .state .compone nt;
return C ? (
<C {.. .this .props} />
) : fallback ? (
fallback
) : (
<div>loading</div>
);
// If a component is not loaded, then return a
fallback component; if fallback is not provided, then
use default loading
}
};
};
export default lazyLoader;

http://www.this.state.component;
http://www....this.props

https://taylorandfrancis.com/

125

C h a p t e r 7

Advanced Tools

IN THIS CHAPTER

 ¾ Advanced tools

 ¾ Context API

 ¾ Hooks

 ¾ Render props

CONTEXT API
Context makes available a way to pass data through the component hier-
archy without having to pass props down manually at each and every level.
Data is passed from top-down (i.e., parent to child) via props in this typi-
cal React application, but such usage might be problematic for particular
sorts of props (e.g., locale choice, user interface themes) that are required
by multiple components within an application. Context allows you to
communicate data like this across components without having to send a
prop through every level of the tree directly.

What Is React’s Context API (Application Programming Interface)?

The React Context API (Application Programming Interface) is a way
for a React app to functionally define global(extern) variables that can
be passed through. This is another way to “prop drilling” from different
generations: grandparent to child to parent, and so on. With the use of
Redux, Context is also approved as an easier, lighter approach for state

Mastering React

DOI: 10.1201/9781003309369-7

10.1201/9781003309369-7

http://dx.doi.org/10.1201/9781003309369-7

126 ◾ Mastering React

Advanced Tools

management. Context API is a (type of) new attribute added in React ver-
sion 16.3 that let you distribute states through the entire app (or any part
of it) lightly and easily.

React Context API: How Does It Work?

React.createContext() is the syntax that you required. It returns a con-
sumer and a provider. The provider works as a module that, as its name
suggests, provides the states to its children through the entire app and will
hold the “store” and be the parent of all the modules that might require
that store. The component that consumes and uses the state is termed
Consumers.

Context API Will Replace Redux?

No. Well, it’s not complete. The concept of Redux is efficient and came per-
fectly to answer the requirements for the management of the state. Actually,
it answered the need for this concept so clearly that it came to be known that
you can’t be a real React developer/tester if you don’t know your way around
the Redux. However, Redux has its demerits, and due to this, it’s important
to know about the Context API gives us which Redux doesn’t:

• Simplicity: While using redux people tend to manage almost all of
their states in redux and there arise two situations:

 1. Overhead: What is the need to create/update 3 files, just to add
one small feature?

 2. Data Binding: One of the significant merits of React’s one-way
data binding is that it’s easy to understand and manage – a com-
ponent passes state to its child component. Using Redux takes it
away from us.

• With the use of Context API, we can define several unrelated con-
texts (stores) and use each in its appropriate place in the app.

How to Use Context API?

“I’ve been convinced, and now I want to incorporate Context API in my
application,” you may be thinking. First, make sure you need it. It has
been found that most people use shared/distributed states across nested
modules instead of passing them as props. And if you do need it, you must
follow the following few steps:

Advanced Tools     ◾    127

Create the folder under your application root named as
contexts (not necessary but as convention).

Create a file named as <your context_name>Context .j s,
e.g., userContext .j s.

Import and create a context like the following:
import React, { createContext } from "react";
const UserContext = createContext();

• Create a component/module that will wrap the provider named
Provider, e.g., UserProvider

Example using React Hooks

const UserProvider = ({ children }) => {
const [name, setName] = useState("John Doe");
const [age, setAge] = useState(1);
const happyBirthday = () => setAge(age + 1);
return (
<UserContext.Provider value= {{ name, age,

happyBirthday }}>
{children}
</UserContext.Provider>
);
};

Create a higher order component/module to consume the context named:
with, e.g., withUser.

Example using React Hooks

const withUser = (Child) => (props) => (<UserContext.
Consumer>

{(context) => <Child {.. .props} {...context} />}
{/* Another option is: { context => <Child {.. .props}

context={context}/>}*/}
</UserContext.Consumer>

);

The difference between these two options is that if you want the context
to be a single nested property with this name, you must explode it to its
properties (which in my opinion is more convenient).

http://www.Context.js,
http://www.userContext.js.
http://www....props
http://www....props

128 ◾ Mastering React

Finally export them:
export { UserProvider, withUser };
And use them however you like.
For example:
ReactDOM .rend er(
<UserProvider>
<App />
</UserProvider>,
document.getElementById("root")
);
export default withUser (LoginForm);

You’ll also be able to notice that I used the new “Hooks” feature that is
shipped with React since version 16.8 to make it even neater and easier to
create contexts.

Building/Designing an App Using Provider Pattern and Context API

 1. Explaining the Different Parts of the Application: In this example,
we intend to change the theme and perform translation based on
selected language.

 We have the following components:

<LanguageSelection/> – Has a label “Select Language”
and a drop-down that has a list of languages.<ThemeCo
ntainer/> – Has a label “Change Theme,” theme type,
and a toggle button.
<Content/> – Simply shows the content “Hello world!!”

We have three languages – English, French, and Spanish. The text on
the screen should change to the respective language basis of your selection.

There are two themes, light and dark – you can toggle it using the but-
ton. It will also show the selected theme.

 2. Document Tree: We can imagine the tree like this:

Document Tree

Document Tree

 The parent component is nothing but the provider which has
language and theme in the state. It also has APIs(methods) to

http://www.ReactDOM.render

Advanced Tools     ◾    129

change the language and theme. Given this, all child components
can consume the data and API directly.

 3. <AppProvider/>

import React, { createContext } from "react";
import { getLocaleCode, getlocaleByCode } from "./

data";
import AppContext from "./appContext";

class AppProvider extends React.Component {
state = {
 localeCodes: [],
 localeObj: null,
 theme: "light"
};

updateLocalCode = async e => {
try {
 const localeObj = await getlocaleByCode(e .target .va

lue);
 this.setState({ localeObj });
} catch (err) {
 console .l og(err);
}
};

updateTheme = e => {
 this.setState({ theme: e.target.checked ? "dark" :
"light" });
};

render() {
 return (
 <AppContext.Provider
 value={{
 state: this .stat e,
 updateLocale: this.updateLocalCode,
 updateTheme: this.updateTheme
 }}
 >

http://www.e.target.value
http://www.e.target.value
http://www.console.log
http://www.this.state,

130 ◾ Mastering React

 <div class Name= {this .stat e .th e me}>{ this. props .chil
dren} </div

 </AppContext.Provider>
);
}

componentDidMount = async () => {
try {
 const localeCodes = await getLocaleCode();
 const localeObj = await getlocaleByCode();
 this.setState({ localeCodes, localeObj });
 } catch (err) {
 console .l og(err);
 }
};
}
export default AppProvider;

As you can see, in this component, we are exposing the states “upda-
teLocale” and “updateTheme.” In the states, we have all the data which is
shown in the UI, whereas “updateLocale” and “updateTheme” are the call-
backs that are going to be used by the consumers. Here “updateLocale”
holds the definition of the updateLocaleCode method – its job is to change
the language. “updateTheme” holds the definition of the method “updateT-
heme” which toggles the theme to light or dark.

 4. Let’s quickly check the render of all three components:

 A. LanguageSelection

render() {
return (
 <AppContext.Consumer>
 {context => (
 <div className="haveMargin">
 <label className="labels">
 {context .state .localeObj .languageL abel}
 </label>
 <select
 value={context .state .localeObj .lo cale}
 onChange={context.updateLocale}
 >
 <option value="en-US">English</option>
 <option value="fr-FR">French</option>
 <option value="es-ES">Spanish</option>

http://www.this.state.theme
http://www.this.props.children
http://www.this.props.children
http://www.console.log
http://www.context.state.localeObj.languageLabel
http://www.context.state.localeObj.locale

Advanced Tools     ◾    131

 </select>
 </div>
)}
 </AppContext.Consumer>
);
}

We are using render props and accessing the data using {context .state
.localObj .languageL abel}. Also, on changing the selection, we invoke the
callback using {context.updateLocale}.

 B. ThemeContainer

render() {
return (
 <AppContext.Consumer>
 {context => (
 <div className="haveMargin">
 <label className="labels">
 {context .state .localeObj .themeL abel}:
 </label>

 <label className="switch">
 <input type="checkbox" onChange={ context.

updateTheme} /

 </label>
 </div>
)}
 </AppContext.Consumer>
);
}

 C. Content
render() {
 return (
 <AppContext.Consumer>
 {context => (
 <h2>{ conte xt .st ate .l ocale Obj .c onten t}</h 2>
)}
 </AppContext.Consumer>
);
}

http://www.context.state.localObj.languageLabel
http://www.context.state.localObj.languageLabel
http://www.context.state.localeObj.themeLabel
http://www.context.state.localeObj.content

132 ◾ Mastering React

We access the data in ThemeContainer and Content while we invoke
the callback {context.updateTheme} basis by the toggle button in
ThemeContainer.

API (Application Programming Interface)
The syntax to create “React.createContext”const UserContext =
React.createContext(default Value);Creating a Context Object
When React displays a component/module that subscribes to this Context
method, it will read the current context value from the Provider that is the
closest match above it in the hierarchy.

The argument is the default value only when a component/function
does not have a matching Provider above it in the hierarchy. This default
value can be very helpful for testing components in an isolated way with-
out wrapping them. Note: To pass undefined as a Provider value does not
cause consuming components to use defaultValue.

Context.Provider

The syntax for context provider "<MyContext.Provider
value={/* some value */}>
"

Each Context object assigns a Provider React component that allows it to
consume components that subscribe to context changes/alters.

The Provider components accept a value prop to be passed into the con-
suming components that are an heir of this Provider. A single Provider
can be linked to several customers. Providers can be nested to override/
overwrite values deeper within the mesh.

Each and every consumer that is descendants of a Provider will reren-
der whenever the Provider’s value prop alters. The propagation/flow from
Provider to its descendant consumers (including .contextType and useC-
ontext) is not subject to the shouldComponentUpdate method/function,
so the consumer is likely to update even when an ancestor/previous com-
ponent skips an update(modified).

Changes are determined by comparing old values to the new ones using
the same algorithm as Object .i s.

Note: The way modifications are determined can cause some issues/
errors while passing objects as values.

http://www.Object.is.

Advanced Tools     ◾    133

Class.contextType

class MyClass extends React.Component {
 componentDidMount() {
 let value1 = this.context;
 //* performing a side-effect at mount using the

value of MyContext *//
 }
 componentDidUpdate() {
 let value1 = this.context ;
 /* */
 }
 componentWillUnmount() {
 let value1 = this.context;
 /* ... */
 }
 render() {
 let value1 = this.context;
 /* render something that based on the value of

MyContext class */
 }
}
MyClass.contextType = MyContext;

This contextType feature on a class can be assigned to as a Context object
designed by React.createContext(). Using these features allows you to con-
sume the nearest current/updated value of that Context type with the use
this.context class. You can reference these features in any of the lifecycle
methods, including the render function/method.

Note: This API only allows you to subscribe to a single context; if you
need to read more than one, see Consuming Multiple/Several Contexts.

If anyone is using the experimental public class fields syntax, one can
use a static class field to initialize your contextType.

class MyClass extends React.Component {
 static contextType = UserContext;
 render() {
 let value1 = this.context;
 /* render something based on the value */
 }

134 ◾ Mastering React

}
Context.Consumer
The syntax of <MyContext.Consumer>
 {value1 => /* render something based on the context

value */}
</MyContext.Consumer>

A React component that subscribes to context modified: Using this
component allows you to subscribe to a context within the function
components.

Need a function as a child function: This function takes and returns the
current context values to a React node. The value parameter provided to
the function will be the value prop of the nearest Provider in the mesh for
this context. If there is no Provider for the context above, the value argu-
ment will equal the defaultValue that was passed to createContext().

Note: See render props for more information about the function of a
child’s pattern.

Context.displayName

A displayName string attribute is available on the
Context object. This string is used by React DevTools
to determine what to show for the context.

For example, the following component will appear as MyDisplayName in
the DevTools:

const MyContext = React.createContext(/* some value */);
MyContext.displayName = 'MyDisplayName';

<MyContext.Provider> // " MyDisplayName.Provider" in
DevTools

<MyContext.Consumer> // " MyDisplayName.Consumer" in
DevTools

INTRODUCTION TO HOOKS
Hooks are introduced in the version of React 16.8(a JavaScript library for
user interface). Hooks are generally used as it allows you to use state and
other React features without creating a class for it. It doesn’t work inside
classes.

Advanced Tools     ◾    135

It allows using functional components of the lifecycle, states, pure com-
ponents, etc.

React also provides a few built-in Hooks like useState, useEffect etc.,
whereas you can also create hooks on your own.

Hooks allows you to reuse stateful logic concepts without changing
your component sequence. This makes it easy to manipulate and share
Hooks among many components or among the community. Before mov-
ing ahead, note that you can try Hooks in a few components without
rewriting any existing code.

Hooks allow you to break into a different component of other sev-
eral smaller function-based figures on what the pieces have been
mapped (such as setting a subscription or detecting the data), despite
making a split based on lifecycle methods. You can also choose from
managing the component’s initial state with a reducer to make it more
predictable.

State Hook

It is a built-in Hook (useState) that is used to create a React state for the
functional components. This hook has been called inside the function
component to add some local state to it. It lets you build your own Hooks
to reuse stateful behavior between different functional component units.
Now we will go through the built-in hooks first.

This example renders a counter. Whenever the button is clicked, it
increases the value.

import React, { useState } from 'react';
function Exmp1() {
 // Declaring a new state variable, which called as

"count"
 const [count, set_Count] = useState(0);
 return (
 <div>
 <p>You clicked {count} times</p>
 <button onClick={() => set_Count(count + 1)}>
 Click it
 </button>
 </div>
);
}

136 ◾ Mastering React

Here, useState is a Hook. In a function called Exmp1, we declare a new
state variable which we called “count.” It is called inside a function compo-
nent/module to provide some local/initial state to it. In the above example,
it is 0 because the counter is set to zero, so at every click on the button, the
counter increases the value by 1. You can call this function Exmp1 from
an event handler or somewhere else.

Declaring Multiple State Variables

function ExampleWithStates() {
 // Declare multiple state variables!
 const [age, set_Age] = useState(42);
 const [fruit, set_Fruit] = useState('banana');
 const [todos, set_Todos] = useState([{ text: 'Learn

Hooks and React' }]);
 // ...
}

Effect Hook

It is also a type of built-in Hook (useEffect), it tells the React that your
component needs to do something after render and also adds the ability
to perform side effects from a function component whenever there are
subsequent renders. Effects are declared inside (the function or main)
component to have access to its props and state. It did the same as every
subsequent render –

 componentDidMount,
    componentDidUpdate,
    componentWillUnmount

Example:
import React, { useState, useEffect } from 'react';

function Friend_Status(props) {
 const [isOnline, set_Is_Online] = useState(null);

 function handleStatusChange(status) {
 setIsOnline(status._is_Online);
 }

Advanced Tools     ◾    137

 useEffect(() => {
 Cha tAPI. subsc ribeT oFrie ndSta tus(p rops. frien d .id,

handleStatusChange);
 return () => {
 Ch atAPI .unsu bscri beFro m Frie ndSta tus(p rops. frien d

.id, handleStatusChange);
 };
 });

 if (isOnline === null) {
 return 'Loading...';
 }
 return isOnline ? 'Online' : 'Offline';
}

Here we create a new state where we update the value in the ChatAPI:
whether it is online or offline, the state is set to null in the function called
FriendStatus(props).

Hooks are the functions, so in the useEffect hook, we passed arguments
as a function that updates the values after every subsequent renders.

Rules of Hooks

Hooks(React) are JavaScript functions, but there are two additional rules
imposed :

 1. Only call Hooks at the top level. Do not call Hooks into the loops,
conditions, or nested functions.

 2. Only call Hooks from React function components. Don’t call Hooks
from regular JavaScript functions.

BUILDING YOUR OWN(CUSTOM) HOOKS
Sometimes, we need to reuse some stateful logic between components, so
we define our own hook called Custom Hooks. It allows you to do this, but
without the addition of more components.

A custom Hook is a JavaScript function whose name starts with the
“use” keyword.

For example, useFriend_Status below is our first custom hook.

import React, { useState, useEffect } from 'react';

function useFriendStatus(friendID) { const [isOnline,
setIsOnline] = useState('/0');

http://www.ChatAPI.subscribeToFriendStatus
http://www.props.friend.id,
http://www.ChatAPI.unsubscribeFrom�FriendStatus
http://www.props.friend.id,
http://www.props.friend.id,

138 ◾ Mastering React

 function handleStatusChange(status) {
 setIsOnline(status.isOnline);
 }

 useEffect(() => {

 Cha tAPI. subsc ribeT oFrie ndSta tus (f riend ID,
handleStatusChange);

 return () => {
 Ch atAPI .unsu bscri beFro mFrie nd Sta tus(f riend ID,

handleStatusChange);
 };
 });

return isOnline;

}

Our useFriendStatus hook is to update us on a friend’s status. It takes
FriendID as an argument and returns the value as online or offline.

REACT . JS RENDER PROPS
The Render Props is a technique/method in ReactJS for distributing
codes between React components using a prop whose value is a func-
tion/method. Child function takes render props as a function and calls it
instead of executing its own render logic. To summarize, if we give a func-
tion from the parent component to the child component as a render prop,
the child component calls that function instead of creating its own logic.

Creating a React App and Downloading a Module

Step 1: Use the following command to create a React application:

 foldername

 npx create-react-app

Step 2: After creating project folder, i.e., foldername, use the following
command to move to it:

 cd foldername

The term “render prop” refers to a method for sharing codes between React
components/module using the prop whose value is a function.

Instead of creating its own render logic, a component with a render
prop accepts a function that yields a React element and calls it.

http://www.ChatAPI.subscribeToFriendStatus
http://www.ChatAPI.unsubscribeFromFriend�Status
http://www.react.js

Advanced Tools     ◾    139

<DataProvider render={data => (

 <h1>Hello {data .targ et}</h1>

)}/>

React Router, Downshift, and Formik are among the libraries that
make use of render props.

FOR CROSS-CUTTING ISSUES, USE RENDER PROPS.
Components are a basic unit of code reuse in React, but it is not always
clear how to share the states or actions encapsulated by one component
with the other components that require the same state.

Now consider an example, the following component tracks the mouse
position in a web app:

class MouseTracker extends React.Component {
 constructor(props) {
 super(props);
 this.handleMouseMove = this .handleMouseMove .b

ind(this);
 this .sta te = { x: 0, y: 0 };
 }

 handleMouseMove(event) {
 this.setState({
 x: event.clientX,
 y: event.clientY
 });
 }

 render() {
 return (
 <div style={{ height: '101vh' }} onMouseMove={this.

handleMouseMove}>
 <h1>Move the mouse around it! </h1>
 <p>The current mouse position ({this .state .x},

{this .state .y})</p>
 </div>
);
 }
}

http://www.data.target
http://www.this.handleMouseMove.bind
http://www.this.handleMouseMove.bind
http://www.this.state
http://www.this.state.x
http://www.this.state.y

140 ◾ Mastering React

As a cursor moves around the screen, the component displays the (x, y)
coordinates in a <p>.

Now the question is: How do we reuse this behavior in the other com-
ponent? However, if another component requires information about the
cursor location, can we encapsulate that behavior so that it can be readily
distributed with that component?

Because elements are the fundamental unit of code reuse in React, let’s
modify the code to use <Mouse> component that encapsulates the behav-
ior we need to reuse elsewhere.

// The <Mouse> component encapsulates the behavior we
need...

class Mouse extends React.Component {
 constructor(props) {
 super(props);
 this.handleMouseMove = this .handleMouseMove .b

ind(this);
 this .sta te = { x: 0, y: 0 };
 }

 handleMouseMove(event) {
 this.setState({
 x: event.clientX,
 y: event.clientY
 });
 }

 render() {
 return (
 <div style={ { height: '101vh' }} onMouseMove={this.

handleMouseMove}>

 {/* .. .but how could we render something other
than a <p>? */}

 <p>The current (new) mouse position is ({this
.state .x}, {this .state .y})</p>

 </div>
);
 }
}

http://www.this.handleMouseMove.bind
http://www.this.handleMouseMove.bind
http://www.this.state
http://www....but
http://www.this.state.x
http://www.this.state.x
http://www.this.state.y

Advanced Tools     ◾    141

class MouseTracker extends React.Component {
 render() {
 return (
 <>
 <h1>Move the mouse around!</h1>
 <Mouse />
 </>
);
 }
}

The <Mouse> component encapsulates all behaviors related to listen-
ing for mousemove events and storing the (x, y) position of the cursor, but
it is not yet truly reusable.

Let us consider an example that we have a <Cat> component that
renders the image of a cat chasing a mouse around the screen. We must
use a <Cat mouse={{ x, y }}> prop to tell the component about the coor-
dinates of the mouse to know about the position of the image on the
screen.

As a first render, you might try rendering the <Cat> inside <Mouse>’s
render method, like this:

class Cat extends React.Component {
 render() {
 const mouse = this .props .mou se;
 return (
 <img src="/cat .jp eg" style={{ position:

'absolute', left: mouse.x, top: mouse.y }} />
);
 }
}

class MouseWithCat extends React.Component {
 constructor(props) {
 super(props);
 this.handleMouseMove = this .handleMouseMove .b

ind(this);
 this .sta te = { x: 0, y: 0 };
 }

http://www.this.props.mouse;
http://www.cat.jpeg
http://www.this.handleMouseMove.bind
http://www.this.handleMouseMove.bind
http://www.this.state

142 ◾ Mastering React

 handleMouseMove(event) {
 this.setState({
 x: event.clientX,
 y: event.clientY
 });
 }

 render() {
 return (
 <div style={{ height: '100vh' }} onMouseMove={this.

handleMouseMove}>

 {/*
 We could just swap out the <p> for a <Cat> here

... but then
 we would need to create a separate

<MouseWithSomethingElse>
 component each time we need to use it, so

<MouseWithCat>
 isn't reusable yet.
 */}
 <Cat mouse={this .sta te} />
 </div>
);
 }
}

class MouseTracker extends React.Component {
 render() {
 return (
 <div>
 <h1>Move the mouse around!</h1>
 <MouseWithCat />
 </div>
);
 }
}

This approach will work for our specifying use case, but we have not
achieved the objective of truly encapsulating the manner in a reusable
way. Each time we need the mouse position for different use cases, we have
to design a new component (i.e., essentially the other <MouseWithCat>)
that renders something specifically for that use case.

http://www.this.state

Advanced Tools     ◾    143

This is when the render prop comes into play: rather than hard-coding
a Cat> within a Mouse> component and essentially modifying its dis-
played output, we may supply a function prop that Mouse> uses to select
what to render – a render prop dynamically.

class Cat extends React.Component {
 render() {
 const mouse = this .props .mou se;
 return (
 <img src="/cat .jp eg" style={{ position:

'absolute', left: mouse.x, top: mouse.y }} />
);
 }
}

class Mouse extends React.Component {
 constructor(props) {
 super(props);
 this.handleMouseMove = this .handleMouseMove .b

ind(this);
 this .sta te = { x: 0, y: 0 };
 }
 handleMouseMove(event) {
 this.setState({
 x: event.clientX,
 y: event.clientY
 });
 }
 render() {
 return (
 <div style={{ height: '101vh' }} onMouseMove={this.

handleMouseMove}>

 {/*
 Despite providing a static representation of what

<Mouse> renders,
 use the 'render' prop to clarify what to render

dynamically.
 */}
 {this .props .ren der(this .sta te)}
 </div>
);
 }
}

http://www.this.props.mouse;
http://www.cat.jpeg
http://www.this.handleMouseMove.bind
http://www.this.handleMouseMove.bind
http://www.this.state
http://www.this.props.render
http://www.this.state

144 ◾ Mastering React

class MouseTracker extends React.Component {
render() {
 return (
 <div>
 <h1>Move the mouse around!</h1>
 <Mouse render={mouse => (
 <Cat mouse={mouse} />
)}/>
 </div>
);
 }
}

Now, despite productively cloning the <Mouse> components and
hard-coding something else in its render method to resolve for a specific
use case, we provide a render prop that <Mouse> can use to understand
what it renders firmly.

