Г.Г. Бортник, В.М.Кичак

ЦИФРОВА ОБРОБКА СИГНАЛІВ

Міністерство освіти і науки України Вінницький національний технічний університет

Г.Г.Бортник, В.М.Кичак

ЦИФРОВА ОБРОБКА СИГНАЛІВ

Рекомендовано Міністерством освіти і науки України як навчальний посібник для студентів вищих навчальних закладів

УНІВЕРСУМ-Вінниця 2006

Рецензенти:

Л.Н.Беркман, доктор технічних наук, професор (ДУІКТ)

В.М.Плотніков, доктор технічних наук, професор (OHA3)

О.В. Тимченко, доктор технічних наук, професор (НУ "ЛП")

Рекомендовано до видання Міністерством освіти і науки України. Лист № 14/18.2-315 від 10.02.2006 р.

Бортник Г.Г., Кичак В.М.

Б21 **Цифрова обробка сигналів.** Навчальний посібник – Вінниця: УНІВЕРСУМ-Вінниця, 2006. - 167с.

ISBN 966-641-054-0

Наведені питання теорії дискретних сигналів і лінійних систем, які є основою цифрової обробки сигналів. Описуються особливості обробки сигналів, пов'язані з обмеженою розрядністю цифрових засобів: кодування інформації, квантування та перетворення сигналів.

Розглянуті методи синтезу аналізаторів спектра, цифрових фільтрів і трансмультиплексорів для телекомунікаційних систем з імпульсно-кодовою модуляцією та дельта-модуляцією.

Призначений для студентів спеціальності "Телекомунікаційні системи та мережі"

УДК 621.391

ISBN 966-641-054-0

© Г.Г.Бортник, В.М.Кичак, 2006

3MICT

Вступ	5
1 Перетворення сигналів у дискретних системах	6
1.1 Основні форми подання сигналів	6
1.2 Теорема відліків	12
1.3 Дискретне перетворення Фур'є та його властивості	14
1.4 Особливості дискретних систем	18
2 Аналого-цифрові та цифроаналогові перетворювачі	28
2.1 Пристрої вибирання та зберігання	28
2.2 Цифроаналогові перетворювачі	30
2.3 Аналого-цифрові перетворювачі	37
2.4 Аналого-цифрове перетворення з рівномірним квантуванням	44
2.5 Аналого-цифрове перетворення з нерівномірним квантуванням	47
3 Алгоритми швидкого перетворення Фур'є	52
3.1 Обгрунтування алгоритмів ШПФ	52
3.2 Алгоритм ШПФ з проріджуванням у часі	53
3.3 Програмна реалізаціїя алгоритму ШПФ з проріджуванням у часі	57
3.4 Алгоритм ШПФ з проріджуванням за частотою	60
3.5 Приклади використання алгоритмів ШПФ	62
4 Цифровий аналіз спектрів в телекомунікаційних системах	64
4.1 Приклади застосування цифрових аналізаторів спектра в	
електрозв'язку 4.2 Цифровий поточний спектр	64 65
4.3 Поточний спектр з прямокутним часовим вікном і	
рівновіддаленими частотами	66
вікна" та нерівновіддалених частот	70

4.5 Аналіз спектрів з довільним "часовим вікном" та рівновіддаленими частотами	71
5 Цифрове оброблення сигналів в багатоканальних системах	74
зв'язку	74 74
5.2 Цифрова інтерполяція сигналів	77
5.3 Перенесення спектра при інтерполяції дискретного сигналу	88
5.4 Цифрове формування односмугового сигналу	90
5.5 Частотні перетворення при інтерполяції сигналу з ЦОС	93
5.6 Зменшення частоти дискретизації (децимація)	95
 5.7 Зменшення частоти дискретизації при вузькосмуговій дискретній фільтрації 5.8 Використання нерекурсивних і рекурсивних фільтрів при 	97
децимації 5.9 Особливості зменшення частоти дискретизації в цифрових системах	100 101
 5.10 Перенесення спектра при вузькосмуговій фільтрації зі зменшенням частоти дискретизації 6 Цифрове оброблення сигналів при узгодженні телекомунікаційних систем	102 106 106
6.2 Найпростіші трансмультиплексори	108
6.3 Трансмультиплексори з додатковим обробленням сигналів	112
6.4 Багаторівневі трансмультиплексори	115
6.5 Реалізація трансмультиплексорів	125
 7 Моделювання алгоритмів цифрового оброблення сигналів у системі MATLAB 7.1 Загальні відомості про систему MATLAB 	132 132
7.2 Функції цифрового спектрального аналізу в MATLAB	132
7.3 Синтез цифрових фільтрів у системі MATLAB	148
Література	166

ВСТУП

Останнім часом методи цифрового оброблення сигналів (ЦОС) в системах зв'язку набули великого значення і значною мірою заміняють класичні аналогові методи оброблення сигналів. Зростаючі можливості цифрової техніки забезпечують високу ефективність алгоритмів ЦОС при їх реалізації в телекомунікаційних та радіотехнічних системах.

Мета даного навчального посібника полягає в тому, щоб ознайомити студентів телекомунікаційних спеціальностей, які вже вивчили дисципліни "Вища математика", "Теорія електричних кіл і сигналів", "Теорія електрозв'язку" з найважливішими методами та засобами ЦОС.

Для кращого розуміння матеріалу у посібнику наведено велику кількість прикладів, контрольних запитань, задач.

Навчальний посібник складається з семи розділів.

Перший розділ має загальний вступний характер. У другому розділі розглядаються основні методи та принципи аналого-цифрового та цифроаналогового перетворення сигналів. Третій розділ присвячено алгоритмам швидкого перетворення Фур'є.

Основні питання цифрового спектрального аналізу сигналів викладено у четвертому розділі. У п'ятому та шостому розділі розглядаються методи та засоби ЦОС у телекомунікаційних системах. У сьомому розділі викладено основи моделювання алгоритмів та засобів ЦОС у системі MATLAB.

В основі навчального посібника лежать курси лекцій та практичних занять, що читались авторами студентам Інституту радіотехніки, зв'язку та приладобудування Вінницького національного технічного університету.

1 ПЕРЕТВОРЕННЯ СИГНАЛІВ У ДИСКРЕТНИХ СИСТЕМАХ

1.1 Основні форми подання сигналів

Сигнали є фізичними носіями повідомлень. Одновимірні сигнали описуються матеріальною або комплексною функцією $x_a(t)$, визначеною на часовому інтервалі $t \le t \le t^{"}$. Неперервні сигнали (НС) описуються неперервною (або кусково-неперервною) функцією $x_a(t)$, причому сама функція і аргумент t можуть приймати будь-які значення на деяких інтервалах $x_a \le x_a \le x^{"}_a, t' \le t \le t"$. Приклад НС наведено на рис. 1.1, $a: x_a(t) = U_m sin 2\pi f T$ при $U_m = 1B$ та $f = 2\Gamma \mu$. Неперервні сигнали використовуються, наприклад, в системах телефонії, телебачення, радіомовлення.

Дискретні сигнали (ДС) описуються послідовностями – x(nT), де T=const – інтервал дискретизації, n-ціле число, n=0,1,2,... Сама функція x(nT) може в дискретні моменти nT приймати довільні значення на деякому інтервалі. Ці значення функції називаються вибірками або відліками функції. Іншим позначенням функції $x(nT) \in x(n)$ або x_n . На рис. 1.1, б показана послідовність відліків функції $x(nT) = U_m sin2\pi fT$ при $U_m = 1B$, $f=2\Gamma \mu$, T=1/16c. Прикладом застосування дискретних сигналів є телекомунікаційні системи з амплітудноімпульсною модуляцією.

Цифрові сигнали (ЦС) – це квантовані за рівнем дискретні сигнали і описуються квантованими функціями $x_{il}(nT)$, що приймають у дискретні моменти nT тільки кінцевий ряд дискретних значень – рівнів квантування $h_{l},h_{2},...,h_{N}$. Приклади квантованих дискретних сигналів наведені на рис.1.1,в. Зв'язок між функцією x(nT) та квантованою функцією $x_{il}(nT)$ визначається нелінійною функцією квантування $x_{il}(nT)=F_{\kappa}(x(nT))$. Існують різні способи вибору функцій квантування. В найпростішому випадку, коли використовується квантування з постійним кроком $\Delta h=h_{l}-h_{l-1}=const$, функція квантування має вигляд

$$x_{u}(nT) = F_{\kappa}(x(nT)) = \begin{cases} h_{1}, x(nT) \leq (h_{2} + h_{1})/2 \\ h_{l}, (h_{l} + h_{l-1})/2 < x(nT) \leq (h_{l+1} + h_{l})/2 \\ h_{N}, (h_{N} + h_{N-1})/2 < x(nT) \end{cases}$$
(1.1)

Кожен з рівнів квантування кодується числом, зазвичай, використовуються двійкові символи 0,1, а квантовані відліки $x_u(nT)$ кодуються двійковими числами з *m* розрядами. Наприклад, $x_u(0)=0000$, $x_u(2T)=0010$ і т.д. Кількість рівнів квантування N і мінімальна кількість двійкових розрядів *m* для кодування цих рівнів пов'язані співвідношенням:

$$m = int(log_2N), \tag{1.2}$$

де int(A)—найменше ціле число, не менше A.

Наприклад, при *N*=16 кількість розрядів *m*=4.

Рисунок 1.1 – Форми подання сигналу: а) неперервна; б) дискретна; в) квантована

Якщо функція, що кодується може приймати як додатні, так і від'ємні значення, то знак функції подається, як правило, за допомогою спеціального знакового розряду. Сигнали з імпульсно-кодовою модуляцією (ІКМ), які використовуються в системах зв'язку є прикладом цифрових сигналів.

Розглянемо деякі послідовності, що використовуються в теорії цифрового оброблення сигналів в телекомунікаційних системах.

Зсув послідовності x(nT) по осі nT: послідовність y(nT)=x(nT-kT)з'являється завдяки зсуву послідовності x(nT) на k відліків праворуч (при k>0) або ліворуч (при k<0).

Дискретна дельта-функція (одиничний імпульс) визначається співвідношенням

$$\delta(nT-kT) = \begin{cases} 0, n \neq k\\ 1, n = k \end{cases}.$$
(1.3)

Ця функція позначається як δ -функція (рис.1.2,*a*).

Рисунок 1.2 – Елементарні сигнали: *a*) одиничний; *б*) одинична послідовність; *в*) експоненціальна послідовність

Знайдемо аналітичний запис послідовності. З визначення дискретної δ -функції випливає, що будь-яка послідовність x(nT) може бути записана у вигляді

$$x(nT) = \sum_{k=-\infty}^{\infty} x(kT)\delta(kT - kT).$$
(1.4)

Одинична послідовність визначається співвідношенням

$$u_0(nT - kT) = \begin{cases} 0, n < k \\ 1, n \ge k \end{cases}.$$
 (1.5)

На рис. 1.2,б показана послідовність $u_0(nT)$. Одиничний імпульс $\delta(nT)$ пов'язаний з одиничною послідовністю u(nT) співвідношенням

$$\delta(nT) = u_0(nT) - u_0(nT - T). \tag{1.6}$$

Тоді

$$u_0(nT) = \sum_{k=0}^{\infty} \delta(nT - kT).$$
 (1.7)

Експоненціальна послідовність визначається співвідношенням $x(nT) = e^{\alpha nT}$, де в загальному випадку $\alpha = \sigma + j\omega$ – комплексне число. При $\omega = 0$, $\alpha = \sigma$ – матеріальне та $x(nT) = e^{\alpha nT} = c^n$ – матеріальна степенева послідовність. На рис.1.2,в наведено послідовність $x(nT) = c^n u_0(nT)$, де c < 1.

Періодичною називають послідовність x(nT), що задовольняє умову x(nT)=x(nT+mnT), де m, i, N – цілі числа. m=1,2,...; NT – період послідовності. Періодичну послідовність достатньо задати на інтервалі одного періоду, наприклад, при $0 \le n \le N-1$.

Приклад 1.1. На рис.1.3, а зображена періодична послідовність $x(nT) = \{1,1,0,0\}$ з періодом N=4. На рис. 1.5,6 наведена та ж сама періодична послідовність, але зсунута на два відліка лівіше, тобто послідовність x(nT-kT) при k=-2: $x(nT+2T)=\{0,0,1,1\}$. З розглянутого інтервалу одного періоду (наприклад, інтервалу 0,...,N-1) легко побачити, що на виході в результаті зсуву будь-якого відліку такий же відлік з'явиться на вході. Такий зсув називається коловим. Слід відмітити, що зсув періодичної послідовності x(nT) з періодом N на k'>N відліків неможливо відрізнити від зсуву на $(k')_{modN}=k<N$ відліків.

Рисунок 1.3 – Перетворення послідовності шляхом часового зсуву

Для описування неперервних і дискретних сигналів у частотній області використовується апарат перетворення Фур'є. Спектром $X_a(j\omega)$ неперервного сигналу $x_a(t)$ називають пряме перетворення Фур'є

$$X_a(j\omega) = \int_0^\infty x_a(t)e^{-j\omega t}dt.$$
 (1.8)

Обернене перетворення Фур'є дає змогу на основі відомого частотного спектра сигналу визначити його часове подання

$$x_a(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_a(j\omega) e^{j\omega t} d\omega.$$
 (1.9)

Перетворення Фур'є для дискретної функції мають вигляд:

$$X(e^{j\omega T)} = \Phi\{x(nT)\} = \sum_{n=0}^{\infty} x(nT)e^{-j\omega nT}, \qquad (1.10)$$

$$x(nT) = \Phi^{-1}\{X(e^{j\omega T})\} = \frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} X(e^{j\omega nT}) d\omega, \qquad (1.11)$$

де $X(e^{j\omega T})$ – спектр дискретного сигналу.

Слід відмітити ряд властивостей спектрів дискретних сигналів.

1. З (1.10) випливає, що спектр $X(e^{j\omega T})$ дискретної послідовності є періодичною функцією за частотою ω з періодом, що дорівнює частоті дискретизації: $\omega_0 = 2\pi/T$; $X(e^{j\omega T}) = X(e^{j(\omega + k2\pi/T)T})$, k=1,2,... Зрозуміло, що також періодичним за частотою з періодом $\omega_0 = 2\pi/T$ є модуль спектра $|X(e^{j\omega T})|$ та фаза – аргумент arg $X(e^{j\omega T})$. Окрім цього, для дійсних послідовностей x(nT)

$$|X(e^{j\omega T})| = |X(e^{-j\omega T})|;$$

arg $X(e^{j\omega T}) = - \arg X(e^{-j\omega T}).$

Тобто, модуль спектра дійсної послідовності є парною функцією, а аргумент — непарною функцією частоти. На рис.1.4 подано умовне зображення модуля спектра дійсної послідовності. Основним прямим спектром $X^+(e^{j\omega T})$ називають частину спектра $X(e^{j\omega T})$, розташовану в області нижніх частот від $\omega=0$ до $\omega=\omega_0/2=\pi/T$, а основним інверсним спектром – частина спектра в області частот $-\pi/T \le \omega \le 0$.

Рисунок 1.4 – Спектр дійсної послідовності

2. Властивість лінійності перетворення Фур'є. При зсуві спектра $X(e^{-j\omega T})$ послідовності x(nT) по осі частот вправо на величину ω_1 отримаємо спектр $Y(e^{j\omega T})=X(e^{j(\omega-\omega I)T})$. Цьому спектру згідно з (1.11) відповідає послідовність

$$y(nT) = \frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} Y(e^{j\omega T}) e^{j\omega nT} d\omega = \frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} X(e^{j(\omega-\omega_1)T}) e^{j\omega nT} d\omega =$$
$$= e^{j\omega_1 nT} \frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} X(e^{j\omega \tau}) e^{j\omega nT} d\omega.$$

Тобто, $y(nT)=e^{j\omega nT}x(nT)$, і зсув спектра по осі частот відповідає перемноженню послідовності x(nT) на послідовність $e^{j\omega nT}$. В окремому випадку, при $\omega_1 = \pi/T$ отримуємо, що послідовність $y(nT) = e^{j\pi n}x(nT)$ має спектр

$$Y(e^{j\omega T}) = X(e^{j(\omega - \pi/T)T}) .$$
(1.12)

Такий спектр називається інверсним відносно спектра $X(e^{j\omega T})$ послідовності x(nT).

3. При зсуві дискретного сигналу x(nT) вправо (тобто, при затримці у часі) на n_1 відліків отримаємо сигнал $y(nT)=x(nT-n_1T)$ та згідно з (1.10) спектр затриманого сигналу

$$Y(e^{j\omega T}) = e^{-j\omega n} {}_{I}^{T} X(e^{j\omega T}).$$
(1.13)

4. Дискретний сигнал x(nT) та модуль його спектра $|X(e^{j\omega T})|$ пов'язані такою залежністю (згідно з теоремою Парсеваля):

$$\sum_{n=0}^{\infty} |x(nT)|^2 = \frac{T}{n} \int_{0}^{n/T} |X(e^{j\omega T})|^2 d\omega.$$
 (1.14)

Приклад 1.2. Дано послідовність $x(nT) = e^{\alpha nT}$, де $\alpha < 0$, дійсне, а n=0,1,2,... Згідно з (1.11) спектр цієї послідовності буде дорівнювати

$$X(e^{j\omega T}) = \sum_{n=0}^{\infty} e^{(\alpha - j\omega)nT} = \frac{1}{1 - e^{(\alpha - j\omega)T}}.$$

А модуль цього спектра

$$|X(e^{j\omega T})| = \frac{1}{\sqrt{(1 - e^{\alpha T} \cos \omega T)^2 + (e^{\alpha T} \sin \omega T)^2}}.$$

Спектр послідовності $y(nT) = (-1)^n x(nT) = (-1)^n e^{anT} = \{1, -e^{aT}, e^{2aT}, -e^{3aT}, ...\}$ згідно з (1.13) буде дорівнювати

$$Y(e^{j\omega T}) = \frac{1}{1 - e^{(\alpha - j(\omega - \pi/T)T)}}.$$

1.2 Теорема відліків

Неперервний сигнал перетворюється за допомогою дискретизатора в амплітудноімпульсний сигнал в дискретні моменти часу t=nT, n=0,1,2,...дискретизатора формується послідовність Ha виході вибірок $x(nT) \approx x_a(t)/_{t=nT}$. Відновлення НС $x_a(t)$ за його дискретними відліками x(nT)інтерполяційних виконується допомогою використання різних за процедур.

При виконанні умов теореми відліків (теореми Котельникова), операції дискретизації та відновлення є взаємно оберненими. Згідно з цією теоремою: якщо аналоговий сигнал $x_a(t)$ має кінцевий спектр $X_a(j\omega)$, тобто такий, що $X_a(j\omega)=0$ при $|\omega|>\omega_0$ (умовне зображення модуля спектра дано на рис. 1.5,а), то такий сигнал можно однозначно подати послідовністю вибірок x(nT), n=0,1,2,... при $T=2\pi/\omega_0$, де $\omega_0=2\pi f_0 \ge 2\omega_0$. При цьому

$$x_a(t) = \sum_{n=-\infty}^{\infty} x(nT) \frac{\sin \omega_0(t-nT)}{\omega_0(t-nT)}.$$
(1.15)

Таким чином, сигнал $x_a(t)$ можно відновити, якщо пропустити послідовність x(nT) через ідеальний аналоговий фільтр нижніх частот з частотою зрізання $\omega_3 = \pi/T$.

Спектр $X(e^{j\omega T})$ послідовності x(nT), отриманої в результаті дискретизації з частотою $\omega_{\partial} = 2\pi/T$ аналогового сигналу $x_a(t)$, і спектр $X_a(j\omega)$ останнього пов'язані співвідношенням

$$X(e^{j\omega T}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_a(j(\omega + k\omega_{\partial})).$$
(1.16)

Тобто, спектр послідовності x(nT) дорівнює з точністю до множника 1/T сумі спектрів відповідного сигналу $x_a(t)$, які зміщено по осі частот на допустимі значення частоти, що кратні частоті дискретизації $\omega_0 = 2\pi/T$.

На рис.1.5,6 і 1.5,в наведено умовне зображення модуля спектра $|X(e^{i\omega T})|$ дискретного сигналу x(nT) відповідно для випадків $\omega_{\partial} \ge 2\omega_0$ і $\omega_{\partial} < 2\omega_0$. У першому випадку спектр дискретного сигналу збігається на інтервалі $|\omega| \le \omega_0$ зі спектром аналогового сигналу, а в другому випадку має місце явище накладання спектрів, при якому спектр дискретизованого сигналу не збігається на інтервалі $|\omega| \le \omega_0$ з вихідним спектром аналогового сигналу.

Таким чином, якщо HC $x_a(t)$ має фінітний спектр $X_a(j\omega)$ з частотою зрізання ω_0 , то він може бути без втрати інформації поданий послідовністю x(nT), яка отримується в результаті дискретизації AC з частотою

$$\omega_{\partial} \ge 2\omega_0. \tag{1.17}$$

У системах зв'язку в багатьох випадках спектр $X_a(j\omega)$ HC $x_a(t)$ не має частоти $\omega=0$, а зосереджений у деякій смузі $0\neq\omega_{min}\leq\omega\leq\omega_{max}<\infty$. Таким ϵ , наприклад, спектр радіосигналу з амплітудною модуляцією (рис 1.6).

дискретизації

Рисунок 1.6 – Спектр амплітудно-модульованого сигналу

У таких випадках для точного подання НС послідовністю вибірок виконання умови (1.17) призводить до завищення необхідної частоти дискретизації. Для таких вузькосмугових сигналів частоту дискретизації $\omega_{\partial} = 2\pi/T$ задають нерівністю [1]

$$2\omega_{\max}/q \le \omega_{\pi} \le 2\omega_{\min}(q-1), \qquad (1.18)$$

де $q=1,2,...,E_{u}[\omega_{max}/(\omega_{max}-\omega_{min})].$

Запис $E_{u}[A]$ означає <<uina частина числа A>>. Якщо частота ω_{∂} обрана недостатньо високою і (1.18) не задовольняється, то мають місце накладання зсунених спектрів і в результаті спектр $X(e^{j\omega T})$ дискретного сигналу в діапазоні - $\omega_{\partial}/2...$ $\omega_{\partial}/2$ відрізняється від спектра аналогового сигналу $X_{a}(j\omega)$, тобто дискретизація аналогового сигналу призводить до втрати інформації.

1.3 Дискретне перетворення Фур'є та його властивості

Між послідовностями, поданими у часовій і частотній областях є однозначна відповідність. Нехай x(nT) – періодична послідовність з періодом *NT*, тобто x(nT)=x(nT+mNT), де m – ціле число. Дискретним перетворенням Фур'є (ДПФ) називають пару перетворень:

$$X(k) = X(k\Omega) = \sum_{n=0}^{N-1} x(nT)e^{-jkn\Omega T}, k=0,1...N-1;$$
(1.19)

$$x(n) = x(nT) = \frac{1}{N} \sum_{k=0}^{N-1} X(k\Omega) e^{jkn\Omega T}, n = 0, 1 \dots N-1,$$
(1.20)

де $\Omega = 2\pi/(NT)$ – основна частота перетворення (бін ДПФ).

Причому (1.19) називається прямим ДПФ, а (1.20) – оберненим ДПФ. Використання повертального множника

$$e^{-j\Omega T} = e^{-j2\pi/N} = W_N, \qquad (1.21)$$

дає змогу записати ДПФ і ОДПФ у вигляді [2]

$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{kn}, \ k = 0, 1 \dots N-1;$$
(1.22)

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-kn}, n = 0, 1 \dots N-1.$$
(1.23)

Дискретне перетворення Фур'є X(k) так само, як і послідовність x(n) є періодичною функцією з аргументом k і з періодом N, тому що $W_N^{kn} = W_N^{(k+mN)n}$. ДПФ може бути використано і для подання послідовності x(nT) скінченної довжини N, визначеної при n=0,1,2...N-1 і рівною 0 поза інтервалом [0,N-1].

Приклад 1.3. Нехай задано послідовність

$$X(nT) = \begin{cases} c^{n}, 0 \le n \le N - 1\\ 0, n < 0, n \ge N \end{cases}$$

Знайдемо ДПФ цієї послідовності. Згідно з (1.22)

$$X(k) = \sum_{n=0}^{N-1} c^n W_N^{kn} = \sum_{n=0}^{N-1} (c e^{-j\frac{2\pi}{N}k})^n = \frac{1-c^N}{1-ce^{-j(2\pi/N)k}}.$$

Причому враховано, що $W_N^{kN} = e^{-j(2\pi/N)Nk} = e^{-2j\pi k} = 1.$

Відмітимо, що якщо порівняти спектр кінцевого дискретного сигналу, визначеного за формулою (1.9) (з урахуванням того, що x(nT)=0 при n<0 та n>N-1), та ДПФ цього ж сигналу (1.22), то очевидно, що ДПФ являє собою N відліків спектра, взятих з частотою дискретизації $\Omega=2\pi/NT$. Тому властивості ДПФ аналогічні властивостивостям спектрів. Розглянемо деякі з цих властивостей.

1. Лінійність. Нехай послідовності $x_1(nT)$ і $x_2(nT)$ мають довжину N; a_1 , a_2 , – постійні і $x_3(nT) = a_1x_1(nT) + a_2x_2(nT)$. Тоді ДПФ послідовностей можно записати $X_3(k) = a_1X_1(k) + a_2X_2(k)$, причому усі ДПФ $X_1(k), X_2(k), X_3(k)$ мають довжину N. Якщо $x_1(nT)$ має довжину N_1 , а $x_2(nT)$ – довжину N_2 , $N_1 \neq N_2$, то довжина N_3 лінійної комбінації $x_3(nT)$ дорівнює $N_3 = max(N_1, N_2)$ і ДПФ усіх послідовностей $x_1(nT)$, $x_2(nT)$, $x_3(nT)$ повинні розраховуватися при $N=N_3$. Якщо, наприклад, $N_1 > N_3$, то $X_1(k)$ розраховується в N_1 точках: $N_1 = 1$

$$X_1(k) = \sum_{n=0}^{1} x_1(n) W_{N_1}^{kn}$$
, послідовність $x_2(nT)$ доповнюється (N_1 - N_2) нулями, і

також розраховується в N_l точках: $X_2(k) = \sum_{n=0}^{N_1-1} x_2(n) W_{N_1}^{kn}, k = 0, 1, 2...N_1 - 1.$

2. Зсув послідовностей. Нехай x(nT) – періодична послідовність з періодом N – має ДПФ X(k) та y(nT)=x((n+m)T). Тоді ДПФ зсуненої послідовності

$$Y(k) = \sum_{n=0}^{N-1} y(n) W_N^{kn} = \sum_{n=0}^{N-1} x((n+m)T) W_N^{kn}.$$

Якщо в останній сумі виконати заміну змінних n+m=n', тоді

$$Y(k) = W_N^{-km} X(k).$$

3. Зсув послідовності ДПФ. Вибірки періодичної послідовності X(k+l) є коефіцієнтами ДПФ часової послідовності $W_N^{nl}x(nT)$. ДПФ-послідовності, як правило, комплексні функції, причому дійсні складові

ДПФ – парні функції (симетричні послідовності) ReX(k) = ReX(N-k), а уявні складові – непарні функції ImX(k) = -ImX(N-k). ДПФ симетричної послідовності x(nT) = x((N-n)T) є матеріальною функцією.

4. Згортка дискретних сигналів. Якщо $x_1(nT)$ та $x_2(nT)$ – періодичні послідовності з періодом *N*. Тоді

$$y(nT) = \sum_{m=0}^{N-1} x_1(mT) x_2(nT - mT) = \sum_{m=0}^{N-1} x_1(nT - mT) x_2(mT)$$
(1.24)

також є періодичною послідовністю з періодом в N відліків. Вираз (1.24) називається циклічною згорткою послідовностей $x_1(nT)$ та $x_2(nT)$, які відповідно дорівнюють $X_1(k)$ та $X_2(k)$:

$$Y(k) = \sum_{n=0}^{N-1} (\sum_{m=0}^{N-1} x_1(m) x_2(n-m)) W_N^{nk} =$$

= $\sum_{m=0}^{N-1} x_1(m) (\sum_{\substack{n=0\\X_2(k)}}^{N-1} x_2(n-m)) W_N^{(n-m)k} = X_2(k) \sum_{\substack{m=0\\X_1(k)}}^{N-1} X_1(m) W_N^{mk} =$
= $X_1(k) X_2(k).$ (1.25)

Відмітимо, що періодична послідовність $x_3(nT)$, дорівнює добутку періодичних послідовностей $x_1(nT)$ та $x_2(nT)$, кожна з періодом N відліків $x_3(nT) = x_1(nT) x_2(nT)$ має ДПФ

$$X_{3}(k) = \frac{1}{N} \sum_{l=0}^{N-1} X_{1}(l) X_{2}(k-l),$$

де $X_1(k)$ та $X_2(k)$ – відповідно ДПФ для $x_1(nT)$ та $x_2(nT)$.

Приклад 1.4. Нехай $x_1(nT)$ та $x_2(nT)$ – періодичні послідовності з періодом $N=3;x_1(n)=\{0,1,2\}, \quad x_2(nT)=\{1,-1,0\}.$ Циклічна згортка $y(nT) = \sum_{m=0}^{2} x_1(m)x_2(nT-mT)$ також має період N=3, тому її достатньо розрахувати для точок n=0,1,2:

$$Y(0) = x_1(0)x_2(0) = 0;$$

$$Y(t) = x_1(0)x_2(T) + x_1(T)x_2(0) = 0 + 1 = 1;$$

$$Y(2T) = x_1(0)x_2(2T) + x_1(T)x_2(T) + x_1(2T)x_2(0) = 1.$$

Таким чином, $y(nT) = \{0, 1, -1\}.$

Відповідно ДПФ дорівнюють:

$$X_{1}(k) = \sum_{n=0}^{2} x_{1}(n) e^{-j\frac{2\pi}{3}kn},$$

$$X_{2}(k) = \sum_{n=0}^{2} x_{2}(n) e^{-j\frac{2\pi}{3}kn},$$

$$Y(k) = X_{1}(k)X_{2}(k).$$

При *k*=0,1,2.

Циклічну згортку (1.24) можно розрахувати з використанням ДПФ за таким алгоритмом:

- розрахувати згідно з (1.22) ДПФ $X_1(k)$ та $X_2(k)$ для послідовностей $x_1(nT)$ та $x_2(nT)$;

- розрахувати ДПФ Y(k) для згортки y(nT);

- знайти *у*(*nT*) шляхом розрахунку згідно з (1.23) ОДПФ послідовності *Y*(*k*).

На практиці з метою зменшення об'єму розрахунків для реалізації вказаного алгоритму використовуються різні алгоритми швидкого перетворення Фур'є.

Приклад1.5. Розглянемо розрахунок лінійної згортки для дискретних сигналів, заданих у попередньому прикладі за допомогою наведенного вище алгоритму

1. Запишемо $x_1(nT)$ та $x_2(nT)$: $x_1(0)=1$, $x_1(T)=2$, $x_1(2T)=0$, $x_1(3T)=0$, $x_2(0)=-2$, $x_2(T)=1$, $x_2(2T)=2$, $x_2(3T)=0$.

2. Знайдемо X₁(k) та X₂(k):

$$X_1(0)=3, X_1(1)=1-2j, X_1(2)=-1, X_1(3)=1+2j,$$

 $X_2(0)=1, X_2(1)=-4-j, X_2(2)=1, X_2(3)=-4+j.$

3. Розрахуємо Y(k)=X₁(k)X₂(k):

$$Y(0)=3, Y(1)=-6+7j, Y(2)=1, Y(3)=6-7j.$$

4. Знайдемо y(nT):

$$y(0) = -2, y(T) = -3, y(2T) = 4, y(4T) = 4.$$

Даний результат збігається з результатами попереднього прикладу.

Безпосередній розрахунок згортки за формулою (1.24) потрібно виконувати в тому випадку, коли одна з величин N_1 або N_2 не перевищує 50...100. У тому випадку, коли N_1 та N_2 мають великі значення, більш ефективним за кількістю операцій є розглянутий вище алгоритм із застосуванням ДПФ та ОДПФ. Однак при $N_I >> N_2$ (наприклад, дискретний сигнал $x_I = (nT)$ – нескінченний мовний сигнал) розрахунок ДПФ $x_I(nT)$ призводить до великих затримок. Щоб застосувати ефективний алгоритм і в цьому випадку, довготривалий дискретний сигнал $x_I(nT)$ секціонують – розбивають на окремі ділянки; розраховують за допомогою ефективного алгоритму згортки для цих ділянок та будують результуючу згортку.

1.4 Особливості дискретних систем

В одновимірній дискретній системі зв'язок між вхідним і вихідним сигналами x(nT) та y(nT) задаються деяким спектром Φ :

$$Y(nT) = \Phi\{x(nT)\}.$$
(1.26)

Прикладом лінійних дискретних систем є лінійний дискретний фільтр, що описується лінійним різницевим рівнянням [3]

$$\sum_{m=0}^{M-1} a_m y(nT - mT) = \sum_{k=0}^{N-1} b_k x(nT - kT), \qquad (1.27)$$

де *n*=0,1,2,...,*a_m*,*b_k* – дійсні або комплексні коефіцієнти, які не залежать від вхідного та вихідного сигналів.

Якщо а₀=1, то (1.27) можна записати у вигляді [3]

$$y(nT) = -\sum_{m=1}^{M-1} a_m y(nT - mT) + \sum_{k=0}^{N-1} b_m x(nT - kT).$$
(1.28)

Якщо коефіцієнти залежать від змінної n, то (1.28) описує параметричний фільтр (фільтр зі змінними параметрами). Нижче розглядаються в основному фільтри з постійними коефіцієнтами, тобто коефіцієнти $a_m b_k$ в (1.28) не залежать від змінної n. Як видно з (1.28), значення вихідної послідовності y(nT) в момент nT визначається N значеннями вхідної послідовності в моменти nT, nT-T, nT-2T і т.д. та M-1 значеннями самої вихідної послідовності в минулі моменти nT-T, nT-2T і т.д.

Якщо відомі початкові умови: y(-T), y(-2T), ...,y(-(M-1)T), рівняння (1.28) дає можливість розраховувати всі значення y(nT), n=0,1,2,...

Фільтри, описані рівнянням (1.28), називаються рекурсивними.

Приклад 1.6. Фільтр описується різницевим рівнянням 1-го порядку

$$Y(nT) = ay(nT-T) + x(nT), \qquad (1.29)$$

де *a=const*.

Знайдемо розв'язок рівняння (1.29) — вихідну послідовність y(nT) при вхідній послідовності x(nT), яка є одиничним імпульсом:

$$x(nT) = \delta(nT) = \begin{cases} 1, n = 0\\ 0, n \neq 0 \end{cases}$$

Згідно з (1.29) отримуємо

При *a_m=0, m=1,2,...,* з (1.30) отримуємо

$$y(nT) = \sum_{k=0}^{N-1} b_m x(nT - kT) \quad . \tag{1.31}$$

Тобто, в такому випадку значення вихідної послідовності в момент часу *nT* визначається лише значеннями вхідної послідовності в цей же момент та *N-1* минулими значеннями вхідної послідовності. Фільтри, що описуються рівнянням (1.31), називаються нерекурсивними.

Приклад 1.7. Нерекурсивний фільтр описується рівнянням

$$\mathbf{y}(nT) = \mathbf{x}(nT) + b_1 \mathbf{x}(nT - T).$$

При

$$x(nT) = \begin{cases} 1, n = 0.1\\ 0, n > 1 \end{cases}$$

та b_1 =2. Розраховуємо у(nT)

$$y(0)=x(0)+2x(-T)=1,$$

 $y(T)=x(T)+2x(0)=3,$
 $y(2T)=x(2T)+2x(T)=2,$
 $y(nT)/_{n\geq 3}=0.$

Тобто, у(*nT*)={1,3,2}.

Алгоритми роботи рекурсивних і нерекурсивних фільтрів можуть бути подані у вигляді структурних схем, в яких використовуються для реалізації трьох операцій — підсумовування сигналів (умовне зображення на рис.1.7,а), перемноження сигналу на константу (рис. 1.7,б) та затримки сигналу на інтервал дискретизації T (рис. 1.7,в).

Приклад 1.8. На рис. 1.8. зображено структуру рекурсивного фільтра алгоритм якого заданий рівнянням (1.28). Побудову схеми зручно починати з елемента 1 (суматора), на виході якого формується сигнал y(nT). На входи елемента 1 подаються вхідний сигнал x(nT) та сигнал – ay(nT-T). Сигнал ay(nT-T) одержується шляхом затримки сигналу y(nT) на час T (елемент 2) та перемноження сформованого сигналу y(nT-T) (вихід елемента 2) на –a (елемент 3).

Рисунок 1.7 – Типові реалізації операцій при фільтруванні сигналів: а) підсумовування; б) множення; в) затримки

Слід відмітити, що іноді структурна схема фільтра може відповідати його апаратній реалізації, тобто реалізації фільтра на конкретних мікросхемах. Можна прийняти, що операція підсумовування виконується за допомогою суматора, множення – за допомогою помножувача, а для реалізації затримки потрібен один елемент пам'яті (регістр) Тоді для апаратної реалізації рекурсивного фільтра, структура якого показана на рис. 1.8, потрібно один суматор, один помножувач і один регістр.

У більшості випадків, структурна схема фільтра лише вказує, які операції та у якій послідовності повинні бути виконані для отримання вихідного сигнала, та не визначає апаратної реалізації фільтра. Значною мірою структурна схема відповідає програмній реалізації фільтра. Ступінь цієї відповідності залежить від особливостей конкретного комп'ютера.

Передатною функцією лінійної дискретної системи фільтра H(z) називають відношення

$$H(z) = Y(z)/X(z),$$
 (1.32)

де X(z) – Z-зображення послідовності x(nT) системи;

Y(*z*) – Z-зображення вихідної послідовності *y*(*nT*) системи при нульових початкових умовах.

Рисунок 1.8 – Структура рекурсивного фільтра

Приклад 1.9. Нехай $x(nT) = \{1, 0, 1, 2\}$ та $y(nT) = \{0, 1, 2, 1\}$. При цьому:

$$X(z) = \sum_{n=0}^{\infty} x(nT)z^{-n} = 1 + z^{-2} + 2z^{-3};$$

$$Y(z) = \sum_{n=0}^{\infty} y(nT)z^{-n} = z^{-1} + 2z^{-2} + 3z^{-3}.$$

Тобто, передатна характеристика відповідної системи (фільтра) буде

$$H(z) = (z^{-1} + 2z^{-1} + 3z^{-3})/(1 + z^{-2} + 2z^{-3}).$$

Передатна характеристика рекурсивного дискретного фільтра, запису ється в такому вигляді:

$$H(z) = \sum_{k=0}^{N-1} b_k z^{-k} / (1 + \sum_{m=1}^{M-1} a_m z^{-m}), \qquad (1.33)$$

де b_k , a_m – постійні коефіцієнти.

Співвідношення (1.33) отримується в результаті застосування Z-перетворення в лівій та правій частинах рівняння і визначення H(z) згідно з (1.32). Передатна характеристика нерекурсивного фільтра

$$H(z) = \sum_{k=0}^{N-1} b_k z^{-k} .$$
 (1.34)

Приклад 1.10. Знайдемо передатну функцію фільтра, що описується рівнянням (1.28). Нехай Y(z) та X(z) - Z-зображення вихідної y(nT) і вхідної x(nT) послідовностей. Тоді, застосувавши до (1.28) Z-перетворення при нульових початкових умовах, запишемо

$$Y(z) = az^{-1}Y(z) + X(z).$$

Звідки $H(z) = 1/(1 + az^{-1})$.

Слід відмітити, що передатна функція рекурсивного фільтра (1.33) може бути подана у вигляді:

$$H(z) = \sum_{m=0}^{\infty} c_m z^{-m},$$
 (1.35)

де c_m – постійні коефіцієнти.

Структурна схема дискретного фільтра може описуватись не тільки різницевим рівнянням, але й передатною функцією.

Приклад 1.11. Задано нерекурсивний фільтр, що описується $y(nT)=b_0x(nT)+b_1x(nT-T).$ Цей фільтр характеризується рівнянням передатною функцією $H(z) = b_0 + b_1 z^{-1}$, якій відповідає структурна схема, подана на рис.1.9,а. Разом зі структурою дискретна схема може бути подана в вигляді графа, тобто діаграми проходження сигналів, що складаються з направлених віток та вузлів. Вітка (*ik*) – вітка, яка виходить з вузла *i* у вузол *k*. З кожним *k*-м вузлом пов'язана величина сигналу $x_k(nT)$ (або його Z-зображення $X_k(z)$), яка визначається підсумовуванням усіх сигналів (або їх Z-зображень), які входять у даний вузол. У вітці відбуваються у відповідності з передатною функцією вітки $H_{ik}(z)$ перетворення сигналів, наприклад, затримка або перемноження сигналу на постійну.

Приклад 1.12. На рис. 1.9,6 наведено граф-схему фільтра. Для всіх вузлів графа можно записати співвідношення для сигналів або їх Z-зображень. Так, відповідно для вузлів 1, 2 та 3:

$$X_{1}(z) = X(z)$$

$$X_{2}(z) = z^{-1}X_{1}(z)$$

$$X_{3}(z) = Y(z) = b_{0}X_{1}(z) + b_{1}X_{2}(z)$$
(1.36)

Приклад 1.13. Рекурсивний фільтр має передатну функцію

$$H(z) = (1 + b_1 z^{-1})/(1 + a_1 z^{-1}), \qquad (1.37)$$

тобто, описується рівнянням

$$y(nT) = -a_1 y(nT-T) + x(nT) + b_1 x(nT-T).$$
 (1.38)

Безпосередньо рівнянню (1.38) або функції (1.37) можно поставити у відповідність структурну схему та граф фільтра, наведенні на рис. 1.9, в, г. Для вузлів графа можно записати співвідношення для послідовностей або їх Z-зображень:

$$X_{1}(z) = X(z) - a_{1}X_{4}(z)$$

$$X_{2}(z) = X_{1}(z)$$

$$X_{3}(z) = Y(z) = X_{2}(z) + b_{1}X_{4}(z)$$

$$X_{4}(z) = z^{-1}X_{2}(z)$$
(1.39)

Рисунок 1.9 – Структури та графи фільтрів: а,б - нерекурсивного; в,г - рекурсивного

Еквівалентними називають фільтри, в яких при нульових початкових умовах і однакових вхідних сигналах вихідні сигнали теж однакові.

