

 [image: Windows Server 2016 Automation with PowerShell Cookbook]

 Windows Server 2016 Automation with PowerShell Cookbook

 Second Edition

Powerful ways to automate and manage Windows administrative tasks

Thomas Lee

BIRMINGHAM - MUMBAI

 Windows Server 2016 Automation with PowerShell Cookbook

 Second Edition

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2015

Second edition: September 2017

Production reference: 1190917

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78712-204-8

www.packtpub.com

 Credits

	Author
Thomas Lee

	Copy Editors
Safis Editing

Juliana Nair

	Reviewer
Mike F Robbins
	Project Coordinator
Judie Jose

	Acquisition Editor
Meeta Rajani
	Proofreader
Safis Editing

	Content Development Editor
Abhishek Jadhav
	Indexer
Aishwarya Gangawane

	Technical Editor
Mohd Riyan Khan

	Graphics
Kirk D'Penha

	
	Production Coordinator
Aparna Bhagat

 About the Author

Thomas Lee is a consultant/trainer/writer from England and has been in the IT business since the late 1960's. After graduating from Carnegie Mellon University, Thomas joined ComShare where he was a systems programmer building the Commander II time-sharing operating system, a forerunner of today's Cloud computing paradigm. He moved to Comshare UK in 1975 and later went to work for ICL, again developing operating systems. After a sabbatical in 1980/81, he joined Arthur Andersen Management Consultants (now known as Accenture). He left in 1988 to run his own consulting and training business, which is still active today.

Thomas holds numerous Microsoft certifications, including MCSE (one of the first in the world) and later versions, MCT (22 years), and was awarded Microsoft's MVP award 17 times. He is also a Fellow of the British Computer Society. He has written extensively for the UK trade press, including PC Pro.

Today, Thomas writes and talks mainly on PowerShell and Azure. He currently works for a number of clients to deliver training and to build training courses. Having traveled the world, he entered semi-retirement in 2016 and is spending more time at his cottage in the English countryside, along with his wife, Susan, and their daughter, Rebecca. He continues to give back to the community and spends a lot of time as group administrator for the PowerShell forum on Spiceworks, where he is also a Moderator.

 Acknowledgment

I’d first like to thank Jeffrey Snover of Microsoft for the invention of PowerShell. I was lucky enough to be in the room the very first time he presented what was then called Monad. His enthusiasm was infectious, and 15 years later I am still excited.

Also, a shout out to the author of the first edition, Ed Goad. His first edition was a great base to work on although all the recipes in this edition are reworked totally.

A huge thank you has to go to the Packt team: Meeta Rajani, Abhishek Jadhav, Mohd Riyan Khan, and Judie Jose. You guys did a great job getting this book out of the door and dealing with the crises that arose during the writing. And thanks too to our most excellent tech reviewer Mike Robbins. Your reviews were always excellent.

When I began this project, I had a co-author, David Cobb. Sadly, for personal reasons, he had to drop out, but I thank him for the chapters he was able to write.

We had a large number of volunteer reviewers who read through the various chapters. I appreciate all the work you folks did to try to make this a better book.

As each recipe evolved, I would sometimes hit problems. I got a lot of help from the Spiceworks community. Their PowerShell forum is a great source of information and encouragement. If you have problems with PowerShell, this is a great place to get a solution.

And finally, I have to thank my wonderful wife, Susan. She has been patient as things progressed, she put up with my bad moods when progress was not as smooth as desirable, and kept me sane when all around me was craziness.

 About the Reviewer

Mike F. Robbins is a Microsoft MVP on Windows PowerShell and a SAPIEN Technologies MVP. He is a co-author of Windows PowerShell TFM 4th Edition and is a contributing author of a chapter in the PowerShell Deep Dives book. Mike has written guest blog articles for the Hey, Scripting Guy! blog, PowerShell Magazine, and PowerShell.org. He is the winner of the advanced category in the 2013 PowerShell Scripting Games. Mike is also the leader and co-founder of the Mississippi PowerShell User Group. He blogs at mikefrobbins.com and can be found on Twitter at @mikefrobbins.

 www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books and video courses, as well as industry-leading tools to help you plan your personal development and advance your career.

 Why subscribe?

	Fully searchable across every book published by Packt

	Copy and paste, print, and bookmark content

	On demand and accessible via a web browser

 Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial process. To help us improve, please leave us an honest review on this book's Amazon page at https://www.amazon.com/dp/1787122042.

If you'd like to join our team of regular reviewers, you can email us at customerreviews@packtpub.com. We award our regular reviewers with free eBooks and videos in exchange for their valuable feedback. Help us be relentless in improving our products!

 Table of Contents

 	
 Title Page

 	
 Windows Server 2016 Automation with PowerShell Cookbook

 	
 Second Edition

	
 Copyright

 	
 Windows Server 2016 Automation with PowerShell Cookbook

 	
 Second Edition

	
 Credits

	
 About the Author

	
 Acknowledgment

	
 About the Reviewer

	
 www.PacktPub.com

 	
 Why subscribe?

	
 Customer Feedback

	
 Preface

 	
 What this book covers

	
 What you need for this book

	
 Who this book is for

	
 Getting the most from this book

	
 Sections

 	
 Chapter and Recipe Headings

	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Conventions

	
 Reader feedback

	
 Customer support

 	
 Downloading the color images of this book

	
 Errata

	
 Piracy

	
 Questions

	
 Help and assistance

	
 What's New in PowerShell and Windows Server

 	
 Introduction

	
 Exploring Remote Server Administration Tools (RSAT)

 	
 How to do it...

	
 How it works...

	
 There's more...

	
 Discovering new cmdlets in PowerShell 4 and Windows Server 2012 R2

 	
 New cmdlets

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Discovering new cmdlets in PowerShell 5/5.1 and Windows Server 2016

 	
 Getting ready

 	
 PowerShellGet module

	
 PackageManagement module

	
 Microsoft.PowerShell.Archive module

	
 Microsoft.PowerShell.Utility module

	
 Other new modules

	
 Other new cmdlets

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Exploring PowerShellGet

 	
 How to do it...

	
 How it works...

	
 There's more...

	
 Exploring PackageManagement

 	
 How to do it...

	
 How it works...

	
 There's more...

	
 Creating an internal PowerShell repository

 	
 How to do it...

	
 How it works...

	
 There's more...

	
 Implementing Nano Server

 	
 Introduction

	
 Deploying a Nano Server in a VM

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Connecting to and managing a Nano Server

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Installing features with Nano Server packages

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Managing Windows Updates

 	
 Introduction

	
 Installing Windows Server Update Services

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Configuring WSUS update synchronization

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Configuring the Windows Update client

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Creating computer target groups

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Configuring WSUS auto-approvals

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Managing updates

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Managing Printers

 	
 Introduction

	
 Installing and sharing printers

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 Publishing a printer

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Changing the spool directory

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 Changing printer drivers

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 Printing a test page on a printer

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 Reporting on printer security

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 Modifying printer security

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 Deploying shared printers

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Enabling Branch Office Direct Printing

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Creating a printer pool

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 Reporting on printer usage

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Managing Server Backup

 	
 Introduction

	
 Configure and set backup policy

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Examine the results of a backup

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Initiate a backup manually

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Restore files and folders

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Backup and restore a Hyper-V Virtual Machine

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Backup and perform bare metal recovery

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Restore the registry from a backup

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Create a daily backup report

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Backup and restore using Microsoft Azure

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Managing Performance

 	
 Introduction

	
 Explore performance counters with Get-Counter

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Explore performance counters using CIM cmdlets

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Configuring and using Data Collector Sets

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Reporting on performance data

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Generating performance monitoring graph

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Creating a system diagnostics report

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Troubleshooting Windows Server 2016

 	
 Introduction

	
 Checking network connectivity

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Using troubleshooting packs

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Use best practice analyzer

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Managing event logs

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Forward event logs to a central server

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Managing Windows Networking Services

 	
 Introduction

	
 New ways to do old things

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Configuring IP addressing

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Converting IP address from static to DHCP

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Installing domain controllers and DNS

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Configuring zones and resource records in DNS

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Installing and authorizing a DHCP server

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Configuring DHCP scopes

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Configuring DHCP server failover and load balancing

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Building a public key infrastructure

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Creating and managing AD users, groups, and computers

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Adding users to AD using a CSV file

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Reporting on AD users

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Finding expired computers in AD

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Creating a privileged user report

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Managing Network Shares

 	
 Introduction

	
 Securing your SMB file server

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Creating and securing SMB shares

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Accessing SMB shares

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Creating an iSCSI target

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Using an iSCSI target

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Creating a scale-out SMB file server

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Configuring a DFS Namespace

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Configuring DFS Replication

 	
 Getting Ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Managing Internet Information Server

 	
 Introduction

	
 Installing IIS

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Configuring IIS for SSL

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Managing TLS cipher suites

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Configuring a central certificate store

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 Configuring IIS bindings

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more ...

	
 Configuring IIS logging and log files

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Managing applications and application pools

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Managing and monitoring network load balancing

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Managing Hyper-V

 	
 Introduction

	
 Installing and configuring Hyper-V feature

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Using Windows PowerShell Direct

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Securing Hyper-V host

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Create a virtual machine

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Configuring VM hardware

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Configuring Hyper-V networking

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Implementing nested Hyper-V

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Managing VM state

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Configuring VM and storage movement

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Configuring VM replication

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Managing VM checkpoints

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Monitoring Hyper-V utilization and performance

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Creating a Hyper-V health report

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Managing Azure

 	
 Introduction

	
 Using PowerShell with Azure

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Creating Core Azure Resources

 	
 Getting Ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Exploring your storage account

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Creating Azure an SMB File Share

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Creating and using websites

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Creating and using Azure virtual machines

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Using Desired State Configuration

 	
 Introduction

	
 Using DSC and built-in resources

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Parameterizing DSC configuration

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Finding and installing DSC resources

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Using DSC with PSGallery resources

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Configuring Local Configuration Manager

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Implementing a SMB pull server

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Implementing a DSC web-based pull server

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Using DSC partial configurations

 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

 Preface

PowerShell was first introduced to the world at the Professional Developer's conference in Los Angles in 2003 by Jeffrey Snover. Code named Monad, it represented a complete revolution in management. A white paper written around that time, The Monad Manifesto (refer to http://www.jsnover.com/blog/2011/10/01/monad-manifesto/) remains an amazing analysis of the problem at the time of managing large number of Windows systems. A key takeaway—the GUI does not scale, whereas PowerShell does.

PowerShell has transformed managing of complex, network-based Windows infrastructure and increasingly non-Windows infrastructure. Knowledge of PowerShell and how to get the most from PowerShell is now obligatory for any IT Pro job—the adage being Learn PowerShell or learn Golf.

This book takes you through the use of PowerShell in a variety of scenarios using many of the rich set of features included in Windows Server 2016. This preface provides you with an introduction to what is in the book and some tips on how to get the most out of the content.

 What this book covers

Chapter 1, What's New in PowerShell and Windows Server, looks at some of the key new features in Windows Server 2016 and in the latest version of PowerShell.

Chapter 2, Implementing Nano Server, shows you how to set up and use Nano Server—a new server installation option for Windows Server 2016. Nano Server provides a great platform for running roles with a vastly reduced attack and patch surface.

Chapter 3, Managing Windows Updates, helps you get to grips with managing updates via Windows Update. With the importance of keeping all your Windows servers fully patched, managing WSUS is a key take in almost any size organization.

Chapter 4, Managing Printers, shows you how to manage printers, printer queues, and printer drivers, including deploying printers via Group Policy. This chapter also looks at branch office printing.

Chapter 5, Managing Server Backup, examines the use of Windows Server Backup and covers both backup (and restore) via cmdlet and via the console application. Windows Server Backup is a nice feature you can use either on its own in a small organization or to augment an enterprise wide third-party service.

Chapter 6, Managing Performance, shows you how to measure and monitor the performance of a server. There are several recipes that demonstrate how to get specific performance measurements and how to create graphs of performance for further analysis.

Chapter 7, Troubleshooting Windows Server 2016, looks at a number of aspects of both reactive and proactive troubleshooting. This includes getting events from the event log and forwarding event logs to a central server. This chapter also looks at the Best Practice Analyzer features baked into Windows Server.

Chapter 8, Managing Windows networking services, looks at various aspects of networking. Networks are today central to almost every organization and this chapter looks at a variety of network-related tasks, including looking at new ways (with PowerShell) to do old things, setting up DNS, DHCP, and Active directory, as well as building a multi-tier certificate authority infrastructure.

Chapter 9, Managing Network Shares, looks at sharing data between systems, including building a scaled out clustered file server based on iSCSI and using the DFS Namespace and DFS Replication features of Windows Server.

Chapter 10, Managing Internet Information Server, shows you how to conduct a variety of IIS-related tasks, including IIS installation and configuration, setting up SSL and managing cipher suites, as well as configuring Network Load Balancing.

Chapter 11, Managing Hyper-V, demonstrates the use of Hyper-V. This chapter shows you how to build and deploy VMs with Hyper-V. This includes nested Hyper-V running a Hyper-V VM inside another Hyper-V VM (which is useful for a number of scenarios).

Chapter 12, Managing Azure, looks at managing IaaS resources in Azure using PowerShell. To test the recipes in this chapter, you need access to Azure. This chapter describes how to get a trial subscription.

Chapter 13, Using Desired State Configuration, shows how to use this important feature to ensure a server is setup correctly and continues to remain so. This covers setting up a pull server and configuring partial configurations.

 What you need for this book

To get the most out of this book, you need to experiment with the code contained in the recipes. To avoid errors impacting live production servers, you should instead use virtualization to create a test lab, where mistakes do not cause any serious damage. This book uses a variety of servers within a single Reskit.Org domain containing multiple servers, and using an IP address block of 10.10.10/24 described in Getting the most from this book.

Ideally, you should have a Windows 10 or Windows Server 2016 host with virtualization capabilities and use a virtualization solution. If you have access to a cloud computing platform, then you could perform most of the recipies in cloud-hosted virtual machines although that has not been tested. You can use any virtualization.

The book was developed using Hyper-V and nested Hyper-V on Windows 10 Creator's Update and Windows Server 2016. More details of the servers are contained in the preface and each recipe.

 Who this book is for

This book is aimed at IT Pros, including system administrators, system engineers, as well as architects and consultants who need to leverage PowerShell to simplify and automate their daily tasks.

 Getting the most from this book

This book was written based on some assumptions and with some constraints. You will need to read this section to understand how I intended the book to be used and what I have assumed about you. This should help you to get the most from this book.

	The first assumption I made in writing this book is that you know the basics of PowerShell. This is not a PowerShell tutorial. The recipes do make use of a wide range of PowerShell features, including WMI, Remoting, AD and so on, but you will need to know the basics of PowerShell. The book uses PowerShell language, syntax, and cmdlets that come with Windows Server 2016 and Windows 10 (CU).

	The recipes provide the basics—you adopt and adapt. The recipes are designed to show you the basics of how to manage certain aspects of Windows Server 2016 using PowerShell (and in some cases Windows Console Applications). In many cases, a recipe stresses that you can improve it for your environment. The recipe is meant to show you how some features work, so you can leverage and extend it for your environment.

	Start by running the recipes step by step. The recipes were built and tested step by step. Once you have it working, re-factor them into your own reusable functions. In some cases, we build simple functions as a guide to richer scripts you could build.

	Writing PowerShell scripts for publication in a book is a layout nightmare. To get around this, I have made extensive use of the various ways in which you can create multiline commands within PowerShell. This involves using the back tick (`) line continuation as well as using the Pipe character at the end of the line. I also sometimes specify an array of values across multiple lines with a comma at the end of the continuing line. Hopefully, the screenshots more or less match up. So, read the text carefully and pay attention particularly to the back tick. In all too many places and to save lots of extra blank space, code spills over a page break, or where a figure and related text are split across a page boundary. I hope there are not too many issues with layout!

	Many of the cmdlet or object methods used in this book produce output that may not be all that helpful or useful. In some cases, the output generates a lot of pages of little value. For this reason, many recipes pipe to Out-Null. Feel free to remove this where you want to see more details. In some cases, I have adjusted the output to avoid wasted white space. Thus, if you test a recipe, you may see the output that is laid out a bit differently, but it should contain the same information. Of course, the specific output you see may be different based on your environment and the specific values you use in each step.

	To write this book, I have used a large VM farm consisting of over 20 Windows 2016 servers and Windows 10 clients. All the hosts used in this book are a combination of some physical hardware (running almost entirely on Windows 10 Creators Update and a large set of VMs, including the following:

	Domain Controllers (DC1, DC2)—also hosts DHCP Server, IIS, and other roles).

	File Servers (FS1, FS1)

	Network Load Balanced IIS servers (NLB1, NLB2)

	Print Server (PSrv)

	General purpose servers (SRV1, SRV2)

	Client computers (CL1, SG-BR-CL1)

	Certificate servers (root, CA)

	Hyper-V Servers (HV1, HV1), including an embedded VM, VM1.

Each recipe notes the servers in use. Feel free to change things to suit your needs and based on your own naming conventions.

	In building the VM farm, I have used an IP address block of 10.10.10.0/24. The recipes show specific addresses in use, but you can adapt these to fit your environment. The IP addresses used are assigned as follows:

	
IP address

	
Server name

	
10.10.10.10

	
DC1 (DC, DHCP, DNS, IIS, and so on)

	
10.10.10.11

	
DC2 (DC, DHCP, and DNS)

	
10.10.10.20

	
Root (CA offline root)

	
10.10.10.21

	
CA.Reskit.Org—issuing CA

	
10.10.10.50

	
SRV1 (server with numerous roles)

	
10.10.10.51

10.10.10.55

	
SRV2 (server with numerous roles)

ReskitNLB (NLB Virtual Server)

	
10.10.10.60

	
PSRV (print server)

	
10.10.10.61

	
Sales.Reskit.Org—a network printer

	
10.10.10.62

	
Sales2.reskit.org—a printer at as remote office

	
10.10.10.100

	
FS.Reskit.Org (Cluster address)

	
10.10.10.101/102

	
FS1 (file server cluster node—with 2 nics)

	
10.10.10.105/106

	
FS2 (file server cluster node—with w nics)

	
10.10.10.131

	
Nano1

	
10.10.10.132

	
Nano2

	
10.10.10.141

	
SG-CL1 (client computer in the Sales Group)

	
10.10.10.146

	
SG-BR-CL1 (sales group branch office client)

	
10.10.10.201

	
HV1 (Hyper-V server)

	
10.10.10.202

	
HV2 (Hyper-V server)

	
10.10.10.251

	
WSUS1 (WSUS Server)

	
10.10.10.254

	
Default gateway

The full set of VMs, at the end of this writing, took up around 725 GB of storage. Fortunately, storage is cheap!

	PowerShell provides great feature coverage—you can manage most of the functions and features of Windows Server 2016 using PowerShell, but by no means all. In some cases, you can dip down into WMI using the CIM cmdlets to get to object properties and methods not exposed by any cmdlet. The advent of CDXML-based cmdlets has increased the number of networking and other cmdlets that are WMI-based. But even then, there are still a number of places where you need to use a Windows console application or invoke an unmanaged DLL. The bottom line is that to manage some aspects of Windows, such as event forwarding or performance logging, you will need to use older tools. We try to avoid these, but in many cases the recipe demonstrates how to use the console applications within PowerShell.

	I have avoided where possible using external, third-party modules and have focused on what comes in the box. But, in some cases, such as Azure, you have to add code and in other cases such as DSC you benefit greatly from third-party code. The book shows that there is a wealth of tools, add-ins, and tips/tricks that you can leverage (even if we do not use all that much of it). One thing to keep in mind, integrating various add-ons (and keeping them up to date and working well) can be a challenge.

	All the code provided in this book has been tested; it worked and did what it

says (at least during the writing stage). The production process is complex and it's possible that errors in code creep in during the production stages. Some of the more complex steps may have errors introduced during production. If any step fails for you, please contact PACKT and we'll help. Feel free to post issues to the Spiceworks PowerShell forum for quick resolution.

	In writing this book, we set out to create content around a number of features of Windows Server 2016. As the book progressed, we quickly hit (and broke) several content limits. In order to publish the book, it was necessary to remove some content, which we did most reluctantly. Coverage of Storage and Containers had to be dropped. To paraphrase Jeffrey Snover, To ship is to choose. I hope I chose well.

	In writing the recipes, we use full cmdlet names with no aliases and with all parameter names spelled out in full (so, this means no abbreviated parameter names or positional parameters). This makes the text a bit longer, but hopefully easier to read and understand.

	Some recipes in this book rely on other recipes being completed. These related recipes worked well when we wrote them and hopefully will work for you as well. Each depending recipe is noted.

	There is a fine line between PowerShell and a Windows feature. To use PowerShell to manage a Windows feature, you need to understand the feature itself. The chapters describe each feature although in the space limited, thus I can't provide complete details of every feature. I have provided links to help you get more information. And as ever, Bing and Google are your friends.

 Sections

In this book, you find several headings that appear frequently (Getting ready, How to do it, How it works, There's more).

To give clear instructions on how to complete a recipe, we use these sections as follows:

 Chapter and Recipe Headings

Every chapter and every recipe introduces some part of Windows which the recipes help you to manage. I've attempted to summarize the key points about each feature - but as ever there is more detail you can discover using your favorite search engine.

 Getting ready

This section tells you what to expect in the recipe, and describes how to set up any software or any preliminary settings required for the recipe. It also indicates the hosts (VMs) you need for the recipe and any files, folders, or other resources you need to complete the recipe successfully.

 How to do it...

This section contains the steps required to follow the recipe. We show the PowerShell code you use to perform each step

 How it works...

This section contains a detailed explanation of what happened in the previous section along with screen shots to show you the results of the recipe.

 There's more...

This section consists of additional information about the recipe in order to make the reader more knowledgeable about the recipe.

 Conventions

In this book, you find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames, URLs, and so on are shown as follows:

"A great PowerShell cmdlet is Get-Help"

A block of code is set as follows:

If (-Not (Get-WindowsFeature -Name PowerShell))
 {
 'PowerShell Not installed'
 }

Any command-line input or output is written as follows (Note the back tick at the end of the second line):

Copy ISO image
 Copy-Item -Path c:\Image\Server2016.iSO `
 -TargetPath c:\VM\ISO\Server2016.ISO

New terms and important words are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

 Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book-what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you can really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.

 Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.

 Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used in this book. The color images will help you better understand the changes in the output. You can download this file from https://www.packtpub.com/sites/default/files/downloads/WindowsServer2016AutomationwithPowerShellCookbookSecondEdition_ColorImages.pdf.

 Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in this book-maybe a mistake in the text or the code-we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission is accepted and the errata uploaded to our website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and enter the name of the book in the search field. The required information appears under the Errata section.

If you find issues, feel free to reach out to the author via the Spiceworks forum.

 Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

 Questions

If you have a problem with any aspect of this book, you can contact us at questions@packtpub.com, and we do our best to address the problem.

 Help and assistance

If you want help on any of the recipes, or want to discover more information about any of the steps, come over to the PowerShell forum at Spiceworks. Navigate to: https://community.spiceworks.com/programming/powershell and ask away. Note you do need to register to be able to ask questions and participate.

 What's New in PowerShell and Windows Server

 This chapter covers the following recipes:

	Exploring Remote Server Administration Tools (RSAT)

	Discovering new cmdlets in PowerShell 4 and Windows Server 2012 R2

	Discovering new cmdlets in PowerShell 5/5.1 and Windows Server 2016

	Exploring PowerShellGet

	Exploring PackageManagement

	Creating an internal PowerShell repository

 Introduction

Windows Server changes quickly, with a new release about every two years. Since the publication of the last edition of this book, Microsoft has delivered both Windows Server 2012 R2 and Windows Server 2016 (as well as client OS versions: Windows 8.1 and Windows 10).

PowerShell evolved alongside the server OS with a release of both PowerShell version 4, version 5, and version 5.1. This chapter reviews the changes in both the OS and PowerShell and highlights the biggest and most useful changes and new cmdlets.

This chapter also explores PowerShellGet and PackageManagement modules, perhaps the most interesting and useful new features released in PowerShell 5 and PowerShell 5.1.

 Exploring Remote Server Administration Tools (RSAT)

Remote Server Administration Tools (RSAT) are tools available on both servers and client systems to manage server services. RSAT tools are available in Windows desktop and server versions. Most of the RSAT tools are not installed by default but are easily added.

RSAT includes GUI tools, like Microsoft Management Console (MMC) and MMC snap-ins (for example the DNS or DHCP MMC snap-ins) as well as command-line tools and additional PowerShell modules. You have the option of installing the Windows feature including the tools (most useful on a server), or just the tools to manage the feature (most useful on a workstation).

The recipe that follows is run from DC1, a Windows Server 2016 with Desktop Experience installation. If you try to use Server Core for this recipe, note that Out-GridView, for example in step 3, is not available in the Server Core version, as it lacks the graphical user interface. For Server Core installations, use Format-Table instead.)

 How to do it...

	You use the Get-Command, and Tee-Object cmdlets to retrieve both the collection of PowerShell commands and the number of cmdlets into PowerShellvariables before installing the RSAT:

 $CountOfCommandsBeforeRSAT = Get-Command |
 Tee-Object -Variable 'CommandsBeforeRSAT' |
 Measure-Object
 '{0} commands' -f $CountOfCommandsBeforeRSAT.count

	Examine the objects returned by Get-Command:

 $CommandsBeforeRSAT | Get-Member |
 Select-Object -ExpandProperty TypeName -Unique

	View commands in Out-GridView:

 $CommandsBeforeRSAT |
 Select-Object -Property Name, Source, CommandType |
 Sort-Object -Property Source, Name |
 Out-GridView

Out-GridView is not available in the Server Core version, as it lacks the graphical user interface. For Server Core installations, use Format-Table instead.

	Store the collection of PowerShell modules and a count into variables as well:

 $CountOfModulesBeforeRSAT = Get-Module -ListAvailable |
 Tee-Object -Variable 'ModulesBeforeRSAT' |
 Measure-Object
 '{0} commands' -f $CountOfModulesBeforeRSAT.count

	View modules in Out-GridView:

 $ModulesBeforeRSAT |
 Select-Object -Property Name -Unique |
 Sort-Object -Property Name |
 Out-GridView

	Review the RSAT Windows Features available and their installation status:

 Get-WindowsFeature -Name RSAT*

Get-WindowsFeature only works on Windows Server operating systems.

	Install RSAT with sub features and management tools:

 Install-WindowsFeature -Name RSAT -IncludeAllSubFeature `
 -IncludeManagementTools

	Now that RSAT features are installed, see what commands are available:

 $CountOfCommandsAfterRSAT = Get-Command |
 Tee-Object -Variable 'CommandsAfterRSAT' |
 Measure-Object
 '{0} commands' -f $CountOfCommandsAfterRSAT.count

	View commands in Out-GridView:

 $CommandsAfterRSAT |
 Select-Object -Property Name, Source, CommandType |
 Sort-Object -Property Source, Name |
 Out-GridView

	Now check how many modules are available:

 $CountOfModulesAfterRSAT = Get-Module -ListAvailable |
 Tee-Object -Variable 'ModulesAfterRSAT' |
 Measure-Object
 '{0} commands' -f $CountOfModulesAfterRSAT.count

	View modules in Out-GridView:

 $ModulesAfterRSAT | Select-Object -Property Name -Unique |
 Sort-Object -Property Name |
 Out-GridView

	Store the list of commands into an XML file for later research:

 $CommandsAfterRSAT |
 Export-Clixml `
 -Path $env:HOMEPATH\Documents\WS2016Commands.XML"

 How it works...

In step 1, you use Get-Command to enumerate all the commands available in PowerShell. This includes functions and aliases. It is useful to store the result of such commands into a variable, $CommandsBeforeRSAT in this case, so you are able to investigate the commands without making the request again. Using Tee-Object, you store the array of commands in that variable while continuing to use the pipeline to Measure-Object to store the count of commands, then display the result using the PowerShell string formatting function: '{0} commands' -f $CountOfCommandsBeforeRSAT

In step 2, you pipe the $CommandsBeforeRSAT variable to Get-Member to examine the TypeName of the objects returned, as shown in the following screenshot:

As you see, these commands are objects of the AliasInfo, FunctionInfo, and CmdletInfo types in the System.Management.Automation namespace (plus a FilterInfo type, which provides information about a filter that is stored in the session state.) PowerShell commands returned by Get-Command include aliases, functions, and cmdlets.

In step 3, you use Select-Object to show the useful properties, and pipe that to a Sort-Object, then pipe to Out-GridView to search and filter the PowerShell commands, as you see in the following screenshot:

In step 4, you use Get-Module just like Get-Command, but use the -ListAvailable parameter to see all the installed modules, not just those loaded into the current session. Again you use Tee-Object to store the array of modules into a variable, $ModulesBeforeRSAT, while passing the result down the pipeline to Measure-Object to calculate the count which you then display.

In step 5, you pipe the variable to a Select-Object for the interesting columns, Sort-Object, then pipe that to Out-GridView again to review the available modules as shown here:

In step 6, you view the RSAT features available in your server with Get-WindowsFeature -Name RSAT*, as shown in the following screenshot:

Get-WindowsFeature presents an information dense tree view of the RSAT tools available. Note the many sub-features under Remote Server Admin Tools and under Role Administration Tools. Each feature may be installed individually by name, or all features installed with one command as in this example.

In step 7, install all the RSAT features with the -IncludeAllSubFeature and

-IncludeManagementTools parameters. You may limit what is installed by changing the first parameter to a comma separated list of desired feature names.

In steps 8-11, once the RSAT features are installed, repeat the Get-Command and Get-Modules code to see all the additional cmdlets and modules.

In step 12 you use Export-CliXML to store the array to an XML file. If you want to compare what is available in different OS and PowerShell versions, you use the array of objects saved to this file and compare it with an XML file generated under some other PowerShell or Windows versions.

 There's more...

Jose Barreto, a Principal Program Manager, Applications and Services Group at Microsoft, reviewed the new Windows Server 2016 cmdlets (based on Windows Server 2016 CTP). This post shows you how to use Export-CliXML to see what has changed between PowerShell versions:

https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/.

 Discovering new cmdlets in PowerShell 4 and Windows Server 2012 R2

PowerShell V4 and Server 2012 R2 added many new features to existing cmdlets but did not add many new cmdlets. A notable exception is Desired State Configuration (DSC) feature that debuted in PowerShell V4.

DSC is a set of language extensions that enable you to define computer configurations in a declarative fashion then apply that configuration to managed computers. DSC is a tool to provision or manage servers and to ensure those systems stay configured correctly. DSC provides a solution to the problem of configuration drift—computer configurations that change, often incorrectly, over time.

Get more information on DSC in Chapter 13, Using Desired State Configuration.

 New cmdlets

Two other useful cmdlets included in PowerShell V4 are:

	Get-FileHash: Creates a hash value from a given file or binary value. This is useful for quickly determining whether files have changed or for finding duplicate files (that have different file names)

	Test-NetConnection: Diagnoses a network connection and provides helpful troubleshooting information. This cmdlet is described in more detail in Chapter 8, Managing Windows Network Services.

 How to do it...

	You use the Show-Command to investigate the Get-FileHash cmdlet:

 Show-Command -Name Get-FileHash

Show0-Command is not available in the Server Core version, as it lacks the graphical user interface.

	In the dialog that pops up, the Path tab corresponds to one of three parameter sets for this command. For the Path tab, enter $Env:windirnotepad.exe or any other valid file path.

	Choose an algorithm like SHA512 from the drop-down menu.

	Click the Copy button then paste the command into your PowerShell ISE and press Enter to run it. Note the hash value that is returned.

	Use Show-Command to investigate Test-NetConnection:

 Show-Command -Name Test-NetConnection

	In the dialog box, the CommonTCPPort tab corresponds to the default parameter set, the first of four. Choose HTTP from the CommonTCPPort drop-down, and choose Detailed for InformationLevel. Then click Copy, and paste the script into your editor below the Show-Command line, then close the Show-Command window. Select this line and press F8 to run this line.

	Repeat your call to Show-Command -Name Test-NetConnection. Choose the ICMP tab and enter a valid internet hostname like Windows.Com in the ComputerName field, or leave it blank, and choose Detailed for InformationLevel.

	Click the Copy button then paste the command into your PowerShell ISE below the previous command, then close the Show-Command window and select the line and press F8 to run it.

	Repeat your call to Show-Command Name Test-NetConnection. Choose the NetRouteDiagnostics tab, check the box for DiagnoseRouting, and click Run.

	Repeat your call to Show-Command -Name Test-NetConnection. Choose the RemotePort tab, enter 443 for the Port, and choose Detailed for InformationLevel, and click Run.

 How it works...

In step 1, you use Show-Command to provide a graphical interface to explore new commands like Get-FileHash or new ways to use commands you know. It is the same interface that displays in the Commands tab in PowerShell ISE, and the interface is programmatically generated from the parameter definitions in the cmdlet or function, so it works with commands you create or install from outside sources.

In steps 2 and 3, choosing the Path tab corresponds to a parameter set defined in the command; each parameter set may have different required and optional parameters, represented by check boxes, drop-down menus, or text fields. This parameter set requires the Path and Algorithm parameters.

In step 4, the Copy button puts a syntax-correct command on our clipboard, either to be run as is or added to a script and modified. This is a very useful feature for new PowerShell scripters or those working with unfamiliar commands. The result of the command displays in the console, but it could be stored into a variable for comparison with other hash values to look for duplicate or changed files:

In steps 5 and 6, you use Show-Command to explore the Test-NetConnection cmdlet. This is a flexible and useful troubleshooting command with four parameter sets to use. First, test the connection to a web host over HTTP port 80. Note the -InformationLevel Detailed parameter provides additional troubleshooting information on the connectivity.

In steps 7 and 8, you use the ICMP parameter set with the -InformationLevel Detailed parameter to ping, using ICMP echo request, a web server. This is different to the earlier steps—here you are just determining whether the target server is responding to echo requests. Some web servers turn off returning of pings, so you may see a server that doesn't respond to a ping but does allow a port 80 HTTP connection.

In step 9, you use the NetRouteDiagnostics parameter set with the -DiagnoseRouting parameter, which was introduced in PowerShell 5.1, to get routing information. Here when you click the Run button, the result displays in the console window.

In step 10, you specify a RemotePort parameter set with a specified Port and ComputerName to test:

 There's more...

Both Server 2012 R2 and PowerShell V4 introduced many new features and added enhancements to existing features. This included the Hyper-V, SmbShare, and BranchCache features, all of which were improved. These features came with PowerShell modules that enable you to leverage these features using PowerShell. Get more information on the modules that support the 2012 R2 features at https://technet.microsoft.com/en-us/library/dn249523.aspx.

 Discovering new cmdlets in PowerShell 5/5.1 and Windows Server 2016

PowerShell V5, PowerShell V5.1, and Windows Server 2016 also added new features.

 Getting ready

Run the commands in the following recipe on a Windows Server 2016 with Desktop Experience version.

 PowerShellGet module

PowerShellGet, formerly known as OneGet, is a module that provides you with a simple way to discover, install, and update PowerShell modules and scripts. It has dependencies on the PackageManagement module, which relies on NuGet. It is an open source project, located at https://github.com/powershell/powershellget.

Refer to Explore PowerShellGet recipe.

 PackageManagement module

The cmdlets in the PackageManagement module provide a single interface for software publication, discovery, installation, and inventory.

Refer to the following recipe:

	Explore PackageManagement

	Create a PackageManagement repository

 Microsoft.PowerShell.Archive module

The Microsoft.Powershell.Archive module contains two useful functions: Compress-Archive and Expand-Archive. These enable you to create and extract ZIP files. With previous versions of PowerShell versions, you managed archives by using the System.IO.Compression namespace from the .Net framework, the Shell.Application com object or software like 7-Zip.

 Microsoft.PowerShell.Utility module

The Microsoft.PowerShell.Utility module contains several new cmdlets useful for debugging interactively and within runspaces.

Debugging and runspace Cmdlets include: Get-Runspace, Debug-Runspace, Get-RunspaceDebug, Enable-RunspaceDebug, and Disable-RunspaceDebug, Wait-Debugger, Debug-Job.

These cmdlets enable debugging PowerShell scripts within runspaces and jobs and add additional debugging features for debugging production PowerShell interactively.

 Other new modules

Other new modules in this version of PowerShell (and where to find more information about each module) include:

	
Module

	
Description

	
Documentation

	
ConfigCI

	
Manage the configurable code integrity policy for Windows

	
https://technet.microsoft.com/en-us/library/mt634481.aspx

	
Defender

	
Manage Windows defender

	
https://technet.microsoft.com/en-us/library/dn433280.aspx

	
EventTracingManagement

	
Manage event tracing for Windows providers and sessions

	
https://technet.microsoft.com/en-us/library/dn919247.aspx

	
HgsClient, ShieldedVMDataFile, and ShieldedVMTemplate

	
Manage the host guardian service, for shielded Hyper-V guest machines.

	
https://technet.microsoft.com/en-us/library/dn914505.aspx
 https://technet.microsoft.com/en-us/library/mt791280.aspx
 https://technet.microsoft.com/en-us/library/mt282520.aspx

	
IISAdministration

	
Manage IIS replaces WebAdministration cmdlets

	
https://technet.microsoft.com/en-us/library/mt270166.aspx

	
NetworkController

	
Manage the new network controller role in Server 2016

	
https://technet.microsoft.com/en-us/library/dn859239.aspx

	
NetworkSwitchManager

	
Manage supported network switches in Server 2016

	
https://technet.microsoft.com/en-us/library/mt171434.aspx

	
Pester

	
Manage unit tests for PowerShell modules and cmdlets

	
https://github.com/pester/Pester/wiki

	
PnpDevice

	
Cmdlets for managing plug and play devices

	
https://technet.microsoft.com/en-us/library/mt130251.aspx

	
StorageQoS and StorageReplica

	
Support new storage functionality in Server 2016.

	
https://technet.microsoft.com/en-us/library/mt608557.aspx
 https://technet.microsoft.com/en-us/library/mt744543.aspx

 Other new cmdlets

Some other useful cmdlets included are:

	Write-Information : A replacement for the Write-Host cmdlet that is consistent with the other Write-* cmdlets in the Microsoft.PowerShell.Utility namespace. See https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/.

	ConvertFrom-String and Convert-String: The new string parsing functions that create structured data from strings, or parse out string data into structured data. See https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/.

	Format-Hex: This cmdlet formats information into hexadecimal.

	Get-Clipboard and Set-Clipboard: A cmdlet to simplify working with the clipboard, replacing piping to clip.exe.

	Clear-RecycleBin: This cmdlet empties the Recycle Bin.

	New-TemporaryFile: Simplifies the creation of temporary files within PowerShell scripts.

	New-Guid: A wrapper for [GUID]::NewGuid() to simplify the creation of Globally Unique Identifiers (GUIDs). A GUID is an identifier, unique in space and time, that you use in a variety of scenarios. System Center Virtual Machine Manager, for example, uses GUIDs in jobs created by the UI.

	Enter-PSHostProcess and Exit-PSHostProcess: These enable you to debug PowerShell processes outside the current host process.

	Export-ODataEndpointProxy: This cmdlet generates a wrapper module for working with an OData endpoint. See https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils.

Explore some of these cmdlets here and in later chapters as well.

 How to do it...

	Investigate Write-Information by looking at the Write-* commands, and help for the about_Redirection topic:

 Get-Command -Verb Write -Module *Utility
 Get-Help about_Redirection -ShowWindow

	Use Write-Information:

 Write-Information "Test"

	This produces no output. To resolve, you should inspect and change the $InformationPreference variable:

 Get-Variable "InformationPreference"
 Set-Variable -Name "InformationPreference" -Value "Continue"

	Use Write-Information again:

 Write-Information "Test"

	Next, set $InformationPreference back to default value:

 $InformationPreference = "SilentlyContinue"

	Review the information-related options in the CommonParameters of each command:

 Show-Command Get-Item

	Use ConvertFrom-String to get objects from strings; NoteProperties are created with default names:

 "Here is a sentence!" | ConvertFrom-String
 "Here is a sentence!" | ConvertFrom-String | Get-Member

	Use -PropertyNames to control the names:

 "Here is a sentence!" |
 ConvertFrom-String -PropertyNames First,Second,
 Third,Fourth

	Use -Delimiter to get items from a list:

 "Here,is,a,list!" |
 ConvertFrom-String -PropertyNames First,Second,
 Third,Fourth `
 -Delimiter ','

	You next test the template capabilities of ConvertFrom-String:

 $TextToParse = @'
 Animal, Bird
 Shape like Square
 Number is 42
 Person named Bob
 '@$Template1 = @'
 {[string]Category*:Animal}, {[string]Example:Bird}
 '@ConvertFrom-String -TemplateContent $Template1 `
 -InputObject $TextToParse

	ConvertFrom-String recognizes only one line from the text—the template needs more examples to train the function, so add a second example to the template and test:

 $Template2 = @'
 {[string]Category*:Animal}, {[string]Example:Bird}
 {[string]Category*:Country} like {[string]Example:Italy}
 '@
 ConvertFrom-String -TemplateContent $Template2 `
 -InputObject $TextToParse

	Note three lines are recognized, even the last line that is unusual. Adding another example to our template trains the function enough to recognize all four lines:

 $Template3 = @'
 {[string]Category*:Animal}, {[string]Example:Bird}
 {[string]Category*:Country} like {[string]Example:Italy}
 {[string]Category*:Number} like {[int]Example:99}
 '@
 ConvertFrom-String -TemplateContent $Template3 `
 -InputObject $TextToParse

	Experiment with Format-Hex to output values in hexadecimal:

 $TestValue =
 @"
 This is line 1
 and line 2
 "@
 $TestValue | Format-Hex

	Experiment with Get-ClipBoard and Set-Clipboard by selecting some text, then press Ctrl+C to copy to clipboard, then inspect the clipboard:

 #Select this line and press Control-C to copy to clipboard
 $Value = Get-Clipboard
 $Value

	Use Set-Clipboard to replace the clipboard value, then Ctrl+V to paste that new value:

 $NewValue = "#Paste This!"
 $NewValue | Set-Clipboard
 #Press Control-V to paste!

 How it works...

In step 1, you get the commands with the Write verb in the Microsoft.PowerShell.Utility module. Write-Information is an addition to this module that writes out to a new information stream, which the about_Redirection help topic describes in detail:

In steps 2-5, note that messages from Write-Information are not displayed by default. The $InformationPreference variable controls this behaviour within your PowerShell session.

In step 6, you'll see the CommonParameters now include InformationAction and InformationVariable

More information is available in Get-Help about_CommonParameters:

In step 7 you create a PSCustomObject using ConvertFrom-String with NoteProperties named P1, P2, P3, and P4 that correspond to words separated by whitespace from the input text, with string or char data types:

In step 8, you control the names of the NoteProperties. In step 9 you change the delimiter from the default of whitespace to a comma, thus parsing a comma separated list:

In step 10, you investigate the -TemplateObject parameter to parse inconsistently formatted data. Here you provide one or more patterns by example in the TemplateObject and provide the template along with the text to parse. The template starts with one line as an example, and initially recognizes only one line out of four in the text to match:

In steps 11 and steps 12, you improve the template with each attempt, achieving complete matching results from the Convert-FromString:

In step 13, you use Format-Hex on a here string that contains two lines of text. Note the 0D 0A bytes corresponding to carriage return and line feed (CRLF) between lines:

In step 14 and step 15, you work with Set-Clipboard and Get-Clipboard. By copying any text with Ctrl+C, you then capture that value into a variable with Get-Clipboard. You use Set-Clipboard to change that value, and use Ctrl+V to verify the change.

 There's more...

Each PowerShell release comes with release notes that dive into the details of changes introduced with that version. These pages are updated with community contributions, as PowerShell is now partially open source:

	WMF 5.0 Release Notes: https://msdn.microsoft.com/en-us/powershell/wmf/5.0/releasenotes

	WMF 5.1 Release Notes: https://msdn.microsoft.com/en-us/powershell/wmf/5.1/release-notes

The documentation is published on GitHub and accepts contributions from users via pull-requests so users may help improve the documentation. You'll find PowerShell documentation on GitHub at https://github.com/PowerShell/PowerShell-Docs.

Complete documentation is available on TechNet, see the Windows 10 and Server 2016 PowerShell module reference at https://technet.microsoft.com/en-us/library/mt156917.aspx.

 Exploring PowerShellGet

The PowerShellGet module enables you to work with repositories, sites which contain scripts and modules to download and use. If you have a Linux background, you are familiar with repositories and tools like apt-get (On Ubuntu Linux) and RPM (on Red Hat Linux). PowerShellGet delivers similar functionality within PowerShell.

Ensure you're running with administrator privileges so you can update PowerShellGet to the latest version.

 How to do it...

	You begin by reviewing the commands available in the PowerShellGet module:

 Get-Command -Module PowerShellGet

	Before moving on, you should update to the latest NuGet to get the PackageManagement module current, then update the PowerShellGet module per the GitHub instructions at https://github.com/powershell/powershellget. PowerShellGet has a dependency on PackageManagement, which in turn relies on NuGet. PowerShellGet and PackageMangagement both come within Windows 10 and Server 2016, but Windows updates are less frequent than releases at the PowerShell gallery. Updating ensures you have the latest versions of all the dependencies. To update NuGet:

 Install-PackageProvider -Name NuGet -Force -Verbose

	Close your PowerShell session by running Exit and open a new PowerShell session.

	Check the version of the NuGet PackageProvider:

 Get-PackageProvider -Name NuGet |
 Select-Object Version

	Update PowerShellGet:

 Install-Module -Name PowerShellGet -Force

	Close your PowerShell session by running Exit and reopen it again.

	Check the version of PowerShellGet:

 Get-Module -Name PowerShellGet |
 Select-Object -ExpandProperty Version

	View the default PSGallery repository for PowerShellGet:

 Get-PSRepository

	Review the various providers in the repository:

 Find-PackageProvider |
 Select-Object -Property Name, Source, Summary |
 Format-Table -Wrap -AutoSize

	View available providers with packages in PSGallery:

 Find-PackageProvider -Source PSGallery |
 Select-Object -Property Name, Summary |
 Format-Table -Wrap -AutoSize

	Use the Get-Command cmdlet to find cmdlets in PowerShellGet:

 Get-Command -Module PowerShellGet -Verb Find

	Request all the commands in the PowerShellGet module, store them in a variable, and store the count as well:

 $CommandCount = Find-Command |
 Tee-Object -Variable 'Commands' |
 Measure-Object
 "{0} commands available in PowerShellGet" `
 -f $CommandCount.Count

	Review the commands in Out-GridView and note the module names:

 $Commands | Out-GridView

	Request all the available PowerShellGet modules, store them in a variable and store the count as well:

 $ModuleCount = Find-Module |
 Tee-Object -Variable 'Modules' |
 Measure-Object
 "{0} Modules available in PowerShellGet" -f $ModuleCount.Count

	Review the modules in Out-GridView:

 $Modules | Out-GridView

	Request all available DSC resources, store them in a variable, and view them in Out-GridView:

 $DSCResourceCount = Find-DSCResource |
 Tee-Object -Variable 'DSCResources' |
 Measure-Object
 "{0} DSCResources available in PowerShellGet" -f `
 $DSCResourceCount.Count
 $DSCResources | Out-GridView

	Find the available scripts and store them in a variable. Then view them using Out-GridView:

 $ScriptCount = Find-Script |
 Tee-Object -Variable 'Scripts' |
 Measure-Object
 "{0} Scripts available in PowerShellGet" -f $ScriptCount.Count
 $Scripts | Out-GridView

	When you discover a module you would like to simply install the module. This functionality is similar for Scripts, DSCResources, and so on:

 Get-Command -Module PowerShellGet -Verb Install

	Install the TreeSize module, as an example, or choose your own. As this is a public repository, Windows does not trust it by default, so you must approve the installation:

 Install-Module -Name TreeSize -Verbose

	If you choose to trust this repository, set the InstallationPolicy to Trusted, and you'll no longer need to confirm each installation: Use at your own risk, you are responsible for all software you install on servers you manage:

 Set-PSRepository -Name PSGallery -InstallationPolicy Trusted

	Review and test the commands in the module:

 Get-Command -Module TreeSize
 Get-Help Get-TreeSize -Examples
 Get-TreeSize -Path $env:TEMP -Depth 1

	Remove the module just as easily:

 Uninstall-Module -Name TreeSize -Verbose

	If you would like to inspect the code before installation, download and review the module code:

 New-Item -ItemType Directory `
 -Path $env:HOMEDRIVE\downloadedModules
 Save-Module -Name TreeSize `
 -Path $env:HOMEDRIVE\downloadedModules” +
 "$env:windirexplorer.exe"
 $env:HOMEDRIVE\downloadedModules

	Import the downloaded module:

 $ModuleFolder = "$env:HOMEDRIVE\downloadedModules\TreeSize"
 Get-ChildItem -Path $ModuleFolder -Filter *.psm1 -Recurse |
 Select-Object -ExpandProperty FullName -First 1 |
 Import-Module -Verbose

	When you are done with discovering the new module, you can remove it from your system:

 Remove-Module -Name TreeSize
 $ModuleFolder | Remove-Item -Recurse -Force

 How it works...

In step 1, you start by reviewing the cmdlets in the PowerShellGet module:

In steps 2-7, you ensure PowerShellGet and its dependency PackageManagement are up to date by updating the NuGet provider, verifying the version, then restarting your PowerShell session and updating PowerShellGet and verifying its version.

The -Verbose flag gives you more details on the installation, but it is not required. Note that you must Exit your session after running this command and reopen to continue with the latest version.

Check our NuGet provider version after reopening our PowerShell session:

In step 6-7, you update the PowerShellGetmodule:

Note that you must exit your session after running this command and reopen to continue with the latest version.

In step 8, check your PowerShellGet version after reopening your PowerShell session:

In step 9, you use Get-PSRepository. PowerShellGet starts with a single repository PSGallery installed by default:

In step 10, review the package providers available:

Note the source column; the first three providers listed correspond to NuGet, OneGet, and Chocolatey providers. NuGet is a repository devoted to developer libraries. OneGet was the name of this module (and repository) but has been deprecated and replaced by PackageManagement. You explore Chocolatey in a later recipe. The remaining rows are the available providers in the PSGallery repository.

In step 11, you limit your repository search with Find-PSRepository by specifying the -Source PSGallery parameter:

In step 12, you discover the PowerShellGet commands containing the verb Find:

In steps 13 - 18, you use the Find-* commands to store the available commands, modules, DSC resources, and scripts into variables, then explore what is available using Out-GridView (including using the built-in filter capability to search for a module), for example:

In step 19, you review the install commands in the PowerShellGet module. Their functions are very similar:

In step 20, the TreeSize module looks like an interesting tool to inspect folders and their sizes. Install it by using the Install-Module cmdlet. You use the -Verbose switch to get more information about what the cmdlet is doing:

After confirming the Untrusted repository pop up dialog, PowerShell installs the module.

In step 21, you see that the code available on PSGallery, as well as other public repositories, is just that, public. You must choose to trust the code you download from the internet to take advantage of the functionality provided by that code. To trust this repository and disable prompting, use the command (at your own risk and responsibility):

Set-PSRepository -Name PSGallery -InstallationPolicy Trusted

In step 22, you evaluate and test the module:

In step 23, uninstalling a module is simple:

In step 24, if you prefer, download code and inspect it before installing, using Save-Module, then browse the module's files in Windows Explorer:

In step 25, after reviewing the code, import the module by locating the .psm1 file which defines the module, using Get-ChildItem, then piping that filename to Import-Module:

In step 26, you uninstall the module from your session and delete the module's folder. You may, of course, wish to keep the module!

 There's more...

There are a wealth of other resources in the PSGallery—you use the Find-* cmdlets to explore the online resources you can download and use:

The PowerShellGet module enables search for commands, DSC resources, modules, role capabilities, a feature of Just Enough Administration (JEA), and scripts. You can download and use these various tools, or leverage them to build your own custom scripts.

 Exploring PackageManagement

PowerShellGet is a powerful resource for PowerShell, built on top of the core PackageManagement capabilities of PowerShell 5. It is one of many PackageManagment providers available, as shown here:

Image Source: https://blogs.technet.microsoft.com/packagemanagement/2015/04/28/introducing-packagemanagement-in-windows-10/

PackageManagement is a unified interface for software package management systems, a tool to manage package managers. You use the PackageManagement cmdlets to perform software discovery, installation, and inventory (SDII) tasks. PackageManagement involves working with package providers, package sources, and the software packages themselves.

Within the PackageManagement architecture, PackageManagement providers represent the various software installers that provide a means to distribute software via a standard plug-in model using the PackageManagement APIs. Each PackageManagement provider manages one or more package sources or software repositories. Providers may be publicly available or can be created within an organization to enable developers and system administrators to publish or install propriety or curated software packages.

PackageManagement Core is effectively an API. The core includes a set of PowerShell cmdlets that enable you to discover available software packages, as well as to install, uninstall, update, and inventory packages using PackageManagement.

Each PackageManagement provider is a different installer technology or package manager that plugs-in via the PackageManagement API. PowerShellGet, NuGet, and Chocolatey are examples of PackageManagement providers.

Each provider is made up of one or more sources, which may be public or private. For example, NuGet has a public source, but your organization may add private sources for the NuGet provider, enabling curation of approved software to make it available to corporate developers.

 How to do it...

You use the cmdlets within the PackageManagement module to explore the capabilities it provides.

	Review the cmdlets in the PackageManagement module:

 Get-Command -Module PackageManagement

	Review the installed providers with Get-PackageProvider:

 Get-PackageProvider | Select-Object -Property Name, Version

	The provider list includes msi, msu, and Programs package providers. These providers expose applications and updates installed on your computer which you can explore:

 Get-Package -ProviderName msi |
 Select-Object -ExpandProperty Name
 Get-Package -ProviderName msu |
 Select-Object -ExpandProperty Name
 Get-Package -ProviderName Programs |
 Select-Object -ExpandProperty Name

	The NuGet source contains developer library packages. This functionality is outside the scope of this book, but worth exploring if you do Windows or web development:

 Get-PackageProvider -Name NuGet

	There are also other package providers you can explore:

 Find-PackageProvider |
 Select-Object -Property Name,Summary |
 Format-Table -Wrap -AutoSize

	Notice Chocolatey, which is a very useful tool for Windows administrators and power users. Those with some Linux background may think of Chocolatey as apt-get for Windows. You cannot use this provider until you install it and confirm the installation:

 Install-PackageProvider -Name Chocolatey -Verbose

	Verify Chocolatey is now in the list of installed providers:

 Get-PackageProvider | Select-Object Name,Version

	Look for available software packages from the Chocolatey package provider. Store these in a variable so you don't request the collection more than once, and explore it:

 $AvailableChocolateyPackages = `
 Find-Package -ProviderName Chocolatey
 # How many software packages are available at Chocolatey?
 $AvailableChocolateyPackages | Measure-Object

	Pipe to Out-GridView to search for interesting software packages from Chocolatey:

 $AvailableChocolateyPackages |
 Sort-Object Name,Version |
 Select-Object Name, Version, Summary |
 Out-GridView

	Install one or more packages. sysinternals is a good example to use. Use -Verbose to get details on the installation:

 Install-Package -ProviderName Chocolatey `
 -Name sysinternals `
 -Verbose

	Review installed Chocolatey packages, stored to C:\chocolatey\ by default, this path is stored in the $env:ChocolateyPath environment variable. Then review the executable files included with the sysinternals package:

 Get-ChildItem -Path $env:ChocolateyPath\lib |
 Select-Object -Property Name
 Get-ChildItem -Path `
 $env:ChocolateyPath\lib\sysinternals.2016.11.18\tools `
 -Filter *.exe |
 Select-Object -Property Name

	Run any installed command included with sysinternals:

 $PSInfoCommand = `
 ‘C:\Chocolatey\lib\sysinternals.2016.11.18\tools\PsInfo.exe’
 Invoke-Expression -Command $PSInfoCommand

	Installed packages are enumerated with Get-Package and updated using the same command to install them, Install-Package:

 Get-Package -ProviderName Chocolatey |
 Install-Package -Verbose

 How it works...

In step 1, you review the cmdlets available in the PackageManagement module:

In step 2, you use the Get-PackageProvider cmdlets to display the currently installed package providers:

In step 3, you use Get-Package with the -ProviderName parameter to review packages installed via the msi, msu, and Programs package providers:

In step 4, review the NuGet provider:

In step 5, search for other package providers:

In step 6, you use Install-PackageProvider to install the Chocolatey provider. Since it is untrusted as a public source, you must approve the installation (at your own risk and responsibility):

In this example, you run Install-PackageProvider from within the ISE. By default, this pops up a confirmation dialog. If you run this cmdlet from the PowerShell console, you see a prompt there. You can suppress these confirmation requests by including the parameter -Confirm:$False.

In step 7, you verify Chocolatey is now installed as a package provider:

In step 8, retrieve a list of available software packages from the ChocolateyPackageProvider, store as a variable, and count the available packages:

In step 9, pipe the variable to Out-GridView and use the filter feature to explore what is available. This example is filtering for the Sysinternals package:

In step 10, you install this package (or any package you choose):

In step 11, you review the installed Chocolatey packages, and the files contained within the sysinternals package folder:

In step 12, run any Sysinternals command, for example, PsInfo.Exe :

In step 13, you enumerate the installed packages with Get-Package. As time goes by, packages can be updated with bug fixes, new features, and so on. You can update all the installed packages if any updates exist, as follows:

 There's more...

Details of NuGet package and its functionality are outside the scope of this book, but worth exploring if you do Windows or web development. More information on NuGet packages is available from https://www.nuget.org/Packages.

Chocolatey has both a command-line interface and a PowerShell module. The command line interface offers functionality comparable to the PackageManagement module, targeted toward end users and system administrators. Chocolatey is supported on any Windows PC running Windows 7 or later. You can get more information on installing and using Chocolatey via the command line from https://chocolatey.org/install.

Sysinternals is a must-have toolkit for Windows administrators. You can find additional training on the Sysinternals tools on the Channel 9 website at https://channel9.msdn.com/Series/sysinternals.

 Creating an internal PowerShell repository

It is useful to create your own PowerShell repository for personal or corporate use. The tools to enable you to build your own repository are not included in PowerShell. There are three main approaches available that enable you to build a repository:

	Using Visual Studio's NuGet package manager to download and install the Nuget.Server package into a new web project, and deploy to your own IIS Server. This option is free. However, you need to use Visual Studio 2015 (Either the full version or the free community edition) to create your own web project, download the Nuget server software, and deploy it into your environment. More information is available at https://www.nuget.org/packages/NuGet.Server.

	Using a third-party NuGet host's SAAS platform. This is the simplest solution, but software licensing fees may apply, and some organizations might have reservations about keeping the code on external servers. Choices for this approach include Visual Studio Team Services, http://myget.org/, and ProGet.

	Installing a 3rd-party NuGet software repository on your server. This simplifies the setup process for hosting your own software repository, but software licensing fees may apply.

More information is available on hosting from the NuGet site at https://docs.nuget.org/ndocs/hosting-packages/overview.

The simplest approach to setting up your own software repository is to install and configure the free or trial version of ProGet. Do so via a GUI installation—the steps are described at https://inedo.com/support/documentation/proget/installation/installation-guide.

You have the choice of using an existing SQL Server instance or installing SQL Express as part of the installation. SQL is used to hold the repository's data. You may also choose to install your repository to an existing IIS Server or install ProGet with its own internal web server.

Inedo also provides a PowerShell script to perform the installation, which you may customize. For the script based installation, you need to register for a free license key at https://my.inedo.com.

You can find more information on using ProGet from the Inedo web site at

https://inedo.com/support/kb/1088/using-powershell-to-install-and-configure-proget.

 How to do it...

	Once you have installed ProGet using either the GUI or PowerShell script approach, log in to the ProGet application home page using the default admin account until you create a username and password:

	From Feeds page, click Create New Feed:

	A list of supported feed types is displayed. Choose PowerShell:

	Enter a feed name of your choice: (for example, MyPowerShellPackages) and click the Create New PowerShell Feed button:

	Review the properties of your new feed:

	Open the PowerShell ISE or console, and register your new repository:

 $RepositoryURL = `
 "http://localhost:81/nuget/MyPowerShellPackages/"
 Register-PSRepository -Name MyPowerShellPackages `
 -SourceLocation $RepositoryURL`
 -PublishLocation $RepositoryURL `
 -InstallationPolicy Trusted

	Publish a module you already have installed (Pester, for example):

 Publish-Module -Name Pester -Repository MyPowerShellPackages `
 -NuGetApiKey "Admin:Admin"

	Download a module from PSGallery, save it to the C:\Foo folder, and publish to your new repository (for example, Carbon):

 Find-Module -Name Carbon -Repository PSGallery
 New-Item -ItemType Directory -Path 'C:\Foo'
 Save-Module -Name Carbon -Path C:\foo
 Publish-Module -Path C:\Foo\Carbon `
 -Repository MyPowerShellPackages `
 -NuGetApiKey "Admin:Admin"

	Find all the modules available in your newly created and updated repository:

 Find-Module -Repository MyPowerShellPackages

 How it works...

There are various options for setting up a NuGet-based repository for PowerShell. ProGet is a universal package manager from Inedo (See https://inedo.com/proget for more information on ProGet). ProGet is a very simple choice as it is easy to get started and offers the ability to scale to enterprize level. ProGet has both a free and a paid subscription version available. The ProGet installer creates a NuGet web server backed by a SQL Express database.

In step 1, you visit the server web administration page and optionally review the functionality available.

In steps 2-5, you use ProGet to create a new repository for your PowerShell modules. As you see, you use the ProGet GUI to create this new repository.

In step 6, you register your new repository in your PowerShell session. You need to know the repository URL and have a NuGet API key, using the default username/password of Admin /Admin.

In step 7, you publish a module to the repository—you are using a module that is installed in your PowerShell session, Pester.

In step 8, you locate and download an additional module from the PSGallery, and publish this module to your local repository.

In step 9, you see the modules available from your local repository:

 There's more...

ProGet is a rich product. It provides both automatic failover and scalability which are needed features for PowerShell repositories in large organization's repository. ProGet is one option you have for creating your own organization specific repository. To learn more about ProGet, visit http://inedo.com/support/documentation/proget.

NuGet is a free, open source package management system provided by the Microsoft ASP.NET development platform and is provided as a Visual Studio extension. To learn more about NuGet, visit https://docs.nuget.org/ndocs/api/nuget-api-v3.

 Implementing Nano Server

This chapter contains the following recipes:

	Deploying a Nano Server in a VM

	Connecting to and managing a Nano Server

	Installing features with Nano Server packages

 Introduction

Nano Server is a new installation mode of Windows Server 2016. It is a minimal implementation of Windows Server with no desktop, and no default features or services. Nano Server has a minimal disk, memory, and CPU footprint to reduce attack surface and patching requirements.

 Deploying a Nano Server in a VM

Deploying a Nano Server is a simple and customizable process. This recipe focuses on the most straightforward implementation which is deploying a Nano Server in a virtual machine. With Nano Server you have several customization options:

	Network address: By default, Nano Server uses DHCP to acquire an IP address. You can configure the IP address, subnet, gateway, and DNS both before or after deployment.

	Domain membership: By default, Nano Server is not domain joined. You can configure domain membership both before or after deployment.

As this book was going to press, Microsoft has announced that, going forward, Nano Server is only available as a container base OS image. Refer to: https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel for more information.

 Getting ready

You need Windows Server 2016 installation ISO file and a Windows Server 2016 system running Hyper-V (HV1). This recipe assumes the path to the ISO file is D:\iso\WinServer2016.iso.

This recipe assumes you have Hyper-V setup and have at least one switch defined.

You also need a folder for storing the base image files (C:\NanoBase in this recipe) and a folder for storing the virtual machine file and VHDX files (C:\VMs in this recipe).

 How to do it...

	On the VM host, mount Server 2016 installation ISO:

 $Server2016ISOPath = 'D:\iso\WinServer2016.iso'
 $MountResult = Mount-DiskImage -ImagePath $Server2016ISOPath `
 -PassThru
 $MountResult | Select-Object -Property *

	Determine the drive letter(s) of mounted ISO(s), including the colon (:):

 $Server2016InstallationRoot = ($MountResult |
 Get-Volume |
 Select-object -ExpandProperty Driveletter) + ':'
 $Server2016InstallationRoot

	Get the path of the NanoServerImageGenerator module within the server installation disk:

 $NanoServerFolder = `
 Join-Path -Path $Server2016InstallationRoot `
 -ChildPath 'NanoServer'
 $NsigFolder = Join-Path -Path $NanoServerFolder `
 -ChildPath 'NanoServerImageGenerator'

	Review the contents of the NanoServerImageGenerator module folder:

 $NsigFolder
 Get-ChildItem -Path $NsigFolder -Recurse

	Import the NanoServerImageGenerator module and review the commands it contains:

 Import-Module -Name $NanoServerImageGeneratorModuleFolder
 Get-Command -Module NanoServerImageGenerator

	Designate the folder for the base Nano Server images:

 $NanoBaseFolder = 'C:\NanoBase'

	Designate the folder for the VM images:

 $VMFolder = 'D:\VMs'

	Define the Nano Server computer name and file paths for your Nano Server VM:

 $NanoComputerName = 'NANO1'
 $NanoVMFolder = Join-Path -Path $VMFolder
 -ChildPath $NanoComputerName
 $NanoVMPath = Join-Path -Path $NanoVMFolder `
 -ChildPath "$NanoComputerName.vhdx"

	Create a Nano Server VM image, as a guest VM within Hyper-V and prompt for the administrator password:

 New-NanoServerImage -DeploymentType Guest -Edition Datacenter
 -MediaPath $Server2016InstallationRoot `
 -BasePath $NanoBaseFolder `
 -TargetPath $NanoVMPath `
 -ComputerName $NanoComputerName

	Define a VM switch for your Nano Server:

 $SwitchName = Get-VMSwitch |
 Select-Object -ExpandProperty Name -First 1

	Create a new VM in Hyper-V using the Nano Server VM image:

 New-VM -VHDPath $NanoVMPath -Name $NanoComputerName `
 -Path $NanoVMFolder `
 -SwitchName $SwitchName `
 -Generation 2 -Verbose

	Start your new Nano Server VM:

 Start-VM -Name $NanoComputerName -Verbose

 How it works...

In step 1, you mount the Windows Server installation ISO file:

In step 2, you store the drive letter for the mounted ISO file:

In step 3 and step 4, you get the path to the NanoServerImageGenerator module folder within the installation media and review the contents:

In step 5, you import the module and view the commands it contains:

In step 6 to step 8 you define the variables and paths for the new Nano Server VM:

In step 9, you create the Nano Server image, and you provide the administrator password when prompted.

Monitor the progress bar as the cmdlet builds the image:

In step 10, you store the name of the Hyper-V switch to which you connect your new Nano Server. If you have defined more than one switch, this recipe returns the first switch found—you may need to adjust this step depending on your configuration. The output looks like this::

In step 11, you create the VM in Hyper-V, referring to the newly created VHDX file.

In step 12, you start your new VM.

 There's more...

This recipe uses the default settings for networking based on DHCP and only applies the guest package to your new VM. You can define networking and packages at deployment time. Review online documentation for New-NanoServerImage: https://technet.microsoft.com/en-us/library/mt791180.aspx.

In step 4, you import the NanoServerImageGenerator module explicitly. You could also copy the module to your local module store. You can use any folder contained in $PSModulePath. Adding the module to your module store removes the need to import the module explicitly.

In step 7, you define the path to the VHD file. You should use the .vhdx extension for a VM generation 2 image, or the .vhd extension for a VM generation 1 image.

In step 10, you create the Nano Server VM. You store the VM file configuration files in the same folder as the VM disk. Additionally, the generation specified in this command needs to correspond to the choice of file extension in step 7. For a generation 1 VM use .vhd, and for a generation 2 VM use .vhdx. You may find yourself creating various Nano Servers in your learning process. To clean up a Nano Server VM, run the following commands:

 Stop-VM -Name $NanoComputerName
 Remove-VM -Name $NanoComputerName
 Dismount-DiskImage -ImagePath $Server2016ISOPath

You use this VM in the later recipes of this chapter.

 Connecting to and managing a Nano Server

Nano Server is designed to be managed remotely without the use of remote desktop services or local console access. You can connect directly to your Nano Server or use other tools to carry out management functions.

Nano Server lacks a desktop experience and remote desktop capability. You use the Nano Server Recovery Console to do some basic network management and to view operating system information. You perform most configuration and management remotely.

Perhaps the simplest way to connect to and configure virtual machines (VMs) is for you to use PowerShell Direct, a new feature introduced in Windows Server 2016. PowerShell Direct enables PowerShell remoting to VMs via the hypervisor instead of using the network, without the need to access the recovery console or configure networking for the VM.

 Getting ready

Your Nano Server should be running in Hyper-V, and you should have administrator access on the Hyper-V host and know the VM Name and administrator password for the Nano Server.

You should decide on how to set up networking for the Nano Server VM. You can use DHCP (the default) or implement Static IP address details for your Nano Server. If you choose a static address, know the desired address, subnet, gateway, and DNS Server. In this recipe for Reskit.org, use the following:

	IPAddress: 10.10.10.131

	Subnet Mask: 255.255.255.0

	Gateway: 10.10.10.254

	DNS: 10.10.10.10/10.10.10.11

 How to do it...

Method 1, using the Nano Server Recovery Console:

	Launch Hyper-V management console, and locate the VM running Nano Server.

	Double-click the VM to bring up the recovery console.

	Enter the username administrator and the password that you defined when you created the VM.

	Nano Server then display basic information about the server with a menu of options. Choose Networking from this menu by pressing Enter, then press Enter again to choose the default adapter.

	Your Nano Server's IP configuration is displayed, with key navigation options displayed at the bottom of the screen. Note your IP address to use to connect later in this recipe.

	Press F11 at this screen to configure your IP address, if desired. Then press F4 to change from DHCP to static IP, and use the Tab key to move between the IP Address, Subnet Mask, and Default Gateway fields, and enter the desired values.

Method 2, using PowerShell Direct:

	From the Hyper-V host, open PowerShell ISE. List the VMs:

 Get-VM -Name N*

	Store the Nano Server VM name and administrator credential in variables:

 $NanoComputerName = 'NANO1'
 $Credential = Get-Credential `
 -Message "Enter administrator password for target VM:" `
 -UserName administrator

	Get the running processes using Invoke-Command via PowerShell Direct:

 Invoke-Command -VMName $NanoComputerName -Credential $Credential
 -ScriptBlock { Get-Process }

	Enter an interactive PowerShell remoting session via PowerShell Direct:

 Enter-PSSession -VMName $NanoComputerName -Credential $Credential

	You are connected just like that in a PowerShell remoting session! Create and use a test folder in your Nano server:

 New-Item -ItemType Directory -Path C:\foo `
 -ErrorAction SilentlyContinue
 Set-Location C:\foo

	Gather information about your server using the new Get-ComputerInfo cmdlet:

 Get-ComputerInfo -Property CsName, WindowsEditionId,
 OSServerLevel, `
 OSType, OSVersion, WindowsBuildLabEx, BiosBIOSVersion

	Examine $PSVersionTable, noting the value of the PSEdition property:

 $PSVersionTable

	Get the IP Address of your Nano Server, noting it for later recipe steps:

 Get-NetIPAddress -AddressFamily IPV4 -InterfaceAlias Ethernet |
 Select-Object -ExpandProperty IPAddress

	If required, change the IP Address of your Nano Server, and display the new IP:

 New-NetIPAddress -InterfaceAlias 'Ethernet' `
 -IPAddress 10.10.10.131 `
 -PrefixLength 24 `
 -DefaultGateway 10.10.10.254
 Get-NetIPAddress -InterfaceAlias 'Ethernet' -AddressFamily IPv4

	If required, set the DNS of your Nano Server, and display the DNS information:

 Set-DnsClientServerAddress -InterfaceAlias 'Ethernet' `
 -ServerAddresses 10.10.10.10,
 10.10.10.11
 Get-DnsClientServerAddress

	Exit your remoting session:

 Exit-PSSession

Method 3, Using PowerShell Remoting:

	PowerShell remoting requires that the remoting target computer IP should be among the TrustedHosts defined on your computer. Add the IP Address of the Nano Server to our computer's TrustedHosts and verify the value:

 $NanoServerIP = '10.10.10.131'
 Set-Item -Path WSMan:\localhost\Client\TrustedHosts `
 -Value $NanoServerIP -Force
 Get-Item -Path WSMan:\localhost\Client\TrustedHosts

	Verify WSMan connectivity to the Nano Server:

 Test-WSMan -Path $NanoServerIP

	Connect via PowerShell remoting to the Nano Server:

 Enter-PSSession -ComputerName $NanoServerIP `
 -Credential $Credential

	Use Get-ComputerInfo to inspect the Nano Server:

 Get-ComputerInfo -Property CsName, WindowsEditionId,
 OSServerLevel, OSType, OSVersion,
 WindowsBuildLabEx, BiosBIOSVersion

	Exit your remoting session:

 Exit-PSSession

Method 4, Using WMI with the CIM cmdlets:

	Create a new CIM session on the Nano Server, and view the $CimSession object:

 $CimSession = New-CimSession -Credential $Credential `
 -ComputerName $NanoServerIP
 $CimSession

	Examine the properties of the Win32_ComputerSystem CIM class:

 Get-CimInstance -CimSession $CimSession `
 -ClassName Win32_ComputerSystem |
 Format-List -Property *

	Count the CIM classes available:

 Get-CimClass -CimSession $CimSession | Measure-Object

	View the running processes using the CIM_Process WMI class and a WMI query:

 Get-CimInstance -CimSession $CimSession `
 -Query "SELECT * from CIM_Process"

	Remove your CIM Session:

 Get-CimSession | Remove-CimSession

 How it works...

In Method 1, you use the Nano Server Recovery Console from the Hyper-V manager. This technique is useful when the Nano Server has an invalid Ethernet configuration or an unknown IP address.

In step 1 and step 2, from Hyper-V manager, double-click on the NANO1 virtual machine to bring up the Nano Server Recovery Console.

In step 3, you log in with the username administrator and the password you provided during the creation of the VM:

In step 4, you view the summary information on your Nano Server and navigate through the screens using the keyboard, with the menu options displayed at the bottom:

When you select Networking from the initial screen, you see the Network Settings folder, like this:

In step 5, you view the networking configuration of your server, noting the IP address so you can access it later.

In step 6, you can modify your IP address. The default configuration uses DHCP. If your scenario requires it, disable DHCP and define a valid static IP Address, Subnet Mask, and Default Gateway:

In Method 2, you use PowerShell Direct. PowerShell Direct is a new feature introduced in Hyper-V in Windows Server 2016 (and Windows 10). PowerShell Direct enables PowerShell scripting against Windows Server 2016 and Windows 10 virtual machines directly through the hypervisor, without requiring network, firewall, or remoting configuration. PowerShell Direct simplifies deployment and automation scripting for Hyper-V hosted virtual machines.

In step 1, you get the list of VM names from the local Hyper-V server:

In step 2, you store the VM name and credential in a variable for later use in the recipe:

In step 3, you view the running processes from the VM using Invoke-Command with a script block of Get-Process. Note that the -VMName parameter indicates the use of PowerShell Direct:

In step 4, you enter an interactive PowerShell remoting session through PowerShell Direct using the -VMName parameter:

In step 5, you connect to the VM, note the VM name in the prompt and that your current directory is in the default Documents folder. Create and use a test folder in your Nano Server:

In step 6, you gather computer information using a new cmdlet in PowerShell 5.1, Get-ComputerInfo:

In step 7, $PSVersionTable has a PSEdition of Core rather than Desktop. The Core version supports a subset of the features of the full Desktop edition of PowerShell:

In step 8, you get the IPAddress property from the Get-NetIPAddress cmdlet:

In step 9, you can set your IP address:

In step 10, you set your DNS:

In step 11, exit your remoting session. Note the change in the prompt:

With Method 3, you use regular PowerShell remoting. In step 1, you connect to the Nano Server VM. Before you can do so, you need to add the VMs IP address to your TrustedHosts on your Windows 2016 server. Note that you can set this value to an asterisk (*) which enables you to connect to any remoting capable computer:

In step 2, you test your remoting connectivity to the VM using Test-WSMan:

In step 3, you remote into the VM with PowerShell remoting:

In step 4, as you gather computer information. Note that the -Property is optional, leave it out or pass in an asterisk (*) to display a great deal of useful information about the target computer:

In step 5, you end your remoting session:

In Method 4, you use Windows Management Instrumentation (WMI) and the cmdlets in the CimCmdlets module to work with your Nano Server. WMI is an open standard that describes managed IT elements as objects with properties and relationships. The CIMCmdlets module contains the preferred cmdlets you use to manage Windows Servers via WMI. PowerShell in Windows Server 2016 supports both the older WMI cmdlets (contained in the Microsoft.PowerShell.Management module) and the newer CIMCmdlets module. Nano Server ships with CIMCmdlets, not WMI.

In step 1, you create a CIM session to the Nano Server using the credential and IP address you defined earlier, and you store it in the variable $CimSession:

In step 2, within this CIM session, you access an instance of the Win32_ComputerSystem class to view information about the Nano Server:

In step 3, you gather a count of the classes:

In step 4, you query the CIM_Process class:

In step 5, you remove your CIM session:

 There's more...

Get-ComputerInfo is a new cmdlet introduced in PowerShell 5.1. Get-ComputerInfo returns an object of type Microsoft.PowerShell.Commands.ComputerInfo that contains a wealth of information from the target computer including hardware, bios, OS, driver, and networking data. The documentation is available and updateable on github: https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md.

PowerShell Direct is a useful new feature for Hyper-V in Windows Server 2016. It simplifies PowerShell scripting for VMs. For more information on this feature, see: https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct.

PowerShell remoting is a powerful feature that has security implications, this is why the TrustedHosts setting is empty by default, and the administrator must explicitly add addresses of servers to manage, or may add an asterisk (*) to allow remoting to any server. More information about remoting is available within the PowerShell documentation:

Get-Help about_Remote*

PowerShell on Nano Server contains the Core edition of PowerShell. PowerShell Core implements a subset of the full Desktop edition features. The cmdlets provided should be enough for you to configure networking to allow you to manage Nano Server remotely.

Learn about what is and what is not supported with PowerShell in Nano Server: https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server.

WMI is a key aspect of PowerShell scripting, using either the WMI or CIM cmdlets. The latter are preferred if only because they are a little quicker. Learn more about CIMCmdlets in PowerShell: https://technet.microsoft.com/en-us/library/jj553783.aspx.

You use WMI via the CIM cmdlets to manage and apply Windows updates to your Nano Servers: https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server.

 Installing features with Nano Server packages

Nano Server is a minimal implementation of a Windows Server 2016. You can customize it to include only the desired features and roles you require. You customize Nano Servers using the PackageManagement module along with the NanoServerPackage provider. The NanoServerPackage provider can search, download, or install packages that implement features and roles for Nano Server from an online gallery. This provider enables you to install useful server features and roles which you will explore in this recipe.

In Nano Server, packages replace the Add Roles & Features functionality in other editions of Windows. For example, if you need a web server, in other editions of Windows you would install the Web Server (IIS) role, but in Nano server, you would install the Microsoft-NanoServer-IIS-Package package. Instead of installing the File Services role, you would install the Microsoft-NanoServer-Storage-Package package.

You can deploy a Nano Server in a workgroup, which is the default. You can also join the Nano Server to your domain. Nano Servers must join to the domain to utilize certain Windows features like Windows Clusters. In this recipe, you will deploy a domain joined Nano Server. To achieve this, you need to obtain a domain blob file which you create using the djoin console command. You transfer this blob file to the Nano Server to join it to the domain. You also review the available Nano Server packages and install the selected packages to support the file server role, web server role, and the Desired State Configuration (DSC) support.

 Getting ready

Before starting, you should ensure that the pre-requisites for using PowerShellGet are installed and are updated. See recipe in Chapter 1, What's New in PowerShell and Windows Server, Exploring PowerShellGet recipe for how you can achieve this.

To enable the Nano Server to join the domain, you first create a domain join blob file. Run the following command with an account in Domain Admins group, from a virtual machine on the domain as follows:

 djoin.exe /provision /domain RESKIT /machine NANO2
 /savefile .\NANO2.djoin

The djoin command creates the domain join blob as .\NANO2.djoin. Copy the newly created NANO2.djoin file to a folder on your Hyper-V host (C:\foo in this recipe.)

You also need the Windows Server 2016 installation ISO mounted (You use E: in this recipe as the location of this ISO image.)

A Nano Server can use DHCP or static IP addresses. In this recipe for provisioning NANO2 on the Reskit.org domain, you use the following settings:

	IPAddress: 10.10.10.132

	Subnet Mask: 255.255.255.0

	Gateway: 10.10.10.254

	DNS: 10.10.10.10/10.10.10.11

 How to do it...

	From your Hyper-V host, view the currently installed package providers:

 Get-PackageProvider

	View the available package providers online, noting the NanoServerPackage provider:

 Find-PackageProvider | Select-Object -Property Name, Summary |
 Format-Table -AutoSize -Wrap

	Install the NanoServerPackage provider:

 Install-PackageProvider -Name NanoServerPackage -Verbose

	View the commands included with the provider:

 Get-Command -Module NanoServerPackage

	View the available Nano Server packages:

 $NanoPackages = Find-NanoServerPackage |
 Select-Object -Property Name, Description
 $NanoPackages | Format-Table -AutoSize -Wrap

	Determine which of the available packages you wish to install, store them as an array in the $Installpackages variable and then display that array:

 $InstallPackages = @('Microsoft-NanoServer-Storage-Package',
 'Microsoft-NanoServer-IIS-Package',
 'Microsoft-NanoServer-DSC-Package')
 $InstallPackages

	Define the path to the Windows Server 2016 installation media:

 $Server2016InstallationRoot = 'E:\'

	Define the path of the NanoServerImageGenerator folder:

 $NanoServerFolder = Join-Path -Path $Server2016InstallationRoot
 -ChildPath 'NanoServer'
 $NsigFolder = Join-Path -Path $NanoServerFolder
 -ChildPath 'NanoServerImageGenerator'
 $NsigFolder

	Import the NanoServerImageGenerator module and review the commands contained in that module:

 Import-Module -Name $NsigFolder
 Get-Command -Module NanoServerImageGenerator

	Define the folders for the base Nano Server images and the VM images:

 $NanoBaseFolder = 'C:\NanoBase'
 $VMFolder = 'D:\VMs'

	Define paths for the Nano Server VM:

 $NanoComputerName = 'NANO2'
 $NanoVMFolder = Join-Path -Path $VMFolder
 -ChildPath $NanoComputerName
 $NanoVMPath = Join-Path -Path $NanoVMFolder
 -ChildPath "$NanoComputerName.vhdx"

	Define the networking parameters:

 $IPV4Address = '10.10.10.132'
 $IPV4DNS = '10.10.10.10','10.10.10.11'
 $IPV4Gateway = '10.10.10.254'
 $IPV4SubnetMask = '255.255.255.0'

	Build a hash table $NanoServerImageParameters to hold parameters for the New-NanoServerImage cmdlet:

 $NanoServerImageParameters = @{
 DeploymentType = 'Guest'
 Edition = 'DataCenter'
 TargetPath = $NanoVMPath
 BasePath = $NanoBaseFolder
 DomainBlobPath = $DomainJoinBlobPath
 Ipv4Address = $IPV4Address
 Ipv4Dns = $IPV4DNS
 Ipv4Gateway = $IPV4Gateway
 IPV4SubnetMask = $IPV4SubnetMask
 Package = $InstallPackages
 }

	Create a new Nano Server image, passing in configuration parameters using splatting:

 New-NanoServerImage @NanoServerImageParameters

	Once complete, review the VM switches available, and define the Hyper-V switch to use:

 Get-VMSwitch | Select-Object -ExpandProperty Name
 $SwitchName = 'Internal'

	Create the Nano virtual machine from the newly created VM disk, and start the VM:

 New-VM -VHDPath $NanoVMPath `
 -Name $NanoComputerName `
 -Path $NanoVMFolder `
 -SwitchName $SwitchName `
 -Generation 2 -Verbose |
 Start-VM

 How it works...

To get ready for this recipe, create the computer account for NANO2 in the RESKIT domain using the djoin command to create the domain blob file. You store this blob in the blob file NANO2.djoin.

In step 1, you review the installed package providers. Note that if NanoServerPackage provider is missing, you need to install this package provider to continue:

In step 2 and step 3, you list the available PackageManagement package providers, noting the NanoServerPackage package, then install this package provider:

In step 4, you view the commands associated with the NanoServerPackage. While these commands are specific to this package, they are wrapper cmdlets for similarly named PackageManagement cmdlets that can be viewed with Get-Command -Noun Package:

In step 5, you view the available packages for Nano Server. Note that some of these packages are installed using switch parameters in the New-NanoServerImage cmdlet, for example, the -DeploymentType Guest switch installs the Microsoft-NanoServer-Guest-Package:

In step 6, you define $InstallPackages as an array of the desired packages:

In step 7 and step 8, you define the path to the server installation media, and to the NanoServerImageGenerator module folder:

In step 9, you import the NanoServerImageGenerator module and view the modules commands:

In step 10 and step 11, you define paths required for the Nano Server base image, VM name, folder, and file path. There is no output from these steps.

In step 12, you define the path to the domain join file that you created in the Getting ready section:

In step 13, define the networking configuration for the VM. Note the $IPV4DNS is an array with two values storing the primary and secondary DNS server IP addresses:

In step 14, you define and view a hash table variable holding all the parameters required in the next step:

In step 15, you run the New-NanoServerImage using splatting to pass the required parameters. Answer the prompt for an administrator password, and review the progress of the creation of the new Nano Server image. Once complete, results are available for review in a time stamped folder under C:\NanoBaseLogs:

In step 16, view the available Hyper-V switch names, and choose the one to associate with your new VM:

In step 17, you create the new VM, and pipe it to Start-VM to start it:

 There's more...

Creating a domain joined Nano Server simplifies Nano Server management. From any domain server with RSAT tools installed, you can manage this Nano Server VM using the Server Manager.

From the Server Manager, right click on All Servers, and choose Add Servers:

Enter the name of the server to manage in the Name (CN) field, click Find Now, then click the triangle(Add) button, then click OK:

You can now manage your new Nano Server like any other Windows Server.

This recipe uses the djoin tool to create a domain blob file and passes the path in the -DomainBlobPath parameter. If the host server is a member of the domain, use the -DomainName and -ComputerName parameters instead.

To discover more about offline domain join, see the Offline Domain Join (Djoin.exe) Step-by-Step Guide: https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx.

Nano packages can be installed either at deployment time or after deployment. You can add packages after deploying the Nano Server in either an offline or online mode. As a best practice, in keeping with Jeffrey Snover's cattle not pets server philosophy, it is usually better to start over and deploy a new Nano Server that's properly configured than to modify the configuration of an existing Nano server.

For more information on various deployment scenarios for Nano Server:

https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server.

 There are Nano server packages you can download from GitHub. See the NanoServerPackage on GitHub site at: https://github.com/OneGet/NanoServerPackage.

 Managing Windows Updates

 In this chapter, we will cover the following recipes:

	Installing Windows Server Update Services

	Configuring WSUS update synchronization

	Configuring the Windows Update client

	Creating computer target groups

	Configuring WSUS auto-approvals

	Managing updates

 Introduction

Windows administrators must manage Windows updates to ensure that the operating systems and software running on their computers are patched to resolve known bugs and are protected from known security vulnerabilities. Windows Server Update Services (WSUS) was a feature that was added in 2016 that enables the system administrators to manage the download and distribution of updates to the organization's computers.

Windows Software Update Services could be better named as Microsoft Software Update Services. WSUS manages not only Windows operating system updates but also updates for most Microsoft software products. Updates may apply to the Windows OS or any Microsoft software.

This chapter covers the installation and configuration of the WSUS server, the configuration of WSUS client computers, the management, approval, and installation of updates, and how to report on the status of the update installation.

 Installing Windows Server Update Services

To use WSUS, you first install the Windows feature for update services, then perform the initial configuration. WSUS has dependencies that include the IIS web server and ASP.NET 4.6, so these dependencies are installed automatically if they are not present.

 Getting ready

To follow this recipe, open a PowerShell session on server WSUS1. WSUS1 is a domain-joined server with internet access.

 How to do it...

The steps for the recipe are as follows:

	Install the Windows Update feature and tools, with -Verbose for additional feedback:

 Install-WindowsFeature -Name 'UpdateServices' `
 -IncludeManagementTools -Verbose

	Review the features that are installed on your server, noting that not only has Windows Software Update Services been installed, but Web Server (IIS), ASP.Net 4.6, and Windows Internal Database have as well:

 Get-WindowsFeature |
 Where-Object -FilterScript {($psitem.Installed)}

	Create a folder for WSUS update content:

 $WSUSContentDir = 'C:\WSUS'
 New-Item -Path $WSUSContentDir -ItemType Directory

	Perform post-installation configuration using WsusUtil.exe:

 & "$env:ProgramFiles\Update Services\Tools\WsusUtil.exe" `
 postinstall
 CONTENT_DIR=$WSUSContentDir

	Once configuration completes, the output includes a line stating Log file is located at, followed by a path to a .tmp file in the user's temp directory. Review this log file to see what was done in the configuration (adjust the file name as necessary):

 Get-Content -Path "$env:TEMP\1tmp234.tmp"

	View some websites on this machine, noting the WSUS website:

 Get-Website

	View the cmdlets in the UpdateServices module:

 Get-Command -Module UpdateServices

	Inspect the TypeName and properties of the object created with Get-WsusServer:

 $WSUSServer = Get-WsusServer
 $WSUSServer.GetType().Fullname
 $WSUSServer | Select-Object -Property *

	The object is of type UpdateServer in the Microsoft.UpdateServices.Internal.BaseApi namespace, and is the main object you interact with to manage WSUS from PowerShell. Inspect the methods of the object:

 $WSUSServer | Get-Member -MemberType Method

	Inspect some of the configuration values of the UpdateServer object:

 $WSUSServer.GetConfiguration() |
 Select-Object -Property SyncFromMicrosoftUpdate,LogFilePath

	Product categories are the various operating systems and programs for which updates are available. See what product categories are included by WSUS after the initial install:

 $WSUSProducts = Get-WsusProduct -UpdateServer $WSUSServer
 $WSUSProducts.Count
 $WSUSProducts

	Your $WSUSServer object contains a subscription object with properties and methods useful for managing the synchronization of updates. Access the Subscription object in the $WSUSServer object and inspect it, noting that it is also in the Microsoft.UpdateServices.Internal.BaseApi namespace:

 $WSUSSubscription = $WSUSServer.GetSubscription()
 $WSUSSubscription.GetType().Fullname
 $WSUSSubscription | Select-Object -Property *
 $WSUSSubscription | Get-Member -MemberType Method

	Before you choose which product updates you want, you need to know what product categories are available. Get the latest categories of products available from Microsoft Update servers, and use a while loop to wait for completion:

 $WSUSSubscription.StartSynchronizationForCategoryOnly()

 Do {
 Write-Output $WSUSSubscription.GetSynchronizationProgress()
 Start-Sleep -Seconds 5
 }
 While ($WSUSSubscription.GetSynchronizationStatus() -ne `
 'NotProcessing')

	Once synchronization is complete, check the results of the synchronization:

 $WSUSSubscription.GetLastSynchronizationInfo()

	Again, review the categories of the products available:

 $WSUSProducts = Get-WsusProduct -UpdateServer $WSUSServer
 $WSUSProducts.Count
 $WSUSProducts

 How it works...

In step 1, you install WSUS by installing the UpdateServices feature. Note the link for additional configuration instructions:

In step 2, you review what has been installed on your server by piping the results of Get-WindowsFeature to Where-Object, which filters the object passed in the pipeline. This object is referenced by the $PSItem variable (or the shorter $_) variable, returning only those that are installed—that is, those whose Installed property is $true. Installing the UpdateServices Windows feature installed the prerequisites, such as Web Server (IIS), automatically:

In steps 3 and 4, you create a folder to hold the WSUS update content, and then perform the post-installation configuration for WSUS:

In step 5, you review the log file written by WsusUtil.exe in the previous command. This log is useful for troubleshooting or for verifying a successful configuration:

In step 6, you view the websites on the WSUS1 server, noting the WSUS website, bound to HTTP on port 8530:

In step 7, you review the commands in the UpdateServices module, which you investigate in later recipes:

In steps 8 and 9, you use Get-WsusServer to create your $WSUSServer object and inspect the properties and methods:

In step 10, you use Get-WsusProduct to create and view the default collection of available product categories. Sadly, this list is out of date:

In step 11, you make your product categories current by synchronizing from the Microsoft Update servers, using a while loop to wait for the synchronization to complete. This can take several minutes when doing this for the first time:

In step 12, you check the result of the synchronization:

 There's more...

This recipe describes a single-server WSUS deployment, but WSUS also runs on multiple servers to support large networks, can synchronize from other WSUS servers on the network, can use web proxies, and can work with SQL Server instead of the Windows Internal Database.

WSUS server requirements and deployment scenarios are documented on technet at https://technet.microsoft.com/en-us/library/hh852344(v=ws.11).aspx#BKMK_1.1.

While the UpdateServices module is very useful, most of the tasks you perform in PowerShell to administer WSUS involve accessing the UpdateServer and Subscription objects directly.

MSDN contains documentation on these objects under the Microsoft.UpdateServices.Administration namespace.

Explore the documentation at https://msdn.microsoft.com/en-us/library/windows/desktop/microsoft.updateservices.administration(v=vs.85).aspx to understand the available methods and properties.

 Configuring WSUS update synchronization

Once you have completed the installation of WSUS, you configure the update services by choosing the product updates your organization requires, and which classifications of updates to download and make available to the computers on your network. Once these are defined, you can synchronize updates manually or on a schedule, and your WSUS server will download the updates for the product categories and update classifications you have selected from the Microsoft Update servers to make available to the computers on your network. The first synchronization can take hours, depending on your selections, and then subsequent synchronizations will pull only the newest updates since the last synchronization.

 Getting ready

For this recipe, you will download updates for the following products to your WSUS server:

	Windows Server 2016

	SQL Server 2016

	Windows 10

You will also choose which types of windows updates to download. In this recipe, you will select the following classifications:

	Critical updates

	Definition updates

	Security updates

	Service packs

	Update roll-ups

	Updates

 How to do it...

The steps for the recipe are as follows:

	Locate the products you want to download to your WSUS server using Get-WsusProduct to search the product titles:

 Get-WsusProduct -TitleIncludes 'Server 2016'
 Get-WsusProduct -TitleIncludes 'Windows 10'

	Build a list of software product titles you wish to include:

 $ChosenProducts = @('Windows Server 2016',
 'Microsoft SQL Server 2016',
 'Windows 10')

	Assign the desired products to include in Windows Update:

 Get-WsusProduct |
 Where-Object {$PSItem.Product.Title -in $ChosenProducts} |
 Set-WsusProduct

	Updates are classified into distinct categories; a view which classifications of updates are available:

 Get-WsusClassification

	Build a list of desired update classifications to make available on your WSUS server and view the list:

 $ChosenClassifications = @('Critical Updates',
 'Definition Updates',
 'Security Updates',
 'Service Packs',
 'Update Rollups',
 'Updates')
 $ChosenClassifications

	Set our list of desired update classifications in WSUS:

 Get-WsusClassification |
 Where-Object {$PSItem.Classification.Title -in
 $ChosenClassifications} |Set-WsusClassification

	Create a variable for the Subscription object, start synchronizing Windows Updates, and watch the progress in a loop:

 $WSUSServer = Get-WsusServer
 $WSUSSubscription = $WSUSServer.GetSubscription()
 #Start synchronizing available
 updates$WSUSSubscription.StartSynchronization()
 $IntervalSeconds = 1
 #Wait for synchronizing to start
 Do {
 Write-Output $WSUSSubscription.GetSynchronizationProgress()
 Start-Sleep -Seconds $IntervalSeconds
 }
 While ($WSUSSubscription.GetSynchronizationStatus() -eq `
 'NotProcessing')
 #wait for all phases of process to end
 Do {
 Write-Output $WSUSSubscription.GetSynchronizationProgress()
 Start-Sleep -Seconds $IntervalSeconds
 }
 Until ($WSUSSubscription.GetSynchronizationStatus() -eq `
 'NotProcessing')

	Synchronization takes a few moments to start with, and then takes a long time to complete, depending on the number of products chosen. Wait for the process to start in a do-while loop, then wait for the process to complete in a do-until loop:

 $WSUSSubscription.StartSynchronization()
 $IntervalSeconds = 1
 #Wait for synchronizing to start
 Do {
 Write-Output $WSUSSubscription.GetSynchronizationProgress()
 Start-Sleep -Seconds $IntervalSeconds
 }
 While ($WSUSSubscription.GetSynchronizationStatus()
 -eq ` 'NotProcessing')
 #Wait for all phases of process to end
 Do {
 Write-Output $WSUSSubscription.GetSynchronizationProgress()
 Start-Sleep -Seconds $IntervalSeconds
 }
 Until ($WSUSSubscription.GetSynchronizationStatus()
 -eq ` 'NotProcessing')

	When the final loop is complete, check the results of the synchronization:

 $WSUSSubscription.GetLastSynchronizationInfo()

	Configure automatic synchronization to run once per day:

 $WSUSSubscription = $WSUSServer.GetSubscription()
 $WSUSSubscription.SynchronizeAutomatically = $true
 $WSUSSubscription.NumberOfSynchronizationsPerDay = 1
 $WSUSSubscription.Save()

 How it works...

In this recipe, you see how to configure WSUS updating.

In step 1, you use Get-WsusProduct to perform searches for products supported by Windows Update by title:

In step 2, you store a list of the chosen product titles in a variable:

In step 3, you use Get-WsusProduct to retrieve the WsusProduct objects with titles that match your list and pipe these to Set-WsusProduct to enable the synchronization of updates for these products in WSUS:

In step 4, you use Get-WsusClassification to review which classifications of updates are available from Windows Update:

In step 5, you store the list of desired update classifications in a variable and view it:

In step 6, you use Get-WsusClassification to retrieve the WsusClassification objects with titles that match your list and pipe these to Set-WsusClassification to enable the synchronization of these categories of updates in WSUS:

In step 7, you use Get-WsusServer to create a $WSUSServer object. Use the GetSubscription method on that object to create a Subscription object:

In step 8, you use the StartSynchronization method on the UpdateServer object to begin synchronization, and use a do-while loop to wait for the synchronization process to start by waiting until the result of the GetSynchronizationProgress method changes from NotProcessing. The $IntervalSeconds variable determines the time between checks. You can increase this value to 60 to check every minute. Once started, you use a do-until loop to watch the value of the same method as it returns the progressive stages of the synchronization, and wait for the process to complete and return NotProcessing once more:

In step 9, you use the GetLastSynchronizationInfo method on the Subscription object to review the results of the synchronization:

In step 10, if you want your WSUS server to download updates from Microsoft automatically, you use the Subscription object to configure automatic synchronization once daily and save the configuration:

 There's more...

In step 3, you used the $PSItem mechanism to represent an object in the pipeline. You could have used $_ instead. Either works.

To understand the various categories of updates, review the descriptions available and refer to the online documentation:

 $WSUSServer.GetUpdateClassifications() | Select-Object -Property
 Title,Description

Documentation of the terminology that defines the software updates is available at https://support.microsoft.com/en-us/help/824684/description-of-the-standard-terminology-that-is-used-to-describe-microsoft-software-updates.

 Configuring the Windows Update client

Windows computers download updates from Microsoft servers by default. To override this behavior, you can either configure the Windows Update client using GPO settings or manually update the registry of each client.

 Getting ready

Run this recipe from WSUS1 with RSAT installed for working with Group Policy Objects.

$FeatureName = 'RSAT'
Install-WindowsFeature $FeatureName -IncludeAllSubFeature

 How to do it...

The steps for the recipe are as follows:

	Define and view the WSUS server URL using the properties returned from Get-WsusServer:

 $WSUSServer = Get-WsusServer
 $WSUSServerURL = "http{2}://{0}:{1}" -f `
 $WSUSServer.Name,
 $WSUSServer.PortNumber,
 ('','s')[$WSUSServer.UseSecureConnection]
 $WSUSServerURL

	Create a Group Policy Object (GPO) and link it to your domain:

 $PolicyName = "WSUS Client"
 New-GPO -Name $PolicyName
 New-GPLink -Name $PolicyName -Target "DC=RESKIT,DC=Org"

	Add registry key settings to the group policy to assign the WSUS server:

 $key = 'HKLM\Software\Policies\Microsoft\Windows\WindowsUpdate\AU'
 Set-GPRegistryValue -Name $PolicyName `
 -Key $key `
 -ValueName 'UseWUServer'`
 -Type DWORD -Value 1
 $key = 'HKLM\Software\Policies\Microsoft\Windows\WindowsUpdate\AU'
 Set-GPRegistryValue -Name $PolicyName `
 -Key $key `
 -ValueName 'AUOptions' `
 -Type DWORD `
 -Value 2
 $key = 'HKLM\Software\Policies\Microsoft\Windows\WindowsUpdate'
 Set-GPRegistryValue -Name $PolicyName `
 -Key $key `
 -ValueName 'WUServer' `
 -Type String `
 -Value $WSUSServerURL
 $key = 'HKLM\Software\Policies\Microsoft\Windows\WindowsUpdate'
 Set-GPRegistryValue -Name $PolicyName `
 -Key $key `
 -ValueName 'WUStatusServer' `
 -Type String -Value $WSUSServerURL

	Each PC on the domain then begins using the WSUS server once the group policy is updated. To make this happen immediately, on each PC, run the following commands:

 Gpupdate /force
 Wuauclt /detectnow

 How it works...

In step 1, you use Get-WsusServer to create the $WSUSServer object and use its properties to define the Windows Update server URL in the $WSUSServerURL variable. This URL is not stored in a single property, so the variable is built with a format string using the Name, PortNumber, and UseSecureConnection properties.

The portion of code that inspects the UseSecureConnection property appends an s to the HTTP of the URL only if the UseSecureConnection property is set to $true. This statement is similar to an if and only if (IIF) function in other languages:

In step 2, you create a new group policy object entitled WSUS Client with New-GPO and link the group policy to the RESKIT.org domain with New-GPLink:

In step 3, you define four registry key values and associate them with the group policy object using Set-GPRegistryValue:

In step 4, you force a group policy update on any Windows computer in the domain and start the Windows Update client immediately:

 There's more...

The AUOptions value's Value 2 is Notify for download and notify for install. For an explanation of the available options see https://technet.microsoft.com/en-us/library/cc512630.aspx.

For non-domain computers to use your WSUS server, you may update their registry manually. The minimum settings are:

 # Define registry settings
 $key = 'HKLM:Software\Policies\Microsoft\Windows\WindowsUpdate'
 New-ItemProperty -PropertyType String `
 -Path $key `
 -Name WUServer -Value 'http://WSUS1:8530'
 New-ItemProperty -PropertyType String `
 -Path $key `
 -Name WUStatusServer -Value 'http://WSUS1:8530'
 New-ItemProperty -PropertyType DWord `
 -Path "$key\AU"`
 -Name UseWUServer -Value 1
 # Start looking for updates immediately
 Wuauclt /detectnow

You can get full documentation for WSUS registry keys at https://technet.microsoft.com/en-us/library/dd939844(v=ws.10).aspx

 Creating computer target groups

Different types of computers in your organization require different approaches to software updating. Employee workstations run software that application servers do not. Some servers are mission critical and must only be updated after you test the updates thoroughly. Sometimes critical updates are released that must be applied immediately, while some may be optional.

To manage the distribution software updates, define computer target groups on your WSUS server and assign computers these target groups. Each computer target group can be configured to apply updates differently. You create a target group for the Domain Controllers in this recipe.

 Getting ready

WSUS must be installed and configured on the update server, and clients must be configured to use the WSUS server to apply this recipe.

 How to do it...

The steps for the recipe are as follows:

	Create a WSUS computer target group for the Domain Controllers:

 $WSUSServer = Get-WsusServer
 $WSUSServer.CreateComputerTargetGroup('Domain Controllers')

	Add a computer to the new computer target group:

 Get-WsusComputer -NameIncludes DC1 |
 Add-WsusComputer -TargetGroupName 'Domain Controllers'

	List the clients in the computer target group:

 $DCGroup = $WSUSServer.GetComputerTargetGroups() |
 Where-Object -Property Name -eq 'Domain Controllers'
 Get-WsusComputer |
 Where-Object -Property ComputerTargetGroupIDs
 -Contains $DCGroup.Id

 How it works...

In step 1, you create the $WSUSServer object and use the CreateComputerTargetGroup method to define a new computer target group on your WSUS server:

In step 2, you use Get-WsusComputer to retrieve the WsusComputer object for the DC1 server and pipe this object to the Add-WsusComputer method, which adds it to the new WSUS computer target group:

In step 3, you use the GetComputerTargetGroups method of the $WSUSServer object, filtered with Where-Object, to retrieve the new 'Domain Controllers' computer target group, and store it in the variable $DCGroup:

In step 4, you use Get-WsusComputer and inspect the ComputerTargetGroupIDs property, looking for a match to the $DCGroup.Id property from the previous step to show that the DC1 computer is a member of this ComputerTargetGroup:

 There's more...

Rather than assigning computers to computer target groups on the WSUS server, you can assign computers to computer target groups in WSUS using the Group Policy with a feature called client-side targeting.

A group policy object is created and linked to the OU that contains the computers. This group policy object is then associated with one or more WSUS computer target groups. When the computer connects to the WSUS server, it declares these groups to the server and receives the updates assigned to those groups.

To learn more, see the client-side documentation at https://technet.microsoft.com/en-us/library/dd252762.aspx

 Configuring WSUS auto-approvals

WSUS organizes Windows updates under different classifications. You can view these classifications by using the Get-WsusClassification cmdlet. Two particularly important classifications you should check regularly are Critical Updates and Definition Updates. The Critical Updates classification includes updates that address severe security flaws and zero-day vulnerabilities. The Definition Updates classification includes definition files for Windows Defender to identify and remove malware.

These two classifications are important enough to approve them automatically. Auto-approval ensures WSUS installs these updates on client computers as soon as possible. In this recipe, you will create an auto-approval rule for these updates.

 Getting ready

Run this recipe on the WSUS1 server.

 How to do it...

Run this recipe to configure auto-approval of WSUS update:

	Create the auto-approval rule:

 $WSUSServer = Get-WsusServer
 $ApprovalRule = $WSUSServer.CreateInstallApprovalRule('Critical
 Updates')

	Define a deadline for the rule:

 $type = 'Microsoft.UpdateServices.Administration.
 AutomaticUpdateApprovalDeadline'
 $RuleDeadLine = New-Object -Typename $type
 $RuleDeadLine.DayOffset = 3
 $RuleDeadLine.MinutesAfterMidnight = 180
 $ApprovalRule.Deadline = $RuleDeadLine

	Add update classifications to the rule:

 $UpdateClassification = ` $ApprovalRule.
 GetUpdateClassifications()
 $UpdateClassification.Add(($WSUSServer.
 GetUpdateClassifications() |
 Where-Object -Property Title -eq 'Critical Updates'))
 $UpdateClassification.Add(($WSUSServer.
 GetUpdateClassifications() |
 Where-Object -Property Title -eq 'Definition Updates'))
 $ApprovalRule.SetUpdateClassifications($UpdateClassification)

	Assign the rule to a computer target group:

 $TargetGroups = New-Object `
 Microsoft.UpdateServices.Administration.
 ComputerTargetGroupCollection
 $TargetGroups.Add(($WSUSServer.GetComputerTargetGroups() |
 Where-Object -Property Name -eq "Domain Controllers"))
 $ApprovalRule.SetComputerTargetGroups($TargetGroups)

	Enable and save the rule:

 $ApprovalRule.Enabled = $true
 $ApprovalRule.Save()

 How it works...

In step 1, you create the $WSUSServer object using Get-WsusServer, then use the CreateInstallApprovalRule method to create a new AutomaticUpdateApprovalRule object, and store them in the $ApprovalRule variable:

In step 2, you define $RuleDeadline, a new AutomaticUpdateApprovalDeadline object, configured to install automatically with a three-day grace period after becoming available and the scheduled installation time of 3 am. You associate this deadline object with your approval rule:

In step 3, you use the GetUpdateClassifications method of the $ApprovalRule object and store the resulting object in the $UpdateClassification variable. The object initially contains no update classifications. You then use the Add method of this object to add in the two desired update classifications filtered by Title and associate these with the $ApprovalRule object using the SetUpdateClassifications method:

In step 4, you define $TargetGroups and set it to contain the computer target group named 'Domain Controllers' using the GetComputerTargetGroups method of $WSUSServer, filtered by Where-Object. You then associate $TargetGroups with the new $ApprovalRule using the SetComputerTargetGroups method:

In step 5, you set the Enabled property of the $ApprovalRule object, and use the Save method to complete the configuration:

 There's more...

You can view your approved updates using the GetUpdates method of the $WSUSServer object and filter on the IsApproved property:

$WSUSServer.GetUpdates() |
 Where-Object -Property IsApproved -eq $true |
 Select-Object -Property Title, CreationDate, ` UpdateClassificationTitle

 Managing updates

The WSUS administrator performs several tasks to manage update distribution. These tasks begin with the awareness of which updates are available, approved, installed or marked to be installed for each computer target group. For the available updates, the administrator must approve or reject the updates to control which updates are made available. This recipe covers listing installed updates, listing available updates, approving updates, and declining updates.

 Getting ready

In this recipe, you manage updates using PowerShell. You should open a PowerShell session on WSUS1 to perform this recipe.

 How to do it...

In this recipe you manage WSUS updates:

	Open a PowerShell session, and view the overall status of all Windows updates on WSUS1:

 $WSUSServer = Get-WsusServer
 $WSUSServer.GetStatus()

	View the computer targets:

 $WSUSServer.GetComputerTargets()

	View the installed updates on DC1 using Get-Hotfix and Get-SilWindowsUpdate:

 Get-HotFix -ComputerName DC1
 $CimSession = New-CimSession -ComputerName DC1
 Get-SilWindowsUpdate -CimSession $CimSession
 $CimSession | Remove-CimSession

	Search the WSUS server for updates with titles containing Windows Server 2016 that are classified as security updates, newest to oldest, and store them in a variable. Examine the variable using Get-Member, reviewing the properties and methods of the Microsoft.UpdateServices.Internal.BaseApi.Update object:

 $SecurityUpdates = $WSUSServer.SearchUpdates(`
 "Windows Server 2016") |
 Where-Object -Property UpdateClassificationTitle `
 -eq 'Security Updates' |
 Sort-Object -Property CreationDate -Descending
 $SecurityUpdates | Get-Member

	View the matching updates:

 $SecurityUpdates |
 Select-Object -Property CreationDate, Title

	Select one of the updates to approve based on the KB article ID:

 $SelectedUpdate = $SecurityUpdates |
 Where-Object -Property KnowledgebaseArticles -eq 4019472

	Define the computer target group where you will approve this update:

 $DCTargetGroup = $WSUSServer.GetComputerTargetGroups() |
 Where-Object -Property Name -eq 'Domain Controllers'

	Approve the update for installation in the target group:

 $SelectedUpdate.Approve('Install',$DCTargetGroup)

	Select one of the updates to decline based on the KB article ID:

 $DeclinedUpdate = $SecurityUpdates |
 Where-Object -Property KnowledgebaseArticles -eq 4020821

	Decline the update:

 $DeclinedUpdate.Decline($DCTargetGroup)

 How it works...

In step 1, you create the $WSUSServer object using Get-WsusServer and use the GetStatus method to view the status of Windows updates on the WSUS server:

In step 2, you review the computer targets configured in WSUS with the GetComputerTargets method:

In step 3, you use two different methods to view the installed updates. The first is Get-Hotfix, and the second is Get-SilWindowsUpdate, which is one of the SoftwareInventoryLogging module cmdlets introduced in PowerShell version 5. These cmdlets use CIM sessions to connect to computers and gather inventory information:

In step 4, you use the SearchUpdates method on the $WSUSServer to search the available updates by title, then use Where-Object to filter on the UpdateClassificationTitle property for security updates and then sort them from newest to oldest. You then use Get-Member to examine the Update object, noting the many methods and properties:

In step 5, you view the security updates that matched your search. Note that each displays a knowledge base (KB) ID that is useful for identifying and researching individual updates:

In step 6, you filter the selected updates for a single update that you wish to approve using Where-Object to match on the KnowledgebaseArticles property:

In step 7, you define the computer target group for the Domain Controllers using the GetComputerTargetGroups method of the $WSUSServer object, filtered by Where-Object:

In step 8, you use the Approve method of the $SelectedUpdate object-which takes two parameters:, an UpdateApprovalAction and a TargetGroup-and approve the selected update for the Domain Controllers target group:

In step 9, you select an update to decline, using Where-Object to filter the selection to a single update using the KnowledgebaseArticles property:

In step 10, you use the Decline method of the update object, and provide the TargetGroup object as a parameter to decline this update for the Domain Controllers target group computers:

 There's more...

Two community PowerShell modules available via the Install-Module or the PowerShell Gallery website are useful for working with Windows Update.

PoshWSUS simplifies the management of the WSUS server, wrapping up the interaction with the various objects and enumerations with easy-to-use cmdlets. For example, this command would decline updates for all non-English LanguagePack updates (note the -WhatIf parameter support):

Get-PSWSUSUpdate -IncludeText 'LanguagePack' -ExcludeText 'English' Deny-PSWSUSUpdate -WhatIf

PSWindowsUpdate enables the management and installation of Windows updates provided from a WSUS server, Windows Update, or Microsoft Update. For example, this command will install the newly approved update on DC1 and reboot if required:

Get-WUInstall -AcceptAll -AutoReboot

 Managing Printers

In this chapter, we cover the following recipes:

	Installing and sharing printers

	Publishing a printer

	Changing the spool directory

	Changing printer drivers

	Printing a test page on a printer

	Reporting on printer security

	Modifying printer security

	Deploying shared printers

	Enabling Branch Office Direct Printing

	Creating a printer pool

	Reporting on printer usage

 Introduction

Printing is a feature that has been incorporated into Windows operating systems, and has evolved over the years. Printing in Windows Server 2016 has not changed much from earlier versions, and provides you with the ability to create print servers that you can share with users in your organization.

With Windows printing, the physical device that renders output onto paper is a print device. A printer is, in effect, the queue for one or more print devices. A print server can support multiple printers (as can individual client workstations). The print device has a driver that converts your documents to the printed form on a given print device. Some drivers come with Windows—others you need to obtain from the printer vendor.

You use both the printers—that is, the printing device and printer port—when you create a new printer on your print server. In many organizations, printers are often stand-alone devices with just a TCP/IP connection. You can also connect a print device to your server using the server's local USB, parallel, or serial port.

Microsoft did not change the basic print architecture in Windows Server 2016. Windows Server 2012 introduced a new driver architecture, version 4, which Windows Server 2016 supports. This driver model enables two different driver types: printer class drivers and model-specific drivers. The former provides a single driver for a variety of specific printing device models, whereas latter is used for just a single model. Increasingly, print device manufacturers are implementing more generic drivers that can simplify organizational roll-out for printer drivers.

Another change in Windows Server 2012, carried over into Windows Server 2016, is that you no longer use the print server to distribute printer drivers. Clients can use the point and print feature to send print jobs to the server. Additionally, you can use tools such as the System Center Configuration Manager or Group Policies to distribute print drivers to clients.

This chapter covers installing, managing, and updating printers, print drivers, and printer ports on a Windows Server 2016 print server. You may find that some of the administration tools used in this chapter are not available on Windows Server Core. To enable full management, you need to have the full GUI (including the Desktop Experience for any GUI utilities).

 Installing and sharing printers

The first step in creating a print server for your organization involves installing the print server feature, then installing printer ports and printer drivers, and finally creating printers.

 Getting ready

In this recipe, you are going to set up a print server, PSRV, and then set up a TCP/IP printer for the Sales Group. This process involves installing the print server feature in Windows Server 2016. Then you create a port for a new printer and install the driver for the Sales Group group's new printer, an NEC Color MultiWriter. Finally, you create and then share the printer. Once complete, you can review what you have accomplished.

 How to do it...

	Install the Print-Server feature on PSRV, along with the print management tools:

 Install-WindowsFeature -Name Print-Server,
 RSAT-Print-Services

	Add a PrinterPort for a new printer:

 Add-PrinterPort -Name Sales_Color `
 -PrinterHostAddress 10.10.10.61

	Add a PrinterDriver for this printer server:

 Add-PrinterDriver -Name
 'NEC Color MultiWriter Class Driver'
 -PrinterEnvironment 'Windows x64'

	Add the printer:

 Add-Printer -Name SGCP1 `
 -DriverName 'NEC Color MultiWriter
 Class Driver' `
 -Portname 'Sales_Color'

	Share the printer:

 Set-Printer -Name SGCP1 -Shared $True

	Review what you have done:

 Get-PrinterPort -Name SGCP1 |
 Format-Table -Property Name, Description,
 PrinterHostAddress, PortNumber
 -Autosize

 Get-PrinterDriver -Name NEC* |
 Format-Table -Property Name, Manufacturer,
 DriverVersion, PrinterEnvironment

 Get-Printer -ComputerName PSRV -Name SGCP1 |
 Format-Table -Property Name, ComputerName,
 Type, PortName, Location, Shared

 How it works...

In step 1, you add the Print-Server feature and the management tools to PSRV. To do this, open a PowerShell window on the PSRV host and install the Print-Server feature. You can either do this directly or remotely, and you can use the PowerShell console or the ISE directly from the Print-Server. The output looks like this:

In step 2, you add a new port for the color printer you wish to add. In step 3, you add the PrinterDriver for the printer (in our case, an NEC Color MultiWriter Class Driver). In step 4, you add a new printer, SGCP1, to the system. You use the PrinterDriver and printer port you created for this new printer. In step 5, you share the printer. A shared printer enables users to connect to the printer and print to the associated print device. Windows bases permissions for the printer on the Discretionary Access Control List (DACL), which you set up when you create the printer. Another recipe later in this chapter shows you how you can view and update the DACL for a printer. There is no output for step 2, step 3, step 4, and step 5.

Once you have created and shared the printer, you can view the results. In step 6, you view the printer port, printer driver, and printer. Note that the printer is shared in the following output:

 Publishing a printer

Once you create and share a printer, as shown in the previous recipe, you can additionally publish it to the Active Directory. When you publish a printer, you can also specify a location for the printer that enables your users to search for published printers based on location and capabilities. End users can search AD to find printers and to find the printers near to them. In this recipe, you publish the printer you created in the previous recipe and examine the results.

 Getting ready

In this recipe, you publish the printer that you created in the preceding recipe, Installing and sharing printers.

 How to do it...

	Get the printer to publish and store the returned object in $Printer:

 $Printer = Get-Printer -Name SGCP1

	Observe the publication status:

 $Printer | Format-Table -Property Name, Published

	Publish the printer to AD:

 $Printer | Set-Printer -Published $true `
 -Location '10th floor 10E4'

	View the updated publication status:

 Get-Printer -Name SGCP1 |
 Format-Table -Property Name, Published, Location

 How it works...

In step 1, you get the printer details for the Sales Group group's printer, SGCP1, and store it in $Printer. There is no output from this step.

In step 2, you output the printer details to see that you have not yet published the printer:

In step 3, you publish the printer by piping the Printer object to Set-Printer, specifying that you wish to publish the printer. In step 4, you can see the results of publishing the printer:

As you can see, you have now published the printer and set the location to the 10th floor, area 10E4.

 There's more...

When you publish a printer to the Active Directory, users need to be able to find it. One way is to use the Find Printers dialog to search for published printers.

To use this (in Windows Server 2016 and Windows 10), you click Start | Settings | Devices | Printers & scanners to bring up the Add printers & scanners dialog. From this dialog box, click Add a printer or scanner. Wait until the searching is complete, then click on The printer that I want isn't listed, which brings up the Add Printer dialog:

Select Find a printer in the directory, based on location or feature, then click Next. You now see the Find Printers dialog:

You, or your users, can use the Printers tab to search for printers by Name, Location, and Model, and use the Features tab to search for printers with specific features (for example, the ability to print in color).

 Changing the spool directory

By default, Windows uses the folder %SystemRoot%\System32\spool\PRINTERS to store spooled jobs. On our print server, PSRV, this folder is C:\Windows\System32\spool\PRINTERS. In some cases, particularly when your users generate large amounts of printed output, this folder and the volume could become full, which is not a good thing. To help you avoid issues, you can move the default spool directory to a different folder (for example, C:\Spool), or you could move the spool folder to a folder on another volume (for example, E:\Spool).

 Getting ready

There are two ways you can change the spool directory. The first way is to use the classes inside the .NET Framework's System.Printing namespace to update the folder name. The second, and probably the simplest, way is to update the registry with the folder to use for spooling. This recipe shows both methods.

 How to do it...

First, let's look at how you change the spool folder using the .NET Framework:

	Load the System.Printing namespace and classes:

 Add-Type -AssemblyName System.Printing

	Define the required permissions—that is, the ability to administrate the server:

 $Permissions =
 [System.Printing.PrintSystemDesiredAccess]::
 AdministrateServer

	Create a PrintServer object with the required permissions:

 $Ps = New-Object
 -TypeName System.Printing.PrintServer `
 -ArgumentList $Permissions

	Update the default spool folder path:

 $Newpath = 'C:\Spool'
 $Ps.DefaultSpoolDirectory = $Newpath

	Commit the change:

 $Ps.Commit()

	Restart the Spooler to accept the new folder:

 Restart-Service -Name Spooler

	Once the Spooler has restarted, view the results:

 New-Object -TypeName System.Printing.PrintServer |
 Format-Table -Property Name,
 DefaultSpoolDirectory

Another way to set the Spooler directory is by directly editing the registry as follows:

	First stop the Spooler service:

 Stop-Service -Name Spooler

	Set the spool directory registry setting:

 PS C:\foo> $RPath = 'HKLM:\SYSTEM\CurrentControlSet\Control\ +
 Print\Printers'
 $Spooldir = 'C:\SpoolViaRegistry'
 Set-ItemProperty -Path $RPath `
 -Name DefaultSpoolDirectory `
 -Value 'C:\SpoolViaRegistry'

	Restart the Spooler:

 Start-Service -Name Spooler

	View the results:

 New-Object -TypeName System.Printing.PrintServer |
 Format-Table -Property Name,
 DefaultSpoolDirectory

 How it works...

The .NET Framework's System.Printing namespace contains some useful printing-related classes and enums, some of which you use in this recipe. PowerShell does not load this namespace by default. You load it in step 1, using the Add-Type cmdlet, which produces no output.

In step 2, you create a variable, $Permissions, that holds the print permissions you need-namely the ability to administer the print server. In step 3, you instantiate a PrintServer object with the permission to administer the print server. These permissions are separate from normal administrative privileges. Even running the commands in an elevated PowerShell console requires you to create permissions, as you can see here.

In step 4, you change the Spool folder to the in-memory PrintServer object, and then in step 5, you commit the update. In step 6, you restart the Spooler, and then, in step 7, observe the results from changing the Spooler folder. The output from step 6 and step 7 looks like this:

The second and simpler method involves just updating the registry value entry that holds the spool folder name (and restarting the Spooler). To do this, in step 8, you stop the Spooler, and in step 9, you update the registry value that the Spooler system uses for its spool folder. Note that you do not have to do steps 1-7 to use the second method!

In step 10, you restart the Spooler service, which now uses the new Spool folder. Finally, in step 11, you view the results of changing the Spool folder, which looks like this:

Note that the two methods you use in this recipe use different folder names for illustration. The folder name may not be appropriate for your installation. In production, you should also consider moving the Spool folder to a separate volume to avoid running out of space on the system volume.

This recipe makes use of the underlying .NET System.Printing namespace instead of just commands from the PrintManagement modules. This approach has value in many other places inside Windows. In general, the advice is to use cmdlets where/when you can and only then dip down into either the .NET Framework or the CIM/WMI namespaces and classes.

 Changing printer drivers

Once you set up a printer, as shown in the recipe Installing and sharing a printer, users can use the printer and its associated driver to print their documents. You may need to change the driver to change the printer model or to update the driver. In the Installing and sharing a printer recipe, you installed an NEC Color MultiWriter Class Driver, which works with many NEC color printers. But suppose you decide to replace this printer with a different printer model from a different vendor, say an HP color laser printer.

In this recipe, you change the driver for the printer. The assumption behind this recipe is that the printer name and printer port (the printer's IP address and port number) remains constant. You might need to change the printer driver for a printer, should you replace an old printer for a newer or different printer (for example, replacing an NEC printer with an HP printer). In this case, the printing device and its driver changes, but everything else remains the same.

 Getting ready

In this recipe, you change the driver for the printer you created in the Installing and sharing a printer recipe.

 How to do it...

