
M A N N I N G

David Kopec

Classic Computer Science Problems
in Python

Classic Computer Science
Problems in Python

DAVID KOPEC

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

© 2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Jennifer Stout
20 Baldwin Road Technical development editor: Frances Buontemp
PO Box 761 Review editor: Aleksandar Dragosavljević
Shelter Island, NY 11964 Production editor: Deirdre Hiam
 Copy editor: Andy Carroll

Proofreader: Katie Tennant
Technical proofreader: Juan Rufes

Typesetter: Dottie Marsico
Cover designer: Marija Tudor

ISBN 9781617295980
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – SP – 24 23 22 21 20 19

http://www.manning.com

 Dedicated to my grandmother, Erminia Antos,
a lifelong teacher and learner.

contents
acknowledgments xi
about this book xiii
about the author xiv
about the cover illustration xv

Introduction 1
0.1 Why Python? 1
0.2 What is a classic computer science problem? 2
0.3 What kinds of problems are in this book? 2
0.4 Who is this book for? 3
0.5 Python versioning, source code repository,

and type hints 4
0.6 No graphics, no UI code, just the standard library 5
0.7 Part of a series 5

1 Small problems 6
1.1 The Fibonacci sequence 6

A first recursive attempt 6 ■ Utilizing base cases 8
Memoization to the rescue 9 ■ Automatic memoization 10
Keep it simple, Fibonacci 11 ■ Generating Fibonacci numbers
with a generator 11
vii

CONTENTSviii
1.2 Trivial compression 12
1.3 Unbreakable encryption 16

Getting the data in order 16 ■ Encrypting and decrypting 18

1.4 Calculating pi 19
1.5 The Towers of Hanoi 20

Modeling the towers 20 ■ Solving The Towers of Hanoi 22

1.6 Real-world applications 24
1.7 Exercises 24

2 Search problems 25
2.1 DNA search 25

Storing DNA 25 ■ Linear search 27 ■ Binary search 28
A generic example 30

2.2 Maze solving 32
Generating a random maze 32 ■ Miscellaneous maze
minutiae 33 ■ Depth-first search 34 ■ Breadth-first
search 38 ■ A* search 42

2.3 Missionaries and cannibals 47
Representing the problem 47 ■ Solving 49

2.4 Real-world applications 51
2.5 Exercises 51

3 Constraint-satisfaction problems 52
3.1 Building a constraint-satisfaction problem framework 53
3.2 The Australian map-coloring problem 57
3.3 The eight queens problem 59
3.4 Word search 61
3.5 SEND+MORE=MONEY 65
3.6 Circuit board layout 66
3.7 Real-world applications 67
3.8 Exercises 67

4 Graph problems 68
4.1 A map as a graph 68
4.2 Building a graph framework 71

Working with Edge and Graph 75

CONTENTS ix
4.3 Finding the shortest path 76
Revisiting breadth-first search (BFS) 76

4.4 Minimizing the cost of building the network 78
Workings with weights 78 ■ Finding the minimum
spanning tree 82

4.5 Finding shortest paths in a weighted graph 88
Dijkstra’s algorithm 88

4.6 Real-world applications 93
4.7 Exercises 93

5 Genetic algorithms 94
5.1 Biological background 94
5.2 A generic genetic algorithm 95
5.3 A naive test 102
5.4 SEND+MORE=MONEY revisited 104
5.5 Optimizing list compression 107
5.6 Challenges for genetic algorithms 109
5.7 Real-world applications 110
5.8 Exercises 111

6 K-means clustering 112
6.1 Preliminaries 113
6.2 The k-means clustering algorithm 115
6.3 Clustering governors by age and longitude 119
6.4 Clustering Michael Jackson albums by length 124
6.5 K-means clustering problems and extensions 125
6.6 Real-world applications 126
6.7 Exercises 126

7 Fairly simple neural networks 127
7.1 Biological basis? 128
7.2 Artificial neural networks 129

Neurons 129 ■ Layers 130 ■ Backpropagation 131
The big picture 135

7.3 Preliminaries 135
Dot product 135 ■ The activation function 136

CONTENTSx
7.4 Building the network 136
Implementing neurons 137 ■ Implementing layers 138
Implementing the network 140

7.5 Classification problems 143
Normalizing data 143 ■ The classic iris data set 144
Classifying wine 147

7.6 Speeding up neural networks 149
7.7 Neural network problems and extensions 150
7.8 Real-world applications 151
7.9 Exercises 152

8 Adversarial search 153
8.1 Basic board game components 153
8.2 Tic-tac-toe 155

Managing tic-tac-toe state 155 ■ Minimax 158
Testing minimax with tic-tac-toe 160 ■ Developing
a tic-tac-toe AI 162

8.3 Connect Four 163
Connect Four game machinery 163 ■ A Connect Four
AI 168 ■ Improving minimax with alpha-beta pruning 169

8.4 Minimax improvements beyond alpha-beta pruning 170
8.5 Real-world applications 170
8.6 Exercises 171

9 Miscellaneous problems 172
9.1 The knapsack problem 172
9.2 The Traveling Salesman Problem 177

The naive approach 177 ■ Taking it to the next level 182

9.3 Phone number mnemonics 182
9.4 Real-world applications 184
9.5 Exercises 184

appendix A Glossary 186
appendix B More resources 191
appendix C A brief introduction to type hints 195

index 201

acknowledgments
Thank you, everyone at Manning who helped in the production of this book: Cheryl
Weisman, Deirdre Hiam, Katie Tennant, Dottie Marsico, Janet Vail, Barbara Mirecki,
Aleksandar Dragosavljević, Mary Piergies, and Marija Tudor.

 I thank acquisitions editor Brian Sawyer, who wisely steered us toward attacking
Python after I finished Swift. Thank you, development editor Jennifer Stout, for always
having a positive attitude. Thanks go to technical editor Frances Buontempo, who
provided careful consideration of each chapter and gave detailed, useful feedback at
every turn. I thank copyeditor Andy Carroll, whose superb attention to detail on both
the Swift book and this one caught several of my mistakes, and also my technical
proofreader, Juan Rufes.

 The following people also reviewed the book: Al Krinker, Al Pezewski, Alan
Bogusiewicz, Brian Canada, Craig Henderson, Daniel Kenney-Jung, Edmond Sesay,
Ewa Baranowska, Gary Barnhart, Geoff Clark, James Watson, Jeffrey Lim, Jens Chris-
tian, Bredahl Madsen, Juan Jimenez, Juan Rufes, Matt Lemke, Mayur Patil, Michael
Bright, Roberto Casadei, Sam Zaydel, Thorsten Weber, Tom Jeffries, and Will Lopez.
Thanks go to all who provided constructive and specific criticism during the book’s
development. Your feedback was incorporated.

 I thank my family, friends, and colleagues who encouraged me to take on this book
project immediately following the publication of Classic Computer Science Problems in
Swift. I thank my online friends on Twitter and elsewhere who have provided encour-
aging words and helped promote the book in ways small and large. And I thank my
wife, Rebecca Kopec, and my mom, Sylvia Kopec, who are always supportive of my
projects.
xi

ACKNOWLEDGMENTSxii
 We developed this book in a fairly short period of time. The vast majority of the
manuscript was written over the summer of 2018, based on the earlier Swift version.
I appreciate that Manning was willing to compress its (usually much longer) process
to enable me to work during a schedule that was convenient to me. I know this put
pressure on the entire team as we went through three rounds of reviews at multiple
different levels amongst many different people in just a few months. Most readers
would be amazed at how many different kinds of reviews a technical book by a tradi-
tional publisher goes through and how many people have their part in critiquing and
revising it. From the technical proofer to the copy editor, the review editor, all of the
official reviewers, and everyone in between, I thank you!