Слід розглянути деякі типові схеми з'єднання фільтрів.

1. Послідовне з'єднання: вихідна послідовність попереднього фільтра є вхідною для наступного (рис. 1.10,а). При цьому еквівалентна передатна функція H(z) системи дорівнює добутку передатних функцій $H_1(z)$ та $H_2(z)$ окремих фільтрів:

$$H_3(z) = H_1(z)H_2(z). \tag{1.40}$$

2. Паралельне з'єднання: вхідна послідовність в усіх фільтрах однакова, а вихідна послідовність системи дорівнює сумі вихідних послідовностей окремих фільтрів (рис. 1.10,б) при цьому еквівалентна передатна функція дорівнює сумі передатних функцій окремих фільтрів:

$$H_3(z) = H_1(z) + H_2(z). \tag{1.41}$$

3. З'єднання з використанням зворотного зв'язку: вихідна послідовність одного фільтра подається на вхід другого (рис. 1.10,в), причому можливий від'ємний та додатний зворотний зв'язок. Тут еквівалентна передатна функція системи

$$H_e(z) = H_1(z) / [1 \pm H_1(z) H_2(z)], \qquad (1.42)$$

де знак "плюс, відповідає від'ємному звортному зв'язку, а знак "мінус" – додатному зворотному зв'язку.

Рисунок 1.10 – Схеми з'єднання фільтрів

Розглянемо деякі найбільш поширені структури рекурсивних фільтрів.

1. Пряма форма (рис. 1.11,а) структурної схеми рекурсивного фільтра реалізується безпосередньо за різницевим рівнянням [4]

$$y(nT) = -\sum_{m=1}^{M-1} a_m y(nT - mT) + \sum_{k=0}^{N-1} b_k x(nT - kT)$$
(1.43)

або за передатною функцією

$$H(z) = \sum_{k=0}^{N-1} b_k z^{-k} / (1 + \sum_{m=0}^{M-1} a_m z^{-m}).$$
(1.44)

Ця схема має один суматор, помножувачі та N+M-2 елементів затримки (для створення кіл, що відповідають чисельнику та знаменнику передатної функції, використовуються окремі елементи затримки).

Приклад 1.14. Біквадратний блок (ББ) – фільтр другого порядку, який описується рівнянням

$$y(nT) = -a_1 y(nT-T) - a_2 y(nT-2T) + b_0 x(nT) + b_1 x(nT-T) + b_2 x(nT-2T)$$
(1.45)

або відповідає передатній функції

$$H_{EE}(z) = (b_0 + b_1 z^{-1} + b_2 z^{-2})/(1 + a_1 z^{-1} + a_2 z^{-2}), \qquad (1.46)$$

де b_k, a_m – постійні, k, m = 0, 1, 2.

2. Пряма конічна форма. Конічною називають структуру фільтра, яка має мінімальне число елементів затримки. Передатну функція (1.44) рекурсивного фільтра можно подати так [4]

$$H(z) = Y(z)/X(z) = H_1(z)H_2(z),$$

де
$$H_1(z) = 1/(1 + \sum_{m=1}^{M-1} a_m z^{-m}) = V(z)/X(z);$$

 $H_2(z) = \sum_{k=0}^{N-1} b_k z^{-k} = Y(z)/V(z).$

Передатним функціям $H_1(z)$ та $H_2(z)$ відповідають різницеві рівняння

$$V(nT) = x(nT) - \sum_{m=1}^{M-1} a_m V(nT - mT); \quad y(nT) = \sum_{k=0}^{N-1} b_k V(nT - kT).$$

У фільтрах, що реалізують функції $H_1(z)$ та $H_2(z)$, має місце тільки затримка сигналу V(nT), тому можно використовувати тільки один набір елементів затримки.

Рисунок 1.11 – Структури рекурсивних фільтрів

Пряма конічна форма структурної схеми рекурсивного фільтра, описується рівнянням (1.43) або відповідно передатною функцією (1.44), наведена на рис. 1.11,6. Вона має мінімальне число L елементів затримки: L=max(N-1,M-1) та два суматори (в схемі рис.1.11,6 передбачається, що N=M).

3. Каскадна (послідовна) форма структури (рис. 1.11,в) – одна з найпоширеніших структурних схем – відповідає поданню передатної функції (1.46) у вигляді добутку

$$H(z) = \prod_{l=1}^{L} H_l(z), \qquad (1.47)$$

де $H_{I}(z)$ – передатна функція ББ:

$$H_{l}(z) = (b_{0l} + b_{1l}z^{-1} + b_{2l}z^{-2})/(1 + a_{1l}z^{-1} + a_{2l}z^{-2}).$$
(1.48)

Слід відмітити, що при послідовному з'єднанні біквадратних блоків, які реалізовано у прямій формі може виявитись, що елементи затримки в колі зворотного зв'язку попереднього блоку дублюють елементи затримки у прямій вітці наступного блоку і тому при каскадній реалізації L-ланкового фільтра на ББ у прямій формі можуть бути з схеми виключені надлишкові 2(L-1) елементи затримки.

4. Паралельна форма (рис 1.11,г) структури відповідає поданню передатної функції (1.46) у вигляді суми

$$H(z) = \sum_{l} H_l(z), \qquad (1.49)$$

де складові $H_l(z) = (b_{0l} + b_{1l}z^{-1})/(1 + a_{1l}z^{-1} + a_{2l}z^{-2})$ можуть бути реалізовані у вигляді спрощених структур біквадратних блоків.

Розглянемо деякі найбільш поширені структури нерекурсивних фільтрів.

1. Пряма форма є безпосередньою реалізацією передатної функції нерекурсивного фільтра [3]

$$H(z) = \sum_{k=0}^{N-1} b_k z^{-k}$$
(1.50)

або відповідного різницевого рівняння фільтра

$$y(nT) = \sum_{k=0}^{N-1} b_k x(nT - kT).$$
(1.51)

Пряма форма (рис.1.12) має *N*-1 елементів затримки, *N* помножувачів та суматор на *N* входів. Цю форму називають також трансверсальним фільтром або фільтром з багатовідводною лінією затримки.

Рисунок 1.12 – Структура нерекурсивного фільтра

2. Каскадна (послідовна) форма структурної схеми нерекурсивного фільтра відповідає поданню передатної функції (1.49) у вигляді добутку (1.47), де $H_l(z) = (b_{0l} + b_{1l}z^{-1} + b_{2l}z^{-1})$ або $H_l(z) = (b_{0l} + b_{1l}z^{-1})$ реалізується за допомогою спрощеної структури біквадратного блоку.

Контрольні запитання

1. Чим відрізняється відеоімпульс від радіоімпульсу?

2. Чому заміна аналогового сигналу дискретним при деяких умовах може бути неадекватною?

3. Як виникає від'ємна частота при дискретному перетворенні сигналів?

4. Чому простий синусоїдальний сигнал відіграє особливу роль при аналізі телекомунікаційних системах?

5. Пояснити фізичний зміст дискретного перетворення Фур'є.

6. Чим відрізняються рекурсивні фільтри від нерекурсивних?

7. Навести основні властивості дискретного перетворення Фур'є.

8. Особливості канонічної структури фільтра.

9. Які основні операції виконуються при фільтруванні сигналів?

10. Навести основні типи цифрових мікросхем за допомогою яких можна реалізувати рекурсивний фільтр.

11. Чому неможливо синтезувати цифровий фільтр, частотна характеристика якого точно відповідала б частотній характеристиці аналогового фільтра-прототипа?

12. В чому полягає основний недолік нерекурсивних фільтрів?

Задачі

1. Сигнал, дискретизований у відповідності з теоремою Котельникова, має два ненульових відліки: в точці $t_1 = 0$, U = 100 мB, а в точці $t_2 = 1 \text{ мc}$, U = 10 мB. Обчислити значення вхідного аналогового сигналу в точці t = 500 мкc.

2. Дискретний сигнал задано чотирма рівновіддаленими відліками: 1; 0; -1; 0. Визначити коефіцієнти ДПФ для цього сигналу.

3. Знайти формулу, що описує неперервний сигнал x(t), відновлений за коефіцієнтами ДПФ у відповідності з даними задачі 2.

4. Імпульсна характеристика цифрового фільтра задана трьома відліками: 1; 0,5; 0,25. Знайти частотну характеристику даного фільтра.

5. Зобразити структуру цифрового фільтра, що функціонує у відповідності з алгоритмом y(nt) = 1,75x(nT) - 0,55x(nT-T) + 0,25x(nT-2T). Знайти частотний коефіцієнт передачі.

2 АНАЛОГО-ЦИФРОВІ ТА ЦИФРОАНАЛОГОВІ ПЕРЕТВОРЮВАЧІ

2.1 Пристрої вибирання та зберігання

Пристрої вибирання та зберігання (ПВЗ) використовуються для фіксування миттєвих значень аналогових сигналів, що швидко змінюються, на час, необхідний для наступного перетворення цих значень за допомогою аналого-цифрового перетворювача (АЦП) у цифровий код. Використання таких пристроїв дозволяє знизити динамічну похибки перетворення, що викликана кінцевим часом спрацьовування АЦП. Основною вимогою, що висувається до ПВЗ є висока точність записування та збереження аналогового сигналу і малий час вибирання.

На практиці широко застосовуються схеми, що основані на принципі зберігання заряду на конденсаторі (рис 2.1). В режимі вибирання ключ Kзамкнений, напруга на конденсаторі C майже повністю повторює вхідну напругу (різниця напруг визначається сталою часу кола заряду конденсатора). Коли ключ розімкнений (режим запам'ятовування), напруга на конденсаторі буде незначно змінюватись тільки під дією струмів втрат і опору навантаження R_n . Таким чином, напруга на виході схеми в інтервалі між двома вибірками дорівнює миттєвому значенню вхідного сигналу в момент закінчення вибірки з точністю до похибок фіксації та збереження.

Рисунок 2.1 – Структура пристрою вибирання та зберігання

На рис. 2.2, *а* наведена проста схема ПВЗ напруги, яка складається з ключа на МОН-транзисторі, зарядного конденсатора *C* і повторювача напруги на операційному підсилювачі. При подачі імпульсу вибирання від'ємної полярності ключ повністю відкривається і конденсатор заряджається під дією вхідної напруги (рис 2.2, δ). Приймаючи в інтервалі вибірки вхідну напругу постійною і такою, що дорівнює U_{ex} , отримаємо [5]

$$u_C = U_{ex} - [U_{ex} - u_C(0)]e^{-(R_{\partial \mathcal{H}} + R_{np})C}$$

Напруга *u*_C в момент закінчення дії імпульсу вибирання буде відрізнятися від напруги *U*_{ex} на значення [5]

$$\Delta u_1 = \left[U_{ex} - u_C(0) \right] e^{-\frac{t}{\left(R_{\partial \mathcal{H}} + R_{np} \right)C}},$$

де $u_{C}(0)$ – початкова напруга на конденсаторі;

 $R_{\partial \mathcal{H}}$ – вихідний опір джерела вхідної напруги;

 R_{np} – опір провідного ключа;

*t*_{*e*} – тривалість імпульсу вибирання.

Значення Δu_1 називають похибкою недозарядження конденсатора. Для інших видів вхідного сигналу похибка Δu_1 має інші функціональні залежності. За заданим значенням похибки Δu_1 і часу вибірки t_6 можна визначити максимально допустиме значення ємностей *С*. Для зменшення опору зарядного кола необхідно використовувати ключі з невеликими прямими опорами і вихідні буферні каскади з малими вихідними опорами.

Рисунок 2.2 – Найпростіша схема ПВЗ а – функціональна схема; б – часова діаграма процесів у схемі

Після завершення дії імпульсу вибирання конденсатор С почне розряджатись струмами втрат МОН-транзистора і конденсатора, а також

вхідним струмом операційного підсилювача. Швидкість зміни напруги на конденсаторі $du_C/dt = I_{sm}/C$, де I_{sm} – сумарний струм втрат, що протікає через конденсатор. Напруга на ємності в стадії запам'ятовування зміниться на $\Delta u_2 \approx I_{sm} t_{san}/C$, де t_{san} – тривалість стадії запам'ятовування. Для забезпечення тривалого часу запам'ятовування при заданих значеннях похибки Δu_2 і ємності C необхідно використовувати елементи схеми з малими втратами. Цій вимозі найбільш повно відповідають металоплівкові конденсатори з діелектриком з полістиролу та фторопласту і ключі на уніполярних транзисторах з ізольованим заслоном. Вхідні струми сучасних операційних підсилювачів з польовими транзисторами на вході складають одиниці нА. Похибка напруги на ємності C створюється також внаслідок проходження імпульсу вибирання через паразитні ємності ключа при переході з режиму вибирання в режим запам'ятовування. Значення похибки залежить від відношення прохідної ємності ключа та ємності зарядного конденсатора.

2.2 Цифроаналогові перетворювачі

Розгляд принципів побудови пристроїв цифроаналогового перетворення (ЦАП) сигналів розпочнемо з перетворювачів код-напруга (ПКН), тому що вони є основою для побудови більш складних пристроїв зворотного перетворення напруга-код. При цьому розглянемо лише перетворювачі паралельного двійкового коду в напругу, які широко розповсюджені на практиці.

Суть перетворення, що розглядається, полягає у синтезуванні напруги *U* на виході ПНК, що пропорційна вхідному двійковому числу *N*. Використовуючи відому форму подання двійкових чисел

$$N = a_0 2^0 + a_1 2^1 + \ldots + a_{n-1} 2^{n-1} = \sum_{i=0}^{n-1} a_i 2^i , \qquad (2.1)$$

запишемо операцію, що виконується в ПНК, у вигляді [5]

$$U(N) = \frac{U_{\max}}{N_{\max}} N = U_{\max} \sum_{i=0}^{n-1} \frac{2^i}{2^n - 1} a_i = \sum_{i=0}^{n-1} u_i a_i , \qquad (2.2)$$

де відношення максимальної вихідної напруги U_{max} до максимального вхідного числа $N_{max} = 2^n - 1$ виконує роль масштабного коефіцієнта, що визначається як напруга, яка відповідає одиниці вхідного числа (тобто $U(1) = U_{max}/N_{max}$).

З виразу (2.2) випливає, що операція перетворення код-напруга зводиться до підсумовування елементарних напруг

$$u_{i} = \frac{U_{\max}2^{i}}{2^{n}-1} \approx \frac{U_{\max}}{2_{n-i}} = U_{\max}K_{i}, \qquad (2.3)$$

які утворюються шляхом ділення деякої еталонної напруги U_{max} за допомогою резистивних подільників з коефіцієнтом передавання $K_i 1/2^{n-i}$. При цьому з операції підсумовування виключаються ті складові u_i , які відповідають нульовим значенням елементів a_i , що складають вхідне двійкове число $\{a_{n-1}a_{n-2}...a_1a_0\}$.

принципу перетворення на Для реалізації цього практиці використовуються дві різновидності схем, які подані на рис. 2.3. Першу а) називають ПКН двійково-зрівноваженими схему (рис. 2.3, 3 резистивними ланками (або схемою з підсумовуванням напруги), а іншу (рис. 2.3, б) – ПКН з багатоланковою резистивною матрицею типу R-2R. В обох схемах при появі одиниці в і-му розряді двійкового числа еталонна напруга U_{max} проходить через відповідний замкнутий ключ і резистивне коло на вихід. Різниця цих двох схем полягає в тому, як формується коефіцієнт ділення еталонної напруги необхідний за допомогою резистивної матриці.

У першій схемі (рис. 2.3, *a*) при $a_i = 1$ коефіцієнт передавання напруги $K_i = u_1/U_{\text{max}}$ визначається відношенням провідності $y_i = 1/R_i$ до сумарної провідності всього кола $y_{\Sigma} = \sum_{i=0}^{n-1} y_i$. Значення опорів R_i в цій схемі задаються таким чином: $R_{n-1} = R$, $R_{n-2} = 2R$, ..., $R_i = 2^{n-i-1}R$, ..., $R_0 = 2^{n-1}R$.

Тоді

$$y_{\Sigma} = \frac{1}{R} \sum_{i=0}^{n-1} 2^{-(n-i-1)} \approx \frac{2}{R} \text{ (так як } 2^n >>1)$$
(2.4)

і, відповідно, $K_i = u_i / U_{\text{max}} = y_i / y_{\Sigma} = 1/2^{n-i}$. Це означає, що задана сукупність опорів в схемі на рис. 2.3, *а* задовольняє відношення (2.3), яке визначає правило формування коефіцієнтів передавання еталонної напруги на вихід ПКН.

У другій схемі ПКН (рис. 2.3, δ) необхідний коефіцієнт передавання еталонної напруги утворюється за допомогою багатоланкового подільника напруги. Еквівалентні схеми такого подільника, утворені послідовним перетворенням з використанням відомої теореми про еквівалентний генератор, показані на рис. 2.4 для випадку $a_i = 1$, $a_{j\neq i} = 0$ (перші кроки перетворення пояснюються штриховими лініями на рис 2.4, a). З цих схем видно, що коефіцієнт передачі напруги від будь-якої ланки до наступної дорівнює ¹/₂, за винятком останньої ланки (рис. 2.4, *в*), де коефіцієнт дорівнює 1/3. Тоді результуючий коефіцієнт передавання від *i*-ї ланки на вихід ПКН [5]

Рисунок 2.3 – Схеми ПКН з двійково-зрівноваженими резистивними колами (а) і багатоланковим резистивним колом типу *R*-2*R* (б)

Таким чином, схема рис 2.3, δ також забезпечує необхідне правило формування коефіцієнтів, які визначаються співвідношенням (2.5). Така схема має коефіцієнт використання еталонної напруги, що дорівнює 2/3, на відміну від схеми рис. 2.3, a, в якій цей коефіцієнт дорівнює 1. Це випливає з того, що максимальне значення вихідної напруги ПКН, яке відповідає максимальному вхідному числу N_{max} (коли $a_i = 1$ для всіх i = [0, n-1]), визначається як

$$U(N_{\max}) = \sum_{i=0}^{n-1} u_i = \sum_{i=0}^{n-1} K_i$$
(2.6)

і для першої схеми (рис 2.3, а) дорівнює U_{max} , а для другої (рис. 2.3, б) – $U_{\text{max}} 2/3$.

Рисунок 2.4 – Еквіваленті схеми ПКН, а – вихідна схема при $a_i = 1$, $a_{j \neq i} = 0$;

б – результат заміни (*i*+*1*) ланок еквівалентним генератором; в – результат послідовної заміни всіх ланок, крім останньої

Однак, незважаючи на цей недолік і на більшу кількість елементів схеми, перевагою схеми ПКН з резистивною матрицею типу $R-2R \ \epsilon$ те, що для виконання такої схеми необхідно лише два номінальних значення опорів (на відміну від схеми рис. 2.3, a, яка потребує n значень опорів). Це суттєво спрощує практичну реалізацію таких схем, особливо при великій розрядності ПКН, коли висуваються високі вимоги до точності підбирання опорів. Тому схеми ПКН на базі резистивних матриць типу R-2R широко використовуються на практиці в телекомунікаційних засобах, причому такі резистивні матриці виконуються у вигляді інтегральних мікросхем.

Однією з важливих задач, пов'язаних з розробкою та використанням ЦАП у телекомунікаційних системах, є забезпечення необхідної швидкості перетворення або швидкодії схеми. Це важливо тоді, коли ЦАП є елементом більш складніших пристроїв, наприклад перетворювачів напруги в код, характеристики яких значною мірою залежать від характеристик ЦАП, що використовуються в них.

Рисунок 2.5 – Схеми ПКН на основі підсумовування струмів

У розглянутих схемах ПКН (див. рис. 2.3) час виконання операції перетворення визначається швидкодією ключових схем і перехідними процесами в резистивних матрицях, що обумовлені наявністю паразитних ємностей. Другий чинник для цих схем є основним, тому що значення опорів, зазвичай, вибирають досить великими, щоб знехтувати похибками, які вносяться кінцевим опором електронних перемикачів. Слід відзначити, що схема на рис. 2.3, δ має більш низьку швидкодію, ніж схема рис 2.3, a, тому що містить більше паразитних ємностей і в ній використовується багатоланковий принцип передавання напруги. Цей недолік схеми з резистивною ланкою типу *R-2R* разом з іншими відзначеними недоліками (більша кількість елементів і менший коефіцієнт використання напруги) є причиною того, що схемі з двійково-зрівноваженою резистивною ланкою нерідко надають перевагу.

Для забезпечення більш високої швидкості перетворення на практиці використовуються схеми ПКН на основі підсумовування струмів. На рис. 2.5 наведені дві такі схеми, які відрізняються від розглянутих розміщенням ключових елементів і наявністю операційного підсилювача з від'ємним зворотним зв'язком. Завдяки більшим значенням коефіцієнта підсилення та вхідного опору операційного підсилювача можна вважати, що напруга на його вході і струм у вхідному колі близькі до нуля. З цього випливає, що всі струми i_k (k = [0, n-1]), які протікають через елементи резистивної матриці, зрівноважуються струмом I_{33} , що протікає в колі зворотного зв'язку, і вихідна напруга ПКН дорівнює

$$U(N) = R_{33}I_{33} = R_{33}\sum_{k=0}^{n-1} a_k i_k , \qquad (2.7)$$

тобто операційний підсилювач виконує операцію підсумовування струмів, які визначаються значеннями опорів в тих розрядах ПКН, де $a_k = 1$.

В першій схемі (рис 2.5, *a*) опори вибирають згідно з правилом $R_k = R_{n-1} 2^{n-k-1}$. При цьому [5]

$$U(N) = R_{33} \sum_{k=0}^{n-1} a_k \frac{U_{\max}}{R_k} = \frac{2R_{33}}{R_{n-1}} U_{\max} \sum_{k=0}^{n-1} a_k \frac{1}{2^{n-k}}$$
(2.8)

тобто операція, що виконується цією схемою, є перетворення двійкового коду в напругу, що описана раніше за допомогою виразів (2.2), (2.3).

В другій схемі (рис. 2.5, б) струм i_k , що протікає через k-й замкнутий ключ при $a_k = 1$ і $a_{j\neq k} = 0$, можна визначити за допомогою еквівалентних схем, що зображені на рис. 2.6, де перехід від рис. 2.6, *a* до рис. 2.6, б виконаний шляхом заміни всіх ланок зліва від штрихової лінії еквівалентним генератором з напругою u_{k+1} і внутрішнім опором R_{k+1} . За схемою на рис. 2.6 можна скласти рекурентні співвідношення
$$u_k = u_{k+1} \frac{2R}{R_{k+1} + 3R}, \ R_k = \frac{2R(R_{k+1} + R)}{R_{k+1} + 3R}$$

з яких випливає, що

$$i_k = \frac{u_k}{R_k + 2R} = \frac{u_{k+1}}{2R_{k+1} + 4R} = \frac{1}{2}i_{k+1}.$$

Це означає, що струми двох сусідніх розрядів ПКН відрізняються в два рази, причому в самому старшому розряді, як видно з рис. 2.6, струм $i_{n-1} = U_{\text{max}}/2R$. Таким чином, для цієї схеми отримуємо співвідношення $i_k = i_{n-1} \left(\frac{1}{2}\right)^{n-k-1} = \frac{U_{\text{max}}}{R} \frac{1}{2^{n-k}}$, підстановка якого в (2.7) дає той самий результат (2.8), що і при аналізі попередньої схеми (тут необхідно врахувати, що $R_{n-1} = 2R$). Корисно зауважити, що в схемах рис. 2.5 за допомогою опору R_{33} можна змінювати масштаб перетворення, тобто коефіцієнт $K_{nep} = U(N_{\text{max}})/U_{\text{max}} = 2R_{33}/R_{n-1}$. В окремому випадку, при $R_{33} = R = R_{n-1}/2$ отримуємо $K_{nep} = 1$.

Рисунок 2.6 – Еквівалентні схеми ПКН, а – вихідна схема при $a_k = 1, a_{j\neq k} = 0;$

б – результат заміни частини вихідної схеми еквівалентним генератором

Перевагою схем ПКН, які використовують принцип підсумовування струмів (в порівнянні зі схемами на рис. 2.3), є їх більш висока швидкодія. Це пояснюється тим, що в цих схемах струми, що проходять через резистори, практично не змінюються при зміні стану ключів, тому що вхідні напруги і струм операційного підсилювача близькі до нуля. В цих схемах час перетворення визначається швидкодією ключових елементів і частотними властивостями операційного підсилювача. Однак такі ПКН відрізняються більш складною схемою електронних перемикачів, тому що тут необхідно здійснювати комутацію слабких електричних сигналів у вхідному колі операційного підсилювача, яке ізольоване від землі та джерела живлення. Тому на практиці подібні схеми використовуються лише в тих випадках, коли задані високі вимоги до швидкості перетворення не можуть бути задоволені за допомогою більш простих пристроїв.

2.3 Аналого-цифрові перетворювачі

Пристрої, що називаються перетворювачами напруга-код (ПНК) або аналого-цифровими перетворювачами (АЦП), відрізняються більшою різноманітністю варіантів виконання, в основі яких лежать три відомих принципа перетворення, що визначають алгоритм функціонування і структуру відповідних пристроїв: 1) послідовного наближення; 2) порозрядного кодування і 3) зчитування. Згідно з цією класифікацією розглянемо три основні різновиди схем АЦП.

Принцип послідовного наближення реалізується за допомогою схеми, що зображена на рис. 2.7. Він полягає в порівнянні вихідної напруги U_{ex} з послідовно наростаючою еталонною напругою $U_e(t)$, що є сумою "квантів" Δ_U , які визначають похибку перетворення. Ступінчаста напруга $U_e(t)$ формується за допомогою ПКН і двійкового лічильника CT, який послідовно змінює свій стан, починаючи від моменту заповнення нулями t_n , що відповідає початку операції перетворення. В момент збігання еталонної напруги $U_e(t_k) = N\Delta_U$ з вхідною напругою U_{ex} (з точністю до "кванта" Δ_U) схема порівняння виробляє імпульс, який зупиняє лічильник шляхом подачі сигналу заборони з тригера T на схему збігання, що пропускає до лічильника імпульси тактового генератора G. Цей момент часу (позначений на рис. 2.7 t_n) відповідає завершенню операції перетворення.

Похибка перетворення в такій схемі визначається значенням Δ_U , яке в свою чергу, залежить від точності ЦАП і чутливості схеми порівняння. Діапазон перетворення визначається розрядністю лічильника і ПКН,

оскільки максимально допустиме значення вхідної напруги $U_{\text{max}} = \Delta_U (2^n - 1) \approx \Delta_U 2^n$.

Рисунок 2.7 – Схема АЦП на основі послідовного наближення(а); часові діаграми АЦП (б)

Основним недоліком ЦАП, які використовують принцип послідовного наближення є порівняно великий час перетворення, що залежить від вхідної напруги та швидкодії лічильника і ПКН. В граничному випадку, коли вхідна напруга максимальна, тобто $U_{ex} = \Delta_U 2^n$, а час перемикання лічильника Δ_t , повний час перетворення T_{nep} , який характеризує швидкодію АЦП, визначається як $T_{nep} = \Delta_t 2^n$.

Вказаний недолік значною мірою компенсується тим, що подібні схеми є найбільш простими з усіх можливих різновидностей АЦП. Тому такі ПНК широко застосовуються на практиці, коли вимоги швидкодії не є визначальними, особливо в багатоканальних АЦП.

Варіантом схеми АЦП на основі послідовного наближення є також відома схема з проміжним перетворення напруги у часовий інтервал і наступним перетворенням цього інтервалу в код. Ця схема відрізняється від схеми на рис. 2.7 тим, що в ній замість ЦАП використовується аналоговий генератор лінійно змінюваної напруги (ГЛЗН), який запускається в момент початку перетворення t_{μ} . Робота цієї схеми повністю аналогічна роботі схеми на рис. 2.7 і не потребує додаткових пояснень. Її суттєва особливість полягає в тому, що роль еталонної напруги в ній відіграє вихідна напруга ГЛЗН. В зв'язку з цим до вихідної напруги ГЛЗН висуваються високі вимоги лінійності та стабільності. Тому сфера використання таких схем обмежена.

Рисунок 2.8 – Структурна схема АЦП на основі принципу порозрядного кодування (а) і граф переходів (б)

Принцип порозрядного кодування полягає у формуванні цифровим способом еталонної напруги U_e шляхом послідовного наближення її до

вхідної напруги U_{вх}. Цей принцип пояснюється структурною схемою (рис. 2.8, а) і графом переходів (рис. 2.8, б), який відображає алгоритм керування станом регістра пам'яті (РП), необхідний для реалізації методу послідовного наближення еталонної напруги, що знімається з виходу ПКН. Вузли графа на рис. 2.8, б характеризують стан регістра РП, тобто двійкове число, що міститься в ньому, в кожний момент порівняння напруг U, і U_{sx}. Напрямок переходу задається пристроєм керування (ПК) в залежності від вихідного сигналу пристрою порівняння (ПП). В початковий момент часу t_n (момент запуску схеми) регістр встановлюється в стан 10-0, при якому значення U_e визначається вагою старшого розряду вихідного двійкового числа N. Потім здійснюється n тактів послідовного наближення напруги U_{e} до значення вхідної напруги U_{ex} . На кожному такті можливо два завершення, дві керувальні дії, що змінюють стан регістра (див. позначення на вітках графа): 1) якщо $U_e < U_{ex}$, то виконується установлення чергового молодшого розряду в 1 при збереженні стану всіх попередніх старших розрядів; 2) якщо $U_e > U_{ex}$, то встановлення молодшого розряду в 1 супроводжується скиданням попереднього старшого розряду в 0 у результаті, після завершення *n* тактів керування (де n – число розрядів регістра) еталонна напруга U_e буде наближена до U_{ex} з точністю до вкладу самого молодшого розряду, тобто

$$U_{e} = \sum_{i=0}^{n-1} a_{i} u_{ei} \approx U_{ex}, \qquad (2.9)$$

де $u_{ei} = U_{\max} / 2^{n-i}$ – вклад *i*-го розряду в напругу U_e на виході ПКН, причому U_{\max} характеризує максимальну перетворювану напругу;

 $u_{e0} = U_{max}/2^n$ — похибка перетворення (тобто вклад молодшого розряду).

Перевагою розглянутого принципу перетворення в порівнянні з принципом послідовного наближення є значно менший час перетворення, який в даному випадку визначається як

$$T_{nep} = n\Delta_t, \qquad (2.10)$$

де Δ_t – тривалість одного такту керування, що задається генератором тактових імпульсів і співмірна із швидкодією елементної бази. Однак це досягається завдяки суттєвому ускладненню АЦП (в порівнянні зі схемою на рис. 2.7), яке лежить в пристрої керування.

Типова функціональна схема пристрою керування в АЦП з порозрядним кодуванням подана на рис. 2.9. В цій схемі послідовне встановлення розрядів основного регістра пам'яті в одиничний стан здійснюється за допомогою керувального регістра зсуву, на вхід якого записується 1 в момент початку перетворення t_n (в це й же момент відбувається встановлення в 1 старшого розряду основного регістра всіх інших його розрядів). На кожному такті перетворення (що задається генератором G) сигнал з виходу схеми порівняння, який виробляється у випадку перевищення еталонною напругою вхідної (тобто при $U_e > U_{gr}$), проходить тільки через ту схему збігання, на другий вхід якої подається сигнал дозволу з одного з розрядів регістра зсуву. При цьому відбувається скидання відповідного регістра в нульовий стан. Потім відбувається зсув сигналу дозволу на вхід наступного (молодшого) розряду, який в момент перемикання цього сигналу (тобто в момент зсуву) встановлюється в 1. Якщо на даному такті керування не виконується умова $U_{e} > U_{ex}$, то сигнал скидання не виробляється схемою порівняння і відповідний розряд регістра залишається в одиничному стані. Протягом *п* тактів відбувається послідовне встановлення в 1 або в 0 всіх розрядів регістра у відповідності з графом переходів на рис 2.8, б. Операція перетворення закінчується в момент переходу одиничного сигналу керування в останній розряд регістра зсуву, оскільки при цьому за допомогою тригера Т виробляється сигнал заборони на схему збігання, яка пропускає тактові імпульси на вхід регістра зсуву. Двійкове число N, пропорційне вхідній напрузі U_{вх}, знімається у вигляді паралельного коду $\{a_{n,1}a_{n,2}...a_{n,n}a_{n,n}\}$ з вихідного регістра після закінчення перетворення.

Рисунок 2.9 – Функціональна схема АЦП з порозрядним кодуванням

Таким чином, у розглянутій схемі АЦП з порозрядним кодуванням скорочення часу перетворення досягається ускладненням схеми керування процедурою послідовної зміни в часі еталонної напруги, яка формується цифровим способом. Підвищити швидкість перетворення в ПНК можна також, використовуючи паралельний набір можливих значень еталонної напруги замість їх послідовного чергування, характерного для обох розглянутих вище принципів перетворення. Це призводить до так званого паралельного принципу перетворення, названого також принципом зчитування.

Рисунок 2.10 – Функціональна схема паралельного АЦП

За принципом зчитування схема АЦП, наведена на рис. 2.10, містить *m* резистивних подільників еталонної напруги і стільки ж схем порівняння. Число *m* визначається кількістю дискретних значень перетворюваної напруги в повному діапазоні перетворення, тобто якщо максимальне значення напруги U_e , а допустима похибка перетворення Δ_U , то

$$m = U_e / \Delta_U - 1. \tag{2.11}$$

Напруги еталонних деталей задовольняють співвідношення [6]

$$U_{ei} = U_e i / (m+1) = \Delta_U i.$$
 (2.12)

Для всіх i = [1, m]. Звідси випливає, що якщо напруга U_{ex} перевищує значення U_{ei} , то відбувається спрацювання тих схем порівняння, на які подаються еталонні напруги $U_{ei}, U_{e,i-1}, ..., U_{e1}$, оскільки завжди $U_{ei} > U_{e,i-1} > ... > U_{e1}$. Вихідні сигнали схем порівняння встановлюють в одиничне положення елементи *m*-розрядного запам'ятовувального регістра *RG* (попередньо всі елементи регістра встановлюються в "0" в момент

початку перетворення t_n). Таким чином, в регістрі *RG* утворюється число, пропорційне U_{ex} у вигляді одиничного позиційного коду. При необхідності виконується операція перетворення цього коду в паралельний двійковий код (для цього на рис. 2.10 включений кодовий перетворювач, що здійснює перетворення m-розрядного одиничного коду в *n*-розрядний двійковий код при умові $m = 2^n - 1$.

Зрозуміло, що розглянутий паралельний перетворювач має теоретично граничну швидкодію, тому що вхідна напруга за один крок перетворення порівнюється з повним набором еталонних дискретних значень на всьому інтервалі вимірювання перетворюваної напруги. Тривалість такої операції перетворення визначається часом спрацювання пристроїв порівняння та швидкодією цифрових елементів, що складають запам'ятовувальний регістр і кодовий перетворювач.

Однак ця перевага паралельних АЦП досягається ціною великих апаратурних затрат, тому що кількість прецизійних подільників напруги схем порівняння в таких ПНК зростає пропорційно 2^n , якщо n – число двійкових розрядів перетворювача. Тому на практиці паралельний принцип перетворення застосовується тільки для побудови швидкодіючих ПНК малої розрядності.

Багаторозрядні АЦП з високою швидкодією будуються частіше всього за послідовно-паралельним принципом, основаним на так званому узагальненому методі зчитування. Цей принцип пояснюється рис. 2.11 на прикладі двоетапного послідовно-паралельного АЦП. Перший етап перетворення виконується паралельним ПНК1, який має n_1 двійкових розрядів. Через відому похибку дискретизації ПНК1 після першого етапу перетворення утворюється залишкова напруга

$$\varepsilon_{U_1} = U_{ex} - U_{n1}, \qquad (2.13)$$

де U_{n1} – результат зворотного перетворення n₁-розрядного числа в напругу (на рис. 2.11 ця операція виконується за допомогою ПКН1). перевищує величини дискрета перетворення Залишок \mathcal{E}_{U_1} не $\Delta_{U_1} = U_e / 2^{n_1}$. Цей залишок підсилюється в $K = 2^{n_1}$ раз і подається на другий паралельний перетворювач (ПНК2), який має n₂ двійкових розрядів. Завдяки ПНК2 виконується другий етап перетворення, результатом якого є двійкове число, що є молодшими розрядами вихідного числа N, в якому старші розряди утворюються в результаті першого етапу перетворення. Похибка перетворення після другого етапу не перевищує значення

$$\Delta_U = \Delta_{U_1} / 2^{n_1} = U_e / 2^{n_1 + n_2} . \tag{2.14}$$

Рисунок 2.11 – Структурна схема двохетапного послідовнопаралельного АЦП

Аналогічно проводиться подальше нарощування етапів послідовнопаралельного перетворення. У випадку *r* етапів перетворення повна розрядність послідовно-паралельного перетворення АЦП

$$n = \sum_{i=1}^{r} n_i . (2.15)$$

Об'єм апаратурних затрат пропорційний $\sum_{i=1}^{r} 2^{n_i}$ (замість $2_n = 2^{\sum_{i=1}^{r} n_i} = \prod_{i=1}^{r} 2^{n_i}$

для чисто паралельного АЦП розрядності n) [6]. Таким чином, послідовнопаралельний метод дозволяє суттєво скоротити апаратні витрати (в порівнянні з паралельним) при незначному погіршенні швидкодії, тому що в цьому випадку повний час перетворення визначається як сума малих тривалостей усіх етапів перетворення.

2.4 Аналого-цифрове перетворення з рівномірним квантуванням

Процедура квантування в АЦП – результат проходження вхідного сигналу через пристрій зі ступінчастою передатною характеристикою, яка називається шкалою квантування (рисунок 2.12). Якщо в межах шкали крок квантування залишається постійним, то квантування рівномірне.

АЦП з рівномірним квантуванням характеризується похибкою – шумом квантування (різницею між вхідним сигналом та його квантованим аналогом). Отже, чим менший крок квантування, тим нижчий шум квантування.

Рисунок 2.12 – Передатна характеристика АЦП з рівномірним квантуванням

Знайдемо значення потужності кроку квантування. Нехай щільність імовірності розподілення миттєвих значень описується функцією $\omega(U)$ (рис. 2.13). Ймовірність появи сигналу з рівнем, який лежить в межах і-го кроку квантування

$$p_{i} = \int_{U_{i} - \frac{\delta_{i}}{2}}^{U_{i} + \frac{\delta_{i}}{2}} \omega(U) dU = \omega(U_{i})\delta_{i}, \qquad (2.16)$$

де $\omega(U_i)$ – щільність імовірності напруги сигналу в середині інтервалу.

Рисунок 2.13 – Закон розподілення значень сигналу

Миттєва потужність шуму квантування на опорі R=1Ом визначається як $P_{Mum} = (U - U_i)^2$. Звідси, потужність шуму квантування на і-му кроці:

$$P_{i} = \int_{U_{i} - \frac{\delta_{i}}{2}}^{U_{i} + \frac{\delta_{i}}{2}} (U - U_{i})^{2} \omega(u) \approx \frac{1}{12} \omega(U_{i}) \delta_{i}^{3}.$$
(2.17)

3 урахуванням (2.16) маємо $P_i = \frac{1}{12} \delta_i^2 p_i$.

Потужність повного шуму квантування:

$$P_{KB} = \sum_{i=0}^{N} \frac{1}{12} \delta_i^2 p_i.$$
 (2.18)

Для рівномірної шкали квантування $\sum_{i=0}^{N} p_{s} = 1$, отже

$$P_{KB} = \frac{1}{12}\delta^2.$$
 (2.19)

При рівномірній шкалі квантування потужність шумів квантування не залежить від амплітуди квантованих сигналів, а визначається тільки кроком квантування.

Знайдемо відношення сигнал-шум (S/N). $P_{\kappa \beta}$ – не залежить від вхідних сигналів, отже S/N збільшується при збільшенні P_{curh} . Але при перевищенні P_{curh} порога обмеження виникають спотворення і величина S/N починає зменшуватись.

Нехай

$$U_{o\delta M} = k U_{CKB} , \qquad (2.20)$$

де $U_{c\kappa\theta}$ – середньоквадратичне значення напруги.

Для біполярного сигналу

$$N = \frac{2U_{o\delta M}}{\delta}.$$
 (2.21)

Підставимо в (2.21) вирази (2.20) та (2.19)

$$P_{\kappa \sigma} = \frac{1}{3} \frac{U^2_{o \delta M}}{N^2} = \frac{1}{3} k^2 \frac{U^2_{c \kappa \sigma}}{N^2} . \qquad (2.22)$$

Потужність сигналу $P_c = U_c^2$ (це його дисперсія)

$$\frac{P_c}{P_{\kappa g}} = \frac{U_c^2}{U_{\kappa g}^2} \frac{3N^2}{k^2} . \qquad (2.23)$$

Виразимо відношення сигнал-шум в децибелах:

$$S/N = 10 \, lg \, (P_c/P_{\kappa_B}) = 20 \, lg \, (U_c/U_{c\kappa_B}) + 10 \, lg \, 3 + 20 \, lg \, (N/k). \tag{2.24}$$

Для n-розрядного аналого-цифрового перетворення N=2ⁿ

$$S/N = 20 lg (U_c/U_{cKG}) + 4,8 + 6n + 20 lg k.$$
(2.25)

При квантуванні сигналу від одного джерела $U_c^2 = U_{ckb}^2$, тому

$$S/N = 4,8 + 6n + 20 lg k.$$
 (2.26)

З (2.26) видно, що *S/N* зростає на 6дБ при збільшенні числа розрядів АЦП на один біт.