	Add the print driver for the new printing device:

 Add-PrinterDriver -Name
 'HP LaserJet 9000 PS Class Driver'

	Get the Sales Group printer object and store it in $Printer:

 $Printer = Get-Printer -Name SGCP1

	Update the driver using the Set-Printer cmdlet:

 Set-Printer -Name $Printer.Name
 -DriverName 'HP LaserJet 9000
 PS Class Driver'

	Observe the results:

 Get-Printer -Name SGCP1 `
 -ComputerName PSRV

 How it works...

In the first step in this recipe, you install the driver for the new print device, an HP LaserJet 9000 PS Class Driver. You do this by using the Add-PrinterDriver command. If the printer driver is not one provided by Windows (and can be added using Add-PrinterDriver), you may need to run manufacturer-supplied driver software to install the driver.

Once you have the driver installed, in step 2, you retrieve the printer details for the Sales Group object's color printer. In step 3, you update the drivers used for this printer by using the Set-Printer command. In step 4, you see the results, which look like this:

 Printing a test page on a printer

From time to time, you may wish to print a test page on a printer, for example, after changing toner or printer ink, or after changing the print driver (as shown in the Changing printer drivers recipe). In those cases, the test page helps you to ensure that the printer is working properly.

 Getting ready

For this recipe, you print a test page on the Sales Group object's LaserJet printer, as updated by the Changing printer drivers recipe.

 How to do it...

	Get the printer objects from WMI:

 $Printers = Get-CimInstance -ClassName
 Win32_Printer

	Display the number of printers defined:

 '{0} Printers defined on this system' `
 -f $Printers.Count

	Get the Sales Group printer:

 $Printer = $Printers |
 Where-Object Name -eq "SGCP1"

	Display the printer's details:

 $Printer | Format-Table -AutoSize

	Print a test page:

 Invoke-CimMethod -InputObject $Printer `
 -MethodName PrintTestPage

 How it works...

In step 1, you use Get-CimInstance to return all the printers defined on this system. In step 2, you display the total printers defined:

In step 3, you get the printer object corresponding to the Sales Group LaserJet printer. In step 4, you display the details of this printer:

In step 5, you invoke the PrintTestPage method on the Sales Group LaserJet printer, which then generates a test page on the printer. If you are using the printer MMC snap-in, the printer test page looks like this:

 Reporting on printer security

In the Windows operating system, all objects secured by the OS have four key properties:

	The owner

	The primary group

	Discretionary Access Control List (DACL)

	System Access Control List (SACL)

The DACL contains a set of individual permissions, known as Access Control Entries (ACEs), that define a particular permission. Each ACE contains properties that describe the permission, including a trustee (the security principal to whom you are giving this permission), a permission mask (what permission is being allowed or disallowed), and an ACE type (what type is allowed, disallowed). You can find details of the permission masks on the MSDN.

 Getting ready

This recipe displays the DACL for the Sales Group printer, SGCP1, created by the Installing and sharing printers recipe and later updated by the Changing printer drivers recipe. You could easily convert this recipe into an advanced function (for example, Get-PrinterSecurity) with a parameter to tell the function which printer to examine.

 How to do it...

	Create a hash table containing printer permissions:

 $Permissions = @{
 ReadPermissions = [uint32] 131072
 Print = [uint32] 131080
 PrintAndRead = [uint32] 196680
 ManagePrinter = [uint32] 983052
 ManageDocuments = [uint32] 983088
 ManageChild = [uint32] 268435456
 GenericExecute = [uint32] 536870912
 ManageThisPrinter = [uint32] 983116
 }

	Get a list of all printers and select the Sales Group color printer:

 $Printer = Get-CimInstance -Class Win32_Printer `
 -Filter "Name = 'SGCP1'"

	Get the SecurityDescriptor and DACL for each printer:

 $SD = Invoke-CimMethod -InputObject $Printer `
 -MethodName
 GetSecurityDescriptor
 $DACL = $SD.Descriptor.DACL

	For each Ace in the DACL, look to see what permissions you have set, and report accordingly:

 ForEach ($Ace in $DACL) {

	Look at each permission that can be set and check to see if the Ace is set for that permission:

 Foreach ($Flag in ($Permissions.GetEnumerator())) {
 # Is this flag set in the access mask?
 If ($Flag.value -eq $Ace.AccessMask) {

	If this permission is set, then get the AceType:

 $AceType = switch ($Ace.AceType)
 {
 0 {'Allowed'; Break}
 1 {'Denied'; Break}
 2 {'Audit'}
 }

	Get the permission type, nicely formatted:

 $PermType = $flag.name
 -Csplit '(?=[A-Z])' -ne '' -join ' '

	Finally, display the results (and end the loops and If statement):

 'Account: {0}{1} - {2}: {3}' -f $ace.Trustee.Domain,
 $Ace.Trustee.Name,
 $PermType, $AceType
 } # End of If $flag,Value
 } # End Foreach $Flag loop
 } # End Each $Ace

 How it works...

This recipe begins, in step 1, by defining a hash table of the permissions that you can use in a printer's DACL. In step 2, you use the Get-CimInstance cmdlet to retrieve the WMI object relating to the Sales Group color printer.

In step 3, you use the GetSecurityDescriptor method of the printer object to get the DACL for this printer. The DACL, which you store in the $DACL variable, is an array of individual Win32_ACE objects.

In steps 4 you examine each Ace in the DACL to get, decode, and display the details of the permission expressed by this Ace entry. In step 5, you iterate through the permissions (as defined in step 1). In step 6, you check to see if the flag matches the AccessMask property of the Ace. If the entry matches, you determine the ace type in step 6. In step 7, you get the permission type nicely formatted. Finally, in step 8, you display the particular permissions. The output from the final step in this recipe looks like this:

 Modifying printer security

As you saw in the previous recipe, Reporting on printer security, the DACL for a printer defines what access Windows allows to the printer. To change the set of permissions, you need to change the DACL. You could, for example, update the DACL on the Sales Group printer to just allow members of the Sales Group to print on the printer. This recipe updates the DACL to enable the AD Sales Group to print to the Sales Group printer.

 Getting ready

Before you can run this recipe, you need to create a group in the AD. In this recipe, you use a group, Sales Group, contained in the Sales OU. To create the OU, the domain local group, do the following:

 # Creating the OU and Group
 $SB = { New-ADOrganizationalUnit -Name 'Sales'
 -Path 'DC=Reskit,DC=Org'
 New-ADGroup -Name 'Sales Group'
 -Path 'OU=Sales,DC=Reskit,DC=Org'
 -GroupScope DomainLocal
 }
 Invoke-Command -ComputerName DC1 -ScriptBlock $SB

 How to do it...

	Define the user who is to be given access to this printer and get the group's security principal details:

 $GroupName = 'Sales Group'
 $Group = New-Object -Typename
 Security.Principal.NTAccount `
 -Argumentlist $GroupName

	Next, get the group's SID:

 $GroupSid = $Group.Translate([Security.Principal.
 Securityidentifier]).Value

	Now define the SDDL that gives this user access to the printer:

 $SDDL = 'O:BAG:DUD:PAI(A;OICI;FA;;;DA)' +
 '(A;OICI;0x3D8F8;;;$GroupSid)'

	Display the details:

 'Group Name : {0}' -f $GroupName
 'Group SID : {0}' -f $GroupSid
 'SDDL : {0}' -f $SDDL

	Get the Sales Group printer object:

 $SGPrinter = Get-Printer -Name SGCP1

	Set the Permissions:

 $SGPrinter | Set-Printer -Permission $SDDL

 How it works...

In step 1, you use New-Object to get the security principal details for the Sales Group from the Active Directory. In step 2, you use this object's Translate method to retrieve the SID for the group.

In step 3, you define the SDDL that is used to set permissions. In this step, as a sanity check, you can see the information you use to set the DACL. The output looks like this:

In step 5, you get the printer object for the Sales Group printer, and in step 6, you update the printer with the SDDL string you created in step 3. That sets the Sales Group printer's DACL. You can verify the results by rerunning the Reporting on printer security recipe.

 Deploying shared printers

Traditionally, you used scripting to deploy printers. With this method, you create a logon or startup script and deploy this logon script via Group Policies. When machines start up or users log on, the logon script automatically sets up printers.

Once you have set up a shared printer, such as the shared Sales Group color printer, as shown in this chapter, you can deploy it. There are several ways to automate local client printer deployment, including using PowerShell, WMI, the Printui.dll utility, and the Wscript.Network COM object. All of these methods have been in use for a long time and are quite efficient, although PowerShell is the preferred way, naturally.

 Getting ready

To deploy a printer to a client, you first need a client computer system. Our demo lab includes a Windows 10 Enterprise client (SG-CL1), which we use in this recipe. To test this recipe, you need the client computer, the print server (PSVR), and the domain controller (DC1).

Once you create the client, you can run the following commands to add it to the domain in the Sales OU (created separately):

 $Cred = Get-Credential 'Reskit\administrator'
 # you enter the password
 $OUPath = 'OU=Sales, DC=Reskit,DC=Org'
 Add-Computer -DomainName 'Reskit' `
 -DomainCredential $cred

Next, you need a Group Policy object that deploys the logon script. The easiest way to create this Group Policy Object (GPO) is to use the GUI-there are no PowerShell cmdlets (or WMI/.NET objects) that can help.

To create the GPO, you use the Group Policy Management Console (GPMC) tool. This tool is part of the management tools for Active Directory, and is also part of the Remote Server Admin Tools (RSAT) that you can download for client systems. Once you install the GPMC, you can run it and expand the domain to make our Sales OU visible:

Next, you right-click the Sales OU, specify the Group Policy Name, and click OK:

With the GPO created, right-click the GPO and select Edit:

This brings up the Group Policy Management Editor. Select the User Configuration | Windows Settings | Scripts (Logon/Logoff):

Then double-click Logon to bring up the Logon Properties dialog, and then click on the PowerShell Scripts tab:

From this dialog, click on Add to bring up the Add a Script dialog:

From this dialog, enter the Script Name Sales Group Logon Script.ps1, then click on OK, which brings up the Logon Properties box with the script shown here:

Note the file name in this dialog box. This file (Sales Group Logon Script.ps1) is a file within the Logon Script folder inside the GPO object in your SYSVOL folder on your domain controller. The path for the Logon Script folder was Reskit.Org\SysVol\Reskit.Org\Policies\{CF4F8264-0FD7-4D21-8267-8F36D7CE3DCF}\UserScripts\Logon. If you are testing this, you should see a different GUID in this path.

From the Logon Properties dialog, click OK to close the dialog, then close the GPMC editor. These steps have created an empty logon script. You can add the content for this logon script by going through the following recipe.

 How to do it...

Once you have created the logon script GPO, as shown previously, it's time to create the script:

	Using the ISE, open the script file you created in the introduction to this recipe and enter the logon script:

 # Sales Group Logon Script.ps1
 # Logon Script for Sales Group to add printer
 # 1. Start transcript
 Start-Transcript -Path C:\transcript\transcript.txt
 -Append
 # 2. Log information to the transcript
 '*** Logon script - Sales GVroup Logon Script.ps1'
 '*** Date/time: [{0}]' -f (Get-Date)
 # 3. Setup up printer connection then try to connect
 $Connection = 'PSRV\SGCP1'
 Try {
 $Printer = Get-Printer -Name $Connection
 If ($Printer)
 {
 '*** Sales group printer found'
 $Printer
 }
 Else
 {Throw "Printer not found"}
 }
 Catch {
 '*** SG Printer does not exist'
 '*** Date/time: [{0}]' -f (Get-Date)
 '*** Adding SG Printer '
 Add-Printer -ConnectionName $connection -Verbose
 Get-Printer -Name $Connection
 '******';''
 }
 # 5. And stop the transcript
 Stop-Transcript

	Once you create and save the script, you can test it by logging onto the SG-CL1 computer and displaying the file C:\Transcript\Transcript.txt, which on the first logon looks like this:

	Once the logon script has installed the printer, subsequent logon scripts create a transcript entry that looks like this:

 How it works...

The recipe creates a GPO to distribute a logon script to users whose user accounts are in the Sales OU. You set up the logon script by following the steps in the introduction to this recipe. Then, you create and save the actual logon script. Finally, you edit the empty script file to add the logon script details.

Once you have this logon script created, the printer is automatically added to the Sales Group users' systems. New users in the Sales Group just need to log off and log on again to get the printer setup.

 There's more...

This recipe showed you one way to deploy a printer through the use of a logon script. This method is one that has been used by IT professionals for decades. It is also a very flexible approach for many organizations-you can do quite a lot with the logon script.

Another way to deploy printers to client systems would be to use Group Policy preferences (GPP). The use of GPP adds flexibility to the process, but it is essentially an all-GUI administration experience. Windows Server 2016 does not provide cmdlets that would enable you to automate printer management fully via GPP or GPO.

See https://technet.microsoft.com/en-us/library/cc754699(v=ws.11).aspx for more details on how to deploy printers using Group Policies.

 Enabling Branch Office Direct Printing

Branch Office Direct Printing (BODP) is a feature introduced in Windows Server 2012 that is designed to reduce print traffic across your WAN. With BODP, a user in a branch office sends the print job directly to a branch office printer. There is no need to send the print job from the client to a centralized print server and then back to the branch office printer. Print jobs can be quite large, so this can improve printing and reduce print job-related WAN traffic.

 Getting ready

This recipe needs a second shared printer, SGBRCP1, set up as follows:

 $PtrName = 'Sales_Branch_Color'
 $PtrIP = '172.16.1.61'
 $DrvName = 'NEC Color MultiWriter Class Driver'
 Add-PrinterPort -Name $ptrname `
 -PrinterHostAddress $PtrIP
 Add-PrinterDriver -Name $DrvName `
 -PrinterEnvironment 'Windows x64'
 Add-Printer -Name 'SGBRCP1' `
 -DriverName $DrvName `
 -Portname 'Sales_Branch_Color'
 Set-Printer -Name 'SGBRCP1' -Shared $true `
 -Published $true

This second printer is a branch office printer for which you enable BODP printing.

 How to do it...

	Set the SGBRCP1 printer for Branch Office Direct Printing:

 $Printer = SGBRCP1
 $PServer = 'PSRV'
 Set-Printer -Name $Printer -ComputerName $PServer `
 -RenderingMode BranchOffice

	Get the printing mode:

 $Key = 'HKLM:\SYSTEM\CurrentControlSet\Control\ +
 Print\Printers\SGBRCP1\Printer\DriverData'
 $BROPrint = (Get-ItemProperty
 $Key).EnableBranchOfficePrinting

	Now display the value of the RenderingMode:

 Get-Printer $Printer -Full |
 Format-Table Name, RenderingMode

	Now reset to default:

 Set-Printer -Name $printer 1 `
 -ComputerName $PServer `
 -RenderingMode SSR

	Redisplay the RenderingMode property for the remote printer:

 Get-Printer $Printer -Full |
 Format-Table -Property Name, RenderingMode

 How it works...

This recipe is relatively straightforward, with a bit of a twist. In step 1, you set BODP for printer SGBRCP1 using the Set-Printer command.

In step 2, you look into the registry for details about the shared printer. At the time of writing, using the cmdlet Get-Printer does not return the RenderingMode by default. You can either specify the -FULL switch to Get-Printer, or you can get the details from the registry. Using the -FULL switch takes additional time, so it's not done by default-accessing this setting from WMI should be faster. Also, the RenderingMode property is not returned, by default.

In step 3, you use the Get-Printer command, specifying the -Full parameter, to return the following:

Finally, in steps 4 and 5, you reset the value of Branch Office Direct Printing to default, then re-redisplay the value:

 There's more...

BODP is straightforward to set up—the printers need to be networked (TCP/IP based) and support client-side rendering (CSR). Traditionally, rendering is server-side (RenderingMode set to SSR). See https://technet.microsoft.com/en-us/library/jj134152(v=ws.11).aspx for deeper technical details of Branch Office Direct Printing, including some important limitations you should be aware of before deploying branch office printing.

You use the Set-Printer cmdlet to set BODP. However, the Get-Printer cmdlet does not return the Branch Office Printing mode by default. The -Full switch on the Get-Printer command returns both the Branch Office Printing mode and the object's security descriptor in SDDL format.

 Creating a printer pool

On Windows, a printer pool is a single named printer with two or more print devices (printer ports). Windows sends a given print job to any of the printers in the pool. This feature is very useful in environments where users do a lot of printing and need the speed that additional printers can provide, without having to ask the user to choose which specific print device to use.

There are no PowerShell cmdlets to enable you to create a printer pool. Older printer features—the use of PrintUI.DLL and RunDLL32, which have been features in Windows for several versions. These tools are another example of making use of console applications where you need them.

 Getting ready

You run this recipe on the PSRV. Additionally, this recipe assumes you have created the printer, as per the Install and share printers recipe.

 How to do it...

	Add a new port for this printer:

 Add-PrinterPort -Name Sales_Color2 `
 -PrinterHostAddress 10.10.10.62

	Create a printer pool for printer SGCP1:

 $printer = 'SGCP1'
 Rundll32 PrintUi.dll,PrintUIEntry /Xs /n
 "$Printer" Portname 'Sales_Color2,Sales_Color'

	To see the results, get the printer details and display them as a nice table:

 Get-Printer SGCP1 |
 Format-Table -Property Name, Type,
 DriverName, PortName

 How it works...

As noted earlier, you use PrintUI.dll to set up a printer pool. You invoke this DLL by using the RunDLL32.exe console application. The DLL contains the functions that the printer management GUI dialog use to perform their actions. RunDLL32.exe enables you to use scripting to perform the necessary printer configuration operations.

In step 1 of the recipe, you add a second printer port. In this case, we are adding a second network port. You could use a parallel, serial, or USB port if that is appropriate in your environment. In most organisations, the print server is in a server room, with networked printers nearer to the users.

In step 2, you use PrintUI.DLL to set the SGCP1 printer to have two printer ports, thus creating a printer pool. In step 3, after you create the printer pool, you can view the results by using Get-Printer, which shows the following:

You can also look at the GUI entry for the printer on the print server, PSRV:

 Reporting on printer usage

Printer usage information is useful for capacity planning, and possibly budgeting, for your shared printers. By default, printer usage details are unmonitored, but you can turn logging on (and off!). When you enable printer usage monitoring, the Windows Spooler service writes a record to the event log for each print job containing critical usage information.

This recipe shows you how to turn on printer usage reporting and shows how to create a function to return printer usage information. This recipe creates a function that returns printer usage information as objects. Objects are easier as they enable you to process the output specifically for your environment-for example, counting the total number of pages printed, reporting on who is using the printer, and so on.

 Getting ready

Run this recipe on PSRV where you have already set up a printer. This recipe assumes you have set up a printer. You also need to use the printer a bit to generate some event log entries on which you report, otherwise the recipe may return errors when you try to get event log entries.

 How to do it...

	Run webtutil to turn on printer monitoring:

 $log = 'Microsoft-Windows-PrintService'
 webtutil.exe sl $log /operational /Enabled:true

	Define a Function:

	Specify the Function header for an advanced function:

 Function Get-PrinterUsage {
 [CmdletBinding()]
 Param()

	

	Get the events from the PrintService event log:

 $Dps = Get-WinEvent -LogName
 Microsoft-Windows-PrintService/Operational |
 Where-Object ID -eq 307

	

	Create a hash table for each event log record:

 Foreach ($Dp in $Dps) {
 $Document = [Ordered] @{}

	

	Populate the hash table with properties from the event log entry:

 $Document.Id = $dp.Properties[0].value
 $Document.Type = $dp.Properties[1].value
 $Document.User = $dp.Properties[2].value
 $Document.Computer = $dp.Properties[3].value
 $Document.Printer = $dp.Properties[4].value
 $Document.Port = $dp.Properties[5].value
 $Document.Bytes = $dp.Properties[6].value
 $Document.Pages = $dp.Properties[7].value

	

	Create an object for this printer usage entry:

 $UEntry = New-Object -Type PSObject
 -Property $Document

	

	Give it a better type name:

 $UEntry.PsTypeNames.Clear()
 $UEntry.PsTypeNames.Add("Packt.PrintUsage")

	

	Output the entry:

 $UEntry
 } # End of foreach
 } # End of function

	Set and use an alias to get the printer usage:

 Set-Alias -Name GPRU
 -Value Get-PrinterUsage
 GPRU | Format-Table

 How it works...

In the first step of the recipe, you use the utility wevtutil.exe to tell the Spooler to start recording printer usage details to the event log. Printer usage event logging is not turned on by default, and at present, there is no PowerShell cmdlet to turn on event logging.

In the first sub-step in step 2, you create an advanced function by decorating the Param() block with the CmdletBinding() attribute. In the second sub-step, you get all the printer event log entries that relate to usage reporting (ObjectID 307). In the third sub-step in step 2, the function iterates through each entry in the log. In the fourth sub-step, for each entry, you create a hash table that holds the information returned from the event log. In sub-step 5 and sub-step 6, you create a PSObject for the event log entry and change the object type name from PSObject to Packt.PrintUsage. Finally, in sub-step 7, you also close out the foreach loop and the advanced function.

Finally, in step 3, you define an alias for this new function. Then you use the function, via its alias, and pipe the output objects to Format-Table to produce a nice output like this:

 There's more...

By creating a function that returns an object for each event log entry, you get significant flexibility in using the output of the function. The Get-PrinterUsage function changes the type name of the returned object. With a custom type name, you could create a customized display XML that creates an output that suits your requirements. You can also use the objects returned and filter out the usage of specific printers by user. You can also use Measure-Object to get the total number of pages printed, the average pages per job, and the maximum print job length.

 Managing Server Backup

This chapter covers the following recipes:

	Configure and set backup policy

	Examine the results of a backup

	Initiate a backup manually

	Restore files and folders from a backup

	Backup and restore a Hyper-V virtual machine

	Backup and perform bare metal recovery

	Restore the registry from a backup

	Create a daily backup report

	Create an Azure backup

 Introduction

The ability to backup and restore a Windows Server has been a feature of Windows since the first version of Windows NT, released in 1993. In the early days, you used NTBackup (via a GUI) to carry out backup and restore activities. With Server 2008, Windows Server Backup replaced NTBackup and offered 15 cmdlets (provided in an old-school PS Snap-in) to augment the GUI. The Snap-in was replaced with a module, WindowsServerBackup, and was improved with Server 2012. The module remains unchanged in Server 2016 and provided 49 cmdlets.

Windows Server Backup (WSB) provides a set of features to enable you to backup and restore files, folders, and Hyper-V VMs as well as an entire system. These features are more than adequate for many organizations and come for free with Windows Server 2016. Nevertheless, some organizations need more functionality. There is a rich third party backup industry with a variety of competing products that deliver more than the in-box Windows Server Backup offers. This chapter concentrates on Windows Server Backup and Azure backup.

Windows Server Backup backs up both entire volumes as well as specific files and folders. You can tell WSB both to include and to exclude specific files/folders from the backup (include C: Data, C: HyperV, C: foo; exclude *.tmp,*.bak, and C: Foobin). And WSB makes it simple to backup and restore a Hyper-V Virtual Machine (VM). What you backup, you can restore: you can restore entire volumes, individual files or folders, restore a VM, and restore the system state to a new machine (aka bare metal recovery).

The recipes in this chapter show how to setup your backup policy, to configure what/where/when/how to backup and how to recover.

With the growth in cloud computing, an increasing number of organizations utilize cloud backup as an alternative to or in addition to using on-premises (and private cloud) resources. Azure Backup is an Azure service that backs up your on-premises systems to the cloud and enables file/folder/volume/system restores. Our final recipe in this chapter shows how you can do a backup to Azure and how to restore.

The recipes in this chapter make use of the PSRV server which you set up in Chapter 4, Managing Printers and other servers in the Reskit.Org domain—each recipe indicates the specific servers to use. But feel free to use other server names, different disk layouts, and so on—adjusting the recipes accordingly.

Most of the recipes in this chapter rely on cmdlets in the WindowsServerBackup module. We also make use of the console application Wbadmin and the Azure Resource Management cmdlets. In some cases, such as backing up and restoring Hyper-V, you may find it easier to use the Wbadmin console application—you have choices! And as icing on the cake, the final recipe used both the AzureRM cmdlets and the Azure backup cmdlets and the recovery agent.

You have choices! And as icing on the cake, the final recipe used both the AzureRM cmdlets and the Azure backup cmdlets and the recovery agent.

 Configure and set backup policy

With WSB, you create a backup policy that describes what you want to backup from your server (backup source), where you want to put the backup (backup target), and when you want the backup to take place (the backup schedule). You first create an empty policy in memory or get an editable copy of the active backup policy. You then configure the policy object with a backup source and backup to your requirements. You then either save the policy as the (new!) active policy or use it to run a one-off backup. Once you have set an active policy, WSB runs the backup automatically based on the schedule you define when you populate the backup policy.

In this recipe, you create and configure a policy that backs up the C: drive every morning at 06:00. This policy object is the starting point for examining backup with WSB. Later recipes enable you to perform, explicitly, system state backup, one-off backup, selective file backup, and VM backup (and restores)—all of which are variations on this recipe.

 Getting ready

This recipe assumes you have loaded the Windows Server Backup feature and that you have no active WSB backup policy on the printer server PSRV. To install the Windows Server Backup feature, do this:

 Install-WindowsFeature -Name Windows-Server-Backup

You also need to ensure you have no active backup policy set on this server. To ensure this is the case, do this:

 If (Get-WBPolicy) { Remove-WBPolicy -All -Force }

This code fragment first tests to see if there is an active policy, and if so, removes it. By using the -Force parameter, Remove-WBPolicy does not prompt you to complete the operation, which is what you want if you are automating setting up backup on one or more computers.

This recipe also assumes you have two physical disks in the PSRV computer. You should set the first to C:, and you should create a second disk with just a single volume. Give this new volume a drive letter set to E:. For testing, you can always use a virtual hard drive for the E: volume.

In a production environment, backup up to a second volume or a virtual hard disk stored on a single physical disk is not a good idea. For production, always ensure the backup target is on a separate physical disk.

 How to do it...

The steps for the recipe are as follows:

	Once you load the Windows Server Backup feature and ensure there is no active policy, create a new (in memory) backup policy:

 $Pol = New-WBPolicy

	View the new policy:

 $Pol

	Add a schedule to the backup policy:

 $Schedule = '06:00'
 Set-WBSchedule -Policy $POL -Schedule $Schedule

	View disks to be backed up:

 Get-WBDisk |
 Format-Table -Property DiskName, DiskNumber,
 FreeSpace, Properties

	Use Disk 1 as the backup target and set it in policy:

 $TargetDisk = Get-WBDisk |
 Where-Object Properties -Match 'ValidTarget' |
 Select-Object -First 1
 $Target = New-WBBackupTarget -Disk $TargetDisk
 -Label 'Recipe 6-1'
 -PreserveExistingBackups $true
 Add-WBBackupTarget -Policy $Pol -Target $Target

	Add details of what to backup (the C: drive) to the backup policy:

 $DisktoBackup = Get-WBDisk | Select-Object -First 1
 $Volume = Get-WBVolume -Disk $DisktoBackup |
 Where-Object FileSystem -eq NTFS
 Add-WBVolume -Policy $Pol -Volume $Volume

	View the policy:

 $Pol

	Make policy active (NOTE THIS FORMATS THE TARGET DISK!):

 Set-WBPolicy -Policy $Pol -Force

	Add a drive letter to Disk 1 to enable you to view the results subsequently:

 $Drive = Get-CimInstance -Class Win32_Volume |
 Select -Last 1 |
 Where-Object {-not ($_.DriveLetter)}
 Set-CimInstance -InputObject $Drive
 -Property @{DriveLetter='Q:'}|
 Format-Table Name,DriveLetter

	View the active policy:

 Get-WBPolicy

	Review the summary of the backup:

 Get-WBSummary

 How it works...

In step 1, you create a new editable policy and save it to $Pol. This empty policy is not yet ready to be used for an actual backup, but it is in an editable state. You use other cmdlets to populate the policy with backup details before either using it ad hoc or setting the policy as your active backup policy. In Windows Server 2016, you can have only one currently active backup policy.

In step 2, you view the newly created policy. As you can see, there are several items that you need to add before you can set this policy to active. The empty policy looks like this:

In step 3, you use Set-WBSchedule to set a time for the backup to occur. You define the backup time in this recipe as 06:00 (that is, 6:00 in the morning). Specifying the time as 06:00 means the WSB starts a backup job at 6:00 every morning. The Set-SBSchedule returns a DateTime object in which you can see the time of the next backup. The output shows the date of the backup as of today's date—but WSB ignores the date. The output of this step looks like this:

With step 4 you use the Get-WBDisk and then pipe the output to Format-Table which displays a list of volumes that are potential backup targets. Disks that WSB can backup to have the ValidTarget property set. The output from step 4 is shown in the following screenshot :

In step 5, you specify that WSB should use a specific disk to hold the backup(s). In this case, you are going to have WSB store the individual backup files onto the second disk (shown as DiskNumber 1 in the preceding output. You need to get a WBDisk object for your destination and use this when configuring the target set in the backup policy. The output from Add-WBBackupTarget shows how the policy has evolved as follows:

In step 6, you add the source volume(s) you want to backup. In this recipe, you are just backing up the C: drive (DiskNumber 0) which is the first volume on the first disk as shown in the following screenshot:

In step 7, you display the final policy:

With step 8, you make this policy active. There are two implications to this: First, the E: drive is formatted and made available for backup. Second, WSB takes over the entire disk and destroys any volumes you have on this disk. You also lose any existing drive letters on the disk. BE VERY CAREFUL WHEN TESTING OR USING THIS RECIPE ESPECIALLY ON A PRODUCTION SERVER!

In step 9, you give the second disk a drive letter, Q:, which you can then to view the results of backup operations carried out on your system. Note that you could get an error here if Windows has already created a drive letter for you. You can use the Q: drive from both PowerShell and Windows Explorer to view backup files, but at this point in the recipe no backup has run yet, and the drive is empty. The output from step 9 looks like this:

In step 10 and step 11, you see the currently active policy and the backup summary, something like this:

As you can see from the above screenshot, there are numerous backups on the Q: drive, and the next backup is at 6:00 in the morning.

 There's more...

This recipe creates and activates a basic backup policy for the PSRV server. Once you set the policy, WSB creates a backup of the C: volume daily at 6:00. Once WSB has run your backup job, WSB sets the next backup time to be 24 hours later. You can see this in the next recipe.

In step 5, you used the -match operator to select a target backup disk. This ensures that the string ValidTarget is somewhere inside the Properties property. You could have used -eq as well, assuming that the valid target string always contains just ValidTarget. Using -match is a somewhat more liberal approach.

At the end of this recipe, you have set a backup policy. At that point, WSB has not created a backup. The backup occurs when WSB runs the job at 06:00 tomorrow. You can also trigger off a manual backup using the policy file you created in this recipe.

To perform a manual backup, after step 12, type:

 $MBPol = Get-WBPOlicy -Editable
 Start-WBBackup -Policy $MBPol

The output looks like this:

The Start-WBBackup cmdlet creates a large number of output lines, most of which are not contained in this screenshot (for brevity).

 Examine the results of a backup

In the previous recipe, you created a basic backup policy that runs a full backup of the C: volume every day at 6:00. This recipe examines the results of the backup and helps you understand the details of the resulting backup.

 Getting ready

Before carrying out this recipe, you need to have had a backup job completed. In the recipe Configure and set backup policy, you created a backup job that would run every morning. Thus, you can wait until the day after you set up this daily backup, or you can run a once-off job as shown at the end of that recipe.

 How to do it...

The steps for the recipe are as follows:

	Retrieve and view the current WSB backup policy:

 Get-WBPolicy

	View an overview of what is on the target disk:

 Get-ChildItem -Path Q: -Recurse -Depth 3 -Directory

	View the details of a backup:

 $Backup = (Get-ChildItem -Path Q:\WindowsImageBackup\Psrv `
 -Directory |
 Select-Object -First 1).FullName
 explorer.exe $Backup

	Mount the VHD, change its drive letter to T:, then look inside the VHD:

 $BFile = Get-ChildItem -Path $Backup*.vhdx
 Mount-DiskImage -ImagePath $BFile.FullName
 $Drive = Get-CimInstance -Class Win32_Volume |
 Where-Object DriveType -eq 3 |
 Select-Object -Last 1
 Set-CimInstance -InputObject $Drive
 -Property @{DriveLetter='T:'}
 Explorer T:

	Get details of the last backup job:

 Get-WBJob -Previous 1

 How it works...

In step 1, you use the Get-WBPolicy to retrieve the current backup policy. Depending on when the backup ran, the policy looks something like this:

Notice that this policy looks like the one you saw at the end of the previous recipe. If the scheduled backup job has run, then the Schedule property would show the next backup has changed. Assuming no changes to the policy, you get a backup automatically every day.

In step 2, you see what WSB has written to the backup target, the Q: drive. If this is the first time you have run through this recipe and created a backup, your Q: drive is most probably empty at this point. When WSB runs it creates a folder structure, and with that done, the step looks like this:

WSB creates a folder WindowsImageBackup at the root of the disk, with a subfolder for the server that WSB backs up. Below this subfolder folder, there are three further folders containing backup information and logs, plus folder(s) for the backup. Each backup has a separate folder beneath <drive>:\WindowsImageBackpup<ServerName> as you can see in step 3:

The backup folder contains some XML files that describe the backup, plus a VHDX hard drive image that contains the backup. In step 4, you mount that VHDX, then open Windows Explorer to view the contents of this virtual hard drive, as shown in the following screenshot:

As you can see, this VHD contains all the files that were on the system's C: drive at the time of the backup. When you mount the VHD, Windows can assign a different drive letter for the newly mounted VHDX, other than T:. If so, then you need to change the recipe accordingly. Likewise, when Windows mounts the drive, it happens without a resulting drive letter. In addition to using WMI, you can also use the disk management snap-in inside the compmgmt.msc MMC console and add a drive letter before proceeding.

In step 5, you use the Get-WBJob cmdlet to examine the last Windows backup job to run. This cmdlet gets details of the backup job including the start and end times and the job state. This cmdlet also returns two file paths: the first for details of files and folders backed up and the second for errors encountered by WSB. These can help you to diagnose a failure in the backup job.

 There's more...

In this recipe, you mounted a VHDX that was the target of the backup. This virtual disk file contains all the files and folders on the backup source, PSRV's C: volume, at the time of the backup. Once you have mounted the backup VHDX, you can retrieve individual files and folders should you wish to.

In step 4, you obtained volumes where the Drivetype was equal to 3. In WMI, many properties use coded values. For Win32_Volume objects, a drive type of 3 indicates a local drive. For a full list of the drive type values, see https://msdn.microsoft.com/en-us/library/aa394515(v=vs.85).aspx.

 Initiate a backup manually

In most cases, your server's backup policy is fire and forget. You create and set the backup policy, and from then on backup just happens at the time you specify in the backup schedule. In other cases, perhaps before and after a major system change, you may want to initiate a one-off backup and not wait for WSB to create a scheduled backup. Additionally, you may just want to create a backup of key files. In those cases, you can run a backup based on a one-off policy.

 Getting ready

To perform this recipe, you may find it helpful to remove the existing backup policy. This ensures the one-off policy you create in this recipe does not overlap with earlier/later recipes. If you perform this recipe on a live production server, make sure reinstate the backup policy after you have completed your testing.

Removing the policy is straightforward:

 If (Get-WBPolicy) { Remove-WBPolicy -All -Force }

This recipe also uses a folder C:\Foo. If this does not exist on your system, create the folder and create two files in the folder, as follows:

 New-Item -Path C:\Foo -ItemType Directory
 Get-Date | Out-File -Path C:\Foo\d1.txt
 Get-Date | Out-File -Path C:\Foo\d2.txt

 How to do it...

	Create and populate a new one-off backup policy to backup just two folders:

 $OOPol = New-WBPolicy
 $FSpec1 = New-WBFileSpec -FileSpec 'C:\Foo'
 $FSpec2 = New-WBFileSpec `
 -FileSpec 'C:\Users\administrator\Documents'
 Add-WBFileSpec -Policy $OOPol -FileSpec $FSpec1, $FSpec2
 $Volume = Get-WBVolume -VolumePath Q:
 $Target = New-WBBackupTarget -Volume $Volume
 Add-WBBackupTarget -Policy $OOPol -Target $Target

	Start the backup using the one-off backup policy:

 Start-WBBackup -Policy $OOpol

	Find the .vhdx backup file and mount it:

 $ImagePath = 'Q:*.vhdx'
 $BUFile = Get-ChildItem $ImagePath -Recurse
 $ImageFilename = $BUFile.FullName
 $MountResult = Mount-DiskImage -StorageType VHDX `
 -ImagePath $ImageFilename `
 -PassThru

	If there is a volume label, get it, otherwise set it to T: as follows:

 $Vol = Get-Ciminstance -Classname Win32_Volume |
 Where-Object {(-Not $_.DriveLetter) `
 -and ($_.Label -NotMatch 'Recipe')}
 If ($Vol.DriveLetter)
 {$DriveLetter = $Vol.DriveLetter}
 Else
 {$DriveLetter = 'T:'
 $Vol | Set-CimInstance -Property
 @{DriveLetter=$Driveletter}
 }

	Now view it in Explorer:

 Explorer $Driveletter

 How it works...

In the Getting ready section, you cleared the existing policy—this ensures any existing backup policy does not affect how this recipe works. To remove your policy, you check to see if one exists and if so, you invoke the Remove-WBPolicy with the -ALL parameter to remove the currently active backup policy (that is, the policy you set in the Configure and set backup policy recipe).

In step 1, you start by creating a new one-off policy, $OOPOL. Then you create two backup file specifications (that tell WSB what to backup and anything to exclude) and attach those file specification objects to the backup policy. Next, you create a backup target and add this to the one-off policy. Once you add the backup target to the one-off policy, you see the backup target details:

In step 2, you run the one-off policy to create the one-off backup. The output, truncated for brevity, looks similar to this:

In step 3, you find the VHDX file that WSB wrote to, and mount it. In step 4, you check to see if Windows has used a drive letter for this mounted virtual hard drive. If so you use that drive letter, but if not, you assign the drive letter T: to the mounted VHDX. These two steps do not produce output to the PowerShell Window, but you can bring up the Disk Management tool and see the new T: drive, like this:

In step 5, you bring the newly mounted drive into Explorer which (when you expand the tree in the left pane!), looks like this:

As you can see above, this backup file (The VHDX is now the T: drive) contains just two folders which are the ones you specified in step 1.

 There's more...

Mounting the backup VHDX file and adding a drive letter if needed is a bit complex since the individual classes and cmdlets do not work together as well as you might like. If you have a large number of volumes on a server you are backing up, you may need to adjust step 4 to accommodate your particular set of volumes.

 Restore files and folders

Performing backups is great, but backups are only useful if you can use them to restore files and folders. The reasons for restoring include recovering from a major system disaster, recovering from a single disk failure, or just restoring a file a user has inadvertently deleted.

In the previous recipe, you saw how you could mount the VHDX that WSB created for you and give it a drive letter. So one way to recover the file is just to mount the backup VHDX and then use Explorer or other tools to copy files from the backup to a new home. This recipe uses the WSB cmdlets to recover to a separate folder. You would do this if you wanted to recover some particular files and did not want to overwrite anything.

 Getting ready

In this recipe, you first create a new backup policy and start it to create a backup. This script, which is derived from the recipe Configure and set a backup policy, is as follows:

 If (Get-WBPolicy) {Remove-WBPolicy -All}
 If (-NOT (Test-Path C:food1.txt)) {
 'D1' | Out-File C:food1.txt}
 $FullBUPol = New-WBPolicy
 $Schedule = '06:00'
 Set-WBSchedule -Policy $FullBUPol -Schedule $Schedule | Out-Null
 $TargetDisk = Get-WBDisk |
 Where-Object Properties -match 'ValidTarget' |
 Select-Object -First 1
 $Target = New-WBBackupTarget -Disk $TargetDisk `
 -Label 'Recipe 6-4' `
 -PreserveExistingBackups $true
 Add-WBBackupTarget -Policy $FullBUPol -Target $Target -Force |
 Out-Null
 $DisktoBackup = Get-WBDisk | Select-Object -First 1
 $Volume = Get-WBVolume -Disk $DisktoBackup
 Add-WBVolume -Policy $FullBUPol -Volume $Volume | Out-Null
 Set-WBPolicy -Policy $FullBUPol -Force
 Start-WBBackup -Policy $FullBUPol -Force | Out-Null
 $Drive = Get-CimInstance -Class Win32_Volume |
 Where-Object Label -Match 'Recipe'
 Set-CimInstance -InputObject $Drive `
 -Property @{DriveLetter='Q:'}

Compared with earlier recipes, the above script fragment contains additional syntax to remove the output generated by some of the WSB cmdlets. If you are adapting this recipe to your own organization's needs, you may find the removed output of value from an auditing point of view—just remove the pipe to Out-Null. You then see more output which can be helpful as you tune the recipe in practice, or if you are using a transcript to create an audit trail of operations.

This code also ensures a file,C:\foo\d1.txt, exists. You may have created this file with earlier recipes, but if not, this starting point ensures this file exists in the backup.

If this is the first backup you have created, your system may not have been setup to give you the necessary access permissions on your drive. When testing any recipes in this book, you may need to adjust the recipe to cater for your specific system and system settings.

 How to do it...

	Get the most recent backup job and view the job's items:

 $Job = Get-WBJob -Previous 1
 $Job
 $Job | Select-Object -ExpandProperty JobItems

	Get and display the Backup set information for this job:

 $BUSet = Get-WBBackupSet | Where-Object Versionid -EQ
 $Job.VersionId
 $BUSet

	Recover a single file:

 If (-Not (Test-Path C:\Recovered))
 {New-Item -Path C:\Recovered -ItemType Directory}
 $File = 'C:\Foo\d1.txt'
 $TargetPath = 'C:\Recovered'
 Start-WBFileRecovery -BackupSet $BUSet -SourcePath $File `
 -TargetPath $TargetPath -Option CreateCopyIfExists `
 -Force
 Get-ChildItem -Path $TargetPath

	Recover an entire folder structure:

 If (-Not (Test-Path C:\Recovered2))
 {New-Item -Path C:\Recovered2 -ItemType Directory}
 $SourcePath = 'C:\Foo'
 $TargetPath = 'C:\Recovered2'
 Start-WBFileRecovery -BackupSet $BUSet `
 -SourcePath $SourcePath `
 -TargetPath $TargetPath `
 -Recursive -Force
 Get-ChildItem -Path $TargetPathfoo

 How it works...

In step 1, you use the Get-WBJob cmdlet to retrieve details about the most recent backup job. You also use the output from Get-WBJob to view the job's items. The job details look like the following:

As you can see in this case, the previous job has completed successfully. WSB backed up the C: volume as the policy requested. Although the $Job variable shows log files with both a Success and Failure log file, there is little useful information contained in those text files.

In step 2, you retrieve the backup set that you are going to use to retrieve a backed-up file and a backed up folder. The Backup set information looks like this:

In step 3, you recover a single file (C:\Foo\D1.txt). To avoid potential data loss, you restore to a new folder (C:\Recovered). Once WSB has recovered the file, you can see the recovered file in the folder C:\Recovered. It looks like this:

In step 4, you recover an entire backed up folder (C:\Foo) and any subfolders to a new folder C:\Recovered2. When the recovery is complete and depending on what you stored in C:\Foo, you see something like this:

 There's more...

The backup job results you looked at has a job type of backup. As you saw in steps 3 and 4, you can use WSB to recover files and folders from a backup. You can look at the results of earlier file recovery jobs you just ran by using Get-WBJob to get the previous two jobs. The most recent previous job was the recovery of a single file you performed in step 4 and the second most recent represented the recovery you carried out in step 3.

 Backup and restore a Hyper-V Virtual Machine

There are many ways to back up a Hyper-V VM. You could, of course, use the recipes in this chapter inside the VM to back up your VM's hard drive contents to a network drive. As an alternative, you could use WSB to backup an entire VM and restore it.

Regarding the WSB commands to use when backing up a Hyper-V VM, you have options. You can use the WSB cmdlets, as you have done so far in this chapter. Or, you can use the Wbadmin console application. Wbadmin is a Windows command line tool that pre-dates the PowerShell module. It has the advantage of being higher ranked in search engines—useful if you wish to learn more. You may also find Wbadmin simpler to use in practice. This recipe shows how to use Wbadmin to create a backup of your VM and then restore it.

 Getting ready

For this recipe, you need a Windows Server 2016 system with Hyper-V installed plus a working VM. In this recipe, you use the Windows Server 2016 host, HV1, that runs the DC1.Reskit.Org domain controller which you backup and then restore.

 How to do it...

This recipe is in two parts. In the first part, you create a backup of a running Hyper-V VM, as follows:

	On your Hyper-V host, look at the DC1 VM and check the VM is up and running:

 Get-VM -Name DC1

	Create the backup using Wbadmin:

 Wbadmin Start Backup -BackupTarget:C: -HyperV:'DC1'

	Examine the log files created by Wbadmin:

 $Logfile = Get-ChildItem `
 -Path $env:windirLogsWindowsServerBackup*.log |
 Sort-Object -Property LastWriteTime -Descending |
 Select-Object -First 1
 Get-Content -Path $Logfile

	Look at the files created in the backup target:

 Get-ChildItem -Path C:WindowsImageBackup
 Get-ChildItem -Path C:WindowsImageBackupHV1

The preceding steps create the backup. In the next part of this recipe, you restore the VM from the backup. To demonstrate a worst case scenario recovery, you remove the original VM completely from Hyper-V. Then you restore it from the backup, as follows:

	Look at VM to see that the VM exists as do key components of the Hyper-V VM:

 $Vm = Get-VM -Name DC1
 $VmCfgLoc = $Vm.ConfigurationLocation
 $VmCfgOK = Test-Path -Path $VmCfgLoc
 $vmDskLoc = ($Vm.HardDrives).Path
 $VmDskOK = Test-Path -Path $VmDskLoc
 "Location of Config Information: {0}" -f $VmCfgLoc
 "Exists: {0}" -f $VmCfgOK
 "Location of DC1 Hard Drive : {0}" -f $VmDskLoc
 "Exists: {0}" -f $VmDskOK

	Remove the VM from Hyper-V and observe the results:

 Stop-VM -Name DC1 -TurnOff -Force
 Remove-VM -Name DC1 -Force
 Get-VM -Name DC1

	Now restore the VM from backup:

 $Version = $Backupversions |
 Select-String 'Version identifier' |
 Select-Object -Last 1
 $VID = $Version.Line.Split(' ')[2]
 $Cmd = "& Wbadmin Start Recovery -Itemtype:Hyperv -Items:DC1 "
 $Cmd += "-Version:$vid -AlternateLocation
 -RecoveryTarget:C:Recovery"
 Invoke-Expression -Command $Cmd

	And observe the results:

 Start-VM -Name DC1
 Get-VM -Name DC1
 $Vm = Get-VM -Name DC1
 $VmCfgLoc = $Vm.ConfigurationLocation
 $VmCfgOK = Test-Path -Path $VmCfgLoc
 $VmDskLoc = ($Vm.HardDrives).path
 $VmDskOK = Test-Path -Path $VmDskLoc
 "Location of Config Information: {0}" -f $VmCfgLoc
 "Exists: {0}" -f $VmCfgOK
 "Location of DC1 Hard Drive : {0}" -f $vmDskLoc
 "Exists: {0}" -f $VmDskOK

 How it works...

In step 1, you examine the Hyper-V host to check to see the status of the VM DC1. This VM is the VM that serves as the first Domain Controller in the Reskit.Org's Active Directory forest. You create this domain controller in the recipe Installing domain controllers in Chapter 8, Managing Windows Network Services. As you can see from step 1, your DC1 virtual machine is up and running:

With step 2, you use Wbadmin to back up the DC1 virtual machine. The output looks like this:

The arrow in the above screenshot points to the line that reads This will backup HyperV\DC1 to C:. Directly after, notice that Wbadmin seems to request permission to start the backup operation, but then answers itself and continues. This is normal operation for Wbadmin. The developers probably could have taken those lines out of Wbadmin, but they didn't.

Note that the -HyperV switch you use in step 2 is not available under Windows 10. You need to run this recipe, therefore, on the Windows Server 2016 server system hosting Hyper-V.

In step 3, you look at the log file generated by Wbadmin:

As you can see, WSB backed up the DC1 VHDX and the Ref2016 base disk. The DC1 VM and the other VMs in the Reskit.Org VM farm make use of differencing disks—so backing up both disks is vital if you are to restore the VM to a working state.

In step 4, you look inside the C:\WindowsImageBackup\ folder on the backup target drive. For this recipe, you created it in HV1's C: drive. The files in that folder are as shown in the following screenshot:

You have now backed up the DC1 virtual machine. With this backup, you can restore the VM back to Hyper-V. To test this, you first remove the VM from Hyper-V. In step 5, you display where Hyper-V has stored DC1 virtual machine's configuration information and the VHDX file for the virtual machine, which looks like this:

In step 6, you stop then remove the DC1 VM. The result is that the VM is no longer available, as you can see:

With the VM removed, you restore it from the backup taken earlier in step 2. To do this, you need to get the backup version details. For this, you construct a string expression with those details embedded. To restore the VM, you then invoke the constructed expression. The result is that the restoration process commences. You can see these operations here:

In step 8, you can see that the VM has been restored:

After starting the DC1 VM, Get-VM shows that the VM is running. In the final part of step 8, you look at where Hyper-V now stores the VM configuration information and the VM's hard drive, like this:

Note that the VM's configuration information and the DC1. VHDX file is in C:\Recovery, rather than from the D:\DC1 folder used before the backup (and before the removal of the VM). In operation, once WSB restores the VM, you may wish to move the VM to a different location rather than leave it in the recovery location. A very quick and easy way would be to copy the VHDX files to the new Hyper-V server and create a new VM on that server.

 There's more...

In steps 2 and step 3, you perform a VM backup and examine the resulting log file. In step 3, you hardcoded the name of the log file. You could have run step 2, assigning the output to a variable and then used string manipulation to get the last line to get the actual file name. As a Windows console application, Wbadmin emits a set of strings rather than objects (which are so much easier to manipulate).

In step 2, you use Wbadmin. This console mode application does not play well in a one-to-many remoting session. You need to run these scripts directly on the server.

In step 6, you remove a VM from Hyper-V. This action does not delete any VHDs that the VM use. To clean up the old VM, you should also remove the VHD storage. You could also create a new VM and attach the older virtual hard drives.

In step 7, you use some string manipulation to create command string to run Wbadmin to restore the DC1 VM. You get the backup version by doing some string parsing on the output of Wbadmin. You get the version information of the last backup, insert it into a command string, then execute the command string. In practice, you may need to change the logic in this recipe to reflect the nature of the VM to restore. Another option is to present -ALL the backup versions on the Hyper-V Server with Out-Gridview, and ask the user to select the backup.

Using Wbadmin or any older console application can be useful. In some cases, you need these console applications since there is no PowerShell cmdlet for that particular operation. When you use older console applications in your PowerShell scripts, you may need to do some string manipulation to extract the necessary information from the application's output.

 Backup and perform bare metal recovery

The Bare metal recovery (BMR) is the process of restoring a backup onto a new machine. Suppose your file server, FS1, has a catastrophic failure and has to be replaced by a new server computer. To get this new host up and running, you could manually run through the setup of the OS, add relevant print drivers, re-define the printers, and then restore the data. Or you could just do a BMR from a backup. This recipe shows how to do bare metal recovery using the PowerShell cmdlets in the WindowsServerBackup module and then the bare metal recovery feature of Windows Setup.

 Getting ready

To enable you to see BMR in action on a server, you must first install the Windows backup feature loaded on the server you wish to back up. You run the first part of this recipe on your server to create a backup capable of being restored using BMR. Then, after replacing the hardware, you perform a recovery onto to a new server based on the backup previously taken. This recipe uses a server, FS1 which backs up and restores, across the network, to/from another server SRV1. You create a second server, FS1A and perform BMR onto it.

 How to do it...

In the first part of this recipe, you run commands to create a backup of FS1, over the network, to SRV1 as follows:

	Ensure you have Windows-Server-Backup installed on FS1:

 Install-WindowsFeature -Name Windows-Server-Backup

	Setup backup policy, create a backup share, and take a backup with the backup file stored on a newly created network share:

 # Remove any old policy
 If (Get-WBPolicy) {Remove-WBPolicy -All -Force}
 # Create new policy
 $FullBUPol = New-WBPolicy
 $Schedule = '06:00'
 # Set schedule
 Set-WBSchedule -Policy $FullBUPol -Schedule
 $Schedule | Out-Null
 # Create a credential
 $U = 'administrator@reskit.org'
 $P = ConvertTo-SecureString -String 'Pa$$w0rd'
 -AsPlainText -Force
 $Cred = New-Object -TypeName
 System.Management.Automation.PSCredential `
 -ArgumentList $U,$P
 # Create target and add to backup policy
 Invoke-Command -ComputerName SRV1 -Credential $cred `
 -ScriptBlock {
 New-Item -Path 'C:Backup' `
 -ItemType Directory
 New-SmbShare -Name Backup -Path 'C:Backup' `
 -FullAccess "$Env:USERDOMAINdomain admins"
 }
 $Target = New-WBBackupTarget -NetworkPath 'SRV1Backup' `
 -Credential $Cred
 Add-WBBackupTarget -Policy $FullBUPol -Target $Target `
 -Force | Out-Null
 # Get and set volume to backup
 $DisktoBackup = Get-WBDisk | Select-Object -First 1
 $Volume = Get-WBVolume -Disk $DisktoBackup
 Add-WBVolume -Policy $FullBUPol -Volume
 $Volume | Out-Null
 # Add BMR to policy
 Add-WBBareMetalRecovery -Policy $FullBUPol
 # Set policy
 Set-WBPolicy -Policy $FullBUPol -Force
 # Start the backup
 Start-WBBackup -Policy $FullBUPol -Force

Once you have the backup created, you can restore it using the rest of this recipe:

	Using the Hyper-V MMC console on your Hyper-V host, create a new Hyper-V VM, and call it FS1A. Create a new disk and attach the Windows Server 2016 DVD ISO image into the DVD drive of the VM. Once completed, open a PowerShell window on your Hyper-V host and type:

 Get-VM -Name FS1A
 Get-VM -Name FS1A | Select-Object -ExpandProperty HardDrives
 Get-VM -Name FS1A | Select-Object -ExpandProperty DVDDrives

	Start the VM using Start-VM and observe the VM status:

 Start-VM -Name FS1A
 Get-VM -Name FS1A

	Using the MMC Console on your Hyper-V Host, open up a connection to the new FS1A VM. You see the start of the Windows Server setup process.

	From the Windows Setup dialog, select your required language and input device, then click Next.

	From the next dialog, click Repair your computer.

	Setup then prompts you for an option—click Troubleshoot.

	From the Advanced Options page, click on System Image Recovery.

	From the Re-image Your Computer pop-up, click Cancel.

	From the Select a system image backup window, click Next.

	From the Select the location of the backup for the computer you want to restore Windows, click Advanced.

	From the Re-Image Your Computer popup, click Search for a system image on the network.

	From the Are you sure you want to connect to the network? dialog box, click Yes.

	From the Specify the location of the system image window, enter the location where you stored the backup (in step 2), SRV1Backup, then click Next.

	From the Enter network credentials box, enter credentials that will enable you to access SRV1Backup. Then click OK.

	Once Windows connects to the remote machine and displays the location of backups, select the right share, and then click Next.

	Click on the backup from which WSB should restore (in the case here, there is only one), and click Next.

	From the Re-image your computer window, ensure that the details shown are correct, then click Finish.

	Windows setup displays a warning to tell you that all disks to be restored are going to be re-formatted. Click Yes to continue.

	Once the FS1A computer has finished the recovery operation and has rebooted, you can logon to the newly restored computer. Open a PowerShell console and verify you have recovered the host by the recovery by typing:

 HostName
 Get-NetIPConfiguration

 How it works...

In step 1, you install the backup feature. If you or someone else has previously loaded the feature, then you will see this:

On the other hand, if you haven't loaded the Windows server and the backup feature is not loaded, then this step loads the feature, like this:

With the backup feature loaded, in step 2 you create a bare metal recovery based full backup of FS1's C: drive. The approach is similar to that shown in the Configure and set backup policy recipe earlier in this chapter. Note that in step 2, you may get an error adding the volume to the policy if using a Generation 2 VM—you need to adjust the recipe accordingly.

The backup itself generates no messages showing progress as you piped many commands to Out-Null. Feel free to test this recipe, remove the pipes to Out-Null, and see far more messages when you test this recipe!

In this step, when you create the target on a remote system, SRV1 in this case, you should get no output if the folder and SMB share do not exist. If on the other hand, these items do exist, you should see the following:

After the backup has completed, you simulate a disaster so you can use the backup to recover from that disaster. Using Hyper-V makes easy for you to simulate the disaster. With Hyper-V, just create a brand new VM with a VM name of FS1A. This VM has a new, empty disk, and the Windows Server 2016 DVD loaded into the VMs DVD drive.

You can then start the VM, and once the server is up and running, connect to the VM using Hyper-V's VM Connect. The initial screens show Windows setup's progress. Once setup completes its initialization, it displays a dialog box allowing you to set the language, time and currency format, and keyboard or input keyboard:

After clicking Next, in step 7, you see the next dialog box:

In step 8, you see the option to troubleshoot your PC:

After clicking on Troubleshoot, in step 9, you see the Advanced Options window, where you select System Image Recovery:

The System Image Recovery option first attempts to find a backup system image on the computer (FS1A), but of course, this does not exist. Clicking Cancel moves on to enabling setup to find a backup on the network.

In step 11, you see the Select a system image backup dialog, where you click on Next.

In step 12, you see a dialog box showing you no local images; here you click Advanced... :

In step 13, you click on Search for a system image on the network.

In step 14, you tell Windows that you want to connect to the network. Sensibly, the dialog box warns you that there are some risks involved with starting the network before security updates, and so on, are all installed.

In step 15, you enter the details of where the system can find a backup to restore. In step 2, you saved the backup to SRV1Backup, so you enter that as the Network folder:

In step 16, you enter the credentials that Windows is to use to access the remote server and access a backup image stored on that system. Use the Domain Administrator account or another account that is a member of either the Local Administrators or the Backup Operators groups.

Once Windows setup connects to the remote system, it displays details of the backup location:

In step 17, Windows setup presents you with details of the backup it has found on SRV1:

Step 18 provides you with additional restore operations. In most cases you can just click Next:

In step 19, setup provides details of the backup that it proposes to restore. Clicking on Finish starts off the restoration process.

Step 20 provides another safety opportunity, setup warns you that all the disks to be restored are going to be re-formatted and replaced. Reformatting the disk is the is you want in this recipe, but it's sensible for the GUI to double check that you are restoring to the correct disk:

Once the restoration process starts, you see a progress dialog box showing progress:

Once Windows completes the process of restoring the system, it reboots. After the reboot, you can logon and examine the restored server:

As you can see, the new VM, FS1A, is now running the restored FS1 host. The FS1A VM has the same IP address that FS1 had (when it was backed up). But as you can see, Windows has now applied the IP address to a new network interface (Ethernet 2). Effectively the new VM has a different NIC and thus gets a new Interface—but WSB applies the old IP address onto this new host. It may be the same make and model as the NIC in the old system (the old VM), but this NIC has a different serial number. It's important that you check the IP address details after you recover the VM and adjust if needed.

 There's more...

Once your restored server is up and running, it has the same configuration as the original server. This configuration includes the machine name, IP Address, server certificates, and so on. As part of the overall restoration process, you may need to move the VM to another Hyper-V host so you may need to adjust this recipe to suit your requirements.

In step 14, Windows setup asks you if you want to connect to the network. In some environments, when you are restoring a VM, your network may be considered hostile (until you get the restored VM fully patched). Asking you whether you want to access the network is a great precaution. But since you are going to perform a bare metal restore from the network, connecting to the network is appropriate. If your network is that hostile, you may need to implement a different recovery and backup approach.

 Restore the registry from a backup

In Windows, applications such as the registry can register with WSB. These applications contain a Volume Shadow Copy Service (VSS) writer. WSB uses that writer in the backup process to ensure application data is consistent when WSB takes the backup. The feature enables WSB to restore the application from the backup. In this recipe, you create a backup of a system including the registry and restore the registry from a backup to view the recovered hive.

 Getting ready

This recipe uses the application server SRV1. Ensure the server has the WSB feature added, as shown in the Configure and set backup policy recipe. Your VM needs to have a second VHD added and setup as the E: drive. You use this second drive as the backup target. If you are creating a new virtual hard drive to test this recipe, ensure you bring the drive online, initialize it, and format it.

 How to do it...

The steps for the recipe are as follows:

	You begin this recipe by creating keys/values in the registry:

 $TopKey = 'HKLM:SoftwarePackt'
 $SubKey = 'Recipe6-7'
 $RegPath = Join-Path -Path $TopKey -ChildPath $SubKey
 New-Item -Path $TopKey
 New-Item -Path $RegPath
 Set-ItemProperty -Type String -Name RecipeName
 -Path $RegPath `
 -Value 'Recipe 6-7'
 Get-Item -Path $RegPath

	Create a full backup of this server by first removing any existing backup policy then creating a new backup policy with a schedule:

 If (Get-WBPolicy) { Remove-WBPolicy -All -Force
 $FullBUPol = New-WBPolicy
 $Schedule = '06:00'

	Create and set the backup schedule:

 Set-WBSchedule -Policy $FullBUPol -Schedule
 $Schedule | Out-Null

	Set the backup target:

 $BuDisk = Get-WBDisk |
 Where-Object Properties -eq 'ValidTarget'
 $BuVol = $BuDisk | Get-WBVolume
 $Target = New-WBBackupTarget -Volume $BuVol | Out-Null
 Add-WBBackupTarget -Policy $FullBUPol -Target $Target -Force |
 Out-Null

	Set the disk to backup and specify full metal recovery:

 $DisktoBackup = Get-WBDisk |
 Select-Object -First 1
 $Volume = Get-WBVolume -Disk $DisktoBackup
 Add-WBVolume -Policy $FullBUPol -Volume $Volume |
 Out-Null
 Add-WBBareMetalRecovery -Policy $FullBUPol
 Add-WBSystemState -Policy $FullBUPol

	Start the backup:

 Start-WBBackup -Policy $FullBUPol -Force

	Examine applications that were backed up and can be restored:

 $Backup = Get-WBBackupSet |
 Where-Object BackupTarget `
 -Match 'E:' |
 Select -Last 1
 $Backup.Application

	Restore the registry:

 $Version = $Backup.VersionId
 Wbadmin Start Recovery -Version:$Ver `
 -ItemType:App `
 -Items:Registry `
 -Recoverytarget:E:

	See what WSB restored:

 Get-ChildItem -Path E:RegistryRegistry

	Once the recovery is complete, you can mount the recovered registry. Start by opening Regedit and click on the HKEY_LOCAL_MACHINE in the left pane:

	Then click on File, Load Hive. From the Load Hive dialog, enter a file name of E:RegistryRegistrySOFTWARE, then click Open:

	In The Load Hive dialog, enter a key name of OldSoftwareHive and then click OK:

	You can then expand the OldSoftware key; open Packt and you see the key added at the start of this recipe.

	Once you have loaded the hive, open up a new PowerShell console and view the restored hive:

 Get-ChildItem HKLM:\OldSoftwareHive\Packt

 How it works...

In step 1, you add a new key HKEY_LOCAL_MACHINESoftwarePackt, and under that, another sub-key, Recipe 6-7. You then add a new value entry called RecipeName with a value of Recipe 6-7. This step demonstrates adding a key and a value entry to the registry and looks like this:

In step 2 through step 6, you use the PowerShell cmdlets to create a full backup of the system and the C: volume to the E: volume:

If you are using Generation 2 VMs to test this recipe, you may need to change this step to ensure you pick up the right volume. In these steps, you create a new backup policy then run the backup operation.

Once WSB has completed backing up the system, in step 7 you get the backup details to show that WSB has backed up the Registry:

In step 8, you restore the registry, and as you can see, the restoration was successful:

And in step 9, you use Get-ChildItem to discover the registry hives recovered:

In steps 10-13, you use Regedit to load the hive, and in step 13 you view the hive.

Once you load the hive using Regedit, you can then view the hive and the hive's contents using PowerShell, as shown in step 14:

 There's more...

This chapter (and this recipe) was written to be part of Chapter 6. However late in the production process, this chapter was re-numbered, however some artifacts of the old chapter number remain, such as the Recipe Name. Feel free to substitute different names.

When you restored the registry, WSB wrote the backed-up registry hives to a new location, the E: volume. Regedit enables you to mount a restored hive and view the contents. A neat feature is that after mounting the hive in Regedit, you can manipulate that hive directly from PowerShell. Support staff can use this approach to compare a hive in the currently active registry against a backup copy from some time past. An admin might have accidentally removed an application and you need to determine the registry settings requires to resurrect the application. As a forensic tool, you could use this technique to report on all changes made to some of all of the registry.

When using Generation 2 VMs, note that the available volumes are different from what you see using Generation VMs. You may need to adjust the recipe to ensure you pick up the correct volume to backup.

 Create a daily backup report

Most backup jobs are fire and forget. You set them up, and they run. In such an environment, it is easy to forget about backups until the time when you need them (that is to recover a file, folder or entire server). One thing you can do is to generate a daily report on the state of backup on a critical server. You can run this report early every morning, and email it to one or more people in your organization to notify them of any issues that may have arisen with processing backups on critical servers.

This recipe creates a scheduled task which sends an email containing a summary of backup operations on your server, in this case: you use the file server FS1. This recipe is in two parts: the first part is a simple script that creates a backup report (on FS1) and the used email to send you the backup report. The second part of this recipe sets up the scheduled task that runs the backup report script. This second script also summarizes the results of setting up the scheduled task.

 Getting ready

The idea of this recipe is that you have a scheduled job that sends you an email every day on the status of backup activities on a server. So before we can run this recipe, you need to ensure you have loaded the backup features onto that server, as shown in the Configure and set backup policy recipe.

 How to do it...

The first part of this recipe is the script that creates the backup report and emails it via SendGrid, as follows:

	Create a credential for SendGrid:

 Function Get-MailCred {
 $User = 'apikey'
 $Pw = <your api key>
 $Password = ConvertTo-SecureString -String $Pw
 -AsPlainText -Force
 New-Object -Typename System.Management.
 Automation.PSCredential `
 -ArgumentList $User,$password
 }

	Start building the backup report:

 $Now = Get-Date
 $StartTime = $Now.AddDays(-7)
 $Report = "Backup Report for $Env:COMPUTERNAME at [$now] `n"
 $Report += '---`n`n'

	Query and report on the backup sets available:

 $Report += '*** Backup Sets *** `n'
 $Report += Get-WBBackupSet |
 Where-Object BackupTime -gt $startTime |
 Format-Table Versionid, BackupTime,
 Application, BackupTarget |
 Out-String
 $Report += '`n'

	Create an array of key backup event IDs:

 $Report += '*** Event Log Messages'
 $EvtArray = (100, 224, 227, 517, 518, 521, 527, 528, 544, 545)
 $EvtArray += (546, 561, 564, 612)

	Search the Windows event logs for events and add to the report:

 $Report += Get-WinEvent -LogName 'Microsoft-Windows-Backup' |
 Where-Object {($_.TimeCreated -ge $StartTime) -and
 ($EvtArray -contains $_.ID)} |
 Format-Table -Property TimeCreated,
 LevelDisplayName, ID, Message |
 Out-String
 $Report += '`n'

	Search the backup logs for errors and include filenames, then save the report away:

 $Report += '*** Backup Error logs ***'
 $Logs = Get-ChildItem -Path
 'C:WindowsLogsWindowsServerBackup*.log' |
 Sort-Object -Property LastWriteTime |
 Where-Object LastWriteTime -GE $StartTime
 $Report += ($Logs | Where-Object Name -match 'Error'
 | Out-String)
 $Report += ' `n'
 If (-NOT Test-Path -Path C:Reports)
 {New-Item -Path C:Reports -Directory}
 $Report | Out-File -FilePath C:ReportsReport.txt

	Send the report via e-mail:

 $MailCred = Get-MailCred
 $From = 'BackupReport@Reskit.Org'
 $To = 'PowerShellbook@Gmail.Com'
 $Body = 'Daily backup report - contained
 in the attachment'
 $SMTPServer = 'Smtp.SendGrid.Net'
 $Subject = "Backup Report for $Env:COMPUTERNAME
 at: [$Now]"
 Send-MailMessage -From $From -To $To `
 -Attachments C:ReportsReport.txt `
 -SmtpServer $SMTPServer `
 -Body $Report `
 -Subject $Subject `
 -Credential $Mailcred

	Save the above part of this recipe (step 1 through step 7) as C: ScriptsBackupReport.ps1.

In the next part of this recipe, you setup up the C:\Scripts\BackupReport.ps1 as a regular task and finally observe the output. Before performing the second part, double check to ensure that the report script is in the right place:

 $ReportScript = 'C:\Scripts\BackupReport.ps1'
 If (-NOT (Test-Path $ReportScript))
 {Throw 'Report script not found - exiting'}

	Schedule the script using the task scheduler:

 # Assume steps 1-6 are saved in c:scriptsbackupreport.ps1
 $Name = 'Daily Backup Report'
 $Action = New-ScheduledTaskAction -Execute `
 '%SystemRoot%\system32\WindowsPowerShell\v1.0\powershell.exe" `
 -Argument $ReportScript
 $Trigger = New-ScheduledTaskTrigger -Daily -At 6am
 $User = 'ReskitBUAdministrator'
 $Password = 'Pa$$w0rd'
 $Task = Register-ScheduledTask -TaskName $Name -Action
 $Action `
 -Trigger $Trigger `
 -User $User `
 -Password $Password

 How it works...

In step 1, you create a simple function, Get-MailCred, that provides the credentials you need to send mail via SendGrid.Net. Before you run this recipe and this function, you need to add your API key which you get from SendGrid. Effectively, the user id for SendGrid is apikey and the password is your API key.

Note: You should be very careful about exposing the API Key. If you plan on using this recipe, you are going to need to determine whether you need to pass credentials to your mail server, and how to achieve it for your environment. In general, leaving plain text credentials in any production script is a not good idea.

The first part of this script is where you create and mail the report; you save this locally on FS1, then you use the second part of this script to create the scheduled task.

In step 2, you start by creating a report with a header. In step 3, you get all the backup sets available and add these details to the report. In steps 4 and 5, you look at the Windows Backup event log, and pull out any relevant event log entries, and add them to the report. In step 6, you look for any backup error log and add information to the report.

Finally, in step 7, you use SendGrid to send mail on to a user. In this recipe, you used Gmail as your mail target, although you could have used any other mail server in step 8. From Gmail's web interface, the mail and report look like this:

To turn this script into a scheduled task, you start with step 8 and create a scheduled task. Providing you specified the parameters correctly, you get no output from this task. In step 9, you find and display the details of the scheduled task:

Once you set up this scheduled task, the task runs every morning at 06:00 and generates a report. Needless to say, if you are going to be creating a regular report, you could easily add more details to the report. You could improve the report script to produce HTML as output. You could then either set the body to this HTML document or just attach it to the mail.

 There's more...

This recipe used Sendgrid.com as an SMTP Server. In the first part of this recipe, you created the backup report which you sent as an email message. SendGrid has a free account that enables you to send up to 100 emails per day, which is more than enough for the testing of scripts that send mail. In this recipe, the Get-MailCred function is used to return a credential object for SendGrid. To test this recipe, navigate to https://SendGrid.Com and sign up for a free account and get your API Key.

 Backup and restore using Microsoft Azure

The recipes in this chapter, thus far, have been focused on Windows Server Backup. An alternative to performing backups is backing up to the cloud. This recipe demonstrates using Azure Backup as an alternative to the Windows Server Backup product.

 Getting ready

For this recipe to succeed, you need a computer to backup from, an Azure account, and you need to have the Azure cmdlets loaded. You also need to load the online backup cmdlets (which you do in this recipe).

In this recipe, you use SRV2 as the server to backup (and restore). You can run this recipe on any server.

To load the Azure cmdlets, you use the Install-Module cmdlet, as demonstrated in the Explore PowerShellGet recipe in Chapter 1, What's new in PowerShell and Windows Server. You use this cmdlet on SRV2 to find and load the Azure Resource Manager cmdlets that you use in this recipe. Then, you can view the newly installed module, as follows:

 Install-Module -Name AzureRm -Repository PSGallery
 Get-Module -Name AzureRM -ListAvailable

If this is the first module you have installed using Install-Module, you also see a pop-up requesting permission to install NuGet. This is normal.

 How to do it...

The steps for the recipe are as follows:

	Login to Azure:

 Login-AzureRmAccount

	Get Azure Subscription details:

 $Sub = Get-AzureRmSubscription
 Select-AzureRmSubscription -SubscriptionId
 $Sub[0].SubscriptionId

	Register with Azure recovery services provider:

 Register-AzureRmResourceProvider
 -ProviderNamespace 'Microsoft.RecoveryServices `

	Create an ARM Resource Group:

 $RGName = 'Recipe'
 $Location = 'WestEurope'
 New-AzureRmResourceGroup -Name $RGName -Location $Location

	Create Azure Recovery Vault:

 $VaultName = 'RecipeVault'
 New-AzureRmRecoveryServicesVault -Name $VaultName `
 -ResourceGroupName $RGName `-Location $Location

	Set Recovery Vault properties:

 $Vault = Get-AzureRmRecoveryServicesVault -Name $VaultName
 Set-AzureRmRecoveryServicesBackupProperties -Vault $Vault `
 -BackupStorageRedundancyLocallyRedundant

	Examine the backup vault:

 Get-AzureRmRecoveryServicesVault

	Get MARS Agent installer and install it:

 New-Item C:\Foo -ItemType Directory -Force `
 -ErrorAction SilentlyContinue | Out-Null
 $MarsURL = 'Http://Aka.Ms/Azurebackup_Agent'
 $WC = New-Object -TypeName System.Net.WebClient
 $WC.DownloadFile($MarsURL,'C:\FOO\MarsInstaller.EXE')
 C:FooMarsInstaller.EXE /q

	Import the Azure Backup Module:

 Import-Module `
 'C:\Program\FilesMicrosoft Azure Recovery Services
 Agent\bin\Modules\MSOnlineBackup'

	Get and display the credentials for the recovery vault:

 $CredPath = 'C:\Foo
 $CredsFile = Get-AzureRmRecoveryServicesVaultSettingsFile `
 -Backup -Vault $Vault `
 -Path $CredPath
 "Credential File Path: [{0}]" -f $CredsFile.FilePath

	Register this computer with the recovery vault:

 Start-OBRegistration -VaultCredentials $Credsfile.FilePath `
 -Confirm:$false

	Set network details:

 Set-OBMachineSetting -NoProxy
 Set-OBMachineSetting -NoThrottle

	Set encryption:

 $PassPhrase = ConvertTo-SecureString `
 -String 'Cookham!JerryGarcia$123_Rebecca' -AsPlainText -Force
 $PassCode = 'BWROCKS!0'
 Set-OBMachineSetting -EncryptionPassphrase $PassPhrase
 -SetPasscode $Passcode

	Create and view a backup policy:

 $APolicy = New-OBPolicy
 $APolicy

	Configure and set backup schedule:

 $Sched = New-OBSchedule -DaysofWeek Tuesday, Saturday `
 -TimesofDay 04:00
 Set-OBSchedule -Policy $APolicy -Schedule $Sched

	Set retention policy:

 $RetentionPolicy = New-OBRetentionPolicy -RetentionDays 7
 Set-OBRetentionPolicy -Policy $APolicy -RetentionPolicy
 $RetentionPolicy

	Specify files to backup and files to exclude:

 $Inclusions = New-OBFileSpec -FileSpec 'C:'
 $Exclusions = New-OBFileSpec -FileSpec 'C:Windows' -Exclude
 Add-OBFileSpec -Policy $APolicy -FileSpec $Inclusions
 Add-OBFileSpec -Policy $APolicy -FileSpec $Exclusions

	Remove existing policy and set a new one:

 If (Get-OBPolicy) {Remove-OBPolicy -Force
 Set-OBPolicy -Policy $APolicy -Confirm:$false

	Get and display the Azure backup schedule:

 Get-OBPolicy | Get-OBSchedule

	Perform a one-off backup based on the currently active backup policy:

 Get-OBPolicy | Start-OBBackup

Having used the Azure Backup cmdlets to backup a server (SRV2 in this case), you can also recover files and folders using the following:

	Set source volume to recover from:

 $Source = Get-OBRecoverableSource

	Get the recovery points from which you can restore (that is, the most recent):

 $RPs = Get-OBRecoverableItem -Source $Source |
 Select-Object -First 1

	Choose what to restore:

 $FilesFolders = Get-OBRecoverableItem -RecoveryPoint $RP `
 -Location "C:Foo\"
 $Item = Get-OBRecoverableItem -RecoveryPoint $RP `
 -Location "C:Foo\" `
 -SearchString "MarsInstaller.EXE "

	Examine a file that was explicitly NOT backed up:

 Get-OBRecoverableItem -RecoveryPoint $RP `
 -Location 'C:\Windows' `
 -SearchString 'mib.bin'

	Recover specified files and folders:

 $RecoveryOption =New-OBRecoveryOption `
 -DestinationPath 'C:\temp' `
 -OverwriteType Skip
 Start-OBRecovery -RecoverableItem $Item -RecoveryOption
 $RecoveryOption

	See what OBRecovery recovered:

 Get-ChildItem C:\AzRecover\C_vol
 Get-ChildItem C:\AzRecover\C_vol\Foo

 How it works...

After you install the Azure cmdlets, the first thing to do is logon to Azure. If you are using an AAD account to logon, you can pass credentials directly the cmdlet. If you are using a Microsoft Live account to logon, you see two dialog boxes:

From this dialog, you enter your Live ID and click on Sign in. Azure takes you to a second dialog box where you enter your password:

After a successful logon in step 1, the cmdlet outputs details about your account, like this:

In step 2, you obtain (and display) the subscription object that relates to your Azure Subscription. Depending on how many subscriptions you have, you may need to adjust step 2 to ensure you select the correct Azure subscription to use for the rest of this recipe. Select-AzureRmSubscription cmdlet directs Azure PowerShell to use the chosen subscription. This step looks like this:

In step 3, which you only need do once, you register your currently active subscription with the Azure Recovery Services. The result of registering are details about what resource types you can access, like this:

Once you have your subscription registered, you create the resource group in step 4. Resource groups hold all ARM resources:

Next, in step 5, you create the Azure Recovery Vault:

In step 6, you set the recovery vault to use Azure's Locally Redundant store option. There is no output from this step.

Next, in step 7, you examine the Recovery Vault:

In step 8, you use the System.Net.Webclient .NET class to download the Microsoft Azure Recovery Services (MARS) Agent installer, which you then run. The MARS installer installs the backup cmdlets on your system. There is no output from step 8.

In step 9, you install the Online Backup module manually. There is no output from this step.

In step 10, you use the Get-AzureRMRecoveryServicesVaultSettingsFile to download the Vault settings file and display the location where you stored it. This file is, in effect, a certificate that enables the computer to access Azure Recovery Services and it looks like this:

With step 11, you register this computer with Azure Recovery Services with your recovery vault in Azure's Western Europe region, as follows:

In step 12, you set backup details for this system, including a proxy setting (no proxy), a throttle setting (no throttling). This step produced no output.

In step 13, you set the encryption passphrase and security pin to use for this vault. Note without these items, you cannot recover your data. You need to keep these credentials (and the scripts that contain them) carefully protected. The output of this step is as follows:

This step completes the installation and setup of Azure backup, and you are now ready to create a backup. With Azure Recovery Services, any backups of a Windows server/client to Azure Backup are governed by a backup policy (similar to on-premises WSB backup). The online backup policy has three key components

	A backup schedule that specifies when backups need to be taken and synchronized with the service.

	A retention schedule that specifies how long to retain the recovery points in Azure.

	A file inclusion/exclusion specification that states what should be (and should not be) backed up.

In step 14, you create and display a new empty Azure Online Backup policy:

In step 15, you create a backup schedule and assign it to your backup. This sets up Azure recovery to perform a backup at 4:00 every Tuesday and Saturday:

With step 16, you set a retention period of seven days:

In step 17, you specify the files that WSB should include in the backup (all of C:) and the files that should you wish to exclude from the backup (i.e. the contents of the C:\ Windows folders). There is no output from this step.

Finally, in step 18, you set $Apolicy as the currently active policy. If there was an existing policy, you should remove it first before setting a new policy. This new policy produces details of what you want WSB to back up (and to omit) and looks like this:

With step 19, you display the schedule for Azure Backup, based on the policy you set earlier:

As the screenshot shows, you have created an Azure backup policy that backs up twice a week at 04:00 on Tuesday and Saturday. Needless to say, you are likely to need to adjust the details of this policy before putting it into operation. Once you have a policy set, you perform a one-off backup based on the policy, as you see in step 20:

After you back up (at least once), you can recover files and folders from the backup. You restore to a folder on your local system. In steps 21, 22, 23, and 24 you set the items you wish to recover and to where you want Azure Backup to recover them. In step 25, you look at a file that was not backed up (and you see no actual output). These steps generate no output.

In step 26, you set the recovery options then commence the backup:

Once the backup has completed, in step 27, you view the files that Azure Backup restored from an earlier backup, as follows:

As you can see, by performing this recipe you backed up server SRV2, then restored a backed up file from the Azure's recovery vault onto SRV2.

 There's more...

In step 4, the recipe sets the Azure region to Western Europe. With the growth of Azure data centers around the world, there may be an Azure region closer to you. Check on the Microsoft Azure Regions page at https://azure.microsoft.com/en-gb/regions/

In step 15, you set the time for the backup (04:00). Azure backup only starts backup jobs on the hour or half hour, starting at midnight (00:00). If you set the time to, say, 16:20, this will generate an error later, in step 18, when you set the policy using Set-OBPolicy.

 Managing Performance

In this chapter, we are going to cover the following recipes:

	Exploring performance counters with Get-Counter

	Exploring performance counters using CIM cmdlets

	Configuring and use Data Collector Sets

	Reporting on performance data

	Generating performance monitoring graph

	Creating a system diagnostics report

 Introduction

Managing performance has been a challenge since the earliest days of computing. Windows NT 3.1 came with a marvelous tool, Performance Monitor (Perfmon), that allowed you to see what the OS and applications are doing and what resources they are consuming.

This chapter shows you how you can use PowerShell to obtain and display performance information. The recipes in this chapter show you how you can use a cmdlet and WMI to get and report the performance information. This chapter shows how you can generate performance graphs and reports for management. And of course, you can leverage the various recipes in this chapter to conduct your performance monitoring and reporting.

The Windows performance monitoring framework is known as Performance Logging and Alerting (PLA). PLA is built into Windows and uses COM and DCOM to obtain performance and diagnosis information from both local and remote computers.

PLA enables you to obtain a variety of performance data from running systems. PLA provides graphic tools such as Performance Monitor and Task Manager to help bring the data to life. These tools utilize the performance monitoring framework built into Windows.

You can also use PowerShell to obtain performance information from the PLA. While you can use a GUI tool for looking at one system, with PowerShell you can obtain the performance information across your entire IT infrastructure.

In PLA, a counter set is a performance object that provides performance information about some aspect of your systems such as memory, disk devices, or network components. Counter sets are built by Microsoft as well as third parties and are implemented as DLLs in your system.

A counter set contains one or more counters, each of which provides one measurement of an aspect of the counter type. For example, the Memory counter set on Windows Server 2016 has 36 counters, such as PagesperSecond, PageFaultsperSecond, and AvailableBytes.

Counter sets have a counter set type: single-instance or multi-instance. Counters like \Memory\Page/Sec are single-instance where each sample contains just one measurement. Other counters, such as \Processor(*)\% Processor Time are multi-instance. This counter returns a counter sample for each processor in the server, plus one for the total (nicely named _total). The multi-instance counters in the Processor counter set return one measurement for each processor core, plus one for the total. This counter returns one measurement for each core (or two measurements if hyper-threading is available and enabled. For example, for each processor core on a dual-processor hex-core system with hyper-threading, you would have 24 measurements.

A counter sample is a specific measurement of a counter at some point in time. To get a counter sample, you use the Get-Counter cmdlet and specify the counter name (that is, the path) to the counter set. The path is formatted as \\<servername\<counterset name>\CounterName, for example \\DC1\Memory\Page Faults/sec. If you are getting counters on the local machine, you can omit the computer name prefix and just specify \Memory\Page Faults/sec. Note that the counter set and counter names can be long and can have spaces in the names. You need to specify paths using PowerShell string quoting.

You use the Get-Counter cmdlet to obtain details of available counter sets, the counters with each set, and get counter samples. The Get-Counter cmdlet utilizes PLA to get counter set, counter and counter sample information from both local and remote computers.

The PerformanceCounterSampleSet object, returned by Get-Counter, contains a CounterSamples property. This property contains one measurement of the counter (for single-instance counters) or an array of samples (for each instance with multi-instance counters).

Another way to surface performance information is with WMI. WMI holds performance objects, and you can use either the WMI cmdlets or the CIM cmdlets. The latter are slightly faster, and more firewall friendly.. If you are conducting remote performance monitoring on a constant basis, or opening up a CIM Session to the monitored server, then using the CIM cmdlets gives improved performance.

In the first recipe of this chapter, you explore counter sets, and counter set samples using Get-Counter. The next recipe looks at getting performance information using the CIM cmdlets.

This recipe uses several servers to simulate a normal organization. Consider using fewer servers.

 Explore performance counters with Get-Counter

Get-Counter is the cmdlet you use both to discover the counter sets available on a machine, and to obtain performance samples from a local or remote server. In this recipe, you use a Windows Server 2016 server, SRV1, to examine performance counter sets and counters on local and remote computers.

 Getting ready

This recipe uses several remote machines: DC1, CA, SRV1, FS1, FS2, and PSRV. Adjust the recipe to reflect the computers in your testing or production environment.

This recipe uses several servers to simulate a normal organization. Consider using fewer servers.

 How to do it...

	You start by using Get-Counter to discover performance counter sets on the local machine:

 $CounterSets = Get-Counter -ListSet *
 "There are {0} counter sets on [{1}]" `
 -f $CounterSets.count, (hostname)

	Discover performance counter sets on remote systems:

 $Machines = 'DC1', 'CAa', 'SRV1', 'FS1', 'FS2', 'PSRV'
 foreach ($Machine in $Machines)
 {
 $RCounters = Get-Counter -ListSet * -ComputerName $machine
 "There are {0} counters on [{1}]" -f $RCounters.count,
 ($machine)
 }

	Use Get-Counter to explore key performance counter sets:

 Get-Counter -ListSet Processor, Memory, Network*,*Disk* |
 Select-Object -Property countersetname, Description |
 Format-Table -Wrap

	You now look at two counters: Memory and Processor. Get and display counters in these two counter sets:

 $Counters = (Get-Counter -ListSet Memory).counter
 "Memory counter set has [{0}] counters" -f $counters.Count
 $counters = (Get-Counter -ListSet Processor).counter
 "Processor counter set has [{0}] counters" -f $counters.Count
 Get a sample from each counter in the memory counter set:
 $Counters = (Get-Counter -ListSet Memory).counter
 "{0,-19} {1,-50} {2,10}" -f 'At', 'Counter', 'Value'
 foreach ($Counter in $Counters)
 {
 $C = Get-Counter -Counter $Counter
 $T = $C.Timestamp # Time
 $N = $C.CounterSamples.Path.Trim() # Couner Name
 $V = $C.CounterSamples.CookedValue # Value
 "{0,-15} {1,-59} {2,20}" -f $t, $n, $v
 }

	Next you discover the sample set types for key performance counters:

 Get-Counter -ListSet Processor, Memory, Network*, *Disk* |
 Select-Object -Property CounterSetName, CounterSetType

	Explore two performance counter sample sets using examples of both counter set types:

 $Counter1 = '\Memory\Page Faults/sec'
 $PFS = Get-Counter -Counter $Counter1
 $PFS
 $Counter2 = '\Processor(*)\% Processor Time'
 $CPU = Get-Counter -Counter $Counter2
 $CPU

	Look at the properties of the performance counter sample set object:

 $PFS | Get-Member -MemberType *Property |
 Format-Table -Wrap

	Now look at what counters the samples contain and the way they look :

 $CPU.CounterSamples | Get-Member -MemberType *Property |
 Format-Table -Wrap
 $CPU.CounterSamples | Format-List -Property *

 How it works...

The Get-Counter cmdlet is the tool you use both to discover the performance counter sets and counters, as well as, to get specific the counter samples. In step 1, you get all the performance counter sets on the local system and display the results. The results you obtain vary depending on the specific features you install on your computers. On the SRV1 VM, step 1 looked like this:

In step 2, you expand the scope a bit to return the number of counter sets in multiple machines in the network. The domain controllers and other servers have different features loaded. Therefore you see different number of counter sets on each machine:

In step 3, you explore some of the most useful counters in Windows Server 2016, which are as follows:

With step 4 you use Get-Counter to return and display a count of how many counters exist in the Memory and Processor counter sets, as you see here:

Now that you have found the counter sets and looked inside a few, you get counter samples in step 5. In this case, you retrieve a counter sample for each counter in the Memory counter set:

As noted earlier, counters can be either single or multi-instance. In step 6, you use Get-Counter to explore the counter set types of a few key counters. The Processor counter set is multi-instance whereas the Memory counter set is single-instance as you can see here:

In step 7 you explore a single-instance and a multi-instance counter. As you can see here, the Processor object returns a sample for each processor in your computer plus one for the total CPU time across all cores. If you are using Get-Counter on a computer with hyper-threaded processors, you would see two measurements for each processor core. Our VM, which is not hyper-threaded and only has one processor assigned results in what you see here:

With step 8, you examine the PerformanceCounterSampleSet object and view the properties on this object:

The CounterSamples property contains the counter samples taken at the time in the TimeStamp. In step 9, you look at the values and properties of two counter samples:

 There's more...

In step 4 of this recipe, you used a separate call for Get-Counter to retrieve each counter. As you can see from the screenshot, it took 35 seconds to gather all these counters. Using Get-Counter is convenient if you just want one counter (for example, CPU utilization). If you need to get all the counters in a counter set, there are more efficient techniques for getting multiple counters.

In step 6 of this recipe, you should notice that the $PFS variable contains the readings script property. The Get-Sample cmdlet returns the $PFS a variable. This variable is an object of the type PerformanceCounterSampleSet. PowerShell added this property to the underlying .NET object through the magic of the extensible type system. This script property returns a simple array of the counter path and the cooked value for the sample. You can use this as an alternative delving into the PerformanceCounterSampleSet object itself. Note that the first member of the array has a trailing. You may need to remove if you wish to use it as a counter path value in some other cmdlet. If you do use the readings script property, the code that results is more complex than just using the properties on the sample set object directly. If you are interested, the script is defined in the file $PSHome\getevent.types.ps1xml. Of course, you can update this extended type information if that is appropriate.

 Explore performance counters using CIM cmdlets

Another way to access performance information is via WMI. You can use either the WMI or the CIM cmdlets to access a large number of performance counters, as an alternative to using Get-Counter. The naming structure is different from using Get-Counter. With WMI, each counter is a separate WMI class.

With WMI, each performance counter set is a WMI class. The WMI performance counters are found in the ROOT\CimV2 namespace and have a name that begins with Win32_Perf. For example, the Memory performance counter set contains 36 separate counters. The WMI class Win32_PerfFormattedData_PerfOS_Memory contains 46 properties including all of the individual performance counters. With WMI, you get all the measurements back in one call to Get-CimInstance, whereas you would need to call Get-Counter for each sample. There are other ways to collect counters as shown in later recipes.

In this recipe, you get performance counters from local and remote machines using the CIM cmdlet set. The CIM cmdlet set is preferable to the older WMI commands as it is a little faster. And it can make use of WinRM for remote sessions.

 Getting ready

You run this recipe on SRV1, but you could use any server. This recipe uses the CIM cmdlets, so you need at least PowerShell 3.0. You could revise this recipe to make use of the WMI cmdlets. Using the WMI cmdlets might be useful in the case where you are communicating with an older system that does not have PowerShell remoting up and running.

 How to do it...

	Find Performance related counters in Root\CimV2:

 Get-CimClass -ClassName Win32*perf* | Measure-Object
 Get-CimClass -ClassName Win32*perfFormatted* | Measure-Object
 Get-CimClass -ClassName Win32*perfraw* | Measure-Object

	Find key performance classes:

 Get-CimClass "Win32_PerfFormatted*perfos*" |
 Select-Object -Property CimClassName
 Get-CimClass "Win32_PerfFormatted*disk*" |
 Select-Object -Property CimClassName

	Get Memory counter samples:

 Get-CimInstance -ClassName Win32_PerfFormattedData_PerfOS_Memory

	Get CPU counter samples:

 Get-CimInstance
 -ClassName Win32_PerfFormattedData_PerfOS_Processor|
 Where-Object Name -eq '_Total'
 Get-CimInstance
 -ClassName Win32_PerfFormattedData_PerfOS_Processor |
 Select-Object -Property Name, PercentProcessortime

	Get Memory counter samples from a remote system:

 Get-CimInstance -ClassName Win32_PerfFormattedData_PerfOS_Memory
 -ComputerName DC1

 How it works...

In this recipe, you use Get-CimClass to discover WMI performance classes within the Root/CimV2 namespace. You also use the Get-CimInstance cmdlet to retrieve performance information.

In step 1, you use the Get-CimClass to find the performance counter classes implemented on your system. You look at the general performance classes, then the formatted and raw classes as you discover the total number of performance classes and the number that are either raw or formatted (cooked). For the performance counters supported in WMI, there are two classes for each counter: a raw class and a cooked class. The former returns raw counter values and the latter returns cooked counter values as shown:

In step 2, you look at some of the most relevant WMI performance classes, those related to the OS performance and those related to the disk. These are just a few of the many performance classes in WMI, and looks like:

In step 3, you retrieve memory related performance counters. There are a large number of properties returned, some of which may be helpful while others less so. Regarding the Memory counter set, the AvailableBytes, CommittedBytes and PagesperSecond are ones on which need to focus. Here's the output:

In the case of memory samples, many of the measurements are in bytes. You can always get one of the properties, for example, CommittedBytes, and divide it by 1 GB (a neat feature of PowerShell) to convert the value into megabytes. You can even format the value to remove some of the digits. You could get the value of CommittedBytes into a variable (for example, $CB) and the expression: ($CB/1Gb)ToString('n2') turns committed bytes into 1.54 gigabytes.

In step 4, you get the CPU related performance counters. The first statement gets the full set of counter information for the _Total occurrence. The second returns the CPU utilization both for the total and for each of the CPUs, it is shown as follows:

In the last step in this recipe, you retrieve CPU counters from a remote machine, DC1. Using Get-CimInstance leverages WSMan to communicate with the remote machine. If you needed to, you could create a CIM session over DCOM and invoke the cmdlet over the CIM session. As WinRM is much more firewall friendly, this should not be necessary. The output of the Memory class looks identical to the output returned from a local CIM instance as follows:

 There's more...

In this recipe, you discovered how to find the WMI performance classes as well as looking at a few of the classes. WMI is huge and contains a large number of classes. You could usefully spend time looking at the various classes provided. There is a tremendous amount of information available from both WMI and from Get-Counter, which are both build on the PLA platform.

With so many classes, it's easy to get overwhelmed and spend inordinate amounts of time looking at counters which yield little useful information. With performance management, you need to work out when you have adequate information to help resolve any performance issues.

If you are going to be working a lot with WMI to manage performance information, you could consider using type and display XML to customize the objects to suit your needs. You could add alias properties to provide shorter name aliases (for example, adding a property CB as an alias to CommittedBytes. You could also add format XML to improve the default output of values from the various classes. The details of type and format XML are outside the scope of this book, but there are plenty of references on the internet that you can leverage.

 Configuring and using Data Collector Sets

The first two recipes in this chapter used different techniques (Get-Counter and WMI) to retrieve specific counters and counter sets. As you seen, getting a large number of counter values for detailed analysis can be very slow with these mechanisms. These techniques are ideal for retrieving one or two bits of information (CPU utilization for example, or pages/second). If you want to get a larger number of statistics (for example, all of the networking statistics including TCP, UDP, IP, and ICMP) the techniques do not scale well.

A better approach to gathering large number of counters is to use the Data Collector Sets and have Windows do the work for you. To do this, you first create and configure a collector set. When you start the set, Windows starts collecting the data you have configured the collector set to return. Finally, when the collection has been completed, you use Performance Monitor to view the results.

This approach is very much easier. You just define the collector sets, create a schedule telling Windows when to collect the data and let Windows do the rest. You could easily deploy counter sets to all your key servers. Once deployed, you use them to help resolve performance issues. With the data collection process deployed, you improve your ability to respond to most of the performance issues.

 Getting ready

This recipe runs on SRV1. As with all recipes in this book, feel free to use different servers to test this recipe.

 How to do it...

	Create and populate a new performance data collector:

 $Name = 'SRV1 Collector Set'
 $SRV1CS = New-Object -COMObject PLA.DataCollectorSet
 $SRV1CS.DisplayName = $Name
 $SRV1CS.Duration = 12*3600 # 12 hours - 19:00
 $SRV1CS.SubdirectoryFormat = 1
 $SRV1CS.SubdirectoryFormatPattern = 'yyyy\-MM'
 $SRV1CS.RootPath = Join-Path -Path "$Env:SystemDrive" `
 -Childpath "\PerfLogs\Admin\$Name"
 $SRV1Collector = $SRV1CS.DataCollectors.CreateDataCollector(0)
 $SRV1Collector.FileName = "$Name_"
 $SRV1Collector.FileNameFormat = 3
 $SRV1Collector.FileNameFormatPattern = "yyyy\-MM\-dd"
 $SRV1Collector.SampleInterval = 15
 $SRV1Collector.LogFileFormat = 3 # BLG format
 $SRV1Collector.LogAppend = $true

	Define counters of interest:

 $Counters = @(
 '\Memory\Pages/sec',
 '\Memory\Available MBytes',
 '\Processor(_Total)\% Processor Time',
 '\PhysicalDisk(_Total)\% Disk Time',
 '\PhysicalDisk(_Total)\Disk Transfers/sec' ,
 '\PhysicalDisk(_Total)\Avg. Disk Sec/Read',
 '\PhysicalDisk(_Total)\Avg. Disk Sec/Write',
 '\PhysicalDisk(_Total)\Avg. Disk Queue Length'
)

	Add the counters to the collector:

 $SRV1Collector.PerformanceCounters = $Counters

	Create a schedule—start tomorrow morning at 07:00:

 $StartDate = Get-Date -Day $((Get-Date).Day+1) `
 -Hour 7 -Minute 0 -Second 0
 $Schedule = $SRV1CS.Schedules.CreateSchedule()
 $Schedule.Days = 127
 $Schedule.StartDate = $StartDate
 $Schedule.StartTime = $StartDate

	Create, add, and start the collector set:

 Try
 {
 $SRV1CS.Schedules.Add($Schedule)
 $SRV1CS.DataCollectors.Add($SRV1Collector)
 $SRV1CS.Commit("$Name" , $null , 0x0003) | Out-Null
 $SRV1CS.Start($false)
 }
 Catch [Exception]
 {
 Write-Host "Exception Caught: " $_.Exception
 -ForegroundColor Red
 return
 }

	Once you have created the collector set, you may want to totally remove it, you can do so as follows:

 $DCStRemote = New-Object -COMObject PLA.DataCollectorSet
 $Name = 'SRV1 Collector Set'
 $DCstRemote.Query($Name,'LocalHost')
 $DCstRemote.Stop($true)
 $DCstRemote.Delete()

	If you have not removed the collector set and it's stopped, you can easily restart it:

 $DCStRemote = New-Object -COMObject PLA.DataCollectorSet
 $Name = 'SRV1 Collector Set'
 $DCstRemote.Query($Name,'LocalHost')
 $DCstRemote.Start($true)

 How it works...

This recipe produces no output as you configure the collector set. In step 1, you begin by creating the COM object PLA.DataCollectorSet. You then configure the display name, the collection period, and details of where to store the performance data that the data collection process collects. Then you create the data collector object and configure the details of the output files generated by the data collection process.

With step 1, you set the $SRV1Collector object's LogFileFormat property to 3. This file format value specified an output file type of binary log (.blg). The advantage of this format is that you can use it with Perfmon to graph the collected output. You have other options, including:

	Tab separated .tsv file

	Comma separated .csv file

In step 2, you create an array of the names of the counters for which you want Windows to collect counter samples. The collector set collects performance information, so the counter paths you use do not need the machine name. The counter paths you specify here were the ones you discover with Get-Cmdlet -List.

In step 3, you assign these counters to the data collector set. In the recipe, you used a simple code-generated array of counter names. You could have stored the desired counters in a text file (accessed by Get-Content).

In step 4, you create a schedule when Windows performs the requested data collection. In this case, it starts at 07:00, and collects data for 127 days.

Finally, in step 5, you add the schedule to the job, add the new data collector to the OS, and start the collection process. The performance data collection set is scheduled to run every day. Starting it means Windows starts the collection process immediately and does not wait until the next morning. After running this step, you can utilize the data collected.

Using the .blg format, as this recipe does, once you stop the data collector, you can see the results in Perfmon as follows:

Step 6 shows the actions that you need to take to remove this data collector. Note that you need to stop the collector, if it's active, before removing it. If the collection is not currently active, the STOP method will generate an error message, but the code does remove the collector.

In step 7, you start a collector by creating the COM object, then querying for the appropriate data collection set and once you find it, you can start it as shown.

 There's more...

This recipe makes use of COM and a COM object (PLA.XXX). As a result, there is rather less output to look at—as you run the recipe, you notice there is no output to the screen. You can use your discovery skills to examine the COM objects.

The performance collection process makes use, under the covers, of an XML to describe the monitoring you wish to carry out. Fortunately, you do not have to edit the XML since the statements in this recipe do what is necessary. You can take a look at the XML as you run the steps in this recipe if you are interested.

There are different types of output files that you can configure, then you create a data collector set. This recipe used the default format of binary log (the files have an extension .blg). You can use the tab and comma separated value file formats, but if you do, those are not directly usable by Perfmon as shown in this recipe. TSV files are, on the other hand, useful as we demonstrate later in this chapter.

 Reporting on performance data

In the first three recipes in this chapter, you have seen different ways to collect performance information. In this recipe, you create a report on this gathered performance information based on the CSV files output by the data collection process.

 Getting ready

This recipe was written to use SRV1. As with any recipe, you can use any server in your infrastructure, but you would need to adjust the details of all steps to reflect the changes you are making. This recipe also used CSV files, as created by the PLA infrastructure. As noted earlier, it is simple and straightforward to adjust the counter output file to be CSV.

Use the recipe Configuring and using Data Collector Sets, change the counter output file to CSV and generate CSV output in the folder C:\PerfLogs\ADMIN.

 How to do it...

	Import the performance counters:

 $Folder = 'C:\PerfLogs\Admin'
 $File = Get-ChildItem -Path $Folder*.csv -Recurse

	Import the performance counters:

 $Counters = Import-Csv -Path $File.FullName

	Fix the issue with the first row in the counters:

 $Counters[0] = $counters[1]

	Next you calculate an overall average, minimum and maximum CPU times:

 $CN = '\\SRV1\Processor(_Total)\% Processor Time'
 $HT = @{
 Name = 'CPU'
 Expression = {[system.double] $_.$cn}
 }
 $Stats = $counters |
 Select-Object -Property *,$ht |
 Measure-Object -Property CPU `
 -Average -Minimum -Maximum

	Add the 95th percent value of CPU:

 $CN = '\\srv1\Processor(_Total)\% Processor Time'
 $Row = [int]($Counters.Count * .95)
 $Cpu = ($counters.$CN | Sort-Object)
 $Cpu95 = $CPU[$Row]
 Add-Member -InputObject $stats -Name CPU95 `
 -MemberType NoteProperty -Value $cpu95

	Combine the results into a single report:

 $Stats.Cpu95 = $Stats.Cpu95.tostring('n2')
 $Stats.Average = $Stats.Average.ToString('n2')
 $Stats.Maximum = $Stats.Maximum.ToString('n2')
 $Stats.Minimum = $Stats.Minimum.ToString('n2')
 $Stats | Format-Table -Property Property,Count, Maximum,
 Cpu95, Minimum

 How it works...

In step 1, you get the details of the CSV file that contained the performance data with which you create a simple report. You created this CSV file based on the configure and use Data Collector Sets recipe, with the file type set to comma separated value, indicated by setting the file type to 0 (zero).

In step 2, you import the CSV files into the $Counters variable (which becomes an array). You may need to adjust step 1 and step 2 to use different folder names and to cater for having multiple results files.

A feature of using CSV files as we do here is that the first row in the returned counter samples is not valid. The feature is that some values are not returned correctly, in particular, the first row that was returned. This issue has been present in Windows for some considerable time but is simple to work around. As you can see in step 3, you just copy the second row of the results over the first. Without this, the later steps may not work due to missing data.

With step 4, you calculate the average, minimum, and maximum CPU usage and then store that information in the $Stats variable.

In step 5, you work out an approximation of the 95th percentile CPU time. This is a good number to track, as it is a measure of how high, in general, the CPU load is on the computers that you are monitoring. It eliminates the very occasional, but high CPU using events. You calculate this by first counting the total number of rows returned. Then you get an index value which you calculate as 0.95 times the number of rows. You then use this index to get that row from a list of sorted CPU values. So with 100 rows of data returned, this calculation would return row 95. Assuming you have an adequate number of samples, this approach gets you a row that is a good approximation of the 95th percentile CPU time measurement. At the end of this step, you add the value as a note property (CPU95).

In the last step, step 6, you re-format three counters to display only CPU usage to just two decimal points, then you output this as a nice table, which looks like this:

 There's more...

In this recipe, we reported on just one counter, the total CPU time on a system. You can always change the data collection process to include more counters (for example, networking counters, storage counters, and so on). Then, you can adjust this recipe to report on these additional values. And of course, you can expand the basics of this recipe to report on multiple systems in one report. By doing both of these, you can generate useful performance reports that can provide input for capacity planning.

 Generating performance monitoring graph

In the previous recipe, you created a simple text based report which you could expand to cover not just the CPU on the SRV1 server, but more counters across multiple machines. But they would be pure text. You could use performance monitor and the binary log files to create Perfmon graphs you could cut/paste into a report.

In this recipe, you use the data generated using the data collector mechanism to draw a graph using classes from the Windows.Forms.DataVisualization namespace.

 Getting ready

Like the Reporting on performance data recipe, this recipe uses CSV files from the data collection process noted earlier.

 How to do it...

	Load the System.Windows.Forms and System.Windows.Forms.DataVisulization assemblies:

 Add-Type -AssemblyName System.Windows.Forms
 Add-Type -AssemblyName System.Windows.Forms.DataVisualization

	Import the CSV data from earlier, and fix row 0:

 $CSVFile = Get-childitem -Path C:\PerfLogs\Admin*.csv `
 -Recurse
 $Counters = Import-Csv $CSVFile
 $Counters[0] = $Counters[1]

	Create a chart object:

 $CpuChart = New-Object -TypeName `
 System.Windows.Forms.DataVisualization.Charting.Chart

	Define the chart dimensions:

 $CpuChart.Width = 600
 $CpuChart.Height = 400
 $CpuChart.Titles.Add('SRV1 CPU Utilization') | Out-Null

	Create and define the chart area:

 $ChartArea = New-Object -TypeName `
 System.Windows.Forms.DataVisualization.Charting.ChartArea
 $ChartArea.Name = 'SRV1 CPU Usage'
 $ChartArea.AxisY.Title = '% CPU Usage'
 $CpuChart.ChartAreas.Add($ChartArea)

	Identify the date/time column to get its name:

 $Name = ($Counters[0] | Get-Member |
 Where-Object MemberType -EQ 'NoteProperty')[0].Name

	Add the data points to the chart:

 $CpuChart.Series.Add('CPUPerc') | Out-Null
 $CpuChart.Series["CPUPerc"].ChartType = 'Line'
 $Counters | ForEach-Object{
 $CPUChart.Series["CpuPerc"].Points.AddXY($_.$Name,
 $_."\\SRV1\Processor(_Total)\% Processor Time") |
 Out-Null
 }

	Save and display the chart image using MSPaint:

 $CPUChart.SaveImage('C:\Perflogs\SRV1_CpuUtil.Png','png')
 MSPaint.Exe C:\Perflogs\SRV1\CpuUtil.png

 How it works...

This recipe utilizes features in the .NET Framework's System.Forms.DataVisualization namespace. PowerShell does not load this namespace by default. For this reason, in step 1, you explicitly add the namespace, and its parent namespace, System.Windows.Forms.

In step 2, you use Import-CSV to import the data file. You may need to adjust this step depending on what collector set output files you are using.

In step 3, you create a new chart object using New-Object. As there are no native cmdlets to assist in creating a chart, you need to dip down and utilize the .NET objects directly. Our starting point is the chart.

In step 4, you set the chart's height and width, and use the Chart's Add method to add the title. This method calls outputs the charts Titles object which is not of much use in production so just pipe it to Out-Null. As you work with this recipe, test this step with full output to gain a deeper understanding of the objects involved in data charting.

In step 5, you create the chart area. A chart area is a control that is added to a chart and contains, in this case, for example, the CPU graph for SRV1.

When you turn a counter set captured by PLA into a CSV, PowerShell converts each counter sample into a custom object, where the first field is the time/date of the sample. So in step 6, you work out that the name of that first note property.

In step 7, you add a new data series to the chart and define it as a line graph. Then you loop through each counter and add an XY point onto the graph (the current time and the CPU use). Once all the counter values are read and graphed, in step 8, you save the chart to a Portable Network Graphic (PNG) file and view it using Paint. The resulting graph looks like this:

 There's more...

This recipe showed you how to create a simple report graphing one counter, CPU utilization, across several hours of monitoring. You could add a second series, for example, memory pages per second, and so on. The result could be one or more customized graphs that are similar to what you see in Performance Monitor. You can use this recipe to automate the creation of the counter samples and creation of customized graphs. You could even create a scheduled task that created the graph or graphs, then email the resulting graph or graphs.

 Creating a system diagnostics report

The PLA subsystem that you have been working with in this chapter has an additional kind of report that the PLA and PowerShell can generate, a System Diagnostic report. This report is simple to create and makes use of some of the approaches used in this chapter.

 Getting ready

You run this recipe on server SRV1.

 How to do it...

	Start the data collector on the local system:

 $PerfReportName="System\System Diagnostics"
 $DataSet = New-Object -ComObject Pla.DataCollectorSet
 $DataSet.Query($PerfReportName,$null)
 $DataSet.Start($true)

	Wait for the data collector to finish:

 Start-Sleep -Seconds $Dataset.Duration

	Get the report and view it:

 $Dataset.Query($PerfReportName,$null)
 $PerfReport = $Dataset.LatestOutputLocation + "\Report.html"
 & $PerfReport

 How it works...

In step 1, you create a PLA.DataCollectorSet object and use it to query then start the Systems Diagnostics report. This report comes built into Windows, but you update it (or create customized reports if you so desire). This step is a part of the patterns that you adopt when using PLA.DataCollectorSet objects. You instantiate the object, then use the Query method to return details of this report.

In step 2, you sleep for the length of time it should take Windows to create the report, which by default is 600 seconds (10 minutes). Depending on how you are adapting this recipe, you may wish to update the time value.

Finally, in step 3, you re-query the report, which should have finished. After the query, you retrieve the filename that PLA used to store the report. You then execute this report (Report.HTML) to view the performance report. The report looks like this:

 There's more...

In step 3, you just execute the report which brings the HTML file up into your browser. As an alternative to viewing it, you could turn this recipe into a script and run the script using a scheduled task. The scheduled task script could then create the report and mail it to you. You could also improve on this, for example, storing the reports to a central location and just email the location to other IT admins. Or possibly only email the report if there is an issue. Alternatively, you could send an everything is just fine email and let the mail recipients know where they can get the report should they need or want to examine it in more detail.

 Troubleshooting Windows Server 2016

In this chapter, we cover the following recipes:

	Checking network connectivity

	Using troubleshooting packs

	Using best practice analyzer

	Managing Windows event logs

	Forwarding event logs

 Introduction

Troubleshooting is the art and science of discovering the cause of some problem in your organization's computing estate and providing a solution that overcomes the problem. Troubleshooting encompasses a variety of tasks.

One common issue to begin this chapter with is troubleshooting network connectivity. With applications and services increasingly being networked and with the proliferation of wireless devices, network connectivity can be a problem in many organizations. In the first recipe, you look at some commands that can help you to troubleshoot this area.

Microsoft has built a troubleshooting framework into both Windows 10 and into Server 2016. These troubleshoots enable common problems to be resolved by an IT pro just running the troubleshooter. And for the really adventurous ones, you could even build your own troubleshooter, but such details are outside the scope of this book.

Troubleshooting is not just what you do when an issue arises. It also involves being proactive to avoid small issues becoming major problems. Often it also means ensuring that your systems and services are setup by way of accepted best practice.

The Exchange and Office Communications Server (now known as Skype For Business) teams both produced best practice analyzer (BPA) tools. These were applications that examined your Exchange or OCS (Skype for Business) environment and showed you places where you have not configured your application base on best practice. With Windows Server, many of the Windows features have their own BPA tools built around a common framework and are powered by PowerShell. The BPA tools can help you to ensure that the features installed on your Windows servers are operating according to best practice.

A great feature of Windows and Windows applications, roles, and services is the sheer amount of information logged. Windows NT (which is the basis for both Windows 10 and Windows Server 2016) initially came with a number of base event logs. In Windows Vista, Microsoft extended the amount of logging with the addition of application and service logs. These logs contain a wealth of additional information and along with the base logs can be invaluable in terms of both troubleshooting after the fact, and being proactive.

It is certainly the case that getting information out of these logs is a bit like looking for a needle in a hay stack. PowerShell has some great features for helping you to find the information you need quickly and easily. Learning how to get event log information from the logs takes time. To simplify the managing events across multiple hosts, you can also forward event log entries to a central host.

 Checking network connectivity

One of the first troubleshooting tasks is checking the network connectivity between a client (or server) computer and another server computer. The client and server computers can be on the same physical subnet, or thousands of miles away and separated by routers. In order to provide a successful service to a client, your infrastructure needs to enable clients to connect to.

Traditionally, you might have used tools including Ping, Tracert, and Pathping. You can continue to use these Windows console applications within PowerShell—they work the way they have always worked. You may find even more useful, two newer cmdlets available with Windows Server 2016 which have additional useful features. The cmdlets also return output as objects which makes it easier to utilize the cmdlets on a PowerShell script.

This recipe uses one console command (Ping.exe, or just Ping in PowerShell) and two cmdlets, Test-Connection and Test-NetConnection. The Test-Connection is an older cmdlet and part of the Microsoft.PowerShell.Management module, while Test-NetConnection is a bit newer and is contained in the NetTCPIP module.

 Getting ready

In this recipe, you check for connectivity from a server, SRV1, to its domain controllers (DC1 and DC2). The two DCs are domain controllers in the Reskit.Org domain, and SRV1 is a domain joined server. All the systems are running Server 2016.

 How to do it...

Here is how you check the basic network connectivity:

	Use Ping to test connectivity from CL1 to DC1:

 Ping DC1

	Use Test-NetConnnection to test connection to DC1:

 Test-Connection -ComputerName DC1

	Test with a simple true/false return:

 Test-Connection -ComputerName DC1 -Quiet

	Test multiple systems at once:

 Test-Connection -ComputerName 'DC1','DC2','SRV1' -Count 1

	Test connectivity to DC1 for SMB traffic:

 Test-NetConnection -ComputerName DC1 -CommonTCPPort SMB

	Get a detailed connectivity check, using DC1 with HTTP:

 Test-NetConnection -ComputerName DC1 -CommonTCPPort HTTP `
 -InformationLevel Detailed

	Check connectivity to a port (LDAP on DC1):

 Test-NetConnection -ComputerName DC1 -Port 445

	Check connectivity to a system that is up and running but for a port that does not exist or is not open:

 Test-NetConnection -ComputerName DC1 -PORT 9999

	Finally, test for a system that does not exist:

 Test-NetConnection -ComputerName DC99 -PORT 9999

 How it works...

In step 1, you use the familiar Windows console command Ping (Ping.exe), Windows console command to check connectivity from CL1 to DC1. The Ping command sends four Internet Control Message Protocol (ICMP) echo request messages to the remote server, DC1 which should respond. Assuming connectivity is possible and that firewalls are not getting in the way, you should get four responses that show how long the Ping took and how many hops were involved. The output looks like this:

In step 2, you use the Test-Connection cmdlet to ping DC1 just using a cmdlet. The cmdlet itself issues the necessary ICMP messages but creates a nice object to return the results. The output looks like this:

A useful feature of Test-Connection is the -Quiet parameter. This tells the cmdlet to test the connection but only return a Boolean response—true if the cmdlet could connect to the remote system or false if the connection was not successful. You see the results in step 3 like this:

Another nice feature of Test-Connection is it allows you to test multiple connections in a single call to the cmdlet. The -ComputerName property accepts either a single computer name as you seen in the previous step, or as you see in step 4, multiple computers, with output that looks like this:

In step 5, you use the Test-NetConnection to not only test simple connectivity, but to test that a particular application is active and accepting network connections via some port. In this case, the port is a well known one (SMB or port 445).

The output of this step looks like this:

In step 6, you use Test-NetConection along with its -Detailed switch to get a bit more information about the tested connection. In this step which you run on SRV1, you test the connection from SRV1 to the HTTP port (port 80) on DC1. Assuming you have DC1 up and running and you have the Web-Server feature loaded, you see an output like this:

In step 7, you check a port using the port number. In this case, you check for SMB connectivity to DC1, with an output like this:

In step 8, you see the results of a port that does not exist on DC1 (port 999), with output like this:

In step 9, you see the results of testing for a connection to a host that is online, but using a port that is not open on the host. Output looks like this:

 There's more...

In step 1, you use an older tool, Ping. In the rest of the recipe, you use two cmdlets which have some features that are not available with Ping. One key feature is that both cmdlet return structured objects and not raw string blobs.

With step 4, you see the ability of Test-Connection to test multiple systems at once. This may have advantages if you are testing a large number of systems as part of a regular report.

In step 5, you tested for connectivity from SRV1 to DC1 over SMB, using port 445. In the earlier versions of windows, SMB transport used NetBIOS over TCP and made use of Ports 137, 138, and 139. The cmdlet checks over port 445 for SMB.

In step 8 and step 9, you use the Test-NetConnection cmdlet to observe the results of a port (on a working server) not available and on a non-working server. In step 8, you see the impact of testing a working server with a particular port not open, and in step 9 a computer that is not online. Because a nice object is returned from the two Test- cmdlets, you can easily issue the cmdlets and then test the result whereas with Ping, you could check the results but it would involve string parsing. All in all, Ping is better and faster than the command line, but less easy to manipulate programmatically.

 Using troubleshooting packs

Windows includes a number of troubleshooting packs. These are tools that you can use to diagnose and resolve common errors.

 Getting ready

You run this recipe on SRV1, a domain joined server in the Reskit.Org domain.

 How to do it...

In this recipe, you see how to use the troubleshooting packs:

	Get troubleshooting packs:

 $TSPackfolders = Get-ChildItem `
 -Path C:\Windows\diagnostics\system -Directory
 $TSPacks = Foreach ($TSPack in $TSPackfolders) {
 Get-TroubleshootingPack -Path $TSPack.FullName}

	Display the packs:

 $TSPacks | Format-Table -Property Name, Version,
 MinimumVersion, Description `
 -Wrap -Autosize

	Get a troubleshooting pack for Windows Update:

 $TsPack = $TSPacks | Where-Object `
 id -eq 'WindowsUpdateDiagnostic'

	Look at the problems this troubleshooting pack addresses:

 $TSPack.RootCauses

	Look at the solutions to these issues:

 $TSPack.RootCauses.Resolutions

	Run this troubleshooting pack (answering questions from the command line):

 $TsPack | Invoke-TroubleshootingPack

	Use the Get-TroubleshootingPack cmdlet to create an AnswerFile:

 Get-TroubleshootingPack -Path $TSPack.path `
 -AnswerFile c:\Answers.xml

	Display the AnswerFile:

 Get-Content -Path C:\Answers.xml

	Run WU pack using AnswerFile:

 $TsPack | Invoke-TroubleshootingPack `
 -AnswerFile C:\Answers.xml `
 -Unattend

 How it works...

In step 1, you get a list of the troubleshooting packs available on SRV1. and store that in the $TSPacks variable. There is no output from this step.

In step 2, you display the $TSPacks variable to display the troubleshooting packs available, with output like this:

In step 3, you search the list of troubleshooting packs available on SRV1 and select the Windows Update Diagnostic troubleshooting pack, which produces no output.

With step 4 and step 5, you examine the root cause conditions the troubleshooting pack checks for and the details of what the troubleshooting pack does to resolve each of these root cause conditions. The first issue involves the default Windows Update data locations are corrupt or invalid. One solution is to repair the default locations by changing these locations back to Windows default settings.

The list of root cause issues, which you produced in step 4 looks like this:

The solutions provided by the troubleshooting pack to resolve these issues, which you created in step 5, looks like this:

In step 6, you run the Windows Update Diagnostic troubleshooting pack interactively. The initial output looks like this:

To just check for a single issue, say the first one to repair a Windows Update Database Corruption, just enter 1 and return. When you do this, you first find the results, like this:

Finally enter X to complete the troubleshooter which produces no additional output.

In step 7, you use the Get-Troubleshootingpack to create an AnswerFile. The cmdlet is meant to ask for the same answers to the same questions you saw in step 6. Instead of performing the resolution, the cmdlet then creates an AnswerFile.

In step 8, you view the output from step 7, which looks like this:

Finally, in step 9, you run this troubleshooter using the AnswerFile in an unattended mode. There is no output from this step.

 There's more...

With Get-TroubleshootingPack, the cmdlet relies on you entering a file system path. The cmdlet does not know the default address. This cmdlet looks in the path supplied and returns a DiagPack object. You then pass that object to Invoke-TroubleshootingPack to run the pack.

In step 7 through step 9, the recipe creates an AnswerFile then uses it. However, at the time of writing, some of the troubleshooting pack do not produce a correct AnswerFiles. When you generate the AnswerFile, you may be offered different questions, and the resultant AnswerFile may not be totally complete. This is a known issue and awaits a fix. For now, at least, the best idea is to run the troubleshooting pack interactively.

 Use best practice analyzer

In IT, the term best practices refers to guidelines setting out the best way to configure a server or application as defined in subject matter experts (such as the application's development and support teams). Some best practice recommendations may not apply or be relevant. Following best practice can both solve existing issues and avoid future ones, but a bit of common sense is needed to ensure you are following the advice that is relevant for you and your organization.

A best practice model is a set of specific guidelines. A BPA is an automated tool that analyzes your infrastructure and points out areas where it the environment is not compliant with the best practice model.

Windows provides a built in BPA framework, complete with PowerShell support for managing the BPA process. Windows and applications come with a number of BPA models. The PowerShell cmdlets let you find the BPA models, invoke them, and then view the results.

Since not all BPA model guidelines are relevant for all situations, the BPA feature also lets you ignore specific recommendations that are not relevant for you.

 Getting ready

This recipe runs on server SRV1, an application server you use in several of the recipes in this book, plus the DC1 domain controller.

 How to do it...

	Get all BPA models on SRV1:

 Get-BpaModel | Format-Table -Property Name, Id

	Invoke BPA model for file services:

 Invoke-BpaModel -ModelId Microsoft/Windows/FileServices

	Get BPA results for this scan:

 $Results = Get-BpaResult `
 -ModelId Microsoft/Windows/FileServices

	Display how many tests/results in the BPA model:

 $Results.count

	Discover how many errors were found:

 ($Results | Where-Object Severity -eq 'Error').count

	Discover how many warnings were found:

 $Warnings = $Results | Where-Object Severity -eq 'Warning'
 $Warnings.count

	Examine the first three warnings:

 $Warnings | Select-Object -First 3 |
 Format-List -Property Category, Problem, Impact, Resolution

	Use BPA remotely—check what models exist on DC1:

 Invoke-Command -ComputerName DC1 -ScriptBlock {Get-BpaModel} |
 Format-Table -Property Name, Id

	Run BPA Analyzer for AD on DC1:

 $SB = {Invoke-BpaModel -ModelId `
 Microsoft/Windows/DirectoryServices}
 Invoke-Command -ComputerName DC1 -ScriptBlock $SB

	Get the BPA results for this scan from DC1:

 $SB = {Get-BpaResult -ModelId `
 Microsoft/Windows/DirectoryServices}
 $RRESULTS = Invoke-Command -ComputerName DC1 -ScriptBlock $SB

	How many checks were made and results found:

 $RResults.count
 $RResults | Group-Object -Property SEVERITY |
 Format-Table -Property Name, Count

	Look at an error:

 $RResults | Where-Object Severity -EQ 'Error' |
 Format-List -Property Category,Problem,Impact,Resolution

 How it works...