The render prop is a function prop that the component uses to know what
to render.

This technique/method makes the behavior that we need to distribute
extremely portable. To get this behavior, render a <Mouse> with a render
prop that informs what to render with the cursor’s current (x, y).

One interesting thing to know about render props is that you can imple-
ment the most higher order components (HOC) using a regular compo-
nent with the render prop. Consider an example: if you would prefer to
have the withMouse HOC instead of a <Mouse> components, you could
easily define one using a regular <Mouse> with the render prop:
// If you really need a HOC for some reason, you can
// create one using a regular components with a render
prop!
function withMouse(Component) {
 return class extends React.Component {
 render() {
 return (
 <Mouse render={mouse => (
 <Component {.. .this .props} mouse={mouse} />
)}/>
);
 }
 }
}

Using a render prop allows you to employ either pattern.

http://www....this.props

Advanced Tools     ◾    145

OTHER THAN RENDERING PROPS
It’s crucial to realize that because the pattern is called render props, you
don’t have to utilize a render prop to use it. In fact, a render prop is any
prop that is a function that a component/method uses to determine what
to render.

Although the above examples are used to render, we could just as easily
use the children’s prop!

<Mouse children={mouse => (
 <p>The Mouse position is_ {mouse.x}, {mouse.y}</p>
)}/>

And remember that the children prop doesn’t require to be named in
the list of “attributes” in your JSX element. In spite of that, you can put it
directly inside the element!

<Mouse>
 {mouse => (
 <p>The Mouse position is_ {mouse.x}, {mouse.y}</p>
)}
</Mouse>

You’ll see this technique/method used in the react-motion API.
Because this technique/method is a little odd, you should definitely

clearly indicate in your propTypes that child should be a function when
creating an API like this.

Mouse.propTypes = {
 children: PropTypes .func .isRequi red
};

CAVEATS
Be attentive while using Render Props with React.PureComponent

with the use of a render, prop can restrict the advantage that comes
from the use of React.PureComponent if you define the function inside
a render method. This is why the shallow prop comparison will always
return false for new props, and each render, in this case, will generate a
fresh value for the render prop.

http://www.PropTypes.func.isRequired

146 ◾ Mastering React

For example, if Mouse were to extend React, ongoing with our
<Mouse> component/module from above.PureComponent instead of
React.Component, our example would look like this:

class Mouse extends React.PureComponent {
 // identical implementation like above...
}

class MouseTracker extend React.Component {
render() {
 return (
 <div>
 <h1>Move the mouse around!</h1>

 {/*
 This is bad! The value of the 'render' prop will
 be different on each render.
 */}
 <Mouse render={mouse => (
 <Cat mouse={mouse} />
)}/>
 </div>
);
 }
}

In this example, every time <MouseTracker> renders, it generates a
new function as the values of the <Mouse render> prop, thus negating the
effects of <Mouse> extending React.PureComponent in the initial place!

To get around this problem, you can sometimes define the prop as an
instance method, like the following:

class MouseTracker extends React.Component {
 // Defined as an instance technique, 'this.

renderTheCat' every time
 // refers to *same* function/ method when we use it in

render
 renderTheCat(mouse) {
 return <Cat mouse={mouse} />;
 }

Advanced Tools     ◾    147

 render() {
 return (
 <div>
 <h1>Move the mouse around!</h1>
 <Mouse render={this.renderTheCat} />
 </div>
);
 }
}

If you cannot define the prop statically (e.g., because you need to close
over the component’s props and/or state) <Mouse> should extend React.
Component instead.

https://taylorandfrancis.com/

149

C h a p t e r 8

Testing Your Code

IN THIS CHAPTER

 ¾ Testing

 ¾ Jest

 ¾ Nock

 ¾ react-testing-library

You can check React components in the same way that you would test any
JavaScript code.

There are some ways to test React components. Broadly, they are divided
into two categories:

 1. Rendering component trees in a basic test environment and assert-
ing their output.

 2. Running a complete app in a genuine browser environment (also
known as “end-to-end” tests).

This documentation unit focuses on challenging approaches for the first
event. While full end-to-end tests can be very valuable to prevent regres-
sions to significant workflows, such tests are not concerned with the React
components in particular and are out of the scope of this section.

Mastering React

DOI: 10.1201/9781003309369-8

10.1201/9781003309369-8

http://dx.doi.org/10.1201/9781003309369-8

150 ◾ Mastering React

Testing Your Code

TRADE-OFFS
When selecting testing tools, it is worth noting a few trade-offs:

• Iteration speed vs. realistic environment: Some tools offer a very
quick response loop between making a modification and seeing the
result but do not model the browser behavior precisely. Other tools
might use an actual browser environment, but reduce the iteration
speed and are flakier on a continuous combination server.

• How much to mock: With components, the difference between
a “unit” and an “integration” test can be blurry. If you’re testing a
form, would it experiment and also test the buttons inside of it? Or
should a button component have its own test suite? Should refactor-
ing a button ever break the form test?

Different responses may work for different teams and products.

Recommended Tools

Jest is a JavaScript assessment runner that allows you to access the DOM
via jsdom. While jsdom is only an estimate of how the browser works, it
is frequently good and sufficient for testing the React components. Jest
has a fast repetition rate mixed with sophisticated features like mocking
modules and timers to give you more control over how the code executes.

React Testing Library is a set of helpers that allows you to test React
components without relying on their execution details. This method
makes refactoring a breeze and also pushes you toward the best perfor-
mance for availability. Even though it doesn’t provide a way to “shallowly”
render a module without its children, a test runner like Jest allows you to
do this by mocking.

In this chapter, I’m going to introduce you to a React testing tool named
Jest, along with the popular public library Enzyme, which is considered to
test React components. I’ll announce to you Jest testing methods, includ-
ing running tests, testing React components, snapshot testing, and mock-
ing. If you are new to testing and inquisitive about how to get going, you
will find this chapter helpful because we will start with an outline for test-
ing. By the end, you will be up and running, testing React apps using Jest
and Enzyme. You should be acquainted with React in order to follow this
chapter.

Testing Your Code     ◾    151

A BRIEF INTRODUCTION TO TESTING #
Challenging is a line-by-line review of how your code will implement. A
suite of tests for an application contains various bits of code to authenti-
cate whether an app is executing effectively and without fault. When codes
are updated, testing comes in helpful as well. After upgrading a piece of
code, you may run a test to ensure that the update does not damage exist-
ing app functionality.

Why Test? #

It is good to understand why we are doing something before doing it. So,
why test, and what is its persistence?

The first resolution of testing is to avoid regression. Regression is the
reappearance of an error that had formerly been fixed. It is a kind of fea-
ture stop effective as intended after a certain incident occurs.

Testing confirms the functionality of composite components and mod-
ular apps.

Testing is needed for the effective performance of a software app or
product.

Testing makes an app more vigorous and less prone to error. It is a way
to authenticate that your code does what you want it to do and that your
app works as projected for your users.

Let us go over the types of testing and what they do.

Unit Test #

In this kind of test, a specific unit or component of the software is tested.
A unit might be an individual function, component, method, procedure,
module, or object. A unit test separates a section of codes and verifies its
precision, in order to confirm that each unit of the software’s code accom-
plishes as probable.

In unit testing, individual processor functions are verified to guarantee
that they are operating appropriately, and that all components are tested
independently. For instance, testing a function whether an announcement
or a loop in a program is functioning appropriately would fall under the
scope of unit testing.

Component Test #

Component testing authenticates the functionality of a specific part
of an app. Tests are executed on each component in isolation from the

152 ◾ Mastering React

other components. Generally, React apps are made up of several compo-
nents, so component challenging deals with testing these components
exclusively.

For example, consider a website that has dissimilar web pages with
several components. Each component will have its own subcomponents.
Testing each module without considering addition with other components
is denoted as component testing.

Testing like this in React needs more sophisticated tools. So, we would
require Jest and sometimes more sophisticated tools, like Enzyme, which
we will deliberate on shortly later.

Snapshot Test #

A snapshot test confirms that the user interface (UI) of a website app does
not change unexpectedly. It records the code of a module at a certain point
in time, allowing us to compare the component in one state to any other
likely state it may generate.

We will study snapshot testing in a future section.

Advantages and Disadvantages of Testing #

Testing is the part that is great and should be done, but it has advantages
and disadvantages.

Advantages #

• It avoids unexpected deterioration.

• It permits the developer to focus on the existing task, rather than
worrying about the past.

• It permits the modular construction of an application that would
otherwise be too complex to build.

• It reduces the need for manual confirmation.

Disadvantages #

• You require to write more code, as well as fix and maintain.

• Non-critical test disappointments might cause the app to be excluded
in terms of continuous incorporation.

Testing Your Code     ◾    153

INTRODUCTION TO JEST #
Jest is a pleasant JavaScript challenging framework with a focus on effort-
lessness. It can be installed or set up with npm or Yarn. Jest fit into a
broader class of utilities known as test runners. It works great for React
apps, but it also works great for external React apps.

The Enzyme is a package for testing React applications. It is intended to
test components and makes it possible to build declarations that imitate
actions to validate whether the UI is functioning properly.

Jest and Enzyme accompany each other well, so in this piece, we will be
using both of them.

Process of Running a Test with Jest #

In this part, we will be installing Jest and writing tests for it. If you are new
to ReactJS, then I acclaim using Create React App, for the reason that it is
ready for use and ships with Jest.

npm init react-app my-app

We require to install Enzyme ****and enzyme-adapter-react-16 with
react-test-renderer (the number should be based on the variety of React
you are using).

npm install --save-dev enzyme enzyme-adapter-react-16
react-test-renderer

Note that we have created our project with both Jest and Enzyme, we
need to create a setupTest . js file in the project’s src folder. This is how the
file would look:

import { configure } from "enzyme";
import Adapter from "enzyme-adapter-react-16";
configure({ adapter: new Adapter() });

This significant Enzyme sets up the connecter to run our tests.
Before continuing, let us learn some basics. Some key belongings have

been used a lot in this chapter, and you will need to clear them or test
them. You would pass a function or method to this technique, and the test
runner would perform that determination as a block of tests.

http://www.setupTest.js

154 ◾ Mastering React

• Describe: This elective method is for alliance any number of it or test
declarations.

• Expect: This is the disorder that the test requires to pass. It differen-
tiates the received parameter from the matcher and it also provides
you admittance to a number of matches that allow you to validate
dissimilar things. You can read more about it in this section.

• Mount: This method renders the complete DOM, including the child
components of the parent component, in which we are consecutively
the tests.

• Shallow: This renders only the specific components that we are chal-
lenging. It does not render child components. This allows us to test
components in separation.

Creating a Test File #

How does Jest know what is a test file and what is not? The first rule is that
any file found in any directory with the name __test__ is considered to be
tested. If you place a JS file in one of these directories, Jest will, for better
or worse, try to run it when you call Jest. The second guideline is that Jest
will look for any file with a suffix such as .spec .js or .test .js before searching
the names of all folders and files in your whole repository.

Let us create our first test, for a React mini-app design for this chapter.
You can make it on GitHub. Run or execute npm install to install all of
the packages and libraries, and then npm start to launch the application.

Let us open App .test .js to write our first test. First, check whether our
application component renders correctly and whether we have specified
an output:

it("renders without crashing", () => {
 shallow(<App />);
});

it("renders Account header", () => {
 const wrapper = shallow(<App />);
 const welcome = <h1>Display Active Users Account
Details</h1>;
 expe ct(wr apper .cont ains(welco me)). toEqu al(tr ue);
});

http://www..spec.js
http://www..test.js
http://www.App.test.js
http://www.wrapper.contains

Testing Your Code     ◾    155

In the above test, the first test, with shallows, checks to illustrate
whether our app component renders in a correct manner without crash-
ing, and remember that the shallow method renders only a single compo-
nent, without child components.

With a Jest matcher of toEqual, the second test checks if we have the
requested h1 tag output of the “Display Active User Account” in app
component.

Run the Code

npm run test
/* OR */
npm test

The output in your terminal should be like this:

 PASS src/App .test .js
 √ renders without crashing (34ms)
 √ renders Account header (13ms)

Test Suites: 1 passed, 1 total
Tests: 2 passed, 2 total
Snapshots: 0 total
Time: 11.239s, estimated 16s
Run all the test suites related to changed files.

As you can see that our test passed. It shows that we have one test suite
named App .test . js, with two consecutive successful tests when the Jest ran.
We will talk about snapshot testing further, and you will also get to con-
sider an example of a failed test.

Skipping or Isolating a Test #
Skipping or isolating the test means that when Jest runs, a specific marked
test is not executed.

it .sk ip("renders without crashing", () => {
 shallow(<App />);
});

http://www.App.test.js
http://www.App.test.js,
http://www.it.skip

156 ◾ Mastering React

it("renders Account header", () => {
 const wrapper = shallow(<App />);
 const header = <h1>Display Active Users Account

Details</h1>;
 expe ct(wr apper .cont ains(heade r)).t oEqua l(tru e);
});

Our first test will be skipped because we have used the skip method to
separate the test. So, it will not execute or make any alteration to our test
when Jest runs and only the second one will execute. You can also use it
.on ly().

It is a bit frustrating to make changes in a text file and then have to
manually run the npm test again. Jest has a nice attribute called watch
mode, which watches for file changes and runs tests, respectively. To run
Jest in watch-mode, you can run npm test -- --watch or jest --watch and I
would also recommend leaving Jest executing in the terminal window for
the rest of this lesson.

Mocking Function #

A mock is a convincing duplicate or look-alike of a module or object with-
out any real inner working. It may have a tiny or small functionality, but
compared to the real thing, it is a mock. Jest may generate it either manu-
ally or automatically.

Why should we mock, or do we even need to mock? Mocking decreases
dependencies, or the amount of associated files that must be loaded and
processed when a test is executed. Using a large number of mocks speeds
up test execution.

Mock functions are sometimes known as “spies” because they allow
you to spy on the behavior of a function that is directly called by another
piece of code, rather than merely evaluating the output of the code.

There are two ways to mock a function: either create a mock function
to use it in the test code or write a manual mock to override a module
dependency.

Manual mocks are used to press out functionality with the mock data.
For example, rather than accessing a remote resource, like a database or a
website, you may want to make or create a manual mock that allows you
to use the fake data.

We will use the mock function in the coming section.

http://www.wrapper.contains
http://www.it.only
http://www.it.only

Testing Your Code     ◾    157

Testing React Components #

This section will combine all of the knowledge we have acquired till now
in understanding how to test the React components. Testing involves
ensuring the output of a component has not unexpectedly changed to
something else. Creating components in the right way is the most effective
way to ensure successful testing.

One thing we may do is to verify the component’s props, specifically
whether or not props from one component are sent to another. Enzyme
and the Jest API allow creating a mock function to simulate whether props
are being passed between the components or not.

We need to pass the user-account props to the Account component
from the main App component. We have to give user-account details to
the Account in order to render or process the active account of the users.
This is where mocking comes in use, enabling us to test our components
with fake data.

Let us create a mock for the user props:

const user = {
 name: "Adeneye David",
 email: "davidadeneye @gmail . com",
 username: "Dave_Bautista",
};

We have formed a manual mock function in the test file and enclosed
it around the component. Let’s assume we are testing a very large data-
base of users. Accessing the database directly from the text file is not wise.
Instead, we create a mock function, which allows us to use fake data to test
our component.

describe("", () => {
 it("accepts user account props", () => {
 const wrapper = mount(<Account user={user} />);
 exp ect(w rappe r .pr o ps(). user) .toEq ual(u ser);
 });
 it("contains users account email", () => {
 const wrapper = mount(<Account user={user} />);
 const value = wrapper .fi nd("p").text();
 exp ect(v alue) .toEq ual(" david @gmai l .com ");
 });
});

http://www.davidadeneye@gmail.com
http://www.wrapper.props
http://www.wrapper.find
http://www.david@gmail.com

158 ◾ Mastering React

We have two tests above, and we use a describe layer, which takes the
component that is being tested. By mentioning the values and props that
we expect to be passed by the test, we are able to proceed further.

In our first test, we see if the props we gave to the mounted component
match the mock props we produced earlier.

In the second test, we send the user props to the mounted Account
components and then see whether we can discover the <p> element that
correlates to what is in the Account components. When we run the test
suite, you will see that the test runs successfully.

We can also test the states of our components. Let us check whether the
state of the error message is equal to null:

it("renders correctly with no error message", () => {
 const wrapper = mount();
 expe ct(wr apper .sta t e("er ror")).toE qual(null) ;
});

In this test, we determine whether the state of our components error or
bug is equal to null, using a toEqual() matcher function. If there is a bug or
error message in our application, the test will fail when executed.

In this lesson, we’ll go through how to test React components using
snapshot testing, which is yet another fantastic methodology or method.

Snapshot Testing #

Snapshot testing captures the codes of components at a moment in the
time, in order to match them to reference snapshot files saved alongside
the test. It is used to keep track of modifications in an application’s UI.

The actual code representation of a snapshot is a JSON file, and this
JSON contains a record of what the components looked like when the
snapshot was created. During a test, Jest matches the contents of this JSON
file to the output of the components during the test and if they match, the
test passes; if they do not, the test fails.

To change an Enzyme wrapper to a format that is just with Jest snap-
shot testing, we have to install enzyme-to-json:

npm install --save-dev enzyme-to-JSON

Let us write our snapshot test and run it for the first time; a snapshot of
that component’s code will compose and be saved in a new __snapshots__
folder in the src directory.

http://www.wrapper.state

Testing Your Code     ◾    159

it("renders correctly", () => {
 const tree = shallow(<App />);
 expect(toJson(tree)).toMatchSnapshot();
});

When the test above executes successfully, the current user interface
component will be compared to the existing one.

Now, let’s run the test:

npm run test

As explained in the last section, the shallow method from the Enzyme
package is used to render a single component and nothing else. It does not
render child components. Rather, it gives us a clear way to separate codes
and get better data when debugging. The alternative method, mount, is
used to render the whole DOM, including the child component of the par-
ent component in which the tests are being run.

Let us make some changes to our components in order to make our test
fail, which will happen. To do this, let us change the <h3> tag in our com-
ponents from <h3> Loading...</h3> to <h3>Fetching the Users...</h3>.
When the test executes, this is what we will have in the terminal:

FAIL src/App .test .js (30.696s)
 × renders correctly (44ms)

 ● renders correctly
 expect(received).toMatchSnapshot()
 Snapshot name: 'renders correctly
1

 – Snapshot
 + Received

 Displays the Active User’s Account Details
 – Loading...
 + Fetching the Users...

 | it("renders correctly", ()
=> {

http://www.App.test.js

160 ◾ Mastering React

 | const wrapper = shallow();
 > | expec t(toJ son(w rappe r)).t oMatc hSnap shot();
 | ^ 10 | });
 |
 | /* it("renders without crashing", () => {
 at Object. (src/App .test .js : 9 :27)

› 1 snapshot failed.

Execute all test suites related to changed files.
Watch Usage: Press 'w' to show more.
If we need our test to pass, we would either alter the test to its last state

or update the snapshot file. In the command line, Jest provides instruc-
tions or commands on how to update the snapshot. First of all, press w
in the command line to show more, and then press u to update snapshot.

› Press u to update the failing snapshots.

The test will fail if we click u to update the snapshot.

WHAT IS NOCK?

• Nock is an HTTP (hypertext markup protocol) server mocking and
expectations library for the Node .j s.

• Nock can be used to test a module that performs HTTP requests in
an isolated way.

• Nock works by overriding Node’s HTTP.request functions. Also, it
overrides HTTP.ClientRequest too to cover modules or components
that use it directly.

• Nock lets us avoid the mentioned challenges by intercepting external
HTTP requests and enabling us to either return custom responses to
test differential scenarios or store real responses as “fixtures,” canned
data that will return reliable responses.

Using canned data or information does come with risks, as it can go
stale if not refreshed or render periodically. Without special extra tests or
pinned API (Application Programming Interface) versioning, a change in
the structure of the data supplied by an API may go undetected, and it is
the developer’s duty to ensure that policies are in place to avoid this.

http://www.App.test.js:9:27
http://www.Node.js.

Testing Your Code     ◾    161

In our end-to-end testing, for example, we see an example from my
present company. These employ Nock fixtures since they would occasion-
ally fail due to timeouts while running during our continuous delivery
process. However, each time the developer runs these tests locally, the
fixtures are immediately destroyed and regenerated, keeping them up to
date.

• Nock is currently used in two chief ways:

1. Mocking individual responses specified by the developer or
designer uses Nock

2. Recording, saving, and reusing/reusable live responses use
nock .ba ck

Either can be within individual tests and if both are used within the same
test files, then the nock .ba ck mode must be directly set, and reset, before
and after use, and we will look at this in detail afterward.

Let us set up the project, add Nock, then look at nock and nock .ba ck
with some code examples.

Adding Nock

We will be creating this project that contains some simplistic functions
that call a random user-created API, perfect for testing out the Nock. It
uses Jest as it is a test runner and for assertions.

There are three functions to be tested in this instance: obtaining a ran-
dom user, getting a random user of a certain nation, and getting a random
user but falling back to the default value if failed. Other examples:

const getRandomUserOfNationality = n =>
 fetch(`https://random _user .me /api/ ?nat=${n}`)
 .then(throwNon200)
 .then(res => res .js on())
 .catch(e => console .l og(e));

As we are using the nock .bac k, the nock . js helper file is also used, we
will look at this later.

Using “Nock”

The Nock documents explain this pretty well. Several options are available
to specify the alteration of the requests, whether in the request resembles

http://www.nock.back
http://www.nock.back
http://www.nock.back
https://random_user.me
http://www.res.json
http://www.console.log
http://www.nock.back,
http://www.nock.js

162 ◾ Mastering React

or the response returned. The two examples of this would be the response
returned from the successful request, and force 500 responses to test the
function’s fallback options.

All that would require to be added to the existing test file to start using
Nock is the const nock = require('nock'); / import nock from 'nock';.

In the first test, we use the string to compare the hostname and path,
specify a reply code and body, and add our assertion to the Promise chain
of our function calls. When the outgoing request from getRandomUser()
is formed, it resembles the Nock interceptor we just set up, and so the reply
we specify is returned.

it('should return a user', () => {
 nock('https://randomuser .me')
 .get('/api/')
 .reply(200, {
 results: [{ name: 'Dominic_' }],
 });
 return query
 .getRandomUser()
 .then(res => res.results[0].name)
 .then(res => expect(res).toEqual('Dominic_'));
});

Similarly, we mock the call with a specific nationality, so this time we
use a RegExp to compare the hostname and path.

it('should return a user of set the nationality', ()
=> {
 nock(/random/)
 .get(/nat=gb/)
 .reply(200, {
 results: [{ nat: 'GB' }],
 });
 return query
 .getRandomUserOfNationality('gb')
 .then(res => res.results[0].nat)
 .then(res => expect(res).toEqual('GB'));
});

It is important to specify we are using afterAll(nock.restore) and
afterEach(nock.cleanAll) to make sure interceptors do not interrupt each
other.

https://randomuser.me

Testing Your Code     ◾    163

Finally, we test 500 responses. For this we formed an additional function
that returns a default value if the API call does not return any response.
We will use Nock to intercept the request and mock 500 responses, and
then test what function returns.

it('should return the default user on 500', () => {
 nock(/randomuser/)
 .get(/api/)
 .reply(500);
 return query
 .getRandomUserGuarded()
 .then(res => expect(res).
toMatchObject(defaultUser));
});

Being able to mock the non-200 response codes, delaying the connec-
tion, and socket timeouts is differentially useful.

Using 'nock .ba ck'

nock .ba ck is much used not just to intercept the HTTP request, but also
to save a real response for future use, and this saved response is termed a
“fixture.”

In the record mode, if the named fixture is present, it will use live calls,
and if it is not present, then a fixture will be created for further calls.

In this example project, only one HTTP call is being prepared per test,
but nock .ba ck fixtures can record all the outgoing calls. This is particu-
larly useful when testing a tuff component that makes calls to several ser-
vices or during end-to-end testing where a variety of calls can be made. A
main merit of using fixtures is that once generated, they are fast to access,
reducing the chances of timeouts. As they use real-time data, mocking the
data structure is not compulsory, and any changes can be identified.