Приклад. При переході з 8-розрядного рівномірного коду до 12-розрядного відношення сигнал/шум покращується на 24дБ, тобто в 16 разів, тоді як смуга робочих частот розширяється на 50%.

Це є важливою властивістю АЦП: значне покращання відношення сигнал/шум досягається за рахунок незначного розширення необхідної смуги частот.

Оцінимо відношення сигнал/шум АЦП для синусоїдального сигналу (пік-фактор цього сигналу: *k*= 2^{1/2})

$$S/N = 4,8 + 6n + 20 lg 2^{1/2} = 6n + 1,8.$$
 (2.27)

Для АЦП багатоканального телефонного сигналу k=4, тому

$$S/N = 4,8 + 6n + 20 lg 4 = 6n + 7,2.$$
 (2.28)

Для АЦП сигналів звукомовлення з урахуванням псофометричного коефіцієнта відношенням сигнал/шум

$$S/N = 6n - 16,7.$$
 (2.29)

2.5 Аналого-цифрове перетворення сигналів з нерівномірним квантуванням

АЦП з нерівномірним (нелінійним) квантуванням характеризується змінним кроком квантування в межах всієї шкали (рис. 2.14). При нерівномірному квантуванні розв'язується така задача: вибором закону змінювання кроку квантування забезпечується приблизно постійне значення відношення сигнал/шум в достатньо широкому діапазоні вхідних

сигналів. Якщо крок квантування буде зростати при зростанні вхідного сигналу, то у порівнянні з рівномірним квантуванням для слабких сигналів значення S/N зростає, а для великих сигналів значення S/N зменшується, залишаючись достатньо високим.

Рисунок 2.14 – Передатна характеристика АЦП з нерівномірним квантуванням

Процедура нерівномірного квантування в АЦП виконується за допомогою компресора та експандера (рис. 2.15). Компресор (К) – пристрій з нелінійною амплітудною характеристикою (характеристикою компресії). Компресор слабкі сигнали підсилює сильніше, ніж великі, тому відбувається стиснення динамічного діапазону. Квантувальний пристрій (КП) має рівномірну шкалу.

Експандер (Е) усуває спотворення, що вносяться компресором. Характеристика "компресор-експандер" буде лінійною.

Система, яка складається з послідовно ввімкнутих компресора та експандера називається компандером.

Рисунок 2.15 – Структура АЦП з компандером

Визначимо оптимальну характеристику компресії, при якій значення *S*/*N*_{кв} буде постійним в широкому діапазоні амплітуд.

Квантування вихідного сигналу компресора з рівним кроком відображає квантування вхідного сигналу з кроком, який зростає при зростанні вхідного сигналу (рис. 2.16):

Рисунок 2.16 – Амплітудна характеристика компресора

Крок нерівномірного квантування для U_{ex}:

$$\delta_{H} = \delta \frac{1}{tg\varphi} = \delta \frac{1}{\frac{dU_{eux}}{dU_{ex}}} , \qquad (2.31)$$

де φ – кут між дотичною до характеристики компресії та віссю ОХ;

 dU_{eux}/dU_{ex} – похідна характеристики компресії при напрузі U_c.

Потужність шумів квантування зростає пропорціонально квадрату величини кроку квантування, а потужність сигналу дорівнює U_c^2 звідси

$$P_c / P_{\kappa \theta} = 12 \ U_c^2 / \delta_{\mu}^2 \ . \tag{2.32}$$

Це відношення буде постійним, якщо крок квантування буді лінійно зростати при зростанні вхідної напруги. Така шкала квантування, в якій при зростанні вхідного сигналу крок квантування лінійно зростає називається пропорціональною. Для цієї шкали:

$$\frac{U_{ex}}{\delta_{\mu}} = \frac{U_{ex}}{\delta} \frac{dU_{eux}}{dU_{ex}} \quad . \tag{2.33}$$

Розв'язком цього диференціального рівняння є:

$$U_{\text{sux}} = C \ln \left(\mu U_{\text{sx}} \right), \qquad (2.34)$$

де C, μ – сталі інтегрування, які визначаються з графічних умов: $U_{eux}=0$ при $U_{ex}=0$ та $U_{eux}=U_{eux.max}$ при $U_{ex}=U_{ex.max}$. Характеристику згідно з (2.34) практично реалізувати неможливо, тому що при $U_{ex} \rightarrow 0 \implies U_{eux} \rightarrow \infty$. Тому на практиці використовують логарифмічну характеристику компресії типу µ.:

$$U_{gux} = U_{Max} \frac{\ln \left[1 + \mu \frac{|U_{gx}|}{U_{Max}}\right]}{\ln(1 + \mu)}, \qquad (2.35)$$

де $\delta_{max}/\delta_{min} = 1 + \mu$.

Чим вищий коефіцієнт стискання μ , тим більша різниця між δ_{max} та δ_{min} . Вибір µ впливає на значення відношення сигнал/шум для різних U_{вх}. При збільшені µ відношення сигнал/шум збільшується для слабких та зменшується для сильних сигналів (для µ=100...255).

Використання компресорів з µ=100 еквівалентне зменшенню числа розрядів АЦП на 4 розряди (наприклад, з 12-розрядних АЦП до 8-розрядних АЦП).

Амплітудна характеристика експандера подана на рис. 2.17.

Рисунок 2.17 – Амплітудна характеристика експандера

Контрольні запитання

1. З якою метою використовують пристрої вибирання та зберігання в телекомунікаційних системах?

2. Дати характеристику вихідного сигналу ПВЗ.

3. Порівняльний аналіз ЦАП з двійково-зрівноваженими резистивними колами і багатоланковим резистивним колом типу *R*-2*R*.

4. Які елементи ЦАП впливають на його швидкодію?

5. Навести алгоритм аналого-цифрового перетворення методом порозрядного зрівноваження.

6. Чим обмежується точність паралельних АЦП?

7. Пояснити функції ЦАП в послідовно-паралельному ЦАП.

8. В чому полягають основні переваги АЦП на основі послідовного наближення?

9. Пояснити чому АЦП паралельного типу можуть функціонувати без ПВЗ.

10. Виконати аналіз швидкодії усіх типів АЦП.

11. Пояснити особливості передатної характеристики АЦП при рівномірному квантуванні.

12. В чому полягає різниця між рівномірною та нерівномірною шкалою квантування?

13. Пояснити поняття компресора, експандера сигналів.

14. Яким чином визначається потужність шумів АЦП для рівномірного квантування ?

15. Що таке пік-фактор сигналу?

16. Як визначити відношення сигнал/шум АЦП для різних класів сигналів?

Задачі

1. Визначити крок квантування 8-розрядного ЦАП, якщо максимальне значення вихідної напруги дорівнює 10 В.

2. Побудувати структуру 10-розрядного послідовно-паралельного АЦП на основі трьох 4-розрядних ПНК.

3. Розрахувати число аналогових компараторів, необхідних для побудови 12-розрядного АЦП паралельного типу.

4. Визначити максимальну частоту дискретизації АЦП з порозрядним кодуванням, якщо один цикл перетворення дорівнює 1 мкс.

5. Аналоговий сигнал, що поступає на вхід АЦП, змінюється від 0 до 2 В. Для подання відліків цього сигналу в АЦП використовується 16 двійкових розрядів. Визначити величину кроку квантування АЦП та обгрунтувати метод аналого-цифрового перетворення такого сигналу.

6. Аналоговий сигнал має частотний спектр, обмежений граничною частотою 5 МГц. У цифровому пристрої оброблення виконується запис реалізації такого сигналу тривалістю 200 мкс. Пристрій здійснює дискретизацію цього сигналу таким чином, що тривалість інтервалу між вибірками у 5 разів коротша того значення, яке встановлює теорема Котельникова. Кожне вибіркове значення подається 10-розрядним двійковим числом. Визначити об'єм оперативного запам'ятовувального пристрою, необхідний для записування заданої реалізації сигналу.

З АЛГОРИТМИ ШВИДКОГО ПЕРЕТВОРЕННЯ ФУР'Є

3.1 Обгрунтування алгоритмів ШПФ

Апаратурна реалізація ДПФ стримувалась обмеженнями цифрової техніки при обробленні складних сигналів. Суттєві зрушення у цифрових засобах відбулись завдяки розробці швидких високоефективних алгоритмів для виконання ДПФ.

Дискретне перетворення Фур'є X(k) кінцевої послідовності x(nT), n = 0, 1, ..., N - 1 визначається з урахуванням (1.19), (1.20):

$$X(k) = \sum_{n=0}^{N-1} x(nT) W_N^{nk}, k = 0, 1, \dots, N-1,$$
(3.1)

$$x(nT) = \sum_{k=0}^{N-1} X(k) W_N^{-nk}, n = 0, 1, \dots, N-1,$$
(3.2)

де $W_N = e^{-j\frac{2\pi}{N}}$. (3.3)

При цьому $W_N \epsilon$ періодичною послідовністю з періодом N, тому що $W_N^{(nk+mN)} = W_N^{nk}$, при $m = 0, \pm 1, \pm 2...$ Безпосереднє обчислення ДПФ згідно з (3.1) при комплексних значеннях x(nT) вимагає для кожного значення k(N-1) множень і (N-1) підсумовувань комплексних чисел або 4(N-1) множень і (2N-2) підсумовувань дійсних чисел, а для всіх N значень k = 0, 1, ..., N-1 потрібно приблизно N^2 множень і N^2 додавань комплексних чисел. Таким чином, для великих значень N (порядка декількох тисяч або десятків тисяч) пряме обчислення ДПФ (3.1) вимагає виконання досить великої кількості арифметичних операцій множення та додавання, що ускладнює реалізацію обчислень у реальному масштабі часу процесів і спектрів.

Швидким перетворенням Фур'є (ШПФ) називають набір алгоритмів, реалізація яких призводить до суттєвого зменшення обчислювальної складності ДПФ. Вихідна ідея цих алгоритмів полягає в тому, що *N*-точкова послідовність розбивається на дві більш короткі, наприклад, на дві (*N*/2)-точкових послідовності, обчислюються ДПФ для цих більш коротких послідовностей і з цих ДПФ синтезується ДПФ вихідної послідовності. Для двох (*N*/2)-точкових послідовностей потрібно приблизно (*N*/2)² · 2 = N^2 /2 множень комплексних чисел, тобто число множень (а також підсумовувань) зменшується приблизно в 2 рази. Аналогічно замість обчислення ДПФ (*N*/2)-точкової послідовності можна обчислити ДПФ для двох (*N*/4)-точкових послідовностей і в такий спосіб

52

знову зменшити необхідне число множень і підсумовувань. Якщо $N = 2^{v}, v > 0$ і ціле, то процес зменшення розміру ДПФ може бути продовжений доти, доки не залишаться тільки 2-точкові ДПФ. При цьому загальне число етапів обчислення ШПФ буде дорівнювати $v = \log_2 N$, а число необхідних арифметичних операцій для обчислення N-точкового ДПФ буде порядку Nv, тобто зменшиться приблизно в $N/\log_2 N$ разів. Так, при N = 1000 для прямого обчислення ДПФ згідно з (3.1) потрібно приблизно $N^2 = 10^6$ операцій комплексних множень і додавань, а при використанні алгоритмів ШПФ таких операцій потрібно всього порядку 10^4 , тобто обсяг обчислень скорочується приблизно на два порядки.

3.2 Алгоритм ШПФ з проріджуванням у часі

Існує багато алгоритмів ШПФ. Розглянемо алгоритм ШПФ з проріджуванням у часі (де потрібна перестановка відліків вхідної послідовності x(nT)).

Нехай потрібно обчислити ДПФ (3.1) при $N = 2^{v}$, де v > 0 – ціле число. Якщо $N \neq 2^{v}$, то можна послідовність x(nT) доповнити в кінці нульовими елементами так, щоб довжина результуючої послідовності була степенем 2.

Розіб'ємо вихідну *N*-точкову послідовність $x(nT) = x_v(n)$ де $v = \log_2 N, n = 0, ..., N-1$, на дві (N/2)-точкові послідовності $x_{v-1,0}(n)$ та $x_{v-1,1}(n)$, що складаються відповідно з парних і непарних членів x(nT), тобто [2]

$$x_{\nu-1,0}(n) = x(2nT), \quad n = 0, 1, \dots, N/2 - 1 \\ x_{\nu-1,1}(n) = x((2n+1)T), n = 0, 1, \dots, N/2 - 1$$
(3.4)

При цьому *N*-точкове ДПФ (3.1) можна записати у вигляді

$$X(k) = X_{v}(k) = \sum_{n=0}^{N/2-1} x_{v-1,0}(n) W_{N}^{2nk} + \sum_{n=0}^{N/2-1} x_{v-1,1}(n) W_{N}^{2(n+1)k}.$$
 (3.5)

Враховуючи, що $W_N^2 = W_{N/2} = e^{j\frac{2\pi}{N/2}}$, отримаємо

$$X_{\nu}(k) = X_{\nu-1,0}(k) + W_N^k X_{\nu-1,1}(k), \qquad (3.6)$$

де $X_{\nu-1,0}(k)$ та $X_{\nu-1,1}(k) - (N/2)$ -точкові ДПФ відповідно послідовностей $x_{\nu-1,0}(n)$ та $x_{\nu-1,1}(n)$:

$$X_{\nu-1,0}(k) = \sum_{n=0}^{N/2-1} x_{\nu-1,0}(n) W_{N/2}^{nk}; \quad X_{\nu-1,1}(k) = \sum_{n=0}^{N/2-1} x_{\nu-1,1}(n) W_{N/2}^{nk}.$$

 $X_{\nu}(k)$ має бути визначений для N- точок (k = 0, 1, ..., N-1), а $X_{\nu-1,0}(k)$ та $X_{\nu-1,1}(k)$ визначаються тільки для N/2 точок (k = 0, 1, ..., N/2-1), тому визначимо (3.6) для значень k = N/2, N/2+1, ..., N-1; враховуючи, що $X_{\nu-1,0}(k)$ та $X_{\nu-1,1}(k)$ – періодичні функції з періодом (N/2), можна записати

 $X_{\nu}(k+N/2) = X_{\nu-1,0}(k+N/2) + W_{N}^{(k+N/2)}X_{\nu-1,1}(k+N/2) = X_{\nu-1,0}(k) - W_{N}^{k}X_{\nu-1,1}(k), \quad (3.7)$ тому що $W_{N}^{N/2} = e^{-j\frac{2\pi N}{N-2}} = -1.$

Формули (3.6) і (3.7) дають алгоритм обчислення N-точкового ДПФ через N/2- точкові ДПФ. Цей алгоритм можна подати направленим графом, що має вигляд "метелика" (рис. 3.1, а), у якому вихідні числа c і dвиходять із вхідних чисел a і b за правилами [2]

$$c = a + bW_N^k,$$

$$d = a - bW_N^k.$$
(3.8)

Рисунок 3.1 – Направлений граф "метелик"

Як приклад граф на рис. 3.1, б подає операції (3.6) і (3.7). Аналогічно можна тепер виразити N/2-точкові ДПФ $X_{\nu-1,0}(k)$ та $X_{\nu-1,1}(k)$ через N/4- точкові ДПФ:

$$X_{\nu-1,0}(k) = X_{\nu-2,0}(k) + W_N^{2k} X_{\nu-2,1}(k), \quad k = 0, 1, \dots, N/4 - 1,$$

$$X_{\nu-1,0}(k) = X_{\nu-2,0}(k) - W_N^{2k} X_{\nu-2,1}(k), \quad k = N/4, \dots, N/2 - 1$$
(3.9)

та

$$X_{\nu-1,1}(k) = X_{\nu-1,2}(k) + W_N^{2k} X_{\nu-2,3}(k), \qquad k = 0, \dots, N/4 - 1, \\X_{\nu-1,1}(k) = X_{\nu-2,2}(k) - W_N^{2k} X_{\nu-2,3}(k), \qquad k = N/4, \dots, N/2 - 1 \right\},$$
(3.10)

де $X_{\nu-2,0}(k)$ та $X_{\nu-2,1}(k)$ – відповідно N/4-точкові ДПФ парних $x_{\nu-2,0}(n)$ і непарних $x_{\nu-2,1}(n)$ членів послідовності $x_{\nu-1,0}(n)$;

 $X_{\nu-2,2}(k)$ та $X_{\nu-2,3}(k)$ – відповідно N/4-точкові ДПФ парних $x_{\nu-2,2}(n)$ і непарних $x_{\nu-2,3}(n)$ членів послідовності та $x_{\nu-1,1}(n)$.

Процес зменшення розміру ДПФ від M до M/2, де M дорівнює степені 2, продовжується доки на v-м кроці ($v = \log_2 N$, де N-вихідний розмір ДПФ) не виявляться тільки 2-точкові ДПФ $\Phi(k)$, k = 0,1. Для двоточкових послідовностей $\varphi(n)$, n = 0,1, обумовлені співвідношеннями

$$\Phi(0) = \varphi(0) + W_N^0 \varphi(1) = \varphi(0) + \varphi(1),$$

$$\Phi(1) = \varphi(0) + W_N^{N/2} \varphi(1) = \varphi(0) - \varphi(1),$$
(3.11)

Останні обчислюються без операції множення.

Приклад 3.1. Побудуємо алгоритм ШПФ із проріджуванням у часі для $N = 8 = 2^3, v = 3$, тобто для послідовності x(nT), n = 0, 1, 2, 3, 4, 5, 6, 7. Розіб'ємо згідно з (3.4) вихідну послідовність $x(nT) = x_3(n)$ на дві послідовності: $x_{2,0}(n)$ та $x_{2,1}(n)$, що складаються відповідно з парних і непарних членів $x_3(n)$:

$$\begin{aligned} x_{2,0}(n) &= \left\{ x(0), x(2), x(4), x(6), \right\}, \\ x_{2,1}(n) &= \left\{ x(1), x(3), x(5), x(7), \right\}. \end{aligned}$$
 (3.12)

Рисунок 3.2 – Алгоритм 8-точкового ШПФ

Тепер знову розіб'ємо послідовності (3.12) на послідовності з непарних і парних членів послідовностей:

$$x_{1,0}(n) = \{x(0), x(4)\},\$$

$$x_{1,1}(n) = \{x(2), x(6)\},\$$

$$x_{2,2}(n) = \{x(1), x(5)\},\$$

$$x_{2,3}(n) = \{x(3), x(7)\},\$$
(3.13)

Послідовності (3.13) є вже двоточковими.

Тепер, використовуючи алгоритм, поданий графом "метелик" (див. рис. 3.1,а), будуємо алгоритм 8-точкового ШПФ (рис. 3.2). Спочатку побудуємо вихідний масив. Як видно з (3.13), він складається з елементів послідовності x(n) = x(nT), n = 0, 1...7, причому на входах першого графу "метелик" розміщуються числа x(0) і x(4). На входах другого графу "метелик" – числа x(2) і x(6), на входах третього "метелика" – x(1) x(5) і на входах четвертого "метелика" – x(3) та x(7).

Таким чином, якщо припустити, що послідовність x(n) записується в масив комірок пам'яті, то зручно здійснити зміщення x(n) у такому x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7). Легко порядку (рис. 3.2): помітити, що елементи цієї послідовності виходять з вихідної x(n) у відповідності з двійковою інверсією номерів, тобто число x(n) з номером у двійковому поданні $n = (n_{v-1}, ..., n_0)$ запам'ятовується в комірці пам'яті з номером $\bar{n} = (n_0, ..., n_{v-1})$. Так, число x(4) з номером в двійковому поданні 4(10) = 100(2) запам'ятовується в комірці з номером $001_{(2)}=1_{(10)}$, а число x(3), де $3_{(10)}=011_{(2)}$, запам'ятовується в комірці з номером $110_{(3)}=6_{(10)}$ і т.д. Отже, можна вважати, ЩО початковий ступінь перетворення $X_0(k), k = 0, 1...7$, буде отриманий просто в результаті проріджування вихідної часової послідовності x(nT), n = 0, 1...7, тобто $X_0(k) = x(\overline{n}T)$, де $k = \overline{n}$ – двійково-інверсне подання номера *n*.

На виходах N/2=4 "метеликів" m=1-го ступеня утворюються значення $X_2(k)$, що є вхідними числами "метеликів" m=2-го ступеня. На виходах останнього ступеня значення вихідної послідовності $X_3(k) = X(k), k = 0...7$. Вихідна послідовність X(k), k = 0, 1...7 виходить у звичайному порядку слідування.

Як показано в розглянутому прикладі, усі вхідні числа "метеликів" $X_0(k)$ на початковому ступені є елементами заданої послідовності x(n), n = -0...N - 1, причому виходять з x(n) у відповідності до двійкової інверсії номерів, тобто число x(nT) = x(n) з двійковим поданням номера $n \in$ вхідним числом $X_0(k)$ "метелика" з номером k, що дорівнює інверсному двійковому поданню номера n.

Слід відмітити, що в розглянутому алгоритмі ШПФ можна виконати обчислення способом із заміщенням. Якщо розмістити вхідну

послідовність $X_0(k)$ "метеликів" у масиві з 2^{ν} комірок пам'яті, то після обчислення виходів "метеликів" вхідні елементи стають непотрібними і у зазначені комірки пам'яті можуть бути записані обчислені вихідні числа. У наступному ступені знову обчислені значення виходів "метеликів" записуються в комірки масиву замість використаних вхідних чисел, і наприкінці обчислень у вхідному масиві виявляться записаними значення X(k) у звичайному порядку, тобто значення ДПФ при k = 0,1,2...N-1.

3.3 Програмна реалізація алгоритму ШПФ з проріджуванням у часі

Алгоритми ШПФ можна реалізувати апаратним та програмним способом.

Нижче приводиться програмна реалізація алгоритму ШПФ за основою 2 і проріджуванням у часі комплексної або дійсної послідовності x(n) довжиною N відліків.

Дійсні складові відліків вихідної послідовності записуються у масив *A1(N)*, а уявні складові – у масив *A2(N)*. У програмі для ознайомлення з її роботою передбачено формування вхідної послідовності, що відповідає відлікам полігармонічного сигналу (рядки 80—240)

$$x(n) = \sum_{k=0}^{J-1} A_k \left[\cos(2\pi n w_k + \varphi_k) + j \sin(2\pi n w_k + \varphi_k) \right].$$
(3.14)

При використанні програми для виконання ШПФ довільної послідовності необхідно замінити рядки 80—240, організувавши введення вихідної послідовності.

```
10 REM
             ШВИДКЕ ПЕРЕТВОРЕННЯ ФУР'Є
20 REM
             ЗА ОСНОВОЮ 2
           І ПРОРІДЖУВАННЯМ У ЧАСІ
30 REM
40 OPEN "O". #l. ":LP:"
50 INPUT "ВВЕДІТЬ ДОВЖИНУ ВХІДНОЇ ПОСЛІДОВНОСТІ N^2M"; N
60 M = FIX(LOG(N)/LOG(2)+.1)
70 DIM A1(N), A2(N), R(N), C(N), FI(N)
80 INPUT "КІЛЬКІСТЬ ГАРМОНІК"; J
90 DIM A(J-1), W(J-1), W(J-1)
100 PRINT "ВВЕДЕННЯ АМПЛІТУДИ А(К), ЧАСТОТИ W(К). ФАЗИ W1(К) "
110 FOR K=0 TO J-l
120 PRINT "A(";K;") = ";:INPUT A(K)
130 PRINT "W(";K;") = ";:INPUT W(K)
140 PRINT "W1(";K;") = ";:INPUT W1(K)
150 NEXT K
160 ІЛРИТ "ЯКЩО ПОСЛІДОВНІСТЬ ДІЙСНА, ВВЕДІТЬ 1, ІНАКШЕ 0";19
```

```
170 FOR 1=1 TO N
180 Sl=0:S2=0
190 FOR K=0 TO J-l
200 S1=S1+A(K)*COS(2*3.141592*(I-1)*W(K)+W1(K))
210 IF I9 <>1 THEN S2 = S2 + A(K) * SIN(2 * 3.141592 * (I-1) * W(K) + W1(K))
220 NEXT K.
230 A1(I)=S1:A2(I)=S2
240 NEXT I
250 REM
          ПЕРЕСТАНОВКА ВХІДНОЇ ПОСЛІДОВНОСТІ ДАНИХ
260 N2=N/2:N1=N-l:J=l
270 FOR 1=1 TO N1
280 IF I>=J THEN 310
290 D1 = A1(J):A1(J) = A1(I):A1(I) = D1
300 D2 = A2(J):A2(J) = A2(I):A2(I) = D2
310 K=N2
320 IF K>=J THEN 340
330 J=J-K:K=K/2:G0T0 320
340 J = J + K
350 NEXT I
                    ШВИДКЕ ПЕРЕТВОРЕННЯ ФУР'Є
360 REM
370 FOR L=l TO M
380 Ll=2^L
390 L2 = Ll/2
400 U1=1:U2=0
410 Wl=COS(3.141592/L2):W2=-SIN<3.141592/L2)
420 FOR J=1 TO L2
430 FOR I=J TO N STEP LI
440 II = I + L2
450 T1=A1(I1)*U1-A2(I1)*U2:T2=A2(I1)*U1+A1(I1)*U2
460 A1(II) = A1(I) - T1 : A2(II) = A2(I) - T2
470 A1(I) = A1(I) + T1:A2(I) = A2(I) - T2
480 NEXT I
490 U3=U1:U1=U1*W1-U2*W2:U2=U2*W1+U3*W2
500 NEXT J
510 NEXT L
            РОЗРАХУНОК АМПЛІТУД І ФАЗ СПЕКТРА
520 REM
530 FOR I=1 TO N
540 R5 = SQR(A1(I)^{2} + A2(I)^{2})
550 IF I=1 THEN R(I)=R5/N ELSE R(I)=2*R5/N
560 IF A1(I)=0 AND A2(I)>0 THEN FI(I)=1.5708
570 IF A1(I)=0 AND A2(I)<0 THEN FI(I)=-1.5708
580 IF A1(I) \ll 0 THEN F(I) = ATN(A2(I)/A1(I))
590 NEXT I
600 REM
           ВИВЕДЕННЯ РЕЗУЛЬТАТІВ ОБРОБКИ
610 PRINT #1,
620 PRINT #1," I A(I) A2(I) R(I) FI(I) "
630 PRINT #1,
640 FOR I=1 TO N
650 PRINT #1, USING "####"; I-1;
660 PRINT #1, USING "##############A1(I), A2(I), R(I),FI(I)
```

670 NEXT I 680 CLOSE #1 690 PRINT "ОБРОБЛЕННЯ ЗАВЕРШЕНО" 700 END

Основними етапами оброблення є: введення вхідних даних (рядки 50-240), двійково-інверсна перестановка вхідної послідовності (рядки 250-350), власне алгоритм ШПФ (рядки 360-510), розрахунок амплітуд і фаз аналізованого сигналу за результатами ШПФ (рядки 520-590) і виведення результатів (рядки 600-690). Користувачеві виводяться у вигляді таблиці значення номера компоненти (гармоніки) ШПФ, дійсна і уявна її складові [A 1(*I*) і A2(*I*)], амплітуда та фаза відповідної гармоніки [R(*I*) і F1 (*I*)].

Приклад3.2. Реалізація алгоритму ШПФ дійсного сигналу $x(n) = \sum_{k=0}^{2} A_k \cos(2\pi n w_k + \varphi_k)$, що містить три складових при значеннях .

параметрів:

 $A_0 = 2, w_0 = \varphi_0 = 0, A_1 = 1, w_1 = 0,125, \varphi_1 = 0,7854, A_2 = 3, w_2 = 0,3125, \varphi_2 = 1,57.$

Ι	A(I)	A2(I)	R(I)	FI(I)
0	32.000	0.000	2.000	0.000
1	-0.000	-0.000	2.000	0.268
2	5.657	5.657	1.000	0.785
3	-0.000	-0.000	0.000	0.701
4	-0.000	-0.000	0.000	1.201
5	0.019	24.000	3.000	1.570
6	-0.000	0.000	0.000	-1.055
7	-0.000	0.000	0.000	-0.084
8	-0.000	0.000	0.000	0.000
9	-0.000	-0.000	0.000	0.710
10	-0.000	-0.000	0.000	1.195
11	0.019	-24.000	3.000	-1.570
12	-0.000	0.000	0.000	-1.201
13	-0.000	0.000	0.000	-1.207
14	5.657	5.657	1.000	-0.785
15	-0.000	0.000	0.000	-0.402

Як вхідні дані послідовно вводяться значення:

N = 16; J = 3; w(0) = 0; w1(0) = 0; A(1) = 1; w(1) = 0,125; w1(1) = 0,7854; A(2) = 3; w(2) = 0,3125; w1(2) = 1,57; I9 = 1;

Приклад З.З. Реалізація алгоритму ШПФ комплексного сигналу (3.12), що містить три складові (J=3), при значеннях параметрів A_k, w_k, φ_k таких же, як в попередньому прикладі. Введення вхідних даних аналогічне попередньому прикладу за винятком того, що значення I9=0.

Ι	A(I)	A2(I)	R(I)	FI(I)
0	32.000	-0.000	2.000	-0.000
1	-0.000	-0.000	0.000	0.504
2	11.314	11.314	2.000	0.785
3	-0.000	-0.000	0.000	1.159
4	-0.000	-0.000	0.000	1.364
5	0.038	48.000	6.000	1.570
6	-0.000	0.000	0.000	-1.354
7	-0.000	0.000	0.000	-1.168
8	-0.000	0.000	0.000	-1.146
9	-0.000	-0.000	0.000	0.710
10	-0.000	0.000	0.000	-1.107
11	-0.000	0.000	0.000	-0.066
12	-0.000	-0.000	0.000	0.454
13	0.000	0.000	0.000	0.501
14	-0.000	0.000	0.000	-0.787
15	-0.000	0.000	0.000	-0.035

Апаратна реалізація алгоритмів ШПФ може здійснюватись з використанням цифрових процесорів сигналів чи цифрових пристроїв жорсткої логіки.

3.4 Алгоритм ШПФ з проріджуванням за частотою

обчислення ДΠΦ Розглянутий нижче алгоритм (3.1)що вхідна послідовність характеризується тим, x(nT), n = 0, .., n - 1,розбивається на дві послідовності посередині (тобто одна послідовність для n = 0 ... N/2 -1, а друга – для n = (N/2...N-1) і ця процедура продовжується для кожної нової послідовності поки не отримається вихідна одноелементна послідовність X(k); при цьому величини X(k) уже виявляються у вихідному масиві у "прорідженому" порядку і їхнє приведення до дійсного порядку пов'язано з інверсією двійкового подання індексів k в обчислених значеннях X(k).

Отже, запишемо ДПФ (3.1) у вигляді [2]

$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{nk} = \sum_{n=0}^{N/2-1} x(n) W_N^{nk} + \sum_{n=N/2}^{N-1} x(n) W_N^{nk} =$$

= $\sum_{n=0}^{N/2-1} x(n) W_N^{nk} + \sum_{n=0}^{N/2-1} x(n+N/2) W_N^{(n+N/2)k}.$ (3.15)

Враховуючи, що $W_N^{kN/2} = e^{-j\frac{2\pi}{N}kN/2} = e^{-j\pi k} = (-1)^k$, отримаємо

$$X(k) = \sum_{n=0}^{N/2-1} \left[x(n) + (-1)^k x(n+N/2) \right] \cdot W_N^{nk}.$$
 (3.16)

Підставивши замість k у (3.14) значення 2k або (2k+1), одержимо вирази для парних і непарних відліків ДПФ:

$$X(2k) = \sum_{n=0}^{N/2-1} x_0(n) W_{N/2}^{nk} ; \qquad (3.17)$$

$$X(2k+1) = \sum_{n=0}^{N/2-1} x_1(n) W_{N/2}^{nk} .$$
(3.18)

Тепер для значень $0 \le n \le N/2 - 1$:

$$x_0(n) = x(n) + x(n + N/2);$$
 (3.19)

$$x_1(n) = x(n) - x(n + N/2)$$
. (3.20)

Як наслідок, обчислення *N*-точкового ДПФ X(k) зводиться до обчислення двох *N*/2-точкових ДПФ при парних і непарних значеннях k для функцій $x_0(n)$ і $x_1(n)$, і виконання базової операції "метелик" (рис.3.3). Особливість операції "метелик" тут полягає в тому, що комплексне множення виконується після операцій додавання-віднімання.

Рисунок 3.3 – Базова операція "метелик"

Цю процедуру можна тепер застосувати до $x_0(n)$ і $x_1(n)$ та перейти від *N*/2-точкових ДПФ до *N*/4-точкових ДПФ і, таким чином, звести обчислення X(2k) і X(2k+1) через X(4k), X(4k+1), X(4k+3). Продовживши цей процес, можна перейти наостанок до 2-точкових ДПФ із наступним прямим обчисленням усіх вихідних відліків X(2k). Алгоритм ШПФ із проріджуванням за частотою і його програмна реалізація аналогічні розглянутим вище для методу ШПФ із проріджуванням у часі.

Необхідно відзначити, що в обох алгоритмах ШПФ – і з проріджуванням у часі, і з проріджуванням за частотою – потрібно приблизно Mog_2N операцій (комплексних множень) і обидва алгоритми можуть бути реалізовані способом заміщення з використанням тільки одного масиву комірок пам'яті. В обох алгоритмах повинна бути передбачена процедура двійкової інверсії – на вході (при проріджуванні у часі) або на виході (при проріджуванні за частотою).

3.5 Приклади використання алгоритмів ШПФ

Розглянемо застосування ШПФ для обчислення ОДПФ.

За визначенням (3.2) ОДПФ x(nT) *N*-точкової послідовності X(k), k=0, 1, ..., N - 1, виражається співвідношенням

$$x(nT) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-nk} .$$
(3.21)

У загальному випадку x(nT), і X(k) – комплексні. Нехай $x(nT)^*$, і $X(k)^*$ – послідовності, комплексно спряжені відповідно з x(nT), і X(k). Згідно з (3.21) можна записати

$$x^{*}(nT) = \left(\frac{1}{N}\sum_{k=0}^{N-1}X(k)W_{N}^{-nk}\right)^{*} = \frac{1}{N}\sum_{k=0}^{N-1}X(k)^{*}W_{N}^{nk}.$$
 (3.22)

Але вираз у правій частині (3.20) є пряме ДПФ послідовності $X(k)^* k=0, ..., N - 1$, і, отже, ця сума може бути обчислена за допомогою розглянутих алгоритмів і програм ШПФ.

Таким чином, забезпечується обчислення послідовності $Nx(nT)^*$ і для визначення x(nT) залишається взяти комплексно спряжений з $Nx(nT)^*$ вираз і розділити його на N:

$$x(nT) = \frac{1}{N} \left(\sum_{k=0}^{N-1} X^*(k) W_N^{nk} \right)^*.$$
(3.23)

Розглянемо ще один приклад використання ШПФ для знаходження вихідного сигналу ЦФ.

Обчислення реакції y(nT) ЦФ з імпульсною характеристикою h(nT), n = 0, 1, ..., N - 1, на вхідну дію x(nT), n = 0, 1, ..., M - 1, може бути виконане на основі алгоритму згортки [3]

$$y(nT) = \sum_{m=0}^{N-1} h(mT) x(nT - mT), \qquad (3.24)$$

при n = 0, 1, ..., N + M - 2.

Застосування алгоритмів ШПФ дозволяє виконати ефективне обчислення вихідної послідовності у(пТ) ЦФ. З цією метою варто визначити ДПФ H(k) і X(k) у N+M-1 точках для послідовностей h(nT) і x(nT) потім визначити ДПФ Y(k) = H(k)X(k) вихідної послідовності y(nT). Обчислення y(nT) за оберненим ДПФ Y(k) виконується, наприклад, за Для обчислення ДΠΦ оберненого алгоритмом (3.23). i ДΠΦ використовуються алгоритми ШПФ. Якщо довжина M послідовності x(nT)велика, то реалізація згаданого вище алгоритму обчислення у(nT) пов'язана зі значною часовою затримкою (для нагромадження всіх *M* вибірок *x*(*nT*)). З метою зменшення цієї затримки можна вхідну послідовність x(nT) розбити на відрізки $x_i(nT)$ кожен довжиною L і обробляти кожний з них незалежно від інших. Подамо

$$x(nT) = \sum_{i=0}^{P-1} x_i(nT); M = PL, 0 \le n \le PL - 1.$$
(3.25)

Тоді можна (3.24) записати у вигляді

$$y(nT) = \sum_{m=0}^{N-1} \sum_{i=0}^{P-1} x_i (nT - mT) h(mT) = \sum_{i=0}^{P-1} y_i (nT), \qquad (3.26)$$

де частинна згортка

$$y_i(nT) = \sum_{m=0}^{N-1} h(mT) x_i(nT - mT).$$
(3.27)

Таким чином, можна починати розрахунок методами ШПФ частинних згорток і формувати y(nT) шляхом відповідного додавання елементів частинних згорток.

Контрольні запитання

1. Чим алгоритм ШПФ відрізняється від ДПФ?

2. Навести основні вимоги до вхідної послідовності, яка має підлягати обробленню за допомогою ШПФ.

3. Виконати порівняльний аналіз ШПФ з прорідженням у часі та прорідженням за частотою.

- 4. У чому полягає процедура двійкової інверсії?
- 5. Пояснити особливості операції "метелик".

6. Навести декілька прикладів застосування алгоритмів ШПФ.

Задачі

1. Зобразити граф-схему 4-точкового ШПФ з проріджуванням у часі. Розрахувати число операцій, необхідних для реалізації цього алгоритму.

2. Частотний спектр сигналу, що поданий дискретним масивом об'ємом 4096 вибірок, визначено двома способами: за допомогою безпосереднього ДПФ та за допомогою ШПФ. Розрахувати коефіцієнт ефективності ШПФ для даної реалізації.

3. Написати програму знаходження базової операції "метелик" для ШПФ з проріджуванням за частотою мовою Паскаль.

4 ЦИФРОВИЙ АНАЛІЗ СПЕКТРІВ В ТЕЛЕКОМУНІКАЦІЙНИХ СИСТЕМАХ

4.1 Приклади застосування цифрових аналізаторів спектра в електрозв'язку

Розглянемо застосування цифрових аналізаторів спектра сигналів електрозв'язку. Перший приклад відноситься до визначення значень частотних характеристик аналогової лінії зв'язку, що є лінійною системою. Частотні характеристики цієї лінії можуть повільно змінюватися внаслідок зміни зовнішніх умов: температури, вологості і т.ін. Для забезпечення надійного зв'язку необхідно враховувати ці зміни при обробленні вихідних сигналів лінії. Для визначення частотних характеристик у лінію подається випробувальний сигнал. Випробувальний сигнал може бути імпульсним з кінцевою тривалістю, причому протягом тривалості імпульсу напруга змінюється за законом

$$u_1(t) = \sum_{l=0}^{K} A_l \cos l \omega_l t$$
 при $0 \le t \le t_1$, (4.1)

де 0, $\omega_1, 2\omega_1, \dots$ – частоти, на яких визначаються частотні характеристики лінії зв'язку;

*t*₁ – момент закінчення імпульсу;

А_l – амплітуда гармонік;

Можна вважати, що $A_l = 1$.

На приймальній частині лінії випробувальний сигнал буде спотвореним. Однак спотворення носять лінійний характер. Тому після закінчення перехідного процесу, починаючи з моменту t_2 (величину t_2 можна оцінити заздалегідь), напруга на приймальному кінці має вигляд

$$u_{2}(t) = \sum_{l=0}^{K} A_{l2}(\cos l\omega_{1}t + \varphi_{l}) \text{ при } t_{2} \le t \le t_{3}, \qquad (4.2)$$

де t₂ i t₃ – часові моменти початку та закінчення дослідження вихідного сигналу лінії зв'язку;

 A_{l2} – амплітуда *l*- ї гармоніки на приймальній частині лінії, що визначає АЧХ досліджуваної лінії при $\omega = l\omega_1$;

 $\varphi_l - \phi$ аза *l*- ї гармоніки на приймальній частині лінії, що визначає ФЧХ досліджуваної лінії при $\omega = l\omega_l$.

За відомим сигналом $u_2(t)$ необхідно знайти величини A_{l2} і φ_l , що визначають частотні характеристики лінії. Для розв'язання цієї задачі

сигнал $u_2(t)$ дискретизується. Потім обчислюється ДПФ X(l) дискретного сигналу $u_2(nT)$ і розраховуються величини A_{l2} і φ_l :

$$A_{l2} = |X(l)|; \quad \varphi_l = \arg[X(l)].$$
 (4.3)

Ця задача є найпростішим прикладом спектрального аналізу, коли заздалегідь відомі як рівновіддалені частоти гармонічних складових спектра, так і часовий інтервал аналізу.

Другий приклад відноситься до обробки мовних сигналів. У фазовому вокодері на передавальній частині повинен бути виконаний спектральний аналіз мовного сигналу. Для дискретизованого мовного сигналу визначення спектра не має сенсу. Дійсно, якщо мовний сигнал є діалогом чоловіка та жінки, то у спектрі мови чоловіка переважають більш низькі частоти, а у спектрі мови жінки – більш високі. Зміна спектрального складу мовного сигналу в часі має місце й у тому випадку, якщо розмовляє один абонент. Це пояснюється тим, що у будь-якій мові є високочастотні та низькочастотні звуки. Тому спектр мовного сигналу доцільно визначити за допомогою функції не тільки частоти, але і поточного номера n, тобто часу. Цю функцію називають поточним спектром. Оскільки в більшості випадків необхідно визначати саме короткочасний спектр дискретного сигналу, нижче розглядаються означення цього поняття та методи обчислення поточного спектра.

4.2 Цифровий поточний спектр

Поточний спектр $X(\omega, n)$ визначають таким чином [1]:

$$X(\omega,n) = \sum_{l=0}^{n} x(lT)h(nT - lT)e^{-il\omega T},$$
(4.4)

де h(nT) – вагова функція.