In step 1, you retrieve and display the BPA models on SRV1 with output that looks like this:

In step 2, you invoke a specific model, the BPA model for file services. The output from this step looks like this:

In step 3, you get the BPA results for the scan that you ran in step 2, and you store this in the $Results variable. There is no output from this step.

In step 4, you display the number or checks carried out and the number of results returned, with output like this:

With step 6, you view how many errors were found—the output looks like this:

There were eleven warnings returned as you can see in the previous screen capture. In step 7, you display the first three warnings, with output like this:

In step 8 through step 12, you look at the BPA models then run the DirectoryServices BPA model on your domain controller, DC1, remotely. In step 8, you discover the models that exist on DC1 and the output from this step looks like this:

In step 9, you run DirectoryServices BPA model remotely which creates output that looks like this:

In step 10, you retrieve the results and store them in the variable $RResults for later use. There is no output from this step.

In step 11, you look at the number of results and you show how many of each type of result was returned from the BPA model invocation. The output looks like this:

Finally, in step 12, you look at one specific error returned with output that looks like this:

 There's more...

In step 1, you display the BPA models which exist on SRV1. And in step 8, you view, remotely, the BPA models on DC1. In both cases, you may see different models available depending on which features you have added to each machine. The domain controller DC1 has a BPA model for AD, while SRV1 does not.

In step 2 through step 7, you are carrying out a BPA scan against the file server feature on SRV1. In this model, there are 116 individual checks carried out by the model. Running this model on SRV1, you can see that there were no errors and eleven warnings. The first three warnings (shown in step 7) show some of the issues the BPA model found. Warning 1 shows that you can improve the performance of the file server feature by eliminating short name support. The second warning suggests setting Srv.sys to start on demand while the final warning suggests a configuration change that can lead to improved performance.

Running the AD BPA model on DC1 has 43 configuration checks which result in one error and 7 warnings. The error, which you can see in step 12, is caused by the forest root DC, which is DC1, it has no external time source. Since DC1 is the time master for the Reskit.org domain, you need to ensure the time on DC1 is synchronized with an external source otherwise domain joined hosts could experience time drift that could lead to other issues. The BPA model results set out clearly the problem, it's impact and a good and focused solution.

 Managing event logs

Windows computers maintain a set of event logs that document events that occur on a given machine. Any time an event occurs, the application or service can log events which can then be used to help in the debugging process.

In Windows, there are two types of event logs: Windows logs and application and services logs. Windows logs began with Windows NT 3.1 and continue in Windows Server 2016 and are important components in troubleshooting and system monitoring.

Windows Vista added a new category of logs, application and services logs. These logs contain events that are within a single application, service, or other Windows component. Windows comes by default with a set of application and service logs—adding components such as new Windows features or roles often results in additional application and service logs.

These logs give you a great picture of what your system is actually doing. Additionally, you can also add new event logs and enable scripts to log events which occur while the script is running.

PowerShell provides you with several useful cmdlets to help you comb the event log looking for key events. The Get-EventLog enables you to get details of the logs that exist as well as retrieving log events from the Windows logs. With Get-WinEvent, you can examine both the classic Windows logs and the new application and services logs. You use both these cmdlets in this recipe.

 Getting ready

This recipe uses two Windows Server 2016 systems. You run the recipe on a domain attached server, SRV1 and the Reskit.Org domain's domain controller (DC1). SRV1 is used in a number of recipes in this book as is the DC1 domain controller. You run this recipe on SRV1.

Depending on which recipes you have attempted using SRV1 and DC1, you may see different results to those shown in this recipe. You may see more or less event logs and more or less events.

 How to do it...

	Get any Windows event logs which exist on SRV1:

 Get-EventLog -LogName *

	Get Windows event logs remotely from DC1:

 Get-EventLog -LogName * -ComputerName DC1

	Clear application log on DC1:

 Clear-EventLog -LogName Application -ComputerName DC1

	Examine the types of events on SRV1:

 Get-EventLog -LogName application |
 Group-Object -property EntryType |
 Format-Table -Property Name, Count

	Examine which area created the events in the Windows System log:

 Get-EventLog -LogName System |
 Group-Object -Property Source |
 Sort-Object -Property Count -Descending |
 Select-Object -First 10 |
 Format-Table -Property name, count

	Examine all local event logs using Get-WinEvent:

 $LocEventLogs = Get-WinEvent -ListLog *
 $LocEventLogs.count
 $LocEventLogs |
 Sort-Object -Property RecordCount -Descending |
 Select-Object -First 10

	Examine all of the event logs on DC1:

 $RemEventLogs = Get-WinEvent -ListLog * -ComputerName DC1
 $RemEventLogs.count
 $RemEventLogs |
 Sort-Object -Property RecordCount -Descending |
 Select-Object -First 10

	Look at Windows Update application and services log and discover which updates have been found and downloaded:

 $Updates = Get-WinEvent `
 -LogName 'Microsoft-Windows-WindowsUpdateClient/Operational' |
 Where-Object ID -EQ 41
 $out = Foreach ($Update in $Updates) {
 $ht = @{}
 $ht.Time = $Update.TimeCreated
 $ht.update = ($Update.Properties | Select -First 1).Value
 New-Object -TypeName PSObject -Property $HT }
 $out |
 Sort-Object -Property TimeCreated |
 Format-Table -Wrap

 How it works...

In step 1 which you run on SRV1, you view the Windows logs existing on SRV1 by executing the Get-EventLog cmdlet. Depending on which features and applications you have added to SRV1, you should see something looking like this:

In step 2, you retrieve the Windows events logs which exist on DC1, which looks like this:

In step 3, you clear a remote event log—in this case the application log on DC1. There is no output from this step.

In step 4, you examine the types of events in the application event log on SRV1. There are a large number of information type events, most of which you can usually simply ignore. With Windows Server 2016, some events have an entry type of 0, a value that is not documented. The output looks like this:

In step 5, you investigate the source of the events in the Windows System event log. For brevity, the recipe just examines the more common sources, with output that looks like this:

With step 6, you use Get-WinEvent to first get basic details of each of the existing logs (including both the classic Windows logs and the applications and services logs). Then, you display the total number of logs, as well as top 10 busiest event logs, with output like this:

In step 7, you repeat these commands to discover how many total event logs exist on DC1 and the busiest ten logs, with output like this:

Finally, in step, you investigate the event entries in the Windows Update Operational log. In particular, you look at the events with an event ID of 41—these events are logged whenever Windows Update discovers and downloads an update that is to be applied (once the update is complete). Depending on how you have SRV1 setup, you may see output for this step similar to the following:

 There's more...

In step 1 and step 2, you examine the Windows event logs that exist on two systems (SRV1 and DC1). As you can see, the logs available differ—on DC1, you see the Active Directory Web Services log which does not exist on SRV1.

In step 3, you clear the application log on DC1. As a best practice for event logs, you should only clear a log once you have copied the log elsewhere for safe keeping. Naturally, mileage varies on this point since the vast majority of event logs entries are not of very much use in day to day operations.

In step 4, you seen the different classifications of events, including one with a name of 0. In this case, the property containing the event log entry type is based on an enum, and this enum was not updated so PowerShell is unable to display the entry name for this event log entry type.

In step 6 and step 7, you examine the service and application logs that exist on SRV1. These steps demonstrate how additional features or applications can result in additional event logs.

Step 8 shows you how to dive into a specific event in a specific event log. In this case, you examine the Software Update service's operational log to discover events with an event ID of 41. In general, when retrieving information from your event logs, you need to know which log and which event ID to look for.

 Forward event logs to a central server

By default, every Windows computer in your organization keeps its own local event logs. You examined these logs in the Searching event logs for specific events recipe. The logs on SRV1, for example, are separate from the logs on DC1. In larger environments, analyzing event logs across large number of servers is complex. With 100 servers, you would need to run a script on each of those 100 servers, which could become quite complex. Having each server forward events to a central computer can simplify this task greatly.

Also consider what happens if a server is compromised. Hackers often clear event logs after doing naughty things on a hacked machine. This helps to cover the hacker's tracks. A best security practice is to get the event details sent to a central and hopefully more secure server as quickly as possible. With Windows, you can use using event forwarding to achieve this.

Forwarding event logs to a central server allows you to centralize your log file analysis and reporting and also to reduce the risk of a malign actor damaging a server but covering his tracks and hoping to avoid detection.

 Getting ready

In this recipe which you run on DC1, you forward failed logon events from SRV1 to the domain controller, DC1. This is a simple and convenient configuration for testing using private virtual machines. In production, you should consider forwarding to a separate host.

This recipe uses two hosts, DC1 (a domain controller in the reskit.org domain) and SRV1 (a domain joined server in the same domain). You run the recipe on DC1.

 How to do it...

This recipe shows you how to forward events.

	Configure event collection on each server—first on DC1 (locally) then remotely to SRV1:

 wecutil qc /quiet | Out-Null
 Invoke-Command -ComputerName SRV1 `
 -ScriptBlock {wecutil qc /quiet} | Out-Null

	Create the collector security group, add DC1:

 $ECGName='Event Collector Group'
 New-ADGroup -Name $ECGName -GroupScope Global `
 -Path 'OU=IT,DC=Reskit,DC=Org'
 Add-ADGroupMember -Identity $ECGName -Members'DC1$'

	Display membership of this new group:

 Get-ADGroupMember -Identity $ECGName

	Create a new GPO to configure event collection:

 $GPOName = 'Event Collection'
 $ECGName = 'Event Collector Group'
 $gpo = New-GPO -Name $GPOName
 $link = New-GPLink -Name $GPOName `
 -Target "DC=Reskit,DC=Org"
 $p1 = Set-GPPermission -Name $GPOName `
 -TargetName "$ECGName" `
 -TargetType Group `
 -PermissionLevel GpoApply
 $p2 = Set-GPPermission -Name $GPOName `
 -TargetName 'Authenticated Users' `
 -TargetType Group `
 -PermissionLevel None

	Set GPO permissions:

 Set-GPPermission -Name $GPOName `
 -TargetName 'Authenticated Users' `
 -TargetType Group `
 -PermissionLevel None

	Apply the settings to the new GPO object:

 $WinRMKey=
 'HKLM\Software\Policies\Microsoft\Windows\WinRM\Service'
 Set-GPRegistryValue -Name $GPOName -Key $WinRMKey `
 -ValueName 'AllowAutoConfig'
 -Type DWORD -Value 1 |
 Out-Null
 Set-GPRegistryValue -Name $GPOName -Key $WinRMKey
 -ValueName "IPv4Filter" -Type STRING `
 -Value "*" |
 Out-Null
 Set-GPRegistryValue -Name $GPOName -Key $WinRMKey `
 -ValueName "IPv6Filter" `
 -Type STRING -Value "*" |
 Out-Null

	Create XML for the subscription, and save it to a file:

 $xmlfile = @'
 <Subscription xmlns="http://schemas.microsoft.com/2006/03/
 windows/events/subscription">
 <SubscriptionId>FailedLogins</SubscriptionId>
 <SubscriptionType>SourceInitiated</SubscriptionType>
 <Description>Source Initiated Subscription</Description>
 <Enabled>true</Enabled>
 <Uri>http://schemas.microsoft.com/wbem/
 wsman/1/windows/EventLog</Uri>
 <ConfigurationMode>Custom</ConfigurationMode>
 <Delivery Mode="Push">
 <Batching>
 <MaxItems>1</MaxItems>
 <MaxLatencyTime>1000</MaxLatencyTime>
 </Batching>
 <PushSettings>
 <Heartbeat Interval="60000"/>
 </PushSettings>
 </Delivery>
 <Expires>2018-01-01T00:00:00.000Z</Expires>
 <Query>
 <![CDATA[
 <QueryList>
 <Query Path="Security">
 <Select>Event[System/EventID='4625']</Select>
 </Query>
 </QueryList>]]>
 </Query>
 <ReadExistingEvents>true</ReadExistingEvents>
 <TransportName>http</TransportName>
 <ContentFormat>RenderedText</ContentFormat>
 <Locale Language="en-US"/>
 <LogFile>ForwardedEvents</LogFile>
 <AllowedSourceNonDomainComputers>
 </AllowedSourceNonDomainComputers>
 <AllowedSourceDomainComputers>O:NSG:NSD:(A;;GA;;;DC)(A;;GA;;;NS)
 </AllowedSourceDomainComputers>
 </Subscription>
 '@
 $xmlfile | Out-File -FilePath C:\Event.xml

	Create a subscription on DC1 for this event:

 wecutil cs Event.xml

	Create the source security group:

 New-ADGroup -Name 'Event Source' -GroupScope Global
 Add-ADGroupMember -Identity "Event Source" -Members 'SRV1$'

	Create the GPO for the event source systems:

 New-GPO -Name 'Event Source'
 New-GPLink -Name 'Event Source' `
 -Target 'DC=Reskit,DC=Org'
 Set-GPPermission -Name 'Event Source' `
 -TargetName 'Event Source' `
 -TargetType Group `
 -PermissionLevel GpoApply
 Set-GPPermission -Name 'Event Source' `
 -TargetName 'Authenticated Users'
 -TargetType Group `
 -PermissionLevel None

	Apply the settings for the source GPO to point to DC1:

 $EventKey='HKLM\Software\Policies\Microsoft\
 Windows\EventLog\EventForwarding\SubscriptionManager'
 $TargetAddress=
 'Server=http://DC1.reskit.org:5985/wsman/SubscriptionManager/WEC'
 Set-GPRegistryValue -Name 'Event Source; -Key $EventKey `
 -ValueName '1' `
 -Type STRING `
 -Value $TargetAddress

	Restart SRV1:

 Restart-Computer -ComputerName SRV1 `
 -Wait -For PowerShell `
 -Force

	Once SRV1 has rebooted, attempt to login using incorrect credentials.

	View the result of invalid logins:

 $badlogins = Get-WinEvent -LogName ForwardedEvents
 Foreach ($badlogin in $badlogins)
 {
 $obj = [Ordered] @{}
 $obj.time = $badlogin.TimeCreated
 $obj.logon = ($badlogin |
 Select-Object -ExpandProperty properties).value |
 Select-Object -Skip 5 -First 1
 New-Object -TypeName PSobject -Property $obj
 }

 How it works...

In step 1, you enable the Windows event collector on both DC1 and SRV1. In step 2, You create a new global group, Event Collection, which defines the event collector computer—in this case DC1. There is no output from these two steps.

In step 3, you use the Get-ADGroupMember cmdlet to confirm the membership if the Event Collector global group. The output looks like this:

In step 4, you create a new GPO, Event Collection to configure event collection. There is no output from this step. With step 5, you set permissions on the GPO with output like this:

In step 6, you apply detailed settings on the Event Collection GPO which produces no output.

In step 7, you create the XML for the source initiated event collection and save it to file store. There is no output from this step. In step 8, you register the event collection details with Windows. There is also no output from this step.

In step 9, you create a new group to hold the computers which forward events (the systems acting as an event source). In this case you just specify SRV1 as an event source. There is no output from this step.

In step 10, you create a new GPO to configure the systems acting as an event source, in this case just SRV1. There is no output from this step.

In step 11 you specify details of the event source GPO with output like this:

In step 12, you reboot the machine, then in step 13 you attempt to logon using invalid credentials. Finally, in step 14, you use Get-WinEvent to retrieve the forwarded bad login events, then output the details of the bad logon, with output like this:

 There's more...

In many of the steps in this recipe, you pipe cmdlet to Out-Null to avoid extra output. This is a useful approach for production scripts—you may choose to remove the calls to Out-Null and view the output of some of the commands to gain more familiarity.

In this recipe, you created and configured two GPOs. You use the first GPO, Event Collection, to target the computer to be used for collecting events. This is DC1 for simplicity—but in production you would most likely setup a separate system to be the event collector. The second GPO, Event Source, is used to define the collection.

In step 7, you create an XML file containing details of the event subscription. You have considerable flexibility in terms of the configuration of event collection, but you do need to define it in XML. Mistakes in the XML can be very difficult to troubleshoot.

In step 9, you added one host, SRV1, to the global Event Source group. This group defines the systems that are to be the source of the events defined in step 8.

In step 14, you use Get-WinEvent to retrieve the forwarded bad login events. Depending on what invalid credentials you provide, you get different results. Also, in step 14, you create an object for each bad logon. You could extend that object in production—for example you could add the host where the invalid login was attempted.

 Managing Windows Networking Services

This chapter contains the following recipes:

	New ways to do old things

	Configuring IP addressing

	Converting IP address from static to DHCP

	Installing domain controllers and DNS

	Configuring zones and resource records in DNS

	Installing and authorizing a DHCP server

	Configuring DHCP scopes

	Configuring DHCP server failover and load balancing

	Building a public key infrastructure

	Creating and managing AD users, groups, and computers

	Adding users to AD using a CSV file

	Reporting on AD users

	Finding expired computers in AD

	Creating a privileged user report

 Introduction

PowerShell has provided useful improvements in our ability to manage networking. Windows Server has some features built in such as DHCP failover, DNS, and AD, you manage these with cmdlets. Windows Server 2016 includes comprehensive cmdlets that replaces the host of arcane and incompatible configuration and troubleshooting console applications.

The focus of this chapter is the core networking services contained in Windows Server 2016. These services include DHCP, DNS, Active Directory, and Certificate Services. The recipes in this chapter look at how to manage these features using PowerShell. We also note the few remaining things you cannot do with a PowerShell cmdlet.

In the New ways to do old things recipe, you look at some of the Windows console applications that you might have used for network troubleshooting and their updated PowerShell equivalents. You should find that everything you could do with a console application you can also do with a native cmdlet and more. This recipe only looks at few of the key networking related cmdlets versus their console application equivalents. There are over 300 console applications (and Visual Basic scripts) in Windows Server 2016. Some of those many console applications (but not all) have cmdlet equivalents; this chapter cannot cover them all.

With Windows Server 2016, networking means TCP/IP. In the Configuring IP addressing recipe, you look at how to set up and manage IP addresses on a computer, while in the Converting IP Address from static to DHCP recipe, you change a computer having a static IP configuration to have a dynamic DHCP based IP configuration. IP configuration via DHCP tends to be used for client computers and devices, while you use static IP configuration for your servers.

A central piece of your IT infrastructure is your Active Directory (AD) and AD domain controllers (DCs). You use the Installing domain controllers recipe to install an AD forest and to add a second DC to the domain. You also install a DNS server as part of the installation of the first AD server. When you create these two domain controllers using the recipe, you also add DNS servers to both DCs. By default, Windows creates the necessary zone and resource records and ensures that Active Directory replicates the DNS records to the second DC/DNS server.

In the Configuring DNS zones and resource records, you configure DNS server zones and DNS resource records. You can use this recipe to manage the zones and resource records and to test whether your DNS servers are working.

The Dynamic Host Control Protocol (DHCP) network protocol enables a DHCP client to request and obtain IP configuration details from a DHCP server. For the DHCP server to provide IP configuration information to a DHCP client, you need to configure the DHCP scopes (sets of IP addresses to offer to DHCP clients), and DHCP options (details of the IP configuration such as default gateway and DNS server.

In the Installing and configuring DHCP recipe, you install and set up the DHCP service and prepare it for use in your network. Once this is complete, you make use of the Configure DHCP scope recipe to implement a DHCP service in your network. Finally, with the Configure DHCP server failover and load balancing recipe, you install a second DHCP server in the domain. Then you configure the two DHCP servers to do both load balancing and failover.

Managing the objects in your AD environment is straightforward. In the Creating and managing AD users, groups, and computers recipe, you use cmdlets to create, update, and remove users and security groups (and manage the members of a group). The Reporting on AD users recipe shows how you can find users in your AD and generate reports. The Finding expired computers recipe helps you to find domain computers that have expired.

An important aspect of many of the networking cmdlets used here is that they utilize WMI and the use of cmdlet definition XML (CDXML) to define each cmdlet. CDXML is a feature of PowerShell that lets you write XML that converts a WMI class into a cmdlet. For example, the cmdlet Get-NetAdapter returns details of each network adapter in your system. You could get the same information by using the command Get-CimInstance -Namespace ROOT/StandardCimv2 -class MSFT_NetAdapter. The CDXML based cmdlets do more than just retrieve information. They also allow you to update and remove the underlying WMI instances. All in all, this makes managing network-related objects much simpler. With CDXML, Microsoft was able to provide PowerShell cmdlets to unlock all that greatness that is hidden in the depths of WMI.

There are two consequences of this approach. The first is performance. Using WMI can be slower than using older Windows console applications based on the native Win32 API. Second, the error messages that CDXML cmdlets return can be less helpful than those returned by other core cmdlets. It can be difficult to understand some of the messages that can result. The big advantage of course, is the ease of scripting. You have cmdlets that utilize objects that make scripting easier and more consistent.

A final thing to be aware of, which is, there are a lot of WMI classes each of which are related. For example, in the namespace ROOT/StandardCimv2, you have two related classes: MSFT_NetIPInterface and MSFT_NetAdapter. The classes overlap. And since CDXML just converts a single class to cmdlets, the resultant cmdlets also overlap. To get a complete picture of a network link, you may need to use both classes/cmdlet. If you are doing a lot of networking troubleshooting, you could roll-your-own functions to produce a single object for each interface that combines multiple WMI classes.

 New ways to do old things

Networking IT pros have used a small set of console applications for decades to carry out basic troubleshooting activities. These help you to manage all manner of networking components. Tools such as Ipconfig, Tracert, and NSlookup are used by IT pros all over the world. The network shell (netsh) is another veritable treasure chest of tools to configure and manage your networking components.

The latest versions of PowerShell within the latest versions of the Windows operating system provide a wealth of new network-focused cmdlets that overlap with those old command-line tools. These tools represent new ways of doing old things.

Naturally, you shouldn't just use the new commands because you can. This recipe shows you that the new commands are often better and can be sufficiently different as compared to the older console (and a lot more useful). This recipe helps you to re-equip your networking tool belt!

 Getting ready

This recipe uses the DC1 domain controller in the Reskit.Org domain and SRV1, a domain joined server in the Reskit domain. But you can execute this recipe on any system, assuming you have the latest versions of Windows and PowerShell loaded.

 How to do it...

In this recipe, you use both the old command and explore some of the options available with the new ones. You can see the expected output in the How it works... section. Naturally, you may need to adapt some of these steps to accord with your environment.

	From the DC1 server, retrieve IP address configuration:

 # Two variations on the old way
 ipconfig.exe
 ipconfig.exe /all
 # The new Way with Get-NetIPConfiguration
 Get-NetIPConfiguration

Run the remainder of this recipe on server SRV1.

	From SRV1, ping the DC1 computer (using both FQDN and hostname):

 # Ping a remote machine two ways
 Ping DC1.Reskit.Org -4
 Test-NetConnection DC1.Reskit.Org
 # And explore some new things Ping does not do
 Test-NetConnection DC1.Reskit.Org -Port 389 `
 -InformationLevel Detailed
 Test-NetConnection DC1 -CommonTCPPort SMB

	Use and share folders:

 # Map a local drive letter to a network share
 net use X: \\DC1\c$
 New-SMBMapping -LocalPath 'Y:' -RemotePath \\SRV1\c$
 # Find out what has been used/mapped
 net use
 Get-SMBMapping
 # Share a folder for others to use
 net share foo=c:\
 New-SmbShare -Path C:\ -Name FooNew
 # Discover what folders are shared
 net share
 Get-SmbShare
 Share a folder: # share the old way
 net share Foo=c:\
 # and the new way
 New-SmbShare -Path C:\ -Name Foo2
 # And see what has been shared the old way
 net share
 # and the new way
 Get-SmbShare

	Perform DNS lookups:

 # Lookup a DNS record for a host
 nslookup -querytype=all DC1.Reskit.Org
 # The new way
 Resolve-DnsName -Name DC1.Reskit.Org -Type ALL

	Examine the DNS client cache:

 # The old way
 ipconfig /displaydns
 # The new way
 Get-DNSClientCache

	Flush the DNS client cache:

 # The old way
 ipconfig /Flushdns
 # Vs the new way
 Clear-DnsClientCache

 How it works...

In step 1, you compare the ipconfig.exe Windows console command with the (newer) Get-NetIPConfiguration cmdlet. Both output the basic IP configuration. ipconfig does not, by default, return the details of the configured DNS Server. You have to use the /all switch to view that. Get-NetIPConfiguration returns more information as you can see here:

Step 2 looks at ways you can check that a remote system is up and running. Traditionally, you would have used ping.exe. The ping.exe uses ICMP echo request and echo request to implement ping. However, some routers, gateway devices, and hosts turn off ICMP, making ping less than useful. By comparison, the Test-NetConnection is more flexible. You can check whether a port, besides ICMP, is open on a host, for example, port 389 for LDAP. You could find that the ping might fail, whereas the Test-NetConfiguration succeeds. In step 2, you test, from SRV1, the connections to DC1, as follows:

With step 3, you look at folder sharing. You look at using the net command and the cmdlets in the SMBShare module. Comparing the two methods looks like this:

In step 4 you create two shared folders as follows:

With step 5, you perform DNS lookups the old and new way:

In step 6, you examine the DNS client cache. The client cache content always depends on the prior lookups, so you may see more addresses in your client cache. On SRV1, the cache is as follows:

 There's more...

Using aliases for frequently used cmdlets is a great feature when using PowerShell directly from the command line (but best practice says avoid aliases in production code). In step 1, the cmdlet Get-NetIpConfiguration has the easy to remember alias GIP. Some IT pros find it easy to memorize the alias even if they do not recall the name of the aliased cmdlet.

In the first step of this recipe, you looked at your IP configuration. When diagnosing networking faults, there are some other cmdlets that you might find handy. One useful cmdlet is Get-NetIPInterface, which gets the IP interface and associated address information. The cmdlet returns the interface name (although on the returned object it's called InterfaceAlias), MTU, whether the address is static or DHCP allocated, and the connection state. A second cmdlet is Get-NetAdapter which returns basic information about network adapters, including a name, ifIndex (used for many networking commands to refer to an IP interface), the MAC address, and the link speed. Depending on the issue, these two cmdlets may provide more useful information.

With so many routers and ingress gateways disabling ICMP, using the cmdlet Test-NetConnection is a better troubleshooting command that you can use to check on connections to a server. The command enables you to check not only basic network connectivity but also to ensure that a particular port is open for business.

In this (and other) recipe, you used CDXML based cmdlet sets. Various teams at Microsoft created the CDXML for these cmdlets. If you are using WMI classes that do not currently have CDXML based cmdlets, you can use the approach and develop roll-your-own cmdlets.

Richard Siddaway wrote a short blog article on this subject. You can find this article at https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/.

Additionally, Microsoft issued a longer document during the beta phase of PowerShell V3 that describes this feature of PowerShell in more detail. This document can be found at http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx.

 Configuring IP addressing

Most IT pros are very familiar with setting and using the Windows Control Panel, and more lately the Windows Settings to configure a system's IP configuration (IP address, subnet mask, default gateway and DNS server) and to change a statically configured system to one that gets its configuration from DHCP. Savvy admins also were able to use the network shell, Netsh.exe to set the IP configuration details. In this recipe, we show how you do it with PowerShell and native cmdlets.

 Getting ready

You run this recipe on server DC2. Server DC2 is a newly installed VM (or physical machine) whose NICs are default to DHCP. When DC2 boots up, it attempts to contact the DHCP server for IP address configuration. If there is no DHCP server on your subnet, running Get-NetIPConfiguration reveals that the server has an Automatically Provided IP Address (APIPA) in the 169.254/16 range. You use this recipe to provide a static IP configuration to this server.

 How to do it...

	Get the existing IP address information:

 $IPType = 'IPv4'$Adapter = Get-NetAdapter |
 Where-Object {Status -eq 'up'}
 $Interface = $Adapter |
 Get-NetIPInterface -AddressFamily $IPType
 $IfIndex = $Interface.ifIndex
 $IfAlias = $Interface.Interfacealias
 Get-NetIPAddress -InterfaceIndex $Ifindex
 -AddressFamily $IPType

	Remove the existing IP address and default gateway, then set the IP address for DC2:

 Remove-NetRoute -InterfaceIndex $IfIndex `
 -DestinationPrefix 0.0.0.0/0 `
 -Confirm $false
 Remove-NetIPAddress -InterfaceIndex $ifindex `
 -AddressFamily IPv4 `
 -Confirm $false

	Set the IP address for DC2:

 Set-NetIPAddress -InterfaceAlias $IfAlias `
 -PrefixLength 24 `
 -IPAddress '10.10.10.11' `
 -DefaultGateway '10.10.10.254' `
 -AddressFamily $IPType

	Set the DNS server details:

 Set-DnsClientServerAddress -InterfaceIndex 3 `
 -ServerAddresses 10.10.10.10

	Test the new configuration:

 Get-NetIPConfiguration
 Test-NetConnection -ComputerName DC1 -Port 389
 Resolve-DnsName -Name dc2.reskit.org -Server DC1

 How it works...

In step 1, you obtain the IP address information using Get-NetIPAddress, as follows:

This address comes from a DHCP scope somewhere on your network. You can tell based on the values of PrefixOrigin and SuffixOrigin plus a limited lifetime. Manually configured IP addresses have an infinite lease time.

In step 2, you remove any old IP address and any old default gateway. As WMI stores configuration information separate from details of the default gateway, you need to remove both separately. In production scripts, to avoid WMI exceptions, you should wrap the cmdlets in a Try/Catch block. There is no output from this step.

Next, in step 3, you set the new IP address, subnet mask, and default gateway address as follows:

With the IP address, subnet mask, and default gateway set, in step 4, you set the DNS server address. There is no output generated by the Set-DnsClientServerAddress cmdlet.

With step 2 through step 4 in the recipe, you set a static IP configuration. To test it, in step 5, you check on the configuration by using Get-NetIPConfiguration, Test-NetConnection, and Resolve-DnsName cmdlets. These return the address, test the connection from this server to our primary domain controller (DC1), and then resolve address records for DC2. Running these commands looks like this:

 There's more...

If you are going to be doing a lot of networking troubleshooting, it might be a good idea to create some scripts and functions that make it clearer and simpler. You can find one example at http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367. That blog page describes a script that you could use. The script could easily be converted into a function and added to your troubleshooting module(s).

In step 2 of this recipe, you remove the default gateway and any existing IP address. Both the Remove-NetRoute and Remove-NetIPAddress cmdlets generate an exception if there is no route, or IP address respectively. To get around this, you can wrap the calls to these cmdlets with Try/Catch. However there appears to be a bug with the Remote-NetIpAddress cmdlet. Even when you wrap the cmdlet in a PowerShell Try/Catch block, it does not catch the exception in the way you would expect.

In step 5, you check the IP configuration using Get-NetIPConfiguration to show the IP address, subnet mask, default gateway, and the DNS server configuration. Then you test the network connection from DC2 to port 389 on DC1. Port 389 is the LDAP port. Setting up DC2 as a domain controller requires the ability to connect to DC1 domain controller's LDAP port. This cmdlet tests both, that network connectivity is available and that port 389 is reachable, which is more useful than the information returned from the ping.exe command.

 Converting IP address from static to DHCP

In some cases, you may need to switch your server's IP address from static, as you did in the Configuring IP addressing recipe, back to DHCP. You might need to do this to re-purpose a server. You may have given it a static IP address to perform a role, but you plan to re-purpose this server and want to configure the server to obtain IP configuration from DHCP.

 Getting ready

Run this recipe on the DC2 server. Of course, after running and testing this recipe, you may need to re-run the Configure IP address recipe to ensure DC2 remains correctly configured.

 How to do it...

	Get the existing IP address information:

 $IPType = 'IPv4'
 $Adapter = Get-NetAdapter | ? {$_.Status -eq 'up' }
 $Interface = $Adapter |
 Get-NetIPInterface -AddressFamily $IPType
 $IfIndex = $Interface.ifIndex
 $IfAlias = $Interface.Interfacealias
 Get-NetIPAddress -InterfaceIndex $Ifindex `
 -AddressFamily $IPType

	Set the interface to get its address from DHCP:

 Set-NetIPInterface -InterfaceIndex `
 $IfIndex -DHCP Enabled

	Test the results:

 Get-NetIPAddress -InterfaceIndex $Ifindex `
 -AddressFamily $IPType

 How it works...

In step 1, you get the network adapter details and display the configured IP address. Since this system has just one NIC, and you previously configured a static address, the IP address details reflect that as follows:

In step 2, you enable DHCP on the network interface, but there is no output.

Then, you use Get-NetIPaddress to return the IP address. It is the same DHCP address you saw in step 1 of the Configuring IP Addressing recipe:

 There's more...

Using WMI directly, or using CDXML-based cmdlets to obtain the source of IP address configuration works well, but can be slower than using ipconfig.exe.

 Installing domain controllers and DNS

At the heart of mostof the corporate and organizational networks is Active Directory (AD). You use AD as an authentication and authorization platform. AD first debuted with Windows 2000. Microsoft improved it with each successive release of Windows Server.

In the early days of AD, you promoted a server computer to act as a domain controller by using the DCPromo.exe utility. In Server 2016, this command no longer exists. Instead of DCPromo, you could either use Server Manager or PowerShell.

This recipe shows how you use PowerShell to upgrade systems to be domain controllers. This recipe creates two servers (DC1 and a replica DC, DC2) in the Reskit.Org domain. After you complete this recipe, your forest has only one domain, but you could easily extend this recipe to create multi-domain forests.

 Getting ready

In this recipe, you use two domain controllers, DC1 and DC2. Before running this recipe, you should configure both DC1 and DC2 to have static IP address configurations. You can use the Configuring IP addressing recipe to show you how to set up the static address.

You run this recipe directly on both DC1 and DC2. As an alternative, you could wrap this recipe with a call to Invoke-Command and run this recipe from a client computer, as shown in Installing and configuring Hyper-V feature recipe in Chapter 11, Managing Hyper-V.

 How to do it...

Run the first part of this recipe on DC1:

	Install the AD-Domain-Services components plus the ManagementTools:

 Install-WindowsFeature AD-Domain-Services
 -IncludeManagementTools

	Now install the AD to DC1:

 $PasswordSS = ConvertTo-SecureString `
 -String 'Pa$$w0rd' `
 -AsPlainText -Force
 Install-ADDSForest -DomainName 'Reskit.Org' `
 -SafeModeAdministratorPassword
 $PasswordSS -Force -InstallDNS -NoReboot

	Now you manually reboot DC1:

 Restart-Computer -Force

Run the next part of this recipe on the second domain controller, DC2. You could alternatively run these steps remotely on another system by using the Invoke-Command cmdlet.

	Check that DC1 is reachable on ports 445 and 389:

 Resolve-DnsName -Name dc1.reskit.org `
 -Server DC1.Reskit.Org `
 -Type A
 Test-NetConnection -ComputerName DC1.Reskit.Org `
 -port 445
 Test-NetConnection -ComputerName DC1.Reskit.Org `
 -port 389

	Add the AD DS features on DC2:

 Install-WindowsFeature AD-Domain-Services, DNS,
 RSAT-DHCP, Web-Mgmt-Tools

Promote DC2 to be a DC in the Reskit.Org domain:

 $PasswordSS = ConvertTo-SecureString -String 'Pa$$w0rd'
 -AsPlainText -Force
 Install-ADDSDomainController -DomainName 'Reskit.org' `
 -SafeModeAdministratorPassword $PasswordSS `
 -SiteName 'Default-First-Site-Name' `
 -NoRebootOnCompletion -Force

 How it works...

Promoting any Windows Server 2016 computer to be a domain controller begins with you installing the AD-Domain-Services feature, which you carry out in step 1, like this:

With step 2, you promote DC1 to be a domain controller and install the DNS service on DC1:

This step generates four warning messages. In most cases these are benign, and you can ignore them. In step 3, you reboot DC1. There is no output as such, the system restarts as the first domain controller in your forest.

In step 4, which you run over on DC2, you first check your network to ensure that the domain controller operation can be successful. You check that the DNS name exists for the current domain controller in the RESKIT domain, and ensure that DC2 can reach DC1 on ports 389 (LDAP) and 445 (SMB-based file/printer sharing). The output from step 4 looks like this:

With those three tests, you can see that DC1 and DC2 are in communication and that DC2 is ready for promotion. In step 5, which is not dissimilar to step 1, you add roles to the computer that enables you to promote this machine at some later date to be a DC. Installing these features looks this:

Note that you explicitly add DNS and some additional tools. You have options as to how and whether you add a second DNS server to the domain, and what (if any) management tools you add.

Now you are ready to promote DC2 to be a domain controller in the Reskit.org network, in step 6. Step 6 is very similar to step 2, except in step 6 you are adding a domain controller to the existing Reskit domain/forest, which looks like this:

 There's more...

In step 2, you upgrade DC1 to be a domain controller. Once the installation process has completed, you must reboot DC1 before it can function as a DC which you do in step 3. If you run the step remotely, you could restart DC1 using a command like this:

 Restart-Computer -Computer DC1 -Wait -For PowerShell

In step 4, you checked for connectivity on ports 445 and 389. Port 445 is used for SMB file sharing, while port 389 is the port for LDAP. Domain joined systems need access to these ports on the domain controller for Group Policy.

After you reboot DC2, after step 6, DC2 is a domain controller and a DNS server. Using DNS tools, you can see that AD replicates the Reskit.org zone created on DC2 in an earlier recipe. When you create a zone as AD integrated, the AD replicates DNS zone information and resource records to other DCs in the domain. Also notice DC2 DC's network configuration. Before the promotion, DC2 had one DNS Server address (10.10.10.10-DC1). Since you added DNS to DC2, the promotion process adds a DNS server to DC2 DC's network configuration (127.0.0.1).

 Configuring zones and resource records in DNS

DNS configuration using PowerShell is straightforward. You first add the DNS service. Then you create the zones you need and finally you create the resource records for those zones.

When you install an AD, as you did in the Installing domain controllers recipe, the AD installation process also installs the DNS service on the DC and configures both the necessary forward lookup zone and the AD-related resource records.

This recipe looks at the actions you may need to take once your DC is up and running. You can create new zones (for example, a reverse look zone), add an additional A and Mx records for mail, and set Extended DNS (EDNS). You also should test the DNS Server to ensure it is all up and working.

 Getting ready

This recipe assumes you have the domain controller up and running as a DC, and that you have a DNS Administrator user created. You create the user as follows:

$PasswordSS = ConvertTo-SecureString `
 -String 'Pa$$w0rd' `
 -AsPlainText -Force
$NewUserHT = @{
 AccountPassword = $PasswordSS
 Enabled = $true
 PasswordNeverExpires = $true
 ChangePasswordAtLogon = $false}

New-ADUser @NewUserHT `
 -SamAccountName DNSADMIN `
 -UserPrincipalName 'DNSADMIN@reskit.org' `
 -Name 'DNSADMIN' `
 -DisplayName 'DNS Admin'
Add to Enterprise and Domain Admin groups
Add-ADPrincipalGroupMembership `
 -Identity `
 'CN=DNSADMIN,CN=Users,DC=reskit,DC=org' `
-MemberOf `
 'CN=Enterprise Admins,CN=Users,DC=reskit,DC=org',
 'CN=Domain Admins,CN=Users,DC=reskit,DC=org'
Ensure the user has been added
Get-ADUser -LDAPFilter '(Name=DNSADMIN)'

 How to do it...

	Create a new primary forward DNS zone:

 Add-DnsServerPrimaryZone -Name foo.bar `
 -ReplicationScope Forest `
 -DynamicUpdate Secure `
 -ResponsiblePerson 'DNSADMIN.reskit.org'

	Create a new primary reverse lookup domain (for IPv4), and view both new DNS zones:

 Add-DnsServerPrimaryZone
 -Name '10.10.10.in-addr.arpa' `
 -ReplicationScope Forest `
 -DynamicUpdate Secure `
 -ResponsiblePerson 'DNSADMIN.reskit.org.'
 Get-DNSServerZone
 -Name 'foo.bar', '10.10.10.in-addr.arpa'

	Add an A resource record to foo.bar and get results:

 Add-DnsServerResourceRecord -ZoneName 'foo.bar' `
 -A `
 -Name home `
 -AllowUpdateAny `
 -IPv4Address '10.42.42.42' `
 -TimeToLive (30 * (24*60*60))
 Get-DnsServerResourceRecord -ZoneName foo.bar `
 -Name 'home'

	Add A and Mx resource records to the reskit.org zone and display the results:

 Add-DnsServerResourceRecord -ZoneName 'reskit.org' `
 -A `
 -Name 'mail' `
 -CreatePtr `
 -AllowUpdateAny `
 -IPv4Address ' 10.10.10.42' `
 -TimeToLive 21:00:00
 Add-DnsServerResourceRecordMX -Preference 10 `
 -Name '.' `
 -TimeToLive (30 * (24*60*60)) `
 -MailExchange 'mail.reskit.org' `
 -ZoneName 'reskit.org'
 Get-DnsServerResourceRecord -ZoneName 'reskit.org' `
 -name '@' `
 -RRType Mx

	Set up EDNS on the server with a timeout 30 minutes:

 Set-DNSServerEDns -CacheTimeout '0:30:00' `
 -Computername DC1 `
 -EnableProbes $true `
 -EnableReception $true

	Test the DNS service on DC1:

 Test-DnsServer -IPAddress 10.10.10.10 `
 -Context DnsServer

 How it works...

This recipe makes use of the cmdlets in the DnsServer module to create zones, create resource records, retrieve resource records, and test the DNS server.

In step 1, you create a new DNS primary zone called foo.bar. You specify that this zone should replicate to all AD domain controllers in the forest and that local updates are to be secure only. You also specify the responsible person for queries is DNSADMIN@Reskit.Org. For internal DNS servers, this is probably not all that useful. But if you need to talk to the person responsible for some distant DNS server, for example, your ISPs server, then it can be useful to know who to contact. Creating a zone generates no output.

In step 2, you add another primary zone, this time a reverse lookup zone for the IP address block 10.10.10.0/24. Reverse lookup zones allow DNS to resolve an IP address, for example, 10.10.10.10, to a fully qualified name (DC1.Reskit.Org). The other settings are the same as for the foo.bar zone created in step 1. This step also retrieves the zone details for both zones, as follows:

After adding zones, in step 3, you add a resource record—a host (A) record for the host home.foo.bar. You set the IP address to 10.42.42.42, and the time to live is calculated to be 30 days (specified in this case in seconds). After adding the record, you retrieve the A record for home.foo.bar. Retrieving the record looks like this:

In step 4, you prepare for the addition of a new SMTP server, Mail.Reskit.Org. You first create the host's A record, then you create the mail exchanger (MX) record. There is no output from adding these two resource records. Then you retrieve the MX record, which looks like this:

With step 5, you specify EDNS settings and retrieve them. These settings enable your DNS server to probe other servers to determine if they support EDNS and to cache that information for 30 minutes. You also set your DNS server to accept queries that contain an EDNS record and to respond accordingly. These days, it's sensible to set up EDNS, especially for internet-facing DNS servers. The last command in this step retrieves and displays the EDNS settings, as follows:

Once you have set up your DNS Server, and anytime you make changes to the configuration, it makes sense to test it. In step 5, you use the Test-DnsServer cmdlet to test the DNS server. The output looks like this:

 There's more...

The DnsServer module leverages CDXML to build the cmdlets. As a result, the objects returned are WMI data wrapped in a .NET object. If you pipe the output of, for example, Get-DNSServerZone, the objects returned are of the type Microsoft.Management.Infrastructure.CimInstance#root/Microsoft/Windows/DNS/DnsServerPrimaryZone. The default output, specified by display XML loaded with the module, hides some of the details of each zone, such as whether a DNS server notifies any secondary servers of any change (NotifyServers), or whether WINS integration is enabled. If the default XML is insufficient, you can either pipe the output through Format-Table or Select-Object to select the properties you wish to view. And you could always update the default display XML to adapt the default output to suit your needs.

In step 3, you used the Add-DNSServerResourceRecord with the A switch to add an A resource record. You could have also used another cmdlet, Add-DnsServerResourceRecordA. Some of the more common resource records have specific cmdlets to enable you to add them.

In step 5, you setup EDNS. EDNS is an extension mechanism that extends the DNS protocol in a backwards compatible way. EDNS, among other things, enable bigger DNS replies. RFC 6891 (https://tools.ietf.org/html/rfc6891) specifies EDNS.

With step 7, you tested the basic working of the server. You can also test that the server has root hints created and whether it can resolve a specific zone.

In step 1 and step 2, you create zones and resource records. The code in these steps creates the zones as AD integrated. The AD replicates both the zones and the records they contained to other DCs in the domain. After you complete the steps in this recipe on DC1, you see the replication of zones is you look at the DNS service on DC2.

One feature this recipe did not examine is DNS Security Extensions (DNSSec). These extensions provide cryptographic assurance that the resource records you retrieve from DNS are correct, came from the server you think you did, and that a man-in-the-middle attack has not interfered with the resource record information. The details of DNSSec and how it works are outside the scope of this book.

For more details about DNSSec, see the internet society's DNSSec page at http://www.internetsociety.org/deploy360/dnssec/basics/?gclid=Cj0KEQiAzsvEBRDEluzk96e4rqABEiQAezEOoN2hUV3waJAgC8nU_2llDQjwosymcdEjKEr9OKPnsCoaAr4b8P8HAQ.

With that said, adding DNSSec security to a zone on your DNS server is simple. For example, to sign the reskit.org zone that you created on DC1, use the Set-DnsServerDnsSecZoneSetting cmdlet. For more details on using DNSSec, see the TechNet article at https://technet.microsoft.com/en-us/library/hh831411(v=ws.11).aspx (although the demonstration on that page is based on Windows Server 2012 and uses the GUI).

 Installing and authorizing a DHCP server

Installing and authorizing a DHCP server is easy and straightforward. You can use the GUI, Server Manager to achieve this. Server Manager, though, is a GUI layered on top of PowerShell. The GUI gathers the details, and PowerShell does the rest. In this recipe, you carry out the installation and basic configuration using just the native cmdlets.

 Getting ready

This recipe installs a DHCP server on DC1. You need that system up and running.

 How to do it...

	Login to DC1, and add the DHCP server feature to your system:

 Install-WindowsFeature -Name DHCP `
 -IncludeManagementTools

	Add the DHCP server's security groups:

 Add-DHCPServerSecurityGroup -Verbose

	Let DHCP know it's all configured:

 Set-ItemProperty `
 -Path HKLM:\SOFTWARE\Microsoft\ServerManager\Roles\12 `
 -Name ConfigurationState `
 -Value 2

	Authorize the DHCP server in Active Directory:

 Add-DhcpServerInDC -DnsName DC1.Reskit.Org

	Restart DHCP:

 Restart-Service -Name DHCPServer -Force

 How it works...

In step 1, you use the Install-WindowsFeature cmdlet to add the DHCP server and the DHCP ManagementTools, which looks like this:

In step 2, you add the necessary DHCP security groups. By default, this cmdlet does not produce any output. If you want to see some additional output, you can use the -Verbose switch. If you do, the cmdlet produces a bit of output, like this:

In step 3, you tell Windows that the configuration of DHCP is complete. This step produces no output but is needed to let DHCP know that the necessary security groups are complete

Before a DHCP server is able to provide IP address information to client systems, you need to authorize it in AD. You perform this in step 4, and the output looks like this:

With the last step, step 5, you restart the service. Once you restart the DHCP service, the newly authorized server can hand out IP addresses. You configure the DHCP addresses and DHCP options in the Configuring DHCP scopes recipe.

 There's more...

In step 1, you install the DHCP server service on your system. If you use the Windows Server Manager GUI tool, DHCP is a server role versus a server feature. You need to know which is which to find and add the feature or role that provides the DHCP service. With PowerShell there is no difference between a feature and a role—you add both with the Install-WindowsFeature cmdlet.

In earlier versions of the ServerManager module, the cmdlet was named Add-WindowsFeature. In later versions of Windows Server, Microsoft renamed the cmdlet to Install-WindowsFeatue. That change did have the potential to break existing scripts. To avoid that, Microsoft sensibly added an alias of Install-WindowsFeature, namely, Add-WindowsFeature.

In step 2, you used the -Verbose switch. When you add the -Verbose switch to any cmdlet you can get some additional output that shows you what the cmdlet (or function) is doing. Some cmdlets are remarkably terse and provide little or no extra output. Other cmdlets provide more detailed verbose output.

In step 5, you authorize the DHCP server explicitly in the Active Directory. Authorization helps your organization avoid the potential for a rogue user setting up a DHCP server and handing out bad IP addresses. If you have multiple domain controllers, you may wish to force replication so that all DCs show this server as authorized. While the replication should occur pretty quickly, it never hurts to check the replication status before enabling the DHCP service.

 Configuring DHCP scopes

In the previous recipe, Installing and authorizing a DHCP server, you installed and authorized a DHCP server. But before that server can begin to provide IP address configuration information to DHCP clients, you need to create a scope and options. The scope is the set of DHCP addresses DHCP can give out, while the options are specific configuration options your DHCP server provides along with an IP address.

 Getting ready

Before you can configure DHCP scopes and options, you need to have completed the earlier Installing and authorizing a DHCP server recipe on DC1.

 How to do it...

	Create a DHCP scope:

 Add-DhcpServerV4Scope -Name 'Reskit' `
 -StartRange 10.10.10.150 `
 -EndRange 10.10.10.199 `
 -SubnetMask 255.255.255.0 `
 -ComputerName DC1.Reskit.Org

	Get scopes from the server:

 Get-DhcpServerv4Scope -ComputerName DC1.Reskit.Org

	Set DHCP OptionValues:

 Set-DhcpServerV4OptionValue -DnsDomain Reskit.Org `
 -DnsServer 10.10.10.10

	View the options you have set:

 Get-DhcpServerv4OptionValue `
 -ComputerName DC1.Reskit.Org

 How it works...

This recipe used the DHCP server cmdlets to do basic DHCP scope configuration. In step 1, you create a new scope. This scope allows the server to offer up addresses in the address range 10.10.10.150 through to 10.10.10.199. There is no output from this step.

In step 2, you used the Get-DhcpServerv4Scope cmdlet to retrieve details of the scopes set on the named DHCP server, like this:

To enable the DHCP server to provide key IP configuration details, you add options to the scope. An option is a particular setting that the server can provide a client. For example, you set the DNS server address and the domain name for a DHCP client by using the options set in this step. As with step 1, adding options produces no output.

To view the options you set on the server, you can use the Get-DHCPServerV4OptionValue cmdlet, like this:

 There's more...

In step 3, you set an option and option value for the DNS server. An excellent feature of this cmdlet is that when setting a DNS server IP address, the cmdlet checks to see if the IP address provided is a DNS server. Although the cmdlet returns no output, if you run this step in the PowerShell ISE, you can see a progress bar showing the check. In this case, the test used an invalid IP address for the server that yields this result:

This recipe used a simple DHCP configuration. A single DHCP server, a single scope on a single subnet, and with only minimal options. There is more complexity you may encounter when scaling DHCP including scope versus server options and client classes which are outside the scope of this chapter. Nevertheless, the cmdlets used in this recipe form the core of what you might use in practice, just a few more options and the complexity is simplified even if we do not have space in this chapter to cover all that complexity.

 Configuring DHCP server failover and load balancing

The basic installation and configuration of a single DHCP server, as shown in the two previous recipes, is straightforward. However, a single DHCP server represents a single point of failure. A standard solution to this shortcoming is to implement DHCP failover and load balancing. Microsoft added this to DHCP with Windows 2012. The feature and indeed DHCP is unchanged in Server 2016.

 Getting ready

This recipe requires two servers, with one server (DC1) setup with a working and configured DHCP scope. You achieved this by using the Configuring and authorizing a DHCP server, Configure DHCP scopes recipes. The recipe needs a second, as of yet an unconfigured server, which in this case is the second DC, DC2.Reskit.Org.

 How to do it...

	Log in and install the DHCP feature on DC2:

 Install-WindowsFeature -Name DHCP,RSAT-DHCP `
 -ComputerName DC2.Reskit.Org

	Let DHCP know it's all configured:

 Invoke-Command -ComputerName DC2 `
 -ScriptBlock {Set-ItemProperty `
 -Path HKLM\:SOFTWARE\Microsoft\ServerManager\Roles\12 `
 -Name ConfigurationState `
 -Value 2}

	Authorize the DHCP server in AD and view the results:

 Add-DhcpServerInDC -DnsName DC2.Reskit.Org
 Get-DhcpServerInDC

	Configure failover and load balancing:

 Add-DhcpServerv4Failover `
 -ComputerName DC1.Reskit.Org `
 -PartnerServer DC2.Reskit.Org `
 -Name DC1-DC2 `
 -ScopeID 10.10.10.0 `
 -LoadBalancePercent 60 `
 -SharedSecret 'j3RryIsG0d!' `
 -Force

	Observe the result:

 'dc1', 'dc2' |
 ForEach {Get-DhcpServerv4Scope -ComputerName $_}
 'dc1', 'dc2' |
 ForEach {Get-DhcpServerv4ScopeStatistics
 -ComputerName $_}

 How it works...

In step 1, you install the DHCP feature on DC2.Reskit.Org remotely. Using the Install-WindowsFeature cmdlet, you can install features on any remote server. The results are:

With step 2, you set a registry value remotely. This value indicates that the configuration of DC2 is complete. There is no output from this operation.

In step 3, you authorize DC2 in the DC2.Reskit.Org server's AD. Once authorized, DC2 can begin to hand out IP address leases from any configured scopes. The call to Get-DHCPServerInDC shows what servers you have authorized:

With both DC1 and DC2 set up and running DHCP, in step 4, you implement a load balancing failover relationship between DC1 and DC2. You name the relationship dc1-dc2. You are setting the relationship to loadbalance the 10.10.10.0 scope you created earlier in the Configuring DHCP scopes recipe. By specifying the -LoadBalancePercent parameter, you tell DC1 to issue 60% of the leases.

 There's more...

This recipe showed building a load balancing and failover relationship between two DHCP servers. This relationship makes the scope highly available and provides for two servers to share the load. You can also set up DHCP to have a hot standby, rather than a load balancing relationship.

 Building a public key infrastructure

In most organizations, you find a requirement for X.509 digital certificates. The organization might need an SSL certificate for a website, a server certificate for Skype for Business, or a code signing certificate as the basis for signing PowerShell scripts. Building a PKI for your organization is often an exercise in defense in depth.

A very simple design would be to make your DC an AD Certificate Services (ADCS) CA server. But that is not best practice. At a minimum, you need a single offline root CA, with a subordinate issuing CA. If you are more paranoid or have a bigger attack surface, you could consider an intermediate CA that, like the root, is offline with a third level CA that issues certificates. The richness and complexity of modern CA architecture are beyond the scope of this book.

This recipe creates a two-level CA architecture for the Reskit.org network. The root CA is root: a workgroup machine that you should keep offline. The second CA is CA.Reskit.Org, which you set up as an issuing CA. To complete this recipe, you need to create the root CA on the root computer, then create a CA certificate that you can use to create a CA on CA.Reskit.Org.

This recipe makes great use of the certutil.exe console application a Windows console program. Additionally, you need to be logged on as administrator and need to run this recipe in an elevated PowerShell console.

 Getting ready

This recipe assumes you have two systems, root (a workgroup computer) and CA.Reskit.Org (a domain-joined server) both online and with no additional non-default services.

Once you have this recipe working, you can add the firewall, like this:

Get-NetFirewallRule -DisplayGroup 'File and Printer Sharing' |
Set-NetFirewallRule -Enabled True

The following was checked during the drafting of this book. Errors may creep in during production especially with respect to line endings. E&OE!

 How to do it...

	Install ADCS features on the root computer:

 Install-WindowsFeature -Name ADCS-Cert-Authority `
 -IncludeManagementTools

	Create CA policy file:

 $CaInf = @"
 [Version]
 Signature="$Windows NT$"
 [Certsrv_Server]
 RenewalKeyLength=4096
 RenewalValidityPeriod=Years
 RenewalValidityPeriodUnits=20
 CRLPeriod=Weeks
 CRLPeriodUnits=26
 CRLDeltaPeriod=Days
 CRLDeltaPeriodUnits=0
 LoadDefaultTemplates=0
 AlternateSignatureAlgorithm=1
 "@
 $PathInf = Join-Path -Path $Env:SystemRoot `
 -ChildPath 'capolicy.inf'
 $CaInf | Out-File -FilePath $PathInf

	Install a CertificateAuthority based on the capolicy.inf file you created in step 2:

 Install-AdcsCertificationAuthority -CAType StandaloneRootCA `
 -KeyLength 4096 -HashAlgorithmName SHA256 `
 -ValidityPeriod Years -ValidityPeriodUnits 20 `
 -CACommonName "Reskit Root CA" `
 -CryptoProviderName "RSA#Microsoft Software Key Storage Provider"
 -Force

	Set Certificate Revocation List (CRL) validity and CRL publication point:

 certutil.exe -setreg CACRLPublicationURLs `
 '1:C:\Windows\System32\CertSrv\CertEnro\ll%3%8.crln2:http://ca
 .reskit.org/pki/%3%8.crl'
 certutil.exe -setreg CACACertPublicationURLs
 '2:http://ca.reskit.org/pki/%1_%3%4.crt'
 certutil.exe -setreg CACRLPeriod 'Weeks'
 certutil.exe -setreg CACRLPeriodUnits 26
 certutil.exe -setreg CACRLDeltaPeriod 'Days'
 certutil.exe -setreg CACRLDeltaPeriodUnits 0
 certutil.exe -setreg CACRLOverlapPeriod 'Hours'
 certutil.exe -setreg CACRLOverlapPeriodUnits 12
 certutil.exe -setreg CAValidityPeriod 'Years'
 certutil.exe -setreg CAValidityPeriodUnits 10
 certutil.exe -setreg CADSConfigDN
 'CN=Configuration,DC=reskit,DC=org'

	Restart the CA with updated configuration:

 Restart-Service -Name certsvc

	Publish and view the crl:

 certutil.exe -crl
 $CEPath = 'C\:Windows\System32\CertSrv\Enroll'
 Get-ChildItem -Path $CEPath

	Copy CA certificate and (empty) CRL to subordinate CA:

 $PathSCrl = Join-Path -Path `
 'C:\Windows\System32\CertSrv\CertEnroll' `
 -ChildPath 'Reskit Root CA.crl'
 $PathDCrl = Join-Path -Path '\\ca\c$' `
 -ChildPath 'Reskit Root CA.crl'
 Copy-Item $PathSCrl $PathDCrl -Destination $PathDCrl
 $PathSCrt = Join-Path -Path `
 'C:\Windows\System32\CertSrv\CertEnroll' `
 -ChildPath 'ROOT_Reskit Root CA.crt'
 $PathDCrt = Join-Path -Path 'cac$' `
 -ChildPath 'ROOT_Reskit Root CA.crt'
 Copy-Item $PathSCrl $PathDCrl

Having set up the root CA, you next set up the intermediate subordinate issuing CA on CA.Reskit.Org. Do the next steps in this recipe on the issuing CA.

	Create a PKI folder and move the CRT and CRL files to the folder:

 New-Item C:\PKI -ItemType Directory
 -ErrorAction Ignore
 Move-Item -Path 'C:\Reskit Root CA.crl' `
 -Destination 'C:\pki\Reskit Root CA.crl'
 Move-Item -Path 'C:\ROOT_Reskit Root CA.crt' `
 -Destination 'C:\pki\ROOT_Reskit Root CA.crt'

	Publish the CA details to the Active Directory and local certificate store:

 cd C:\PKI
 certutil.exe -dspublish -f 'ROOT_Reskit Root CA.crt' `
 RootCA
 certutil.exe -addstore -f root 'ROOT_Reskit Root `
 CA.crt'
 certutil.exe -addstore -f root 'Reskit Root CA.crl'

	Create root CA certificate and CRL distribution endpoints:

 New-SmbShare -Name PKI
 -FullAccess SYSTEM,'Reskit\Domain Admins' `
 -ChangeAccess 'Reskit\Cert Publishers' `
 -Path C:\PKI

	Install a subordinate enterprise issuing CA:

 Install-WindowsFeature ADCS-Cert-Authority,
 ADCS-Web-Enrollment,
 ADCS-Enroll-Web-Pol,
 ADCS-Enroll-Web-Svc,
 ADCS-Online-Cert,
 Web-Mgmt-Console
 -IncludeManagementTools

	Configure CRL endpoints in IIS:

 New-WebVirtualDirectory -Site 'Default Web Site' `
 -Name 'PKI' `
 -PhysicalPath 'C:\PKI'

	Install the subordinate issuing CA on CA.Reskit.Org:

 # Create capolicy.inf
 $CaInf = @'
 [Version]
 Signature="$Windows NT$"
 [Certsrv_Server]
 RenewalKeyLength=4096
 RenewalValidityPeriod=Years
 RenewalValidityPeriodUnits=5
 LoadDefaultTemplates=0
 AlternateSignatureAlgorithm=1
 '@
 # Save INF file
 $PathInf = Join-Path -Path $Env:SystemRoot `
 -ChildPath 'capolicy.inf'
 $CaInf | Out-File -FilePath $PathInf
 # Install CA
 Install-AdcsCertificationAuthority `
 -CAType EnterpriseSubordinateCA `
 -CACommonName 'ReskitIssuing CA' `
 -CryptoProviderName 'RSA#Microsoft
 Software Key Storage Provider' `
 -KeyLength 4096 `
 -HashAlgorithmName SHA256 `
 -Confirm:$false

Run the next two steps on the root CA offline server.

	Request CA certificate for ca.reskit.org from the root CA:

 Set-Location -Path c:\
 Copy-Item -Path '\\ca\c$\CA.Reskit.Org\
 _ReskitIssuing CA.req' `
 -Destination .
 certreq.exe -submit 'C:\CA.Reskit.Org\
 _ReskitIssuing CA.req'

	Use the Certificate Manager GUI tool to issue the requested certificate. After issuing, retrieve the certificate and copy back to the ca.reskit.org computer:

 certreq.exe -retrieve 2 C:\CA.Reskit.Org.Crt
 Copy-Item -Path c:\CA.Reskit.Org* -Destination \\Ca\C$

Run the remaining steps on the CA.Reskit.Org computer:

	After copying cert from the root computer, install it on CA.Reskit.Org, then start and check the service:

 Certutil.exe -InstallCert C:\CA.Reskit.Org.Crt
 Start-Service -Name CertSvc
 Get-Service -Name CertSvc

	Set up CRL settings in the registry:

 certutil.exe -setreg CACRLPeriod 'Weeks'
 certutil.exe -setreg CACRLPeriodUnits 2
 certutil.exe -setreg CACRLDeltaPeriod 'Days'
 certutil.exe -setreg CACRLDeltaPeriodUnits 1
 certutil.exe -setreg CACRLOverlapPeriod "Hours"
 certutil.exe -setreg CACRLOverlapPeriodUnits 12
 certutil.exe -setreg CAValidityPeriod "Years"
 certutil.exe -setreg CAValidityPeriodUnits 5

	Set up CRL distribution points:

 $CrlList = Get-CACrlDistributionPoint
 foreach ($Crl in $CrlList)
 {Remove-CACrlDistributionPoint -Uri $Crl.uri -Force}
 $URI = 'C:\Windows\System32\CertSrv\CertEnroll\ReskitIssuing CA.crl'
 Add-CACRLDistributionPoint -Uri $URI `
 -PublishToServer -PublishDeltaToServer -Force
 Add-CACRLDistributionPoint
 -Uri http://ca.reskit.org/pki/reskit.crl `
 -AddToCertificateCDP -Force
 Add-CACRLDistributionPoint
 -Uri file://ca.reskit.orgpki%3%8%9.crl `
 -PublishToServer -PublishDeltaToServer -Force
 Restart-Service Certsvc
 Start-Sleep -Seconds 15
 certutil.exe -crl

	Restart the service and publish the CRL:

 # Step 19 - restart service then publish the CRL
 Restart-Service -Name CertSvc
 Start-Sleep -Seconds 15
 Certutil.exe -crl

	Test the CRL:

 $WC = New-Object System.Net.WebClient
 $Url = 'http://ca.reskit.org/pki/ReskitIssuing CA.crl'
 $To = 'C:\ReskitIssuing CA.crl'
 $WC.DownloadFile($URL,$to)
 certutil -dump $to

 How it works...

In step 1, you use Install-WindowsFeature to add the Certificate Services feature. As you can see, a reboot is not required:

With step 2, you create here a string which you write to capolicy.inf in the folder (C:\Windows). Windows uses this policy file to define some aspects of the CA policy that relate to the certificate revocation list, an essential aspect of an enterprise PKI implementations.

You use the Install-AdcsCertificationAuthority cmdlet, specifying several other configuration items. These items include the common name for the CA, Reskit Root CA, the type of CA (a StandaloneRootCA), the key length of the CA root key, 4096 bits, the hash algorithm this CA is to use, SHA256, and a CA certificate validity period of 20 years. Setting the -Confirm parameter to $false eliminates a confirmation popup. There is a small bit of output indicating a successful installation:

In step 4, you use the certutil.exe Windows console application to set details of where you plan to publish the CRL and details about how often you plan to update the CRL. Certutil sets these values in the system's registry. The certificate service retrieves the registry values at startup. Each time you call Certutil using the -setreg switch, Certutil displays both the old value and the new value for each registry item. The final call, for example, generates this output:

In step 5, you restart the certsvc service. Restart-Service produces no output from this step. In step 6, you publish the CRL details, and view the CRL files, as follows:

To view the CRL information from the GUI execute the CRL file which displays the CRL GUI like this:

If you click on the Revocation List tab, you see the current revocation list which is empty. The CRL looks like this:

As you can see from this CRL GUI, there are currently no revoked certificates.

In step 7, you copy the CRL and the CA's certificate to the computer that is intended to become an intermediate subordinate issuing CA (CA.Reskit.Org). There is no output from this step. Once you complete this step, you can shut down the root server, you run the remainder of the steps in the recipe from CA.Reskit.Org.

In step 8, you move the certificate and CRL files into a new folder C:\PKI. When you are creating the files or moving them manually, you can always copy the files directly into the C:\PKI folder and avoid this step.

In step 9, you use certutil.exe to publish the offline root CA you created earlier into the Active Directory and add both the root CA certificate and the CRL into the certificate stores on the local machine.

In step 10, you create a share for the CA certificate and CRL distribution:

With step 11, you install the Certificate Service components to the server. You also add the management tools to the server. If you plan to manage the server remotely, consider omitting the management tools. Note that this step only adds the Certificate Services components, you perform installation in a later step. Installing the components looks like this:

Although it may not be obvious, in step 11, you also installed IIS on the server (adding the Web-Mgmt-Console feature implies adding all the other web server features). So to setup the server to publish the CRL, in step 12, you need to add a new virtual directory to the IIS Server and configure IIS to allow double-escaping:

In step 13, you create a capolicy.inf file, similarly to how you created this file on the root CA server. There is no output. You finish the step by using the Install-ADDSCertificationAuthority to make ca.reskit.org a subordinate issuing CA:

As you can see, installing the intermediate CA generated an error. This error message is normal when installing a subordinate CA. To complete the installation of the CA, you need to get the parent CA (the offline root CA) to issue a signed certificate for the subordinate CA. Installing the CA created a certificate request file, (C:\CA.Reskit.Org_ReskitIssuing CA.req). You next need to copy this certificate request file from the subordinate CA computer to the offline root CA. As before, there are many ways to get the request copied over to the root CA.

Once you have copied the certificate request to the root CA computer, you submit the request for the certificate using the certificate request you created in step 13.

So having requested a certificate for CA.Reskit.ORG from the root CA, you need to issue the certificate and copy it back to the CA.Reskit.Org computer. You can request the certificate using the certreq command, but you need to use the GUI to issue the certificate, which you do in step 15:

Once you issue and retrieve the certificate, you copy it to the subordinate issuing CA. There is no output from the copy command in step 15. In step 16, you complete the installation of your issuing CA by installing the just-issued and copied certificate, then starting the certsvc service then checking to ensure the service started:

In step 17, you use the certutil.exe command to set up the details of the CRL and the validity period for the certificates issued by the CA. Each call to certutil shows the old and new value for each registry settings. Here is what the first call to certutil looks like:

In step 18, you configure the certificate revocation lists details. In step 19, you restart the certsvc using the updated settings. It takes a few seconds after the service has started before you can publish the CA's certificate revocation list, which looks like this:

And finally, you can test that the CA has issued the CRL and see what it contains. In step 20, you create a web client and download the CRL. Then you use certutil.exe to dump the CRL. The truncated output, with arrows pointing to key information (including the hashing algorithm, the issuing CA, and the number of CRL entries is zero). It looks like this:

 There's more...

In step 2, you create a CA and configure some settings. At the time of writing, best practice seems to suggest that SHA256 and a key length of 4096 bits are acceptable. But things change. Before deploying this recipe, research the latest best practice very carefully with regards to encryption algorithms and key lengths.

In step 6, you publish the root CA server certificate revocation list and view the file. The certificate and CRL files in the CertEnroll folder are binary so are not human readable. The output from this step looks like this:

In step 7, you copy the CA certificate and CRL from the root CA to the subordinate. That assumes network connectivity. In a production environment, you should always keep the root CA offline and off any network. In this situation, you need some means to move the two files to the subordinate CA computer such as a portable USB stick or drive.

In step 12, you did a basic setup of the CRL for your PKI. In production, you should consider hardening the setup. For example, you could change the permissions on the PKI folder to only all Reskit.Org administrators, or perhaps the certificate publishers group, to be the only accounts with permissions to write to this folder. You may also consider converting the PKI virtual directory into a separate IIS web application and run that application in a new and different web pool.

This recipe allowed you to implement a basic working two-level PKI. At present, you need to use a combination of PowerShell cmdlets, Windows console commands and the GUI. Perhaps later versions of Windows Server can provide better cmdlet coverage for setting up and managing certificates and certificate authorities.

 Creating and managing AD users, groups, and computers

Your active directory, as created in the Installing domain controllers and DNS recipe authenticates users and computers. AD also makes use of group membership to simplify authorization. In this recipe, you add, remove, and update users and computers. You also create and remove groups and manage group membership as well as manage organizational units. This recipe uses the cmdlets in the ActiveDirectory module. You can use a more automated approach to adding users by following the Adding users to the Active Directory using a CSV file recipe.

 Getting ready

This recipe uses two working domain controllers (DC1 and DC2) in the Reskit.Org domain.

 How to do it...

	Create a hash table for general user attributes:

 $Password = 'Pa$$w0rd'
 $PasswordSS = ConvertTo-SecureString `
 -String $Password `
 -AsPlainText -Force
 $NewUserHT = @{}
 $NewUserHT.AccountPassword = $PasswordSS
 $NewUserHT.Enabled = $true
 $NewUserHT.PasswordNeverExpires = $true
 $NewUserHT.ChangePasswordAtLogon = $false

	Create two new users:

 New-ADUser @NewUserHT `
 -SamAccountName 'ThomasL' `
 -UserPrincipalName 'thomasL@reskit.org' `
 -Name 'ThomasL' `
 -DisplayName 'Thomas Lee (IT)'
 New-ADUser @NewUserHT `
 -SamAccountName 'RLT' `
 -UserPrincipalName 'rlt@reskit.org' `
 -Name 'Rebecca Tanner' `
 -DisplayName 'Rebecca Tanner (IT)'

	Create an OU and move users into it:

 New-ADOrganizationalUnit -Name 'IT' `
 -DisplayName 'Reskit IT Team' `
 -Path 'DC=Reskit,DC=Org'
 Move-ADObject `
 -Identity 'CN=ThomasL,CN=Users,DC=Reskit,DC=ORG' `
 -TargetPath 'OU=IT,DC=Reskit,DC=Org'
 Move-ADObject `
 -Identity 'CN=Rebecca Tanner,CN=Users,DC=Reskit,DC=ORG' `
 -TargetPath 'OU=IT,DC=Reskit,DC=Org'

	Create a third user in the IT OU:

 New-ADUser @NewUserHT `
 -SamAccountName 'JerryG' `
 -UserPrincipalName 'jerryg@reskit.org' `
 -Description 'Virtualization Team' `
 -Name 'JerryGarcia' `
 -DisplayName 'Jerry Garcia (IT)' `
 -Path 'OU=IT,DC=Reskit,DC=Org'

	Add and then remove users two ways:

 New-ADUser @NewUserHT `
 -SamAccountName 'TBR' `
 -UserPrincipalName 'tbr@reskit.org' `
 -Name 'TBR' `
 -DisplayName 'User to be removed' `
 -Path 'OU=IT,DC=Reskit,DC=Org'
 New-ADUser @NewUserHT `
 -SamAccountName 'TBR2' `
 -UserPrincipalName 'tbr2@reskit.org' `
 -Name 'TBR2' `
 -DisplayName 'User to be removed' `
 -Path 'OU=IT,DC=Reskit,DC=Org'
 # Remove get | remove
 Get-ADUser -Identity 'CN=TBR,OU=IT,DC=Reskit,DC=Org' |
 Remove-ADUser -Confirm:$false
 # Remove directly
 Remove-ADUser -Identity 'CN=TBR2,OU=IT,DC=Reskit,DC=Org' `
 -Confirm:$false

	Update and display a user:

 Set-ADUser -Identity ThomasL `
 -OfficePhone '44168555420' `
 -Office 'Cookham HQ' `
 -EmailAddress 'ThomasL@Reskit.Org' `
 -GivenName 'Thomas' `
 -Surname 'Lee' `
 -HomePage 'Https://tfl09.blogspot.com'
 Get-ADUser -Identity ThomasL `
 -Properties Office,OfficePhone,EmailAddress

	Create and populate a group:

 New-ADGroup -Name 'IT Team' `
 -Path 'OU=IT,DC=Reskit,DC=org' `
 -Description 'All members of the IT Team' `
 -GroupScope DomainLocal
 $ItUsers = Get-ADUser -Filter * `
 -SearchBase 'OU=IT,DC=Reskit,DC=Org'
 Add-ADGroupMember -Identity 'CN=IT Team,OU=IT,DC=Reskit,DC=org' `
 -Members $ItUsers

	Add a computer to the AD:

 New-ADComputer -Name 'Wolf' `
 -DNSHostName 'wolf.reskit.org' `
 -Description 'One for Jerry'`
 -Path 'OU=IT,DC=Reskit,DC=Org' `
 -OperatingSystemVersion 'Window Server 2016
 Data Center'

 How it works...

This recipe uses some AD cmdlets contained in the ActiveDirectory module. The recipe shows how to do basic management of AD objects using PowerShell.

In step 1, you create a hash table of common user properties. You use this hash table to hold some of the common user properties. There is no output from this step.

In step 2, you add two users to the AD. Note that the parameters to New-ADUser include the properties set in the $NewUserHT hash table and the parameters you specify when you call New-ADUser. Note that, by default, the Add-NewADUser adds the new user into the the Users container in the root of the AD. There is no output from this step, although you can observe the two newly added users using the Active Directory Users and Computers MMC tool:

You do not need to create a user then move the user into the correct OU. Instead, you can use the -Path parameter to specify the OU in which you wish to create the user. In step 4, you create another user, this time directly in the IT organizational unit. As with previous steps, there is no output from adding this user. If you wish more output, specify the parameter -Passthru to New-ADuser.

Creating this third user with -Passthru looks like this:

In step 5, you create two users that you then delete. Step 5 shows two different ways you can remove a user. If you use the first pattern, you first get the object (the user to be removed) first, then delete it. Running this step from the console helps you to ensure you are deleting the correct user. The second approach works well if you are certain of no typos in the value you give to the -Identity parameter (the distinguished name of the user you wish to delete).

In step 6, you update a user's details specifying office and office phone, and so on. Then you retrieve the user's details from the AD:

In step 7, you create a new domain local security group and populate it with the three users in the IT OU. There is no output from these commands. Once you have completed the first seven steps, you can observe the results using the Active Directory Users and Computers MMC console, like this:

In step 8, you add a new computer, Wolf, to your AD. There is no output from this step.

 There's more...

In step 8, you just added a computer to AD. You could also create a security group, say IT group computers and add the new computer to the group (and don't forget to add other IT group systems to the new security group).

Removing the computer from AD is also quite simple: you use the Remove-ADComputer cmdlet (Or use the Get-ADComputer | Remove-ADComputer pattern).

 Adding users to AD using a CSV file

As mentioned several times in this book, https://www.spiceworks.com/ has a busy PowerShell support forum (accessible at https://community.spiceworks.com/programming/powershell). A frequently asked (and answered) question is: How do I add multiple users using an input file? This recipe does just that. You start with a simple CSV file containing the details of the users you wish to add. This script uses a CSV file and adds the users contained in the CSV.

 Getting ready

This recipe assumes you have a domain setup and that you have created the IT organizational unit.

 How to do it...

	Import a CSV file containing the details of the users you want to add to AD:

 $Users = Import-CSV -Path C:\FooUsers.Csv

	Add the users using the CSV:

 ForEach ($User in $Users) {
 $Prop = @{}
 $Prop.GivenName = $User.Firstname
 $Prop.Initials = $User.Initials
 $Prop.Surname = $User.Lastname
 $Prop.UserPrincipalName =
 $User.UserPrincipalName+"@reskit.org"
 $Prop.Displayname = $User.firstname.trim() + " " +
 $user.lastname.trim()
 $Prop.Description = $User.Description
 $Prop.Name = $User.Alias
 $Prop.AccountPassword = $(ConvertTo-SecureString `
 -AsPlainText $user.password -Force)
 $Prop.ChangePasswordAtLogon = $true
 # Now create the user
 New-ADUser @Prop -Path 'OU=IT,DC=Reskit,DC=ORG' `
 -Enabled:$true
 # Finally, display user created
 "Created $($Prop.Displayname)"
 }

 How it works...

In step 1, you import the CSV file. The recipe imports the CSV file from the C:\ folder, adjust this step to accord with where you place the CSV file. The CSV file, which you can create using Excel or Notepad, looks like this:

Importing the CSV file generates no output. In step 2, you iterate through the users in the CSV. For each user in the file, you generate a property hash table ($Prop) which you use as input to the New-ADUser cmdlet. After you add the user, you display a message logging that the script has added the requested user. If you run the entire recipe as a single script, saved as Recipe10-11.ps1, and using the users.csv file shown here, then the output looks like this:

 There's more...

There are many variations on this theme. You can expand the data included in the CSV file to add more properties to the AD user. For example, you could include phone numbers, office details, and more. You could also extend the CSV to include lists of groups of which any user should be a member. You could also extend the script and create more objects for the new users to use: a personal folder on a server, some SharePoint server space, and an Exchange mailbox. If you have Skype for Business, you could enable the user, possibly by including some Skype for Business information for the user in the CSV.

 Reporting on AD users

In this recipe, you generate a report on the users in your AD. Because the range of things you might wish to report on, the first step in this recipe defines a function: Get-ReskitUser. This function collects a range of information from the AD and returns it as a custom object. This approach allows you to customize this recipe further, for example reaching into Exchange, SharePoint, or Skype for Business and add additional properties to the object generated that Get-Reskituser returns. The recipe uses the Get-ReskitUser function and creates a report on aspects of the users in AD.

 Getting ready

This recipe relies on having users defined and active. The users added using previous recipes serves as a good base. You should use a client system, have the users in your AD and log on to the computer. Also ensure that the LastLogonDate AD attribute for the computer is populated fully. Populating other fields, such as Office would also be useful to make the reporting a bit more realistic.

 How to do it...

	Define a function to return details on our AD Users:

 Function Get-ReskitUser {
 # Get PDC Emulator DC
 $PrimaryDC = Get-ADDomainController -Discover `
 -Service PrimaryDC
 # Get Users
 $ADUsers = Get-ADUser -Filter * -Properties * `
 -Server $PrimaryDC
 # Iterate through them and create $Userinfo hash table:
 Foreach ($ADUser in $ADUsers)
 {
 # Create a userinfo HT
 $UserInfo = [Ordered] @{}
 $UserInfo.SamAccountname =
 $ADUser.SamAccountName
 $Userinfo.DisplayName = $ADUser.DisplayName
 $UserInfo.Office = $ADUser.Office
 $Userinfo.Enabled = $ADUser.Enabled
 $userinfo.LastLogonDate = $ADUser.LastLogonDate
 $UserInfo.ProfilePath = $ADUser.ProfilePath
 $userinfo.ScriptPath = $ADUser.ScriptPath
 $UserInfo.BadPWDCount = $ADUser.badPwdCount
 New-Object -TypeName PSObject -Property $UserInfo
 }
 }

	Get the users:

 $RKUsers = Get-ReskitUser

	Build the report header:

 $RKReport = ''
 $RkReport += "*** Reskit.Org AD Report`n"
 $RKReport += "*** Generated [$(Get-Date)]`n"
 $RKReport += "*******************************`n`n"

	Report on Disabled users:

 $RkReport += "*** Disabled Users`n"
 $RKReport += $RKUsers |
 Where-Object {$_.Enabled -NE $true} |
 Format-Table `
 -Property SamAccountName, Displayname |
 Out-String

	Report users who have not recently logged on:

 $OneWeekAgo = (Get-Date).AddDays(-7)
 $RKReport += "*** "Enabled users Not logged in" +
 "in past 7 days`n"
 $RkReport += $RKUsers |
 Where {$_.Enabled -and $_.LastLogonDate
 -le $OneWeekAgo} |
 Sort-Object -Property LastlogonDate |
 Format-Table -Property Displayname,
 lastlogondate |
 Out-String

	Users with high invalid password attempts:

 $RKReport += "*** High Number of Bad
 Password Attempts`n"
 $RKReport += $RKUsers | Where-Object BadPwdCount -ge 5 |
 Format-Table `
 -Property SamAccountName, BadPwdCount |
 Out-String

	Display the report:

 $RKReport

 How it works...

In step 1, you create the Get-ReskitUser function. This function gets all the users in the domain from the server acting as the PDC emulator. The function creates a hash table based on the what is returned from Get-AdUser. Finally, the function converts the hash table or each user into a PSCustom object which it returns to the caller.

In step 2 through step 6, you construct the separate parts of the report: users who are disabled, users who have not recently logged on, and users who have had more than five failed attempts to enter a valid password. There is no output from these steps.

In step 7, you display the report, which looks like this:

 There's more...

You have scope to expand this basic reporting script. You could, for example, compare the user objects returned from each DC and report on any user object that AD has not replicated. You could also generate an email message and mail the report to key people in your organization.

 Finding expired computers in AD

Expired computers, computers that have not logged on recently, can be something you need to investigate. A client computer that has not logged on to the domain for, say, a month, could have been stolen. Such a computer could also be an under-used asset that is a candidate for redeployment. If it's a server that has not logged in for a month, it could indicate a computer that is non-functioning and one you should investigate.

This recipe is a variation on the Report on AD Users recipe.

 Getting ready

This recipe needs computer accounts in the AD.

 How to do it...

	Build the report header:

 $RKReport = ''
 $RkReport += "*** Reskit.Org AD Unused
 + "Computer Report`n"
 $RKReport += "*** Generated [$(Get-Date)]`n"
 $RKReport += "***********************************`n`n"

	Report on computer accounts that have not logged in in past 14 days:

 $RkReport += "*** Machines not logged on in past 14 days`n"
 $FortnightAgo = (Get-Date).AddDays(-14)
 $RKReport += Get-ADComputer `
 -Properties lastLogonDate `
 -Filter 'lastLogonDate -lt $FortnightAgo' |
 Sort-Object -Property lastLogonDate |
 Format-Table -PropertyName, lastLogonDate |
 Out-string

	Report on computer accounts that have not logged in the past month:

 $RkReport += "*** Machines not logged on in past month`n"
 $AMonthAgo = (Get-Date).AddMonths(-1)
 $RkReport += Get-ADComputer `
 -Properties lastLogonDate `
 -Filter 'lastLogonDate -lt $AMonthAgo' |
 Sort-Object -Property lastLogonDate |
 Format-Table -Property Name, LastLogonDate |
 Out-String

	Display the report:

 $RKReport

 How it works...

Generating this report involves several steps. In step 1, you create the report header. In step 2 and step 3 you report on computers that have not logged on for more than a fortnight (2 weeks) and those that have not logged on for more than a month. These steps generate no output.

In step 3, you display the report showing the computers that have not logged on for more than two weeks, and for more than a month. The first set might indicate people who are on holiday, or who may be working in another office or from home for that period. Machines that do not log on for more than a month are candidates for further investigation.

 There's more...

There are many variations on this recipe. You could just report on computers that have not logged on for more than 90 days either as an alternative to the logging you are doing in this recipe or in addition to it. You might decide that computers not used a fortnight ago are not interesting to you and so you could drop that piece of the report.

When a computer logs on (and for that matter when a user logs on), the DC that performs the logon records the last logon time. By default, AD does not replicate this attribute to other DCs. Thus, it is entirely possible that a computer might never have recorded a logon against the DC you use to generate this report. If you have multiple DCs, consider extending this recipe to obtain computer logon details from all the domain controllers in the domain and report across all of them.

 Creating a privileged user report

When you add a user to a group (and the user re-logs on), the user acquires additional permissions and rights. That may be a good thing! Group membership enables the user to perform job-related duties. However, adding the user to the Enterprise Admins group, for example, provides that user with rights over most of your forest. A user who acquires the membership to such high privilege groups may not have benign intentions and could represent a serious risk. The report you generate using this recipe shows the privileged users and any changes that someone has made to the group membership.

 Getting ready

You need a DC on which to run this report.

 How to do it...

	Create an array for privileged users:

 $PUsers = @()

	Query the Enterprise Admins/Domain Admins/Scheme Admins groups for members and add to the $Pusers array:

 # Enterprise Admins
 $Members = Get-ADGroupMember `
 -Identity 'Enterprise Admins' -Recursive |
 Sort-Object -Property Name
 $PUsers += foreach ($Member in $Members) {
 Get-ADUser -Identity $Member.SID -Properties * |
 Select-Object
 -Property Name,
 @{Name='Group';expression={'Enterprise Admins'}},
 WhenCreated, LastlogonDate
 }

 # Domain Admins
 $Members = Get-ADGroupMember `
 -Identity 'Domain Admins' -Recursive|
 Sort-Object -Property Name
 $PUsers += Foreach ($Member in $Members)
 {Get-ADUser -Identity $member.SID -Properties * |
 Select-Object -Property Name,
 @{Name='Group';expression={'Domain Admins'}}, `
 WhenCreated, Lastlogondate,SamAccountName
 }
 # Schema Admins
 $Members = Get-ADGroupMember `
 -Identity 'Schema Admins' -Recursive |
 Sort-Object Name
 $PUsers += Foreach ($Member in $Members) {
 Get-ADUser -Identity $member.SID -Properties * |
 Select-Object -Property Name,
 @{Name='Group';expression={'Schema Admins'}}, `
 WhenCreated, Lastlogondate,SamAccountName
 }

	Create the basic membership report:

 $Report = ""
 $Report += "*** Reskit.Org AD Privileged
 User Report`n"
 $Report += "*** Generated [$(Get-Date)]`n"
 $Report += "***********************************"
 $Report += $PUsers| Format-Table -Property Name,
 WhenCreated,
 Lastlogondate `
 -GroupBy Group |
 Out-String
 $Report += "`n"

	Find out what has changed since last time this report ran

 $ExportFile = "c:\Foop\users.clixml"
 $OldFile = Try {Test-Path $ExportFile} Catch {}
 if ($OldFile) # if the file exists, report
 against changes
 {
 # Import the results from the last time the
 # script was executed
 $OldUsers = Import-Clixml-Path -Path $ExportFile
 # Identify and report on the changes
 $Changes = "*** Changes to Privileges
 User Membership`n"
 $Diff = Compare-Object
 -ReferenceObject $OldUsers `
 -DifferenceObject $PUsers
 If ($diff)
 {$Changes += $diff |
 Select-Object -Property @{Name='Name' ;expression=
 {$_.InputObject.Name}},
 @{Name='Group';expression=
 {$_.InputObject.Group}},
 @{Name='Side' ;expression=
 {If ($_.SideIndicator -eq '<=') `
 {'REMOVED'} Else
 {'ADDED'}}} | Out-String
 }
 Else
 {
 $LCT = (Get-Childitem
 -Path $ExportFile).LastWriteTime
 $Changes += "No Changes since previous
 Report [$LCT]"
 }
 }
 Else # Old file does not exist
 {
 $Changes += "EXPORT FILE NOT FOUND -
 FIRST TIME EXECUTION?"
 }
 $Report += $Changes

	Display the report

 $Report

	Save results from this execution (optional!)

 Export-Clixml -InputObject $PUsers -Path $ExportFile

 How it works...

This recipe works by first obtaining a set of privileged users. The recipe creates a report of the users who are members of certain groups that have high privilege levels. The recipe then compares the privileged users against an earlier set of users that you previously saved. After generating the report, this recipe saves the current list of privileged users.

In step 1, you create an array used later in this recipe.

With step 2, you query the AD to discover members of the some key groups (Enterprise Admins, Domain Admins, and Schema Admins) and add them to the array created in the prior step. This array contains members of those key groups.

In step 3, you use the list of now-privileged users to create a simple report of members of each of the three key groups.

With step 4, you retrieve the set of privileged users from some prior time and compare the set with users who are currently in those groups. You add the changes in privileged users to the report. Note that with this step, you convert the returned side indicator property into something more meaningful in this context (that is, a user has been ADDED or REMOVED to/from a sensitive group since the last time you ran this report.

The first four steps in this recipe generate no output. With step 5, you display the report to the console. The report looks like this:

 There's more...

This recipe examined membership in three key groups: Enterprise Admins, Domain Admins, and Schema Admins. There are other groups that you could include in this report. These include Hyper-V Administrators, Storage Replica Administrators, Key Admins, Enterprise Key Admins, DNSAdmins, and DHCP Administrators. Applications such as Exchange, SharePoint, and Skype for Business also define application-specific administrative groups as the basis of Role-Based Admin Control (RBAC) for those applications. You may wish to add membership of these potentially sensitive groups to your report.

In step 2, you build up an array of privileged users in each of three groups. In the recipe, you do this group by group. Should you decide to expand this recipe to include more groups, you may wish to refactor step 2 to be more general so as to cut down on the number of lines of PowerShell needed.

 Managing Network Shares

This chapter covers the following recipes:

	Securing your SMB file server

	Creating and securing SMB shares

	Accessing SMB shares

	Creating an iSCSI target

	Using an iSCSI target

	Creating a scale-out SMB file server

	Configuring a DFS Namespace

	Configuring DFS Replication

 Introduction

Sharing data across a network has been a feature of computer operating systems from the very earliest days of networking. This chapter looks at Windows Server 2016 features that enables you to share files and folders and to use the data that you have shared.

Microsoft's LAN Manager was the company's first network offering. It enabled client computers to create, manage, and share files in a secure manner. The protocol that LAN Manager used to provide this client/server functionality was an early version of the Server Message Block (SMB) protocol.

SMB is a file-level storage protocol that enables you to share files and folders securely and reliably. To increase reliability, you can install a cluster and cluster the file server role. This is an active-passive solution.

A Scale-Out File Server (SOFS) is a clustered file service where all nodes are active. With SMB 3, an SOFS provides continuous availability to files for any file-based application. Applications can include productivity applications (holding user documents, spreadsheets, and so on.) as well as both Hyper-V and SQL Server (to hold VHD/VHDX files, VM configuration details, and SQL databases).

This chapter shows you how you can implement and leverage the features of sharing data between systems, including SMB contained in Windows Server 2016. In the recipes in this chapter, you begin with creating and using basic SMB file sharing. Then you build an iSCSI infrastructure which you leverage in building an SOFS. You finish by looking at the Distributed File System (DFS). With DFS, you can provide the means to connect to multiple shared folders, held on a variety of servers through DFS Namespace. A DFS Namespace is the virtual view of the files and folders with a DFS installation.

In the first recipe, Securing your SMB file server, you harden the security on your SMB file server. Then, in the recipes Creating and securing SMB shares and Accessing SMB shares, you set up simple file folder sharing and access the shared files.

With the Creating an iSCSI target recipe, you create an iSCSI target on server SRV1, while in the Using an iSCSI target recipe, you make use of that shared iSCSI disk from FS1. iSCSI is a popular Storage Area Networking (SAN) technology, and these recipes show you how to use the Microsoft iSCSI initiator and target features.

A key feature of Hyper-V in Windows Server 2016 and beyond is the use of SMB 3.x and SOFS. You can utilize an SOFS to hold Hyper-V virtual disks and VM configuration files as well as SQL databases. When combined with shared storage, SOFS provides you with good redundancy and improved performance. You can implement a SOFS as an inexpensive alternative to the fully-fledged SAN. In Making SMB shares highly available recipe, you set up a file sharing scale-out cluster (using servers FS1 and FS2) and show you can a file server using shared storage provided via iSCSI.

There are two separate features under the banner of the DFS. DFS Namespaces allows you to create a logical folder structure that you distribute across multiple computers. DFS Replication replicates data held on DFS target folders to provide a transparent fault tolerant and load balancing DFS implementation. In the Configuring a DFS Namespace recipe, you set up a domain-based DFS Namespace. And then you configure and set up DFS Replication in the Configuring DFS Replication recipe.

There are a number of servers involved in the recipes in this chapter—each recipe describes the specific serves you use for that recipe. As with other chapters, all the servers are members of the Reskit.Org domain.

 Securing your SMB file server

The first step in creating a file server is to harden it. A file server can contain sensitive information, and you should take reasonable steps to avoid some of the common attack mechanisms and adopt best security practice. Security is a good thing but be careful! By locking down your SMB file server too hard, you can lock some users out of the server. SMB 1.0 has a number of weaknesses and in general should be removed. But, if you disable SMB 1.0, you may find that older computers (for example running Windows XP) lose the ability to access shared data.

 Getting ready

This recipe helps you to harden a single file server, FS1, which has locally attached storage. The server is domain joined and has the full GUI. FS1 has only the default services, plus the FileServer feature loaded. To add the FileServer feature to Windows, you could do this:

 Install-WindowsFeature -Name FS-FileServer `
 -IncludeManagementTools

 How to do it...

In this recipe, you harden the FS1 server.

	Retrieve the SMB server settings:

 Get-SmbServerConfiguration

	Turn off SMB1:

 Set-SmbServerConfiguration `
 -EnableSMB1Protocol $false `
 -Confirm:$false

	Turn on SMB signing and encryption:

 Set-SmbServerConfiguration `
 -RequireSecuritySignature $true `
 -EnableSecuritySignature $true `
 -EncryptData $true `
 -Confirm:$false

	Turn off default server and workstations shares:

 Set-SmbServerConfiguration -AutoShareServer $false `
 -AutoShareWorkstation $false `
 -Confirm:$false

	Turn off server announcements:

 Set-SmbServerConfiguration -ServerHidden $true `
 -AnnounceServer $false `
 -Confirm:$false

	Restart the server service with the new configuration:

 Restart-Service -Name lanmanserver

 How it works...

In step 1, you get the SMB server's configuration information. The Get-SmbServerConfiguration cmdlet in Windows Server 2016 returns 43 separate configuration properties. You can change some of these to harden your SMB server or to accommodate unique aspects of your infrastructure. Some of these properties, however, are relatively obscure—if you do not know what they do, consider leaving them at their default values.

In step 2, you use the Get-SMBServerConfiguration cmdlet and disable the SMB1 protocol. As Microsoft says (see https://blogs.technet.microsoft.com/filecab/2016/09/16/stop-using-smb1/), SMB1 isn't safe.

Improvements in SMB3 include pre-authentication integrity, encryption, and better message signing. In step 3, you set your SMB server to enable and require SMB signing and to require encryption of data transfer. SMB signing ensures that the SMB components sign every SMB data packet. SMB signing is particularly useful to reduce the risk of a man-in-the-middle attack. Requiring data encryption increases the security of your organization's data as it travels between server and client computers. A benefit of using SMB encryption versus something like IPSec is that deployment is just a matter of adjusting SMB server configuration. Once you find that you can safely turn off SMB1, consider removing the SMB1 feature from Windows, using Remove-WindowsFeature -Feature FS-SMB1.

Windows has a set of administrative shares it creates by default. In most cases, you can disable these. You turn off these default shares with step 4. With step 5, you also turn off server announcements which reduce the visibility of your file server to hackers. It's important to note that when setting up DFS Replication, the DFS Replication cmdlets require access to these administrative shares.

To make these changes effective, in step 6, you restart the server service, lanmanserver. Note that restarting the service closes any active connections. Ensure you restart during a scheduled maintenance outage or when you are certain the server is inactive.

 There's more...

In this recipe, you hardened a full installation of Windows Server 2016. To further harden these various role servers, you should consider installing Server Core. Or if you did do a full installation, then once you have completed the setup of the server, remove the GUI elements and. In effect, revert back to a server core installation.

In step 2, you disabled SMB1. SMB1 is an older and less secure version of the SMB protocol and could represent an attack vector. The downside to disabling is that older client computers only support SMB1 and could cease to access shared data if you disable SMB1. Older clients include Windows XP and Windows Server 2003. Windows Vista/Server 2008 and later versions of Windows have build in support for SMB2. So as long as long as you are running fully supported clients and server systems, you should be able to turn off SMB1.

For large organizations, you should consider using the AuditSmb1Access configuration setting. This setting logs access to your server via SMB1. To discover any older SMB clients that would be affected by disabling SMB1 you can search the SMB event log.

In step 3, you configured encryption for the file server. By default, SMB3 uses the AES-CCM algorithm. This algorithm provides both encryption and packet signing for encrypted file shares. Note that you can set up encryption on an individual share or for all shares on the server. You may choose to not force encryption on all shares, rather on just shares that hold more sensitive data. Encrypting and signing packets requires additional CPU resource to carry out the hash calculation and to encrypt the packets. Packet signing and encryption decreases SMB performance but provides additional security.

 Creating and securing SMB shares

For generations, administrators have used the net.exe command to set up shared folders and a lot more. These continue to work but you may find the new cmdlets easier to use, particularly if you are automating large-scale SMB server deployments.

This recipe looks at creating and securing shares on a Server 2016 platform using the PowerShell SMBServer module.

 Getting ready

For this recipe, you use the file server (FS1) that you hardened in the recipe Securing your SMB server. On this server, you share out folders on the file server. Later, in the recipe Accessing SMB shares, you access the shared folders. Ensure you have created the C:\Foo folder on FS1. This recipe uses a security group, IT Management which you create in the Reskit.Org AD (or use a different group).

 How to do it...

	Discover the existing shares and access rights:

 Get-SmbShare -Name * |
 Get-SmbShareAccess |
 Sort-Object -Property Name |
 Format-Table -GroupBy Name

	Share a folder:

 New-SmbShare -Name foo -Path C:\foo

	Update the share's description:

 Set-SmbShare -Name foo `
 -Description 'Foo share for IT' `
 -Confirm:$False `

	Set the folder enumeration mode:

 Set-SMBShare -Name foo `
 -FolderEnumerationMode AccessBased `
 -Confirm:$false

	Set the encryption on the foo share:

 Set-SmbShare -Name foo -EncryptData $true `
 -Confirm:$false

	Set and view share security:

 Revoke-SmbShareAccess -Name foo `
 -AccountName 'Everyone' `
 -Confirm:$false | Out-Null
 Grant-SmbShareAccess -Name foo -AccessRight Read `
 -AccountName
 'Reskit\ADMINISTRATOR' `
 -ConFirm:$false | Out-Null
 Grant-SmbShareAccess -Name foo -AccessRight Full `
 -AccountName 'NT
 Authority\SYSTEM' `
 -Confirm:$False | Out-Null
 Grant-SmbShareAccess -Name foo -AccessRight Full `
 -AccountName 'CREATOR OWNER' `
 -Confirm:$false | Out-Null
 Grant-SmbShareAccess -Name foo -AccessRight Read `
 -AccountName 'IT Team' `
 -Confirm:$false | Out-Null
 Grant-SmbShareAccess -Name foo -AccessRight Full `
 -AccountName 'IT Management' `
 -Confirm:$false | Out-Null

	Review share access:

 Get-SmbShareAccess -Name foo

 How it works...

In step 1, you get all the current shares on FS1 and it also displays the users/groups that have access to each share. Having turned off administrative shares in an earlier recipe, you see just two shares. A previous recipe created one of the shares (Backup). The other share is the IPC$ share which Windows uses for RPC calls. The output looks like this:

In step 2, you share the C:\foo folder, like this:

In steps 3, step 4, and step 5, you set properties of the new share. You give the share a description, set the folder enumeration mode and set the server to encrypt any data transferred to/from this share. There is no output from these steps.

In step 6, you set the security permissions on the share. You begin by removing the default read permission granted to Everyone. Then you grant specific permissions to the share. These steps give read access to the share to all users in the IT Team group, and full access to the IT Management group members. There was no output from these four steps.

In step 7, you display the permissions on the foo share:

 There's more...

The IPC$ share, shown in step 1, is also known as the null session connection. This session connection enables anonymous users to enumerate the names of domain accounts and enumerate network shares. The lanmanserver service creates this share by default although you can turn it off. The IPC$ share is also used to support named pipe connections to your server.

For details about IPC$ share, see https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows. Be careful should you chose to turn off the IPC$ share—test the resultant configuration very carefully.

In step 6, you set the share permissions. In this recipe, you create share permissions that mirror the permissions on the underlying folder. As ever when dealing with permissions, remove anything you do not explicitly need. At the same time, test all security settings very carefully. Small changes can have a significant impact.

 Accessing SMB shares

In the recipe Creating and securing SMB shares, you set up the shared files on the FS1 server. In this recipe, you access and use the shared folders.

 Getting ready

This recipe uses two servers—on one (FS1) you previously shared a few folders. In this recipe, you also utilize those shared files from server DC1. As with all recipes in this book, feel free to change the servers and folders being shared and used. Ensure you have a C:\Foo folder on FS1 created and populated with a few test files.

This recipe also uses a file on the C:\Foo folder on FS1—Marsinstaller.exe. This executable is created using the Creating an Azure backup recipe in Chapter 5, Managing Server Backup chapter. Feel free to use a different file and update step 8 appropriately.

 How to do it...

	Examine the SMB client's configuration:

 Get-SmbClientConfiguration

	You will require SMB signing from the client. You must run this command from an elevated console on the client computer:

 Set-SmbClientConfiguration `
 -RequireSecuritySignature $True `
 -Confirm:$false

	Examine SMB client's network interface:

 Get-SmbClientNetworkInterface | Format-Table

	Examine the shares provided by FS1:

 net view \\FS1

	Create a drive mapping, mapping the r: to the share on server FS1:

 New-SmbMapping -LocalPath r: `
 -RemotePath \\FS1.Reskit.Org\foo

	View the shared folder mapping:

 Get-SmbMapping

	View the shared folder contents:

 Get-ChildItem -Path r:

	Run a program from the shared file:

 R:\MarsInstaller.exe

	View existing connections (Note: you need to run this in an elevated console):

 Get-SmbConnection

	What files are open on FS1? If any files are open you view them by doing this on FS1:

 Get-SmbOpenFile

 How it works...

In step 1, you get and examine the SMB client's configuration. The SMB client's configuration is similar to the SMB server's properties you explored in the first step of the Securing your SMB server recipe. There are fewer client-side properties, as you can see here:

With step 2, you modify the SMB client to require SMB signing. There is no output from this step. In step 3, you examine the network interfaces your client system uses to carry SMB traffic:

In step 4, you examine from the client the shares provided by the file server FS1. You use the net view command. There does not appear to be any cmdlet that can do this in the same way as the net command. The output from using the net command looks like this:

In step 5, you use New-SmbMapping to map a local drive (r:) to the \\fs1\.reskit.org\foo share, which looks like this:

In step 6, you view the current drive mappings on the client computer, which looks like this:

After creating the drive mapping, you can use all the normal cmdlets to access data on the r: drive. In step 7, you view the contents of r:.

In step 8, you run a program on the shared drive. The details of this program (the Mars installer) are not the point here. In running a program, you have used a file.

In step 9, you then see the results of running the program. On the file server (FS1) you use the Get-SmbConnection cmdlet to see the files open on the server, which looks like this:

Knowing who connects to your file server can be useful, but even more useful is knowing what files they are accessing. In step 10 you use the Get-SmbOpenFile cmdlet to show the open files:

 There's more...

In step 4, you made use of net.exe to run the net view command. The cmdlet Get-SMBShare does not have a -ComputerName parameter that might enable you to retrieve shared folders from a remote computer. You could create a CIM session to fs1, and use Get-SMBShare against the CIM session to return the remote shares. However, doing that requires either the user to have administrative rights to the file server, or setting up a less-privileged end point on fs1 that non-privileged users can access. Using net.exe is another great example of where the old commands still have great value (and they perform a bit quicker) especially at the command line.

In step 10, you used Get-SmbOpenFile to see the files open on a file server. As you can see above, details of the open file and the computer making the connection, are not clearly shown. Instead of a file name, you get a FileId which is not clearly related to the actual file.

 Creating an iSCSI target

iSCSI is an industry standard protocol which implements block storage over a TCP/IP network. Windows sees an iSCSI Logical Unit Number (LUN) as a locally attached disk. You can manage the disk just like locally attached storage.

Windows Server 2016 includes both iSCSI target (server) and iSCSI initiator (client) features. You set up an iSCSI target on a server and then use an iSCSI initiator on a client system to access the iSCSI target. You can use both Microsoft and 3rd party initiators and targets, although if you mix and match you need to test very carefully that the combination works in your environment.

With iSCSI, a target is a single storage unit (effectively a disk) that the client computer accesses using the iSCSI protocol. An iSCSI target server hosts one or more targets where each iSCSI target is equivalent to a LUN on a Fiber Channel SAN. The iSCSI initiator is a built-in component of Windows Server 2016 (and Windows 10). The iSCSI target feature is one you install optionally on Windows Server 2016.

You could use iSCSI in a cluster of Hyper-V servers for a Cluster Shared Volume (CSV). The servers in the cluster can use the iSCSI initiator to access an iSCSI target providing shared storage. For a SOFS, this share information can hold the virtual hard drives and configuration information for Hyper-V virtual machines as well as SQL Server databases. The shared iSCSI target is shared between nodes in a failover cluster enabling the VMs to be highly available.

 Getting ready

In this recipe, you install the iSCSI target feature and set up a target on the server SRV1. SRV1 also requires an additional disk that you use to hold the target, the I: on the SRV1 server. A recipe in Chapter 4, Managing Printers made use of a second drive on SRV1 for backup purposes—the I: drive is a new and separate drive for this recipe.

 How to do it...

	Install the iSCSI target feature:

 Install-WindowsFeature FS-iSCSITarget-Server

	Explore iSCSI target server settings:

 Get-IscsiTargetServerSetting

	Create an iSCSI disk (that is a LUN):

 $LunPath = 'I:\SalesData.Vhdx'
 $LunName = 'SalesTarget'
 New-IscsiVirtualDisk -Path $LunPath `
 -Description 'LUN For Sales' `
 -SizeBytes 1.1GB

	Create the iSCSI target:

 New-IscsiServerTarget -TargetName $LunName `
 -InitiatorIds `
 DNSNAME:FS1.Reskit.Org

	Create iSCSI disk target mapping:

 Add-IscsiVirtualDiskTargetMapping `
 -TargetName $LunName `
 -Path $LunPath

 How it works...

With step 1, you install the iSCSI target feature using Install-WindowsFeature, like this:

In step 2, you use the Get-IscsiTargetServerSetting cmdlet to explore the properties of the iSCSI target server:

In step 3, you create the VHDX that is to serve to hold a LUN as follows:

In step 4, you create the iSCSI target. In this step, you define an iSCSI target on the computer and specify which initiators can connect to this iSCSI target. In this case, you specified the initiator using a DNS name for the initiator and the computer name of the allowed initiator(s). In this case, you specify just one initiator (fs1.reskit.org). Creating the target looks like this:

Now that you have everything set up, you need to add the iSCSI virtual disk to the iSCSI target. You perform this in step 5, but the step generates no output. Once you have completed these steps, you have created an iSCSI target, with a LUN in place for use in an iSCSI initiator.

 There's more...

If you are not familiar with iSCSI and iSCSI targets, see the TechNet article at https://technet.microsoft.com/en-us/library/hh848272(v=ws.11).aspx which presents an overview of iSCSI targets.

In step 3, you create the new LUN, using New-IscsiVirtualDisk. When using this command, you must specify a VHDX file extension. Windows Server 2016 does not support VHD files for new iSCSI targets. You can, however, add an old VHD file as an iSCSI virtual disk (you just can't create a new one).

When you create the virtual disk, it is uninitialized with no volumes or formatting. You use the initiator to mount and manage the drive as if it were local.

You can also increase security by using Challenge Handshake Authentication Protocol (CHAP) authentication. You can specify the CHAP username and password on both the initiator and the target to authenticate the connection to an iSCSI target. If the security of iSCSI traffic is an issue, you could consider securing iSCSI traffic using IPSec.

 Using an iSCSI target

In the previous recipe, you created an iSCSI target. In this recipe, you will implement an iSCSI initiator that enables you to use the iSCSI target across the iSCSI network. You use the iSCSI feature included in Windows Server 2016 (and Windows 10) to access the target. Note that, by default, the iSCSI initiator does not start automatically. To use an initiator on an iSCSI client computer, you have to start the service (msiscsi) and enable the service to start on reboot automatically.

 Getting ready

This recipe, which you run on server FS1, assumes you have created an iSCSI target as shown on the Creating an iSCSI target recipe.

 How to do it...

	Adjust the startup type and start the service:

 Set-Service -Ma,e msiscsi -StartupType 'Automatic'
 Start-Service =Name msiscsi

	Add the iSCSI portal:

 New-IscsiTargetPortal `
 -TargetPortalAddress Srv1.Reskit.Org `
 -TargetPortalPortNumber 3260

	Find the SalesTarget iSCSI target on the portal:

 $Target = Get-IscsiTarget |
 Where-Object NodeAddress -Match 'SalesTarget'
 $Target

	Connect to the target:

 Connect-IscsiTarget -TargetPortalAddress Srv1 `
 -NodeAddress $Target.NodeAddress

	Set up the disk on the target and create a new volume with a drive letter:

 $ISD = Get-Disk | Where-Object BusType -eq 'iscsi'
 Set-Disk -InputObject $isd -IsOffline $False
 Set-Disk -InputObject $isd -Isreadonly $False
 $ISD | New-Volume -FriendlyName SalesData `
 -FileSystem ReFS `
 -DriveLetter S

	Use the newly created S: drive, as follows:

 Set-Location -Path S:
 New-Item -Path S:\ -Name SalesData `
 -ItemType Directory
 'Testing 1-2-3' |
 Out-File -FilePath S:\SalesData\Test.txt
 Get-ChildItem -Path S:\SalesData

 How it works...

The Microsoft iSCSI initiator is a service in Windows that Windows installs by default, but does not start automatically. In step 1, you set the iSCSI service, msiscsi, to automatically start on reboot. Then you start the service. This step provides some minimal output:

In step 2, you tell Windows where to find the iSCSI portal. The iSCSI portal is a server address and a port number (the default port is 3260) on which the iSCSI initiator can find iSCSI targets. The output from New-IscsiTargetPortal shows details of the portal, like this:

In step 3, you get a specific target by piping the output of Get-IscsiTarget to the Where-Object cmdlet to select the SalesTarget LUN that you created in the Creating iSCSI target recipe. You store the target in the $SalesTarget variable and then display it. The output from displaying the $SalesTarget variable looks like this:

To connect the iSCSI target, in step 4, you use the Connect-IscsiTarget cmdlet, like this:

Now that you have connected to the iSCSI target, you have a new disk in your system. The disk is the LUN you created earlier. When you created the LUN you did not initialize it or format it. In step 5, you set up the disk for use. You set the disk to be online and make it read/write. Then you create a new volume on this disk, format it using the ReFS file system and give it the S: drive letter. Setting up the disk looks like this:

Now that you have connected to the disk, brought it online, and formatted it, the drive is ready for use. You can now perform all of the normal actions you might on a disk. In step 6, you set the location of the file system provider to your new S: drive, created a folder, and then created a file in that folder, as follows:

 There's more...

This recipe enabled you to use the Microsoft iSCSI initiator to connect to a Microsoft iSCSI-provided target. These built-in features work and are fine for simple use.

The iSCSI initiator and the iSCSI target features with Windows Server 2016 have seen little development or improvement since they were first released over a decade ago. You may find independent third party iSCSI vendors that are more appropriate depending on your requirements.

 Creating a scale-out SMB file server

Windows clustering enables you to create a failover file server. When you cluster the file server role, one node in the cluster offers the SMB server features to the network based on shared storage. If that node fails, the cluster can fail over the file sharing service to another node and still access the shared storage. But the fail over can take some time and has some limitations.

An SOFS enables all nodes in the cluster to be active simultaneously. This provides for extra performance as well as improved fault tolerance. With an SOFS, you can hold Hyper-V virtual machine hard drives/configuration information and SQL databases. This recipe shows you how to set up an SOFS.

 Getting ready

For this recipe, you need a two node cluster. The nodes are FS1 and FS2 each of which has already been set up with iSCSI targets that point to shared disks.

 How to do it...

	Add the Failover-Clustering feature to both servers:

 Install-WindowsFeature -Name Failover-Clustering `
 -ComputerName FS1 `
 -IncludeManagementTools

 Install-WindowsFeature -Name Failover-Clustering `
 -ComputerName FS2 `
 -IncludeManagementTools

	Test the cluster nodes (run this on FS1):

 $CheckOutput = 'c:\foo\clustercheck'
 Test-Cluster -Node FS1, FS2 -ReportName "$CheckOutput.htm"

	View cluster test results:

 Invoke-Item -Path "$Checkoutput.htm"

	Create the failover cluster:

 New-Cluster -Name FS `
 -Node 'fs1.reskit.org',
 'fs2.reskit.org' `
 -StaticAddress 10.10.10.100

	Add the ClusterScaleOutFileServerRole:

 Add-ClusterScaleOutFileServerRole -Name SalesFS

	Add the target to the CSV:

 Get-ClusterResource |
 Where-Object OwnerGroup -Match 'Available' |
 Add-ClusterSharedVolume -Name VM

	Create a share:

 $SdFolder = 'S:\SalesData'
 New-SMBShare -Name SalesData `
 -Path $SdFolder `
 -Description 'SalesData'

	Create a folder and add a continuously available share:

 $HvFolder = 'C:\ClusterStorage\Volume1\HVData'
 New-Item -Path $HvFolder -ItemType Directory |
 Out-Null
 New-SMBShare -Name SalesHV -Path $HvFolder `
 -Description 'Sales HV (CA)' `
 -FullAccess 'Reskit\IT Team' `
 -ContinuouslyAvailable:$true

	View the shared folders:

 Get-SmbShare

 How it works...

In step 1, you add the Failover-Clustering role to both FS1 and FS2, which looks like this:

In step 2, you perform the cluster validation tests. These tests check to ensure that all the resources needed for the cluster are present and working properly. You should run the Test-Cluster cmdlet before creating a cluster and following any and all maintenance activities. If for any reason the cluster test fails, you need to check out why and correct the issue before proceeding. The output from the command looks like this:

As you can see, the Test-Cluster does not provide much information returned to the console, aside from the pointer to the report file—in this case, C:\Foo\ClusterCheck.Htm.

In step 3, you view the output file generated by step 2. This output file is large, contains the results of the extensive tests performed by the Test-Cluster cmdlet, and looks like this:

In step 4, you create the cluster using the New-Cluster cmdlet. The output is minimal and looks like this:

Once step 5 has completed successfully, your cluster is up and running. In step 5, you add the ClusterScaleOutFileServerRole to the cluster. The output, also relatively minimal, looks like this:

With the SOFS role added, you need to add the storage you wish to use for fail-over shares to a ClusterSharedVolume, which looks like this:

With the cluster installed and the storage added to the CSV, you can now add shares to the file sharing cluster. First, in step 7, you add a normal active-passive share to the cluster, like this:

Now that you have the SOFS created, you create, in step 8, an active-active continuously available file share. Adding a continuously-available share looks like this:

Now that you have finished these steps, with step 9, you view the shares created on the cluster, which looks like this:

 There's more...

In step 1, you added the clustering feature to both FS1 and FS2 independently. The Install-WindowsFeature cmdlet does not let you add the same feature (that is the clustering role) to multiple servers in a single command. To speed things up, you could run the installation on each server as background jobs that run in parallel (or use a workflow).

The preceding output shown for step 3 is truncated but illustrates that the cluster validation has succeeded. At this point, the validation tests confirm that the elements required for the cluster are all present and correct. These tests are important in two ways. The test results verify that you have everything you need in place to create the cluster. Also, if the test is successful, then the cluster is supported by Microsoft. For large organizations running mission critical workloads, support can be critical.

 Configuring a DFS Namespace

The Distributed File System (DFS) is a set of services in Windows that enables you to create a structured replicated file store on two or more servers within your organization. Microsoft first released DFS as an add-on to Windows NT 4.0. DFS has been improved significantly since then.

In Windows Server 2016, DFS has two separate components. The first is DFS Namespace (DFSN). DFSN enables you to create a single contiguous namespace that refers to shares held on multiple servers. The second component, DFS Replication (DFSR), performs replication of data between DFS nodes in the DFS Namespace.

With DFS Namespaces, you can make use of shared folders stored on computers throughout the organization to create a single logically structured namespace. This namespace appears to the user as a continuous and well-organized set of folders and subfolders even though the actual shared data may be in a variety of independently named shares on one or more computers in the organization.

Before you build your DFS Namespace, you need to create the shared folders that you wish to add to your DFS Namespace. The namespace design then determines which folder goes where within the namespace hierarchy. You also define the names of the folders in the namespace, and these can be different to the underlying file shares. When you view the DFS Namespace, the folders appear to reside on a single share that has multiple folders and subfolders. You navigate through the DFS Namespace and avoid needing to know the names of the actual servers and shares that physically hold your data.

DFSR replicates folders in the DFS Namespace between servers in your organization. DFSR utilizes the Remote Differential Compression (RDC) compression protocol to perform the replication. RDC just replicates blocks of data. Replication allows you to create multiple copies of your shared data and ensures that the changes you make to that data are quickly and efficiently replicated. This can be useful both for load balancing and for failover. Additionally, DFS is site aware, thus when you access folders in the DFS Namespaces, DFS attempts to find shared files within a site.

It is important to note that you can use DFSN without using DFSR. If you need to replicate data, there are a variety of tools available that may be more appropriate for your needs. For more information on file synchronization tools, look at https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software.

DFSN and DFSR each has a supporting PowerShell module. The DFSN module helps you to manage the DFS Namespaces in your DFS implementation. You manage DFSR replication using the DFSR module. With Server 2016, there are 23 cmdlets in the DFSN module and 45 cmdlets in the DFSR module.

In this recipe, you set up and configure a domain-based DFS Namespace on the servers SRV1 and SRV2. You create additional DFS Namespace targets on other computers, add these to the DFS Namespace. In a later recipe, Configuring DFS Replication, you set up replication using DFSR.

 Getting ready

This recipe assumes you have two servers: SRV1 and SRV2 with each server having a volume (E:) that you use as the location for the DFS Root If this drive does not exist, then create it on these two servers. Additionally, the recipe uses several folders shared on multiple computers as targets in our DFS Namespace.

In this recipe, you create a DFS Namespace, as set out in this table:

	
Namespace folder

	
Target SMB share

	
\\ShareData (DFS Namespace Root)

	
\\Srv1\ShareData and \\Srv2\ShareData

	
\IT

	
n/a

	
\IT\ITData

	
\\fs1\ITData\, \\Fs2\ITData

	
\IT\ITManagement

	
\\Dc1\ITData, Dc2\ITData

	
\Sales

	
n/a

	
\SalesData

	
\\fs1\Sales, \\Fs2\Sales

	
\SalesHistorical

	
\\fs1\SalesHistorical and \\Fs2\SalesHistorical

This recipe assumes you have not yet created the target folders involved in the DFS Namespace and therefore creates explicitly the folders and the SMB shares required.

 How to do it...

	Install DFS Namespace, DFS Replication, and the related management tools:

 Install-WindowsFeature -Name FS-DFS-Namespace `
 -IncludeManagementTools `
 -ComputerName Srv1
 Install-WindowsFeature -Name FS-DFS-Namespace `
 -IncludeManagementTools `
 -ComputerName Srv2

	View the DFSN module and the DFSN cmdlets:

 Get-Module -Name DFSN -ListAvailable
 Get-Command -Module DFSN | Measure-Object

	Create folders and shares for DFS Root:

 $Sb = {
 New-Item -Path E:\ShareData -ItemType Directory `
 -Force | Out-Null
 New-SmbShare -Name ShareData -Path E:\ShareData `
 -FullAccess Everyone
 }
 Invoke-Command -ComputerName Srv1, Srv2 `
 -ScriptBlock $Sb

	Create DFS Namespace Root pointing to ShareData:

 New-DfsnRoot -Path \\Reskit.Org\ShareData `
 -TargetPath \\Srv1\ShareData `
 -Type DomainV2 `
 -Description 'Reskit Shared Data
 DFS Root'

	Add a second target and view results:

 New-DfsnRootTarget -Path \\Reskit.Org\ShareData `
 -TargetPath \\Srv2\ShareData |
 Out-Null
 Get-DfsnRootTarget -Path \\Reskit.Org\ShareData

	Create additional shares and populate:

 # FS1 folders/shares
 $Sb = {
 New-Item -Path C:\IT2 -ItemType Directory | Out-Null
 New-SmbShare -Name 'ITData' -Path C:\IT2 `
 -FullAccess Everyone
 New-Item -Path C:\Sales -ItemType Directory |
 Out-Null
 New-SmbShare -Name 'Sales' -Path C:\Sales `
 -FullAccess Everyone
 New-Item -Path C:\OldSales -ItemType Directory |
 Out-Null
 New-SmbShare -Name 'SalesHistorical' `
 -Path 'C:\OldSales'
 # Add content to files in root
 'Root' | Out-File -FilePath c:\it2\root.txt
 'Root' | Out-File -FilePath c:\Sales\root.txt
 'Root' | Out-File -FilePath c:\oldsales\root.txt
 }
 Invoke-Command -ScriptBlock $Sb -Computer FS1
 # FS2 folders/shares
 $Sb = {
 New-Item -Path C:\IT2 -ItemType Directory | Out-Null
 New-SmbShare -Name 'ITData' -Path C:\IT2 `
 -FullAccess Everyone
 New-Item -Path C:\Sales -ItemType Directory |
 Out-Null
 New-SmbShare -Name 'Sales' -Path C:\Sales `
 -FullAccess Everyone
 New-Item -Path C:\OldSales -ItemType Directory |
 Out-Null
 New-SmbShare -Name 'SalesHistorical' -Path C:\IT2
 'Root' | Out-File -FilePath c:\it2\root.txt
 'Root' | Out-File -FilePath c:\Sales\root.txt
 'Root' | Out-File -FilePath c:\oldsales\root.txt
 }
 Invoke-Command -ScriptBlock $sb -Computer FS2
 # DC1 folders/shares
 $SB = {
 New-Item -Path C:\ITM -ItemType Directory | Out-Null
 New-SmbShare -Name 'ITM' -Path C:\ITM `
 -FullAccess Everyone
 'Root' | Out-File -Filepath c:\itm\root.txt
 }
 Invoke-Command -ScriptBlock $sb -Computer DC1
 # DC2 folders/shares
 $Sb = {
 New-Item C:\ITM -ItemType Directory | Out-Null
 New-SmbShare -Name 'ITM' -Path C:\ITM `
 -FullAccess Everyone
 'Root' | Out-File -FilePath c:\itm\root.txt
 }
 Invoke-Command -ScriptBlock $Sb -Computer DC2

	Create DFS Namespace and set DFS targets:

 New-DfsnFolder -Path '\\Reskit\ShareData\IT\ITData' `
 -TargetPath '\\fs1\ITData' `
 -EnableTargetFailback $true `
 -Description 'IT Data'
 New-DfsnFolderTarget `
 -Path '\\Reskit\ShareData\IT\ITData' `
 -TargetPath '\\fs2\ITData'
 New-DfsnFolder `
 -Path '\\Reskit\ShareData\IT\ITManagement' `
 -TargetPath '\\DC1\itm' `
 -EnableTargetFailback $true `
 -Description 'IT Management Data'
 New-DfsnFolderTarget `
 -Path '\\Reskit\ShareData\IT\ITManagement' `
 -TargetPath '\\DC2\itm'
 New-DfsnFolder `
 -Path '\\Reskit\ShareData\Sales\SalesData' `
 -TargetPath '\\fs1\sales' `
 -EnableTargetFailback $true `
 -Description 'SalesData'
 New-DfsnFolderTarget `
 -Path '\\Reskit\ShareData\Sales\SalesData' `
 -TargetPath '\\fs2\sales'
 New-DfsnFolder `
 -Path '\\Reskit\ShareData\Sales\SalesHistoric' `
 -TargetPath '\\fs1\SalesHistorical' `
 -EnableTargetFailback $true `
 -Description 'Sales Group Historical Data'
 New-DfsnFolderTarget `
 -Path '\\Reskit\ShareData\Sales\SalesHistoric' `
 -TargetPath '\\fs2\SalesHistorical'

 How it works...