As mentioned, it is necessary to delete and refresh fixtures regularly to
ensure they do not go out stale.

A present “feature” of nock .ba ck is that when used in the same test file
as standard nock interceptors, they can interrelate with each other unless
any of nock.backtests are bookended per test as follows:

nock .back .setM ode('record');
// your test
nock .back .setM ode('wild');

http://www.nock.back
http://www.nock.back
http://www.nock.back
http://www.nock.back
http://www.nock.back.setMode
http://www.nock.back.setMode

164 ◾ Mastering React

This ensures that any of the following tests do not unintentionally use
created fixtures. I have not done it, then, for example, the 500 responses
would not be given in the previous test, as the fixture contains 200
responses.

We have to first set up a nock . js helper file and in the example, this is
doing three things:

 1. Setting the paths of where to save our fixtures.

 2. Setting the modes to record so that we both record and use fixtures
when tests are executed, rather than the default dryrun that only
uses existing fixtures but does not record refreshed ones.

 3. Using the after-Record option to perform some action on our fix-
tures to make it more human-readable.

This is then accessible in the test files using the const defaultOptions =
require('./helpers/nock); / import defaultOptions from the './helpers/
nock';.

nock .ba ck should be used with both Promises or Async/Await, exam-
ples are given of each. Here we will look at the latter.

it('should return a user', async () => {
 nock .back .setM ode('record');
 const { nockDone } = await nock .ba ck(
 'user -data .j son',
 defaultOptions,
);
 const userInfo = await query.getRandomUser();
 expect(userInfo).toEqual(
 expect.objectContaining({
 results: expect .a ny(Object),
 }),
);
 nockDone();
 nock .back .setM ode('wild');
});

We first mark the test as asynchronous, to permit us to use Await. We
set the mode to record state. We pass in the name of the files we like to
store our fixtures as, and the default-Options set in our nock . js helper to

http://www.nock.js
http://www.nock.back
http://www.nock.back.setMode
http://www.nock.back
http://www.user-data.json
http://www.expect.any
http://www.nock.back.setMode
http://www.nock.js

Testing Your Code     ◾    165

make them much human-readable. Once finished, this provides us with a
nockDone function, to be called after our expectations are done.

After calling the getRandomUser(), we can now match its result with
our expectation. For simplifying to demonstrate, we just assert that it will
contain results, which itself contains an Object.

Later we set the mode to wild, as in this case we require to ensure the
other tests do not use the fixture.

The fixtures themselves can be seen in a directory specified in the nock
. js helper, and are themselves interesting to look at.

Final Thoughts

Nock provides strong tools for increasing the dependability of tests that
use external services and enabling higher test coverage since tests that
were previously deemed too flaky to implement may be evaluated.

As with mocks, it is the developer’s obligation or duty to ensure that
mocking does not go too far, and that the test may still fail due to a change
in functionality, or it is useless.

React Testing Library is the testing utility tool that is built to test the
actual DOM hierarchy rendered by React on the browser. The goal of the
library is to let you write tests that resemble how a user would use your
app. This can provide you with more confidence that your app works as
intended when a real user does use it.

The library allows this by providing utility methods or techniques that
will query the DOM in the same way the user would. For example, if a
user finds a button to “Save” their work based on its content, the library
provides the getByText() method or ideas. Later you'll learn more about
the library’s testing techniques.

But first, let us see an example of the React Testing Library in action.

How to Use React Testing Library

A Create React Project (or CRA)-created or designed React app already
contains both the React Testing Library and Jest by default, so all you have
to do is write your test code.

If you need to utilize the React Testing Library outside of a CRA proj-
ect, you must manually install both the React Testing Library and Jest
using NPM:

npm install --save-dev @testing-library/react jest

http://www.nock.js
http://www.nock.js

166 ◾ Mastering React

Installing React Testing Library and Jest

You need to install Jest because the React Testing Library only provides
methods or techniques to help you to write the test scripts. So you still
require a JavaScript test framework to execute the test codes.

Other test frameworks, such as Mocha or Jasmine, can be used, but I’ll
pick Jest because it performs well with both React and Testing Libraries.

In this section, I will create a new React application with CRA using the
default template:

npx create-react-app react-test-example

Create a New React App with CRA

Once the app is created or designed, you should have an App .test .js file
already generated or created inside the src/ folder. The content of the files
would be as follows:

import { render, screen } from '@testing-library/
react';
import App from './App';

test('renders learn react link', () => {
 render(<App />);
 const linkElement = screen.getByText(/learn react/i);
 expe ct(li nkEle ment) .toBe InThe Docum ent() ;
});

Default CRA Test Code

The test code above used React Testing Library’s render method or tech-
nique to virtually render the App components imported from the App . js
file and appends them to the document .bo dy node, and you can access the
rendered HTML through the screen objects.

For seeing the result of the render() call, you can use the screen .deb ug()
method:

import { render, screen } from '@testing-library/
react';
import App from './App';
test('renders learn react link', () => {
 render(<App />);
 screen .deb ug();
});

http://www.App.test.js
http://www.App.js
http://www.document.body
http://www.screen.debug
http://www.screen.debug

Testing Your Code     ◾    167

Debug the Element Rendered by React Testing Libraries

Then open your terminal and run npm run test command. You’ll see the
whole document .bo dy tree rendered into your console:

<body>
 <div>
 <div class="App">
 <header class="Apsp-header">

 <p>
 Edit<code> src/App . js </code>and save to reload.
 </p>
 <a
 class="App-link"
 href="https://reactjs .org"
 rel="noopener noreferrer"
 target="_blank"
 >
 Learn React

 </header>
 </div>
 </div>
</body>

The document’s body rendered by the React Testing Library:
The screen objects also have the DOM testing techniques already bound

into it. That is why the above test code could use screen.getByText() to que-
ries the anchor <a> element by its textContent values.

Finally, the test codes will assert whether the link elements are available
in the document object or not with the expected method from Jest:

expect(linkElement).toBeInTheDocument();

Ascertain whether the link element is present in the document.

Jest will fail the test if the link element is not found.

React Testing Library Methods for the Finding Elements
Most of your React test cases should use techniques for finding the ele-
ment. React Testing Library gives you several methods to find elements
by specific attributes or functions in addition to the getByText() method:

http://www.document.body
http://www.logo.svg
http://www.App.js
https://reactjs.org

168 ◾ Mastering React

• getByText():by its textContent values

• getByRole(): by its role the attribute value

• getByLabelText(): by its label attribute values

• getByPlaceholderText(): by its placeholder attribute value

• getByAltText(): by its alt attribute values

• getByDisplayValue(): by its value attributes, usually for <input>
elements

• getByTitle(): by its title attributes value

And when these techniques are not enough, you can use the getByTestId()
method, which allows you to find an element by its data-tested attribute:

import { render, screen } from '@testing-library/
react';

render(<div data-testid="custom-element" />);
const element = screen.getByTestId('custom-element');
Get element by data-testid value

But since selecting elements using data-tested attributes does not
resemble how a real user would use your app, the documentation recom-
mends you use it only as a last resort when all other methods fail to find
your elements. Finding by Text, Role or Label should cover most cases.

How to Test User Designed Events with React Testing Library

Aside from finding whether elements exist in your document body, React
Testing Library also helps you test user-formed events, like clicking on a
button and typing values into the textbox.

The user-event library is a companion library for simulating user–
browser interactions. Suppose you have button components to toggle
between Light and Dark themes as follows:

import React, { useState } from "react";
function App() {
 const [theme, setTheme] = useState("light");
 const toggleTheme = () => {

Testing Your Code     ◾    169

 const nextTheme = theme === "light" ? "dark" : "light";
 setTheme(nextTheme);
 };
 return <button onClick={toggleTheme}>
 Current theme: {theme}
 </button>;
}

export default App;

Next, you create or form a test that finds the button and simulates a
click event with the use of the userEvent .cli ck() method, and once the but-
ton is clicked, you can assert the test is a success by inspecting whether the
button element text contains “dark” or not:

import { render, screen } from "@testing-library/react";
import userEvent from "@testing-library/user-event";
import App from "./App";
test("Test theme button toggle", () => {
 render(<App />);
 const buttonEl = screen.getByText(/Current theme/i);
 userEvent .cli ck(buttonEl);
 expe ct(bu ttonE l).to HaveT extCo ntent (/dar k/i);
});

Testing user clicks on the button and assert the contents.
And that is how you can simulate the user events with React Testing

Libraries. The user-event library also has several other methods like
dblClick for double-clicking an element and type for typing into a textbox.
You can check out the documentation for user-event library for more info.

http://www.userEvent.click
http://www.userEvent.click

https://taylorandfrancis.com/

171

C h a p t e r 9

Redux

IN THIS CHAPTER

 ¾ REDUX

 ¾ Redux basics

 ¾ Actions

 ¾ REducers

 ¾ Store

 ¾ Adding Redux to React

 ¾ Sagas, side effects

 ¾ Redux form

ReactJS is a flexible, declarative, and flexible JavaScript library for creat-
ing reusable user interface (UI) components. Redux is a component-based,
open-source, front-end library responsible for the view layer of the appli-
cation. It was created by a software engineer at Facebook, Jordan Walke. It
was developed and maintained by Facebook and was then later used in its
products like Instagram and WhatsApp. Facebook developed ReactJS in
2011 in its newsfeed section, but it was later released to the public or every
user in May 2013.

Mastering React

DOI: 10.1201/9781003309369-9

10.1201/9781003309369-9

http://dx.doi.org/10.1201/9781003309369-9

172 ◾ Mastering React

Redux

Most websites, today, are built using MVC (Model View Controller)
architecture. In the MVC architecture, React is the “V,” which stands for
view, whereas the architecture is provided by the Flux or Redux.

ReactJS application is made up of multiple or more than one compo-
nent, where each component is responsible for outputting a small and
reusable piece of HTML code.

These components are the heart of all React applications. All these
components can be mixed with several other components to allow com-
plex applications to be built of very simple building blocks. To populate
data in the HTML DOM, ReactJS uses a virtual DOM-based technique.
The virtual DOM is quick because it simply modifies individual DOM
items rather than refreshing the entire DOM every time.

To create a React app, we write React components that correspond to
or match various elements. These components are organized into higher-
level components that comprise the application structure. Consider a
form with features such as input fields, labels, or buttons. Each form ele-
ment may be written as a React component, and then combined into a
higher-level component, i.e., the form component itself. The form com-
ponents would define the form’s structure as well as the items contained
inside it.

The process of passing the data all the way down and back up the tree
introduces complexity that the libraries like Redux are designed to reduce.
Instead of passing the data up the tree through a two-way function bind-
ing, we can dispatch actions directly from the child components to update
the application state.

In this chapter, we will be looking forward to various different ways to
incorporate the Redux store.

At first, we will see how the store can be used without the help of any
additional framework. After this, we are going to explore react-redux,
a framework that will be used to integrate a Redux store with the React
component.

EXPLICITLY PASSING THE STORE
The first, and the most logical and important, way to include the store into
your UI is to pass it down the component tree explicitly as the property.
This strategy is straightforward and effective for tiny apps with only a few
nested components.

Let's have a look at how can we incorporate the store into the color
organizer. Inside the ./

Redux     ◾    173

index . js file, we will render an App component and pass it to the store:

import React from 'react'
import ReactDOM from 'react-dom'
import App from './components/App'
import storeFactory from './store'
const store = storeFactory()
const render = () =>
ReactDOM .rend er(
<App store{store}/>,
docum ent.g etEle mentB yId(' react -cont ainer ')
)
store.subscribe(render)
render()

This is ./index . js file. In this, we can create the store with the help of
storeFactory and render the App component into the documents. When
the App is rendered to the store, it is passed to it as a property. Now, every
time the store changes, the render function will be called or invoked,
which accurately updates the user interface with the new state data.

Now that we have passed or processed the store to the App, we have to
continue to pass it down to the child components that need it.

import AddColorForm from './AddColorForm'
import SortMenu from './SortMenu'
import ColorList from './ColorList'
const App = ({ store }) =>
<div className="app">
<SortMenu store={store} />
<AddColorForm store={store} />
<ColorList store={store} />
</div>

export the Default App
The App component is the root component. It captures the store from

the props and explicitly passes it to its child components. The store is then
passed on to the ColorList, AddColorForm, and SortMenu components as
its property.

Now that we have already passed the store from the App, we can use it
inside the child components. Remember that we can read state from the
store with the help of store.getState, and we can also dispatch actions to
the store with the use of store.dispatch.

http://www.index.js
http://www.ReactDOM.render
http://www.document.getElementById
http://www.index.js

174 ◾ Mastering React

From the use of AddColorForm component, we can make the store dis-
patch ADD_COLOR actions. When a user submits a form, we retrieve the
color and title from references and utilize that information to generate and
dispatch a new ADD_COLOR action:

import { PropTypes, Component } from 'react'import {
addColor } from '../actions'
const AddColorForm = ({store}) => {
let _title, _color
const submit = e => {
e.preventDefault()
store.dispatch(addColor(_title .value, _color .value))
 _title .value = ''
 _color .value = '#000000'
 _title .focus()
}
return (
<form className="add-color" onSubmit={submit}>
<input ref={input => _title = input}
type="text"
placeholder="color title..." required/>
<input ref={input => _color = input}
type="color" required/>
<button>ADD</button>
</form>
)
}
AddColorForm.propTypes = {
store: PropTypes .obje ct
}

export default AddColorForm
We import the essential and vital action creator, addColor, from this

component. When the user accepts the form, we utilize this action maker
to send a new ADD COLOR action directly to the store.

The ColorList component may acquire the original colors and arrange
them using the store’s getState function. It may also immediately send
RATE COLOR and REMOVE COLOR operations as they occur:

import { PropTypes } from 'react'
import Color from './Color'
import { rateColor, removeColor } from '../actions'
import { sortFunction } from '../lib/array-helpers'

http://www._title.value,
http://www._color.value
http://www._title.value
http://www._color.value
http://www._title.focus
http://www.PropTypes.object

Redux     ◾    175

const ColorList = ({ store }) => {
const { colors, sort } = store.getState()
const sortedColors = [.. .colors].
sort(sortFunction(sort))
return (
<div className="color-list">
{(colors .leng th === 0) ?
<p>No Colors Listed. (Add a Color)</p> :
sortedColors .m ap(color =>
<Color key={color . id}
{.. .color}
onRate={(rating) =>
store.dispatch(
rateColor(color .i d, rating)
)
}
onRemove={() =>
store.dispatch(
removeColor(color . id)
)
} />
)
}
</div>
)
}
ColorList.propTypes = {
store: PropTypes .obje ct
}

Export default ColorList. The store has now been passed all the way down
to the component tree to the ColorList. This component interacts or com-
municates with the store directly. Whenever the colors are removed or rated,
those actions are forwarded to the store. The store is also used to acquire
the previous original colors. Those colors are duplicated and sorted, respec-
tively, and saved as sortedColors according to the store’s sort property.

sortedColors are then used to create the user interface. This technique
is great if your component tree is small, like the color organizer. The dis-
advantage of this strategy is that we must transmit the store to the child
component manually. Additionally, the ColorList, AddColorForm, and
SortMenu components require this particular store. It would be difficult
to reuse them in another application.

http://www....colors
http://www.colors.length
http://www.sortedColors.map
http://www.color.id
http://www....color
http://www.color.id,
http://www.color.id
http://www.PropTypes.object

176 ◾ Mastering React

In the following sections, we will look at other ways to get the store to
the components that need it. They have evolved as one of the winners in
the field of Flux or Flux-like libraries. Redux is entirely based on Flux, and
it was designed or created to tackle the challenge of understanding how
data changes flow through the application. Redux was created by Andrew
Clark and Dan abramov.

When Andrew Clark began aiding Dan with the job of finishing Redux,
he was working on version 4 of Flummox, a Flux-based framework. The
message on the npm page for the Flummox reads as given below:

Version 4.x should be the last and major release, but that never took
place. If you want to use the recent features, then use Redux. It’s very good.

Redux is surprisingly very small, with only 99 lines of code.
We have mentioned earlier that Redux is Flux-like, but it is not com-

pletely Flux. It has actions creators, action, action objects, and a store that
are used to change the state. Redux clarifies the concepts of Flux a bit
by eventually removing the minion, and representing App state with a
single immutable object/module. Redux also introduces reducers, which
are not part of the Flux pattern. Reducers are real functions that return
updated states based on the current state and an action: (state, action) =>
newState.

State

The idea of saving the state in one place is not so crazy. In fact, we did it in
the previous chapter.

We stored it in the kernel of our app. In pure React or Flux apps, stor-
ing states in as few objects as possible is recommended. In Redux, it’s rule
no 2.

When you came to know that you have to store state in one place, it
might seem like an unnecessary requirement, especially when you have
different types of data. Let’s consider how this can be achieved with an
App that has many different types of data.

We’ll look at a social media App that has state spread out across differ-
ent modules.

The application itself contains user state. All of the messages are saved
in state under that. Each message contains its own state, and all of the
posts are saved under the posts component.

An application structured like this may work well, but as it grows it
may be hard to determine the overall state of the App. It may also become
cumbersome to understand where updates have been coming from,

Redux     ◾    177

considering that each component will mutate its own state with internal
setState several calls.

What messages are expanded? What posts have been read? In order to
trace these details, we must dive into the component hierarchy and track
down the state inside of individual modules.

Redux clarifies the way we view state in our application by requiring us
to save all state data in a single object. Everything we need to know about
the App is in one place: one single source of truth. We could construct the
same App with Redux by moving all of the state’s data into a single loca-
tion. In the social media App, we can see that we are managing the state
of the current user, messages, and posts from the same object: the Redux
store. This object even stores information about the message that is being
edited, which messages are expanded, and which posts have been seen.
This information is captured in arrays containing IDs that reference spe-
cific records. All of the messages and posts are cached in this state object,
so that data is there. With Redux, we pull state management away from
React entirely. Redux will manage the state.

ACTIONS
In the previous section, we introduced an important Redux rule: applica-
tion state should be stored in a single immutable object. Immutable means
this state object doesn’t change. We will eventually update this state
object by replacing it entirely. In order to do this, we will need instruc-
tions about what changes. That’s what actions provide: instructions about
what should change in the application state along with the necessary data
to make those changes. Actions are the only way to update the state of
a Redux application. Actions provide us with instructions about what
should change, but we can also look at them like receipts about the history
of what has changed over time. If users were to remove three colors, add
four colors, and then rate five colors, they would leave a trail of informa-
tion, as shown in

Usually, when we sit down to construct an object-oriented application,
we start by identifying the objects, their properties, and how they work
together. Our thinking, in this case, is noun-oriented. When building a
Redux application, we want to shift our thinking into being verb-oriented.
How will the actions affect the state data? Once you identify the actions,
you can list them in a file called constants . js.

 In the case of the color organizer, users will need to be able to add a
color, rate a color, remove color, or sort the color list. Here we have defined

http://www.constants.js.

178 ◾ Mastering React

a string value for each of these action types. An action is a JavaScript object
that has at minimum a field for type:

{ type: "ADD_COLOR" }

The action-type is a string that defines what should happen. ADD_
COLOR is the action that will add a new color to our list of colors in the
application state. It is pretty easy to make typos when creating actions
using strings:

{ type: "ADD_COOLOR" }

This typo would cause a bug in our application. This type of error usu-
ally does not trigger any warnings; you simply will not see the expected
change of your state data.

If you make these errors, they can be tough to find. This is where con-
stants can save you:

import C from "./constants"

{ type: C.ADD_COLOR }

This specifies the same action, but with a JavaScript constant instead of
a string. A typo in a JavaScript variable will cause the browser to throw
an error. Defining actions as constants also lets you tap into the benefits
of IntelliSense and code completion in your IDE. When you start typing
the first letter or two of a variable, the IDE will autocomplete it. Using
constants is not required, but it is not a bad idea to get into the habit of
incorporating them.

Action Type Naming Conventions

Action types, like ADD_COLOR or RATE_COLOR, are just strings, so
technically you could call an action anything. Typically, action types are
capitalized and use underscores instead of spaces. You should also aim to
clearly state the action’s intended purpose.

Action Payload Data

Actions are JavaScript literals that provide the instructions necessary to
make a state change. Most state changes also require some data. Which
record should I remove?

What new information should I provide in a new record?

Redux     ◾    179

We refer to this data as the action’s payload. For example, when we dis-
patch an action like RATE_COLOR, we will need to know what color to
rate and what rating to apply to that color. This information can be passed
directly with the action in the same JavaScript literal.

This action tells Redux to add a new color, called Bright White, to the
state. All of the information for the new color is included in the action.
Actions are nice little packages that tell Redux how the state should be
changed. They also include any associated data that Redux will need to
make the change.

REDUCERS
Our entire state tree is stored in a single object. A potential complaint
might be that it’s not modular enough, possibly because you’re consider-
ing modularity as describing objects. Redux achieves modularity via func-
tions. Functions are used to update parts of the state tree. These functions
are called Reducers.

Reducers are functions that take the recent state along with the action
as arguments and use them to create and return a new state. Reducers are
designed to update specific parts of the state tree, either leaves or branches.
We can then compose reducers into one reducer that can handle updating
the entire state of our App given any action. The color organizer stores all
of the state data in a single tree. If we want to use Redux for this App, we
can create several reducers that each target specific leaves and branches on
our state tree.

This state data has two main branches: colors and sort. The sort branch
is a leaf. It doesn’t contain any child nodes. The color branch stores mul-
tiple colors. Each color object represents a leaf. A separate reducer will
be used to handle each part of this state tree. Each reducer is simply a
function, so we can stub them all at once with the code. Both the colors
and color reducers will handle ADD_COLOR and RATE_COLOR. But
remember, each reducer focuses on a specific part of the state tree. RATE_
COLOR in the color reducer will handle the task of changing an individ-
ual color’s rating value. RATE_COLOR in the colors reducer will focus on
locating the color that needs to be rated in the array; ADD_COLOR in the
color reducer will result in a new color object with the correct properties;
ADD_COLOR in the colors reducer will return an array that has an addi-
tional color object. They are meant to work together. Each reducer focuses
on what a specific action means for its branch in the state tree.

180 ◾ Mastering React

The color reducer is designed to manage leaves on the colors branch of
our state tree. The colors reducer will be used to manage the entire colors
branch:

export const colors = (state = [], action) => {
switch (action .ty pe) {
case C.ADD_COLOR :
return [
.. .state,
color({}, action)
]
case C.RATE_COLOR :
return state .m ap(
c => color(c, action)
)
case C.REMOVE_COLOR :
return state .filt er(
c => c.id !== action . id
)
default:
return state
}
}

The colors reducer will handle any actions for adding, rating, and
removing colors.

ADD_COLOR

ADD_COLOR creates a new array by concatenating all of the values of the
existing state array with a new color object. The new color is created by
passing a blank state object and the action to the color reducer.

The Sort Reducer

The sort reducer is an entire function designed to manage one string vari-
able in our state:

export const sort = (state = "SORTED_BY_DATE", action)
=> {
switch (action .ty pe) {
case C.SORT_COLORS:
return action.sortBy

http://www.action.type
http://www....state,
http://www.state.map
http://www.state.filter
http://www.action.id
http://www.action.type

Redux     ◾    181

default :
return state
}
}

The sort reducer is used to change the sort state variable. It sets the sort
state to the value of the action’s sortBy field (if this is not state-provided, it
will return SORTED_BY_DATE):

const state = "SORTED_BY_DATE"
const action = {
type: C.SORT_COLORS,
sortBy: "SORTED_BY_TITLE"
}
console .l og(sort(state, action)) // "SORTED_BY_TITLE"

To recap, state updates are handled by reducers. Reducers are pure
functions that take in the state as the first argument and action as the sec-
ond argument. Reducers do not cause side-effects and should treat their
arguments as immutable data. In Redux, modularity is achieved through
reducers. Eventually, reducers are combined into a single reducer, a func-
tion that can update the entire state tree.

In this section, we saw how reducers can be composed. We saw how the
colors reducer uses the color reducer to assist in color management. In the
next section, we will look at how the colors reducer can be combined with
the sort reducer to update the state.