Вагова функція вибирається так, що при $n \to \infty$ $h(nT) \to 0$. Це дозволяє створити "часове вікно" – значення x(lT) якого віддаленні від поточного значення x(nT) ($l \ll n$) і практично не впливають на поточне значення спектра. Обчислення за формулою (4.4) називають поточним спектральним аналізом. Ці обчислення виконуються лише для окремих значень частот $\omega = \omega_1, \omega_2, ..., \omega_K$ і для рівновіддалених значень $n = n_1, 2n_1, 3n_1, ...$

Слід відмітити, що математичній моделі (4.4) відповідає схема на рис.4.1, яка складається з помножувального пристрою, що обчислює добуток $x(lT)e^{-il\omega T}$ при l = 0, 1, ..., n, і фільтра нижніх частот Φ з імпульсною характеристикою h(nT).

Рисунок 4.1 – Схема реалізації "вагового вікна"

Однак, як правило, для обчислення $X(\omega, n)$ за допомогою цієї схеми необхідно виконати занадто велику кількість операцій множення та додавання. Нижче розглядаються інші методи обчислень поточного спектра мовного сигналу і відповідні схеми, у яких для обчислення $X(\omega, n)$ необхідно виконати менше операцій.

4.3 Поточний спектр з прямокутним часовим вікном і рівновіддаленими частотами

Припустимо, що вагова функція h(nT) відповідає прямокутному часовому вікну (рис. 4.2)

$$h(nT) = \begin{cases} 1 & \text{при} 0 \le n < N_1; \\ 0 & \text{при} n \ge N_1 \end{cases}$$
(4.5)

і поточний спектральний аналіз (4.4) необхідно виконати для ряду рівновіддалених значень частоти $\omega = 0, \omega_1, 2\omega_1, \dots, (N_1 - 1)\omega_1, \omega_1 = 2\pi/TN_1$. Тоді з (4.4) можна одержати [1]

$$X(q\omega_1, n) = \sum_{i=n-N_1+1}^n x(lT)e^{-ilq\omega_1T}, q = 0, 1, \dots, N_1 - 1.$$
(4.6)

Рисунок 4.2 – Часове подання прямокутного вікна

Перетворимо (4.6), вважаючи, що r = n - l, і винесемо за знак суми множник $e^{-inq\omega_l T}$:

$$X_1(q\omega_1, n) = e^{-inq\omega_1 T} \sum_{r=0}^{N_1 - 1} x(nT - rT) e^{irq\omega_1 T} .$$
(4.7)

Тобто, для обчислення $X(q\omega_1,n)$ достатньо помножити $e^{-inq\omega_1 T}$ на вираз

$$X_1(q\omega_1, n) = \sum_{r=0}^{N_1 - 1} x(nT - rT)e^{irq\omega_1 T}, \qquad q = 0, 1, \dots, N_1 - 1.$$
(4.8)

Очевидно, що $|X(q\omega_1,n)| = |X_1(q\omega_1,n)|$. Звідси випливає, що вихідний сигнал $X_1(q\omega_1,n)$ пристрою, що реалізує обчислення згідно з (4.8) варто множити на $e^{-inq\omega_1T}$ тільки в тому випадку, якщо необхідно розрахувати спектр амплітуд і спектр фаз. Для обчислення поточного спектра амплітуд множення на $e^{-inq\omega_1T}$ можна не виконувати.

Розглянемо різні способи знаходження $X_1(q\omega_1, n)$ і структурні схеми пристроїв, що дозволяють обчислити $X_1(q\omega_1, n)$ і поточний спектр $X(q\omega_1, n)$.

Позначимо x(nT - rT) = A(n,r). Тоді з (4.8)

$$X_1(q\omega_1, n) = \sum_{r=0}^{N_1 - 1} A(n, r) e^{irq\omega_1 T}.$$
(4.9)

3 (4.9) видно, що для будь-якого *n* вираз (4.9) з точністю до постійного множника є ОДПФ. Отже, для обчислення (4.9) можна використовувати ШПФ. При $N_1 = 2^l$ для кожного значення *n* необхідно виконати приблизно $4N_1\log_2N_1$ операцій множення і додавання дійсних чисел. Для обчислення (4.9) може бути використаний процесор, що реалізує ШПФ (рис. 4.3).

Рисунок 4.3 – Модель процесора ШПФ

Щоб одержати спектр (4.7) вихідні сигнали процесора необхідно помножити на $e^{-inq\omega_1T}$, тобто ввести в схему N_1 помножувачів. Таким

чином для обчислення поточного спектра (4.7) у схемі на рис.4.3 необхідно виконати

$$Q_1 = 4N_1(\log_2 N_1 + 1) \tag{4.10}$$

операцій множення і додавання дійсних чисел.

З (4.8) слідує, що для будь-якого q величина $X_1(q\omega_1, n)$ може бути розрахована як вихідний сигнал комплексного нерекурсивного фільтра порядку $N = N_1 - 1$ з коефіцієнтами $b_r = e^{irq\omega_1 T}$, на вхід якого подається сигнал x(nT) (рис. 4.4). Для одержання поточного спектра $X(q\omega_1, n)$ вихідний сигнал нерекурсивного фільтра збільшується на $e^{-inq\omega_1 T}$ (див. рис. 4.2). Відзначимо, що для обчислення спектра при q = 0, 1, ..., N - 1необхідно використовувати пристрій, що складається з N_1 схем, подібних до схеми рис.4.4. Однак такий підхід за кількістю операцій еквівалентний безпосередньому обчисленню ДПФ і, отже, вимагає набагато більшої кількості операцій, ніж використання ШПФ.

Рисунок 4.4 – Знаходження спектра за допомогою нерекурсивного фільтра

Для зменшення кількості операцій необхідно перетворити передатну функцію $H_q(z)$ нерекурсивного фільтра (див. рис. 4.4):

$$H_q(z) = \sum_{r=0}^{N_1 - 1} e^{irq\omega_1 T} z^{-r} = \frac{1 - z^{-N_1}}{1 - e^{iq\omega_1 T} z^{-1}}.$$
(4.11)

Вираз у правій частині (4.11) є передатною функцією комплексного рекурсивного фільтра з кінцевою імпульсною характеристикою (рис. 4.5). Для одержання поточного спектра $X(q\omega_1, n)$ вихідний сигнал рекурсивного фільтра множать на $e^{-inq\omega_1T}$.

У схемі на рис. 4.5 для кожного значення n необхідно виконати лише вісім операцій множення та додавання дійсних чисел. Значення $X(q\omega_1, n)$

для всіх *q* можуть бути розраховані за допомогою гребінки рекурсивних фільтрів з кінцевими імпульсними характеристиками (рис.4.6).

Рисунок 4.5 – Рекурсивний фільтр з КІХ

Відповідний алгоритм є системою різницевих рівнянь:

$$X_{1}(q\omega_{1},n) = X_{1}(q\omega_{1},n-1)e^{iq\omega_{1}T} + x(nT) + x(nT-N_{1}T);$$

$$X(q\omega_{1},n) = X_{1}(q\omega_{1},n)e^{-inq\omega_{1}T}, \quad q = 0,1,...,N_{1}-1.$$

$$(4.12)$$

Рисунок 4.6 – Гребінка рекурсивних фільтрів з КІХ

Гребінка має загальну нерекурсивну частину, що відповідає чисельнику $1 - z^{-N_1}$ в (4.11), набір комплексних фільтрів першого порядку і пристроїв множення на $e^{-inq\omega_1 T}$, кожен з яких відповідає певному значенню q. У схемі рис 4.6 для кожного значення n необхідно виконати

$$Q_2 = 8N_1$$
 (4.13)

операцій множення і додавання дійсних чисел. З (4.10) і (4.13) випливає, що при $N_1 > 2$ виконання поточного спектрального аналізу, тобто, обчислення за формулою (4.6) для всіх значень q виявляється більш вигідним за допомогою гребінки рекурсивних фільтрів, ніж за допомогою ШПФ. Вказана перевага гребінки рекурсивних фільтрів – виграш за кількістю операцій приблизно в $(\log_2 N_1 + 1)/2$ разів – має місце лише тоді, коли поточний спектральний аналіз виконується для всіх значень n, тобто n = 0, 1, 2, ... Якщо цей аналіз виконується при $n = 0, n_1, 2 n_1, ..., n_1 > 0$ ("стрибкоподібний" спектральний аналіз), то відношення G кількості операцій, виконаних при використанні ШПФ, до кількості операцій, виконуваних при використанні гребінки рекурсивних фільтрів дорівнює

$$G = (\log_2 N_1 + 1) / (2n_1). \tag{4.14}$$

Наявність величини n_1 у (4.14) пояснюється тим, що в гребінці рекурсивних фільтрів приходиться обчислювати всі значення $X(q\omega_1, n)$, тобто кількість операцій не залежить від величини n_1 , а кількість операцій, виконуваних в одиницю часу при використанні ШПФ, змінюється обернено пропорційно величині n_1 . З (4.14) слідує, що при $(\log_2 N_1 + 1) \ge 2n_1$ доцільно використовувати гребінку рекурсивних фільтрів, а при $(\log_2 N_1 + 1) < 2n_1$, – алгоритм ШПФ.

4.4 Аналіз спектрів з використанням прямокутного "часового вікна" та нерівновіддалених частот

Нехай вагова функція h(nT) як і раніше визначається формулою (4.5), а частоти $\omega_2, \omega_3, ..., \omega_s$ не є рівновіддаленими. Можна припустити, що всі ці частоти кратні одній частоті $\omega_1 = 2\pi/TN_1, \omega_2 = p_2\omega_1, \omega_3 = p_3\omega_1..., \omega_s = p_s\omega_1$, де $p_2, p_3, ..., p_s$ – цілі числа. При такій умові з (4.4) можна знайти вираз, подібний (4.7):

$$X_{q}(\omega_{1},n) = e^{-ip_{q}\omega_{1}T} \sum_{r=0}^{N_{1}-1} x(nT-rT)e^{irp_{q}\omega_{1}T}.$$
(4.15)

Очевидно, що для поточного спектрального аналізу за формулою (4.15) можна використовувати ті ж самі методи та пристрої, що і для аналізу за формулою (4.7), тобто ШПФ і процесор, що реалізує ШПФ або алгоритм (4.12) і гребінку рекурсивних фільтрів, що реалізує цей алгоритм. Щоб визначити відношення G_1 кількості операцій, необхідних у першому випадку, до кількості операцій, необхідних у другому випадку, потрібно врахувати таке. Процесор ШПФ, як правило, синтезується так, щоб значення спектра обчислювалися для всіх рівновіддалених частот $0, \omega_1, 2\omega_1, \dots, (N_1 - 1)\omega_1, \omega_1 = 2\pi/TN_1.$ процесора ШПФ Синтез для обчислення спектра на окремих частотах, не зазначених до проектування процесора, виявляється досить важкою задачею. Тому будемо вважати, що такий синтез не реалізується і в процесорі ШПФ об'єм обчислень залишається такий же, як при обчисленні спектра для всіх рівновіддалених частот. З іншого боку, структура гребінки рекурсивних фільтрів (див. рис. 4.6) така, що досить просто зменшити кількість операцій, якщо спектр необхідно обчислювати лише для деяких з ряду рівновіддалених частот $0, \omega_1, 2\omega_1, ..., (N_1 - 1)\omega_1$. Кількість операцій зменшується при цьому в $N_1/(s-1)$ раз, де (s-1) – кількість частот, для яких обчислюється спектр. З урахуванням (4.14) одержуємо

$$G = \left[N_1 (\log_2 N_1 + 1) \right] / (2n_1(s - 1)).$$
(4.16)

Як правило, число *s* відомо заздалегідь, у той час як величини p_2 , p_3 , ..., p_s , що визначають значення частот, можуть змінюватися під час вимірювання параметрів досліджуваних ліній зв'язку. У цьому випадку можна не тільки зменшити кількість операцій, але і спростити схему гребінки рекурсивних фільтрів – гребінка буде складатися з нерекурсивної частини (див. рис. 4.6) і лише (*s*-1)-го (замість N_1) комплексної рекурсивної ланки першого порядку та помножувача.

Приклад 4.1. Задано $N_1 = 256$, кількість частот, для яких виконується спектральний аналіз, *s*-1=32; поточний спектральний аналіз виконується при $n=n_1,2n_1,...$ Визначити, при яких значеннях n_1 кількість операцій, необхідних для аналізу, буде меншою, якщо використовується гребінка рекурсивних фільтрів, а не ШПФ.

3 (4.14) одержуємо *n*₁<32.

4.5 Аналіз спектрів з довільним "часовим вікном" та рівновіддаленими частотами

Вагова функція h(nT), що відповідає довільному обмеженому "часовому вікну", може приймати відмінні від нуля значення лише при обмеженому числі N_1 точок, тобто
$$h(nT) = \begin{cases} g_n & \text{при} 0 \le n < N_1; \\ 0 & \text{при} n \ge N_1 \end{cases},$$
(4.17)

де *g_n* — відомі числа.

Вагова функція h(nT) є імпульсною характеристикою фільтра нижніх частот з лінійною ФЧХ. Поточний спектральний аналіз (4.4) необхідно виконати для рівновіддалених частот $0, \omega_1, 2\omega_1, ..., (N_1 - 1)\omega_1$, причому $\omega_1 = 2\pi/TN_1$.

Використовуючи (4.4), з урахуванням (4.7), одержуємо

$$X_{h}(q\omega_{1},n) = e^{-inq\omega_{1}T} \sum_{r=0}^{N_{1}-1} x(nT-rT)h(rT)e^{irq\omega_{1}T}, q = 0, 1, \dots, N_{1}-1.$$
(4.18)

З аналізу виразів (4.7) і (4.18) випливає, що для обчислення $X_h(q\omega_1,n)$ можна використовувати модифіковані схеми рис. 4.1 і 4.2. Схему рис. 4.3 необхідно доповнити на вході пристроєм, що обчислює добуток x(nT-rT)h(rT). Для кожного значення n кількість операцій множення дійсних чисел збільшується на N_1 . У схемі рис. 4.4 достатньо змінити значення коефіцієнтів. Нові коефіцієнти нерекурсивного фільтра мають такі значення: $h(0),h(T)e^{ir\omega_1T},...,h(N_1T-T)e^{ir(N_1-1)\omega_1T}$. Кількість операцій, необхідна для виконання «повного» аналізу на N_1 частоті, виявляється набагато менша в модифікованій схемі рис 4.3, ніж у гребінці з N_1 модифікованого нерекурсивного фільтра рис. 4.4.

З аналізу (4.7), (4.11), (4.17) і (4.18) слідує, що перетворення типу (4.11) можливе у випадку тільки при $g_n = c^n$, де c=const. Тоді замість (4.11) можна записати інший вираз для передатної функції рекурсивного фільтра з кінцевою імпульсною характеристикою:

$$H_h(z) = \frac{1 - c^{N_1} z^{-N_1}}{1 - c e^{iq\omega_1 T} z^{-N_1}}.$$
(4.19)

Вихідний сигнал цього фільтра, помножений на $e^{-inq\omega_l T}$ дорівнює $X_h(q\omega_l,n)$. Очевидно, що при $g_n = c^n$ для обчислення (4.18) можна використовувати гребінку рекурсивних фільтрів, кожна з яких має передатну функцію (4.19). Відповідна схема відрізняється від схеми на рис. 4.6 лише значеннями коефіцієнтів. Питання про доцільність застосування гребінки рекурсивних фільтрів при $g_n = c^n$ вирішується так само, як у розглянутих вище випадках поточного спектрального аналізу з використанням прямокутного "часового вікна".

Контрольні запитання

1. Дати означення поняття "поточний" спектральний аналіз.

2. Навести приклади використання цифрового аналізу спектрів в телекомунікаційних системах.

3. Пояснити фізичний зміст вагового "зважування" сигналів.

4. Як за допомогою нерекурсивного фільтра знайти амплітудний спектр сигналу?

5. Виконати порівняльний аналіз спектроаналізаторів на базі нерекурсивного та рекурсивного фільтрів.

6. Навести основні етапи синтезу процесора ШПФ для виконання спектрального аналізу з рівновіддаленими частотами.

7. Пояснити як змінюється поточний спектр сигналу, якщо замість прямокутного "вагового вікна" використати "вікно" Ханна.

Задачі

1. Знайти кількість операцій при поточному спектральному аналізі первинного телефонного сигналу на рівновіддалених частотах з роздільною здатністю 1 Гц.

2. Побудувати структуру спецобчислювача ШПФ, який використовується для контролю частотних характеристик згасань абонентських ліній зв'язку на базі цифрового спектрального аналізу вихідних сигналів досліджуваних ліній.

5 ЦИФРОВЕ ОБРОБЛЕННЯ СИГНАЛІВ В БАГАТОКАНАЛЬНИХ СИСТЕМАХ ЗВ'ЯЗКУ

5.1 Цифрове оброблення сигналів з однією бічною смугою

В багатоканальних системах зв'язку методи ЦОС дають змогу з високою точністю виконувати перенесення сигналів у частотній області.

Розглянемо схему, подану на рис. 5.1,а [7]. Вихідний сигнал v(nT)отримується в результаті множення вхідного сигналу x(nT) на дискретну експоненту $e^{i\omega^*nT}$. Модуль спектра $X(e^{i\omega T})$ вхідного сигналу x(nT) умовно показаний на рис. 5.1,6 (позиція 1). Нехай в основній смузі частот $|\omega| \in [0, \pi/T]$ спектр $X(e^{i\omega T})$ займає смугу частот $|\omega| \in [\omega_1, \omega_2]$. Як відомо, спектр дискретного сигналу періодичний у частотній області з частотою дискретизації $\omega_D = 2\pi/T$. В результаті множення сигналу x(nT) на дискретну експоненту $e^{i\omega^*nT}$ отримується сигнал y(nT), спектр якого $Y(e^{i\omega T})$ дорівнює спектру $X(e^{i\omega T})$ вхідного сигналу, зсунутого по осі частот на величину ω^* вправо: $Y(e^{i\omega T}) = X(e^{i(\omega-\omega^*)T})$. На рис. 5.1,6 (позиція 2) подано модуль спектра $Y(e^{i\omega T})$ сигналу y(nT) при $\omega = \omega *_1 = (\omega_2 + \omega_1)/2$. Множення на носійну $e^{i\,\omega^*_1nT}$ призвело до зсуву спектра вправо. В результаті нижня бічна смуга $(\omega < 0, \omega \in [-\omega_2, \omega)$ $-\omega_1$) основного спектра сигналу x(nT)виявилася розташованою по осі частот симетрично щодо частоти ω=0 і зайняла смугу частот $\left[-\frac{\omega_2-\omega_1}{2},\frac{\omega_2-\omega_1}{2}\right]$, а верхня бічна смуга ($\omega < 0, \omega \in [\omega_1,\omega_2]$) зайняла смугу частот $\left[\frac{3\omega_1-\omega_2}{2},\frac{\omega_1-3\omega_2}{2}\right]$. Якщо ж вхідний сигнал x(nT)помножити на носійну $e^{i \omega^*_1 nT}$, то спектр $X(e^{i \omega T})$ зсувається вліво. В спектрі $Y(e^{i \omega T})$ сигналу y(nT) симетрично щодо частоти $\omega=0$ в смузі частот $\left[-\frac{\omega_2-\omega_1}{2},\frac{\omega_2-\omega_1}{2}\right]$ розташовується верхня бічна смуга спектра $X(e^{i \omega T})$, а

нижня бічна смуга займає смугу частот $\left[-\frac{\omega_1 + 3\omega_2}{2}, -\frac{3\omega_1 + \omega_2}{2}\right]$ (рис. 5.1,6, позиція 3).

Зсув спектра на рис. 5.1,б (позиції 2 і 3), використовується при отриманні сигналу з однією бічною смугою (ОБС). Докладніше методи отримання сигналу з ОБС будуть розглянуті нижче. Відзначимо що в розглянутих випадках сигнал y(nT) є комплексним. Це видно і з рис. 5.1,б (позиції 2 і 3), оскільки спектр сигналу несиметричний щодо частоти $\omega = 0$. Операція множення сигналу x(nT) на $e^{i\omega^*nT}$ виконується за допомогою схеми, поданої на рис. 5.2,а, де $y_1(nT)$ і $y_2(nT)$ – відповідно дійсна і уявна складові вихідного сигналу y(nT) схеми рис. 5.1,а.

Рисунок 5.1 – Перенесення та інверсія спектра

На рис. 5.1,б (позиція 4) подано модуль спектра $Y(e^{i\omega T})$ сигналу y(nT) при $\omega^* = \omega^*_2$, причому ($\omega_2 \leq \omega^*_2 \leq \pi/T - \omega_2$). В цьому випадку в основній смузі частот $\omega \in [0, \pi/T]$ спектр вихідного сигналу займає частотний діапазон [- $\omega_2 + \omega^*_2$, $\omega_2 + \omega^*_2$]. Вихідний сигнал y(nT) схеми рис. 5.1,а також є комплексним.

У ряді випадків необхідно отримати дійсний сигнал u(nT), спектр якого $U(e^{i\omega T})$ в основній смузі частот $\omega \in e[0, \pi/T]$ є спектром початкового сигналу x(nT), обидві бічні смуги якого розташовані симетрично відносно певної частоти $\omega^* = \omega^*_2$ (див. рис. 5.1,6, позиція 5).

Для отримання такого сигналу достатньо помножити вхідний сигнал x(nT) на носійну $e^{i\,\omega^*_2 nT}$ і взяти дійсну частину вихідного сигналу y(nT). Очевидно, що ці операції зводяться до множення вхідного сигналу x(nT) на носійну $2\cos\omega^*_2 nT$ (рис. 5.2,6). Дійсно, якщо подати $\cos\omega^*_2 nT$ у вигляді $\cos\omega^*_2 nT = \frac{e^{i\,\omega^*_2 nT} + e^{-i\,\omega^*_2 nT}}{2}$, тоді $u(nT) = x(nT)\cos\omega^*_2 nT = e^{i\,\omega^*_1 nT} = x(nT)e^{i\omega^*_2 nT} + x(nT)e^{-i\omega^*_2 nT} = u_1(nT) + u_2(nT)$.

Рисунок 5.2 – Схеми перемноження сигналів

Спектр $U_2(e^{i\omega T})$ сигналу $u_2(nT)$ дорівнює спектру $X(e^{i\omega T})$ вхідного сигналу, зсунутому по осі частот на величину ω^*_2 вправо, а спектр $U_2(e^{i\omega T})$ сигналу $u_2(nT)$ дорівнює спектру $X(e^{i \omega T})$ вхідного сигналу, зсунутому на величину ω^*_2 вліво. Оскільки спектр $U(e^{i\omega T}) = U_1(e^{i\omega T}) + U_2(e^{i\omega T})$, сигнал u(nT) має необхідний спектр (див. рис. 5.1,6, позиція 5).

На рис. 5.1,б (позиція 6) подано модуль спектра $Y(e^{i \omega T})$ сигналу y(nT)при $\omega^* = \omega^* = \pi/T$. У цьому випадку в основній смузі частот $\omega \in [0, \pi/T]$ спектра вихідного сигналу розташовується інверсний спектр вхідного сигналу

$$Y(e^{i\,\omega T}) = X(e^{i(\pi/T - \omega)T}), \, \omega > 0.$$

Оскільки

$$e^{i\,\omega^*_3\,nT} = e^{i\,nT} = \begin{cases} 1\,npu\,n = 0, 2, 4, \dots \\ -1\,npu\,n = 1, 3, 5, \dots, \end{cases}$$

то інверсія спектра сигналу x(nT), що займає в загальному випадку смугу частот $\omega \in [0, \pi/T]$, здійснюється шляхом простої зміни знаку кожного другого відліку:

$$y(nT) = (-1)^n x(nT), n = 0, 1, 2...$$
(5.1)

Сигнал y(nT) в цьому випадку, звичайно, є дійсним.

Приклад 5.1. Розглянемо вхідний сигнал x(nT) = 1 $sin\omega_{x}nT$ при $\omega_x = 2\pi 1000 \ 1/c, T = 1/8000 \ c \ (f_d = 8 \ \kappa \Gamma u)$. На рис. 5.3,а подано відліки сигналу x(nT) і пунктиром обвідна цього сигналу. На рис. 5.3, в подано модуль спектра $X(e^{i\omega T})$ вхідного сигналу, що містить одну гармоніку на частоті $\omega_x = 2\pi 1000 \ 1/c$. Якщо змінити знак кожного другого відліку сигналу x(nT) за правилом (5.1), отримаємо сигнал y(nT), відліки якого та обвідна (пунктиром) подані на рисунку 5.3 б. З цього рисунка видно, що сигнал v(nT) є дискретною синусоїдою з частотою

$$\omega_{\rm v} = \pi/T \cdot \omega_{\rm x} = \pi 8000 \cdot \pi 2000 = 2\pi 3000 \ 1/c.$$

 ϵ інверсним спектром $X^{e^{i(\frac{\pi}{T}-\omega)T}}$ $Y(e^{i\omega T})$ сигналу y(nT)Спектр сигналу x(nT) і поданий на рис. 5.3, г.

5.2 Цифрова інтерполяція сигналів

У цифрових системах зв'язку є тракти, у яких частота дискретизації вихідного сигналу вища за частоту дискретизації вхідного сигналу. Наприклад, у перетворювачах сигналів з ІКМ в сигнали з дельтамодуляцією (ДМ), вокодерах, цифрових пристроях узгодження систем зв'язку з ЧвРК і ЧРК. В усіх цих випадках необхідно збільшити частоту дискретизації вхідного сигналу, довівши її до значення частоти дискретизації вихідного сигналу. В літературі з ЦОС ця операція отримала назву "інтерполяція".

Рисунок 5.3 – Інвертування сигналів

Перш ніж перейти до розгляду задачі підвищення частоти дискретизації при ЦОС, слід уточнити термін "інтерполяція". В математиці задачею інтерполяції називається задача побудови функції $\gamma(t)$ на скінченній множині $\{f(t_0), f(t_1), \dots, f(t_k)\}$ відомих значень функції f(t) такою, що в заданих точках $t_o, t_l, ..., t_{\kappa} \gamma(t_l) = f(t_l)$ (l=0, 1, ..., k), а в решті точок області визначення f(t) функція $\gamma(t)$ приблизно є функцією f(t) з тим або ступенем точності. Розглянемо тепер гратчасту іншим функцію f(nT')=f(nmT), утворену з неперервної функції f(t) (f(nmf)=f(t) при t = nmT. Стосовно гратчастих функцій задачею інтерполяції є задача побудови гратчастої функції $\gamma(nT)$ з періодом дискретизації T на скінченній множині $\{f(0), f(mT), f(2mT), \dots f(kmT)\}$ відомих значень гратчастої функції f(nmT)таких, що в заданих точках $\gamma(mnT) = f(nmT)$ (n = 0, 1 ..., k), а в решті точок $(nT \neq 0, mT, 2mT, ..., kmT)$ функція $\gamma(nT)$ приблизно дорівнює функції f(t), з якої утворена початкова гратчаста функція *f(nmT)*.

Розглянемо схему, подану на рис. 5.4. Вхідний аналоговий сигнал x(t) поступає на дискретизатор Д, що функціонує з періодом дискретизації

T' = mT (*m*-ціле число). Вихідний сигнал дискретизатора описується гратчастою функцією x(nT')=x(nmT) з періодом дискретизації T' = mT. Цей сигнал поступає на ідеальний інтерполятор I, що збільшує частоту дискретизації в *m* разів. Вихідний сигнал I $y \square (nT)$ з періодом дискретизації T=T'/m поступає на лінійну дискретну систему H, вихідний сигнал якої описується гратчастою функцією y(nT).

Рисунок 5.4 – Схема інтерполяції

Нехай вхідний сигнал схеми (рис. 5.4) $x(t)=sin2\pi f_1t+sin2\pi f_2t$, причому $f_1=1$ Гц, а $f_2=2$ Гц. Період синхронізації дискретизатора Д – T'=2T=1/8 с. На рис. 5.5,а зображено даний вхідний сигнал x(t), а на рис. 5.5,б – модуль спектра $X(i\omega)$ сигналу x(t), що містить дві гармоніки на частотах $\omega_1 = 2\pi$ і $\omega_2=4\pi$. В результаті дискретизації сигналу x(t) отримується дискретний сигнал $x(n2T)=sin(\pi n/4)+sin(\pi n/2)$ з періодом дискретизації T'=2T=1/8 с (рис. 5.5,в). Вихідний сигнал І у \Box (nT) з періодом дискретизації T(m = 2) зображено на рис. 5.5,г.

Оскільки ми вважаємо, що операція інтерполяції виконана ідеально, то відліки, отримані в результаті інтерполяції, дорівнюють значенням функції x(t) у відповідні моменти часу ($y \square (nT)=x(t)$ при t=nT для всіх $n \ge 0$), тобто $y \square (nT)=sin (\pi n/8)+sin (\pi n/4)$. Припустимо, що частотна характеристика лінійної дискретної системи H дорівнює $H(e^{i\omega T})=e^{-iL(\omega)\omega T}$. Розглянемо такі три випадки [7].

Випадок 1. $L(\omega) = const = L_1$, причому $L_1 - ціле число.$ У цьому випадку лінійна дискретна система Н характеризується лінійною фазочастотною характеристикою $\varphi_1(\omega) = -L_1 \omega T$. Оскільки $|H(e^{i\omega T})| = 1$, вихідний сигнал y(nT) є сумою вхідних дискретних гармонічних складових $sin(\pi n/8)$ і $sin(\pi n/4)$ сигналу x(nT), зсунутих за фазою на величину $-L_1\omega_1T$ та $-L_1\omega_2T$ відповідно.

Вихідний сигнал
$$y(nT) = \sin\left(\frac{\pi}{8}n - \frac{\pi}{2}\right) + \sin\left(\frac{\pi}{4}n - \pi\right)$$
 показаний на

рис. 5.5,д (L_1 =4). Фазовий зсув гармонічних складових на величину – $L_1\omega T$ (L_1 – ціле) відповідає затримці сигналу в часовій області на ціле число інтервалів дискретизації, що дорівнює L_1 . Це видно з рис 5.5, г, д: відліки сигналу y(nT) дорівнюють відлікам сигналу y(nT), затриманим на інтервал 4T. Таким чином, сукупність інтегратора I та лінійної дискретної системи H з лінійною частотною характеристикою $H(e^{-s\omega T}) = e^{-iL_1\omega T}$ (L_1 =0,1,2...) також можна розглядати як ідеальний інтерполятор. Звичайно,

що модуль спектра $Y(e^{i\omega T})$ сигналу y(nT) в основній смузі частот має той же вигляд, що і модуль спектра сигналу x(t) (рис. 5.5,6).

Випадок 2. $L(\omega) = const = L_2$, причому L_2 – неціле число. У цьому випадку лінійна дискретна система Н характеризується, як і у випадку 1, лінійною фазочастотною характеристикою $\varphi_2(\omega) = -L_2\omega T$.

Якщо припустити для прикладу $L_2=3,5,$ то сигнал $y(nT) = \sin\left(\frac{\pi}{8}n - \frac{7\pi}{16}\right) + \sin\left(\frac{\pi}{4}n - \frac{7}{8}\pi\right)$ (рис. 5.5,е).

Фазовий зсув гармонічних складових на величину - $L_2\omega T$ відповідає затримці сигналу в часовій області на неціле число інтервалів дискретизації. Отже, відліки сигналу y(nT) у цьому випадку не дорівнюють відлікам сигналу *у(nT)* на вході лінійної дискретної системи. Оскільки початкові відліки дискретного сигналу *х(nmT)*, що надійшли до входу інтерполятора, виявилися втраченими, тому не можна вважати що сукупність I та системи з частотною характеристикою $H(e^{i\omega T}) = e^{-iL_2\omega T}$ є інтерполятором у розглянутому вище значенні. Разом з тим відліки вихідного сигналу y(nT) є відліками початкового сигналу x(t), взятого із затримкою $t_3 = L_2T$: y(nT) = x(t) при $t = nT - L_2T$. Це добре видно з рис. 5.5,е: показана пунктиром обвідна сигналу у(nT) збігається за формою з початковим сигналом x(t). Отже, якщо наявність початкових значень інтерпольованого дискретного сигналу x(nmT) не обов'язкова у вихідному сигналі y(nT), можна прийняти, що сукупність ІІ і лінійної дискретної системи з частотною характеристикою $H(e^{i\omega T}) = e^{-iL_2\omega T}$ (L₂ = const, L₂ неціле число) також розв'язує задачу інтерполяції дискретного сигналу x(nmT). Слід відзначити, що, як і у випадку 1, модуль спектра $Y(e^{i\omega T})$ сигналу y(nT) в основній смузі частот має той же вигляд, що й модуль спектра вхідного сигналу x(t) (рис. 5.5,б).

Випадок 3. $L(\omega) \neq const.$ У цьому випадку лінійна дискретна система *Н* має нелінійну фазочастотну характеристику $\varphi_3(\omega) = -L(\omega)\omega T$. Припустимо для нашого прикладу $L_1(\omega_1)(\omega_1/\omega_2) = 2$. У цьому випадку вихідний сигнал $y(nT) = sin(-\pi n/8 - \pi/2) + sin(\pi n/4 - \pi/2)$ (рис. 5.5,ж).

Очевидно, що відліки сигналу y(nT) не відповідають відлікам сигналу $\Box y(nT)$, що поступає на вхід лінійної дискретної системи з частотною характеристикою $H(e^{i\omega T}) = e^{-iL(\omega)\omega T}$, а також не є відліками вхідного сигналу x(t). На рис. 5.5,ж добре видно, що показана пунктиром обвідна сигналу y(nT) істотно відрізняється від сигналу x(t).

Разом з тим очевидно, що модуль спектра $Y(e^{i\omega T})$ сигналу y(nT) в основній смузі частот як і раніше має той же вигляд, що і модуль спектра вхідного сигналу x(t) (рис. 5.5,6). Отже, у разі потреби, за дискретним сигналом y(nT) може бути відновлений аналоговий сигнал x(t), модуль спектра якого збігається з модулем спектра початкового сигналу x(t). Таким чином, у даному випадку схема (рис. 5.4) розв'язує задачу

збільшення частоти дискретизації сигналу при збереженні модуля його спектра. Для певного класу сигналів в техніці зв'язку (наприклад, для мовних) фазові співвідношення між гармонічними складовими сигналів на вході та виході пристроїв оброблення не мають значення. У зв'язку з цим можна прийняти, що для вказаного класу сигналів сукупність І та лінійної дискретної системи з частотною характеристикою $H(e^{i\omega T}) = e^{-iL(\omega)\omega T}$ також розв'язує задачу інтерполяції дискретного сигналу x(nmT). При цьому мається на увазі, що в даному випадку збільшується частота дискретизації сигналу при збереженні вигляду модуля його спектра.

Рисунок 5.5 – Перетворення сигналів

Перейдемо тепер до розгляду задачі інтерполяції при ЦОС. Процес інтерполяції дискретного сигналу є, по суті, лінійною дискретною фільтрацією. Розглянемо найпростішу вихідну дискретну систему (НВДС), подану на рис. 5.6,а. Така система використовується для збільшення частоти дискретизації в *m* разів (*m* – ціле число). Вхідним сигналом НВДС є дискретний сигнал x(nT')=x(nmT) з періодом дискретизації T'=mT.

Вважатимемо, що сигнал x(nmT) отриманий в результаті дискретизації аналогового сигналу x(t), що має фінітний спектр $X(i\omega)$, модуль якого умовно поданий на рис. 5.6,6 (позиція 1). Спектр $X(i\omega)$ займає смугу частот $|\omega| \in [0, \omega_{max}]$. Спектр $X(e^{i\omega T'})$ дискретного сигналу x(nT')=x(nmT) періодичний по осі частот з частотою дискретизації $\omega'_D=2\pi/T'=2\pi/mT$:

$$X(e^{i\omega T'}) = \frac{1}{mT} \sum_{k=-\infty}^{\infty} X(i\omega + ik\frac{2\pi}{mT}).$$
(5.2)

Модуль спектра $X(e^{i\omega T'})$ сигналу x(nT') умовно показаний на рис. 5.6,6 (позиція 2) при $\omega'_D = 2\omega_{max}$ (період дискретизації $T' = \pi/\omega_{max}$). Сигнал x(nT') поступає на елемент, що змінює частоту дискретизації (ЕЗЧД) і функціонує згідно з алгоритмом:

$$x^{*}(nT) = \begin{cases} x\left(\frac{n}{m}T'\right)npu \ n = 0, m, 2m, ...\\ 0 \qquad npu \ i + uux \ n, \end{cases}$$

тобто послідовність $x^*(nT)$ синтезується з послідовності x(nT') шляхом введення *m*-1 нульового відліку між двома послідовними інформаційними відліками. Спектр $X^*(e^{i\omega T})$ сигналу $x^*(nT)$ має той же вигляд, що і спектр вхідного сигналу ЕЗЧД (рис. 5.6, б, позиція 2). Дійсно, оскільки $x^*(nT)=0$ при $n\neq 0$, *m*, 2*m*, ..., замінивши у виразі для спектра $X^*(e^{i\omega T})$ сигналу $x^*(nT)$

$$X^*(e^{i\omega T}) = \sum_{n=0}^{\infty} x^*(nT)e^{-i\omega nT}$$

п на *пт*, отримаємо

$$X * (e^{i\omega T}) = \sum_{n=0}^{\infty} x * (nmT)e^{-i\omega nmT} = \sum_{n=0}^{\infty} x(nT')e^{-i\omega nT'} =$$
$$= X(e^{-i\omega nT'}) = \frac{1}{mT} \sum_{k=-\infty}^{\infty} X(i\omega + ik\frac{2\pi}{T'}) .$$
(5.3)

Спектр $X^*(e^{i\omega T'})$ сигналу $x^*(nT)$ з частотою дискретизації $\omega_D = 2\pi/T$ періодичний з початковою частотою дискретизації $\omega'_D = 2\pi/T'$ вхідного сигналу ЕЗЧД.

Очевидно, що якби дискретний сигнал $\Box y(nT)$ з частотою дискретизації $\omega_D = m \omega'_D$ отримувався би безпосередньо шляхом дискретизації початкового аналогового сигналу x(t) зі спектром $X(i\omega)$, поданим на рис. 5.6,6 (позиція 1), то його спектр $Y(e^{i\omega T})$ визначався б як

$$\widetilde{Y}(e^{i\omega T}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(i\omega + ik\frac{2\pi}{T})$$
(5.4)

і був би періодичним по осі частот з частотою $\omega_D = 2\pi/T$. Модуль спектра $\tilde{Y}(e^{i\omega T})$ такого сигналу умовно показаний на рис. 5.6,б (позиція 3). З порівняння (5.4) і (5.3) та позицій 2 і 3 рис. 5.6,б видно, що спектр $X^*(e^{i\omega T})$ сигналу на виході ЕЗЧД відрізняється від необхідного спектра $\tilde{Y}(e^{i\omega T})$ наявністю в основній смузі частот $|\omega| \in [0, \pi/T]$ додаткових частотних складових, що займають область $|\omega| \in [\pi/T', \pi/T]$, і величиною постійного множника. Отже необхідний сигнал y(nT) може бути отриманий з сигналу $x^*(nT)$ за допомогою дискретного ФНЧ, що подавляє додаткові частотні складові. Ідеалізована АЧХ такого фільтра (при m = 3) подана на рис. 5.6,б (позиція 4). У загальному випадку ідеалізована АЧХ дискретного фільтра нижніх частот повинна задовольняти вимоги

$$|H(e^{i\omega T})| \approx \begin{cases} m npu |\omega| \in [0, \pi/mT]; \\ 0 npu |\omega| \in [\pi/mT, \pi/T]. \end{cases}$$
(5.5)

Тоді спектр $X(e^{i\omega T})$ сигналу y(nT) на виході схеми рис. 5.6,а в основній смузі частот $|\omega| \in [0, \pi/T]$ з врахуванням (5.3) і (5.5) дорівнює

$$Y(e^{i\omega T}) = X * (e^{i\omega T})H(e^{i\omega T}) =$$
$$= X * (e^{i\omega T}) \Big| H(e^{i\omega T}) \Big| e^{i\varphi(\omega)} = \frac{1}{T} X(i\omega) e^{i\varphi(\omega)}.$$
(5.6)

З порівняння (5.6) і (5.4) видно, що спектр сигналу y(nT) на виході схеми (рис 5.6,а) пов'язаний зі спектром сигналу y(nT), отриманого безпосередньо шляхом дискретизації початкового аналогового сигналу з частотою дискретизації $\omega_D = 2\pi/T$, співвідношенням

$$Y(e^{i\omega T}) = \widetilde{Y}(e^{i\omega T})e^{i\varphi(\omega)}).$$
(5.7)

Із (5.7) видно, що НВДС (див. рис. 5.6), містить ЕЗЧД і дискретний фільтр з АЧХ, яка визначається (5.5), можна розглядати як сукупність ідеального інтерполятора і лінійної дискретної системи з частотною характеристикою $H(e^{i\omega T}) = e^{-i\phi(\omega)}$, яка була розглянута вище (див. рис. 5.4). Таким чином, форма та спектр сигналу на виході НВДС (див. рис. 5.6), що використовується як інтерполятор, істотно залежать від типу дискретного фільтра, що використовується та його частотної характеристики.

Розглянемо інтерполяцію дискретного сигналу за допомогою НВДС (див. рис. 5.6), що містить нерекурсивний дискретний фільтр (НДФ) з частотною характеристикою [3]

$$H(e^{i\omega T}) = \sum_{i=0}^{N} b_i e^{-i\omega lT} = \left| H(e^{i\omega T}) \right| e^{i\varphi(\omega)},$$

де $|H(e^{i\omega T})|$ визначається (5.5) і лінійною ФЧХ $\varphi(\omega) = -L_{\omega}T$.

Для фільтра вигляду 1, який має непарну кількість відліків імпульсної характеристики (N – парне), $L = L_1 = N/2$ – ціле число.

Рисунок 5.6 – Інтерполяція сигналу

Отже, НВДС (див. рис. 5.6), що містить нерекурсивний дискретний фільтр вигляду 1 є ідеальним інтерполятором, що зберігає як спектр, так і форму вхідного сигналу. Затримка сигналу в часовій області дорівнює $L_1 = N/2$ інтервалів дискретизації (див. рис. 5.5 д).