 Finally, most importantly, I thank my readers for purchasing this book. In a world
full of halfhearted online tutorials, I think it is important to support the development
of books that provide the same author’s voice throughout an extended volume. Online
tutorials can be superb resources, but your purchase enables full-length, vetted, and
carefully developed books to still have a place in computer science education.

about this book
Trademarks
Trademarked names appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, the names are only used in an editorial
fashion and to the benefit of the trademark owner, with no intention of infringement
of the trademark. “Python” is a registered trademark of the Python Software Founda-
tion. “Connect Four” is a trademark of Hasbro, Inc.

Book forum
Purchase of Classic Computer Science Problems in Python includes free access to a private
web forum run by Manning Publications where you can make comments about the
book, ask technical questions, and receive help from the author and from other users.
To access the forum, go to https://www.manning.com/books/classic-computer-
science-problems-in-python. You can also learn more about Manning's forums and the
rules of conduct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking him some challenging questions lest his interest stray! The forum
and the archives of previous discussions will be accessible from the publisher’s website
as long as the book is in print.
xiii

https://www.manning.com/books/classic-computer-science-problems-in-python
https://www.manning.com/books/classic-computer-science-problems-in-python
https://forums.manning.com/forums/about

about the author
David Kopec is an assistant professor of Computer Sci-
ence & Innovation at Champlain College in Burlington,
Vermont. He is an experienced software developer and
the author of Classic Computer Science Problems in Swift
(Manning, 2018), and Dart for Absolute Beginners (Apress,
2014). David holds a bachelor’s degree in economics and
a master’s in computer science, both from Dartmouth
College. You can reach David on Twitter @davekopec.
xiv

about the cover illustration
The figure on the cover of Classic Computer Science Problems in Python is captioned
“Habit of a Bonza or Priest in China.” The illustration is taken from Thomas Jefferys’
A Collection of the Dresses of Different Nations, Ancient and Modern (four volumes), Lon-
don, published between 1757 and 1772. The title page states that these are hand-
colored copperplate engravings, heightened with gum arabic.

 Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was
an English cartographer who was the leading map supplier of his day. He engraved
and printed maps for government and other official bodies and produced a wide
range of commercial maps and atlases, especially of North America. His work as a map
maker sparked an interest in local dress customs of the lands he surveyed and
mapped, which are brilliantly displayed in this collection. Fascination with faraway
lands and travel for pleasure were relatively new phenomena in the late eighteenth
century, and collections such as this one were popular, introducing both the tourist as
well as the armchair traveler to the inhabitants of other countries.

 The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness
and individuality of the world’s nations some 200 years ago. Dress codes have changed
since then, and the diversity by region and country, so rich at the time, has faded away.
It’s now often hard to tell the inhabitants of one continent from another. Perhaps, try-
ing to view it optimistically, we’ve traded a cultural and visual diversity for a more var-
ied personal life—or a more varied and interesting intellectual and technical life.

 At a time when it’s difficult to tell one computer book from another, Manning cel-
ebrates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Jefferys’ pictures.
xv

Introduction
Thank you for purchasing Classic Computer Science Problems in Python. Python is one
of the most popular programming languages in the world, and people become
Python programmers from a variety of backgrounds. Some have a formal computer
science education. Others learn Python as a hobby. Still others use Python in a pro-
fessional setting, but their primary job is not to be a software developer. The prob-
lems in this intermediate book will help seasoned programmers refresh themselves
on ideas from their CS education while learning some advanced features of the lan-
guage. Self-taught programmers will accelerate their CS education by learning clas-
sic problems in the language of their choice: Python. This book covers such a
diversity of problem-solving techniques that there is truly something for everyone.

 This book is not an introduction to Python. There are numerous excellent books
from Manning and other publishers in that vein.1 Instead, this book assumes that
you are already an intermediate or advanced Python programmer. Although this
book requires Python 3.7, mastery of every facet of the latest version of Python is
not assumed. In fact, the book’s content was created with the assumption that it
would serve as learning material to help readers achieve such mastery. On the
other hand, this book is not appropriate for readers completely new to Python.

Why Python?
Python is used in pursuits as diverse as data science, film-making, computer science
education, IT management, and much more. There really is no computing field that

1 If you are just starting your Python journey, you may want to first check out The Quick Python Book, 3rd edi-
tion, by Naomi Ceder (Manning, 2018) before beginning this book.
1

2 Introduction
Python has not touched (except maybe kernel development). Python is loved for its
flexibility, beautiful and succinct syntax, object-oriented purity, and bustling community.
The strong community is important because it means Python is welcoming to newcom-
ers and has a large ecosystem of available libraries for developers to build upon.

 For the preceding reasons, Python is sometimes thought of as a beginner-friendly
language, and that characterization is probably true. Most people would agree that
Python is easier to learn than C++, for example, and its community is almost certainly
friendlier to newcomers. As a result, many people learn Python because it is approach-
able, and they start writing the programs they want to write fairly quickly. But they may
never have received an education in computer science that teaches them all of the
powerful problem-solving techniques available to them. If you are one of those pro-
grammers who knows Python but does not know CS, this book is for you.

 Other people learn Python as a second, third, fourth, or fifth language after a long
time working in software development. For them, seeing old problems they’ve already
seen in another language will help them accelerate their learning of Python. For
them, this book may be a good refresher before a job interview, or it might expose
them to some problem-solving techniques they had not previously thought of exploit-
ing in their work. I would encourage them to skim the table of contents to see if there
are topics in this book that excite them.

What is a classic computer science problem?
Some say that computers are to computer science as telescopes are to astronomy. If
that’s the case, then perhaps a programming language is like a telescope lens. In any
event, the term “classic computer science problems” is used here to mean “program-
ming problems typically taught in an undergraduate computer science curriculum.”

 There are certain programming problems that are given to new programmers to
solve and that have become commonplace enough to be deemed classic, whether in a
classroom setting during the pursuit of a bachelor’s degree (in computer science, soft-
ware engineering, and the like) or within the confines of an intermediate program-
ming textbook (for example, a first book on artificial intelligence or algorithms).
A selection of such problems is what you will find in this book.

 The problems range from the trivial, which can be solved in a few lines of code, to
the complex, which require the buildup of systems over multiple chapters. Some
problems touch on artificial intelligence, and others simply require common sense.
Some problems are practical, and other problems are fanciful.

What kinds of problems are in this book?
Chapter 1 introduces problem-solving techniques that will likely look familiar to most
readers. Things like recursion, memoization, and bit manipulation are essential build-
ing blocks of other techniques explored in later chapters.

 This gentle introduction is followed by chapter 2, which focuses on search prob-
lems. Search is such a large topic that you could arguably place most problems in the

3Who is this book for?
book under its banner. Chapter 2 introduces the most essential search algorithms,
including binary search, depth-first search, breadth-first search, and A*. These algo-
rithms are reused throughout the rest of the book.

 In chapter 3, you will build a framework for solving a broad range of problems that
can be abstractly defined by variables of limited domains that have constraints
between them. This includes such classics as the eight queens problem, the Australian
map-coloring problem, and the cryptarithmetic SEND+MORE=MONEY.