THE STORE
In Redux, the store is what holds the application’s state data and handles
all state updates. While the Flux design pattern allows for many stores
that each focus on a the specific set of data, Redux only has one store. The
store handles state updates bypassing the current state and action through
a single reducer. We will create this single reducer by combining and com-
posing all of our reducers.

If we create a store using the colors reducer, then our state object will be
an array – the array of colors. The getState method of the store will return
the present application state. we create a store with the color reducer, prov-
ing that you can use any reducer to create a store

In order to create a single reducer tree, we must combine the colors and
sort reducers. Redux has a function for doing just that, combineReducers,

http://www.console.log

182 ◾ Mastering React

which combines all of the reducers into a single reducer. These reducers
are used to build your state tree. The names of the fields match the names
of the reducers that are passed in.

A store can also be created with initial data. Invoking the colors reducer
without state returns an empty array:

import { createStore, combineReducers } from 'redux'
import { colors, sort } from './reducers'
198 | Chapter 8: Redux
const store = createStore(
combineReducers({ colors, sort })
)
console .l og(store.getState())
// Console Output
//{
// colors: [],
// sort: "SORTED_BY_DATE"
//}

The only way to change the state of your application is by dispatch-
ing actions through the store. The store has a dispatch method that
is ready to take action as an argument. When you dispatch an action
through the store, the action is sent through the reducers, and the state
is updated:

console .l og(
"Length of colors array before ADD_COLOR",
store.getState() .colors .length
)
// Length of colors array before ADD_COLOR 3
store.dispatch({
type: "ADD_COLOR",
id: "2222e1p5-3abl-0p523-30e4-8001l8yf2222",
title: "Party Pink",
color: "#F142FF",
timestamp: "Thu Mar 10 2016 01:11:12 GMT-0800 (PST)"
})
console .l og(
"Length of colors array after ADD_COLOR",
store.getState() .colors .length
)
// Length of colors array after ADD_COLOR 4

http://www.console.log
http://www.console.log
http://www..colors.length
http://www.console.log
http://www..colors.length

Redux     ◾    183

console .l og(
"Color rating before RATE_COLOR",
store.getState().colors[3].rating
)
// Color rating before RATE_COLOR 0
store.dispatch({
type: "RATE_COLOR",
id: "2222e1p5-3abl-0p523-30e4-8001l8yf2222",
rating: 5
})
console .l og(
"Color rating after RATE_COLOR",
store.getState().colors[3].rating
)
// Color rating after RATE_COLOR 5

Here, we created a store and dispatched an action that added a new
color followed by an action that changed the color’s rating. The console
output shows us that dispatching the actions did in fact change our state.

Originally, we had three colors in the array. We added color, and now
there are four. Our new color had an original rating of zero. Dispatching
an action changed it to five. The only way to change data is to dispatch
actions to the store.

Subscribing to Stores

Stores allow you to subscribe to handler functions that are invoked every
time the store completes dispatching an action. In the following example,
we will log the count of colors in the state:

store.subscribe(() =>
console .l og('color count:', store.getState() .colors
.length)
)
store.dispatch({
type: "ADD_COLOR",
id: "2222e1p5-3abl-0p523-30e4-8001l8yf2222",
title: "Party Pink",
color: "#F142FF",
timestamp: "Thu Mar 10 2016 01:11:12 GMT-0800 (PST)"
})
store.dispatch({
type: "ADD_COLOR",
id: "3315e1p5-3abl-0p523-30e4-8001l8yf2412",

http://www.console.log
http://www.console.log
http://www.console.log
http://www..colors.length
http://www..colors.length

184 ◾ Mastering React

title: "Big Blue",
color: "#0000FF",
timestamp: "Thu Mar 10 2016 01:11:12 GMT-0800 (PST)"
})
store.dispatch({
type: "RATE_COLOR",
id: "2222e1p5-3abl-0p523-30e4-8001l8yf2222",
rating: 5
})
store.dispatch({
type: "REMOVE_COLOR",
id: "3315e1p5-3abl-0p523-30e4-8001l8yf2412"
})
// Console Output
// color count: 1
// color count: 2
// color count: 2
// color count: 1

Subscribing this listener to the store will log the color count to the con-
sole every time we submit an action. In the preceding example, we saw
four logs: the first two for ADD_COLOR, the third for RATE_COLOR,
and the fourth for REMOVE_COLOR. The subscribe method of the store
returns a function that you can use later to disconnect the listener:

const logState = () => console .l og('next state',
store.getState())
const unsubscribeLogger = store.subscribe(logState)
// Invoke when ready to unsubscribe the listener
unsubscribeLogger()

To recap, stores hold and manage state data in Redux applications, and
the only way to change state data is by dispatching actions through the
store. The store holds the application state as a single object. State muta-
tions are managed through reducers. Stores are created by supplying a
reducer along with optional data for the initial state. Also, we can sub-
scribe listeners to our store (and unsubscribe them later), and they will be
invoked every time the store finishes dispatching an action.

Both the logger and the saver are middleware functions. In Redux, mid-
dleware is defined as a higher-order function: it is a function that returns a
function that returns. The last function returned is invoked each time an
action is dispatched.

http://www.console.log

Redux     ◾    185

When this function is invoked, you have to access the action, the store,
and the function for sending the request to the next middleware.

Instead of exporting the store directly, we export a function, a factory
that can be used to create stores. If this factory is invoked, then it will cre-
ate and return a store that incorporates logging and saving.

In the logger, before the action is dispatched, we open a new console
group and log the current state and the current action. Invoking next pipes
the action onto the next piece of middleware and eventually the reducers.
The state at this point has been updated, so we log the changed state and
end the console group.

In the saver, we invoke next with the action, which will cause the state
to change. Then we save the new state in localStorage and return the result.

ADDING REDUX TO REACT
The App component is the component that holds the state. The state is
passed down to child components as properties. Specifically, the colors are
passed from the App component’s state to the ColorList component as a
property. When events happen, data is transmitted back up the component
tree to the App component through callback function properties. The pro-
cess of transferring data all the way down and back up the tree generates
complexity that libraries like Redux are supposed to reduce. Instead of pass-
ing data up the tree through two-way function binding, we can dispatch
actions directly from child components to update the application state.

In this chapter, we’ll take a look at various ways to incorporate the
Redux store. We will first look at how the store can be used without any
additional frameworks. After that, we will explore react-redux, a frame-
work that can be used to integrate a Redux store with React component.

Explicitly Passing the Store

The first and most obvious approach to include the store into your UI is
to directly feed it down the component tree as a property. This strategy is
straightforward and works well for tiny Apps with only a few hierarchi-
cal components. Let’s see how we can integrate the shop into the color
organizer. We will render an App component and provide it in the store
in the./index . js file:

import React from 'react'
import ReactDOM from 'react-dom'
import App from './components/App'

http://www.index.js

186 ◾ Mastering React

import storeFactory from './store'
const store = storeFactory()
const render = () =>
ReactDOM .rend er(
<App store={store}/>,
docum ent.g etEle mentB yId(' react -cont ainer ')
)
store.subscribe(render)
render()

This is the ./index .j s. In this code, we use the storeFactory to con-
struct the store and render the App component into the page. The store
is provided to the App as a property when it is rendered. When the store
changes, the render method is called, which effectively refreshes the UI
with new state data.

Now that the store has been delivered to the App, we must continue to
send it down to the child components that require it:

import AddColorForm from './AddColorForm'
import SortMenu from './SortMenu'
import ColorList from './ColorList'
const App = ({ store }) =>
<div className="app">
<SortMenu store={store} />
<AddColorForm store={store} />
<ColorList store={store} />
</div>

export default App
Our base component is the App component. It reads the store from

the props and explicitly sends it down to its child components. The store
is supplied as a property to the SortMenu, AddColorForm, and ColorList
components.

We can utilize the store that we passed from the App inside the child
components now that we’ve passed it from the App. Remember that we
can retrieve state from the store using store.getState and send actions to
the store using store.dispatch.

We can utilize the store to dispatch ADD COLOR actions from the
AddColorForm component. When a user submits a form, we retrieve the
color and title from references and utilize that information to generate and
dispatch a new ADD COLOR action:

http://www.ReactDOM.render
http://www.document.getElementById
http://www.index.js.

Redux     ◾    187

import { PropTypes, Component } from 'react'
import { addColor } from '../actions'
const AddColorForm = ({store}) => {
let _title, _color
const submit = e => {
e.preventDefault()
store.dispatch(addColor(_title .value, _color .value))
 _title .value = ''
 _color .value = '#000000'

Passing the Store via Context

We constructed a store in the previous section and sent it all the way down
the component tree from the App component to the ColorList compo-
nent. This technique necessitated passing the store across every compo-
nent between the App and the ColorList.

Assume we have some stuff to transport from Washington, DC, to
San Francisco, CA. We could utilize a train, but it would necessitate lay-
ing tracks across at least nine states in order for our shipment to reach
California. This is equivalent to explicitly sending the store from the root
to the leaves of the component tree. You must “lay tracks” via every com-
ponent that connects the origin and destination. If taking a train is equiv-
alent to explicitly transferring the shop through props, then passing the
store implicitly via context is equivalent to taking a jet aircraft. When an
aircraft travels from Washington, DC, to San Francisco, it passes over at
least nine states - no rails are necessary.

Similarly, we may use context, a React feature that allows us to give
variables to components without explicitly passing them down the tree as
properties. These context variables are accessible to any child component.

The first step in passing the store using context in our color organizer
App would be to change the App component to contain context. The App
component must additionally listen to the store in order to trigger a UI
update if the state changes:

import { PropTypes, Component } from 'react'
import SortMenu from './SortMenu'
import ColorList from './ColorList'
import AddColorForm from './AddColorForm'
import { sortFunction } from '../lib/array-helpers'
class App extends Component {
getChildContext() {
return {

http://www._title.value,
http://www._color.value
http://www._title.value
http://www._color.value

188 ◾ Mastering React

store: this .props .st ore
}
}
componentWillMount() {
this.unsubscribe = store.subscribe(
() => this.forceUpdate()
)
}
componentWillUnmount() {
this.unsubscribe()
}
render() {
const { colors, sort } = store.getState()
const sortedColors = [.. .colors].
sort(sortFunction(sort))
return (
<div className="app">
<SortMenu />
<AddColorForm />
<ColorList colors={sortedColors} />
</div>
)
}
}
App.propTypes = {
store: PropTypes .object .isRequi red
}
App.childContextTypes = {
store: PropTypes .object .isRequi red
}

export default App
To begin, adding context to a component necessitates the usage of the

getChildContext lifecycle method. It will return the context’s defining
object. In this scenario, we add the store to the context, which is accessible
via props.

Then, on the component instance, give childContextTypes and con-
struct your context object. It is analogous to adding propTypes or default-
Props to a component instance. However, in order for context to function,
this step must be completed.

At this moment, any children of the App component will have con-
text access to the store. They may immediately call store.getState and

http://www.this.props.store
http://www....colors
http://www.PropTypes.object.isRequired
http://www.PropTypes.object.isRequired

Redux     ◾    189

store.dispatch. Finally, subscribe to the store and modify the compo-
nent tree if the state of the store changes. This can be achieved with
the mounting lifecycle functions. In componentWillMount, we can
subscribe to the store and use this.forceUpdate to trigger the updating
lifecycle, which will re-render our UI. In componentWillUnmount, we
can invoke the unsubscribe function and stop listening to the store.
Because the App component itself triggers the UI update, there is no
need to subscribe to the store from the entry ./index . js file; we are lis-
tening to store changes from the same component that adds the store
to the context, App.

Let’s refactor the AddColorForm component to retrieve the store and
dispatch the ADD_COLOR action directly:

const AddColorForm = (props, { store }) => {
let _title, _color
const submit = e => {
e.preventDefault()
store.dispatch(addColor(_title .value, _color .value))
 _title .value = ''
 _color .value = '#000000'
 _title .focus()
}
return (
<form className="add-color" onSubmit={submit}>
<input ref={input => _title = input}
type="text"
placeholder="color title..." required/>
<input ref={input => _color = input}
type="color" required/>
<button>ADD</button>
</form>
)
}
AddColorForm.contextTypes = {
store: PropTypes .obje ct
}

The context object is passed to stateless functional components as the
second argument, after props. We can use object destructuring to obtain
the store from this object directly in the arguments. In order to use the
store, we must define contextTypes on the AddColorForm instance. This

http://www.index.js
http://www._title.value,
http://www._color.value
http://www._title.value
http://www._color.value
http://www._title.focus
http://www.PropTypes.object

190 ◾ Mastering React

is where we tell React which context variables this component will use.
This is a required step. Without it, the store cannot be retrieved from
the context. Let’s look at how to use context in a component class. The
color component can retrieve the store and dispatch RATE_COLOR and
REMOVE_COLOR actions directly:

import { PropTypes, Component } from 'react'
import StarRating from './StarRating'
import TimeAgo from './TimeAgo'
import FaTrash from 'react-icons/lib/fa/trash-o'
import { rateColor, removeColor } from '../actions'
class Color extends Component {
render() {
const { id, title, color, rating, timestamp } = this .pro ps
const { store } = this.context
return (
<section className="color" style={this .sty le}>
<h1 ref="title">{title}</h1>
<button onClick={() =>
store.dispatch(
removeColor(id)
)
}>
<FaTrash />
</button>
<div className="color"
style={{ backgroundColor: color }}>
</div>
<TimeAgo timestamp={timestamp} />
<div>
StarRating starsSelected={rating}
onRate={rating =>
store.dispatch(
rateColor(id, rating)
)
} />
</div>
</section>
)
}
}
Color.contextTypes = {

http://www.this.props
http://www.this.style

Redux     ◾    191

store: PropTypes .obje ct
}
Color.propTypes = {
id: PropTypes .string .isRequir ed,
title: PropTypes .string .isRequir ed,
color: PropTypes .string .isRequir ed,
rating: PropTypes .numb er
}
Color.defaultProps = {
rating: 0
}

export default Color
ColorList is now a component class and can access context via this.

context. Colors are now read directly from the store via store.getState.
The same rules apply that do for stateless functional components. con-
textTypes must be defined on the instance. Retrieving the store from the
context is a nice way to reduce your boilerplate, but this is not something
that is required for every application. Dan Abramov, the creator of Redux,
even suggests that these patterns do not need to be religiously followed.

Separating the containers and presentational components is frequently
a smart idea, but it should not be taken as gospel. Only do this if it signifi-
cantly decreases the complexity of your codebase.

SAGAS, SIDE-EFFECTS
If you want to run our Saga, we need to do the following:

• Design a Saga middleware with a list of Sagas to run/compile (so far
we have only one hello_Saga).

• Connect the Saga middleware to the Redux store.

We will make the alteration to main .j s:

// ...
import { createStore, applyMiddleware } from 'redux'
import createSagaMiddleware from 'redux-saga'
// ...
import { helloSaga } from './sagas'
const sagaMiddleware = createSagaMiddleware()
const store = createStore(
reducer,

http://www.PropTypes.object
http://www.PropTypes.string.isRequired,
http://www.PropTypes.string.isRequired,
http://www.PropTypes.string.isRequired,
http://www.PropTypes.number
http://www.main.js:

192 ◾ Mastering React

applyMiddleware(sagaMiddleware)
)
sagaMiddleware .r un(helloSaga)
const action = type => store.dispatch({type})

// rest unchanged

First of all, we import our Saga from the ./sagas module. Then we form a
middleware with the use of the factory function to createSagaMiddleware
exported through the redux-saga library.

Before running helloSaga, we should connect our middleware to the
Store using the applyMiddleware. Then we would use the sagaMiddleware
.r un(helloSaga) to initiate our Saga.

So far, our Saga does nothing different. It just logs a message and then
set back.

Making Asynchronous Calls

Now let us add something closer to the real counter demo. For illustrating
asynchronous calls, we will add the other button to increase the counter
one second after click.

First things first, we will provide an additional button and a callback
onIncrementAsync to the user interface component.

const Counter = ({ value, onIncrement, onDecrement,
onIncrementAsync }) =>
<div>
<button onClick={onIncrementAsync}>
Increment after 1 second
</button>
{' '}
<button onClick={onIncrement}>
Increment
</button>
{' '}
<button onClick={onDecrement}>
Decrement
</button>
<hr />
<div>
Clicked: {value} times
</div>
</div>

http://www.sagaMiddleware.run
http://www.sagaMiddleware.run
http://www.sagaMiddleware.run

Redux     ◾    193

Next, we must connect the onIncrementAsync of the module to a Store
action.

We will modify this main . js module as follows:

function render() {
ReactDOM .rend er(
<Counter
value={store.getState()}
onIncrement={() => action('INCREMENT')}
onDecrement={() => action('DECREMENT')}
onIncrementAsync={() => action('INCREMENT_ASYNC')} />,
document.getElementById('root')
)
}

Note that unlike in redux-thunk, our component executes a simple
object action.

Now, will introduce another Saga to act on the asynchronous call. Our
use case is as follows:

• On each INCREMENT_ASYNC action, we need to start a task that
performs following:

• Wait for a second then increase the counter

• Add the following codes to the sagas . js component:

import { put, takeEvery } from 'redux-saga/effects'
const delays = (ms) => new Promise(res =>

setTimeout(res, ms))
// ...

// Our worker Saga: will perform the asynchornous
increase task

export function* incrementAsync() {
yield delay(1000)
yield put({ type: 'INCREMENT' })
}
// Our watcher Saga: spawn a latest incrementAsync

task on each and every INCREMENT_ASYNC
export function* watchIncrementAsync() {
yield takeEvery('INCREMENT_ASYNC', incrementAsync)
}

http://www.main.js
http://www.ReactDOM.render
http://www.sagas.js

194 ◾ Mastering React

Time for the Explanations

We generate a delay function that returns a Promise that will resolve after
a specified number of milliseconds. We will use this function to block the
Generator.

Sagas are modified as Generator functions that yield objects to the
redux-saga middleware. The yielded objects are a kind of instructions to
be interpreted by the middleware. When a Promise is given to the middle-
ware, the Saga is discarded until the Promise is completed. In the example
above, the incremental sync Saga is discarded until the Promise is returned
by delay resolves, which will happen after one second.

Once the Promise is sorted out, the middleware will restart the
Saga, executing codes until the next yield. The following sentence is
the other produced object in this example: the result of executing put
(type: 'INCREMENT'), which informs the middleware to dispatch an
INCREMENT action .p ut is an example of what we call an Effect. Effects
are plain JavaScript objects which have instructions to be fulfilled by the
middleware. When a middleware recovers an Effect yielded by the Saga,
the Saga is paused until the Effect is fulfilled.

So as to summarize, the incremental sync Saga sleeps for 1(one) second
via the call to delay(1000), then dispatches an INCREMENT call.

Next, we design another Saga watchIncrementAsync. We use takeEv-
ery, a helper or composite function provided by redux-saga, to listen for
dispatched INCREMENT_ASYNC actions or calls and run incrementA-
sync each time.

Now there are two Sagas, and we require to execute them both at once.
To do that, we will add a rootSaga that is responsible for starting our other
Sagas. In the file sagas .j s, refactor the file as follows:

import { put, takeEvery, all }from 'redux-saga/
effects'

const delays = (ms) => new Promise(res =>
setTimeout(res, ms))

function* helloSaga() {
console .l og('Hello Saga!')
}
function* incrementAsync() {
yield delay(1000)
yield put ({ type: 'INCREMENT' })
}

http://www.action.put
http://www.sagas.js,
http://www.console.log

Redux     ◾    195

function* watchIncrement_Async() {
yield take_Every('INCREMENT-ASYNC', incrementAsync)
}

// Notice how do we now only export the rootSaga////
one entry point to start all Sagas at once
export default function* rootSaga() {
yield all([
helloSaga(),
watchIncrementAsync()
])
}

This Saga yields an array with the consequence of calling our two sagas,
helloSaga and watchIncrementAsync. This means that the two resulting
Generators will be executed in parallel. Now we only have to call on sag-
aMiddleware .r un on the root Saga in main .j s.

// ...
import rootSaga from './sagas'
const sagaMiddleware = createSagaMiddleware()
const store = ...
sagaMiddleware .r un(rootSaga)

// ...

Redux Saga is a middleware library that allows a Redux store to interact
with the resources outside of itself asynchronously. This includes mak-
ing HTTP(HyperText Mat requests to external services, accessing browser
storage, and executing I/O actions. These actions are also known as side-
effects. Redux Saga helps to manage these side-effects in a way that is eas-
ier to manage.

A redux store intrinsically knows how to dispatch actions and update
its state using its root reducer. Actions constitute an event describing
something happening in your App and an intention to modify your app’s
state. A reducer accumulates value from or stemming from dispatched
actions and accumulates these values into the newly updated state of your
application.

Reducers have been defining in as pure functions, as it is compul-
sory to let useful attributes of Redux such as time travel (re-playing past
calls). Actions are objects or arguments passed on into the reducer and

http://www.sagaMiddleware.run
http://www.sagaMiddleware.run
http://www.main.js.
http://www.sagaMiddleware.run

196 ◾ Mastering React

are naturally positive. Thus, we have a problem; there is nowhere in your
Redux application to place your side-effects.

A Redux middleware is associated between an action and a reducer.
This allows actions to contain something else other than the plain object,
as long as the middleware intercepts this, performs its functionality, and
returns a plain object to pass along toward the reducer.

Redux Thunk, a popular Redux-Saga option, allows functions to enter
the Redux store dispatch, which checks to see if it is a function or an action
object or module, starting the component in the former scenario and
directly passing along with the action objects to the reducer in the latter
case, and these functions can then perform whatever composite asynchro-
nous logic they want and produce a plain action or call object to be passed
into the reducer.

Redux Sagas are somewhat different in that a separate set of instruc-
tions are defined in your Redux app, which is captured exclusively by
watcher functions (as part of your saga). The saga will implement the
corresponding logic and dispatch a resultant call to your App’s reducer
upon capturing the calls. The saga effectively operates as a second thread
to your App, listening for particular actions from your main application
to do sophisticated asynchronous activities and changing the state of your
App once they are completed.

While I would not say Redux Saga is inherently better than any of the
alternatives available, it has some benefits that might make you want to
consider its use.

Redux Saga offers a place completely de-coupled from your action mak-
ers for you to handle your App’s side-effects. Some people may feel that
this makes your App’s data flow harder to follow (which I would agree
with), but I think that this de-coupling makes organizing your codebase
and extending functionality simpler down the road.

For example, in a situation where you might require to support a work-
flow that needs multiple HTTP requests to different services in a par-
ticular order, Redux-Saga permits you to compose granular sagas into
a single one and represents this new high-level function with a separate
call. Your application can still access/pass each individual HTTP resource
in another workflow, but for this specific one, your React component can
manually call this high-level action to load whatever it requires from
a single place. As far as your component or module is concerned, your
asynchronous logic to load multiple resources in a particular order is an
abstracted way.

Redux     ◾    197

Redux Saga also offers a collection of composite functions that are used
to spawn your works when some specific calls are dispatched. These can
be used to help in managing when and how your tasks are implemented.

Let us take an example that the most commonly used helper function is
takeEvery(). This instructs the middleware to spawn a new task for every
action dispatched to your store similar to a given pattern. This provides a
behavior identical to Redux Thunk and is as simple as it gets: “Application
reminds you to fetch something, go and fetch it.”

Now think that you had two functionally independent components or
modules that needed to retrieve the most updated data from the place.
Previously they existed on two pages and could be visited on it at any time.
It would make sense for both components or modules to try to retrieve a
new copy of the resource whenever it is rendered. Now imagine that your
features have changed, and now the two components need to be on the
same page, and now you have a situation where two different components
are redundantly spawning the same task.

You could mention one of the components to no longer try to retrieve
a new copy and rely on the other to design the necessary action or calls
to retrieve this resource and populate the App store. Or you could add
some logic concept to ensure that your component does not try to form
a new action to retrieve this resource if this resource is already being
loaded or mounted. But this could also be solved using the other Redux-
Saga helper function: take(). This function instructs the middleware to
spawn a new task for an action dispatched matching a given pattern but
will effectively ignore any new actions until the spawned task has been
completed.

