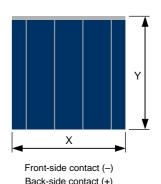


IXOLAR[™] High Efficiency Solar Cells

Description

IXOLAR™ Solar Cells are IXYS' monocrystalline, high efficiency solar cell technology products incorporating an enhanced light trapping surface. There are 6 different cell sizes available: 36mm², 72mm², 120mm², 240mm², 360mm² and 480mm².

The IXOLAR[™] Solar Cells are ideal for charging various battery powered and handheld consumer products such as mobile phones, cameras, PDAs, MP3-Playersand toys. They are also suitable for industrial applications such as wireless sensors, portable instrumentation and for charging emergency backup batteries.


With an efficiency of typically 17%, these solar cells give the ability to extend run time even in "low light" conditions and increase battery life and run time in a small footprint, which can be easily accommodated in the design of Portable Products.

IXOLAR products have a very good response over a wide wavelength range and therefore can be used in both indoor and outdoor applications.

Product and Ordering Information

Part Number	Х	Y	Open Circuit	Short Circuit
	[mm]	[mm]	Voltage [mV]	Current [mA]
XOD17-04B	6	6	630	12
XOD17-07B	12	6	630	24
XOD17-12B	6	20	630	42
XOD17-24B	12	20	630	84
XOD17-36B	18	20	630	126
XOD17-48B	24	20	630	168

B-suffix: bondable front-side metallization

Electrical Characteristics

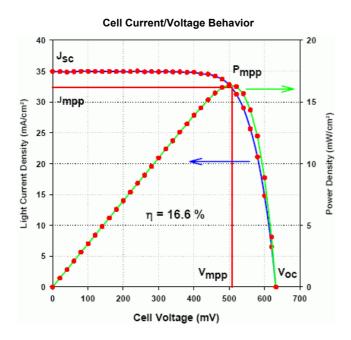
Symbol	Cell Parameter	Typical Ratings *)	Units
V _{oc}	open circuit voltage	630	mV
$\mathbf{J}_{\mathtt{SC}}$	short circuit current density	35	mA/cm²
V_{mpp}	voltage at max. power point	505	mV
\mathbf{J}_{mpp}	current density at max. power point	32.5	mA/cm ²
P_{mpp}	maximum peak power	16.6	mW/cm²
FF	fill factor	> 75	%
η	efficiency	17	%
$\Delta V_{\text{oc}}/\Delta T$	open circuit voltage temp. coefficient	-2.1	mV/K
$\Delta J_{\text{SC}}/\Delta T$	short circuit current temp. coefficient	0.12	mA/(cm ² K)
t	cell thickness	250	μm

^{*)} All values measured at Standard Condition: 1 sun (= 100mW/cm²), Air Mass 1.5, 25°C

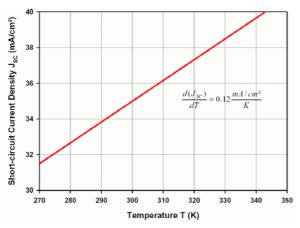
Features

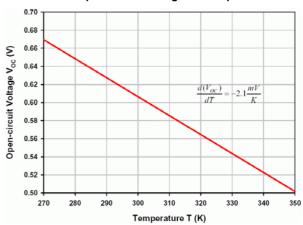
- Monocrystalline silicon technology
- · High efficiency
- Enhanced light trapping surface texturization

Applications

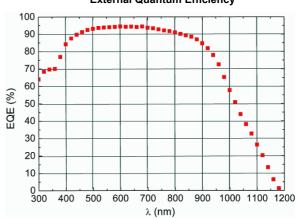

- Battery chargers for portables such as cell phones, PDAs, GPS-Systems, ...
- "Green" electricity generation
- · Power backup for UPS, Sensors, Wearables

Advantages


- · Long life and stable output
- Solderable back-side metallization (available on request)
- Bondable front-side metallization
- · Available in die and wafer form


Typical Performance Data




Open-Circuit Voltage vs. Temperature

Open-Circuit Voltage vs. Irradiance

External Quantum Efficiency

© 2005 IXYS All rights reserved