 Chapter 4 explores the world of graph algorithms, which to the uninitiated are sur-
prisingly broad in their applicability. In this chapter, you will build a graph data struc-
ture and then use it to solve several classic optimization problems.

 Chapter 5 explores genetic algorithms, a technique that is less deterministic than
most covered in the book but that sometimes can solve problems traditional algo-
rithms cannot solve in a reasonable amount of time.

 Chapter 6 covers k-means clustering and is perhaps the most algorithmically spe-
cific chapter in the book. This clustering technique is simple to implement, easy to
understand, and broadly applicable.

 Chapter 7 aims to explain what a neural network is and to give the reader a taste of
what a very simple neural network looks like. It does not aim to provide comprehen-
sive coverage of this exciting and evolving field. In this chapter, you will build a neural
network from first principles, using no external libraries, so you can really see how a
neural network works.

 Chapter 8 is on adversarial search in two-player perfect information games. You
will learn a search algorithm known as minimax, which can be used to develop an arti-
ficial opponent that can play games like chess, checkers, and Connect Four well.

 Finally, chapter 9 covers interesting (and fun) problems that did not quite fit any-
where else in the book.

Who is this book for?
This book is for both intermediate and experienced programmers. Experienced pro-
grammers who want to deepen their knowledge of Python will find comfortably famil-
iar problems from their computer science or programming education. Intermediate
programmers will be introduced to these classic problems in the language of their
choice: Python. Developers getting ready for coding interviews will likely find this
book to be valuable preparation material.

 In addition to professional programmers, students enrolled in undergraduate
computer science programs who have an interest in Python will likely find this book
helpful. It makes no attempt to be a rigorous introduction to data structures and algo-
rithms. This is not a data structures and algorithms textbook . You will not find proofs or
extensive use of big-O notation within its pages. Instead, it is positioned as an
approachable, hands-on tutorial to the problem-solving techniques that should be the
end product of taking data structure, algorithm, and artificial intelligence classes.

4 Introduction
 Once again, knowledge of Python’s syntax and semantics is assumed. A reader with
zero programming experience will get little out of this book, and a programmer with
zero Python experience will almost certainly struggle. In other words, Classic Computer
Science Problems in Python is a book for working Python programmers and computer sci-
ence students.

Python versioning, source code repository,
and type hints
The source code in this book was written to adhere to version 3.7 of the Python lan-
guage. It utilizes features of Python that only became available in Python 3.7, so some
of the code will not run on earlier versions of Python. Instead of struggling and trying
to make the examples run in an earlier version, please just download the latest version
of Python before starting the book.

 This book only makes use of the Python standard library (with a slight exception in
chapter 2, where the typing_extensions module is installed), so all of the code in
this book should run on any platform where Python is supported (macOS, Windows,
GNU/Linux, and so on). The code in this book was only tested against CPython (the
main Python interpreter available from python.org), although it is likely that most of
it will run in a Python 3.7–compatible version of another Python interpreter.

 This book does not explain how to use Python tools like editors, IDEs, debuggers,
and the Python REPL. The book’s source code is available online from the GitHub
repository: https://github.com/davecom/ClassicComputerScienceProblems InPython.
The source code is organized into folders by chapter. As you read each chapter, you will
see the name of a source file in the header of each code listing. You can find that source
file in its respective folder in the repository. You should be able to run the problem by
just entering python3 filename.py or python filename.py depending on your com-
puter’s setup with regards to the name of the Python 3 interpreter.

 Every code listing in this book makes use of Python type hints, also known as type
annotations. These annotations are a relatively new feature for the Python language,
and they may look intimidating to Python programmers who have never seen them
before. They are used for three reasons:

1 They provide clarity about the types of variables, function parameters, and func-
tion returns.

2 They self-document the code in a sense, as a result of reason 1. Instead of hav-
ing to search through a comment or docstring to find the return type of a func-
tion, you can just look at its signature.

3 They allow the code to be type-checked for correctness. One popular Python
type checker is mypy.

Not everyone is a fan of type hints, and choosing to use them throughout the book
was frankly a gamble. I hope they will be a help instead of a hindrance. It takes a little
more time to write Python with type hints, but it provides more clarity when read

https://github.com/davecom/ClassicComputerScienceProblemsInPython

5Part of a series
back. An interesting note is that type hints have no effect on the actual running of the
code in the Python interpreter. You can remove the type hints from any of the code in
this book, and it should still run. If you have never seen type hints before and feel you
need a more comprehensive introduction to them before diving into the book, please
see appendix C, which provides a crash course in type hints.

No graphics, no UI code, just the standard library
There are no examples in this book that produce graphical output or that make use of
a graphical user interface (GUI). Why? The goal is to solve the posed problems with
solutions that are as concise and readable as possible. Often, doing graphics gets in
the way or makes solutions significantly more complex than they need to be to illus-
trate the technique or algorithm in question.

 Further, by not making use of any GUI framework, all of the code in the book is
eminently portable. It can as easily run on an embedded distribution of Python run-
ning on Linux as it can on a desktop running Windows. Also, a conscious decision was
made to only use packages from the Python standard library instead of any external
libraries, as most advanced Python books do. Why? The goal is to teach problem-
solving techniques from first principles, not to “pip install a solution.” By having to
work through every problem from scratch, you will hopefully gain an understanding
about how popular libraries work behind the scenes. At a minimum, only using the
standard library makes the code in this book more portable and easier to run.

 This is not to say that graphical solutions are not sometimes more illustrative of an
algorithm than text-based solutions. It simply was not the focus of this book. It would
add another layer of unnecessary complexity.

Part of a series
This is the second book in a series titled Classic Computer Science Problems published by
Manning. The first book was Classic Computer Science Problems in Swift, published in
2018. In each book in the series, we aim to provide language-specific insight while
teaching through the lens of the same (mostly) computer science problems.

 If you enjoy this book and plan to learn another language covered by the series,
you may find going from one book to another an easy way to improve your mastery of
that language. For now, the series covers just Swift and Python. I wrote the first two
books myself, because I have significant experience in both of those languages, but we
are already discussing plans for future books in the series co-authored by people who
are experts in other languages. I encourage you to look out for them if you enjoy this
book. For more information about the series, visit https://classicproblems.com/.

https://classicproblems.com/

Small problems
To get started, we will explore some simple problems that can be solved with no
more than a few relatively short functions. Although these problems are small, they
will still allow us to explore some interesting problem-solving techniques. Think of
them as a good warm-up.

1.1 The Fibonacci sequence
The Fibonacci sequence is a sequence of numbers such that any number, except
for the first and second, is the sum of the previous two:

0, 1, 1, 2, 3, 5, 8, 13, 21...

The value of the first Fibonacci number in the sequence is 0. The value of the
fourth Fibonacci number is 2. It follows that to get the value of any Fibonacci num-
ber, n, in the sequence, one can use the formula

fib(n) = fib(n - 1) + fib(n - 2)

1.1.1 A first recursive attempt

The preceding formula for computing a number in the Fibonacci sequence (illus-
trated in figure 1.1) is a form of pseudocode that can be trivially translated into a
recursive Python function. (A recursive function is a function that calls itself.) This
mechanical translation will serve as our first attempt at writing a function to return
a given value of the Fibonacci sequence.

def fib1(n: int) -> int:
 return fib1(n - 1) + fib1(n - 2)

Listing 1.1 fib1.py
6

7The Fibonacci sequence
Let’s try to run this function by calling it with a value.

if __name__ == "__main__":
 print(fib1(5))

Uh-oh! If we try to run fib1.py, we generate an error:

RecursionError: maximum recursion depth exceeded

The issue is that fib1() will run forever without returning a final result. Every call to
fib1() results in another two calls of fib1() with no end in sight. We call such a cir-
cumstance infinite recursion (see figure 1.2), and it is analogous to an infinite loop.