With this, your two independent components or modules can coexist
without changing any component-specific logic! As far as your compo-
nent is concerned, it asks your saga to retrieve resources on its behalf and
retrieve them from the resultant updated states. Your saga gets to decide
how to do it and wants to consider two different requests from different
components. It is packed full of useful examples if you’d like to get into
the low-level details.

Redux Saga is one of several tools to help you organize your App’s side-
effects. It is heavy and has a learning curve but contains a lot of function-
ality that will help keep your codebase neat and modular to make the code
testable.

We need to test our incrementAsync Saga to make sure it performs the
desired task.

198 ◾ Mastering React

Create Another File Sagas .spec .js

import test from 'tape'
import { incrementAsync } from './sagas'
test('incrementAsync Saga test', (assert) => {
const generator = incrementAsync()
// now what ?
})

When incrementAsync is called, it produces an iterator object, and the
iterator’s next method returns an object of the following structure.

generator .ne xt() // => { done: boolean, value: any }

The value field keeps the yielded expression, i.e., the result of the expres-
sions after the yield. The done field identifies if the generator has termi-
nated/halts or if there are still have 'yield' expressions.

In the case of incremental sync, the generator creates two values
consecutively:

yield delay(1000)
yield put({type: 'INCREMENT'})

So, if we call on the next method/function of the generator three times
consecutively, we get the results as follows:

generator .ne xt() // => { done: false, value: <result
of calling delay(1000)> }

generator .ne xt () // => { done: false, value: <result
of calling put({type: 'INCREMENT'})> }

generator .ne xt() // => { done: true, value: un_
defined }

The first two invocations return the results of the yield expressions.
On the third citation, since there is no more yield, the done field is set
to true value. And since the incrementAsync Generator doesn’t return
anything (no return statement), the value field is set to undefined or
void.

So now in order to test the functionality inside the incrementAsync, we
will have to repeat over the returned Generator and test the values yielded/
generated by the generator.

http://www.Sagas.spec.js
http://www.generator.next
http://www.generator.next
http://www.generator.next
http://www.generator.next

Redux     ◾    199

import test from 'tape'
import { incrementAsync } from './sagas'
test('incrementAsync Saga test', (assert) => {
const generation = incrementAsync()
assert.deepEqual(
generator .ne xt(),
{ done: false, value: ??? },
'incrementAsync should return a Promise that will sort

out after one second'
)
})

The issue is how do we test the returns value of the delay? We cannot do
a simple test of equality on Promises and if delay returned a normal value,
things would have been simpler to test.

Well, redux-saga provides the way to make the above statement possible.
Despite calling delay(1000) directly inside incrementAsync, we will call it
indirectly and export it to make a subsequent deep matching feasible:

import { put, take_Every, all, call } from 'redux-
saga/effects'
export const delays = (ms) => new Promise(res =>

setTimeout(res, ms))
// ...
export function* incrementAsync() {
// use the call Effect
yield call(delay, 1000)
yield put({ type: 'INCREMENT' })
}

In place of doing yield delay(1000), we’re now doing yield call(delay, 1000).
What is the difference?

In case 1, the yield expression delay(1000) is assessed before it gets
passed to the call of next (the caller could be the middleware when run-
ning our codes. It could also be our test code that runs or compiles the
Generator function and repeats over the returned Generator). So what the
caller get is a Promise, as in the above test code.

In case 2, the yield expression call(delay, 1000) is required to the caller
of the next call just like put, and returns an Effect that instructs the mid-
dleware to call a given function with the given argument sets. In fact, nei-
ther the put nor call performs any dispatch or asynchronous call by itself,
they return plain JavaScript objects or functions.

http://www.generator.next

200 ◾ Mastering React

put({type: 'INCREMENT'}) // => { PUT: {type:
'INCREMENT'} }

call(delay, 1000) // => { CALL: {fn: delays, args:
[1000]}}

What happens is that the middleware checks the type of each yielded
Effect, then decides how to attain that Effect. It will convey an action to
the Store if the Effect type is a PUT. It will call the given function if the
Effect is a CALL.

This separation between Effect formation and Effect execution makes it
possible to test our Generator in a surprisingly easy way:

import test from 'tape'
import { put, call } from 'redux-saga/effects'
import { incrementAsync, delay } from './sagas'
test('incrementAsync Saga test', (assert) => {
const gen = incrementAsync()
assert.deepEqual(
gen .ne xt().value,
call(delay, 1000),
'incrementAsync Saga must call delay(1000)'
)
assert.deepEqual(
gen .ne xt().value,
put({type: 'INCREMENT'}),
'incrementAsync Saga must dispatch an INCREMENT action'
)
assert.deepEqual(
gen .ne xt(),
{ done: true, value: undefined },
'incrementAsync Saga must be done'
)
assert .e nd()

})

http://www.gen.next
http://www.gen.next
http://www.gen.next
http://www.assert.end

201

C h a p t e r 10

Forms

IN THIS CHAPTER

 ¾ Forms

 ¾ Form validation

Forms are the first and the most basic of HTML. We use the HyperText
Markup Language form element to create the JavaScript form. Form name
tags are used to define the name of the form used. The name of the form
here is “Login-form.” This name will be referenced in the JS form used in
the program.

The action tag is used to define the action, and the browser will be used
to tackle the form when it is going to be submitted. Here, we have taken
no action against anyone.

When the form is to be sent to the server, the mechanism to take action
might be either post or get. Both techniques have their own set of charac-
teristics and directions.

The input type tag states the type of inputs we want to generate in our
form. Here, we have declared the input type as “text,” which means that we
will input values as text in the textbox.

Next, we have taken the input type as “password” and the input values
will be password.

Moving ahead, we have taken input type as “button,” where on clicking,
we get the value of the form and get displayed.

Mastering React

DOI: 10.1201/9781003309369-10

10.1201/9781003309369-10

http://dx.doi.org/10.1201/9781003309369-10

202 ◾ Mastering React

Forms

Other than action and approaches, there are subsequent useful
approaches also which are provided by the HTML form element.

• submit (): The technique is used to submit the form.

• reset (): The technique is used to reset the form values.

REFERENCING FORMS
Now, we have formed the form element using HTML, but we are also
required to make its connectivity to JS. For this, we use the getElement-
ById () process that references the HTML form element to the JavaScript
codes.

The syntax of using the getElementById() method or techniques is as
follows:

let form = document.getElementById('Hello');Using the Id, we can
make the orientation.

Submitting the Form

Next, we want to submit the form by submitting its value reference, for
which we use the onSubmit() process. Mostly, to submit, we use a submit
button that submits the value typed in the form.

The following is the syntax for the submit() method:

<input type="submit" value="Subscribe">

When we submit the form, an action is taken right before the request is
submitted to the server, and it allows us to add an event auditor that allows
us to apply multiple authentications on the form. Finally, the form gets
ready with a blend of HTML and JavaScript codes.

Let us collect and use all these to form a Login form and SignUp form
and use both.

Login Form

html>
<head>
<title> Login-Form</title>
</head>
<body>
<h3> LOGIN HERE </h3>

Forms     ◾    203

<formform ="Login_form" onsubmit="submit_form()">
<h4> USERNAME</h4>
<input type="text" placeholder="Enter your e-mail id"/>
<h4> PASSWORD</h4>
<input type="password" placeholder="Enter the
password"/></br></br>
<input type="submit" value="Login"/>
<input type="button" value="Sign_Up" onClick="create()"/>
</form>
<script type="text/javascript">
function submit_form(){
alert("Login Successfully");
}
function create(){
window.location="signup .ht ml";
}
</script>
</body>
</html>

Output of the above code:

SignUp Form

<html>
<head>
<title> Sign_Up Page</title>
</head>
<body align="center" >
<h1> CREATE YOUR ACCOUNT IN A FEW STEPS</h1>
<table cellspacing="2" align="center" cellpadding="8"

border="0">
<tr><td> Name</td>
<td><input type="text" placeholder="Enter your full

name" id="n1"></td></tr>
<tr><td>Email </td>
<td><input type="text" placeholder="Enter your e-mail

id" id="e1"></td></tr>
<tr><td> Set Password</td>
<td><input type= "password" placeholder="Set the

password" id="p1"></td></tr>
<tr><td>Confirm Password</td>
<td><input type= "password" placeholder="Confirm your

password" id="p2"></td></tr>

http://www.signup.html

204 ◾ Mastering React

<tr><td>
<input type="submit" value="Create"

onClick="create_account()"/>
</table>
<script type="text/javascript">
function create_account(){
var n=document.getElementById("n1").value;
var e=document.getElementById("e1").value;
var p=document.getElementById("p1").value;
var cp=document.getElementById("p2").value;
//Codes for password confirmation
var letters = /^[A-Za-z]+$/;
var email_val = /^([a -zA-Z 0-9_\ .\-]) +\@(([a-zA -Z0-9

\-])+ \.)+([a-zA -Z0-9]{2,4 })+$/ ;
//other confirmations required codes
if(n==''||e==''||p==''||cp==''){
alert("Enter each details correctly");
}
else if(!letters .test(n))
{
alert('Name i must contain alphabets only');
}
else if (!email _val .test(e))
{
alert('Invalid e-mail format please enter valid e-mail
id');
}
else if(p!=cp)
{
alert("Passwords not matching");
}
else if(do cumen t.get Eleme ntByI d("p1 ") .va lue .l ength >
12)
{
alert("Password maximum length is 12");
}
else if(do cumen t.get Eleme ntByI d("p1 ") .va lue .l ength <
6)
{
alert("Password minimum length is 6");
}
else{

http://www.!letters.test
http://www.!email_val.test
http://www.document.getElementById
http://www..value.length
http://www.document.getElementById
http://www..value.length

Forms     ◾    205

alert("Your account has been formed successfully... ");
}
}
</script>
</body>
</html>

EVENT BUBBLING AND CAPTURING IN JAVASCRIPT
In JavaScript, dissemination of measures is done, which is known as
“Event Flow.” The arrangement or sequence in which the event is received
by the specific web page is referred to as event flow. Thus, in JS, the event
flow process is dependent on three factors:

 1. Event capturing

 2. Event target

 3. Event bubbling

The notion of event bubbling is utilized while constructing a web page or
a website using JS, where event managers are summoned when one ele-
ment is nested into the other element and is part of the same occurrence.
This approach or procedure is called as event bubbling, and it is utilized
while executing event flow for a web page. We can understand event bub-
bling as a classification of calling the event handlers when one element
is nested into the other element, and both the elements have registered
listeners for the same event. So, commencement from the deepest com-
ponent to its parents covering all its ancestors on the way to top to lowest,
call is performed.

Example of Event Bubbling

Let us look at the example to appreciate the working concept of event
bubbling:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width">
<title>Event Bubbling</title>

206 ◾ Mastering React

</head>
<body>
<div id="p1">
<button id="c1">I am the child button</button>
</div>
<script>
var parent = document.querySelector('#p1');
parent.addEventListener('click', function(){
console .l og("Parent has invoked");
});
var child = document.querySelector('#c1');
child.addEventListener('click', function(){
console .l og("Child has invoked");
});
</script>
</body>
</html>

The Output of the above Code
Explanation of the above Code
The above code is an HTML and JavaScript-based code.

We have used the div tag with div id = p1 and inside div, we have nested
a button with button id = c1.

Now, within the JavaScript segment, we have allocated the HTML ele-
ments (p1 and c1) using the querySelector () function to the adjustable
parent and the child.

After that, we have formed and included an event which is the click
incident to both the div element and child button. Also are formed two
functions that will help us to know the sequence of the execution of the
parent and the child. It means that if the child event is appealed first, “child
has invoked” will be printed, then “parent is invoked” will get printed on
the console window.

Thus, when the button is clicked, it will first print “child has
invoked,” which means that the function within the child event han-
dler performs first. Then it goes to the invocation of the div parent
function.

The arrangement has taken place due to the perception of the event
bubbling. Thus, in this way event bubbling takes place.

http://www.console.log
http://www.console.log

Forms     ◾    207

Stopping Bubbling

Beginning from the target and moving ahead toward the top of the bub-
bling, i.e., starting from the child to its paternal, it moves straight upward.
A handler can also decide to stop the bubbling when the event has been
treated entirely. In JavaScript, we use the event.stopPropagation () method.

Example:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width">
<title>Event Bubbling</title>
</head>
<body>
<div id="p1">
<button id="c1" onclick="event. stopPropagation()">I

am the child</button>
</div>
<script>
var parent = document.querySelector('#p1');
parent.addEventListener('click', function(){
console .l og("Parent is invoked");
});
var child = document.querySelector('#c1');
child.addEventListener('click', function(){
console .l og("Child is invoked");
});
</script>
</body>
</html>

In order to invoke the bubbling and also prevent the handlers from run-
ning on the current component, we can use event.stopImmediatePropaga-
tion () process. It is another way that stops the bubbling and implementation
of all the other handlers. This implies that if a component contains more
than one event handler on a single event, all event handlers that are bub-
bling will be stopped using this event.stopImmediatePropagation() method.

http://www.console.log
http://www.console.log

208 ◾ Mastering React

Event Capturing

Netscape Browser was the first browser to introduce the method of event
capturing. Event capturing is contradictory to event bubbling; in event
capturing, an event moves from the outer-most element to the target,
whereas in the case of event bubbling, the event movement begins from
the target to the outer-most element in the file, and event capturing is
achieved before event bubbling but capturing is used very rarely for the
reason that event bubbling is sufficient to handle the event flow.

Example of Event Capturing
Let us consider an example code to understand the working of event
capturing.

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width">
<title>Event Capturing</title>
</head>
<body>
<div id="p1">
<button id="c1">I am Child</button>
</div>
<script>
var parent = document.querySelector('#p1');
var child = document.querySelector('#c1');
parent.addEventListener('click', function(){
console .l og("Parent is invoked");
},true);
child.addEventListener('click', function(){
console .l og("Child is invoked");
});
</script>
</body>
</html>

Explanation of Code
The above-described codes are based on HTML and JS.

In the HTML portion, we have formed a div id holding id = p1. Inside
the div, we have nested and formed a button with id = c1.

http://www.console.log
http://www.console.log

Forms     ◾    209

Moving on to the JS scripts, we’ve used the querySelector () procedure
to assign the HTML element, i.e., the p1 id, to variable parent, and we’ve
done the same with the c1 id, which we’ve assigned to a changeable child.

Then we have used the click event and attached it to both the p1 div
and c1 buttons. It also has a function for printing the suitable message on
the console. It indicates that if the child event handler is executed first,
the console screen will display the “Child is invoked” message, and if the
parent event handler is invoked first, the console screen will display the
“Parent is invoked” message.

Next, we have added the third argument of addEventListner () to true
in order to allow event capturing in the parent div.

When we click on this button, it first performs the function attached to
the parent div.

Later, the onclick () function of the button runs or executes, and this
is due to event capturing, and owing to event capturing, the event of
the parent element is completed first, followed by the event of the target
element.

Redux has emerged as one of the unambiguous victors in the Flux or
Flux-like libraries sector. Redux is built on Flux and was developed to
address the issues of evaluating how data changes move through your
project. Dan Abramov and Andrew Clark created and designed Redux.
Both have been hired by Facebook to work on the React team since devel-
oping Redux. When Andrew Clark began aiding Dan with the effort of
finalizing Redux, he was working on version 4 of Flummox, the other
Flux-based library. The message on the npm pages for Flummox reads:
Eventually 4.x should be the last major issue but it never happened. If you
want the latest attributes, then use Redux instead. It is really great.

Redux is surprisingly small and precise, with only 99 lines of code.
We have stated that Redux is Flux-like, but it is not precisely Flux. It has

actions, action makers, a store, and action objects that are used to alter
the state. Redux simplifies the concepts or methods of Flux a bit by elimi-
nating the dispatcher and representing App states with a single unchal-
lengeable object. Redux also introduces the reducers, which are not a part
of Flux patterns. Reducers are the pure functions that return a new state
based on the existing states and an action: (state, action) => newState.

State

The concept of storing state in a single location is not that far-fetched.
We really accomplished that in the previous chapter. We saved it in the

210 ◾ Mastering React

App’s root directory. In pure the React or Flux apps, storing state in as
few objects as possible is recommended. In Redux, it is a rule.2 When
you hear that you have to save states in one place, it might seem like an
unreasonable requirement, specifically when you have dissimilar types
of data. Let us consider how this can be achieved with an App with
many different types of data, and we will look at a social media App
with states spread out across diverse components. The App itself has
user states. All of the messages are stored in state under that, each mes-
sage has its own states, and all of the posts are saved under the posts
component.

An application structured like this may work well, but as it raises it may
be hard to determine the overall state of the App. It may also become bulky
to understand where updates are coming from, seeing that each compo-
nent will change its own state with interior setState calls. What messages
are expanded? What posts have been read? To figure out these facts, we
must dive into the component tree and track down the state inside of dis-
crete components. The idea of keeping state in a single location isn’t so
far-fetched. We stored it in the root directory of the program. We could
construct the same App with Redux by moving all of the state data into a
single position

ACTIONS
The previous section introduced a significant Redux rule: App state
should be stored in a single unchallengeable object. Immutable means
this state object does not change. We will finally update this state object
by replacing it completely. In order to do this, we will require commands
about what changes. Actions provide instructions about what should
change in the App state and the necessary data to make those alters.
Actions are the only way to update the state of a Redux App. Actions
provide us with commands about what should alter, but we can also look
at them like receipts about the history of what has altered over time. If
users were to eliminate three colors, add four colors, and then rate five
colors, they would leave a trail of info usually; when we sit down to con-
struct an object-oriented App, we start by recognizing the objects, their
properties, and how they work when organized. Our thinking, in this
case, is noun-oriented. When building a Redux App, we want to shift our
thinking into being verb-oriented. How will the actions affect the data of

Forms     ◾    211

the state? Once you classify the actions, you can list them in a file called
constants .j s.

Action Payload Data

Actions are JavaScript literals that provide the commands essential to
make a state change. Most state changes also need some data. Which
record should I remove? What new info should I afford in a new record?
We refer to this data as the action’s payload. For example, when we dis-
patch an action like RATE_COLOR, we will want to know what color to
rate and what rating to apply to that color. This info can be passed right
with the action in the same Java Script literal (see the following Example).

Example: RATE_COLOR action

{
type: "RATE_COLOR",
id: "a5685c39-6bdc-4727-9188-6c9a00bf7f95"
Redux Docs, "Reducers".

}

This action states Redux to add a new color called Bright White to the
states. All of the info for the new color is involved in the action. Actions
are nice little packages that tell Redux how the state should alter. They also
include any related data that Redux will need to modify. In Reducers, our
entire state tree is saved in a single object. A potential complaint might be
that it is not modular enough, possibly because you consider modularity
as relating objects. Redux attains modularity via functions. Functions are
used to update parts of the state tree. These functions are termed reducers.

Reducers are functions that take the existing state along with action
as arguments and use them to form and return a new state. Reducers are
intended to update precise parts of the state tree, either leaves or branches,
and we can then compose reducers into one reducer that can handle
updating the entire state of our application given any action. The color
coordinator stores all of the state data in a single tree, and if we want to use
Redux for this application, we can form several reducers that each target
precise leaves and branches on our state’s tree.

The HTML DOM permits JavaScript to alter the style of HTML
elements.

http://www.constants.js.

212 ◾ Mastering React

Changing HTML Style
To modify or alter the style of an HTML element, use this syntax:

Docum ent.g etEle mentB yId(i d).st yle.p roper ty = new style
The subsequent example changes the style of a <p> element:

Example:

<html>
<body>
<p id="p2">Hello World!</p>
<script>
Docum ent.g etEle mentB yId(" p2"). style .colo r = "blue";
</script>
</body>
</html>

Using Events
The HTML DOM lets you execute codes when an event occurs.

Events are created by the browser when “things happen” to HTML
elements:

• An element is clicked on

• The page has loaded

• Input fields are altered

In this example, changes in the style of the HTML element with id="id1",
when the user clicks a button:

Example:

<!DOCTYPE html>
<html>
<body>
<h1 id="id1">My_Heading 1</h1>
<button type="button"
Oncli ck="d ocume nt.ge tElem entBy Id('i d1'). style .colo r =
'red'">
Click_Me!</button>
</body>
</html>

JavaScript(JS) Form Validation
HTML form validation can be done by the JavaScript(JS).

http://www.Document.getElementById
http://www..style.property
http://www.Document.getElementById
http://www..style.color
http://www.document.getElementById
http://www..style.color

Forms     ◾    213

If a form field (fname) is blank, this function alerts a message, and
returns false value to prevent the form from being submitted:

JS Example:
Function validateForm() {
Let x = document .for ms["myForm"]["fname"].value;
If (x == "") {
Alert("Name must be filled out");
Return false;
}
}

When the form is submitted, the following function can be called:

HTML Form Example:
<form name="myForm" action="/action _page . php"
onsubmit="return validateForm()" method="post">
Name: <input type="text" name="fname">
<input type= "submit" value="Submit">
</form>

JavaScript can confirm numeric input.
JavaScript is often used to authorize numeric input:
Please input the number between 1 and 10
Submit

Automatic HTML Form Authentication
HTML form authentication can be performed automatically by the
browser.

If a form field (fname) is blank, the required features prevents this form
from being submitted:

HTML Form Example:

<form action="/action _page . php" method="post">
<input type="text" name="fname" required>
<input type="submit" value="Submit">
</form>

Automatic HTML form authentication does not work in Internet
Explorer 9 or earlier.

http://www.document.forms
http://www.action_page.php
http://www.action_page.php

214 ◾ Mastering React

DATA VALIDATION
Data validation is the process of confirming that user input is clean, cor-
rect, and useful.

Typical validation tasks are:

• Has the user filled in all mandatory fields?

• Has the user filled a valid date?

• Has the user filled text in a numeric field?

Most often, data authentication aims to ensure correct user input.
Validation can be defined by many different approaches and deployed

in several ways.
A web server executes server-side validation after the input has been

sent to the server.
A web browser executes client-side validation before the input is sent to

a web server.

HTML CONSTRAINT VALIDATION
HTML5 introduced a new HTML validation method called constraint
validation.

HTML constraint validation is based on:

• Constraint validation HTML Input Features

• Constraint validation CSS Pseudo Selectors

• Constraint validation DOM Properties and Approaches

• Constraint Validation HTML Input Attributes

ATTRIBUTE DESCRIPTION

• Disabled specifies that the input element should be disabled.

• Max specifies the extreme value of an input element.

• Min specifies the lowest value of an input element.

• Pattern specifies the value patterns of an input element.

• Required specifies that the input field needs an element.

• Type specifies the type of an input element.

For a full list, go to HTML Input Attributes.

Forms     ◾    215

CONSTRAINT VALIDATION CSS PSEUDO SELECTORS

• Selector explanation

• :disabled Selects input elements with the "disabled" feature
detailed

• :invalid Selects input elements with invalid values

• :optional Selects input elements with no "required" feature
specified

• :required Selects input elements with the "required" feature
specified

• :valid Selects input elements with valid v

• JavaScript HTML DOM animation

LEARN TO CREATE HTML ANIMATIONS USING JAVASCRIPT
A Basic Web Page

To determine how to make HTML animations with JavaScript, we will use
a simple web page:

Example:

<!DOCTYPE html>
<html>
<body>
<h1>My First JavaScript Animation Tutorial</h1>
<div id="animation">My animation will go from here</
div>
</body>
</html>

CREATE AN ANIMATION CONTAINER
All animations should be the relative to a container element.

Example:

<div id ="container">
<div id ="animate">My animation will go from here</div>
</div>

216 ◾ Mastering React

STYLE THE ELEMENTS
The container element should be formed with style = “position: relative.”

The animation element should be formed with style = “position:
absolute.”

Example:

#container {
Width: 400px;
Height: 400px;
Position: relative;
Background: yellow;
}
#animate {
Width: 50px;
Height: 50px;
Position: absolute;
Background: red;
}

ANIMATION CODE
JavaScript animations are done by steady programming modification in
an element’s style.

A timer calls the change. When the timer interval is minor, the anima-
tion looks continuous.