Якщо ж в НВДС використовується фільтр вигляду 2, що має парну кількість відліків імпульсної характеристики (N – непарне), то $L = L_2 = N/2$ – неціле число. Цей випадок відповідає випадку 2 для схеми рис. 5.4. Таким чином, при інтерполяції сигналу за допомогою НВДС (див. рис. 5.6), який містить НДФ виду 2, також зберігаються спектр і форма інтерпольованого сигналу, проте відліки останнього не зберігаються (див. рис. 5.5,е). Затримка сигналу в часовій області дорівнює $L_2=N/2$ інтервалів дискретизації.

Очевидно, що використовування НДФ вигляду 1 при інтерполяції сигналів виявляється більш доцільним, оскільки в цьому випадку початкові відліки інтерпольованого сигналу можна безпосереднью передавати на вихід НВДС (із затримкою $t_3 = L_1 T$), а за допомогою фільтра обчислювати тільки *m*-1 проміжних відліків. Так, при збільшенні частоти дискретизації сигналу в *m*=2 рази (див. рис. 5.5) в НДФ треба обчислювати лише кожен другий відлік. Тобто, НДФ функціонує при частоті дискретизації вхідного інтерпольованого сигналу. Якщо ж в НВДС використовується НДФ вигляду 2, необхідно обчислювати з частотою, удвічі більшою, ніж у попередньому випадку. Треба відзначити що в обох

випадках для обчислення чергового відліку вихідного сигналу не вимагається виконувати N+1 операцій множення (N – порядок фільтра), оскільки у вхідному сигналі $x^*(nT)$ тільки кожен *m*-й відлік відрізняється чином, якщо порівняти лва НДФ, віл нуля. Таким імпульсні характеристики яких містять по N+1 відліків, причому перший фільтр використовується в системі без зміни частоти дискретизації і функціонує на частоті f'_D, а другий фільтр використовується в НВДС для збільшення частоти дискретизації f'_D вхідного сигналу в *m* разів (працює на частоті mf'_D), то кількість операцій множення V за одиницю часу в цих фільтрах приблизно однакова. Дійсно для першого фільтра $V_1 = f'_D(N+1)$, а для другого фільтра $V_2 = mf'_D \operatorname{int}\left(\frac{n+1}{m}\right) \approx f'_D (N+1).$

При інтерполяції сигналів за допомогою НВДС (див. рис. 5.6) можна використовувати рекурсивні дискретні фільтри (РДФ). Оскільки фазочастотна характеристика РДФ, як правило, нелінійна, НВДС (див. рис. 5.6), містить РДФ еквівалентні схемі рис. 5.4 для випадку 3, яка зберігає при збільшенні частоти дискретизації вид модуля спектра інтерпольованого сигналу, але не зберігає форму сигналу (див. рис. 5.5,ж). Отже, при інтерполяції сигналів можна використовувати РДФ тільки в тому випадку, якщо фази гармонічних складових сигналу не враховуються.

Вище розглядалась інтерполяція сигналу за допомогою НВДС, що містить ідеальний дискретний фільтр, амплітудно-частотна характеристика $|H(e^{i\omega T})|$ якого задовольняє умову (5.5). В реальних системах для інтерполяції цифрового сигналу використовується найпростіша вихідна цифрова система (НВЦС), що містить цифровий фільтр, частотна характеристика $H^*(e^{i\omega T})$ якого апроксимує частотну характеристику $H(e^{i\omega T})$, що ідеалізується з певним ступенем точності. Якщо фазочастотна характеристика ЦФ може бути лінійною (у разі НЦФ), то АЧХ має задану нерівномірність у смузі пропускання ΔA_1 , відхилення від нуля в смузі затримання ΔA_2 і проміжну смугу скінченної ширини Δ_{II} .

Якщо частота дискретизації ω'_D інтерпольованого сигналу вибрана з умови $\omega'_D = 2\pi/T' = 2\omega_{max}$, де ω_{max} – верхня гранична частота спектра початкового аналогового сигналу (рис. 5.6,6, позиція 2), ЦФ виявляється нереалізовуваним оскільки неможливо синтезувати ЦФ з шириною перехідної смуги $\Delta_{\Pi} = 0$. Отже, частота дискретизації інтерпольованого сигналу ω^*_D повинна вибиратись з умови $\omega^*_D > \omega'_D > \omega_{max}$. Чим більше частота ω^*_D буде перевищувати величину $2\omega_{max}$, тим ширша смуга, що відділяє сусідні складові спектра $X(e^{i\omega T'})$ інтерпольованого сигналу і тим більший частотний діапазон Δ_{Π} можна відвести на проміжну смугу АЧХ ЦФ. На рис. 5.7,а умовно поданий модуль спектра цифрового сигналу x(nT') НВЦС (див. рис. 5.6,а) при $\omega^*_D > \omega_{max}$. Очевидно, що величина Δ_{Π} визначається співвідношенням $\Delta_{\Pi} = \omega^{*}{}_{D} - 2\omega_{max}$. Чим більша величина Δ_{Π} , тим простіший фільтр (менший порядок передатної функції).

Нерівномірність АЧХ у смузі пропускання призводить до того, що модуль спектра $Y(e^{i\omega T})$ сигналу y(nT) на виході НВЦС (див. рис. 5.6,а) у смузі пропускання фільтра $|\omega| \in [0, \omega_{max}]$ (без урахування власних шумів фільтра) з урахуванням (5.6) визначається як

$$\left|Y(e^{i\omega T})\right| = \left|X^*(e^{i\omega T})H^*(e^{i\omega T})\right| = \frac{1}{T}\left|X(i\omega)\right| H^*(e^{i\omega T})\right| .$$
(5.8)

З (5.8) видно, що модуль спектра сигналу, отриманого в результаті інтерполяції, змінюється у відповідності з АЧХ ЦФ. Неповне подавлення складових у смузі затримання ЦФ призводить до того, що в спектрі вихідного сигналу в смузі частот $|\omega| \in [\pi/mT, \pi/T]$ залишаються додаткові частотні складові спектра інтерпольованого сигналу.

На рис. 5.7,б подана АЧХ ЦФ (при m = 2), а на рис. 5.7,в – модуль спектра сигналу отриманого в результаті збільшення частоти дискретизації в m разів. З рис. 5.7,в видно, що модуль спектра сигналу в смузі пропускання фільтра $|\omega| \in [0, \omega_{max}]$ змінився відповідно до АЧХ ЦФ у смузі пропускання, а в смузі $|\omega| \in [\pi/T \cdot \omega_{max}, \pi/T]$ додаткові частотні складові.

Рисунок 5.7 – Інтерполяція за допомогою ЦФ

Зміна модуля спектра сигналу в смузі $|\omega| \in [0, \omega_{max}]$ і поява додаткових частотних складових у смузі $[\omega_{max}, \pi/T]$ призводять до спотворення форми сигналу, отриманого в результаті інтерполяції. Очевидно, що чим менші величини ΔA_1 і ΔA_2 тим менші й спотворення сигналу. З другого боку, бажано величини ΔA_1 і ΔA_2 вибрати якомога більшими, оскільки це приводить до спрощення передатної функції і, отже, схеми фільтра. У ряді випадків питання про вибір величин ΔA_1 і ΔA_2 розв'язується достатньо просто. Це пояснюється тим, що при ЦОС збільшення частоти дискретизації використовується, як правило, для "очищення" певного частотного діапазону в основній смузі частот $|\omega| \in [0, \pi/T]$, щоб на це місце помістити спектр іншого сигналу, утворивши груповий сигнал з ЧРК. Тоді величина ΔA_1 визначається допустимими спотвореннями модуля спектра даного інтерпольованого сигналу, а величина ΔA_2 визначається допустимим рівнем шумів, які можуть бути внесені в спектр іншого сигналу, об'єднуваного з першим.

Наступним джерелом похибок інтерполяції при ЦОС є округлення результатів арифметичних операцій в регістрах ЦФ при обчисленні інтерпольованих відліків сигналу. Отже, допуски ΔA_1 і ΔA_2 можна розподілити: на нерівномірність АЧХ у смузі пропускання і допустиме відхилення від нуля в смузі затримання дискретного фільта (ΔA^0_1 і ΔA^0_2); на ефекти округлення коефіцієнтів дискретного фільтра (ΔA_1^{κ} і ΔA_2^{κ}); на ефекти квантування вхідного сигналу ($\Delta A'_{1A}$ і $\Delta A'_{2A}$) і на ефекти, обумовлені округленням кодів в регістрах фільтра ($\Delta A'_{1P}$ і $\Delta A'_{2P}$).

У розглянутих вище випадках інтерполяція дискретного або цифрового сигналу виконувалася за допомогою найпростіших вихідних систем, що містять один ЕЗЧД і один фільтр. Разом з тим збільшення частоти дискретизації можна виконати не в один прийом, а поступово, за допомогою багатократної вихідної системи БВДС. У ряді випадків це може привести до оптимізації визначених параметрів системи, наприклад, об'єму оперативної пам'яті або кількості арифметичних операцій за одиницю часу.

Приклад 5.2. Розглянемо задачу збільшення частоти дискретизації сигналу x(nT') = x(n6T) в m=6 разів. Модуль спектра $X(e^{i\omega T'})$ сигналу x(nT') поданий на рис. 5.8,а. Вважатимемо, що в основній смузі частот $|\omega| \in [0, \pi/T']$ спектр $X(e^{i\omega T'})$ займає смугу частот $|\omega| \in [\omega_{min}, \omega_{max}]$, де $\omega_{min}=0,1\pi/T'$, а $\omega_{max}=0,9\pi/T'$.

Рисунок 5.8 – Спектри сигналів при збільшенні частоти дискретизації

Збільшення частоти дискретизації сигналу x(nT') в m = 6 разів можна виконати за допомогою НВДС (див. рис. 5.6,а), ідеалізована АЧХ фільтра якої подана на рис. 5.8,6. Очевидно, що ширина проміжної смуги $\Delta_{\Pi B Д C}$ для даного фільтра визначається умовою $\Delta_{\Pi B Д C} = \omega'_D - 2\omega_{max} =$

 $=2\pi/T' \cdot 1,8\pi/T' = 0,2\pi/T'$. Отже, нормована до частоти дискретизації ширина перехідної смуги $\Delta^{\mu}_{\Pi B Д C}$ даного фільтра дорівнює $\Delta^{\mu}_{\Pi B Д C} = \Delta_{\Pi B Д C}/\omega_D \approx 0,017$, де $\omega_D = 6 \omega'_D$ – частота дискретизації вихідного сигналу. Якщо в НВДС використовується нерекурсивний фільтр, то для оцінювання порядку N його передатної функції можна скористатися емпіричною формулою, за якою $|\omega| \hat{N} = \mu / \Delta^{\mu}$, де μ – постійний коефіцієнт, а Δ^{μ} – нормована ширина перехідної смуги. Тоді оцінка порядку передатної функції нерекурсивного фільтра НВДС дорівнює $\hat{N} = 60\mu$. Це значить, що при побудові такого фільтра в прямій формі необхідно мати оперативну пам'ять для зберігання об'ємом 60μ відліків вхідного сигналу.

Збільшення частоти дискретизації сигналу x(nT') в m = 6 разів можна здійснити і за допомогою багатократної вихідної дискретної системи, структура якої подана на рис. 5.9.

Рисунок 5.9 – Система підвищення частоти дискретизації

Частота дискретизації $\omega'_D = 2\pi/T'$ вхідного сигналу x(nT') збільшується в 2 рази в підсистемі 1, що складається з ЕЗЧД, який поміщає один нульовий відлік між кожною парою інформаційних відліків вхідного сигналу x(nT'), і фільтра H₁, що функціонує з частотою $\omega_{DI} = \omega'_{D}$. АЧХ фільтра подана на рис. 5.8, в модуль спектра вихідного сигналу y(n3T)першої підсистеми – на рис. 5.8, г. Підсистема 2 збільшує частоту дискретизації вихідного сигналу першої підсистеми в 3 рази, внаслідок чого частота дискретизації ω'_D вхідного сигналу виявляється підвищеною в необхідне число раз. Ідеалізована АЧХ фільтр другої підсистеми подана на рис. 5.8,д, а модуль спектра вихідного сигналу – на рис. 6.8,е. Оцінимо об'єм оперативної пам'яті, що необхідна для побудови обох фільтрів БВДС. Для фільтру першої підсистеми ширина проміжної смуги $\Delta_l = \omega'_D - 2\omega_{max} =$ $= 0,2\pi/T'$, а $\Delta_{I}{}^{\mu} = \Delta_{I}/\omega_{DI} = 0,05$. Тоді $\hat{N}_{1} = 20\mu$. Для фільтра другої підсистеми ширина проміжної смуги Δ_2 може бути вибрана достатньо великою, оскільки є широка вільна зона в результаті подавлення частотних складових початкового спектра в першій підсистемі:

$$\Delta_2 = \omega_{D1} - 2\omega_{max} = 2\pi/3T - 1, 8\pi/6T \approx 0.367\pi/T,$$

a $\Delta_2^{H} = \Delta_2 / \omega_D \approx \approx 0,183.$

Тоді $\hat{N}_2 \approx 6\mu$. Це означає, що при інтерполяції сигналу x(nT') за допомогою двократної вихідної системи (див. рис. 5.9) для двох

нерекурсивних фільтрів потрібно мати оперативну пам'ять для зберігання (20+6)µ відліків. Отже, розглянута БВДС оптимальніша НВДС за критерієм необхідного об'єму оперативної пам'яті.

Слід відзначити, що дані оцінки є достатньо грубими та не враховують тієї обставини, що допуски на нерівномірність АЧХ у смузі пропускання для фільтрів в БВДС повинні бути меншими, ніж допуски ΔA_1 для фільтра НВДС. Проте основний результат залишається в силі: у ряді випадків БВДС дозволяють отримати оптимальне розв'язання задачі інтерполяції дискретного сигналу.

5.3 Перенесення спектра при інтерполяції дискретного сигналу

Розглянемо дискретний сигнал x(nT'), основний спектр якого займає смугу частот $|\omega| \in [\omega_1, \omega_2]$, а частота дискретизації $\omega'_D = 2\pi/T' > 2\omega_2$. Модуль спектра сигналу x(nT) умовно поданий на рис. 5.10,а. 3 урахуванням (5.2), спектр $X(e^{i\omega T'})$ сигналу x(nT') має вигляд [7]

$$X(e^{i\omega T'}) = \frac{1}{T'} \sum_{k=-\infty}^{\infty} X(i\omega + ik\frac{2\pi}{T'}) =$$

$$=\frac{1}{T'}\sum_{k=-\infty}^{\infty}X + \left(i\omega + ik\frac{2\pi}{T'}\right) + \frac{1}{T'}\sum_{k=-\infty}^{\infty}X - \left(i\omega + ik\frac{2\pi}{T'}\right),$$
(5.9)

де $X+i\omega$ відповідає верхній бічній смузі ($\omega > 0$) спектра початкового сигналу (прямого спектра), а $X-(i\omega)$ – нижній бічній смузі ($\omega < 0$) спектра початкового сигналу (інверсного спектра).

Відзначимо, що прямі спектри знаходяться в смугах частот $\left[l\frac{\pi}{T'}, (l+1)\frac{\pi}{T'}\right]$, де l – парне число (l=0, 2, 4 ...), а інверсні спектри знаходяться в смугах частот $\left[l\frac{\pi}{T'}, (l+1)\frac{\pi}{T'}\right]$, де l – непарне число (l=1, 3, 5 ...). Процес збільшення частоти дискретизації сигналу x(nT') в m разів можна сумістити з перенесенням його спектра в смугу частот $\omega \in \left[l\frac{\pi}{T'}, (l+1)\frac{\pi}{T'}\right]$, де l=1, 2 ..., m-1. Для цього достатньо в НВДС (див. рис. 5.6) використовувати не фільтр нижніх частот, а смуговий фільтр, ідеалізована АЧХ якого в основній смузі частот $\omega \in [0, \pi/T]$ задовольняє умову

$$|H(e^{i\omega T})| = \begin{cases} m \partial_{\pi} |\omega| \in \left[l \frac{\pi}{T'} + \omega_1, l \frac{\pi}{T'} + \omega_2 \right]; \\ 0 \partial_{\pi} |\omega| \notin \left[l \frac{\pi}{T'} - \omega_1, (l+2) \frac{\pi}{T'} - \omega_2 \right]; \\ l = 2, 4, 6, \dots, 2 \left[\frac{m-1}{2} \right]. \end{cases}$$
(5.10)

та

$$\left|H(e^{i\omega T})\right| = \begin{cases} m \,\partial \pi \, |\omega| \in \left[(l+1)\frac{\pi}{T'} - \omega_2, (l+1)\frac{\pi}{T'} - \omega_1\right];\\ 0 \,\partial \pi \, |\omega| \notin \left[(l-1)\frac{\pi}{T'} - \omega_2, (l+1)\frac{\pi}{T'} + \omega_1\right];\\ l = 1, 3, 5, \dots, 2\left[\frac{m-1}{2}\right] + 1. \end{cases}$$
(5.11)

де [В] означає найбільше ціле число, не більше ніж число В.

Рисунок 5.10 – Процес перенесення спектра при інтерполяції

3 (5.10) і (5.11) видно, що фільтр пропускає лише одну з частотних складових спектра (5.9), що знаходиться в смузі частот $\left[l\frac{\pi}{T'}, (l+1)\frac{\pi}{T'}\right]$, $l=1,2, \ldots, m-1$. Тоді для парних l модуль спектра $Y(e^{i \omega T})$ вихідного сигналу НВДС з врахуванням (5.3), (5.9) і (5.10) має вигляд

$$\left|Y(e^{i\omega T})\right| = \left|X^*(e^{i\omega T})H(e^{i\omega T})\right| = \frac{1}{T}\left|X^+(i\omega + i\frac{l}{2}\frac{2\pi}{T'})\right|$$

$$l = 0, 2, 4, \dots, 2\left[\frac{m-1}{2}\right]; \quad \omega \in [0, \pi/T].$$

Тобто, в результаті оброблення сигналу в такій НВДС частота дискретизації збільшується в *m* разів, а прямий спектр X+(·) інтерпольованого сигналу переміщається в смугу частот $|\omega| \in \left[l\frac{\pi}{T}, (l+1)\frac{\pi}{T}\right]$ при збереженні вигляду його модуля. На рис. 5.10,6 подана ідеалізована АЧХ фільтру (*l*=2), а на рис. 5.10,в – модуль спектра вихідного сигналу при збільшенні частоти дискретизації в m = 4 разів.

Якщо ж $l \in$ непарним числом, то з урахуванням (5.3), (5.9) i (5.11)

$$|Y(e^{i\omega T})| = \frac{1}{T} \left| X - (i\omega + i\frac{l+1}{2}\frac{2\pi}{T'}) \right|,$$

$$l = 1, 3, 5, \dots, 2\left[\frac{m-1}{2}\right] + 1; \quad \omega \in [0, \pi/T].$$

Тобто, в смугу частот $\left[l\frac{\pi}{T'}, (l+1)\frac{\pi}{T'}\right]$ потрапляє інверсний спектр *X-(·)* інтерпольованого сигналу. На рис. 5.10,г подано ідеалізовану АЧХ фільтра при *l*=1, а на рис. 5.10, б – модуль спектра вихідного сигналу (m=4).

Якщо для непарних значень l в смугу частот $\left[l\frac{\pi}{T'}, (l+1)\frac{\pi}{T'}\right]$ необхідно помістити прямий спектр інтерпольованого сигналу x(nT'), то перед інтерполяцією треба виконати інверсію його спектра за правилом (5.1).

5.4 Цифрове формування односмугового сигналу

У багатоканальних системах зв'язку оброблення сигналів включає розв'язання задачі формування дискретного сигналу з ОБС. Ця задача може бути розв'язаною декількома способами.

Перший спосіб. Для отримання сигналу $\omega(nT')$ з ОБС з початкового дискретного сигналу x(nT') можна скористатися схемою, поданою на рис. 5.11,а [8].

Рисунок 5.11 – Модулятор сигналу з ОБС

Припустимо, що спектр $X(e^{i\omega T'})$ вхідного сигналу x(nT') в основній смузі частот $|\omega| \in [0, \pi/T']$ займає частотний діапазон $[\omega_1, \omega_2]$, а частота дискретизації $\omega'_D = 2\pi/T' > 2\omega_2$. Модуль спектра сигналу x(nT') поданий на рис. 5.12,а. Сигнал x(nT') множиться на дискретну експоненту $e^{-imT'}$. Як було викладено вище множення сигналу на дискретну експоненту призводить до зсуву спектра по осі частот. Якщо вибрати величину $\gamma = (\omega_2)$ + ω₁)/2, то спектр X(e^{iωT'}) зміститься вліво, причому верхня бічна смуга спектра $X(e^{i\omega T'})$ розташується симетрично щодо частоти $\omega = 0$ і займе смугу частот від $-\frac{\omega_2 - \omega_1}{2}$ до $\frac{\omega_2 - \omega_1}{2}$. Модуль спектра сигналу $\widetilde{x}(nT') = x(nT')\exp(-i\frac{\omega_2 - \omega_1}{2}nT')$ поданий на рис. 5.12,6. Задача отримання сигналу $\omega(nT')$ з ОБС полягає тепер у виділенні правої бічної смуги. Ця задача розв'язується за допомогою дискретного ФНЧ, ідеалізована АЧХ якого подана на рис. 5.12, в. Оскільки АЧХ ФНЧ симетрична щодо частоти $\omega = 0$, то ширина смуги пропускання ФНЧ дорівнює (ω_2 - ω_1)/2, а ширина проміжної смуги Δ_{Π} вибирається з умови

$$\Delta_{\Pi} = \min\left(2\omega_1, \frac{2\pi}{T'} - 2\omega_2\right).$$

Відзначимо відразу, що можливі й інші комбінації величини зсуву γ і величин Δ і Δ_{n} .

Модуль спектра $\tilde{W}(e^{i\omega T'})$ сигналу $\tilde{w}(nT')$ на виході ФНЧ зображений на рис. 5.12, г. Для зворотного зсуву спектра в область частот $|\omega| \in [\omega_1, \omega_2]$ сигнал $\tilde{w}(nT')$ перемножається на дискретну експоненту $e^{i\gamma nT'}$, де $\gamma = (\omega_1 + +\omega_2)/2$. Модуль спектра $W(e^{i\omega T'})$ сигналу w(nT') на виході схеми (див. рис. 5.11,а) поданий на рис. 5.12,д. Слід звернути увагу, що сигнали $\tilde{x}(nT')$, $\tilde{w}(nT')$ і w(nT) є в загальному випадку комплексними. Оброблення комплексних сигналів забезпечується "комплексною" схемою. Це означає, що існують окремі вітки для оброблення дійсної $\tilde{x}_1(nT')$ і уявної $\tilde{x}_2(nT')$ частин сигналу $\tilde{x}(nT')$. Рис. 5.11,6 дає пояснення принципу роботи "комплексної" схеми.

Рисунок 5.12 – Процес отримання ОБС

Другим способом отримання ОБС-сигналу w(nT') з сигналу $x(nT') \in$ використання перетворювача Гільберта [8]. Схема формування сигналу з ОБС за допомогою перетворювача Гільберта подана на рис. 5.13.

Рисунок 5.13 – Перетворення Гільберта для формування ОБС-сигналу

Дійсна частина $\omega_1(nT')$ вихідного комплексного сигналу є вхідним сигналом x(nT'), а уявна частина $w_2(nT')$ обчислюється за допомогою фільтра, ідеалізована частотна характеристика якого визначається співвідношенням

$$H(e^{i\omega T}) = \begin{cases} -j \, \partial \pi \, \omega \in [0, \pi/T'] \\ j \, \partial \pi \, \omega \in [\pi/T', 2\pi/T'] \end{cases}$$

Ця характеристика достатньо просто апроксимується частотною характеристикою нерекурсивного фільтра вигляду 3.

5.5 Частотні перетворення при інтерполяції сигналу з ОБС

Процес інтерполяції сигналу з ОБС і перенесення його прямого спектра в необхідну смугу частот може бути виконаний за допомогою схеми, зображеної на рис. 5.14,а. Вхідний сигнал x(nT'), основний спектр $X(e^{i\omega T'})$ якого розташований в діапазоні $[\omega_1, \omega_2]$, а частота дискретизації $\omega'_D = 2\pi/T' > 2\omega_2$ (рис. 5.15,а), перемножається на дискретну експоненту $e^{-i\eta nT'}$, де $\gamma = (\omega_1 + \omega_2)/2$. Внаслідок цього верхня бічна смуга спектра $X(e^{i\omega T'})$ розташовується в смузі частот $\left[-\frac{\omega_2 - \omega_1}{2}, \frac{\omega_2 - \omega_1}{2}\right]$ (рис. 5.15,6). Після фільтрації сигналу $\tilde{x}(nT')$ дискретним ФНЧ, АЧХ якого подана на рис. 5.15,в, формується сигнал $\tilde{w}(nT')$ з ОБС, модуль спектра якого зображений на рис. 5.15,г.

Далі сигнал $\widetilde{w}(nT')$ підлягає операції інтерполяції за допомогою вихідної дискретної системи, яка містить ЕІДЧ, що збільшує частоту дискретизації сигналу $\widetilde{w}(nT')$ в *m* разів, і дискретний інтерполювальний фільтр ФІ, що формує відліки інтерпольованого сигналу. Модуль спектра сигналу $\omega^*(nT)$ зображений на рис. 5.15,г, а АЧХ ФІ – на рис. 5.15,д (m = =4). В результаті інтерполяції утворюється сигнал $\tilde{f}(nT)$ з частотою дискретизації $\omega'_D = m \omega'_D$, модуль спектра якого поданий на рис. 5.15,е (m=4). Для перенесення спектра в необхідну смугу частот сигнал $\tilde{f}(nT)$ перемножається на дискретну експоненту $e^{i\beta nT}$, де величина β визначає необхідний зсув спектра по осі частот. Модуль спектра сигналу f(nT)зображений на рис. 5.15,ж (величина β дорівнює $(\pi/4T) + [(\omega_1 + \omega_2)/2])$. Дійсний сигнал y(nT) із спектром, що містить обидві бічні смуги (для отримується виділенням дійсної частини сигналу f(nT) $\omega > 0$ i $\omega < 0$, (елемент Re на рис. 5.14,а). Модуль спектра сигналу y(nT) зображений на рис. 5.15,3.

Слід відзначити, що сигнали $\tilde{x}(nT')$, $\tilde{w}(nT')$, $\omega^*(nT')$, $\tilde{f}(nT)$ і f(nT) у загальному випадку є комплексними. На рис. 5.14,6 приведена схема, що відповідає "комплексній" схемі (рис. 5.14,а). У цій схемі немає

сигналу f(nT), оскільки не потрібно обчислювати уявну частину сигналу f(nT).

Можна привести декілька переваг схеми на рис. 5.14,а, що використовується для підвищення частоти дискретизації та перенесення спектра, в порівнянні з розглянутою вище схемою (рис. 5.6,а), в якій використовується смуговий фільтр з АЧХ, яка задовольняє умову (5.10) або (5.11). Спектр інтерпольованого сигналу можна перенести в довільний діапазон основної смуги частот $|\omega| \in [0, \pi/T]$, вибравши відповідну величину параметра β. У ряді випадків схема (рис. 5.14) дає виграш в порівнянні зі схемою (рис. 5.6,а) за таким критерієм як об'єм оперативної пам'яті. Це пояснюється двома обставинами. По-перше, ФНЧ, що використовуються в схемі (рис. 5.14,б) мають однакові передатні функції. Це ж відноситься і до ФІ. Отже, в схемі (рис 5.14,б) можна використовувати один ФНЧ один які функціонують i ΦI, У мультиплексному режимі.

Рисунок 5.14 – Схема формування сигналу з ОБС

По-друге, фільтри схеми (рис. 5.14) мають простіші передатні функції, ніж смуговий фільтр в схемі на рис. 5.6,а. Це пояснюється тим, що виділення сигналу ОБС за допомогою ФНЧ здійснюється на низькій частоті дискретизації ω'_D , вхідного сигналу, і, отже нормована ширина перехідної смуги $\Delta^{\mu}_{\phi H \Psi}$ АЧХ ФНЧ помітно ширша, ніж нормована ширина перехідної смуги смугового фільтра схеми на рис. 5.6,а, оскільки там фільтр функціонує на високій частоті вихідного сигналу. Нормована ж ширина перехідної смуги $\Delta^{\mu}_{\phi I}$ АЧХ ФІ також не є малою величиною, оскільки в

спектрі інтерпольованого сигналу $\tilde{w}(nT')$ є значні "порожні" смуги між сусідніми складовими (рис. 5.15,г).

Можна оцінити порядки передатних функцій нерекурсивних фільтрів для схем на рис. 5.6,а і на 5.14 при $\omega_I = 0, 1 \pi/T, \omega_2 = 0, 9 \pi/T', m =$ =4. Оцінка порядку передатної функції фільтра схеми на рис. 5.6,а дорівнює $\hat{N} = \mu / \Delta^{\mu} = 40\mu$, оскільки ширина смуги пропускання $\Delta = 0, 2\pi/T'$, а $\omega_D = 4\omega'_D = 8\pi/T'$. Оцінка порядку передатної функції ФНЧ схеми на рис. 5.14 дорівнює (рисунок 5.15 в) $\hat{N}_{\phi H \Psi} = \mu / \Delta^{\mu} \phi_{H \Psi} = 10\mu$ оскільки $\Delta_{\phi H \Psi} = 0, 2\pi/T'$, а $\omega'_D = 2\pi/T'$. Оцінка порядку передатної функції ФІ схеми на рис. 5.14 дорівнює (рисунок 5.15 в) $\hat{N}_{\phi I} = \mu / \Delta^{\mu} \phi_I = 7\mu$, оскільки $\Delta_{\phi I} = 1, 2\pi/T'$, а $\omega_D = 4\omega'_D = 8\pi/T'$. Таким чином, оцінка сумарного порядку фільтрів ФНЧ і ФІ дорівнює 17 μ , а оцінка порядку смугового фільтра схеми на рис. 5.6,а дорівнює 40 μ .

Рисунок 5.15 – Процес перенесення спектра сигналу з ОБС

Відзначимо, що в схемі на рис. 5.14,а інтерполяцію сигналу $\tilde{w}(nT')$ можна виконати не за один етап оброблення за допомогою НВДС, як це подано на рис. 5.14 а, а поступово за допомогою багатократної дискретної системи, як це було показано вище.

5.6 Зменшення частоти дискретизації (децимація)

У системах з ЦОС таких, як перетворювачі сигналів з ДМ в сигнал з ІКМ, вокодерах, цифрових пристроях узгодження систем зв'язку з ЧРК і

ЧвРК частота дискретизації вихідного сигналу нижча за частоту дискретизації вхідного сигналу. Процедура зменшення частоти дискретизації називається децимацією.

Зменшення частоти дискретизації в *m* разів (*m* – ціле число) здійснюється за допомогою елементу, що змінює частоту дискретизації (ЕЗЧД), який є ключем, який замикається в моменти часу t = nmT + kT (k = =0, 1, ..., m-1). Це значить, що з вхідного дискретного сигналу описуваного гратчастою функцією x(nT) з періодом повторення T (частота дискретизації $\omega_D = 2\pi/T$), береться тільки кожний *m*-й відлік. Таким чином, вихідний дискретний сигнал ЕЗЧД описується зміщеною гратчастою функцією $x^*(nT'+\kappa T)=x^*(nmT+\kappa T)$ з періодом повторення T'=mT, однак, $x^*(nmT+\kappa T)=x((mn+k)T)$. Як правило, можна вважати, що $\kappa=0$. Тоді вихідний сигнал ЕЗЧД описується незміщеною гратчастою функцією $x^*(nmT)=x((mnT)$ (n=0, 1, 2, ..., m-ціле).

Спектр $X(e^{i\omega_b T})$ вихідного сигналу ЕЗЧД, що зменшує частоту дискретизації сигналу x(nT) в *m* раз, має вигляд [7]

$$X^{*}(e^{i\omega mT}) = \frac{1}{m} \sum_{\nu=0}^{m-1} X(e^{i\omega T + i2\pi \frac{\nu}{m}})$$

Зменшення частоти дискретизації сигналу x(nT), основний спектр якого займає смугу частот $|\omega| \in [0, \pi/T]$ при частоті дискретизації $\omega_D = 2\pi/T$, призводить до накладання спектрів. Якщо спектр $X(e^{i\omega T})$ вхідного сигналу ЕЗЧД умовно розбити на m складових, які займають m смуг на осі частот шириною π/mT , тобто [7]

$$X(e^{i\omega T}) = \sum_{\nu=0}^{m-1} X_{\nu}(e^{i\omega T}) = \sum_{\nu=0}^{m-1} (X^{+}_{\nu}(e^{i\omega T}) + X^{-}_{\nu}(e^{i\omega T})),$$

де

$$X_{v}(e^{i\omega T}) = \begin{cases} X(e^{i\omega T}) npu |\omega| \in \left[v \frac{\pi}{mT}, (v+1) \frac{\pi}{mT} \right] \\ 0 \qquad npu |\omega| \notin \left[v \frac{\pi}{mT}, (v+1) \frac{\pi}{mT} \right] \end{cases}$$

а $X^+{}_{\nu}(e^{i\omega T}) ma X^-{}_{\nu}(e^{i\omega T})$ відповідають верхній ($\omega > 0$) і нижній ($\omega < 0$) смугам ν -ї складової спектра, то після зменшення частоти дискретизації в m разів спектр $X^*(e^{i\omega mT})$ вихідного сигналу ЕЗЧД в основній смузі частот $|\omega| \in [0, \pi/mT]$ визначається виразом

$$X^{*}(e^{i\omega mT}) = \frac{1}{m} \sum_{\nu=0}^{m-1} X_{\nu}^{\pm} (e^{(-1)^{\nu} \left(i\omega T + i2\pi \frac{\nu+1}{2}\right)})$$

де [B] в аргументі експоненти означає найбільше ціле число, не більше, ніж число B, а верхній індекс (+) відповідає парним значенням v і (-) – непарним значенням v.

Це означає, що в основну смугу частот $|\omega| \in [0, \pi/mT]$ спектра вихідного сигналу потрапляють прямі спектри $X^+{}_{\nu}(\cdot)$ парних складових $(\nu=0, 2, ...)$ та інверсні спектри $X^-{}_{\nu}(\cdot)$ непарних складових $(\nu=1, 3, ...)$. Таким чином, зменшення частоти дискретизації в *m* разів тільки в тому разі не призводить до спотворення спектра початкового сигналу через явище накладання спектрів, якщо в правій частині тільки одна з складових $X^{\pm}{}_{\nu}(\cdot)$ відмінна від нуля, а інші дорівнюють нулю. Це можливо тільки в тому випадку, якщо спектр $X(e^{i\omega T})$ вхідного сигналу ЕЗЧД має гармонічні складові, відмінні від нуля, тільки в одній із смуг частот

$$\left|\omega\right| \in \left[\nu \frac{\pi}{mT}, (\nu+1) \frac{\pi}{mT}\right] \quad (\nu=0, 1, \dots, m-1)$$

або частини цієї смуги.

5.7 Зменшення частоти дискретизації при вузькосмуговій дискретній фільтрації

Розглянемо схему, показану на рис. 5.16,а і найпростішу вхідну дискретну систему, що є (НВХДС). Основний спектр вхідного сигналу x(nT) займає смугу частот $|\omega| \in [0, \pi/T]$, а частота дискретизації $\omega_D = 2\pi/T$. Задачею схеми рисунок 5.16,а є виділення спектра, розташованого в смузі частот $|\omega| \in [0, \omega_2]$, причому $\pi/(m+1)T < \omega_2 < \pi/mT$.

На рис. 5.16,б (позиція 1) зображено модуль спектра $X(e^{i\omega T})$ вхідного сигналу x(nT). Заштрихована область відповідає частині спектра, що підлягає виділенню. Як було відзначене вище для того, щоб зменшення частоти дискретизації в m раз не приводило б до накладання спектрів, спектр $Y(e^{i\omega T})$ вхідного сигналу y(nT) ЕЗЧД (рисунок 5.16 а) не повинен містити гармонічних складових в діапазоні частот $[\pi/mT, \pi/T]$. Отже, ідеалізована АЧХ ФНЧ з передатною функцією H(z) (рисунок 5.16 а) повинна задовольняти умову

$$\left|H(e^{i\omega T})
ight| = egin{cases} 1\,\partial \pi \,\left|\omega
ight| \in \left[0,\omega_{2}
ight] \ 0\,\partial \pi \,\left|\omega
ight| \in \left[0,\pi/T
ight], \end{cases}$$

де $\omega_2 < \Theta \leq \pi/mT$;

Θ – гранична частота смуги придушення фільтра.

Рисунок 5.16 – Зменшення частоти дискретизації

Ідеалізована АЧХ фільтра, яка відповідає (5.12) для випадку m = 4, $\Theta = \pi/4T$, подана на рис. 5.16,6 (позиція 2). В результаті оброблення сигналу дискретним ФНЧ можна отримати сигнал y(nT) з необхідним спектром, модуль якого зображено на рис. 5.16,6 (позиція 3). Видно, що спектр $Y(e^{i\omega T})$ не містить складових в діапазоні частот $|\omega| \in [\pi/mT, \pi/T]$. Далі частота дискретизації зменшується в *m* разів за допомогою ЕЗЧД. Спектр $Y^*(e^{i\omega mT})$ вихідного сигналу ЕЗЧД $y^*(nmT)$ має в основній смузі частот $|\omega| \in [0, \pi/T]$ вигляд

$$Y^{*}(e^{i\omega mT}) = \frac{1}{m} \sum_{\nu=0}^{m-1} X\left(e^{\left(i\omega T + i2\pi \frac{\nu}{m}\right)}\right) H\left(e^{\left(i\omega T + i2\pi \frac{\nu}{m}\right)}\right) = \frac{1}{m} X\left(e^{i\omega T}\right) H\left(e^{i\omega T}\right), (|\omega| \in [0, \pi/mT]).$$
(5.13)

Отже, з врахуванням (5.12) маємо

$$Y(e^{i\omega mT}) = \begin{cases} \frac{1}{m} X(e^{i\omega T}) & \partial \pi |\omega| \in [0, \omega_2]; \\ \frac{1}{m} X(e^{i\omega T}) H(e^{i\omega T}) & \partial \pi |\omega| \in [\omega_2, \theta]; \\ 0 & \partial \pi |\omega| \in [\theta, \pi / mT]. \end{cases}$$

Модуль спектра $Y^*(e^{i\omega mT})$ при m = 4 зображений на рис. 5.16,6 (позиція 4). Таким чином, схема на рис. 5.16,а розв'язує задачу виділення частини спектра початкового сигналу, розташованої в діапазоні частот $|\omega| \in [0, \omega_2]$, причому $\pi/(m+1)T < \omega_2 < \pi/mT$. В основній смузі частот вихідного сигналу $|\omega| \in [0, \pi/T]$, частота дискретизації якого в m разів нижча частоти дискретизації вхідного сигналу, в діапазоні частот $|\omega| \in [0, \omega_2]$ розташовується необхідний спектр, а в діапазоні частот $|\omega| \in [\omega_2, \Theta]$ – частина спектра вхідного сигналу, що знаходиться в цій смузі і змінена відповідно до АЧХ фільтра в проміжній смузі.

Для розглянутого прикладу ($\pi/5T < \omega_2 < \pi/4T$) частота дискретизації вхідного сигналу схеми на рис. 5.16,а може бути зменшена і в інше число разів (наприклад в 3 або в 2 рази).

В реальних дискретних фільтрах, що використовуються в НВХДС, АЧХ не може точно відповідати (5.12), а лише апроксимує останню з певною точністю. У смузі пропускання АЧХ реального фільтра є нерівномірність ΔA^{0}_{1} , а в смузі затримання – відхилення від нуля ΔA^{0}_{2} . У цьому випадку при зменшенні частоти дискретизації має місце накладання спектрів, і спектр $Y^{*}(e^{i\omega mT})$ вихідного сигналу схеми на рис. 5.16,а визначається як

$$Y^{*}(e^{i\omega mT}) = \frac{1}{m} \sum_{\nu=0}^{m-1} X\left(e^{\left(i\omega T + i2\pi \frac{\nu}{m}\right)}\right) H\left(e^{\left(i\omega T + i2\pi \frac{\nu}{m}\right)}\right), \quad (5.14)$$

де ($|\omega| \in [0, \pi/mT]$).

Причому в смузі пропускання

$$1-0,5\Delta A^{0}_{1} \leq \left| H(e^{i\omega T+i2\pi \frac{V}{m}}) \right| \leq 1+0,5\Delta A^{0}_{1}$$
для $v=0, \ |\omega| \in [0, \ \omega_{2}],$

а в смузі затримання

$$0 \le \left| H(e^{i\omega T + i2\pi \frac{v}{m}}) \right| \le \Delta A^{0}_{2}$$
для $v=1, 2, ..., m-1; |\omega| \in [\Theta, \pi/mT].$

Тоді зручно (5.14) переписати у вигляді

$$Y^*(e^{i\omega mT}) = \frac{1}{m} X(e^{i\omega T}) H(e^{i\omega T}) + \frac{1}{m} \sum_{\nu=0}^{m-1} X\left(e^{\left(i\omega T + i2\pi \frac{\nu}{m}\right)}\right) H\left(e^{\left(i\omega T + i2\pi \frac{\nu}{m}\right)}\right).$$
(5.15)

Перший доданок у правій частині (5.15) можна розглядати як корисний сигнал, спектр якого в смузі частот [0, ω_2] дорівнює спектру вхідного сигналу в даній смузі, зміненому відповідно до АЧХ фільтра в смузі пропускання. Доданки під знаком суми в правій частині (5.15) слід

розглядати як завади, що спотворюють спектр вихідного сигналу в смузі [0, ω_2]. Таким чином, якщо для схеми на рис. 5.16,а задана величина спотворень ΔA_1 складових спектра $X(e^{i\omega T})$ вхідного сигналу в смузі частот [0, ω_2], то цю величину треба розподілити на частини ΔA^0_1 і $\Delta A \Box^0_1$, що відводяться відповідно на нерівномірність АЧХ дискретного фільтра в смузі пропускання, і ефекти пов'язані із спотвореннями корисного спектра через явище накладання спектрів. Так само величину ΔA_2 , що визначає допустимий рівень частотних складових спектра вихідного сигналу в смузі затримання схеми на рис. 5.16,а необхідно розподілити на частини ΔA^0_2 і $\Delta A \Box^0_2$, що відводяться відповідно на допустиме відхилення від нуля АЧХ дискретного фільтра в смузі затримання, і ефекти пов'язані з попаданням в смугу затримання додаткових частотних складових через явище накладання спектрів.