Listing 1.2 fib1.py continued

I’m as tall as
the previous two
stickmen added

together.

1 1 2 3 5 8

Me too!

+

=

Figure 1.1 The height of each stickman is the previous two stickmen’s
heights added together.

In recursion, we go
around and around...

fib(n)

n–1

n–
2

Figure 1.2 The recursive function fib(n)
calls itself with the arguments n-2 and n-1.

8 CHAPTER 1 Small problems
1.1.2 Utilizing base cases

Notice that until you run fib1(), there is no indication from your Python environ-
ment that there is anything wrong with it. It is the duty of the programmer to avoid
infinite recursion, not the compiler or the interpreter. The reason for the infinite
recursion is that we never specified a base case. In a recursive function, a base case
serves as a stopping point.

 In the case of the Fibonacci function, we have natural base cases in the form of the
special first two sequence values, 0 and 1. Neither 0 nor 1 is the sum of the previous
two numbers in the sequence. Instead, they are the special first two values. Let’s try
specifying them as base cases.

def fib2(n: int) -> int:
 if n < 2: # base case
 return n
 return fib2(n - 2) + fib2(n - 1) # recursive case

NOTE The fib2() version of the Fibonacci function returns 0 as the zeroth
number (fib2(0)), rather than the first number, as in our original proposi-
tion. In a programming context, this kind of makes sense because we are used
to sequences starting with a zeroth element.

fib2() can be called successfully and will return correct results. Try calling it with
some small values.

if __name__ == "__main__":
 print(fib2(5))
 print(fib2(10))

Do not try calling fib2(50). It will never finish executing! Why? Every call to fib2()
results in two more calls to fib2() by way of the recursive calls fib2(n - 1) and
fib2(n - 2) (see figure 1.3). In other words, the call tree grows exponentially. For
example, a call of fib2(4) results in this entire set of calls:

fib2(4) -> fib2(3), fib2(2)
fib2(3) -> fib2(2), fib2(1)
fib2(2) -> fib2(1), fib2(0)
fib2(2) -> fib2(1), fib2(0)
fib2(1) -> 1
fib2(1) -> 1
fib2(1) -> 1
fib2(0) -> 0
fib2(0) -> 0

If you count them (and as you will see if you add some print calls), there are 9 calls to
fib2() just to compute the 4th element! It gets worse. There are 15 calls required to

Listing 1.3 fib2.py

Listing 1.4 fib2.py continued

9The Fibonacci sequence
compute element 5, 177 calls to compute element 10, and 21,891 calls to compute ele-
ment 20. We can do better.

1.1.3 Memoization to the rescue

Memoization is a technique in which you store the results of computational tasks when
they are completed so that when you need them again, you can look them up instead
of needing to compute them a second (or millionth) time (see figure 1.4).1

Let’s create a new version of the Fibonacci function that utilizes a Python dictionary
for memoization purposes.

1 Donald Michie, a famous British computer scientist, coined the term memoization. Donald Michie, Memo func-
tions: a language feature with “rote-learning” properties (Edinburgh University, Department of Machine Intelli-
gence and Perception, 1967).

fib2(4)

fib2(3)

fib2(2) fib2(1)

fib2(1)

1

fib2(0)

0

1

fib2(2)

fib2(1) fib2(0)

01

Figure 1.3 Every non-base-case call of fib2()
results in two more calls of fib2().

Do you
know n?

I do
know n.

Look n up
in my memory.

I don’t
know n.

Calculate n.

Figure 1.4 The human memoization machine

10 CHAPTER 1 Small problems

from typing import Dict
memo: Dict[int, int] = {0: 0, 1: 1} # our base cases

def fib3(n: int) -> int:
 if n not in memo:
 memo[n] = fib3(n - 1) + fib3(n - 2) # memoization
 return memo[n]

You can now safely call fib3(50).

if __name__ == "__main__":
 print(fib3(5))
 print(fib3(50))

A call to fib3(20) will result in just 39 calls of fib3() as opposed to the 21,891 of
fib2() resulting from the call fib2(20). memo is prefilled with the earlier base cases of
0 and 1, saving fib3() from the complexity of another if statement.

1.1.4 Automatic memoization

fib3() can be further simplified. Python has a built-in decorator for memoizing any
function automagically. In fib4(), the decorator @functools.lru_cache() is used
with the same exact code as we used in fib2(). Each time fib4() is executed with a
novel argument, the decorator causes the return value to be cached. Upon future calls
of fib4() with the same argument, the previous return value of fib4() for that argu-
ment is retrieved from the cache and returned.

from functools import lru_cache

@lru_cache(maxsize=None)
def fib4(n: int) -> int: # same definition as fib2()
 if n < 2: # base case
 return n
 return fib4(n - 2) + fib4(n - 1) # recursive case

if __name__ == "__main__":
 print(fib4(5))
 print(fib4(50))

Note that we are able to calculate fib4(50) instantly, even though the body of the
Fibonacci function is the same as that in fib2(). @lru_cache’s maxsize property indi-
cates how many of the most recent calls of the function it is decorating should be
cached. Setting it to None indicates that there is no limit.

Listing 1.5 fib3.py

Listing 1.6 fib3.py continued

Listing 1.7 fib4.py

11The Fibonacci sequence
1.1.5 Keep it simple, Fibonacci

There is an even more performant option. We can solve Fibonacci with an old-fashioned
iterative approach.

def fib5(n: int) -> int:
 if n == 0: return n # special case
 last: int = 0 # initially set to fib(0)
 next: int = 1 # initially set to fib(1)
 for _ in range(1, n):
 last, next = next, last + next
 return next

if __name__ == "__main__":
 print(fib5(5))
 print(fib5(50))

WARNING The body of the for loop in fib5() uses tuple unpacking in per-
haps a bit of an overly clever way. Some may feel that it sacrifices readability
for conciseness. Others may find the conciseness in and of itself more read-
able. The gist is, last is being set to the previous value of next, and next is
being set to the previous value of last plus the previous value of next. This
avoids the creation of a temporary variable to hold the old value of next after
last is updated but before next is updated. Using tuple unpacking in this
fashion for some kind of variable swap is common in Python.

With this approach, the body of the for loop will run a maximum of n - 1 times. In
other words, this is the most efficient version yet. Compare 19 runs of the for loop
body to 21,891 recursive calls of fib2() for the 20th Fibonacci number. That could
make a serious difference in a real-world application!

 In the recursive solutions, we worked backward. In this iterative solution, we work
forward. Sometimes recursion is the most intuitive way to solve a problem. For exam-
ple, the meat of fib1() and fib2() is pretty much a mechanical translation of the
original Fibonacci formula. However, naive recursive solutions can also come with sig-
nificant performance costs. Remember, any problem that can be solved recursively
can also be solved iteratively.