The basic codes is:
Example:

Id = setInterval(frame, 5);
Function frame() {
If (/* test for finished */) {
clearInterval(id);
} else {
/* codes to modify the element style */
}
}

Create the Full Animation Using JavaScript JS

Example:

Function myMove() {
Let id = null;
Const elem = document.getElementById("animate");

Forms     ◾    217

Let pos = 0;
clearInterval(id);
id = setInterval(frame, 5);
function frame() {
if (pos == 350) {
clearInterval(id);
} else {
Pos++;
Elem .style . top = pos + 'px';
Elem .style .l eft = pos + 'px';
}
}
}

JavaScript can be accomplished when an event occurs, like when a user
clicks on an HTML element.

To accomplish code when a user clicks on an element, add JavaScript
codes to an HTML event feature:

Onclick=JavaScript

Examples of HTML events:

• When a user clicks the mouse

• When a web page has loaded

• When an image has been loaded

• When the mouse moves over an element

• When an input field is changed

• When an HTML form is submitted

• When a user strokes a key

In the following example, the content of the <h1> element is changed
when a user clicks on it:

Example:

<!DOCTYPE html>
<html>
<body>

http://www.Elem.style.top
http://www.Elem.style.left

218 ◾ Mastering React

<h1 onclick="this.innerHTML = ' Ooops!'">Click on the
text!</h1>

</body>
</html>

In the below example, a function is called from the event handler:
Example:

<!DOCTYPE html>
<html>
<body>
<h1 onclick="changeText(this)">Click on the text!</h1>
<script>
Function changeText(id) {
Id.innerHTML = "Ooops!";
}
</script>
</body>
</html>

FORM VALIDATION
Form validation in React allows an error or bug message to be displayed
if the user has not properly filled out the form with the expected type of
input.

There are numerous ways to authorize forms in React; however, this
shot will focus on generating a validator function with validation rules

The codes below assume that the user is familiar with the technique
and elements required to make a React form. The form validation rules are
used in the handleChange function, which processes user input.

A React functional component is a simple JavaScript function that
accepts props and returns a React element.

After the introduction of React Hooks, writing functional components
has become the standard way of writing React components in modern Apps.

STYLE THE ELEMENTS

• The container element should be designed with style = “position:
relative.”

• The animation element should be designed with style = “position:
absolute.”

Forms     ◾    219

Example:

#container {
width: 400px;
height: 400px;
position: relative;
background: yellow;
}
#animate {
width: 50px;
height: 50px;
position: absolute;
background: red;
}

ANIMATION CODE
JavaScript animations are done by programming steady variations in an
element’s style. The changes are called by the timer. When the timer inter-
val is small, the animation looks continuous.

The basic codes is:

id = setInterval(frame, 5);

function frame() {
if (/* test for finished */) {
clearInterval(id);
} else {
/* codes to modify the element style */
}
}

Design the Full Animation Using JavaScript

Example:

function myMove() {
let id = null;
const elem = document.getElementById("animate");
let pos = 0;
clearInterval(id);
id = setInterval(frame, 5);
function frame() {
if (pos == 350) {

220 ◾ Mastering React

clearInterval(id);
} else {
pos++;
elem .style . top = pos + 'px';
elem .style .l eft = pos + 'px';
}
}
}

The addEventListener() process

Example:
Add the event listener that fires when a user clicks on the button:

docum ent.g etEle mentB yId (" myBtn ").ad dEven tList ener(
"clic k", displayDate);

• The addEventListener() process attaches an event handler to the
definite element.

• The addEventListener() process assigns an event handler to an ele-
ment without overwriting present event handlers.

• You may add as many event handlers as you like to a single element.

• You can add as many event handlers of the same type to one element,
i.e. two “click” events.

• You can also add event listeners to any DOM object, not only HTML
elements. i.e., the window object.

• The addEventListener() method makes it easier to regulate how the
event reacts to the bubbling.

• When using the addEventListener() method or technique, the
JavaScript is detached from the HTML markup, for better readabil-
ity, and lets you add the event listeners even when you don’t control
the HTML markup.

• You can easily remove the event listener by using the removeEventLis-
tener() method or techniques.

Syntax
element.addEventListener(event, function, useCapture);

The first argument is the event type (like “click” or “mousedown” or any
other HTML DOM Event.)

http://www.elem.style.top
http://www.elem.style.left
http://www.document.getElementById

Forms     ◾    221

The second parameter is the function we need to call when the event
happens.

The third parameter is a boolean value requiring whether to use event
bubbling or event capturing. This parameter is optional.

Note that you do not use the “on” prefix for the event; use “click” in its
place of “onclick.”

Add the Event Handler to an Element

Example:
Alert "Hello_World!" when the user clicks on an element.

element.addEventListener("click", function(){
alert("Hello_World!"); });

You can also refer to external “named” fun:

Example:
Alert “Hello_World!” when the user clicks on an element.

DOM NODES
According to the W3C HTML DOM standards, everything in an HTML
document is the node:

• The entire document is the document node

• Every HTML element is the element node

• The text inside HTML elements are the text nodes

• Every HTML feature is an attribute node (deprecated)

• All comments are comment nodes

DOM HTML TREE
With the HTML DOM, all the nodes in the node hierarchy can be retrieved
by JavaScript JS.

New nodes can be designed, and all nodes can be altered or deleted.

NODE RELATIONSHIPS
Nodes in the node tree are connected in a hierarchical manner.

The terms parent, child, and sibling node are used to define the
relationships.

222 ◾ Mastering React

In the node tree, the top node has termed the root(or root node).
Every node has precisely one parent, except the root (which has no

parent).
A node can have numerous children.
Siblings (brothers or sisters) are nodes with the same parent.

<html>
<head>
<title>DOM_Tutorial</title>
</head>
<body>
<h1>DOM Lesson 1</h1>
<p>Hello_world!</p>
</body>
</html>

Node Tree

From the above HTML you can read:

<html> is the root node
<html> has no parents node
<html> is the parent node of the <head> and <body>
<head> is the first child node of <html>
<body> is the last child node of <html>

and:

<head> has one child node: <title>
<title> has one child node (a text node): "DOM Tutorials"
<body> has two children: <h1> and <p>
<h1> has one child: "DOM Lesson 1"
<p> has one child: "Hello_world!"
<h1> and <p> are siblings

NAVIGATING BETWEEN NODES
You can use the subsequent node properties to navigate among nodes with
JavaScript JS:

parentNode
childNodes[nodenumber]
firstChild

Forms     ◾    223

lastChild
nextSibling
previousSibling

Child Nodes and Node Values

A common error in the DOM processing is to expect an element node to
hold text.

Example:

<title id="demo">DOM_Tutorial</title>

The element node <title> (in the above example) does not hold text.
It contains the text node with the value “DOM_Tutorial.”
The value of the text nodes can be retrieved by the node’s innerHTML

property:

myTitle = docum ent.g etEle mentB yId(" demo").inn erHTM L;

Retrieving the innerHTML property is the same as accessing the node-
Value of the first child:

myTitle = docum ent.g etEle mentB yId (" demo").fir stChi
ld.no deVal ue;

Retrieving the first child can also be done are this:

myTitle = docum ent.g etEle mentB yId(" demo").chi ldNod
es[0] .node Value ;

All the (3) subsequent examples retrieve the text of an <h1> element
and copies it into a <p> element:

Example:

<html>
<body>
<h1 id="id01">My First_Page</h1>
<p id="id02"></p>
<script>
docum ent.g etEle mentB yId(" id02").inn erHTM L = docum ent.g
etEle mentB yId(" id01").inn erHTM L;
</script>
</body>
</html>

http://www.document.getElementById
http://www.document.getElementById
http://www..firstChild.nodeValue;
http://www..firstChild.nodeValue;
http://www.document.getElementById
http://www.document.getElementById
http://www.document.getElementById
http://www.document.getElementById

224 ◾ Mastering React

Example:

<html>
<body>
<h1 id="id01">My First_Page</h1>
<p id="id02"></p>
<script>

docum ent.g etEle mentB yId(" id02").inn erHTM L = docum ent.g
etEle mentB yId(" id01").fir stChi ld.no deVal ue;

</script>
</body>
</html>

Example:

<html>
<body>
<h1 id="id01">My First_Page</h1>
<p id="id02">Hello World !</p>
<script>

docum ent.g etEle mentB yId(" id02").inn erHTM L = docum ent.g
etEle mentB yId(" id01").chi ldNod es[0] .node Value ;

</script>
</body>
</html>

InnerHTML
In this section, we use the inner HTML property to retrieve the content

of an HTML element.
However, learning the other approaches above is useful for understand-

ing the tree (hierarchy) structure and the navigation of the DOM.

DOM ROOT NODES
There are two special properties that let access to the full document:

 1. document .body : The body of a document

 2. document.documentElement: The full document

http://www.document.getElementById
http://www.document.getElementById
http://www.document.getElementById
http://www..firstChild.nodeValue;
http://www.document.getElementById
http://www.document.getElementById
http://www.document.getElementById

Forms     ◾    225

Example:

<html>
<body>
<h2>JavaScript JS HTMLDOM</h2>
<p>Displaying document .bo dy</p>
<p id="demo"></p>
<script>

docum ent.g etEle mentB yId(" demo").inn erHTM L = document
.body .innerHT ML;

</script>
</body>
</html>

Example:

<html>
<body>
<h2>JavaScript JS HTMLDOM</h2>
<p>Displaying document.documentElement</p>
<p id="demo"></p>
<script>
docum ent.g etEle mentB yId(" demo").inn erHTM L = document.
documentElement.innerHTML;
</script>
</body>
</html>

The nodeName Property

• The nodeName property specify the name of a node.

• nodeName is read-only.

• nodeName of an element node is the similar as the tag name.

• nodeName of a feature node is the features name.

• nodeName of the text node is always #text.

• nodeName of the document node always the #document.

http://www.document.body
http://www.document.getElementById
http://www.document.body.innerHTML;
http://www.document.body.innerHTML;
http://www.document.getElementById

226 ◾ Mastering React

Example:

<h1 id="id01">My First_Page</h1>
<p id="id02"></p>
<script>

docum ent.g etEle mentB yId(" id02").inn erHTM L = docum ent.g
etEle mentB yId(" id01").nod eName ;

</script>

Note: nodeName always holds the uppercase tag name of the HTML
element.

Property of nodeValue

The nodeValue attribute defines the node’s value.

• nodeValue for element nodes is null

• nodeValue for text nodes in the text itself

• nodeValue for feature nodes is the feature value

The nodeType Property

The nodeType property is read-only. It returns the type of node.

Example:

<h1 id="id01">My First_Page</h1>
<p id="id02"></p>
<script>

docum ent.g etEle mentB yId(" id02").inn erHTM L = docum ent.g
etEle mentB yId(" id01").nod eType ;

</script>

Add Several Event Handlers to the Same Element

The addEventListener() method lets you to add many events to the same
element, without overwriting current events:

http://www.document.getElementById
http://www.document.getElementById
http://www.document.getElementById
http://www.document.getElementById
http://www.document.getElementById
http://www.document.getElementById

Forms     ◾    227

Example:

element.addEventListener("click", myFun ction);
ele ment. addEv entLi stene r("cl ick", mySecondFunction);

You can add events of dissimilar types to the same element:

Example:

element.addEventListener("mouseover", myFunction);
element.addEventListener("click", mySecondFunction);
element.addEventListener("mouseout", myThirdFunction);

Add the Event Handler to the Window Object

The addEventListener() function allows you to add event listeners to any
HTML DOM object, such as HTML document, HTML elements, the win-
dow object, or other event-supporting objects, such as XMLHttpRequest
objects.

Example:
When the user resizes the window, add an event listener that fires:

window.addEventListener("resize", function(){
docum ent.g etEle mentB yId(" demo").inn erHTM L = sometext;
});

PASSING PARAMETERS
When passing parameter values, use an “anonymous function” that calls
the specified function with the parameters:

Example:
element.addEventListener("click", function(){

myFunction(p1, p2); });

EVENT BUBBLING OR EVENT CAPTURING?
In the HTML DOM, there are two methods for event propagation: bub-
bling and capturing.

Event propagation is a method of specifying the order of elements when
an event happens. If you have a p> element inside a div> element and the

http://www.document.getElementById

228 ◾ Mastering React

user clicks on the p> element, which element’s “click” event should be
handled first?

The innermost element’s event is treated first, followed by the outer-
most: the p> element’s click event is handled first, followed by the div>
element’s click event.

The innermost element’s event is treated first, followed by the outer-
most: the p> element’s click event is handled first, followed by the div>
element’s click event.

The outermost element’s event is treated first, followed by the inner-
most: the div> element’s click event is handled first, followed by the p>
element’s click event.

With the addEventListener() method you can stipulate the propagation
type by using the “useCapture” parameter:

addEventListener(event, function, useCapture);The default value is
false or 0, which will use the bubbling propagation, when the value is set
to true or 1, the event uses the capturing propagation.

Example:

docum ent.g etEle mentB yId(" myP") .addE ventL isten er("c
lick" , myFunction, true) ;docu ment. getEl ement ById("myDi
v").a ddEve ntLis tener ("cli ck", myFunction, true);The
removeEventListener() process

The removeEventListener() method eliminates event handlers that have
been involved with the addEventListener() process:

Example -elem ent.r emove Event Liste ner(" mouse move" ,
myFunction);

DIFFERENT APPROACH TO PLACE FORM
THE VALIDATION LOGIC

Approach 1: Placing form the validation logic only in server side.

 If we place on server-side form validation logic, then the net-
work round trips between the client(browser) and the server will be
improved if the form page is excluded by the server numerous times.

Approach 2: Placing form authentication logic only on the client-side.

http://www.document.getElementById
http://www.-element.removeEventListener

Forms     ◾    229

Pros: If we place only the client-side form validation logic (JavaScript),
then it decreases the network round trips between client and server
as the form validation takes place on the client-side itself without
going to the server.

Approach 3: Placing form authentication logic both on the server side
and client side.

Pros: Write both client- and server-side authentication logic, so the
server-side form validation takes place even though client-side
form authentication is not done.

Cons: If client-side form authentication is executed, then it will also
perform server-side form authentication, which degrades the
performance.

Approach 4: Place form authentication logic both on the server side
and client side, but accomplish server-side form authentication logic
only when client-side form validation logic is not affected.

 Write both client-side and server-side form authentications, but
enable server-side form authentications only when client-side form
validations are not done. This client(browser) directs a flag to the
server, indicating whether client-side form authentications are done
or not.

Conclusion: Approach 4 is the best approach or method. Compared
to the other approach, Approach 4 does not have a performance
issue because the server side will perform only when client-side form
authentications are not done.

How we will discuss them here? Our main focus is learning the fourth
method. But if you detect it, then to clear the fourth approach and first
we have to learn the first, second, and third approaches or methods.
The fourth approach is internally used in the first, second, and third
approaches or methods. Therefore, we will converse with them one by one,
with examples of the web Apps.

<body>
<h1 style="text-align:center; color:blue">Election
Commission of India</h1>
<div>

230 ◾ Mastering React

<form action="checkvoter" method="post">
<table style="background-color: #E4E4E4">
<tr>
<td>Name::</td>
<td><input type="text" name="pname"></td>
</tr>
<tr>
<td>Age::</td>
<td><input type="password" name="page"></td>
</tr>
<tr>
<td><input type="submit" value=" To check Voting
Eligibility"></td>
<td><input type="reset" value="Cancel"></td>
</tr>
</table>
</form>
</div>
</body>

Server-Side Form Validation Logic

Now let us see how to develop or create a Java web App with server-side
form validation logic. In this App, no need to modify the input .ht ml and
web .x ml file. Only the servlet components will be modified or altered.
Add the following logic in the servlet components before business logic.

// get form data or info
name = req.getParameter("pname");
tage = req.getParameter("page");
/* Server side form validation logic:- */
// Validate or Authenticate name
if (name == Null || name .leng th()==0 || name .equa ls("
")) {
// " " => empty string
pw.println("<h4 style='color:red'>Person name must
required.</h4>");
return; // stop execution
} else if(name .leng th() <= 5){
pw.println("<h4 style='color:red'>"+
"Person name must contain minimum 5 Characters.</h4>");
return; // stop execution
}

http://www.input.html
http://www.web.xml
http://www.name.length
http://www.name.equals
http://www.name.length

Forms     ◾    231

// Validate or Authenticate age
if (tage == '/0' || tage .leng th() == 0 || tage .equa
ls(" ")) {
pw.println("<h4 style='color:red'>Person age is
required.</h4>");
return; // stop execution
} else {
try {
// if age is not numeric throw exception
age = Integer.parseInt(tage);
// check age is valid or not
if (age <= 0 || age >= 125) {
pw.println("<h4 style='color:red'>"+
"Person age must be in between 1 to 125 .</h4>");
return; // stop execution
}
} catch(NumberFormatException nfe) {
pw.println("<h4 style='color:red'>Person age must be
in number.</h4>");
return; // stop execution
}
}
// business logic
// remaining logic
The form validation logic,
// get form data
name = req.getParameter("pname");
tage = req.getParameter("page");
/* Server side form validation logic */
errList = new ArrayList<String>();
// name validation logic
if(name == '/0' || name .leng th()==0 || name .equa ls(" ")) {
errList .a dd("Person name must required");
}else if(name .leng th() <= 5){
errList .a dd("Person name must contain minimum 5
Characters.");
}
// age validation logic
if(tage == '/0' || tage .leng th() == 0 || tage .equa ls("
")) {
errList .a dd("Person age is required");
} else {

http://www.tage.length
http://www.tage.equals
http://www.tage.equals
http://www.name.length
http://www.name.equals
http://www.errList.add
http://www.name.length
http://www.errList.add
http://www.tage.length
http://www.tage.equals
http://www.errList.add

232 ◾ Mastering React

try {
age = Integer.parseInt(tage);
// check age is valid or not
if (age <= 0 || age >= 125) {
errList .a dd("Person age must be between 1 to 125.");
}
} catch(NumberFormatException nfe) {
errList .a dd("Person age must be numeric value.");
}
}
// display form authentication error messages
if(errList .si ze() != 0) {
for (String errMsg : errList) {
pw.println("" + errMsg +
"");
}
return; // stop
}
// business logic
// remaining logic

Client-Side Form Validation

Now, we will clear only the client-side form authentication logic for the
previous Java web App. HTML5 is also supplying some form authentica-
tion rules like essential, min, max, max length, etc.

Form Validation Using HTML5
<input type="text" name= "pname" required="required"

maxlength="20">
<input type="password" name= "page" required="required"

min="1" max="125">

Client-Side Form Validation using HTML for Java Web Apps
Working with HTML supplied form authentication logic has the follow-
ing restrictions:

• Very few form authentications are available.

• We cannot customize form authentication error messages.

• Writing some authentication logic through JavaScript and some
logic through HTML5 does not look good.

http://www.errList.add
http://www.errList.add
http://www.errList.size

Forms     ◾    233

We can write JavaScript JS code directly in HTML file as <script> tag
before </head> tag, but anyone can see those codes in browser through
view page source (Ctrl+U). Therefore, it is not suggested to write JavaScript
JS code in the HTML file itself to improve the reusability of JavaScript
code across the multiple web pages given by different components, and to
hide the JavaScript code source visibility from the browser’s view resource
choices, it is recommended to place JavaScript codes in a file (generally
we use “js” as a file name) and link that file to multiple or several web
components.

webcontent
|=> input .ht ml
|=> js
|=> validation.js

Client-Side Form Validation in Marriage App input
.ht ml Form Page Using JavaScript

• A person’s name is needed.

• A person’s name must have a minimum of five characters.

• Personage is needed.

• Personage must be the numeric value.

• Personage must be there between 1 to 125.

• Parameter data types and the variable data types will be marked
dynamically based on the values that are allocated. No return type is
needed for the function but the function can return any value.

The Simple JavaScript JS Codes (validation . js) for the Form Validation

function validate(frm) {
// read form data
let name = frm .pname .val ue;
let age = frm .page .val ue;
let flag = true;
// client side form validation logic
if(name==""){
alert("Person name is needed");
frm .pname .fo cus(); // focus the text box

http://www.input.html
http://www.validation.js
http://www.input.html
http://www.input.html
http://www.validation.js
http://www.frm.pname.value;
http://www.frm.page.value;
http://www.frm.pname.focus

234 ◾ Mastering React

flag = false;
} else if(name .leng th < 5) { // min length
alert("Person name must have a minimum of 5
Characters");
frm .pname .fo cus(); // focus the text box
flag = false;
}
if(age==""){
alert("Person age is needed");
frm .page .fo cus(); // focus the text box
flag = false;
} else if(isNaN(age)) { // must be numeric
alert("Personage is not a number");
frm .page .fo cus(); // focus the text box
flag = false;
} else if(age<1 || age>125) { // age range
alert("Personage must be in between 1 to 125");
frm .page .fo cus(); // focus the text box
flag = false;
}
return flag;
// true => form is error free
// false => form validation errors
}

In HTML file the JavaScript JS file is used through <script> tag,

<head>
<script type="text/javascript" src="js/validation . js">
</script>
</head>

In HTML file, the function is termed as:

<form action= "checkvoter" method="post"
onsubmit="return validate(this)">

Why do we use return statements? When the form is invalid, then we
should not perform the business logic, so we display the error message
and return it. Then return, it gives control back to the caller method or
technique, and implementation will be stopped.

http://www.name.length
http://www.frm.pname.focus
http://www.frm.page.focus
http://www.frm.page.focus
http://www.frm.page.focus
http://www.validation.js

Forms     ◾    235

The HTML file (input .ht ml):

<!DOCTYPE html>
<html>
<head>
<script type="text/javascript" src="js/validation . js">
</script>
</head>
<body>
<h1 style="text-align: center; color: blue">Election
Commission of India</h1>
<div>
<form action="checkvoter" method="post"
onsubmit="return validate(this)">
<table style="background-color: #E4E4E4">
<tr>
<td>Name::</td>
<td><input type="text" name="pname"></td>
</tr>
<tr>
<td>Age::</td>
<td><input type="password" name="page"></td>
</tr>
<tr>
<td><input type="submit" value=" To Check Voting
Eligibility"></td>
<td><input type="reset" value="Cancel"></td>
</tr>
</table>
</form>
</div>
</body>
</html>

See the source code for this App on GitHub. For invalid input, you will
get the same result as given in the image.

Simple JavaScript Error Message
In the above App, the error message came into the screen and it blocks
the entire form. Therefore, it is not the better technique or approach. We
should write a JavaScript JS file such that it should not block the entire
screen.

http://www.input.html
http://www.validation.js

236 ◾ Mastering React

We can use document.getElementById() method or process to display
the error message within the same line. It won’t block the entire document
or code. We can replace the codes of the above validation . js file with the
below codes:
function validate(frm) {
//read from data
var name = frm .pname .val ue;

var age = frm .page .value;
// write client side form validation logic
if (name == "") {
docum ent.g etEle mentB yId(" pname Err") .inne rHTML =
"Person name is required";
frm .pname .fo cus();
return false;
}
if (age == "") {
docum ent.g etEle mentB yId(" pageE rr"). inner HTML =
"Person age is required";
frm .page .fo cus();
return false;
} else if (isNaN(age)) {
docum ent.g etEle mentB yId(" pageE rr"). inner HTML =
"Person age must be in numeric value";
frm .page .fo cus();
return false;
} else {
if (age <= 0 || age > 125) {
docum ent.g etEle mentB yId(" pageE rr"). inner HTML =
"Person age must be in between 1 to 125";
frm .page .fo cus();
return false;
}
}
return true;
}

In the HTML file, add the span tag with name and age. Use id from the
validation . js file.

<head>
<script type="text/javascript" src=js/validation . js>
</script>

http://www.validation.js
http://www.frm.pname.value;
http://www.frm.page.value;
http://www.document.getElementById
http://www.frm.pname.focus
http://www.document.getElementById
http://www.frm.page.focus
http://www.document.getElementById
http://www.frm.page.focus
http://www.document.getElementById
http://www.frm.page.focus
http://www.validation.js
http://www.validation.js

Forms     ◾    237

</head>
<body>
<div style='text-align: center'>
<h1 style='color: blue'> Election Commission of

India</h1>
<form action="checkvoter" method="post"
onsubmit="return validate(this)">
Name: <input type="text" name="pname">

Age: <input type="password" name="page">

<input type="submit" value=" To Check Voting

eligibility">
<input type="reset" value="Cancel">
</form>
</div>
</body>

A problem with the above form the validation .j s: After the error or fault
message, if we pass the right values, it also displays the previous error or
fault message. But it should not display the error or fault message after
giving the right input.