Before you can use DFS to hold a DFS Namespace, you need to install the DFS Namespace feature. In step 1, you create a script block with the Install-WindowsFeature cmdlet, which looks like this:

In step 2, you look at the DFSN module and determine how many cmdlets the DFSN module contains, as follows:

In step 3, you create the folders and SMB shares on Srv1 and Srv2 that serve as the DFS Root as follows:

With the Root shares created, in step 4, you create a new DfsnRoot folder on server Srv1:

In step 5, you create a second DfsnRoot folder, this time on SRV2. Then (despite the error message) you view the DfsnRoot targets:

Before you can create folders in the DFS Namespace, you need to create the underlying shares. In step 6, you create the shares (as noted in the earlier table), which looks like this:

In step 7, you convert the shares held in different machines into your DFS Namespace, as follows:

Now that you have the DFS Namespace created, you can examine it using the DFS MMC console:

In the preceding screenshot, you can see that the DFS Namespace folder \\Reskit.Org\ShareData\Sales\SalesHistoric has two two targets, \\fs1\SalesHistorical and \\fs2\SalesHistorical. Those two targets are, thus far not synchronized using DFS. You set up synchronization in the next recipe.

 There's more...

In creating your DFS Namespace, you created virtual folders without a target. The DNS folder \\Reskit.Org\ShareData\Sales, for example, has no target. This is a feature that enables you to create the logical hierarchy of folders that meets your needs, and only have the bottom most folders with folder targets.

In step 1, you add the DFS Namespace component on SRV1 and SRV2. You do this in two steps (first on SRV1, then on SRV2) since the Install-WindowsFeature cmdlet only accepts a single computer name (not an array of computer names).

The DFSN module, as shown in step 2, has 23 cmdlets. As with all PowerShell modules, you can use Get-Command as well as Get-Help to discover the cmdlets in the module and to get details on specific cmdlets. After installing the DFSN modules, ensure you use Update-Help to update your local help files with full details of the DFSN cmdlets.

In step 5, you both create a second DfsnRoot target and view the targets you have created. The New-DFNSRootTarget cmdlet produces an error message, but it is spurious. As you can see with the output from Get-DfsnRootTarget, both target folders are created correctly.

In step 7, you create the DFS Namespace. Once this is completed, you can use UNC Paths like \\Reskit.Org\Sales\SalesHistoric. However, the two targets are not synchronized. You can perform synchronization using DFS Replication or by a third-party tool.

For more information on DFS Namespaces and DFS Replication, see https://technet.microsoft.com/library/jj127250.aspx.

 Configuring DFS Replication

DFSR is an efficient file replication engine built into Windows Server 2016. You can use DFS Replication to replicate DFSN targets in an efficient manner, especially across low-bandwidth connections.

In DFSR, a replication group is a collection of computers, knows as members. Each replication group member hosts replicated folders. Replicated folders are folders which DFSR ensures are synchronized. With DFS Replication groups, you can replicate the folders contained in your DFS Namespace.

A replicated folder is a folder that stays synchronized on each member. In the figure, there are two replicated folders: projects and proposals. As the data changes in each replicated folder, DFS replicates the changes across connections between the members of the replication group. The connections you set up between the members forms the replication topology.

Creating multiple replicated folders in a single replication group simplifies the process of deploying replicated folders because DFS applies the topology, schedule, and bandwidth throttling for the replication group to each replicated folder.

Each replicated folder has many properties. These include file and subfolder filters that enable you to filter out different files and subfolders for each replicated folder.

You can locate replicated folders on different volumes in the member. You do not need to have the replicated folders in a shared folder or part of a namespace.

DFS replication can support a variety of replication topologies to support a variety of requirements. For more information on the different replication topologies, see https://www.petri.com/planning-dfs-architecture-part-two.

 Getting Ready

This recipe also sets up two DFS Replication groups as follows:

	
Replication group

	
Computers in RG

	
Content folders

	
FSShareRG

	
FS1, FS2

	
C:\IT2, C:\OldSales, C:\Sales

	
DCShareRG

	
DC1, DC2

	
C:\ITM

 How to do it...

	Install DFS-Replication feature on key servers:

 $Sb = {Add-WindowsFeature -Name FS-DFS-Replication `
 -IncludeManagementTools
 }
 Invoke-Command -ScriptBlock $Sb `
 -ComputerName DC1, DC2, FS1,
 FS2, SRV1, SRV2 |
 Format-Table -Property PSComputername,
 FeatureResult, Success

	Turn on administrative shares:

 $Sb = {
 Set-SmbServerConfiguration `
 -AutoShareServer $true `
 -AutoShareWorkstation $true `
 -Confirm:$false
 }
 Invoke-Command -ScriptBlock $Sb `
 -ComputerName DC1, DC2, FS2, FS2,
 SRV1, SRV2

	View DFS cmdlets:

 Get-Module -Name DFSR -ListAvailable
 Get-Command -Module DFSR | Measure-Object

	Create and display replication groups:

 New-DfsReplicationGroup `
 -GroupName FSShareRG `
 -DomainName Reskit.Org `
 -Description 'Replication Group for FS1,
 FS2 shares' | Out-Null
 New-DfsReplicationGroup `
 -GroupName DCShareRG `
 -DomainName Reskit.Org `
 -Description 'Replication Group for DC1,
 DC2 shares' | Out-Null
 Get-DfsReplicationGroup | Format-Table

	Add replication group members for FSShareRG:

 Add-DfsrMember -GroupName FSShareRG `
 -Description 'File Server members' `
 -ComputerName FS1,FS2 `
 -DomainName Reskit.Org | Out-Null
 New-DfsReplicatedFolder -GroupName FSShareRG `
 -FolderName ITData
 -Domain Reskit.Org `
 -Description 'ITData' `
 -DfsnPath
 \\Reskit.Prg\ShareData\IT\ITData | Out-Null
 New-DfsReplicatedFolder -GroupName FSShareRG `
 -FolderName Sales
 -Domain Reskit.Org `
 -Description 'Sales' `
 -DfsnPath
 \\Reskit.Org\ShareData\Sales\SalesData | Out-Null
 New-DfsReplicatedFolder -GroupName FSShareRG `
 -FolderName SalesHistorical
 -Domain Reskit.Org `
 -Description 'Sales history' `
 -DfsnPath
 \\Reskit.Org\ShareData\Sales\SalesHistoric | Out-Null

	Add replication group members for DCShareRG:

 Add-DfsrMember -GroupName DCShareRG `
 -Description 'DC Server members' `
 -ComputerName DC1,DC2 `
 -DomainName Reskit.Org |
 Out-Null
 New-DfsReplicatedFolder `
 -GroupName DCShareRG `
 -FolderName ITManagement
 -Domain Reskit.Org `
 -Description 'IT Management Data' `
 -DfsnPath
 \\Reskit.Org\sharedata\IT\ITManagement | Out-Null

	View replicated folders:

 Get-DfsReplicatedFolder |
 Format-Table -Property GroupName, FolderName, DomainName,
 DfsnPath

	Set membership for FSShareRG replication group:

 Set-DfsrMembership -GroupName FSShareRG
 -FolderName ITData `
 -ComputerName FS1
 -ContentPath C:\It2 `
 -PrimaryMembe $true -Force |
 Out-Null
 Set-DfsrMembership -GroupName FSShareRG
 -FolderName ItData `
 -ComputerName FS2
 -ContentPath c:\It2 `
 -Force | Out-Null
 Set-DfsrMembership -GroupName FSShareRG
 -FolderName Sales `
 -ComputerName FS1
 -ContentPath C:\Sales `
 -PrimaryMember $true -Force |
 Out-Null
 Set-DfsrMembership -GroupName FSShareRG
 -FolderName Sales `
 -ComputerName FS2
 -ContentPath c:\Sales `
 -Force | Out-Null
 Set-DfsrMembership -GroupName FSShareRG
 -FolderName SalesHistorical `
 -ComputerName FS1
 -ContentPath C:\OldSales `
 -PrimaryMember $true -Force |
 Out-Null
 Set-DfsrMembership -GroupName FSShareRG
 -FolderName SalesHistorical `
 -ComputerName FS2
 -ContentPath c:\OldSales `
 -Force | Out-Null

	Set membership for DCShareRG replication group:

 Set-DfsrMembership -GroupName DCShareRG
 -FolderName ITManagement `
 -ComputerName DC1
 -ContentPath C:\ITM `
 -PrimaryMember $true -Force |
 Out-Null
 Set-DfsrMembership -GroupName DCShareRG
 -FolderName ITManagement `
 -ComputerName DC2
 -ContentPath C:\ITM `
 -Force | Out-Null

	View DFSR membership of the two replication groups:

 Get-DfsrMembership -GroupName FSShareRG `
 -ComputerName FS1, FS2 |
 Format-Table -Property GroupName, ComputerName,
 ComputerDomainName, ContentPath, Enabled
 Get-DfsrMembership -GroupName DCShareRG `
 -ComputerName DC1, DC2 |
 Format-Table -Property GroupName, ComputerName,
 ComputerDomainName, ContentPath, Enabled

	Add replication connections for both replication groups:

 Add-DfsrConnection -GroupName FSShareRG `
 -SourceComputerName FS1 `
 -DestinationComputerName FS2 `
 -Description 'FS1-FS2 connection' `
 -DomainName Reskit.Org | Out-Null
 Add-DfsrConnection -GroupName DCShareRG `
 -SourceComputerName DC1 `
 -DestinationComputerName DC2 `
 -Description 'DC1-DC2 connection' `
 -DomainName Reskit.Org | Out-Null
 Get-DfsrMember |
 Format-Table -Property Groupname, DomainName,
 DNSName, Description

	Update the DFSR configuration:

 Update-DfsrConfigurationFromAD -ComputerName DC1,
 DC2, FS1, FS2

	Run a DfsrPropogationTest on FSShareRG:

 Start-DfsrPropagationTest -GroupName FSShareRG `
 -FolderName ITData `
 -ReferenceComputerName FS1 `
 -DomainName Reskit.Org

	Create and review the output of DfsrPropagationReport:

 Write-DfsrPropagationReport -GroupName FSShareRG `
 -FolderName ITdata `
 -ReferenceComputerName FS1 `
 -DomainName Reskit.Org `
 -Path C:\Foo\
 $i = Get-Item -Path C:\Foo\Propagation*.Html |
 Sort-Object -Property LastWriteTime -Descending|
 Select-Object -First 1
 Invoke-Item $i

	Create and review the output of DfsrHealthReport:

 Write-DfsrHealthReport -GroupName FSShareRG `
 -ReferenceComputerName FS1 `
 -DomainName Reskit.Org `
 -Path C:\Foo
 $i = Get-Item -Path C:\Foo\Health*.Html |
 Sort-object -property LastWriteTime |
 Select-Object -Last 1
 Invoke-Item $i

 How it works...

In step 1, you install the DFS-Replication feature. You need to install this on every server you plan to use in the replication. Depending on what other features you have already installed, the output can vary. Here is what the results should look like:

In step 2, you turn on the administrative shares on the servers involved. There is no output from this step. In step 3, you examine the DFS Replication cmdlets contained in the DFSR module. As you can see, after running step 1, you have the DFSR module, and that it contains 45 cmdlets, as follows:

With step 4, you create two replication groups: one for the shares on FS1 and FS2, the other for a share on DC1 and DC2, like this:

In step 5, you add FS1 and FS2 to the replication group FSShareRG then define three replicated folders that relate to DFSN paths created by Configuring a DNS namespace recipe. In step 6, you add DC1 and DC2 to the DCShareRG replication group and define the replicated folder on those servers. There is no output from these steps.

In step 7, you view the DFSR replicated folders setup in the previous two steps, which look like this:

In step 8 you set the DFS membership for the shares on FS1 and FS2. For each shared folder, you identify the content path which is a local folder on the respective servers and you identify the primary member. In step 9, you do the same thing for the folder shared on DC1 and DC2. There is no output for these steps.

In step 10, you view the membership of the two replication groups as follows:

In step 11, you create two DFS connections that DFS uses to perform the replication, producing no output. Then you review the members in the DFSR replication groups that you have defined, which looks like this:

In step 13, you initiate a DFS Replication propagation test. This test evaluates the propagation and health of the replicated folders you set up in this recipe. In step 14, you create and then view a propagation report in the browser which looks like this:

In step 15, you write then view a DFS health report. This report shows the health of your DFS service—in this case on server FS1. A neat feature of this report is the bandwidth savings achieved by DFS. The bandwidth used and the bandwidth saved figures are useful for capacity planning. The healthy report looks like this:

 There's more...

In step 2, you turn on the administrative shares. This is a requirement for setting up DFS Replication. Once you have set up replication, you may wish to turn off these administrative shares.

In step 8, for each shared folder in the FSShareRG replication group, you identify a primary member. Should a document be changed different members in the replication group then, DFS considers the copy on the primary master as definitive.

In step 11, you set up simple DFS Replication connections. DFS enables you to manage rich replication topologies and supports your configuring replication schedules and bandwidth constraints.

The recipe sets up a simple set of replicated folders—four replicated folders on four servers based on the DFS Namespace created earlier. To extend this recipe, you could add other folders to the replication groups that were not part of the DFS Namespace.

DFS Replication is one way to replicate files in an organization. DFS was designed for use over lower-bandwidth networks, thus in larger networks, DFS replicas might be out of sync. Also, DFS only replicates a file after it has been closed.

With Server 2016, the Storage Replica (SR) feature is an alternative to DFSR. SR works at the block level unlike DFSR that operates at the file level. As a result SR can replicate the changes to open files.

For a comparison of DFS Replication and Storage Replica, see https://www.petri.com/windows-server-2016-dfs-r-vs-storage-replica.

 Managing Internet Information Server

This chapter covers the following recipes:

	Installing IIS

	Configuring IIS for SSL

	Managing TLS cipher suites

	Configuring a central certificate store

	Configuring IIS bindings

	Configuring IIS logging and log files

	Managing applications and application pools

	Managing and monitoring network load balancing

 Introduction

Internet Information Services (IIS) is a Windows feature that implements an extensible web server. IIS was first introduced as an add-on for Windows NT 4.0 and has been the focus of substantial development ever since. IIS version 10 is built into both Windows Server 2016 and Windows 10.

With IIS in Windows Server, you can host both internet facing public websites as well as sites on your internal intranet. You can integrate IIS with enterprise applications that include SharePoint, Exchange, and System Center. You can also use IIS on client operating systems including Windows 10.

IIS provides a platform for a variety of web-based applications. With IIS you can provide a simple HTML based static website as well as rich multi-tiered applications. You can combine the applications running on IIS with back end databases including Microsoft SQL Server.

Like other Windows Server features, you have PowerShell cmdlet coverage for IIS. The WebAdministration module, introduced in earlier versions of Windows Server, provides 79 cmdlets. Microsoft added a new module, IISAdministration, with Windows Server 2016 providing additional functionality.

This chapter covers how to install, configure, manage, and maintain IIS on Windows Server 2016. While you can load and use IIS in Windows 10, the focus in this chapter is on Windows Server 2016.

 Installing IIS

Before you can use IIS, you must install it onto your host. Like other roles/features of Windows Server 2016 covered in this book, you install IIS by using the Install-WindowsFeature cmdlet. Once you have installed the web server, you take a look at the host after the installation is complete.

 Getting ready

You run this recipe on SRV1, a member server running Windows Server 2016. This server is a server in the Reskit.Org domain.

 How to do it...

	Open a PowerShell console and install the Web-Server and all sub-features:

 Install-WindowsFeature -Name Web-Server `
 -IncludeAllSubFeature `
 -IncludeManagementTools

	See what web related features are installed on SRV1:

 Get-WindowsFeature -Name Web* | Where-Object Installed

	Check the WebAdministration module and discover how many commands are in the module:

 Get-Module -Name WebAdministration -ListAvailable
 Get-Command -Module webadministration |
 Measure-Object |
 Select-Object count

	Check the IISAdministration module and discover how many commands are in the module:

 Get-Module -Name IISAdministration -ListAvailable
 Get-Command -Module IISAdministration |
 Measure-Object |
 Select-Object -Properties Count

	Import the WebAdministration module:

 Import-Module -Name WebAdministration

	Look at the newly added WebAdministration PowerShell provider:

 Get-PSProvider -PSProvider WebAdministration

	View the top level of the IIS: drive:

 Get-ChildItem -Path IIS:\

	View what is in IIS:\Sites:

 Get-ChildItem -Path IIS:\Sites

	Look at the default website created by the web server installation:

 $IE = New-Object -ComObject InterNetExplorer.Application
 $URL = 'http://srv1'
 $IE.Navigate2($URL)
 $IE.Visible = $true

 How it works...

In step 1 of this recipe, you install the Web-Server feature and all its sub-features as well as the management tools. The management tools include the WebAdministration module.

The output from this step looks like this:

In step 2, you view the Web-Server feature and its sub-features. As you can see, you have over 50 installed sub-features, with the output resembling this:

In step 3, you look at the WebAdministration module. As you can see, there are 79 commands (which comprise 78 cmdlets and one function) in the module. The output looks like this:

In step 4, you look at the IISAdministration module. As you can see, there are 31 further cmdlets for you to use. The output of this step looks like this:

In step 5, you import the WebAdministration module manually. In addition to loading the cmdlets/functions contained in the module, importing the module also loads the WebAdministration PowerShell provider. This provider enables you to browse aspects of the web server, including the sites, application pools, and SSL bindings on the host. There is no output from loading the module. Once you have loaded the module, in step 6 you get details of the provider, which looks like this:

In step 7, you look at the contents of the IIS drive. It contains just three folders as you can see from the output:

In step 8, you take a look at the Sites folder in the IIS drive and you see details about any loaded websites on your server. Since you have just installed IIS, there is only one site, and the output of this step looks like this:

Finally, in step 9, you look at the default landing page for a newly installed IIS host, which looks like this:

 There's more...

In step 1, you installed the Web-Server and all of the sub-features. In most cases, many of these sub-features are ones you are not going to use.

In step 5, you import the module manually. If you are just going to use the cmdlets in this module, then PowerShell's module auto-load feature loads the module for you. Importing it implicitly ensures the correct module is loaded.

In step 6 through step 7, you examine the provider. This provider can be very useful for some operations—for example creating an SSL binding as you see in the Configure IIS for SSL recipe.

In step 9, you open up Internet Explorer and navigate to the root of the default website on SRV1. This is, as you can see from the output, a standard landing page. This page is very useful for troubleshooting purposes, as it shows you IIS has been installed and is up and running.

 Configuring IIS for SSL

Traffic between a web browser and a web server on the internet or even within a corporate intranet is open and can be intercepted. To avoid the data being compromised, you can make use of protocols built into your web browser and IIS to provide encryption as well as authentication.

In the 1990's, Netscape Communications developed a protocol that provided the necessary security, the Secure Socket Layer (SSL) protocol. SSL V1 was never commercially released, but SSL V2 and SSL V3 were developed, released, but are now deprecated as unsafe.

Transport Layer Security (TLS) was developed openly as the next version of SSL. TLS V1 is essentially SSL V3.1. In 2014, Google identified a serious vulnerability in both SSL V3 and TLS V1. That leaves TLS 2 as the best protocol to deploy and it is the only one installed by default with IIS in Windows Server 2013.

These days, SSL as a protocol is being deprecated in favour of TLS. Most major web sites no longer actually use the SSL protocol. Nevertheless we talk about such web sites as having SSL and we continue to use the HTTPS scheme since end-users can not explicitly choose between SSL and TLS.

When the user specifies a URL beginning with HTTPS: the browser contacts the server on port 443. The browser and server then negotiate which security protocol to use (for example TLS 1.2) and which cipher suite to use to protect the data being transferred. A cipher suite is a distinct set of algorithms to provide for key exchange and which encryption algorithms to use for both bulk encryption and hashing.

In this recipe, you setup your server to provide secure transfer of web pages. Strictly speaking, this recipe sets up IIS to use TLS 2.0 rather than SSL. In most references, we refer to this as setting up SSL, when in reality we are actually setting up TLS.

In order to set up IIS for secure transfer, you first need a certificate. The certificate identifies the server by name and specifies what the certificate can be used for. Associated with the certificate are public and private keys.

If you are setting up IIS as an internal web server, then you should use your internal Certificate Authority (CA) to create the web server certificate. If your web server is to be internet facing, you should get a certificate from a public CA. Remember that the certificate has to have been issued (and signed) by a CA that is explicitly trusted by any client accessing the secure site. Many public CAs around the world are automatically trusted by most modern browsers. Additionally, you can configure workstations and servers to enroll the root CA certificate for your internal CA automatically.

In this recipe, you use self-signed certificates. This works wonderfully in a test environment but should never be used in production. The technique you use in this recipe first generates a self-signed certificate. The recipe then copies this certificate into the local machine's trusted root store. This action makes the local machine trust the self-signed certificate.

 Getting ready

In this recipe, you configure IIS on SRV1 for security. This recipe assumes you have setup IIS as shown in the Install IIS recipe.

 How to do it...

	Import the WebAdministration module:

 Import-Module -Name WebAdministration

	Create a self-signed certificate in the local server's personal CERT store:

 $SSLCert = New-SelfSignedCertificate `
 -CertStoreLocation 'CERT:\LocalMachine\MY' `
 -DnsName 'SRV1.Reskit.Org'

	Copy the certificate to the Root store on SRV1:

 $C = 'System.Security.Cryptography.X509Certificates.X509Store'
 $Store = New-Object -TypeName $C `
 -ArgumentList 'Root','LocalMachine'
 $Store.Open('ReadWrite')
 $Store.Add($SSLcert)
 $Store.Close()

	Create a new SSL binding on the Default Website:

 New-WebBinding -Name 'Default Website' `
 -Protocol https -Port 443

	Assign the Cert created earlier to this new binding:

 $SSLCert | New-Item -Path IIS:\SslBindings\0.0.0.0!443

	View the site using HTTPS:

 $IE = New-Object -ComObject InternetExplorer.Application
 $URL = 'https://Srv1.Reskit.Org'
 $IE.Navigate2($URL)
 $IE.Visible = $true

 How it works...

In step 1, you import the WebAdministration module, which ensures the WebAdministration provider you use later in this recipe is loaded. There is no output from this step.

In step 2, you create a self-signed certificate and store it in the local machine's personal certificate store (Cert:\\LocalMachine\My). There is no output from this step.

With step 3, you copy the self-signed certificate to the local machine's trusted Root certificate store. There is no output from this step.

In step 4, you create a new binding for IIS that binds port 443 to HTTPS. This tells IIS to use SSL/TLS for traffic coming into SRV1 on that port. There is no output from this step.

In step 5, you update the SSL bindings to include which certificate to use. This step tells IIS to use the self-signed certificate for any HTTPS traffic coming into the default website. The output from this step looks like this:

In step 6, you use Internet Explorer to browse the default website using HTTPS. The output of this step is the default page for IIS, which looks like this:

 There's more...

In step 3, you use the .NET framework to copy the self-signed certificate into the local server's trusted Root cert store. This makes the self-signed certificate trusted by SRV1. You have to use .NET because the PowerShell certificate provider does not support a copy operation. Fortunately, the .NET framework provides that functionality. Alternatively, you could use the Export-Certificate and Import-Certificate to export the cert to a file and then re-import it.

The output shown for step 6 is identical to the output step 8 in the Install IIS recipe. Except you have retrieved it securely, over TLS.

 Managing TLS cipher suites

With TLS, you are able to specify which cipher suite or suites your web server should support. A cipher suite is a specific set of methods or algorithms that provide functions including key exchange, bulk encryption, hashing and message digests, and authentication.

Once the browser connects to the server, the two parties negotiate and choose the best cipher suite that both sides can support. If the browser only asks for cipher suites that the web server does not support, then the server terminates the communication.

By default, Windows Server 2016 supports 31 cipher suites providing different algorithms and different key lengths. In this recipe, you retrieve the cipher suites on Windows Server 2016, and both enable and disable a specific cipher suite.

 Getting ready

You run this recipe on the Windows Server 2016 server SRV1 on which you have loaded IIS (as per the Install IIS recipe) and configured secure HTTP (as per the Configure IIS for SSL recipe).

 How to do it...

	Get the cipher suites on SRV1 and display them:

 Get-TlsCipherSuite |
 Format-Table Name, Exchange, Cipher, Hash, Certificate

	Find cipher suites that support RC4:

 Get-TlsCipherSuite -Name RC4 |
 Format-Table Name, Exchange, Cipher, Hash, Certificate

	Disable RC4 based cipher suites:

 Foreach ($P in (Get-TlsCipherSuite -Name 'RC4'))
 {Disable-TlsCipherSuite -Name $P.name}

	Find cipher suites that support RC4:

 Get-TlsCipherSuite RC4 |
 Format-Table -Property Name, Exchange, Cipher,
 Hash, Certificate

	Re-enable the two cipher suites:

 Enable-TlsCipherSuite -Name TLS_RSA_WITH_RC4_128_SHA
 Enable-TlsCipherSuite -Name TLS_RSA_WITH_RC4_128_MD5

	Find cipher suites that support RC4:

 Get-TlsCipherSuite RC4 |
 Format-Table -Property Name, Exchange, Cipher,
 Hash, Certificate

 How it works...

In step 1, you use the Get-TlsCipherSuite cmdlet to return all the cipher suites that are supported on your server. The output looks like this:

In step 2, you search for cipher suites that use RC4, a bulk encryption cipher. This makes use of the -Name parameter which is a wild card match. The output looks like this:

In step 3, you disable the two cipher suites that use RC4 although there is no output from this step. In step 4, which produces no output, you see that these two cipher suites are no longer available.

In step 5, you re-enable these two cipher suites (which produces no output) while in step 6, you verify that these two cipher suites are available. The output from this step looks like this:

 There's more...

In step 2, you look for cipher suites using RC4. Some security experts consider this cipher to have potential weaknesses that make deprecation appropriate. With step 4, you disable these two cipher suites. If you have, for example, Windows XP still in use, you may find that disabling RC4 means these older OSs can no longer connect to your server. In step 5, you see how to re-enable them (should this be necessary).

It is important to record the names of the cipher suites that you disable. There is no cmdlet that can show you what cipher suites you have disabled—you can only see which ones are specifically enabled. BE CAREFUL!

 Configuring a central certificate store

If you are hosting numerous secure servers on a variety of hosts (physical or virtual), you may find that certificate management can be challenging. Each time you add a new IIS host into your infrastructure, you need to ensure all the correct certificates are in place and the correct web binding (binding the certificates to IIS) is in place for each secure site. Additionally, you need to deal with certificate expiry and renewing certificates that expire across each IIS server that utilizes those certificates.

Windows Server 2012 added a new feature known as the Central Certificate Store (CCS). This feature allows certificates to be stored in a central location such as on an SMB file share. You then configure IIS to make use of the central store, rather than using the local certificate stores as you did in the Configure IIS for SSL recipe.

In this recipe, you are going to setup SRV1 to use a new share on DC1 to hold the central certificate share. You create the store, then create a new certificate for SRV1, and move the cert to the central certificate share on DC1.

 Getting ready

This recipe uses SRV1 as an IIS server and DC1 to hold the SSL certificate central store. You should have both servers up and running. Also, this recipe assumes you have IIS at least partly loaded and setup for SSL (in other words, you have run the Install IIS and Configure IIS for SSL recipes. This recipe does check and ensure the needed features are added to SRV1. You should also load the AD cmdlets onto SRV1 if you have not already done so.

 How to do it...

	Remove existing certificates for SRV1:

 Get-ChildItem -Path Cert:\localmachine\My |
 Where-Object Subject -Match 'SRV1.Reskit.Org' |
 Remove-Item -ErrorAction SilentlyContinue
 Get-ChildItem Cert:\localmachine\root |
 Where-Object Subject -match 'SRV1.Reskit.Org' |
 Remove-Item

	Remove SSL web bindings if any exist:

 Import-Module -Name WebAdministration
 Get-WebBinding | Where-Object protocol -EQ 'https' |
 Remove-WebBinding
 Get-ChildItem -Path IIS:\SslBindings | Where-Object Port -eq 443 |
 Remove-Item

	Create a shared folder and share it on DC1:

 $sb = {
 If (-Not (Test-Path C:\SSLCerts)) {
 New-Item -Path C:\SSLCerts -ItemType Directory |
 Out-Null}
 New-SmbShare -Name 'SSLCertShare' -Path c:\SSLCerts `
 -FullAccess 'Everyone' `
 -Description 'SSL Certificate'
 }
 Invoke-Command -ScriptBlock $sb -ComputerName DC1

	Add a new SSLCert and make it trusted locally:

 $SSLCert = New-SelfSignedCertificate `
 -CertStoreLocation 'CERT:\LocalMachine\MY' `
 -DnsName 'SRV1.Reskit.Org'
 $C = 'System.Security.Cryptography.X509Certificates.X509Store'
 $Store = New-Object -TypeName $C `
 -ArgumentList 'Root','LocalMachine'
 $Store.Open('ReadWrite')
 $Store.Add($SSLcert)
 $Store.Close()

	Export certificate to PFC file:

 $Certpw = 'SSLCerts101!'
 $Certpwss = ConvertTo-SecureString -String $certpw `
 -Force -AsPlainText
 Export-PfxCertificate -Cert $SSLCert `
 -FilePath 'C:\srv1.reskit.org.pfx' `
 -Password $Certpwss
 Move-Item -Path 'C:\srv1.reskit.net.pfx' `
 -Destination \\dc1\SSLCertShare\srv1.reskit.org.pfx `
 -Force

	Install the CCS feature on SRV1:

 Install-WindowsFeature Web-CertProvider | Out-Null

	Create a new user for the certificate sharing:

 $User = 'Reskit\SSLCertShare'
 $Password = 'Pa$$w0rd'
 $PasswordSS = ConvertTo-SecureString -String $Password `
 -AsPlainText -Force
 $NewUserHT = @{AccountPassword = $PasswordSS
 Enabled = $true
 PasswordNeverExpires = $true
 ChangePasswordAtLogon = $false
 }
 New-ADUser @NewUserHT `
 -SamAccountName SSLCertShare `
 -UserPrincipalName 'SSLCertShare@Reskit.Org' `
 -Name "SSLCertShare" `
 -DisplayName 'SSL Cert Share User'

	Configure the SSLCertShare in the registry:

 Set-ItemProperty -Path
 HKLM:\SOFTWARE\Microsoft\IIS\CentralCertProvider\`
 -Name Enabled -Value 1
 Set-ItemProperty -Path `
 HKLM:\SOFTWARE\Microsoft\IIS\CentralCertProvider\`
 -Name CertStoreLocation -Value \\DC1\SSLCertShare
 Enable-WebCentralCertProvider `
 -CertStoreLocation \\dc1\SSLCertShare `
 -UserName $user -Password $Password `
 -PrivateKeyPassword $Certpw
 Set-WebCentralCertProvider -UserName $User -Password $password `
 -PrivateKeyPassword $Certpw

	Setup SSL for default site:

 New-WebBinding -Name 'Default Web Site' -Protocol https `
 -Port 443
 $SSLcert | New-Item -Path IIS:\SslBindings\0.0.0.0!443

	Remove the cert from SRV1:

 Get-ChildItem -Path Cert:\LocalMachine\MY |
 WHERE SUBJECT -MATCH 'SRV1.RESKIT.ORG' |
 Remove-Item -Force

	Now view the website with SSL:

 $IE = New-Object -ComObject InterNetExplorer.Application
 $URL = 'https://srv1.reskit.org/'
 $IE.Navigate2($URL)
 $IE.Visible = $true

 How it works...

In step 1, you remove any existing certificates on SRV1—you create new ones later in this recipe. There is an output from this step.

In step 2, you remove any existing web bindings if they currently exist—you recreate these later in the recipe. There should be no output from this step.

In step 3, you create a script block and execute the script block on DC1. This script block creates the SSLCertificateShare). The output from this step shows the creation of the share on DC1, as follows:

In step 4, you create a new certificate, and make it trusted. There is no output from this step.

In step 5, you export the self-signed certificate to a password protected .pfx file then move the file to the SSLCertShare on DC1.

In step 6, you install the centralized SSL certificate feature. There is no output from this step.

In step 7, you create a new AD user (Reskit\SSLCertShare) for use with IIS's centralized certificate share feature. There is no output from this step.

In step 8, you configure the centralized certificate share to point to the share on DC1 and to use the new user created in step 7. There is no output from this step.

In step 9, you remove the self-signed certificate from SRV1, which also produces no output.

In step 10, you set web bindings for the default site on SRV1 to use the self-signed certificate, producing no output.

In step 11, you navigate to the default website specifying HTTPS and see the default website on SRV1. This should look the same as that shown in the recipe Configure IIS for SSL.

 Configuring IIS bindings

In IIS, a binding specifies how incoming connections to a web server should be handled.

A binding is a combination of a protocol (HTTP, HTTPS, and so on), an IP address, TCP/IP port, and host name. The binding thus tells Windows and IIS how to route requests inbound to your system.

Bindings allow you to run more than one website on a single host. There are a few ways to do this:

	Configure multiple IP addresses and create a binding for each IP address to a different website

	Configure a single IP addresses and multiple ports and point each to a different website

	Configure a single address and use the host header option that routes requests for a given write on the host.

If you use the multiple IP address option, you need to configure multiple IP addresses on the system and ensure that the DNS entries for each website point to the correct IP address. This approach requires extra overhead and uses more IP addresses.

Using a single IP address and multiple ports saves on IP addresses, but requires users specify the port number when connecting. This is OK for sites you want to hide from curious eyes.

The best option for supporting multiple websites is to use the host header feature. With host headers, the browser sends the name of the website as part of the request. IIS can read that header and use the appropriate binding to specify which site relates to that header and route accordingly. Thus, you could host www.reskit.org and www2.reskit.org on SRV1 and by using host headers you would need only a single IP address.

When you first install IIS, as you did in the Install IIS recipe, the setup creates a single binding that binds traffic inbound on port 80 to the default website using HTTP. In the recipe Configure IIS for SSL, you added a further binding for all traffic inbound to port 443 to the default website using HTTPS. So you have done some work with bindings already in this chapter.

 Getting ready

You run this recipe on SRV1, where you have installed and configured IIS (as per the Install IIS and Configuring IIS for SSL recipes). This recipe also assumes you are using DC1.Reskit.Org as your domain controller and DNS server.

 How to do it...

	Import the WebAdministration module:

 Import-Module -Name WebAdministration

	Create and populate a new site:

 $sitepath = 'C:\inetpub\www2'
 New-Item -Path $sitepath -ItemType Directory
 $page = @'
 <!DOCTYPE html>
 <html>
 <head><title>Main Page for WWW2.Reskit.Org</title></head>
 <body><p><center>
 HOME PAGE FOR WWW2.RESKIT.ORG</p>
 This is the root page this site
 </body>
 </html>
 '@
 $PAGE | OUT-FILE -FilePath $sitepath\INDEX.HTML

	Create a new website that uses host headers:

 New-Website -PhysicalPath $sitepath -name www2 `
 -HostHeader 'www2.reskit.org'

	Create a DNS record on DC1:

 Invoke-Command -Computer DC1.Reskit.Org -ScriptBlock {
 Add-DnsServerResourceRecordA -ZoneName 'Reskit.Org' `
 -Name 'www2' `
 -IpAddress 10.10.10.50
 }

	And show the page:

 Start-Process ‘http://www2.reskit.org'

 How it works...

In step 1, you import the WebAdministration module. There is no output from this step.

In step 2, you create a new folder on SRV1 that holds the default landing page for a new website, www2.reskit.org. There is no output from this step.

In step 3, you create a new website, using the New-Website cmdlet. You specify the name of the site (www2) and the HostHeader that IIS uses to bind the name to the new website. The output from this step looks like this:

Once you have set up the website and defined it in IIS, in step 4, you browse to the new site, which looks like the following:

 There's more ...

By default, while you can have as many HTTP-based sites as you want on a given machine, you can only have one HTTPS site. This is because the details of which site the browser is asking for is inside the encrypted content, thus can only be action once decrypted.

To overcome this, a new feature was added to TLS called Server Name Indication (SNI). SNI allows the name of the host name being contacted to be specified during the SSL/TLS handshake. This in turn enables IIS to support more than one secure site. To use SNI, the browser or web client as well as the web server must support SNI. Modern web browsers support SNI.

More information on using SNI can be found at http://en.wikipedia.org/wiki/Server_Name_Indication.

 Configuring IIS logging and log files

Each time IIS receives a request from a client, it logs that request to a log file. This is the default behavior. With PowerShell, it's simple to modify this behavior, such as turning off logging, changing the logging frequency, or changing the folder where IIS stores its log files.

Log files are therefore great places to look when troubleshooting or to analyze the website's traffic. The logs can also be used for things such as capacity planning and can analyze the behavior of the traffic. Finding out where traffic is coming from can be invaluable.

By default, IIS creates a separate log file every day. This has advantages, but on a busy web server with many sites, managing log files can become a challenge. A web server that has been up and running for a month could have 30 separate log files. Changing the location of log files as well as how often to create a new log file can be appropriate.

You should also be aware that IIS has no built-in mechanism.

In this recipe, you configure logging in IIS using PowerShell and the provider contained in the WebAdministration module.

 Getting ready

This recipe assumes you have installed IIS, as per the Install IIS recipe.

 How to do it...

	Import the WebAdministration module to ensure the IIS provider is loaded:

 Import-Module WebAdministration

	Look at where you are currently storing logfiles:

 $LogfileLocation = (Get-ItemProperty
 -Path'IIS:\Sites\Default Website' `
 -Name logfile).directory
 $LogFileFolder =
 [System.Environment]::
 ExpandEnvironmentVariables("$LogfileLocation")
 Get-ChildItem -Path $LogFileFolder -Recurse

	Change the folder to C:\IISLogs:

 Set-ItemProperty -Path 'IIS:\Sites\Default Website' `
 -Name logFile.directory `
 -Value 'C:\IISLogs'

	Change the type of logging done:

 Set-ItemProperty -Path 'IIS:\Sites\Default Website' `
 -Name logFile.logFormat `
 -Value'W3C'

	Change frequency of logFile changes:

 Set-ItemProperty -Path 'IIS:\Sites\Default Website' `
 -Name logFile.period `
 -Value Weekly

	Set a maximum size for the logFile:

 Set-ItemProperty -Path 'IIS:\Sites\Default Website' `
 -Name logFile.period `
 -Value MaxSize
 $Size = 1GB
 Set-ItemProperty -Path 'IIS:\Sites\Default Website' 1
 -Name logFile.truncateSize
 -Value $Size

	Disable logging for the default website:

 Set-ItemProperty -Path 'IIS:\Sites\Default Website'
 -Name logFile.enabled
 -Value False

 How it works...

In step 1, you import the WebAdministration module which produces no output. This recipe uses the provider as opposed to the cmdlets, contained in the module.

In step 2, you discover where, by default, IIS store its log files and view the log files available. The log file folder, by default, %SystemDrive%\inetpub\logs\LogFiles, is named using a system environment variable (%SystemDrive%). To convert the returned value into a full file system path, you use the ExpandEnvironmentVariables method of .NET System.Environment. The output of this step looks like this:

As you can see, there are three log files for this system—you may see different outputs depending on what requests you have sent to SRV1. If you are testing this recipe, consider viewing the contents of any log files generated. Using the provider, as you do in this step, generates no output.

In step 3, you use the provider to change the location of the IIS logs for the default website. You change the log file location to C:\IISLOGS. Of course, you can use any folder you choose! You may find it appropriate to put the log files on a separate disk. There is no output from this step.

In step 4, you change the output format for the log files. There are a number of different log file formats you can utilize (IIS, NCSA, W3C, and custom) in this step, which produces no output, to use the W3C format. Depending on your needs, and whether you have analysis software that prefers one format over the other, you can change the log file format. Log file formats you can specify include IIS, NCSA, and W3C.

In step 5, you change the frequency of log file changes. By default, IIS produces one file per day, but here you change it to a new file each week. Depending on the traffic, and how you plan to analyze it you might wish to change the defaults. You can set your log file changers to be: Hourly, Daily, Weekly, Monthly, or Maximum size.

In step 6, you update two IIS log file properties. The first sets the log file period to maximum size. The second sets the truncate size to a value (1 GB). These changes have the effect of having IIS log files both be a maximum size and to have IIS create a new log once the current log gets larger.

With step 7, you disable logging, in this case, for the default website. Best practice is to have a log file that describes the web requests sent to your IIS server and where they came from. But there may be cases where turning logging off may be useful. For example, if you use DSC, you may want to turn IIS logging off once your DSC environment is working. You could rely instead on DSC logging.

 There's more...

In step 3, you adjusted the folder to hold the IIS logs. In production, you may choose to hold IIS log files on separate disks. As a best practice, you should consider having your IIS log files on a separate disk.

In step 5, you adjusted the log file format for IIS logging. You have several options for log file formats. See https://docs.microsoft.com/en-us/iis/manage/provisioning-and-managing-iis/configure-logging-in-iis for more information on IIS log file formats.

Here's more

You may want to keep your log files for longer time periods, say more than seven days. To avoid them from clogging up your web servers, you can write a simple script that copies each server's log files to a central repository. To achieve this, modify the recipe to use Move-Item to move the log files to a remote location instead of deleting them.

 Managing applications and application pools

In earlier versions of IIS, all the web pages/sites on a given system ran in a single process. This meant that one application, if not written well could cause issues with other applications. An application could, for example, have a memory leak which would ultimately require a restart of IIS or even a reboot of the server.

In later versions of IIS, Microsoft adds the concept of web applications and application pools to IIS. With IIS, a web application is a set of one or more URLs (web pages) which you configure IIS to run inside independent worker processes. An application pool is a set of worker processes which IIS uses to run an application. You can run one or more applications within a given application pool. Technically a website and a web application are not the same, but in many cases, different websites end up being distinct applications.

The application pool feature provides application isolation, enabling you to run possibly badly-behaved applications independently of others. And since you can configure an application pool to run more than one worker process, application pools provide scalability. With application pools, IIS can spawn numerous threads in each worker which IIS runs in parallel. IIS can create and destroy worker processes on demand.

You can also set up the worker processes to have IIS recycle the process on a regular basis. Thus, if a badly-behaved application contains a memory leak (something quite possible using older ISAPI technologies for example), recycling the process returns the leaked resources back to the OS. Thus, even a very poorly-written application can run reasonably well inside IIS.

Another nice feature of application pools is that you can configure each application pool with separate credentials. Although is management of users to do, this approach provides increased security of IIS applications. For example, an HR application could run using the credentials Reskit\HRApp whilst you could configure an accounting web application to run as Reskit\AccountApp.

Web applications and application pools enable you to both scale a given web server and at the same time provide isolation between applications, which both improves security and minimizes disruptions caused by badly implemented applications.

With a web pool, you can also specify when to recycle the applications within the pool. Rich web applications can include executable code, written in a variety of languages. This code can have faults, resulting in resource leaks. One way to reduce the impact of such faults is to recycle the application—killing the worker process(s) running the pool and creating new ones. Any leaked resources are returned, although any state saved in the application pool's memory is lost.

There are a variety of conditions you can set to trigger recycling on an application pool. You can set a schedule of when to recycle, you can recycle if private memory exceeds a pre-determined value (For example 1 GB), or after a certain number of requests (recycle the application pool after 1 million hits).

For fuller details, see https://technet.microsoft.com/en-us/library/cc745955.aspx

This page relates to IIS 7, but the details are still the same for IIS 10 included with Windows Server 2016 and Windows 10.

In this recipe, you create a new IIS web application. This new application is to be the single page WWW2 site you created in the Configure IIS bindings recipe. The recipe also creates and configures an application pool that hosts the new application.

 Getting ready

This recipe assumes you have installed IIS, as per the Install IIS recipe. This recipe also makes use of the WWW2.Reskit.Org site you created in the Configure IIS Bindings recipe.

 How to do it...

	Import the WebAdministration module:

 Import-Module WebAdministration

	Create the new application pool:

 New-WebAppPool -Name WWW2Pool

	Create the new application in the pool:

 New-WebApplication -Name WWW2 -Site www2 `
 -ApplicationPool WWW2Pool `
 -PhysicalPath C:\inetpub\www2

	View the application pools on SRV1:

 Get-IISAppPool

	Set the application pool restart times:

 Clear-ItemProperty -Path 'IIS:\AppPools\WWW2Pool' `
 -Name Recycling.periodicRestart.schedule
 $RestartAt = @('07:55', '19:55')
 New-ItemProperty -Path 'IIS:\AppPools\WWW2Pool' `
 -Name Recycling.periodicRestart.schedule `
 -Value $RestartAt

	Set the application pool maximum private memory:

 Clear-ItemProperty IIS:\AppPools\WWW2Pool `
 -Name Recycling.periodicRestart.privatememory
 [int32] $PrivMemMax = 1GB
 Set-ItemProperty -Path 'IIS:\AppPools\WWW2Pool' `
 -Name Recycling.periodicRestart.privateMemory`
 -Value $PrivMemMax
 Get-ItemProperty -Path 'IIS:\AppPools\WWW2Pool' `
 -Name Recycling.periodicRestart.privateMemory

	Set the maximum number of requests before a recycle:

 Clear-ItemProperty IIS:\AppPools\WWW2Pool `
 -Name Recycling.periodicRestart.requests
 [int32] $MaxRequests = 100000
 Set-ItemProperty -Path 'IIS:\AppPools\www2POOL' `
 -Name Recycling.periodicRestart.requests `
 -Value $MaxRequests
 Get-ItemProperty -Path 'IIS:\AppPools\www2POOL' `
 -Name Recycling.periodicRestart.requests

	View the application pool properties in IIS. Open the IIS management console, and view the application pool properties.

 How it works...

In step 1, you import the WebAdministration module. This recipe uses the provider, so you should load it in advance. There is no output from this step.

In step 2, you create a new application pool (WWW2Pool). This has output that looks like this:

Once you have created the application pool, you can create a new web application that is to host the WWW2 site created earlier. In step 3, you create an application within the just-created application pool. The output looks like this:

In step 4, you review the application pools, with output like this:

In step 5, you set the times when IIS is to recycle the application pool. You specify 7:55 in the morning and 19:55 in the evening. There is no output from this step.

In step 6, you specify a private memory maximum value of 1 GB. Setting the privateMemory property directs IIS to restart the application pool any time a worker process's private memory exceeds 1 GB. There is no output from this step.

In step 7, you open up the IIS console, click on the application pool node, then look at the advanced properties for the WWW2 application pool. As you can see in this output, the restart times, private memory maximum, and restart counts are all enabled:

 There's more...

In step 2, you create a new application pool, using the New-WebAppPool cmdlet. However, there is no Get-WebAppPool cmdlet—to view the application pools, as you see in step 4, you have to use the Get-IISAppPool cmdlet. That's because the Get-IISAppPool comes from the IISAdministration module and is new in Server 2016.

In step 4, you can see a variety of existing web pools. These show the IIS application pools created both by default and by other recipes in this book. The application pool is an important feature to enable you to run multiple web applications on a single server and avoid application interference. As part of deploying IIS, you might consider removing all but the necessary application pools.

In step 5, step 6, and step 7, you configure the application pool properties. You achieve this by setting item properties within the IIS provider. Where you want to configure pool properties, you set the relevant item property on the application pool item for the pool. These steps make use of the WebAdministration provider. The item properties you set are translated by the provider into the XML that drives IIS. For more information on the WebAdministration provider, see https://technet.microsoft.com/en-us/library/ee909471(v=ws.10).aspx.

 Managing and monitoring network load balancing

Network Load Balancing (NLB) is a feature of Windows and IIS that allows multiple hosts to host the same website. The NLB cluster distributes all traffic to the cluster to the individual hosts.

NLB provides both scalability and fault tolerance. If you add additional nodes, the cluster is able to handle more traffic. And if a node should fail, the other remaining nodes take the traffic, albeit at a potentially lower performance level.

NLB is a versatile feature. You can use NLB to load balance web, FTP, firewall, proxy, and VPN traffic. Performance is acceptable although many users prefer to use hardware load balancers.

In this recipe, you create a new NLB cluster (ReskitNLB) which loads balances between two hosts (NLB1, NLB2). The recipe creates a simple single page site on each system and load balances the site.

In this recipe, the single document site differs on each server, which is useful to show which server accepted and processed any given request. In production, you would want all nodes to have the same content, providing a seamless experience.

You run the core of this recipe on NLB1. Once you have the NLB cluster up and running, you can view it from another host (in this case DC1).

 Getting ready

This recipe uses two previous servers, NLB1 and NLB2, as well as DC1. DC1 is the domain controller in the Reskit.Org domain and is also a DNS server for the domain. You must set static IP addresses on both servers, otherwise you see an error attempting to create the NLB cluster.

The two new servers should have the default setup, with IIS loaded. After you install the two servers, you can add IIS as follows:

 Install-WindowsFeature -Name Web-Server `
 -IncludeManagementTools
 Install-WindowsFeature -Name Web-Server `
 -IncludeManagementTools `
 -ComputerName NLB2

 How to do it...

	Install NLB locally on NLB1, them remotely on NLB2:

 Install-WindowsFeature -Name NLB `
 -IncludeManagementTools
 Install-WindowsFeature -Name NLB `
 -IncludeAllSubFeature `
 -IncludeManagementTools `
 -ComputerName NLB2

	Confirm NLB and Web-Server features are loaded on both systems:

 Invoke-Command -ScriptBlock {Get-WindowsFeature Web-Server, NLB} `
 -ComputerName NLB1, NLB2 |
 Format-table -Property DisplayName,PSComputername,Installstate

	Create the NLB cluster, initially on NLB1:

 New-NlbCluster -InterfaceName Ethernet `
 -ClusterName 'ReskitNLB' `
 -ClusterPrimaryIP 10.10.10.55 `
 -SubnetMask 255.255.255.0 `
 -OperationMode Multicast

	Add NLB2 to the ReskitNLB cluster:

 Add-NlbClusterNode -NewNodeName NLB2 `
 -NewNodeInterface 'Ethernet' `
 -InterfaceName 'Ethernet'

	Create a network firewall rule:

 Invoke-Command -ComputerName NLB2 {
 Set-NetFirewallRule -DisplayGroup 'File and
 Printer Sharing' `
 -Enabled True
 }

	Create a default document—differently on each machine:

 'NLB Cluster: Hosted on NLB1' |
 Out-File -FilePath C:\inetpub\wwwroot\index.html
 'NLB Cluster: Greetings from NLB2' |
 Out-File -FilePath \\nlb2\c$\inetpub\wwwroot\index.html

	Add a DNS A record for the cluster:

 $sb = {
 Add-DnsServerResourceRecordA -Name ReskitNLB `
 -IPv4Address 10.10.10.55 `
 -zonename Reskit.Org}
 Invoke-Command -ComputerName DC1 -ScriptBlock $sb

	View the NLB site (do this on DC1):

 Start-Process 'http://ReskitNLB.reskit.org'

	Stop one node (the one that responded in step 8!):

 Stop-NlbClusterNode -HostName NLB1

	Then view the site again:

 $IE = New-Object -ComObject InterNetExplorer.Application
 $URL = 'http://ReskitNLB.reskit.org'
 $IE.Navigate2($URL)
 $IE.Visible = $true

 How it works...

In the Getting ready phase of this recipe, you create two servers in the Reskit.Org domain that are to host the NLB cluster. In this recipe, you are adding and configuring NLB on these two new servers.

In step 1, you add the NLB feature to your two hosts:

In step 2, you confirm that you have loaded both the NLB and Web-Server features to both NLB1, and NLB2, which looks like this:

With the necessary features loaded, in step 3, you create the NLB cluster named ReskitNLB. The output of this step looks like this:

The previous step creates a one node NLB cluster. In step 4, you add the second node, NLB2, to the ReskitNLB load balancing cluster. The output from this step looks like this:

In step 5, you add a simple firewall rule to allow file and printer sharing to be allowed. There is no output from this step.

In step 6, you create default documents for each server in the NLB cluster. This step generates different default documents for each of the two NLB hosts, which helps you see which host is servicing the request. There is no output from this step.

To complete the setup of the cluster, in step 7, you add a DNS A record pointing to the NLB Cluster IP address (10.10.10.55). This enables you to use a DNS host name (ReskitNLB.Reskit.Org) to access the cluster. There is no output from this step.

With the cluster setup, in step 8 you view the site, using the new DNS name. You run this step on any host except the two NLB nodes, for example, DC1, using the full DNS name of the NLB cluster (ReskitNLB.Reskit.Org). When you do so, the output looks like this:

In step 9, which you run on NLB1 or NLB2, you stop the node that processed the previous reply to simulate a node failure. Assuming NLB1 previously responded, this step stops the NLB node on NLB1. The output looks like this:

With the NLB1 host now stopped, in step 10, you re-view the site (from the same computer you used in step 8, for example DC1). The output looks like this:

 There's more...

This recipe uses two new servers (NLB1, NLB2). You could also run this recipe on other servers as appropriate—for example SRV1 and SRV2 used elsewhere in this book.

In step 3, you create the NLB cluster. Because NLB1 and NLB2 have just one network adapter, you create the cluster with an operation mode of Multicast. Had you used Unicast, Windows would have effectively killed off the normal connection to these systems.

In step 9, you stop a node in the ReskitNLB load balancing cluster. You could view the status of the nodes in the cluster by using the Get-NlbClusterNode cmdlet. After stopping the NLB1 node, the output when viewing ReskitNLB.Reskit.Org is that you see the default document on NLB2. This shows that the cluster is operational even if a node is not. You might make use of this during a maintenance window. You could take one node down and the cluster continues whilst you maintain the node. Of course, this means the overall cluster is less performant, but that is a fact to consider when setting any maintenance windows.

In step 8, step 9, and step 10, you view the operation of the NLB cluster. If you are testing this, you may find NLB2 responds to the initial request (step 8)—if so, then in step 9, shut down NLB2 instead. If you run these tests on either of the cluster members, NLB resolves the cluster to the local site. So running this from NLB1 would always pick NLB1, whereas from another host, such as DC1, you see the desired behavior.

 Managing Hyper-V

In this chapter, we cover the following recipes:

	Installing and configuring Hyper-V feature

	Using Windows PowerShell Direct

	Securing Hyper-V host

	Creating a virtual machine

	Configuring VM hardware

	Configuring Hyper-V networking

	Implementing nested Hyper-V

	Managing VM state

	Configuring VM and storage movement

	Configuring VM replication

	Managing VM checkpoints

	Monitoring Hyper-V utilization and performance

	Creating a Hyper-V health report

 Introduction

Hyper-V is Microsoft's virtual machine hypervisor. Both Windows Server 2016 and Windows 10 include Hyper-V as an option you can install. The Hyper-V feature is included in all versions of Windows Server 2016, as well as in the Enterprise, Professional, and Education editions of Windows 10. Nested Hyper-V, the ability to run Hyper-V inside a Hyper-V VM, is available in both Windows 10 Anniversary Update and Windows Server 2016. Additionally, Microsoft has made the Microsoft Hyper-V Server available as a free version of the Hyper-V hypervisor. The Hyper-V Server runs virtual machines with no GUI. You configure and manage remotely.

Hyper-V was first released with Server 2008. Successive versions of Windows brought improvements in features, hardware support, and scalability. The first version did not include PowerShell cmdlet support, but that was rectified in later releases. With Server 2016 there is good PowerShell coverage. This chapter focuses solely on Hyper-V inside Windows Server 2016 although you can manage Hyper-V Server using the tools used in this chapter's recipes.

Hyper-V's management tools enable you to configure and manage both the Hyper-V service and configure and manage virtual machines and the resources they utilize. This chapter starts with installing and configuring the Hyper-V Server role. Later in the chapter, you create and manage virtual machines. The chapter ends with looking at high availability for Hyper-V Servers and Hyper-V VMs, host resource protection, and PowerShell Direct.

 Installing and configuring Hyper-V feature

To install Hyper-V on Windows Server 2016, you install the Hyper-V feature. In this recipe, you do the set up remotely from a client machine using the Hyper-V cmdlets and PowerShell's remoting capabilities.

 Getting ready

For this recipe, you need to have the host computers on which you install Hyper-V. This recipe uses two servers, HV1 and HV2. Each server is a member of the domain on which you have added no additional services. As an alternative to having two systems running, you could use embedded Hyper-V and create the two VMs inside a third.

To demonstrate remote configuration, you perform this recipe from a third computer, CL1 running Windows 10 (Anniversary Update). This recipe makes use of a second hard disk, an H: drive on the HV1 and HV2 systems that you use to store Hyper-V VMs and virtual disks.

You need the Hyper-V tools on CL1—add them using the Enable-WindowsOptionalFeature and use the -Online switch, as follows:

Add windows optional feature for CL1
Enable-WindowsOptionalFeature `
 -FeatureName Microsoft-Hyper-V-All `
 -Online -NoRestart
Restart-Computer -Computername CL1 -Force

If you are using Windows 10 to test these recipes, you can install Hyper-V features assuming you have the Professional, Enterprise, or Educational editions. If you install Hyper-V on either Windows 10 or Server 2016, you need to reboot the host computer before proceeding.

 How to do it...

This recipe shows how to install Hyper-V:

	From CL1, install the Hyper-V feature on HV1, HV2:

 $Sb = {
 Install-WindowsFeature -Name Hyper-V `
 -IncludeManagementTools }
 Invoke-Command -ComputerName HV1, HV2 `
 -ScriptBlock $Sb

	Reboot the servers to complete the installation:

 Restart-Computer -ComputerName HV1, HV2 -Force `
 -Wait -For -PowerShell

	Create and set the location for VMs and VHDs on HV1 and HV2, then view results:

 $Sb = {
 New-Item -Path H:\Vm -ItemType Directory -Force |
 Out-Null
 New-Item -Path H:\Vm\Vhds -ItemType Directory -Force |
 Out-Null
 New-Item -Path H:\Vm\VMs -ItemType Directory -force |
 Out-Null
 Get-ChildItem -Path H:\Vm }
 Invoke-Command -ComputerName HV1, HV2 -ScriptBlock $Sb

	Set default paths for Hyper-V VM hard disks and VM configuration information:

 Set-VMHost -ComputerName HV1,HV2 `
 -VirtualHardDiskPath 'H:\Vm\Vhds'
 Set-VMHost -ComputerName HV1,HV2 `
 -VirtualMachinePath 'H:\Vm\VMs'

	Setup NUMA spanning:

 Set-VMHost -ComputerName HV1,HV2 -NumaSpanningEnabled $true

	Set up EnhancedSessionMode:

 Set-VMHost -ComputerName HV1,HV2 `
 -EnableEnhancedSessionMode $true

	Setup host resource metering on HV1, HV2:

 $RMInterval = New-TimeSpan -Hours 0 -Minutes 15
 Set-VMHost -CimSession HV1, HV2 -ResourceMeteringSaveInterval
 $RMInterval

	Review key VMHost settings:

 Get-VMHost -ComputerName HV1, HV2 |
 Format-List -Property Name, MemoryCapacity,
 Virtual*Path, NumaSpanningEnabled,
 EnableEnhancedSessionMode,
 ResourceMeteringSaveInterval

 How it works...

In step 1, you used PowerShell remoting to invoke a script block on the two Hyper-V Servers. The script block contains the command to install the Hyper-V feature on the server. PowerShell runs the script in parallel on both computers. Once complete, as you can see in the following screenshot, you need to reboot before proceeding:

In step 2, you reboot the two servers. By using the -Wait -For Powershell parameters, you tell PowerShell to reboot HV1 and HV2 and wait until the servers are running and contactable. Once this cmdlet has finished, HV1 and HV2 are both in a state where you can continue to configure them using PowerShell remoting.

In step 3, you create a top-level folder (H:\Vm) and two sub-folders (H:\Vm\Vhds and H:\Vm\VMs). You can see the folders on the two Hyper-V hosts, as follows:

In the next three steps, you set up some aspect of the two Hyper-V hosts. In step 4, you set the default paths for Virtual hard disks and Virtual Machines on the two Hyper-V hosts. In step 5, you enable NUMA spanning while in step 6 you enable enhanced session mode. In step 7, you set the save interval for VM resource metering to 15 minutes. There is no output from these steps.

In step 8, you look at the settings you updated in this recipe, which looks like this:

 There's more...

In step 1, you installed the Hyper-V feature on two servers. You can only do this successfully if the host you are using supports the necessary virtualization capabilities and you have enabled them in your system's BIOS. To check if your system is capable, see this link: http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/. Also you should double check the BIOS to ensure virtualization is enabled.

If your host is either misconfigured or incapable of supporting virtualization, you may see this message when you attempt to add the Hyper-V feature:

If you do encounter this message, then you need to find another host computer—yours is not ever going to run Hyper-V.

In step 2, you installed the Hyper-V features on the two Hyper-V hosts, and then in step 3, you rebooted the two servers. You could have allowed Install-WindowsFeature to have rebooted automatically by using the -Restart switch. In automation terms, this could have meant that the system started rebooting before the remote script has completed. This could cause the Invoke-Command to error out. The recipe avoids this by not rebooting after installation of the Hyper-V features, then rebooting in a controlled way. Once the Reboot- Computer command returns, your scripts can carry on managing the servers.

In each of step 4 through step 7, you set up one aspect of the Hyper-V hosts. You could have combined these steps and just called Set-VMHost once with all of the properties specified.

You can find more information on some of the Hyper-V features used in this recipe (details of which are outside the scope of this book), as follows:

	
For more information on

	
See

	
Connecting to a VM, including enhanced session mode

	
https://technet.microsoft.com/en-us/windows-server- docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect

	
Understanding the hard disk paths for VM and VHD information

	
https://blogs.msdn.microsoft.com/virtual_pc_guy/2010/03/10/understanding-where-your-virtual- machine-files-are-hyper-v/

	
Hyper-V and NUMA

	
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=- 2147217396

	
Hyper-V Resource Metering

	
https://technet.microsoft.com/en- us/library/hh831661(v=ws.11).aspx

 Using Windows PowerShell Direct

PowerShell Direct (PSD) is a new feature with Windows Server 2016 (and on Windows 10 Anniversary Update or later). PSD enables you to use PowerShell remoting to access a Hyper-V VM without needing to setup networking and firewall settings. With PSD, you use Invoke-Command, specifying either the VM's name or the VM's VMID (the VMID is a GUID used internally by Hyper-V to identify a VM). You can also use the VM name or VMID to enter a remote session using Enter-PSSession.

In previous versions of Hyper-V, you needed some sort of networking connection between your Hyper-V host and the guest OS in order to remote into the guest. This was often setting up firewall exceptions and establishing network connectivity. With PSD, you can use the VM's name or ID and remote straight in.

 Getting ready

For this recipe, you need a Hyper-V Host running on either Windows 10 Anniversary Update (or later) or Windows Server 2016, with Hyper-V loaded and operational. Additionally, you need a VM running Windows Server 2016 (or Windows 10). You should name the VM psdirect and set the VM's guest OS hostname to tiger.

To ensure security, you need to specify credentials when you call Invoke-Command or Enter- PSSession. You can either specify the -Credential parameter or let either cmdlet prompt for credentials.

With Hyper-V, the VM name can be different to the hostname of the OS running inside the VM. In this example, you use a VM with a VM name of psdirect and a hostname of tiger.

 How to do it...

Here is how you can use PowerShell Direct:

	Create a credential object for ReskitAdministrator:

 $RKAdmin = 'ReskitAdministrator'
 $RKPass = ConvertTo-SecureString `
 -String 'Pa$$w0rd' `
 -AsPlainText
 -Force
 $RKCred = New-Object `
 -TypeName System.Management.Automation.PSCredential
 -ArgumentList $RKAdmin,$RKPass

	Display the details of the psdirect VM:

 Get-VM -Name psdirect

	Invoke a command on the VM, specifying VM name:

 Invoke-Command -VMName psdirect `
 -Credential $RKCred `
 -ScriptBlock {hostname}

	Invoke a command based on VMID:

 $VMID = (Get-VM -VMName psdirect).VMId.Guid
 Invoke-Command -VMid $VMID `
 -Credential $RKCred `
 -ScriptBlock {hostname}

	Enter a PS remoting session with the psdirect VM:

 Enter-PSSession -VMName psdirect -Credential $RKCred
 Get-CimInstance -Class Win32_ComputerSystem
 Exit-PSSession

 How it works...

In step 1, you take a shortcut and directly create a credential object. Needless to say, it's not best practice, but for testing and learning, it is highly convenient.

In step 2, you use Get-VM to return information about the psdirect virtual machine, which looks like this:

In step 3, you invoke a script block on the psdirect VM, specifying the VM by name. The script block just returns the name of the guest OS, as follows:

In step 4, you invoke the same script block as in step 3 but specifying the VM based on VMID. This property is a GUID that Hyper-V uses internally to address each VM. You get the VM's VMID from the object returned from Get-VM, and then use it as follows:

In step 5, you enter a remote PowerShell session on the psdirect virtual machine. After entering the remote session, you use Get-CimInstance to return WMI information about the VM's operating system. You can see that the psdirect VM runs an OS whose hostname is tiger:

 There's more...

In step 3 and step 4, you use the hostname console application to obtain the hostname. You could have displayed the environment variable $env:COMPUTERNAME.

In step 5, you enter a remote session directly into the psdirect VM. Notice that the prefix to the prompt changes to [psdirect]. And when you exit the remote session, the prompt changes back to PS C:\>. By changing the prompt, PowerShell helpfully reminds you of to the hostname that is to which is going to execute any command you type. Accidentally typing a command intended for the local host into the remote system instead is an all too common mistake.

 Securing Hyper-V host

With server virtualization becoming more and more the norm, managing groups of Hyper-V Servers can be simplified by using VM groups. VM Groups are a new feature in Windows Server 2016 that allows you to create and use groups of servers. Server 2016 supports two different types of VM Groups: VM collection groups and management collection groups. A VM collection group is a collection of Hyper-V VMs. You can carry out tasks on the groups rather than on each individual VM. A management collection group is a collection of VM collection groups and other nested management collection groups. VM groups are especially useful for backups and for VM replication. In backup situations, a number of VMs making up a multi-tier application need to be backed up together.

In this recipe, you create a VM collection group containing two servers. Then you set the MAC addresses used by the two servers and you enable host resource protection.

 Getting ready

This recipe assumes you have two servers on which you have installed Hyper-V, as set out in the Installing and configuring Hyper-V feature recipe. You run this recipe on server HV1. Note that this recipe is based on HV1 and HV2 being VMs.

 How to do it...

Here is how you can secure your Hyper-V host:

	Setup Hyper-V VM groups:

 $VMGroup = New-VMGroup -Name HVServers `
 -GroupType VMCollectionType

	Create an array of members to add to the VM collection group:

 $HVServers = 'HV1','HV2'

	Add members to the VM group storage HVServers:

 Foreach ($HVS in $HVServers) {
 $VM = Get-VM -Name $HVS
 Add-VMGroupMember -ComputerName HVServers -VM $VM}

	Get and display VM group details:

 Get-VMGroup |
 Format-Table -Property Name, GroupType, VMMembers

	Get and display the VMs in the groups:

 $Members = (Get-VmGroup -Name HVServers).VMMembers
 $Members

	Set up and view MAC addresses:

 Set-VMhost -ComputerName HV1 -MacAddressMinimum 00155D017000 `
 -MacAddressMaximum 00155D017099
 Set-VMhost -ComputerName HV2 -MacAddressMinimum 00155D017100 `
 -MacAddressMaximum 00155D017199
 Get-VMhost -Computer HV1, HV2 |
 Format-Table -Property Name, MacAddressMinimum,
 MacAddressMaximum

	Stop any VMs that might be running in the HVServers VM group:

 Stop-VM -VM (Get-VMGroup HVServers).VMMembers

	Enable Hyper-V HostResourceProtection for VMs in the HVServer VM group:

 Set-VMProcessor -VM (Get-VMGroup HVServers).VMMembers `
 -EnableHostResourceProtection $true

	Start VMs in the HVServer VM group:

 Start-VM -VM (Get-VMGroup HVServers).VMMembers

	Observe the results of enabling HostResourceProtection:

 Get-VMProcessor -VM (Get-VMGroup HvServers).VMMembers |
 Format-Table -Property VMName, OperationalStatus

 How it works...

In step 1, you create a VM collection VM group called HVServers. In step 2 and step 3 you add the two Hyper-V VMs to the VM group. There is no output from these three steps.

In step 4, you use Get-VMGroup to return details of the VM groups on the server, like this:

In step 5, you retrieve details about the VMs in the HVServers VM group, as follows:

In step 6, you set and then review the MAC addresses that Hyper-V uses on the two Hyper-V host servers, as follows:

In step 7, step 8, and step 9, you stop the VMs in the VM group, you enable HostResourceProtection on the Hyper-V hosts, and then you restart the VMs. There is no output from these steps. In step 10, once the VMs have restarted, you verify HV1 and HV2 are set to use HostResourceProtection, as follows:

 There's more...

In step 1 through step 5, you set up a VM group. This is meant to make dealing with groups of Hyper-V Servers easier. As you see in step 7 through step 10, you use these VM groups to perform management functions on groups of servers.

The VMGroup feature is very useful, but unfortunately, none of the Hyper-V cmdlets support a - VMGroup parameter enabling a cmdlet to operate directly on the members of the VM group. Instead, you specify the VMs using the VM parameter like this, -VM (Get-VMGroup HvServers).VMMembers.

In step 8, you enable HostResourceProtection. In Server 2016 this is limited to CPU. setting HostResourceProtection ensures that the Hyper-V VMs do not use excessive resources (CPUs). You set resource protection settings for VMs in the next recipe.

If you are creating many VMs, you need to consider using the various deployment tools at your disposal. These tools include the commands in then DISM PowerShell modules as well as Windows deployment tools included in the Windows Automated Installation Kit (WAIK). The details of deploying Windows is outside the scope of this recipe.

There are some third party tools, such as the free Sysinternals tool Disk2Vhd, that can assist. You can use Disk2VHD to create a VHDX file you can boot from, based on the WIM file on your Windows 2016 installation DVD image. You can download this tool from https://technet.microsoft.com/en- us/sysinternals/ee656415.aspx.

 Create a virtual machine

You create Hyper-V virtual machines in several distinct steps. First, you need to create the VM itself—creating a virtual machine and the virtual hard drive and assign hardware such as memory, CPU cores, and DVD drives (and drive contents).

Once the VM is created, you need to work out how to install an OS into the VM. This process can be complex if you use native commands.

In this recipe, you create a simple VM that installs the OS into the VM based on GUI input. This recipe is therefore often the precursor to other configuration (that is you create a new VM and then add features and configure it per your requirements.

This is the same experience you would observe if you had a physical machine, with an empty C: drive that you boot from a Windows Server 2016 installation ISO.

 Getting ready

For this recipe, you need a Hyper-V VM host—use HV1 which needs an H: drive. The H: drive is where you store the VM and virtual disks.

You also need the ISO image for Windows Server 2016. For testing purposes, you can download an evaluation edition from Microsoft. Navigate to https://www.microsoft.com/en- us/evalcenter/evaluate-windows-server-2016/ and download the ISO image. In order to download the ISO, you need to login to the TechNet website using a Microsoft ID.

 How to do it...

Here is how to create a new VM:

	Set up the VM name and paths for this recipe:

 $VMname = 'VM1'
 $VMLocation = 'H:\Vm\VMs'
 $VHDlocation = 'H:\Vm\Vhds'
 $VhdPath = "$VHDlocation\VM1.Vhdx"
 $ISOPath = 'C:\Builds\en_windows_server_2016_x64_dvd.iso'

	Create a new VM:

 New-VM -Name VM1 -Path $VMLocation -MemoryStartupBytes 1GB

	Create a virtual disk file for the VM:

 New-VHD -Path $VhdPath -SizeBytes 128GB -Dynamic

	Add the virtual hard drive to the VM:

 Add-VMHardDiskDrive -VMName $VMname -Path $VhdPath

	Set ISO image in the VM's DVD drive:

 Set-VMDvdDrive -VMName $VMName -ControllerNumber 1 `
 -Path $ISOPath

	Start the VM:

 Start-VM -VMname $VMname

	View the results:

 Get-VM -Name $VMname

 How it works...

In step 1, you set variables that contain the VM name as well as the paths to the VM/VHDX locations, the VHDX file for this VM and to the Windows Server 2016 installation DVD image. There is no output from this step.

In step 2, you create a Hyper-V VM, which looks like this:

In step 3, you create a dynamic VHDX file for the VM1 virtual machine. The output from this step looks like this:

In step 4, you add the VHD to the VM—there is no output from this step.

In step5, you add the ISO image to the VM, inserting the image into the VMs's DVD drive. There is no output from this step.

In step 6, you add the VHDX file to the VM. There is no output from this step.

Once you add the VHDX and ISO image to the VM, in step 7, you start the VM1 VM. There is no output from this step. However, you can observe, in step 8, that the VM has started, like this:

Using the GUI tools (Hyper-V Manager and VMConnect), your new VM looks like this:

As you can see in this graphic, Windows 2016 has begun the installation process and is waiting for your input. This example was created using a English (United States) ISO image—if you use localized ISO images (for example, English (United Kingdom)), what you see when you do this recipe may differ from this example depending on the OS language you are using.

You use the VM in later recipes, so you should continue the installation, installing the Windows Server 2016 Enterprise edition with the desktop tools. After the installation has completed, log in to the new server (VM1) and use Administrator for your user id and Pa$$w0rd for the password.

 There's more...

In step 2, you create a VM. The VM you create is not bootable as you have not added a hard disk or DVD drive. In step 3, you create a new VHDX and then in step 4, you add this VHDX to the VM1 VM. After completing this step, the VM is still not bootable. This recipe relies on you using the GUI to complete the installation. Of course, you could use any of the Windows deployment tools to automate the deployment of the VM.

Once you complete step 6, your new VM is created and running, but with no OS loaded. You then complete the installation of Windows 2016 in the VM before moving on to the next recipe. The next recipe assumes you have completed the installation of the VM, installing the OS using the Enterprise edition with the Desktop Experience and adding no additional features.

 Configuring VM hardware

Configuring hardware in your virtual machine is very much like configuring a physical computer. With a physical computer, you can adjust the CPUs and BIOS settings. You can also adjust physical RAM, network interfaces, disk interfaces and disk devices, and DVD drives (with/without a loaded DVD), and so on. Each of these physical components is provided within a Hyper-V VM and the PowerShell cmdlets make it simple to adjust the virtual hardware in a VM.

In this recipe, you adjust the VM's BIOS, CPU count, memory, add a SCSI controller, and finally create and add a virtual disk to the SCSI controller. Just like in most commercial grade physical servers, not all of these components can be changed while the server is running. You run this recipe from HV1 and turn the VM1 VM off before configuring the virtual hardware.

This recipe does not cover the virtual NIC which you need in order to use the VM in your network. Configuring the VM's networking is covered in the Configuring Hyper-V networking recipe.

 Getting ready

This recipe adjusts the virtual hardware inside the VM1 VM created in the Creating a Virtual Machine recipe.

 How to do it...

Here is how to configure VM hardware on HV1 VM:

	Turn off the VM1 VM:

 Get-VM -VMName VM1 -Verbose
 Stop-VM -VMName VM1
 Get-VM -VMName VM1 -Verbose

	Set the StartupOrder in the VM's BIOS:

 Set-VMBios -VmName VM1 -StartupOrder ('IDE', 'CD',
 'LegacyNetworkAdapter', 'Floppy')
 Get-VMBios VM1

	Set CPU count for VM1:

 Set-VMProcessor -VMName VM1 -Count 2
 Get-VMProcessor -VmName VM1

	Set VM1 memory:

 Set-VMMemory -VMName VM1 `
 -DynamicMemoryEnabled $true `
 -MinimumBytes 512MB `
 -StartupBytes 1GB `
 -MaximumBytes 2GB
 Get-VMMemory -VMName VM1

	Add a ScsiController to VM1:

 Get-VMScsiController -VMName VM1
 Add-VMScsiController -VMName VM1
 Get-VMScsiController -VMName VM1

	Restart the VM:

 Start-VM -VMName VM1
 Wait-VM -VMName VM1 -For IPAddress

	Create a new VHDX file:

 $VHDPath = 'H:\Vm\Vhds\VM1-D.VHDX'
 New-VHD -Path $VHDPath -SizeBytes 8GB -Dynamic

	Add the VHD to the ScsiController:

 Add-VMHardDiskDrive -VMName VM1 -ControllerType SCSI `
 -ControllerNumber 0 `
 -ControllerLocation 0 `
 -Path $VHDPath

 How it works...

In step 1, you first examine the VM1 VM and you see it's running. You then shut down the VM. After it is shut down you observe its status like this:

In step 2, you change the startup order, as follows:

In step 3, you change the VM to have two CPU (cores) and then display the CPUs available in the VM, as follows:

In step 4, you update the memory settings for VM1. Then you display the memory settings for the VM, as follows:

In step 5, you'll see you have two existing SCSI controllers, then you add a third, as you can see here:

In step 6, you restart the VM1 VM. After the VM is restarted, in step 7, you create a new VHDX file on the HV1 system, like this:

Finally, in step 8, you add the newly created VHDX file as a disk on SCSI bus 0, location 0, which generates no output. In step 9, you view the disk in VM1, as follows:

 There's more...

In addition to the hardware components covered in this recipe, you can also manage a VM's COM ports and diskette drives. While you cannot directly connect a VM's COM port to the host's COM port, you can configure a VM to communicate with the physical computer via a named pipe on the host computer. A typical use for this is kernel debugging—probably something most IT Pros rarely ever do. For more information on named pipes, see https://msdn.microsoft.com/en-us/library/aa365590(v=vs.85).aspx.

You can also use a virtual floppy drive in a VM. There is no cmdlet support to create a virtual floppy drive file (a .vfd file) in the Hyper-V module. Nor is there support for mounting a VFD file in Windows. You can create VFD files using Hyper-V Manager and then use Set-VMFloppyDiskDrive to attach the VFD file as a floppy disk drive in the VM.

 Configuring Hyper-V networking

In the Creating a virtual machine recipe, you created a VM, VM1. This virtual machine has, by default, a single network card that Hyper-V sets to acquire IP address details from DHCP. In this recipe, you assign the NIC to a switch and configure IP address details.

 Getting ready

This recipe assumes you have created VM1 as per the Creating a virtual machine recipe. The recipe also makes use of a DHCP server running on DC1. You set this DHCP server up in the Installing and authorizing a DHCP Server recipe, and configured the DHCP server in the Configure DHCP scopes recipe, in Chapter 8, Managing Windows Network Services.

 How to do it...

Here you see how to configure Hyper-V networking:

	Get NIC details and any IP Address from the VM1 VM:

 Get-VMNetworkAdapter -VMName VM1

	Get VM networking details:

 $user = 'Localhost\Administrator'
 $pass = ConvertTo-SecureString -String 'Pa$$w0rd' `
 -AsPlainText -Force
 $cred = New-Object -TypeName `
 System.Management.Automation.PSCredential `
 -ArgumentList $user,$Pass
 Invoke-Command -VMName VM1 `
 -ScriptBlock {Get-NetIPConfiguration |
 Format-List} `
 -Credential $cred

	Create a virtual switch on HV1:

 New-VMSwitch -Name External -NetAdapterName 'Ethernet' `
 -Notes 'Created on HV1'

	Connect VM1 to the switch:

 Connect-VMNetworkAdapter -VMName VM1 -SwitchName External

	See VM networking information:

 Get-VMNetworkAdapter -VMName VM1

	With VM1 now in the network, observe the IP address in the VM:

 Invoke-Command -VMName VM1 `
 -ScriptBlock {Get-NetIPConfiguration} `
 -Credential $cred

	View the hostname on VM1:

 Invoke-Command -VMName VM1 `
 -ScriptBlock {Hostname} `
 -Credential $cred

	Change the name of the host:

 $sb = {
 Rename-Computer -NewName VM1 -Force}
 Invoke-Command -VMName VM1 `
 -ScriptBlock $sb `
 -Credential $cred

	Reboot and wait for the restarted VM:

 Restart-VM -VMName VM1 -Wait -For IPAddress -Force

	Get updated network configuration:

 Invoke-Command -VMName VM1 `
 -ScriptBlock {Get-NetIPConfiguration} `
 -Credential $cred

	Get hostname of the VM1 VM:

 Invoke-Command -VMName VM1 `
 -ScriptBlock {Hostname} `
 -Credential $cred

 How it works...

In step 1, you retrieve the Hyper-V networking adapter information for the VM1 VM, which looks like this:

In step 2, you first create a credential object for the VM. As noted here, the user is the new VM's administrator username (administrator) and the password (Pa$$w0rd). Then you invoke a script block on VM1 that retrieves the VM's IP configuration. As you can see, the NIC is not connected to any network. The output looks like this:

In step 3, you create a new virtual Hyper-V switch on your HV1 system. The switch, which you name External, is connected to an NIC on the HV1 computer. This allows VMs connected to this switch to network with both the Hyper-V host and any external networks to which you are connected. The output of this step looks like this:

In step 4, you connect the VM's NIC to the Hyper-V switch you just created. There is no output from this step.

In step 5, you view the VM's networking information, which is updated as a result of connecting the NIC to the switch. Assuming that you have a DHCP server running on your network (the network the Hyper-V hosts connects to), you should see a DHCP assigned IP address, with output that looks like this:

In step 6, you examine VM1 VM's IP address information, using the Get- NetIPConfiguration cmdlet run remotely, inside the VM. As you can see from the output, the VM has an IP address and has two configured DNS servers but with no default gateway:

In step 7, you retrieve the hostname of the VM1 virtual machine. The output looks like this:

In step 8, you remotely update the VM's hostname to match the VM name (VM1). The only output from this step is a warning that the new name can only take affect once you reboot the machine. In step 9, you re-boot the machine and wait for the restarted VM. There is no output from the re-boot.

In step 10, you check the networking on the VM1 VM with output that looks like this:

In step 11, you remotely retrieve VM1 VM's hostname (VM1) as set earlier. The output looks like this:

In step 8 and step 11, you use the Hostname.exe console command to retrieve the hostname. There are other ways to get the hostname, including using WMI or using the environment variable env:ComputerName.

 There's more...

In step 1, you use the Get-VMNetworkAdapter for the VM1 VM. The output from this step shows that the virtual NIC is not connected to any switch. It also shows that the VM has assigned an APIPA IP address to the NIC (169.254.152.96). Since the address chose by Windows is random, you may see a different address in the 169.254.0.0/16 network. And even though Windows has an IP address in mind for the NIC, since you have not connected the VM's NIC to a Hyper-V switch, no networking is possible with the VM, although subsequent steps fix that issue.

In step 3, you create a new switch. If you already have an External switch created on your Hyper-V host, you can use it in this recipe as opposed to the External switch created in this step.

In step 5 and step 6, you examine the IP configuration of VM1 VM's virtual NIC. Depending on the configuration of any DHCP server, you may see a different IP address. And if you do not have a working DHCP server on the network, you may see an APIPA address (that is, one in the 169.254.0.0/16 network). In step 5, you may see somewhat mangled output—you can always run step 5 through Format-Table to tidy this up.

In step 7, you obtain the VM's configured hostname. Assuming you created the VM simply from the default installation via the product DVD, Windows automatically creates a hostname, in this case WIN- O5LPHTHBB5U. To complete the configuration of networking for the VM, you need to update the VM's hostname.

 Implementing nested Hyper-V

Nested Hyper-V is a new feature in Windows 2016 and Windows 10 (Anniversary update and later). Nested Hyper-V enables a Hyper-V VM to host VMs which also have virtualization enabled. You could, for example, take a physical host (say, HV1) and on that host run a VM (say VM1). With nested Hyper-V, you could enable your VM1 VM to host VMs and create a nested VM inside it called Nested1.

Nested VMs have a number of uses. First, nested MVs hosted in one VM are provided hardware isolation from nested VMs run in other VMs. This provides a further level of security for virtual machines. It's also useful for testing and education/training. In a training course, you could give a student one VM and enable him to create additional VMs as part of the course. And most IT pros just find it cool! You could, for example, run all the recipes in this chapter using Nested VMs.

Enabling nested Hyper-V is very simple. First, you must update the virtual CPU in the VM you want to support nesting. Therefore, in this recipe, you adjust the virtual CPU in the VM1 VM to expose the virtualization extensions. This has to be done while the VM is turned off. After you restart the VM, you install the Hyper-V feature and create the Nested1 nested VM. This recipe does not show the details of configuring the Nested1 VM, which are left as an exercise for the reader.

 Getting ready

This recipe uses the HV1 Hyper-V host, with an existing Hyper-V VM, VM1 available. The recipe assumes VM1 is set up as shown in the Creating a virtual machine recipe earlier in this chapter.

 How to do it...

Here is how to implement nested Hyper-V:

	Stop VM1 VM:

 Stop-VM -VMName VM1
 Get-VM -VMname VM1

	Change the VM's processor to support virtualization:

 Set-VMProcessor -VMName VM1 `
 -ExposeVirtualizationExtensions $true
 Get-VMProcessor -VMName VM1 |
 Format-Table -Property Name, Count,
 ExposeVirtualizationExtensions

	Start the VM1 VM:

 Start-VM -VMName VM1
 Wait-VM -VMName VM1 -For Heartbeat
 Get-VM -VMName VM1

	Add Hyper-V into VM1:

 $user = 'VM1\Administrator'
 $pass = ConvertTo-SecureString -String 'Pa$$w0rd' `
 -AsPlainText -Force
 $cred = New-Object -TypeName
 System.Management.Automation.PSCredential `
 -ArgumentList $user,$Pass
 Invoke-Command -VMName VM1 `
 -ScriptBlock {Install-WindowsFeature `
 -Name Hyper-V -IncludeManagementTools} `
 -Credential $cred

	Restart the VM to finish adding Hyper-V:

 Stop-VM -VMName VM1
 Start-VM -VMName VM1
 Wait-VM -VMName VM1 -For IPAddress
 Get-VM -VMName VM1

	Create a nested VM:

 $sb = {
 $VMname = 'Nested11'
 New-VM -Name $VMname -MemoryStartupBytes 1GB}
 Invoke-Command -VMName VM1 `
 -ScriptBlock $sb

 How it works...

In step 1, you stop the VM1 VM, and then retrieve properties that show the VM has been turned off. The output looks like this:

In step 2, you change the VM's virtual processor(s) to expose the virtualization extensions to the VM's operating system. The output of this step looks like this:

In step 3, you restart the VM. Once the VM is started, you wait until you get a heartbeat then examine the VM's properties, which looks like this:

Once the VM is started, in step 4, you install the Hyper-V feature into the VM1 VM. As you can see in the following output, adding Hyper-V is both successful and requires you to reboot the VM:

In step 5, you restart the VM, wait for it to get an IP address assigned, and then retrieve the VM's details, as follows:

Once the VM1 VM is started, in step 6, you create a nested VM Nested11. The Nested11 VM runs inside the VM1 VM, and the output looks like this:

 There's more...

In step 2, you look at the properties of the virtual CPU(s) in the VM1 VM. If you executed the Configuring VM hardware recipe previously, you may see a different CPU count.

In step 5, you stopped then started the VM. As an alternative, you could have used Restart-VM.

In step 6, you create a new VM but you have not loaded an operating system or configured the VM. Naturally, you can use the techniques in the chapter to configure your new VM as you need it. Also, in this step, you may be prompted for credentials. You can enter them using the prompt, or you could create a credential object and pass when you run this step.

 Managing VM state

Managing the VM state involves stopping and starting or pausing and resuming a VM. You can also save and restore a VM.

 Getting ready

This recipe uses the VM1 VM created in the Creating a virtual machine recipe. This recipe assumes the VM1 VM is stopped when you start this recipe. If this VM is running, then first stop it using Stop-VM.

 How to do it...

Here is how to manage VM state:

	Get the VM's state to check if it is off:

 Get-VM -Name VM1

	Start the VM, get its status, then wait until the VM has an IP address assigned and the networking stack is working, then examine the VM's state:

 Start-VM -VMName VM1
 Get-Vm -VMName VM1
 Wait-VM -VMName VM1 -For IPAddress
 Get-VM -VMName VM1

	Suspend and resume a VM:

 Suspend-VM -VMName VM1
 Get-VM -VMName VM1
 Resume-VM -VMName VM1
 Get-VM -VMName VM1

	Save the VM and check status:

 Save-VM -VMName VM1
 Get-VM -VMName VM1

	Resume the saved VM and view the status:

 Start-VM -VMName VM1
 Get-Vm -VMName VM1

	Restart a VM:

 Get-VM -VMname VM1
 Restart-VM -VMName VM1 -Force
 Get-VM -VMName VM1
 Wait-Vm -VMName VM1 -For IPaddress
 Get-VM -VMName VM1

	Hard power Off:

 Stop-VM -VMName VM1 -TurnOff
 Get-VM -VMname VM1

 How it works...

In step 1, you retrieve VM1 VM's properties which show the VM as off. It should look like this:

In step 2, you first start VM1 and retrieve its properties. You then wait for the VM to be assigned an IP address then re-retrieve the VM's properties, like this:

In step 3, you suspend and resume VM1. Notice that after suspending the VM, Hyper-V does not release the VM's memory. The output from this step looks like this:

In step 4, you save the VM and check the VM's status. When you save a VM, the VM's state is written to disk, and the VM is stopped. The output looks like this:

In step 5, you resume the saved VM then look at the VM's properties once the VM has restarted. The output looks like this:

In step 6, you forcibly restart VM1. In this step, you first view the running VM's properties then you stop it and re-view the VM properties. Then you restart the VM and wait for it to start up and get an IP address, then you re-view the properties to see that the VM is up and running. The output of this step looks like this:

In step 7, you do a hard power off of VM1, and then you view the VM's properties, like this:

 There's more...

This recipe shows you how to manage state. In step 1, you view the properties of the VM that is not running. As you can see from the screenshot, VM1 is turned off and is not running (and has an up time of 00:00:00).

With step 2, you start the VM and retrieve the VM's status. Next, in step 3, you suspend then resume a VM. While the VM is suspended, the VM is not active and receives and sends no network traffic. The VM's memory is maintained as is the current state and the VM can be resumed at any moment, as you can see from this step.

With step 4 and step 5, you save a VM, then restart it. When you save a VM, Hyper-V saves the VM's memory to disk and the VM's virtual disks are not used. Saving a VM is similar to saving it, except that with a saved VM, all the VM's memory is written to disk then released.

With step 6, you forcibly shut down the VM. This is equivalent to pulling the power from a running computer then restarting it or holding down the power button. When you do this, all state is lost, and it is possible to introduce corruption due to data being still in memory and not written to disk prior to the power off. While Windows and the most used Windows file systems (NTFS and ReFS) are fairly resilient to errors, you should avoid hard shutdown if possible.

 Configuring VM and storage movement

Hyper-V enables you to both move a VM and to move the storage for a VM to a new location. Moving a VM and moving a VM's storage are two important features you can use to manage your Hyper-V hosts.

With live migration, you can move a Hyper-V VM to a different VM host with no downtime. This works best when the VM is held on shared storage (via a fiber channel SAN, iSCSI, or SMB). You can also move a VM's storage (that is any VHD/VHDX associated with the VM) to a different location. You can also combine these and move a VM supported by local storage to another Hyper-V host (moving both the VM and the underlying storage).

In this recipe, you first move the storage for the VM1 VM. You created this VM in the Creating a virtual machine recipe and stored the VM configuration and the VM's VHD on the H: drive. To move the storage, you create a new SMB share and then move the VM's storage to the new SMB share.

In the second part of this recipe, you do a live migration of the VM1 VM from HV1 to HV2 while the VM is running. This is possible since the VM is using shared storage (that is the SMB share you create).

 Getting ready

In this recipe, you use the HV1 and HV2 systems (Windows 2016 Server with Hype-V loaded) as setup in the Installing and configuring Hyper-V recipe and the VM1 VM created in the Creating a virtual machine recipe.

In the first part of this recipe, you first move the storage for the VM1 VM. You created this VM in the Creating a virtual machine recipe and stored the VM configuration and the VM's VHD on the H: drive. You run all the steps in this recipe on HV1. You must have created the external switch on HV2, otherwise the following step 8 fails.

 How to do it...

Here is how you can configure a VM:

	View the VM1 VM on HV1 and verify that it is turned off and not saved:

 Get-VM -Name VM1 -Computer HV1

	Get the VM configuration location and VHD details:

 (Get-VM -Name vm1).ConfigurationLocation
 Get-VMHardDiskDrive -VMName VM1

	Move the VM's storage to the C: drive:

 Move-VMStorage -Name VM1 -DestinationStoragePath C:\VM1

	View the configuration details after moving the VM's storage:

 (Get-VM -Name VM1).ConfigurationLocation
 Get-VMHardDiskDrive -VMName VM1

	Get the VM details for VMs from HV2:

 Get-VM -ComputerName HV2

	Enable VM migration from both HV1 and HV2:

 Enable-VMMigration -ComputerName HV1, HV2

	Configure VM Migration on both hosts:

 Set-VMHost -UseAnyNetworkForMigration $true `
 -ComputerName HV1, HV2
 Set-VMHost -VirtualMachineMigrationAuthenticationType Kerberos `
 -ComputerName HV1, HV2
 Set-VMHost `
 -VirtualMachineMigrationPerformanceOption Compression `
 -ComputerName HV1, HV2

	Move the VM to HV2:

 $start = Get-Date
 Move-VM -Name VM1 `
 -ComputerName HV1.reskit.org `
 -DestinationHost HV2.reskit.org `
 -IncludeStorage `
 -DestinationStoragePath C:\VM1
 $finish = Get-Date

	Display the time taken to migrate:

 "Migration took: [{0:n2}] minutes" `
 -f ($($finish-$start).totalminutes)

	Check which VMs on are on HV1 and HV2:

 Get-VM -ComputerName HV1
 Get-VM -ComputerName HV2

	Look at the details of the moved VM:

 (Get-VM -Name VM1 -Computer HV2).ConfigurationLocation
 Get-VMHardDiskDrive -VMName VM1 -Computer HV2

 How it works...

In step 1, you view the basic details of the VM1 VM, running HV1. The output looks like this:

In step 2, you use the Get-VM cmdlet to display both the location of VM1 VM's configuration details and of VM1 VM's single virtual disk drive, with output like this:

In step 3, you move the VM's storage. You move the VM storage from the H: drive to C:\VM1. There is no output from this step. In step 4, you repeat the commands you used in step 2 and observe that Hyper-V now stores the VM and the VHDX in C:\VM1. The output looks like this:

Next, this recipe looks at VM live migration. In step 5, you look at the VMs running on the two Hyper-V hosts. As you can see from the following output, HV1 is running only one VM (VM1) whilst HV2 runs no VMs:

In step 6, you enable VM migration from both HV1 and HV2. In step 7, you configure each VM host to support VM live migration. In this case, you configure both hosts to use their single NIC for migration, to authenticate using Kerberos and to compress the migration traffic. There is no output from these two steps.

In step 8, you live migrate VM1 from HV1 to HV2. There is no output from this step, but in step 9, you display how long the Move-VM cmdlet took to move the VM, like this:

Finally, in step 10, you look at the VMs running on HV1 and HV2 and observe that VM1 is now running successfully on HV2, like this:

 There's more...

In this recipe, you moved the storage for a VM from one volume to another and you moved a running VM to a different machine. In step 3, you moved the storage for the VM. If you had a connection open to VM1, you would have seen the VM functioning normally. You may have seen a brief flicker as the storage movement completes and Hyper-V begins to use the new storage location.

In this case, you set up HV1 and HV2 as two non-clustered systems. In step 8, you move VM1 from HV1 to HV2. In this case, there is no shared storage involved with the VMs which means Hyper-V performs a storage migration and a VM migration from the old to the new VM host. Had you stored the VM on shared storage, moving a VM between cluster nodes would have been significantly faster.

At the completion of the VM movement in step 8, Hyper-V drops connectivity to the VM on HV1 and establishes it on HV2. This means that for a moment, you will lose connectivity. If you open a VM Connect window into VM1 before you move the VM, you can see that as the movement finishes, the VM Connect window stops showing the VM. After a few seconds, the VM Connect window should reappear with the VM running on HV2.

You could also open up a PowerShell window on another system, say DC1, and ping the VM continuously during the movement of the VM. You may notice a moment of dropped pings, before they pick up again once the live migration has completed.

 Configuring VM replication

In Hyper-V, VM replication is a disaster recovery feature. It creates a replica of a VM on a remote Hyper-V Server and then keeps the replica up to date. The VM on the remote host is not active, but can be made active should the VM's host for some reason fail.

With Hyper-V replication, the source VM host bundles up any changes in a running VM's VHD file(s) and sends them to the replica server on a regular basis. The replica server then applies those changes to the dormant replica.

Once you have a replica established, you can test the replica to ensure it can start should you need that. Also, you can failover to the replica—bringing the replicated VM up based on the most recently replicated data. If the source VM host becomes inoperable before it can replicate changes on the source VM, there is a risk of those changes being lost.

In this recipe, you create and use a replica of a VM, VM1, that you have running on your HV1 server. The recipe sets up the replica on the HV2 server.

 Getting ready

You created the HV1 and HV2 servers in the Installing and configuring Hyper-V recipe, and created VM1 in the Creating a virtual machine recipe. Should you have used the Configuring VM and storage movement recipe, you either need to move VM1 back to HV1, or run the recipe from HV2, not HV2, and adjust it as appropriate. This recipe also uses the AD cmdlets from DC1 to configure the HV1 and HV2 systems for delegation and assumes you have firewalls turned off. Also, if you moved the VM previously, you need to move the VM back to HV1.

 How to do it...

Here is how to configure VM replication:

	Configure HV1 and HV2 to be trusted for delegation in AD on DC1:

 $sb = {
 Set-ADComputer -Identity HV1 `
 -TrustedForDelegation $True}
 Invoke-Command -ComputerName DC1 -ScriptBlock $sb
 $sb = {
 Set-ADComputer -Identity HV2 `
 -TrustedForDelegation $True}
 Invoke-Command -ComputerName DC1 -ScriptBlock $sb

Reboot the HV1 and HV2:

 Restart-Computer -ComputerName HV2
 Restart-Computer -Force

	Once both systems are restarted, from HV1, set up HV2 as a replication server:

 Set-VMReplicationServer `
 -ReplicationEnabled $true `
 -AllowedAuthenticationType Kerberos `
 -KerberosAuthenticationPort 42000 `
 -DefaultStorageLocation 'C:\Replicas' `
 -ReplicationAllowedFromAnyServer $true `
 -ComputerName HV2

	Enable VM1 on HV1 to be a replica source:

 Enable-VMReplication -VMName 'VM1' `
 -Computer HV1 `
 -ReplicaServerName 'HV2' `
 -ReplicaServerPort 42000 `
 -AuthenticationType Kerberos `
 -CompressionEnabled $true `
 -RecoveryHistory 5

	View the replication status of HV2:

 Get-VMReplicationServer -ComputerName HV2

	Check VM1 on HV2:

 Get-VM -ComputerName HV2

	Start the initial replication:

 Start-VMInitialReplication -VMName VM1 -ComputerName HV2

	Examine the initial replication state on HV1 just after you start the initial replication:

 Measure-VMReplication -ComputerName HV1

	Wait for replication to finish, then examine the replication status on HV1:

 Measure-VMReplication -ComputerName HV1

	Test VM1 failover to HV2:

 $sb = {
 $VM1Test = Start-VMFailover -AsTest -VMName VM1 `
 -Confirm:$false
 Start-VM $VM1test }
 Invoke-Command -ComputerName HV2 -ScriptBlock $sb

	View the status of VMs on HV2:

 Get-VM -ComputerName HV2

	Stop the failover test:

 $sb = {
 Stop-VMFailover -VMName VM1 }
 Invoke-Command -ComputerName HV2 -ScriptBlock $sb

	View the status of VMs on HV1 and HV2 after failover stopped:

 Get-VM -ComputerName HV1
 Get-VM -ComputerName HV2

	Stop VM1 on HV1 prior to performing a planned failover:

 Stop-VM VM1 -ComputerName HV1

	Start VM failover from HV1:

 Start-VMFailover -VMName VM1 -ComputerName HV2 `
 -Confirm:$false

	Complete the failover:

 Complete-VMFailover -VMName VM1 -ComputerName HV2 `
 -Confirm:$false

	Start the replicated VM on HV2:

 Start-VM -VMname VM1 -ComputerName HV2

	See VMs on HV1 and HV2 after the planned failover:

 Get-VM -ComputerName HV1
 Get-VM -ComputerName HV2

 How it works...

In step 1, you change the AD objects for computers HV1 and HV2 to enable the hosts as trusted for delegation. Then, in step 2, you reboot both HV1 and HV2. There is no output from either step.

In step 2, you reboot HV1 and HV2 to enable the updated computer settings. You see no output as such from this step, but both systems do reboot.

In step 3, you configure HV2 to accept inbound Hyper-V replication. You set this up to allow replication from any server. Then in step 4, you configure VM on HV1 as replication source, replicating VM1 to HV2. There is no output from these two steps.

In step 5, you look at the replication status on HV2, and the status of VM1 on HV2. You should see output like this:

In step 6, you view the status of VM1 on the HV2 Hyper-V host, which looks like this:

With step 7, you start the initial replication of VM1 from HV1 to HV2. There is no output from this step. Once you have started the initial replication, in step 8, you can see the results. Once you start the initial replication, Measure-VMReplication returns output that looks like this:

Once Hyper-V has completed the initial replication, the output, from step 9, should look like this:

In step 10, you start a test failover of VM1 from HV1 to HV2 with output that looks like this:

In step 11, you view the status of the VMs running on HV2. As you can see from the output, the replica of VM1 is still there, but now you have a new VM which Hyper-V created for you based on a checkpoint (which Hyper-V automatically creates) from the replicated VM1. The output for this step looks like this:

In step 12, you stop the failover test. This removes the test VM and provides no output.

In step 13, you see the VMs running on both HV1 and HV2 after stopping the failover test, with output that looks like this:

With step 14, you begin to look at bringing up VM1 on HV2—a real failover. In this step, you stop VM1. This step also ensures that the replica VM on HV2 is updated before Hyper-V stops VM1 on HV1, ensuring the replica is fully up to date. There is no output from this step.

In step 15, you start a formal failover, which you complete in step 16. Neither step produces output.

In step 17, you explicitly start VM1 on HV2 which produces no output.

In step 18, you view the VMs running on HV2 (and stopped on HV1), as follows:

 There's more...

In step 2, you reboot both Hyper-V hosts (HV1 and HV2). Since you run this recipe from the HV1 machine, the second command in this step reboots the system you are working on. If you test this recipe, make sure you have any files saved before you reboot.

If you have loaded this recipe into the ISE, then after rebooting, the ISE can reload the scripts you had open before the reboot. This is a great feature of PowerShell!

In step 3, you configure HV2 to accept inbound replication from any Hyper-V system. If you have not configured the host firewalls (or turned them off) you may see errors trying to invoke replication. You may also wish to configure HV2 to accept replication only from a specific server, such as HV1. To do this, you would have to set up the replication server to not accept replication from any server. Then, you use the Hyper-V cmdlet New-VMReplicationAuthorizationEntry to specify that HV2 can only receive replicas from the HV1 server. To set this up, you would do the following:

 Set-VMReplicationAuthorizationEntry `
 -AllowedPrimaryServer HV1 `
 -ReplicaStorageLocation C:\Replica `
 -ComputerName HV2

In step 7, you begin the initial replication of VM1 to HV2. The Measure- VMReplication command does not show you progress information with respect to the initial replication. However, if you use the Hyper-V MMC console, you can see how much of the replica has been sent and received for a given VM. Looking at HV1 and HV2 whilst executing step 8, you might see something like this:

In step 11, you view the details of the test version of VM1 running. If you were to open up a VM Connect window on this test VM, you see that both the hostname and the IP address are not the same as the VM running on HV1 (where the hostname is VM1 and the IP address is 10.10.10.201). After step 17, if you looked inside VM1, running this time on HV2, you would find the same issue. The impact is that after a real life failover, you need to reset the computer/hostname for the computer and reset the IP configuration details. If you are using Hyper-V replica in production, it would be a great idea to develop a script to fix these two issues in an automated fashion.

In Step 18, you see that VM1 is running on HV2 and stopped on HV1. However, if you look inside VM1 inside HV2, you see it has a hostname that is not VM1 and has no networking setup. If you were to failover and wanted to run the failed over VM, you would need to deal with these two issues, which would involve re-booting VM1.

 Managing VM checkpoints

With Hyper-V in Server 2016, a checkpoint captures the state of a VM into a restore point. Hyper-V then enables you to roll back a VM to a checkpoint. Windows Server 2008's version of Hyper-V provided this feature. With Server 2008, these restore points were called snapshots.

With Server 2012, Microsoft changed the name to checkpoint. This made the terminology consistent with System Center, and avoided confusion with respect to the Volume Shadow Copy Service (VSS) snapshots used by backup systems. Whilst the Hyper-V team did change the terminology, some of the cmdlet names remain unchanged. To restore a VM to a checkpoint, you use the Restore-VMSnapShot cmdlet.

When you create a checkpoint, Hyper-V temporarily pauses the VM. It then creates a new differencing disk (AVHD). Hyper-V then resumes the VM which writes all data to the differencing disk. You can create a variety of checkpoints for a VM.

Checkpoints are great for a variety of scenarios. It can be useful for troubleshooting. Get the VM to the point where some bug is triggered, take a checkpoint. Then try a fix—if it doesn't work, you can just roll back to the checkpoint and try some other fix. Checkpoints are also useful for training. You could create a VM for a course, and create a checkpoint after each successful lab. That way, the student can make a mistake in a lab, and skip forward to a later checkpoint and carry on.

Using checkpoints in production is a different matter. In general, you should avoid using checkpoints on your production systems for a number of reasons. If your servers use any sort of replication or transaction based applications, the impact of resetting the clock to an earlier time can be bad. Since checkpoints rely on differencing disks that feature constantly growing physical disk files, the use of checkpoints can result in poor performance. Checkpoints have their place—but should not be used as a backup strategy.

In this recipe, you create a snapshot of VM1, then you create a file. You take a further checkpoint and create a second file. Then you revert back to the first snapshot, observing that there are no files created. Then you roll forward to the second snapshot to see that the first file is there but not the second (because you created the second file after the snapshot was taken. Then you remove all the snapshots. After each key checkpoint operation, you observe the VHDX and AVHD files which support VM1.

 Getting ready

This recipe assumes you have HV1 running the VM1 VM.

 How to do it...

	Create credentials for VM1:

 $user = 'VM1\Administrator'
 $pass = ConvertTo-SecureString -String 'Pa$$w0rd' `
 -AsPlainText `
 -Force
 $cred = New-Object -TypeName
 System.Management.Automation.PSCredential `
 -ArgumentList $user,$Pass

	Look at C: in VM1 before we start:

 $sb = { Get-ChildItem -Path C:\ }
 Invoke-Command -VMName VM1 -ScriptBlock $sb `
 -Credential $cred

	Create a snapshot of VM1 on HV1:

 Checkpoint-VM -ComputerName HV1 `
 -VMName VM1 `
 -SnapshotName 'Snapshot1'

	Look at the files created to support the checkpoints:

 $Parent = Split-Path -Parent (Get-VM -Name VM1 |
 Select-Object
 -ExpandProperty HARDDRIVES).PATH
 Get-ChildItem -Path $Parent

	Create some content in a file on VM1 and display it:

 $sb = {
 $FileName1 = 'C:\File_After_Checkpoint_1'
 Get-Date | Out-File -FilePath $FileName1
 Get-Content -Path $FileName1}
 Invoke-Command -VMName VM1 -ScriptBlock $sb `
 -Credential $cred

	Take a second checkpoint:

 Checkpoint-VM -ComputerName HV1 `
 -VMName VM1 `
 -SnapshotName 'Snapshot2'

	Get the VM checkpoint details for VM1:

 Get-VMSnapshot -VMName VM1

	Look at the files supporting the two checkpoints:

 Get-ChildItem -Path $Parent

	Create and display another file in VM1 (after you have taken Snapshot2):

 $sb = {
 $FileName2 = 'C:\File_After_Checkpoint_2'
 Get-Date | Out-File -FilePath $FileName2
 Get-ChildItem -Path C:\ -File
 }
 Invoke-Command -VMName VM1 -ScriptBlock $sb `
 -Credential $cred

	Restore VM1 back to the checkpoint named Snapshot1:

 $Snap1 = Get-VMSnapshot -VMName VM1 -Name Snapshot1
 Restore-VMSnapshot -VMSnapshot $Snap1 -Confirm:$false
 Start-VM -Name VM1
 Wait-VM -For IPAddress -Name VM1

	See what files we have now on VM1:

 $sb = {Get-ChildItem -Path C:\}
 Invoke-Command -VMName VM1 -ScriptBlock $sb `
 -Credential $cred

	Roll forward to Snapshot2:

 $Snap2 = Get-VMSnapshot -VMName VM1 -Name Snapshot2
 Restore-VMSnapshot -VMSnapshot $Snap2 -Confirm:$false
 Start-VM -Name VM1
 Wait-VM -For IPAddress -Name VM1

	Observe the files you now have on VM2:

 $sb = {
 Get-ChildItem -Path C:\
 }
 Invoke-Command -VMName VM1 -ScriptBlock $sb `
 -Credential $cred

	Restore to Snapshot1 again:

 $Snap1 = Get-VMSnapshot -VMName VM1 -Name Snapshot1
 Restore-VMSnapshot -VMSnapshot $Snap1 -Confirm:$false
 Start-VM -Name VM1
 Wait-VM -For IPAddress -Name VM1

	Check snapshots and VM data files again:

 Get-VMSnapshot -VMName VM1
 Get-ChildItem -Path $Parent

	Remove all the snapshots from HV1:

 Get-VMSnapshot -VMName VM1 |
 Remove-VMSnapshot

	Check VM data files again:

 Get-ChildItem -Path $Parent

 How it works...

In step 1, you create a credential object to be used when invoking commands within the VM1 VM. There is no output from this step.

In step 2, you look at the files in the C:\ drive within the VM1 VM, with output that looks like this:

In step 3, you create an initial checkpoint, named Snapshot1, for the VM1 VM which produces no output.

In step 4, you examine the files that comprise the C: for the VM1 VM. As you can see, with output like this, there are two files—a base and a differencing drive:

In step 5, you create a file in VM1, and then display the contents, with output like this:

In step 6, you create a second checkpoint named Snapshot2. There is no output from this step.

In step 7, you view the details of the checkpoints (snapshots) you have taken so far for VM1, with output like this:

In step 8, you view the details of the files that Hyper-V creates to support the two checkpoints for VM1, with output like this:

With step 9, you create a second file in VM1, and display details of the two files created in VM1, like this:

In step 10, you restore VM1 back to the checkpoint Snapshot1. Then you start the restored VM and wait until it is starts up fully. This step generates no output, but can take 2 minutes to 3 minutes depending on the speed of your Hyper-V host.

In step 11, you look inside VM1 to see which of the two files created earlier now exists. As you should expect, since both files were created after the Snapshot1 checkpoint was taken, they do not exist in Snapshot1. The output of this step looks like this:

In step 12, which generates no output, you roll forward to the Shapshot2 checkpoint. Remember that this checkpoint was after you created the first file (in step 5) but before you created the second file (in step 9).

In step 13, you look at the files that exist in VM1 which you have just restored to the Snapshot2 checkpoint. The output looks like this:

In step 14, you revert back to the initial checkpoint, Snapshot1. Then you restart the VM1 VM. There is no output for this step.

With step 15, you again examine the checkpoints for VM1 and the files which Hyper-V maintains to support the checkpoints, with output like this:

With step 16, you remove all the snapshots for VM1, which generates no output.

In step 17, you view the Hyper-V is using to support VM1 showing all the snapshot files are gone, like this:

 There's more...

In this recipe, you also examined the differencing files Hyper-V maintains to support the checkpoints. If you have a lot of checkpoints, the VM's performance can degrade, since Hyper-V needs to look in multiple AVHD files to support VM read requests to the VM's C: drive.

 Monitoring Hyper-V utilization and performance

In Chapter 6, Managing Performance, you looked at performance counters and the Performance Logs and Alerts (PLA) feature of Windows Server 2016.

With PLA, applications, services, drivers, and OS components can expose operation data via counter sets and counters. A counter is a measurement of one specific value, such as the %ProcessorTime counter that measures how much CPU is being used at any given moment. Counters are grouped for convenience into counter sets. The Processor counter set contains the %ProcessorTime counter.

In this recipe, you examine some of the wide range of Hyper-V performance counters available to you. PLA in general, and Hyper-V in particular, expose a very large number of counter sets containing a wide range which Hyper-V exposes. It is very easy to get excited about the wealth of counters available. But most of the information provided is probably of little use to most IT professionals managing Hyper-V hosts and VMs.

A given Hyper-V host has a number of physical CPUs containing typically multiple cores. You can enable any given VM to utilize one or more of the cores as processors inside the VM. So, were you to have a dual processor 6-core system, you would have 12-cores which you can then divide up among your VMs.

One useful performance metric for your VM host is how much of the CPU is being used running VMs. The Hyper- V Hypervisor Root Virtual Processor counter set contains a counter (% guest run time) that provides that information.

If the Hyper-V host's guest run time is very high on an ongoing basis, it means your VMs are possibly being CPU bound. It may make sense on such a host to either increase the capacity of the host (adding more cores or moving to a more powerful server) or decreasing the workload by migrating a VM to another Hyper-V host.

 Getting ready

In this recipe, you examine performance aspects of the VM host, VM1 (which you set up in the Installing and Configuring Hyper-V recipe), and the performance of VM1, the VM (created in the Creating a virtual machine recipe).

 How to do it...

Here is how to example performance of your Hyper-V system:

	Discover how many counter sets exist (on HV1):

 $TotalCounters = Get-Counter -ListSet * | Measure-Object
 "Total Counter sets : [{0}]" -f $TotalCounters.Count

	Discover how many counter sets exist for Hyper-V:

 $Counters = Get-Counter -ListSet *
 "Hyper-V Related Counter Sets : [{0}]" -F $Counters.Count

	View counter set details for Hyper-V:

 Get-Counter -ListSet * |
 Where-Object CounterSetName -match 'hyper'|
 Sort -Property CounterSetName |
 Format-Table -Property CounterSetName, Description

	Determine how many individual counters exist in the Root Virtual Processor counter set:

 $HVPCounters = Get-Counter -ListSet * |
 Where-Object CounterSetName -Match 'Root virtual Processor' |
 Select-Object -ExpandProperty Paths |
 Measure-Object
 "Hyper-V RVP Counters : [{0}]" -f $HVPCounters.count

	Define some key counters in the Hypervisor Root Virtual Processor counter set:

 $HVCounters = @("\\HV1\Hyper-V Hypervisor Root Virtual "+
 "Processor(*)\% Guest Run Time")
 $HVCounters += @("\\HV1\Hyper-V Hypervisor Root Virtual "+
 "Processor(*)\% Hypervisor Run Time")
 $HVCounters += @("\\HV1\Hyper-V Hypervisor Root Virtual "+
 "Processor(*)\% Remote Run Time")
 $HVCounters += @("\\HV1\Hyper-V Hypervisor Root Virtual "+
 "Processor(*)\% Total Run Time")

	Get counter samples for the counters defined:

 $Samples = (Get-Counter -Counter $HVCounters).counterSamples |
 Where-Object Path -Like '*(_total)*'

	Display the counter data returned:

 "{0,-22} : {1:N3}" -f 'Counter', 'Value'
 "{0,-22} : {1:N3}" -f '-------', '-----'
 Foreach ($sample in $samples) {
 $countername = Split-Path -path $sample.path -leaf
 $counterdata = $sample.CookedValue
 "{0,-22} : {1:N3}" -f $countername, $counterdata }

 How it works...

In step 1, you discover how many total performance counter sets exist on your Hyper-V host, HV1. The output looks like this:

In step 2, you discover how many of these counter sets on HV1 are Hyper-V related, with output like this:

With step 3, you discover more details about the Hyper-V related counter sets, with output like this:

In step 4, you determine how many counters exist in the counter set Root Virtual Processor. You should see output like this:

In step 5, you define several key CPU related counters. In step 6, you get sample values for each of these counters representing total values. There is no output from these two steps.

In step 7, you display key CPU counter values for a Hyper-V host. Depending on what load you are currently running, this step produces output that should look like this:

 There's more...

As you can see from step 1, a Hyper-V Server running Windows Server 2016 provides a large number of counter sets you can use to view an aspect of the server. These counter sets, as you can see in step 2, include a large number of Hyper-V related counters and you can see more details of these counter sets in step 3. With step 4, you can see that Hyper-V exposes a large number of individual counters in one counter set, the Hyper-V Root Virtual Processor.

It is quite probable that the vast majority of counter sets and counters are not of much use to most IT pros. But they are worth knowing about if you are chasing down a performance issue with Hyper-V or with Windows Server in general. You can easily spend hours (or longer) delving into the details of some of these counters. While the details of all the counters are not included here, you can use the techniques in this recipe to find other counters you may wish to investigate.

In step 5, you create an array of counter names that you obtain sample values for in step 6. In step 7, you display the sample values. Of course, depending on what load you are currently running, you may see different values.

 Creating a Hyper-V health report

Any Hyper-V host that you deploy is a critical part of your IT infrastructure. If the Hyper-V host goes down or starts suffering performance or capacity issues, it can affect all the VMs running on that host. Your Hyper-V hosts are almost certainly mission critical.

If you deploy Hyper-V, it is important you report on and monitor the health of your Hyper-V host, as well as the health of the VMs. By monitoring the reports, you can detect issues, possibly before they become critical. If your VM host, for example, has a slowly increasing CPU load, you can consider moving a VM to another VM host.

Reports that you use to monitor the health of a Hyper-V host fall into two broad categories: the VM host itself, and the VMs running on that host. This recipe creates two reports to mirror this.

This recipe uses a variety of methods to obtain key performance and usage metrics and converts this information into an object. The recipe begins by defining a PowerShell hash table. The recipe then adds each of the measurements as a row in the hash table. At the end, the recipe emits an object with properties relating to the measurements

In this recipe, you first create a report object that contains details of the VM host. Then the recipe gets key information about each VM, and creates an object for each VM on the host, and adds it to an array. At the end of the recipe, you display the VM objects.

The technique used here is to create hash tables holding host and VM details then to turn these hash tables into fully-fledged objects. This enables you to sort and filter the objects to create whatever reporting you need.

 Getting ready

This recipe runs on the Hyper-V host HV1. The host should be setup as per the Installing and configuring Hyper-V feature recipe. This host should be up and running and have one VM defined and running. The VM is VM1 which you created in the Creating a virtual machine recipe.

 How to do it...

Here is how you can create a Hyper-V health report:

	Create a basic report object hash table:

 $ReportHT = [Ordered] @{}

	Get the host details and add them to the Report object:

 $HostDetails = Get-CimInstance `
 -ClassName Win32_ComputerSystem
 $ReportHT.HostName = $HostDetails.Name
 $ReportHT.Maker = $HostDetails.Manufacturer
 $ReportHT.Model = $HostDetails.Model

	Add the PowerShell version information:

 $ReportHT.PSVersion = $PSVersionTable.PSVersion.tostring()
 # Add OS information:
 $OS = Get-CimInstance -Class Win32_OperatingSystem
 $ReportHT.OSEdition = $OS.Caption
 $ReportHT.OSArch = $OS.OSArchitecture
 $ReportHT.OSLang = $OS.OSLanguage
 $ReportHT.LastBootTime = $os.LastBootUpTime
 $Now = Get-Date
 $ReportHT.UpTimeDays = [float] ("{0:n3}" -f (($Now -
 $OS.LastBootUpTime).Totaldays))

	Add a count of processors in the host:

 $Proc = Get-CimInstance -ClassName MSvm_Processor `
 -Namespace root/virtualization/v2
 $ReportHT.CPUCount = ($Proc |
 Where-Object elementname -match `
 'Logical Processor').COUNT

	Add the current host CPU usage:

 $Cname = '\\.\processor(_total)\% processor time'
 $CPU = Get-Counter -Counter $Cname
 $ReportHT.HostCPUUsage = $CPU.CounterSamples.CookedValue

	Add the total host physical memory:

 $Memory = Get-Ciminstance -Class Win32_ComputerSystem
 $HostMemory = [float] ("{0:n2}" -f
 ($Memory.TotalPhysicalMemory/1GB))
 $ReportHT.HostMemoryGB = $HostMemory

	Add the memory allocated to VMs:

 $Sum = 0
 Get-VM | foreach {$sum += $_.MemoryAssigned + $Total}
 $Sum = [float] ("{0:N2}" -f ($Sum/1gb))
 $ReportHT.AllocatedMemoryGB = $Sum

	Create and view the host report object:

 $Reportobj = New-Object -TypeName PSObject `
 -Property $ReportHT
 $Reportobj

	Create two new VMs to populate the VM report:

 New-VM -Name VM2
 New-VM -Name VM3

	Get VM details on the local VM host and create a container array for individual VM related objects:

 $VMs = Get-VM -Name *
 $VMHT = @()

	Get VM details for each VM into an object added to the hash table container:

 Foreach ($VM in $VMs) {
 # Create VM Report hash table
 $VMReport = [ordered] @{}
 # Add VM's Name
 $VMReport.VMName = $VM.VMName
 # Add Status
 $VMReport.Status = $VM.Status
 # Add Uptime
 $VMReport.Uptime = $VM.Uptime
 # Add VM CPU
 $VMReport.VMCPU = $VM.CPUUsage
 # Replication Mode/Status
 $VMReport.ReplMode = $VM.ReplicationMode
 $VMReport.ReplState = $Vm.ReplicationState
 # Create object from Hash table, add to array
 $VMR = New-Object -TypeName PSObject -Property $VMReport
 $VMHT += $VMR
 }

	Display the array of objects as a table:

 $VMHT |
 Sort-Object -Property Uptime -Descending |
 Format-Table

 How it works...

In step1, you create a hash table, $ReportHT. This hash table holds properties of the VM host which this recipe populates.

In step 2, you add details of the computer's hostname and the host's manufacturer and model.

In step 3, you add the PowerShell version and then in step 4, you obtain details about the OS running on the host and add it to the hash table.

With step 5, you add the count of CPUs in the host while in step 6, you add details of the CPU usage of the VM host.

In step 7, you add the host's total memory and in step 8, how much of that memory has been allocated to virtual machines.

These first 7 steps create no output.

In step 9, you create an object, $Reportobj based on the $ReportHT hash table. You then display the object, which looks like this:

In step 10, you create two new VMs simply to provide more VMs on which to report in the second part of this recipe. There is no output from this step.

In step 11, you get VM details by using the Get-VM cmdlet. Then you create an array to hold individual objects for each VM on the host. There is no output from this step.

In step 12, you iterate through each VM on the host and create an object that holds details about the VM. You then add the object to the array created in step 11. There is no output from this step.

Finally, in step 13, you display the detail array as follows:

 There's more...

This recipe presents two min-recipes to get the details of your Hyper-V host and the VMs deployed on the host.

In the first nine steps, you create a report object that contains information about the VM host. You could extend the report hash table/report to include information about network and I/O traffic.

Generating this report object produces a view in time of the server. You could extend this part of the recipe to create a measurement object say every hour, then once a day you can analyze it by reporting maximum and minimum CPU, memory usage, and generating alerts by email. You could use these daily reports and create richer capacity planning information as well.

In the second part of this recipe, you generate details about each of the VMs defined on the Hyper-V host. You could also extend these steps to capture more information about the VMs, including network and disk I/O traffic.

You may also find that, over time, the issues you need to keep an eye on evolve. Don't be afraid of re-visiting this recipe and improving it over time.

 Managing Azure

In this chapter, we cover the following recipes:

	Using PowerShell with Azure

	Creating core Azure resources

	Exploring your storage account

	Creating and using an Azure SMB file share

	Creating and using Azure websites

	Creating and using Azure virtual machines

 Introduction

Azure is Microsoft's cloud computing platform and is a competitor to Amazon's Amazon Web Services and other public cloud providers, Azure provides you with access to a huge range of features. Organizations can literally move their entire on-premises infrastructure into the cloud.

Azure features come at three levels:

	Infrastructure as a service (IaaS)

	Platform as a service (PaaS)

	Software as a Service (SaaS)

IaaS is, in effect, an instant computing infrastructure that you can provision, manage, and use over the internet or via a private network connection. IaaS includes the basic computing infrastructure components (servers, storage, networking, firewalls, and security) plus the physical plant required to run these components (power, air conditioning, and so on). In an IaaS environment, the servers are all Azure virtual machines (effectively Hyper-V VMs) and interact with the networking, security, and storage components.

PaaS is a complete deployment environment in the cloud, including the operating system, storage, and other infrastructure. One key PaaS offering in Azure is the Azure SQL Database. Things like the OS and SQL server patching, which you would have to deal with if you deploy SQL in an IaaS environment, are all managed by Azure. This provides a complete SQL service all managed by Azure. This of course means there are some things you can't do—actions that are reserved for the platform owner (that is Microsoft). For example, with SQL running inside and IaaS Azure VM, you can use database mirroring— the SQL PaaS service does not provide that feature for you to use.