1.1.6 Generating Fibonacci numbers with a generator

So far, we have written functions that output a single value in the Fibonacci sequence.
What if we want to output the entire sequence up to some value instead? It is easy to
convert fib5() into a Python generator using the yield statement. When the genera-
tor is iterated, each iteration will spew a value from the Fibonacci sequence using a
yield statement.

Listing 1.8 fib5.py

12 CHAPTER 1 Small problems

from typing import Generator

def fib6(n: int) -> Generator[int, None, None]:
 yield 0 # special case
 if n > 0: yield 1 # special case
 last: int = 0 # initially set to fib(0)
 next: int = 1 # initially set to fib(1)
 for _ in range(1, n):
 last, next = next, last + next
 yield next # main generation step

if __name__ == "__main__":
 for i in fib6(50):
 print(i)

If you run fib6.py, you will see 51 numbers in the Fibonacci sequence printed. For
each iteration of the for loop for i in fib6(50):, fib6() runs through to a yield
statement. If the end of the function is reached and there are no more yield state-
ments, the loop finishes iterating.

1.2 Trivial compression
Saving space (virtual or real) is often important. It is more efficient to use less space,
and it can save money. If you are renting an apartment that is bigger than you need
for your things and family, you could “downsize” to a smaller place that is less expen-
sive. If you are paying by the byte to store your data on a server, you may want to com-
press it so that its storage costs you less. Compression is the act of taking data and
encoding it (changing its form) in such a way that it takes up less space. Decompression
is reversing the process, returning the data to its original form.

 If it is more storage-efficient to compress data, then why is all data not com-
pressed? There is a tradeoff between time and space. It takes time to compress a piece
of data and to decompress it back into its original form. Therefore, data compression
only makes sense in situations where small size is prioritized over fast execution.
Think of large files being transmitted over the internet. Compressing them makes
sense because it will take longer to transfer the files than it will to decompress them
once received. Further, the time taken to compress the files for their storage on the
original server only needs to be accounted for once.

 The easiest data compression wins come about when you realize that data storage
types use more bits than are strictly required for their contents. For instance, thinking
low-level, if an unsigned integer that will never exceed 65,535 is being stored as a 64-
bit unsigned integer in memory, it is being stored inefficiently. It could instead be
stored as a 16-bit unsigned integer. This would reduce the space consumption for the
actual number by 75% (16 bits instead of 64 bits). If millions of such numbers are
being stored inefficiently, it can add up to megabytes of wasted space.

Listing 1.9 fib6.py

13Trivial compression
 In Python, sometimes for the sake of simplicity (which is a legitimate goal, of
course), the developer is shielded from thinking in bits. There is no 64-bit unsigned
integer type, and there is no 16-bit unsigned integer type. There is just a single int
type that can store numbers of arbitrary precision. The function sys.getsizeof()
can help you find out how many bytes of memory your Python objects are consuming.
But due to the inherent overhead of the Python object system, there is no way to cre-
ate an int that takes up less than 28 bytes (224 bits) in Python 3.7. A single int can be
extended one bit at a time (as we will do in this example), but it consumes a minimum
of 28 bytes.

NOTE If you are a little rusty regarding binary, recall that a bit is a single value
that is either a 1 or a 0. A sequence of 1s and 0s is read in base 2 to represent
a number. For the purposes of this section, you do not need to do any math
in base 2, but you do need to understand that the number of bits that a type
stores determines how many different values it can represent. For example, 1
bit can represent 2 values (0 or 1), 2 bits can represent 4 values (00, 01, 10,
11), 3 bits can represent 8 values, and so on.

If the number of possible different values that a type is meant to represent is less than
the number of values that the bits being used to store it can represent, it can likely be
more efficiently stored. Consider the nucleotides that form a gene in DNA.2 Each
nucleotide can only be one of four values: A, C, G, or T. (There will be more about this
in chapter 2.) Yet if the gene is stored as
a str, which can be thought of as a col-
lection of Unicode characters, each
nucleotide will be represented by a char-
acter, which generally requires 8 bits of
storage. In binary, just 2 bits are needed
to store a type with four possible values:
00, 01, 10, and 11 are the four different
values that can be represented by 2 bits.
If A is assigned 00, C is assigned 01, G is
assigned 10, and T is assigned 11, the
storage required for a string of nucleo-
tides can be reduced by 75% (from 8 bits
to 2 bits per nucleotide).

 Instead of storing our nucleotides as
a str, they can be stored as a bit string
(see figure 1.5). A bit string is exactly
what it sounds like: an arbitrary-length
sequence of 1s and 0s. Unfortunately,

2 This example is inspired by Algorithms, 4th Edition, by Robert Sedgewick and Kevin Wayne (Addison-Wesley
Professional, 2011), page 819.

“ATG”
24 bits

String
representation

“ATG”
24 bits = +

C
om

pression

D
ecom

pression

“A”“A”

8 bits

“T”“T”

8 bits

+ “G”“G”

8 bits

001110
6 bits

Bit-string
representation

001110
6 bits = +0000

2 bits

1111

2 bits

+ 1010

2 bits

Figure 1.5 Compressing a str representing a
gene into a 2-bit-per-nucleotide bit string

14 CHAPTER 1 Small problems
the Python standard library contains no off-the-shelf construct for working with bit
strings of arbitrary length. The following code converts a str composed of As, Cs, Gs,
and Ts into a string of bits and back again. The string of bits is stored within an int.
Because the int type in Python can be of any length, it can be used as a bit string of
any length. To convert back into a str, we will implement the Python __str__() spe-
cial method.

class CompressedGene:
 def __init__(self, gene: str) -> None:
 self._compress(gene)

A CompressedGene is provided a str of characters representing the nucleotides in a
gene, and it internally stores the sequence of nucleotides as a bit string. The __init__()
method’s main responsibility is to initialize the bit-string construct with the appropriate
data. __init__() calls _compress() to do the dirty work of actually converting the pro-
vided str of nucleotides into a bit string.

 Note that _compress() starts with an underscore. Python has no concept of truly
private methods or variables. (All variables and methods can be accessed through
reflection; there’s no strict enforcement of privacy.) A leading underscore is used as a
convention to indicate that the implementation of a method should not be relied on
by actors outside of the class. (It is subject to change and should be treated as private.)

TIP If you start a method or instance variable name in a class with two lead-
ing underscores, Python will “name mangle” it, changing its implementation
name with a salt and not making it easily discoverable by other classes. We use
one underscore in this book to indicate a “private” variable or method, but
you may wish to use two if you really want to emphasize that something is pri-
vate. For more on naming in Python, check out the section “Descriptive Nam-
ing Styles” from PEP 8: http://mng.bz/NA52.

Next, let’s look at how we can actually perform the compression.

def _compress(self, gene: str) -> None:
 self.bit_string: int = 1 # start with sentinel
 for nucleotide in gene.upper():
 self.bit_string <<= 2 # shift left two bits
 if nucleotide == "A": # change last two bits to 00
 self.bit_string |= 0b00
 elif nucleotide == "C": # change last two bits to 01
 self.bit_string |= 0b01
 elif nucleotide == "G": # change last two bits to 10
 self.bit_string |= 0b10
 elif nucleotide == "T": # change last two bits to 11
 self.bit_string |= 0b11
 else:
 raise ValueError("Invalid Nucleotide:{}".format(nucleotide))

Listing 1.10 trivial_compression.py

Listing 1.11 trivial_compression.py continued

http://mng.bz/NA52

15Trivial compression
The _compress()method looks at each character in the str of nucleotides sequen-
tially. When it sees an A, it adds 00 to the bit string. When it sees a C, it adds 01, and so
on. Remember that two bits are needed for each nucleotide. As a result, before we
add each new nucleotide, we shift the bit string two bits to the left (self.bit_string
<<= 2).