Оцінкою зверху для величин $\Delta \Box \Box^{0}{}_{1}\epsilon i \Delta \Box^{0}{}_{2} \epsilon$

$$\Delta \hat{A}_{1}^{0} \leq 2(m-1)\Delta A_{2}^{0}; \qquad (5.16)$$

$$\Delta \hat{A}^0{}_2 \le (m-1)\Delta A^0{}_2; \tag{5.17}$$

де ΔA_2^0 – відхилення від нуля АЧХ дискретного фільтра в смузі затримання.

Більш точну оцінку можна отримати з (5.15) для конкретного вигляду спектра вхідного сигналу і АЧХ фільтра, що використовується. У ряді випадків на величину ΔA^{0}_{2} накладаються додаткові обмеження.

5.8 Використовування нерекурсивних і рекурсивних фільтрів при децимації

Зменшенню частоти дискретизації передує, як правило, фільтрація сигналу з тим, щоб сформувати спектр такого вигляду (рис. 5.16,6, позиція 3), який би приводив до мінімальних спотворень спектра корисного сигналу через явище накладання спектрів. У зв'язку з цим фільтри, що використовуються в НВХДС, повинні мати, як правило, малу величину (нормованої ширини проміжної смуги $\Delta^{\mu}_{nn} = \Delta_{nn}/\omega_D$ (рисунок 5.16,6, позиція 2) і велике подавлення в смузі затримання. Ці вимоги простіше реалізуються при побудові фільтра за рекурсивною структурою. Таким чином, якщо порівнювати варіанти побудови системи (рис. 5.16,а) за критерієм мінімуму об'єму оперативної пам'яті, то використовування рекурсивних фільтрів може виявитися більш кращим.

Проте в РДФ для обчислення чергового вихідного відліку необхідно мати значення попередніх відліків. Отже, хоча з вихідної послідовності y(nT) РДФ (рис. 5.16,а) береться тільки кожен *m*-й відлік, фільтр повинен обчислювати всі відліки послідовності y(nT), тобто повинен працювати на

високій частоті дискретизації вхідного сигналу з періодом дискретизації T. Кількість операцій множення L_P за одиницю часу в цьому випадку буде дорівнювати

$$L_P = (N_P + M_P + 1)\frac{\omega_D}{2\pi},$$

де N_P і M_P – відповідно порядки поліномів в чисельнику та знаменнику передатної функції РДФ.

Якщо ж в НВХДС (рис. 5.16,а) використовується НДФ, немає необхідності в обчисленні всіх відліків послідовності y(nT), оскільки в НДФ для обчислення чергового вихідного відліку не вимагається мати значення попередніх вихідних відліків. Оскільки НДФ в схемі на рис. 5.16,а повинен обчислювати тільки кожний *m*-й відлік, він працює на низькій частоті дискретизації вихідного сигналу з періодом дискретизації T' = mT. Кількість операцій множення L_H за одиницю часу в цьому випадку буде дорівнювати

 $L_H = (N_H + l)(\omega'_D/2\pi),$

де N_H – порядок передатної функції НДФ.

Порівнявши величини L_p і L_H , бачимо, що якщо $N_H < (N_p + M_p)m$, то застосування НДФ в схемі на рис. 5.16,а призводить до зменшення кількості операцій множення за одиницю часу в порівнянні з варіантом побудови на основі РДФ. Треба підкреслити ще раз ту обставину, що НДФ в схемі на рис. 5.16,а працює з частотою дискретизації вихідного сигналу $\omega'_D = \omega_D/m$, тобто на низькій частоті. Це спрощує реалізацію помножувачів у фільтрі при високій частоті дискретизації вхідного сигналу ω_D .

5.9 Особливості зменшення частоти дискретизації в цифрових системах

Якщо в НВХДС (рис. 5.16,а), призначеної для зменшення частоти дискретизації вхідного сигналу, використовується цифровий фільтр з обмеженою розрядністю регістрів, у вихідному сигналі $y^*(nmT)$ з'являються додаткові похибки, обумовлені квантуванням вхідного сигналу і округленням результатів арифметичних операцій в регістрах фільтра. Поява даних похибок еквівалентна тому, що АЧХ лінійного дискретного фільтра відтворюється не точно, а з певною похибкою. Тоді при синтезі ЦФ необхідно ΔA_1 і ΔA_2 , що відводяться відповідно на нерівномірність АЧХ ЦФ у смузі пропускання та відхилення від нуля в смузі затримання, розподілити:

- на нерівномірність АЧХ в смузі пропускання та допустиме відхилення від нуля в смузі затримання дискретного фільтра (ΔA^{0}_{l} і ΔA^{0}_{2});

- на ефекти округлення коефіцієнтів фільтра ($\Delta A^{\kappa_1} i \Delta A^{\kappa_2}$);

- на ефекти квантування вхідного сигналу ($\Delta A'_{IA} i \Delta A'_{2A}$);

- на ефекти, обумовлені округленням результатів арифметичних операцій в регістрах фільтра ($\Delta A'_{1P}$ і $\Delta A'_{2P}$);

- на ефекти обумовлені накладанням спектрів при зменшенні частоти дискретизації ($\Delta A *_1 i \Delta A *_2$).

Відзначимо, що з врахуванням (5.16) і (5.17) оцінкою зверху для величин ΔA_1^* і ΔA_2^* є

$$\Delta A^*{}_1 \leq 2(m-l)(\Delta A^0{}_2 + \Delta A^{\kappa}{}_2 + \Delta A'{}_{2A} + \Delta A'{}_{2P}); \qquad (5.18)$$

$$\Delta A^*{}_2 \leq (m-l)(\Delta A^0{}_2 + \Delta A^{\kappa}{}_2 + \Delta A'{}_{2A} + \Delta A'{}_{2P}). \qquad (5.19)$$

певних випадках така побудова схеми може призвести до оптимізації деяких параметрів, наприклад, об'єму оперативної пам'яті або кількості арифметичних операцій [8].

5.10 Перенесення спектра при вузькосмуговій фільтрації зі зменшенням частоти дискретизації

Розглянемо НВХДС, подану на рис. 5.16,а. Припустимо, що спектр $X(e^{i\omega T})$ вхідного сигналу x(nT) можна розбити на *m* груп спектрів X_{ν} $(e^{i\omega T}), (\nu=0, 1, ..., m-1)$, кожна з яких в основній смузі частот $|\omega| \in [0, \pi/T]$ займає частину частотного діапазону $[\nu(\pi/mT), (\nu+1)(\pi/mT)]$:

$$X(e^{i\omega T}) = \sum_{\nu=0}^{m-1} X_{\nu}(e^{i\omega T}) = \sum_{\nu=0}^{m-1} (X^{+}_{\nu}(e^{i\omega T}) + X^{-}_{\nu}(e^{i\omega T})), \qquad (5.20)$$

дe

$$\begin{split} X_{\nu}(e^{i\omega T}) &= \begin{cases} X(e^{i\omega T}) \, \partial \pi \, |\omega| \in \left[\omega^{\nu}_{1}, \omega^{\nu}_{2}\right]; \\ 0 & \partial \pi \, |\omega| \notin \left[\omega^{\nu}_{1}, \omega^{\nu}_{2}\right]; \\ \left(\omega^{\nu}_{1}, \omega^{\nu}_{2} \in \left[\nu \, \frac{\pi}{mT}, \, (\nu+1) \frac{\pi}{mT}\right]\right), \end{split}$$

а $X^{+}_{\nu}(e^{i\omega T}) ma X^{-}_{\nu}(e^{i\omega T})$ відповідають верхній ($\omega > 0$) та нижній ($\omega < 0$) смугам ν -*ї* складової спектра. Припустимо для визначеності, що $\omega^{\nu}_{1} = \nu(\pi/mT) + \omega_{1}$ ($\nu = 0, 1, ..., m$ -1), а $\omega^{\nu}_{2} = \nu(\pi/mT) + \omega_{2}$ ($\nu = 0, 1, ..., m$ -1), де ω_{1} і ω_{2} – фіксовані величини. Модуль спектра такого сигналу зображений на рис. 5.17,а (m = 4). Так, складова спектра $X_{1}(e^{i\omega T})$ займає частину частотного діапазону [π/mT , $2\pi/mT$], розміщену в смузі частот [(π/mT)+ ω_{1} , $(\pi/mT)+\omega_2]$, а складова $X_2(e^{i\omega T})$ займає частину частотного діапазону $[2(\pi/mT), 3(\pi/mT)]$, розміщену в смузі частот $[2(\pi/mT)+\omega_1, 3(\pi/mT)+\omega_2]$. Сигнал x(nT) можна розглядати як груповий чотириканальний сигнал з ЧРК.

Задача виділення складової спектра $X_{\nu}(e^{i\omega T})$ із спектра $X(e^{i\omega T})$ (тобто задача вузькосмугової фільтрації) розв'язується за допомогою смугового фільтра з передатною функцією H(z) (див. рис. 5.16,а), а перенесення спектра виділеного сигналу в область нижніх частот — шляхом простого зменшення частоти дискретизації вихідного сигналу фільтра в *m* разів.

Рисунок 5.17 – Перетворення спектрів при вузькосмуговій фільтрації

Дійсно, якщо як фільтр в НВХДС використовувати смуговий фільтр, АЧХ якого в основній смузі частот $|\omega| \in [0, \pi/T]$ задовольняє умову

$$\left|H(e^{i\omega T})\right| = \begin{cases} 1 \partial \pi \Re \left|\omega\right| \in \left[\nu \frac{\pi}{mT} + \omega_{1}, \nu \frac{\pi}{mT} + \omega_{2}\right];\\ 0 \partial \pi \Re \left|\omega\right| \notin \left[(\nu - 1)\frac{\pi}{mT} + \omega_{1}, (\nu + 1)\frac{\pi}{mT} + \omega_{1}\right], \end{cases}$$
(5.21)

то вихідний сигнал y(nT) фільтра (вхідний сигнал ЕЗЧД) матиме спектр, що містить гармонічні складові з амплітудою, відмінною від нуля, тільки в одному з діапазонів частот $[v(\pi/mT), (v+1)(\pi/mT)]$. На рис. 5.17,6 зображена ідеалізована АЧХ смугового фільтра, що виділяє складову $X_1(e^{i\omega T})$ спектра вхідного сигналу, а на рис. 5.17,в – модуль спектра $Y(e^{i\omega T})$ відповідного вихідного сигналу фільтра, який займає смугу частот $[v(\pi/mT), (v+1)(\pi/mT)], (v=l, m=4)$. При зменшенні частоти дискретизації вихідного сигналу y(nT) фільтра за допомогою ЕЗЧД можна отримати сигнал $y^*(nT')$ з частотою дискретизації $\omega'_D = \omega_D/m$. При цьому операція децимації не супроводжується накладанням спектрів. В основній смузі частот $|\omega| \in [0, \pi/mT]$ розташовується або прямий спектр $X^+_v(e^{i\omega T})$ v-*ї* складової спектра вхідного сигналу (для $v=0, 2, 4 \dots$), або інверсний спектр v-*ї* складової (для $v=l, 3, 5 \dots$).

На рис. 5.17, г зображено вигляд модуля спектра вихідного сигналу $y^*(nT)$ (для v=l). З рисунку видно, що в низькочастотній області основної смуги частот розташовується інверсний спектр $X^-_v(e^{i\omega T})$. На рис. 5.17, д, е, ж послідовно зображені АЧХ смугового фільтра, модуль спектра $Y(e^{i\omega T})$ сигналу на виході фільтру і модуль спектра $Y^*(e^{i\omega T})$ сигналу на виході БЗЧД при виділенні складової $X_2(e^{i\omega T})$ спектра вхідного сигналу x(nT) (для v=2).

Якщо порівняти рис. 5.17 і 5.10, формули (5.21) і (5.10), (5.11), можна помітити, що при вузькосмуговій фільтрації сигналу з метою виділення складової спектра $X_{\nu}(e^{i\omega T})$, розташованої в діапазоні частот $[\nu(\pi/mT), (\nu+1)(\pi/mT)]$ ($\nu = 0, 1, 2 \dots m-1$) для подальшої децимації сигналу, використовуються смугові фільтри, АЧХ яких практично такі ж, як і у смугових фільтрів що використовуються при інтерполяції сигналів з одночасним перенесенням спектра в область частот $[\nu(\pi/mT), (\nu+1)(\pi/mT)]$. Відмінність полягає в постійному множнику, що дорівнює *m*, у фільтрівінтерполяторів і у межах смуг пропускання і затримання (при $\omega_1 \neq \pi/mT - \omega_2$).

Існує й інший варіант розв'язання задачі вузькосмугової смугової фільтрації з подальшим пониженням частоти дискретизації та перенесенням спектра виділеного сигналу в низькочастотну область, поданий на рис. 5.18, а.

Рис. 5.18,6 пояснює принцип дії схеми рис. 5.18,а. Вхідний сигнал x(nT) із спектром, який визначається (5.20), перемножується на дискретну експоненту $e^{-i\gamma_v nT}$, де $\gamma = (\omega^{v_1} + \omega^{v_2})/2$. Внаслідок чого верхня бічна смуга спектра $X_v(e^{i\omega T})$ розташовується в смузі частот $\left[-\frac{\omega_2^v - \omega_1^v}{2}, \frac{\omega_2^v - \omega_1^v}{2}\right]$. На рис. 5.18,6 (позиція 1) зображений модуль спектра $X(e^{i\omega T})$ вхідного

На рис. 5.18,6 (позиція 1) зображений модуль спектра $X(e^{i\omega T})$ вхідного сигналу при m = 4, а на рис. 5.18,6 (позиція 2) – модуль спектра сигналу x(nT). Далі необхідна складова спектра $X_v(e^{i\omega T})$ виділяється за допомогою дискретного ФНЧ і здійснюється децимація вихідного сигналу $\omega(nT)$ фільтра. АЧХ фільтра подана на рис. 5.18,6 (позиція 3), а модулі спектрів сигналів $\omega(nT)$ і $\omega^*(nT')$ – на позиціях 4 і 5 відповідно.

Множення на дискретну експоненту $e^{i\beta nT'}$, де $\beta = \frac{\omega_1^v + \omega_2^v}{2} - v \frac{\pi}{mT}$, призводить до формування сигналу $y \Box (nT')$, модуль спектра якого зображений на рис 5.18,6 (позиція 6). Оскільки сигнал $y \Box (nT')$ є комплексним (так само, як і сигнали $x \square (nT)$, $\omega(nT)$, $w^*(nT')$, $y \square (nT')$) отримання дійсного сигналу з необхідним спектром здійснюється виділенням дійсної частини сигналу $y \square (nT')$ за допомогою елемента Re. Модуль спектра вихідного сигналу y(nT) зображений на рис. 5.18,6 (позиція 7).

Рисунок 5.18 – Вузькосмугова фільтрація сигналів

Контрольні запитання

1. Обгрунтувати необхідність використання ЦОС в телекомунікаційних системах.

2. З якою метою використовується інтерполяція сигналів?

3. Навести основні способи формування сигналів з ОБС на основі ЦОС.

4. Пояснити особливості інтерполяції сигналів за допомогою цифрових фільтрів.

5. Виконати порівняльний аналіз особливостей інтерполяції та децимації сигналів.

Задачі

1. Побудувати схему дециматора, що забезпечує перехід з ДМтелефонного сигналу в ІКМ-телефонний сигнал. Привести основні розрахункові вирази.

2. Знайти чисельні значення комплексної "експоненти" при перенесенні ОБС-сигналу зі смуги 14-18 кГц у смугу 104-108 кГц.

6 ЦИФРОВЕ ОБРОБЛЕННЯ СИГНАЛІВ ПРИ УЗГОДЖЕННІ ТЕЛЕКОМУНІКАЦІЙНИХ СИСТЕМ

6.1 Загальні відомості

Починаючи з 80-х років все більше уваги приділяється використовуванню в багатоканальних системах зв'язку трансмультиплексорів (ТМ) - цифрових пристроїв узгодження систем зв'язку з ЧвРК і ЧРК. До теперішнього часу для систем з різною кількістю каналів запропоновано декілька структур ТМ, що реалізовують певні алгоритми ЦОС.

Реалізація ТМ на цифровій елементній базі вимагає застосування цифрових методів фільтрації, модуляції і демодуляції сигналів багато в чому відмінних від традиційних аналогових методів. Ці методи використовуються при побудові і інших пристроїв, окрім ТМ (наприклад, в пристроях оброблення мовних і радіолокаційних сигналів, в аналізаторах спектра) і, отже, мають самостійне значення.

Відзначимо, що при описі методів цифрової обробки, як правило, не будемо враховувати обмежену розрядність регістрів відповідних пристроїв, тобто, в основному розглядатимемо лінійну модель ЦОС.

Трансмультиплексори повинні розв'язувати задачу узгодження систем передавання та систем комутації сигналів з ЧвРК і систем передавання сигналів з ЧРК (рис. 6.1). Системи ЧРК і ЧвРК можуть бути як цифровими, так і аналоговими.

Рисунок 6.1 – Місце ТМ у телекомунікаційній системі

В останньому випадку необхідно використовувати АЦП і ЦАП. На рис. 6.1 прийняті такі позначення: x(t) і x(nT) – відповідно груповий

аналоговий і цифровий сигнали з ЧРК, *y_j(mnT)* і *y_j(t)* – відповідно цифровий і аналоговий сигнали *j*-го каналу.

Рисунок 6.2 – Спектр групового сигналу

Груповий К-канальний аналоговий сигнал із ЧРК x(t) має спектр $S_x(i\omega_a) = \sum_{j=0}^{K-1} S_{xj}(i\omega_a)$, де $S_{xj}(i\omega_a)$ – спектри кнальних сигналів, кожний з

яких займає смугу частот $\Delta \omega_a = \text{const}$ (індекс «а» означає, що мова йде про частоту сигналу). Груповий сигнал x(t) займає смугу частот від $\omega_{a \min} = l \Delta \omega_a$ до $\omega_{a \max} = (l+K)\Delta \omega_a$. Спектри окремих канальних сигналів $y_j(t)$ у системі з ЧвРК розташовані в області нижніх частот (від 0 до $\Delta \omega_a$). На рис. 6.2, *a* показаний модуль спектра групового сигналу, а на рис. 6.2, δ – модулі спектрів канальних сигналів. Спектр $X(e^{i\omega T})$ групового цифрового сигналу x(nT) періодичний за частотою з періодом $\omega_D = 2\pi/T$:

$$X(e^{i\omega T}) = \frac{1}{T} \sum_{n=-\infty}^{\infty} S_x(i\omega + in\omega_D) = \frac{1}{T} \sum_{j=0}^{K-1} \sum_{n=-\infty}^{\infty} S_x(i\omega + in\omega_D)$$

Спектр $y_j(e^{i\omega mT})$ цифрового канального сигналу $y_j(mnT)$ (періодичний за частотою ω з періодом $\omega'_D = \omega_D/m = 2\Delta\omega$:

$$Y_{j}(e^{i\omega mT}) = \frac{1}{mT} \sum_{n=-\infty}^{\infty} S_{xj}(i\omega + in\omega'_{D}) = \frac{1}{mT} \sum_{n=-\infty}^{\infty} S^{+}_{xj}(i\omega + in\omega'_{D}) + \frac{1}{mT} \sum_{n=-\infty}^{\infty} S^{-}_{xj}(i\omega + in\omega'_{D}),$$

де $S^+_{xj}(i\omega)$ і $S^-_{xj}(i\omega)$ відповідають верхній ($\omega > 0$) і нижній ($\omega < 0$) смугам спектра *j*-го канального сигналу. Основний спектр сигналу $y_j(mnT)$ займає смугу частот від - $\Delta \omega$ до $\Delta \omega$.

При переході від ЧРК до ЧвРК (пряме перетворення) ТМ повинен забезпечити виконання таких операцій: виділення сигналів окремих
каналів $y_j(mnT)$ із групового сигналу x(nT); перенесення спектра сигналу виділеного каналу в область нижніх частот; зменшення частоти дискретизації канальних сигналів до величини ω'_D (децимація).

При переході від ЧвРК до ЧРК (зворотне перетворення) ТМ повинен забезпечити виконання таких операцій: підвищення частоти дискретизації кожного каналу (інтерполяція); перенесення спектра сигналу кожного каналу у задану смугу частот; об'єднання сигналів окремих каналів $y_j(mnT)$ у груповий сигнал x(nT).

Існує багато різних варіантів ТМ, що відрізняються принципами реалізації перерахованих вище операцій. Можна згрупувати усі варіанти ТМ за двома ознаками. Перша ознака визначається кількістю змін частоти дискретизації в ТМ при прямому чи зворотному перетворенні. Якщо V>1, то відповідний ТМ будемо називати багаторівневим; якщо V=1, то відповідний ТМ будемо називати однорівневим. За другою ознакою розрізняють ТМ з наявністю чи відсутністю у ТМ оброблення сигналів за допомогою ДПФ чи інших варіантів лінійних перетворень. Найпростіші ТМ є однорівневими ТМ, в яких відсутнє оброблення сигналів за допомогою ДПФ.

6.2 Найпростіші трансмультплексори

Розглянемо два варіанти найпростіших ТМ для яких прийнято, що *К*=*m*=4, де *К* – кількість каналів, *m* – відношення частот дискретизації. Схеми прямого і зворотного перетворень першого варіанта найпростішого ТМ із дійсними сигналами – подані на рис 6.3 *а*, б. Основними елементами схем є смугові фільтри Φ_0 , $\Phi_1 \Phi_2$ і Φ_3 , дециматори $\downarrow 4$ і інтерполятори $\uparrow 4$. Схеми множення на (-1)ⁿ, що забезпечують інверсію спектра, необхідні випадку, спектр сигналу тільки В тому коли x(nT)включає лише прямі спектри окремих каналів. Якщо виключити множення на $(-1)^n$ зі схем рис. 6.3 *a*, *б*, то ці схеми як і раніше будуть виконувати взаємозворотні операції прямого та зворотного перетворень, але спектр сигналу x(nT) буде містити інверсні спектри першого та третього каналів.

Рис. 6.4 пояснює принцип дії схем прямого та зворотного перетворень, причому точки в схемах рис. 6.3 *а*, *б* відзначені тими ж номерами, що й відповідні їм позиції на рис. 6.4. На рис. 6.4: 1 – модуль спектра сигналу х(nT); 2 і 3 – ідеалізовані АЧХ фільтрів Φ_0 і Φ_1 ; 4 і 5 — модулі спектрів сигналів каналів 0 і 1 – до децимації чи після інтерполяції на виходах фільтрів Φ_0 і Φ_1 ; 6 і 7 – модулі спектрів сигналів каналів 0 і 1 – після децимації чи на входах інтерполяторів; 8 – модуль спектра сигналу каналу 1 після інверсії спектра або на вході.

 $(-1)^{n}$ 4 $y_0(4nT)$ 6 Φ_{0} 4 3 5 $y_1(4nT)$ Φ_{1} $\left[\left(-1\right)^{n}\right]$ x(nT)8 $y_2(4nT)$ Φ_2 $y_3(4nT)$ Φ_3 4 б)

Рисунок 6.3 – Структури прямого та зворотного перетворення ТМ

Недоліком розглянутого варіанта найпростішого ТМ є наявність в схемах прямого та зворотного перетворень К смугових фільтрів з різними АЧХ. Розглянемо другий варіант найпростішого ТМ – найпростіший ТМ із оброблення комплексними сигналами, яких для сигналів y використовуються 4*K* фільтрів нижніх частот ідентичними 3 характеристиками [8]. На рис. 6.5, а зображена схема прямого перетворення, а на рис. 6.5, б – схема зворотного перетворення. Кожний фільтр схеми рис. 6.5, а умовно зображує два фільтри з однаковими характеристиками і кожен пристрій множення на комплексну експоненту умовно зображує два блоки множення на синус і на косинус відповідного аргумента. Це твердження справедливе для усіх схем з комплексними сигналами. Кожна вітка схеми зворотного перетворення є інверсною щодо вітки схеми прямого перетворення. Відмітимо, що величина Δω визначає смугу, яку займає спектр сигналу кожного каналу.

Рисунок 6.4 – Спектри прямого та зворотного перетворень ТМ

Обидва запропоновані варіанти найпростіших ТМ мають дуже суттєві недоліки. По-перше, канальні фільтри ТМ виявляються дуже складними. Це пояснюється тим, що відношення суми перехідних смуг

фільтра до суми смуг пропускання та затримування виявляється дуже малим навіть при *К*=12 (дванадцятиканальна група).

Рисунок 6.5 – Структури ТМ з комплексним сигналом

По-друге, всі фільтри функціонують при високих частотах дискретизації, що відповідає груповому сигналу з ЧРК. Це дуже ускладнює схемну реалізацію пристрою.

6.3 Трансмультиплексори з додатковим обробленням сигналів

Розглянемо схему формування групового m-канального сигналу $x_{\epsilon}(nT)$ з частотним розділенням каналів (частота дискретизації $\omega_D = 2\pi/T$) з окремих канальних сигналів $y^k(nT')$ (k=0, 1, ..., m-1) при частоті дискретизації $\omega'_D = 2\pi/T' = \omega_D /m$ (рис. 6.6, *a*). Принцип роботи схеми пояснюється на рис. 6.6, *б*. Схема рис. 6.6, *a* містить *m* паралельних віток, кожна з яких є ПВДС, що призначена для збільшення частоти дискретизації вхідного сигналу $y^{\kappa}(nT')$ у *m* раз і перенесення спектра сигналу [7].

Нехай *m* — парне число й у ПВДС використовуються нерекурсивні фільтри. Модуль спектра вхідних сигналів $y^{\kappa}(nT')$ для $\kappa=0, 1, ..., m/2-1$ умовно показаний на рис. 6.6, б (позиція 1). Вхідні сигнали $y^{\kappa}(nT')$ для $\kappa=m/2, m/2+1, ..., m-1$) мають інверсний спектр у результаті множення відліків сигналу $y^{\kappa}(nT')$ на (-1)ⁿ.

Вид модуля спектра сигналів $y^{\kappa}(nT')$ для $\kappa=m/2$, m/2+1, ..., m-1 наведений на рис. 6.6, δ (позиція 2). Амплітудно-частотні характеристики фільтрів $H^{\kappa}(z)$ ($\kappa=0, 1, ..., m-1$) показані на рис. 6.6, δ (позиції 3, 4, 5 і 6) для випадку m=4. Вихідний сигнал $x^{\kappa}(nT)$ κ -й ПВДС є комплексним сигналом з частотою дискретизації $\omega_D = m\omega'_D$, причому в смузі частот $\omega \in [0, 2\pi/T]$ амплітуди гармонічних складових спектра відмінні від нуля тільки в діапазоні частот $\omega \in \left[2k\frac{\pi}{mT}, (2k+1)\frac{\pi}{mT}\right]$, оскільки саме в цю смугу частот переноситься спектр вхідного сигналу $y^{\kappa}(nT')$ κ -й ПВДС. У результаті додавання сигналів $x^{\kappa}(nT)$ формується груповий сигнал $x^{\kappa}(nT)$, модуль спектра відповідають номерам ПВДС, які сформували дану складову).

Одержання сигналу $x_e(nT)$ з необхідним спектром здійснюється шляхом виділення дійсної частини комплексного сигналу x(nT) (елемент *Re* на рис. 6.6, *a*. Модуль спектра вихідного групового сигналу $x_e(nT)$ з ЧРК показаний на рис. 6.6, *б* (позиція 8).

3 рис. 6.6, б (позиція 3–6) видно, що АЧХ фільтрів ПВДС однакові за формою, але зсунуті одна відносно іншої по осі частот на величину $\Delta \omega = 2\pi/mT$. Це означає, що передатна функція $H^{\kappa}(z)$ фільтра в κ -й ПВДС (κ =1, 2, ..., *m*-1) може бути визначена через передатну функію $H^{0}(z)$ фільтра в ПВДС₀ за допомогою співвідношення

$$H^{\kappa}(z) = H^{0}(ze^{-i\frac{2\pi}{m}k}).$$
(6.1)

Рисунок 6.6 – Формування *т*-канального сигналу

Оскільки в ПВДС використовуються НДФ, передатна функція $H^{0}_{r}(z^{m})$ (r=0, 1, ..., m-1) фільтра в r-й паралельній вітці схеми рис. 6.6, а дорівнює

$$H^{0}{}_{r}(z^{m}) = \sum_{j=0}^{\nu} b^{0}{}_{r+jm} z^{-jm}, \quad \nu = \left\lfloor \frac{N}{m} \right\rfloor,$$
(6.2)

де $b^0_l - l$ -й коефіцієнт передатної функції $H^0(z)$ фільтра в ПВДС₀:

$$H^{0}(z) = \sum_{l=0}^{N} b^{0}{}_{l} z^{-l}.$$
(6.3)

Замінимо тепер кожну з ПВДС (див. рис. 6.6, *a*) відповідною еквівалентною системою ЕСІІ. Передатна функція $H^{\kappa}_{r}(z^{m})$ (*r*=0, 1, ..., *m*-1) фільтра в *r*-й паралельній вітці схеми дорівнює

$$H^{\kappa}{}_{r}(z^{m}) = \sum_{j=0}^{\nu} b^{\kappa}{}_{r+jm} z^{-jm}, \qquad (6.4)$$

де $b^{\kappa}_{l} - l$ -й коефіцієнт передатної функції $H^{\kappa}(z)$ фільтра в ПВДС_к. З (6.1) і (6.3) видно, що

$$H^{\kappa}(z) = \sum_{l=0}^{N} b^{0}_{l} e^{i\frac{2\pi}{m}kl} z^{-l} = \sum_{l=0}^{N} b^{\kappa}_{l} z^{-l}.$$
(6.5)

Із (6.5) одержуємо

$$b^{\kappa}{}_{l} = b^{0}{}_{l}e^{\frac{i^{2\pi}}{m}kl}.$$
(6.6)

Підставимо тепер (6.6) в (6.4):

$$H^{\kappa}{}_{r}(z^{m}) = \sum_{j=0}^{\nu} b^{0}{}_{r+jm} e^{i\frac{2\pi}{m}kr} e^{-i2\pi kj} z^{-jm} =$$
$$= e^{i\frac{2\pi}{m}kr} \sum_{j=0}^{\nu} b^{0}{}_{r+jm} z^{-jm} = e^{i\frac{2\pi}{m}kr} H^{0}{}_{r}(z^{m}).$$
(6.7)

З (6.7) видно, що передатна функція $H^{\kappa}_{r}(z^{m})$ в *r*-й вітці ЕСІІ к-й ПВДС дорівнює передатній функції $H^{0}_{r}(z^{m})$ у *r*-й вітці ЕСІІ ПВДС₀, помноженій на $i^{2\pi}_{kr}$

постійний коефіцієнт, рівний $e^{\int_{m}^{m} \infty}$. Таким чином, в еквівалентних схемах ЕСІІ для всіх ПВДС використовуються фільтри з однаковими передатними функціями $H^{0}_{r}(z^{m})$ (r=0, 1, ..., m-1). Отже, можна використовувати тільки один набір фільтрів $H^{0}_{r}(z^{m})$ (одну ЕСІІ), склавши вхідні сигнали $y^{\kappa}_{r}(nT')$, що надходять на входи фільтрів з передатною функцією $H^{0}_{r}(z^{m})$ у кожній з ЕСІІ, що відповідає κ -й ПВДС. Вхідний сигнал $u_{r}(nT')$ (r=0, 1, ..., m-1)

фільтра в *r*-й паралельній гілці ЕСІІ із передатною функцією $H^{0}_{r}(z^{m})$ визначається виразом

$$u_r(nT') = \sum_{k=0}^{m-1} y^k(nT') e^{i\frac{2\pi}{m}kr}.$$
(6.8)

Оскільки (6.8) подібний до визначення ОДПФ, обчислення величин $u_r(nT')$ для фіксованого значення *n* можна виконати за допомогою процесора, що реалізує алгоритм ШПФ, помітно скоротивши кількість арифметичних операцій за одиницю часу. В результаті отримаємо схему формування групового *m*-канального сигналу з ЧРК, зображену на рис. 6.7.

Рисунок 6.7 – Схема формування групового сигналу з ЧРК

Слід відзначити, що структуру ТМ можна побудувати з використанням в алгоритмі оброблення сигналів процесора ШПФ.

6.4 Багаторівневі трансмультиплексори

Загальна структура багаторівневого ТМ із l рівнями подана на рис. 6.8. Схема складається в основному з однотипних блоків $\mathcal{F}_{i,j}$. Перший індекс у позначенні блоку означає номер рівня, другий – порядковий номер блоку на даному рівні. У схемі рис. 6.8 частота дискретизації змінюється Vразів. Якщо розглядати схему рис. 6.8 зліва направо, тобто вважати вхідним сигналом груповий сигнал із ЧРК x(nT), то ця схема виконує пряме перетворення. Якщо розглядати схему справа наліво, тобто вважати вхідними сигналами сигнали окремих каналів $y_0(2^V nT)$, $y_1(2^V nT)$, ..., $y_{K-1}(2^V nT)$, $K=2^l$, то схема реалізує зворотне перетворення.

Рисунок 6.8 – Структура багаторівневого ТМ

При прямому перетворенні точки, виділені на схемі означають з'єднання; при зворотному перетворенні ці точки варто розглядати як суматори. Схеми прямого та зворотного перетворень можуть відрізнятися параметрами і елементами блоків окремих рівнів.

Слід відзначити, що на рис. 6.8 подана схема ТМ для окремого, але важливого випадку багаторівневого ТМ, у якому кількість блоків і частота дискретизації змінюються від рівня до рівня у два рази. Можливі інші варіанти багаторівневих ТМ, у яких кількість блоків і частота дискретизації змінюються від рівня до рівня не в два, а в інше число разів, причому це число може змінюватися від рівня до рівня.

Існують два основних варіанта схеми рис. 6.8: багаторівневий ТМ із дійсними сигналами та багаторівневий ТМ із комплексними сигналами.

Розглянемо обидва варіанти ТМ для випадку, коли число каналів K=4. На рис. 6.9, *а* зображена схема прямого перетворення, а на рис. 6.9, 6 – перетворення багаторівневого зворотного TM дійсними схема **i**3 сигналами. Обидві схеми містять ФНЧ і ФВЧ, причому всі фільтри одного типу і одного рівня мають однакові характеристики. Крім фільтрів, схема містить перетворення дециматори, схема зворотного прямого a перетворення – інтерполятори.

Рисунок 6.9 – Схема багаторівневого ТМ з дійсними сигналами

При прямому перетворенні кожен фільтр виділяє спектри сигналів половини каналів, сигнали яких подаються на його вхід. При зворотному перетворенні кожен фільтр звільняє місце для спектра сигналів такого ж числа каналів, яке подане на його вхід. Якщо необхідно одержувати й аналізувати груповий сигнал x(nT), спектр якого утворений лише прямими спектрами сигналів окремих каналів, то схеми рис. 6.9, *a* і б необхідно доповнити пристроями множення на (-1)ⁿ так само, як це зроблено в найпростішому ТМ (див. рис. 6.3). Оскільки блоки, що входять до складу найпростішого і багаторівневого ТМ із дійсними сигналами мають однакову структуру, відмітимо лише особливості багаторівневого ТМ у порівнянні з найпростішим. У багаторівневого ТМ лише фільтри першого

рівня (їх тільки два) функціонуюють при максимальній частоті дискретизації сигналу і є такими ж складними, як і фільтри найпростішого ТМ. Чим більший номер рівня, тим нижча частота дискретизації і тим більш простими виявляються схеми фільтрів. Загальне число фільтрів у багаторівневому ТМ істотно більше, ніж у найпростішому ТМ (при кількості рівнів, більшій у 2 рази).

Розглянемо тепер багаторівневий ТМ із комплексними сигналами. Основна мета введення комплексних сигналів в багаторівневий ТМ полягає в спрощенні й уніфікації характеристик фільтрів усіх рівнів. На рис. 6.10, a зображена схема прямого перетворення, а на рис. 6.10, δ – схема зворотного перетворення.

Рисунок 6.10 – Схема багаторівневого ТМ з комплексними сигналами

Ці схеми в точності відповідають загальній схемі багаторівневого ТМ, якщо прийняти, що V=l=2 і блоки останнього рівня містять по два фільтри, наприклад, $\Phi H Y_{30}$ і $\Phi H Y_{20}$ (рис. 6.10, a, δ). Однак аналіз схеми спрощується, якщо вважати, що V=2, а l=3, тобто прийняти, що блок кожного фільтра містить лише один фільтр, зображений на рис. 6.10, a, δ . Вважається, що фільтри $\Phi H Y_{10}$ і $\Phi H Y_{11}$ утворюють перший рівень схеми перетворення, фільтри $\Phi H Y_{20} \Phi H Y_{21}$, $\Phi H Y_{22}$ і $\Phi H Y_{23}$ – другий рівень і фільтри $\Phi H Y_{30} \Phi H Y_{31}$, $\Phi H Y_{32}$ і $\Phi H Y_{33}$ – третій рівень. Кожен фільтр і кожен помножувач у схемах ТМ із комплексними сигналами відповідають двом дійсним фільтрам і двом помножувачам, необхідним для оброблення комплексного сигналу. Усі фільтри в обох схемах є фільтрами нижніх частот. Аналізуючи роботу багаторівневого ТМ із комплексними сигналами і розраховуючи необхідні характеристики фільтрів, нормуємо частоту дискретного сигналу за правилом $\omega_r=\omega/\omega_{Dr}$, де ω_{Dr} – частота дискретизації *r*-го рівня ТМ.

Схеми прямого та зворотного перетворень ТМ виконують взаємнозворотні операції. З аналізу схем випливає, що однаково позначені фільтри обох схем повинні мати ідентичні характеристики. Відмітимо, що тверлження справедливе будь-якій кількості пе при рівнів V багаторівневому ТМ з комплексними сигналами, тобто для будь-якого числа каналів, що визначається як $K=2^{V}$. Крім того, очевидно, що граничні частоти смуг пропускання $\omega_{r,n}$ і затримки $\omega_{r,3}$ фільтрів останнього рівня не залежать від кількості фільтрів. Будемо позначати ці фільтри ФНЧ. Граничні частоти смуг пропускання $\omega_{r\,r.n}$ і затримки $\omega_{r\,r.3}$ фільтрів інших рівнів можуть залежати від номера рівня r. Будемо позначати ці фільтри ФНЧ_г.

пов'язані вибором типу Розглянемо питання. 3 фільтрів багаторівневого ТМ із комплексними сигналами і визначенням вимог до їх характеристик. Для ТМ у цілому задані вимоги до АЧХ і ФЧХ. Тому АЧХ і ФЧХ кожного фільтра також повинні задовольняти ці вимоги. Як відомо, задані вимоги до ФЧХ простіше реалізувати за допомогою нерекурсивного фільтра (НФ). Основні операції в ТМ – децимацію при прямому перетворенні й інтерполяцію при зворотному перетворенні – також простіше виконати за допомогою НФ, оскільки необхідний обсяг обчислень виявляється меншим. Таким чином, у багаторівневому ТМ із сигналами доцільно використовувати НФ, комплексними ШО без додаткових апаратних витрат реалізуються з лінійною ФЧХ. Застосування в ТМ НФ із лінійною ФЧХ дозволяє автоматично виконати вимоги до ФЧХ ТМ. Надалі мова буде йти тільки про вимоги до АЧХ цих фільтрів.

Визначимо граничні частоти смуг $\omega_{\text{г.п}}$ і $\omega_{\text{г.з}}$ ФНЧ останнього рівня ТМ. Розглянемо ФНЧ схеми зворотного перетворення, вважаючи, що спектр кожного каналу займає смугу нормованих частот $\omega = f/f_D$ від $\omega'_1=0,0375$ до $\omega'_2=0,425$ (це відповідає смузі частот від 300 - 3400 Гц при частоті дискретизації $f_D=8$ кГц).

Рис. 6.11 ілюструє визначення величин $\omega_{\Gamma,\Pi}$ і $\omega_{\Gamma,3}$. По осях ординат відкладені такі величини: на рис 6.11, a – модуль спектра $W_0(\omega) = |Y_0(e^{i2\pi\omega})|$ сигнали $y_0(4nT)$ одного каналу; на рис. 6.11, δ – модуль спектра $W_0(\omega)$ комплексного сигналу $\tilde{y}_0(4nT)$ (вихід помножувального пристрою, позиція 2, рис. 6.10, a), на рис. 6.11, e – ідеалізована АЧХ фільтра ФНЧ. На рис. 6.11, a параметри мають такі значення [8]:

$$\omega_{1}' = -\omega_{0}' = 0,375; \ \omega_{2}' = 0,425; \omega_{3}' = 0,5; \ \omega_{4}' = \omega_{3}' + (\omega_{3}' - \omega_{2}') = 0,575; \omega_{5}' = \omega_{3}' + (\omega_{3}' - \omega_{1}') = 0,9625.$$
(6.9)

Оскільки $\tilde{y}_0(4nT) = e^{-i2\pi n\gamma} y_0(4nT)$,

$$\widetilde{W}_{0}(\omega) = \left| Y_{0}(e^{i2\pi(\omega+\gamma)}) \right| = W_{0}(\omega+\gamma).$$
(6.10)

Величина у у (6.10) визначає зсув спектра. ФНЧ повинен виділяти спектр, розташований у межах від ω''_1 до ω''_2 . АЧХ ФНЧ є парними функціями, тому гранична частота смуги пропускання $\omega_{r.n}$ повинна задовольняти умову $\omega_{r.n} \ge \max(|\omega''_1|, \omega''_2)$, тобто

$$\omega_{\rm r.n} = \max(\gamma - \omega_1', \omega_2' - \gamma). \tag{6.11}$$

Графік функції $\omega_{\Gamma,\Pi}(\gamma)$ зображений на рис. 6.12,*a*.