With SaaS, you just use an application that the vendor has placed in the cloud. The key example of SaaS is Office 365 (O365), which bundles Exchange Online, SharePoint Online, Skype For Business Online, OneDrive for Business, and Microsoft Teams.

Strictly speaking, Office 365 is not an Azure offering—you purchase directly from either the Office 365 web site or via a Microsoft Partner. In terms of purchase, O365 is a single offering with many different plans (combinations of services that also includes a downloadable version of the Office applications such as Word and Excel). In terms of using PowerShell to manage O365, each of the included applications has their own unique approach. With Exchange Online, for example, you use PowerShell Implicit Remoting to manage the exchange component of your O365 subscription.

To provide authentication for software running within Azure and for other SaaS applications, you can make use of Azure Active Directory (AAD). With AAD you can create a cloud-only directory or you can synchronize the AAD with your on-premises Active Directory. AAD can also be used to provide authentication for a range of other third party SaaS applications. Full details of managing both AAD and Office 365 components are outside the scope of this chapter.

In this chapter, we begin with the first recipe: Using PowerShell with Azure. In this recipe, we look at setting up a basic environment with which to manage Azure and the O365 SaaS components. This recipe also shows how to download the AAD cmdlets.

The Creating core Azure resources recipe guides you through creating a few of the core resources you need to create and manage other Azure resources. These include a resource group and a storage account. Every Azure resource you create with the ARM API must be contained in a resource group. Also, any storage you may require, such as for VHD files for an Azure VM, you need a storage group. While the recipes in this chapter use a single resource group and a single storage account, large scale Azure deployments may require multiple instances of these key resources.

With the Creating Azure storage recipe, we look at setting up Azure storage using the storage account created earlier.

The Creating and using an Azure SMB file share recipe shows you how you can create an SMB file share that you can access from client applications across the internet. Instead of having an application point to an on-premises file share, you can now host the share in Azure. This might be useful if you use Azure IaaS VM to host an application that utilizes a shared folder for its data. You could also use it as a file share in the cloud.

The Creating and using Azure websites recipe shows how you can set up a simple website. The recipe sets up a WordPress blog using PowerShell. This feature enables you to setup a simple website, say for a short-term marketing campaign, as well as to build internet-scale web sites that you can have Azure scale dynamically according to load.

The next recipe, Creating and using Azure virtual machines, examines how to create an Azure VM and access it. This includes creating a virtual network and setting the VM up to enable you to manage it with PowerShell or connect via RDP.

This chapter is only a taster for using Azure with PowerShell. There is so much more that you can do that sadly would not fit into this book.

 Using PowerShell with Azure

There are two key things you need to do before you can begin to manage Azure features using PowerShell. The first is to obtain an Azure subscription. The second is to get access to the cmdlets you need to be able to access Azure (and Office 365's features).

Azure is a commercial service—each feature you use has a cost attached. Azure charges are based on resource usage. With an Azure VM, for example, you would pay to have the VM running, with additional charges for the storage the VM uses and for any network traffic. The charges for Office 365, on the other hand, are user based—a given user can use lots of email, for example, without incurring any additional charges. For details on costs for Azure, see https://azure.microsoft.com/en-us/pricing/, and for details of Office 365 charges, see https://products.office.com/en-us/business/compare-office-365-for-business-plans.

To use Azure's IaaS and PaaS features, you need to have an Azure subscription. There are many ways you can get an Azure subscription, including via an MSDN subscription, an Action Pack subscription, or by outright purchase. Naturally, you need to ensure that any systems are properly licensed.

Microsoft also provides a one-month free trial subscription. This subscription provides you full access to Azure features up to a financial limit, which at the time of writing, is US$200 or similar in other currencies. These limits may have changed by the time you read this book. Having said that, the trial subscription should be sufficient to enable you to learn how to use PowerShell with Azure.

If you do not have an existing subscription to Azure, navigate to https://azure.microsoft.com/en-gb/free/ where you can create a trial subscription. Note that a free trial requires you to submit a credit card number. There is no charge for the subscription, the credit card number is used only to identify verification—plus it keeps the lawyers happier.

If you take out an Azure trial and you want to keep your Azure resources running after the trial expires, you have to move it to a pay as you go subscription. You receive an email shortly before the trial expires to transition it which prevents downtime if you using the trial for production.

To use PowerShell with Azure's various features requires you to obtain cmdlets that Microsoft does not provide in Windows Server 2016 or PowerShell 5.0/5.1. You get the relevant modules from the PowerShell Gallery using the cmdlets in the PowerShellGet module to find and download them.

It is important to note that the PowerShell Azure cmdlets are a wrapper around Azure's underlying API. Azure core API is REST based and involves a client sending various HTTP messages into Azure, as well as parsing the replies and dealing with errors—this is complex. Instead of using the underlying API you just use the cmdlets. In most cases, this is all very straightforward. But when you are troubleshooting, being able to see the detailed HTTP exchanges and the raw messages can help a great deal. You can obtain most of this information simply by using the -Verbose switch on the Azure cmdlets.

Over the years, Azure has implemented two APIs for Azure. The first API, known as the Azure Service Management (ASM) API, included a nice web based portal (known as the Classic Portal, at https://manage.windowsazure.com). To simplify things for the IT pro, this version came with a set of cmdlets. The cmdlet set is a work in progress and has grown significantly over time. As of the time of writing this chapter, ASM module contains 623 cmdlets.

Based on the feedback from the use of the ASM API, Microsoft did a fundamental re-design and implemented a new API, the Azure Resource Management (ARM) API. The ARM API is an improvement on the ASM API, and provides a wealth of new features that helps in the management of complex IaaS and PaaS deployments. The new API also supports templates to simplify deploying solutions within Azure. The Azure team also delivered a new and richer portal based on the ARM API (https://portal.azure.com). And like the ASM cmdlets, the ARM cmdlets in the new portal are also works in progress steadily growing over time. At the time of writing the AzureRM modules contain 1215 cmdlets.

While the new API provides lots of new features, there is some bad news. Unfortunately, the two APIs are essentially incompatible. Objects created with one API are not usable from the other API. Thus, if you create a VM using the ASM API (either the via the Classic portal or via the ASM cmdlets), you cannot manage it via the ARM API or the ARM portal.

Going forward, the ARM platform is where the Azure team is focusing and for that reason, the recipes in this chapter use the ARM API and the supporting cmdlets and on-line portal.

An issue related to the new API is the way in which cmdlets are developed and delivered. Historically, the Azure PowerShell team delivered just one module (Azure) which was dual-headed. It could manage either of the two API sets although not at the same time. This leads to a lot of confusion so (to make a long and complex story short) the team created separate modules for each of the API sets. The ASM cmdlets remain unchanged while the ARM cmdlets were renamed and repackaged. Today, there is one overarching Module (AzureRM) and a number of subsidiary modules (for example AzureRm.Websites, AzureRm.Tags, and so on).

One final point to bear in mind as you read and leverage the recipes in this chapter is that all of Azure is a work in progress. There are a large number of feature teams inside the Azure organization—each of which are working at what is often described as Internet pace. The new portal is updated on a regular basis—thus any screenshots of the portal are often out of date (almost instantly it sometimes appears). The cmdlets are more stable and breaking changes are usually pretty rare but regular updates are to be expected. If and when the Azure PowerShell team deem it necessary to do breaking changes, the affected modules are versioned and you can continue to use the older module until such times as you can update your scripts.

If this is the first time you’ve used PowerShellGet, you’ll receive the following message which might be worth mentioning:

NuGet provider is required to continue
PowerShellGet requires NuGet provider version '2.8.5.201' or newer to interact with NuGet-based repositories. The NuGet
 provider must be available in 'C:\Program Files\PackageManagement\ProviderAssemblies' or
'C:\Users\JerryGarcia \AppData\Local\PackageManagement\ProviderAssemblies'. You can also install the NuGet provider by
running 'Install-PackageProvider -Name NuGet -MinimumVersion 2.8.5.201 -Force'. Do you want PowerShellGet to install
and import the NuGet provider now?
[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"):

You need to accept install and import the NuGet provider in order to use PowerShell get in this recipe.

 Getting ready

This recipe uses a Windows 10 Creator's Update computer, CL1, to manage the Azure account. You also need an Azure account, as noted earlier.

 How to do it...

The steps for the recipe are as follows:

	Find core Azure PowerShell modules:

 Find-Module -Name Azure, AzureRM

	Install the Azure ARM cmdlets:

 Install-Module -Name AzureRM -Force

	Discover what is in the Azure module:

 $HT = @{ Label ='Cmdlets'}
 $HT.Expression = {(Get-Command -Module $_.name).count}
 Get-Module -Name Azure* -ListAvailable |
 Sort-Object -Property `
 {(Get-Command -Module $_.name).count} -Descending |
 Format-Table Name,Version,Author,$HT -AutoSize

	Find AzureAD cmdlets:

 Find-Module -Name AzureAD |
 Format-Table -AutoSize -Wrap

	Download the AzureAD module:

 Install-Module -Name AzureAD -Force

	Discover the AzureAD module:

 (Get-Command -Module AzureAD).count
 Get-Module -Name AzureAD -ListAvailable |
 Format-Table -AutoSize -Wrap

	Log in to Azure:

 $Subscription = Login-AzureRmAccount

	Get Azure subscription details:

 $SubID = $Subscription.CONTEXT.Subscription.SubscriptionId
 Get-AzureRmSubscription -SubscriptionId $SubId |
 Format-List -Property*

	Get Azure regions or locations:

 Get-AzureRmLocation |
 Sort-Object -Property Location |
 Format-Table -Property Location, Displayname

 How it works...

This recipe is all about getting started with Azure. Since there are no Azure cmdlets supplied with Windows Server 2016 or Windows 10 by default, you need to find them and install them on your local machine (for example CL1).

In step 1, you use the PowerShellGet module's Find-Module cmdlet to find the key Azure modules, as shown in the following screenshot:

As you can see, the first step displays the two core Azure modules. The Azure module is the one you use for accessing the ASM based Azure objects, while the AzureRM module provides access to the Azure ARM API and related objects. Since the recipes in this chapter only target Azure ARM, in step 2, you install the AzureRM module. This step produces no output.

In step 3, you use your discovery techniques to look at the Azure modules you just downloaded. You create a hash table ($HT) that calculates the number of cmdlets in each module, then you use that hash table to display the Azure modules, the module version number and how many cmdlets are contained in each module. The list is shown in the following screenshot:

With step 4, you find the AzureAD module and display details as shown in the following screenshot:

In step 5, you download and install the AzureAD module, which produces no output.

In step 6, you look in more detail at the AzureAD module which contains a wealth of commands to assist you with managing AAD. The output of this step is as shown in the following screenshot:

In step 7, you log in to Azure. You need to log in before you can use the modules you downloaded earlier. In this recipe's example, you use a Microsoft ID (previously a known as a Passport ID or a Live ID). Using a Microsoft ID is not an uncommon approach in some cases, such as when you are using an Azure trial subscription or using the Azure rights associated with an MSDN subscription. Using a Microsoft ID, you have to log in by entering your user id and password manually. Running step 7 results in two pop-up dialog boxes. The first is requesting a user ID, as shown in the following screenshot:

In the case of a Microsoft ID, you see the second dialog where you enter your password as shown in the following screenshot:

The Login-AzureRmAccount returns an object containing details of the Azure subscription, which the recipe saves in $Subscription. You use this variable in step 8 where you get and display details of your subscription, which is shown in the following screenshot:

In step 9, you get the Azure Data Center regions. Later in this chapter, you use various IaaS resources, such as a Virtual Machine. When you create a resource like a VM, you create it in one of the regional data centers. The list of standard Azure data centers looks like this:

In step 10, you get the set of Azure environments. Each environment is a separate cloud. At present, as the output shows, there are separate clouds in Germany, China, and for the US government. There may be additional environments which for security reasons Microsoft does not disclose. The list of environments is as shown in the following screenshot:

 There's more...

In step 1, you find the two core modules for managing Azure: Azure and AzureRM. The Azure module is a single large monolithic module, while the AzureRM module actually has a number of sub-modules.

In step 2, you install the Azure RM modules (and the related subsidiary modules. By default, the PSGallery is not a trusted repository and the Install-Module prompts for permission to install from this untrusted repository. You avoid the prompt by using the -Force switch.

In step 3, you use a hash table to create a new column for use when displaying module information. This column just takes the module name and returns the number of cmdlets that are in that module. As you can see, there are a large number of small modules that make up the main AzureRM module. This approach makes it easier for the Azure PowerShell team to service and improve the individual sub-modules.

In step 7, you log into Azure. It would be nice if you could just pass a credential object to the Login-AzureRMAccount, but as Microsoft do not support this for Live IDs, you have to log in manually. This has been raised as an issue with the cmdlets, but Microsoft does not plan to fix this issue. For simple IaaS type applications, this means regular logins via a GUI.

Also in step 7, the first pop-up dialog box appears to allow you to enter both the userid and the password. The pop-up does not actually allow you to enter your password, instead you do that on the second pop-up.

Step 9 and step 10 show you a bit of the breadth of Azure. The Azure cloud has, at the time of writing, 25 regional data centres, each of which are massive and more are planned, including in Africa. These regional data centers, such as those in Dublin, can span multiple physical buildings providing both scale and a degree of extra overall resilience. In addition to the main Azure public cloud, Microsoft has created separate cloud environments for China, Germany and the US Government as you can see in the output.

 Creating Core Azure Resources

In the previous recipe, you created and used the basic Azure management environment by downloading the key cmdlets, logging in to Azure and having a brief look around. In this recipe, you create certain key Azure assets, including a resource group, a storage account, and tags. With Azure, all Azure resources are created within a resource group.

A storage account is a fundamental building block within Azure. ALL storage you use with any Azure feature always exists within a storage account. You create a storage account within one of the Azure regions you saw in the Using PowerShell with the Azure recipe. When you create your storage account, you also specify the level of resiliency and durability provided. There are several levels of replication provided within Azure which provide for multiple copies of the data that are replicated automatically in both the local Azure data center but also in other data centers. The extra resilience, which does come at a price, provides greater levels of recovery should the unthinkable happen and an entire data center somehow fails in a catastrophic way.

You can provision a storage account as either standard or premium. A standard storage account allows you to store any kind of data (as you see more in the Exploring your storage account recipe).

 Getting Ready

This recipe requires you to have an Azure account and to have logged in, as done in the Using PowerShell with Azure recipe.

 How to do it...

The steps for this recipe are as follows:

	Set key variables:

 $Locname = 'uksouth' # location name
 $RgName = 'packt_rg' # resource group we are using
 $SAName = 'packt100sa' # Storage account name

	Log in to your Azure account:

 Login-AzureRmAccount

	Create a new Azure resource group and tag it:

 $RGTag = [Ordered] @{Publisher='Packt'}
 $RGTag += @{Author='Thomas Lee'}
 $RG = New-AzureRmResourceGroup -Name $RgName -Location
 $Locname -Tag $RGg

	View resource group, with the tags:

 Get-AzureRmResourceGroup -Name $RGName |
 Format-List -Property *

	Create a new Azure storage account:

 New-AzureRmStorageAccount -Name $SAName `
 -SkuName Standard_LRS `
 -ResourceGroupName $RgName -Tag $RGTag `
 -Location $Locname

 How it works...

In step 1, you create a number of variables that define values for this recipe. This recipe creates a resource group (packt_rg) and a storage account (packt100sa) in the UK South Azure Region and the variables are setup accordingly.

In step 2, you log in to Azure. You saw details of how this works in the Using PowerShell with Azure recipe.

In step 3, you create a hash table, $RGTag, which contains tags (name/value pairs) then create a new Azure resource group, packt_rg, which is appropriately tagged. The step also has no output.

In step 4, you explore more new resource group's properties, with output as shown in the following screenshot:

In step 5, you create a new Azure storage account, named pact100sa, and tag it with the same tags as used for the resource group. The output is shown in the following screenshot:

 There's more...

In step 1, you set variables that hold key values for this recipe. In using this recipe, feel free to change these values. Depending on where you live, change the $Locname variable to hold the name of an Azure regional data center nearer to you.

With step 5, you create a storage account. In Azure, the storage account has to be globally unique. So if you were to try to create this storage account today it would fail as that name is already in use. To test whether a name (like a storage account) is available, you can use the Get-AzureRmStorageAccountNameAvailability cmdlet. Additionally, the storage account name must only contain lower case letters and numbers—so a storage account name of pact_sa or PactSA would not be allowed. Resource groups have less strict naming conventions.

 Exploring your storage account

Many Azure resources use Azure storage. In the Creating an Azure backup recipe in Chapter 5, Managing Server Backup, you saw how to use Azure storage to hold server backups. When you create an Azure VM, you store the VHD file in Azure storage. Azure storage accounts can hold a variety of types of data, with different mechanisms for managing each data type. Additionally, the storage account provides both scalability and data durability and resiliency.

Azure storage manages five distinct types of data:

	Binary Large Object (Blob)

	Table

	Queue

	File

	Disk

A blob is unstructured data you store in Azure. Blob storage can hold any type of data in any form. This could include MP4 movies, ISO images, VHD drives, JPG files, etc. Individual blobs reside with blob containers which are equivalent to file store folders, but with no nesting capability.

Blobs come in three types: block blobs, append blobs, and page blobs. Block blobs are physically optimized for storing documents to the cloud and for streaming applications. Append blobs are optimized for append operations and are useful for logging. Page blobs are optimized for read/write operations—Azure VHDs, for example, are always of the page blob type. For more information about blob types see https://azure.microsoft.com/en-gb/services/storage/blobs).

An Azure table is a non-relational storage system utilizing key-value pairs. You use Azure tables for storing unstructured or semi-structured data. This contrasts with an SQL table that holds highly normalized data. A table consists of a grouping of entities. See https://azure.microsoft.com/en-gb/services/storage/tables/ for more information about Azure tables.

An Azure queue is a durable message queuing feature used to implement scalable applications. With message queues, one part of an application can write a transaction to the queue for another part to process. The queues enable you to decouple application components for independent scaling and to provide greater resiliency. Queues allow the application to scale where needed in a simple and reliable way. For more details on Azure queues, see https://azure.microsoft.com/en-gb/services/storage/queues/.

The Azure file feature provides simple cross-platform file storage. This enables you to create and use SMB file shares in the cloud and access just like you would access on-premises SMB shares. Azure files support SMB 2.1 and 3.0 which makes it simple and easy for you to migrate legacy applications that rely on file shares. See for more information on Azure files, see https://azure.microsoft.com/en-gb/services/storage/files/.

Azure's disk storage provides persistent, highly secure disk options, particularly for Azure VMs. Azure disks are designed for low latency and high throughput. You can provision both traditional spinning disks as well as SSD disks that provide better I/O performance for I/O intensive applications. For more details on Azure disk storage see https://azure.microsoft.com/en-gb/services/storage/unmanaged-disks/.

Storage features continue to evolve with more options available as time goes by. For more details on Azure storage as a whole, see https://docs.microsoft.com/en-us/azure/storage/storage-introduction.

As noted earlier, you name your storage account based on a global naming scheme which is based on HTTPS URLs. The AZURE REST API relies on URLs to manage the Azure resources in your resource groups. All storage accounts are named specifying the storage account, data type, container name, and file name. The format for a blob is as shown in the following command:

 https://<account>.<datatype>.core.windows.net/...

The account field is your storage account name, while the type field in the URL relates to the data type (blob, table, queue, file, or disk).

The storage account name must contain numbers and lower case letters only—this is an architectural restriction within Azure. Since the account name part of the URLs is processed by Azure, your storage account name must be unique globally. This means that you may need to experiment a bit in order to find a unique storage account name. The recipes in this chapter use the variable $SAName that contains the name packt100sa. At the time of writing, this storage account name is available but there is no guarantee that someone else may not use it in the meantime. When you are testing this recipe, you may need to change the name if for some reason the storage account has been taken by another customer.

When creating a storage account, you need to specify both the Azure region in which to create the account and what kind of replication you want Azure to perform on data stored in the storage account. You can create a storage account in any Azure region which supports the storage types you wish to utilize.

Azure's storage fabric stores all data multiple times to provide data durability. Azure replicates data based on the replication scheme you specify when you create the storage account. At present, there are five replication schemes you can use when creating a storage account:

	Standard_LRS: Azure maintains three copies of the data and all the data is stored in a single data centre in a region.

	Standard_ZRS: This scheme maintains three copies, but the copies are made asynchronously in different data centers within the region (or possibly another region). This provides greater durability than LRS replicated data at a price point lower than GRS. Azure restricts the use of ZRS data to block blobs.

	Standard_GRS: This scheme involves Azure maintaining six copies: three in the local data center (LRS) plus three in another region. Azure keeps all LRS/ZRS data up to date lock step—Azure's storage fabric only reports an I/O as completed once all three local copies have been written. Data replication to a different region is asynchronous.

	Standard_RAGRS: This is similar to Standard_GRS, but this replication scheme allows you to access the data in the remote location read only. You could, for example, store a SQL database in one region with Azure maintaining the data. You could then do reporting or analysis on the read/only copy.

	Premium_LRS: This is locally replicated data based on SSD technology that provides improved performance.

The Azure storage fabric maintains the local and remote copies automatically. Should one physical copy become unusable, Azure automatically removes the failed device and re-replicates the data.

It is important to note that while some of the replication options offer greater data durability, data replicated to another data center is done in an asynchronous manner. This involves a small delay, and it means that in the event of a local disaster, some data may not have been replicated.

This recipe explores the storage account and looks at some of the aspects of managing storage in Azure. In this recipe, you also create a blob container. Additionally, you create and display a file within the container. Later in this chapter, the recipe Creating an Azure SMB file share shows using the Azure file resources.

 Getting ready

This recipe assumes you have an Azure account, and you have installed the Azure cmdlets, as shown in the Using PowerShell with Azure recipe. This recipe also relies on the resource group and storage account you created with the Creating core Azure resources recipe. To be on the safe side, you create these two resources if needed.

 How to do it...

The steps for the recipe are as follows:

	Define key variables:

 $Locname = 'uksouth' # location name
 $RgName = 'packt_rg' # resource group we are using
 $SAName = 'packt100sa' # Storage account name
 $CName = 'packtcontainer' # Container names
 $CName2 = 'packtcontainer2'

	Log in to your Azure account and ensure the $RG and $SA is created:

 Login-AzureRmAccount
 $RG = Get-AzureRmResourceGroup -Name $RgName `
 -ErrorAction SilentlyContinue
 if (-not $RG) {
 $RGTag = [Ordered] @{Publisher='Packt'}
 $RGTag += @{Author='Thomas Lee'}
 $RG = New-AzureRmResourceGroup -Name $RgName `
 -Location $Locname `
 -Tag $RGTag
 "RG $RgName created"
 }
 $SA = Get-AzureRmStorageAccount -Name $SAName `
 -ResourceGroupName $RgName `
 -ErrorAction SilentlyContinue
 if (-not $SA) {
 $SATag = [Ordered] @{Publisher='Packt'}
 $SATag += @{Author='Thomas Lee'}
 $SA = New-AzureRmStorageAccount -Name $SAName `
 -ResourceGroupName $RgName `
 -Location $Locname -Tag $SATag `
 -SkuName 'Standard_LRS'
 "SA $SAName created"
 }

	Get and display the storage account key:

 $Sak = Get-AzureRmStorageAccountKey -Name $SAName `
 -ResourceGroupName $RgName

	Extract the first key's password:

 $SakExtract the first key's 'password':
 $Key = ($Sak | Select-Object -First 1).Value

	Get the Storage account context:

 $SACon = New-AzureStorageContext -StorageAccountName $SAName `
 -StorageAccountKey $Key
 $SACon

	Create two blob containers:

 New-AzureStorageContainer -Name $CName `
 -Context $SACon `
 -Permission Blob
 New-AzureStorageContainer -Name $CName2 `
 -Context $SACon `
 -Permission Blob

	View blob containers:

 Get-AzureStorageContainer -Context $SACon |
 Select-Object -ExpandProperty CloudBlobContainer

	Create a blob:

 'This is a small blob!!' | Out-File .\azurefile.txt
 $Blob = Set-AzureStorageBlobContent -Context $SACon `
 -File .\azurefile.txt `
 -Container $CName
 $Blob

	Construct and display the blob name:

 $BlobUrl = "$($Blob.Context.BlobEndPoint)$CName/$($Blob.name) "
 $BlobUrl

	View the URL via IE:

 $IE = New-Object -ComObject InterNetExplorer.Application
 $IE.Navigate2($BlobUrl)
 $IE.Visible = $true

 How it works...

With step 1, you create variables to hold the names of the Azure objects that you create with this recipe. There is no output from this step.

Step 2 helps to ensure that you are logged into Azure and that the resource group and storage account both exist. If these do not exist, this step creates them.

In step 3, you get your storage account keys and display them. The output looks as shown in the following screenshot:

In step 4, you get the key value for the first key. There is no output for this step. In step 5, you get and display your storage account's storage context, which looks as shown in the following screenshot:

In step 6, you use the storage context and create two blob containers in your storage account. The output is as shown in the following screenshot:

In step 7, you display details of the two blob containers, which is as shown in the following screenshot:

In step 8, you create a file locally (.\azurfile.txt). This step then uploads this local file to an Azure blob. The output is as shown in the following screenshot:

In step 9, you create and then display the URL for the Azure blob you just created, with output as shown in the following screenshot:

In step 10, you use Internet Explorer to download and display the contents of this data blob. It is as shown in the following screenshot:

 There's more...

In step 1 you define variables to hold the name of several different Azure resources that you create with this recipe. You may want to change these, for example if the storage account name is already in use, or if you want to create different names for these objects.

In step 2, you ensure that you are logged into Azure and that your resource group and storage account exist. If either of these is not present, then this step creates them. Note that if for some reason the storage account name is in use by some other Azure customer, you need to change the value of the $SAName variable in step 1.

In step 3 you retrieve the storage account keys. Each key's value property is, in effect, a password for your Azure storage account. Having two keys enables you to regularly regenerate and rotate your key values. In step 4, you get this value for the first key.

In step 5, you get the storage account's storage context. This object encapsulates the details of the storage account, including the storage account key you created in the prior step.

In step 6 and step 7, you create two blob containers and display their URLs. Containers are a single level folder like object that contains your blobs. In step 8, you create a simple blob and as you can see from the output, this is a block blob, with the contents just an octet stream.

In step 9, you display the URL to the Azure blob you create in step 8.

The storage account name, container name, and filename are embedded into this URL.

 Creating Azure an SMB File Share

Azure provides you with the ability to create SMB shares with an Azure storage account. These SMB shares act the same as local on-premises SMB shares you used in Chapter 9, Managing Network Shares. The key difference is how you create them and the credentials you use to access the shares.

Before an SMB client can access data held in an SMB share, the SMB client needs to authenticate with the SMB server. With Windows based shares, you either use a userid/password credential, or in a domain environment, the SMB client utilizes Kerberos to authenticate. With Azure, you use the storage account name as the userid and the storage account key as the password.

The storage account key provides you with two keys (imaginatively named key1 and key2). The value of either key is a valid password for Azure SMB file shares. You have two keys to enable you to do regular key rotation. If your application uses the value of key1, you can change the application to use the key2 value as the share's password then regenerate the key1 value. Sometime later you repeat—changing the application to use key1's value then regenerate key2. This provides you with immediate key update where you need it. Armed with the value of either key, you can easily create SMB shares that are directly addressed across the internet.

An Azure SMB share differs from Azure blobs with respect to how you access them. You access a blob via HTTP, whereas you access an Azure File share via the standard SMB networking commands you used in, for example, Chapter 9, Managing Network Shares. Blobs and files also differ in that with blobs you only have a single level of folder (the container). With Azure files, you can have as many folders as you wish or need.

From the point of view of SMB file sharing, remember that the account key is the password for the share, where the username is the storage account name. You should exercise caution when including the account key in code.

In this recipe, you use the resource group and storage account created earlier (in the Create Core Azure resources recipe). The recipe also checks to ensure these exist and creates them if they are not available just in case.

 Getting ready

This recipe assumes you have an Azure account, and you have installed the Azure cmdlets, as shown in the Using PowerShell with Azure recipe. This recipe also relies on the resource group and storage account you created with the Creating core Azure resources recipe. To be on the safe side, you can create these two resources if needed.

 How to do it...

The steps for the recipe are as follows:

	Define variables:

 $Locname = 'uksouth' # location name
 $RgName = 'packt_rg' # resource group we are using
 $SAName = 'packt100sa' # Storage account name
 $ShareName = 'packtshare' # must be lower case!

	Log in and ensure the resource group and storage account exist:

 Login-AzureRmAccount
 $RG = Get-AzureRmResourceGroup -Name $rgname `
 -ErrorAction SilentlyContinue
 if (-not $RG) {
 $RGTag = [Ordered] @{Publisher='Packt'}
 $RGTag += @{Author='Thomas Lee'}
 $RG = New-AzureRmResourceGroup -Name $RgName `
 -Location $Locname `
 -Tag $RGTag
 "RG $RgName created"
 }
 $SA = Get-AzureRmStorageAccount -Name $SAName `
 -ResourceGroupName $RgName `
 -ErrorAction SilentlyContinue
 if (-not $SA) {
 $SATag = [Ordered] @{Publisher='Packt'}
 $SATag += @{Author='Thomas Lee'}
 $SA = New-AzureRmStorageAccount -Name $SAName `
 -ResourceGroupName $RgName `
 -Location $Locname -Tag $SATag `
 -SkuName 'Standard_LRS'
 "SA $SAName created"
 }

	Get the storage account key and storage account's context:

 $Sak = Get-AzureRmStorageAccountKey -Name $SAName `
 -ResourceGroupName $RgName
 $Key = ($Sak | Select-Object -First 1).Value
 $SACon = New-AzureStorageContext -StorageAccountName $SAName `
 -StorageAccountKey $Key

	Add credentials to the local store:

 cmdkey /add:$SAName.file.core.windows.net/user:$SAName `
 /pass:$Key

	Create an Azure SMB share:

 New-AzureStorageShare -Name $ShareName -Context $SACon

	Ensure Z: is not in use then mount the Azure share as Z:

 $Mount = 'Z:'
 Get-Smbmapping -LocalPath $Mount -ErrorAction SilentlyContinue |
 Remove-Smbmapping -Force -ErrorAction SilentlyContinue
 $Rshare = \\$SaName.file.core.windows.net\$ShareName
 New-SmbMapping -LocalPath $Mount -RemotePath $Rshare `
 -UserName $SAName -Password $Key

	View the share:

 Get-AzureStorageShare -Context $SACon |
 Format-List -Property *

	View local SMB mappings:

 Get-SmbMapping

	Now use the new share and create a file in the share:

 New-Item -Path z:\foo -ItemType Directory | Out-Null
 'Recipe 15-4' | Out-File -FilePath z:\foo\recipe.txt

	Retrieve details about the share contents:

 Get-ChildItem -Path z:\ -Recurse |
 Format-Table -Property FullName, Mode, Length

	Get the content from the file:

 Get-Content -Path z:\foo\recipe.txt

 How it works...

In step 1, you define PowerShell variables that hold key Azure object names. In step 2, you log into Azure and ensure that the resource group and storage account exist (and create them if not). There is no output from either of these steps.

In step 3, you get the storage account keys for your storage account. You retrieve the key from the first password, then create a storage context object. There is no output from this step.

In step 4, you store the credentials for your storage account. Cmdkey is a console application that you use to store the userid and password that your SMB client uses when it connects to an SMB share. There is no output from this step.

In step 5, you create an Azure file share using the New-AzureStorageShare cmdlet, which produces output as shown in the following screenshot:

In step 6, you initially ensure that the Z: drive is not mapped to a share (and remove it if the Z: drive exists). Then you create a mapping to your Azure file share. The output from this step looks like this:

You view the Azure file share in step 7, where you see the following output that resembles the following:

In step 8, you view the local SMB mappings, which should look similar to this:

In step 9, you create a folder, foo, in your mapped Z: drive, then you create a new file in that folder (Z:\foo\recipe.txt). There is no output from this step. In step 10, you list the items in the Z: drive which look like this:

In the final step, step 10, you view the contents of the file stored in your Azure file share. The output is as follows:

 There's more...

In step 1, you create variables to hold the names of the Azure objects you use in this recipe. The $Locname variable holds the name of the Azure region in which you create your storage account which you may wish to change to a more local Azure region.

In step 3, you create a storage context object. The context object encapsulates the credentials for your storage account.

You use cmdkey.exe in step 4 to save credentials for Azure's storage account. You use cmdkey to store the userid and password which Windows should use to authenticate against a given computer or domain. For more details on cmdkey, see https://technet.microsoft.com/en-us/library/cc754243(v=ws.11).aspx. You can use the cmdkey utility to list all the stored credentials (cmdkey /list).

 Creating and using websites

Azure provides a number of ways in which you can create rich web and mobile applications in the cloud. You could setup your own virtual machines, install IIS, and add your own web application. If your application needs to store data, you can create SQL Server VMs, or use Azure's SQL database feature—or any of the other database packages supported in Azure.

A simpler way is to create an Azure Web App. At one time, Azure offered what were termed websites. These were, as the name says, websites in which you could run your own application, or a host of others such as WordPress. These were single tier (possibly with a back-end database). However, Microsoft discontinued this feature and has replaced it with the more generic Web App feature.

Azure Web Apps enabled you to build, deploy, and manage rich websites and web applications. You can use frameworks such as .NET, Node.js, PHP, and Python in these applications and use any database software appropriate to your needs. These applications can be simple static HTML sites, or rich multi-tier applications that run on both web and mobile platforms.

In this recipe, you create a simple single tier website. You also create a very simple single page application and upload it and view the page.

 Getting ready

This recipe assumes you have an Azure account, and you have installed the Azure cmdlets, as shown in the Using PowerShell with Azure recipe. This recipe also uses the resource group and storage account created with the Creating Core Azure Resources recipe. As with earlier recipes, if these objects do not exist, a step in the recipe creates them.

This recipe uses C:\ to hold files—but feel free to move the location of these files to any location on your system.

This recipe also needs a file, C:\Index.htm, containing the following HTML code:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>New Azure Web Site</title>
</head><body></p>

<center>
This is the start page for the really cool NEW Azure Web App
</p>
A page created by PowerShell in Microsoft Azure
</body>
</html>

This recipe creates an Azure web app and uploads this file to Azure. Feel free to add code (or additional pages) appropriate.

 How to do it...

The steps for the recipe are as follows:

	Define key object variables:

 $Locname = 'uksouth' # location name
 $RgName = 'packt_rg' # resource group we are using
 $AppSrvName = 'packt100'
 $AppName = 'packt100'
 $Locname = 'uksouth'

	Log in to your Azure Account and ensure the RG and SA is created:

 Login-AzureRmAccount
 $RG = Get-AzureRmResourceGroup -Name $rgname `
 -ErrorAction SilentlyContinue
 if (-not $RG) {
 $RGTag = [Ordered] @{Publisher='Packt'}
 $RGTag += @{Author='Thomas Lee'}
 $RG = New-AzureRmResourceGroup -Name $RgName `
 -Location $Locname `
 -Tag $RGTag
 "RG $RgName created"
 }
 $SA = Get-AzureRmStorageAccount -Name $SAName
 -ResourceGroupName $RgName `
 -ErrorAction SilentlyContinue
 if (-not $SA) {
 $SATag = [Ordered] @{Publisher='Packt'}
 $SATag += @{Author='Thomas Lee'}
 $SA = New-AzureRmStorageAccount -Name $SAName `
 -ResourceGroupName $RgName `
 -Location $Locname `
 -Tag $SATag `
 -SkuName 'Standard_LRS'
 "SA $SAName created"
 }

	Create the app service plan:

 New-AzureRmAppServicePlan -ResourceGroupName $RgName `
 -Name $AppSrvName `
 -Location $Locname -Tier Free |
 Out-Null

	View the service plan:

 Get-AzureRmAppServicePlan -ResourceGroupName $RGname
 -Name $AppSrvName

	Create the new Azure web app:

 New-AzureRmWebApp -ResourceGroupName $RgName `
 -Name $AppSrvName `
 -AppServicePlan $AppSrvName
 -Location $Locname |
 Out-Null

	View application details:

 $WebApp = Get-AzureRmWebApp -ResourceGroupName $RgName
 -Name $AppSrvName
 $WebApp

	Now see the web site:

 $SiteUrl = "https://$($WebApp.DefaultHostName)"
 $IE = New-Object -ComObject InterNetExplorer.Application
 $IE.Navigate2($SiteUrl)
 $IE.Visible = $true

	Get the publishing profile XML and extract FTP upload details:

 $x = [xml](Get-AzureRmWebAppPublishingProfile `
 -ResourceGroupName $RgName `
 -Name $AppSrvName `
 -OutputFile c:\pdata.txt)
 $x.publishData.publishProfile[1]

	Extract the credentials and site details from the publishing profile:

 $UserName = $x.publishData.publishProfile[1].userName
 $UserPwd = $x.publishData.publishProfile[1].userPWD
 $Site = $x.publishData.publishProfile[1].publishUrl

	Create ftp client:

 $Ftp = [System.Net.FtpWebRequest]::Create("$Site/Index.Html")
 $Ftp.Method = [System.Net.WebRequestMethods+Ftp]::UploadFile
 $Ftp.Credentials = New-Object `
 -TypeNameSystem.Net.NetworkCredential `
 -ArgumentList $UserName,$UserPwd
 $Ftp.UseBinary = $true
 $Ftp.UsePassive = $true

	Get the contents of the file to upload as a byte array:

 $Filename = 'C:\Index.htm'
 $Content = [System.IO.File]::ReadAllBytes($fileName)
 $Ftp.ContentLength = $Content.Length

	Get the ftp request stream and write the file to the web site:

 $Stream = $Ftp.GetRequestStream()
 $Stream.Write($Content, 0, $Content.Length)

	Close the connection and dispose of the stream object:

 $Stream.Close()
 $Stream.Dispose()

	Now look at the site:

 $SiteUrl = https://$($WebApp.DefaultHostName)
 $IE = New-Object -ComObject InterNetExplorer.Application
 $IE.Navigate2($SiteUrl)
 $IE.Visible = $true

 How it works...

As in previous recipes, in step 1, you create variables to hold key object names. This produces no output. You use step 2 to ensure that the resource group and storage account exist—if not this step creates them but does not produce output.

In step 3, you create an Azure web application service plan, to define the location and type of host that you wish to use to run your web application. There is no output from this step. In step 4, you get and display the new application service plan and the output of this step looks like this:

With step 5, you create the web application which you wish to run on top of the previously created application service plan. This step produces no output.

In step 6, you then can display the web app, which as shown in the following screenshot:

With step 7, you see the basic website which Azure created. This is not the final site, but does show you that the web application is up and running, which looks like this:

In step 8, you retrieve the web publishing profile. This is an XML document that describes details about the app site. The publishing profile includes the details you need in order to upload content to your site via FTP. In step 9, you extract the website name and the user credentials for the site. With step 10, you use this information and create an FTP client. In step 11, you get the web page (Index.htm) and encode it into a byte array which, in step 12, you up load to the FTP site. With step 13, you close the FTP site. There is no output from step 8 through step 13.

In step 14, you display your web site, as shown in the following screenshot:

 There's more...

In step 3, you create the web application service plan. In effect this defines the location and size of the host that Azure assigns to run your web application.

With step 4, you crate the new Azure application. Azure creates some default content, which you view in step 7. It's useful to see this default content so you can ensure the web app is up and running prior to loading any content.

When you create an Azure web app, Azure creates an FTP web site you can use to upload your content. Azure provides the details you need (the FTP server name and the userid and password for this FTP site) via the web app publishing profile which you download and view in step 8. In step 9, you pull out the host and user information from the XML returned in step 8, and then create an FTP client (step 10).

In step 11 through step 13, you use the FTP client to upload the contents of your web site (i.e. the single page held at C:\Index.htm). In most production scenarios, you would probably have a number of files to upload - you would adjust step 11 and step 12 to upload all the relevant files for your web application.

 Creating and using Azure virtual machines

An Azure VM is essentially a Hyper-V VM that you run within Azure. There are some differences between Hyper-V VMs you create within Server 2016 (or Windows 10) and Azure VMs but they are minor. The ARM based cmdlets you use are a little different in style to Hyper-V cmdlets which may mean a bit of a learning curve.

At the time of writing, you can only use the VHD format for your virtual hard disks in an Azure VM although like many things in Azure this may change at some point in the future. Should you wish to move a Hyper-V VM into Azure that uses a VHDX hard disk file, you would need to convert the disk type to be a VHD.

In this recipe, you first create a virtual network. Your VM can have both a public IP address and a private VLAN based IP address. At the end of this recipe, you access the VM via the VM's public IP address. In a later recipe, you create a VPN and connect to the VM using the VPN addresses. You also create a NIC and give it a public IP address.

Azure VMs are locked down by default. In order to enable any traffic into or out of the VM, you create a Network Security Group (NSG) and create network security rules, allowing traffic in or out of the VM. In this recipe, you set traffic rules to allow RDP and PowerShell remoting inbound.

With your network and network created, you next create a new PSVirtualMachine object. This object holds the configuration settings for your VM. Once you create the object, you can then set properties around things like OS type, VHD names, network adapters, etc. Finally, once you have fully populated the PSVirtualMachine object, you pass it to New-AzureRmVM to create the VM.

The PSVirtualMachine object holds the details of your VM prior to creating the VM. An important property of this object is the image to use when creating the VM. An image is effectively a syspreped OS image (with or without additional applications).

You can choose between a large number of pre-existing images from a variety of vendors. These images can contain different operating systems (Windows or Linux), different applications, and can be very differently set up. In this recipe, you create a basic Windows Server 2016 VM with nothing else added.

Once you have the PSVirtualMachine object created, you pass this to Azure when you create the VM. Creating a new VM can take time as Azure needs to create a new disk holding your image as well as the VM itself and then start the VM.

Once your VM is up and running the VM, you can access it via its public IP address. If you also want to link the VM with your corporate network, you can create a VPN to link your Azure cloud subnet with your on-premises network or allow a single client to access hosts on the cloud subnet. In this recipe, you create the Azure Virtual network and a VM in that network. In the next recipe, Creating and using an Azure VPN, you create the VPN gateway and access the Virtual Machine via a P2S VPN.

 Getting ready

This recipe assumes you have an Azure account, and you have installed the Azure cmdlets, as shown in the Using PowerShell with Azure recipe. This recipe also uses the resource group and storage account created with the Creating core Azure resources recipe. As with earlier recipes, if these objects do not exist, a step in the recipe creates them.

 How to do it...

The steps for the recipe are as follows:

	Define key variables

 $Locname = 'uksouth' # location name
 $RgName = 'packt_rg' # resource group name
 $SAName = 'packt100sa' # Storage account name
 $NSGName = 'packt_nsg' # NSG name
 $FullNet = '10.10.0.0/16' # Overall networkrange
 $CLNet = '10.10.2.0/24' # Our cloud subnet
 $GWNet = '192.168.200.0/26' # Gateway subnet
 $DNS = '8.8.8.8' # DNS Server to use
 $IPName = 'Packt_IP1' # Private IP Address name
 $VMName = "Packt100" # the name of the vm
 $CompName = "Packt100" # the name of the VM host

	Just in case, log in to Azure and ensure the resource group and storage account exist:

 Login-AzureRmAccount
 $RG = Get-AzureRmResourceGroup -Name $RgName `
 -ErrorAction SilentlyContinue
 if (-not $rg) {
 $RGTag = @{Publisher='Packt'}
 $RGTag += @{Author='Thomas Lee'}
 $RG = New-AzureRmResourceGroup -Name $RgName `
 -Location $Locname `
 -Tag $RGTag
 }
 $SA = Get-AzureRmStorageAccount -Name $SAName `
 -ResourceGroupName
 $RgName -ErrorAction SilentlyContinue
 if (-not $SA) {
 $SATag = [Ordered] @{Publisher='Packt'}
 $SATag += @{Author='Thomas Lee'}
 $SA = New-AzureRmStorageAccount -Name $SAName `
 -ResourceGroupName $RgName `
 -Location $Locname `
 -Tag $SATag `
 -skuname 'Standard_LRS'
 }

	Create subnet network config objects:

 $SubnetName = 'CloudSubnet1'
 $CloudSubnet = New-AzureRmVirtualNetworkSubnetConfig `
 -Name $SubnetName -AddressPrefix $CLNet
 $GWSubnetName = 'GatewaySubnet'
 $GWSubnet = New-AzureRmVirtualNetworkSubnetConfig `
 -Name $GWSubnetName -AddressPrefix $GWNet

	Create the virtual network, and tag it—this can take a while

 $VnetName = "Packtvnet"
 $PackVnet = New-AzureRmVirtualNetwork -Name $VnetName `
 -ResourceGroupName $RgName `
 -Location $Locname `
 -AddressPrefix $fullnet,'192.168.0.0/16' `
 -Subnet $CloudSubnet,$GWSubnet `
 -DnsServer $DNS `
 -Tag @{Owner='PACKT';Type='VNET'}

	Create a public IP address and NIC for our VM to use:

 $PublicIp = New-AzureRmPublicIpAddress -Name $IPName `
 -ResourceGroupName $RgName `
 -Location $Locname -AllocationMethod Dynamic `
 -Tag @{Owner='PACKT';Type='IP'}
 $PublicIp | Format-Table `
 -Property Name, IPAddress,ResourceGroup*,
 Location, *State

	Create the Azure VM NIC:

 $NicName = "VMNic1"
 $Nic = New-AzureRmNetworkInterface -Name $NicName
 -ResourceGroupName $RgName `
 -Location $Locname `
 -SubnetId $Packvnet.Subnets[0].Id `
 -PublicIpAddressId $PublicIp.Id `
 -Tag @{Owner='PACKT';Type='NIC'}

 #Create network security rule to allow RDP inbound:

 $NSGRule1 = New-AzureRmNetworkSecurityRuleConfig `
 -Name RDP-In -Protocol Tcp `
 -Direction Inbound -Priority 1000 `
 -SourceAddressPrefix * -SourcePortRange * `
 -DestinationAddressPrefix * -DestinationPortRange 3389 `
 -Access Allow

	Create network security rule to allow RDP inbound:

 $NSGRule1 = New-AzureRmNetworkSecurityRuleConfig `
 -Name RDP-In -Protocol Tcp `
 -Direction Inbound -Priority 1000 `
 -SourceAddressPrefix * -SourcePortRange * `
 -DestinationAddressPrefix * `
 -DestinationPortRange 3389 `
 -Access Allow

	Create an NSG with one NSG rule:

 $PacktNSG = New-AzureRmNetworkSecurityGroup `
 -ResourceGroupName $RgName `
 -Location $Locname `
 -Name $NSGName `
 -SecurityRules $NSGRule1

	Configure subnet:

 Set-AzureRmVirtualNetworkSubnetConfig `
 -Name $SubnetName `
 -VirtualNetwork $PackVnet `
 -NetworkSecurityGroup $PacktNSG `
 -AddressPrefix $CLNet | Out-Null

	Set the Azure virtual network based on prior configuration steps:

 Set-AzureRmVirtualNetwork -VirtualNetwork $PackVnet | Out-Null

	Create and display an Azure VM Configuration object:

 $VM = New-AzureRmVMConfig -VMName $VMName -VMSize 'Standard_A1'
 $VM

	Create the credential for VM Admin:

 $VMUser = 'tfl'
 $VMPass = ConvertTo-SecureString 'J3rryisG0d!!'-AsPlainText -Force
 $VMCred = New-Object System.Management.automation.PSCredential `
 -ArgumentList $VMUser, $VMPass

	Set OS information for the VM and display the VM configuration object:

 $VM = Set-AzureRmVMOperatingSystem -VM $VM `
 -Windows -ComputerName $CompName `
 -Credential $VMCred `
 -ProvisionVMAgent -EnableAutoUpdate
 $VM

	Determine which image to use and get the offer:

 $Publisher = 'MicrosoftWindowsServer'
 $OfferName = 'WindowsServer'
 $Offer = Get-AzureRmVMImageoffer -Location $Locname
 -PublisherName $Publisher |
 Where-Object Offer -eq $Offername

	Then get the SKU/Image:

 $SkuName = '2016-Datacenter'
 $SKU = Get-AzureRMVMImageSku -Location $Locname `
 -Publisher $Publisher `
 -Offer $Offer.Offer |
 Where-Object Skus -eq $SkuName
 $VM = Set-AzureRmVMSourceImage -VM $VM `
 -PublisherName $publisher `
 -Offer $Offer.offer `
 -Skus $sku.Skus `
 -Version "latest"
 $VM

	Add the NIC to the VM config object:

 $VM = Add-AzureRmVMNetworkInterface -VM $VM -Id $Nic.Id

	Identify the page blob to hold the VM Disk:

 $StorageAcc = Get-AzureRmStorageAccount -ResourceGroupName
 $RgName -Name $SAName
 $BlobPath = "vhds/Packt100.vhd"
 $OsDiskUri = $storageAcc.PrimaryEndpoints.Blob.ToString() +
 $BlobPath
 $DiskName = 'PacktOsDisk'
 $VM = Set-AzureRmVMOSDisk -VM $VM -Name $DiskName `
 -VhdUri $OsDiskUri `
 -CreateOption FromImage
 $VM

	Create the VM—this can take some time to provision:

 $VM = New-AzureRmVM -ResourceGroupName $RgName `
 -Location $Locname `
 -VM $VM -Tag @{Owner='Packt'}

	Get the Public IP address of the VM's NIC:

 $VMPublicIP = Get-AzureRmPublicIpAddress -Name $IPName `
 -ResourceGroupName $RgName

	Open an RDP session on our new VM:

 $IPAddress = $VMPublicIP.IpAddress
 mstsc /v:$ipaddress

	Once the RDP client opens, logon using pact100\tfl as your user id and a password of J3rryisG0d!! (omitting of course, the quotes!).

 How it works...

In step 1, you define PowerShell variables that hold key Azure object names. In step 2, you log in to Azure and ensure that the resource group and storage account exist (and create them if not). There is no output from either of these steps.

In step 3, you create two new virtual subnets (one for the gateway you use in the Create and use Azure VPN recipe) and the other a cloud based subnet. Then in step 4 you create the virtual network. There is no output from either step 3 or step 4.

In step 5, you create an Azure public IP address which you use later in this recipe. Then you display the IP address details, as shown in the following screenshot:

With step 6, you create an Azure network interface. You configure the NIC to have the public IP address you created in step 5. There is no output from this step.

In step 7, you create NSG rules to enable RDP traffic inbound which generates no output.

In step 8, you create and display the NSG using the two NSG rules ($NSGRule1, $NSGRule2) previously defined, which also produces no useful cmdlet output. You should see the warning message similar to the one in step 5.

In step 9, you continue the configuration of your Azure subnet and assign the NSG to this subnet. There is no output from this step.

You complete the configuration of your Azure network in step 10 where you set your network to use the virtual network you just created, which produces no output.

With the network created, you now turn to creating your Azure VM. In step 11, you start this process by creating and displaying the VM Config object, as shown in the following screenshot:

In step 12, you create a credential object that defines the first user in our VM. There is no output from this step. In step 13, you set the details of your VM, including the computer name, then display the VM config object, as shown in the following screenshot:

In step 14, you find Azure images of WindowsServer published by Microsoft Window server. This step, which has no output, finds the offers that exist in the Azure region you are using for your VM.

In step 15, you find the specific Image SKU and update the VM configuration object with the details of the specific image for your VM. Then you display the configuration object as shown in the following screenshot:

In step 16, you add the network interface to the VM configuration object. There is no output from this step.

In step 17, you define the file to hold your VM's disk image, in effect the VM's C: drive. This file is a page blob you create in your storage account. The output is as shown in the following screenshot:

In step 18, you use the VM configuration object ($VM) to create the actual VM. This step takes some time and generates no output.

Once your VM is up and running, you can move on to step 19, where you retrieve the details of the Public IP address object. The object returned from Get-AzureRmPublicIpAddress contains details about the public IP object you created earlier and assigned to your VM's NIC including the actual IP address.

Using the IP address, in step 20, you make a Remote Desktop connection to your VM, via the public IP address. Once you logon, you can see your VM. You need to specify the userid and password, as shown in the following screenshot:

Assuming you entered the userid and password correctly, the RDP connection then presents a security dialog, like the one in the following screenshot:

If you plan to use the VM often, you can click in the Don't ask me again for connections to this computer check box to avoid seeing this dialog box in future. Once the connection has completed, you can see your VM, like this:

 There's more...

In step 4, you define a new Azure virtual network. As you can see from the output, the New-AzureRmVirtualNetwork cmdlet returns a warning message stating that The output object type of this cmdlet will be modified in a future release. Other Azure RM networking cmdlets issue this waning, although at present there is no action to take.

In this recipe, you just allowed two protocols (RDP and PowerShell Remoting) inbound. In practice you may need to create additional network security rules. You should also create outbound network security rules as well.

In several of the steps, you pipe the output of an Azure cmdlet to Out-Null which eliminates the cmdlet's output. Several of the Azure cmdlets you use in this recipe display a long JSON document describing various objects. In most automation scenarios, this extra output is not necessary. But as you work through this recipe, consider removing the Out-Null statements to see the extra output.

In step 18, you use the VM configuration object created earlier to create the VM. The creation process takes quite a while since Azure has to create the VHD blob, copy the image to this VHD, then spin up the VM and go through the post Sysprep process.

In step 19, you retrieved the public IP address resource, Packt_IP1, that you created in step 5. When Azure starts your new VM, the Azure networking fabric allocates an actual public IP address. The public IP address object contains two useful properties. The first is ProvisioningState. When the VM is running, the provisioning state should be Succeeded. The second property is a string, IPAddress. This string is the public facing IP address for the VM.

In step 20, you use that string to create an RDP connection to the public IP address of your VM, and in step 21, you can log in to the VM using the credentials specified in step 5. Given that this is a publicly addressable, internet facing VM, that password should be long and complex. You should consider what additional security measures to take against inevitable attack.

Once you complete step 21 and log in to your Azure VM, you see the VM's desktop!

 Using Desired State Configuration

In this chapter, we will cover the following recipes:

	Using DSC and built-in resources

	Parameterizing DSC configuration

	Finding and installing additional DSC resources

	Using DSC with PSGallery resources

	Configuring Local Configuration Manager

	Implementing a SMB pull server

	Implementing a DSC web-based pull server

	Using DSC partial configuration

 Introduction

Desired State Configuration (DSC) is management platform within Windows Server and is implemented with Windows PowerShell. DSC enables you to define a computer's desired state declaratively and have PowerShell ensure the computer is configured accordingly and remains so. This is simpler than writing complex scripts to configure a given computer. Microsoft added DSC with PowerShell and delivered improvements V5 and V/5.1 and Server 2016.

With DSC, you define a configuration that describes the details of how a given node (computer) is to be configured. The configuration defines a series of resources to be invoked on the node and how these resources should be configured. A DSC resource is PowerShell code and executable that knows to configure a given object residing on a node. Resources primarily exist as PowerShell modules and you need them both on the computer on which you author DSC configurations and on the target node.

For example, you could define a node and specify that the WindowsFeature resource should be configured to ensure that Web-Server feature (a subset of the full installation of Internet Information Server (IIS) is installed, or that the File resource ensures a set of files, available from somewhere in your network or the internet, are present on the target node. This could dramatically simplify the process of configuring a web farm and ensuring it stays configured properly.

Resources come from a variety of sources. Microsoft has a few resources built in and these ship inside Windows Server 2016. But you can also get additional DSC resources from the internet. And of course, you can also develop your own DSC resources. For more information on developing DSC resources, refer to https://docs.microsoft.com/en-us/powershell/dsc/authoringresource.

The first step in DSC is defining a configuration statement. A configuration statement, which is not dissimilar to a function, defines the desired state of a node. It states how you wish certain resources on the target node to be configured. After you define the configuration, you compile it by executing the configuration statement. This is a lot like functions in PowerShell.

You can parameterize configuration statements to make it simple to create different Managed Object Format (MOF) files based on the parameter values. For example, a configuration statement could take a node name and the name of a Windows feature that should be present on the node. When you run the configuration, you specify values for the node name (for example DC1), and the name of the Windows feature you want loaded (for example Web-Server). The generated MOF file instructs DSC to ensure the Web-Server feature is present on DC1.

When you run the configuration statement, you in effect compile it. The compilation process converts the configuration statement into an actual PowerShell function. When you run this generated function, PowerShell creates a MOF file based on the specified configuration. A MOF file tells PowerShell precisely how the resource is to be configured on a specific node.

Microsoft chose to use the MOF file in addition to the configuration statement to define the configuration. MOF is standardized and well supported, albeit more complex in terms of syntax and content. Separating the specification of the configuration from the details of deploying it can feel like additional overhead (create the PowerShell configuration statement then create and deploy the MOF file).

Microsoft envisaged that someone could create a DSC workbench type product that enabled you to use a GUI and define the configuration graphically. Then at the click of a button this as yet unbuilt tool would generate the necessary MOF file and deploy it automatically. Even though this GUI has never been built, the approach does allow you to define security boundaries between defining a configuration and deploying it.

Once you have generated the MOF files, you deploy the configuration. DSC uses the MOF file to ensure that the specified DSC resources are correctly configured on the target node. Subsequently. you can check that the node is correctly configured, with the service and files in place, and remedy any unapproved changes to the target node, referred to as configuration drift.

You can also use DSC to have a node pull configuration details from a centralized pull server. The pull server is a server that makes DSC configuration files (that is the MOF files) and the resources available to target nodes. A target node is set up to regularly contact the pull server and pull configuration information (and any required resources) from the pull server. You can have two types of pull server—a web pull server or an SMB pull server. The latter is simpler to set up.

With a pull server, you configure the target node's Local Configuration Manager (LCM) with a GUID and the location of the pull server. The LCM uses that GUID to locate the configuration information you want to be applied to the node on the pull server. This enables you to configure multiple servers, for example a multi-node web farm, identically by just giving them the same GUID.

A DSC partial configuration is a configuration statement that defines part of a node's overall configuration. This enables you to combine different configuration statements and have DSC add them together as it configures the node. In larger organizations, different teams can determine a part of a node's configuration independently. Partial configurations allow you to deploy the partial configurations from the different teams to the relevant nodes.

In this chapter, you first look at the built-in resources and the basics of DSC deployment. You then look at how you get more resources, how you set up a pull server, and finally how you implement partial configurations.

 Using DSC and built-in resources

Windows Server 2016 comes with a limited set of built-in DSC resources. In this recipe, you explore the built-in DSC resources and then write and deploy a simple configuration to a single node. The recipe also examines changes in configuration.

 Getting ready

In this recipe, you examine the Windows Server 2016 built-in resources and use these to create and compile a configuration statement on server SRV1. You use this configuration statement to then deploy the Web-Server feature on a second server, SRV2.

This recipe relies on two files being created and shared from DC1. The two files are Index.Htm, and Page2.Htm. These two files are created and shared as \\DC1\ReskitApp. The first file, Index.HTM contains the following:

<!DOCTYPE html>
<html>
<head><title>Main Page - ReskitApp Application</title></head>
<body><p><center>
 HOME PAGE FOR RESKITAPP APPLICATION</p>
 This is the root page of the RESKITAPP application
 Pushed via DSC</p>
<hr>

Click to View Page 2
</center>

<hr></body></html>

The second file, Page2.Htm contains the following:

<!DOCTYPE html>
<html><head><title>Page 2 </title></head>
<body><p><center>My Second Page</p>
Enjoy

Second page - pushed out by DSC.
<hr>

Clck herer to go back home!
</center></body></html>

This recipe does not set up a web application—all this recipe does it to copy two files across from DC1 to SRV1.

 How to do it...

	Discover the built-in DSC resources on SRV1:

 Get-DscResource

	
Examine the DSC resource File:

 Get-DscResource -Name File | Format-List -Property *

	
Get the syntax for the DSC resource File:

 Get-DscResource -Name File -Syntax

	Create/compile a configuration block to copy files to SRV2 by executing:

 Configuration PrepareSRV2
 {
 Import-DscResource `
 -ModuleName 'PSDesiredStateConfiguration' `
 Node SRV2
 {
 File BaseFiles
 {
 DestinationPath = 'C:\ReskitApp\'
 SourcePath = '\\DC1\ReskitApp\'
 Ensure = 'Present'
 Recurse = $True
 }
 }
 }

	View configuration function:

 Get-Item Function:\PrepareSRV2

	
Create the MOF output folder:

 New-Item -Path C:\DSC -ItemType Directory `
 -ErrorAction SilentlyContinue

	Run the configuration and produce a MOF file:

 PrepareSRV2 -OutputPath C:\DSC `
 -Wait -Verbose

	View the generated MOF file:

 Get-Content -Path C:\DSC\SRV2.mof

	Start the DSC configuration:

 Start-DscConfiguration -Path C:\DSC\ `
 -Wait -Verbose

	Observe results of DSC configuration:

 Invoke-Command -Computer SRV2 `
 -ScriptBlock {Get-Childitem C:\ReskitApp}

	Introduce a change to the configuration:

 Invoke-Command -Computer SRV2 `
 -ScriptBlock { Remove-Item -Path C:\ReskitApp\Index.htm
 Get-Childitem -Path C:\ReskitApp }

	Reapply the configuration manually:

 Start-DscConfiguration -Path C:\DSC\ `
 -Wait -Verbose

	Observe the results of reapplying the DSC configuration when no configuration drift is present:

 Invoke-Command -Computer SRV2 `
 -ScriptBlock { Get-Childitem -Path C:\ReskitApp }

 How it works...

In step 1, you examine the resources on SRV1. This server has only the default DSC resources installed as part of a default installation of Windows Server 2016. This list looks like this:

In step 2, you view the details of the DSC resource File. The output looks like this:

In step 3, you use Get-DSCResource to obtain the syntax of the File resource, which looks like this:

In step 4, you create a DSC configuration. To this, you execute the configuration block. When you run the configuration block, much like running a function block, you get no output from the compilation process. The configuration block relies on the two files created and shared from DC1.

In step 5, you examine the Function: drive and look at the function that DSC created when you ran the Configuration block. Again, much like running a function block, when you execute the Configuration block, PowerShell creates a function, complete with a function definition. The output looks like this:

In step 6, you ensure the output folder for the MOF file exists, and in step 7, you ensure the folder to hold the ReskitApp files exists on SRV2. Both these steps produce no output.

In step 7, you create a MOF file by executing the compiled configuration. When you specify the -Wait and -Verbose parameters, DSC shows what it is doing and the script does not continue until after the DSC operation is complete. The output from this step is like this:

In step 8, you view the resultant MOF file, which looks like this:

In step 9, you run Start-DscConfiguration with the -Verbose switch. This switch when combined with -Wait creates additional output that shows you what actions DSC is taking as it executes.

The output shows that SRV2 has received a LCM which has received a method call from SRV1. LCM cannot find the folder, so it creates the folder. Then, you see that the LCM cannot find the two files, and copies those files to the specified location:

In step 10, you see the two files in the C:\ReskitApp folder, like this:

In step 11, you introduce configuration drift by removing one of the two files copied previously in step 10. The output looks like this:

As you can see, there is only one file remaining in the ReskitApp folder on SRV2. To remedy that manually, in step 12, you re-apply the configuration by re-running Start-DscConfiguration, like this:

As you can see, the folder was found, but one file was not. The File resource restores the file to SRV2.

In step 13, you run where the configuration has not changed. The File resource tests to see that the files and the folder exist, and since they do, the File resource take no further action, like this:

As you can see in step 10, step 12, and step 13, if you use the -Verbose switch, the cmdlet produces a trace of what it is doing. In step 10, you can see DSC creating the folder and copying the two files over. In step 12, DSC just copies the missing file, whilst in step 13, DSC takes no action since it finds the configuration of SRV2 to conform to the desired state.

 There's more...

The resources you see in step 1 come from the PSDesiredStateConfiguration module. Since DSC resources are PowerShell code, you can read and view what each built-in resource does. You can also view the inner workings of any DSC resource you download.

In step 6, you store the MOF file to C:\DSC. In a production environment, you would need to create tight configuration control over the generated MOF files (and the configuration statements that relate). You should put all DSC resoruces and MOF files under source control, such as GIT.

In step 12 and step 13, you induce then correct a change in the configuration of the system—in this case, a given file being removed. In this case, you are rectifying the configuration manually.

When DSC applies the configuration, by default, it just makes sure that the files that existed on \\DC1\ReskitApp the first time you pushed the configuration still exist on SRV2. Should the application grow to include additional files, DSC does not copy them if you re-apply the configuration. To achieve that, you add the line MatchSource = $true to the configuration of the File resource you developed in step 4 (and redeploy the configuration).

Also, the recipe does not correct another type of configuration drift—a file on SRV2 exists, but is different to the file of the same name on \\DC1\ReskitApp. To ensure that the files on SRV2 are identical and remain identical to those on \\DC1\ReskitApp, you add another line to the configuration of the File resource, in step 4: Checksum = 'SHA-256'. This directive causes the File resource to create a checksum of each file in the source folder and compare it with the checksum of the file on SRV2. If the checksums do not match, the File resource overwrites the file with a copy from \\DC1\ReskitApp. In production, specifying both of these two properties would be good, but if there are large numbers of files there is a speed impact. You could also specify SHA-1 or SHA-512 as checksum algorithms, although the use of SHA-1 is no longer best practice.

This recipe used just one of the built-in DSC resources in Windows Server 2016. The built-in resources are just a subset of the resources you might need to use DSC in a rich production environment, but enough to get you started. In later recipes, you use an internet repository, the PowerShell Gallery, to provide additional DSC resources.

In this recipe, you utilized the push approach to DscConfiguration. You created a configuration document and the MOF file on SRV1, then pushed it to the target node (SRV2). As an alternative, you could setup a node to pull configuration information and the DSC resources from a central pull server. Later recipes in this chapter examine how you can set up and configure DSC to use a pull server.

 Parameterizing DSC configuration

As with functions, you can create configuration blocks with parameters. These enable you to produce different MOF files by varying the parameter values used when you execute the configuration.

For example, suppose you wanted to add a feature to a node. You could create a specific configuration where you hard code the feature name and the node name. This is not dissimilar to how you copied specific files from DC1 to SRV1 in the use DSC and built-in resources recipe.

Alternatively, you could create a configuration that takes the node name and the service name as parameters and when you run the configuration, PowerShell creates a MOF file that adds the specified service to the specified node. This recipe demonstrates that approach.

One challenge this approach throws up is that, by default, you can only send a single MOF file to a given node. Thus, if you used the earlier recipe and copied files to SRV2, attempting to send a second MOF file to the system results in an error. There are three solutions to this.

The first approach is to have a single MOF file generated for each target node. This means larger MOF files and those for larger organizations sometimes require hard to achieve co-ordination between the different groups that create the overall configuration for a node.

The second approach is to use DSC partial configurations, a feature added with PowerShell V5 and improved in V5.1. This feature enables you to send multiple partial configurations to a node. You configure the node to pull different configuration blocks from potentially multiple DSC pulls servers then the LCM combines then applies them. The recipe Using DSC partial configuration shows you how to use partial configurations.

 Getting ready

In this recipe, you create a configuration block on server SRV1 that adds a Windows feature to a node. The feature and node names are both specified as parameters. You also remove any previous configuration details from the server before adding the feature. Also, this recipe assumes no firewall is running on the systems.

 How to do it...

	Check the status of the DNS feature on SRV2:

 Get-WindowsFeature DNS -ComputerName SRV2

	Create parameterized configuration:

 Configuration ProvisionServices
 {
 param (
 [Parameter(Mandatory=$true)] $NodeName,
 [Parameter(Mandatory=$true)] $FeatureName)
 Import-DscResource -ModuleName 'PSDesiredStateConfiguration'
 Node $NodeName
 {
 WindowsFeature $FeatureName
 {
 Name = $FeatureName
 Ensure = 'Present'
 IncludeAllSubFeature = $true
 }
 }
 }

	Ensure an empty DSC folder exists on SRV1:

 New-Item -Path C:\DSC -ItemType Directory `
 -ErrorAction SilentlyContinue | Out-Null
 Get-ChildItem -Path C:\DSC | Remove-Item -Force | Out-Null

	Clear any existing configuration documents on SRV2:

 Invoke-Command -ComputerName SRV2 {
 Remove-Item -Path 'C:\Windows\System32\configuration*.mof' `
 -ErrorAction SilentlyContinue
 }

	Now create the MOF file on SRV1:

 ProvisionServices -OutputPath C:\DSC `
 -NodeName SRV2 `
 -FeatureName DNS

	View the generated MOF file:

 Get-Content -Path C:\DSC\SRV2.mof

	Configure SRV2 with DNS:

 Start-DscConfiguration -Path C:\DSC -Wait -Verbose

	Check the results of installing the DNS feature on SRV2:

 Get-Service -Name DNS -ComputerName SRV2

 How it works...

In step 1, you check the status of the DNS feature on SRV2; as you can see, DNS is not installed on this system:

In step 2, you create a new configuration document, ProvisionDNS. As in previous recipes, running this code produces no output, but this does compile the configuration document.

In step 3, you ensure that C:\DSC exists on SRV1 and that it is empty. In step 4, you remove any existing MOF files from SRV2. Neither of these steps produce any output. The first time you run this step, the folder is empty. But if you run this multiple times, then you want to ensure the C:\DSC folder is empty.

In step 5, you run the configuration function, specifying both a node name (SRV2) and a feature to add (DNS). As you can see, running the configuration produces a new MOF file for SRV2:

In step 6, you view the MOF file created by step 5, which looks like this:

Finally, in step 7, you start the DscConfiguration. DSC finds that the DNS feature does not exist on SRV2 and so installs this feature, as follows:

ln step 8, you use the Get-Service cmdlet to check that the DNS service is up and running:

 There's more...

In step 2, you create a simple parameterized configuration statement. This configuration block takes two parameters: a node name and a feature name. The configuration adds the feature to the node.

In step 4, you clear any previously created MOF files from SRV2. If you delete a previously pushed MOF file, the configuration set by those configuration MOF files does not change. This does allow you to use a server, such as SRV2, to test different configurations (or multiple DSC recipes).

 Finding and installing DSC resources

A DSC resource is a specially created PowerShell module that enables DSC to configure various aspects of a node. The WindowsFeature DSC resource, for example, enables you to ensure that a particular node of a particular Windows feature installed. You could also specify that a particular Windows feature should not be present.

As you have seen in this chapter so far, Windows comes with a few DSC resources built in. But these do not provide broad coverage. For example, you can use the built-in File resource to copy the source files for a small web application onto a new server. But the built-in resources do not allow you to specify the application's settings (what the application name is, which application pool it runs in, and so on) which is where add-on DSC resources come in.

The community, which includes various Microsoft teams, has been busy since the release of DSC with PowerShell V4 and has created a large range of additional resources. These resources are free to download—and many were developed by the Windows PowerShell team. And of course, if you can't find a resource, you can always build your own.

With PowerShell V5, Microsoft provided a much-simplified approach to building your own resources, using the Class feature. And this accelerated the creation of additional resources.

DSC resources are PowerShell modules which you can download and use. While there are a number of sources for DSC resource modules, the key source is the PowerShell Gallery (PSGallery). You find and download DSC resources from the PSGallery using PowerShell's PowerShellGet module, as shown in this recipe.

Community provided resources (and the containing modules) are meant to obey a naming convention. If the resource/module name begins with x, it is considered experimental (despite having been authored by the PowerShell team). Community authored resources may begin with a c. Recently, however, guidance from Microsoft now suggests the c prefex should no longer be used (see http://stevenmurawski.com/powershell/2015/06/dsc-people-lets-stop-using-c-now). Of course, you are free to rename any resource to suit any naming convention you may have.

In this recipe, you download the xWebAdministration module that contains a number of IIS related DSC resources. This recipe focuses on obtaining additional DSC resources from PSGallery. In a later recipe in this chapter, Use DSC with PSGallery resources, you use these additional resources to configure a web application.

 Getting ready

In this recipe, you find, download, and install DSC resources on SRV1 and SRV2. This recipe looks at just the PSGallery repository, but there are many other places you can find DSC resources. And of course, you can always create your own customized resources.

 How to do it...

	Discover the DSC repositories available:

 Get-PSRepository

	Discover the DSC resources available from PSGallery:

 Find-DscResource -Repository 'PSGallery'

	See what IIS resources might exist:

 Find-DscResource | Where-Object ModuleName -Match 'IIS'

	Examine the xWebAdministration resource:

 Find-DscResource |
 Where-Object ModuleName -eq 'xWebAdministration'

	Install the xWebAdministration module (on SRV1):

 Install-Module -Name 'xWebAdministration' -Force

	See local module details:

 Get-Module -Name xWebAdministration -ListAvailable

	See what is in the module:

 Get-DscResource -Module xWebAdministration

 How it works...

In step 1, you view the registered DSC repositories. By default, only one repository, PSGallery, is supported, although there are other repositories, such as Chocolatey that you can also use.

The PSGallery repository is run by Microsoft and contains a wealth of PowerShell add-in modules and scripts many of which were created by Microsoft product teams. These add-ins include modules that provide DSC resources for you to download.

The repository list generated by step 1 looks like this:

The PSGallery contains a large number of resources and in step 2, you discover DSC resources available in this repository using Find-DscResource. The (truncated) output looks like this:

With such a large number of DSC resources, finding a specific one can be challenging but your favorite search engine should help. In this recipe, you download the xWebAdministration module which you use to set up an IIS web application. One simple way to discover DSC resources related to IIS is to look for a module with a module name containing IIS in step 3. The output looks like this:

As you can see from this output, there are several modules that could be useful, but the xWebAdministration module looks potentially useful. In step 4, you look at the DSC resources included in the xWebAdministration module, which looks like this:

In step 5, you use the Install-Module cmdlet to download and install the xWebAdministration module. There is no output from the installation of this module. In step 6, you examine the module on SRV1—the output looks like this:

In the final step, step 7, you get the DSC resources contained in the xWebAdministration module, which looks like this:

 There's more...

The PSGallery repository contains over 200 modules that in turn contain over 800 DSC resources. Some of these are just updates of the in-box resources although there is a huge range of additional resources for you to leverage.

It is worth noting that the source code for the Microsoft resources can be found on GitHub: https://github.com/PowerShell/DscResources. If you find areas that can be improved, the team is happy to accept pull requests that resolve errors or that improve the resource.

In step 3, you used one method of discovery—searching for a module containing some subject—in this case IIS. You could also search for DSC resources with a subject. Be creative in searching. And you can use the -ModuleName parameter and call the cmdlet like this: Find-DscResource -ModuleName *IIS*.

Using Find-DscResource with no parameters returns a large set of DSC resource objects. This takes both time and bandwidth. If you are looking for resources using your discovery skills, consider assigning the output of Find-DscResource to a variable and carry out discovery type searching using the in-memory variable. It's a lot faster.

In step 5, you use the Install-Module cmdlet to download and install the xWebadministration module on SRV1. The Install-Module cmdlet produces no output by default. You can get more information about details of what the cmdlet does by using the -Verbose parameter.

 Using DSC with PSGallery resources

In the Finding and installing DSC resources recipe, you downloaded a module, xWebAdministration, which contains a number of DSC resources. In this recipe, you use the resources in this module to create an IIS web application. You create and run this recipe from SRV1 to configure a web application on SRV2. You obtain the source files for the web application from DC1.

 Getting ready

With this recipe, you configure IIS on SRV2 to support a simple web application—a similar application. To test this recipe, you need two source files, which you store on the ReskitApp share on your DC1 computer. The first, Index.Htm contains the following:

<!DOCTYPE html>
<html>
<head><meta charset="utf-8" />
<title>Main Page of The ReskitApp Application</title>
</head>
<body></p>

<center>
Home Page for ReskitApp Application</p>
The home page of the ReskitApp application pushed by DSC to SRV2
</p><hr>

A reference to a second page - click to view page 2</center>
</body>
</html>

The second file, Page2.html, looks like this:

<!DOCTYPE html>
<html>
<head><meta charset="utf-8" />
<title>Page 2 of ReskitApp application</title>
</head>
<body>
<p>
<center>
The Second Page
</p>
The second page of the ReskitApp application pushed out by DSC to SRV2.
</p><hr>

Click here to go back home!
</center>
</body>
</html>

DSC requires that resources must be on both the computer you use to create the MOF file and on the target node. In this recipe, the module containing the resources used in the configuration statement, xWebAdministration, must be on SRV1 when you create the MOF file, and on SRV2 when you deploy the DSC configuration. If you attempt to configure the target node with resources that are not available on the target node, you see an error message like this:

You downloaded the xWebAdministration module in the Finding and installing DSC resources recipe. For this recipe, copy the module from SRV1 to SRV2 like this:

on SRV1
Copy-Item -Path 'C:\Program Files\WindowsPowerShell\Modules\xWebAdministration\' `
 -Destination '\\SRV2\C$\Program Files\WindowsPowerShell\Modules\' `
 -Recurse

Also, consider modifying the firewall on SRV2, like this:

 Invoke-Command -ComputerName SRV2 {
 Set-NetFirewallRule -DisplayGroup 'File and Printer Sharing' `
 -Enabled True}

 How to do it...

	Create and compile this configuration document:

 Remove-Item '\\SRV2\c$\Windows\System32\configuration*.mof' `
 -ErrorAction SilentlyContinue
 Configuration RKAppSRV2
 {Remove-Item '\\SRV2\c$\Windows\System32\configuration*.mof' `
 -ErrorAction SilentlyContinue
 Import-DscResource -ModuleName xWebAdministration
 PSDesiredStateConfiguration
 Node SRV2
 {
 Windowsfeature IISSrv2
 { Ensure = 'Present'
 Name = 'Web-Server' }
 Windowsfeature IISSrvTools
 { Ensure = 'Present'
 Name = 'Web-Mgmt-Tools'
 DependsOn = '[WindowsFeature]IISSrv2' }
 File RKAppFiles
 { Ensure = 'Present'
 Checksum = 'ModifiedDate'
 Sourcepath = '\\DC1\ReskitApp\'
 Type = 'Directory'
 Recurse = $true
 DestinationPath = 'C:\ReskitApp\'
 MatchSource = $true }
 xWebAppPool ReskitAppPool
 { Name = 'RKAppPool'
 Ensure = 'Present'
 State = 'Started'
 DependsOn = '[File]RKAppFiles' }
 xWebApplication ReskitAppPool
 { Website = 'Default Web Site'
 WebAppPool = 'RKAppPool'
 Name = 'ReskitApp'
 PhysicalPath = 'C:\ReskitApp\'
 Ensure = 'Present'
 DependsOn = '[xWebAppPool]ReskitAppPool' }
 }
 } # End of Config

	
Remove any old MOF files on both computers, then run the configuration block:

 Remove-Item C:\DSC* -Rec -Force
 Remove-Item `
 '\\SRV2\c$\Windows\System32\configuration*.mof' `
 -ErrorAction SilentlyContinue
 RKAppSRV2 -OutputPath C:\DSC | Out-Null

	Deploy the configuration to SRV2:

 Start-DscConfiguration -Path C:\DSC -Verbose -Wait

	Test result:

 Start-Process 'http://SRV2/ReskitApp/'

 How it works...

In step 1, you create and execute a configuration document RKAppSRV2. This configuration block configures SRV2 with two Windows features (Web-Server and Web-Mgmt-Tools), copies the application's source files from DC1 to SRV2, creates an application pool, RKAppPool, and finally creates an IIS web application, ReskitApp.

This step demonstrates the dependency mechanism in DSC. A dependency allows you to state that a particular resource configuration can only be performed after some other resource configuration has completed. For example, this configuration does not create a ReskitApp application until the RKAppPool application pool exists, and does not do either until the WindowsFeature resource has completed installing IIS.

In step 2, you run the configuration and create the relevant MOF file. Step 2 generates no output.

In step 3, you deploy this configuration to SRV2. Assuming this is the first time you've run this configuration then the output looks like this:

Once the DSC configuration has been pushed successfully to SRV2, you can use the new web application. In step 4, you generate an Internet Explorer object, navigate the object to the root of the web application, then show the root page, which looks like this:

If you click on the link at the bottom of this page, you bring up the application's second page:

 There's more...

This recipe uses the push model for DSC deployment. In this recipe, you manually copied the xWebAdministration to SRV2 as part of the recipe setup. If you use a pull server model to deploy DSC, target nodes can download the necessary resources from the pull server, which greatly simplifies deployment of DSC resources. The two recipes later in this chapter (Implement an SMB pull server and Implement a DSC web pull server) show how to configure a pull server.

The configuration you create in step 1 uses the dependency mechanism in DSC. A dependency allows you to state that a particular resource configuration can only be performed after some other resource configuration has completed. For example, this configuration does not create a ReskitApp application until the RKAppPool application pool exists, and does not do either until the WindowsFeature resource has completed installing IIS.

 Configuring Local Configuration Manager

The LCM is a key component of DSC that initially shipped within PowerShell V4. LCM is a Windows service that runs on each DSC target node and is responsible for receiving configuration information and ensuring the node is configured in the desired state (and remains that way).

The LCM has two mechanisms for desired state delivery: push and pull. The earlier recipes in this chapter demonstrate the push model: you create a configuration and its related MOF file on one node, and push that configuration to another node. In the pull model, you configure the node with details of where and how to find a pull server. Once configured, a node can pull configurations from the configured pull server.

With this recipe, which you run on SRV2, you configure the LCM based on PowerShell V5/5.1. PowerShell V4 used a different approach to configuring the LCM. In this recipe, you configure the LCM on SRV2 and set up SRV2 to use SRV1 as an SMB pull server. You setup SRV1 itself in the next recipe, Implement and SMB pull server.

 Getting ready

In this recipe, you use a special type of configuration known as a meta-configuration. You use the meta-configuration statement to configure DSC on a node. You run this recipe on the target node, SRV2.

If you have already used any DSC configuration against SRV2, for example, based on other recipes in this chapter, you should clear the DSC configuration. To do this, do the following on SRV2:

 Remove-Item -Path 'C:\Windows\System32\configuration*.mof'

You should also create and two local folders on SRV1, C:\DSC (\\SRV1\DSC), and C:\DSCResouruce (\\SRV1\DSCResource) which are references in the following step 1.

 How to do it...

	Create and run the meta-configuration for LCM on SRV2:

 [DSCLocalConfigurationManager()]
 Configuration LCMConfig
 {
 Node localhost
 {
 Settings
 {
 ConfigurationModeFrequencyMins = '30'
 ConfigurationMode = 'ApplyAndAutoCorrect'
 RebootNodeIfNeeded = $true
 ActionAfterReboot = 'ContinueConfiguration'
 RefreshMOde = 'Pull'
 RefreshFrequencyMins = '45'
 AllowModuleOverwrite = $true
 ConfigurationID = '5d79ee6e-0420-4c98-9cc3-
 9f696901a816'
 }

 ConfigurationRepositoryShare PullServer
 {
 SourcePath = '\\SRV1\DSCConfiguration'
 }

 ResourceRepositoryShare ResourceServer
 {
 SourcePath = '\\SRV1\DSCResource'
 }
 }
 }

	Create the meta-configuration MOF on SRV2:

 New-Item -Path c:\DSC -ErrorAction SilentlyContinue
 Remove-Item C:\DSC -Recurse | Remove-Item -Force
 LCMConfig -OutputPath C:\DSC

	Configure SRV2:

 Set-DscLocalConfigurationManager -Path C:\DSC

	Examine LCM configuration:

 Get-DscLocalConfigurationManager

	Examine pull server information:

 Get-DscLocalConfigurationManager |
 Select-Object -ExpandProperty
 ConfigurationDownloadManagers
 Get-DscLocalConfigurationManager |
 Select-Object -ExpandProperty ResourceModulemanagers

 How it works...

In step 1, you create a meta-configuration block that defines the LCM configuration for SRV2. The meta-configuration defines SRV2 to be configured using an SMB share for both the download of configuration statements and for the download of resources not on the target node. This configuration checks every 45 minutes to see if the checksum file has changed and if so it re-applies the updated MOF file. The configuration block downloads resources from \\SRV1\DSCResource and specifies that the LCM updates DSC resource modules updated on SRV1. There is no output from this step.

In step 2, you ensure that SRV2 has local C:\DSC folder, then compile the meta-configuration. As you can see here, the output file is C:\DSC\SRV2.meta.mof:

In step 3, you use the Set-DscLocalConfigurationManager cmdlet to set the LCM configuration on SRV2. This step generates no output.

In step 4, you use the Get-DscLocalConfigurationManager to review the LCM settings. The output of this cmdlet looks like this:

You can also run this cmdlet before step 3 so as to see the difference before and after applying the local configuration.

In step 5, you expand the object returned from Get-DSCLocalConfigurationManager to discover the source path settings for DSC resources and DSC configurations, as follows:

 There's more...

This recipe just configures the LCM on a single node, in this case SRV2. Unless you setup the pull server on SRV1, this recipe has no real effect on SRV2.

For information on the settings you can configure when you setup the LCM on a node, see this MSDN article: https://msdn.microsoft.com/en-us/powershell/dsc/metaconfig.

 Implementing a SMB pull server

There are two different types of DSC pull server you implement: SMB-based and web-based. The SMB-based pull server approach is most useful on a private routable network, one where all nodes can reach the centralized configuration and resource pull server shares. For high availability, you could set up an SMB pull server on a scale out file server.

In DSC, MOF files are used to communicate the desired state to a node. The LCM on that node, in effect, does anything the MOF file says. MOF files are ,at rest, just plain text documents and are not encrypted or signed. If your private network is secure, then the SMB pull server is easier to set up and configure. If security is an issue, consider using the web server pull server approach and configure it with HTTPS.

In the previous recipe, Configuring Local Configuration Manager, you configured a node, SRV2 to pull configurations from a DSC pull server. In this recipe, you configure another node, SRV1, to be the pull server. This recipe also creates a new configuration for use in the pull server scenario and tests using the pull server to apply the new configuration.

When you configure a node to pull from an SMB-based pull server, you configure that node with both a GUID (ConfigurationID) and a SMB share path where the LCM can find configuration MOF files. The MOF file that you deploy to a node is named using the GUID (that is <guid>.mof).

In the earlier recipe, Configuring Local Configuration Manager, you configured SRV2 with a ConfigurationID 5d79ee6e-0420-4c98-9cc3-9f696901a816 and you specified that LCM pull configurations from the SMB pull server located at \\SRV1\DSCConfiguration. Based on this, the LCM on SRV2 would therefore look for the file \\SRV1\DSCConfiguration\5d79ee6e-0420-4c98-9cc3-9f696901a816.mof plus the related checksum file.

 Getting ready

This recipe is run on SRV1 and provides a DSC configuration for SRV2. SRV2 was previously setup to use SRV1 as its pull server in the Configuring Local Configuration Manager recipe. You also need the xSmbShare resource installed on SRV1.

 How to do it...

	Create and execute the configuration for SRV1:

 {
 Import-DscResource -ModuleName PSDesiredStateConfiguration,
 xSmbShare
 File ConfigFolder
 { DestinationPath = 'C:\DSCConfiguration'
 Type = 'Directory'
 Ensure = 'Present' }
 File ResourceFolder
 { DestinationPath = 'C:\DSCResource'
 Type = 'Directory'
 Ensure = 'Present' }
 xSmbShare DscConfiguration
 { Name = 'DSCConfiguration'
 Path = 'C:\DSCConfiguration\'
 DependsOn = '[File]ConfigFolder'
 Description = 'DSC Configuration Share'
 Ensure = 'Present' }
 xSmbShare DscResource
 { Name = 'DSCResource'
 Path = 'C:\DSCResource'
 DependsOn = '[File]ResourceFolder'
 Description = 'DSC Resource Share'
 Ensure = 'Present' }
 }

	
Remove existing MOF files then create the MOF file:

 New-Item -Path C:\DSC -ItemType Directory `
 -ErrorAction SilentlyContinue | Out-Null
 Get-ChildItem -Path C:\DSC | Remove-Item -Force | Out-Null
 Remove-Item '-Path C:\Windows\System32\configuration*.mof' `
 -ErrorAction SilentlyContinue
 PullSrv1 -OutputPath C:\DSC

	Configure the local host:

 Start-DscConfiguration -Path C:\DSC -Wait -Verbose

	Get the SMBShares on SRV1:

 Get-SMBShare -Name DSC*

	Create the new configuration for SRV2:

 Configuration TelnetSRV2
 {
 Import-DscResource –ModuleName 'PSDesiredStateConfiguration'
 Node SRV2
 { WindowsFeature TelnetSRV2
 { Name = 'Telnet-Client'
 Ensure = 'Present' }}}

	Compile the configuration:

 TelnetSRV2 -OutputPath C:\DSCConfiguration

	Rename the MOF file with the GUID name:

 $Guid = '5d79ee6e-0420-4c98-9cc3-9f696901a816'
 Rename-Item -Path 'C:\DSCConfiguration\SRV2.mof' `
 -NewName "C:\DSCConfiguration\$Guid.mof"

	Create the MOF checksum file:

 New-DscChecksum -Path C:\DSCConfiguration

	View the MOF and checksum files:

 Get-ChildItem C:\DSCConfiguration

	Check the presence of the Telnet-Client on SRV2:

 Get-WindowsFeature -Name Telnet-Client `
 -ComputerName SRV2

 How it works...

In step 1, you create and execute a configuration block on SRV1. The configuration block ensures two folders exist (C:\DSCConfiguration and C:\DSCResource) and they are both shared folders. This configuration uses the File and xSMBShare resources (which you downloaded and installed on SRV1 prior to running this step, which generates no output.

In step 2, you ensure you have the C:\DSC folder created and that it's empty, then run the configuration which creates a MOF file to configure SRV1 as per the configuration statement in step 1. This step produces output like this:

In step 3, you apply the configuration to SRV1, setting up the two DSC folder shares. The output is like this:

In step 4, you examine the SMBShares created by step 3 with output like this:

In step 5, you create a new configuration block, TelnetSRV, which installs the telnet client on SRV2. Executing this configuration block produces no output. In step 6, you execute the configuration, which generates a MOF file like this:

In step 7, you rename the MOF file, using the configuration ID (the GUID) that you specified when configuring SRV2 to pull from SRV1. The MOF file generated in step 6, is renamed to 5d79ee6e-0420-4c98-9cc3-9f696901a816.mof. Then, in step 8, you create the MOF checksum file, which generates no output. In step 9, as follows:

Once you have placed the two files (the MOF file and the checksum file), you need to wait for the target server to pull the configuration. In the earlier recipe, you set the refresh time to 45 minutes, thus you may need to wait that long before SRV2 pulls the configuration from SRV1 and installs the telnet client. Once this time period has elapsed, you can check on SRV2 to see that DSC has installed the telnet client.

 There's more...

If, in step 1, you had not downloaded the xSMBShare module (containing the xSMBShare resource), running the PullSrv1 configuration block would generate an error indicating that the resource cannot be found.

 Implementing a DSC web-based pull server

Deploying a DSC web-based pull server is more complex than deploying an SMB pull server. The SMB-based pull server is simple: just create a couple of shares and place the relevant files on that share. The web server approach requires you to also load IIS, install the DSC service, and configure the service, as well as placing the MOF files, resources, and any relevant checksums on the web server. Of course, in both cases, you need to configure each node's LCM.

You deploy a web based pull server to provide a pull client with both resources and configuration MOF files. Unlike an SMB-based pull server, a web-based pull server also provides reporting capabilities enabling a pull client to report status back to the reporting server. Reporting is not available using an SMB-based pull server.

To simplify the creation of a web-based DSC pull server, you can use the xPSDesiredStateConfiguration module DSC resource. You download this resource from PSGallery. This resource greatly simplifies configuring a node to be a DSC pull server and to be a reporting server.

As with SMB-based pull servers, once you have set up a DSC web pull server, you need to configure the clients to pull configurations/resources from the pull server and send reporting information to the report servers.

Setting up a DSC web based pull server changed between PowerShell V4 and V5. This recipe is based on PowerShell V5.

 Getting ready

This recipe uses two servers: SRV1 and SRV2. SRV1 is the pull server—this recipe configures the DSC web service on SRV1 and configures SRV2 to pull configurations and resources from the pull server.

Before using this recipe, you need to download the xPSDesiredStateConfigurtion module from the PSGallery, as follows:

 Install-Module -Name xPSDesiredStateConfiguration

 How to do it...

	Create a self-signed certificate for SRV1:

 $DscCert = New-SelfSignedCertificate `
 -CertStoreLocation 'CERT:\LocalMachine\MY' `
 -DnsName 'SRV1'

	Copy the certificate to the root store on SRV2:

 $Sb = {
 Param ($Rootcert)
 $C = 'System.Security.Cryptography.X509Certificates.X509Store'
 $Store = New-Object -TypeName $C `
 -ArgumentList 'Root','LocalMachine'
 $Store.Open(‘ReadWrite’)
 $Store.Add($Rootcert)
 $Store.Close()
 }
 Invoke-Command -ScriptBlock $Sb -ComputerName SRV2 `
 -ArgumentList $DscCert -Verbose

	Check the certificate on SRV2:

 Invoke-Command -ScriptBlock {Get-ChildItem `
 -Path Cert:\LocalMachine\root |
 Where-Object Subject -Match 'SRV1'} `
 -ComputerName SRV2

	Create and compile DSCService configuration:

 Configuration WebPullSrv1 {
 Param ([String] $CertThumbPrint)
 Import-DscResource -Module PSDesiredStateConfiguration,
 xPSDesiredStateConfiguration
 Node SRV1 {
 File DSCConfig-Folder{
 DestinationPath = 'C:\DSCConfiguration'
 Ensure = 'Present'
 Type = 'Directory' }
 File DSCResource-Folder{
 DestinationPath = 'C:\DSCResource'
 Ensure = 'Present'
 Type = 'Directory' }
 WindowsFeature DSCService {
 Ensure = 'Present'
 Name = 'DSC-Service' }
 xDscWebService WebPullSRV1 {
 Ensure = 'Present'
 EndpointName = 'PSDSCPullServer'
 Port = 8080
 PhysicalPath = 'C:\inetpub\wwwroot\PSDSCPullServer'
 CertificateThumbPrint = $CertThumbPrint
 ConfigurationPath = 'C:\DSCConfiguration'
 ModulePath = 'C:\DSCResource'
 State = 'Started'
 DependsOn = '[WindowsFeature]DSCService'
 UseSecurityBestPractices = $true }
 File RegistrationKeyFile {
 Ensure = 'Present'
 Type = 'File'
 DestinationPath =
'C:\ProgramFiles\WindowsPowerShell\DscService\RegistrationKeys.txt'
 Contents = '5d79ee6e-0420-4c98-9cc3-9f696901a816'
 }}}

	Remove existing MOF files then create the MOF file:

 New-Item -Path C:\DSC -ItemType Directory `
 -ErrorAction SilentlyContinue | Out-Null
 Get-ChildItem -Path C:\DSC -File | Remove-Item -Force | Out-Null
 Remove-Item -Path 'C:\Windows\System32\configuration*.mof' `
 -ErrorAction SilentlyContinue
 WebPullSrv1 -OutputPath C:\DSC `
 -CertThumbPrint $DscCert.Thumbprint

	Add the web service to SRV1:

 Start-DscConfiguration -Path C:\DSC -Wait -Verbose

	Check on the results:

 $IE = New-Object -ComObject InterNetExplorer.Application
 $Uri = 'https://SRV1:8080/PSDSCPullServer.svc/'
 $IE.Navigate2($Uri)
 $IE.Visible = $TRUE

	Create a configuration to make SRV2 pull from SRV1:

 [DSCLocalConfigurationManager()]
 Configuration SRV2WebPull {
 param ([string] $Guid)
 Node SRV2 {
 Settings
 { RefreshMode = 'Pull'
 ConfigurationID = $guid
 RefreshFrequencyMins = 30
 RebootNodeIfNeeded = $true }
 ConfigurationRepositoryWeb DSCPullSrv
 { ServerURL = 'https://SRV1:8080/PSDSCPullServer.svc' }
 ResourceRepositoryWeb DSCResourceSrv
 { ServerURL = 'https://SRV1:8080/PSDSCPullServer.svc' }
 ReportServerWeb DSCReportSrv
 { ServerURL = 'https://SRV1:8080/PSDSCPullServer.svc' }
 }
 }

	Create MOF to configure DSC LCM on SRV2:

 Remove-Item C:\DSC* -Recurse -Force
 $Guid = '5d79ee6e-0420-4c98-9cc3-9f696901a816'
 SRV2WebPull -Guid $Guid -OutputPath C:\DSC

	Configure LCM on SRV2:

 Set-DscLocalConfigurationManager -ComputerName SRV2 `
 -Path C:\DSC `
 -Verbose

	Create and compile a configuration that ensures the telnet client is installed on SRV2:

 Configuration TelnetSRV2
 {
 Import-DscResource –ModuleName 'PSDesiredStateConfiguration'
 Node SRV2
 {
 WindowsFeature TelnetClient
 { Name = 'Telnet-Client'
 Ensure = 'Present' }
 }
 }

	Create the MOF file for this configuration:

 Remove-Item -Path C:\DSCConfiguration -Recurse -Force
 TelnetSRV2 -OutputPath C:\DSCConfiguration

	Rename the file and create the checksum files:

 Rename-Item -Path C:\DSCConfiguration\SRV2.mof `
 -NewName C:\DSCConfiguration\$Guid.MOF
 New-DscChecksum -Path C:\DSCConfiguration
 Get-ChildItem C:\DSCConfiguration

	Update the configuration on SRV2 (based on pulling from SRV1):

 Update-DscConfiguration -ComputerName SRV2 -Wait -Verbose

	Review details of the DSC configuration on SRV2:

 $Session = New-CimSession -ComputerName SRV2
 Get-DscConfiguration -CimSession $Session

 How it works...

In step 1, you create a self-signed certificate with a subject name of SRV1. The New-SelfSignedCertificate creates this certificate in the local machine's MY folder. There is no output from this step, but the certificate is stored in the $DscCert variable for use in the next step. This recipe uses this certificate to provide SSL access to the DSC web service.

In step 2, you copy the certificate to the root store on SRV2. Unfortunately, the certificate provider in PowerShell does not support copying a certificate from one store to another, so you need to dip down into the .NET framework to add the self-signed certificate held in $DscCert to the SRV2 server's local machine trusted root store. This has the effect of enabling SRV2 to trust the SSL certificate from SRV1 during DSC operations (for example, downloading configurations).

In step 3, you check to see that the certificate is now contained in the trusted root store for the local machine's store on SRV2. The output looks like this:

In step 4, you create and compile a DSC configuration block, WebPullSrv1, to configure SRV1 to be a DSC web-based pull server. There is no output from this step.

After removing any old MOF files, in step 5 you create a MOF file for the WebPullSrv1 configuration block. The output looks like this:

Once the MOF file has been created, in step 6, you add the DSC pull web service to SRV1. The output looks like this:

In step 7, you use Internet Explorer to view the details of the DSC web service you just set up. If the computer on which you run this step trusts the certificate you generated in step 1, then the output from step 7 looks like this:

In step 8, you create and compile a configuration to make SRV2 pull DSC configurations and resources from the website on SRV1. As with compiling any DSC configuration, this step generates no output.

With step 9, you create the MOF file DSC needs to configure the LCM on SRV2 to pull configuration and resources from SRV1. The output looks like this:

In step 10, you send the meta-configuration to SRV2 that configures SRV2 to be a pull server and to pull from SRV1. The output looks like this:

In step 11, you create and compile a meta-configuration that configures SRV2 server's LCM. This configuration is a pull configuration that you store on SRV1, and which SRV2 then pulls from SRV1 using the web service on SRV1. There is no output from this step.

With step 12, you create the MOF file for the configuration you compiled in Step 11, and looks like this:

Because you are using the GUID naming convention for configuration statements, in step 13, you rename the file and create the checksum in the appropriate folder. The output looks like this:

In step 14, you use the Update-DscConfiguration cmdlet to update SRV2. Based on the setup you have done in this recipe, SRV2 pulls the configuration block from SRV1, verifies that the checksum is valid, then applies the new configuration (which ensures the telnet client is present on SRV2. The output looks like this:

In the final step, step 15, you create a CIM session on SRV2 (from SRV1) and over that session, you run the Get-DscConfiguration cmdlet that shows the impact of step 14 on SRV2, like this:

 There's more...

In step 7, you viewed output from the SRV1 server's DSC web service. If the system, that is, SRV2, on which you run this step trusts the certificate, you see the page as shown earlier. However, if you run the step on another computer, say SRV1, then you are going to see a certificate error since the computer does not trust the self-signed certificate. If you save the self-signed certificate you created in step 1 to the trusted root store of a computer, then that computer trusts the certificate (and you see no errors in your browser).

In step 14, you used the Update-DscConfiguration cmdlet to force SRV2 to pull any required configuration from SRV1. As an alternative, you could have waited until the refresh time (which you set in step to be 30 minutes) to allow SRV2 to pull the updated configuration.

 Using DSC partial configurations

PowerShell V5 introduced a new feature with DSC: partial configurations. A partial configuration, as the name suggests, is part of the configuration you wish to see applied to a given node.

Partial configurations allow you to share the configuration of a node between multiple teams. For example, you might want the central IT team to define the basic configuration of a node. Another team could be responsible for deploying a web application to that same node. With PowerShell 4, you would have needed to put all the configuration components into a single configuration document/MOF file and deploy that to the node.

To support partial configurations, you must configure each node's LCM to define the partial configurations, and how they are to be deployed. Each partial configuration can be either pushed or pulled. Thus, you can deploy partial configurations that direct the node to pull the basic host configuration for an IT central configuration server and to pull the application details from a separate and independent server. You can also have some partial configurations pulled by the node, with other configurations pushed to the node. This gives you considerable flexibility in deploying DSC partial configurations.

Defining partial configurations is broadly the same as defining full configurations. On each node, you define which partial configurations the node pulls and from what server, as well as any partial configurations you plan to push to the node. The node's LCM takes these different partial configurations (each partial configuration is a MOF file) and creates a single composite configuration and applies the composite to the node.

 Getting ready

In this recipe, you use two servers, SRV1 and SRV2. SRV1 serves as the DSC pull server with SRV2 the node you configure using two partial DSC configurations. You create the pull server using a downloadable module xPSDesiredStateConfiguration. This module contains a number of DSC resources you use in the recipe. You downloaded and distributed it using an earlier recipe. Normally you can use the Install-Module cmdlet to install this module on both SRV1 and SRV2. Or you can install it on one server, then copy it to any target servers that need the module, as you do in this recipe.

 How to do it...

	Create a self-signed certificate on SRV1, copy it to the local machine's root store, and then display it:

 Get-ChildItem -Path Cert:LocalMachine\My |
 Where-Object Subject -eq 'CN=SRV1' |
 Remove-Item -Force
 $DscCert = New-SelfSignedCertificate `
 -CertStoreLocation 'CERT:\LocalMachine\MY' `
 -DnsName 'SRV1'
 $C = 'System.Security.Cryptography.X509Certificates.X509Store'
 $Store = New-Object -TypeName $C -ArgumentList
 'Root','LocalMachine'
 $Store.Open('ReadWrite')
 $Store.Add($Dsccert)
 $Store.Close()
 $DscCert

	Copy the certificate to the root store on SRV2 and ensure it's the only one:

 $Sb = {
 Param ($Rootcert)
 Get-ChildItem Cert:LocalMachine\Root |
 Where Subject -eq 'CN=SRV1' | Remove-Item -Force
 $C = 'System.Security.Cryptography.X509Certificates.X509Store'
 $Store = New-Object -TypeName $C `
 -ArgumentList 'Root','LocalMachine'
 $Store.Open('ReadWrite')
 $Store.Add($Rootcert)
 $Store.Close()}
 Invoke-Command -ScriptBlock $Sb -ComputerName SRV2 -Verbose `
 -ArgumentList $DscCert

	Display the certificate on SRV2:

 $sb = {Get-ChildItem Cert:\LocalMachine\root |
 Where Subject -Match 'SRV1' }
 Invoke-Command -ScriptBlock $sb `
 -ComputerName SRV2

	Check that the xPsDesiredStateConfiguration module is installed on both SRV1 and SRV2:

 $ModPath = Join-Path `
 -Path 'C:\Program Files\WindowsPowerShell\Modules’ `
 -ChildPath ‘xPSDesiredStateConfiguration'
 Copy-Item -Path $ModPath `
 -Destination '\\SRV2\C$\Program
 Files\WindowsPowerShell\Modules' `
 -Recurse -ErrorAction SilentlyContinue
 Get-Module xPSDesiredStateConfiguration -ListAvailable
 Invoke-Command -ComputerName SRV2 `
 -ScriptBlock {
 Get-Module xPSDesiredStateConfiguration `
 -ListAvailable}

	Create and compile the DscService configuration block for SRV1:

 Configuration WebPullSrv1 {
 Param ([String] $CertThumbPrint)
 Import-DscResource -Module PSDesiredStateConfiguration,
 xPSDesiredStateConfiguration
 $Regfile=Join-Path `
 -Path ‘C:\Program Files\WindowsPowerShell\DscService’ `
 -Childpath ‘RegistrationKeys.txt'
 Node SRV1 {
 File DSCConfig-Folder{
 DestinationPath = 'C:\DSCConfiguration'
 Ensure = 'Present'
 Type = 'Directory' }
 File DSCResource-Folder{
 DestinationPath = 'C:\DSCResource'
 Ensure = 'Present'
 Type = 'Directory' }
 WindowsFeature DSCService {
 Ensure = 'Present'
 Name = 'DSC-Service' }
 xDscWebService WebPullSRV1 {
 Ensure = 'Present'
 EndpointName = 'PSDSCPullServer'
 Port = 8080
 PhysicalPath = 'C:\inetpub\PSDSCPullServer'
 CertificateThumbPrint = $CertThumbPrint
 ConfigurationPath = 'C:\DSCConfiguration'
 ModulePath = 'C:\DSCResource'
 State = 'Started'
 DependsOn = '[WindowsFeature]DSCService'
 UseSecurityBestPractices = $true }
 File RegistrationKeyFile {
 Ensure = 'Present'
 Type = 'File'
 DestinationPath = $Regfile
 Contents = '5d79ee6e-0420-4c98-9cc3-9f696901a816'}}}

	Remove existing MOF files then create an MOF file for SRV1:

 Get-ChildItem -Path C:\DSC -ErrorAction SilentlyContinue |
 Remove-Item -Force | Out-Null
 Remove-Item -Path 'C:\Windows\System32\configuration*.mof' `
 -ErrorAction SilentlyContinue
 WebPullSrv1 -OutputPath C:\DSC -CertThumbPrint
 $DscCert.Thumbprint

	Add the DSC web service to SRV1:

 Start-DscConfiguration -Path C:\DSC -Wait -Verbose

	Check on the results of adding the web server:

 $IE = New-Object -ComObject
 InterNetExplorer.Application
 $Uri = 'https://SRV1:8080/PSDSCPullServer.svc/'
 $IE.Navigate2($Uri)
 $IE.Visible = $true

	Create a meta-configuration to make SRV2 pull from SRV1:

 [DSCLocalConfigurationManager()]
 Configuration SRV2WebPullPartial {
 Node Srv2 {
 Settings
 { RefreshMode = 'Pull'
 ConfigurationModeFrequencyMins = 30
 ConfigurationMode = 'ApplyandAutoCorrect'
 RefreshFrequencyMins = 30
 RebootNodeIfNeeded = $true
 AllowModuleOverwrite = $true }
 ConfigurationRepositoryWeb DSCPullSrv
 { ServerURL = 'https://SRV1:8080/PSDSCPullServer.svc'
 RegistrationKey = '5d79ee6e-0420-4c98-9cc3-9f696901a816'
 ConfigurationNames = @('TelnetConfig','TFTPConfig') }
 PartialConfiguration TelnetConfig
 { Description = 'Telnet Client Configuration'
 Configurationsource =
 @('[ConfigurationRepositoryWeb]DSCPullSrv')}
 PartialConfiguration TFTPConfig {
 Description = 'TFTP Client Configuration'
 Configurationsource =
 @('[ConfigurationRepositoryWeb]DSCPullSrv')
 DependsOn = '[PartialConfiguration]TelnetConfig'}
 }
 }

	Create a MOF to configure DSC LCM on SRV2:

 Remove-Item -Path C:\DSCConfiguration* -Recurse -Force
 Remove-Item -Path `
 '\\SRV2\C$\Windows\System32\Configuration*.mof'
 SRV2WebPullPartial -OutputPath C:\DSC | Out-Null

	Configure the LCM on SRV2:

 $CSSrv2 = New-CimSession -ComputerName SRV2
 Set-DscLocalConfigurationManager -CimSession $CSSrv2 `
 -Path C:\DSC `
 -Verbose

	
Create/compile the TelnetConfig partial configuration and build the MOF file:

 $Guid = '5d79ee6e-0420-4c98-9cc3-9f696901a816'
 $ConfigData = @{
 AllNodes = @(
 @{ NodeName = '*' ; PsDscAllowPlainTextPassword = $true},
 @{ NodeName = $Guid }
)
 }
 Configuration TelnetConfig {
 Import-DscResource –ModuleName PSDesiredStateConfiguration
 Node $Allnodes.NodeName {
 WindowsFeature TelnetClient
 { Name = 'Telnet-Client'
 Ensure = 'Present' }
 }
 }
 TelnetConfig -ConfigurationData $ConfigData `
 -OutputPath C:\DSCConfiguration | Out-Null
 Rename-Item -Path "C:\DSCConfiguration\$Guid.mof" `
 -NewName 'C:\DSCConfiguration\TelnetConfig.Mof'

	Create and compile the TFTPConfig partial configuration:

 $Guid = '5d79ee6e-0420-4c98-9cc3-9f696901a816'
 $ConfigData = @{
 AllNodes = @(
 @{ NodeName = '*' ; PsDscAllowPlainTextPassword = $true},
 @{ NodeName = $Guid }
)
 }
 Configuration TFTPConfig {
 Import-DscResource –ModuleName 'PSDesiredStateConfiguration'
 Node $AllNodes.NodeName {
 WindowsFeature TFTPClient
 { Name = 'TFTP-Client'
 Ensure = 'Present' }
 }
 }
 TFTPConfig -ConfigurationData $ConfigData -OutputPath
 TFTPConfig -ConfigurationData $ConfigData `
 -OutputPath 'C:\DSCConfiguration\' | Out-Null
 Rename-Item -Path "c:\DSCConfiguration\$Guid.mof" `
 -NewName 'TFTPConfig.Mof'

	Create checksum files for these two partial configurations:

 New-DscChecksum -Path C:\DSCConfiguration

	Observe configuration documents and checksum:

 Get-ChildItem -Path C:\DSCConfiguration

	Update the LCM on SRV2 and test to see if it configured per the desired state:

 Update-DscConfiguration -ComputerName SRV2 -Wait -Verbose
 Test-DSCConfiguration -ComputerName SRV2

	Induce the configuration drift:

 Remove-WindowsFeature -Name tftp-client, telnet-client `
 -ComputerName SRV2 |
 Out-Null

	Test the DSC configuration:

 Test-DscConfiguration -ComputerName SRV2

	Fix the configuration drift:

 Start-DscConfiguration -UseExisting -Verbose -Wait `
 -ComputerName SRV2

	Test to check SRV2 is in compliance with the desired state:

 Get-WindowsFeature -Name Telnet-Client, TFTP-Client `
 -ComputerName SRV2

 How it works...

In step 1, you create a self-signed certificate. You drop this certificate both in the LocalMachine\My folder and in the LocalMachine\Root folder. In effect, this creates a trusted certificate on SRV1 that you can use with IIS. Creating the certificate produces no output, but the final command in this step looks like this:

Once you have this certificate on SRV1, you can copy it to the trusted root store on SRV2 This step works by running a script block on the remote machine to make the certificate trusted on SRV2. There is no output from step 2.

In step 3, you display the root certificate added to SRV2 server's trusted root store, which looks like this:

This recipe uses the xPSDesiredStateConfiguration module which contains DSC resources you use to setup DSC. This module is one you need to download using the Install-Module cmdlet. In step 4, you copy the module to SRV2 (and ignore any errors that might occur if the module exists on SRV2.

The output, checking you have the same versions of xPSDesiredStateConfiguration on SRV1 and SRV2 looks like this:

With step 5, you create a configuration block to configure SRV1 to be a DSC pull server. This includes creating two folders for pull clients to find configuration details and DSC resources—you ensure the DSC service is running, then use the xDscWebService resource to configure the DSC service. Finally, this step creates a registration file needed to enable pull clients to authenticate to the pull server. As with other DSC configuration blocks, running this block of code generates no output.

Once you compile the configuration block, you have to create the related MOF file, which you do in step 6. The output looks like this:

In step 7, you apply the WebPullSrv1 configuration to SRV1. Using the -Wait and -Verbose parameters, you view the actions taken by DSC on SRV1, which looks like this:

In step 8, you check the DSC web service by using the Internet Explorer COM object. The step navigates to the DSC service endpoint on SRV1, which looks like this:

Once you have configured the DSC pull server on SRV1, you need to configure the pull client, SRV2, to be a pull client. In step 9, you create and compile a meta-configuration that configures the LCM on SRV2. This meta-configuration specifies details of the pull server and specifies that SRV2 should pull two partial configurations from the pull server on SRV1. Running this step produces no output.

In step 10, you run this configuration to create the necessary MOF file. There is no output from this step.

With step 11, you deploy the LCM configuration to SRV2. Using the -Verbose parameter enables you to see what DSC is doing as it applies the configuration to SRV2, which looks like this:

In step 12 and step 13, you create two partial configurations (TelnetConfig and TFTPConfig). Each partial configuration defines a Windows feature that DSC should ensure exists on SRV2. You run the configurations and store the MOF file on where the DSC Pull server can deliver it to SRV2 when requested. Note that each configuration is renamed. There is no output from these steps.

DSC requires that each configuration MOF file has an accompanying checksum to avoid issues with data corruption. In step 14 You use the New-DscCheksum cmdlet to create the checksum file. This cmdlet scans the target path and creates checksums for all MOF files contained in the folder. There is no output from this step.

In step 15, you observe the two partial configuration MOF files and their related checksum files, which looks like this:

In step 16, you use the Update-DscConfiguration cmdlet to update the DSC configuration on SRV2. As you can see from the following output, this ensures that the two partial configurations are applied and that the DSC installs the two Windows features described in the configuration MOF files. In this step, you also test to see if the DSC configuration on SRV2 is correct, as follows:

To test DSC ability to ensure DSC configurations remain in place and to correct any configuration drift, in step 17, you remove the two network clients from SRV2. There is no output from this step.

In step 18, now that you have induced configuration drift on SRV2 (by removing the two Windows features), you use Test-DscConfiguration to test the DSC configuration of SRV2, which produces the following output:

To resolve the configuration drift induced earlier, you can either wait for DSC regular consistency check to correct the issue or as you use the Start-DscConfiguration cmdlet, using the -UseExisting parameter as you do in step 19. This parameter instructs the LCM (on SRV2) to use the current LCM configuration and to correct any drift. The output from this step looks like this:

You complete this recipe, in step 20, by using the Get-Windows feature cmdlet to check if the two network clients are installed on SRV2 (which they are). This step produces output like this:

 There's more...

In step 1, you create a self-signed certificate that you make trusted on SRV1 and in step 2 you make this certificate trusted on SRV2. In an ideal world, you should create an enterprise Certificate Authority (CA), then issue certs signed by that CA. With an enterprise CA, your root certificates can be auto-published, making SRV1 server's certificate trusted by everyone.

In step 2, you use a bit of .NET magic to copy the certificate to SRV2. Sadly, the certificate provider in PowerShell does not support a copy operation, allowing you to use Copy-Item to copy the certificate between certificate stores on SRV1 and to SRV2.

With step 3, you view the certificate contained in SRV2 server's trusted root store. Note the thumbprint is the same as the thumbprint shown in step 2. In effect, what you have done is to make the certificate in the local machine's personal certificate store trusted on SRV2 (and via step 1, on SRV1).

Note you could set DSC up to not use SSL (and thus require certificates). This is, in general, not a good idea as it does not protect from a man in the middle attack. It also means the MOF documents transmitted from a pull server are in plain text. For configurations that contain credentials or other internal secrets, best practice always suggests you use SSL. Creating a self-signed and trusted cert for a lab experiment is much easier, and simple to automate.

In step 4, you ensure the resource you needed (xPSDesiredStateConfiguration module) was copied to SRV2. You could also have placed it on the pull server (SRV1) to enable the pull client to download it. This is probably a better approach for production use—just put all the resources in one place, and let nodes pull that module when necessary.

In step 5, you run/compile a DSC configuration, which produces no console output. You can use the Get-Command cmdlet, or look in the Function: drive on SRV1 to see the results of compiling the configuration.

In step 11, you configure the LCM on SRV2 to pull configuration details from SRV1. There are several ways to do this—the recipe creates a CIM session to SRV2 and then updates the LCM on SRV2 over the CIM session. The key point is that with some of the cmdlets you use in the recipe, you can use the -ComputerName parameter and name the target computer, whilst with others you need to use a CIM session.

In step 12, you create and compile a partial configuration which allows an empty password. In practice, this is not a great idea and you should be using a real password.

 assets/d5f2e0ef-cb34-4908-bcc7-ba5509fe9183.png
Ps Ci> Ssb = {
New-Item -path

~ItemType pirectory -Force | out-null
New Ttem path ni\vm\vids Itemrype birectory orce | ouwtnull
New-Ttem —Path H:\Vm\Wis -ItemType Directory -force | out-null
Get-childrtem -path H:\vm

¥

Invoke-Command ~ComputerName HV1, Hv2 -scriptlock $sb

Length Name PSComputerName

01/03/2017 Vhis Wi
01/03/2017 ws HvL
01/03/2017 vhds Hv2

01/03/2017 12:16 ws B2

assets/ba51972c-5071-47b0-9dcb-366080167297.png
Search resuts:
Name Location Model
= 56CP1 10th floor 1064 'NEC Color MultWriter Class Drivr

1 item(s) found

assets/4cf8a17b-73f4-47b9-9853-68669dc63041.png
PS C:\> Get-AzureStorageContainer -Context $SACon |
Select-Object -ExpandProperty CloudslobContainer

Blob End Point: https://packt100sa.blob.core.windows.net/

Name uri LastModified

packtcontainer http:
packtcontainer2 http:

'/packt100sa.blob. core.windows . net/packtcontainer 30/05/2017 13:18:11 +00:00
'/packt100sa.blob. core.windows . net/packtcontainer2 30/05/2017 13:18:11 +00:00

assets/b9ea84e2-d5cf-44f5-a747-2521f598d5b5.png
PS C:\> New-NanoServerImage -DeploymentType Guest -Edition Datacenter
-MediaPath $Server20l6InstallationRoot -BasePath $NanoBaseFolder ~
-TargetPath $NanovMPath -ComputerName $NanoComputerName

assets/363e886c-1c8c-4d42-945f-d3ebb2130fe2.png
PS C:\Windows\system32> SModuleFolder = "Senv:HOMEDRIVE\downloadedModules\TreeSize"
Get-ChildIten -Path SModuleFolder -Filter =.psmi —Recurse |
Select —ExpandProperty FullName -First 1 |
Inport-Module -Verbose

Loadin:
Exporting
Exporting
Inporting
Importing

downloadedodules\TreeSize\2. 0\TreeSi ze. psml

assets/3b556a79-eb86-4b49-9426-bd3d664d20f8.png
Network Settings

Select an adapter to configure.

> Ethernet (00-15-5D-02-6C-05)

Up/Dn: Highlight | ENTER: Select | ESC: Back

assets/969487f6-a126-4f58-bbc8-edad4727fa8b.png
Cerifcate Revocation List
Genera bpevocatontist

Revoked certicates:

Serial number

Revocation date

Revocation entry.

Ve

Value:

assets/7340b55d-35f0-4703-8bd0-cc620c6d64a3.png
~CommonTcPPort ~InformationLevel
~ComputerName
~DiagnoseRouting

PS C:\Windows\system32> Test-NetConnection -Port 443 -ComputerName google.com -InformationLevel Detailed

B Test-NetConnection
ComputerName google. com

RemoteAddress 216.58.192.110 Parameters for “Test-NetConnection @
RemotePort 443

NameResolutionResults 216.58.192.110 CommonTCPPort | ICMP | NetRouteDiagnostis | RemotePort
MatchingIPsecRules s

NetworkIsolationContext : Internet Port:*

InterfaceAlias Ethernet

Sourceaddress 192.168.2.230 ComputerName

NetRoute (NextHop) 192.168.2.1

TcpTestSucceeded True InformationLevel:

PS C:\Windows\system32> Show-Command Test-NetConnection

(@ ommonoameins

Run

assets/00b8b3cf-4db2-45ec-9a73-e541b47f8692.png
1 Active Directory Users and Computers

File Action View Help

LN

4IXEHELeETER

T3 Active Directory Users and Com|
(5] Saved Queries
v 3 ReskitOrg
(] Builtin
1 Computers
& Domain Controllers
1 ForeignSecurityPrincipal
1 Managed Senvice Accoul
&) Sales
1 Users

Nome

B Allowed RODC Password e

B CertPublshers

B Denicd RODC Password Rep..

B,0HCP Administrators

B,0HCP Users

8, onsadmins

BRAS and 15 Severs§

8 Clonesble Domain Contol.

B, onsupcatebrony

8, Domein Admins

8,Domain Computers

8,,Domein Controlers

8,,Domain Guests

8 Domain Users

B Group Policy Crestor Owners

B Key Admins

B Protected Users

8 Read-only Dormain Corfrol..

B, Enerprise Admins

B, Enerpise Key Admins

B, Enerprise Read-only Domai

8 Schema Admins

 Adminstrstor

2 U Administator
DefauitAccount

2 onsaomn

Type

Security Group.
Security Group.
Security Group.
Security Group.
Security Group.
Security Group.
Security Group.
Security Group.
Security Group.
Security Group.
Security Group.
Security Group.
Security Group.
Security Group.
Security Group.
Security Group.
Security Group.
Security Group.
Security Group.
Security Group.
Security Group.
Security Group...
User

User

User

User

Description
Members in this group can have their passwords replic..
Members of this group are permitted to publish certific.
Members in this group cannot have their passwords re.
Members who have administrative access to the DHCP
Members who have view-only access to the DHCP senvi
DNS Administrators Group.

Servers in this group can access remote access prope
Members of this group that are domain controllers m.
DN clients who are permitted to perform dynarmic u
Designated administrators of the domain

All workstations and servers joined to the domain

All domain controllers i the domain

Al dor

Members in this group can modify group policy for the.
Members of this group can perform administrative acti
Members of this group are afforded aditional protecti
Members of this group are Read-Only Domain Controll
Designated administrators of the enterprise:

Members of this group can perform administrative acti
Members of this group are Read-Only Domain Controll
Designated administrators of the schema

Bui

account for administering the computer/domain

A user account managed by the system.

assets/e58d8d02-cec8-4051-bc23-826d4c894b8d.png
PS C:\> New-Item -Path C:\DSC -ItemType Directory
-ErrorAction SilentlyContinue | out-Null
PS C:\> Get-ChildItem -Path C:\DSC | Remove-Item -Force | Out-Null
PS C:\> Remove-Item -Path 'C:\Windows\System32\configuration*.mof"
-ErrorAction SilentlyContinue
PS C:\> WebPullSrvl -OutputPath C:\DSC

Directory: C:\DSC

Mode LastWriteTime Length Name

20/04/2017 4:20 4104 SRV1.mof

assets/697f5532-438d-456b-9030-1ef15bb641f5.png
PS C:\> New-AzureRmStorageAccount -Name $SAName
-SkuName Standard_LRS °
-ResourceGroupName $RgName -Tag $RGTag
-Location SLocname

ResourceGroupName : packet_rg

StorageAccountName : packtl00_sa

Id /subscriptions/0bc29420-0222-4599-b91e-e8699f760742/
resourceGroups/packet_rg/providers /Microsoft. Storage/storageAccounts /packt100_sa

Location uksouth

sku Microsoft.Azure.Management . Storage. Models.. Sku

Kind Storage

Encryption

AccessTier

CreationTime : 11/05/2017 16:38:03

CustomDomain

LastGeoFailoverTime

PrimaryEndpoints Microsoft.Azure.Management . Storage. Models . Endpoints

PrimaryLocation uksouth

Provisioningstate Succeeded

SecondaryEndpoints

SecondaryLocation

StatusofPrimary Available

statusofSecondary

Tags {[Author, Thomas Lee], [Publisher, Packt]}

Context Microsoft.WindowsAzure.Commands . Common. Storage. LazyAzureStorageContext

assets/d026f0f6-8974-48da-8f3e-9c16aa9fad91.png
NLB Cluster: Greetings from NLB2

| € resinlereskicorg

assets/f15eec0d-2160-4545-9391-c030dafc30cb.png
PS C:\> ipconfig /displaydns
Windows IP Configuration
dez.reskit.org

Record Name . .
Record Type - .
Time To Live .
Data Length . .
Section
A (Host) Record

del.reskit.org

Record Name . .
Record Type . .
Time To Live .
Data Length . .
Section
A (Host) Record

PS C:\> Get-DnsClientCache.