 Every nucleotide is added using an “or” operation (|). After the left shift, two 0s are
added to the right side of the bit string. In bitwise operations, “ORing” (for example,
self.bit_string |= 0b10) 0s with any other value results in the other value replacing
the 0s. In other words, we continually add two new bits to the right side of the bit
string. The two bits that are added are determined by the type of the nucleotide.

 Finally, we will implement decompression and the special __str__() method that
uses it.

def decompress(self) -> str:
 gene: str = ""
 for i in range(0, self.bit_string.bit_length() - 1, 2): # - 1 to exclude

sentinel
 bits: int = self.bit_string >> i & 0b11 # get just 2 relevant bits
 if bits == 0b00: # A
 gene += "A"
 elif bits == 0b01: # C
 gene += "C"
 elif bits == 0b10: # G
 gene += "G"
 elif bits == 0b11: # T
 gene += "T"
 else:
 raise ValueError("Invalid bits:{}".format(bits))
 return gene[::-1] # [::-1] reverses string by slicing backward

def __str__(self) -> str: # string representation for pretty printing
 return self.decompress()

decompress() reads two bits from the bit string at a time, and it uses those two bits to
determine which character to add to the end of the str representation of the gene.
Because the bits are being read backward, compared to the order they were com-
pressed in (right to left instead of left to right), the str representation is ultimately
reversed (using the slicing notation for reversal [::-1]). Finally, note how the conve-
nient int method bit_length() aided in the development of decompress(). Let’s
test it out.

if __name__ == "__main__":
 from sys import getsizeof
 original: str =

"TAGGGATTAACCGTTATATATATATAGCCATGGATCGATTATATAGGGATTAACCGTTATATATATATAGC
CATGGATCGATTATA" * 100

Listing 1.12 trivial_compression.py continued

Listing 1.13 trivial_compression.py continued

16 CHAPTER 1 Small problems
 print("original is {} bytes".format(getsizeof(original)))
 compressed: CompressedGene = CompressedGene(original) # compress
 print("compressed is {} bytes".format(getsizeof(compressed.bit_string)))
 print(compressed) # decompress
 print("original and decompressed are the same: {}".format(original ==

compressed.decompress()))

Using the sys.getsizeof() method, we can indicate in the output whether we did
indeed save almost 75% of the memory cost of storing the gene through this compres-
sion scheme.

original is 8649 bytes
compressed is 2320 bytes
TAGGGATTAACC…
original and decompressed are the same: True

NOTE In the CompressedGene class, we used if statements extensively to
decide between a series of cases in both the compression and the decompres-
sion methods. Because Python has no switch statement, this is somewhat typ-
ical. What you will also see in Python sometimes is a high reliance on
dictionaries in place of extensive if statements to deal with a set of cases.
Imagine, for instance, a dictionary in which we could look up each nucleo-
tide’s respective bits. This can sometimes be more readable, but it can come
with a performance cost. Even though a dictionary lookup is technically O(1),
the cost of running a hash function will sometimes mean a dictionary is less
performant than a series of ifs. Whether this holds will depend on what a
particular program’s if statements must evaluate to make their decision. You
may want to run performance tests on both methods if you need to make a
decision between ifs and dictionary lookup in a critical section of code.

1.3 Unbreakable encryption
A one-time pad is a way of encrypting a piece of data by combining it with meaningless
random dummy data in such a way that the original cannot be reconstituted without
access to both the product and the dummy data. In essence, this leaves the encrypter
with a key pair. One key is the product, and the other is the random dummy data. One
key on its own is useless; only the combination of both keys can unlock the original
data. When performed correctly, a one-time pad is a form of unbreakable encryption.
Figure 1.6 shows the process.

1.3.1 Getting the data in order

In this example, we will encrypt a str using a one-time pad. One way of thinking
about a Python 3 str is as a sequence of UTF-8 bytes (with UTF-8 being a Unicode
character encoding). A str can be converted into a sequence of UTF-8 bytes (repre-
sented as the bytes type) through the encode() method. Likewise, a sequence of
UTF-8 bytes can be converted back into a str using the decode() method on the
bytes type.

Listing 1.14 trivial_compression.py output

17Unbreakable encryption
There are three criteria that the dummy data used in a one-time pad encryption oper-
ation must meet for the resulting product to be unbreakable. The dummy data must
be the same length as the original data, truly random, and completely secret. The first
and third criteria are common sense. If the dummy data repeats because it is too
short, there could be an observed pattern. If one of the keys is not truly secret (per-
haps it is reused elsewhere or partially revealed), then an attacker has a clue. The sec-
ond criteria poses a question all its own: can we produce truly random data? The
answer for most computers is no.

 In this example we will use the pseudo-random data generating function token_
bytes() from the secrets module (first included in the standard library in Python
3.6). Our data will not be truly random, in the sense that the secrets package still is
using a pseudo-random number generator behind the scenes, but it will be close
enough for our purposes. Let’s generate a random key for use as dummy data.

from secrets import token_bytes
from typing import Tuple

def random_key(length: int) -> int:
 # generate length random bytes
 tb: bytes = token_bytes(length)
 # convert those bytes into a bit string and return it
 return int.from_bytes(tb, "big")

This function creates an int filled with length random bytes. The method int.from_
bytes() is used to convert from bytes to int. How can multiple bytes be converted to
a single integer? The answer lies in section 1.2. In that section, you learned that the
int type can be of arbitrary size, and you saw how it can be used as a generic bit string.
int is being used in the same way here. For example, the from_bytes() method will
take 7 bytes (7 bytes * 8 bits = 56 bits) and convert them into a 56-bit integer. Why is

Listing 1.15 unbreakable_encryption.py

Original data

Encryption
(XOR)

Key 1
(Dummy data)

Key 2
(Product)

Original data

Dummy data

Decryption
(XOR)

Key 1
(Dummy data)

Key 2
(Product)

Figure 1.6 A one-time pad
results in two keys that can be
separated and then recombined
to re-create the original data.

18 CHAPTER 1 Small problems
this useful? Bitwise operations can be executed more easily and performantly on a sin-
gle int (read “long bit string”) than on many individual bytes in a sequence. And we
are about to use the bitwise operation XOR.

1.3.2 Encrypting and decrypting

How will the dummy data be combined with the original data that we want to encrypt?
The XOR operation will serve this purpose. XOR is a logical bitwise (operates at the
bit level) operation that returns true when one of its operands is true but returns
false when both are true or neither is true. As you may have guessed, XOR stands for
exclusive or.