Рисунок 6.11 – Визначення $\omega_{r.\pi}$

Рисунок 6.12 – Графік функції $\omega_{\Gamma,\Pi}(\gamma)$ і $\omega_{\Gamma,\Im}(\gamma)$

ФНЧ повинен сформувати спектр з граничною частотою смуги затримки $\omega_{r,3}$ і відповідати умовам:

$$\omega_{\Gamma,3} \leq \omega_4'' = \omega_4' - \gamma;$$

$$\omega_{\Gamma,31} = 1 - \omega_{\Gamma,3} \geq \omega_5'' = \omega_5' - \gamma.$$
(6.12)

Із (6.12) випливає формула, що визначає величину $\omega_{r,s}$:

$$\omega_{r.3} = \min(1 - \omega'_5 + \gamma, \omega'_4 - \gamma).$$
(6.13)

Оскільки задаються величини ω'_1 і ω'_2 , зручно виразити $\omega_{r,3}$ через ці величини. З (6.9) і (6.13) одержуємо

$$\omega_{\text{\tiny \Gamma,3}} = \min(\omega_1' + \gamma, 1 - \omega_2' - \gamma). \tag{6.14}$$

Графік функції $\omega_{\Gamma,3}(\gamma)$ зображений на рис. 6.12, б. Для спрощення ФНЧ проміжна смуга $\Delta \omega_{\Pi} = \omega_{\Gamma,3} - \omega_{\Gamma,\Pi}$ повинна бути максимальною. На рис.6.12, в зображений графік функції $\Delta \omega_{\Pi}(\gamma)$, побудований як різниця графіків функцій $\omega_{\Gamma,3}(\gamma)$ і $\omega_{\Gamma,\Pi}(\gamma)$. З цього графіка видно, що величина $\Delta \omega_{\Pi}$ має максимальне значення $\Delta \omega_{\Pi \max} = 2\omega'_{1}$ при

$$\frac{\omega_1' + \omega_2'}{2} \le \gamma \le \frac{1 - \omega_1' - \omega_2'}{2}.$$
 (6.15)

Крім умови (6.15), при виборі величини γ необхідно враховувати можливість спрощення схеми помножувача сигналу на $e^{-i2\pi n\gamma} = \cos 2\pi n\gamma -$ – sin $2\pi n\gamma$. Очевидно, що ці схеми виявляються надзвичайно простими у тому випадку, якщо $\gamma=0,25$ і функції соз $2\pi n\gamma$ та – sin $2\pi n\gamma$ приймають значення 0,1 чи -1. При $\omega'_1=0,0375$ до $\omega'_2=0,425$ границі в (6.15) мають значення ($\omega'_1+\omega'_2$)/2 $\approx \approx 0,231$ і ($1-\omega'_1-\omega'_2$)/2 $\approx 0,269$, тобто $\gamma=0,25$ задовольняє (6.15). Тому значення $\gamma=0,25$ виявляється доцільним для спрощення реалізації як ФНЧ, так і схем помножувачів. Із (6.11) і (6.14) при обраному значенні $\gamma=0,25$ можна визначити основні параметри ФНЧ: $\omega_{\Gamma,\Pi}=0,2125$ і $\omega_{\Gamma,3}=0,2875$.

ФНЧ_r застосовуються на всіх рівнях багаторівневого ТМ із комплексними сигналами, крім останнього. Два чинники визначають вимоги до смуг пропускання та затримки ФНЧ: по-перше, необхідність подавлення частини спектра сигналу, поданого на вхід $\Phi H Y_r$, і, по-друге, необхідність забезпечення простоти реалізацію схем помножувачів, що виконують зсув спектра сигналу. Смуги пропускання та затримки ФНЧ2 другого рівня визначаються тільки першим чинником, оскільки між ФНЧ і $\Phi H \Psi_2$ відсутні схеми помножувачів. $\Phi H \Psi_2$ повинен пропускати частину спектра, розташовану між частотами - $\omega_{\Gamma,\Pi}$ і $\omega_{\Gamma,\Pi}$, і подавляти частину розташовану між частотами 1- $\omega_{\text{г.п.}}$ і 1+ $\omega_{\text{г.п.}}$. У результаті спектра, подавлення частини спектра звільняється місце, необхідне для спектра іншого каналу, тобто можливе об'єднання каналів. Очевидно, що період АЧХ $\Phi H \Psi_2$ повинен бути вдвічі більшим, ніж період АЧХ $\Phi H \Psi$, і, отже, частота дискретизації повинна бути збільшена в 2 рази на вході $\Phi H \Psi_2$. При цьому

$$\omega_2 = 0,5\omega_3,\tag{6.16}$$

де ω_2 – нормована частота на вході $\Phi H \Psi_2$;

 ω_3 – нормована частота на вході $\Phi H \Psi$.

Зі сформульованих вище вимог до АЧХ ФНЧ і (6.16) випливають обмеження на граничну частоту смуги пропускання $\omega_{2r,\pi}$ і граничну частоту смуги затримки $\omega_{2r,3}$ $\Phi H \Psi_2$:

$$\begin{array}{c}
\omega_{2_{\Gamma,\Pi}} \ge 0,5\omega_{{}_{\Gamma,\Pi}}; \\
\omega_{2_{\Gamma,3}} \le 0,5(1-\omega_{{}_{\Gamma,\Pi}}), \\
\end{array} \right\}.$$
(6.17)

Таким чином, можна прийняти $\omega_{2_{\Gamma,\Pi}} = 0,107$ і $\omega_{2_{\Gamma,3}} = 0,393$. Визначимо тепер граничні частоти смуги пропускання $\omega_{1_{\Gamma,\Pi}}$ і смуги затримки $\omega_{1_{\Gamma,3}} \Phi H Y_1$ першого рівня. З урахуванням (6.17), одержуємо:

$$\begin{array}{c}
\omega_{1r.n} \ge 0,5(\omega_{2r.n} + \gamma_{1}); \\
\omega_{1r.3} \le 0,5(1 - \omega_{2r.n} - \gamma_{1}), \\
\end{array},$$
(6.18)

де γ_1 визначає зсув спектра на вході $\Phi H Y_1$.

Величина γ_1 оцінюється так само, як величина γ :

$$\omega_{2\Gamma,\Pi}/2 \le \gamma_1 \le 0,25 - \omega_{2\Gamma,\Pi}/2.$$
 (6.19)

При $\omega_{2r,n}=0,107$ з (6.19) одержуємо $0,0535 \le \gamma_1 \le 1965$. Очевидно, що доцільно прийняти $\gamma_1=0,125$, оскільки при цьому виходять простими схеми множення, розташовані між $\Phi H \Psi_2$ і $\Phi H \Psi_1$.

Розглянемо тепер багаторівневий ТМ із комплексними сигналами, у якому число рівнів *К* більше трьох. Очевидно, що характеристики ФНЧ останнього рівня залишаються однаковими при будь-якому *l*, тобто $\omega_{\Gamma,\Pi} = 0,2125$ і $\omega_{\Gamma,3} = 0,2875$. Для визначення характеристик фільтрів інших рівнів неважко вивести формули, подібні (6.18) і (6.19): при *r*= *l*-2, *l*-3, ..., 1

$$\begin{array}{l} \omega_{rr,n} \ge 0,5(\omega_{r+1,r,n} + \gamma_{1}); \\ \omega_{rr,n} \le 0,5(1 - \omega_{r+1,r,n} - \gamma_{1}); \\ \omega_{rr,n}/2 \le \gamma_{1} \le 0,25 - \omega_{rr,n}/2, \end{array} \right\}.$$
(6.20)

Причому $\omega_{l-1, \text{ г.п}}$ і $\omega_{l-1, \text{ г.з}}$ визначаються за формулами, подібними (6.17):

$$\begin{array}{c} \omega_{l-1_{\Gamma,\Pi}} \ge 0,5\omega_{_{\Gamma,\Pi}};\\ \omega_{l-1_{\Gamma,3}} \le 0,5(1-\omega_{_{\Gamma,\Pi}}). \end{array}$$

$$(6.21)$$

Аналіз (6.20) дозволяє стверджувати, що при будь-яких значеннях r можна прийняти $\gamma_1 = 0,125$.

Розглянемо вимоги до АЧХ фільтрів у смугах пропускання та затримки ТМ на 64 канали (60-канальна група плюс чотири канали), тобто при l=7. У смузі затримки згасання кожного фільтра повинно бути не більше -70 дБ, що відповідає максимальному відхиленню АЧХ від нуля $\varepsilon_3=3\cdot10^{-4}$. Вимоги до максимального відхилення є АЧХ від одиниці в смузі пропускання також визначаються даними. Однак ці дані задаються для кожного каналу. Очевидно, що повинно виконуватися співвідношення

$$\varepsilon = (l-1)20\lg(1-\varepsilon_{r_{\mathrm{II}}}) + 20\lg(1-\varepsilon_{r_{\mathrm{II}}}), \qquad (6.22)$$

де $\varepsilon_{r \pi}$ і ε_{π} – максимальні відхилення АЧХ $\Phi H Y_r$ і $\Phi H Y$ від одиниці в смузі пропускання;

l=7;

|ε| – допустима нерівномірність АЧХ одного каналу ТМ, дБ.

Якщо (6.22) виконано, то $|\varepsilon| > (l - 1)$ 20 lg $(l + \varepsilon_{r \pi}) + 20$ lg $(l + \varepsilon_{\pi})$ i, отже, вимоги до АЧХ ТМ у смузі пропускання виконані. За заданою величиною є необхідно визначити величини $\varepsilon_{r \pi}$ i ε_{π} i реалізувати відповідні фільтри $\Phi H Y_r$ i $\Phi H Y$. Очевидно, що існує багато розв'язків цієї задачі i, отже, можливе оптимальне розв'язання відповідно до того чи іншого критерію оптимальності.

Покажемо, як можна розрахувати $\varepsilon_{r \ n}$ і ε_{n} , що відповідають TM, оптимальному за ємністю пам'яті, тобто, що містить мінімальну кількість комірок оперативної пам'яті. Загальна кількість $\Phi H Y_r$ у TM дорівнює 504, а $\Phi H Y - 256$. Щоб весь TM був оптимальним за ємністю пам'яті, необхідно визначити величини $\varepsilon_{r \ n}$ і ε_{n} , що відповідають мінімуму величини

$$L = 504(N_1 + 1) + 256(N_2 + 1), \tag{6.23}$$

де N_1 і N_2 – порядки передатних функцій фільтрів $\Phi H Y_r$ і $\Phi H Y$ при виконанні умови (6.22).

Із (6.22) можна виразити ε_{n} через $\varepsilon_{r n}$:

$$\varepsilon_n = 1 - 10^{\frac{\varepsilon}{20} - 6\lg(1 - \varepsilon_{r_n})}.$$
(6.24)

Розглянемо функцію $L=f(\varepsilon_{r n})$. При малих значеннях $\varepsilon_{r n}$ L велике, оскільки велике N_1 . При великих значеннях $\varepsilon_{r \, \Pi} L$ велике, оскільки мале $\varepsilon_{\Pi} i$ велике N_2 . Отже, мінімум функції $L=f(\varepsilon_r \pi)$ існує і залишається знайти оптимальне значення ε_{гп.опт} і відповідне значення ε_{п.опт}. З цією метою можна використовувати метод золотого перерізу, причому в якості початкового інтервалу варто вибрати інтервал [0, 1-10^{$\epsilon/120$}]. Для обчислення значення *L* у кожній точці необхідно за відомою величиною $\varepsilon_{r, II}$ розрахувати ε_{II} , використовуючи (6.24), вирішити за допомогою алгоритму Ремеза апроксимаційні задачі і визначити порядки фільтрів N₁ і N₂. Обсяг обчислень можна істотно зменшити, якщо. не розв'язуючи апроксимаційної задачі, на кожному кроці розраховувати величини N_1 і N_2 . Обчислення мінімуму L за цією методикою дало такі результати: є_{лпопт}= =0,0021, $\varepsilon_{п.опт}$ =0,0215, N_1 =11, N_2 =34, L=14750. Q=1288000, де Q – кількість операцій множення, які необхідно виконати за одну секунду на кожен канал при перетворенні ЧвРК-ЧРК (або ЧРК-ЧвРК).

Розглянемо розрахунок ТМ, квазіоптимального за швидкодією, тобто за кількістю операцій. Основою відповідного алгоритму є та обставина, що фільтри ТМ можуть бути рівносмуговими; для них справедлива рівність $\omega_{r,n}+\omega_{r,n}=0,5$. У таких фільтрах при однаковій точності апроксимації в смугах пропускання та затримки N/2 коефіцієнтів дорівнюють нулю і "середній коефіцієнт" b_{N/2} дорівнює 0,5. Оскільки з інших коефіцієнтів тільки N/4 приймають різні значення, можна вважати, що для одержання одного відліку вихідного сигналу в цьому фільтрі необхідно виконати N/4 множень (множення на 0,5 зводиться до одного зсуву) і N/2 підсумовувань. У звичайному НФ із лінійною ФЧХ доводиться виконувати (N/2+1) множень і N підсумовувань, тобто приблизно вдвічі більше операцій. Підставивши $\varepsilon_r = \varepsilon_n = \varepsilon_3 = 3 \cdot 10^{-4}$, одержуємо для рівносмугових фільтрів ФНЧ_r і ФНЧ такі результати: N₁=14, N₂=52, L = 21130, Q = = 488000. З порівняння двох варіантів ТМ – оптимального за ємністю пам'яті та квазіоптимального за швидкодією – видно, що порядки $\Phi H Y_r$ близькі один до одного. Тому практичний інтерес може викликати "проміжний" варіант ТМ із такими даними: $\varepsilon_r \ _{n}=\varepsilon_{3}=3\cdot 10^{-4}$; $\varepsilon_{n}=0,0321$; $N_1=14$; $N_2=32$; L ==16000; Q = 512000. Величина ε_{n} визначена в цьому випадку з (6.24).

6.5 Реалізація трансмультиплексорів

Однією з областей застосування трансмультиплексорів є телекомунікаційні технології для узгодження ІКМ сигналів з ЧвРК і ЧРК для 12- і 60-канальних систем. У літературі відомо ряд варіантів побудови таких ТМ, із яких можна виділити три основних типи структур: найпростіша структура ТМ, структура ТМ із додатковими перетвореннями, наприклад, з використанням ДПФ чи дискретного косинус-перетворення (ДКП), і багаторівнева структура ТМ [7, 8]. Всі типи структур докладно описані у попередньому підрозділі.

Важливим етапом при реалізації ТМ є вибір оптимального варіанта побудови. Таким варіантом може бути той, що при забезпеченні заданих характеристик каналів має мінімальні апаратні витрати. Для наближеного оцінювання апаратних витрат ТМ, звичайно, використовується число операцій множення за секунду на один канал *W*, яке визначається таким чином:

$$W=\sum_{i=1}^r m_i f_{Di}/K,$$

де m_i – число множень у ТМ, які необхідно виконати з частотою дискретизації f_{Di} ;

r – число множень з різними частотами дискретизації.

За допомогою параметра W можна приблизно оцінити складність різних варіантів побудови ТМ, тому що операція множення є найбільш трудомісткою в реалізації. Для більш точного оцінювання апаратних витрат необхідно також враховувати загальне число регістрів, розрядність відліків вхідних та вихідних сигналів і коефіцієнтів, (наявність обчислень з однаковими коефіцієнтами і т.д.).

У літературі приведені дані для різних варіантів реалізації зазначених типів структур [8]. Ці варіанти відрізняються числом каналів K, вибором різних частот дискретизації f_D і використанням як рекурсивних ЦФ, так і нерекурсивних (РЦФ і НЦФ). У ТМ можуть застосовуватися однакові ЦФ, тобто ЦФ з однаковими коефіцієнтами чи різні ЦФ. У тих випадках, коли в ТМ виконується оброблення комплексних сигналів, усі

ЦФ є спареними, одна частина яких служить для оброблення дійсних складових, а друга – для оброблення уявних. Необхідно відзначити, що найпростіша структура ТМ для 60-канальних систем практично не застосовується через складність реалізації, а багаторівнева структура ТМ не може використовуватися для 12-канальних систем, тому що для такої структури повинна виконуватися умова $N=2^n$, де $N=f_{D}$ чрк / f_{D} чврк; n – натуральне число; f_{D} чрк – частота дискретизації групового сигналу з ЧРК і f_{D} чврк частота дискретизації сигналу з ЧВРК (в телекомунікаційних системах f_{D} чврк = 8 кГц і f_{D} чрк = =112 кГц для K=12 і f_{D} чрк =512 кГц для K=60).

За аналогією з ЦФ можна розрізняти два підходи до проектування трансмультиплексорів з апаратною і програмною реалізацією операцій. Розглянемо особливості реалізації основних структур ТМ з урахуванням цих підходів.

При побудові ТМ з апаратною реалізацією операцій широке застосування одержали послідовно-параллельні помножувачі та пристрої для обчислення суми добутків, реалізовані на основі ПЗП. Зазначені пристрої мають однакову швидкодію і близькі апаратні витрати. Однак пристрій для обчислення суми добутків має більшу продуктивність, тому що за той же час, що й у звичайному помножувачі, у ньому виконується кілька операцій множення з наступним їх підсумовуванням.

Ефективне використання зазначених операційних пристроїв може здійснюватися тільки в тому випадку, коли ці пристрої функціонують на максимальних робочих частотах. Однак частоти дискретизації сигналів у різних вузлах ТМ можуть істотно відрізнятися від цих частот, і тому часто використовується метод часового мультиплексування, коли один операційний пристрій за період дискретизації виконує ряд однотипних операцій. Якщо коефіцієнти в операціях не змінюються, то реалізація цього методу досягається тільки комутацією вхідних і вихідних сигналів. У випадку різних коефіцієнтів необхідне їх коригування. Ця операція в помножувачах не викликає особливих труднощів, у той час як у пристроях для обчислення суми добутків, реалізованих на основі ПЗП, така процелура можлива тільки при обмеженому числі значень коефіцієнтів, тому що кожне значення коефіцієнта в 2 рази збільшує необхідний об'єм ПЗП. Тому при виборі варіанта реалізації ТМ необхідно враховувати наявність обчислень з однаковими коефіцієнтами, що мають місце, наприклад, в однакових ЦФ. Пристрої ДПФ і ДКП такої властивості не мають.

Розглянемо один з варіантів побудови багаторівневої структури ТМ з апаратною реалізацією операцій, що може бути використаний в основі 60-канальної апаратури узгодження з ЧРК і ЧвРК.

При застосуванні комплексних сигналів передатні функції ЦФ виходять більш простими, і тому надалі будемо розглядати тільки

багаторівневу структуру ТМ із комплексними сигналами. На рис. 6.13 наведена така структура для 60-канального ТМ, що включає перетворювач із ЧвРК у ЧРК (*a*) і перетворювач із ЧРК у ЧвРК (б), до складу якої входять комплексні помножувачі з коефіцієнтами $(\pm i)^n$, $e^{\pm i\pi n/4}$, $e^{\pm i3\pi n/4}$ і ЦФ із передатними функціями H_1 H'_2 - H'_7 , H''_2 - H''_7 . В якості ЦФ H_1 може використовуватися рекурсивний ЦФ 7-го порядку з 11 помножувачами на частотах дискретизації від 8 до 256 кГц. Фільтри H'_2 - $H'_7 \epsilon$ інтерполяторами з коефіцієнтом 2, частота дискретизації на виході яких у 2 рази більша, ніж на вході, а ЦФ H''_2 - $H''_7 \epsilon$ дециматорами, виконуючими зворотну операцію (зменшення частоти дискретизації в 2 рази). Імпульсні характеристики для всіх ЦФ H_2 - H_7 мають той самий вигляд, що зображений на рис. 6.14.

Цифрові фільтри *H*₂-*H*₇, з огляду на симетричність імпульсної характеристики і наявність нульових коефіцієнтів, можна описати таким різницевим рівнянням:

$$y_n = h_0 x_n + \sum_{i=1}^4 h_{2i-1} (x_{n-2i+1} + x_{n+2i-1}),$$
(6.25)

де *х* та *у* – відліки вхідних і вихідних сигналів Ц Φ ;

h – коефіцієнти ЦФ;

n – номер відліку.

Замість x(nT) і y(nT) для зручності позначення будемо записувати x_n і y_n , вважаючи, що період дискретизації дорівнює одиниці

$$y_{n} = \begin{cases} h_{0}x_{n}, & n-naphe; \\ \sum_{i=1}^{4} h_{2i-1}(x_{n-2i+1} + x_{n+2i-1}), & n-henaphe; \end{cases}$$
(6.26)

якщо вважати, що $x_n \neq 0$ при парному n i $x_n = 0$ при непарному.

Для апаратної реалізації такого ЦФ потрібно п'ять помножувачів, що будуть завантажені тільки наполовину, тому що при парному n буде функціонувати тільки помножувач з коефіцієнтом h_0 , а при непарному n - помножувачі з h_1 , h_3 , h_5 і h_7 .

Для повного завантаження помножувачів доцільно використовувати такий ЦФ для оброблення двох сигналів з рівними частотами дискретизації. Тоді якщо послідовності відліків цих сигналів x_n^l і x_n^2 зсунути один відносно одного на один період дискретизації й утворити сигнал x_n на вході ЦФ у такий спосіб:

$$x_n = \begin{cases} x_n^1, & n-naphe; \\ x_{n-1}^2, & n-henaphe. \end{cases}$$

Рисунок 6.13 – Структура 60-канального ТМ

Рисунок 6.14 – Імпульсна характеристика ЦФ

Тому у відповідності з (6.26) сигнали на виході ЦФ описуються такими рівняннями:

$$y_{n}^{1} = \begin{cases} h_{0}x_{n}, & n-naphe, \\ \sum_{i=1}^{4} h_{2i-1}(x_{n-2i+1} + x_{n+2i-1}), & n-henaphe, \end{cases}$$
(6.27)

$$y_{n-1}^{2} = \begin{cases} \sum_{i=1}^{4} h_{2i-1}(x_{n-2i+1} + x_{n+2i-1}), & n-naphe, \\ h_{0}x_{n}, & n-henaphe. \end{cases}$$
(6.28)

Вирівнюючи первинний зсув вхідних сигналів затримкою y_n^l на один період дискретизації, маємо

$$y_{n-1}^{1} = \begin{cases} h_{0}x_{n-1}, & n-\text{henaphe}; \\ \sum_{i=1}^{4} h_{2i-1}(x_{n-2i} + x_{n+2i-2}), & n-\text{naphe}, \end{cases}$$
(6.29)

Для ЦФ дециматора (6.25) перетвориться до вигляду

$$y_{n} = \begin{cases} h_{0}x_{n} + \sum_{i=1}^{4} h_{2i-1}(x_{n-2i+1} + x_{n+2i-1}), & n-naphe, \\ 0, & n-henaphe, \end{cases}$$
(6.30)

тобто кожен другий відлік береться рівним 0. У такому ЦФ також не забезпечується повне завантаження помножувачів, і тому доцільно використовувати оброблення двох сигналів з рівними частотами дискретизації.

Для повного завантаження помножувачів вихідний сигнал двоканального ЦФ дециматора сформуємо в такий спосіб:

$$y_n = \begin{cases} y_n^1, & n-naphe; \\ y_{n-1}^2, & n-henaphe, \end{cases}$$

$$y_{n}^{1} = h_{0}x_{n}^{1} + \sum_{i=1}^{4} h_{2i-1}(x_{n-2i+1}^{1} + x_{n+2i-1}^{1});$$

$$y_{n-1}^{2} = h_{0}x_{n-1}^{2} + \sum_{i=1}^{4} h_{2i-1}(x_{n-2i}^{2} + x_{n+2i-2}^{2})$$
(6.31)

Для побудови ЦФ також можуть використовуватися пристрої для обчислення суми добутків, тому що всі ЦФ на першому рівні ТМ однакові. Необхідно відзначити, що якщо ЦФ виконати у вигляді нерекурсивного фільтра, то необхідне число помножувачів може бути у 4 рази менше, ніж довжина імпульсної характеристики ЦФ. Це пояснюється тим, що зазначений ЦФ характеризується симетричною імпульсною характеристикою і застосовується разом з комплексними помножувачами на $(\pm i)^n$, на виході яких кожен другий відлік дійсної й уявної складових дорівнює нулю. Крім цього, при використанні нерекурсивного ЦФ фазочастотна характеристика ТМ є лінійною, тому що у цьому випадку в структурі використовуються тільки нерекурсивні ЦФ.

Контрольні запитання

- 1. Які функції виконує ТМ в багатоканальних системах зв'язку?
- 2. Навести класифікацію ТМ.
- 3. Які недоліки найпростіших ТМ?

4. Пояснити принцип дії ТМ з додатковим обробленням сигналів на базі ДПФ.

5. Основні переваги багаторівневих ТМ.

6. Особливості побудови багаторівневих ТМ з дійсним сигналом.

7. Порівняльний аналіз структур багаторівневих ТМ з дійсним і комплексним сигналами.

8. Навести структури багаторівневих ТМ на базі цифрових процесорів сигналів.

Задачі

1. Розрахувати розрядність і частоту дискретизації АЦП, що використовується у ТСМ для забезпечення перетворення з 12-канального групового сигналу з ЧРК у груповий ІКМ-сигнал з ЧвРК.

2. Побудувати структуру найпростішого ТМ для узгодження цифрової системи типу ІКМ-30 з аналоговим груповим трактом системи передачі типу К-60.

3. Розрахувати основні параметри ФНЧ багаторівневого ТМ для узгодження 12 телефонних каналів.

4. Синтезувати структурну схему ТМ для узгодження плезіохронної системи ІКМ-1920 з синхронною системою STM-1 на базі апаратних принципів побудови.

7 МОДЕЛЮВАННЯ АЛГОРИТМІВ ЦИФРОВОГО ОБРОБЛЕННЯ СИГНАЛІВ У СИСТЕМІ МАТLAB

7.1 Загальні відомості про систему МАТLAВ

В якості засобу моделювання алгоритмів ЦОС вибрано систему МАТLAB, що створена фірмою TMWI і є стандартом в області науковотехнічних розрахунків. Система МАТLAB була створена як мова програмування високого рівня для реалізації чисельних методів. Особливо докладно в МАTLAB представлені алгоритми матричних операцій, які є основою для моделювання складних систем. Найважливішою перевагою системи MATLAB у порівнянні з іншими системами є можливість її модифікації з метою розв'язання науково-технічних задач.

Система MATLAB має відкриту архітектуру, що дає споживачам повний доступ до її кодів за допомогою гнучкої та потужної мови програмування цієї системи. Базова бібліотека MATLAB, а також пакети розширення Signal, Processing, Filter, Design та Communications містять велике число функцій, які дозволяють легко та швидко виконувати різні розрахунки, пов'язані з ЦОС у телекомунікаційних системах [9-10].

7.2 Функції цифрового спектрального аналізу в MATLAB

Базовими процедурами цифрового спектрального аналізу є перетворення типу ДПФ і ОДПФ.

Для виконання ДПФ і ОДПФ у МАТLAВ служать функції *fft i ifft*:

• y = fft(x) – обчислює пряме ДПФ для вектора x; якщо x – матриця, то перетворення здійснюється для кожного її стовпця окремо;

• y = fft(x, N) – попередньо приводить вихідні дані до розміру N, урізуючи їх або доповнюючи нулями;

• x = ifft(y) та x = ifft(y, N) – аналогічні варіанти виклику для функції ОДПФ.

Функції fft та ifft входять у базову бібліотеку МАТLAB. Обчислення організовані так, що реалізується максимально можливе для кожної довжини вихідного вектора прискорення обчислень: довжина вектора (число рядків у матриці) x розкладається на прості множники, число цих множників відповідає кількості ступенів ШПФ, а самі множники визначають коефіцієнти проріджування на різних ступенях ШПФ.

Продемонструємо залежність числа обчислювальних операцій від розмірності ШПФ [10]. Створимо вектор з 128 випадкових чисел.

$$N = 128$$

 $x = randn(N, 1) + i * randn(N, 1);$
for $k=1:N$
flops(0);
 $y = fft(x, k);$
flop(k) = flops;
end
plot(flop)
hold on
plot((1:N) . ^2*8, ':')
plot((1:N) . *log2(1:N)*6, ':')
hold off

Отриманий графік (рис. 7.1) носить демонстраційний характер. Крім залежності числа операцій від розмірності ШПФ на графіку показані також верхня та нижня границі числа операцій. Верхня лінія – це число операцій, що відповідає прямій формулі ДПФ і дорівнює $8N^2$ (множник 8 виникає через те, що функція *flops* підраховує дійсні операції). Нижня лінія – число операцій, що відповідає максимальному прискоренню обчислень і дорівнює $6Nlog_2(N)$ (множник 6 також виникає через підрахунок функцією *flops* дійсних операцій). Добре видно, що графік числа операцій при ШПФ прямує до верхньої границі, якщо N – просте число, і дотикається до нижньої границі, якщо N — степінь числа 2.

Рисунок 7.1 – Залежність числа арифметичних операцій від розмірності ШПФ

Елементи вектора, що обробляються функцією *fft*, відповідають частотам, рівномірно розподіленим у діапазоні від нуля і майже до частоти дискретизації. Перший елемент, таким чином, відповідає нульовій частоті, а останній – частоті, меншої частоти дискретизації на $f_{\rm Д}/N$, де N – розмір вхідного та вихідного векторів. При виведенні спектральних графіків іноді бажано, щоб нульова частота знаходилася в центрі, а діапазон відображуваних частот простягався від $-f_{\rm Z}/2$ до $f_{\rm Z}/2$. Зробити це дозволяє функція *fftshift*, що змінює місцями половини переданого їй вектора:

y = fftshift(x).

Продемонструємо дію функції *fftshift* на прикладі двох коротких векторів парної та непарної довжини:

>> fftshift[1 2 3 4] ans = 3 4 1 2 >> fftshift[1 2 3 4 5] ans = 4 5 1 2 3.

У випадку парного об'єму вибірки дійсно відбувається перестановка половин вхідного вектора (при цьому перший елемент результуючого вектора відповідає частоті Найквіста). У випадку непарного об'єму вибірки перестановка виконується так, щоб перший елемент, що відповідає нульовій частоті, став середнім елементом результуючого вектора.

Функцію *fftshift* можна використовувати не тільки для виведення спектральних графіків, але й в інших випадках, коли потрібно поміняти місцями половини вектора.

В MATLAB розрахунок матриці прямого ДПФ реалізується за допомогою функції dftmtx. Виклик цієї функції такий:

A = dftmtx(n).

Тут *n* – розмірність ДПФ.

Матриця ОДПФ відрізняється від матриці прямого ДПФ комплексним спряженням і діленням на *N*, тому вона може бути отримана наступним чином:

 $A_{inv} = conj(dftmtx(n))/n$

Для реалізації блокової фільтрації за допомогою ШПФ у МАТLAВ використовується функція *fftfilt*, що має такий синтаксис:

y = fftfilt(h, x, n).

Тут h - імпульсна характеристика фільтра, x – вхідний сигнал, n – розмірність ШПФ (точніше, розмірність ШПФ при заданні цього параметра визначається так: $Nfft = 2^nextpow2(n)$, тобто n округляється в більшу сторону до степеня числа 2). Вихідний параметр y – результат фільтрації.

Третій вхідний параметр *n* при виклику можна не задавати, тоді розмірність ШПФ буде вибиратися автоматично, виходячи з максимальної ефективності обчислень (мінімального числа операцій).

MATLAB містить (у пакеті Signal Processing) ряд стандартних вагових функцій, які перетворюють вектори відліків так, що вони можуть використовуватися як один з параметрів різних функцій непараметричного спектрального аналізу.

Усі розглянуті нижче функції приймають як параметр необхідну довжину вектора (n), що повинна бути цілим додатним числом, і перетворюють вектор-стовпець w. При n=1 усі функції приймають значення 1.

Амплітудний спектр вагової функції відповідає частотній характеристиці нульового каналу ДПФ при використанні даної вагової функції. При розгляді конкретних функцій графіки їхніх амплітудних спектрів будуються в логарифмічному масштабі для n=16. Щоб забезпечити на нульовій частоті значення спектральної функції, що дорівнює одиниці (0 дБ), перед обчисленням спектра вагові функції нормуються – діляться на суму своїх відліків.

Графіки спектрів будуються за допомогою функції *freqz*. Оскільки фазовий спектр для усіх вагових функцій лінійно залежить від частоти, його графіки не приводяться. Для підвищення наочності частотна вісь маштабується в номерах каналів ДПФ, для цього при виклику функції *freqz* зазначена частота дискретизації, що дорівнює довжині вікна.

Функція *boxcar*, що реалізує "прямокутне вікно", введена у MATLAB лише для повноти набору вагових функцій, оскільки вона відповідає відсутності зважування:

w = boxcar(n).

Вектор, що обробляється, заповнений одиницями: w = ones(n, l).

Функція *triang* реалізує трикутне вікно:

w = triang(n).

Відліки трикутного вікна розраховуються за такою формулою [2]:

$$w(k) = \begin{cases} \frac{2k}{n+1}, & 1 \le k \le \frac{n+1}{2} \\ \frac{2(n-k+1)}{n+1}, & \frac{n+1}{2} \le k \le n \end{cases}$$
для непарного n,

$$w(k) = \begin{cases} \frac{2k-1}{n}, & 1 \le k \le \frac{n}{2} \\ \frac{2(n-k+1)}{n+1}, \frac{n}{2} + 1 \le k \le n \end{cases}$$
для парного п.

(7.1)

При непарному *n* трикутне вікно є симетричним, його крайні значення (при k = 1 і k = n) рівні 2/(n + 1), а всередині вікна (при k = (n + 1)/2) досягається одиничне значення.

При парному *n* трикутне вікно є несиметричним, його можна подати як відліки симетричного трикутного імпульсу, що починається при k=0,5 і закінчується при k = n + 1. Вершина імпульсу розташована при k = n / 2 + 0,75, а його амплітуда дорівнює 1 + 1/(2 n). При k = n/2 + 1 відлік вікна має одиничне значення.

На рис. 7.2 приведені графіки трикутного вікна і його амплітудного спектра при n = 16:

>> w = triang(16); >> w = w/sum(w); >> plot(w) >> figure >> [h, f] = freqz(w, 1, [], 16); >> plot(f, 20*log10(abs(h))) >> ylim([-80 0]) >> grid on.

Рівень першої бічної пелюстки отриманого спектра дорівнює -26,5 дБ. Функція *bartlett* реалізує вікно Бартлета:

$$w = bartlett(n).$$

Вікно Бартлета теж є трикутним, але розраховується інакше [2]:

$$w(k) = \begin{cases} \frac{2(k-1)}{n-1}, & 1 \le k \le \frac{n+1}{2} \\ \frac{2(n-k)}{n-1}, & \frac{n+1}{2} \le k \le n \end{cases}$$
для непарного n,

(7.2)

$$w(k) = \begin{cases} \frac{2(k-1)}{n-1}, & 1 \le k \le \frac{n}{2} \\ \frac{2(n-k)}{n-1}, & \frac{n}{2} + 1 \le k \le n \end{cases}$$
для парного п.

На відмінну від трикутного вікна, значення вікна Бартлета по краях (при k = 1 і k = n) дорівнюють нулю. Крім того, незалежно від парності *n* воно є симетричним. Вікно Бартлета є відліками симетричного трикутного імпульсу, що починається при k = 1, закінчується при k = n і має одиничну амплітуду. Максимум значення цього імпульсу досягається при k = n/2, тому при непарному *n* вікно Бартлета не досягає одиничного значення всередині.

При непарному *n* ненульові відліки вікна Бартлета збігаються з відліками трикутного вікна довжини *n* - 2.

На рис.7.3 приведені графіки вікна Бартлета і його амплітудного спектра при *n* = 16:

>> w = bartlett(16); >> w = w/sum(w); >> plot(w) >> figure >> [h, f] = freqz(w, 1, [], 16); >> plot(f, 20*log10(abs(h))) >> ylim([-80 0]) >> grid on.

Рисунок 7.2 – Трикутне вікно (а) і його амплітудний спектр (б)

Рівень першої бічної пелюстки, як і у випадку трикутного вікна, дорівнює -26,5 дБ.

Функція *hann* реалізує вікно Ханна (за аналогією з розглянутим далі вікном Хемінга його часто помилково називають вікном Хеннінга. Навіть відповідна функція в попередній версії пакета Signal Processing мала назву *hanning*):

w = hann(n, 'sflag').

Параметр 'sflag' дозволяє вибрати режим розрахунку вікна. При значенні 'symmetric', прийнятому за замовчуванням, генерується симетричне вікно, для якого w(k) = w(n + 1 - k). При значенні 'periodic' створюється несиметричне вікно, синусоїдальні компоненти якого будуть збігатися при з'єднанні декількох реалізацій вікна.

Рисунок 7.3 – Вікно Бартлета (а) і амплітудний спектр (б)

У випадку симетричного зображення відліки вікна Ханна розраховуються за формулою [2]

$$w(k) = \frac{1}{2} \left(1 - \cos\left(2\pi \frac{k-1}{n-1}\right) \right).$$
(7.3)

Для періодичного варіанта n - 1 у знаменнику формули замінюється на n (можливе й інше трактування: виконується розрахунок за приведеною формулою для вікна довжиною n + 1, а потім останній елемент відкидається).

На рис.7.4 приведені графіки вікна Ханна та його амплітудного спектра при *n* = 16:

>> w = hann(16); >> w = w/sum(w); >> plot(w) >> figure >> [h, f] = freqz(w, 1, [], 16); >> plot(f, 20*log10(abs(h))) >> ylim([-80 0]) >> grid on.

Рівень першої бічної пелюстки дорівнює -31,5дБ. Функція *hamming* реалізує вікно Хемінга: w = hamming(n, `sflag`).

Рядковий параметр ' sflag' дозволяє вибрати режим розрахунку вікна. При значенні 'symmetric', прийнятому за замовчуванням, генерується симетричне вікно, для якого w(k) = w(n + 1 - k). При значенні 'periodic' створюється несиметричне вікно, синусоїдальні компоненти якого будуть збігатися при з'єднанні декількох реалізацій вікна.

У симетричному випадку відліки вікна Хемінга розраховуються за формулою

$$w(k) = 0,54 - 0,46\cos\left(2\pi \frac{k-1}{n-1}\right).$$
(7.4)

Для періодичного варіанта n - 1 у знаменнику формули замінюється на n (можливе й інше трактування: виконується розрахунок за приведеною формулою для вікна довжиною n + 1, а потім останній елемент відкидається).

На рис. 7.5 приведені графіки вікна Хемінга та його амплітудного спектра при *n*=16:

>> w = hamming(16); >> w = w/sum(w); >> plot(w) >> figure >> [h, f] = freqz(w, 1, [], 16);>> plot(f, 20*log10(abs(h)))>> ylim([-80 0])>> grid on.0.14 0.12 0.1 0.08 a) 0.06 0.04

Рисунок 7.4 – Вікно Ханна (а) і його амплітудний спектр (б)

Рівень першої бічної пелюстки в даному прикладі дорівнює -40 дБ. Зі збільшенням *n* цей рівень зменшується до -43 дБ.

Функція *blackman* реалізує вікно Блекмена:

w = blackman(n, 'sflag').

Рядковий параметр ' sflag' дозволяє вибрати режим розрахунку вікна. При значенні 'symmetric', прийнятому за замовчуванням, генерується симетричне вікно, для якого w(k) = w(n + 1 - k). При значенні 'periodic' створюється несиметричне вікно, синусоїдальні компоненти якого будуть збігатися при з'єднанні декількох реалізацій вікна.

У симетричному випадку відліки вікна Блекмена розраховуються за формулою [2]

$$w(k) = 0.42 - 0.5\cos\left(2\pi \frac{k-1}{n-1}\right) + 0.08\cos\left(4\pi \frac{k-1}{n-1}\right).$$
(7.5)

Для періодичного варіанта n - 1 у знаменнику формули замінюється на n (можлива й інше трактування: виконується розрахунок за приведеною формулою для вікна довжиною n + 1, а потім останній елемент відкидається).

На рис. 7.6 приведені графіки вікна Блекмена та його амплітудного спектра при *n* = 16:

>> w = blackman(16); >> w = w/sum(w); >> plot(w) >> figure >> [h, f] = freqz(w, 1, [], 16); >> plot(f, 20*log10(abs(h))) >> ylim([-80 0]) >> grid on.

Рівень першої бічної пелюстки дорівнює -58 дБ. Вікно Блекмена має ширшу головну пелюстку та менший рівень бічних пелюсток у порівнянні з вікнами Ханна і Хемінга тієї ж довжини.

Функція kaiser реалізує вікно Кайзера:

w = kaiser(n, beta).

Тут *beta* — параметр вікна (див. формулу нижче). Відліки вікна Кайзера розраховуються за формулою

$$w(k) = \frac{\left| I_0 \left(\beta \sqrt{1 - \left(\frac{2k - n - 1}{n - 1}\right)^2} \right) \right|}{\left| I_0(\beta) \right|}, \quad k = 1, 2, \dots, n.$$
(7.6)

Тут *I*₀ — модифікована функція Бесселя першого роду нульового порядку.

Чим більше значення β, тим більше частка енергії, зосереджена у головній пелюстці спектра (і тим ширша ця головна пелюстка), і тим менший рівень бічних пелюсток. На практиці використовуються значення β від 4 до 9.