Entry RecordName Record Status Section TimeTo Data Data
Type Live Length

de2.reskit.org DC2.Reskit.Org A Success Answer 3114 4

deLreskit.org DXL Reskit.Org A Success Answer 3020 4

assets/90710d44-3288-4932-b547-daba5e24485e.png
PS C:\> Get-DfsReplicatedfolder |
Format-Table GroupName, FolderName, DomainName, DfsnPath

GroupName FolderName DomainName DfsnPath
FSShareRG ITData Reskit.Org \\Reskit.Prg\shareData\IT\ITbata
FSShareRG Sales Reskit.Org \\Reskit.Org\ShareData\sales\salesData

FSShareRG Saleshistorical Reskit.Org \\Reskit.Org\ShareData\Sales\SalesHistoric
DCShareRG ITManagement Reskit.Org \\reskit.org\sharedata\IT\ITManagenent

assets/754c21e0-67ed-4339-9b41-265871c287eb.png
Get-VMSnapshot -VMName WML

WMName Name SnapshotType CreationTine ParentSnapshotName

Wi Smapshotl Standard 15/07/2017 12:12:01
WL Snapshot? Standard 15/07/2017 12:17:39 Snapshotl

assets/6f143185-8c73-4067-b83f-9dd56cd42c4f.png
PS C:\> (Get-Vm -WMName VM1).ConfigurationLocation
\Vm\WIS\VL

PS C:\> Get-VMHardDiskDrive -WiName vmi

WiName ControllerType ControllerNumber ControllerLocation DiskNumber Path

w1 e) o HE\Vm\Vhds\Wi1. Vhdx

assets/198ca732-dad6-4f14-85d2-bf82b688acfc.png
Select the location of the backup for the computer you want to restore

If the system image is on an external device, attach the device to this computer,
and then cick Refresh.

|
e —_— =

Specify the location of the system image.
Network folder:

SRV 1\Backupl
Exampe: \server phare

‘Advanced, Refiesh

<Back Next > Cancel

assets/a23320a1-cb59-4319-9dc9-09e414ed405f.png
PS C:\> Get-Item -Path Function:\PrepareSRv2

CommandType Name Version Source

Configuration PreparesRv2

assets/0a5b60a4-8983-42b5-bde3-f919285624cd.png
\> Get-WDisk |
Format-Table -Property DiskName, DiskNumber
FreeSpace, Properties

DiskName Diskiumber Freespace Properties

Virtual HD ATA Device 0 121787637760 ContainsCriticalVolune
Microsoft Virtual Disk 1 95086919168 ValidTarget

assets/dd64d948-e68a-4ffc-96bc-bf08a255f21e.png
Ps C:\foo> $switchName = Get-vMswitch | Select-Object -ExpandProperty Name -First 1

assets/b2c71779-1d55-44bc-844a-dcc8130ad68a.png
Ps c:\foo> Invoke-Command -VMName $NanoComputerName -Credential $Credential ~
-scriptBlock { Get-Process }

Handles NPM(K) PM(K) ws (K) cpPu(s) Id SI ProcessName PSComputerName
0 6 748 1828 0.03 292 0 csrss NANOL
0 5 892 3512 0.02 284 0 EMT NANOL
0 0 0 4 0 0 1dle NANOL
0 19 3792 10460 0.16 348 0 Tsass NANOL
0 42 27980 52264 2.47 2016 O powershell NANOL
[8 1640 4704 0.08 332 0 services NANOL
0 2 316 1036 0.02 208 0 smss NANOL
0 8 1628 5040 0.09 440 0 svchost NANOL
0 14 1720 5620 0.05 472 0 svchost NANOL
0 14 9212 12944 0.38 556 0 svchost NANOL
0 7 1404 5448 0.02 584 0 svchost NANOL
0 9 1572 5456 0.03 600 0 svchost NANOL
0 19 12508 22068 4.70 648 0 svchost NANOL
0 14 2212 7060 0.08 712 0 svchost NANOL
0 28 5708 12496 0.19 748 0 svchost NANOL
0 28 4012 8968 0.02 836 0 svchost NANOL
0 16 5060 12844 0.13 992 0 svchost NANOL
0 0 80 68 0.92 4 0 system NANOL
0 7 724 3264 0.02 316 0 wininit NANOL
0 6 1296 5984 0.03 1600 O WMIADAP NANOL
0 8 5764 11376 1.50 1640 O wmiPrvse NANOL

assets/e5de27bc-4ca1-4a5e-ac47-faf285d767cc.png
\foo> $AvailableChocolateyPackages = Find-Package -ProviderName Chocolatey

#How many software packages are available?
$AvailablechocolateyPackages | Measure-Object

Count. as04

assets/89d3b263-8231-4725-9fe0-f450c9a04fb6.png
Ps C:\foo> $PSInfoCommand = "C:\Chocolatey\lib\sysinternals.2016.11.18\tools\PsInfo. exe”
TInvoke-Expression ~Command $PSInfoCommand

PsInfo v1.78 - Local and remote system information viewer
Copyright (C) 2001-2016 Mark Russinovich

Sysinternals - www.sysinternals. con

Querying information for SVR2016...

System information for \\SVR2016:

Uptime 0 days 6 hours 20 minutes 12 seconds
Kernel version: Windows Server 2016 Datacenter, Multiprocessor Free
Standard Edition
: 6.3
Service pack: 0
Kernel build number 14393
Registered organization
Registered owner: Windows User
IE version: 9.0000
System root: Ci\windows
Processors: 1
Processor speed 2.4 GHz

Processor type Intel(R) Core(TH) i7-4710HQ CPU @
Physical memory: 4 M8
Video driver: Microsoft Hyper-V Video

assets/23e3ca98-eedb-458e-923d-0a4c6a773198.png
PS C:\> $sb = {

New-Ttem -Path E:\ShareData —ItemType Directory -Force | Out-Null
New-SmbShare —Name ShareData -Path E:\ShareData -FullAccess Everyone
}

Tnvoke-Command ~ComputerName Srvl, Srv2 -ScriptBlock $Sb

Name ScopeName Path Description

assets/738be461-68b7-4cd7-8b56-151672011bd0.png
Add a Script

Scipt Name:

Scipt Parameters:

assets/feea8afb-1dec-4c79-bef7-6fcf39a99034.png
Location of Config Information: C:\Recovery\DC1\D_\Book - DC1
Exists: True
Location of DC1 Hard Drive : C:\Recovery\DCI\D_\Book - DCL\Virtual Hard Disks\DC1.vhdx
Exists: True

assets/7fc70970-6560-4c35-8a9e-a79931d39a1d.png
New-IscsiVirtualDisk -Path I:\Sales\Salesbata.vhdx
-Description 'LUN For sales’ °
-SizeBytes 1G8

ClusterGroupNane

ComputerName SRVL.Reskit.Org

Description LUN For sales

DiskType Dynamic

HostVolumeId {16A46190-ECAS-11E6-8365-001550017120}
LocalMountDeviceTd

OriginalPath

Parentpath

Path :\sales\salesData. vhdx

SerialNumber OF1ADODD-E095-4616-83E2-3F65A220497F
Size 1073741824

SnapshotTds

Status, NotConnected

VirtualDiskIndex : 54770768

assets/7f4a7b33-61b5-41ed-959f-9edf9f5b32d3.png
:\> Set-Service msiscsi -StartupType ‘Automatic’

\> Start-Service msiscsi
WARNING: Waiting for service 'Microsoft iSCSI Initiator Service (msiscsi)’ to start...

assets/bf6e52ef-ccc1-47a3-aee3-85eba7d4aa92.png
Type.
Location

Resour ceGroupName
SubscriptionTd
Properties

:\» Get-AzureRmRecoveryServicesVault

Recipevault
/subscriptions/4a6572727-9207-26f6-36b7-32069742121/r esour ceGroups /Recipe/providers/Microsoft. RecoveryServices /vaults/Recipevault
Microsoft.RecoveryServices/vaults

westeurope

Recipe

426572727-9207-266-36b7-32069742121

Microsoft. Azure. Commands. RecoveryServices. ARSVauTtProperties.

assets/6de2299c-3d3a-4e44-938b-a6445b5d5c02.png
PS C:\> SWMID = (Get-WM -VMName psdirect).VMId.Guid «——
PS C:\> Invoke-Command -WMid SVMID °

~Credential $RKCred

-Script8lock {hostname}

Tiger 4

assets/cc3fddd4-25e3-433a-abe1-7f4c646921f9.png
Ps c:\foo> $NanoserverFolder = Join-Path -Path $server20l6InstallationRoot -ChildPath 'NanoServer'
$NsigFolder = Join-Path -Path $NanoserverFolder -childPath 'NanoServerImageGenerator'

$NsigFolder

E:\NanoServer\NanoserverImageGenerator

Ps c:\foo> Get-childItem -Path $NsigFolder -Recurse

Directory: E:\NanoServer\NanoServerImageGenerator

LastwriteTime Length Name
2016-09-12 8:19 AM en-Us
2016-09-12 8:19 AM 163433 convert-windowsImage.psl
2016-09-12 8:19 AM 478 NanoServerImageGenerator.psdl
2016-09-12 8:19 AM 101216 NanoServerImageGenerator.psml

Directory: E:\NanoServer\NanoServerImageGenerator\en-uUs

Mode LastwriteTime Length Name

2016-09-12 8:19 AM 13302 nanoserverimagegenerator.strings.psdl

assets/953242ae-713b-4b34-bc0d-72b137767adc.png
PS C:\> Test-pnsserver -IPAddress 10.10.10.10 -Context Dnsserver

Teaddress Result RoundTripTime TcpTried udpTried

10.10.10.10 success 00:00:11 True

assets/78a08411-73a4-40ff-8edb-1b13c32089e2.png
Ps

Bl IpeTIZe
Windows IP Configuration

Ethernet adapter Ethernet
Connection-specific DNS Suffix
Link-Tocal IPv6 Address . . .

. 1 i FeBD::7c02:98F1:76b5 :d1F%3
Ipva Address. - -

10.10.10.10
Subnet Mask 255.255.255.0
Default Gateway :10.10.10.254

Tunnel adapter isatap. {C056D004-9A93-4155-8654-1EDCSDESS09E]
Media State . . Media disconnected

\> ipconfig. exe /all
Windows IP Configuration

Host Name oc1
Primary Dns Suffix Reskit.org

Hybrid
No

No
Reskit.org

1P Routing Enabled.
WINS Proxy Enabled.
DNS Suffix Search

Node Type

Ethernet adapter Ethernet

Connection-specific DNS Suffix

Description :Microsoft Hyper-V Network Adapter
Physical Address. : 00-15-5D-01-71-39
DHCP Enabled. :No
Autoconfiguration Enabled : Yes
Link-local IPv6 Address : Fe80::7c02:98F1:76bS :d1F%3(Preferred)
IPva Address. :10.10.10.10(Preferred)
Subnet Mask :255.255.255.0
Default Gateway :10.10.10.254
DHCPV6 TAID :50337i17
DHCPV6 Client DUID. i 00-01-00-01-20-10-56-CC-00-15-5D-01-71-39
DNS Servers %:L
127.0.0.1
NetBIOS over Tcpip. : Enabled

Tunnel adapter isatap. {C056D004-9A93-4155-8654-1EDCSDESS09E]

Media State :Media disconnected
Connection-specific DNS Suffix .

Description :Microsoft ISATAP Adapter
Physical Address. : 00-00-00-00-00-00-00-EO
DHCP Enabled. :No

Yes

Autoconfiguration Enabled

PS C:\> Get-NetIPConfiguration

InterfaceAlias Ethernet
InterfaceIndex H

InterfaceDescription : Microsoft Hyper-V Network Adapter
NetProfile. Name Reskit.org

IPvaAddress 10.10.10.10

IPv6DefaultGateway

TPvaDefaultGateway : 10.10.10.254

DNSServer

127.0.0.1

assets/c2dd2c5d-8676-49db-b654-b01c7042c626.png
PS C:\> Install-windowsFeature -Name Windows-Server-Backup

Success Restart Needed Exit Code Feature Result

True Ko Success {windows Server Backup}

assets/b6ced9df-e2d8-49aa-8c89-3f3b9e824eb3.png
PS C:\> SLogfileLocation = (Get-TtemProperty 'IIS:\Sites\Default Web Site' -Name logfile).directory
PS > $LogFileFolder = [System.Environment]::ExpandEnvironmentvariables("$LogfileLocation™)
PS C:\> Get-ChileTtem -Path $LogFileFolder -Recurse

Directory: C:\inetpub\logs\LogFiles

Mode LastWriteTime Length Name

20/06/2017 1 5; w3svcl

Directory: C:\inetpub\logs\LogFiles\W3svcl

Mode LastWriteTime Length Name

-a- 11/06/2017 16:39 1848 u_ex170611.log
-a- 15/06/2017 18:02 838 u_ex170615.Tog
-a- 20/06/2017 17:01 2217 u_ex170620.70g

assets/57ae6f0d-d475-4b63-8931-e70f31ac092f.png
:\> Get-WiNetworkadapter -ViName WML

TshanagenentOs WMName SwitchName MacAddress Status IPAddresses

001550017001 {OK} {169.254.152.196,
Fe80}:ca13:c78b: eade: 984}

Network Adapter False

assets/825fdf87-1f15-4352-a087-a65f7db9635d.png
STEP 6 - Get WM1 Status on Hv2:
PS C:\> Get-WM —ComputerName HV2

Name State CPUUsage(%) MemoryAssigned(M) Uptime Status Version

normally 8.0

assets/17c84130-2fd0-4238-878e-0e15b313f75c.png
PS C:\> Get-ChildItem -Path HKLM:\OldSoftwareHive\Packt
Hive: HKEY_LOCAL MACHINE\OTdSof twarpHive\Packt
Name Property

Recipe6-7 RecipeName : Recipe 6-7

assets/714af1f3-94e9-49ca-9c5f-8780ac11b507.png
\> Install-AdcsCertificationAuthority ~CAType StandaloneRootCA °
“KeyLength 4096 -HashAlgor1thmName SHA256
—ValidityPeriod Years —ValidityPeriodUnits 20 °
—CACommonName "Reskit Root CA™ °
—CryptoProviderName "RSAMicrosoft Software Key Storage Provider”
—Confirm:Sfalse

ErrorId ErrorString

o

assets/52c54829-5212-4d40-82f5-39949999beb1.png
:\> Get-Module DFSN ~ListAvailable

Directory:

Windows\system32\WindowsPower shel1\v1.0\Modules

Name ExportedConmands

DFSN {Get-DfsnRoot, Remove-DFsnRoot, Set-DfsnRoot, New-DFsnRoot.

PS C:\> Get-Command -Module DFSN | Measure-Object

Count 23

assets/f0ba7837-7a00-4c7e-aa6e-1673e15c4496.png
:\>Find-DscResource | Where-Object ModuleNane -eq ‘xWebAdministration’

Version

ModuleNane Repository

xIisFeatureDelegation 1.17.0.0 xWebAdministration PSGallery
XTisHandler 1.17.0.0 xWebadministration PSGallery
xTisLogging 1.17.0.0 xWebadministration PSGallery
XIisMineTypeMapping 1.17.0.0 xWebAdministration PSGallery
XIisModule 1.17.0.0 xWebadministration PSGallery
xSSLSettings 1.17.0.0 xWebadministration PSGallery
iebApplication 1.17.0.0 xWebadministration PSGallery
xiebAppPool 1.17.0.0 xWebadministration PSGallery
xWebAppPooTDefaults 1.17.0.0 xWebAdministration PSGallery
xiWebConfigkeyValue ~ 1.17.0.0 xWebAdministration PSGallery
ilebsite 1.17.0.0 xWebadministration PSGallery
xiebSiteDefaults 1.17.0.0 xWebadministration PSGallery
xWebVirtualDirectory 1.17.0.0 xWebAdministration PSGallery

assets/2fa7c091-29a9-4d76-b1d4-90586973fc14.png
C:\> Test-Connection -computer 'DC1','DC2','SRV1’ -Count 1

Source Destination IPV4Address IPV6Address Bytes Time(ms)
SRV1 bcl 10.10.10.10 32 0
SRV1 DC2 10.10.10.11 32 0

SRV1 SRV1 10.10.10.50 fe80::b8df:5252:3cf6:b0b7%2 32 0

assets/c53a00d0-96a4-4100-8199-856bb9d903fb.png
PS C:\> $WSUSSubscription.GetLastSynchronizationInfo()

1d 9d673e1d-1a48-4499-9033-6F 613089287
StartTime 28/02/2017 19:58:25

EndTime

StartedManually : True

Result Succeeded

Error NotApplicable

ErrorText

UpdateErrors Iy

assets/9907806f-774d-4afc-b93f-25ed25cb65f6.png
Ps

\> Get-W —ComputerName HV1
Name State CPUUsage(¥) MemoryAssigned(W) Uptime status Version

wi off 0 o 00:00:00 Operating normally 8.0

s

\> Get-W —ComputerName HV2
Name State CPUUsage(%) MemoryAssigned(M) Uptine status Version

Wi Running 0 4096 £01:13. 3530000 Operating normally 8.0

assets/b88b09e4-162b-47b5-8013-076ddfb2a2e1.png
PS C:\> Get-WsusProduct |
where-object {$PsItem.Product.Title -in $chosenProducts} |
Set-WsusProduct

assets/ef6d7783-ad41-40ce-8104-8ddcb6b546c9.png
PS C:\> $DeclinedUpdate = $§SecurityUpdates |
where-Object -Property KnowledgebaseArticles -EQ 4020821

assets/8e8a0497-6314-4d7c-99ad-311901caa6a6.png
PS C:\Windows\system32> Get-Module -Name PowerShellGet | Select-Object Version

version

11.2.0

PS C:\Windows\system32>

assets/43a6f2fc-c053-4eff-89bd-dc544a730795.png
PS C:\> $TargetGroups = New-Object

Microsoft.UpdateServices.Administration.ComputerTargetGroupCollection

$TargetGroups.Add(($wsusserver.GetComputerTargetGroups() |
Where-object -Property Name -eq "Domain Controllers™))

$ApprovalRule.SetComputerTargetGroups ($TargetGroups)
0

assets/06bce125-b58b-4389-bf64-17961e9f5bfc.png
:\> SMembers = (Get-VmGroup -Name HVServers).VMMembers

SMenbers.
Name State CPUUsage(¥) MemoryAssigned(W) Uptime Status Version
HV2 Running 0 16000 21.04:47:26.3860000 Operating normally 8.0

HVL Running 0 16000 21002

7180000 Operating normally 8.0

assets/b14170e1-2a81-47e5-b6f9-c2c4dca8f171.png
Location of Config Information: D:\DC1
Exists: True
Location of DC1 Hard Drive : D:\DC1\Virtual Hard Disks\DCL.vhdx
Exists: True

assets/500dfaba-65b2-43de-ba42-8df75e0b7cb6.png
\> $Passwordss = ConvertTo-SecufeString -string 'Pa$$word’ -AsPlainText -Force
Install-ADDSForest —DomainNane 'Reskit.Org’
~SafdlodedministratorPassword SPasswordss -Force *
TnstallDNS -NoReboot
WARNING: Windows Server 2016 domwain controllers have a default for the security settin
9 named "Allow cryptography algorithus compatible with Windows NT 4.0" that prevents w
<aker cryptography algorithns when establishing security channel sessions.

For more information about this setting, see Knowledge Base article 942564 (http://go.
microsoft. com/fulink/7LinkId=104751) .

WARNING: A delegation for this DNS server cannot be created because the authoritative
parent zone cannot be found or it does not run Windows DNS server. If you are integrat
ing with an existing DNS infrastructure, you should manually create a delegation to th
is DNS server in the parent zone to ensure reliable name resolution from outside the d
omain "Reskit.Org". Otherwise, no action is required.

WARNING: Windows Server 2016 domain controllers have a default for the security settin
g named "Allow cryptography algorithms compatible with Windows NT 4.0" that prevents w
eaker cryptography algorithms when establishing security channel sessions.

For more information about this setting, see Knowledge Base article 942564 (http://go.
microsoft. com/fulink/7LinkId=104751) .

WARNING: A delegation for this DNS server cannot be created because the authoritative
parent zone cannot be found or it does not run Windows DNS server. If you are integrat
ing with an existing DNS infrastructure, you should manually create a delegation to th
is DNS server in the parent zone to ensure reliable name resolution from outside the d
omain "Reskit.Org". Otherwise, no action is required.

Message Context RebootRequired ~Status

You must restart this computer to complete the operation... DCPromo.General.4 True Success

assets/05707c4f-b7b6-4f10-b1fb-6470c1c609ae.png
PS C:\> Start-OBRegistration -VaultCredentials $Credsfile.FilePath -Confirm:$false
Vault credentials validation succeeded. Below are the backup vault details.

294630 92¢3320846484b64C61b4F421F7579131
426572727-9207-26F6-36b7- 32069742121
RecipeVault

westeurope

CertThumbprint
SubscriptionID
ServiceResourceName
Region

Machine registration succeeded.

assets/ea510f62-f9da-4f46-b212-36a1db6a5e9a.png
U5 Gy (e e e S |
mat-Table Name, RenderingMode

Name Renderingiode

SSR

assets/0f827df5-9a44-410b-8e49-780d3c2e81e6.png
PS C:> SCounterSets = Get-Counter -ListSet =
PS Ci> "There are {0} counter sets on [{1}]" ~f SCounterSets.count, (hostname)
There are 167 counter sets on [SRVL]

assets/0e6ff174-b989-44b7-9c7d-cfe89e859653.png
PS C:\fToo> Get-PackageProvider

Name

msi

msu

NuGet
PowershellGet
Programs

DynamicOptions

AdditionalArguments

Destination, Excludeversion, Scope, sSkipDependencies, Headers, Filter...
pPackageManagementProvider, Type, Scope, AllowClobber, skipPublisherch...
IncludewindowsInstaller, IncludeSystemComponent

assets/99c52137-c2b0-426c-9682-5a51c70f4b37.png
ps ch\> cet-onsserverresourcerecord —zonewane foo.bar -name "home”

Recordpata

RecordType Type Timestamp
home. A 1 0

10.42.42.42

assets/52fe3286-9bf9-4485-a781-680d2bfd8963.png
PS C:\> $SecurityUpdates | Select CreationDate, Title

CreationDate

09/05/2017
09/05/2017
09/05/2017
09/05/2017
09/05/2017
09/05/2017
09/05/2017
09/05/2017
09/05/2017
17/04/2017
17/04/2017
17/04/2017
17/04/2017
17/04/2017
17/04/2017
17/04/2017
11/04/2017
11/04/2017
03/04/2017
03/04/2017
03/04/2017
14/03/2017
13/12/2016
13/12/2016
08/11/2016
13/09/2016
24/08/2016
13/07/2016
1071172015

NS s

8888888855588

Title

Cumulative Update for Windows Server 2016 Technical Preview 5 for x64-based Systems (KE3207296)

Cumulative Update for Windows Server 2016 Technical Preview 5 for x64-based Systems (KE3195038)

Security Update for Adobe Flash Player for Windows Server 2016 Technical Preview 5 (for x64-based Systems) (KB3209498)
Security Update for Adobe Flash Player for Windows Server 2016 Technical Preview 5 (for x64-based Systems) (KB3202790)
Security Update for Adobe Flash Player for Windows Server 2016 Technical Preview 5 (for x64-based Systems) (KB3194343)
Security Update for Adobe Flash Player for Windows Server 2016 Technical Preview 5 (for x64-based Systems) (KB3201860)
2017-05 Security Update for Adobe Flash Player for Windows Server 2016 for x64-based Systems (KB4020821)

2017-05 Cumulative Update for Windows Server 2016 for x64-based Systems (KE4019472)

Cumlative Update for Windows Server 2016 Technical Preview 5 for x64-based Systems (KE3199442)

Security Update for Adobe Flash Player for Windows Server 2016 Technical Preview 5 (KB3188128)

Security Update for Adobe Flash Player for Windows Server 2016 Technical Preview 4 for x64-based Systems (KB3188128)
Security Update for Windows Server 2016 Technical Preview 5 (KE3172729)

Cumlative Update for Windows Server 2016 Technical Preview 3 (KB3097877)

Cumulative Update for Windows Server 2016 Technical Preview 5 for x64-based Systems (KE3172989)

Cumulative Update for Windows Server 2016 Technical Preview 5 for x64-based Systems (KE3183966)

Cumulative Update for Windows Server 2016 for x64-based Systems (KE3193494)

Security Update for Adobe Flash Player for Windows Server 2016 (for x64-based Systems) (KB4018483)

Cumulative Update for Windows Server 2016 for x64-based Systems (KB4015217)

Cumulative Update for Windows Server 2016 for x64-based Systems (KE3176495)

Cumulative Update for Windows Server 2016 Technical Preview 5 for x64-based Systems (KE3176494)

Cumlative Update for Windows Server 2016 Technical Preview 5 for x64-based Systems (KE3163016)

Security Update for Adobe Flash Player for Windows Server 2016 (for x64-based Systems) (KB4014329)

Security Update for Adobe Flash Player for Windows Server 2016 Technical Preview 5 (for x64-based Systems) (KB3209498)
Cumlative Update for Windows Server 2016 Technical Preview 5 for x64-based Systems (KE3207296)

Security Update for Windows Server 2016 Technical Preview 5 (KE3198389)

Security Update for Adobe Flash Player for Windows Server 2016 Technical Preview 4 for x64-based Systems (KB3188128)
Security Update for Windows Server 2016 Technical Preview 5 (KE3172729)

Cumulative Update for Windows Server 2016 Technical Preview 5 for x64-based Systems (KE3172989)

Cumlative Update for Windows Server 2016 Technical Preview 3 (KB3097877)

assets/dc83499c-1275-42e8-970d-9b25b55d47d4.png
Add-WindowsFeature —Name FS-DFS-Namespace
~IncludeManagenentTools *
~ComputerName 'Srvi’

Success Restart Needed Exit Code Feature Result

True No Success {{DFS Namespaces}

Add-WindowsFeature -NameFS-DFS-Namespace
~IncludeManagenentTools *
~ComputerName 'Srvi’

Success Restart Needed Exit Code Feature Result

True Mo Success TDFS Namespaces}

assets/5232d111-4646-4039-8710-f9f211196553.png
Task Name state Action start Frequency
Daily Backup Report Ready C:\Scripts\BackupReport.psl 2017-01-10T06:00:00+00:00 1

assets/5c6376a1-1124-4707-9905-6beef452ff08.png
EXPERT

Max Kanat-Alexander

Machine Pa ndas

; ; Understanding
Learning With Go
Software Cookboak

Packt>

Go to www.packtpub.com
and use this code in the
checkout:

assets/3c89d679-d714-447f-be93-7570557a7cab.png
Windows\system32» Start-DscConfiguration -Path C:\DSC -Verbose -Wait
Perform operation ‘Invoke CimMethod” with following parameters, ‘’methodName’ = SendConfigurationApply,

VERBOSE
"ClassName’ = MSFT_DSCLocalConfigurationManager , ‘namespaceName’ = root/Microsoft/Windows/DesiredStateConfiguration
VERBOSE: An LCM method call arrived from computer SRVL with user sid 5-1-5-21-715049209-2702507345-667613206-500.
VERBOSE: [SRV2]: LCM: [Start Set 1
VERBOSE: [SRV2]: LCM: [End Set 1

The PowerShell DSC resource MSFT_xWebAppPool from module <xiebAdministration,1.17.0.0> does not exist at the PowerShell
module path nor is it registered as a WMI DSC resource.
+ CategoryInfo Invalidoperation: (root/Microsoft/.
+ FullyQualifiedErrorTd : DscResourceNotFound
+ PSComputerName. : sRv2

gurationManager :string) [1, Cimexception

VERBOSE: Operation 'Invoke CimMethod’ complete.
Time taken for configuration job to complete is 1.841 seconds

assets/1daec0b6-a3f0-420e-bac5-3f605efb15d4.png
Sign in to your account

Microsoft Azure

Work or school, or personal Microsoft account

[Email address or phone number

[Passwora

Can't access your account?

assets/94325405-2a4a-4ce6-9784-b00e4a654939.png
\> New-Website -PhysicalPath $sitepath -name wwn2
~HostHeader 'ww2.reskit.org’

Name ID State Physical Path Bindings

http
*:80 w2, reskit.org

2 Started

assets/00eeab57-50d6-4251-97d3-3452d92e8f67.png
@ Performance Monitor
£ Fle Acion View Window Help

a2

Xmo Hm =m0

-lax

® Performance
[Monitoring Tools
B8 Performance Monitor
[Dats Collctor Stz
+ (3 User Defined
7 SRVI Collector St
3 SRVI Collector Set - tsv
System
Event Trace Sesions
. Stotup Event Trace Sessions
~ [Reports
v [, User Defined
[SRVI Collector et
& 21701
7 SRV1 CollectorSet-tsv
System

EEERE VIR
0
w©
@ N
©
»
AL
e e g Taoton Tt 14231 142e32
1 12
Last| et Duration [71959
Show Color | Scale Onect Computer
~ 10000 Avg. Disksec/Read PhysicalDisk SRV
i 10000 Avg. Disk sec/Wiite PhysicalDisk SRV
i 10 % Disk Time PhysicalDisk SRV
v 100 Avg. DiskQueue Length PhysicalDisk SRV
v 10 Disk Transfers/sec PhysicalDisk SRV
~ 10 % Processor Time Processor WSRVI
i 01 Memory SRV
i 01 Available MBytes Memory SRV

assets/f5cdf049-36eb-4e8b-957e-dbb6b6ff20c6.png
Windows\system32> Get-IscsiTargetServerSetting

ComputerName SRV1.Reskit.Org
IsClustered False

Version 10.0
DisableRenoteManagenent : False

assets/d5fb3181-7cdb-4455-a755-53747a049149.png
PS C:\>
$wsusserver = Get-WsusServer

$wsussubscription = $wsusserver.GetSubscription()
$wsussubscription.startSynchronization()

assets/c286594c-b2f4-4213-9b6d-6755c35fbd0b.png
PS C:\> Get-ChildItem -Path z:\ -Recurse |
Format-Table -Property FullName, Mode, Length

FulIName Mode Length

assets/0e4b9a77-bbb5-4ee2-8fb3-f966602a553c.png
localhost:51/log-in

¥ ProGet

We created a default account for you with the user name Admin and the
password Admin. You can automatically log inwith Admin/Admin, or just type
in those values and click LogIn.

This message will go away if you change your password or add another user.

User name:

Password:

assets/8daf6369-82ad-4bf6-83a3-0391e97b5f3b.png
&) Cifoo\Propagation-FSShareRG-ITData-28Feh20 O ~ & || & DFS Replication — Health Report | (& DFS Replication - Propagation ... & DFS Replication - Propagati,]

DFS Replication Propagation Report

Report generated on: 28 February 2017 at 01:07:50 (GHT0:00)
Replication group: FsshareRG

Replicated folder: IMata

Number of tests reported: 5

Average replication time to
all members:

Maximum replication time
to all members:

Propagation test statust) popagatont.

© Propsgaton tests itherors (0

B 4§ TESTS COMPLETED (5 test(s) completed)

§] TESTS INCOMPLETE (0 test(s) incomplete)
&} TESTS WITH ERROR (0 test(s) in error)
= t

DETALLS (5 tests)

[Ee
pee— [
et eta et ame
s Do 1f 1 compeed
S 25 ey 201 010217 (D00
Retcaton e o
Tet e L 84E4CE DB 21D S FACIAICCI90FSharehs Toat

Bl © Graph of replication time
Bl @ Replication time
B Members (1 member)

&)

o}

il
e

assets/f81bc17c-c679-48a7-bfc9-d843cfbccec7.png
PS C:\> New-AzureStorageContainer -Name $CName -Context $SACon -Permission Blob

CloudBlobContainer
Permission
PubTicAccess
LastModified
ContinuationToken
Context

Name

Microsoft.windowsAzure.Storage.Blob.CloudBlobContainer
Microsoft.windowsAzure. Storage.Blob.BlobContainerPermissions
Blob

29/05/2017 15:10:31 +00:00

Microsoft.WindowsAzure. Commands . Common. Storage. AzureStorageContext
packtcontainer

PS C:\> New-AzureStorageContainer -Name $CName2 -Context $SACon -Permission Blob

CloudBlobContainer
Permission
PubTicAccess
LastModified
ContinuationToken
Context

Name

Microsoft.windowsAzure.Storage.Blob.CloudBlobContainer
Microsoft.windowsAzure. Storage.Blob.BlobContainerPermissions
Blob

29/05/2017 15:13:03 +00:00

Microsoft.windowsAzure. Commands . Common. Storage. AzureStorageContext
packtcontainer2

assets/77c8bb63-fa7b-4e83-b672-0bb486d512f6.png
PS C:\> GeT-WMHOST -ComputerName HVL, HV2 |
Format-List -Property Name, MemoryCapacity,

Name
Memorycapacity
virtualHardoiskpath
virtualMachinepath
Numaspanningenabled
Enab]eEnhancedsessionmode
Resour CeMeteringsaveInterval

Name
Memorycapacity
virtualHardoiskpath
virtualMachinepath
Numaspanningenabled
Enab]eEnhancedsessionmode
Resour ceMeteringsaveInterval

virtual*path, Numaspanningenabled,
EnabeEnhancedsessionvode,
Resour ceMeteringsaveInterval

|
HvL

16776744960
H:\vm\vhds
HI\VM\VMS
True

True
01:30:00

Hv2
16776744960
H:\vm\vhds

True
True
01:30:00

assets/faa96f24-de15-42c3-a75e-d243a76416b4.png
Ps

2\> Install-WindowsFeature -Name ADCS-Cert-Authority -IncludeManagementTools

Success Restart Needed Exit Code Feature Result

True No Success {Active Directory Certificate Services, Ce.

assets/af76b00c-85d5-413b-8bc0-f83ac419cb76.png
PS C:\> Get-WHardDiskDrive -VMName VM1

WiName ControllerType ControllerNumber ControllerLocation DiskNumber Path

w1 IoE) 0 H:\Vm\Vhds\Wi1. Vhdx
Wi scsT) o HZ\Vm\Vhds\W1-D. VHDX

assets/d6ee3dd9-8321-4ba3-8359-ef42f29b605a.png
PS C:\> Get-HotFix -ComputerName DCL

$Cimsession = New-CimSession DCL
Get-SilwindowsUpdate -CimSession ($CimSession) | Format-Table -AutoSize
$cimsession | Remove-CimSession

Source Description HOtFixID
DCl Update KB3192137
DCl Update KB3211320
pcl Update KB4013418
pcl Security Update KB3213986
ID InstallDate PSComputerName
KB3192137 12/09/2016 DCL

KB3211320 07/03/2017 DCL

KB4013418 19/03/2017 DCL

KB3213986 07/03/2017 DCl

InstalledBy

NT AUTHORITY\SYSTEM
NT AUTHORITY\SYSTEM
NT AUTHORITY\SYSTEM
NT AUTHORITY\SYSTEM

Installedon
12/09/2016
07/03/2017
19/03/2017
07/03/2017

assets/84a68ca0-b96d-436a-a882-8d2324315b9a.png
Windows i restoring your computer from the system image. This might take.
from a few minutes to a few hours.

Restoring disk (C)...

assets/0ed8b99e-592a-496e-b2c2-32ba7a980d2d.png
PS C:\Windows\system32> Get-Command -Verb Write -Module =Utility

CommandType.

Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet

Write-Debug
Write-Error
Write-Host
Write-Information
Write-Output
Write-Progress
Write-Verbose
Write-Warning

Source

Microsoft.Powershell. Utility
Microsoft.Powershell. UtiTity
Microsoft.Powershell. UtiTity
Microsoft.Powershell. UtiTity
Microsoft.Powershell. UtiTity
Microsoft.Powershell. UtiTity
Microsoft.Powershell.Utility
Microsoft.Powershell. UtiTity

assets/3692e63f-a367-41e9-9f78-60a2bb541ef1.png
© hitps/ /s 1e020/PSDSCPulserversvel 0~ @ ¢ |[@ et

<2xml version="1.0" encoding="utf-8" 7>
- <service xml:base="https://srv1:8080/PSDSCPullServer.svc/"
xmins="http:/ /www.w3.0rg/2007/app"
xmins:atom="http:/ /www.w3.0rg/ 2005/ Atom">
- <workspace>
<atom: title>Default</atom:title>
+ <collection href="Configurations">
+ <collection href="Modules">
+ <collection href="Action">
+ <collection href="Module">
+ <collection href="StatusReport'>
+ <collection href="Node">
+ <collection href="Reports">
+ <collection href="Nodes">
</workspace>
</service>

assets/a1c9f1b5-fe84-4d03-bfc8-e0221d00d4bb.png
PS C:\> $VM = Set-AzureRmyMOperatingSystem -VM $VM
-Windows -ComputerName $CompName *
—-Credential $vMCred °
-ProvisionvMAgent -EnableAutoUpdate

PS C:\> $wM

Name : Packt100

HardwarepProfile : {vmSize}

osProfile : {ComputerName, AdminUsername, AdminPassword, WindowsConfiguration}

assets/b4546d14-da42-405e-81bb-75eb69a18937.png
PS C:\> $SecurityUpdates = SWSUSServer.SearchUpdates(“Windows Server 2016") |
Where-Object -Property UpdateClassificationTitle -EQ 'Security Updates’ |
Sort-Object -Property CreationDate -Descending

SsecurityUpdates | Get-Menber

TypeName: Microsoft.UpdateServices. Internal.BaseApi . Update

Name MemberType Definition

AcceptLicenseAgreement Method void AcceptLicenseAgreement(), void IUpdate.AcceptLicenseAgreenent()

Approve Method Microsoft. UpdateServices. Adninistration. UpdateApproval Approve(Microsoft. UpdateServices. Adwinistr.
ApproveForOptionalInstall Method Microsoft. UpdateServices. Administration. IUpdateApproval ApproveForOptionalInstall(Microsoft. Update.
CancelDownload Method void CancelDownload(), void IUpdate.CancelDownload()

CreatedbjRef Method System. Runtime. Remoting. ObjRef CreateObjRef(type requestedType)

Decline Method void Decline(), void Decline(bool failIfReplica), void IUpdate.Decline()

Equals. Method bool Equals(System.Object ob3)

Expirepackage Method void ExpirePackage(), void IUpdate.ExpirePackage()

Exportpackageetadata Method void ExportPackageNetadata(string fileNane), void IUpdate.ExportPackageMetadata(string FileNane)

G ousRevision RevisionChanges GetChan sion(), Microsof.

MsrcSeverity

ProductFamiTyTitles System.Collections. Specialized. StringCollection Pre

ProductTitles System.Collections. Specialized. StringCollection ProductTitles {get;}
Publicationstate Microsoft. UpdateServices. Administration. PublicationState Publicationstate {get;set;}
ReleaseNotes string ReleaseNotes {getset;}

RequiresLicenseAgreenentAcceptance bool RequiresLicenseAgreementAcceptance {get;set;}

SecurityBulletins Property System.Collections.Specialized. StringCollection SecurityBulletins {get;}

assets/bb85ed66-330d-48e9-ae05-9cfd3f75c9a0.png
\> Get-ChildItem C:\DSCConfiguration

Directory:

DScConfiguration

Mode LastWriteTime Length Name

1858 5d79ec6e-0420-4c98-9cc3-9F696901a816. NOF
64 5d79ec6e-0420-4c98-9cc3-9F696901a816. NOF . checksum

Bal

19/04/2017 21

assets/34e5f26b-be06-4169-b5e6-6271626a145f.png
PS C:\»> Install-WindowsFeature -Name 'UpdateServices’ -IncludeManagementTools -Verbose
VERBOSE: Installation started.

VERBOSE: Continue with installation?
VERBOSE: Prerequisite processing started. ..
VERBOSE: Prerequisite processing succeeded.

Success Restart Needed Exit Code Feature Result

True No Success {ASP_NET 4.6, HTTP Activation, Remote Serv.
WARNING: Additional configuration may be required. Review the articie Managing WSUS Using Powershell at TechNet Library (http://go.microsoft.
com/Fwlink/?LinkId=235499) for more information on the recommended steps to perform WSUS installation using PowerShell.

VERBOSE: Installation succeeded.

assets/4467b1f5-8ac6-44e1-9adf-14c7ef542333.png
Ps C:\> Install-WindowsFeature -Name DHCP
~IncludeManagenentTools

Success Restart Needed Exit Code Feature Result

True No Success {DHCP Server, DHCP Server Tools}

assets/66307ee5-4bb9-499a-9d02-42f42f5a65a2.png
Hyper-V Related Counter Sets : [31]

assets/acc4fab3-5f45-42d6-8d35-5c539a6ce575.png
i, =

Select the location of the backup for the computer you want to restore

stelocten o the ecup o e computr v vart v)
T 1Ay

I the system mage s on a DVD, inert the last DVD from the system image badkup. Click
‘Advanced to add a network locatin or nstalla criver for a backup device It does not show
wpin the stbelow.

Current fime zone: GMT-5:00

Location Mostrecent system image Computer

assets/5efbedf1-a954-4987-9a9a-c121b8316f7f.png
Ps

\> Get-TlsCiphersuite -Name RC4 |
Format-Table Name, Exchange, Cipher, Hash, Certificate

Name Exchange Cipher Hash Certificate

TLS_RSA_WLTH_RC4_128_SHA RSA RC4 SHAL RSA
TUS_RSA_WITH_RC4_128 D5 RSA R4 MDS RSA

assets/966f2a1c-925f-4c98-ac46-44885c423248.png
PS C:\» Get-DNSServerZone -name 'foo.bar’, '10.10.10.in-addr.arpa’

ZoneName ZoneType TIsAutoCreated IsDsIntegrated IsReverselookupZone IsSigned
foo. bar Primary False True False False
10.10.10. in-addr . arpa Primary False True True False

assets/21a60103-7759-43a5-946e-299abc6bbd76.png
. Re-image your computer

Your computer wil be restored from the folowing system

mage:

assets/77f90ffa-ddc9-4399-b218-c649e7efc7b6.png
File Actign View

== @5

Help

BB Hyper-V Manager
BEHv1

File

<

|| S T R TR T

Introduction

Avituaiization serveris 3 physical computer that provides the resources required to run vitusl machines. You can use Hyper-V

£ UM on HU1 - Virtusl Mchine Connection =

Action Media Clipboard View Help

00 » R

4 Windows Setup

Windows Server- 2016

e =17 B -
P——

Keyboard or input method:[if§

Enter your language and other prefere d click "Next” to continue

206 i

Status: Running

o x

Actions
Hyper-V Manager
B Comnectto senver.

View

H +ep

assets/59b9064c-dfe4-40e7-8855-c67e81ded6cb.png
PS C:\> STargetDisk = Get-WBDisk |
Where-Object Properties -match 'ValidTarget' |
Select-Object —First 1
STarget = New-WBBackupTarget -Disk $TargetDisk
~Label 'Recipe 6-1°
PreserveExistingBackups_Strue
PS C:\> Add-WBBackupTarget -Policy $Pol -Target $Target -Force

Label Recipe 6-1
WEDisk Microsoft Virtual Disk
WEVolume

Path

TargetType Disk

InheritAcl False
PreserveExistingBackup : True

assets/0ef65046-af09-4ed4-87c8-976a2d084da1.png
Counter

% guest run time
% hypervisor run time
% renote run time
% total run time

assets/3b9a8e63-3dc6-432c-aff1-00caff8ce64e.png
PS C:\» $Backup = Get-WBBackupSet | Where-Object BackupTarget -Match '
Select Last 1

PS C:\> $Backup. Application

Identifier WriterTd Component

Registry afbabda2-367d-4d15-a586-71dbb15F8485 {Registry\}

assets/4cccdc89-d402-4cc0-8f36-2773b3499ee3.png
PS C:\> Tnvoke-Command -scriptslock {Get-windowsFeature Web-Server, NLE} *
Conputerame NLBL, NLEBZ |
Format-Table -Property DisplayName,PsComputername, Installstate

Displayname Pscomputerame Installstate
web Server (115) B2 " Installed
Network Load Balancing NLB2 Installed
web Server (115) ey Installed

Network Load Balancing NLEL Installed

assets/6eee0b81-fe13-4664-beda-c22519f68c81.png
CounterSetName

Hyper-V Configuration
-V Dynamic Menory Balancer

Dynamic Menory Integration Service

Dynamic Memory M

Logical Processor
Partition
Root Partition
visor Root Virtual Processor
visor Virtual Processor
jacy Network Adapter
plica W
rtual
rtual
rtual
rtual
rtual
rtual
rtual
rtual
rtual
rtual
rtual
rtual

5555555

1D Controller (Emulated)
Machine Bus

Machine Bus Pipes

Machine Bus_Provider Pipes
Machine Health Summary.
Network Adapter

Network Adapter Drop Reasons
Network Adapter VRSS
Storage Device

Switch

Switch Port
SwitchfProcessor

Migration

ing

Save, Snapshot, and Restore
Vid fuma Node

Vid Partition

Virtual Device Pipe T0

ker Virtual Processor

SSSSSSSSSsss3

H

§

i

Jesssss

Description

This
This
This
This
Information on
Information on
Information on
Information on

counter set
counter set

represents
represents

the statistics for HyperVstorage f.

the statistics for the Microsoft D.

counter set represents the statistics for Dynamic Memory -

counter set represents the memory statistics for a Virtua.
‘the hypervisor.

Togical processors.

virtual machines

virtual machines

Information on virtual processors

Information on virtual processors.

Performance counters for a virtual machine’s Ethernet controller.

This counter set represents the Hyper-V Replica statistics for.

Performance counters for a virtual machine's IDE Controller.

This counter set represents the statistics for the virtual mac.

Per-Pipe statistics, for performance debugging.

Per-Pipe statistics, for performance debugging.

This counter set represents the health summary statistics for .

This counter set represents the statistics for the Microsoft H.

This counter set represents the drop reasons statistics for th.

This counter set represents the statistics for the Microsoft H.

This counter set represents the statistics for a virtual stora.

This counter set represents the statistics for the Microsoft H.

This counter set represents the statistics for the Microsoft H.

This counter set represents the statistics for the Microsoft H.

Performance counters for a virtual machine's live migration.

Performance counters for a virtual machine's remoting system.

Performance counters for a virtual machine's save, snapshot, a.

The perf counters for a numa node.

These are the perf counters for a VID partition object.

Worker process per-pipe statistics, for performance debugging.

Performance counters for the virtual processor of a virtual ma.

assets/81dae36a-e104-4815-aa3c-0ea7b864b503.png
\> Add-WihdowsFeature ADCS-Cert-Authority,
ADCS-eb-Enrol iment |
ADCS-Enrol1-web-Pol |
ADCS-EnroT1-Web-Svc,

ADCS-online-Cert,

eb-Mgnt Console "
~IncludeMianagenentTools

Success Restart Needed Exit Code Feature Result

True No Success {Active Directory Certificate Services, Ce.

assets/74e1b1fa-b7be-4982-9f61-c846a18edc23.png
PS C:\> $DeclineduUpdate.Decline($DCTargetGroup)

assets/cc65f264-3f32-4d4e-9500-95699d16c932.png
8 Print Management
Fle Acion View Help

e 2@ XECEH

b Print Management ~ || printer Name QueueStatus JobsIn... ServerName Driver Name

v [Custom Fitters 9SG Ready 1 PSRV (focal) NEC Color MuliWier Class Drver | Pintes Wi &
[Al Printers (6) -
5] All Divers () < S| Mere- b

) Printers Not Ready | |[sGGPT
7 Printers With Jobs
v § PrintServers ke [W oo

v [PSRV (local) Document Name: XbStatis Owner Pages Sie Submitted
> B Fb;we-s TestPage printing Administrator 1 26K8 2109:01 10/12/2016
S e Forms
5 G pons
= Printers v||£ >

assets/76e5ade6-b34c-4c36-94fc-cc7261060a2f.png
PS C:\> Get-Printer $Printer —Full |
Format-Table Name, Renderingiode

Name Renderinghode

SGBRCP1 Branchoffice

assets/10223f96-20da-4a77-89e0-503f1776ede0.png
PS C:> Get-ADGroupMember -Identity $ECGName

distinguishedName : CN=DC1,0U=Domain Controllers,DC=Reskit,DC=Org
name : DC1

objectClass : computer

objectGUID : cf557bc7-45e3-407a-8fb2-4a14d0d6537a
SamAccountName : DC1§

SID : 5-1-5-21-715049209-2702507345-667613206-1000

assets/3425554c-d2ba-4953-a24f-10afd69f7589.png
:\> Get-ChildItem -Path $Parent

Directory:

wvmi\Virtual Hard Disks
Mode ‘tWriteTine Length Name
15/07/2017 12:11 9969860608 WM1.Vhdx

15/07/2017 12:17 196083712 VM1_856D7A40-284A-4CFC-BF25-4D8E57254404. avhdx
15/07/2017 13:57 272629760 VM1_E122EE41-1FD5-4EBD-BCOA-AB4A290936C6. avhdx

assets/3bf1132c-e607-4941-85fe-6e7ba3df493a.png
[= | System Volume (T

<« © 2 m > ThisPC > System Volume (T »
> [Desktop. ~ Name

> [Documents P

5 & Downlosds U Users

5 D Music

> [&=] Pictures

> [Videos

> i System Volume (C)
5 Recipe5-1(Q)
¥ System Volume (T)
v [foo
> [diver
[dsc
v [Users
~ [administator
>[5 Documents

Date modified

23/12/2016 2316
1171172016 23:37

Type

File folder
File folder

Size

assets/d3304a58-92e1-44d8-81f9-0d62c87ae4ba.png
Ps

spol

Schedule
BackupTargets
VolumesToBackup
FilesSpecsToBackup
FilesSpecsTobxclude
ComponentsToBackup
BMR.

Systemstate
OverwriteoldFornatvhd
VssBackupOptions

False
False
False
VssCopyBackup

assets/967b7f32-1951-442f-b55e-e260ef602537.png
PS C:\> $StorageAcc = Get-AzureRmStorageAccount -ResourceGroupName $RgName -Name $SAName
PS C:\> $BlobPath "vhds /Packt100.vhd"

PS C:\> $0sDiskUri = $storageAcc.PrimaryEndpoints.Blob.ToString() + $BlobPath

PS C:\> $DiskName "PacktOsDisk"

PS C:\> SWM Set-AzureRmVMOSDisk -VM $VM -Name $DiskName -VhdUri $OsDiskUri -CreateOption FromImage
PS C:\> $wM

Name : Packt100

HardwareProfile : {vmsize}

NetworkProfile : {NetworkInterfaces}

osProfile : {ComputerName, AdminUsername, AdminPassword, WindowsConfiguration}

StorageProfile : {ImageReference, OsDisk}

NetworkInterfaceIDs : {/subscriptions/0bc29420-0222-4599-b91le-e8699f760742/resourceGroups/

packt_rg/providers/Microsoft.Network/networkInterfaces/VMNicl}

assets/45ccc493-2607-4778-bb73-17d957f0fea6.png
2\> vkt |
sort-object -Property uptime -descending |
Format-Table

WiName Status Uptime WCPU RepTMode Replstate
Wi Operating normally 2.01:50:10.1610000 12 Nome Disabled
W3 Operating normally 00 0 None Disabled
W2 Operating normally 00 0 None Disabled

assets/0c270fb9-0ab0-4a61-92e3-413580cf1c50.png
"Recipe’
“WestEurope’
PS C:\> New-AzureRmResour ceGroup -Name $RGName -Location SLocation

ResourceGroupName : Recipe
Location westeurope

Provisioningstate : Succeeded

Tags

Resourceld /subscriptions/4a6572727-9207-266-36b7-32069742121 /resour ceGroups /Recipe

assets/73dc4b6c-53d8-4c35-91c4-9f58b84ac9ab.png
=== Reskit.Org AD Privileged User Report
=== Generated [02/04/2017 12:13:55]

Group: Enterprise Admins

Name WhenCreated LastTogonDate

Administrator 09/11/2016 22:36:19 31/01/2017 16:59:37
BU Adwinistrator 10/01/2017 15

DNSADMIN 19/01/2017 16:23
Sylvester 02/02/2017 19:52

7
7 02/02/2017 21:25:33

Group: Domain Admins

Name WhenCreated LastTogonDate

Administrator 09/11/2016 22:36:19 31/01/2017 16:59:37
BU Adwinistrator 10/01/2017 15:37:58 10/01/2017 15:38:21
DNSADMIN 19/01/2017 16:23:57

Group: Schema Admins

Name WhenCreated LastTogonDate

Administrator 09/11/2016 22:36:19 31/01/2017 16:59:37
BU Adwinistrator 10/01/2017 15:37:58 10/01/2017 15:38:21

=== Changes to Privileges User Membership
Name Group. side

BU Adwinistrator Schema Admins ADDED

assets/57bcf2ee-2f82-447c-8c18-80b2a0b24df0.png
& Gettem - o X

O.QJ-I-JIIIIIIII'ﬁlWI

(® Common Parameters

Debug

Eroraction

Eronriable

InformationAction: | Continue.

oo | e e
Optional

Outbuter o -

Outiariaie:

Pipelnevariabie:

Verbose

WarningAction:

WarningVariable:

assets/a6164e05-eae8-4cf4-a243-f40876d9fa95.png
Nano Server Recovery Console

Computer Name: NANOL

User Name: \administrator

Workgroup: WORKGROUP

0s: Microsoft Windows Server 2016 Datacenter
Local date: Monday, January 16, 2017

Local time: 12:34 PM

> Networking
Inbound Firewall Rules

Outbound Firewall Rules
WinRM

Up/Dn: Scroll | ESC: Log out | F5: Refresh | Ct1+F6: Restart
Ct1+F12: Shutdown | ENTER: Select

assets/472cc265-db03-4e16-afd4-662b8e0ec376.png
PS C:\> SWSUSServer
SwsUsServer | Select =

WebServiceurl
BypassApiRemoting

IsServerLocal

Name

Version
IsConnectionSecureForApiRenoting
PortNunber

PreferredCulture

ServerName

UseSecureConnection
ServerProtocolVersion

Get-WsusServer

http://WsUS1:8530/ApiRemoting30/WebServi ce. asmx
False’

True

WsUS1

10.0.14393.0

True

8530

WsUs1

False

120

PS C:\> SWSUSServer | Get-Member -MemberType Method

TypeNam

AddDynanicCategories
AddDynanicCategory
CancelAT1Downloads
CreateComputerTargetGroup
CreateDynami cCategory.
CreateInstallApprovalRule
CreateObiRef

DeleteDynami cCategory.
DeleteInstallApprovalRule
DeleteUpdate

Equals

ExpirePackage
ExportPackageMetadata
ExportUpdates

Microsoft. UpdateServices. Internal .BaseApi . UpdateServer

MemberType Definition

Method void AddDynamicCategories(System.Collections. Generic. IEnumer:
Method void AddDynamicCategory(Microsoft. Updateservices. Administrati.
Method void CancelAllDoanloads(), void IUpdateServer.CancelAl1Domnlo.
Method Microsoft.UpdateServices.Administration. IComputerTargetGroup -
Method Microsoft.UpdateServices.Administration. IDynamicCategory Crea.
Method Microsoft.UpdateServices.Administration. IAutonaticUpdateAppro.
Method Systen.Runtime.Remoting.ObjRef CreateObjRef(type requestedType)
Method void DeleteDynamicCategory(string name, Microsoft.UpdateServi. ..
Method void DeletelnstallApprovalRule(int ruleld), void IUpdateServe.
Method void DeleteUpdate(guid updateld), void IUpdateServer.Deletelp.
Method bool Equals(System.Object obj)

Method void ExpirePackage(Microsoft. UpdateServices. Administration. Up. ..
Method void ExportPackageMetadata(Microsoft. UpdateServices. Administr.
Method void ExportUpdates(string packagePath, string logPath)

assets/63a5ef18-854a-4bd4-a62d-23e16f2141bd.png
\> Start-WM -VMName VM1
\> Wait-WM -VMName VM1 For Heartbeat
\> Get-W -ViiName W1

Name State CPUUsage(%) MemoryAssigned(M) Uptime status Version

Wi Running 2

assets/f7dd2368-a1dc-4054-aa0d-37e0f9fb5f03.png
PS C:\» Measure-WReplication ~ComputerName HV1

WiName State Health LReplTime PReplSize(W) AvgLatency AvgReplSize(M) Relationship

Wi Replicating Normal 12/07/2017 22:

:39 0.0039 00:00:31 628.29 simple

assets/350e9ac6-e55a-436a-90e7-735285ad38dc.png
PS C:\> Get-IISAppPool

Name Status CLR Ver Pipeline Mode Start Mode

DefaultAppPool started v4.0 Integrated onbemand

Classic .NET AppPool Started v2.0 Classic onDemand
-NET v2.0 Classic Started v2.0 Classic oOnbemand
LNET v2.0 started v2.0 Integrated onbemand
-NET v4.5 Classic Started v4.0 Classic oOnbemand
LNET v4.5 Started v4.0 Integrated onbemand
RKAppPool started v4.0 Integrated onDemand
PSWS. Started v4.0 Integrated onbemand
Www2Pool started v4.0 Integrated onbemand

assets/10e39b46-6e3a-44a1-acb7-78f3f763a6c4.png
PS C:\Windows\system32> “Here is a sentence!” | ConvertFrom-String

TypeName: Systen.Management. Automation. PSCustomdbject

Name MemberType Definition

Equals Method bool Equals(systen.Object obj)

GetHashCode Method int GetHashCode()
GetType Method type GetType()
ToString Method string Tostring()
P1 NoteProperty string Pl-Here
P2 NoteProperty string P2=is

P3 NoteProperty char P3-a

P2 NoteProperty string P4=sentence!

| Get-Member

assets/b212a3ba-f2f0-4d45-bd5e-c3392e566471.png
\> Get-WNetworkAdapter -VMName WML

Name TshanagenentOs WMName SwitchName MacAddress Status TPAddresses

Network Adapter False Wi External 001550017001 {0k} {10.10.10.157, fes0

413:78b: eade:98c4}

assets/975194d0-41bf-4270-b409-e3963921acb7.png
PS C:\Windows\system32> Find-PackageProvider -Source PSGallery | Select-Object -Property Name, Summary | Format-Table -Wrap -AutoSize

Name Summary
GitHubProvider GitHub-as-a-Package - PackageManagement PowersShell Provider to interop with Github
TSDProvider PowerShell PackageManager provider to search & install TypeScript definition files from
the community DefinitelyTyped repo
PowershellGet Powershell module with comands for discovering, installing, updating and publishing the
Powershell artifacts like Modules, DSC Resources, Role Capabilities and Scripts.
GistProvider Gist-as-a-Package - PackageManagement PowerShell Provider to interop with Github Gists
ChocolateyGet An Powershell OneGet provider that discovers packages from https://wsw.chocolatey.org.
MyATbum MyaTbun provider discovers the photos in your remote file repository and installs them

to your local folder.
ContainerInage This is a PackageManagement provider module which helps in discovering, downloading and
installing Windows Container 05 images.

For more details and examples refer to our project site at
https://github. con/PowerShell/ContainerProvider .

DockerMsFtProvider PowerShell module with commands for discovering, installing, and updating Docker images.

NanoServerPackage A PackageManagement provider to Discover, Save and Install Nano Server Packages

‘on-demand
OfficeProvider OFficeProvider allows users to install Microsoft Office36s ProPlus from Powershell.
GitLabProvider GitLab PackageManagement provider

WSAProvider Provider to Discover, Install and inventory windows server apps

Oinstall Zero Install is a decentralized cross-platform software-installation system.

assets/e7f3fc68-b3e6-4c64-b193-44d622978b34.png
Ps c:\foo> Enter-PSSession -ComputerName $NanoServerIP -Credential $Credential

[10.10.10.151]: Ps c:\Users\administrator\Documents>

assets/6cc72c21-9195-4326-9bfc-ef994ea6c0b4.png
PS C:\> "Migration took: [{0:n2}] seconds™
~F ($($Finish-$start). totalminutes)

Migration took: [7.49] minutes

assets/5d8a0604-484d-4887-bf34-7a3e5ff7feca.png
PS C:\foo> Get-ChildItem -Path Senv:ChocolateyPath\lib\sysinternals.2016.11.18\tools -Filter *.exe | Select-Object -Property Name

assets/eb76cd02-d3b3-4f84-bab6-df09669554c4.png
:\» Get-Module DFSR -ListAvailable

Directory:

Windows\system32\WindowsPower shel1\v1.0\Wodules

ModuleType Version Name ExportedComands

Binary 2.0.0.0 DFSR {New-DfsReplicationGroup, Get-DfsReplicationGroup, Set-DfsReplicationGroup, Remove-DfsReplicationGroup...}

PS C:\» Get-Command —Module DFSR | Measure-Object
Count as

Average

Sum

Property

assets/6effa3da-e7b0-4b00-af19-365ef2d7e02d.png
\> $sb = { Get-ChildItem -Path C:\ }|
Tnvoke-Conmand -VMName WL -Script8lock Ssb °
“Credential Scred

Directory:
Mode LastWriteTime Length Name
12/09/2016 Logs
16/07/2016 PerfLogs
12/09/2016 Program Files w1
16/07/2016 Program Files (x86) WML
13/07/2017 Users w1
12/07/2017 Windows w1

assets/0c1388ad-89f9-4212-b32e-30bfa64a6e3b.png
PS C:\> Get-EventLog -LogName application |
Group-Object -property EntryType |
Format-Table -Property Name, Count

Name Count
Information 19549
0 246
Error 103

Warning 21

assets/54023d43-6e54-4778-a714-304ab3a52969.png
\> PullSrvi -OutputPath C:\DSC
Directory: C:\DSC

Mode LastiriteTine Length Name

4256 Tocalhost.mof

19/04/2017

assets/3953547a-0cba-49f0-ae0f-86c9e6c11bdf.png
) users.csv - Notepad N - o X
File Edit Format View Help

[Firstname,Initials,Lastname,UserPrincipalName,Alias,Description,Password
S,K,Masterley, skm,Sylvester,Data Team,Christmas47
C,A,Smyth,Cas,Charlie,Team Administrator,Christmas47

Billy Bob, ,Joe-Bob,BillyBob,BillyBob,One of the Bobs,Christmas47

assets/1cbe837f-f36f-47fe-8d9f-2be9c8d0704b.png
\> $ISD = Get-Disk | Where-Object BusType -eq_‘iscsi
\> Set-Disk -InputObject $isd -IsOffline SFalse
\> Set-Disk -InputObject $isd -Isreadonly SFalse
\> S$ISD | New-Volume -FriendlyName SalesData -FileSystem ReFS -Driveletter s

DriveLetter FileSystenlabel FileSysten DriveType HealthStatus OperationalStatus SizeRemaining Size

" Salespata ReFS R —— oK 396.13 MB 1.06 GB.

assets/287aef8b-f223-4767-8d7c-0c0f82ebe292.png
User

Adwinistrator
Adwinistrator
Adwinistrator

Computer

\\PSRY.
\\PSRY.

ort

\Users\administrator\Documents\xx.pdf 39407
\Users\administrator\Documents\x. pdf
\Users\administrator\Documents\test1.pdf 39405

Printer

Microsoft Print to PDF
Microsoft Print to PDF
Microsoft Print to PDF

anny

assets/de3602f3-6208-4131-a3c8-564d92bdd921.png
C1\> Get-SmbClientConfiguration

ConnectionCountPerRssNetworkInterface : 4
DirectoryCacheEntriesMax
DirectoryCacheEntrysizeMax
DirectoryCacheL ifetime
DormantFileLimit
Enab]eBandwidthThrottling

Enab] eByteRangeLockingOnReadonTyFiles
Enab]eInsecureGuestLogons
EnableLargeNtu
Enab]eLoadBalanceScaleOut
Enab]eMultiChannel
EnablesecuritySignature
ExtendedSessionTimeout
FileInfoCacheEntriesMax
FileInfoCachel ifetime
FileNotFoundCacheEntriesMax
FileNotFoundCacheL ifetime

KeepConn
MaxCnds
MaximumConnectionCountPerServer
OplocksDisabled
RequiresecuritySignature
SessionTimeout
UseOpportunisticLocking
WindowSizeThreshold

assets/515ef30b-b0e8-47dc-a39c-790891c52c5f.png
\> $sb = {Get-ChildItem -Path C:\}
\> Invoke-Command -VMName W1 -ScriptBlock $sb
~Credential Scred

LastWriteTime Length Name PSComputerNane
12/09/2016 Logs w1
16/07/2016 PerfLogs Wi
12/09/2016 Program Files w1
16/07/2016 Program Files (x86) WML
13/07/2017 uUsers WL
12/07/2017 Windows. w1

assets/99fbdca8-174e-4dbc-a469-8cf17a65cff6.png
PS C:\» net share Foo=c:\
Foo was shared successfully.

PS C:\> New-SmbShare —Path C.
Name ScopeName Path Description

~Name Foo2

Share name Resource

Foo2 i\
The command completed successfully.

Remark

Remote Admin
Default share
Default share
Default share
Remote IPC

Default share

Description

Remote Admin
Default share
Default share

Default share
Default share
Remote IPC

assets/3d900cc1-2da1-44cf-9e0a-85a17813a571.png
Packh

assets/a31cbfd6-10aa-4981-856d-f0e7f6f96507.png
Ps c:\foo> Test-wSMan $NanoServerIP

wsmid : http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentity.xsd
Protocolversion : http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd
Productvendor : Microsoft Corporation

Productversion : 0s: 0.0.0 SP: 0.0 stack: 3.0

assets/e2ed93a5-e47b-4357-8640-9047845e1348.png
© | 5) ciPerfLoga\system ingnostcs\SRY1_20170810-000005\reporth © = C || @ CPerfLogs\System\Diagn... * [A)

System Diagnostics Report = @ »

Computer: saV1

Duration: 60 Seconds

Collected: 10 September 2017 142205

Diagnostic Results

Resolution:

Related:

Resolution:

' service s eporiea s having an unexpected eror code
(e or moresevices s e T seic i 1ot 209 raceuly SUGgEsing the sevce may hve Crasne o ne o i companents 105923 n a1 UnsuEporis vy,
Senvice exted with code not equal 9.0 or 1077

Restart the senvice

pectomance Dizanosis

© Device
A edc s isleq preverting it o working propery.

Tne devce, Microsof Hyper-V Network Adaptr s disable. i device i no longer used it may be ntentinally csabie. The Pug and Play I for tis Gevice 3,
. Determin ifyou nees e devie,

2t you nect the devic, enable t n Device Maniager,

21Fyou do 1ot ue e device canoe et isolec

Explanation of o Coves Generted by Device Marnger

Manage Device in Windows

sabled.

© Device s saves
A edc s isleq preverting it o working propery.

The evice, Microsoft Hyper-V Network Adapter, i clisabled. f this device is no longer used it may be Intentionaly disabie. The Plug and Play ID for this Gevice s YMBUS\(FB615163-DF3E_46C5-913F-F2D2F965ED0E]
\(S7583175-FFAF-46AB-86A7-OF7D8B3A842).

1. Determine if you need the device,
2.17you need the device, enable it in Device Manager.
3.17y0u do not use the device it can b left disabled.
‘Explanation of Error Codes Generated by Device Manager
Manage Devices in Windows

Informational

<

assets/3bbf5e63-e297-441e-8b8a-ebbdc5a54f0c.png
PS C:\> SSched = New-OBSchedule -Daysofweek Tuesday, Saturday -TimesofDay 04:00
PS C:\> Set-OBSchedule -Policy $APolicy -Schedule SSched

Backupschedule : 14:00
Wednesday, Saturday,
Every 1 week(s)

DsList

PolicyName

RetentionPolicy

State

PolicyState

New
valid

assets/7d49622f-87f7-427c-b025-b4fae01b4ef5.png

assets/bb8cf66a-bba3-4a3b-b228-fb909b89d986.png
Group Policy Management Editor - o X
Fii Action View Help
LI

Sales Group Printing [DC1RESKIT.ORG] Policy
v % Computer Configuration

> [Policies. Select an item to view its description. Name
5 [Preferences £ Logon

v i User Configuration 2 Logoff
~ 1 Policies

> [Software Settings
~ [Windows Setings
Scripts (Logon/Logoff)
5 B Securty Settings
> (2 Folder Redirection
> ull Policy-based QoS
> = Deployed Printers
5 (71 Administative Templates: Policy defintions
> [Preferences

< > |\ btended (Sanderd

assets/7d9c892b-c4b2-4a43-b20c-d2aa0ce6e30b.png
PS C:\> $CSSrv2 = New-CimSession -ComputerName SRV2
PS C:\> Set-DscLocalConfigurationManager -CimSession $CSSrv2 °

VERBOSE :

-Path C:\DSC ~
-Verbose
Performing the operation "Start-DscConfiguratior

SendMetaConfigurationApply” on target "MSFT_DSCLocalConfigurationManager”.

VERBOSE :

" 'methodName

Perform operation 'Invoke CimMethod' with following parameters,
SendMetaConfigurationApply, 'className' = MSFT_DSCLocalConfigurationManager,

"namespaceName' = root/Microsoft/wWindows/DesiredstateConfiguration’.

VERBOSE :

VERBOSE :
VERBOSE :
VERBOSE :
VERBOSE :
VERBOSE :
VERBOSE :

VERBOSE :
VERBOSE :
VERBOSE :
VERBOSE :

An LCM method call arrived from computer SRV2 with user
sid S-1-5-21-715049209-2702507345-667613206-500.

[SRv2]: LCI [start set 1

[SRV2]: LCI [start Resource] [MSFT_DSCMetaConfiguration]

[SRV2]: LCI [start Set 1 [MSFT_DSCMetaConfiguration]

[SRV2]: LCI [Set 1 [MSFT_DSCMetaConfiguration] 1in 0.0150 seconds.
[SRV2]: LCI [End Resource] [MSFT_DSCMetaConfiguration]

[SRv2]: [1 Registration of the Dsc Agent with the
server https://SRV1:8080/PSDSCPullserver.svc was successful.

[SRv2]: LCI [End Set 1

[SRv2]: LCl [End Set 1 in 25.0200 seconds.

Operation 'Invoke CimMethod' complete.
Set-DscLocalConfigurationManager finished in 25.203 seconds.

assets/d5284bf7-424c-4c7c-9971-472a6ed776f2.png
PS C:\> Invoke-Command -ScriptBlock {Get-ChildItem -Path Cert:\LocalMachine\root |
Where Subject -Match 'SRV1'} -ComputerName SRV2

PSParentPath: Microsoft.Powershell.Security\Certificate::LocalMachine\root

Thumbprint Subject PSComputerName

assets/229f79db-25e6-48fd-8acb-31ebe8e09224.png
PS C:\> Get-DscResource -Name File -Syntax
File [String] #ResourceName
H
DestinationPath = [string]
[Attributes = [string[11{ Archive | Hidden | Readonly | System }]
[Checksum = [string]{ CreatedDate | ModifiedDate | SHA-1 | SHA-256 | SHA-512 }]
[Contents = [stringl]
[Credential [PKrmE;E‘ﬂ]]
[DependsOn = [string|
[Ensure = [string]{ Absent | Present }]
[Force = [bool]]
[MatchSource = [bool]]1
[PsDscRunAsCredential = [PSCredentiall]l
[Recurse = [bool1]
[SourcePath = [string]] 3
[Type = [string]{ Directory | File }1

assets/6643367b-971e-4d8f-9017-80d926ed8a68.png
PS C:\> $sB = {Invoke-BpaModel -ModelId
Microsoft/windows/Directoryservices}
PS C:\> Invoke-Command -ComputerName DCl -ScriptBlock $sb

ModelId Microsoft/windows/Directoryservices
SubMode11d

Success True

ScanTime 1 21/07/2017 11:24:58
ScanTimeutcoffset

Detail {ocl, bcl}

assets/24fd121d-2f1c-4c25-9a2f-7452c475c212.png
Ps c:\foo> Start-vM -Name $NanoComputerName -Verbose
VERBOSE: Start-VM will start the virtual machine "NANO1".

foo>

assets/3d3b1fb4-5ddc-4a3e-bba1-e6810ade5eae.png
PS C:\> $VM = New-AzureRmyMConfig -VMName SVMName -VMsize "Standard_A1"
PS C:\> $wM

Packt100
{vmsize}

Name
HardwareProfile

assets/ef2f5b31-9ea9-4b2b-9f54-79491680501b.png
PS C:\AzRecover\C_vol> Get-ChildItem C:\AzRecover\C_vol

Directory: C:\AzRecover\C_vol

LastiriteTine Length Name

28/03/2017 01350 Foo.

PS C:\AzRecover\C_vol> Get-ChildItem C:\AzRecover\C_vol\Foo
Directory: C:\AzRecover\C_vol\Foo

Mode LastiriteTine Length Name

28/03/2017 39912192 MarsInstaller.EXE

assets/f00c43fb-8a92-4a38-ab4a-6f4a6a980cbf.png
PS C:\> Get-windowsFeature -Name Telnet-Client, TFTP-Client -ComputerName SRV2

Display Name Name 1Install state

[X] Telnet Client Telnet—Client 1Installed
Ix] TFTP Client TFTP-Client TInstalled

assets/40f22656-0731-4ee3-bf4f-d95a2a2175bf.png
$DCTargetGroup = $WsUSServer.GetComputerTargetGroups() |
where-Object -Property Name -eq 'Domain Controllers’

assets/e2aa1045-09b4-41c3-a0b4-aab93441d68b.png
:\> $Parent = Split-Path -Parent (Get-WM -Name WM1 |
SELECT ~ExpandProperty HARDDRIVES).PATH
\> Get-ChildItem -Path $Parent

Directory:

wvmi\Virtual Hard Disks
Mode LastiriteTine Length Name

15/07/2017 12:11 9969860608 WM1.Vhdx
15/07/2017 12:13 138412032 WM1_856D7A40-284A4CFC-8F25-4D8B57254404. avhdx

assets/7115403c-bf19-4a16-9497-627bbf34fc4f.png
PS C:\> New-WM -Name VM1 -Path SVMLocation -MemoryStartupBytes 168

Name State CPUUsage(%) MemoryAssigned(¥) Uptime Status Version

WL off o 0 00:00:00 Operating normally 8.0

assets/48c77664-f168-48d1-a138-e1df7f9c939d.png
PS C:\> Get-WM —ComputerName HV1
Name State CPUUsage(¥) MemoryAssigned(M) Uptine status Version
w1 Rumnng o 4096 01:24:37. 6100000 Dptrahng normally 8.0 -
PS C:\> Get-WM —ComputerName HV2

assets/ee07ac9f-80c5-45ac-a9ff-133632d644ad.png
IP Configuration

Ethernet
Microsoft Hyper-V Network Adapter
00-15-5D-02-6C-05

DHCP [Disabled 1
IP Address
Subnet Mask
Default Gateway

ESC: Cancel | ENTER: Save | F4: Toggle

assets/fa4e27f6-6c72-447f-8214-1aeda2b2e7fa.png
s

\> Get-SmbMapping
Status Local Path Remote Path

oK \\Fs1.reskit.org\foo

assets/99a5bf56-4c53-4d26-b632-ebae14bda637.png
PS C:\> Get-AzureStorageshare -Context $SACon |
Format-List -Property *

ServiceClient : Microsoft.windowsAzure.Storage.File.CloudFileClient

uri : https://packt100sa.file.core.windows.net/packtshare

StorageUri : Primary = 'https://packt100sa.file.core.windows.net/packtshare’;
Secondary = '*

Name - packtshare

Metadata = {3

Properties Microsoft.WindowsAzure. Storage.File.FileshareProperties

assets/bbe7e55d-71df-4f59-b02f-e986f3dcc3ba.png
P Add Servers - o x

ons | mpor | Selected
Location: Reskit » @ P

4 RESKIT.ORG (1.
P— i srors®
Name (CN): NANO2

assets/e75b051c-f41c-4897-9e6b-d9befcc98aba.png
\> New-DfsReplicationGroup ~GroupName FSShareRG *
~DomainName Reskit.Org
~Description 'Replication Group for FSL, FS2 shares’ |
Out-Null
\> New-DfsReplicationGroup -GroupName DCShareRG
~DomainName Reskit.Org
-Description 'Replication Group for DC1, DC2 shares’ |
Out-Null
:\> Get-DfsReplicationGroup | Format-Table -Property GroupName, DomainName, Description, State

s

GroupName DomainName Description state

FSShareRG Reskit.Org Replication Group for FSL, FS2 shares Normal
DCShareRG Reskit.Org Replication Group for DC1, DC2 shares Normal

assets/0f1d4171-e1b3-4e49-b22c-c2aa80bac779.png
PS C:\> "{0} Printers defined on this system' -f SPrinters.Count

7 Printers defined on this system

assets/49bb6d97-acea-44c4-a91c-59c78399d7ff.png
PS C:\> Get-VM -Name VM1

Name State CPUUsage(%) MemoryAssigned(¥) Uptime Status Version

WL off o 0 00:00:00 Operating normally 8.0

assets/8069d820-b182-4bac-a2c9-15e299414c5b.png
PS C:\Windows\system32> Get-PackageProvider -Name NuGet | Select-Object Version
Version

2.8.5.208

assets/d7d2feed-1c7b-485c-aab6-cbd4dc351a03.png
BB Registry Editor

File Edit View Favorites Help

[Computer e o —
1 HKECUASSESROOT || 0 il o
s oo | S
| HKEY_LOCAL MACHINE pel ¥

] 8CDoooooo00
HARDWARE
| Oldsoftwaretive
311 Clsses

o packt
[Recipss7
311 Patner
3L poliies
RegiteredApplica

Recipe 6-7

assets/ee67f24a-f60b-42c4-b398-4edf089b257c.png
\> Get-PSProvider -PSProvider WebAdministration

Capabilities Drives

WebAdministration ShouldProcess {IIS}

assets/41a93360-fc79-4a91-a2de-48c189e92802.png
PS C:\foo> Get-CimSession | Remove-CimSession

assets/4bc77bcf-2310-408c-8790-6aee95b382e7.png
e Server Manager

Server Manager * All Servers

SERVERS

Al servers| 1 total

Add Servers

bct 10101010 Online - Performance counters not started

assets/f2f3838c-4a0b-4f98-aef9-8a59b70ce682.png
PS C:\> Get-AzureRmResourceGroup -Name $RGName |
Format-List -Property *

ResourceGroupName : packet_rg

Location : uksouth
Provisioningstate : Succeeded

Tags : fpublisher, Author}
TagsTable E

Name value

Publisher Packt
Author Thomas Lee

ResourceId 1 /subscriptions/0bc29420-0222-4599-b91e-e8699f760742/resourceGroups/packet_rg

assets/0d54478b-4329-4a27-8d61-333ac0fa1f15.png
Ps i\ New-Cluster -Name FS °
“Node ‘fsl.reskit.org’, 'fsz.reskit.org’ *
“Staticaddress 10,10.10.100

assets/afe02369-c1a8-46eb-82d1-dbbddfd5dec4.png
€ hitps/packti0azenchsitesnet O~ @ C | @ NewAzreWebSite

This is the start page for the really cool NEW Azure Web App

A page created by PowerShell in Microsoft Azure

assets/537a83a8-98b0-4952-aedb-a88b06383cca.png
PS C:\> Install-windowsFeature -Name windows-Server-gackup

Success Restart Needed Exit Code Feature Result

True Ko NochangeNeeded {}

assets/82d523df-0f84-41fd-9336-097d377823e3.png
:\» Get-Printer SGCPL |
Format-Table Name, Type, DriverName, PortName

Nane Type DriverName PortName

SGCP1 Local HP Laserdet 9000 PS Class Driver Sales_Color,Sales_Colorz

assets/c9c1ad05-82d9-4244-95cd-291aaad4dc1d.png
Sign in to your Microsoft account

Enter password

Because you're accessing sensitive info, you need to
verify your password for thomas_lee@msn.com.

Signin

Forgotten my password

Sign in with a different Microsoft account

assets/05b0becb-02b2-402e-8198-543725b28c0e.png
PS C:\> Glt-SmbConnection

ServerName ShareName UserName Credential Dialect NumOpens

fsL.reskit.org foo RESKIT\JerryG RESKIT.ORG\JerryG 3.1.1 0
fsL.reskit.org foo RESKIT\EF1 RESKIT.ORG\tF1 311 1

assets/d70fefb2-0d32-42c5-b06e-5a481ed30c37.png
PS C:\Windows\system32> STextToParse = @'
Animal, Bird

Shape 1ike Square

Number is 42

Person named Bob.

:\Windows\systen32> STemplate3
{[string]Category=:Animal}, {[string]Exanple:8ird}
{[string]Category=:Country} Ttke {[string]Exaple:Italy}
{[string]Category:Nunber} Tike {[int]Exanple:35}

PS C:\Windows\systen32> ConvertFron-String -TemplateContent STemplate3 -InputObject $TextToParse
Category Example

Animal Bird

Shape Square
Number 42
Person Bob

assets/1300f1cb-ad70-4a4c-b58f-eaa35c19e96a.png
Ps C:\foo> New-VM -VHDPath $NanovMPath -Name $NanoComputerName -Path $NanovMFolder
-SwitchName $switchName -Generation 2 -Verbose
VERBOSE: New-VM will create a new virtual machine "NANOL1".

Name sState CPUUsage(%) MemoryAssigned(M) Uptime Status Version

NANOL off 0 [} 00:00:00 operating normally 8.0

assets/795519e4-1b8e-42af-9901-e0efb8765fd5.png
Ps c:\foo> Import-Module -Name $NsigFolder
Get-command -Module NanoServerImageGenerator

CommandType
Function Edit-NanoServerImage
Function Get-NanoServerPackage

Function New-NanoServerImage

Version

Source
NanoServerImageGenerator
NanoServerImageGenerator
NanoServerImageGenerator

assets/c6eb0801-fa83-41f5-8b72-3ca6cb35e9b0.png
PS
7
@TargetNode="5RV2"

@GeneratedBy=administrator

@Generationbate=04/12/2017 13:07:03
@GenerationHost=SRVL

7

instance of MSFT_RoleResource as SMSFT_RoleResourcelref
£

ResourcelD = " [WindowsFeature]ONS"
IncludeAllSubFeature = True;

Ensure = "Present
SourceInfo =
Name = "DNS";
ModuleNane = "PSDesiredStateConfiguration”;
Moduleversion = "1.0";
ConfigurationName = “Provisionservices’

\> Get-Content -Path C:\DSC\SRV2.mof

+ tWindowsFeature”;

instance of OMI_ConfigurationDocument.

CompatiblevVersionAdditionalProperties= {"Omi_BaseResource:ConfigurationNane"};
Author="administrator";
GenerationDate="04/12/2017 13:07:03"
GenerationHost="SRVL’
Name="ProvisionServices";

assets/73f069a3-2609-4e36-983f-25df5ff51dc3.png
PS C2\» Start-DscConfiguration -Path C:\dsc\ *
Wait -Verbose

VERBOSE: Perform operation 'Invoke CinMethod’ with following parameters, '‘methodName’ = SendConfigurationApply,
"ClassName’ = MSFT_DSCLocalConfigurationManager , namespaceName’ = root/Microsoft/Windows/DesiredstateConfiguration’
VERBOSE: An LCN method call arrived from computer SRVL with user sid S-1-5-21-715049209-2702507345 -667613206-500.
[start set 1
[Start Resource] [[File]basefiles]
[start Test 1 [[Filelbasefiles]

[[File]basefiles] The network name cannot be found.

[[File]basefiles] The related file/directory is: \\dc1\ReskitApp.

[[File]basefiles] Building File Tist from cache
[End Test] [[Filelbasefiles] in 0.0310 seconds.
[start Set 1 [[File]basefiles]

[[File]basefiles] The network name cannot be found.

[[File]basefiles] The related file/directory is: \\dc1\ReskitApp.

[[File]basefiles] Building File Tist from cache.

[[Filelbasefiles] Copying File \\dcl\ReskitApp\Index.htm to c:\reskitapp\Index.htm.

[[File]basefiles] The destination object was found and no action is required.

[End set 1 [[File]basefiles] in 0.0310 seconds.
[End Resource] [[Filelbasefiles]

[End set 1

[End Set 1 in 0.7350 seconds.

Operation 'Invoke CinMethod’ complete.
Time taken for configuration job to complete is 2.112 seconds

assets/f50bb7af-5708-49ea-bc27-63a2f72eafbd.png
PS C:\> Get-WMProcessor -W (Get-WMGroup HvServers).ViMembers |
Format-Table -Property VMName, OperationalStatus

MName Operationalstatus

#2 {0k, HostResourceProtectionnabled}
HVL {0k, HostResourceProtectionEnabled}

assets/f2814741-143d-4fca-a8f6-3d97040367c0.png
PS C:\> Invoke-Command -ScriptBlock {Get-ChildItem -Path Cert:\LocalMachine\root |
Where-object Subject -Match 'SRV1'} -ComputerName SRV2

PSParentPath: Microsoft.Powershell.Security\Certificate::LocalMachine\root

Thumbprint Subject PSComputerName

FCE666DED34214D913141246506E5AA3834F0FA9 CN=SRV1

assets/731eb664-4225-4646-8063-bbabfc8dc179.png
Ps c:\foo> New-VM -VHDPath $NanovMPath -Name $NanoComputerName -Path $NanovMFolder
-switchName $SwitchName -Generation 2 -Verbose |
Start-vwM

VERBOSE: New-VM will create a new virtual machine "NANO2".

assets/d5fb96dd-d6e8-47dd-9f6f-86bac6b20dd6.png
\> Get-Module -Name xWebAdministration -ListAvailable

Directory:

“\Program Files\WindowsPowershell\Modules

ModuleType Version Name ExportedConmands

Manifest 1.17.0.0 xWebAdministration

assets/830a8fa1-4649-4b0a-9b05-fedf295bfd45.png
Ve
v2

ReskitRoot CA

01 February 2017 11:47:59

03 August 2017 00:07:59.
RSASSAPSS

shazss

KeyID=bb db 20 d8 ef 61.ch 29 f.
0o

03

assets/d7a17993-952a-4412-a035-dcb048125a3a.png
© hitps/packti00azure.. O~ & C | @ Microsoft Azure App Servic

COOKIE USE By using this site, you agree to the use of cookies for analytics, personalized content, x
and ads.

Deep Dive into Azure App Service: A Platform to Build Modemn Applications

By Cory Fowler, Sunitha Muthukrishna, Yochay Kiriaty, Apurva Joshi, Byron Tardif...

Want to get hands-on with the Azure App Service team? Check out this video for detailed demos on the
service's tools and features, along with helpful tips from experts who walk you through how to build and
deploy your apps on Azure App Service. See easy deployment options that streamline your DevOps cycles,
and leam to manage and configure your sevices. Dive into monitoring and troubleshooting toals that are
at your fingertips. Need to scale your apps to meet traffic demand? Leam that, too. Plus, discover Azure ..

This course s governed by thislicense and by accessing this course, you agree to abide by tislicense. fyou do not agree, do
ot access ths course. See Prvacy & Coodes,

Start lesson

assets/c073bba2-303e-435b-8f1f-9eaf5809f509.png
Users\administrator. RESKIT\Documents> Set-DscLocalConfiguratiomManager —ComputerName SRV2 *
“path C:\Dsc
Verbose

VERBOSE: performing the operation "Start-DscConfiguration: SendMetaconfigurationapply” on target
"MSFT_DScLocalConfiguratioranager .
VERBOSE: Perform operation *Invoke CimMethod® with following parameters,

“methodNane = Send¥etaConfigurationapply, 'className’ = MSF
T_DSCLocalconf guratiorsanager , ‘namespaceNane” = root/Microsoft/windows /Desiredstateconfiguration”.
VERBOSE: An LW method call arrived from computer SRV1 with
user 51d §1-521-71504205-2702507345-667615206-500.

[MSFT_pScuetaconfiguration]
[NSFTDStMetacontiguration]
[NSFT_DSCMetaconfiguration] in 0.0310 seconds.
[NSFT_DSCMetaconfiguration]

in 0.0940 seconds.
Operation *Invoke Cimethod’ complete.

Set-DscLocalconfiguratiorManager Fimished in 1.291 seconds.

assets/26d4551f-f21f-457e-85cc-886921184b5c.png
PS C:\> Get-TlsCipherSuite |
Format-Table Name, Exchange, Cipher, Hash, Certificate

Name Exchange Cipher Hash Certificate

TLS_ECDHE_ECDSA_WITH AES_256_GCM_SHA384 ECDH AES
TLS_ECDHE_ECDSA_WITH AES_128_GCM_SHA256 ECDH AES
TUS_ECDHE_RSA_WITH AES_256_GOM_SHA384 ~ECDH AES
TUS_ECDHE_RSA_WITH AES_128_GOM_SHA256 ECDH AES
TLS_DHE_RSA WITH_AES_256_GM_sHA384 DH AES
TLS_DHE_RSA WITH_AES_128_GCM_SHA256 DH AES
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384

TLS_ECDHE_ECDSA_WITH AES_128_CBC_SHA256 ECDH AES
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384.
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

58
E
&8
33
1

RSA
RSA
RSA
RSA
EcDsA.
RSA
RSA
TLS_ECDHE_ECDSA_WITH AES 256_CBC_SHA ECDH AES SHAL ECDSA
TLS_ECDHE_ECDSA WITH AES 128 CBC_SHA ~ ECDH AES SHAL ECDSA
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA ECDH AES SHAL RSA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA ECDH AES SHAL RSA
TLS_DHE_RSA_WITH_AES_256_CBC_SHA oH AES SHAL RSA
TLS_DHE_RSA WITH_AES_128_CBC_SHA oH AES SHAL RsA
TLS_RSA_WITH_AES_256_GCM_SHA384. RSA ags. RSA
TLS_RSA WITH_AES_128_GCM_SHA256 RSA AES RSA
TLS_RSA WITH_AES_256_CBC_SHA256 RSA AES SHA256 RSA
TLS_RSA WITH_AES_128_CBC_SHA256 RSA AES SHA256 RSA
TLS_RSA WITH_AES_256_CBC_SHA RSA AES SHAL RSA
TLS_RSA WITH_AES_128_CBC_SHA RSA AES SHAL RsA
TLS_RSA WITH_3DES_EDE_CBC_SHA RSA 3ES SHAL RSA
TLS_DHE_DSS_WITH_AES_256_CBC_SHA256.
TLS_DHE_DSS_WITH_AES_128 CBC_SHA256 DH AES SHA256 DSA
TLS_DHE_DSS_WITH_AES_256_CBC_SHA oH AES SHAL DsA
TLS_DHE_DSS_WITH_AES_128_CBC_SHA oH AES SHAL DSA
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA o1 3DES SHAL DSA
TLS_RSA_WITH_NULL_SHAZ56 RSA SHA256 RSA
TLS_RSA WITH_NULL_SHA RSA SHAL RsA
TLS_PSK WITH_AES_256_GCM_SHA384.
TLS_PSK WITH_AES_128_GCM_SHA256 Sk AES
TLS_PSK WITH_AES_256_CBC_SHA384 PSK AES SHA3SH
TLS_PSK WITH_AES_128_CBC_SHA256 PSK. AES SHA256
TLS_PSK WITH_NULL_SHA384 PSK. SHA3B4
TLS_PSK_WITH_NULL_SHA256 PSK SHAZS6
TLS_RSA_WITH_RC4_128_SHA RSA R4 SHAL RSA
TUS_RSA_WITH_RC4_128 D5 RSA RC4 MDs RSA

assets/757628ca-3f9a-45b1-9908-545315dd3eb0.png
Name State ~CPUUsage(%) MemoryAssigned(W) Uptime status Version

WL Running 0 1024 00:00:00.0740000 Operating normally 8.0

\> Wait-WM -VMName VM1 -For IPAddress
\> Get-WM -Name W1

Name State ~CPUUsage(¥) MemoryAssigned(M) Uptime Status Version

WL Running 1 1024 00:01:08.0590000 Operating normally 8.0

assets/43f879ba-a19e-40cd-9666-0db1f40a3770.png
PS Ci>

Name

Www2

New-WebApplication -Name Www2 -Site www2

-ApplicationPool Www2Pool ~
-PhysicalpPath C:\inetpub\www2

Application pool Protocols Physical Path

C:\inetpub\www2

assets/3ba9c1b3-30c7-47f5-aaee-2910acb6e6a7.png
PS C:\> $Bloburl = "$($Blob.Context.BlobEndPoint)$CName/$($B1ob.name) "

https //packt100sa.blob. core.windows . net/packtcontainer/azurefile. txt

assets/8c6b919a-dd55-45f1-a533-c0aa4f2f50ea.png
:\> Get-ClusterResource |
Where-Object OwnerGroup -Match *Available’
Add-ClusterSharedVolune -Name WM

Name State Node

Cluster Disk 1 Online Fs1

assets/b4fa273e-b5ee-4807-aece-ef1ced1eb1ba.png
There
There
There
There
There
There
There

147
193
167
175
173
147

counters.
counters
counters
counters
counters
counters
counters

[de1]
[ca]
[dg]
[srvi]
[Fs1]
[Fs2]
[psrvl

assets/aacea73e-a8ec-4997-9165-2b3391e993aa.png
+\Windows\system32> Get-Help Get-TreeSize -Examples

NAME
Get-Treesize

SYNOPSTS.
Recursively Tists provider items and sums their lengths

EXAMPLE 1

PS C:\»Get-Treesize

Localization\ 12021
En-us\ 2025
En\ 1339

EXAMPLE 2

PS C:\»Get-Treesize -ShowFiles

Localization\ 12021
Localization.psdl 6698
En-US\ 2025

|- Usersettings.psd1 1000
|- Localization. psdl 958

|- numbers. psd1 67
UserSettings.psdl 1959
En\ 1339

|- Usersettings. psa1 1253
|- numbers. psd1

EXAWPLE 3

PS C:\»Get-Treesize | Format-Custom

assets/daf59116-e0c7-44c6-8a90-8c09aa768685.png
Ps c:\foo> Import-Module -Name $NsigFolder
Get-Command -Module NanoServerImageGenerator

commandType Name

Function Edit-NanoServerImage
Function Get-NanoServerPackage
Function New-NanoServerImage

NanoServerImageGenerator
NanoServerImageGenerator
NanoServerImageGenerator

assets/aac6e275-699b-4bdd-9446-e963067dde8b.png
STEP 5
PS C:\foo> New-DfsnRootTarget -Path \\Reskit.Org\shareData °
~TargetPath \\Srv2\ShareData
New-DfsnRootTarget : The requested object could not be found.
At Tine:l char:l
+ New-DfsnRootTarget -Path \\Reskit.Org\sharebata °
+ CategoryInfo ObjectNotFound: (MSFT_DFsNamespaceRootTarget :ROOT\Microsoft\. . .spaceRootTarget) [New-DfsnRootTarget], CimException
+ FullyQualifiedErrorTd : MI RESULT 6,New-DfsnRootTarget

PS C:\foo» Get-DfsnRootTarget -Path \\Reskit.Org\shareData
Path Targetpath State ReferralPriorityClass ReferralPriorityRank

\\Reskit.Org\ShareData \\Srv1.Reskit.Org\shareData Online sitecost-normal 0
\\Reskit.Org\ShareData \\Srv2.Reskit.Org\ShareData Online sitecost-normal)

assets/18b0aa11-44cb-4c73-8ef6-b8b31e534d52.png
B Load Hive

+[0

“] o | Search Registry

Organize = Newfolder
[Rektapp A Nome

This PC [lea
B Deskiop [] COMPONENTS
Documents [orauLT
] oRvERS
& Downloads o
& Music [SCHEMADAT
=] Pictures [] SECURITY
B Videos] soFTwaRE
i Local Disk (C) [0 svstem

o DVD Drive (D) S,
— New Volume ()

& Network v o<

Date modified

041272016 17:42
05/01/2017 2312
041272016 17:42
05/01/2017 2304
16/07/2016 1425
05/01/2017 1042
041272016 17:42
04/12/2016 17:42
041272016 17:42

File name: | SOFTWARE

Files
Open

- m 0
e
File

File

File

File

File
DAT File
File

File

File

assets/2b4dca06-13f3-49df-a7b0-8343bb71e541.png
Ps

\> Get-W -Name W1

Name State CPUUsage(%) MemoryAssigned(M) Uptime status version

assets/38208840-5c75-4e95-a375-6433240d3bcc.png
\> Get-W ~ComputerName HV2

Status Version

Name State CPUUsage(%) MemoryAssigned(M) Upti

Operating normally 8.0
2.4220000 Operating normally 8.0

Wiz off o 0 0.
WML - Test Running 1 4096

assets/0ab0b98d-bd77-4cee-8873-3ef230c7907c.png
PS C:\> certutil -dump Sto

X509 Certificate Revocation List:
Version: 2

Signature Algorithm:
‘Algorithm ObjEctTd: 1.2.840.113549.1.1.10 RSASSA-PSS
Algorithm Paraeters
0000 30 34 a0 OF 30 0d 06 09 60 86 48 OL 65 03 04 02
0010 01 05 00 al 1c 30 1a 06 09 2a 86 48 86 7 0d 01
0020 01 08 30 0d 06 09 60 8 45 OL 65 03 04 02 01 05
0030 00 a2 03 02 01 20

2.16.840.1.101.3.4.2.1 sha256 (shazséNosign) 4

05 00

12

.113549.1.1.8 mgf1
2.16.840.1.101.3.4.2.1 sha256 (sha256NoSign)
05 00

0x20 (32)
TIssuer:
Ch=ReskitIssuing CA +—————
DC=Reskit
DC=org.
Name Hash(shal): €232d9004c223e170f064c82b0a490bee2f20aaa
Name Hash(nds): 97795df84F336ae126e69bactobf7e3s

ThisUpdate: 02/02/2017 00:16
NextUpdate: 16/02/2017 12:36
CRL EREries: 0 oo
CRL Extensions: 4
2.5.29.35: Flags = 0, Length
Authority Key Identifier
KeyID=60 84 26 cf 53 1b ee 96 €9 61 02 7 d9 31 el ee f1 1e 93 11

15

assets/ce552bc7-0491-4d3a-b4c6-4c2910df32e3.png
~WiName W1

Name State CPUUsage(¥) MemoryAssigned(4) Uptime status Version

572 15:04:52. 9640000 Operating normally 8.0

\> Resume-VM -VMName WML
PS C:\> Get-w ~WMName W1

Name State CPUUsage(%) MemoryAssigned(M) Uptime status Version

Wi Running 0 572 £56.1310000 Operating normally 8.0

assets/90a8d6dc-cc9a-415e-a780-c5e9c1ec577f.png
PS C:\> Get-ChildItem -Path $CEPath

Directory:

Windows\System32\Certsrv\CertEnroll

Mode LastiriteTine Length Name

515 Reskit Root CA.crl
1401 ROOT_Reskit Root CA.crt

01/02/2017
31/01/2017

assets/89b8528f-905d-42f8-8a26-049d36592bc8.png
s

\> Add-DHCPServerSecurityGroup —Verbose

VERBOSE: Adds DHCP users and DHCP adwinistrators security groups on the DHCP server DC1

assets/7eebad14-6d2b-4293-8598-090716154039.png
PS C:\> $wsusserver = Get-WsusServer
$ApprovalRule = $wsusserver.CreateInstallApprovalRule("cCritical Updates™)

assets/a88a2d8d-c2ab-44bf-98a1-df5ec78130f1.png
\> Start-weBackup -Policy $00Pol
Initializing the list of items to be backed up...

Creating a shadow copy of the volumes in the backup...
Updating the backup for deleted itens. ..

Scanning the file systen...

Volume 1 (79%) of 1 volume(s).

Compacting the virtual hard disk for volume C:, 33% completed.
Creating a shadow copy of the backup storage location(s). .-
The backup operation completed.

assets/da549616-01eb-43d3-b540-e8cc6c9f42a7.png
PS C:\> $RResults.count
43

PS C:\> $RResults | Group-Object SEVERITY |
Format-Table -Property Name, Count

Name
Information 35
Error 1

Warning 7

assets/aebc0266-4970-48d5-a4f2-d6e8bda47eb2.png
PS C:\> Get-WsusClassification

Applications
critical Updates
pefinition Updates
Driver Sets
Drivers

Feature Packs
Security Updates
Service Packs
Tools

Update Rollups
Updates

Upgrades

Ip

5c9376ab-8ce6-464a-b136-22113dd69801
e6¢f1350-c01b-414d-a61f-263d14d133b4
€0789628-ce08-4437-be74-2495b842f43b
77835c8d-62a7-41f5-82ad-f28dlafle3bl
ebfclfc5-71a4-4f7b-9aca-3b9a503104a0
b54e7d24-7add-428f-8b75-90a396fa584f
0fal201d-4330-4fa8-8ae9-b877473b6441
68c5b0a3-dla6-4553-ae49-01d3a7827828
b4832bd8-e735-4761-8daf-37f882276dab
28bc880e-0592-4cbf-8f95-c79b17911d5F
cdsffdle-e932-4e3a-bf74-18bf0b1lbbd83
3689bdc8-b205-4af4-8d4a-a63924c5e9d5

assets/d61ad7d6-c9f5-4804-96a4-180b5621257b.png
A prerequisite check for the Hyper-V feature failed.
1. Hyper-V cannot be installed: The processor does not have required virtualization capabilities.
+ CategoryInfo TnvalidOperation: (Hyper-V:ServerComponentiirapper) [Install-windowsFeature], Exception
+ FullyQualifiedErrorTd : Alteration_PrerequisiteCheck Failed,Microsoft.windows. Servertanager . Conmands. Addwindow
sFeatureConmand
"+ PSComputerName

v

assets/1b5271db-ab9e-41b8-a43b-ffa2624830ce.png
PS C:\> Add-NIbClusternode -NewNodeName NLB2 °
—NewNodeInterface 'Ethernet’
—InterfaceName 'Ethernet’

Name state Interface HostID

NLB2 Converged(default) Ethernet 2

assets/6acfc041-0383-4037-a856-9a2ccd4becf7.png
PS C:\> Get-NetIPConfiguration

InterfaceAlias Ethernet
InterfaceIndex H

InterfaceDescription : Microsoft Hyper-V Network Adapter
NetProfile. Name Reskit.Org

IPvaAddress 10.10.10.11

IPv6DefaultGateway

IPvaDefaultGateway : 10.10.10.254

DNSServer £ 10.1010.10

PS C:\> Test-NetConnection -ComputerName DC1 -port 389
ComputerNane ncL

RemoteAddress 10.10.10.10

RemotePort. 389

InterfaceAlias : Ethernet

SourceAddress 10.10.10.11

TcpTestsucceeded : True

PS C:\> Resolve-DnsName -Name dc2.reskit.org -Server DCL

DC2.Reskit.org Aama 1200
DC2Reskit.Org A 1200

Section

Question
Question

IPAddress

Fe80: :6455 :FbFF:194b:Fedh
10.10.10.11

assets/882202fc-a90b-491a-ab22-ce73dfd27e3b.png
((:/(:y @ hitps//packt1000sa blob.core windows.net/packicontainer/szurefilett O + @ C

& metomsinceind. x| | DO

‘This is a small blob!!

assets/1b72586b-28a9-4818-80b9-846449d7716c.png
PS C:\foo>Install-PackageProvider -Name Chocolatey -Verbose

assets/1687bf4b-912c-4d0b-9f2e-2f0d13f2905e.png
PS C:\> Get-AzureRmLocation | Sort-Object Location |
Format-Table Location, Displayname

Location DisplayName
australiaeast Australia East
australiasoutheast Australia Southeast
brazilsouth Brazil South
canadacentral Canada Central
canadacast Canada East
centralindia Central Indi
centralus Central Us
eastasia East Asia
eastus. East US

eastus2 East US 2
japaneast Japan East
Japanwest Japan West
koreacentral Korea Central
koreasouth Korea South
northcentralus North Central US
northeurope North Europe
southcentralus South Central US
Southeastasia Southeast Asia
southindia South India
uksouth UK South

ukwest. UK West
westcentralus West Central US
westeurope West Europe
westus. West US

westus2 West US 2

assets/09408dc3-c5cd-4550-bd56-655cea590ccc.png
PS C:\> $Sak = Get-AzureRmStorageAccountKey -Name $SAName
-ResourceGroupName $RgName
PS C:\> $sak

KeyName Value Permissions

Full
Full

keyl DhInWVIT4f1CNLhDSKTI22pRPtFCSCOBVWBSL ZICIrtFb6VWFiAX52pCd3apziIPs420pSlosvIHPSVevt /57
key?2 gKxqYQc+W4a3wf3jghI1RXNS4PVs /18qOX59xQmzS5Unt1BYZIYT6PrAVAMO661iiGndc 1 tWpg/51KnNOroUeA-

assets/16d66425-82a7-47e4-be32-65c6834e757d.png
Set-DncpServerV4OptionValue -DnsDomain Reski.Org .
0/1 compieted.

Validating the DN senvers...
Validating the DN server 10.10.10:110.

assets/e5319c58-593d-4b6a-8309-27973e0f6762.png
PS C:\> (Get-VM -Name WM1).ConfigurationLocation
i
PS C:\> Get-VMHardDiskDrive -WiName W1

WiName ControllerType ControllerNumber ControllerLocation DiskNumber Path
w1 e) o C:\WML\Virtual Hard Disks\VML.Vhdx

assets/331895f3-5876-4e21-aa3d-75f2427333cc.png
An item with the specified name C:\Backup already exists.
+ CategoryInfo Resourcexists: (C:\Backup:String) [New-Ttem], TOException
+ FullyQualifiederrorTd : DirectoryExist,Microsoft.powershell.Commands. NewItenComnand
+ PSComputerName vy

The name has already been shared.
+ categoryInfo © NotSpecified: (MSFT_SMEShare:ROOT/Microsoft/windows/SME/MSFT_sEshare) [New-Smbshare], CimException
+ FullyqualifiederrorTd : Windows System Error 2118,New-smbshare
+ PSComputerName V1

assets/20b36167-cc55-4834-9ce7-34d0377797d8.png
Timestamp Countersamples

14/01/2017 00:42:44 \\srvl\memory\page faults/sec :
0.999193451046316.

14/01/2017 00:42:45 \\srvl\processor ()\% processor time :
1.62150741984958

\\srvi\processor (_total)\¥ processor time :
1.62150741984958

assets/8caa3b7d-456f-402d-ad09-75f9b14f1075.png
s

\> Get-SMBShare -Name DSC*
Name ScopeName Path Description

DSCConfiguration = C:\DscConfiguration DSC Configuration Share
DSCResource - DSC Resource Share

assets/1e30e042-52a2-4d41-af54-0fee669b8d0a.png
PS C:\> Invoke-BpaModel -ModelId Microsoft/Windows/FileServices

Model1d : Microsoft/windows/Fileservices
SubMode11d

Success True

ScanTime 21/07/2017 11:21:59
ScanTimeUtcoffset

Detail : {SRvl, Srvl}

assets/a30cd397-21c9-4f80-9e61-8fe44d58beb1.png
=
PS C:\> nslookup —querytype=all DCL.Reskit.Org
Server: DCL.Reskit.Org
Address: 10.10.10.10
DC1.Reskit.Org internet address = 10.10.10.10

s

\> Resolve-DnsName —Name DCL.Reskit.Org ~Type ALL
Type TIL Section

DCL.Reskit.Org A 3600 Answer

assets/9e9a271d-2539-4d5e-ae92-5df85cedd563.png
Ps C:\foo> Get-vMswitch | Select-Object -ExpandProperty Name
PubTic-wifi
Internal

Ps c:\foo> $switchName = "Internal’

assets/420d01bb-018d-40d3-a5a7-e128ee56bfa3.png
2\> $Drive = Get-CinInstance -Class Win32_volume |
Where-Object Label -eq "Recipe 6-1'
\> Set-CimInstance -InputObject SDrive -Property @{Driveletter="q:'}
\> Get-CinInstance —Class Win32_Volume |
Where-Object Label -eq 'Recipe 6-1' |
Format-Table -Property Driveletter, Label

Driveletter Label

Recipe 6-1

assets/94d0e055-34b1-43d3-9e68-dd591891e2ac.png
PS C:\> $Pol

Schedule {20/03/2017 06:00:00}
BackupTargets {Recipe 6-1}
VolumesToBackup {System Volume (C)}
FilesSpecsToBackup

FilesSpecsTobxclude

ComponentsToBackup

BMR. False

Systemstate False
Overwrite0ldFormatvhd : False

VssBackupOptions : VssCopyBackup

assets/1e83148e-39a1-401c-aea7-485022b069ed.png
PS C:\> $EventKey='HKLM\Software\Policies\Microsoft\Windows\EventlLog\EventForwarding\SubscriptionManager"
PS C:\> $TargetAddress="Server=http://DCl.reskit.org:5985/wsman/SubscriptionManager/WeC"
PS C:\> Set-GPRegistryvalue -Name "Event Source" -Key SEventKey -

-ValueName '1' ~

~Type STRING °
-value $TargetAddress
DisplayName : Event Source
DomainName : Reskit.org
Owner RESKIT\Domain Admins
Id 83dageld-ead8-4a78-a2b1-27095aee808e
Gpostatus AllsettingsEnabled
Description
CreationTime 04/09/2017 14:34:23
ModificationTime : 05/09/2017 1! 8
Userversion AD Version: 0, SysVol Version: 0

ComputerVersion : AD Version: 5, SysVol Version: 5
wmiFilter H

assets/f02092ee-1560-4421-8928-ecc28cea1bfc.png
PS C:\» Get-DscResource -Name File | Format-List -Property *
ResourceType : MSFT_FileDirectoryConfiguration

Name File

FriendlyName : File

Module

ModuleName

Version

Path

ParentPath C:\Windows\systen32\Configuration\Schema\MSFT_FileDirectoryConfiguration
Inplementedas : Binary

CompanyName.

Properties {DestinationPath, Attributes, Checksu

assets/0c9168cc-cdd1-499d-bef5-d98dd4a28fad.png
= New-OBPolicy

Backupschedule
DsList
PolicyName
RetentionPolicy
State New
PolicyState : valid

assets/cc03a479-437a-49f2-a25c-34906b8d419a.png
PS C:\> New-SWBShare —Name SalesData
Path $sdFolder °
~Description 'Salesbata’

ScopeName Path Description

Salesbata FS sS:\salesbata Salesbata

assets/3d68cdab-1fde-4921-b4cc-1b5c09887a99.png
Select a system image backup

This computer wil be restored using the system image.
Everything on this computer wil be replaced with the
information in the system image.

Troubleshooting nformation for BMR:
hitp:/go.microsoft.com/fink/p)2Linkld=225038

Use the atest avaiable system image(recommended)

Location:
Date and time:

Computer:

@ Select a system image.

assets/c63146b1-a651-4a28-9777-eda4d36dd3d0.png
PS C:\> Update-DscConfiguration —ComputerName SRV2 -Wait -Verbose
VERBOSE: Perform operation *Invoke Cimethod- with following parameters,

Resource] [[WindowsFeature]Telnerclient]
Test 1 [[WindowsFeature]Telnetclient]
[[windowsFeature]TelnetCTient]
[{windowsFeature]TelnetcTient]
Test] [[WindowsFeature]Telnetclient]
set 1 [[windowsFeature]TelnetcTient]
[[windowsFeature]TelnetCTient]
[{windowsFeature]TelnetcTient]
[[WindowsFeature]TelnetcTient]
[[windowsFeature]TelnetCTient]
[{windowsFeature]TelnetcTient]
[[WindowsFeature]TelnetcTient]
set 1 [[windowsFeature]TelnetClient]
Resource 1 _[[WindowsFeature]Telnetclient]
Operation *Invoke Cimethod’ complete.
Tine taken for configuration job to complete is 25.194 seconds

[] Executing Get-Action with configuration *s checksum returned result status: GetConfiguration.
[Checksum 1 different. LoM will execute Getconfiguration to pull conFiguration -

[Executing GetConfiguration succeeded. Configuration was pulled from server.

[1 Applying the new configuration(s) puiled.

The operation 'Get-windowsFeature’ started: Telnet-Client
The operation 'Get-windowsFeature’ succeeded: Telnet-Client
in 1.0930 seconds.

Installation started
Continue with instaliztion?

Prerequisite processing succeeded.
Installation Succeeded.

Successfully installed the feature Telnet-Client.
in 23.2420 seconds.

assets/a1b70de7-fdc4-491b-82a2-4a92e68eaabe.png
PS C:\> ($Results | where-Object Severity -eq 'Error').count
o

assets/7323a202-0efe-4fde-a946-8636331820f4.png
Sign in to your account

Microsoft Azure

Work or school, or personal Microsoft account

Email address or phone number

r
Password

Can't access your account?

assets/cc180e89-221e-4127-8c19-a45c914b2edf.png
PS C:\> Test-Connection -ComputerName DC1

Source Destination IPV4Address IPV6Address Bytes Time(ms)

SRV1 DCl 10.10.10.10 32 0
SRV1 DCcl 10.10.10.10 32 0
SRV1 DCl 10.10.10.10 32 0
SRV1 Dcl 10.10.10.10 32 0

assets/3cf53e30-5d3c-4930-b8f3-b318b318de46.png
PS C:\> SCredPath \Foo"
PS C:\> SCredsFile = Get-AzureRmRecoveryServicesVaultSettingsFile -Backup -Vault SVault -Path $CredPath
PS C:\> "Credential File Path: [{0}]" -f SCredsFile.FilePath

Credential File Path: [C:\Foo\RecipeVault_Mon Mar 27 2017.VaultCredentials]

assets/71a4a8f0-75aa-4f2a-ad93-2fcf7aa69144.png
PS C:\> Get-DfsrMenber |
Format-Table -Property Groupname, DomainName, DNSName,

GroupName DomainName DnsName Description

FSShareRG Reskit.Org FS1.Reskit.Org File Server members
FSShareRG Reskit.Org FS2.Reskit.Org File Server members
DCShareRG Reskit.Org DC1.Reskit.Org DC Server members
DCShareRG Reskit.Org DC2.Reskit.Org DC Server members

Description

assets/b1308c7d-d2f6-4ef8-83de-e0a70109b84b.png
PS C:\> $Mount = 'Z:'
PS C:\> Get-Smbmapping -LocalPath $Mount -ErrorAction SilentlyContinue |
Remove-Smbmapping -Force -ErrorAction SilentlyContinue
PS C:\> $Rshare = "\\$SaName.file.core.windows.net\$shareName"
PS C:\> New-SmbMapping -LocalPath $Mount -RemotePath SRshare °
-UserName $SAName -Password $Key

Status Local Path Remote Path

oK z

\\packt100sa. file. core.windows .net\packtshare

assets/b5361b00-c074-4715-9f30-308af5105470.png
PS C:\> $updateClassification = $ApprovalRule.GetUpdateClassifications()

$updateClassification.Add(($wsusserver.GetUpdateClassifications() |
where-object -Property Title -eq 'Critical updates'))

$updateClassification.Add(($wsusserver.GetUpdateClassifications() |
where-object -Property Title -eq 'Definition Updates'))

$ApprovalRule.SetUpdateclassifications($updateclassification)

0

1

assets/c092769e-1ddb-41c8-90e5-60ca18f64302.png
PS C:\> Rename-Item -Path C:\DSC\SRV2.mof
~NewName C:\DSC\$Guid.MOF

> New-DscChecksum -Path c:\DSC

:\> Get-ChildItem -Path C:\DSC

Directory: C:\DSC

Mode LastWriteTime Length Name

22/04/2017 20:51 1850 5d79eebe-0420-4c98-9cc3-9f696901a816.MOF
22/04/2017 20:52 64 5d79ee6e-0420-4c98-9cc3-9f696901a816.MOF . checksum

assets/17b4dc01-9b23-43b5-b77d-b9d825d72843.png
Ps Ca\> EztI(inInstan(e ~ClassName Win32_PerfFormattedData_Perf0s_Memory

Caption
Description
Name
Frequency Object
Frequency_PerfTime
Frequency_Sys100NS
Timestamp_Object
Timestamp_PerfTime
Timestamp_Sys100NS
Availablebytes
AvailablekBytes
AvailableBytes
CacheBytes
CacheBytesPeak
CacheFaultsPersec
CommitLimit
Committedsytes
DemandZeroFaultsPersec
FreeAndZeroPagel istBytes
FreeSystenPageTableEntries
LongTermaverageStandbyCacheL ifetines
ModiFiedPagel istBytes
PageFaultspersec
PageReadsPersec
PagesInputPersec

Per

assets/a3dd9ae4-c5aa-442f-9cab-83d7a513a3ea.png
PS C:\> $LocEventLogs
PS C:\> $LocEventLogs.count
385

PS C:\> $LocEventLogs |

Get-WinEvent -ListLog *

Sort-Object -Property RecordCount -Descending |

Select-Object -First 10

LogMode MaximumsizeInBytes RecordCount
Circular 20971520 61837
Circular 20971520 27148
Circular 20971520 19979
Circular 20000000 19253
Circular 10485760 17476
Circular 15728640 15487
Circular 4194304 8245
Circular 8388608 4898
Circular 1052672 2566
Circular 1052672 2524

System
Security

Application
Microsoft-Windows-Store/Operational
Microsoft-wWindows-TaskScheduler/Operational
windows Powershell
Microsoft-Windows-GroupPolicy/Operational
Microsoft-Windows-smbClient/Security
Microsoft-Client-Licensing-Platform/Admin
Microsoft-Windows-Kernel-I0/Operational

assets/12071a04-b68e-4454-9254-cb5f30adf7cb.png
\> SHvFolder = 'C:\ClusterStorage\Volumel\HData"
New-Ttem -Path SHvFolder -ItemType Directory |
OUT-NULL
:\> New-SMBShare -Name SalesHV -Path SHvFolder °
~Description 'Sales HV (CA)' °
—FullAccess 'Reskit\IT Tean' *
~ContinuousTyAvailable:Strue

Name ScopeName Path Description

SalesHV SALESFS C:\ClusterStorage\Volumel\HVDATA Sales HV (CA)

assets/5063e5d3-4168-498c-b98a-6b13fe9fae3b.png
PS C:\>
PS C:\>
PS C:\>
PS C:\>
PS C:\>

!

$NanoBaseFolder = "C:\NanoBase’

$vMFolder = 'D:\vMs'

$NanoComputerName = "NANOL'

$NanovMFolder = Join-Path -Path $vMFolder -childPath $NanoComputerName

$NanovMPath = Join-Path -Path $NanovMFolder -childrath $("{0}.vhdx" -f $NanoComputerName)

assets/e0924243-a5d5-4d5d-a550-b18b0d1841e9.png
PS C:\> Get-BpaModel | Format-Table -Property Name, Id

Name

RightsManagementservices
Certificateservices
Cluster-Aware Updating

Microsoft DHCP Server Configuration Analysis Model

DirectoryServices

Microsoft DNS Server Configuration Analysis Model

File Services

Hyper-V

LightweightDirectoryservices

Network Policy and Access Services (NPAS)

Microsoft Remote Access Server Configuration An...

TerminalServices
windows Server Update Services

Microsoft Volume Activation Configuration Analy...

WebServer

1d

Microsoft/windows /ADRMS
Microsoft/windows/Certificateservices
Microsoft/windows /ClusterAwareUpdating
Microsoft/windows /DHCPServer
Microsoft/windows/Directoryservices
Microsoft/windows/DNSServer
Microsoft/windows/Fileservices
Microsoft/windows /Hyper-v
Microsoft/windows/LightweightDirect. ..
Microsoft/windows/NPAS

Microsoft/Windows /RemoteAccessServer
Microsoft/windows/TerminalServices
Microsoft/windows /UpdateServices
Microsoft/windows/VolumeActivation
Microsoft/windows /Webserver

assets/cdfdf4ab-3275-4f85-aee5-fb49cb6f97c3.png
Ps c:\foo> $Cimsession = New-CimSession -Credential $credential -ComputerName $NanoServerIP
$cimsession

Id g il

Name : Cimsessionl

Instanceld : c8a93c75-c063-4d49-ba07-7b682b7bl1a4
ComputerName : 10.10.10.151

Protocol : WSMAN

Ps c:\foo>

assets/8c17130c-d063-4dca-8a98-daed5812131d.png
PS C:\> Get-W -WMname W1

Name State CPUUsage(%) MemoryAssigned(M) Uptine
$17.5450000 Operating normally 8.0

status Version

Wi Running 0 598

\> Get-W -VMName VML

Status Version

Name State CPUUsage(%) MemoryAssigned(M) Uptime
£00.7290000 Operating normally 8.0

Wi Running 8 1024 00:

\> Wait-Vm -VMName VM1 -For TPaddress
\> Get-W -VMName WML

Status Version

Name State CPUUsage(¥) MemoryAssigned(M) Uptine

Wi Runming 4

assets/320f72a1-9806-4ee3-b1d0-9513d42ae5fb.png
PS C:\> $Pip = New-AzureRmPublicIpAddress -Name $IPName
-ResourceGroupName $RgName
-Location $Locname -AllocationMethod Dynamic
-Tag @{Owner="PACKT";Type="IP'}
WARNING: The output object type of this cmdlet will be modified in a future release.

PS C:\> $Pip | FT Name, IPAddress,ResourceGroup*, Location, *State

Name Tpaddress ResourceGroupName Location Provisioningstate

Packt_IP1 Not Assigned packt_rg uksouth Succeeded

assets/b519873f-e4d0-40bf-9f54-cb04100f621f.png
PS C:> $sb = {
Install-windowsFeature -Name Hyper-Vv
~IncludevanagementTools}
PS C:> Invoke-Command -ComputerName HV1, HV2 °
-scriptslock $sb

PSComputerName : HV2
Runspacerd ae4a4853-631e-4d5c-a33d-e10886175ea3

success True

RestartNeeded : Yes

FeatureResult : {Hyper-v, Hyper-v module for windows Powershell, Hyper-v GUI Management Tools,

Remote server Administration Tools...}
Exitcode : successRestartRequired
WARNING: You must restart this server to Finish the installation process.

PSComputerName : HVL

Runspacerd 86417F8F-27c0-4755-bcFa-cc0113854628
success True

RestartNeeded : Yes

Featureresult : {Hyper-v, Hyper-v module for windows Powershell, Hyper-v GUI Management Tools,

Remote server Administration Tools...}
Exitcode : successRestartRequired
WARNING: You must restart this server to inish the installation process.

assets/8b0b1564-04bc-4c98-aceb-a28e063b563e.png
s

:\> Get-Cinclass -ClassNane Win32-perf= | Measure-Object

:\> Get-Cinclass -ClassNane Win32*perfFormatted= | Measure-Object

Count

assets/8b1c79eb-a2f4-43ef-92b1-b06f7a57e64b.png
\> Set-Location -Path
\> New-Ttem -Path 5:\ -Name SalesData -ItemType Directory

Directory: s:\

Mode

Mode

LastiriteTine Length Name

07/02/2007 22
\> "Testing 1-2-3' | Out-File -FilePath s:\SalesData\Test. txt
\> Get-ChildItem s:\SalesData

:\Salesbata

LastiriteTine

07/02/2007 22

assets/c88a1fde-0eaa-4a72-8fcd-7756999cb61a.png
PS C:\> $ApprovalRule.Enabled = $true
$approvalRule.save()

assets/08296ea5-fdb5-4d01-ac68-e7ed6d18f784.png
& Computer Management
fly Acion View Help
|z EE =

(5 Computer Management (Loca | Volume [Loyout [Type | Fie System] tatus
v I} System Tools —Recipe5-1(Q) Simple Basic NTFS Healthy (Primary Partition)
> (@ Task Scheduler = System Volume (C) Simple Bosic NTFS Healthy (Sytem, Boot, Page File, Active, Crash Dump, P
> (@ Event Viewer = System Volume (T) Simple Basic NTES Heathy (Primary Parttion)
>] Shared Folders . 5
> & Local Users and Groups
> performance o | ——
& Device Manager Basic System Volume (C)
€2 storege 1280068 12800 GB NTFS
> ¥ Windows Server Backup || Online Healthy (System, Boot, Page Fil, Actve, Crash Dump, Primary Partition)
) B Services and Applications
= Disk 1 |
Basic Recipe 5-1 (@)
12688 GB 126.86 GB NTFS 208
Online Heslhy (Primary Partton) Unallocated
= Disk 2 | N
Basic System Volume (T
1280268 12800 GB NTFS 208
Online Healhy (Primary Partton) Unallocated

assets/3ed1341c-1a6c-44c0-a4c2-d11709cd2be5.png
\> Get-ChildItem -Path r:

Directory: R:\

Mode

LastiriteTine

09/01/2017
09/01/2017
08/01/2017
09/01/2017
05/02/2017

39075088 MarsInstaller. exe
4458 VaultCredentialsl
4458 VaultCredentials2

26 recovery. txt
12 sss.txt

assets/2ecb68e5-6074-4ec9-9bb6-bf2c514c3e2c.png
PS C:\> $wsusserver = Get-WsusServer

$wsusserverURL = "http{2}://{0}:{1}" -f ~
$wsusserver.Name,
$wsusserver.PortNumber,

("', "s") [$wsusserver.Usesecureconnection]
$wsusserverURL

http://wsus1:8530

assets/9963ce93-bce4-4b5f-bdce-7ceb35b1f522.png
PS C:\> Get-DhcpServerv4OptionValue -ComputerNane DC1.Reskit.Org
OptionId Name Type value VendorClass
15 DNS Domain Name String {Reskit.Org}

B DNS Servers IPvéAdd... {10.10.10.10}

assets/6ebccbbd-6dc5-4fbc-8078-1c3659b2975d.png
NLB Cluster: Hosted on NLB1

| € resinlereskicorg

assets/73a0b170-647b-44ad-acda-992c8ec83932.png
£ - ¢ @ wainPageot TheReskiap.. x| |

Home Page for ReskitApp Application

The home page of the ReskitApp application pushed by DSC to SRV2

A reference to a second page - click to view page 2

assets/1f98c753-5467-4c82-bf8e-94db8c10c1d0.png
PS C:\> $WSUSSubscription. StartSynchronizationForCategoryonly()
Do {
Write-Output SWSUSSubscription.GetSynchronizationProgress()
Start-Sleep -Seconds 5
3
While (SWSUSSubscription.GetSynchronizationstatus() -ne ‘NotProcessing’)
SuSUSSubscription. GetLastSynchronizationInfo() | Select-Object -Property

TotalItens ProcessedItems Phase.