 In Python, the XOR operator is ^. In the context of the bits of binary numbers,
XOR returns 1 for 0 ^ 1 and 1 ^ 0, but 0 for 0 ^ 0 and 1 ^ 1. If the bits of two num-
bers are combined using XOR, a helpful property is that the product can be recom-
bined with either of the operands to produce the other operand:

A ^ B = C
C ^ B = A
C ^ A = B

This key insight forms the basis of one-time pad encryption. To form our product, we
will simply XOR an int representing the bytes in our original str with a randomly
generated int of the same bit length (as produced by random_key()). Our returned
key pair will be the dummy data and the product.

def encrypt(original: str) -> Tuple[int, int]:
 original_bytes: bytes = original.encode()
 dummy: int = random_key(len(original_bytes))
 original_key: int = int.from_bytes(original_bytes, "big")
 encrypted: int = original_key ^ dummy # XOR
 return dummy, encrypted

NOTE int.from_bytes() is being passed two arguments. The first is the
bytes that we want to convert into an int. The second is the endianness of
those bytes ("big"). Endianness refers to the byte-ordering used to store data.
Does the most significant byte come first, or does the least significant byte
come first? In our case, it does not matter as long as we use the same ordering
both when we encrypt and decrypt, because we are actually only manipulating
the data at the individual bit level. In other situations, when you are not con-
trolling both ends of the encoding process, the ordering can absolutely mat-
ter, so be careful!

Decryption is simply a matter of recombining the key pair we generated with
encrypt(). This is achieved once again by doing an XOR operation between each and
every bit in the two keys. The ultimate output must be converted back to a str. First,
the int is converted to bytes using int.to_bytes(). This method requires the num-
ber of bytes to be converted from the int. To get this number, we divide the bit length

Listing 1.16 unbreakable_encryption.py continued

19Calculating pi
by eight (the number of bits in a byte). Finally, the bytes method decode() gives us
back a str.

def decrypt(key1: int, key2: int) -> str:
 decrypted: int = key1 ^ key2 # XOR
 temp: bytes = decrypted.to_bytes((decrypted.bit_length()+ 7) // 8, "big")
 return temp.decode()

It was necessary to add 7 to the length of the decrypted data before using integer-
division (//) to divide by 8 to ensure that we “round up,” to avoid an off-by-one error.
If our one-time pad encryption truly works, we should be able to encrypt and decrypt
the same Unicode string without issue.

if __name__ == "__main__":
 key1, key2 = encrypt("One Time Pad!")
 result: str = decrypt(key1, key2)
 print(result)

If your console outputs One Time Pad! then everything worked.

1.4 Calculating pi
The mathematically significant number pi (π or 3.14159…) can be derived using
many formulas. One of the simplest is the Leibniz formula. It posits that the conver-
gence of the following infinite series is equal to pi:

π = 4/1 - 4/3 + 4/5 - 4/7 + 4/9 - 4/11...
You will notice that the infinite series’ numerator remains 4 while the denominator
increases by 2, and the operation on the terms alternates between addition and
subtraction.

 We can model the series in a straightforward way by translating pieces of the for-
mula into variables in a function. The numerator can be a constant 4. The denomina-
tor can be a variable that begins at 1 and is incremented by 2. The operation can be
represented as either -1 or 1 based on whether we are adding or subtracting. Finally,
the variable pi is used in listing 1.19 to collect the sum of the series as the for loop
proceeds.

def calculate_pi(n_terms: int) -> float:
 numerator: float = 4.0
 denominator: float = 1.0
 operation: float = 1.0
 pi: float = 0.0
 for _ in range(n_terms):
 pi += operation * (numerator / denominator)

Listing 1.17 unbreakable_encryption.py continued

Listing 1.18 unbreakable_encryption.py continued

Listing 1.19 calculating_pi.py

20 CHAPTER 1 Small problems
denominator += 2.0
operation *= -1.0

 return pi

if __name__ == "__main__":
 print(calculate_pi(1000000))

TIP On most platforms, Python floats are 64-bit floating-point numbers (or
double in C).

This function is an example of how rote conversion between formula and program-
matic code can be both simple and effective in modeling or simulating an interesting
concept. Rote conversion is a useful tool, but we must keep in mind that it is not nec-
essarily the most efficient solution. Certainly, the Leibniz formula for pi can be imple-
mented with more efficient or compact code.

NOTE The more terms in the infinite series (the higher the value of n_terms
when calculate_pi() is called), the more accurate the ultimate calculation
of pi will be.

1.5 The Towers of Hanoi
Three vertical pegs (henceforth “towers”) stand tall. We will label them A, B, and C.
Doughnut-shaped discs are around tower A. The widest disc is at the bottom, and we
will call it disc 1. The rest of the discs above disc 1 are labeled with increasing numer-
als and get progressively narrower. For instance, if we were to work with three discs,
the widest disc, the one on the bottom, would be 1. The next widest disc, disc 2, would
sit on top of disc 1. And finally, the narrowest disc, disc 3, would sit on top of disc 2.
Our goal is to move all of the discs from tower A to tower C given the following
constraints:

 Only one disc can be moved at a time.
 The topmost disc of any tower is the only one available for moving.
 A wider disc can never be atop a narrower disc.

Figure 1.7 summarizes the problem.

1.5.1 Modeling the towers

A stack is a data structure that is modeled on the concept of Last-In-First-Out (LIFO).
The last thing put into it is the first thing that comes out of it. The two most basic
operations on a stack are push and pop. A push puts a new item into a stack, whereas a
pop removes and returns the last item put in. We can easily model a stack in Python
using a list as a backing store.

21The Towers of Hanoi

from typing import TypeVar, Generic, List
T = TypeVar('T')

class Stack(Generic[T]):

 def __init__(self) -> None:
 self._container: List[T] = []

 def push(self, item: T) -> None:
 self._container.append(item)

 def pop(self) -> T:
 return self._container.pop()

 def __repr__(self) -> str:
 return repr(self._container)

NOTE This Stack class implements __repr__() so that we can easily explore
the contents of a tower. __repr__() is what will be output when print() is
applied to a Stack.

NOTE As was described in the introduction, this book utilizes type hints
throughout. The import of Generic from the typing module enables Stack to
be generic over a particular type in type hints. The arbitrary type T is defined

Listing 1.20 hanoi.py

Smaller
discs

must be
on top of

larger
discs.

We want
to move
all of the

discs here,
one at a

time.

A
(Starting position)

1

2

3

B C

Figure 1.7 The challenge is to move the three discs, one at a time, from tower
A to tower C. A larger disc may never be on top of a smaller disc.

22 CHAPTER 1 Small problems
in T = TypeVar('T'). T can be any type. When a type hint is later used for a
Stack to solve the Hanoi problem, it is type-hinted as type Stack[int], which
means T is filled in with type int. In other words, the stack is a stack of inte-
gers. If you are struggling with type hints, take a look at appendix C.

Stacks are perfect stand-ins for the towers in The Towers of Hanoi. When we want to
put a disc onto a tower, we can just push it. When we want to move a disc from one
tower to another, we can pop it from the first and push it onto the second.

 Let’s define our towers as Stacks and fill the first tower with discs.

num_discs: int = 3
tower_a: Stack[int] = Stack()
tower_b: Stack[int] = Stack()
tower_c: Stack[int] = Stack()
for i in range(1, num_discs + 1):
 tower_a.push(i)

1.5.2 Solving The Towers of Hanoi

How can The Towers of Hanoi be solved? Imagine we were only trying to move 1 disc.
We would know how to do that, right? In fact, moving one disc is our base case for a
recursive solution to The Towers of Hanoi. The recursive case is moving more than
one disc. Therefore, the key insight is that we essentially have two scenarios we need
to codify: moving one disc (the base case) and moving more than one disc (the recur-
sive case).

