UCLouvain

Imeca2453

2023

Advanced manufacturing technologies

5.00 credits	30.0 h + 30.0 h	Q1
--------------	-----------------	----

Teacher(s)	Simar Aude ;				
Language :	English > French-friendly				
Place of the course	Louvain-la-Neuve				
Main themes	Manufacturing process selection Complements on machining and computer assisted processing Additive manufacturing Non-conventional machining processes Virtual manufacturing				
Learning outcomes	At the end of this learning unit, the student is able to: In consideration of the reference table AA of the program "Masters degree in Mechanical Engineering", this course contributes to the development, to the acquisition and to the evaluation of the following experiences of learning: • AA1.1, AA1.2, AA1.3 • AA2.1, AA2.4, AA2.5 • AA3.2, AA3.3 • AA4.1, AA4.2, AA4.3, AA4.4 • AA5.1, AA5.5, AA5.6 • AA6.1, AA6.4				
	More precisely, at the end of the course, the student will be capable to: Choose a manufacturing process for a given workpiece using quantifiable criteria Choose optimal cutting conditions (machines, forces, tools, ') Perceive the interest of computational tools for manufacturing. Evaluate the interest of additive manufacturing in comparison to classical processing methods Pose hypothesis for the numerical modelling of manufacturing Translate the geometry of a workpiece in manufacturing operations Communicate their needs to the technicians un a manufacturing plant.				
Evaluation methods	 Projects in groups and active participation to visits and laboratories (40% of the mark) Oral exam during the exam session (60% of the mark) In the event of a health situation requiring the switch to distantial mode, the oral exam will be held on microsoft teams				
Teaching methods	Magistral courses Two projects (additive manufacturing, process selection) CNC machining laboratory Plant visits				
Content	 Manufacturing process selection: selection strategy, project of process selection. Complements on machining: cutting forces, power, surface conditions, automatisation, realization on machine Additive manufacturing: processes, process selection criteria, metallurgical quality of the workpieces, project of topological optimisation with a practical realization in Laser Powder Bed Fusion (metal) Non-conventional machining processes with a focus on electro-erosion Virtual manufacturing: Hypothesis of finite elements calculations, application to machining 				
Inline resources	https://moodle.uclouvain.be/course/view.php?id=1013 lecture slides				
Bibliography	Materials Selection in Mechanical Design, M.F. Ashby, Butterworth Heinemann. E-book disponible par la BST (connexion UCL obligatoire): http://www.sciencedirect.com/science/book/9781856176637 Manufacturing Engineering and Technology, S. Kalpakjian, S.R. Schmid, Pearson. Manufacturing processes and equipement, G. Tlusty, Prentice Hall. Usinage, JF. Debongnie, Céfal.				
Other infos	Bases of manufacturing are usefull for the understanding of the course but will be shortly recalled in lecture 1				

Université catholique de Louvain - Advanced manufacturing technologies - en-cours-2023-lmeca2453

Faculty or entity in	MECA
charge	

Programmes containing this learning unit (UE)						
Program title	Acronym	Credits	Prerequisite	Learning outcomes		
Master [120] in Mechanical Engineering	MECA2M	5		٩		
Master [120] in Electro- mechanical Engineering	ELME2M	5		٩		