Рисунок 7.5 – Вікно Хемінга (а) та його амплітудний спектр (б)

На рис.7.7 приведені графіки вікна Кайзера і його амплітудного спектра при n=16 для двох зазначених значень β:

```
>> w1 = kaiser(16, 4);
>> w2 = kaiser(16, 9);
>> w1 = w1/sum(w1);
>> w2 = w2/sum(w2);
>> plot(w1); hold on; plot(w2, '---'); hold off
>> figure
>> [h1, f] = freqz(w1, 1, [], 16);
>> h2 = freqz(w2, 1, [], 16);
>> plot(f, 20*log10(abs(h1)))
>> hold on
>> plot(f, 20*log10(abs(h2)))
>> hold off
>> ylim([-100 0])
```

>> *grid on*.

Рисунок 7.6 – Вікно Блекмена (а) та його амплітудний спектр (б)

З графіків видно, що при $\beta = 4$ головна пелюстка має ширину 1,75 (за одиницю прийнято відстань між сусідніми каналами частотного аналізу), а рівень бічних пелюсток дорівнює - 32,5дБ. При $\beta = 9$ головна пелюстка розширюється приблизно до 3,2, а рівень бічних пелюсток знижується до - 66 дБ.

У версії (5.1) пакета Signal Processing з'явилося ще декілька вагових функцій:

• *barthannwin* – вікно Бартлета-Ханна (лінійна комбінація вікон Бартлета і Ханна);
• *blackmanharris* – вікно Блекмена-Харріса (на відміну від вікна Блекмена, додається не два, а три косинусоїдальних доданки);

• *bohmanwin* – вікно Бомена (згортка двох однакових косинусоїдальних імпульсів);

• *gausswin* – гаусове вікно;

• *nuttalwin* – версія вікна Блекмена-Харріса, запропонована Наттоллом;

• *tukeywin* – вікно Тьюкі (прямокутник з косинусоїдально згладженими краями; при крайніх допустимих значеннях коефіцієнта згладжування одержуються прямокутне вікно та вікно Ханна).

Для обчислення періодограми в MATLAB призначена функція *periodogram*. Запис її виклику такий:

[*Pxx*, *f*] = periodogram(x, window, Nfft, Fs, 'range').

Єдиним обов'язковим вхідним параметром є x – вектор відліків сигналу. Інші параметри приймають значення за замовчуванням, що використовуються, якщо як параметр зазначена порожня матриця [] або якщо деяка кількість параметрів (починаючи з останнього) опущені при виклику. Вектор window повинний містити коефіцієнти використовуваного вікна (при цьому обчислюється модифікована періодограма). За замовчуванням використовується прямокутне вікно.

Параметр *Nfft* задає розмірність ШПФ, використовуваного для обчислення періодограми. За замовчуванням цей параметр дорівнює $max(256, 2^nextpow2(length(x)))$. Вхідний сигнал, помножений на вікно, приводиться до розміру *Nfft* (обрізається або доповнюється нулями).

Параметр *Fs* – частота дискретизації в герцах. Ця величина використовується також для дискретизації графіка та розрахунку вектора частот *f*. Значення за замовчуванням дорівнює 2*π*.

Рядковий параметр '*range*' визначає частотний діапазон для вектора, що обробляється, *Pxx*. Можливі два значення:

• 'twoslded' – вектори Pxx і f мають довжину Nfft і відповідають повному діапазону частот 0...Fs/2. Цей варіант використовується за замовчуванням, якщо x містить комплексні відліки;

• 'onesided' — вектори Pxx і f мають довжину cell ((Nfft + l)/2) і відповідають половинному діапазонові частот 0...Fs/2. Цей варіант використовується за замовчуванням у випадку дійсного вектора x.

Параметр '*range*' може бути зазначений у списку параметрів у будьякому місці після *window*.

Параметри, що обробляються: Pxx – вектор значень спектральної щільності потужності, f – вектор значень частот, використаних для розрахунку. Крок між сусідніми елементами цього вектора дорівнює Fs/Nfft, а перший елемент дорівнює нулю.

Рисунок 7.7 – Вікно Кайзера (а) і його амплітудний спектр (б) для β = 4 (неперервна лінія) і для β = 9 (пунктирна лінія)

Якщо вихідні параметри при виклику не зазначені, функція будує графік спектральної щільності за допомогою функції *psdplot*.

Як приклад оцінимо спектр щільності потужності експоненціально корельованого випадкового процесу (рис. 7.8):

>> % формування випадкового сигналу >> X0 = randn(1, 1000); >> a = 0,9; >> X = filter(1, [1 -a], X0); >> % оцінка спектра щільності потужності >> periodogramm(X, [], [], 1).

Рисунок 7.8 – Періодограма експоненціально корельованого випадкового процесу отримана за допомогою функції periodogram

Як видно з рис.7.8, хоч загальний хід графіка збігається з аналітично побудованим спектром даного випадкового процесу, але періодограма виявляється дуже порізаною, що цілком відповідає теоретичним відомостям про метод періодограм [2].

Функція *pwelch* призначена для визначення спектра потужності випадкового сигналу методом Уелча (методом усереднення модифікованих періодограм – averaged modified periodogram method). Синтаксис виклику функції такий:

[Pyx, f] = pwelch(x, Nwin, Noverlap, Nfft, Fs, 'range').

Єдиним обов'язковим вхідним параметром є х – вектор відліків аналізованого сигналу. Bci інші параметри мають значення за замовчуванням, що використовуються, якщо при виклику як параметр зазначена порожня матриця ([]) або якщо кілька останніх параметрів опущено. Параметр Nwin керує вибором вікна, використовуваного для аналізу. Якщо Nwin – число, використовується вікно Хемінга зазначеної довжини, а якщо вектор, то даний вектор використовується як вікно. За замовчуванням використовується вікно Хемінга, довжина якого вибирається так, щоб з урахуванням заданого перекриття (див. нижче) сигнал виявився розділеним на 8 фрагментів. Параметр Noverlap задає (у відліках) перекриття сусідніх фрагментів сигналу, для яких обчислюються періодограми. За замовчуванням перекриття дорівнює половині довжини вікна.

Параметр *Nfft* задає розмірність ШПФ, використовуваного для обчислення періодограми. За замовчуванням *Nfft* = $max(256. 2^nextpcw2(Nwin))$, де *Nwin* – довжина фрагмента сигналу (довжина використовуваного вікна).

Параметр *Fs* указує частоту дискретизації сигналу. Це значення використовується для нормування розрахованого спектра потужності, а також при розрахунку вектора, що обробляється, f і для дискретизації графіка. За замовчуванням значення цього параметра дорівнює 2π .

Рядковий параметр 'range' визначає частотний діапазон для вектора *Pxx*. Можливі два значення:

• 'twoslded' – вектори Pxx і f мають довжину Nfft і відповідають повному діапазонові частот 0...Fs. Цей варіант використовується за замовчуванням, якщо x містить комплексні відліки;

• 'onesided' — вектори Pxx і f мають довжину cell ((Nfft + 1)/2) і відповідають половинному діапазонові частот 0...Fs/2. Цей варіант використовується за замовчуванням у випадку дійсного вектора x.

Параметр 'range' може бути зазначений у списку параметрів у будьякому місці після Noverlap.

Параметри: Рхх – вектор значень спектральної щільності потужності, f – вектор значень частот, використаних для розрахунку. Крок між сусідніми елементами цього вектора дорівнює Fs/Nfft, перший елемент дорівнює нулю. Якщо вихідні параметри при виклику не зазначені, функція будує графік спектральної щільності потужності за допомогою функції *psdplot*. Розрахунок спектра відбувається у такий спосіб. Аналізований сигнал ділиться на фрагменти, що перекриваються, відповідно до параметрів Nwin і Noverlap. Для кожного фрагмента обчислюється модифікована періодограма з використанням заданих вікна та розмірності ШПФ. Отриманий набір модифікованих періодограм приводиться до середнього значення, і результат ділиться на Fs. Як потужності приклад оцінимо спектр щільності експоненціально корельованого випадкового процесу:

>> % формування випадкового сигналу

>> X0 = randn(1, 1000);

>> *a* = 0,9;

>> X = filter(1, [1 - a], X0);

>> % оцінка спектра щільності потужності

>> *pwelch*(*X*, [], [], [], 1).

Функція *psdplot* призначена для побудови графіка спектральної щільності потужності. Зокрема, вона використовується для цього усіма функціями спектрального аналізу, якщо при їх виклику не вказані вихідні параметри. Синтаксис виклику функції *psdplot* наступний:

psdplot(Pxx, f, 'units', 'yscale', 'title').

Тут Pxx – вектор значень спектральної щільності потужності (даний параметр може бути матрицею, у такому випадку виводиться декілька графіків, що відповідають окремим стовпцям цієї матриці), f – вектор такої ж довжини, що й Pxx, що містить значення частот, яким відповідають значення спектральної щільності потужності.

Інші параметри є необов'язковими. Параметр 'units' задає підпис для осі частот – 'rad/sample' (радіан/відлік, цей варіант використовується за замовчуванням) або 'Hz'. Параметр 'yscale' керує режимом побудови графіка. Прийняте за замовчуванням значення 'db' задає виведення потужності в децибелах, тобто у логарифмічному масштабі. Лінійний масштаб використовується при значенні 'linear'. Нарешті, параметр 'title' – рядок заголовка для графіка.

7.3 Синтез цифрових фільтрів у системі МАТLAВ

Задача синтезу цифрового фільтра розв'язується шляхом знаходження таких наборів коефіцієнтів {a_i} i {b_i}, при яких характеристики фільтра, що синтезується, задовольняють задані вимоги. В задачу проектування входить і вибір відповідної структури фільтра з урахуванням кінцевої точності обчислень. Це особливо актуально при апаратурній реалізації фільтрів – з використанням спеціалізованих ВІС або цифрових сигнальних процесорів [3].

Методи синтезу цифрових фільтрів можна класифікувати за різними ознаками:

а) за типом одержуваного фільтра:

1) методи синтезу рекурсивних фільтрів;

2) методи синтезу нерекурсивних фільтрів;

б) за наявністю аналогового прототипу:

1) методи синтезу з використанням аналогового прототипу;

2) прямі (без використовування аналогового прототипу) методи синтезу.

Розглянемо загальну ідею синтезу нерекурсивних фільтрів з викорис-танням вікон, а також окремий випадок, пов'язаний із застосуванням конкретного вікна і що приводить до фільтрів з косинусоїдальним згладжуванням АЧХ.

Метод синтезу з використанням вікон призначений для побудови нерекурсивних фільтрів. Ідея методу дуже проста. Перш за все ми задаємо бажаний комплексний коефіцієнт передачі у вигляді неперервної функції, визначеної в діапазоні частот від нуля до частоти Найквіста (якщо синтезується дійсний фільтр) або до частоти дискретизації (якщо проектується комплексний фільтр). ОДПФ цієї характеристики, обчислене з урахуванням її періодичного характеру, дає нескінченну в обидві сторони послідовність відліків імпульсної характеристики. Для отримання нерекурсивного фільтра заданого порядку ця послідовність зрізається – з неї вибирається центральний фрагмент потрібної довжини.

Просте зрізання послідовності відліків імпульсної характеристики відповідає використовуванню прямокутного вікна. Через зрізання спочатку задана частотна характеристика спотворюється – вона згортається із спектром вікна. В результаті з'являються перехідні смуги між областями пропускання та затримання, спостерігаються коливання коефіцієнта передачі в смугах пропускання, а в смугах затримання АЧХ набуває пелюсткового характеру.

Для ослаблення перерахованих ефектів і перш за все для зменшення рівня пелюсток в смугах затримання зрізана імпульсна характеристика множиться на вагову функцію (вікно), що плавно спадає на краях.

У підрозділі 7.2 вже розглядали вагові функції для спектрального аналізу і відзначили, що вікна мають різний рівень бічних пелюсток. Проте величина бічних пелюсток власного спектра вікна не збігається з величиною пелюсток АЧХ фільтра, синтезованого із застосуванням даного вікна. Переконаємося в цьому на простому прикладі, використовуючи різні вікна для синтезу нерекурсивного ФНЧ 32-го порядку з частотою зрізання, що дорівнює 1/4 від частоти Найквіста.

Передусім розраховуємо нескінченну імпульсну характеристику. ОДПФ від тієї, що цікавить нас АЧХ (ФЧХ вважаємо нульовою) дає таке [10]:

$$h(k) = \frac{1}{4} \frac{\sin(\pi k/4)}{\pi k/4}, \quad -\infty < k < \infty.$$
 (7.7)

Для отримання фільтра 32-го порядку вибираємо 33 відліки цієї імпульсної характеристики, розташовані симетрично щодо нуля, тобто використовуємо k=-16...16. Вибір симетричного фрагмента нескінченної імпульсної характеристики дозволяє отримати фільтр з лінійною ФЧХ і, отже, постійною груповою затримкою, що дорівнює (у відліках) половині порядку фільтра.

Обрізавши імпульсну характеристику, ми фактично використовували прямокутне вікно. Побудуємо графіки імпульсної характеристики отриманого фільтра і його АЧХ (рис.7.9).

>> k = (-16:16)'; >> b= sinc(k/4)/4; >> impz(b) % графік імпульсної характеристики >> figure >> [h, f] = freqz(b 1 [], 2); >> plot(f, 20*log10(abs(h))) % графік АЧХ в децибелах >> ylim([-50 10]) >> grid on .

Рисунок 7.9 – Імпульсна характеристика (а) і АЧХ (б) ФНЧ, синтезованого з використанням прямокутного вікна

З графіка АЧХ видно, що рівень бічних пелюсток складає -21 дБ, а їх ширина дорівнює 1/32 від частоти дискретизації

Зараз скористаємося вікном Хеммінга, яке використовується при синтезі фільтрів даним методом в MATLAB (функції *fir1* i *fir2*). Результати показані на рис.7.10.

>> b1 = b .* hamming(33); >> impz(b1) % графік імпульсної характеристики >> figure >> [h1, f] = freqz(b1, 1 [], 2); >> plot(f, 20*log10(abs(h1))) % графік АЧХ в децибелах >> ylim([-80 10])

>> grid on.

Як видно з рисунку, рівень пелюсток у смузі затримання зменшився приблизно до -52 дБ за рахунок деякого розширення смуги пропускання.

Рисунок 7.10 – Імпульсна характеристика (а) і АЧХ (б) ФНЧ, синтезованого з використанням вікна Хеммінга

Значення рівнів пелюсток, що досягаються при синтезі ФНЧ з використанням різних вікон, зведені в табл. 7.1. Результати отримані за допомогою MATLAB при синтезі фільтра 256-го порядку з частотою зрізання, рівною 1/4 від частоти Найквіста. Рівень пелюсток деякою мірою залежить від порядку фільтра та його частоти зрізання, тому дані, що приводяться в різних літературних джерелах, можуть дещо розрізнятися. Цей ефект ми тільки що спостерігали: АЧХ, приведена на рис. 7.10 має рівень бічних пелюсток -52 дБ (фільтр 32-го порядку), а в табл.7.1 для вікна Хеммінга вказана величина -53,6 дБ (фільтр 256-го порядку).

Тип вікна	Рівень бічних пелюсток, дБ
Прямокутне	-21,0
Трикутне	-26,5
Бартлета	-26,5
Ханна	-44,0
Хеммінга	-53,6
Блекмена	-75,3
Кайзера при β = 4	-45,2
Кайзера при β = 9	-90,5
Чебишева при β = 40 дБ	-51,0
Чебишева при β = 60 дБ	-71,6
Чебишева при β = 80 дБ	92,4

Таблиця 7.1 – Рівень бічних пелюсток при синтезі ФНЧ з вікнами різного типу

При застосуванні вікон Кайзера та Чебишева результати залежать від додаткових параметрів цих вікон. Для вікна Кайзера є емпірична формула, що зв'язує параметр β з рівнем подавлення бічних пелюсток *a* (в децибелах) при синтезі ФНЧ:

$$\beta = \begin{cases} 0, & \alpha < 21, \\ 0,5842(\alpha - 21)^{0.4} + 0,07886(\alpha - 21), 21 \le \alpha \le 50, \\ 0,1102(\alpha - 8,7), & \alpha > 50. \end{cases}$$
(7.8)

З табл. 7.1 видно, що використання вагових функцій дозволяє досягти подавлення бічних пелюсток, що перевищує 90 дБ. Однак слід пам'ятати про те, що зменшення рівня бічних пелюсток неминуче призводить до розширення перехідної зони між смугами пропускання та затримання. Тому вибирати вагову функцію слід виходячи з вимог, що висуваються до параметрів фільтра.

Розрахунок фільтрів з косинусоїдальным згладжуванням АЧХ слід віднести до категорії методів, що використовують вагові функції. Проте ці фільтри слід розглядати окремо. Такі фільтри отримали широке розповсюдження в телекомунікаційних системах (зокрема, для формування спектра при маніпуляції квадратури).

Нехай необхідно синтезувати ФНЧ із заданою частотою зрізання. Обговорюючи використовування вікон, ми бачили, що ОДПФ від ідеальної прямокутної АЧХ дає відліки нескінченної в обидві сторони імпульсної характеристики вигляду sin(ak)/(ak). Далі було показано, що просте зрізання цієї нескінченної імпульсної характеристики спотворює АЧХ, тому необхідно використовувати вагові функції. Ступінь спотоворення АЧХ при зрізанні нескінченних характеристик залежить від швидкості спадання відліків характеристики. Початковий варіант, що відповідає прямокутній АЧХ, спадає пропорційно до k. Це пов'язано з наявністю розривів (стрибків) в АЧХ.

Збільшивши швидкість згасання імпульсної характеристики, можна сподіватися, що її зрізання не дуже позначиться на вигляді АЧХ. Розглянемо косинусоїдальное згладжування, при якому в перехідній зоні від смуги пропускання до смуги затримання АЧХ є половиною періоду косинуса. Такий фільтр називається фільтром з косинусоїдальным згладжуванням АЧХ і для аналогового випадку описується в частотній області таким чином (рис. 7.11):

$$\dot{K}(\omega) = \begin{cases} 1, & |\omega| \le \omega_0 (1-\alpha), \\ \frac{1}{2} - \frac{1}{2} \sin\left(\frac{\pi}{2} \frac{|\omega| - \omega_0}{\alpha \omega_0}\right), \omega_0 (1-\alpha) < |\omega| \le \omega_0 (1+\alpha), \\ 0, & |\omega| > \omega_0 (1+\alpha). \end{cases}$$
(7.9)

Рисунок 7.11 – АЧХ фільтра з косинусоїдальным згладжуванням

Параметр α називається коефіцієнтом згладжування, він дорівнює половині ширини перехідної зони, нормованої до частоти зрізання. При $\alpha = 0$ фільтр перетворюється на ідеальний ФНЧ з прямокутною АЧХ, при $\alpha = 1$ АЧХ не містить плоску ділянку в смузі пропускання.

Вигляд імпульсної характеристики такого фільтра, дає змогу стверджувати, що його АЧХ може бути отримана як згортка ідеальної прямокутної АЧХ з функцією у вигляді половини періоду косинуса (рис. 7.12,а), математично описаної таким чином:

$$W(\omega) = \begin{cases} \frac{\pi^2}{2\alpha\omega_0} \cos\left(\frac{\pi}{2}\frac{\omega}{\alpha\omega_0}\right), |\omega| \le \alpha\omega_0, \\ 0, & |\omega| > \alpha\omega_0. \end{cases}$$
(7.10)

Рисунок 7.12 – Вагова функція косинусоїдального згладжування в частотній (а) і часовий (б) областях

Такий спектр відповідає часовому поданню сигналу

$$w(t) = \frac{1}{2\pi} \int_{-\alpha\omega_0}^{\alpha\omega_0} \frac{\pi^2}{2\alpha\omega_0} \cos\left(\frac{\pi}{2}\frac{\omega}{\alpha\omega_0}\right) e^{j\omega t} d\omega = \frac{\cos(\alpha\omega_0 t)}{1 - \left(\frac{2\alpha\omega_0 t}{\pi}\right)^2}.$$
 (7.11)

Згортка спектрів відповідає перемножуванню функцій часу, так що отриманий вираз, по суті справи, описує вагову функцію. Її графік показаний на рис. 7.12,6.

При $\alpha\omega_0 t = \pm \pi/2$ формула (7.11) дає невизначеність вигляду 0/0. Обчислення границі показує, що значення вагової функції дорівнює $\pi/4$:

$$\lim_{t\to\pm\pi/(2\alpha\omega_0)}\omega(t)=\frac{\pi}{4}.$$

З урахуванням вищесказаного одержуємо вираз для імпульсної характеристики ФНЧ з косинусоїдальним згладжуванням АЧХ:

$$h(t) = \frac{\omega_0}{\pi} \frac{\cos(\alpha \omega_0 t)}{1 - \left(\frac{2\alpha \omega_0 t}{\pi}\right)^2} \frac{\sin(\omega_0 t)}{\omega_0 t}.$$
(7.12)

Використаний спосіб згладжування робить неперервною не тільки саму АЧХ, але і її першу похідну, тому отримана імпульсна характеристика фільтра спадає пропорційно t^3 .

Перевіримо який вигляд матиме АЧХ дискретного фільтра з косинусоїдальним згладжуванням після зрізання імпульсної характеристики. Нехай частота зрізання дорівнює 1/8 від частоти дискретизації (1/4 від частоти Найквіста). Тоді у (7.12) потрібно підставити дискретні значення

$$t = kT = \frac{2\pi}{\omega_o} \mathbf{k} = \frac{2\pi}{8\omega_0} \mathbf{k} = \frac{\pi \mathbf{k}}{4\omega_0}$$

З урахуванням цього

$$h(k) = T \frac{\omega_0}{\pi} \frac{\cos(\frac{\alpha \pi k}{4})}{1 - \left(\frac{\alpha k}{2}\right)^2} \frac{\sin(\frac{\pi k}{4})}{\frac{\pi k}{4}} = \frac{1}{4} \frac{\cos(\frac{\alpha \pi k}{4})}{1 - \left(\frac{\alpha k}{2}\right)^2} \frac{\sin(\frac{\pi k}{4})}{\frac{\pi k}{4}}.$$

Будемо використовувати коефіцієнт згладжування a = 0,25 і розрахуємо фільтр 32-го порядку, узявши *k* в діапазоні -16... 16 (рис. 7.12):

>> k = -16:16; >> alpha = 0.25; % коефіцієнт згладжування >> w = cos(alpha*pi*k/4) ./ (1 - (alpha*k/2). ^2); >> w(isinf(w))= pi/4; % усунення невизначеності >> b = w .* sinc(k/4)/ 4; >> impz(b) % графік імпульсної характеристики >> figure >> [h. f] = fpeqz(b, 1 [], 2); >> plot(f. 20*log10(abs(h))) % графік АЧХ в децибелах >> ylim([-60 10]) >>grid on

Порівняння рис. 7.13 і 7.9, де були приведені результати простого зрізання імпульсної характеристики ідеального ФНЧ, показує, що імпульсна характеристика фільтра з косинусоїдальним згладжуванням згасає швидше, а рівень бічних пелюсток АЧХ зменшився більш ніж на 10 дБ (до -33,3 дБ) без помітного розширення смуги пропускання. Пульсації коефіцієнта передачі в смузі пропускання в даному випадку мають меншу амплітуду.

Фільтри з косинусоїдальним згладжуванням АЧХ часто використовуються в системах зв'язку для формування спектра сигналу. При цьому іноді використовується ідея розподілення цього фільтра між передавачем і приймачем. Тоді на передавальній і приймальній сторонах використовуються однакові фільтри, АЧХ яких показана на рис. 7.12 і є квадратним коренем з формули (7.9):

Рисунок 7.13 – Імпульсна (а) і частотна (б) характеристики дискретного фільтра з косинусоїдальним згладжуванням АЧХ

Імпульсна характеристика косинусоїдального фільтра описується такою формулою:

$$h(t)\frac{4\alpha\omega_0}{\pi^2 - (4\alpha\omega_0 t)^2} \left(\cos((1+\alpha)\omega_0 t) + \frac{\sin((1-\alpha)\omega_0 t)}{4\alpha\omega_0 t/\pi}\right).$$
(7.14)

Фільтр такого типу називається SQRT-варіантом фільтра з косинусоїдальним згладжуванням АЧХ (див. рис.7.14).

Рисунок 7.14 – АЧХ SQRТ-варіанта ФНЧ з косинусоїдальним згладжуванням

У системі МАТLAВ є більше двадцяти функцій синтезу дискретних фільтрів. Більша їх частина зосереджена в пакеті Signal Processing, три функції розрахунку конкретних фільтрів є в пакеті Communications, решта використо-вуються на практиці зі спеціалізованого пакета Filter Design.

Загальні відомості про функції розрахунку фільтрів подані в табл.7.2. У стовпці "Пакет" використовуються такі позначення:

- SP-Signal Processing;

- Comm – Communications;

- FD – Filter Design.

Крім перерахованих функцій в пакеті Signal Processing є програма FDATool (Filter Design and Analysis Tool), що реалізовує графічний інтерфейс для розрахунку фільтрів і проглядання їх характеристик.

У пакеті Signal Processing є функція bilinear, що дозволяє синтезувати дискретний фільтр методом білінійного z-перетворення за довільним аналоговим прототипом. Крім того, є готові функції розрахунку фільтрів Баттерворта, Чебишева першого та другого роду, а також еліптичних фільтрів (фільтрів Кауера). Властивості цих аналогових прототипів були описані в розділі 1. При розрахунку дискретних фільтрів використовуються ті ж самі функції, тільки без останнього параметра 's'; крім того, частоти зрізання задаються нормованими до частоти Найквіста.

Функції синтезу стандартних фільтрів виконують розрахунок дискретних ФНЧ, ФВЧ, смугових і режекторних фільтрів за аналоговими прототипами Баттерворта, Чебишева (першого і другого роду) і Кауера методом білінійного z-перетворення. При цьому послідовність дій подана у вигляді таких функцій MATLAB:

- *butter(n, w0, type)* – розрахунок фільтрів Баттерворта;

- cheby1(n, Rp, w0, type) – розрахунок фільтрів Чебишева першого роду;

- cheby2(n, Rs, w0, type) – розрахунок фільтрів Чебишева другого роду;

- *ellip(n, Rp, Rs, w0, type)* – розрахунок еліптичних фільтрів (фільтрів Кауера).

Параметри всіх функцій задаються однаково, тому розглядати функції окремо не будемо.

Перераховані функції дозволяють розраховувати як дискретні, так і аналогові фільтри. Ознакою дискретного розрахунку служить відсутність рядка 's' в кінці списку вхідних параметрів.

Параметри *n*, *Rp*, *Rs* (їх склад залежить від типу фільтра) – це параметри фільтра-прототипу: *n* – порядок фільтра, *Rp* – рівень пульсацій АЧХ у смузі пропускання (в децибелах), *Rs* – рівень пульсацій АЧХ у смузі затримання (в децибелах).

Функція	Па-	Тип фільтра	АЧХ	Метод синтезу
	кет			
1	2	3	4	5
butter	SP	Рекурсивний	Батерворта	Білінійне z-перетворення
Chebyl	SP	Рекурсивний	Чебишева	Білінійне z-перетворення
			першого	
			роду	
cheby2	SP	Рекурсивний	Чебишева	Білінійне z-перетворення
			другого роду	
Ellip	SP	Рекурсивний	Кауера	Білінійне z-перетворення
			(еліптична)	
bilinear	SP	Рекурсивний	Довільний	Білінійне z-перетворення
			аналоговий	
			прототип	
impinvar	SP	Рекурсивний	Довільний	Інваріантне перетворення
			аналоговий	імпульсної
			прототип	характеристики
yulewalk	SP	Рекурсивний	Кусково-	Авторегресійний метод
			лінійна	

Таблиця 7.2 – Функції синтезу дискретних фільтрів

Продовження таблиці 7.2

1 ' '				
1	2	3	4	5
invfreaz.	SP	Рекурсивний	Довільна	Мінімізація різниці між
J 1 -		<i>J</i> 1		чисельником функції
				передавання і добутком її
				знаменника та бажаною ЧХ
Prony	SP	Рекурсивний	Синтез за	Експоненційна
2			заданою	апроксимація Проні
			імпульсною	
			характерис-	
			тикою	
fir1	SP	Нерекурсивний	Багатому-	ОДПФ з використанням
			гова	вікон
fir2	SP	Нерекурсивний	Кусково-	ОДПФ з використанням
			лінійна	вікон
firls	SP	Нерекурсивний	Кусково-лі-	Мінімізація
			нійна з пере-	середньоквадратичної
			хідними	похибки
			смугами	
fircls	SP	Нерекурсивний	Кусково-	Мінімізація середньо-
			стала	квадратичної похибки з
				обмеженням відхилення
fircis1	SP	Нерекурсивний	ФНЧ, ФВЧ	Мінімізація середньо-
				квадратичної похибки з
				обмеженням максималь-
				ного відхилення
firrcos	SP	Нерекурсивний	ФНЧ	Косинусоїдальне
				згладжування
intfilt	SP	Нерекурсивний	ФНЧ	Мінімаксна апроксимація
remez	SP	Нерекурсивний	Кусково-лі-	Мінімаксна апроксимація
			нійна з пере-	
			хідними	
			смугами	
cremez.	SP	Нерекурсивний	Кусково-лі-	Мінімаксна апроксимація
		(з нелінійною	нійна з пере-	
		ФЧХ)	хідними	
			смугами	
rcosfir	Cora	Нерекурсивний	ФНЧ	Косинусоїдальне
	m			згладжування

Продовження таблиці 7.2

1	2	3	4	5
rcosiir	Com m	Рекурсивний	ФНЧ	Розкладання за сингу- лярними числами матриці Ганкеля, заповненої відлі- ками імпульсної харак- теристики
hilbiir	Com m	Рекурсивний	Фільтр Гільберта	Розкладання за сингуляр- ними числами матриці Ганкеля, заповненої відлі- ками імпульсної характе- ристики
greme <u>z</u>	FD	Нерекурсивний	Кусково-лі- нійна з пере- хідними смугами	Мінімаксна апроксимація
firlpnorm	FD	Нерекурсивний	Кусково-лі- нійна з пере- хідними смугами	Мінімізація <i>р</i> -норми по- хибки
iirgrpdelay	FD	Рекурсивний	Синтез за за- даною гру- повою затримкою	Мінімізація <i>р</i> -норми по- хибки
iirlpnom	FD	Рекурсивний	Кусково-лі- нійна з пере- хідними смугами	Мінімізація <i>р</i> -норми по- хибки

Параметри *w0* і *type* використовуються спільно для задання типу фільтра та значень його частот зрізання (нормованих до частоти Найквіста):

- ФНЧ: *w0* – скаляр, параметр *type* відсутній;

- ФВЧ: *w0* – скаляр, *type='high'*;

- смуговий фільтр: *w0* – двоелементний вектор частот зрізання [*w1 w2*], параметр *type* відсутній;

- режекторний фільтр: *w0* – двоелементний вектор частот зрізання [*w1 w2*], *type='stop'*.

У залежності від того, скільки вихідних параметрів вказано при виклику, функції можуть повертати результати розрахунку у вигляді коефіцієнтів поліномів чисельника та знаменника функції передачі (два вихідні параметри), нулів і полюсів (три вихідні параметри) або параметрів простору станів (чотири вихідні параметри):

[a. b] = ...[z, p, k] =... [A, B, C, D] =...

З урахуванням всього синтез дискретних фільтрів здійснюється згідно з такими етапами:

1. Проводиться розрахунок фільтра-прототипу із заданими параметрами АЧХ.

2. Отримані нулі та полюси перетворяться в параметри простору станів.

3. Проводиться перетворення фільтра-прототипу до необхідного типу із заданими частотами зрізання.

4. За допомогою функції *bilinear* аналоговий фільтр перетвориться в дискретний.

5. Виконується перетворення опису фільтра до вигляду, заданого при виклику функції.

Функції вибору порядку фільтрів вимагають задання як вхідних параметрів порядку фільтра, так і його частоти зрізання. При цьому поняття частоти зрізання для фільтрів різних типів визначається порізному. Проте початковими даними при розробці фільтрів, як правило, є інші параметри: частотні межі смуг пропускання та затримання, а також допустима нерівномірність АЧХ у смузі пропускання та мінімально необхідне згасання у смузі затримання.

Обрати мінімально необхідний порядок фільтра дозволяють такі однотипні функції пакета Signal Processing:

[n, Wn] = buttord(Wp, Ws, Rp, Rs)

[n, Wn] = cheblord(Wp, Ws, Rp, Rs)

[n, Wn] = cheb2ord(Wp, Ws, Rp, Rs)

[n, Wn] = ellipord(Wp, Ws, Rp, Rs)

Вхідний параметр *Rp* – допустимий рівень пульсацій у смузі пропускання (в децибелах), *Rs* – мінімально необхідне згасання у смузі затримання (в децибелах). Параметри *Wp* і *Ws* задають межі смуг пропускання та затримання (нормовані до частоти Найквіста), спосіб задання цих параметрів залежить від типу проектованого фільтра:

- ФНЧ: Wp і Ws – числа, при цьому повинна виконуватися нерівність Wp > Ws;

- ФВЧ: Wp і Ws – числа, при цьому повинна виконуватися нерівність Wp < Ws;

- смуговий фільтр: Wp і Ws – двоелементні вектори, при цьому повинні виконуватися нерівності Ws (1) < Wp (1) < Wp (2) < Ws (2);

- режекторний фільтр: Wp і Ws – двоелементні вектори, при цьому повинні виконуватися нерівності Wp (1) < Ws (1) < Ws (2) < Wp (2).

Вихідними параметрами є мінімально необхідний для виконання заданих вимог порядок фільтра n і частота зрізання фільтра Wn(нормована до частоти Найквіста). Ці параметри повинні потім використовуватися при виклику функції розрахунку фільтра. Повернення значення Wn позбавляє користувача від турбот, пов'язаних з тим, що при розрахунку різних фільтрів поняття частоти зрізання має різний зміст.

Оскільки порядок фільтра – величина цілочислова, то, звичайно, виявляється, що фільтр мінімально необхідного порядку забезпечує деякий запас початкових параметрів. Функції вибору порядку фільтра при дискретному варіанті розрахунку використовують цей запас точно так, як і в аналоговому випадку: для фільтрів Баттерворта та Чебишева першого роду збільшується згасання в смузі затримання, для фільтрів Чебишева другого роду – зменшуються пульсації у смузі пропускання, а для еліптичних фільтрів – розширяється смуга затримання.

Як приклад задамо жорсткі вимоги до АЧХ фільтра нижніх частот – вузьку перехідну смугу, малі пульсації в смузі пропускання та велике згасання у смузі затримання і подивимося, яким виявиться мінімальний порядок для фільтрів чотирьох стандартних типів:

>> Wp = 0.2; % кінець смуги пропускання >> $W_S = 0.21$; % початок смуги затримання >> Rp = 1; % пульсації АЧХ в смузі пропускання (∂E) $>> R_{S} = 60; \ \%$ затухання в смузі затримання (∂E) >> [n. Wn] = buttord(Wp, Ws, Rp, Rs)n =145 Wn =0.2009 >> [n, Wn] = cheblord(Wp, Ws, Rp, Rs)n =26 Wn =0.2000 >> [n, Wn] = cheb2ord(Wp, Ws, Rp, Rs)n =26Wn =0.2095 >> [n, Wn] = ellipord(Wp, Ws, Rp, Rs)n =10 Wn =0.2000.

Результати показують, що для фільтра Баттерворта потрібен дуже великий порядок, порядок фільтрів Чебишева обох типів у п'ять разів менший і, нарешті, мінімальний порядок потрібен при синтезі еліптичного фільтра.

Функція *bilinear* призначена для синтезу дискретних фільтрів за довільними аналоговими прототипами методом білінійного zперетворення. Вона може перетворювати задані різними способами аналогові описи систем у дискретні і тому має три варіанти синтаксису:

[bz, az] = bilinear (b, a, Fs, Fp)[zz, pz, kz] = bilinear (z, p, k, Fs, Fp)[Az, Bz, Cz, Dz] = bilinear (A, B, C, D, Fs, Fp) ,

де *b*, *a* – коефіцієнти поліномів чисельника та знаменника функції передачі аналогового прототипу;

z, p, k – нулі, полюси і коефіцієнт посилення аналогового прототипу;

А, В, С, D – параметри простору станів для аналогового прототипу. Аналогічні ідентифікатори з літерою *z* в кінці позначають відповідні параметри синтезованої дискретної системи.

Функція розрізняє способи завдання опису аналогового прототипу за розміром переданих параметрів. Якщо два перші вхідні параметри – вектори-рядки, вони вважаються коефіцієнтами поліномів чисельника та знаменника функції передачі. Якщо два перші вхідні параметри – вектористовпці, вони вважаються нулями та полюсами функції передачі. Якщо перший вхідний параметр – матриця, значить, аналоговий прототип заданий у просторі станів.

Параметр *Fs* задає частоту дискретизації в герцах. Останній вхідний параметр *Fp* є необов'язковим.

Якщо при виклику використаний параметр Fp, то він задає частоту (в герцах), на якій комплексні коефіцієнти передачі аналогової та дискретної систем збігаються. Для цього проводиться попереднє масштаббування частотної осі в s-області, що використовується при білінійному z-перетворенні, внаслідок чого підстановка приймає вигляд [10]

$$s = \frac{\pi \frac{F_p}{F_s}}{tg\left(\pi \frac{F_p}{F_s}\right)} 2F_s \frac{1-z^{-1}}{1+z^{-1}}.$$

Трансформація частотної осі при цьому виглядає таким чином:

$$f_{a} = F_{p} \frac{tg\left(\pi \frac{f_{\partial}}{F_{s}}\right)}{tg\left(\pi \frac{F_{p}}{F_{s}}\right)},$$

$$f_{\partial} = \frac{F_s}{\pi} \operatorname{arctg}\left(\frac{f_a}{F_p} tg\left(\pi \frac{F_p}{F_s}\right)\right).$$

Тобто, комплексний коефіцієнт передачі аналогової системи на частоті f_a , збігається з комплексним коефіцієнтом передачі дискретної системи на частоті f_{π} . З формул видно, що якщо $f_a = F_p$, то і $f_{\pi} = F_p$. На низьких частотах f_a і f_{π} пов'язані приблизно лінійно:

$$f_a \approx f_o \frac{\pi \frac{F_p}{F_s}}{tg\left(\pi \frac{F_p}{F_s}\right)}, \quad npu \ f_o << F_p.$$

Функція *impinvar* призначена для синтезу дискретних фільтрів за довільними аналоговими прототипами методом інваріантної імпульсної характеристики. Синтаксис виклику функції такий:

[bz, az] = impinvar (b, a, Fs, tol).

Вхідні параметри *b* і *a* – коефіцієнти чисельника та знаменника функції передачі аналогового прототипу, *Fs* – частота дискретизації.

Параметр *tol* задає відносний поріг виявлення кратних полюсів. Два близько розташованих полюси вважаються збіжними, якщо відстань між ними, поділена на більший з їх модулів, менша *tol*.

Вихідні параметри *bz* і *az* – коефіцієнти чисельника та знаменника функції передачі для синтезованого дискретного фільтра.

Функція *impinvar* при синтезі фільтру проводить такі дії:

- функція передачі аналогового прототипу подається у вигляді суми простих дробів;

- знайдені полюси *р* трансформуються в exp(p/Fs);

- функція передачі з суми найпростіших дробів набуде дробовораціонального вигляду.

До функцій прямого синтезу рекурсивних фільтрів відносяться такі функції *yulewalk, invfreqz* і *prony*.

Функція *yulewalk* призначена для синтезу рекурсивних фільтрів за заданою кусково-лінійною АЧХ. При цьому проводиться мінімізація середньоквадратичної похибки у часовій області. Синтаксис виклику функції такий:

[b, a] = yulewalk (n, f, m),

де n – порядок фільтра (вектори b, що обробляються, і вектори a матимуть довжину n + 1).

Параметри f і m, що розраховуються, повинні бути векторами однакової довжини, вони спільно визначають бажану АЧХ фільтра, що синтезується. Вектор f містить значення частот, нормованих за частотою Найквіста, а вектор m – відповідні цим частотам значення АЧХ. В проміжках між заданими відліками АЧХ інтерполюється за лінійним законом.

Частоти у векторі f повинні утворювати неспадну послідовність. Крім того повинна виконуватися рівність f(1)=0 і f(end)=1.

Виведення графіків АЧХ можна здійснювати командою *plot(f, m)*.

Функції МАТLAВ синтезу цифрових фільтрів є основним інструментом розробника фільтрів, тому що вони можуть використовуватись для проектування спеціальних типів фільтрів і створення програмного забезпечення для цього.

Контрольні запитання

1. Обгрунтувати основні особливості системи МАТLAВ.

2. Які пакети розширення в системі MATLAB треба використовувати при моделюванні алгоритмів ЦОС?

3. Навести основні функції спектрального аналізу.

4. З якою метою використовується віконне зважування сигналів?

5. Порівняльний аналіз вікон Хеммінга і Кайзера.

6. Особливості методу періодограм при аналізі випадкових сигналів.

7. Класифікація методів синтезу цифрових фільтрів.

8. Основні функції синтезу нерекурсивних фільтрів.

9. У чому полягає основна ідея субоптимального синтезу цифрових фільтрів?

10. Пояснити з якою метою використовується косинусоїдальне згладжування при синтезі цифрових фільтрів.

11. Які функції МАТLAВ при синтезі рекурсивних фільтрів використовують z-перетворення?

12. Який метод синтезу фільтрів застосовано при побудові функцій *fir*1 та *fir*2?

Задачі

1. Знайти необхідне число операцій для виконання алгоритму 1024-точкового ШПФ.

165

2. Дано синусоїдальний сигнал з частотою 1 кГц. Знайти та проаналізувати частотний спектр цього сигналу для прямокутного віконного зважування та для вікна Ханна.

3. Синтезувати ФНЧ 128 порядку телефонного сигналу. Визначити рівень бічних пелюсток спектра вихідного сигналу синтезованого фільтра.

4. Синтезувати смуговий фільтр Баттерворта та еліптичний фільтр для первинного групового сигналу аналогової системи передавання. Визначити порядок кожного з фільтрів.