3139
3139 5 Categories

3139 3139 NotProcessing

assets/3b09bd3d-5229-421a-af58-aa9afe72a2c8.png
PS C:\> certutil.exe —installcert C:\ca.reskit.org.crt
CertUtil: —installCert command completed successfully.
The CertSvc service may need to be restarted for changes to take effect.

\> Start-Service -Name Certsvc
\> Get-Service -Name CertSvc

Status Name DisplayName

Running Certsve Active Directory Certificate Services

assets/68b53e68-3f47-476c-acb6-e5fd77de1cf1.png
PS C:\> certreq.exe —submit 'C:\CA.Reskit.Org ReskitIssuing CA.req’
Requestld: 2

RequestTd: "2"

Certificate request is pending: Taken Under Submission (0)

assets/ff8fec83-14a6-43b3-b0cb-312583e9e0e7.png
& SGCP1 Properties

General Sharing Pots Advanced Color Managemert Securty Device Seftings

S s

to the following port(s). Documents will print to the irs free
checked port.

Port Description Printer ~

[JTS009 COOKHAM24: PRNS:
[JTS010 COOKHAM24: PRN3:

Standard TCP/IP ot SGBRCP1

Standard TCP/IP Port SGCP1 e
Local Port

Enable bidirectional support

Enable printer pooling

o (o] I

X

assets/10ec6ea9-b57b-41c8-b46e-9e46f571cc43.png
PS C:\> $wsusserver = Get-WsusServer

#see overall update status
$wsusserver.Getstatus()

UpdateCount DeclinedupdateCount ApprovedupdateCount NotApprovedupdateCount ComputerTargetCount

assets/ead395cd-f2cd-41b7-a34c-a83fc6f74fd4.png
PS C:\Windows\system32> $TSPack.RootCauses
Name

Default Windows Update data locations have changed
Potential windows Update Database error detected
Windows Update components must be repaired

System date and time aren't correct

assets/11a79823-a319-4c91-a44f-aeced8af9d57.png
A - Virtual Machine Connection

File Action Media

owerShell - o

Copyright (C) 2016 Microsoft Corporation. A1l rights reserved.

PS C:\Users\Administrator.FSi> hostname
=)
PS C:\Users\Administrator.FS1> Get-NetIPConfiguration

Interfacealias Ethernet 2
InterfaceIndex 3
InterfaceDescription : Microsoft Hyper-V Network Adapter #2
NetProfile. Name Reskit.Org 2 (Unauthenticated)
IPvaAddress 10.10.10.150
IPv6Defaul teatenay
TPvaDefaultGatenay
DNSServer : 10.10.10.10

10101011

PS C:\Users\Administrator. FSi> _

assets/afd6ccb8-26ca-44f9-849a-84f04ef2e8cc.png
PS C:\> $SSLCert | New-Item -Path IIS:\Ss1Bindings\0.0.0.0!443

IP Address Port Host Name Store Sites

0.0.0.0 443 Default web Site

assets/c8385f82-f7fc-4067-b68a-5e486de6fb4e.png
PS C:\> Start-DscConfiguration -Path C:\DSC -Wait -Verbose
VERBOSE: Perform operation Invoke CimMethod’ with following parameters,
*"methodName’ ~ SendConfigurationApply, 'className’ = MSFT_DSCLocalConfigurationHanager,

“namespaceNane:

root/Mi crosoft/Windows/DesiredstateConfigurati

VERBOSE: An LCM method call arrived from computer SRVL with user sid S-1-5-21-715049209-2702507345-667613206-500.

[start

[end
[start

set

Test

set

set

1

[Start Resource]
[Start Test

1

1

Resource]

Set
Set

1
1

[[WindowsFeature]ONS]

[[WindowsFeature]ONS]

[[WindowsFeature]DNS] The operation 'Get-WindowsFeature’ started: DNS
[[WindowsFeature]ONS] The operation 'Get-WindowsFeature’ succeeded: DNS
[[WindowsFeature]ONS] in 12.4460 seconds.
[[WindowsFeature]ONS]
[[WindowsFeature]ONs] Installation started.
[[WindowsFeature]ONS] Continue with installation?
[[WindowsFeature]ONS] Prerequisite processing started.
[[WindowsFeature]ONS] Prerequisite processing succeeded.
[[WindowsFeature]ONs] Installation succeeded.
[[WindowsFeature]DNs] Successfully installed the feature DNS.
[[WindowsFeature]ONS] in 80.3570 seconds.
[[WindowsFeature]DNs]

in 94.2100 seconds.

Operation 'Invoke CinMethod’ complete.
Time taken for configuration job to complete is 94.554 seconds

assets/cead1971-6603-48fa-873e-495d077b270b.png
PS C:\> Set-ADUser -Identity ThomasL
-OfficePhone '44168555420" °

-office "Cookham HQ'

-EmailAddress 'ThomasL@Reskit.org" ~

~GivenName "Thomas "'

~Surname ‘Lee® °

—HomePage *Https://tF109.blogspot. com"
PS C:\> Get-ADUser -Identity ThomasL

—Properties Office,0fficePhone,Emailaddress

DistinguishedName : CN=ThomasL ,0U=IT,DC=Reskit,DC=0rg
EmailAddress : ThomasL@Reskit.Org

Enabled : True

GivenName : Thomas

Name : ThomasL

oObjectClass : user

ObjectGUID : d8d326cb-0852-4099-a54b-47e78436c842
office : Cookham HQ

officePhone 1 44168555420

SamAccountName : ThomasL

SID 1 $-1-5-21-715049209-2702507345-667613206-1131
Surname : Lee

UserPrincipalName : ThomasL@Reskit.Org

assets/e2baa67d-5d6c-4809-a1fc-2c2bac365b29.png
Windows Server

Internet Information Services

Bienvenue

&5z% Benvenuto

Bienvenido Hos geldiniz

Welkom

Kowg

Vitejte OploaTe Udvézsljik

Microsoft Velkommen

assets/578985fc-7673-4f6a-9450-7c324860eeb1.png
PSCi\»SSb={ ©
Aa-WindonsFeature -Name FS-DFS-Replication °
CincudehanagenentToots

3
PS C:\> Invoke-Command -Script8lock $sb
~ComputerName DC1, DC2, FS2, FS2, SRVL, SRVZ |
Format-Table -Property PSComputername, FeatureResult, Success

PSComputerNane FeatureResult Success
ez {DFS Replication} True
e {DFS Replication} True
SRV2 {DFS Replication} True
SRVL {DFS Replication} True
FSL {DFS Replication} True

Fs2 {DFS Replication} True

assets/5d4f97a2-eab1-4670-9633-1eff14266426.png
s

\> Get-w -Path DC1

Name State CPUUsage(¥) MemoryAssigned(¥) Uptine Status Version

OCL Runming 0 4000 00:29:30..8490000 Operating normally 8.0

assets/944ee3db-4d59-41cd-9e25-a6209001bffd.png
i,
Choose additional restore aptions

Format and repartiton disks

Select tis to delete any extsting parttons and reformat al ks
on this computer to match the layout of the system mage.

If youire unable to select an option above, instaling the drivers
for the disks you are restoring to might solve the problem.

<gack |[Next>

Cancel

assets/16fe92f0-75d5-4af8-aa41-4ab7b43f9395.png
:\» Install-AdcsCertificationAuthority —CAType EnterpriseSubordinateCA *
—CACommonName 'ReskitIssuing CA' -
—CryptoProviderName 'RSA#Microsoft Software Key Storage Provider’
—KeyLength 4096 "
—HashaTgorithnName SHA256 °
—Confirm:$false

WARNING: The Active Directory Certificate Services installation is incomplete. To]

complete the installation, use the request file "C:\CA.Reskit.Org ReskitIssuing CA.req”

to obtain a certificate from the parent CA. Then, use the Certification Authority snap-in

to install the certificate. To complete this procedure, right-click the node with the name

of the CA, and then click Install CA Certificate. The operation completed successfully. Ox0 (WIN32:

ErrorId ErrorString

398 The Active Directory Certificate Services installation is
incomplete. To complete the installation, use the request
file "C:\CA.Reskit.Org_ReskitIssuing CA.req” to obtain...

o)

assets/ac27e4a0-2727-408f-b513-df289849e3a5.png
Windows PowerShell transcript start

Start time: 20161215173403

Username: RESKIT\EF1

RunAs User: RESKIT\tF1

achine: SG-CL1 (Wicrosoft Windows NT 10.0.14393.0)

Host Application: -ExecutionPolicy ByPass -File Sales Group Logon Script.psi

CLRVersion: 4.0.30319.42000
WSHanStackVersion: 3.
PSRemotingProtocoiversion: 2.3
SerializationVersion: 1.1.0.1

Transcript started, output file is C:\transcript\transcript.txt
=== Logon script - Sales Group Logon SCript.psi

<% Date/time: [15/12/2016 17:34:03]

<<= Sales group printer found

Name ComputerName Type DriverNane PortNane Shared Published

\\psrv\sacey perv Connection NEC Color MultiWriter ... Sales Colour... True True

Windows PowerShell transcript end
End time: 20161215173418

assets/2c7919aa-d350-4497-88ce-ec97d388b14b.png
PS C:\> SMEPol = Get-WEPolicy -Editable
PS C:\> Start-WBBackup -Policy SMBPO1
Creating a shadow copy of the volumes in the backup...
Creating a shadow copy of the volumes in the backup. ..
Creating a shadow copy of the volumes in the backup. ..
Updating the backup for deleted itens...
Volume 1 (0%) of 1 volume(s).

multiple Tines deleited for brevity
Volume 1 (100%) of 1 volume(s).
Creating a shadow copy of the backup storage location(s). ..
The backup operation completed.

assets/f7633c80-dad8-4720-a3cb-0cc5f6c1fe05.png
PS C:\> $wsusserver.GetComputerTargets()

Ful1DomainName
dcl.reskit.org

dg
sg-clil.reskit.org
wsusl.reskit.org
srvl.reskit.org
srv2.reskit.org

IPAddress
10.10.10.10
10.10.10.254
10.10.10.141
=il
10.10.10.50
10.10.10.51

Clientversion
10.0.14393.
10.0.14393.
10.
10.0.14393.
10.0.14393.
10.0.14393.

.10240.1. .

LastSyncTime

12/05/2017
12/05/2017
02/04/2017
12/05/2017
12/05/2017
13/03/2017

osDescription

01:31:17
04:34:07
19:49:01
03:52:08
01:29:02
01:51:16

server
server
10 Pro
server
server
server

2016 Datacenter
2016 Datacenter

2016 Datacenter
2016 Datacenter
2016 Datacenter

assets/5f45c323-030c-47e7-b082-66f0193e32ae.png
PS C:\> Invoke-Command -VMName psdirect *
~Credential $RKCred
-ScriptBlock {hostnane}
Tiger

assets/5a3524e2-3235-4892-8857-2d2a555b5201.png
PS C:\> If (-Not (Test-Path C:\Recovered))

{New-Ttem -Path C:\Recovered -TtemType Directory}

PS C:\> SFile C:\Foo\DL. txt”

\> $Targetpath \Recovered\"

\> Start-WBFileRecovery -BackupSet $BUSet -SourcePath SFile
TargetPath $TargetPath -Option CreateCopyIfExists =
—Force

Recovering files from C:\Foo\DL.txt :

Completed.

PS C:\> Get-ChildIten -Path STargetPath

“\Recovered

LastiriteTine Length Name

20/03/2017 62 dL.txt

assets/aa0780a4-7b8d-4735-8ae3-b2e468923db7.png
15 Group Policy Management - O
% File Action View Window Help -

e zEclEm

Group Policy Management Sales

v%;ﬁ:‘::.o-q Linked Group Policy Objects | Group Policy Inhertance Delegation

v %5 ReskitOrg LnkOrder GPO Erfoced Lk Enabled GPOStatus WMIFiter
Defaut Domsin Policy
51 Domin Contralles
51 sales -
7 Group Poliy Objects ||
5 WM Fikers
> [Starter GPOs

> O Stes

& Group Policy Modeling

% Group Polcy Results

>
>
>
>

assets/2888e493-b8b3-4cc9-94b5-6ad86273a3ee.png
Stop-W -Name DC1 ~TurnOff —Force
Remove-W —Name DCL —Force.
Get-W —Name DCL
: Byper-y was unable to find a virtual machine with name "DC1".
char:1

“Name DCL

+ CategoryInfo InvalidArgument: (DC1:String) [Get-WM], VirtualizationException
+ FullyQualifiedErrorTd : InvalidParameter Microsoft. HyperV.PowerShell.Conmands. GetM

assets/fd0f85ee-4ef6-4f05-b81b-a1db08e76193.png
X

Logon Properties ?
St PowerShell Scrpts

B3 Windows PowerShel Logon Scips forSeles Group Prrting

[
‘Sales Group Logon Ser Down

Edt.
Remove

Forthis GPO, run scrpts in the follwing order:

i PowerShell scripts require at least Windows 7 or Windows Server

e
ok | [| o]

assets/11865b24-b7a0-414e-9e47-02dd61eb84d2.png
PS C:\Windows\system32> Get-PSRepository

Name InstallationPolicy Sourcelocation

PSGallery Trusted https://uw. powershellgallery. con/api/v2/

assets/72186bc0-3d1d-4795-8702-df94eb46c86b.png
3 Active Directory Users and Computers - o x
File Action View Help

2@ odcz Bm e eETER
] Active Directory Users and Com|| Name Type - Description
> giz:g‘*"ﬁ BTTeam Security Group - Domain Local All members of the IT Tear
v = b ': & JemyGarcia User Virtuslization Team
P Brebecat s 1 Mansger
i @ Thomssl User IT Pro and PowerShel Guy

> (51 Domain Controllers.

> [ForeignSecurityPrincipal
@

> [Managed Senvice Accou

> & Seles

> £ Users

assets/db0968a1-8f38-4532-9180-136c7c5481f7.png
PS C:\> Get-WGroup_ |
Format-Table -Property Name, GroupType, VMMenbers

Name GroupType Watenbers |

HVServers WMCollectionType {HV2, HVL}

assets/91ae67a5-f273-4858-8fd0-77aaebbed6a1.png
s

\> Get-NetIPAddress -InterfaceIndex SIfindex -AddressFamily SIPType

IPAddress
InterfaceIndex
InterfaceAlias
AddressFamily
Type

PrefixLength
Prefixorigin
SuFfixorigin
Addressstate
ValidLifetine
PreferredLifetine
skipAssource
PolicyStore

10.10.10.150

assets/375ce68a-9339-4338-8829-2b6c5c46c6c1.png
PS C:\> Get-Module xPSDesiredStateConfiguration -ListAvailable
Directory: C:\Program Files\WindowsPowershell\Modules

ModuleType Version Name ExportedCommands

script 6.2.0.0 xPSDesiredstateConfiguration {Publish-MOFToPullServer, Publish-DSCModuleAndMof
PubTish-ModuleToPullserver}

PS C:\> Invoke-Command -ComputerName SRV2
-ScriptBlock {Get-Module xPSDesiredStateConfiguration -ListAvailable}

Directory: C:\Program Files\WindowsPowershell\Modules

ModuleType Version Name ExportedCommands PSComputerName

Script 6.2.0.0 xPSDesiredStateConfiguration {Publish
Pu.

assets/e48ab445-fd8c-4523-bf17-72c63440e13a.png
v P - acl[@m [@m

° ' ritpe /et
<2xml versiol
- <service xml
xmins="http:/ /www.w3.0rg/2007/app"
xmins:atom="http:/ /www.w3.0rg/2005/ Atom">
~ <workspace>
<atom:title>Default</atom:title>
- <collection href="Configurations'>
<atom:title>Configurations </atom:title>
</collection>
- <collection href="Modules">
<atom:title>Modules </atom:title>
</collection>
- <collection href="Action">
<atom:title>A¢ n</atom:title>
</collection>
- <collection href="Module">
<atom:title>Module</atol
</collection>
- <collection href="StatusReport">
<atom:title>StatusReport</atom:title>
</collection>
- <collection href="Node">
<atom:title>Node</atom:title>
</collection>
- <collection href="Reports">
<atom:title>Reports </atom: title>
</collection>
- <collection href="Nodes">
<atom:title>Nodes</atom:title>
</collection>
</workspace>
</service>

'1.0" encoding="utf-8" 2>

tle>

ase="https://srv1:8080/PSDSCPullServer.svc/"

assets/bb1484aa-9f77-4b31-b599-293fd7af9505.png
Local Disk (C:) > downloadedModules > TreeSize > 20 v|o | search20 »

Nome Datemodiicd | Type s
[Readviermd T2720156HPM MDFie

5] TreeSie Formatpstaml /1272015644 PM Windows PowerShel XML Document

T Teesizepsat /1272015644 PM Windows PowershellDat il

3 Teesizepsmi 6/12/2015 644PM Windows Powershell Scipt Module

A A A4

) ReadMemd -Notepad

File Edit Format View Help

This is just a Get-TreeSize function to show (recursively) how much space
Anyway, there’s just one function and a format file. Please enjoy.

To install:

“*posh
Install-Module -Name TreeSize

Example usage:

PS> Get-Treesize

< | Localization\ 12621
En-US\ 2025
En\ 1339

assets/5027c98a-f541-4e18-a43b-c8bb83546101.png
PS C:\> SVHDPath = "H:\Vm\Vhds\W1-D.VHDX"

s

ComputerName
Path

VhdFormat

VhdType

FileSize

Size

Minimunsize
LogicalSectorsize
PhysicalSectorSize
Blocksize

ParentPath
DiskIdentifier
FragmentationPer centage
Alignment

Attached

DiskNumber

Number

\> New-VHD —Path SVHDPath -SizeBytes 868 -Dynamic

HL
H:\Vm\Vhds\ W1
VHDX

Dynamic

4194304
8589934592

33554432

E0555AA8-07C1-4615 -AB6E-434FCE396948
0

1

False

assets/9c046354-d83b-4148-8744-050113581feb.png
PS C:\Usels\Administrator> Get-SmbOpenFile

Filezd SessionId Path ShareRelativePath ClientComputerName ClientUserName

223338209757 223338299481 C:\foo\
223338209765 223338299473 C:\foo\ 10.10.10.150 RESKIT\JerryG

assets/4d725691-a9ce-4404-ada6-1b947a20469c.png
Ps

:\> Get-WMReplicationServer ~ComputerName HV2
RepEnabled AuthType KerbAuthPort CertAuthPort AllowAnyServer

True Kerb 42000 aa3) True

PS C:\»> Get-WM —ComputerName HV2

Name State CPUUsage(%) MemoryAssigned(¥) Uptime Status Version

WL off o 0 00:00:00 Operating normally 8.0

assets/68ade7a0-698e-423e-b75c-6a47672169b9.png
PS C:\PKI> New-WebVirtualDirectory -Site 'Default Web Site’ °
—Name "PKI"
—PhysicalPath 'C:\PKI®

Name PhysicalPath

PS C:\» C:\Windows\Systen32\inetsrv\appcnd. exe *
Set config /section:requestfiltering °
7allowdoubleescaping:true
Applied configuration changes to section
“Systen. webServer /security/requestFiltering” for
“MACHTNE /WEBROOT/APPHOST" at_con1guration commit
path "MACHINE/WEBROOT/APPHOST"

assets/467043df-c1c4-491f-9c02-3e985fe5385f.png
PS C:\> Start-DscConfiguration -Path C:\DSC Mait -Verbose

VERBOSE: perforn gperation “Tole Cisketied” with folloving parameters,
e SeniCoriguratiomoply. classime” = NSFT DSELociCont uratiomtanager
i e e L e

"An L1 mtho call arrived From compiter UL wich User 51 5-1-5-21-715049203-2702507345 667613206500,

[E): loue [start st]
[RV)} LQu: [Start Rasource] [[FilelDSCConfig-Folder]

[®): Lo [start Test 1 [[FileloScConfig-Folder]

e [[Fi1eJDSCConFig Folder] The system canrot find the file spacified:

e [[Fi1eJDSCContig-Folder] The ralatad £11e/diractory 15+ C: (DS ConFiguration.
[S): Lot [End Test] [[File]DSCConfig-Folder] 1in 0.0160 secomds.

[®)l (o4 [Start sf] [[FileloScContiaFolder)

[[[File]DScConfig-Folder] The system carrot find the file spacified:

e [[Fi1eJDSCContig Folder] The ralatad £11e/diractory 15+ C: (DS ConFiguration.
[E)l i [End Set] [[FileloScConfiaFolder, 3

[S): L [End Resource] [[FileloScConfig-Folder]

[®V)} LM [Seart Resource] [[FilelDStHesource-Folder]

[®): Lo [start Test]

e system caot Fird the file spacified.
e [[Fi1e DS Rasource-Folder] The related F11e/diractory 15+ C: DX Resairce.
[E): o [Ed Test] n 0.0160 seconds..

[wa)l lou [stare =]

[5 system caot Fird the file spacified.
e [[Fi1eJDSRasource-Folder) The related £11e/diractory 15+ C: D Resairce.
[R)} Lot [End Set] [[FilclDSesource-Foldar] 'in 0.0310 seconds.

[T g [| Resarce] [rlebsesource-rolder]

[RV1)} LU [Start Resource] [[WindowsFeatura)DsCService]

[®): Lo [start Test]

e

e

[E): o [Ed Test]

[wa)l lou [stare =]

[

e

e

[

e

[

[l [ed st]

[®)} L4 [End Rasource]

[®): Lo [start Resource]

[yl i [seare tese 1

[

e

e ty

[[[0SCHebService JMebPulIRVI] Physical Path of Website PDScPullserver does rot match the desired state.
[RV)} Lot [End Test] [DOSWbSarvicelMbPullSRVI] in1.5000 seconds.

[E): o6 [start st] [DOSebsarvicejuebpullzvi]

e [[D5CHebSorvice JNebPulIHVI] Create the TIS endpoint

e
[
e
[
e

[[\D5CHeborvice JNebPuTIRVI] Setting up endpotnt 3¢ - https://SRVL:8080/PDSCPulIServer. sve.
[[0SCHebService JuebPulIHVI] Verify that the cartiFicate with the provided thisbprint exists in CERT:\LocalMachire WY\
[[D5CHebSorvice JuebPuTIRVI] Cracking TTS requirenarts

[[0SCHebService JuebPul1FVI] Delete the App Pool iF 3t exists.

[DSCHeborvice JusbPulIRVI] Remove the stie 1F it already exists

] frosam e iai ot
£ 0SCHebSerice JuebPuT1SWA] Create the bin folder for deploying custon deperdent binaries reqrired by the endpoint
v Db Servicenebpul1RVI] Addan App Pool Plevies - Sl
[Db Service JuebeullRV1] Set App Pool Properties

X DD ServiceInebru 1RVI] Add and Set Site Properties

e Db Service ebruTIRVI] gt

[[[05CHebService JusbPul1%V1] Endbing firewal] exception for port 8080

e Db Service nebpu 1RVI] D7 le Trbaurd Firemal] Noti Fication

[DO Service Jnebeul1RV1] Add Firewai] Rule.

e e e AV & Lo e LB e that,defim. the repository Tater than BLUE 05
Db Service webpulIRVI] Only ESONT 12 supported on Windoes Server 2016
[0 Service nebPulIRVL] Pull Server: Set. values into the neb.config that indicate the Tocation of repository, configuration, mo

[[0SCUbServiceJuebPul1SVI] in 12.7870 seconds.
[[0SuebService Jsbeu 11111

{fieResirationeyrie]

[FileJRegistrationkeyEs

ARSI e e e o e ok
ffeegensrationeyle) in 0.6520 seconds.

HedRensraneemd
in 126.8960 seconds.

LI]
oo taken for configuration job to complete is 127.37 seconds

56558 b66e
EEEEE o
g

assets/42fe52aa-0602-410f-89e8-a26189deada6.png
PS C:\> Get-Content C:\WINDOWS\Logs\WindowsServerBackup\Backup-29-12-2016_23-56-53.Tog

Backed
Backed
Backed
Backed
Backed
Backed
Backed
Backed
Backed
Backed
Backed
Backed
Backed
Backed uj

up DA\
\oczy

\DCI\DC1. vhdx

\hyper v\

\hyper -v\DC1\
\hyper -v\DCT\New
\hyper -v\DCT\New
\hyper -v\DCT\New
\hyper -v\DCT\New
\hyper -v\DCT\New
\hyper -v\DCT\New
\hyper -v\DC1\New

up
Application backup
writer Id: {66841(!)476!)6)#4578F177FDZ3F8MK}IK)
Component: 6501E155-A138-48E0-8392-683FF6F26759
Caption : Online\ncl
Logical Path:

\DC1\Ref2016. vhdx

virtual
virtual
virtual
Vvirtual
virtual
virtual
Virtual

\DC1\DC1-AutoRecovery . avhdx

Machine\

Machine\snapshots\
Machine\Snapshots\FC35EC6C-021C-4A9C-BB86-010A59E22DF7 . vmcx.
Machine\Snapshots\FC35EC6C-021C-4A9C-BB86-010A59E22DF7 . VMRS
Machine\Virtual Machines\'

Machine\Vvirtual Machines\6501E155-A138-48E0-8392-683FF6F26759. VMRS
Machine\Vvirtual Machines\6501E155-A138-48E0-8392-683FF6F26759. vmcx.

assets/fdce746d-7c77-44ec-b452-7a6ccee90b58.png
Find-PackageProvider | Select Name, Source, Summary | Format-Table -Wrap -AutoSize

PSGallery

PowershellGet

GistProvider
GithubProvider
TSbProvider
ChocolateyGet
MyATbum

ContainerInage

DockerMsftprovider
NanoServerpackage
Officeprovider
GitLabProvider

WSAProvider
Oinstall

InstallationPolicy Sourcelocation

Trusted https://uww. powershellgallery. com/api/v2/

Source.

https://oneget. org/nuget-2.8.5.208. package. swidtag

https://oneget. org/ps1-1.0. 0. 210. package. swidtag

https://oneget. org/ChocolateyPrototype-2. 8.5.130. package. swidtag
PsGallery

PsGallery

PsGallery

PsGallery

PsGallery

PsGallery

PsGallery

PSGallery
PSGallery
PSGallery
PSGallery

PsGallery
PsGallery

Summary

NuGet provider for the OneGet meta-package manager

psT provider for the OneGet meta-package manager

ChocolateyPrototype provider for the OneGet meta-package manager
Powershell module with commands for discovering, installing, updating and
publishing the PowerShell artifacts like Modules, DSC Resources, Role
Capabilities and Scripts.

Gist-as-a-Package - PackageManagement Powershell Provider to interop with
Github Gists

GitHub-as-a-Package - PackageManagement Powershell Provider to interop
with Github

Powershell PackageManager provider to search & install TypeScript
definition files from the community DefinitelyTyped repo

An Powershell OneGet provider that discovers packages from

https ://waw. chocolatey. org..

MyAlbun provider discovers the photos in your remote file repository and
installs them to your local folder.

This is a PackageManagement provider module which helps in discovering,
downloading and installing Windows Container 05 images.

For more details and examples refer to our project site at
https ://github. con/Powershell/ContainerProvider .

Powershell module with commands for discovering, installing, and updating
Docker images.

A PackageManagenent provider to Discover, Save and Install Nano Server
Packages on-demand

OFficeProvider allows users to install Microsoft OFfice365 ProPlus from
Powershell.

Gitlab PackageManagement provider

Provider to Discover, Install and inventory windows server apps

Zero Install is a decentralized cross-platform software-installation
System.

assets/d8f2b922-b991-477e-b7a6-8bf41ee20f08.png
Ps c:\foo> Get-CimClass -CimSession $Cimsession | Measure-Object

Count 838
Average
Sum
Maximum
Minimum
Property

assets/141643c3-b06a-41b0-a98b-1a2304ad29ab.png
Select a system image backup

This computer wil be restored using the system image.
Everything on this computer wil be replaced with the
information in the system image.

Re-image Your Computer

Windows connot find a system image on this computer

Attach the backup hard disk o insert the final DVD from a backup set
and ciick Retry. Alternatively, close this dialog for more options.

Retry

assets/436b203b-ae70-4a22-adb3-8df369bc3c24.png
Ps

\> Get-Wi -Name psdirect

Name State CPUUsage(X) MemoryAssigned(M) Uptime status Version

psdirect Running 0 1024 00:09:48.2910000 Operating normally 8.0

assets/0c2721ce-72e5-4baf-90fb-a7e2b90c3d3c.png
PS C:\Windows\system32> STestValue
v

This is Tine 1

and Tine 2

=

PS C:\Windows\systen32> $Testvalue
This is Tine 1

and Tine 2

PS C:\Windows\systen32> $TestValue | Format-Hex

00 01 02 03 04 05 06 07 08 09 0A OF OC 0D O OF

00000000 54 68 69 73 20 69 73 20 6C 69 6E 65 20 31 OD OA This is line 1..
00000010 61 6E 64 20 6C 69 6 65 20 32 and Tine 2

assets/24d3f180-ff85-4ccb-bfde-cc8f1009739c.png
Property Count Maximum CPU95 M1n1num

\\SRV1\Processor(_Total)\% Processor Time 2881 35.06 0.86 35. 06

assets/a0aa28bd-6558-42ea-a016-246b0fadce66.png
[10.10.10.151]: pPs c:\foo> Exit-PSSession

Ps C:\foo>

assets/4eed0acf-3649-4c26-b94f-569e08e76817.png
PS C:\> 'This is a small blob!!* | out-File .\Azurefile.txt

PS C:\> $Blob = Set-AzureStorageBlobContent -Context $SACon °
-File .\Azurefile.txt ~
~Container $CName

PS C:\> $Blob

ICToudBlob : Microsoft.windowsAzure.Storage.Blob.CloudBlockBlob

BlobType : BlockBlob

Length 50

ContentType : application/octet-stream

LastModified : 29/05/2017 15:14:10 +00:00

SnapshotTime E

ContinuationToken :

Context : Microsoft.windowsAzure.Commands .Common. Storage. AzureStorageContext

Name azurefile.txt

assets/46def449-5d1f-430b-8a5a-82fddbb24439.png
\> $sb = {
SWMiTest = Start-WFailover -AsTest -VMName VM1
~Confirm:Sfalse
Start-w switest}
\> Invoke-Command -ComputerName HV2 -Script8lock $sb

State CPUUsage(%) MemoryAssigned(M) Uptime Status Version PSComputerName

WL - Test OFf 0 o 00:00:00 Operating normally 8.0 Hv2

assets/66583c8f-d9ae-4035-a169-b7359ea2a8f3.png
\> SRetentionPolicy = New-OBRetentionPolicy -RetentionDays 7

PS C:\> Set-OBRetentionPolicy -Policy $APolicy -RetentionPolicy $RetentionPolicy

Backupschedule : 04:00
Tuesday, Saturday,
Every 1 week(s)

DsList
PoTicyName
RetentionPolicy : Retention Days : 7.
WeeklyL TRSchedule
Weekly schedule is not set
MonthlyLTRScheduTe :
Monthly schedule is not set
Year 1yl TRSchedule
Yearly schedule is not set
state New

assets/8311c4d7-03a9-422c-a8eb-1cb494c25eee.png
PS C:\foo» Get-PackageProvider | Select-Object -Property Name, Version

assets/39c0cb07-a40f-4f4b-9faf-cdaca05bf3ae.png
\> New-WiSwitch -Name External -NetAdapterName 'Ethernet’ *
Notes 'Created on HVL"

Name SwitchType NetAdapterInterfaceDescription

External External Microsoft Hyper-V Network Adapte

assets/350a24d3-6961-43b3-a807-fdbf37917083.png
PSCi\ | whadmin Start Recovery -Version:SVersion -ItenType:Apg -Itens:Registry -RecoverytargetiE:\
wbadmin 1.0 - Backup command-Tine tool
(©) Copyright 2013 Microsoft Corporation. ATl rights reserved.

You have chosen to recover the application Registry. The Files for the
following components will be recovered to E:\.

Note: Recovering the files to an alternate location without involving writer will not recover the
application.

Component = Registry (\Registry)

Do you want to recover the application Registry?
[¥] Yes [N] No Y

Preparing the component Registry for recovery...
Recovering the files for the component Registry, copied (20%).

Recovering the files for the component Registry, copied (100%).

Recovering the component Registry.

The component Registry was successfully recovered.

The recovery operation completed.

Log of Files successfully recovered:

C:\Windows\Logs \WindowsServerBackup\App11cationRestore-26-03-2017_20-26-36. Tog

Summary of the recovery operation:

The component Registry was successfully recovered.

assets/aa39bb95-07ca-4b8d-a11a-e9220776767f.png
PS C:\> Register-AzureRnResourceProvider -ProviderNamespace ‘Microsoft.RecoveryServices®
ProviderNamespace : Microsoft.RecoveryServices

Registrationstate : Registered

ResourceTypes {vaults, operations, locations, Tocations/backupStatus.

Locations {West US, East US, North Europe, West Europe...}

assets/710716bb-f4fc-4c3c-a5b9-6eb913bd4e88.png
Ps C:\foo> Get-CimInstance -CimSession $CimSession -Query "SELECT * from CIM_Process™

ProcessId Name HandlecCount work1ngset51ze virtualsize PSComputerName
] System Idle Process 0 4096 65536 10.10.10.151
4 System 323 57344 1974272 10.10.10.151
212 smss.exe 46 688128 2199029833728 10.10.10.151
296 csrss.exe 110 1970176 2199035736064 10.10.10.151
320 wininit.exe 76 3928064 2199042248704 10.10.10.151
336 services.exe 179 5058560 2199041740800 10.10.10.151
352 1sass.exe 728 10661888 2199064793088 10.10.10.151
436 svchost.exe 192 6164480 2199056437248 10.10.10.151
468 svchost.exe 269 6688768 2199057764352 10.10.10.151
572 svchost.exe 127 5861376 2199052247040 10.10.10.151
588 svchost.exe 319 8515584 2199073071104 10.10.10.151
[svchost.exe 135 3604480 2199054733312 10.10.10.151
648 svchost.exe 482 21643264 2199139741696 10.10.10.151
684 svchost.exe 287 6873088 2199066492928 10.10.10.151
720 svchost.exe 710 22839296 2199128432640 10.10.10.151
796 svchost.exe 291 8560640 2199066771456 10.10.10.151
960 svchost.exe 311 12668928 2199105224704 10.10.10.151
268 EMT.exe 66 3862528 2199043854336 10.10.10.151
1208 WmiPrvsE.exe 159 8671232 2199059148800 10.10.10.151
1256 WmiPrvSE.exe 202 11505664 2199062700032 10.10.10.151

1664 WmiApSrv.exe 134 6787072 2199051653120 10.10.10.151

assets/5923b657-258a-4104-8c74-1ac0e47f547d.png
CounterSetName CounterSetType

Processor MultiInstance
Memory SingleInstance
Network QoS Policy SingleInstance
Network Interface MultiInstance
Network Adapter MultiInstance
FileSysten Disk Activity SingleInstance
Logicalbisk MultiInstance

Physicalbisk MultiInstance

assets/1db11541-4ed7-4f17-9db5-cc6f584bd8da.png
B sModules | Out-GridView

tree

Verson [Name

Repository

Description

20 Treesize
132 PsiSEProjectE..
10 ModuleScaffo.

PSGallery
PSGallery
PSGallery

Provides a Get TresSize command
Provides a tree view that enables to index and explore whole directory structure containing Pow.

Creste Directory Tree and basic files for 3 new module

assets/061ff998-3e96-477a-aa26-f2fc801ffc34.png
-Path \\Reskit.Org\shareData
~TargetPath \\Srvi\ShareData

~Type DomainV2 "

~Description 'Reskit Shared Data DFS Root'

Path Type Properties TimeToLiveSec State Description

\\Reskit.Org\Sharebata Domain V2 300 Online Reskit Shared Data DFS Root

assets/10582c09-da6d-4ae5-a2e6-7fb1e4862b5b.png
PS C:\foo» Get-PackageProvider | Select-Object -Property Name,Version

assets/40af9edb-d06d-4bac-be20-960da44eb968.png
PS C:\> Test-DscConfiguration -ComputerName SRV2
False

assets/c27b415d-3a81-42f7-81f1-5a5e3b84a8e8.png
e Server Manager

Server Manag

= ERVERS
L

File and Storage Services * Serve

Volumes

»

Disks

Storage Pools
Sz DCt 10.10.10.10 Online - Performance counters not started 12/02/2017 00:00:07
iscsl

Work Folders

assets/818f1849-eec7-4064-a04e-bece898d5bdc.png
Backupschedule

DsList

PolicyName

RetentionPolicy :

state
Policystate

: 04:00
Tuesday, Saturday,
Every 1 week(s)
{Datasource
DatasourceId:140738999491858
Name:C:\
FileSpec:Filespec
Filespec:
IsExclude:

alse

IsRecursive:True

T

419dbees -603c-4bad-9F5 6-95e2db06099.
Retention Days : 7

WeeklyL TRSchedule

Weekly schedule is not set
MonthlyLTRScheduTe :
Monthly schedule is not set
Yearlyl TRSchedule

Yearly schedule is not set
Existing

valid

assets/65d4644b-de82-4237-aaa8-cb258518ae7f.png
\> ProvisionServices -OutputPath C:\DSC
—NodeName SRVZ
~—FeatureName DNS

LastiriteTine Length Name

12/04/2017 13:04

assets/ffe00eee-7413-49c5-8c39-75857239a3f2.png
:\> Get-smbshare

s
ScopeName Path Description
- C:\Recipe 5-7 Restore applications Used in Recipe 5-7 to hold backup of SRVL
Foo share for IT
Remote IPC
SalesData

Sales HV (CA)

assets/966612c8-c333-432a-8cc4-9edd40ba6dee.png
PS C:\> # Define a deadline:
$RuleDeadLine = New-Object ~

Microsoft.UpdateServices.Administration.AutomaticUpdateApprovalDeadline
$RuleDeadLine.Dayoffset = 3
$RuleDeadLine.MinutesAfterMidnight = 180

$ApprovalRule.Deadline = $RuleDeadLine

assets/5aa3758b-574c-4054-8273-78501004554d.png
Ps

\> $Printer | Format-Table -AutoSize

Name ComputerNane Type DriverName PortName Shared Published DeviceType

Local HP Laserdet 9000 PS Class Driver Sales_Color,Sales_Color2 True False

assets/a8d47a8c-a2a9-4087-b9bc-fb6f98387a69.png
30 [Enstali-Package =ProviderName: ~Name

Downloading hitps:/lvesysintemals com/fles/SysinternalsSulte:Zp
Completed.

Unpacking Archive ‘sysintemalsinstallzip
Unpacked PORTMON.CNT.

assets/0dc28b07-d5eb-4a33-9f42-d794b3c71591.png
HostName
Maker:

Model

PSversion
OSEdition

0SArch

0SLang
LastBootTime
UpTimeDays
CPUCount:
HostCPUUsage
HosthlemoryGE
AllocatedienoryGE.

New-Object -TypeName PSObject -Property Sreport

W1

Microsoft Corporation

Virtual Machine

5.1.14393.0

Microsoft Windows Server 2016 Datacenter
64-bit

1033
15/07/2017 09:
2.174

B
31.61328927579385
15262

n

assets/82ab907e-2053-40ad-af46-0220cabe7ae3.png
Ps

ComputerName
Path

VhdFormat

VhdType

FileSize

size

Minimunsize
LogicalSectorsize
PhysicalSectorSize
Blocksize

ParentPath
DiskIdentifier
FragnentationPer centage
Alignment

Attached

DiskNumber

Number

\> New-VHD -Path $VhdPath -SizeBytes 12868 -Dynamic|

HvL
H:\Vm\Vhds\W1. Vhdx
VHDX

Dynamic

4194304
137438953472

33554432

E9BF967A-0D2A-482B-99AF-7COSDFFAS912
)

1

False

assets/8e0a5b33-bd5d-4026-9afc-1e7bc83afe80.png
PS C:\> Start-WM -Name DC1

Name State CPUUsage(%) MemoryAssigned(M) Uptime status Version

OCL Running 0 4000 00:01:25.9540000 Operating normally 8.0

assets/a5c75b11-31da-46eb-bd08-cd9dda26fe7b.png
\> New-NetIPAddress -InterfaceAlias SIfAlias °
Prefixtength 24 °
-DefaultGateway '10.10.10.254" °
—IpAddress. °10.10110.11° *
-DefaultGateway '10.10.10.254" °
-AddressFamily $IPType

TPAddress 10.10.10.11
InterfaceIndex 3

InterfaceAlias Ethernet

AddressFamily 1Pva

Type Unicast

PrefixLength 24

Prefixorigin Manual

SuFfixorigin Manual

Addressstate Tentative

ValidLifetine Infinite ([TimeSpan]: :Maxvalue)
PreferredLifetine : Infinite ([TimeSpan]:
SkipAssource False

PolicyStore Activestore

assets/cb4a1cf7-d4f9-4ba9-a42b-d1a5f3a971f9.png
At
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017
14/01/2017

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

LEEBBLLLsELBE LB BB LEBRE LR RLEY

28828

Count.
\\srvi\nemory\page faults/sec
\\srvi\menory\available bytes
\\srvi\menory\committed bytes
\\srvi\memory\commit Timit
\\srvi\memory\write copies/sec
\\srvl\memory\transition faults/sec
\\srvl\memory\cache faults/sec
\\srvi\memory\denand zero Faults/sec
\\srvi\memory\pages/sec

\\srvi\memory\pages input/sec
\\srvi\memory\page reads/sec
\\srvi\memory\pages output/sec
\\srvi\menory\pool paged bytes
\\srvi\memory\pool nonpaged bytes
\\srvi\memory\page writes/sec
\\srvi\menory\pool paged allocs
\\srvi\memory\poo nonpaged allocs. .
\\srvi\memory\free system page table entries
\\srvi\menory\cache bytes

\\srvi\menory\cache bytes peak
\\Srvi\menory\pool paged resident bytes
\\SrvI\memory\system code total bytes
\\SrvI\memory\system code resident bytes
\\SrvI\memory\system driver fotal bytes
\\SrvI\memory\system driver resident bytes
\\SrvI\memory\system cache resident bytes
\\SrvI\memory\X committed bytes in use
\\srvi\memory\available kbytes
\\srvi\memory\available mbytes
\\srvi\memory\transition pages repurposed/sec
\\srvi\memory\free & zero page Tist bytes
\\srvI\memory\nodiFied page 1ist bytes
\\srvi\memory\standby cache reserve bytes
\\SrvI\memory\standby cache normal priority bytes
\\srvI\memory\standby cache core bytes
\\srvi\menory\Tong-term average standby cache lifetine ()

Value
12.0078471280982
1257881600
4253993432
5827514368

o
1.99866808758643

cooooo

137068544
42594304
o

108561
76393
12311148
31903744
57136640
101056512
3825664
3547136
13737984
12300288
o
73.0534822617316
1224696
1197

]
879222784
42606592
182726656
193556450
o

14400

assets/d45e3ff5-fcc1-4a7e-819c-c0537e2c6b51.png
Ps

:\> Add-ClusterScaleOutFileServerRole -Name SalesFS

[

SalesFs Fs1 Oneline

assets/6c52b13a-c293-4172-a943-ff9f47a6567b.png
PS C:\foo» Find-PackageProvider | Select-Object -Property Name,Summary | Format-Table -Wrap -AutoSize
Summary

NuGet provider for the OneGet meta-package manager

psT provider for the OneGet meta-package manager

chocolatey ChocolateyPrototype provider for the OneGet meta-package manager

ContainerImage This is a PackageManagement provider module which helps in discovering, downloading and installing Windows Container 05 images.

For more details and examples refer to our project site at https://github.con/Powershell/ContainerProvider.
DockerMsFtProvider PowerShell module with commands for discovering, installing, and updating Docker images.
NanoServerPackage A PackageManagement provider to Discover, Save and Install Nano Server Packages on-demand

GitHubProvider GitHub-as-a-Package - PackageManagement PowerShell Provider to interop with Github

ChocolateyGet An Powershell OneGet provider that discovers packages from https://wsw.chocolatey.org.

TSDProvider PowerShel1 PackageManager provider to search & install TypeScript definition files from the community DefinitelyTyped repo

PowerShellGet Powershell module with commands for discovering, installing, updating and publishing the PowerShell artifacts like Modules, DSC Resources, Role
Capabilities and Scripts.

GistProvider Gist-as-a-Package - PackageManagement PowerShell Provider to interop with Github Gists

MyATbum MyATbum provider discovers the photos in your remote file repository and installs them to your local folder.

OFficeProvider OfficeProvider allows users to install Microsoft OFfice365 ProPlus from Powershell.

GitlabProvider GitLab PackageManagement provider

WSAProvider Provider to Discover, Install and inventory windows server apps

Oinstall Zero Install is m decentraljzed. oross-platfors software—installation systes.

assets/589ba2c3-2086-432c-b3a5-59fb47057752.png
#New Cmdlets in Powershell 4

B Get-FieHash - o x
-Path Senv:windir -Algorithm Ferometersfor "Get-Fietesh @

Path | LeralPath | Sream

patns[Senvwindirinotepadere

Agerit: | SHAS2 o

(@ ommonoameins

PS C:\Windows\system32> Show-Command Get-FileHash

PS C:\Windows\system32> Get-FileHash -Path Senv:windir\notepad.exe -Algorithm SHAS12

Algorithm Hash path

SHAS12 5F5A3BSE64B4A149865F650678028CEF3BCODE16EF265C1308985494AB6690193F8. . . C:\Windows\notepad. exe

PS C:\Windows\system32> Show-Command Get-FileHash

assets/a3a48c72-02cb-455e-8a1a-a3a91584fe2f.png
PS C:\> Get-EventlLog -LogName System |
Group-Object -Property Source |
Sort-Object -Property Count -Descending |
select -First 10 |
Format-Table -Property name, count

Name Count
Service Control Manager 57343
WAS 653

Microsoft-windows-Kernel-General 508
Microsoft-Windows-Hyper-v-Netvsc 469

Microsoft-windows-Time-Service 418
Microsoft-windows-FilterManager 317
Eventlog 278
Microsoft-windows-Kernel-Boot 192
HTTP 179

Microsoft-windows-DNS-Client 171

assets/bc7ce6d3-6d68-4e50-afdf-773e19d14693.png
\> Install-WindowsFeature —Name Failover-Clustering °
~ComputerName FS1 *
~IncludeanagementTools

Success Restart Needed Exit Code Feature Result

True No Success {Failover Clustering}

\> Install-WindowsFeature —Name Failover-Clustering *
~ComputerName FS2 *
-~IncludeanagementTools

Success Restart Needed Exit Code Feature Result

True No Success {Failover Clustering}

assets/0d196be4-52a8-4837-9266-cf97813db8d6.png
PS C:\> Get-Content -Path C:\Answers.xml

<?xml version="1.0" encoding="UTF-8"?>
<Answers Version="1.0">
<Interaction ID="INT_AggressiveMode">
<value>l</vValue>
</Interaction>

</Answers>

assets/13a8dd10-c28f-47ac-a7d2-d0d5c011b81f.png
PS C:\> Test-NetConnection -ComputerName DCl -CommonTCPPort HTTP
-InformationLevel Detailed

ComputerName pcl
RemoteAddress 10.10.10.10
RemotePort 80
NameResolutionResults : 10.10.10.10
MatchingIPsecRules g
NetworkIsolationContext : Private Network
InterfaceAlias : Ethernet
SourceAddress : 10.10.10.50
NetRoute (NextHop) : 0.0.0.0
TcpTestsucceeded : True

assets/b2b1a160-3785-4ea5-9a13-6dd96ce9013c.png
Ps

Success Restart Needed Exit Code

True

\> Install-WindowsFeature -Name Print-Server,

o[

Success

RSAT-Print-Services

Feature Result

{Print Server, Print and Document Services.

assets/df0f0c86-125d-4f39-87e3-5e0c6876b55b.png
PS C:\> $DCGroup = $wSusServer.GetComputerTargetGroups() |
where-object Name -eq “"Domain Controllers™

assets/c1b2578f-cb25-441d-a9eb-6bff84b3e873.png
PS C:> New-WebAppPool -Name WwW2Pool
Name State Applications

wwW2Pool

assets/5f5f7916-8ff1-4bca-bad9-62a89c5c8602.png
Ps c:\foo> $IPV4Address = '10.10.10.152"
$IPV4DNS = '10.10.10.10','10.10.10.11"
$IPV4Gateway = '10.10.10.254"
$1PV4SubnetMask = '255.255.255.0"

assets/c286bbfa-1d6d-4d3f-bf25-8eb19912aa3f.png
C:\> Test-NetConnection -ComputerName DCl -PORT 9999
WARNING: TCP connect to DC1:9999 failed

ComputerName 2 ncl
RemoteAddress : 10.10.10.10
RemotePort 2 9999
InterfaceAlias : Ethernet
SourceAddress : 10.10.10.50
Pingsucceeded @ True
PingReplyDetails (RTT) : 0 ms
TcpTestsucceeded : False

assets/74b3fa78-1dd0-428e-b735-35623e879565.png
PS C:\> Enter-PSsession -WiName psdirect -Credential SRKCred
[psdirect]

Users\administrator\Documents> Get-CimInstance -Class Win32_ComputerSystem

Name ~PrimaryownerName Domain TotalPhysicalMemory Model Manufacturer

TIGER Packt Recipe Book Reader Reskit.Org 1073270784 Virtual Machine Microsoft Corporation
[psdirect!
PS C:\>

Exit-PSsession

assets/7dbb2a91-d11c-4c51-a774-4d341a577f6a.png
\> Get-Printer -Name SGCPL *
~ComputerName PSRV

Name ComputerName Type DriverName PortNane Shared Published DeviceType

SGCPL PSRV Local HP LaserJet 9000 PS Class Driver Sales Color True True Print

assets/4d5d469f-6725-4fed-b068-07c0d8f06460.png
PS C:\> Get-EventlLog -LogName * -ComputerName DC1

Max(K) Retain OverflowAction

512 7 OverwriteOlder
20,480 0 overwriteAsNeeded
15,168 0 overwriteAsNeeded

512 0 overwriteAsNeeded
02,400 0 overwriteAsNeeded
20,480 0 overwriteAsNeeded

512 7 OverwriteOlder
20,480 0 overwriteAsNeeded
31,072 0 overwriteAsNeeded
20,480 0 overwriteAsNeeded
15,360 0 overwriteAsNeeded

188,206
17,112
15,825

Log
Active Directory Web Services
Application

DFS Replication

Directory Service

DNS Server

HardwareEvents

Internet Explorer

Key Management Service
Security

System
windows Powershell

assets/bc5066ce-c8a9-4bfe-876c-d47e7cb069e8.png
PS C:\> Sschedule = *06:00"
PS C:\> Set-WBSchedule —Policy $POL -Schedule $schedule

20 March 2017 06

200

assets/13cd08db-6048-466b-bd57-26a424ee7a2c.png
PS C:\> Set-GPPermission -Name $GPOName
-TargetName 'Authenticated Users'
-TargetType Group
-PermissionLevel None

DisplayName : Event Collection

DomainName Reskit.org

Owner RESKIT\Domain Admins

Id 0023d350-09ee-428d-8013-b5c617F97bd9
Gpostatus AllsettingsEnabled

Description

CreationTime 03/09/2017 2 7
ModificationTime : 03/09/2017 2 00

Userversion : AD Version: 0, SysVol Version: 0
ComputerVersion : AD Version: 0, SysVol Version: 0

wmiFilter

assets/f8ffa0b3-0d44-4808-a866-311ed659bf82.png
\> Find-Module -Name AzureAD |
Format-Table -Property Name,Version, Author
—AutoSize -Wrap

Name Version Author

AzureAD 2.0.0.115 Microsoft Corporation

assets/dafe98da-22f1-4996-9447-3fc9a6857780.png
PS C:\> $chosenclassifications = @('Critical updates®
, 'Definition updates"
,'Security Updates'
,'Service Packs'

, "Update Rollups’

,'Updates')
$chosenClassifications
critical updates
pefinition uUpdates

Security Updates

Service Packs

Update Rollups

Updates

assets/601caa66-e9d3-4005-a079-39612f4ea35f.png
X

Logon Properties ?
St PowerShell Scrpts

3 indows PowerShel Logon Scrpts for Saes Group Prrting

Name Parameters [
Down

Edt.
Remove

Forthis GPO, run scrpts in the follwing order:

) PonerShelscrps rcure et Windows 7 Vindows Sevr

e
o] Cem] e |

assets/1d7ed5ab-a67a-47e9-afea-c15bb265ea3a.png
\> $VaultName = ‘Recipevault’
:\> New-Azur eRnRecoveryServicesVault -Name $VaultName -ResourceGroupName SRGName
-Location SLocation

Name Recipevault
™ /subscriptions/4a6572727-9207-26f6-36b7-32069742121/r esour ceGroups /Recipe/providers/Microsoft. RecoveryServices /vaults/Recipevault
Type Microsoft. RecoveryServices/vaults

Location westeurope

ResourceGroupName : Recipe

SubscriptionTd 426572727-9207-26f6-36b7-32069742121

Properties Microsoft. Azure. Commands. RecoveryServices. ARSVauTtProperties.

assets/ac20b127-b504-4b9b-b17e-1a12cee41e1d.png
Running resolution 'Repair Windows Update components®
Stopping Bits service

Stopping Cryptsvc service

Clearing Bits queue

Starting Cryptsvc service

Starting Bits service

The selected resolutions have been run.
Please select whether you wish to run additional resolutions or exit.

[1] Run additional resolutions

[?] Help
[x] Exit

assets/f7d0909f-fa9b-417a-893b-46f93db8b708.png
CountersetName

Processor

Network QoS Policy
Network Interface

Network Adapter

Description

The Processor performance object consists of counters that measure aspects of processor
activity. The processor is the part of the computer that performs arithmetic and logical
computations, initiates operations on peripherals, and runs the threads of processes. A
computer can have multiple processors. The processor object represents each processor as an
instance of the object.

The Menory performance object consists of counters that describe the behavior of physical
and virtual memory on the computer. Physical memory is the amount of random access memory on
the computer. Virtual memory consists of the space in physical memory and on disk. Many of
the memory counters monitor paging, which is the movement of pages of code and data between
disk and physical memory. Excessive paging, a symptom of a memory shortage, can cause delays
which interfere with all system processes.

This counter set consists of flow statistics specific to a network QoS policy.

The Network Interface performance object consists of counters that measure the rates at which
bytes and packets are sent and received over a network connection. It includes counters that
monitor connection errors.

The Network Adapter performance object consists of counters that measure the rates at which
bytes and packets are sent and received over a physical or virtual network connection. It
includes counters that monitor connection errors.

FileSysten Disk Activity The FileSystem Disk Activity performance counter set consists of counters that measure the

Logicalbisk

Physicalbisk

aspect of Filesystem's I0 Activity. This counter set measures the number of bytes filesystem
read from and wrote to the disk drive.

The Logical Disk performance object consists of counters that monitor logical partitions of a
hard or fixed disk drives. Performance Monitor identifies logical disks by their a drive
Tetter, such as C.

The Physical Disk performance object consists of counters that monitor hard or fixed disk
drive on a computer. Disks are used to store file, program, and paging data and are read to
retrieve these items, and written to record changes to them. The values of physical disk
counters are sums of the values of the logical disks (or partitions) into which they are
divided.

assets/99d84713-6707-457a-bb44-de571aeb8ef0.png
CommandType

Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function

Windows\systen32> Get-Command -Module PowersShellGet

Find-Command
Find-DscResource
Find-Module
Find-RoleCapability
Find-Script
Get-Installedvodule
Get-Installedscript
Get-PSRepository.
Install-Module
Install-Script
New-ScriptFileInfo
Publish-ModuTe
Publish-Script
Register—PSRepository
Save-Module
Save-Script
Set-PSRepository.
Test-ScriptFilelnfo
Uninstall-Module
Uninstall-Script
Unregister-PSRepository
Update-Module
Update-HoduleManifest
Update-Script
Update-ScriptFileInfo

Version

1.1
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

©0500500000000000000000000

Source

PowerShellGet
PowerShel1Get
PowerShel1Get
PowerShel1Get
PowerShel1Get
PowerShel1Get
PowerShel1Get
PowerShel1Get
PowerShel1Get
PowerShel1Get
PowerShel1Get
PowerShel1Get
PowerShel1Get
PowerShel1Get
PowerShel1Get
PowerShel1Get
PowerShel1Get
PowerShel1Get
PowersShel1Get
PowerShel1Get
PowerShel1Get
PowerShel1Get
PowerShel1Get
PowerShel1Get
PowerShel1Get

assets/db32568a-d3bc-436a-8f4d-fe6730aa3c23.png
PS C:\> $TsPack.RootCauses.Resolutions

Name
Repair default Windows Update Tocations
Repair Windows Update Database Corruption
Repair Windows Update components

Set the correct date and time

Elevation

Interactive

assets/d6d46a3e-65fd-4d31-b5ad-10a5a810044f.png
PS Q:\> Get-ChildIten -Path Q: -Recurse -Depth 3 -Directory

LastiriteTine Length Name
22/12/2006 06:00 WindowsImageBackup
Directory: Q:\WindowsImageBackup 1
Mode LastiriteTine Length Name
22/12/2006 06:08 PSRV
Directory: Q:\WindowsInageBackup\PSRV
Mode LastiiriteTine Length Name
d 22/12/2016 Backup 2016-12-22 060006
d 22/12/2016 Catalog
d 22/12/2016 Logs
d 22/12/2016 SPPMetadataCache

assets/20d5f149-2468-47bf-87ba-d2bdfe358aa7.png
$selectedupdate = $SecurityUpdates |
Where-Object -Property KnowledgebaseArticles -EQ 4019472

assets/ab36b1ec-0988-413a-b2ed-bfcbc4762dde.png
\> LQMConfig -OutputPath C:\DSC

19/04/2017

assets/8f69df9c-0737-4acb-8f71-0d9fb8bca358.png
PS C:\> Get-WsusComputer -NameIncludes DCl |
Add-wsusComputer -TargetGroupName "Domain Controllers"

assets/7864c0e6-2b82-4193-9ec2-698f40bcc1f7.png
PS C:\> $WebApp = Get-AzureRmWebApp -ResourceGroupName $RgName -Name SAppSrvName

$SwebApp

SiteName

State

HostNames
RepositorysiteName
UsageState

Enabled
EnabledHostNames
Availabilitystate
HostNameSs1States
ServerFarmId

LastModifiedTimeUtc
SiteConfig
TrafficManagerHostNames
PremiumAppDepToyed
ScmSiteAlsostopped
Targetswapslot

HostingEnvironmentProfile :
: WebSites

Microservice
GatewaySiteName
ClientAffinityEnabled
ClientCertEnabled
HostNamesDisabled
outboundIpAddresses
Containersize
MaxNumberofworkers
CloningInfo
ResourceGroup
IsDefaultContainer
DefauTtHostName

1d

Name
Location
Type
Tags

: packt100
: Running

{packt100.azurewebsites.net}

: packt100
: Normal
: True

{packt100. azurewebsites.net, packtl00.scm.azurewebsites.net}

: Normal

{packt100. azurewebsites.net, packtl00.scm.azurewebsites.net}

/subscriptions/0bc29250-0222-4599-b91e-e8aa9f760794/resourceGroups/

packt_rg/providers/Microsoft.web/serverfarms/pack

100

30/05/2017 13:39:41

: Microsoft.Azure.Management.WebSites.Models.SiteConfig

: False

: True

: False

: False

1 51.140.37.134,51.140.39.0,51.140.36.48,51.140.39.192
: 0

: packt_rg

: packt100.azurewebsites.net
: /subscriptions/0bc29250-0222-4599-b91e-e8aa9f760794/resourceGroups/

packt_rg/providers/Microsoft.web/sites/packt100

: packt100
: UK South
: Microsoft.web/sites

assets/7b66e3fd-d99a-425f-a3c4-4fd4f466cda9.png
PS C:\> Get-WsusProduct -TitleIncludes 'Server 2016"
Get-WsusProduct -TitleIncludes 'windows 10"

Title o

Exchange Server 2016 49c3ddde-4df2-4534-980c-83f4e27b23b5
Microsoft sqQL Server 2016 93f0b0bc-9c20-4ca5-b630-06eb4706a447
Windows Server 2016 569e8e8f-c6cd-42c8-92a3-efbb20a0f6f5
windows 10 and later drivers 05eebf61-148b-43cf-80da-1c99ab0b8699
windows 10 and Tlater upgrade & servicing drivers 341268b4-7e2d-40e1-8966-8bb6ea3dad27
windows 10 Anniversary Update and Later Servicing Drivers bab879a4-claf-4b52-9617-0f9ae1286Tb6

windows 10 Anniversary Update and Later Upgrade & Servicing Drivers Oba562e6-a6ba-490d-bdce-93a770ba8d21
windows 10 Anniversary Update Server and Later Servicing Drivers 3c54bb6c-66d1-4a79-884c-8a0c96fa20dl

windows 10 Dynamic Update e4b04398-adbd-4b69-93b9-477322331cd3
windows 10 Feature On Demand e104dd76-2895-41c4-9eb5-c483a61e9427
Windows 10 GDR-DU LP 6111a83d-7a6b-4a2c-a7c2-f222eebcabf4
Windows 10 GDR-DU abc45868-0c9c-4bc0-a36d-03d54113baf4
windows 10 Language Interface Packs 7d247b99-caa2-45e4-9c8f-6d60d0aae35¢c
windows 10 Language Packs fc7¢c9913-7ale-4b30-b602-3c62fffd9bla
windows 10 LTSB d2085b71-5f1f-43a9-880d-ed159016d5c6

windows 10 a3c2375d-0c8a-42f9-bce0-28333e198407

assets/ce11f80d-8853-406b-8c0a-774cf45daf2c.png
PS C:\> Invoke-Command -VMName WM1 °
ScriptBlock {Get-NetIPConfiguration}
~Credential Scred

InterfaceAlias Ethernet
InterfaceIndex 2
InterfaceDescription : Microsoft Hyper-V Network Adapter
NetProfile. Name Reskit.Org
IPvaAddress 10.10.10.157
IPv6DefaultGateway
IPvaDefaultGateway
DNSServer 10.10.10.10
10.10.10.11

PSComputerNane 2L

assets/3a0852b4-e2e8-44fb-9788-e0ce46fb8c95.png
PS C:\> $selectedUpdate.Approve("Install",$DCTargetGroup)
UpdateTitle GoLiveTime

12/05/2017 18:48:34 31/12/9999 2

AdministratorNane TargetGroup

2017-05 Cumulativ.

RESKI‘[\MIH s D EEEas

assets/c5445461-8e45-45b6-9b10-68c0cbe9fddd.png
PS C:\> Get-VM -ViName WML
Nane State CPUUsage(x) MemoryAssigned(M) Uptime status Version

Wi Running 0 1024 6.5730000 Operating normally 8.0

assets/41162f9d-5b3a-4b63-bba0-5633a3347097.png
PS

2\> net view \\fs1
Shared resources at \\fsl

Share name Type Used as Comment

Backup Disk Used in Recipe 5-7 to hold backup of SRVL
foo Disk. Foo share for IT
The command completed successfully.

assets/1da2bb8b-8665-4fda-82e5-11c7c5f7740f.png
PS C:\> Get-SmbMapping

Status Loca] Path Remote Path

\\packt100sa. file. core.windows .net\packtshare

assets/839c4bbb-e71e-4197-be94-00fed5893264.png
Windows Security %

Enter your credentials

These credentials will be used to connect to 51.140.65.246.

o pact100\tfl

Domain: pact100

[] Remember me

More choices

Reskit Administrator
RESKIT\Administrator

oK Cancel

assets/46c2ec3a-1a03-49a1-a981-77a226003b15.png
:\> Get-smbshare —Name = |
Get-SmbShareAccess |
Format-Table —Groupsy Name

Nan

Backup
Name ScopeName AccountName AccessControlType AccessRight

Backup = Everyone Allow Full

AccessControlType AccessRight

BUILTIN\Administrators Allow Full

Pcs =
RS - BUILTIN\Backup Operators Allow n
eCs = NT AUTHORTTY\INTERACTIVE ATlow i

assets/4b009361-5d1f-46a2-98a4-658486df78aa.png
\> New-TscsiTargetPortal —TargetPortalAddress Srvi.reskit.org
TargetPortalPortNunber 3260

InitiatorInstanceNane
InitiatorportalAddress

TIsDatabigest False
IsHeaderDigest False
TargetPortaladdress srvi.reskit.org
TargetPortalPorthumber : 3260

PSComputerNane

assets/006235d0-510a-4cba-92ca-6f5ef4276c3b.png
PS C:\> Get-WindowsFeature | Where-Object -FilterScript {$PSItem.Installed}
Display Name Name Install State
[X] File and Storage Services FileAndstorage-Services Installed
[X] File and iSCSI Services File-Services Installed
D] File Server FS-FileServer Installed
[X] Storage Services Storage-services Installed
[X] Web Server (II5) Web-Server Installed
[X] Web Server veb-WebServer Installed
[X] Common HTTP Features Web-Common-Http Installed
[X] Default Document Web-Default-Doc Installed
[X] static Content Web-Static-Content. Installed
[X] Performance web-Performance Installed
[X] Dynamic Content Compression Web-Dyn-Compression Installed
[X] Security Web-Security Installed
[X] Request Filtering Web-Filtering Installed
[X] Windows Authentication eb-Windows-Auth Installed
[X] Application Development Web-App-Dev Installed
[X] -NET Extensibility 4.6 veb-Net-Ext4s Installed
[X] ASP.NET 4.6 Web-Asp-Net45 Installed
[X] ISAPI Extensions Web-TSAPT-Ext Installed
[X] ISAPI Filters. Web-TSAPT-Filter Installed
[X] Managenent Tools Web-Mgmt-Tools Installed
[X] IIS Management Console. web-Mgmt—Console Installed
[X] IIS 6 Management Compatibility. Web-Mgmt—Compat Installed
[X] IIS 6 Metabase Compatibility veb-Metabase Installed

[X] IIS 6 Management Console ‘Web-Lgcy-Mgmt-Console Installed

assets/646f3f43-91e5-44b0-9961-526deadfb2fa.png
PS C:\> New-ADUser @NewUserHT °

-SamAccountName 'JerryG'
~UserPrincipalName 'jerryg@reskit.org"
-Description 'virtualization Team"
-Name ‘JerryGarcia'
-DisplayName ‘Jerry Garcia (IT)' °
-path '0U=IT,DC=Reskit,Dc=0rg"
-PassThru
I
DistinguishedName : CN=JerryGarcia,OU=IT,DC=Reskit,DC=Org
Enabled : True
GivenName E
Name : JerryGarcia
objectClass : user
ObjectGUID : 42d4820d-9281-45b3-bb02-2a98b165a5d5
SamAccountName : JerryG
SID : 5-1-5-21-715049209-2702507345-667613206-1134
Surname E

UserPrincipalName : jerryg@reskit.org

assets/73c55678-3059-4118-b07f-7c71dd10313f.png
Create Feed

Universal
Package repository for packages containing arbitrary files.

NuGet
Package repository for NET, G++/CoApp, etc.

PowerShell
PowerShell commands or Desired State Configuration (DSC) resources.

Chocolatey
Machine-level software packages and installers for Windows.

LEVE
Anm2-formatted repository for Java artifacts and jar files.

npm
Aprivate registry for NodeJs/Javascript packages.

Bower
Aprivate registry for Bower/JavaScript packages.

Docker
Aprivate registry for Docker repositories.

Ruby Gems
Aprivate Gem server.

assets/e49d4b3c-feb7-4f0d-80ea-4a601a647e16.png
B

b

> s Quickaccess

System Volume (C)
> Recipes-1(@)
> System Volume (T)

> e Network

| System Volume (T3

View

& v M m THEPC > System Volume (T)

Name

oo

[l Logs

] newspool

] PerfLogs

] PrinterDrivers
] Program Fies
1| Program Files (x36)
] Recovered

] Recovered2

[scripts

] spool

'] SpociViaRegistry
[Users

] Windows
Unattend

Date modified

/1220162316
12/09/2016 12:36
25/11/2016 11:08
16/07/2016 1423
201272016 1507
16/11/2016 23:26
16/07/2016 1423
2612720162203
2612720162206
02/01/2017 21
15/02/2017 1448
20/03/2017 131
/1172016 2337
12/02/2017 17
10/11/2016 12:54

Type Size

File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
XML Document 9K8

assets/22fd9f60-fca5-4729-b746-3de56502ce51.png
PS C:\Windows\systen32> Get-Command -Module PowershellGet -Verb Find

CommandType Name. Source
Function Find-Command PowerShellGet
Function Find-DscResource PowerShel1Get
Function Find-Module PowerShel1Get
Function Find-RoleCapability PowerShel1Get
Function Find-Script PowerShellGet

assets/8e8f92b9-b44b-41e0-9e1a-e56a3ea4dc8c.png
ministration> F

Manage MyPowerShellPackages Feed

Properties

Name MyPowershellPackages

Description no description

Type Powershell

Caching Enabled (connector packages will be cached when they are first requested)

Replication Disabled

Disk Path CAProgrambata\ProGet\Packages\ nugetva\F2

Package Store default

Drop Path not set

NuGet API Key not set change
Feed Connectors n Vulnerability Sources i
This feed has no connectors. This feed has no vulnerability sources configured.

License Filters

Allow any license

Rentention Rules

This feed has no retention rules defined.

assets/38480f25-6eb6-4253-bcb3-252b8abf82a7.png
\>Find-DscResource | Where-Object Name -match 'IIS®

Name ModuleName Repositor
XIisFeatureDelegation 1.17.0.0 xebAdministration PsGallery
XTisHandler 1.17.0.0 xWebAdministration PSGallery
xTisLogging 1.17.0.0 xebAdministration PSGallery
XTisMimeTypeMapping 1.17.0.0 xWebAdministration PSGallery
XTisModuTe 1.17,0.0 xebAdministration PSGallery
TisLogging 0.1.0.0 WebAdministrationDsc PSGallery
XITSWebBinding 10,01 xIISWebBinding PSGallery
XITSCertsinding 100,01 xIISCertsBinding PSGallery
XIISApplicationPoolIdentityType 1.0.0.2 xIISApplicationPoolIdentityType PSGallery
XITSWachineKey 100,01 xIISMachineKey PSGallery
XITSMail 10,01 xIISMail PSGallery
CITSSharedConfig 1037 cCogito PSGallery
cAspNetTisRegistration 100 cAspNetTisRegistration PSGallery
XIISSession 1.0.0.0 xIISSession PSGallery

assets/6618cb86-e911-46b8-bdff-7894adf5037d.png
PS C:\> $sb = {
SFileName2 = 'C:\File After_Checkpoint 2"
Get-Date | Out-File —FilePath SFileName2
Get-ChildItem -Path C:\ -File
3
Invoke-Command ~WName WM1 -ScriptBlock Ssb *
~Credential Scred

LastWriteTime Length Name PsComputerName

15/07/2017 12:16 60 File After_Checkpoint 1 W1
15/07/2007 12:21 60 File After_Checkpoint2 W1

assets/78af145c-92ad-413c-b981-b32fc49cc9a0.png
PS C:\> Get-VM -Name SVMname
Name State CPUUsage(%) MemoryAssigned(M) Uptime status Version

Wi Running 0 1024 3.2290000 Operating normally 8.0

assets/7c9ea8b7-579e-412a-982b-bb6fdec9aeca.png
PS C:\> Stop-VM -VMName W1 ~TurnOff
~Winane W1

Name State CPUUsage(%) MemoryAssigned(M) Uptime Status Version

WL off o 0 00:00:00 Operating normally 8.0

assets/d94a8e5d-5239-4b67-aec3-1b8b15dd566f.png
PS C:\> $updates

PS C:\> Sout |

Time

24/07/2017
24/07/2017
23/07/2017
23/07/2017
23/07/2017

23/07/2017

23/07/2017
23/07/2017
23/07/2017
23/07/2017

Where-Object ID -EQ 41
PS C:\> $out = Foreach ($update in Supdates) {

Sht

{3}

$ht.Time = $update.TimeCreated
$ht.update = ($update.Properties | Select -First
New-Object -TypeName PSObject -Property $HT }

Sort-Object -Property TimeCreated |
Format-Table -Wrap

:40:22
:56:28
:42:55
:28:32
:53:03

:53:03

:53:03
:57:00
:43:12
:42:56

Definition Update for windows
Definition Update for Windows
Definition Update for windows
Definition Update for Windows
2017-07 cumulative Update for
(kB4025339)

Defender
Defender
Defender
Defender -

1.value

KB2267602 (Definition
KB2267602 (Definition
KB2267602 (Definition
KB2267602 (Definition

= Get-WinEvent -LogName 'Microsoft-windows-WindowsUpdateClient/Operational’ |

1.249.158.0)
1.249.155.0)
1.249.118.0)
1.249.116.0)

Windows Server 2016 for x64-based Systems

Microsoft .NET Framework 4.7 for windows 10 Version 1607 and windows Server

2016 for x64 (kB3186568)

2017-06 update for Windows Server 2016 for x64-based Systems (KB3150513)
2017-06 update for Windows Server 2016 for x64-based Systems (KB4023834)
Definition Update for Windows Defender - KB2267602 (Definition 1.249.113.0)
Windows Malicious Software Removal Tool for windows 8, 8.1, 10 and windows
Server 2012, 2012 R2, 2016 x64 Edition - July 2017 (KB890830)

assets/ea1590f3-a39c-47f7-9087-853f0dc3ef14.png
. Windows Server: 2016

Language to instal

Time and currency format |

Keyboard or input method

Enter your language and other preferences and click "Next” to continue.

assets/ec327f28-ff32-4fde-b78b-46ce391db6bd.png
**% peskit.Org AD Report

*** gGenerated [02/03/2017 00:05:55]
B

*** Disabled Users

SamAccountname DisplayName

Guest Guest Account
DefaultAccount Default Account
krbtgt krbtgt

*** Enabled users Not logged in the past 7 days

DisplayName LastLogonDate

DNS Admin
BU Administrator 10/01/2017 15:38:21

*%% High Number of Bad Password Attempts

SamAccountname BadPWDCount

assets/1610c943-3acb-4cf8-957b-bd106ab629da.png
Windows PowerShell transcript start
Start time: 20161214142529
Username: RESKIT\EF]
RunAs User: RESKIT\tF1
achine: SG-CL1 (Wicrosoft Windows NT 10.0.14393.0)
Host Application: -ExecutionPolicy ByPass -File Sales Group Logon Script.psl
Process ID: 3604
5.1.14393.0

4.0.30319. 42000
WSManStackVersion: 3.0

PSRemotingProtocoiversion: 2.3

SerializationVersion: 1.1.0.1

Transcript started, output file is C:\transcript\transcript.txt
=== Logon script - Sales Group Logon SCript.psi

=== Date/time: [14/12/2016 14:25:30]

=== Sales group printer does not exist

=== Date/time: [14/12/2016 14:25:32]

<= Adding SG Printer

Name ComputerName Type DriverNane PortName
sales_Color...

\\PSRV\SGCPL = Connection NEC Color Multiwriter

Windows PowerShell transcript end
End time: 2016121414253

assets/8e235ca1-8aef-41e3-a3ad-75ea42b56247.png
Converting image....
Processing.

Operation.
Running.

assets/3cd4e5f3-8367-4866-84a1-6c1f2d38297b.png
—> Search for a system image on the network
Connecttothe networktofind a system mage that you want torestore

—> Install a driver
Locate and install a driver for device that i attached to the computer but s not i the list
of available system images.

assets/5169ac02-353a-4eec-8042-88565f47b06a.png
PS C:\Windows\system32> Uninstall-Module dbatools -Verbose
VERBOSE: Performing the operation "Uninstall-Hodule” on target "Version '0.8.692° of module 'dbatools’".
VERBOSE: Successfully uninstalled the module "dbatools’ from module base 'C:\Program Files\WindowsPowerShell\odules\dbatools\0. 8. 692" -

PS C:\Windows\systen32>

assets/01a1566f-a6bf-4b1c-a3b1-07dfefd77b02.png
PS C:\>
$key = "HKLM\Software\Policies\Microsoft\windows\windowsupdate\Au"
Set-GPRegistryvalue -Name $PolicyName

-Key $key ~

-ValueName 'UseWuserver'®

-Type DWORD -Value 1

$key = 'HKLM\Software\Policies\Microsoft\windows\windowsupdate\Au"
Set-GPRegistryvalue -Name $PolicyName

-Key $key ~

-valueName 'Auoptions’

-Type DWORD ~

-value 2
$key = 'HKLM\Software\Policies\Microsoft\windows\windowsupdate"
Set-GPRegistryvalue -Name $PolicyName

-Key $key ~

-ValueName 'wuserver'

-Type String ~

-Value $wsusServerURL
$key = 'HKLM\Software\Policies\Microsoft\windows\windowsupdate"
Set-GPRegistryvalue -Name $PolicyName

-Key $key ~

-ValueName 'WustatusServer'

-Type String -value $wsusServerURL

assets/a8639ad9-2899-4c06-9cfc-831f6c0a5e0d.png
STEP 3. SMB Folder sharing/using

PS C:\» net use X: \\SRVI\CS
The command completed successfully.

PS C:\> New-SMBMapping -LocalPath
Status Local Path Remote Path

~RemotePath \\SRVI\cS

v \\SRVINCS

PS C:\> net use
New connections will be remembered.

Status Local Remote Network
oK \\SRVI\CS Microsoft Windows Network
oK e \\SRVI\CS Microsoft Windows Network

The command completed successfully.

PS C:\> Get-SWBMapping
Status Local Path Remote Path
oKk x: A\SRVI\CS
oK Y: \\SRVI\cS

assets/42b2a683-daa6-48ce-a2a5-8508ea533d1e.png
PS C:\> Connect-TscsiTarget -TargetPortalAddress Srvi
—Nodeaddress $Target. NodeAddress

AuthenticationType NONE
InitiatorInstanceName : ROOT\ISCSIPRT\0000_O

InitiatorNodeAddress ian. 1991-05 . com. microsoft:Fsi.reskit.org
InitiatorPortalAddress : 0.0.0.0

InitiatorsideIdentifier : 400001370000

IsConnected True

TIsDatabigest False

IsDiscovered False

IsHeaderDigest False

TIsPersistent True

NumberOfConnections 1

SessionIdentifier FFFFdas3aFcl0010-4000013700000025
TargetNodeAddress an. 199105 . com. microsoft :srvi-salestarget-target
Targetsideldentifier 0100

PSComputerNane

assets/09088268-4db5-4913-942b-9aa84319bb81.png
PS C:\> Get-Website

Name I state
Default Web Site 1 Started
WSUS. 6668 Started

Administration 363

Physical Path

SystemDr iveX\inetpub\wmroot
Rorogran F11es\Upiate
e eIy

https :8531: ss1Flags=0

assets/a062bdf7-a362-4695-8a4c-34a202ff26de.png
PS C:\> Get-AzureRmEnvironment |
Format-Table -Property name, ManagementPortalURL

Name ManagenentPortalurl

AzureCloud http://go.microsoft. com/fwlink/7LinkId=254433
AzureChinaCloud http://go.microsoft. com/fwlink/7LinkId=301902
AzureUsGovernment https://manage. windowsazure. us
AzureGermanCloud ~ http://portal.microsoftazure. de/

assets/c08585ba-c30b-42aa-9226-978fc218efab.png
PS Ci» Get-WBPolicy

Schedule {20/03/2017 06:00:00}
BackupTargets {Recipe 6-1}
VolumesToBackup {System Volume (C)}
FilesSpecsToBackup {1
FilesSpecsToexclude : {}
ComponentsToBackup 4

BMR. False

Systemstate False
OverwritedldFornatvhd : False
VssBackupOptions VssCopyBackup

PS Ci> Get-WESummary

NextBackupTime
NumberOfVersions
LastSuccessfulBackupTime
LastSuccessfulBackupTargetPath
LastSuccessfulBackupTargetLabel

21/03/2017 06:00:00
E

20/03/2017 13:18:54
\\7\Volume{303F5cce-4450-450-b268-8F2de40des61}
Recipe 6-1

LastBackupTime 20/03/2017 13:18:54
LastBackupTarget Q:

Detailedvessage

LastBackupResuTthR 0

LastBackupResultDetailedHR
CurrentOperationStatus

assets/f3fb0a96-7a8f-48f0-9525-84710d10e4fa.png
$sb = {
‘SuMnane = “Nested11’
New-VM -Name VM1 -MemoryStartupBytes 168}
‘Tnvoke-Conmand -VMName SVMName *
-scriptBlock $sb *
~Credential Scred

Name State CPUUsage(%) MemoryAssigned(4) Uptime Status Version PSComputerName

Nestedi OFF 0 00 Operating normally 8.0 Wi

assets/b59e21cf-bcea-4fb6-9bbe-7469f524ee14.png
¥ Connectors Vulnerabilit

Click Feeds, then
Create New Feed

Packages Downloads API Endpoint Url

http://localhost:81/nuget/Default

Create New Feed

assets/32d7b0da-ed5e-4196-a3af-9cac5763508a.png
PS C:\> Import-Module WebAdministation
PS C:\> Get-Module -Name WebAdministration -ListAvailable

Directory: C:\Windows\system32\WindowsPowershell\vl.0\Modules

ModuleType Version Name ExportedCommands

Manifest 1.0.0.0 WebAdministration {Start-WebCommitDelay, Stop-WebCommitDelay, Get-WebConfigurationLock..

PS C:\> Get-Command -Module webadministration |
Measure-Object |
Select-Object -Property Count

assets/fd520576-8ce5-4c9e-a44f-2fd8285dbd72.png
\> Stop-WM -VName W1
\> Start-WM -VMName VM1

\> Wait-WM -VMName VM1 -For IPAddress
\> Get-Vm -VMName W1

Name State ~CPUUsage(¥) MemoryAssigned(W) Uptime status Version

WL Running 5 1024 00:01:43. 6280000 Operating normally 8.0

assets/f7ea5847-a0f6-4118-b9b5-424297caef64.png
s

\> Get-Wisnapshot -ViName W1
VMName Name SnapshotType CreationTime ParentsSnapshotName

WL Snapshotl Standard 15/07/2017 12:12:01
WL Snapshot? Standard 15/07/2017 12:17:39 Snapshotl

PS C:\> Get—ChildIten -Path SParent
wvmi\Virtual Hard Disks

Directory:

Mode ‘tWriteTine Length Name

15/07/2017 12:11 9969860608 WM1.Vhdx
15/07/2017 12:17 196083712 VM1_856D7A40-284A-4CFC-BF25-4D8E57254404. avhdx
15/07/2017 13:57 272629760 VM1_E122EE41-1FD5-4EBD-BCOA-AB4A290936C6. avhdx

assets/d55f4473-5858-4405-af99-7667602d59bd.png
PS C:\Windows\system32> Get-WindowsFeature -Name RSA]
Display Name Name Install state
DX Remote Server Administration Tools RsaT Installed
[X] Feature Administration Tools RSAT-Feature-Tools Installed
[X] SUTP Server Tools RSAT-SUTP. Installed

[X] BitLocker Drive Encryption Administratio... RSAT-Feature-Tools-B. Installed

[X] BitLocker Drive Encryption Tools RSAT-Feature-Tools-B. Installed

[X] BitLocker Recovery Password Viewer RSAT-Feature-Tools-B. Installed

[X] BITS Server Extensions Tools RSAT-Bits-Server Installed

[X] DataCentergridging LLDP Tools RSAT-DataCenterBridg. Installed

[X] Failover Clustering Tools RSAT-Clustering Installed

[X] Failover Cluster Management Tools RSAT-Clustering-Mgnt Installed

[X] Failover Cluster Module for Windows ... RSAT-Clustering-Powe. Installed

[X] Failover Cluster Automation Server RSAT-Clustering-Auto. Installed

[X] Failover Cluster Command Interface RSAT-Clustering-CrdL. Installed

[X] Network Load Balancing Tools RSAT-NLE Installed

[X] Shielded W Tools RSAT-Shielded-Wi-Tools Installed

[X] SWP Tools RSAT-SNiP. Installed

[X] Storage Replica Module for Windows Power... RSAT-Storage-Replica Installed

[X] WINS Server Tools RSAT-WINS Installed

[X] Role Administration Tools RSAT-Role-Tools Installed
[X] AD_DS and 4D LDS Tools RSAT-AD-Tools Installed

[X] Active Directory module for Windows ... RSAT-AD-PowerShell Installed

[X] 4D DS Tools RSAT-ADDS. Installed

[X] Active Directory Administrative ... RSAT-AD-AdminCenter Installed

[X] 4D DS Snap-Tns and Command-Line ... RSAT-ADDS-Tools Installed

[X] 4D LDS Snap-Ins and Command-Line Tools RSAT-ADLDS Installed

[X] Hyper-V Management Tools, RSAT-Hyper-V-Tools Installed

[X] Remote Desktop Services Tools RSAT-RDS-Tools Installed

[X] Remote Desktop Gateway Tools RSAT-RDS-Gateway. Installed

[X] Remote Desktop Licensing Diagnoser T... RSAT-RDS-Licensing-D. Installed

[X] Active Directory Certificate Services Tools RSAT-ADCS Installed

[X] Certification Authority Management T... RSAT-ADCS-Mgmt Installed

[X] Online Responder Tools RSAT-Online-Responder Installed

[X] Active Directory Rights Management Servi... RSAT-ADRMS Installed

[X] DHCP Server Tools RSAT-DHCP Installed

[X] DNS Server Tools. RSAT-DNS-Server Installed

[X] Fax Server Tools RSAT-Fax Installed

[X] File services Tools, RSAT-File-Services Installed

[X] DS Managenent Tools RSAT-DFS-Mgnt-Con Installed

[X] File Server Resource Manager Tools RSAT-FSRN-Hgnt Installed

[X] Services for Network File System Man... RSAT-NFS-Admin Installed

[X] Network Controller Management Tools. RSAT-NetworkController Installed

[X] Network Policy and Access Services Tools — RSAT-NPAS Installed

[X] Print and Document Services Tools RSAT-Print-Services Installed

[X] Remote Access Management Tools. RSAT-RemoteAccess Installed

[X] Remote Access GUI and Command-Line T... RSAT-RemoteAccess-Mamt Installed

[X] Remote Access module for Windows Pow... RSAT-RemoteAccess-Po. Installed

[X] Volume Activation Tools RSAT-VA-Tools Inetalled

assets/c07d5add-6fe1-4e3a-9d2d-0a43023e1aec.png
PS C:\> $PolicyName =
New-GPO -Name $PolicyName
New-GPLink -Name $PolicyName -Target "DC=RESKIT,DC=0rg"

assets/f77abe6d-dc54-4499-a487-e4d2817bc1cc.png
i
New-Item -Path C:\IT2 -ItemType Directory | Out-Null

New-SmbShare -Namey‘ITData’ -Path C:\IT2 -FullAccess Everyone
New-Ttem -PathlC:\Sales -TtemType Directory | Out-NuTl
New-SmbShare -Name ‘Sales’ -Path C:\Sales -FullAccess Everyone
New-Ttem —Path C:\Oldsales -ItenType Directory | Out-Null

New-SnbShare -Name ‘SalesHistorical’ -Path 'C:\OldSales’
‘Root’ | out-file c:\it2\root.txt
‘Root’ | out-file c:\Sales\root.txt
‘Root’ | out-file c:\oldsales\root. txt

}

‘Tnvoke-Conmand -Script8lock $sb -Computer FSL

Name Description PSComputerName
TIToata Fs1
Sales =
Saleshistorical =1
\foo> $sb = {
New-Item Path C:\IT2 -TtemType Directory | Out-Null
New-SmbShare -Name ‘ITData’ -Path C:\IT2 -FullAccess Everyone
New-Ttem -Path C:\Sales —TtemType Directory | Out-Null
New-SmbShare -Name ‘Sales’ -Path C:\Sales -FullAccess Everyone
New-Ttem —Path C:\Oldsales -ItenType Directory | Out-Null

New-SmbShare —Name ‘SalesHistorical’ -Path C:\IT2
"Root’ | out-file c:\it2\root.txt
‘Root’ | out-file c:\Sales\root.txt
‘Root’ | out-file c:\oldsales\root. txt

3

Tnvoke-Conmand -Script8lock $sb -Computer FS2

Name ScopeName Path Description PSComputerName
TITData - Fs2
Sales - Fs2
Saleshistorical = Fs2

\foo> $sb = {

New-Item C:\ITM -TtenType Directory | Out-Null
New-SmbShare -Name 'ITM' -Path C:\I™M -FullAccess Everyone
"Root’ | out-file c:\itm\root.txt

}

‘Tnvoke-Conmand -Script8lock $sb -Computer DCL

Name ScopeName Path Description PSComputerName

™ = caTm =

s

$sb = {

New-Item C:\ITM -TtenType Directory | Out-Null

New-SmbShare -Name 'ITM' -Path C:\ITM -FullAccess Everyone
"Root’ | out-file c:\itm\root.txt

3

Tnvoke-Conmand -Script8lock $sb -Computer DC2

(oo # DC2 folders/shares

Name ScopeName Path Description PSComputerName

assets/fd43e681-6984-47db-8c63-d2bdda6e7050.png
\> $5ubID = $Subscription.Context. Subscription. SubscriptionId
:\> Get-AzureRmSubscription -SubscriptionId $Subld |
Format-List -Property =

Subscriptiontd 0bC29420-0222-4599-b91e-e8699F760742
SubscriptionName MSDN Platforms

State Enabled

Tenant1d c1a6d420-6960-4261-9104-65669aabc4 20

CurrentStorageAccountName

assets/dad3b214-9322-4b52-a2f3-e7f196cdf8a8.png
© npsnarR

iipp/Page: £ - O [@ page2 of Reskitapp applica.. % ||

The Second Page

The second page of the ReskitApp application pushed out by DSC o SRV2.

Click here to go back home!

assets/9031e9e3-df32-4bf9-8f6f-70d8c9d9a385.png
PS C:\> $BUSet = Get-WBBackupSet | Where-Object Versionid -eq $Job.VersionId
PS C:\> SBUSet

VersionId : 03/21/2017-16:10

BackupTime 21/03/2017 16:10:04

BackupTarget \\2\Volume{303F5 cce-4450-45 20-b268-8F2de40des 61}
Recoverableltems : Volumes, SystemState, Applications, Files, BarcetalRecovery
Volume {Systen Volume (C:)}

Application {Registry}

VssBackupOption : VssCopyBackup

‘SnapshotTd 1bad2asf-64ch-4b55-b3a0-10669839c80C

BackupSetId * bebazdfc-610d-4ba6-81e9-F7e671b6eanb

assets/7271f0e6-1037-40a3-9f29-b6d75509496b.png
[NANO1]: PS c:\foo> Exit-PSSession

PS C:\foo>

assets/40ba1955-0bb9-4867-8090-cbfd8d22c89d.png
Ps C:\foo> New-NanoserverImage @NanoServerImageParameters
cmdlet New-NanoServerImage at command pipeline position 1
supply values for the following parameters:

assets/d1cdc8b0-86ac-4d37-baab-65d47826c4e4.png
Get-Content C:\Users\Administrator\AppData\Local\Temp\2\tmplAFE.tmp

2017-02-28 6 Postinstall started
2017-02-28 6 Detected role services: Api, UI, WidDatabase, Services
2017-02-28 6 Start: LoadSettingsFronParaneters

2017-02-28 6 Content Tocal is: True

2017-02-28 6 Content directory is: C:\usUS

2017-02-28 6 SQL instname is

2017-02-28 6 End: LoadSettingsFronParameters

2017-02-28 6 Start: Run

2017-02-28 6 Fetching WsusAdministratorssid from registry store
2017-02-28 6 Value is S-1-5-21-564364657-173954772-155622663-1000
2017-02-28 6 Fetching WsusReportersSid from registry store
2017-02-28 6 Value is S-1-5-21-564364657-173954772-155622663-1001
2017-02-28 6 Configuring content directory.

2017-02-28 6 Configuring groups.

2017-02-28 6 Starting group configuration for WSUS Administrators.
2017-02-28 6 Found group in regsitry, attempting to use it...
2017-02-28 6 Writing group to registry...

2017-02-28 6 Finished group creation

2017-02-28 6 Starting group configuration for WSUS Reporters
2017-02-28 6 Found group in regsitry, attempting to use it...
2017-02-28 6 Writing group to registry...

2017-02-28 6 Finished group creation

2017-02-28 6 Configuring permissions.

2017-02-28 6 Fetching content directory.

2017-02-28 6 Fetching ContentDir from registry store

2017-02-28 6 Value is C:\WSUS

2017-02-28 .6 Fetching group SIDs...

assets/2bf5ad17-3d8c-46dc-b5e0-e5958b9e3b5e.png
PS C:\> Get-Childitem -Path IIS:\Sites

Name 0 state Physical Path Bindings

Default Web Site 1 Started XSystemDriveX\inetpub\wwwroot hEtp -:

assets/ed79e22b-fb15-4c74-8615-823a6f9f864f.png
: Backup
21/03/2017 16:10
21/03/2017 16:29
Completed
Currentoperation
HResult [y
DetailediResult : 0
ErrorDescription
JobItens {VolumeList}
VersionId 03/21/2017-16:10
SuccessLogPath : C:\Windows\Logs\WindowsServerBackup\Backup-21-03-2017_16-10-04. Tog
Failurelogpath : C:\Windows\Logs\WindowsServerBackup\Backup_Error-21-03-2017_16-10-04. Tog
PS C:\> $Job | Select-Object -ExpandProperty JobItems
[VolumeList
Type VolumeList
state Completed
HResult o
DetailediResult : 0
ErrorDescription
BytesProcessed : 13802864640
TotalBytes 13802864640
CurrentItem
SubTtemProcessed : 1
SubTtenFailed o
TotalSubItem 1
SubTtenmList 1 e}

assets/e782fb3e-8bbf-4731-bd95-8637d63d6640.png
"Cmdlets '}
{(Get-Conmand -Module $_.name).count}
\> GetModule -Name Azure* -ListAvailable |
Sort-Object -Property
{(Get-Command —Wodule $_.name).count} -Descending |
Format-Table Name,Version,Author ,SHT -AutoSize

Version Author

Microsoft Corporation 1564

AzureRM 3.8.0
‘Azur eRM. Network 3.7.0 Microsoft Corporation 242
‘AzureRM . Compute 2.90 Microsoft Corporation 155
AzureAp 2.0.0.109 Microsoft Corporation 134
AzureRM. Sql 2.80 Microsoft Corporation 113
AzureRs. ApiManagement. 3.6.0 Microsoft Corporation 5
AzureRM Automation 2.8.0 Microsoft Corporation 70
AzureRMBatch 2.8.0 Microsoft Corporation 6
AzureRM Datal akeStore 3.6.0 Microsoft Corporation 68
AzureRM Resources 3.8.0 Microsoft Corporation 67
AzureRM. SiteRecovery 3.7.0 Microsoft Corporation 62
Azure. Storage 2.80 Microsoft Corporation 61
AzureRM. Datal akeAnalytics 21810 Microsoft Corporation 50
AzureR. Logi cApp. 21810 Microsoft Corporation a3
AzureRM Websites 2.80 Microsoft Corporation a1
AzureRM.Operationallnsights ~ 2.8.0 Microsoft Corporation 40
‘Azur eRM . HDInsight 21810 Microsoft Corporation 35
AzureR. KeyVault 2.8.0 Microsoft Corporation E
AzureRM. ServiceBus 02.0 Microsoft Corporation 34
AzureRM. DataFactories 2.8.0 Microsoft Corporation 29
AzureRM. Insights 2.8.0 Microsoft Corporation 25
Azur eRM_ EventHub. 02.0 Microsoft Corporation 24
AzureRM . Cdn 2.8.0 Microsoft Corporation 24
AzureRM. Backup 21810 Microsoft Corporation 24
AzureRM. Streamanalytics 21810 Microsoft Corporation 21
AzureRM Not i1 cationHubs 2.80 Microsoft Corporation 21
Azur eRM TotHub 140 Microsoft Corporation 20
AzureRM_ RecoveryServices.Backup 2.8.0 Microsoft Corporation 20
AzureRM. Scheduler 0.13.0 Microsoft Corporation 17
AzureRM RedisCache 2.8.0 Microsoft Corporation 15
AzureRM MachineL earning 0.13.0 Microsoft Corporation 1
AzureRM. Analysisservices 0.2.0 Microsoft Corporation 1
AzureRM . TrafficManager 2.810 Microsoft Corporation 1
AzureRM.profile 2.80 Microsoft Corporation 13
AzureRM. ServerManagement 21810 Microsoft Corporation 13
AzureRM. Storage 2.80 Microsoft Corporation 12
AzureRM . Dns. 2.80 Microsoft Corporation 1
AzureRM DevTestLabs 2.80 Microsoft Corporation 10
AzureRM Media 05.0 Microsoft Corporation B
AzureRM. RecoveryServices 2.8.0 Microsoft Corporation 7
AzureRM.CognitiveServices 0.6.0 Microsoft Corporation 7
‘Azur eRM. Power BIEmbedded 2.8.0 Microsoft Corporation 6
Azure. AnalysisServices 0.2.0 Microsoft Corporation a
AzureRM. Tags 2.8.0 Microsoft Corporation 3
AzureRM. UsageAggregates 2.8.0 Microsoft Corporation 3
AzureRM.Bi11ing 0.11.0 Microsoft Corporation 1

assets/e445ec0f-2126-4066-b92c-3b1c5c598e66.png
PS C:\> Get-Module -Name IISAdministration
PS C:\> Get-Command -Module ITISAdministration |
Measure-Object |
Select-Object -Property Count

ModuleType Version Name ExportedCommands

sadministration {Clear-I1scentralCertProvider, Clear-IISConfigCollection...

Script 1.0.0.0 i

Count : 31

assets/10d72265-e7d1-43a2-9e6e-2664f2d19ce6.png
s

\> Get-DfsrMembership -GroupName FSShareRG -ComputerName FS1, FS2 |
Format-Table GroupName, ComputerName, ComputerDomainName, ContentPath, Enabled

GroupName ComputerName ComputerDomainNanme ContentPath Enabled

FSShareRG FS1 Reskit.Org carez True
FSShareRG Fs2 Reskit.Org eIz True
FSShareRG FS1 Reskit.Org C:\sales True
FSShareRG Fs2 Reskit.org c:\sales True
FSShareRG FS1 Reskit.Org C:\Oldsales True
FSShareRG Fs2 Reskit.Org c:\Oldsales True
PS C:\» Get-DfsrMembership ~GroupName DCShareRG -ComputerName DCL, DC2 |

Format-Table GroupName, ComputerName, ComputerDomainName, ContentPath, Enabled
GroupName ComputerName ComputerDomainName ContentPath Enabled

DCShareRG DCL Reskit.Org caIm True
DCShareRG DC2 Reskit.Org True

assets/3a44c908-002c-445e-a828-7b0c447b8f71.png
\> $Passwordss = CodvertTo-SecureString -string "Password’ -AsPlainText -Force
PS C:\> Install-ADDSDomainController -DomainName 'Reskit.org’
~SafelodeAdnini stratorPassword SPasswordss ©
SiteNane ‘Defauli-First-siteName: -
~NoRebootOnCompletion —Force

WARNING: Windows Server 2016 domain controllers have a default for the security setting
named "Allow cryptography algorithms compatible with Windows NT 4.0" that prevents
weaker cryptography algorithms when establishing security channel sessions.

For more information about this setting, see Knowledge Base article 942564
(http://go. microsoft. com/Fwlink/?LinkId~104751).

WARNING: A delegation for this DNS server cannot be created because the authoritative
parent zone cannot be found or it does not run Windows DNS server. If you are integrating
with an existing DNS infrastructure, you should manually create a delegation to this

DNS server in the parent zone to ensure reliable name resolution from outside

the domain "Reskit.Org”. Otherwise, no action is required.

WARNING: Windows Server 2016 domain controllers have a default for the security setting
named "Allow cryptography algorithms compatible with Windows NT 4.0" that prevents,
weaker cryptography algorithms when establishing security channel sessions.

For more information about this setting, see Knowledge Base article 942564
(http://go. microsoft. com/Fwlink/?LinkId~104751).

WARNING: A delegation for this DNS server cannot be created because the authoritative
parent zone cannot be found or it does not run Windows DNS server. If you are integr
ating with an existing DNS infrastructure, you should manually create a delegation to
this DNS server in the parent zone to ensure reliable name resolution from outside t
he domain "Reskit.Org". Otherwise, no action is required.

Message Context RebootRequired

Status

You must restart this computer to complete the operation... DCPromo.General.4 T —

assets/020b6f21-9934-4bd9-8aaf-921941c7fef0.png
Ps c:\foo> $Credential = Get-Credential -Message "Enter password for administrator user on target VM:" -UserName administrator

Enter password for administrator user on target VM:

[

assets/678a8f1c-b745-4401-bd5a-1166b4d38b47.png
& Add Printer

Find a printer by other options
(O My printer is alttle older. Help me find it.
(@ Find a printer n the directory, based on location or feature

(O Select a shared printer by name

Browse.

Example: \\computemame\
hitp://computerame/printers/printername/ printer

(OAdd a printer using a TCP/IP address or hostname
(O Add a Bluetooth, wireless or network discoverable printer

(O Add local printer or network printer with manual settings

assets/e54520e9-29c9-429a-97da-0f6bbb0d2554.png
PS R:\> Get-smbClientNetworkInterface |
Format-Table -auto —wrap

If Idx RSS 7 RDA 7 Speed IpAddresses Friendly Name

2 True False 10 Gbps {fes0::458e:834a:e0a:479%, 10.10.10.150} Ethernet
3 False False 100 Kbps {fe80::5efe:10.10.10.150} 1isatap. {495B3708-020D-43D2-BEAF-A11390D3C902}

assets/ff8dd72b-2d80-4f9f-8ed7-65a720aa8951.png
\> Get-NetIPAddress -InterfaceIndex SIfindex -AddressFamily SIPType

TPAddress
erfaceIndex
ThterfaceAlias
AddressFanily
Type
PrefixLength
Prefixorigin
SuFfFixorigin
Addressstate
ValidLifetine
PreferredLifetine
skipAssource
PolicyStore

assets/b6f77c66-6f1e-4bc2-8321-cf6fd3f89135.png
PS C:\Users\Administrator> Gpupdate /force
wuauclt /detectnow
Updating policy...

assets/00145e39-ad03-4a72-b02d-8c57f5a2c170.png
Gmail - “ a °] n - More -

Backup Report for FS1 at: [01/10/2017 15:01:50] /insex

Inbox (2) BackupReport@reskitorg via sendaid et © 301PM (1 min
Starred tome [+

Sent Mail 3 Report- Notepad - Box

Daily backup report ~ contained in the attachment Fle Edt Format View Help

Drafis
Backup Report for FSL at [01/10/2017 15:01:50]
More ~ R B
QPowerSheH a *** Backup Sets ***
VersionId BackupTime Application BackupTarget
. 01/08/2017-06:00 08/01/2017 06:00:09 {Registry} \\SRV1\Backup
B ReportTxt v
= Event Log Messages ***
*xx Backup Error logs ***
& | Click here to Reply or Fon Directory: C:\Windows\Logs\WindowsServerBackup
Mode LastliriteTine Length Name
0GB (0%) of 15 GB used -a- 04/01/2017 2 Backup_Error-04-01-2017_06-00-11. log
Uanage -a- 05/01/2017 2 Backup_Error-05-01-2017_06-00-11. 1og
-a- 06/01/2017 2 Backup_Error-06-01-2017_06-00-21. 1og
-a- 07/01/2017 2 Backup_Error-07-01-2017_06-00-10. Log
-a- 08/01/2017 2 Backup_Error-08-01-2017_06-00-09. Log

No recent chats
Start a new one

assets/06236282-5fe2-45fa-8962-f0386a166b92.png
PS C:\Windows\system32> $TSPacks | Format-Table -Property Name, Version,

Name

Aero
Windows
Sound

Background Intelligent Transfer Service

-Wrap -AutoSize

Store Apps.

Blue Screen
Hardware and Devices

Devices

and Printers

HomeGroup
Internet Explorer Performance
Internet Explorer Safety
Keyboard

Windows

Program Compatibility Troubleshooter

Network Diagnostics

performance

Power
Printer

Search and Indexing

Speech
USB

Video Playback

Windows
Windows
Windows
Windows

Media Player Settings
Media Player Library
Media Player DVD
update

Minimunversion,
Description

Version MinimumVersion Description

DI IR RO RGN RO W A RN
HHHRoOOOOOOOOORNNOOOMROD

PSRN AN EAEN EIEAEENE
RHRRERRNRR R RS R R R AR RO R

Find and fix problems
Troubleshoot problems
Troubleshoot problems
Find and fix problems

with the Aero desktop experience.
that may prevent Windows Store Apps from working properly
that prevent your computer from playing or recording sound.
that may prevent background downloads from working

Troubleshoot errors that cause Windows to stop or restart unexpectedly

Find and fix problems
Troubleshoot problems
Find and fix problems
Find and fix problems
Find and fix problems
Find and fix problems
Detects problems with
Find and fix problems
Find and fix problems
Find and fix problems
Find and fix problems
Find and fix problems

with devices and hardware.
with devices and printers.

with viewing computers or shared files in a homegroup.

with Internet Explorer performance.

with security and privacy features in Internet Explorer.

with your comupter’s keyboard settings.

network connectivity.

with running older programs on this version of Windows.

to help optimize Windows speed and performance.

with your computer's power settings to conserve power and extend battery Tlife.
with printing.

with Windows Search.

Get your microphone ready and fix problems that may prevent Windows from hearing you

Troubleshoot problems
Find and fix problems
Find and fix problems
Find and fix problems
Find and fix problems
Resolve problems that

with a USB device

playing movies, television, and video
with Windows Media Player settings.

with the Windows Media Player Library.
with playing DVDs in Windows Media Player.
prevent you from updating Windows.

assets/38450bd0-cbf9-4fd0-a7cc-b0e389b40895.png
\> Get-ChildItem -Path $Parent
Directory: C:\vml\Virtual Hard Disks

Mode LastriteTime Length Name

15/07/2017 13:58 9969860608 VML.Vhdx

assets/2acb4782-9541-45f6-9307-080293fbed0c.png
PS C:\> Get-DscResource

Inplementedas

Binary
Binary
Powershell
Powershell
Powershell
Composite
Binary
Powershell
Composite
Powershell
Powershell
Powershell
Composite
Powershell
Powershell
Powershell
Powershell
Powershell
Composite
Powershell
Composite
Powershell
Powershell

Name

File
Signaturevalidation
Archive

Environment

Group.

Groupset.

WindowsFeature.
WindowsFeatureSet

WindowsOptionalFeature.
WindowsOptionalFeatureSet

WindowsPackageCab
WindowsProcess

ModuleNane

PSDesiredStateConfiguration
PSDesiredStateConfiguration
PSDesiredstateConfiguration
PSDesiredstateConfiguration
PSDesiredstateConfiguration
PSDesiredstateConfiguration
PSDesiredstateConfiguration
PSDesiredstateConfiguration
PSDesiredstateConfiguration
PSDesiredstateConfiguration
PSDesiredstateConfiguration
PSDesiredstateConfiguration
PSDesiredstateConfiguration
PSDesiredstateConfiguration
PSDesiredstateConfiguration
PSDesiredstateConfiguration
PSDesiredstateConfiguration
PSDesiredstateConfiguration
PSDesiredstateConfiguration
PSDesiredstateConfiguration
PSDesiredstateConfiguration

Properties

{DestinationPath, Attributes, Checksum, Content.
{SignedItenType, TrustedstorePath}
{Destination, Path, Checksum, Credential...}
{Name, Dependson, Ensure, Path...}

{GroupNane, Credential, DependsOn, Description. .
{DependsOn, PsDscRunAsCredential, GroupName, En.
{Message, DependsOn, PsDscRunAsCredential}
{Name, Path, ProductId, Arguments...}

{DependsOn, PsDscRunAsCredential, Path, Credent...
{Key, ValueName, DependsOn, Ensure...}
{GetScript, SetScript, Testscript, Credential...}
{Name, BuiltInAccount, Credential, Dependencies.
{DependsOn, PsDscRunASCredential, Name, Startup.
{UserName, 'DependsOn, Description, Disabled...}
{NodeName, ResourceName, DependsOn, PSDscRUnASC.
{NodeName, ResourceName, DependsOn, PSDscRUnASC.
{NodeCount, NodeName, ResourceName, DependsOn.
{Name, Credential, DependsOn, Ensure...}
{DependsOn, PsDscRunAsCredential, Name, Ensure...}
{Name, DependsOn, Ensure, LogLevel...}

{DependsOn, PsDscRunAsCredential, Name, Ensure...}
{Ensure, Name, SourcePath, DependsOn...}
{Arquments, Path, Credential, DependsOn.

assets/b349de48-7fdb-48f4-a5c3-ba0e2e71edf6.png
Mode

\> TelnetsRV2 -OutputPath C:\DSCConfiguration
DScConfiguration
LastiriteTine Length Name

19/04/2017

assets/781e7602-9a48-47a8-be19-5a542036d792.jpg

assets/20400822-3be1-467e-ac08-5fc3f08bab22.png
:\> Get-ChildItem -Path IIS:\|

AppPools.
Sites

Ss1Bindings

assets/c3cc2a83-bea3-4dc7-a60b-376edb81f112.png
[= | Backup 2017-03-20 153950

Wome st view

|11 < WindowsimageBackup > PSRV » Backup 2017-03-20 153950

Neme
> s Quickaccess
= 0a61551-0000-0000-0000- 100000000000

v B ThispC = BackupSpecs
> I Desktop 197938e>-2083-4065-aceT-301b7316993....
> [Documents 197938e>-2083-4065-aceT-301b7316993....
» o 197938e>-2083-4065-aceT-301b7316993....
> ik 197938e>-2083-4065-aceT-301b7316993....

: 197938e>-2083-4065-aceT-301b7316993....
> IShEs 197938e>-2083-4065-aceT-301b7316993....
> @ Videos 197938e>-2083-4065-aceT-301b7316993....

System Volume (C)
> m Recipe6-1 (@)

197938e>-2083-4065-aceT-301b7316993....
197938e>-2083-4065-aceT-301b7316993....
197938e>-2083-4065-aceT-301b7316993....
197938e>-2083-4065-aceT-301b7316993....
0f938eb-2b83-4065-ace7-39a1b731b993._...

> e Network

Date modified

20/03/2017 15:52
20/03/2017 1551
20/03/2017 1551
20/03/2017 1551
20/03/2017 1551
20/03/2017 1551
20/03/2017 1551
20/03/2017 1551
20/03/2017 1551
20/03/2017 1551
20/03/2017 1551
20/03/2017 1551
20/03/2017 1551
20/03/201715:51

- o

v | @ | Search Backup 2017-03-2015,

Type Size

Hard Disk Image F... 15122432

XML Document i
XML Document K8
XML Document 14K8.
XML Document 5K8
XML Document 4K8
XML Document 4K8
XML Document 2K8
XML Document 2K8
XML Document 2K8
XML Document 38
XML Document 5K8
XML Document 2K8
XML Document 5,104 KB

X

()
»

assets/9aa50b26-e1f2-4389-80ea-a7e93eb00401.png
PS C:\> If (Get-wePolicy) {Remove-wePolicy -AT1 -Force}
Create new policy
SFulIBUPOT = New-wEPoTicy.
sschedule = "06:00"
Set schedule
Set-weschedule -Policy $FullEUPO] -Schedule SSchedule | Out-Null
Create a credential
$U = administratorereskit.org®
$P = ConvertTo-Securestring -string "Password’ -AsPlainText -Force
SCred = New-Object ~TypeName Systen.Management.Automation.PSCredential
-ArgumentList SU,SP
Create target and add to backup policy
Invoke-Comand -ComputerName SRV1 -Credential Scred
-scriptelock {
New-Ttem -Path *C:\Backup' *
TtemType Directory
New-Smbshare -Name Backup -Path 'C:\Backup®
—FullAccess "SEnv:USERDOWAIN\domain adwins” |

out-NuTl

3
STarget = New-wesackupTarget -Networkrath "\\SVI\Backup® —Credential SCred
Add-wesackupTarget ~Policy SFUT1BUPO] -Target STarget -Force | Out-Null

et and set volume to backup

$DisktoBackup = Get-WEDisk | Select-object -First 1

$Volune = Get-wevolume -Disk $DisktoBackup

Add-Wevolume -PoTicy SFUl1EUPO] -Volume SVolume | Out-NuTl

Add BUR to policy

Add-wesarewetalRecovery —Policy SFullBuPol

set policy

Set-wePolicy -Policy SFulleupol —Force

PS C:\> Start-weBackup -Policy SFullEUPO1 -Force
Creating a shadow copy of the volumes in the backup.
Volume 1 (0%) of 1 volume(s).

Volume 1 (100%) of 1 volume(s).

The backup operation completed.

assets/f70b3941-1c18-4e93-9efb-038afc6af0f1.png
B8 Hyper-V Manager
Fie Acion View Help
sz

o 4096 1B, 01218 Sendng Intal Repica (79%) 80

8 Hyper-V Mansger
File Action View Help
eI

assets/f32cf7cd-3f4b-4b21-9d80-95564ad1d93c.png
PS C:\> Ping DC1

Pinging DCL.Reskit.org [10.10.10.10] with 32 bytes of data:
Reply from 10.10.10.10: bytes=32 time<lms TTL=128
Reply from 10.10.10.10: bytes=32 time<lms TTL-128
Reply from 10.10.10.10: bytes=32 time<lms TTL=128
Reply from 10.10.10.10: bytes=32 time<lms TTL=128

ping statistics for 10.10.10.10:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = Oms, Maximum = Oms, Average = Oms

assets/25301bd4-9eda-4312-8d83-2aedf56b62e0.png
PS C:\> Get-wsusComputer |
where-object ComputerTargetGroupIDs -Contains $DCGroup.Id

Computer IP Address uperatmg System Last Status Report

dcl.reskit.org 10.10.10.10 wmdows server 2016 Datacenter 03/03/2017 22:38:47

assets/2aa0c07e-0ba7-4389-8813-87ab59c4cbf8.png
PS C:\> certutil.exe —setreg CA\DSConfigDN 'CN=Configuration,DC=reskit,DC=org"

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\CertSvc\Configuration\Reskit Root CA\DSConfigDN:

01d Value:
DSConfigDN REG_SZ = cn=foo

New Value:
DSConfigDN REG_SZ = CN=Configuration,DC=reskit,DC=org

CertUtil: —setreg command completed successfully.

The CertSvc service may need to be restarted for changes to take effect.

assets/f989558f-a233-40ff-9cd1-23a7861f7a53.png
PS C:\> Get-WPolicy

Schedule = {20/03/2017 06:00:00}
BackupTargets {Recipe 6-1}
VolumesToBackup {System Volume (C:)}
FilesSpecsToBackup {1
FilesSpecsToexclude : {}
ComponentsToBackup i

BMR. False

Systemstate False
Overwrite0ldFormatvhd : False

VssBackupOptions : VssCopyBackup

assets/edf2d86e-c9a2-4b1f-9361-e088aad5d0c1.png
Ps C:\> Sbadlogins = Get-WinEvent -LogName ForwardedEvents
PS C:\> Foreach (Shadlogin in Sbadlogins) {
Sobj = [Ordered] @{}
Sobj.Time - Sbadlogin.TimeCreated
Sobj.Logon - (Sbadlogin |
Select-Object -ExpandProperty properties).value | select -skip 5 ~first 1
New-Object -TypeName PSobject -Property $obj

Time Logon

06/09/2017 09:30:12 EvilHacker

05/09/2017 19:01:11 hacker420X@mahkooc. com
04/09/2017 19:00:39 NiceHacker@ReallyBadplace.com
04/09/2017 19:00:14 administrator

assets/76e1b0d0-03f5-4ab0-80dd-5011cb8f10b4.png
PS C:\> Invoke-Command -VMName WM1 °
scriptBlock {Hostname}
~Credential Scred

w1

assets/44b60460-e3fb-432d-b857-7a6c284960d4.png
PS C:\foo» Get-Package -ProviderName msu | Select Name

Name

KB2267602 (Definition 1.233.3763.0)
(Definition 20233, 3794.0)
5735.0)

5

Definition Update for Windows
Defigition Update for Windows Defender - KE2267602

KE22676!
Definition Update for Windows K2267602 (Detinition
Definition Update for Windows K2267602 (Definition

assets/e028902f-09a4-405d-bc92-02a7cd517a94.png
PS C:\> $warnings | Select -First 3 |
Format-List Category, Problem, Impact, Resolution

Category
Problem

TImpact
Resolution
Category
Problem
TImpact
Resolution
Category

Problem

TImpact
Resolution

Configuration

In addition to the normal file names, the server is creating short, eight-character
file names with a three-character file extension (8.3 file names) for all files.
Creating short file names in addition to the normal, long file names can
significantly decrease file server performance.

Disable short file name creation unless short file names are required by legacy
applications.

Configuration

Srv.sys is not set to start on demand.

Client computers will not be able to access file shares and other Server Message
Block (SMB)-based network services on this computer.

Set Srv.sys to start on demand.

Configuration
AsynchronousCredits doesn't have the recommended value on this server.

SMB not in a default configuration, which could lead to less than optimal behavior.
Set AsynchronousCredits to the recommended value, 64.

assets/fa07d78e-eae8-4c84-ab71-7fe42fe28e18.png
[NANO1]: PS c:\foo> New-NetIPAddress -InterfaceAlias 'Ethernet' -IPAddress 10.10.10.151
—PrefixLength 24 -pefaultGateway 10.10.10.254

IPAddress £ 10.10.10.151

InterfaceIndex g 3

InterfaceAlias : Ethernet

AddressFamily : IPV4

Type : Unicast

prefixLength : 24

prefixorigin : Manual

suffixorigin : Manual

Addressstate : Tentative

validLifetime : Infinite ([TimeSpan] laxvalue)
pPreferredLifetime : Infinite ([TimeSpan]::Maxvalue)
skipAssource : False

Policystore : Activestore

assets/920cb4de-aa6e-4576-9886-86ad8b5fc7a3.png
PS C:\Windows\system32> Install-Module —Name PowerShellGet —Force
WARNING: The version '1.1.1.0' of module 'PackageManagement' is currently in use. Retry the operation after closing the applications.

PS C:\Windows\systen32>

assets/a299862f-e70e-4599-b685-6ba576992b89.png
PS C:\> Set-WMBios W1 -StartupOrder ('IDE', 'CD’, ‘LegacyNetworkAdapter', 'Floppy')
PS C:\> Get-WMBios Wi

WName Star tuporder NumLockEnabled

Wi {IDE, CD, LegacyNetworkadapter, Floppy} False

assets/588a131c-7b6e-4d36-9be8-37f070598529.png
I

0 - & @ M Page for w2 Reski. ¢

HOME PAGE FOR WWW2.RESKIT.ORG

This is the root page this site

assets/9f51ff76-531c-492b-b431-fdf76d6d8ccb.png
PS C:\> $wsussubscription.SynchronizeAutomatically = $true
$wsussubscription.NumberofsynchronizationsPerbay

$wsussubscription.save()

assets/6d6acda5-b203-4b41-b238-a52bd156551a.png
PS C:\> If (Get-WBPolicy) {Remove-W8Policy -All -Force}

\> $FuTIBUPOT = New-WBPolicy

\> $schedule "06:00"

\> Set-WESchedule -Policy SFul18UP0] -Schedule $schedule | Out-Null
Get-WiDisk | Where-Object Properties -Match ValidTarget’

$BuDisk | Get-W8Volune | Where-Object MountPath -eq '

New-WBBackupTarget -Volume $Buvol

\> Add-WBackupTarget -Policy SFullBUPo] -Target STarget -Force | Out-Null

\> SDisktoBackup = Get-WBDisk | Where-Object Disknumber -eq 0

\> $Volume Get-uBVolume -Disk $DisktoBackup

\> Add-WEVolume -Policy SFuTIEUPo] —Volume SVolume | Out-Null

\> Add-WeBar eMetalRecovery —Policy SFullBUPol

\> Add-WESystenState —Policy SFullBUPol

PS C:\> Start-WBBackup -Policy SFullBUPol —Force.

Creating a shadow copy of the volumes in the backup

Creating a shadow copy of the volumes in the backup

Volume 1 (0%) of 1 volume(s).

Volume 1 (100%) of 1 volume(s)

Compacting the virtual hard disk for volume C:, 98% completed.

Creating a shadow copy of the backup storage location(s). .-

The backup operation completed.

assets/307ed335-78dd-42e0-b073-16e0f3f55f49.png
Recycle Bin

Deployment Id:
Internal IP:
Public IP:
Boot Time:
Free Space:

Host Name:
Memory:

08 Version:
User Name:

53e16de5-bffd-49b1-8196-766bfa0a2515
10.10.24

6/2/2017 3:22 AM

C:\114.49 GB NTFS

D:\68.77 GB NTFS

PACKT100

1792 MB

Windows Server 2016 Datacenter

.
E

10:35 AM

B me DM

assets/7df29c45-10bd-4735-89fe-28e1cdc893ee.png
PS C:\> $TsPack = $TSPacks | where id -eq 'WindowsUpdateDiagnostic"
> $TsPack | Invoke-TroubleshootingPack

Please select the resolutions to apply
The following resolutions are available to address problems that were found

Potential Windows Update Database error detected
[1] Repair Windows Update Database Corruption

Windows Update components must be repaired
[2] Repair Windows Update components

[?] Help
[x] Exit

assets/7e2b64ac-05fb-4427-8df8-24905894a01b.png
PS C:\> Instal)-WIndowsFeature F5-iSCSTTarget-Server

Success Restart Needed Exit Code Feature Result

True No Success {iSCST Target Server}

assets/2c213c3f-1e3e-4e97-be29-47cd13cd5314.png
PS C:\> Set-VMemory -VMName W1
~Dynami cenoryEnabled Strue
MinimumBytes S12ME -
-StartupBytes 1GB
~MaximumBytes 2G8

PS C:\> Get-WiMemory -VMName W1
WMName DynamicMemoryEnabled Minimum(¥) Startup(M) Maximum(M)

WL True 512 1024 2048

assets/b40adddd-4036-4e3f-bd01-d636c8f40a31.png
s

\> Get-DscLocalConfigurationManager |
Select-Object -ExpandProperty ConfigurationDownload¥anagers

Resourceld [ConfigurationRepositoryshare]Pullserver
SourceInfo 2:223:6: :ConfigurationRepositoryShare
Credential

SourcePath \\SRVI\DSCConfiguration

PS C:\» Get-DscLocalConfigurationManager |

Select-Object -ExpandProperty ResourceModulenanagers.

Resourceld [ResourceRepositoryShare]Resour ceServer
SourceInfo 7+ 161 :Resour ceRepositoryShare
Credential

SourcePath : \\SRV1\DSCResource

assets/0fe9bf1d-228d-4327-a8f1-dcee8a70e79c.png
:\> Get-PrinterPort —Name Sales Color |
Format-Table -Property Name, Description, PrinterHostAddress, Portnumber

Name Description Printertostaddress Portnumber

Sales_Color Standard TCP/IP Port 10.10.10.61 9100

Look at printer drivers added
PS C:\> Get-PrinterDriver -Name NEC* |
Format-Table -Property Name, Manufacturer, DriverVersion, PrinterEnvironment

Name Manufacturer DriverVersion PrinterEnvironment

NEC Color MultiWriter Class Driver NEC 2514750710366208 Windows x64

Get Printer Details
PS C:\> Get-Printer —ComputerName Psrv -Name SGCPL |
Format-Table -Property Name, ComputerName, Type, PortName,
Location, Published, Shared

Name ComputerName Type PortName Location Published Shared

SGCPL Psrv Local Sales_Color False True

assets/4fc96244-6938-479d-a5ee-d395bb06c06c.png
ChapUserName
ClusterGroupNane
ComputerName

Description

EnableChap
EnableReverseChap
EnforceldleTimeoutDetection
FirstBurstLength
IdleDuration

InitiatorIds

LastLogin

LunMappings

MaxBurstLength
MaxReceiveDatasegmentLength
ReceiveBufferCount
ReverseChapUserNane
Sessions.