JavaScript with getElementById - Form Validation in Java Web Application
To solve the problem, add these lines before or after reading the above
form data in the validation .j s.

docum ent.g etEle mentB yId(" pname Err") .inne rHTML ="";
d ocume nt.ge tElem entBy Id("p ageEr r").i nnerH TML=" ";

JavaScript with getElementById Solution - Form
Authentication in Java Web Application
The Drawback of Writing Form Authentication Logic only on Client Side
The JavaScript codes can be blocked through browser settings, viruses,
storms, etc. If JavaScript JS is blocked in the browser, then the user can
send the wrong input values. Since the form authentication logic is not
written on the server side, therefore, the client-side form authentication
logic becomes useless.

To visualize how it works: Disable the JS JavaScript codes in your
browser and again run the above web App. How to block JavaScript JS
codes in the chrome web browser?

http://www.validation.js:
http://www.validation.js.
http://www.document.getElementById
http://www.document.getElementById

238 ◾ Mastering React

In the Google chrome browser software => Go to the Settings => In
“Privacy and security” Section => Site Settings => JavaScript => Block
the JavaScript.

In Firefox, type “about:config” in browser’s address bar => Click on
“Accept the risk and continue” => Type “JavaScript” in the “Search” box
=> Double-click the “JavaScript.enabled” line to toggle the setting in
between “true” and “false” as desired or need.

After disabling or putting off the JavaScript in browser software, if we
give the request to the servlet components without entering input, we will
get an HTTP status code of 500 error.

When JavaScript is blocked, we should notify the end user with a mes-
sage saying “JavaScript is blocked in your web browser.” For this purpose,
the <noscript> tag should be used.

Using the <noscript> tag, we need to pass a guiding message or output
to the end user through browser settings if it is disabled or turned off.
Place <noscript> tag into the body part of the HTML file. Example of
<noscript> tag:

<noscript>

JavaScript has blocked,
Enable the JavaScript
</noscript>

The HTML files after placing the <noscript> tag:

<head>
<script type="text/javascript" src=js/validation . js>
</script>
</head>
<body>
<noscript>
JavaScript has blocked,

Enable the
JavaScript
</noscript>
<div style='text-align: center'>
<h1 style='color: blue'>Election Commission of

India</h1>
<form action="checkvoter" method="post"
onsubmit="return validate(this)">

http://www.validation.js

Forms     ◾    239

Name: <input type="text" name="pname">

 Age: <input type="password" name="page">

 <input type="submit" value=" Check Voting

eligibility">
<input type="reset" value="Cancel">
</form>
</div>
</body>

Now we will get a guiding message displayed to enable JavaScript JS.
The below image shows the current output.

JavaScript JS is disabled in the browser - Form validation in Java web
app

From Validation Logic in the Client and Server Side

If we associate the previous two approaches or methods, we can achieve
this approach where form authentication logic is made available at both
the client side and server side.

• Merits: If the form validation logic is not accomplished on the client
side, it will definitely be executed or run on the server side. Therefore,
there is no chance of wrong info or data.

• Demerits: If the form is validated at the client side, then it will also
be validated on the server side, we are confirming the same logic
twice. Let us assume that if the validation logic is of 5,000 lines of
codes, then those codes will be implemented or executed twice at
different places. So, it is not a good approach or procedure.

Form Validation Logic in Client and Server Side but Validate at
the Server Side Only if Client-Side Authentication Not Done

Write client-side and server-side form validations but enable server-side
form validations only when client-side form validations are not done. This
client(browser) sends the flag to the server representing whether client-
side form validations are done or not.

For this purpose, we should use hidden boxes in the HTML form.
Using hidden box support, the form page can send a signal to the server or
servlet constituent along with the request whether client-side JS JavaScript

240 ◾ Mastering React

form validations are implemented or not? If already performed at the cli-
ent side or user end, then don’t perform server-side form validations.
In HTML file inside the <form> tag:

<form>
<!-- hidden box -->
<input type="hidden" name="vflag" value="no">
</form>

In JavaScript file, inside the function,

function validate(frm) {
// set vflag value to "yes" indicating
// client side form validations are done
frm .vflag .va lue = "yes";
// remaining logic
}
In the Servlet component or module, read from that
data and check the value of flag,
// variable
String vstatus = null;
// get client side form validation status
vstatus = req.getParameter("vflag");
if(vstatus .equa ls("no")) {
/* If client side validations are not done,
* then only perform server side authentications.
*/
// server side form validation logic
} else {
// when client side form validation are done
age = Integer.parseInt(tage);
}

• Form Validation

• JavaScript form validation

• Example of JavaScript authentication

• JavaScript email validation

It is necessary to validate the form submitted by the user because it can
have unsuitable values. So, validation is a must to substantiate the user.

JavaScript JS provides the facility to validate the form on the client side,
so data processing will be faster than server-side validation. Most web
developers prefer JavaScript JS form validation.

http://www.frm.vflag.value
http://www.vstatus.equals

Forms     ◾    241

Using JavaScript, we can validate name, password, email, date, cell
numbers, and other data.

JavaScript Form Validation Example
In the example, we are going to validate the name and password. The
name cannot be empty, and the password cannot be less than six charac-
ters long.

Here, we are confirming the form on the form submitted. The user will
not be sent to the next page unless the values entered are correct.

<script>
function validateform(){
var name =document .myform .name .v alue;
var password =document .myform .password .v alue;
if (name==null || name==""){
alert("Name can not be blank");
return false;
}else if(password .leng th<6){
alert("Password must be least 6 characters long.");
return false;
}
}
</script>
<body>
<form name="myform" method="post" action="abc .j sp"
onsubmit="return validateform()" >
Name: <input type="text" name="name">

Password: <input type="password"
name="password">

<input type="submit" value="register">
</form>

Test It Now

JavaScript Retype Password Authentication

<script type="text/javascript">
function matchpass(){
var first passw ord =d ocume nt .f1 .pass word . value ;
var secon dpass word= docum ent .f 1 .pas sword 2 .val ue;
if(firstpassword==secondpassword){
return true;

http://www.name=document.myform.name.value;
http://www.password=document.myform.password.value;
http://www.password.length
http://www.abc.jsp
http://www.firstpassword=document.f1.password.value;
http://www.secondpassword=document.f1.password2.value;

242 ◾ Mastering React

}
else{
alert("password must be the same!");
return false;
}
}
</script>
<form name="f1" action="register .j sp" onsubmit="return
matchpass()">
Password:<input type="password" name=" password"

/>

Re-enter Password:<input type= "password"

name="password2"/>

<input type="submit">
</form>

Test It Now
JavaScript Number Validation
Let us validate the text field for numeric values only. Here, we are using
isNaN() function.

<script>
function validate(){
var num =document .myform .num .v alue;
if (isNaN(num)){
docum ent.g etEle mentB yId(" numlo c"). i nnerH TML=" Enter the

Numeric value only";
return false;
}else{
return true;
}
}
</script>
<form name="myform" onsubmit="return validate()" >
Number: <input type= "text" name="num"><span

id="numloc">

<input type="submit" value="submit">
</form>

Test It Now
JavaScript Validation with Image

http://www.register.jsp
http://www.num=document.myform.num.value;
http://www.document.getElementById

Forms     ◾    243

Let us see an interactive JavaScript form authentication example that dis-
plays correct and incorrect images if the input is correct or incorrect.

<script>
function validate(){
var name =document .f1 .name .v alue;
var password =document .f1 .password .v alue;
var status=false;
if(name .leng th<1){
docum ent.g etEle mentB yId(" namel oc"). inner HTML=
" Please enter your full

name";
status=false;
}else{
docum ent.g etEle mentB yId (" namel oc"). inner HTML= " <img

src='checked .g if'/>";
status=true;
}
if(password .leng th<6){
docum ent.g etEle mentB yId(" passw ordlo c").i nnerH TML=
" Password must be at

least 6 char long";
status=false;
}else{
docum ent.g etEle mentB yId (" passw ordlo c").i nnerH TML="

";
}
return status;
}
</script>
<form name="f1" action="#" onsubmit="return
validate()">
<table>
<tr><td>Enter Name:</td><td><input type="text"

name="name"/>
</td></tr>
<tr><td>Enter Password:</td><td><input

type="password" name="password"/>
</td></tr>
<tr><td colspan="2"> <input type="submit"

value="register"/></td></tr>
</table>
</form>

http://www.name=document.f1.name.value;
http://www.password=document.f1.password.value;
http://www.name.length
http://www.document.getElementById
http://www.unchecked.gif
http://www.document.getElementById
http://www.checked.gif
http://www.password.length
http://www.document.getElementById
http://www.unchecked.gif
http://www.document.getElementById
http://www.checked.gif

244 ◾ Mastering React

Code Explanation
The above complete codes are based on HTML and JavaScript JS.

In the HTML body section, we have formed four input types as the
checkboxes and two more input types as a button, and for the input types
as a button, we have formed one button for choosing the checkboxes,
where onClick (), the selects () function will summon and the other one
for rejecting the checkboxes (if selected any/all), where onClick () the
deselect () function will summon.

When the user hits the “Select All” button, it navigates to the script sec-
tions, where it locates the selects () function and executes the statements
contained within it.

Similarly, when the user, after choosing the checkboxes, clicks on
the “Deselect All” button, then deselect () function gets appealed.
Furthermore, if the user has only selected one or two checkboxes, click-
ing the “Deselect All” button will deselect those, and if the user has not
selected any checkboxes and then selecting the “Deselect All” button, then
no action will be presented or performed.

The user can generate many such examples of using the checkboxes and
try out such fun.

So, in this way user can select all or discard all checkboxes.

245

Bibliography

5 Health Benefits of Chicken Wings. (2022, July 7). TheSite.Org. https://www
.thesite .org /health -benefits -of -chicken -wings/

20 JavaScript Interview Questions - Part 2 | Theory and Practice. (2019, March 15).
Soshace. https://soshace .com /30 -javascript -interview -questions -part -2/

Abiodun, A. D. (2020, June 24). A Practical Guide to Testing React Applications
with Jest. Smashing Magazine. https://www .smashingmagazine .com /2020
/06 /practical -guide -testing -react -applications -jest/

Atto, E. (2020, April 20). Understanding the Fundamentals of Routing in React.
Medium. https://medium .com /the -andela -way /understanding -the -funda-
mentals -of -routing -in -react -b29f806b157e

Borges, R. (n.d.). (JAVASCRIPT) - Learning React Functional Web Development
with React and Redux - Algoritmo e Programação - 38. Passei Direto.
Retrieved July 11, 2022, from https://www .passeidireto .com /arquivo
/107550538 /javascript -learning -react -functional -web -development -with
-react -and -redux /38

Catal, M. (2019, October 13). How to Set Up Lazy Loading Components in
React. Medium. https://muratcatal .medium .com /lazy -loading -in -react
-2a43ea2b2dd1

Complex State Management with Redux - Pro React - PDF Free Download. (n.d.).
Docobook.Com. Retrieved July 11, 2022, from https://docobook .com /com-
plex -state -management -with -redux -pro -react .html

Conditional Rendering. (n.d.). React. Retrieved July 11, 2022, from https://reactjs
.org /docs /conditional -rendering .html

Context api in React .js . (n.d.). Retrieved July 11, 2022, from https://www .tutorial-
spoint .com /context -api -in -react -js

Dashora, S. (2022, March 24). How to use React Context with Class Component?
ProgressiveWebNinja. https://progressivewebninja .com /how -to -use -react
-context -with -class -components/

Entering Multiple Voices with Layers. (n.d.). Retrieved July 11, 2022, from
https://usermanuals .f inalemusic .com /FinaleWin /Content /Finale /
Tut2EnteringNotes4 .htm

Event Bubbling and Capturing in JavaScript. (n.d.). javatpoint. Retrieved July 11,
2022, from https://www .javatpoint .com /event -bubbling -and -capturing -in
-javascript

Bibliography

https://www.thesite.org
https://www.thesite.org
https://soshace.com
https://www.smashingmagazine.com
https://www.smashingmagazine.com
https://medium.com
https://medium.com
https://www.passeidireto.com
https://www.passeidireto.com
https://www.passeidireto.com
https://muratcatal.medium.com
https://muratcatal.medium.com
https://docobook.com
https://docobook.com
https://reactjs.org
https://reactjs.org
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://progressivewebninja.com
https://progressivewebninja.com
https://usermanuals.finalemusic.com
https://usermanuals.finalemusic.com
https://www.javatpoint.com
https://www.javatpoint.com

246 ◾ Bibliography

Bibliography

Explore Microsoft Dynamics 365 Finance and Operations Together. (2022, June
30). Microsoft Dynamics 365. https://exploredynamics365 .home .blog/

facebook. (2022, July 11). GitHub - Facebook/Flipper: A Desktop Debugging
Platform for Mobile Developers. GitHub. https://github .com /facebook /flipper

fdecampredon. (n.d.). react-typescript/react .d .ts at master - fdecampredon/react-
typescript. GitHub. Retrieved July 11, 2022, from https://github .com /fde-
campredon /react -typescript /blob /master /declarations /react .d .ts

Form Validation in Java Servlet. (2021, May 12). Know Program. https://www
.knowprogram .com /servlet /form -validation -in -java -servlet/

Form Validation. (2016, July 4). Gist. https://gist .github .com /ABKC /baf d9c4 61d6
71e9 6655 2a13 a7ce7bdae

Fraser, D. (2018, July 17). Mocking HTTP Requests with Nock. Medium. https://
codeburst .io /testing -mocking -http -requests -with -nock -480e3f164851

Ghodekar, Y. (2021, February 13). What is DOM Manipulation? In this Blog, We
Will Learn What is DOM…. Medium. https://medium .com /swlh /what -is
-dom -manipulation -dd1f701723e3

How to Pass Parameters to a Destination URL Through Tracking Links. (2022,
March 11). ClickMeter Blog. https://blog .clickmeter .com /passing -param-
eters -through -tracking -link/

https://vanvelzermath .weebly .com /uploads /2 /3 /5 /2 /23525212 /3 .4 _equivalent
_linear _relations .pdf

https://w3cschoool .com /react -introduction
https://w3cschoool .com /tutorial /how -to -select -all -checkboxes -using -javascript
https://www .javatpoint .com /pros -and -cons -of -react
Introduction to Redux Saga. (n.d.). LoginRadius Blog. Retrieved July 11, 2022, from

https://www .loginradius .com /blog /engineering /introduction -to -redux -saga/
javascript - How to Resume Script When New Window Loads. (2011, June 17).

Stack Overflow. https://stackoverflow .com /questions /6386995 /how -to
-resume -script -when -new -window -loads

javascript - TypeError: Super Expression Must Be Null or a Function, Not
Undefined with Babeljs. (2016, March 3). Stack Overflow. https://stackover-
flow .com /questions /35777991 /typeerror -super -expression -must -be -null -or
-a -function -not -undefined -with -babel

JavaScript DOM EventListener. (n.d.). Retrieved July 11, 2022, from https://www
.w3schools .com /JS /js _htmldom _eventlistener .asp

JavaScript Form. (n.d.). javatpoint. Retrieved July 11, 2022, from https://www
.javatpoint .com /javascript -form

JavaScript Form Validation. (n.d.). javatpoint. Retrieved July 11, 2022, from
https://www .javatpoint .com /javascript -form -validation

JavaScript Form Validation. (n.d.). Retrieved July 11, 2022, from https://www
.w3schools .com /JS /js _validation .asp

Jesus Becker Becker « Art Might. (n.d.). Just Art. Retrieved July 11, 2022,
from https://artmight .com /user /profile /518482

Kumar, R. (2022, March 17). What is reactjs and How it works? An Overview and
Its Use Cases. DevOpsSchool.Com. https://www .devopsschool .com /blog /
what -is -reactjs -and -how -it -works -an -overview -and -its -use -cases/

https://exploredynamics365.home.blog
https://github.com
http://www.react.d.ts
https://github.com
https://github.com
https://www.knowprogram.com
https://www.knowprogram.com
https://gist.github.com
https://gist.github.com
https://codeburst.io
https://codeburst.io
https://medium.com
https://medium.com
https://blog.clickmeter.com
https://blog.clickmeter.com
https://vanvelzermath.weebly.com
https://vanvelzermath.weebly.com
https://w3cschoool.com
https://w3cschoool.com
https://www.javatpoint.com
https://www.loginradius.com
https://stackoverflow.com
https://stackoverflow.com
https://stackoverflow.com
https://stackoverflow.com
https://stackoverflow.com
https://www.w3schools.com
https://www.w3schools.com
https://www.javatpoint.com
https://www.javatpoint.com
https://www.javatpoint.com
https://www.w3schools.com
https://www.w3schools.com
https://artmight.com
https://www.devopsschool.com
https://www.devopsschool.com

Bibliography     ◾    247

Laichenkov, Y. (2022, April 11). API Testing with Playwright & Odottaa. Medium.
https://elaichenkov .medium .com /api -testing -with -playwright -odottaa
-77451917342f

Lazy loading in React. (n.d.). LoginRadius Blog. Retrieved July 11, 2022, from
https://www .loginradius .com /blog /engineering /lazy -loading -in -react/

Learning React: Functional Web Development with React and Redux [1ed.]
1491954620, 9781491954621 - DOKUMEN.PUB. (n.d.). Dokumen.Pub.
Retrieved July 11, 2022, from https://dokumen .pub /learning -react -func-
tional -web -development -with -react -and -redux -1nbsped -1491954620
-9781491954621 .html

Maurya, P. (2019, December 14). How to Import or Use Images in ReactJS. https://
www .tutorialswebsite .com /how -to -import -or -use -images -in -reactjs/

MFC. (n.d.). Getting Started. Retrieved July 11, 2022, from https://www .tutorial-
spoint .com /mfc /mfc _getting _started .htm

Myntra PPMP. (n.d.). Vinculum Knowledge Central. Retrieved July 11, 2022,
from https://vinculumhelpdesk .freshdesk .com /support /solutions /articles
/9000198514 -myntra -ppmp

The Power of UserDefaults in Swift. (2019, March 3). Swift by Sundell. https://www
.swiftbysundell .com /articles /the -power -of -userdefaults -in -swift/

Programmatic Navigation – Navi. (n.d.). Frontend Armory. Retrieved July 11, 2022,
from https://frontarm .com /navi /en /guides /programmatic -navigation/

Programmatically Navigate with React Router. (2021, January 12). Telerik Blogs.
https://www .telerik .com /blogs /programmatically -navigate -with -react
-router

React Book - Router and Query Params. (n.d.). Retrieved July 11, 2022, from
https://softchris .github .io /books /react /router -parameters/

React Form Validation. (n.d.). Educative: Interactive Courses for Software
Developers. Retrieved July 11, 2022, from https://www .educative .io /answers
/react -form -validation

React Render Props解 释_culiu9261的 博 客-CSDN博 客 . (2001, June 11). https://
blog .csdn .net /culiu9261 /article /details /107539020

React Router. (n.d.). javatpoint. Retrieved July 11, 2022, from https://www .javat-
point .com /react -router

React Testing Library – Tutorial with JavaScript Code Examples. (2021, March
7). freeCodeCamp.Org. https://www .freecodecamp .org /news /react -testing
-library -tutorial -javascript -example -code/

React.Component. (n.d.). React. Retrieved July 11, 2022, from https://reactjs .org /
docs /react -component .html

React . js Render Props. (2021, March 15). GeeksforGeeks. https://www .geeksfor-
geeks .org /react -js -render -props/

React Enlightenment. (2020, March 28). 8.2 Working with Component State.
https://www .mianshigee .com /tutorial /ReactEnlightenment /react -state -8
.2 .md

ReactEnlightenment .com. (n.d.). 3.1 Using react . js & react -dom .js . React
Enlightenment [DRAFT]. Retrieved July 11, 2022, from https://reacten-
lightenment .com /react -basic -setup /3 .1 .html

https://elaichenkov.medium.com
https://elaichenkov.medium.com
https://www.loginradius.com
https://dokumen.pub
https://dokumen.pub
https://dokumen.pub
https://www.tutorialswebsite.com
https://www.tutorialswebsite.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://vinculumhelpdesk.freshdesk.com
https://vinculumhelpdesk.freshdesk.com
https://www.swiftbysundell.com
https://www.swiftbysundell.com
https://frontarm.com
https://www.telerik.com
https://www.telerik.com
https://softchris.github.io
https://www.educative.io
https://www.educative.io
https://blog.csdn.net
https://blog.csdn.net
https://www.javatpoint.com
https://www.javatpoint.com
https://www.freecodecamp.org
https://www.freecodecamp.org
https://reactjs.org
https://reactjs.org
http://www.React.js
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.mianshigee.com
https://www.mianshigee.com
http://www.react.js
https://reactenlightenment.com
https://reactenlightenment.com

248 ◾ Bibliography

ReactEnlightenment .com. (n.d.). 3.2 Using JSX via Babel. React Enlightenment
[DRAFT]. Retrieved July 11, 2022, from https://reactenlightenment .com /
react -basic -setup /3 .2 .html

ReactEnlightenment .com. (n.d.). 7.1 What are Component Props? React
Enlightenment. Retrieved July 11, 2022, from https://www .reactenlighten-
ment .com /react -props /7 .1 .html

ReactEnlightenment .com. (n.d.). 8.2 Working with Component State. React
Enlightenment. Retrieved July 11, 2022, from https://reactenlightenment
.com /react -state /8 .2 .html

ReactEnlightenment .com. (n.d.). 8.3 State vs. Props. React Enlightenment
[DRAFT]. Retrieved July 11, 2022, from https://reactenlightenment .com /
react -state /8 .3 .html

reactjs - Why is Lazy Loading Not the Default for React? (2019, November 5). Stack
Overflow. https://stackoverflow .com /questions /58710241 /why -is -lazy -load-
ing -not -the -default -for -react

redux-saga. (n.d.). redux-saga/BeginnerTutorial . md at Master. GitHub. Retrieved
July 11, 2022, from https://github .com /redux -saga /redux -saga /blob /master /
docs /introduction /BeginnerTutorial .md

Render Props. (n.d.). React. Retrieved July 11, 2022, from https://reactjs .org /docs
/render -props .html

risalat. (2020, August 3). How to get Rid of Hair Algae in a Reef Tank: Complete
Guide. Reef Craze. https://reefcraze .com /hair -algae -in -a -reef -tank/

rocLv. (n.d.). Extracting Container Components Visibletodolist Addtodo. Retrieved
July 11, 2022, from https://roclv .gitbooks .io /redux -getting -started /content
/23 .redux -extracting -container -components -visibletodolist -addtodo .html

S.M., it19214580 B. (2021, May 31). React js. Medium. https://maleeshabulner
.medium .com /react -js -5c6420883b6a

Saraf, P. (2020, October 12). The React Context API. Hello Everyone! Today We
Are Going to…. Medium. https://medium .com /cleverprogrammer /the -react
-context -api -364da590aa73

Sharma, V., & View My Complete Profile. (2019, June 28). Microsoft Dynamics
AX. Posting Profiles. https://dynamicsaxsharma .blogspot .com /2019 /06 /
posting -profiles .html

Singh, M. (2021, June 15). Top 5 React JS Training Institutes in Chandigarh.
Training Institute Mohali. https://traininginmohali .com /chandigarh /top -5
-react -js -training -institutes -in -chandigarh/

Sketch Me! (2021, March 19). App Store. https://apps .apple .com /gb /app /sketch
-me /id364365478

softchris. (n.d.). react-book/lazy -loading .md at master - softchris/react-book.
GitHub. Retrieved July 11, 2022, from https://github .com /softchris /react
-book /blob /master /4 -routing /lazy -loading .md

Start Working with React Context API. (2021, August 11). DEV Community.
https://dev .to /pankajkumar /start -working -with -react -context -api -38h

Styling Components in React. (2020, May 14). Smashing Magazine. https://www
.smashingmagazine .com /2020 /05 /styling -components -react/

https://reactenlightenment.com
https://reactenlightenment.com
https://www.reactenlightenment.com
https://www.reactenlightenment.com
https://reactenlightenment.com
https://reactenlightenment.com
https://reactenlightenment.com
https://reactenlightenment.com
https://stackoverflow.com
https://stackoverflow.com
http://www.BeginnerTutorial.md
https://github.com
https://github.com
https://reactjs.org
https://reactjs.org
https://reefcraze.com
https://roclv.gitbooks.io
https://roclv.gitbooks.io
https://maleeshabulner.medium.com
https://maleeshabulner.medium.com
https://medium.com
https://medium.com
https://dynamicsaxsharma.blogspot.com
https://dynamicsaxsharma.blogspot.com
https://traininginmohali.com
https://traininginmohali.com
https://apps.apple.com
https://apps.apple.com
http://www.lazy-loading.md
https://github.com
https://github.com
https://dev.to
https://www.smashingmagazine.com
https://www.smashingmagazine.com

Bibliography     ◾    249

Taming the React Setup. (2016, May 25). Telerik Blogs. https://www .telerik .com /
blogs /taming -react -setup

There’s Never been a Better Time to Study Agriculture. (2022, June 20). The
University of Sydney. https://www .sydney .edu .au /science /news -and -events
/2022 /06 /20 /there -s -never -been -a -better -time -to -study -agriculture .html

Top 65 React Interview Questions (2022). (n.d.). javatpoint. Retrieved July 11,
2022, from https://www .javatpoint .com /react -interview -questions

Working with Styled-components in React. (n.d.). Engineering Education (EngEd)
Program | Section. Retrieved July 11, 2022, from https://www .section .io /
engineering -education /working -with -styled -components -in -react/

WTF is JSX? (n.d.). Egghead. Retrieved July 11, 2022, from https://egghead .io /
learn /react /beginners /wtf -is -jsx

https://www.telerik.com
https://www.telerik.com
https://www.sydney.edu.au
https://www.sydney.edu.au
https://www.javatpoint.com
https://www.section.io
https://www.section.io
https://egghead.io
https://egghead.io

https://taylorandfrancis.com/

251

Index

A

Action payload data, 211
automatic HTML form authentication,

213
changing HTML style, 212
RATE_COLOR action, 211
using events, 212–213

HTML DOM, 212
HTML form example, 213
JavaScript (JS) form validation,

212–213
Admiration today, 4–5
Advanced tools, 125

API
class.contexttype, 133–134
context.displayname, 134
context.provider, 132
create syntax, 132

building/designing app, provider
pattern

AppProvide, 129–130
content, 131–132
Document Tree, 128–129
explaining parts of, application, 128
language selection, 130–131
theme container, 131

Hooks
building own (custom), 137–138
declaring multiple state variables,

136
effect hook, 136–137
overview, 134–135
rules of, 137

state hook, 135–136
Animation code, 216, 219

add event handler to element, 221
syntax, 220–221
using JavaScript, 219–220

Application Programming Interface
(API), 3, 11

approaches, 37–38
class.contexttype, 133–134
component, 50
context API (see Context API)
context.displayname, 134
context.provider, 132
create syntax, 132
other APIs, 61–63
React context, 125–126

B

Babel, 28, 31–34
converting in browser, 29–30
using JSX, 30

Block of tests, 153–154
Booleans/null, 50
BrowserRouter, 88–90
Building/designing app, provider pattern

AppProvider, 129–130
content, 131–132
Document Tree, 128–129
explaining parts of, application, 128
language selection, 130–131
theme container, 131

Build-in progress, 111–112

Index Index

252 ◾ Index

C

Call to action (CTA) area, 75–76
Caveats, 145–147
Children prop, 92
Class properties

defaultProps, 63–64
ColorList component, 174–175
componentDidCatch(), 57–59
componentDidMount(), 52–53
Component prop, 38–40, 91

notes, 41
sending, 40–41

Component state, 41
creating stateless function

components, 44–45
props, 44
React constituent state, 42
state, 44
state vs. props common ground, 43
working, 42–43

Component test, 151–152
Content, 131–132
Content area, styling, 74–75
Context API, 125

building/designing app, provider
pattern, 128–132

how to use, 126–127
example React hooks, 127–128

React, context API, 125–126
work, 126

will replace Redux, 126
Create React Project (CRA), 165–166
Creating component, 70–71
Cross-cutting issues, use render props,

139–145
CSS and SCSS stylesheets, 82
CSS modules, 82

D

Describe method, 154
displayName string, 64
Document Object Model (DOM), 3, 5

nodes, 221
root nodes, 224–225

add event handler, window
object, 227

add several event handlers, same
element, 226–227

nodeName property, 225–226
nodeType property, 226
property of nodeValue, 226

updation, 5
virtual DOM, 5

DOM HTML tree, 221

E

Easier managing of CSS, 69
Effect hook, 136–137
Element variables, 66–67
Eliminates class name errors, 68
Enzyme, 152–153
Error boundaries

commit phase, 58–59
componentDidCatch(), 58–59
getDerivedStateFromError(), 57
parameters, 58
render phase, 58

ES6 and ES* with React, 31–34
Event bubbling, 205

code explanation, 206
vs. event capturing, 227–228
example of, 205–206
stopping, 207

Event capturing, 208
code explanation, 208–209
example of, 208

Existing constituent confirmation
options, 36–37

Expect method, 154

F

forceUpdate(), 63
Forms, 201–202; see also DOM root nodes

actions, 210–211
payload data, 211–213

animation code
add event handler to element, 221
syntax, 220–221
using JavaScript, 219–220

attribute description, 214
constraint validation CSS Pseudo

Selectors, 215

Index     ◾    253

create animation container, 215
create HTML animations,

JavaScript, 215
data validation, 214
HTML constraint validation, 214
JavaScript (see JavaScript)
referencing, 202

login form, 202–203
signup form, 203–205
submitting the form, 202

style elements, 216, 218–219
validation, 218
validation logic (see Validation logic,

form)

G

getByText() method, 168–169
getDerivedStateFromProps, 54–55
getSnapshotBeforeUpdate(), 55
Greeting component, 65

H

Handling images
how to use, 85

App .j s, 85
code, 86

importing images, 83
inside folder, SRC, 85
inside public folder, 83–84

note, 84
synopsis, 86
using public folder, 84

App .j s, 85
index .htm l, 84–85

HashRouter, 88–89
Header .j s, 70
Hooks

building own (custom), 137–138
declaring multiple state

variables, 136
effect hook, 136–137
overview, 134–135
rules of, 137
state hook, 135–136

HTML5
form validation, 232

client-side, HTML for Java Web
Apps, 232–233

client-side, marriage App input .ht
ml form page, JavaScript, 233

JavaScript example, 241
JavaScript with getElementById-

form validation, Java web
application, 237

JavaScript with getElementById
Solution-form authentication,
Java web application, 237–239

simple JavaScript JS Codes
(validation . js), 233–237

history API, 90
HTML code, 172
Hyperlinked and Babel, 17–18

I

Incremental sync Saga, 194
Increment async Saga, 194–200
Indicative UI, 6–7
Inline if with logical && operator, 67–68
InnerHTML, 224
Instance properties

conditional rendering, 65
props, 64
state, 64

isExact, 94
Iteration speed vs. realistic environment, 150

J

JavaScript (JS), 205; see also JavaScript
XML (JSX)

code, 149
event bubbling, 205

code explanation, 206
example of, 205–206
stopping, 207

event capturing, 208
code explanation, 208–209
example of, 208

state, 209–210
XML/JSX, 6

JavaScript XML (JSX)
characteristics of, 18–19
creating React nodes, 19–21

http://www.App.js,
http://www.App.js,
http://www.index.html,
http://www.Header.js,
http://www.input.html
http://www.input.html
http://www.validation.js

254 ◾ Index

description, 15–18
vs. HTML, 24–25

className Place of, Class
Attribute, 25

event listeners, 25
installation/setup, 26
self-closing tags, 25
using React -dom .js and React. js in

an HTML Page, 26–28
for loop, 23–24
in React, 19
Rendering JSX to DOM, 21–22

notes, 22
using JavaScript expressions, 22–23
via BABEL, 28

converting in browser, 29–30
using JSX, 30

Java web App. HTML5, 232
Jest, 153

creating test file, 154–155
run code, 155
skipping/isolating test, 155–156

description, 153
mocking function, 156
process of, running test, 153–154
snapshot testing, 157–160
testing React components, 157–158

JSFiddle, 20, 34
JSS, 82

L

Landing .j s, 70
LanguageSelection, 130–131
Last In First Out (LIFO), 108
Lazy loading, 112–113

advantages, 113–114
disadvantages, 114
importance, 113
installation components,

React, 114
prerequisites, 119–121
React . la zy, 115–116
React-loadable, 116–118
React-loadable-visibility, 118–119
without React suspense, 121–123

Legacy lifecycle methods, 59–61
Lifecycle methods, 53–56
Link, 93–94

Login form, 202–203
Logout and Login buttons, 66–67

M

Mock, 150, 156
Model View Controller (MVC), 2, 172
Module-based Manner, 7
Mount method, 154

N

Nested routing, 94
category components, 95–97
components, 95
custom routes, 97–98
properties, 94–95
protected routes, 97

Nock
adding nock, 161
create New React App, CRA, 166
debug element rendered, React Testing

Libraries, 167
methods for, finding elements,

167–168
default CRA test code, 166
description, 160–161
installing React Testing Library and

Jest, 166
overview, 165
test user designed events, React testing

library, 168–169
use React Testing Library, 165
using nock, 161–163
using nock .bac k, 163–165

Nodes
DOM root, 224–225

add event handler, window
object, 227

add several event handlers, same
element, 226–227

nodeName property, 225–226
nodeType property, 226
property of nodeValue, 226

navigating between, 222
child nodes and node values,

223–224
relationships, 221–222

Node tree, 222

http://www.React-dom.js
http://www.Landing.js,
http://www.React.la
http://www.nock.back,

Index     ◾    255

O

1-Way Data Binding, 6
Other APIs, 61–63

P

Params, 94
Passing parameters, 227
Path, 94
Portals, 50
Preventing component, rendering, 80–81
Programmatic navigation

definition, 106
overview, 105
route, 106

using history hook, 109–110
using history . pu sh() method,

107–108
using redirect component, 106–107
using with router method, 108–109

synopsis, 110–111

R

React; see also individual entries
admiration reasons, 4–5
advantages

easy creation of, dynamic web
applications, 11

easy to learn and use, 11
JavaScript library, 12
performance enrichment, 11–12
recognized SEO-friendly, 12
reusable components, 11
sustenance of handy tools, 12
testing codes scope, 12–13

desciption, 1–2
disadvantages

high leap of development, 13
JSX barrier, 13
underprivileged documentation, 13
view part, 13

document object model (DOM), 5
updation, 5

features, 5–7
frameworks benefits, 13–14
history of, 7

2010–the first cyphers, 7

2011–an initial standard, 7
2012–something new had on track

at facebook, 8
2013–the year of the big

inauguration, 8
2014–the year of expansion, 9
2015–//React is stable, 9–10
2016–React gets mainstream, 10
2017–the year of further

enhancements, 10
practical example, 2–3
ReactJS, 3–5

React components, 35–36, 47–48
component props, 38–40

notes, 40
creating React components, 36–38

notes, 38
lifecycle, 48

arrays and fragments, 50–53
mounting, 49
unmounting, 49–50
updating, 49

sending component props, 40–41
notes, 41

styling components, 81
React constituent state, 42
React constructors two purposes, 51
React context API, 125–126

work, 126
ReactDOM .rend er(), 22
ReactJS, 3–5, 171

render props, 138–139
setting up the development

environment, 26
UI library, 13–14

React module state, 43
React Native, 6
React-router (core library), 88
React-router-dom (web apps), 88
React-router library variants, 88
React-router-native (Android and iOS

apps), 88
React Routers, 71–73, 87–88

components, 88–89
children prop, 92
history, 89–90
link, 93–94
prop, 91
render prop, 91–92

http://www.history.pu
http://www.ReactDOM.render

256 ◾ Index

routers, 89
routes, 90–91
switch, 92–93

installation, 88
need for, 88
nested routing (see Nested routing)
and query parameters, 98

dealing with router and query
params, 99–103

get query string values, JavaScript
JS with URLSearchParams, 98

getting parameters from URL,
React application, 99

pass parameter, 99
React Testing Library, 150, 165–168
Redux

actions, 177–178
naming conventions, 178
payload data, 178–179

adding to React, 185
explicitly passing store, 185–187
passing store via context, 187–191

explicitly passing store, 172–173
export default AddColorForm,

174–175
export default AddColorList,

175–176
export the Default App, 173–174

reducers, 179–180
sort reducer, 180–181

rule, 210
Sagas, side-effects, 191–192

making asynchronous calls,
192–193

time for explanations, 194–200
state, 176–177
store, 181–183

subscribing to, 183–185
Redux Saga middleware, 194–197
Rendering component trees, 149
Rendering props, 145
render() method, 51
Render prop, 91–92
Reproducible styles, 69
reset (), 202
rootSaga, 194–195
Routers, 89

Routes, 90–91, 106
using history hook, 109–110
using history . pu sh() method, 107–108
using redirect component, 106–107
using with router method, 108–109

Routing component, main app, 71–73
Running complete app, 149

S

Sagas, 194
setState(), 51, 61–63
Shallow method, 154
shouldComponentUpdate(), 54
Signup form, 203–205
Simple and lively design, 69
simple JavaScript error

message, 235–236
Simplicity, Context API, 126
Snapshot test, 152
Starting development server, 70
State and Lifecycle Guide, 63
State hook, 135–136
String and numbers, 50
Styled components, 68, 82

advantages of, 68–69
creating and styling, common web

page, 69
installing, 69
starting development server, 70

Styling; see also Styled components
background image, 75
call to action (CTA) area, 75–76
components in React, 81
container, 74–75
description, 77
React apps mean, 81–82

strategies, 82
synopsis, 78–80

Styling LogoOne, 76
sign up button, 76–77

Styling LogoTwo, 77
Styling nav function, 78
Styling now, 73–74
submit (), 202
Submitting form, 202
Switch, 92–93

http://www.history.pu

Index     ◾    257

T

Testing code, 151
advantages, 152
component test, 151–152
description, 151
disadvantages, 152
snapshot test, 152
understand why, 151
unit test, 151

ThemeContainer, 131
Trade-offs

iteration speed vs. realistic
environment, 150

mock, 150
recommended tools, 150

U

Unit test, 151
UNSAFE_componentWillMount(), 59
UNSAFE_componentWillReceiveProps(),

60
UNSAFE_componentWillUpdate(), 60
URL, 94, 98–99
User interfaces (UIs), 47–48, 171

V

Validation logic, form
approach 1, 228
approach 4, 229–230
approach 3, 229
approach 2, 228–229
client and server side but validate,

server side only if client-side
authentication not done, 239–241

code explanation, 244
JavaScript form validation

example, 241
JavaScript retype password

authentication, 241–242
test it now, 241–243

client-side form validation, 232
form validation using HTML5, 232

client-side, HTML for Java Web
Apps, 232–233

client-side, marriage App input .ht
ml form page, JavaScript, 233

JavaScript example, 241
JavaScript with getElementById-

form validation, Java web
application, 237

JavaScript with getElementById
Solution-form authentication,
Java web application, 237–239

simple JavaScript JS Codes
(validation . js), 233–237

server-side form validation logic,
230–232

from validation logic in the client and
server side, 239

Virtual DOM, 5–6

W

Writing React with JSFiddle, 34

Y

Yield expression call(delay, 1000), 199–200
Yield expression delay(1000), 199–200

http://www.input.html
http://www.input.html
http://www.validation.js

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Table of Contents
	Mastering Computer Science Series Preface
	About the Editor
	Chapter 1 Introduction to React
	What Is React?
	Let Us Comprehend This with a Practical Example
	Why We Should Learn ReactJS?
	DOM
	Updating DOM

	What Are the Foremost Features of React?

	History of React: From 2010–2017
	2010: The First Cyphers of React
	2011: An Initial Standard of React
	2012: Something New Had on Track at Facebook
	2013: The Year of the Big Inauguration
	2014: The Year of Expansion
	2015: React Is Stable
	2016: React Gets Mainstream
	2017: The Year of Further Enhancements

	Advantages and Disadvantages
	Advantages
	Disadvantages

	Benefits over Other JS Frameworks

	Chapter 2 Basics of React: JSX (JavaScript XML)
	In This Chapter
	What Is JSX?
	Characteristics of JSX

	Why Use JSX in React?
	Creating React Nodes Using JSX
	Rendering JSX to DOM
	Notes

	Using JavaScript Expressions in JSX

	JSX for Loop
	JSX vs. HTML
	Use of className in Its Place of the Class Attribute
	JSX
	HTML

	Self-closing tags
	JSX
	HTML

	Event Listeners
	Installation or Setup
	ReactJS | Setting up the Development Environment

	Using react-dom.js and react.js in an HTML Page

	Using JSX via Babel
	Converting JSX via Babel in the Browser
	With the use of browser.js (Babel 5.8.23) to Convert JSX in the Browser
	By Using JSX

	Using ES6 and ES* with React
	Writing React with JSFiddle
	What Is a React Component?
	Creating React Components
	Notes

	What Are Component Props?
	Notes

	Sending Component Props
	Notes

	What Is Component State?
	Working with Component State
	State vs. Props
	Props
	State

	Creating Stateless Function Components

	Chapter 3 React Components
	React.Component
	The Component Lifecycle
	Mounting
	Updating
	Unmounting
	React Elements
	Arrays and Fragments

	Rarely Used Lifecycle Methods
	Error Boundaries
	Legacy Lifecycle Methods
	Other APIs
	Class Properties
	defaultProps

	Instance Properties
	Props
	State
	Conditional Rendering

	Element Variables
	Inline If with Logical && Operator
	What Are Styled Components
	Advantages of Using Styled Components

	Creating and Styling: A Common Web Page Using Styled Components
	Installing Styled Components
	Starting the Development Server
	Creating Our Component
	Routing a Component into the Main App
	Onto Some Styling Now
	Styling the Container
	Styling the Content Area

	Styling the Background Image
	Styling the Call to Action (CTA) Area
	Styling LogoOne
	Styling the Sign Up Button

	Styling the Description
	Styling LogoTwo
	Styling the nav Function
	Summary
	Return the Falsy Expression

	Preventing Component from Rendering
	Styling Components in React
	What Does “Styling” in React Apps Even Mean? #
	Major Styling Strategies in React #

	Chapter 4 Handling Images
	Importing Images
	Inside Public Folder
	Notes

	Using the Public Folder
	index.html
	App.js

	Inside the Folder “src”
	Notes

	How to Use
	App.js
	Example Code

	Conclusion

	Chapter 5 React Routers
	Need for React Router
	React Router Installation
	Components in React Router
	Routers
	History
	Routes
	Component Prop
	Render Prop
	Children Prop
	Switch
	Link

	Nested Routing
	Protected Routes
	Custom Routes

	Router and Query Parameters
	How to Get Query String Values in the JavaScript JS with URLSearchParams
	Getting Parameters from URL in the React Application
	How Do You Pass the Parameter in a Query?
	Dealing with the Router and Query Params

	Chapter 6 Programmatic Navigation
	What Is Programmatic Navigation?
	How Do You Route Programmatically in the React?
	Using Redirect Component
	Using history.push() Method
	Using withRouter Method
	Using the useHistory Hook

	Conclusion
	Build-in Progress
	Lazy Loading
	Why Is Lazy Loading (and Suspense) Important
	Advantages of Lazy Loading
	Disadvantages of Lazy Loading
	How to Install Lazy Loading Components in the React
	Strategies or Approaches to Split Your JavaScript JS Codes

	React.lazy
	react-loadable
	react-loadable-visibility
	Prerequisites
	npm install -g create-react-app
	npm create-react-app my-app
	npm start

	Without React Suspense

	Chapter 7 Advanced Tools
	Context API
	What Is React’s Context API (Application Programming Interface)?
	React Context API: How Does It Work?
	Context API Will Replace Redux?
	How to Use Context API?
	Example using React Hooks
	Example using React Hooks

	Building/Designing an App Using Provider Pattern and Context API
	API (Application Programming Interface)
	The syntax to create “React.createContext”const UserContext = React.createContext(default Value);Creating a Context Object
	Context.Provider
	Class.contextType
	Context.displayName

	Introduction to Hooks
	State Hook
	Declaring Multiple State Variables

	Effect Hook
	Rules of Hooks

	Building Your Own(custom) Hooks
	React.js Render Props
	Creating a React App and Downloading a Module

	For cross-cutting issues, use Render Props.
	Other Than Rendering Props
	Caveats

	Chapter 8 Testing Your Code
	Trade-offs
	Recommended Tools

	A Brief Introduction to Testing #
	Why Test? #
	Unit Test #
	Component Test #
	Snapshot Test #
	Advantages and Disadvantages of Testing #
	Advantages #
	Disadvantages #

	Introduction to Jest #
	Process of Running a Test with Jest #
	Creating a Test File #
	Run the Code
	Skipping or Isolating a Test #

	Mocking Function #
	Testing React Components #
	Snapshot Testing #

	What Is Nock?
	Adding Nock
	Using “Nock”
	Using 'nock.back'
	Final Thoughts
	How to Use React Testing Library
	Installing React Testing Library and Jest
	Create a New React App with CRA
	Default CRA Test Code
	Debug the Element Rendered by React Testing Libraries
	React Testing Library Methods for the Finding Elements

	How to Test User Designed Events with React Testing Library

	Chapter 9 Redux
	Explicitly Passing the Store
	State

	Actions
	Action Type Naming Conventions
	Action Payload Data

	Reducers
	The Sort Reducer

	The Store
	Subscribing to Stores

	Adding Redux to React
	Explicitly Passing the Store
	Passing the Store via Context

	Sagas, Side-Effects
	Making Asynchronous Calls
	Time for the Explanations
	Create Another File Sagas.spec.js

	Chapter 10 Forms
	Referencing Forms
	Submitting the Form
	Login Form
	SignUp Form

	Event Bubbling and Capturing in JavaScript
	Example of Event Bubbling
	The Output of the above Code
	Explanation of the above Code

	Stopping Bubbling
	Event Capturing
	Example of Event Capturing
	Explanation of Code

	State

	Actions
	Action Payload Data
	Changing HTML Style
	Using Events
	Automatic HTML Form Authentication

	Data Validation
	HTML Constraint Validation
	Attribute Description
	Constraint Validation CSS Pseudo Selectors
	Learn to Create HTML Animations Using JavaScript
	A Basic Web Page

	Create an Animation Container
	Style the Elements
	Animation Code
	Create the Full Animation Using JavaScript JS

	Form Validation
	Style the Elements
	Animation Code
	Design the Full Animation Using JavaScript
	Syntax
	Add the Event Handler to an Element

	DOM Nodes
	DOM HTML Tree
	Node Relationships
	Node Tree

	Navigating between Nodes
	Child Nodes and Node Values

	DOM Root Nodes
	The nodeName Property
	Property of nodeValue
	The nodeType Property
	Add Several Event Handlers to the Same Element
	Add the Event Handler to the Window Object

	Passing Parameters
	Event Bubbling or Event Capturing?
	Different Approach to Place Form the Validation Logic
	Server-Side Form Validation Logic
	Client-Side Form Validation
	Form Validation Using HTML
	Client-Side Form Validation using HTML for Java Web Apps
	Client-Side Form Validation in Marriage App input.html Form Page Using JavaScript
	The Simple JavaScript JS Codes (validation.js) for the Form Validation
	JavaScript with getElementById - Form Validation in Java Web Application
	JavaScript with getElementById Solution - Form Authentication in Java Web Application

	From Validation Logic in the Client and Server Side
	Form Validation Logic in Client and Server Side but Validate at the Server Side Only if Client-Side Authentication Not Done
	JavaScript Form Validation Example
	JavaScript Retype Password Authentication
	Test It Now
	Test It Now
	Code Explanation

	Bibliography
	Index