Status.

Targetlan

TargetName

\> New-IscsiServerTarget -TargetName SLunName

~InitiatorIds DNSNAME

SRVL.Reskit.Org

False
False

True

65536

00:00:00
{DnsName:fs1.reskit.org}

e
262144
65536
10

o
NotConnected

an. 1991-05. com. microsoft:srvi-salestarget-target

SalesTarget

assets/3c5ab6a3-5c5d-4ffb-857f-ad18d53da5cd.png
3 Intemet Information Services (IS) Manager

(B

C75 (@) 1 » Applction Pooks

File View Help

ﬁi’ Application Pools

- % Go - GyShowAll | Groupby: No Grouping

This page lets you view and manage the st of application pools on the server, Application pools are associated with worker processes, contain one or more applications, and provide
solation among different applications.

Comections
- 28
W strtpage
3 SRVI (RESKIT\sdrministrator)
2 Applicaton Pools
v (@] Sites. Filter:
+ @ Defaut e se o
w—
i Bnero
2 NET 20 Clasic

Dneres
2 NET a5 Clossic
3 Closic NET A,
D oefautapprool

Status NETCLRV... Managed Pi

Identity

Stated V2.0 Integrated ApplicationPoolldentity
Stated V2.0 Classic ApplicationPoolldentity
Stated V4D Integrated ApplicationPoolldentity
Stated V4D Classic ApplicationPoolldentity
Stated V2.0 Classic ApplicationPoolldentity
Stated V4D Integrated ApplicationPoolldentity
Stated V4D Integrated LocalSystem

Started V4D Integrated ApplicationPoolldentity
Stated V4D Integrated ApplicationPoolldentity

Advanced Settings

?

X

Startup Time Limit (seconds) 90
. =
Enabled False
Bxecutable
Bxecutable Parameters
~ Rapid-Fail Protection
*Service Unavailable” Response " HitpLevel

Enabled True
Failure Interval (minutes) 5
Maximum Failures 5
Shutdown Executable
Shutdown Executable Parameter

 [Recyding

Disable Overlapped Recycle False
Disable Recycling for Configurat False
> Generate Recycle Event Log Entr

Private Memory Limit (kB) 1073741824
Regular Time Interval (minutes) 1740
Request Limit 100000
v Specific Times TimeSpan(] Array
o 07:55:00
m 195500
Virtual Memory Limit (KB) 0
Recydiing
oK Cancel

B Add Applicaton Poo..
St Appliction PoolDefults..

Application Pool Tasks

Start

e

@

Recycling.
Advanced Settings...
Rename

X Remove

View Applications

@ rer

assets/ac49d212-17e1-42b8-b250-0f924bbc57ff.png
PS > $RemEventLogs = Get-WinEvent -ListlLog * -ComputerName DCL

PS > $RemEventLogs.count
407
PS C:\> $RemEventLogs |

Sort-Object -Property RecordCount -Descending |
select-Object -First 10

LogMode MaximumsizeInBytes RecordCount LogName

Circular 134217728 187690 security

Circular 20000000 29766 Microsoft-windows-Store/Operational
Circular 10485760 17463 Microsoft-windows-TaskScheduler/Operational
Circular 20971520 16648 System

Circular 15728640 15819 windows Powershell

Circular 4194304 7485 Microsoft-windows-GroupPolicy/Operational
Circular 15728640 3146 Microsoft-windows-Powershell/oOperational
Circular 1052672 3012 pirectory Service

Circular 1052672 2483 Microsoft-Windows-Kernel-10/0Operational

Circular 1052672 2424 microsoft-Client-Licensing-Platform/Admin

assets/f5272c4b-db3a-4432-8252-ffd80d9dd412.png
PS C:\> Test-NetConnection -ComputerName DC1 -Port 445

ComputerName : ol
RemoteAddress : 10.10.10.10
RemotePort 445
InterfaceAlias : Ethernet
SourceAddress : 10.10.10.50

TcpTestsucceeded : True

assets/f411420d-f937-4a96-b96d-d3c17084a43b.png
Memory counter set has [36] colnters
Processor counter st has [15] counters

assets/fa9b6fe9-9284-4740-9ce8-fc7d123325dc.png
PS C:\> $SACOn = New-AzureStorageContext -StorageAccountName $SAName
-StorageAccountKey $Key
PS C:\> $5ACon

StorageAccountName : packt1000sa

BlobEndPoint : https://packt100sa.blob. core.windows.net/

TableEndpoint : https://packt100sa. table. core.windows.net/

QueueEndpoint : https://packt100sa. queue. core.windows .net/

FileEndPoint : https://packt100sa.f1ile.core.windows.net/

Context : Microsoft.windowsAzure.Commands . Common. Storage. AzureStorageContext

Name H

StorageAccount : BlobEndpoint=https ://packt100sa.blob. core.windows .net/; QueueEndpoint-https : //packt100sa. queue. core.windows . net/;

TableEndpoint=https://packt100sa.table.core.windows.net/;FileEndpoint=https://packt100sa.file.core.windows.net/;
AccountName=packt100sa; AccountKey-[key hidden]
EndPointsuffix : core.windows.net/

assets/e6371468-f681-4408-aa54-753287cc6fdb.png
Ps c:\foo> $server2016InstallationRoot = "E:\"

Ps c:\foo> $NanoserverFolder = Join-Path -Path $server2016InstallationRoot -childPath 'Nanoserver®

$NsigFolder = Join-Path -Path $NanoServerFolder -childPath 'NanoServerImageGenerator'
$NsigFolder

E:\NanoServer\NanoServerImageGenerator

assets/b3a1f877-5c54-4bbd-a9b5-5734a9b3ece6.png
PS C:\> $Results.count
116

assets/104b1792-63ea-48b5-b21d-51767c19e007.png
:\Windows\system32> Install-WindowsFeature -Name DHCP,RSAT-DHCP °
~ComputerName DC2.Reskit.Org

Success Restart Needed Exit Code Feature Result

True No Success {DHCP Server}

assets/9a0eb26c-9a57-4497-9b72-6becfca5870e.png
Ps c:\foo> $pomainloinBlobPath = 'C:\foo\NANO2.djoin"

assets/50c3dbc9-9a5d-47bd-9fd2-b46418852aee.png
s

\> $RecoveryOption = New-OBRecoveryOption -DestinationPath 'C:\AzRecover' °
“overwriteType Skip

PS C:\» Start-OBRecovery -Recoverablelten $Ttem -RecoveryOption $RecoveryOption

Job s in pre restore step.
Estimating size of backup items.
Estimating size of backup items.
Job completed.

The recovery operation completed successfully.

assets/655f4357-2583-4f1a-9453-098465e73dd1.png
%5 Remote Desktop Connection x

The remote computer could not be authenticated dus to problems wih s
securty certicate. ftmay be unsafe to proceed

Cetficate name.

5] Name inthe ceticatefromthe remote comper:
Packt100

Cetficate emors
The folowing erors were encountered whie valdating the remote.
computers cetfcate:

A\ The ceftfcate s ot from a tusted cetying athorty.

Do you want to connect despie these cetiicate eors?

[Dont ask me again for connections to this computer

w CE]

View certficate.

assets/adab237a-c5f5-4cae-82f9-3a6e34495c98.png
PS C:\» If (-Not (Test-Path C:\Recovered2))
{New-Ttem —Path C:\Recovered2 ItemType Directory}

PS C:\> $sourcepath \Foo\"

PS C:\> STargetPath \Recovered2\"

PS C:\> Start-WBFileRecovery -BackupSet $BUSet -SourcePath SSourcePath
TargetPath $TargetPath -Recursive -Force

Recovering files from C:\Foo\

Recovering files from C:\Foo\ : 88% of Files recovered.

Completed.

PS C:\»> Get-ChildIten -Path C:\Recovered?\foo

Directory: C:\recovered?\foo
LastiriteTine Length Name

= 13/11/2016 driver

= 09/12/2016 dsc

= 20/03/2017 62 dLtxt

= 20/03/2017 62 dz.txt

assets/fb0348e7-624c-427d-883c-886eac8b3336.png
PS C:\> Start-DscConfiguration -Path C:\DSC
Perforn operation *Invoke Cinbethod’ with following parameters, *'methodVane’ = SendConfigurationAply,
(SFT_DSCLocaCont 1gur at omManager , nanespaceNane

VERgD:
*cTassName

-Verbose —Wait

/Microsoft/Windows DesiredstateConfigiration -

start
[stare
[stare

[End
[stare

g8 EER

End
End

Start
Start

End
Start

B8 EEER

End
End

Start
Start

ggee

LEnd
[stare

1]

End
End

Start
Start

11

End
Start

5

End
End

Start
Start

End
Start

End
End
Start
Start
End
Start

End
End
End
End

HHRIIR IR

et
Resource
Test

Test
st

Set.
Resource
Resource
Test

Test
st

Set.
Resource
Resource
Test

Test
st

Set.
Resource
Resource
Test

Test
st

Set.
Resource
Resource
Test

Test
st

Set.
Resource
Resource
Test
Test

st

Set.
Resource
st
St

il
1

[[WindowsFeature] TT55rv2]
[[WindowsFeature]TT55r2]
[[WindowsFeature]TTS5rv2]
[[WindowsFeature]TT55rv2]
[[WindowsFeature]TTS5rv2]
[[WindowsFeature]TT55r2]
[[WindowsFeature]TT55r2]
[[WindowsFeature]TTs5ri2]
[[WindowsFeature] TT55rv2]
[[WindowsFeature] TT55rv2]
[[WindowsFeature] TT55rv2]
[[WindowsFeature] TT55rv2]
[[WindowsFeature] TT55rv2]
[[WindowsFeature]TT55r2]

oot

An LG mathod call arrived from computer SKVL with user sid S-1-5-21-715049209-2702507345-667613206-500.

The operation IGet-WindowsFeature! startad: Web-Server
The operation 'Get-WindowsFeature’ succeeded: Web-Sarver
n 2.1870 seconds.

Installation started

Contirue with inctallstion?

Prarequisite processing started.

Prerequisite processing succesded.
Tnstallation succesded:

Successfully installed the feature Web-Server.
in 570810 seconds.

[[WindowsFeature] IT55rvTools]
[[WindowsFeature] IT5SrvTools]

[[WindowsFeature] ITSSryTools] The operation 'Get-WindowsFeature’ started: Web-Mgnt-Tools.
[[WindowsFeature] ITSSrvTools] The operation 'Get-WindowsFeature’ succeeded: Web-Mgat-Tools

[[WindowsFeature] IT5SrvTools]

377500 saconds.

[[WindowsFeature] IT5SrvTools]
[[WindowsFeature] ITSSrvTools] Installation started:
[[WindowsFeature] ITSSrvTools] Contirue with installation?

[[WindowsFeature] ITSSrvTools] Prereqiisite processing started

[[WindowsFeature] ITSSryToo]s] Prerequisite processing succeeded.
[[WindowsFeature] IT5SrvTools] Installation Succesded.
[[WindowsFeature] ITSSrvTools] Successfully nstalled the feature Web-Hgnt-Tools.

[[WindowsFeature] IT5SrvTools]

3372590 secondz.

[[WindowsFeature] IT5srvTools]

ELFiTeIRKAppF Tes]
LIFiTeIRKAppF Tes]

[[Fi1eJRKADPFiTes] The system cannot Find the File specified.
[[Fi1eJRKAPFiTes] The ralated File/directory is: C:\ReskitApp.
[[Fi1eJRKADPFiTes] The network name canmot be found.
[[Fi1eJRKApPFiTes] The related file/directory is: \\DCI\ReskitApp.
[LFi1eJRKApPFiTes] Building File Tist without using cache.
[LFileJRKADPFiTes] in 0.2650 seconds.

LIFiTeIRKAppF Tes]

[[Fi1eJRKADPFiTes] The system cannot Find the File specified.
[[Fi1eJRKADPFiTes] The ralated File/directory is: C:\ReskitApp.

[[Fi1eJRKADPFiTes] The network name canmot be found.

[[Fi1eJRKApPFiTes] The related file/directory is: \\DCI\ReskitApp.
[LFi1eJRKADPFiTes] Building File Tist without using cache.

LI TeTRaperTes] Copving £l \\OCI\ResktApp Index-hn to C:\eskitapo\ndes. htn.

[[Fi1eJRKADPFiTes] Copying File \\DC1\Reski tApp\Page2.ht to C:\Reski tApp\P age:

[[Fi1eJRKAPFiTes] in 0.0650 seconds.

LIFiTeIRKAppF Tes]

[LxWebAppPool Reski tAppPocl]
[DWebAppPool Reski tAppPool]

[[WebAppPoo] Reski tAppPoo]] Application pool "RKAppPosl” was ot Found.

[DxWebAppPooTIReski thppPool] The “Ensure” state of application pool “RKAppPool” does not match the desired

[[WebAppPool Reski tAppPool] The target resource is not

‘the dasired stata.

[[WebAppPool Reski tAppPool] in 2.4550 seconds.
[DWebAppPool JReski tAppPool]

[[3WebAppPoo] JReski tAppPoo]] Performing the operation "Set-TargetResource” on target "RKApEPool”.
[[WebAppPool Reski tAppPool] Application pool RKAppPool” was ot Found..
[DWebAppPoo] JReski tAppPoo]] Creating appiication pool "RKApRPool”

Application pool "RKAppPool” was found.
h 1.2330 saconds.

[[Log)Completed]

n 147.5190 seconds.

Operation *Invoke CimMethad" complete.

VERBOSE: Time taken for configuration job to complete is 148.871 seconds

state.

assets/e7390b96-74fa-43e9-a3c5-7dc620a5eee2.png
Name State CPUUsage(%) MemoryAssigned(v) Uptime Status Version

WL Saved 0 0 00:00:00 Operating normally 8.0

assets/9776dde8-7c88-43c6-ad6f-4a9c0618ffe2.png
Windows Server 2016

Repair your computer

© 2016 Microsof Corporaton. AL ighs reserved.

assets/33d111b8-5119-4181-8b59-1ee87dbe3856.png
PS C:\Windows\system32> Install-PackageProvider Nuget —force —Verbose
VERBOSE: Using the provider ‘Bootstrap’ for searching packages.
Finding the package 'Bootstrap:
Performing the operation “Install Package” on target "Package ‘nuget’ version '2.8.5.208' from https://oneget.org/nuget-2.8.5. 208. package. swidtag"
Installing the package 'https://oneget.org/nuget-2.8.5. 208. package. swidtag
Installed the package 'nuget’ to 'C:\Program Files\PackageManagement\ProviderAssenblies\nuget\2. 8.5. 208\Microsoft. PackageManagement . NuGetProvider. 11"
Skipping previously processed assembly: C:\Program Files\PackageManagement\ProviderAssenblies\nuget\2. 8.5. 208\icrosoft. PackageManagement. NuGetProvider

Version Source Summary

2.8.5.208 https://onege. .. NuGet provider for the OneGet meta-package manager
Inporting the package provider Nuget
The provider 'NuGet' has already been imported. Trying to import it again.
Loading an assembly 'C:\Program Files\PackageManagement\ProviderAssemblies\nuget\2. 8.5. 208\Microsoft. Packageanagement . NuGetProvider. 11"
Acquiring providers for assembly: C:\Program Files\PackageWanagement\ProviderAssemblies\nuget\2. 8.5.208\Microsoft. PackageManagement . NuGetProvider. d11
Tnported provider 'C:\Program Files\PackageManagenent\ProviderAssenblies\nuget\2. 8.5 208\Mi crosoft. PackageManagement. NuGetProvider.d11° .

assets/cb0a658c-1931-4e26-b569-d3b74b8d9879.png
= New-wePolicy
New-WBFileSpec -Filespec 'C:\Foo'
New-WBFiTeSpec -FileSpec 'C:\Users\administrator\Documents"
\> Add-WeFilespec -Policy $00Po] —FileSpec $FSpecl,SFSpec?
\> $Volume Get-WEVolume —VolumePath Q:
\> $Target = New-WBBackupTarget -Volume $Volume
PS C:\> Add-W8BackupTarget -Policy $00Pol -Target STarget

Label Recipe 6-1
WEDisk

WEVolume Recipe 6-1 (Q:)

Path \\7\Volume{303F5 cce-4450-45e0-b265-8F2ded0des 61}
TargetType Volume

InheritAcl False

PreserveExistingBackup : False

assets/7cf08028-93a4-43f4-b119-7146574868d0.png
\> Get-ChildItem -Path C:\WindowsImageBackup\

Windows ImageBackup

LastiiriteTime Length Name

3/22/2017 10:09 P HvL

2\> Get—ChildItem -Path C:\WindowsInageBackup\HV1

£\WindowsImageBackup\HVL

Mode LastiriteTine
3/22/2017 10:20 P Backup 2017-03-22 220749
3/22/2017 10:20 P Catalog
3/22/2017 10:20 P Logs
12/29/2016 3:03 P SPPMetadataCache
12/29/2016 3:00 PM 16 Mediald

assets/dd07565f-b1e8-461c-942d-0f68c92d6352.png
PS C:\Windows\system32> Get-Command -Module PowerShellGet -Verb Find

ConmandType
Function
Function
Function

Function
Function

Find-Command
Find-DscResource
Find-Module
Find-RoleCapability
Find-script

Version

Source

PowerShellGet
PowerShel1Get
PowerShel1Get
PowersShel1Get
Powershel1Get

assets/dfb797f2-b0a6-4924-ab38-d798a5702f98.png
PS C:\> Install-WindowsFeature AD-Domain-Services -IncludeManagementTools

Success Restart Needed Exit Code Feature Result

True No Success {Active Directory Domain Services, Group P...

assets/5eb96731-8465-4f03-bcd4-d39468da0f02.png
PS C:\Windows\system32> Get-DhcpServerInDC

TPAddress DnsName

10.10.10.10 del.reskit.org
10.1010.11 dc2.reskit.org

assets/d5f9e54a-70b6-47e7-85ba-7eaab44f9a70.png
PS C:\> $DscCert

PSParentPath: Microsoft.Powershell.Security\Certificate::LocalMachine\My

Thumbprint Subject

assets/e42d78fa-29d8-4543-93ef-7f73dc3b425b.png
PS C:> $Session = New-CimSession ~ComputerName SRV2
PS Ci> Get-DscConfiguration -Cinsession $session
ConfigurationName : Telnetsvz

Dependson

ModuleNane PsDesiredstateconfiguration
ModuTeversion 11

PSDscRunAsCredential

Resourcezd [windowsFeature]TelnetcTient
SourceInfo

credential

DisplayNane Telnet Client

Ensure Present
IncludeATlsubFeature © False

Logpath

Name TelnetClient

Source

PSComputernane vz

CinclassNane MSFT_Roleresource.

assets/27f23d66-a813-420a-a363-97c01a96efe2.png
WiName Count CompatibilityForMigrationEnabled CompatibilityFor0lderOperatingSystensEnabled

WL 2 False False

assets/0d5f1857-6f69-4b36-862c-7bf90ef233c8.png
> Remove-Item -Path C:\DSC* -Rec -Force
> TelnetSRV2 -OutputPath C:\DSCConfiguration

Directory: C:\DSCConfiguration

Mode LastWriteTime Length Name

1850 Srv2.mof

assets/73548199-21bd-4b8d-a2df-7928240a74cb.png
Eh

File Action

jned Memory Uptime Configurati,

User name: administrator_
Password: rEEEskEExEEE

Domain:

EN-US Keyboard Required

ENTER: Authenticate

Running

assets/fdcd2b09-151a-4328-a074-dba832706a29.png
PS5 C:\Windows\system32> "Here,1s,a,list!

TypeName: Systen.Management. Automation. PSCustonObject

Name MenberType Definition
Equals. Method bool Equals(System.Object obj)
GetHashCode Method int GetHashCode()

GetType Method type GetType()

ToString Method string Tostring()

First NoteProperty string First=Here

Fourth NoteProperty string Fourth=list!

Second NoteProperty string Second=is

Third NoteProperty char Third=a

| ConvertFrom-String -PropertyNames First,Second,Third,Fourth -Delimiter °," | Get-Member

assets/c1857232-4776-44ad-93aa-f005ea996040.png
Create PowerShell Feed ®

Please keep it URL friendly - the feed's name is used in the API endpoint URL, and no one

likes having to escape whitespace and other characters.

Feed name: MyPowershellPackages

New PowerShell F Close

assets/8c137561-ccfa-4197-806d-86dd1f6e4c6c.png
PS C:\foo> SavailableChocolateyPackages | Sort-Object Name,Version | Select-Object Name, Version, Summary | Out-GridView

27 SavailableChocolateyPackages | Sort-Object Name,Version | Select-Obisci-liamania

and Nam sysinternals x

Add criteria ¥

20161118

.ms and applications.

assets/661c5834-1aa9-4700-a7d4-e050a29731fa.png
PS C:\> Invoke-Command -ComputerName DC1 -ScriptBlock {Get-BpaModel} |

Format-Table -Property Name, Id

Name

RightsManagementservices
Certificateservices

Microsoft DHCP Server Configuration Analysis Model

DirectoryServices

Microsoft DNS Server Configuration Analysis Model

File Services

Hyper-V

LightweightDirectoryservices

Network Policy and Access Services (NPAS)

Microsoft Remote Access Server Configuration Analysis Model

TerminalServices
windows Server Update Services

Microsoft Volume Activation Configuration Analysis Model

WebServer

Id

Microsoft/windows /ADRMS
Microsoft/windows/Certificateservices
Microsoft/windows /DHCPServer
Microsoft/windows/Directoryservices
Microsoft/windows /DNSServer
Microsoft/windows/Fileservices
Microsoft/windows /Hyper-v
Microsoft/Windows/LightweightDirect. ..
Microsoft/windows /NPAS

Microsoft/Windows /RemoteAccessServer
Microsoft/windows/Terminalservices
Microsoft/windows /UpdateServices
Microsoft/windows/VolumeActivation
Microsoft/windows /webserver

assets/2c4e0c63-9eb3-426f-9100-164ab776a947.png
&Roup Policy Management - =] X
View Window Help - ax
@@
sales.
Liked Group Polcy Obiects | Group Polcy nhertance | Delegation
LrkOrder PO Erforced Lk Encbled GO Staus
] Defaut Domain Poficy N & E = T
> [&] Domain Controllers
> (2] Sales - reed
> 5 Group Policy Objects 4 (V] Link Enabled
5 [y WMIFiters -
> [Storter GPOs z Save Report...
5 Sies
59 Group Policy Modeling Delete

% Group Polcy Results

Refresh

assets/c6ba2db8-ad36-4719-9ff7-364b32a4881d.png
WARNING: Ping to 10.10.

ComputerName
RemoteAddress
InterfaceAlias
SourceAddress
Pingsucceeded
PingReplyDetails (RTT)

10.123 failed -- status:

10.10.10.123
10.10.10.123
Ethernet
10.10.10.50
False

0 ms

DestinationHostUnreachable

assets/c7dd59bf-99db-4614-a837-f2b08fb1b9a9.png
\> Get-W —ComputerName HV1
s

\> Get-W —ComputerNane HVZ
Name State CPUUsage(¥) MemoryAssigned(M) Uptine Status Version

Wi Runming 0

assets/513f1cbd-103b-4aa8-86e7-5704f657d60b.png
9 certsry - [Certification Authority (Local)\Reskit Root CA\Pending Requests]

File Action View Help

e 2|z H
T Centfication Authoriy (Loca) | Request

v G ReskitRoot CA
5 Revoved cuicotes || PO ATa S View At Etenions..

Export Binary Data..

1 lssued Certficates et

| Pending Requests

5 Faied Requests e I
Deny

Requester Name Request Country/Region

inary Request Request Status Code Request Disposition Message Request Submission Date

<

Force the policy module to reevaluate this request

assets/0d61150d-e05b-416a-851e-97b2f3835117.png
= "Wi\Administrator *
ConvertTo-SecureString -String 'Password’ *
-AsPlainText —Force
\> Scred = New-Object -TypeName System.Management.Automation.PSCredential *
-ArgunentList Suser,SPass
PS C:\> Invoke-Command -VMName WM1 *
ScriptBlock {Install-WindowsFeature -Name Hyper-V

~IncludeManagementTools}
~Credential Scred
Success Restart Needed Exit Code Feature Result PSComputerName
True Yes SuccessRest. w1
WARNING: You must restart this server to finish the installation process.

assets/624c6033-744e-414c-8b3c-1153df691d50.png
PS C:\> certutil.exe —crl
CertUtil: -CRL command completed successfully.

PS C:\> Get—ChildIten -Path C:\Windows\System32\Certsrv\CertEnroll

£\Windows\System32\CertSrv\CertEnroll

Mode LastiriteTine Length Name

515 Reskit Root CA.crl
1401 ROOT_Reskit Root CA.crt

01/02/2017
31/01/2017

assets/08fc21af-9155-4191-a80e-2e7746f5ad3a.png
PS C:\> Get-Command -Module UpdateServices

CommandType

Cndlet
Cndlet
Cndlet
Cndlet
Cndlet
Cndlet
Cndlet
Cndlet
Cndlet
Cndlet
Cndlet
Cndlet
Cndlet
Cndlet
Cndlet
Cndlet

Name

Add-WsusComputer
‘Add-WisusDynami cCategory.
Approve-WsusUpdate
Deny-WsusUpdate
Get-WsusClassification
Get-WsusComputer
Get-WsusDynami cCategory
Get -WsusProduct

Get -WsusServer
Get-susUpdate
Invoke-WisusServerCleanup
Remove-UisusDynami cCategory
Set-WsusClassification
Set-wsusDynami cCategory
Set-WsusProduct
Set-WsusServerSynchronization

Version

2.0]
2.0]
2.0]
2.0]
2.0]
2.0]
2.0]
2.0]
2.0]
2.0]
2.0]
2.0]
2.0]
2.0]
2.0]

oo0000000000000
555555555555008

Source

UpdateServices
UpdateServices
UpdateServices
UpdateServices
UpdateServices
UpdateServices
UpdateServices
UpdateServices
UpdateServices
UpdateServices
UpdateServices
UpdateServices
UpdateServices
UpdateServices
UpdateServices
UpdateServices

assets/c08b41a0-f8af-4bb3-bcb8-c93dc87c8ce2.png
PS C:\> New-NIbCluster -InterfaceName ethernet
~Clustername "ReskitnLB’
~Clusterprinaryrp 10.10.10.55 -subnetmask 255.255.255.0 °
~operationvode Unicast

Name TPAddress Subnemmask Mode

ReskiTNLE 10.10.10. 55 255.255.255.0 MULTICAST

assets/70607816-5ef4-4ba8-8e86-af3e87acb2bb.png
PS Cert:\Localuachine\my> Start-DscConfiguration -Path C:\DSC -WAIT -verbose
Ferforn operation *Invoke Cimiethod’ with following parameters, methodName’ = SendConfigurationApply,
(SFT_DSCLocalConfigurationdanager, "nane
oot /Microsoft/Windows /Desiredstatecontiguration’ .
An LOW method call arrived from computer SRV1 with user sid S-1-5-21-715049209-2702507345-667613206-500.

Lou: [start set]
Low: [Start Resource] [[WindowsFeature]oscservice]
Low: [start Test] [[WindowsFeature]oscCservice]
[{windowsFeature]DsCservice] The operation 'Get-WindowsFeature’ started: DSC-Service
[[WindowsFeature]DsCservice] The operation 'Get-windowsFeature’ succeeded: DSC-Service
Lot [End Test] [[windowsreatureldsCservice] 1in 3.3520 seconds.
Low: [skip Set] [[windowsFeature]D: ice]
Low: [End Resource] [[WindowsFeature]DSCservice]
Low: [Start Resource] [[SCHebService]WebPullSRVi]
Low: [Start Test] [[0SCuebService]webPullvi]
[DoSCuebServicelwebPulISRVL] Check Ensure
[[SCuebService]WebPUTIRVI] The Website PSDSCPuTIServer is not present.
Low: [End Test] [DOSCHebService]WebPuTISRVI] 1in 0.8750 seconds.
Low: [starc sec] [[0SCHebService]WebPullvi]

[DOSCuebService]webPuTIRVI] Create the TIS endpoint
[[OSCuebService]WebPUTISRVI] Setting up endpoint at - NTtps: //SRVL:8080/PSDSCPUTIServer. sve
[DoSCuebServiceluebPuTIRVL] Verify that the certificate with the provided thumbprint exists in CE

[DOSCuebService]webpuTISRVL] Checking TTS requirenents
[DOSCuebService]WebPuTIRVI] Delete the App Pogl If it exists

[DOSCuebService]WwebPuIRVL] Renove the Site if it already exists

[DoSCHebServicelwebpulISRVA] Create the bin folder for deploying custom dependent binaries require

[DOSCuebService]webpuTISRVL] Adding App Pool
[[SCuebService]webPuTIRVI] Set App Pool Properties

[DOSCuebService]webPuISRVL] Add and Set Site Properties

[D0SCuebService]WebPuTIRVL] pii

[DOSCuebService]WwebPuISRVL] Enabling firewall exception for port 5080
[[OSCuebService]WebPuTIRVI] Disable Tnbound Firewall Notification

[DOSCuebService]WebPuTISRVI] Add Firewall Rule for port 5080

[D0SCHebServicelwebPUTIRVA] Set values into the web, config that deine the repository later than

[DOSCuebService]webPuISRVL] Only ESENT is supported on windows Server 2016
[D0SCHebServicelwebPuUTIRVA] PUTT Server: Set values 1nto the web.config that indicate the locatio
n of repository, confi
guration, modules
Set] [DOSCWebservicelwebPullsvi] in 9.7930 seconds.

Resource] [[xDSCHebservice]webPuT1sRv1]
Resource] [[File]RegistrationkeyFile]
Test 1 [[FilelRegistrationkeyFile]

[[FilelRegistrationkeyFile] The system cannot find the path specified.

[[FilelRegistrationkeyFile] The related File/directory 15: C:\ProgramFiles\WindowspowershelT\Dscser

Test] [[FilelRegistrationkeyrile] 1in 0.0160 seconds.
set 1 [[FileJRegistrationkeyFile]

[[FilelRegistrationkeyFile] The system cannot find the path specified.

[[FilelRegistrationkeyFile] The related File/directory 15: C:\ProgramFiles\WindowspowershelT\Dscser
Set] [IFileJRegistrationkeyrile] in 0.0470 seconds.
Resource] [[FilelRegistrationkeyFile]
set 1
Set] n 16.1180 seconds.

VERBOSE: Tine taken for configuration job to complete is 16.256 seconds

assets/f08bb4f5-bcac-4364-8e1b-476e16c4db86.png
PS C:\> Add-DhcpServerTnDC -DnsName DCL.Reskit.Org

WARNING: The DHCP server dcl.reskit.org with IP address 10.10.10.10 is
already authorized in Active Directory. The authorization check on the
DHCP server has been initiated.

assets/69a9cc3c-bbd4-4a99-b114-af0163630960.png
Ps c:\foo> $server2016IsoPath = 'D:\iso\Winserver2016.iso"
$MountResult = Mount-DiskImage -ImagePath $Server2016ISoPath -PassThru
$MountResult | Select-Object -Property *

{Attached, BlockSize, DevicePath, FileSize...}
Microsoft.Management.Infrastructure.CimSystemProperties

CimInstanceProperties
CimSystemProperties

Attached : False

Blocksize : 0

DevicePath g

Filesize : 5653628928

ImagePath : D:\iso\WinServer2016.iso
Logicalsectorsize : 2048

Number g

Size : 5653628928

StorageType g i

PSComputerName 8

cimClass : ROOT/Microsoft/windows/Storage:MSFT_DiskImage

assets/678ca2fc-d103-470c-aeb4-704ddacbff9e.png
s

Inplementedas Name

Powershell
Powershell
Powershell
Powershell
Powershell
Powershell
Powershell
Powershell
Powershell
Powershell
Powershell
Powershell
Powershell

XIisFeatureDelegation
xIisHandler
xIisLogging
xTisMineTypeMapping
XIisModule
xSSLSettings
bebApplication
XilebAppPool
xbebAppPooTDefaults.
bebConFigKeyValue
ilebsite
iebSiteDefaults
iebVirtualDirectory

\> Get-DscResource -Module xwebAdministration

ModuleNane

#ebAdministration
#ebAdministration
#ebAdministration
x#ebAdministration
X#ebAdministration
#ebAdministration
X#ebAdministration
x#ebAdministration
dlebAdministration
X#ebAdministration
X#ebAdministration
#ebAdministration
#ebAdministration

Version

17.0.0
17,000
17200
17,000
17200
17,000
17200
17,000
17200
17.000
17200
17,000
17.0.0

Properties

{overrideMode, SectionName, DependsOn, PsDscRun.
{Ensure, Name, DependsOn, PsDscRunAsCredential}
{LogPath, DependsOn, LogFlags, LogFormat. ..}

{Ensure, 'Extension, MimeType, 'Dependson. ..}
{Name, Path, RequestPath, Verb...}
{Bindings, Name, DependsOn, Ensure.
{Name, PhysicalPath, WebAppPool, Website...}

{Name, autoShutdownExe, autoShutdownParams, aut.
{App1yTo, DependsOn, TdentityType, ManagedRunti.
{Configsection, Key, WebsitePath, DependsOn...}
{Name, ApplicationPool, ApplicationType, Authen.
{App1yTo, AllowsubDirConfig, DefaultApplication
{Name, PhysicalPath, WebApplication, Website.

assets/7a4e14b4-2eae-4562-a9dd-0f527557cb93.png
:\> Get-CimInstance -ClassName Win32_PerfFormattedData_PerfOS Memory -ComputerName DC1

Caption
Description

Name.

Frdhuency obsect

Frequency_PerfTime

Frequency_Sys100NS

Timestamp_Object

Timestamp_PerfTime

Timestamp_Sys100NS

Availablebytes 562872320
AvailablekBytes 549680
AvailableNBytes 536
CacheBytes 66990080
CacheBytespeak 130334720
CacheFaultsPersec)
CommitLimit 2549665792
Committedsytes 1793781760
DemandZeroFaultsPersec %

FreeAndZeroPagel istBytes
FreeSystenPageTableEntries

34189312
12309607

LongTermaverageStandbyCacheL ifetimes : 14400
ModiFiedPagel istBytes 1671168
PageFauTtsPersec 19
PageReadsPersec o
PagesInputPersec o
PagesOutputPersec o
PagesPersec o
Pageliritespersec 0
PercentCommittedBytesInUse 70

assets/aa16f8a3-0e1c-4a4d-86b7-754747985ff1.png
s

\> Install-WindowsFeature AD-Domain-Services, DNS, RSAT-DHCP, Web-Mgmt-Tools

Success Restart Needed Exit Code Feature Result

True No Success {Active Directory Domain Services, DNS Ser...

assets/346f841c-7f9f-455c-bfb0-333fcf72cf3a.png
Ps

\> Get-OBPolicy | Start-OBBackup

Taking snapshot of volumes
Preparing storage.
Generating backup metadata information and preparing the metadata VHD.
Data transfer is in progress. It might take longer since it is the First backup and all data needs to be transferred.
Data transfer completed and all backed up data is in the cloud. Verifying data integrity...

Data transfer completed

Job completed.

The backup operation completed successfully.

assets/6a1ffd13-fcbc-42d1-89f3-c25d73bf9b69.png
Ps

:\> $Printer | Format-Table -Property Name, Published

Name Published

True

assets/8f674339-c5de-45fd-907f-44003e7c5321.png
[NANO1]: PS c:\Users\administrator\Documents> New-Item -ItemType Directory -Path c:\foo
-ErrorAction SilentlyContinue
Set-Location c:\foo

[NANO1]: PS c:\foo>

assets/e4c74a67-d021-4a82-b538-4053fa53918f.png
[NANO1]: PS c:\Users\administrator\Documents> $PSVersionTable

Name value
wsManstackversion 3.0
PSRemotingProtocolversion 2.3
Serializationversion 1AL

PSEdition Core

PSVersion 5.1.14368.1000
Buildversion 10.0.14368.1000
Pscompatibleversions {1.0, 2.0, 3.0, 4.0...}

CLRVersion

assets/eedffce9-0aff-44d5-9ddd-9d1c32a32ffe.png
Hyper-V RVP Counters. : [146]

assets/67753afb-f205-49b1-a90d-89df14ea80b1.png
PS C:\> New-SmbShare —Name foo -Path C:\foo
Name ScopeName Path Description

foo =

assets/0c44ce32-035d-4569-82f9-c3834c434dca.png
PS C:\> Wbadmin Start Backup -BackupTarget:
wbadmin 1.0 - Backup command-Tine tool
(©) Copyright 2013 Microsoft Corporation. ATl rights reserved.

~Hyperv:'DCL

Retrieving volume information.
Any virtual machines included in the backup might be temporarily placed into a
saved state when the backup runs.

This will back up HyperV\DC1 to C: —— e

Do you want to start the backup operation?

[¥] Yes [N] No Y

The backup operation to C: is starting.
Creating a shadow copy of the volumes specified for backup...

Starting application backup.
Copying files for DCL(Online).
Backup of DC1(Online) succeeded.
Application backup succeeded.

Backup of DC1(Online) succeeded.

4% done.

Summary of the backup operation:

The backup operation successfully completed.
Backup of DC1(Online) succeeded.

Application backup succeeded.

Log of files successfully backed up:
C:\WINDOWS\Logs \WindowsSer verBackup\Backup-22-03-2017_22-07-49. Tog

assets/dda7d4d2-9caa-4d84-94c7-522504592549.png
PS C:\> Invoke-Command -VMName WML
ScriptBlock {Get-NetIPConfiguration}
~Credential Scred

InterfaceAlias Ethernet
InterfaceIndex 2
InterfaceDescription : Microsoft Hyper-V Network Adapter
NetProfile. Name Reskit.org
IPvaaddress 10.10.10.157
IPv6DefaultGateway
IPv4DefaultGateway
DNSServer £ 10.10.10.10
10.10.10.11

PSComputerNane : L

assets/8d478142-ee5c-4667-a145-332b02e75868.png
TypeName: Microsoft.PowersShell.Commands . GetCounter . Per formanceCounterSampleSet

Name MemberType Definit

ounterSamples Property Microsoft Poner sheTl. Comands. GetCounter . Per formanceCounter Samplel] Countersanples
get ; set

1
Property datetime Timestamp {get;set;}
ScriptProperty System.Object Readings {get=SstrPaths = ""
foreach (Sctr in Sthis.CounterSamples)

imestanp
eadings
Sstrpaths += (Sctr.Path + " :" + "'n")
Sstrpaths += (Sctr.Cookedvalue.ToString®) + "’n’n")

i
return $strPaths;}

assets/d63064b5-451a-4f03-87a7-25ed0fb4b82f.png
\> Start-W -ViName W1
PS C:\> Get-Vm -VName W1

Name State CPUUsage(¥) MemoryAssigned(¥) Uptine Status Version

Wi Running 3 572

£04.2040000 Operating normally 8.0

assets/60d39270-8877-4ea3-8020-b88a4f1f9443.png
8 Recimage yourcomputer ==

Select the location of the backup for the computer you want to restore

If the system image is on an external device, attach the device to this computer,
and then cick Refresh.

I the system mage s on a DVD, inert the last DVD from the system image badkup. Click
‘Advanced to add a network locatin or nstalla criver for a backup device It does not show
wpin the stbelow.

Current fime zone: GMT-5:00

Location Mostrecent system image

\isR1)Backup\ 7 10:05:22 AM

EE e

assets/1b8a9f7d-4751-42c5-b38a-5828a1913fa0.png
Windows\system32> Get-DscLocalConfigurationManager

ActionAfterReboot ContinueConfiguration
AgentTd SCE04ES3-1AE3-11E7-8368-8187BE24E90
ATlonModuleOvertirite True

CertificateID

ConfigurationDownloadManagers : {[ConfigurationRepositorysharelpullserver}
ConfigurationID 5d79ee6e-0420-4C98-0cc3-97 6969012816
Configurationtode ApplyAndAutoCorrect.

ConfigurationiodeFrequencyMins
Credential

30

Debughode {NoNE}
DownloadVanagerCustonData
DownloadManagerNane:

LCMCompatibleversions. 1.0, 2.0}
Leustate Tdle
LCMStateDetail

LcMversion 2.0

StatusRetentionTimeInDays

SignaturevalidationPolicy NONE
Signaturevalidations o
MaximumDownloadsizeMB. 500
PartialConfigurations
RebootNodeIfNeeded True
RefreshFrequencyMins. a5
Refreshiode Pull
Repor tanagers I

ResourceModuleManagers {[ResourceRepositoryShare]ResourceServer}

assets/b3bffcb7-5fd4-4eb8-8290-6803c2d6d7f6.png
Ps c:\foo> Get-Command -Module NanoServerPackage

CommandType Name Version Source

Function Find-NanoServerPackage 1.0.1.0 NanosServerpPackage
Function Install-NanoServerPackage 1.0.1.0 NanosServerpPackage
Function Save-NanoServerPackage FIRSORINO)] NanosServerpPackage

assets/308a2d84-7d77-480d-8cbe-75caf7e578fd.png
Ps c:\foo> Get-CimInstance -CimSession $CimSession -ClassName Win32_cComputerSystem | Format-List *

PsshowComputerName : True
AdminPasswordstatus 5 3
Bootupstate 8
chassisBootupState : 3
KeyboardPasswordstatus 3

Computer] T 192. 11

cimclass : root/cimv2:Win3Z_Computersystem
CimInstanceProperties : {caption, Description, InstallDate, Name...}
CimSystemProperties : Microsoft.Management.Infrastructure.CimSystemProperties

assets/5b246544-6424-497a-9753-3c68c61f5587.png
PS C:\foo> Get-PackageProvider -Name NuGet | Select-Object -Property Name, Version
Name Version

NuGet 2.8.5.208

assets/75e78cef-769c-4021-8d1c-93372da8ae2f.png
Ps C:\foo> Find-Package -Source MyPowerShellPackages

Name Version Source Summary
Carbon MyPowershelTPackages Carbon s a Powershell module for automating the configur.
Pester MyPowerShelTPackages Pester provides a framework for running EDD style Tests

assets/9edc69d9-0880-4c88-9b86-881c9aec70e5.png
PS C:\> Get-OBPolicy | Get-OBSchedule
SchedulePolicyName 3blabde1-F223-42e1-bc04-32e3691547ca
ScheduleRunDays {Tuesday, Saturday}
ScheduleRunTines {04:00:00}

ScheduleweeklyFrequency : 1

State Existing

OFflineSeedingParans

assets/a482d916-0237-4c5b-8bbf-2a4571fafa97.png
PS C:\foo> Get-Command -Module PackageManagement

CommandType

Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet

Find-Package
Find-PackageProvider
Get-Package
Get-PackageProvider
Get-PackageSource
Inport-PackageProvider
Install-Package
Install-PackageProvider
Register—PackageSource
Save_Package
Set-PackageSource
Uninstall-Package
Unregister-PackageSource

Source

Packageanagenent
Packageanagenent
Packageanagenent
Packageanagenent
Packageanagenent
Packageanagenent
Packageanagenent
Packageanagenent
Packageanagenent
Packageanagenent
Packageanagenent
Packageanagenent
Packageanagenent

assets/1d72a65e-81b0-4c0f-8df3-0eeb912dab6e.png
pki> certutil.exe —dspublish —f 'ROOT Reskit Root CA.crt' RootCA
Tdap:///Ch=Reskit Root CA,CN=Certification Authorities,CN=Public Key Services,CN=Services,CN=Configuration,DC=Reskit,DC=Org7cACertificate

Certificate added to DS store.
Tdap:///Ch=Reskit Root CA,CN=ATA,CN=Public Key Services,CN=Services,CN=Configuration,DC=Reskit,DC=Org7cACertificate
Certificate added to DS store.

CertUtil: -dsPublish command completed successfully.

PS C:\pki> certutil.exe —addstore —f root 'ROOT_Reskit Root CA.crt’
root "Trusted Root Certification Authorities”

Signature matches Public Key

Certificate "Reskit Root CA" added to store.

CertUtil: -addstore command completed successfully.

pki> certutil.exe -addstore —F root 'Reskit Root CA.cr1’
root_ "Trusted Root Certification Authorities

CRL "CN=Reskit Root CA” added to store.

CertUtil: -addstore command completed successfully.

assets/372e1cc5-481e-4dce-870b-32c65959e367.png
5 i (i a2 @iy | eI <
Skipping installed package sysinternals

assets/9c5e385a-c4ee-4c7f-a6cf-2dbc0466b82b.png
PS C:\> Invoke-Command -VMName W1
scriptBlock {Hostname}
~Credential Scred

WIN-OSLPHTHEESU

assets/910d7775-1663-4de3-b37c-771cea6e66aa.png
PS C:\> Test-Connection -ComputerName DC1l -Quiet
True

assets/83dcdc0b-d6db-432e-a261-eab1b09f2c34.png
PS C:\> Stop-NTbclusterNode -HostName NLEL

Name State Interface HoSTID

NLB1 Stopped Ethernet 1

assets/b6790ac7-10ea-44ca-9f2e-c77267d2c860.png
Choose an option

Troubleshoot
Reset your PC orsee advanced options
. Turn off your PC

assets/44ea83e1-159d-45f4-aeee-c64dc105078e.png
PS C:\> Restart-Service -Name Spooler
WARNING: Waiting for service 'Print Spooler (Spooler)’ to start...

s

\> New-Object System.Printing.PrintServer |
Format-Table Name, DefaultSpoolDirectory

Name DefaultSpoolDirectory.

\\PSRV C:\spool

assets/80fecec0-2032-4264-ab5e-e9d04f53ce1b.png
PS C:\> $RResults | where-Object Severity -EQ 'Error’ |
Format-List -Property Category,Problem,Impact,Resolution

Category
Problem

TImpact

Resolution

Configuration

The primary domain controller (PDC) emulator operations master in this forest is not
configured to correctly synchronize time from a valid time source.

If the PDC emulator master in this forest is not configured to correctly synchromize
time from a valid time source, it might use its internal clock for time
synchronization. If the PDC emulator master in this forest fails or otherwise
becomes unavailable (and if you have not configured a reliable time server
(GTIMESERV) in the forest root domain), other member computers and domain
controllers in the forest will not be able to synchronize their time.

Set the PDC emulator master in this forest to synchronize time with a reliable
external time source. If you have not configured a reliable time server (GTIMESERV)
in the forest root domain, set the PDC emulator master in this forest to synchronize
time with a hardware clock that is installed on the network (the recommended
approach). You can also set the PDC emulator master in this forest to synchronize
time with an external time server by running the w32tm /config
/computer:DCL.Reskit.org /manualpeerlist: time.windows.com /syncfromflags:manual
Jupdate command. If you have configured a reliable time server (GTIMESERV) in the
forest root domain, set the PDC emulator master in this forest to synchronize time
from the forest root domain hierarchy by running w32tm /config
/computer:DCL.Reskit.org /syncfromflags:domhier /update.

assets/2728d230-b14b-406a-bacd-141c07b5d042.png
PS C:\> $skuName = '2016-Datacenter’
PS C:\> $SKU = Get-AzureRMVMImageSku -Location $Locname ~
~Publisher $Publisher
~offer Soffer.offer |
where-Object Skus -eq $SkuName
PS C:\> $VM = Set-AzureRmVMSourceImage -VM $VM -PublisherName $publisher
~offer $offer.offer -
~skus $sku.Skus"
-Version "latest"

SvM

Name : Packt100

HardwarepProfile : {vmSize}

osProfile : {ComputerName, AdminUsername, AdminPassword, WindowsConfiguration}
StorageProfile : {ImageReference}

assets/e6aba2bf-fc49-4178-9eb4-e6e037b91ada.png
.

=

Your computer wil be restored from the folowing system
image:

Date and tme: 11/2017 10:05:22 AM (GVT-8:00)
Computer:

Alldisks to be restored will be formatted and replaced with the layout
and data in the system image.
Are you sure you want to continue?

<Back Fish Cancel

assets/ece20cab-1615-443f-b5b5-fc3b1e792089.png
PS C:\Windows\systen32> SCommandsBeforeRSAT | Get-Member | Select-Object -ExpandProperty TypeName Unique
System.Management. Automation. AliasInfo

System.Management . Automation. FunctionInfo

System.Management . Automation.FilterInfo

System. Management . Automation.CmdletInfo

assets/d1947643-5b15-4b6f-8f67-fa5679daaf12.png
[NANO1]: PS C:\> Get-ComputerInfo -Property CsName, WindowsEditionId, osserverLevel,
0SType, OSVersion, WindowsBuildLabEx, BiosBIOSVersion

CsName : NANOL

windowsEditionId : ServerDatacenterNano

osserverLevel : NanoServer

0sType : WINNT

OsVersion : 10.0.14393

windowsBuildLabEx : 14393.693.amd64fre.rsl_release.161220-1747
BiosBIOSVersion : {VRTUAL - 1, Hyper-V UEFI Release v1.0, EDK II - 10000}

assets/e8e8570d-d69d-438f-b870-08319338440b.png
Ps

\> Get-TlsCiphersuite -Name RC4 |
Format-Table Name, Exchange, Cipher, Hash, Certificate

Name Exchange Cipher Hash Certificate

TLS_RSA_WLTH_RC4_128_SHA RSA RC4 SHAL RSA
TUS_RSA_WITH_RC4_128 D5 RSA R4 MDS RSA

assets/ded21714-25bf-4efe-ae05-dea64f72a8bf.png
ACE Trustee: Administrator
Account: RESKIT\Administrator - Manage Printer: Allowed
ACE Trustee: Administrator
Account: RESKIT\Administrator - Manage Documents: Allowed
ACE Trustee: CREATOR OWNER
Account: \CREATOR OWNER - Manage Child: Allowed
ACE Trustee: ALL APPLICATION PACKAGES
Account: APPLICATION PACKAGE AUTHORTTY\ALL APPLICATION PACKAGES - Manage Child: Allowed
ACE Trustee: Everyone
Account: \Everyone - Print: Allowed
ACE Trustee: Everyone
Account: \Everyone - Generic Execute: Allowed
ACE Trustee: ALL APPLICATION PACKAGES
‘Account: APPLICATION PACKAGE AUTHORTTY\ALL APPLICATION PACKAGES - Print: Allowed
ACE Trustee: ALL APPLICATION PACKAGES
‘Account : APPLICATION PACKAGE AUTHORTTY\ALL APPLICATION PACKAGES - Generic Executs
ACE Trustee: Administrators
Account: BUILTIN\Administrators - Manage This Printer: Allowed
ACE Trustee: Administrators
‘Account: BUILTIN\Administrators - Manage Child: Allowed

Allowed

assets/a7f1ec0e-3198-4696-81bd-b438fc5ee644.png
= { Get-ChildItem -Path C:\}
\> Invoke-Command -VMName W1 -ScriptBlock $sb
~Credential Scred

LastWriteTime Length Name

12/09/2016

Logs
16/07/2016 PerfLogs

12/09/2016 Program Files i
16/07/2016 Program Files (x86) Wi
13/07/2017 Users i
12/07/2017 Windows. i

15/07/2017 60 File After_Checkpoint 1 WML

assets/6db7bbfc-ddc0-47db-aef0-61d20473cc0a.png
PS C:\> Test-NetConnection -ComputerName DC1 -CommonTCPPort SMB

ComputerName : el
RemoteAddress : 10.10.10.10
RemotePort : 445
InterfaceAlias : Ethernet
SourceAddress : 10.10.10.50
TcpTestsucceeded : True

assets/683b6521-09b5-418a-bc8c-e62eb873d435.png
‘Tnvoke-Conmand ~Computer SRV2
-ScriptBlock {Get-Childitem C:\reskitapp}

Directory: C:\reskitapp
Mode LastWriteTime Length Name PSComputerName

05/01/2017 11:50 472 Index.htm SRVZ
05/01/2017 11:52 383 Page2.htm SRVZ

assets/481ef07f-41a2-4d2e-8c0e-fdfef214c593.png
s c]\> SCheckoutput = *c:\foo\clustercheck”
PS C:\> Test-Cluster -Node FSi, Fs2 -ReportName SCheckOutput

LastiiriteTine Length Name

657770 clustercheck. htm

08/02/2017 20:00

assets/0f71fce8-6ad2-4c07-8b87-82156c86af39.png
PS C:\> Get-DnsserverResourcerecord ~zonename ‘reskit.org’ -name ‘@’ -RRType Mx
RecordType Type Timestanp TimeToLive Recordbata

e x 15 ° 00:00:00 [10] [mail.reskit.org.]

assets/c6c408ac-4f36-4d0a-8f73-62ac62bff1b2.png
Ps

\> New-Object TypeName System.Printing.PrintServer |
Format-Table -Property Name, DefaultSpoolDirectory.

Name DefaultSpooTirectory.

\\PSRV C:\spoolViaRegistry.

assets/26f79c14-f8c0-4331-a25a-3f1210bb80fa.png
\> New-Ttem C:\PKI -TtemType Directory -ErrorAction Ignore

Mode LastiriteTine Length Name

01/02/2017

assets/e4ecbb41-a13c-4ee2-9b6d-b509998d8477.png
PS C:\» SPassPhrase = ConvertTo-SecureString -String "Cookhan!JerryGarciaf123 Rebecca’ -AsPlainText -Force

\> Set-OBMachineSetting -EncryptionPassphrase $PassPhrase -SecurityPIN SPasscode
Server properties updated successfully.

assets/43d9e748-ad86-40b3-b13e-76538a8e15b5.png
%4 DFS Management

% File Wcion View Window Help

ealn

7 DFS Mansgement
v & Namespaces
5 \\Reskit Org\ShareData
v
5 Mosts
4 MMansgement
v [Soles
5 SalesDats
- Salesistoric
> Y Replication

Folder Targets Replication
entres

Type | Referal. | Ste TPatn

© Erobled Defaut it SteName \s\SalesHstorcal

& Eobled DefautFist SteName \¥s2\SalesHstoncal

Add Folder Target.
Rename Folder..
Move Folder..
Replicste Folder..
View »
New Window from H...
& e
K Deete
@) Refresh

Properties

assets/405fbc28-a019-4a16-9765-29042565f329.png
PS C:\> Get-AzureRmAppServicePlan -ResourceGroupName SRGname -Name SAppSrvName

Sku : Microsoft.Azure.Management.WebSites.Models.SkuDescription

ServerFarmwithRichskuName packt100

WorkerTierName

Status Ready

Subscription 0bc29420-0222-4599-b91e-e8699f760742

AdminsiteName H

HostingEnvironmentProfile

MaximumNumberofworkers. 1

GeoRegion UK South

Persitescaling False

Numberofsites 1

ResourceGroup packet_rg

] /subscriptions/0bc29420-0222-4599-b91e-e8699f760742/resourceGroups /packet_rg/
providers/Microsoft. Web/serverfarms /packt100

Name < packt100

Location UK South

Type Microsoft.web/serverfarms

assets/3b1c4109-9082-45b4-8adb-c81e4b8fc0ac.png
Ps c:\foo> Find-PackageProvider | Select-Object Name, Summary | Format-Table -AutoSize -Wrap

Name Summary

nuget NuGet provider for the OneGet meta-package manager

psl ps1 provider for the OneGet meta-package manager

chocolatey chocolateyPrototype provider for the OneGet meta-package manager

PowershellGet Powershell module with commands for discovering, installing, updating and publishing the
Powershell artifacts 1ike Modules, DSC Resources, Role Capabilities and Scripts.

ContainerImage This is a PackageManagement provider module which helps in discovering, downloading and

installing windows Container OS images.

For more details and examples refer to our project site at
https://github.com/Powershell/ContainerProvider.
DockerMsftProvider Powershell module with commands for discovering, installing, and updating Docker images.
NanoserverPackage A PackageManagement provider to Discover, Save and Install Nano Server Packages on-demand

GitHubProvider GitHub-as-a-Package - PackageManagement Powershell Provider to interop with Github

GistProvider Gist-as-a-Package - PackageManagement Powershell Provider to interop with Github Gists

chocolateyGet An Powershell oneGet provider that discovers packages from https://www.chocolatey.org.

TSDProvider Powershell PackageManager provider to search & install Typescript definition files from the
community DefinitelyTyped repo

MyATbum MyAlbum provider discovers the photos in your remote file repository and installs them to your
Tocal folder.

officeProvider officeProvider allows users_to install Microsoft office365 ProPlus from Powershell.

WSAProvider Provider to Discover, Install and inventory windows server apps

GitLabProvider GitLab PackageManagement provider

Oinstall Zero Install is a decentralized cross-platform software-installation system.

Ps c:\foo> Install-PackageProvider -Name NanoServerPackage -Verbose

VERBOSE: Using the provider 'Bootstrap’ for searching packages.

VERBOSE: Finding the package 'Bootstrap::FindPackage® 'NanoServerPackage','',"’,"'’.

VERBOSE: Using the provider 'PowershellGet’ for searching packages.

VERBOSE: The -Repository parameter was not specified. PowershellGet will use all of the registered repositories.
VERBOSE: Getting the provider object for the PackageManagement Provider 'NuGet'.

VERBOSE: The specified Location is 'https://www.powershellgallery.com/api/v2/' and PackageManagementProvider is 'NuGet'.
VERBOSE: Searching repository 'https://www.powershellgallery.com/api/v2/FindPackagesById()?id="NanoServerPackage'® for "'.
VERBOSE: Total package yield:'l' for the specified package 'NanoServerPackage'.

VERBOSE: Skipping installed package NanoServerPackage 1.0.1.0.

assets/3c37843c-0ab5-4cbc-a01c-6cdb299a3d2d.png
PS C:\> Install-windowsFeature —Name NLE ~

~IncludemanagementTools
Success Restart Needed Exit Code Feature Result
True No success {Network Load Balancing, Remote Server Adm...

PS C:\> Install-windowsFeature -Name NLB
~IncludemanagementTools ©
~ConputerName NLB2

Success Restart Needed Exit code Feature Result

True No success {Network Load Balancing, Remote Server Adm..

assets/0c0a81e6-c401-43a4-be79-50f58a2feb75.png
PS Ca\> $sb = {
SFileNamel = 'C:\File After_Checkpoint_1'
Get-Date | Out-File —FilePath $FileNamel
Get-Content -Path SFileName1}
PS C:\> Invoke-Command -VMName WML -ScriptBlock Ssb *
~Credential Scred

15 July 2017 12:16:12

assets/9c58b2d0-9d6e-410b-92db-55d88d7ad618.png
PS C:\Windows\system32> Get-Command -Module PowerShellGet -Verb Install

CommandType Name. Version Source
Function Install-Module PowerShellGet
Function Install-Script Power ShellGet

assets/14b57e75-a260-4674-8e99-02ca2d160f05.png
pki> Restart-Service -Name Certsvc

pki> Start-Sleep -Seconds 15

pki> Certutil.exe —crl
CertUtil: -CRL command completed successfully.

assets/1d72c2a9-92e0-425b-ae31-306b4c4f3892.png
&) Cifooustercheckhtm 0 ~ || @ Failover Cluster Validation . v

= Microsoft

Failover Cluster Validation Report

Node: FSTReskitOrg Valigated
Node: FS2ResktOrg Valigated
Started 08/02/2017 19:49:59
Completed 08/02/2017 195137

Tne Validate a Configuration Wizard must be run after any change is made to the configuration of the cluster or harcare. For more nformation, see
hitoy/go.microsoft.comy/fwiink/o/7Linkld=280145,

Results by Category

Inventory

Success

Network Success

Storage Not Appliczble

System Configuration Success

assets/51295707-c2b2-46ce-b701-d50fcf220e4a.png
\> $5ub = Get-AzureRmsubscription
\> Select-AzureRmSubscription -SubscriptionId Ssub[0].SubscriptionId

Environment AzureCloud
Account AzureAdmineReskit.Org

TenantId 53746561-6c20-596F7572-204661636521
SubscriptionTd 426572727-9207-26F6-36b7-32069742121
SubscriptionName Reskit.Org

CurrentStorageAccount

assets/fb0597f3-4193-4523-a741-4c674bef7629.png
\> Get-ChildItem -Path E:\Registry\Registry\

:\Registry\Registry

Mode LastiriteTine Length Name
04/12/2016 65536 BEI
05/01/2017 41943040 COMPONENTS.
04/12/2016 524288 DEFAULT
05/01/2017 5242880 DRIVERS
16/07/2016 65536 SAM
05/01/2017 11796480 SCHEMA.DAT
04/12/2016 32768 SECURTTY
04/12/2016 66846720 SOFTWARE

04/12/2016 13893632 SYSTEM

assets/fa55e8e9-e36e-4232-b0c9-020de189d37c.png
PS C:\> Get-WiscsiController -VMName W1
WMName ControllerNumber Drives

wi o e

wi 1 &

PS C:\> Add-WiscsiController -VMName Wi
PS C:\> Get-WScsiController -VMName W1

WMName ControllerNumber Drives

wi o e
wi o1 i
wi 2 &

assets/0cb0716c-7535-42a8-a678-6d0f123e8589.png
PS C:\Windows\system32> $TextToParse = @'
Animal, Bird

Shape 1ike Square

Number is 42

Person named Bob.

‘e

STemplatel = @

{[string]Category*:Animal}, {[string]Example:Bird}

‘e

ConvertFrom-String ~TemplateContent $Templatel -InputObject STextToParse
Category

Animal

assets/61d32ecf-92d3-4e41-b1af-f343e406809a.png
PS C:\> $wsusserver = Get-WsusServer
$wsusserver.CreateComputerTargetGroup ("Domain Controllers™)

Updateserver Id Name

Microsoft.UpdateServices.Internal.BaseApi.UpdateServer b76f8295 29c3-468c-9eac-311cfb0d2d67 Domain Controllers
PS D:\Google Drive\Book Authoring\Content First Drafts\ch3\result logs>

assets/6d0c6d42-b788-40f2-bf9d-27967bc3ee5f.png
'WM1\Administrator
ConvertTo-SecureString -String 'Pas$word’ -AsPlainText —Force
PS C:\>Scred = New-Object —TypeName System.Managenent. Automation. PSCredential
-ArgumentList Suser,SPass
PS C:\> Invoke-Command -VMName WML *
scriptBlock {Get-NetIPConfiguration | Format-List}
~Credential Scred

InterfaceAlias Ethernet
InterfaceIndex 2
InterfaceDescription : Microsoft Hyper-V Network Adapter

Disconnected

Netadapter. Status

assets/cbe87a3e-cb68-4031-8f2c-507e2c234462.png
PS C:\foo> New-DfsnFolder -Path "\\Reskit\ShareData\IT\ITData' "
~TargetPath "\\fs1\ITData\" "
~EnableTargetFailback Strue
~Description 'IT Data’

State TineToLiveSec Properties Description

\\Reskit\ShareData\IT\ITData Online 300 Target Failback IT Data

PS C:\foo> New-DfsnFolderTarget -Path '\\Reskit\ShareData\IT\ITData’ "
~TargetPath "\\fs2\ITData\"

Path TargetPath State ReferralPriorityClass ReferralpriorityRank

\\Reskit\ShareData\IT\ITData \\fs2\ITData\ Online sitecost-normal 0

PS C:\foo» New-DfsnFolder -Path "\\Reskit\ShareData\IT\ITHanagement’
~TargetPath "\\DCL\itm\" °
~EnableTargetFailback Strue *
Description 'IT Management Data’

State TimeToLiveSec Properties Description

\\Reskit\shareData\IT\ITManagement Online 300 Target Failback IT Management Data

PS C:\foo> New-DfsnFolderTarget -Path '\\Reskit\shareData\IT\ITManagement’ *
~TargetPath "\\DC2\itm\"

Path TargetPath State ReferralPriorityClass ReferralpriorityRank

\\Reskit\ShareData\IT\IManagenent \\DC2\itm\ Online itecost-normal o

PS C:\foo> New-DfsnFolder -Path '\\Reskit\ShareData\Sales\SalesData’ "
TargetPath "\\fsl\sales\" *
~EnableTargetFailback Strue *
~Description 'Salesbata’

State TimeToLiveSec Properties Description

\\Reskit\shareData\sales\salesbata Online 300 Target Failback Salesbata |

PS C:\foo» New-DfsnFolderTarget -Path '\\Reskit\shareData\sales\salesData’ *
~TargetPath "\\fs2\sales\

Path TargetPath State ReferralPriorityClass ReferralPriorityRenk

\\Reskit\ShareData\Sales\SalesData \\fs2\sales\ Online sitecost-nornal 0

PS C:\foo» New-DfsnFolder -Path *\\Reskit\ShareData\Sales\SalesHistori
~TargetPath "\\fsi\SalesHistorical\ "
~EnableTargetFailback Strue
~Description 'Sales Group Historical Data’

State TineToliveSec Properties Description

\\Reskit\ShareData\Sales\SalesHistoric Online 300 " Target Failback Sales Group Historical Data

PS C:\foo» New-DfsnFolderTarget -Path "\\Reskit\ShareData\Sales\SalesHistoric"
TargetPath '\\fs2\SalesHistorical\"

Path Targetpath State ReferralPriorityClass ReferralPriorityRank

\\Reskit\ShareData\Sales\SalesHistoric \\fs2\SalesHistorical\ Online sitecost-normal o

assets/de3fb561-264b-40e5-b8aa-f4896b13b5a7.png
PS C:\> start-DscConfiguration -UseExisting -verbose -wait -ComputerName srv2
VERBOSE: Perform operation 'Invoke CimMethod® with following parameters,

“*methodName’ = Applyconfiguration,’ClassName’ = MSFT_DSCLocalConfigurationmanager, *namespaceName"

/i crosoft/windows/besiredstateconfiguration’.
VERBOSE: An LM method call arrived from computer SRV with user sid S-1-5-21-715049209-2702507345-667613206-500.

[sRv2] :
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]:
[srv2]
[srv2]

Lem: [
Lem: [

Lem: [
Lem: [

Lem: [
[E BN

start
start

End
start

End
End

start
start

End
start

End
End

Resource]
Test 1
Test 1
set 1
set 1
Resource]
Resource]
Test 1
Test 1
set 1
set 1
Resource]

[] starting consistency engine.

roo

[0 checking consistency for current configuration.

[lwindowsFeature]Telnetclient]
ClwindowsFeature]Telnetclient]
[[windowsFeature]Telnetc]ient]
[[windowsFeature]Telnetclient]
ClwindowsFeature]Telnetclient]
ClwindowsFeature]Telnetclient]
[[windowsFeature]Telnetc]ient]
[[windowsFeature]Telnetclient]
ClwindowsFeature]Telnetclient]
[[windowsFeature]Telnetc]ient]
[[windowsFeature]Telnetclient]
ClwindowsFeature]Telnetclient]
[[windowsFeature]Telnetc]ient]
[[windowsFeature]Telnetclient]
[[windowsFeature] TFTPClient]
[[windowsFeature] TFTPClient]
[IwindowsFeature] TFTPClient]
[[windowsFeature]TFTPClient]
[lwindowsFeature]TFTPCTient] i
[IwindowsFeature] TFTPClient]
[[windowsFeature]TFTPClient]
[[windowsFeature] TFTPClient]
[IwindowsFeature] TFTPClient]
[[windowsFeature]TFTPClient]
[[windowsFeature] TFTPClient]
[[windowsFeature] TFTPClient]
[[windowsFeature]TFTPCTient] i
[[windowsFeature]TFTpClient]

[consistency check completed.

Operation ‘Invoke CimMethod’ complete.

VERBOSE: Time taken for configuration job to complete is 42.861 seconds

1nstallation started.
Continue with installation?
Prerequisite processing started.
Prerequisite processing succeeded.
Installation succeeded.

Ssuccessfully installed the feature TFTP-Client.

The operation 'Get-windowsFeature' started: Telnet-client
The operation Get-windowsFeature’ succeeded: Telnet-client
in 0.4840 seconds.

1nstallation started..
Continue with installation?
Prerequisite processing started.
Prerequisite processing succeeded.
Installation succeeded.

successfully installed the feature Telnet-client.
in 24.0370 seconds.

The operation 'Get-windowsFeature’ started: TFTP-Client
The operation "Get-windowsFeature’ succeeded: TFTP-Client

n 1.7030 seconds.

n 16.4280 seconds.

assets/64dce32d-aa55-4204-9ede-d6b3b1d26579.png
B Scommands | Select-Object Name, Source, CommandType | Sort-Object Source,Name | Out-GridView

Filter

e [Source
Getvers

Get-ADAccountAuthorizationGroup ActiveDirectory Cmd
Get-ADACcountResultantPasswor.. ActiveDirectory Cmal
Get-ADAuthenticationPoiicy ActveDirectory Cnd
GetADAuthenticationPolicySio ActveDirectory Cclet
Get-ADCentralAccessPolicy ActiveDirectory Cmdlet
Get-ADCentralAccessRule ActiveDirectory Cmdlet
GetADClsimTrsnsfomPolicy ActveDirectory Cclet
Get-ADClsimType ActiveDirectory Cmdlet
Get-ADComputer ActiveDirectory Cmdlet
GetADComputerSeniceAccount ActiveDirectory Cclit
Get-ADDCCloningExcludedAppl
Get-ADDefaultDomainPassword?... ActeDirectory Cclet
Get-ADDomsin ActiveDirectory Cmdlet
Get-ADDomsinControler ActiveDirectory Cmdlet
Get-ADDomsinControllePsssuor.. ActeDirectory Cclet
Get-ADDomsinControlesssuor.. ActeDirectory Cclet
Get-ADFineGrsinedPassuordPolicy ActiveDirectory Cclit
Get-ADFineGrsinedPassuordPolic.. ActeDirectory Cclet
Get-ADForest ActiveDirectory Cmdlet
Get-ADGrowp ActiveDirectory Cmdlet
Get-ADGroupMember ActiveDirectory Cmdlet
Get-ADObject ActiveDirectory Cmdlet
Get-ADOptionslFesture ActiveDirectory Cmdlet
Get-ADOrganizationslUnit ActiveDirectory Cmdlet
Get-ADPrincipsiGrouphiembership ActieDirectory Cclet
Get-ADReplicationAttributeMetad.

Use the filter to
search and narrow
your results

assets/55680a8f-db6d-4f76-a50f-39a73cf42d9a.png
PS C:> New-SmbMapping -LocalPath r: -RemotePath \\fsl.reskit.org\foo

Status Local Path Remote Path

ok

\\Fs1.reskit.org\foo

assets/c252343f-0da0-498f-a89f-348bf13d013d.png
:\> $Target = Get-TscsiTarget |
Where-Object NodeAddress -Match 'SalesTarget'

PSComputerNane

False qn.1991-05. com.microsoft:srvi-salestarget-target

assets/cd4460a6-ad84-4ef4-abd1-adadb5fb96d3.png
[10.10.10.151]: PS c:\> Get-ComputerInfo -Property CsName, WindowsEditionId, OSServerLevel,

0SType, OSVersion, WindowsBuildLabEx, BiosBIOSVersion

CsName : NANOL

windowsEditionId : ServerDatacenterNano

osserverLevel : NanoServer

0sType : WINNT

OsVersion : 10.0.14393

windowsBuildLabEx : 14393.693.amd64fre.rsl_release.161220-1747
BiosBIOSVersion : {VRTUAL - 1, Hyper-V UEFI Release v1.0, EDK II - 10000}

assets/48f53630-140e-4475-97b7-b6baed85bcbc.png
argmp. Mg
Group SID
SoDL : 0:BAG:DUD:PAT(A;OICT; FA; ;

Accounting Group
5-1-5-21-715049209-2702507345-667613206-1118
DA) (A; OTCT; 0X3DSFS; ; ; S-1-5-21-715049209-2702507345-667613206-1118)

assets/38b7be4c-69ab-464e-a8ca-71156814cde2.png
Status Name DisplayName

Running DNS

assets/c46902f8-2b47-4a93-b686-8931aa9ae8cf.png
\> Stop-VM -VMName VML
\> Get-W -VMname W1

Name State CPUUsage(%) MemoryAssigned(M) Uptime Status Version

WL off o 0 00:00:00 Operating normally 8.0

assets/47bce9e8-1460-4c3e-9b63-0dacde187a80.png
PS C:\> Get-WindowsFeature -Name Web* | Where-Object installed

Display Name Install State
[X] Web Server (IIS) Web-Server Installed
[X] Web Server Web-WebServer Installed
[X] Common HTTP Features Web-Common-Http Installed
[X] Default Document Web-Default-Doc Installed

[X] Directory Browsing r_Browsing Installed

[X] HTTP Errors Web-Http-Errors Installed

[X] static Content Web-Static-Content. Installed

[X] HTTP Redirection Meb-Http-Redirect Installed
[X]_WebDAV Publishing Web-DAV-Pubishing Installed

[X] Health and Diagnostics veb-Health Installed
[X] HTTP Logging Web-Http-Logging Installed

[X] Custom Logging Web-Custon-Logging Installed

[X] Logging Tools. Web-Log-Libraries. Installed

[X] ODBC Logging Web-ODBC-Logging Installed

[X] Request Monitor Web-Request-Honitor Installed

[X] Tracing Web-Http-Tracing Installed

[X] Performance Web-Performance Installed
[X] Static Content Compression Web-Stat-Compression Installed

[X] Dynamic Content Compression Web-Dyn-Compression Installed

X Security Web-Security Installed
[X] Request Filtering ilteri Installed

[X] Basic Authentication Installed

[X] Centralized SSL Certificate Support Installed

[X] Client Certificate Mapping Authentic. .. Installed

[X] Digest Authentication Installed

[X] IIS Client Certificate Mapping Authe... Installed

[X] TP and Domain Restrictions Installed

[X] URL Authorization Installed

[X] Windows Authentication Installed

[X] Application Development Installed
[X] -NET Extensibility 3.5 Installed

[X] -NET Extensibility 4.6 Installed

[X] Application Initialization Installed

[X] AP Installed

[X] ASP.NET 3.5 Installed

[X] ASP.NET 4.6 Installed

[q cer Installed

[X] ISAPI Extensions Installed

[X] ISAPI Filters Installed

[X] Server Side Includes Installed

[X] Websocket Protocol Installed

[X] FTP Server Installed
[X] FTP service Installed
[X] FTP Extensibility Installed
[X] Management Tools Installed
[X] IIS Management Console Installed
[X] IIS 6 Management Compatibility. Installed
[X] IIS 6 Metabase Compatibility Installed

[X] IIS 6 Management Console Web-Lgcy-Mgmt—Console Installed

[X] IIS 6 Scripting Tools Web-Lgcy-Scripting Installed

[X] IIS 6 WMI Compatibility. eb-uMT Installed

[X] IIS Management Scripts and Tools Web-Scripting-Tools Installed

[X] Management Service Web-Mgmt-Service Installed

assets/6ea69bf8-7ac2-421a-8244-43da77d7436f.png
PS C:\> Resolve-DnsName -Name dcl.reskit.org -Server DCL.Reskit.Org ~Type A

Name IPAddress

del.reskit.org 10.10.10.10

PS C:\» Test-NetConnection -ComputerName DC1.Reskit.Org -port 445
ComputerName DC1.Reskit.Org

RemoteAddress 10.10.10.10

RemotePort. as5

InterfaceAlias : Ethernet

SourceAddress 10.10.10.11

TcpTestsucceeded : True

PS C:\> Test-NetConnection ~ComputerName DC1.Reskit.Org -port 389
ComputerName @ DCL.Reskit.Org

RemoteAddress 10.10.10.10

RemotePort. 389

InterfaceAlias : Ethernet

SourceAddress 10.10.10.11

TcpTestsucceeded : True

assets/05f5cd9b-a709-4c08-bc58-d72693f004f9.png
PS C:\> $sb = {
If (-NOT (Test-Path c:\ssLCerts)) {
New-Item -Path c:\SSLCerts -ItemType Directory ~
-Name 'SSL Certificate Share’

New-SmbShare -Name 'SSLCertShare' -Path c:\SSLCerts
3
PS C:\> Invoke-Command -ScriptBlock $sb -ComputerName DC1

Name ScopeName Path Description PSComputerName

SsLCertshare * c:\ssLCerts bcl

assets/31c1e96f-8491-4840-b031-f019f9f97036.png
s

\> Set-Wihost -ComputerNane HV1 -MacAddressMinimum 001550017000 *
~MacAddressMaximum 00155D017099
PS C:\> Set-WMhost —ComputerName HV2 -MacAddressMinimum 001550017100
MacAddressMaximum 001550017199
\> Get-Wihost ComputerNane HV1, HV2 |
Format-Table -Property Name, MacAddressMinimum
MacAddressMaximum

s

Name MacAddressMinimun MacAddressMaximum

HVL 00155D017000 001550017099
HVZ 001550017100 001550017199

assets/4965ae45-d059-4033-b735-350ab191eaac.png
PS C:\> Install-windowsFeature -Name Web-Server °
-IncludeAllSubFeature °

-IncludeManagementTools

Success Restart Needed Exit Code Feature Result

True No Success {Application Development, Application Init...

assets/b53bab7f-7313-4be2-9a49-4180a70d68c2.png
PS C:\Too> 3Nanopackages
SNanopackages | Format-Table -Autosize -Wrap

Name

Microsoft-Nanoserver-TpHelper-service-package

Microsoft-Nanoserver-scvMM-Compute-pPackage
Microsoft-Nanoserver-shieldedvm-package

Microsoft-Nanoserver-Compute-package

Microsoft-Nanoserver-securestartup-package

Microsoft-Nanoserver-OEM-Drivers-package

Microsoft-Nanoserver-storage-package

Microsoft-Nanoserver-efender-Package

Microsoft-Nanoserver-psc-package

Microsoft-Nanoserver-pNs-Package

Microsoft-Nanoserver-ITs-package

Microsoft-Nanoserver-pcB-package

Microsoft-Nanoserver-FailoverCluster-package

Microsoft-Nanoserver-sof twar eInventoryL ogging-package

Microsoft-Nanoserver-Host-package

Microsoft-Nanoserver-snmp-Agent -package

Microsoft-Nanoserver-scvM-package
Microsoft-Nanoserver-Guest-package

Microsoft-Nanoserver-Containers-package

Find-NanoServerPackage | Select-Object -Property Name, Description

pescription

Provides tunnel connectivity using IPv6 transition
technologies (6to4, ISATAP, Port Proxy, and Teredo), and
IP-HTTPS.

Includes services for monitoring a Hyper-v host using
System Center Virtual Machine Manager (SCYMM).

Includes Host Guardian Service and other features necessary
o provision shielded Ws on a Hyper-V server.

1Includes Hyper-v and Netqos which provide a virtualization
host platform and network services for creating and
managing virtual machines and their resources.

Includes support for BitLocker, Trusted Platform Module,
Secure Boot, and other services for supporting
hardware-based security features.

Includes basic drivers for a variety of network adapters
and storage controllers. This is the same set of drivers
included in a Server Core installation of windows Server.
1Includes services and tools for creating and managing file
system and storage resources.

Includes windows Defender which provides real-time
protection against viruses, spyware, and other malicious
software. Also includes a default signature file containing
virus and spyware definitions.

1Includes powershell Desired state Configuration which
provides a set of Powershell language extensions, cmdlets,
and resources for declaratively configuring software
services and applications.

Includes Domain Name System (DNS) Server which provides
name resolution for TCP/IP networks

Includes Internet Information services (IIS) which provides
a reliable, manageable, and scalable web application
infrastructure.

Includes pata Center Bridging (bcs) which is a suite of
IEEE standards that are used to enhance Ethernet local area
networks by providing hardware-based bandwidth guarantees
and transport reliability.

Includes Failover Clustering which allows multiple servers
to_work together to provide high availability of server
roles.

Includes services and tools for logging Microsoft asset
managenent data and forwarding this data periodically to a
collection server for aggregation.

Includes drivers and services for running on a physical
machine.

simple Network Management Protocol (SNP) is a popular
protocol for network management. Tt is used for collecting
information from, and configuring, network devices, such as
servers, printers, hubs, switches, and routers on an
Internet Protocol (TP) networl
Includes services for monitoring a physical or virtual
machine using System Center virtual Machine Manager (scvMM).
Includes drivers and integration services for running as a
guest virtual machine in Hyper-v.

Includes services and tools to create and manage windows.
Server Containers and their resources.

assets/89a74b4d-4278-41d2-81dc-ee88cff97ee6.png
'‘®© Advanced options

System Image

Recovery

Recover Windows using a specific
system image file

Command Prompt

Use the Command Prompt for
‘advanced troubleshooting

assets/99b9341a-9b47-4026-b6a1-49c63623cb15.png
PS C:\> Get-wsusClassification |
where-object {$PsItem.Classification.Title -in $chosenclassifications} |
set-WsusClassification

assets/3e10cab9-eb5e-4421-9829-ef5a29d55ad0.png
‘Select the location of the backup for the computer you want to restore

P
1 e image Your Camputer
Ifthy Are you sure you want to connect to the | [p. Cick
v .
upin| network?
. Mot sureyou re connecting o st et
Doy et es o s doment
. P b s mion
i A
e e

assets/69510efd-1f74-4fbd-b473-ec9c4cec77b0.png
PS C:\> Get-ChildItem -Path C:\DSCConfiguration

Directory: C:\DSCConfiguration
LastWriteTime Length Name

03/05/2017 20:29 1936 TelnetConfig.Mof

03/05/2017 20:29 64 TelnetConfig.Mof.checksum
03/05/2017 20:29 1920 TFTPConfig.Mof

03/05/2017 20:29 64 TFTPConfig.Mof.checksum

assets/69122541-7fb6-480a-a25b-aa634f74173e.png
] C:\foo\Health-FsshareRG-2 O ~ C || (& DFS Replication - Health Re. ®

DFS Replication Health
Report

Data collected on: 28 February 2017 at 01
Replication Group: FSShareRG (Reskit Org)

144 (GIT0:00)

Reference member: fa1

Server scope: Selected 1 0f 2 servers

DFSRepicationbandwidth [N] 2356

savings:

reduction (31.46 KB repicated instead of 41.2 K8)

Server health @ Servers ith no ertors or warings (1) ® Servers unavaiabl for reporting (0

© Servers vith DFS Replcation errors (0) A\ Servers vith DFS Repication warnings (0)

% ERRORS (0 servers with errors)

D g —

‘SERVER DETALLS (1 server)

DHS name: fst.reskt.org
Domain name: Reskit.Org

Reference domain DCLReskt.Org
controlt

1P address: feg0::ecdarbid4:sifd:e5a2% 11, fest
Ste: Defauit Frst-Site-Name
Time zone: (Gmo:00)

17,fe80::49fb:c299:49048:de30%6, 10.10.10.102,10.10.10.101,169.254.1.89

© ERRORS (There are no errors to report)
/AWARNINGS (There are no warnings to report)

® INFORMATIONAL

© Service state: Running

DFS Repication service uptime: 1 day 2 .

® DFS Repication service version: 10.0.14393.206

Summary of repicated folder status

“The folloving table provides a high-level overview of repicated folder status on this server.

Repicated Folder Status # of Fles Received DFS Repication Bandwidth Savings

Imata Normal 3 137
Sales Hormal 3 2.87%

Salestistorical Hormal 3 137%

Data shown about the number of received fles and the DFS Repikcation Bandwidth Savings accumulate from the time the DFS Repication service s v
started.

assets/8a5f2f10-5316-40ba-84b9-fd43d2af4417.png
Windows Server 2016
Automation with
PowerShell

Cookbook

Second Edition

Powerful ways to automate and manage Windows
administrative tasks

0 Podd

assets/dbe44011-c9a4-446b-941b-57cf81d13ae0.png
B Untrusted repository

You are installing t from an untrus

instal th

PS C:\Windows\system32> Install-Module -Name TreeSize -Verbose

assets/d50c30de-f108-42f5-bffb-e391f9a87eb8.png
(foo> Get-PSRepository.

InstallationPolicy Sourcelocation

PSGallery Untrusted https://uww. powershellgallery. com/api/v2/

assets/38e869d3-444d-4367-8298-234eec6cdd63.png
[NANO1]: Ps c:\Users\administrator\Documents> Get-NetIPAddress -AddressFamily IPV4 -InterfaceAlias Ethernet |
select-Object -ExpandProperty IPAddress
169.254.232.208

assets/a293f348-67fb-4935-bc09-065dbc271003.png
TypeName: Microsoft.PowerShell.Commands. GetCounter. PerformanceCounterSample

Cookedvalue
CounterType
Defaultscale
InstanceNane
MuTtipleCount
Path

Rawvalue
Secondvalue
Status

TineBase
Timestamp
Timestanp100NSec

Path
InstanceName
Cookedvalue
Rawvalue
Secondvalue
MuTtipleCount
CounterType
Timestamp
Timestamp100NSec
Status.
Defaultscale
TimeBase

Path
InstanceName
Cookedvalue
Rawvalue
Secondvalue
MuTtipleCount
CounterType
Timestamp
Timestamp100NSec
Status.
Defaultscale
TimeBase

MemberType Definition

Property double Cookedvalue {get;set;}

Property System.Diagnostics.PerformanceCounterType CounterType {get;set;}
Property uint32 DefaultScale {get;set;}

Property string InstanceName {get;set;}

Property wint32 MultipleCount {get;set;}

Property string Path {get;set;

Property uint64 Rawvalue {getiset;}
Property uint64 Secondvalue {get;set;}
Property uint32 Status {get;set;
Property uint6s TimeBase {getiset;}
Property datetime Timestamp {get;set;}
Property uint64 TimestamplOONSec {get;set;}

RIS e &

o
3159552968750
131289666340986025
1

Timer100NsInverse
15/01/2017 15:10:34
131289666340980000
0

o

10000000

\\srvi\processor (_total)\% processor time
_total

0

3159552968750
131289666340986025
1
Timer100NsInverse
15/01/2017 15:10:34
131289666340980000
0

o

10000000

assets/b6010016-4d17-4407-9cbe-02429f70ed07.png
PS C:\> Remove-Item -Path C:\DSC* -Recurse -Force
> $Guid = *5d79eebe-0420-4c98-9cc3-9f696901a816"
> SRV2WebPull -Guid $Guid -OutputPath C:\DSC

Directory: C:\DSC

Mode LastWriteTime Length Name

1988 SRv2.meta.mof

assets/f5094cae-86de-432f-ba3f-334b28d39601.png
PS C:\> Get-EVentlLog -LogName *

Max(K) Retain

overflowAction

OverwriteAsNeeded
OverwriteAsNeeded
OverwriteAsNeeded
Overwriteolder

OverwriteAsNeeded
OverwriteAsNeeded
OverwriteAsNeeded
OverwriteAsNeeded

Application
DFS Replication
HardwareEvents
Internet Explorer

Key Management Service
Security

System
windows Powershell

assets/686c101f-a9ae-466b-87cc-9910a07cf3de.png
Enter password

Enter the password for

password

[keep me signed in

Signin

Forgotten my password

TermsofUse Privacy & Cookies

Microsoft

assets/24269154-3b82-4b5b-8f64-32b4059f36e7.png
PS C:\> Get-WindowsFeature -Name DNS —ComputerName SRVZ

Display Name Name Install state

[1 DN Server DS Available

assets/449a9ebb-633d-4caa-a378-b249c2ca8869.png
PS C:\> $WSUSProducts
SWSUSProducts

Get-WsusProduct

Title

Exchange 2000 Server

Exchange Server 2003

Exchange

Local Publisher

Locally published packages

Microsoft Corporation

OFfice 2003

OFfice Xp

OFfice

SQL Server

saL

Windows 2000 Family

Windows Server 2003 family

Windows Server 2003, Datacenter Edition
Windows XP 64-Bit Edition Version 2003
Windows XP Family

Windows.

™

83a8329-7d55-44a0-afed-acal64bc3ses
3cF32f7c-d8ee-4378-a0da-8baBasFsafla
352F9494-d516-4b40-a21a-cd2416098982
7ca0e8c2-01ae-47F5-9af2-6e75a0582518
5cc25303-143F-40F 3-a2FF-803a1db69955
56309036-4c77-4dd9-951a-99ee9c246294.
1403F223-a63F-F572-82ba-c92391218055
'6248b8b1—Ffeb-dbds-887a-2act5 3b09dfe
477b85 6e-65c4-4473-b621-a8b230bb70d9
7145181b-9556-4b11-b659-0162FaddFLLF
0a4c6c73-8887-4d7F-Ocbe-d0sFasFaddie
3b4b8621-726e-43a6-b43b-37d07ec7019F
dbf57208-0d5a-46FF-b30c-7715eb9498e9
7F44c2a7-bc36-470b-be3b-cOLb6dcs ddde
‘adbedb1d-a809-4F63-9b49-3Fe31967b6d0
558F4bc3-4827-49¢1-accF-ea79fd72d4co
6964aabd~c5bs-43bd-al7d-FFbi346aseld

assets/554f7c46-78bb-4be1-8351-ac8ae359b1a2.png
Ps c:\> $InstallPackages = @('Microsoft-NanoServer-storage-Package’,
"Microsoft-Nanoserver-IIs-Package’,
"Microsoft-NanoServer-Dsc-Package ")

$InstallPackages

Microsoft-NanoServer-storage-Package

Microsoft-NanoServer-IIS-Package

Microsoft-NanoServer-DSC-Package

assets/6d4ba232-25e1-47fb-ba60-8bef7b0c4c58.png
PS C:\> Start-DscConfiguration -Path C:\dsc\ *

Wait -Verbose
VERBOSE: Perform operation 'Invoke CinMethod’ with following parameters, '‘methodName’ = SendConfigurationApply,
"ClassName’ = MSFT_DSCLocalConfigurationManager ,‘namespaceName’ = root/Microsoft/Windows/DesiredstateConfiguration’.

VERBOSE: An LCM method call arrived from computer SRVL with user sid 5-1-5-21-715049209-2702507345-667613206-500.
VERBOSE: [SRV2]: LCM: [Start Set 1

VERBOSE: [SRV2] [Start Resource] [[File]basefiles]

VERBOSE: [SRV2] : [Start Test] [[File]basefiles]

VERBOSE: [SRV2] [[File]basefiles] The network name cannot be found.

VERBOSE: [SRV2] [[File]basefiles] The related file/directory is: \\dc1\ReskitApp.

VERBOSE: [SRV2] [[File]basefiles] Building File Tist from cache.

VERBOSE: [SRV2] [[File]basefiles] The destination object was found and no action is required.
VERBOSE: [SRV2] [End Test] [[Filelbasefiles] in 0.0080 seconds.

VERBOSE: [SRV2] [skip Set 1 [[File]basefiles]

VERBOSE: [SRV2] [End Resource] [[Filelbasefiles]

VERBOSE: [SRV2] [End set 1

VERBOSE: [SRV2] [End Set 1 in 0.1840 seconds.

VERBOSE: Operation 'Invoke CimMethod’ complete.
VERBOSE: Time taken for configuration job to complete is 0.269 seconds

assets/489b8d76-4dea-4c12-a6d5-9e5022634c0d.png
s

\> Find-Module -Name Azure, AzureRM

Version Name Repository Description

3.8.0 Azure PSGallery Microsoft Azure Powershell - Service Management
3.80 AzureRM PSGallery Azure Resource Manager Module

assets/e52c25f6-1e95-489c-a639-bcbe42156c9f.png
PS C:\» Start-DscConfiguration -Path C:\dsc\ *
“Wait -Verbose

VERBOSE: Perform operation "Invoke Cimfethod’ with following parameters,

ethodNane’ = SendConfigurationApply,
ISFT_DSCLocalConfigurationManager , ‘namespaceName’ = root/Microsoft/Windows/DesiredstateConfiguration”.
VERBOSE: An LCM method call arrived from computer SRVL with user sid 5-1-5-21-715049209-2702507345-667613206-500.

[SRV2]: LCM: [Start Set i)

[sRv2] [Start Resource] [[File]basefiles]

[sRv2] [start Test 1 [[Filelbasefiles]

[sRv2] [[File]basefiles] The system cannot Find the File specified.
[sRv2] [[File]basefiles] The related file/directory is: c:\reskitapp.
[sRv2] [[File]basefiles] The network name cannot be found.

[sRv2] [[File]basefiles] The related file/directory is: \\dc1\ReskitApp.
[sRv2] [[File]basefiles] Building File Tist from cache.

[sRv2] [End Test] [[Filelbasefiles] in 2.3430 seconds.

[sRv2] [start Set 1 [[File]basefiles]

[sRv2] [[File]basefiles] The system cannot Find the file specified.
[sRv2] [[File]basefiles] The related file/directory is: c:\reskitapp.
[sRv2] [[File]basefiles] The network name cannot be found.

[sRv2] [[File]basefiles] The related file/directory is: \\dc1\ReskitApp.
[sRv2] [[File]basefiles] Building File Tist from cache.

[sRv2] [[Filelbasefiles] Copying File \\dcl\ReskitApp\Index.htm to c:\reskitapp\Index.htm.
[sRv2] [[File]basefiles] Copying File \\dcl\ReskitApp\Page2.htm to c:\reskitapp\Page2.htm.
[sRv2] [End set 1 [[File]basefiles] in 0.4690 seconds.

[sRv2] [End Resource] [[Filelbasefiles]

[sRv2] [End Set 1

[sRv2] [End Set 1 in 43.0380 seconds.

Operation 'Invoke CinMethod’ complete.
Time taken for configuration job to complete is 45.014 seconds

assets/a2d45ed3-d46b-4fe6-bb0c-cbe65ba2902f.png
Ps c:\foo> $server201l6InstallationRoot = ($MountResult |
Get-volume |
select-object -ExpandProperty Driveletter) + ':'
$server20l6InstallationRoot
EE

assets/30e787d9-41f1-47d0-a65a-ed25370887b0.png
=& Windows Server

Internet Information Services

Bienvenue

&5z% Benvenuto

Bienvenido Hos geldiniz

Welkom

Kowg
Vitejte OploaTe S Udvozoljtik

Microsoft Velkommen

assets/9fafdda4-1231-4059-87c2-5c2f1b2ef15d.png
e
PS C:\> Get—cimclass "win32_PerfFormatted=perfos="

| Select-Object -Property CinClassNane

CinClassNane

Win32_PerfFormattedData_Perf0s_Cache
Win32_PerfFormattedData_Perf0s Memory
Win32_PerfFormattedData_Perf0S_NUMANodeMenory
Win32_PerfFormattedData_Perf0S_Objects
Win32_PerfFormattedData_Perf0S_PagingFile
Win32_PerfFormattedData_Perf0S_Processor
Win32_PerfFormattedData_Perf0s_System

s

:\> Get-cinclass "win32_PerfFormatted=disk=" | Select-Object -Property CinClassName

CinClassNane

Win32_PerfFormattedData Counters_FileSystemDiskActivity
Win32_PerfFormattedData_PerfDisk_LogicalDisk
Win32_PerfFormattedData_PerfDisk_PhysicalDisk

assets/15f928ac-6ce1-4242-81a6-7d0fe8bdc029.png
\> PreparesRV2 -OutputPath c:\dsc

Directory: C:\dsc

Mode LastiriteTine

06/04/2017

assets/d4543647-774b-494a-aec4-e719139d3020.png
\> Get-smbShareAccess -Name foo

Name ScopeName AccountName AccessControlType AccessRight
foo = RESKIT\Adwinistrator Allow Read
foo = NT_AUTHORTTY\SYSTEM Allow Full
foo = CREATOR OWNER Allow Full
foo = RESKIT\IT Team Allow Read
foo = RESKIT\IT Management Allow Full

assets/fbdd8e22-ffb9-40de-8b53-bd12e2e5a1e0.png
Get-NetIPAddress -Interfacelndex $Ifindex -AddressFamily $IPType

TPAddress 10.10.10.11
InterfaceIndex 3

InterfaceAlias Ethernet.

AddressFamily 1Pva

Type Unicast

PrefixLength 24

Prefixorigin Manual

SuFfixorigin : Manual

Addressstate i Preferred

Validlifetine : Infinite ([TimeSpan]::Maxvalue)
PreferredLifetine : Infinite ([TimeSpan]::Maxvalue)
SkipasSource : False

PolicyStore : ActiveStore

assets/a4fac126-cf3d-460a-aacb-84561c668bdb.png
PS C:\>$ChosenProducts = @('windows Server 2016°
, '"Microsoft SQL Server 2016"
, 'Windows 10")

assets/b172af37-4c28-4e17-80c2-9da2d360e74d.png
\> Set-WiProcessor -VMName W1
~ExposeVirtualizationExtensions Strue
:\> Get-WProcessor -VMName W1 |
Format-Table -Property Name, Count,
ExposeVirtualizationExtensions

Name Count ExposeVirtualizationExtensions

Processor 1 True

assets/12347e97-3a92-4414-878e-86a13bf5a26d.png
s

:\> Get-DhcpServervascope -ComputerName DC1.Reskit.Org

ScopeTd SubnetMask Name State StartRange EndRange

10.10.10.0 255.255.255.0 Reskit Active 10.10.10.150 10.10.10.199

assets/c91bab8b-f5ac-44e1-b8a4-f5d630c2e89c.png
\> $DisktoBackup = Get-WBDisk | Select-Object -First 1

\> $Volume = Get-WBVolume -Disk $DisktoBackup |
Where-Object FileSystem —eq "NTFS'

PS C:\> Add-WBVolume —Policy $Pol -Volume SVolume

VolumeLabel : System Volume
MountPath : C:

MountPoint : \\7\Volume{0da61551-0000-0000-0000-100000000000}
FileSysten : NTFS

Property Critical, Validsource

FreeSpace : 121785053184

TotalSpace : 137436856320

assets/a9ad9c08-0d41-45d3-869c-c96203a3a9f3.png
Ps C:\foo> $NanoServerImageParameters = @{
DeploymentType = 'Guest"'
Edition = 'DataCenter’
TargetPath = $NanovMPath
BasePath = $NanoBaseFolder
DomainBlobPath = $DomainjoinBlobPath
Ipv4Address = $IPV4Address
Ipv4Dns = $IPVADNS
Ipv4Gateway = $IPV4Gateway
IPV4subnetMask = $IPv4subnetMask
InterfaceNameOrIndex = 'Ethernet’
Package = $InstallPackages

¥

$NanoServerImageParameters

Name value

TargetPath D:\VMs\NANO2\NANO2 . vhdx
Dep loymentType Guest

Ipv4Dns {10.10.10.10, 10.10.10.11}
IPVA4subnetMask 255.255.255.0
InterfaceNameOrIndex Ethernet

Edition DataCenter

BasePath C:\NanoBase

Ipv4Address 10.10.10.152
Ipv4Gateway 10.10.10.254
DomainBlobPath c:\foo\NANO2.djoin

Package {Microsoft-NanoServer-storage-Package, Microsoft-NanoServer-IIS-Package, Microso...

assets/602e945a-3807-42a1-9a15-00a4c105cd52.png
PS C:\» STopkey = 'HKLM:\Software\Packt"
‘Recipes—7"

\> SRegPath = Join-Path -Path STopkey —ChildPath SSubKey
PS C:\> New-Ttem —Path STopKey

Hive: HKEY_LOCAL MACHINE\Software

Name Property

Packt.
PS C:\> New-Ttem -Path SRegpath
Hive: HKEY_LOCAL_MACHINE\Software\Packt

Name Property

Recipes-7

PS C:\» Set-TtemProperty -Type String -Name RecipeName -Path Sregpath -Value "Recipe 6-7"
PS C:\> Get-Ttem -Path SRegpath

Hive: HKEY_LOCAL_MACHINE\Software\Packt
Name Property

Recipe6-7 RecipeName : Recipe 6-7

assets/f607f31d-8c57-474c-8ac4-8049ed9641f0.png
[NANO1]: Ps c:\foo> $NanoserverIP = '10.10.10.151"
set-Item WsMan:\localhost\Client\TrustedHosts $NanoServerIP -Force

Get-Item WSMan:\localhost\Client\TrustedHosts

wsManconfig: Microsoft.wsMan.Management\wSMan: :localhost\client

Type Name

System.String TrustedHosts 10.10.10.151

assets/b4520b3a-7167-4488-80c8-75ce01df6255.png
:\> Get-Module -Name AzureAD -ListAvailable |
Format-Table -Property Name,Version,Author, Description *
-AutoSize -Wrap

Name Version Author Description

AzureAD 2.0.0.115 Microsoft Corporation Azure Active Directory V2 General Availability
Module.
This is the General Availability release of Azure
Active Directory V2 Powershell Module.
For detailed information on how to install and
run_this module from the PowerShell Gallery
including prerequisites, please refer to https://m
sdn.mi crosoft. con/powershel1/gal lery/readne

assets/394da410-f823-4176-a299-e8fd1d813a02.png
LastiriteTine Length Name

28/02/2007 17331 WsUs.

PS C:\» & "Senv:ProgramFiles\Update Services\Tools\WsusUtil.exe"WsusUtil.exe" postinstall CONTENT_DIR=SWSUSContentDir
Log file is located at C:\Users\Administrator\AppData\Local\Temp\2\tmp1AFE. tmp

Post install is starting

Post install has successfully completed

assets/393e56d0-a2de-426e-b7de-51f066c5e68a.png
@ 1% ¢ = | SWICPUpng - Paint

=
B e e soa gl Nyonomal o = EEEEE T EEEE gy
) Moy el DR e DOOOD G - o~ T T]
°F e droer F 7P| o AG0O00F EY 550 I
Cipposra mage Toats Shapes Cotors
SRV1 CPU Ustiston
40
30

% CPU Usage
5

10

aﬂA J il bl m nAnnlinnlinneree

01162017 231646362 OUTZ0170121:46378 OU1720170326:46384 V172017 05:31:46383 OW17/2017 07:36:46.383

assets/7f9b091e-731f-4926-a92b-6d6bae5916c5.png
PS C:\> certutil.exe —setreg CA\CRLPeriod “Weeks”
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Certsvc\Configuration\ReskitIssuing CA\CRLPeriod:

01d Value:
CRLPeriod REG_SZ = Weeks

New Value:
CRLPeriod REG_SZ = Weeks

CertUtil: -setreg command completed successfully.

The CertSvc service may need to be restarted for changes to take effect.

assets/e7317b8b-c5cf-4656-a20a-78a875325ade.png
\> Get-Printer -Name SGCPL |
Format-Table -Property Name, Published, Location

Name Published Location

True 10th Floor 10E4

assets/be20134f-d65b-48d2-a2ff-2cb49d27d0ef.png
PS C:\> $wsusserver = Get-WsusServer
$wsussubscription = $wsusserver.GetSubscription()
$wsussubscription.startsynchronization()
$intervalseconds = 1
#wait for synchronizing to start
Do {
Write-output $wsusSubscription.GetSynchronizationProgress()
start-Sleep -Seconds $IntervalSeconds

while ($wsussubscription.GetSynchronizationstatus() -eq 'NotProcessing')
#wait for all phases of process to end
Do {
Write-output $wsusSubscription.GetSynchronizationProgress()
start-Sleep -Seconds $IntervalSeconds

until ($Swsussubscription.GetSynchronizationstatus() -eq 'NotProcessing')
#when complete, check result of synchronization

start-Sleep $IntervalSeconds
$wsussubscription.GetLastSynchronizationInfo()

TotalItems ProcessedItems Phase
0 0 NotProcessing

0 0 Categories

0 0 Categories

16 0 Updates

- 16 -i Update- -
Ul

assets/2504848c-74f3-46ed-b50c-ba4f8c7918f4.png
Enter network credentials
Enter your credentials to connect tox SRV

[Reskitaminitroter |

| Je—

Domoin: Reskt
[Remember my credentials

o] [o

g

<Back Next >

assets/5f669ea0-48b9-42c0-9c80-6448acc4ad16.png
Ps c:\> Recipel0-11.psl
Created S Masterley
Creatdd C smyth

Created Billy Bob Joe-Bob

assets/bc852166-f478-4a91-8d16-643dcb00ced6.png
PS di\> Get—CinInstance -ClassName Win32_PerfFormattedData Perf0S_Processor |
Where Name —eq _Total"

Caption
Description

Name

Frequency Object
Frequency_PerfTime
Frequency_Sys100NS
Timestamp_Object
Timestamp_PerfTime
Timestamp_Sys100NS
ClTransitionsPersec
C2TransitionsPersec
CaTransitionsPersec
DPcRate
DPCsQueuedPersec
Interruptspersec
PercentCiTime
PercentC2Time
PercentC3Time
PercentDPCTime
PercentIdleTine
PercentInterruptTime
PercentPrivilegedTime
PercentProcessorTime
PercentUserTime
PSComputerNane

_Total

e T

s

\> Get-Ciminstance -ClassName Win32_PerfFormattedbata Perfos_Processor |
Select -Property Name, PercentProcessortime

Name PercentProcessortime

_Total o

assets/c5a6c762-a738-440c-aa2b-3ba8fe277fa4.png
PS C:\» Ping DCL.Reskit.Org —4
Pinging DC1.Reskit.Org [10.10.10.10] with 32 bytes of data:
Reply from 10.10.10.10: bytes=32 timeims TTL-128

Reply from

Reply from
Reply from

Ping statistics for 10.10.10.10:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = Oms, Maximum = Oms, Average = Oms

s

\> Test-NetConnection DCL.Reskit.Org

ComputerName. DC1.Reskit.Org
RemoteAddress 10.10.10. 1
InterfaceAlias Ethernet
SourceAddress 10.10.10.50
PingSucceeded Trie

oms

PingReplyDetails (RTT)

PS C:\» Test-NetConnection DC1.Reskit.Org -Port 389 -InformationLevel Detailed

ComputerName DC1.Reskit.Org
RemoteAddress 10.10.10.10
RemotePort 389
NameResolutionResults : 10.10.10.10
MatchingIPsecRules
NetworkTsolationContext : Private Network
InterfaceAlias Ethernet.
SourceAddress 10.10.10.50
NetRoute (NextHop) 0.0.0.0
TcpTestsucceeded : True

[SRVL]: PS C:\» Test-NetConnection DC1.Reskit.Org ~CommonTCPPort SUE

ComputerName. DC1. Reskit.Org
RemoteAddress 10.10.10.10
RemotePort. a3
InterfaceAlias : Ethernet
Sourceaddress 10.10.10.50

TcpTestsucceeded : True

assets/236c1450-7ca3-485e-a55b-c71cce311420.png
B smodules | Out-GridView

Sorted by Name,
filtered for modules
that contain 'server'

Filter
and Name contains x

VodsleType [Version | Name [
Manifest 2000 Dhcpsenr e DhcpSenvernDC Add Dhcpemerion Add
Manifest 2000 DnaSener AdéDnsServerConditonlForwarderZone Adé-Dn
Marifest 2000 IpamSener GetlpomDhepConfiuratontvent Remove.Ipom0!
St 1000 ServerCore et Disployesoltion St DisplayRescuton

Serpt 2000 Serverbansger Get-WindovsFestur Instat WindowsFesture Unin

Cim 1000 ServerManagerTasks Get-SMCounterSample Get-SMPerformanceColiect

assets/37739e4c-6430-4170-a073-de305037fbc4.png
i,

Select the date and time of system image to restore
Ifmore than one system image s avaiable and youre not sure which one to
restore, choose the most recent one.

iy

Backups avalable for 51 on \ISRV1\Backup)

<ot [mes]

assets/a2f497ac-f979-4278-b2b8-5d73317d479c.png

assets/7c1b85b5-18ad-4d3e-aee7-ed724fa7d6bf.png
PS C:\> Get-Content -Path C:\DSC\SRV2.mof

SRV2

@GeneratedBy=administrator

@GenerationDate=04/06/2017 14:20:02

@GenerationHost=SRV1

*/

instance of MSFT_FileDirectoryConfiguration as $MSFT_FileDirectoryConfigurationlref
{

ResourceID = "[Filelbasefiles";
Ensure Present”
DestinationPath = \\reskitapp\\";
ModuleName = "PSDesiredStateConfiguration";
SourceInfo = "::6::5::File”;
Recurse = Tri
SourcePath "\\\\dc1\\ReskitApp\\";

Moduleversion = "1.0";
ConfigurationName = "PrepareSRvV2";
3
instance of OMI_ConfigurationDocument
£ Version="2.0.0";

MinimumCompatibleversion = "1.0.0";
CompatibleVersionAdditionalProperties= {"Omi_BaseResource:ConfigurationName"};
Author="administrator"
GenerationDate="04/06/2017 14:20:02";
GenerationHost="SRV1";
Name="PrepareSRV2'

assets/a137f16b-2c74-4f47-adcd-6eae648a9eef.png
PackageManagement PackageManagement

Enduzey Core Providers

Package Sources

PowershellGet
st
1SU
Programs

NuGet

assets/2db0f68a-c7cd-47c4-b844-042bbde27f02.png
B Registry Editor
Fle Edt View Fovortes Help

<~ 5 Computer Name Tpe Data

> [ke cuasses oot (28] (Defautt) REGSZ (value not set)
HKEY_CURRENT_USER

< | HKEYLOCAL MACHINE

31| raRDWARE

] sEcuRTY
SOFTWARE

5[svsTem
HKEY_USERS

] HKEY,CURRENT_CONFIG

assets/b245834b-3762-4bc9-92dc-be7623b37877.png
\> $Backupversions = Wbadmin.Exe Get Versions -Backuptarget:
\> $Version = $Backupversions | Select-String 'Version identifier’ |
Select-Object -Last 1

PS C:\> $VID = $Version.Line.split(" ")[2]

PS C:\> SCnd = "& Wbadmin.exe Start Recovery -Itemtype:Hyperv -Items:DC1 "

PS C:\> SCnd += "-Version:$vid -Alternatelocation -RecoveryTarget:C:\Recovery”
PS C:\> Invoke-Expression -Command $Cmd

wbadmin 1.0 - Backup command-Tine tool
(©) Copyright 2013 Microsoft Corporation. ATl rights reserved.

Warning: If a Virtual Machine you are trying to recover to alternate location
was backed up from this host, this will delete and overwrite the original
virtual machine if it still exists.

You have chosen to recover the application HyperV. The files for the
following components will be recovered to C:\Recovery.

Warning: If a Virtual Machine you are trying to recover to alternate location
was backed up from this host, this will delete and overwrite the original
virtual machine iF it still exists.

Warning: The virtual machines might not start if their network settings are
different after recovery. After recovery is complete use Hyper-V Manager to
verify the network settings of the virtual machines before they are started.

W name: DCL
W caption: Online\DCL
WM identifier: DDSF6DE3-5F65-4990-E0DD-BF3285FBA7EE

Do you want to recover the application Hyperv?
[¥] Yes [N] No Y

Preparing the component DC1(Online) for recovery...
Recovering the files for the component DCL(Online), copied (1%).

Recovering the Files for the component DC1(Online); copied (100%).

Recovering the component DC1(OnTine).

The component DC1(Online) was successfully recovered.

The recovery operation completed.

Log of Files successfully recovered:
C:\WINDOWS\Logs\WindowsServerBackup\App1 i cat ionRestor e-22-03-2017_22-35-29. Tog

Summary of the recovery operation:

The component DC1(OnTine) was successfully recovered.

assets/63bbb7fa-8ab7-41d3-b0e9-795407120418.png
Load Hive

Key Name:

[Ousdwasrived

assets/ee51aa56-adc4-480c-861b-70e9a929e2f4.png
PS C:\> Login-AzureRmAccount.
Environment AzureCloud

Account AzureAdmineReskit.Org

TenantId 53746561-6c20-596F7572-204661636521
SubscriptionTd 426572727-9207-26F6-36b7-32069742121
SubscriptionName Reskit.Org

CurrentStorageAccount

assets/bb5ed751-ddd8-45e6-ade2-7292e44bcf9d.png
Group Policy Management

% Fie Acion View Window Help

e n

O0|XE 4| dEm

15 Group Palicy Management
v&;ﬂ org

sales

Linked Group Poicy Obiects Group Polcy Inhertance | Delegation

GPO

Efoced UnkEnsbled GPOStaius WMIFiter

X

v 5 ReskitOrg Link Order
4] DefaultDomain Policy || =

> 51 Domain New 690
> 5l Sales
> 5 Group Polcy O8 e
> MR | [;
> [Starter GPOs Group Pt

> O Stes Souros Stater GPO,

il Group Policy Modeling| | ne)

% Group Polcy Results

assets/56d19a54-aba0-44b9-ae75-3bab268fd2c6.png
PS c:\foo> Get-VM -Name N*

Name State CPUUsage(%) MemoryAssigned(M) Uptime Status Version

NANOL Running O 512 1.06:49:21.5540000 operating normally 8.0

Ps c:\foo>

assets/4e8de87a-392d-4a6c-a020-882793f63413.png
PS C:\> New-AzureStorageShare -Name $ShareName -Context $SACon

File End Point: https://packt100sa.file.core.windows.net/

Name LastModified

packtshare 29/05/2017 17:

:13 +00:00

assets/20790e6d-cec6-4a88-b69d-aae73c44f95c.png
PS C:\> Start-DscConfiguration -Path C:\DSC -Wait -Verbose
VERBOSE: Perform operation Invoke CimMethod’ with following parameters,
"ClassName’ = MSFT_DSCLocalConfigurationManager , ‘namesp

aceName’ = root/Microsoft/Windows/DesiredstateConfiguration’ .

VERBOSE: An LC method call arrived from computer SRVL with user Sid S-1-5-21-715049209-2702507345-667613206-500.

methodName' = SendConfigurationapply,

VERBOSE: [SRVI]: [start set 1

VERBOSE: [SRVL] [Start Resource] [[File]ConfigFolder]

VERBOSE: [SRVI] [start Test 1 [[FilelConfigFolder]

VERBOSE: [SRVI] [[File]ConfigFolder] The system cannot find the File specified.

VERBOSE: [SRVL] [[File]ConfigFolder] The related file/directory is: C:\DSCConfiguration.
VERBOSE: [SRVI] [End Test] [[File]ConfigFolder] 1in 0.0000 seconds.

VERBOSE: [SRVI] [start Set 1 [[FilelConfigFolder]

VERBOSE: [SRVI] [[File]ConfigFolder] The system cannot find the File specified.

VERBOSE: [SRVI] [[File]ConfigFolder] The related file/directory is: C:\DSCConfiguration.
VERBOSE: [SRVI]: LCM: [End Set 1 [[FilelConfigFolder] in 0.0310 seconds.

VERBOSE: [SRVI]: LCM: [End Resource] [[File]ConfigFolder]

VERBOSE: [SRVI]: LCM: [Start Resource] [[File]ResourceFolder]

VERBOSE: [SRVI]: LCM: [Start Test] [[File]ResourceFolder]

VERBOSE: [SRVL] [[File]ResourceFolder] The system cannot find the File specified.
VERBOSE: [SRVI] [[File]ResourceFolder] The related file/directory is:

VERBOSE: [SRVI]: LcM: [End ~ Test] [[File]ResourceFolder] 1n 0.0000 seconds.

VERBOSE: [SRVI]: LCM: [Start Set 1 [LFile]ResourceFolder]

VERBOSE: [SRVI] [[File]ResourceFolder] The system cannot find the file specified.
VERBOSE: [SRVI] [[File]ResourceFolder] The related file/directory is:

VERBOSE: [SRVI]: LCM: [End Set 1 [[File]ResourceFolder] in 0.0160 seconds.

VERBOSE: [SRVI]: LCM: [End Resource] [[FilelResourceFolder]

VERBOSE: [SRVI]: LCM: [Start Resource] [[xSmbShare]DscConfiguration]

VERBOSE: [SRVI]: LCM: [Start Test] [[xSmbshare]DscConfiguration]

VERBOSE: [SRVI] [xSmbshare]DscConfiguration] Share with name DSCConfiguration does not exist
VERBOSE: [SRVI]: LCM: [End Test] [[xSmbShare]DscConfiguration] in 0.5620 seconds.

VERBOSE: [SRVI]: LCM: [Start Set 1 [[xSmbShare]DscConfiguration]

VERBOSE: [SRVI] [DxSmbshare]DscConfiguration] Creating share DSCConfiguration to ensure it is Present
VERBOSE: [SRVI]: LCM: [End Set 1 [DxSmbShare]DscConfiguration] in 0.1260 seconds.

VERBOSE: [SRVI]: LCM: [End Resource] [[xSmbShare]DscConfiguration]

VERBOSE: [SRVI]: LCM: [Start Resource] [[xSmbShare]DscResource]

VERBOSE: [SRVI]: LCM: [Start Test] [[xSmbShare]DscResource]

VERBOSE: [SRVI] [[xSmbshare]DscResource] Share with name DSCResource does not exist
VERBOSE: [SRVI]: LcM: [End Test] [[xSmbShare]DscResource] 1in 0.0150 seconds.

VERBOSE: [SRVI]: LCM: [Start Set 1 [[xSmbShare]DscResource]

VERBOSE: [SRVL] [DxSmbshare]DscResource] Creating share DSCResource to ensure it is Present
VERBOSE: [SRVI]: LCM: [End Set 1 [[xSmbShare]DscResource] 1in 0.0620 seconds.

VERBOSE: [SRVI]: LCM: [End Resource] [[xSmbSharelDscResource]

VERBOSE: [SRVI]: LCM: [End Set 1

VERBOSE: [SRVA]: LCM: [End Set 1 in 2.1920 seconds.

VERBOSE: Operation 'Invoke CimMethod' complete.
VERBOSE: Time taken for configuration job to complete is 2.652 seconds

assets/a8abb529-f955-4d98-8aec-6ab89f88a4fc.png
[NANO1]: Ps c:\foo> Set-DnsClientServerAddress -InterfaceAlias 'Ethernet’
-ServerAddresses 10.10.10.10, 10.10.10.11
Get-DnsClientServerAddress

InterfaceAlias Interface Address ServerAddresses
Index Family
Ethernet 3 1PV4 {10.10.10.10, 10.10.10.11}
Ethernet 3 IPV6 {}
Loopback Pseudo-Interface 1 1 IPV4 {}
Loopback Pseudo-Interface 1 1 IPV6 {3}

assets/40bae66d-a299-47d3-9273-f60f4252fa15.png
PS C:\> Invoke-Command —Computer SRV2 °
~ScriptBlock { Remove-Ttem -Path C:\ReskitApp\Index.htm
Get-Childitem Path C:\Reskitapp }
\ReskitApp

Mode LastWriteTime Length Name PSComputerName

Directory:

- 05/01/2017 11:52 383 Page2.htm SRV2

assets/93ee0cba-a6dc-4d20-95d4-c1f6d56c2f16.png
STEP 6 - Get WM1 Status on Hv2:
PS C:\> Get-WM —ComputerName HV2

Name State CPUUsage(%) MemoryAssigned(M) Uptime Status Version

normally 8.0

assets/4528c8be-9a90-4d8b-b853-62e86827adeb.png
PS C:\> update-DscConfiguration -Computername SRV2 -wait -verbose

VEREOS!
**methodname"
spaceName®

[srv2] :
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]
[srv2]: LCM:

[start
[start

End
start

End
End

start
start

[start

[end
[end

Resource]
Test 1
Test 1
set 1
set 1
Resource]
Resource]
Test 1
Test 1
set 1
set 1
Resource]

perform operation 'Invoke Cimvethod’ with following parameters,
performRrequiredconfigurationchecks, *classhame’

root/Microsoft/windows/Desiredstateconfiguration”.

An L method call arrived from computer SRVI with user sid 5-1-5-21-715049209-2702507345-667613206-500.

MSFT_DSCLocalconfigurationmanager

* name

[] Executing Get-action with configuration 's checksum returned result status: Getconfiguration.
[0 Checksum is different. LcM will execute GetConfiguration to pull configuration .

[] Executing GetConfiguration succeeded. Configuration Telnetconfig was pulled from server.

[0 Executing GetConfiguration succeeded. Configuration TFTPConfig was pulled from server.

[] Applying the new configuration(s) pulled.

[[windowsFeature]Telnetclient]
[[windowsFeature]Telnetclient]
[[windowsFeature]Telnetclient]
[[windowsFeature]Telnerclient]
[[windowsFeature]Telnetclient]
[[windowsFeature]Telnetclient]
[[windowsFeature]Telnerclient]
[[windowsFeature]Telnetclient]
[[windowsFeature]Telnetclient]
[[windowsFeature]Telnerclient]
[[windowsFeature]Telnetclient]
[[windowsFeature]Telnetclient]
[[windowsFeature]Telnetclient]
[[windowsFeature]Telnetclient]
[[windowsFeature]TFTPClient]
[[windowsFeature]TFTPClient]
[[windowsFeature]TFTPClient]
[[windowsFeature]TFTPClient]
[[windowsFeature]TFTPClient]
[[windowsFeature]TFTPClient]
[[windowsFeature]TFTPClient]
[[windowsFeature]TFTPClient]
[[windowsFeature]TFTPClient]
[[windowsFeature]TFTPClient]
[[windowsFeature]TFTPClient]
[[windowsFeature]TFTPClient]
[[windowsFeature]TFTPClient]
[[windowsFeature]TFTPCTient]

operation 'Invoke CimMethod’ complete.
Time taken for configuration job to complete is 71.607 seconds

PS C:\> Test-DscConfiguration -Computername srv2

True

The operation 'Get-windowsFeature' started: Telnet-client
The operation Get-windowsFeature' succeeded: Telnet-client
in 0.9530 seconds.

1nstallation started.
Continue with installation?
prerequisite processing started.
Prerequisite processing succeeded.

Installation succeeded.

Ssuccessfully installed the feature Telnet-client.
in 32.4180 seconds.

The operation "Get-windowsFeature’ started: TFTP-Client
The operation "Get-windowsFeature’ succeeded: TFTP-Client
n 2.1000 seconds.

1nstallation started.

Continue with installation?
Prerequisite processing started.
Prerequisite processing succeeded.
Installation succeeded.

Ssuccessfully installed the feature TFTP-Client.
in 21.9150 seconds.

assets/23a2dc5f-a06d-4b46-aa11-aa16b88ceac6.png
PS C:\> Get-Content -Path z:\foo\recipe.txt
Recipe 15-4

assets/9bb374a9-9d1c-4877-9b67-8bc9595fe1d6.png
Total Counter sets : 73]

assets/726ec0a2-4a18-46bd-a252-c58a2f4a776c.png
PS C:\> Get-ChildItem -Path C:\DSC -ErrorAction SilentlyContinue |
Remove-Ttem -Force | Out-Null
PS C:\> Remove-Item -Path 'C:\Windows\System32\configuration*.mof"
-ErrorAction SilentlyContinue
PS C:\> WebPullSrvl -OutputPath C:\DSC -CertThumbPrint $DscCert.Thumbprint

Directory: C:\DSC

Mode LastwriteTime Length Name

03/05/2017 19:35 5536 SRV1.mof

assets/d68a8da2-1b46-4aaa-852e-8fa6d87dba4b.png
Ps c:\foo> Enter-PSSession -VMName $NanoComputerName -Credential $Credential

[NANO1]: PS cC:\Users\administrator\Documents>

assets/7e38f54f-6d20-41f2-9237-7ba919038136.png
Get-Dnsserverebns
CacheTimeout Enableprobes EnableReception
00:30:00 True True

assets/8b395ae3-9a34-4f05-b6f1-b0cee87b2452.png
s

:\> Get-W —ComputerName HV1

Name State

CPUUsage(%) MemoryAssigned() Uptine
Wi Running 2

4096
PS C:\»> Get-WM —ComputerName HV2

Status

Version

9700000 Operating normally 8.0

Name State CPUUsage(%) MemoryAssigned() Uptine

status
wi off o

Version
00:00:00 Operating normally 5.0

assets/453273e6-c2fa-491b-9397-3f196a7d2c58.png
Archive
Environment

Group.

Groupset.

Registry

Script

Service

Serviceset

User

WindowsFeature
WindowsFeatureSet
WindowsOptionalFeature
WindowsOptionalFeatureset
WindowsPackageCab.
WindowsProcess

Processset
Carbon_Environmentvariable
Carbon_FirewallRule
Carbon_Group.
Carbon_TniFile

2\> Find-DscResource -Repository

*PsGallery”
ModuTeNane

PSDscResources
PSDscResources
PSDscResources
PSDscResources
PSDscResources
PSDscResources
PSDscResources
PSDscResources
PSDscResources
PSDscResources
PSDscResources
PSDscResources
PSDscResources
PSDscResources
PSDscResources
PSDscResources
Carbon

Carbon

Carbon

Carbon

Repositor

PsGallery
pSGallery
psGallery
PsGallery
pSGallery
psGallery
PsGallery
pSGallery
psGallery
PsGallery
pSGallery
psGallery
PsGallery
pSGallery
psGallery
PsGallery
pSGallery
psGallery
PsGallery
PsGallery