 Let’s look at a specific example to understand the recursive case. Say we have three
discs (top, middle, and bottom) on tower A that we want to move to tower C. (It may
help to sketch out the problem as you follow along.) We could first move the top disc
to tower C. Then we could move the middle disc to tower B. Then we could move the
top disc from tower C to tower B. Now we have the bottom disc still on tower A and
the upper two discs on tower B. Essentially, we have now successfully moved two discs
from one tower (A) to another tower (B). Moving the bottom disc from A to C is our
base case (moving a single disc). Now we can move the two upper discs from B to C in
the same procedure that we did from A to B. We move the top disc to A, the middle
disc to C, and finally the top disc from A to C.

TIP In a computer science classroom, it is not uncommon to see a little
model of the towers built using dowels and plastic doughnuts. You can build
your own model using three pencils and three pieces of paper. It may help
you visualize the solution.

In our three-disc example, we had a simple base case of moving a single disc and a
recursive case of moving all of the other discs (two in this case), using the third tower
temporarily. We could break the recursive case into three steps:

Listing 1.21 hanoi.py continued

23The Towers of Hanoi
1 Move the upper n-1 discs from tower A to B (the temporary tower), using C as
the in-between.

2 Move the single lowest disc from A to C.
3 Move the n-1 discs from tower B to C, using A as the in-between.

The amazing thing is that this recursive algorithm works not only for three discs, but
for any number of discs. We will codify it as a function called hanoi() that is responsi-
ble for moving discs from one tower to another, given a third temporary tower.

def hanoi(begin: Stack[int], end: Stack[int], temp: Stack[int], n: int) ->
None:

 if n == 1:
 end.push(begin.pop())
 else:
 hanoi(begin, temp, end, n - 1)
 hanoi(begin, end, temp, 1)
 hanoi(temp, end, begin, n - 1)

After calling hanoi(), you should examine towers A, B, and C to verify that the discs
were moved successfully.

if __name__ == "__main__":
 hanoi(tower_a, tower_c, tower_b, num_discs)
 print(tower_a)
 print(tower_b)
 print(tower_c)

You will find that they were. In codifying the solution to The Towers of Hanoi, we did
not necessarily need to understand every step required to move multiple discs from
tower A to tower C. But we came to understand the general recursive algorithm for
moving any number of discs, and we codified it, letting the computer do the rest. This
is the power of formulating recursive solutions to problems: we often can think of
solutions in an abstract manner without the drudgery of negotiating every individual
action in our minds.

 Incidentally, the hanoi() function will execute an exponential number of times as
a function of the number of discs, which makes solving the problem for even 64 discs
untenable. You can try it with various other numbers of discs by changing the num_
discs variable. The exponentially increasing number of steps required as the num-
ber of discs increases is where the legend of The Towers of Hanoi comes from; you
can read more about it in any number of sources. You may also be interested in read-
ing more about the mathematics behind its recursive solution; see Carl Burch’s expla-
nation in “About the Towers of Hanoi,” http://mng.bz/c1i2.

Listing 1.22 hanoi.py continued

Listing 1.23 hanoi.py continued

http://mng.bz/c1i2

24 CHAPTER 1 Small problems
1.6 Real-world applications
The various techniques presented in this chapter (recursion, memoization, compres-
sion, and manipulation at the bit level) are so common in modern software develop-
ment that it is impossible to imagine the world of computing without them. Although
problems can be solved without them, it is often more logical or performant to solve
problems with them.

 Recursion, in particular, is at the heart of not just many algorithms, but even whole
programming languages. In some functional programming languages, like Scheme
and Haskell, recursion takes the place of the loops used in imperative languages. It is
worth remembering, though, that anything accomplishable with a recursive technique
is also accomplishable with an iterative technique.

 Memoization has been applied successfully to speed up the work of parsers (pro-
grams that interpret languages). It is useful in all problems where the result of a
recent calculation will likely be asked for again. Another application of memoization
is in language runtimes. Some language runtimes (versions of Prolog, for instance)
will store the results of function calls automatically (auto-memoization), so that the func-
tion need not execute the next time the same call is made. This is similar to how the
@lru_cache() decorator in fib6() worked.

 Compression has made an internet-connected world constrained by bandwidth
more tolerable. The bit-string technique examined in section 1.2 is usable for real-
world simple data types that have a limited number of possible values, for which even
a byte is overkill. The majority of compression algorithms, however, operate by finding
patterns or structures within a data set that allow for repeated information to be elim-
inated. They are significantly more complicated than what is covered in section 1.2.

 One-time pads are not practical for general encryption. They require both the
encrypter and the decrypter to have possession of one of the keys (the dummy data in
our example) for the original data to be reconstructed, which is cumbersome and
defeats the goal of most encryption schemes (keeping keys secret). But you may be inter-
ested to know that the name “one-time pad” comes from spies using real paper pads with
dummy data on them to create encrypted communications during the Cold War.

 These techniques are programmatic building blocks that other algorithms are
built on top of. In future chapters you will see them applied liberally.

1.7 Exercises
1 Write yet another function that solves for element n of the Fibonacci sequence,

using a technique of your own design. Write unit tests that evaluate its correct-
ness and performance relative to the other versions in this chapter.

2 You saw how the simple int type in Python can be used to represent a bit string.
Write an ergonomic wrapper around int that can be used generically as a
sequence of bits (make it iterable and implement __getitem__()). Reimple-
ment CompressedGene, using the wrapper.

3 Write a solver for The Towers of Hanoi that works for any number of towers.
4 Use a one-time pad to encrypt and decrypt images.

Search problems
“Search” is such a broad term that this entire book could be called Classic Search
Problems in Python. This chapter is about core search algorithms that every program-
mer should know. It does not claim to be comprehensive, despite the declaratory
title.

2.1 DNA search
Genes are commonly represented in computer software as a sequence of the char-
acters A, C, G, and T. Each letter represents a nucleotide, and the combination of
three nucleotides is called a codon. This is illustrated in figure 2.1. A codon codes
for a specific amino acid that together with other amino acids can form a protein.
A classic task in bioinformatics software is to find a particular codon within a gene.

2.1.1 Storing DNA

We can represent a nucleotide as a simple IntEnum with four cases.

from enum import IntEnum
from typing import Tuple, List

Nucleotide: IntEnum = IntEnum('Nucleotide', ('A', 'C', 'G', 'T'))

Nucleotide is of type IntEnum instead of just Enum, because IntEnum gives us com-
parison operators (<, >=, and so on) “for free.” Having these operators in a data
type is required in order for the search algorithms we are going to implement to be
able to operate on it. Tuple and List are imported from the typing package to
assist with type hints.

Listing 2.1 dna_search.py
25

26 CHAPTER 2 Search problems
Codons can be defined as a tuple of three Nucleotides. A gene may be defined as a
list of Codons.

Codon = Tuple[Nucleotide, Nucleotide, Nucleotide] # type alias for codons
Gene = List[Codon] # type alias for genes

NOTE Although we will later need to compare one Codon to another, we do
not need to define a custom class with the < operator explicitly implemented
for Codon. This is because Python has built-in support for comparisons
between tuples that are composed of types that are also comparable.

Typically, genes on the internet will be in a file format that contains a giant string rep-
resenting all of the nucleotides in the gene’s sequence. We will define such a string for
an imaginary gene and call it gene_str.

gene_str: str = "ACGTGGCTCTCTAACGTACGTACGTACGGGGTTTATATATACCCTAGGACTCCCTTT"

We will also need a utility function to convert a str into a Gene.

def string_to_gene(s: str) -> Gene:
 gene: Gene = []
 for i in range(0, len(s), 3):

if (i + 2) >= len(s): # don't run off end!

Listing 2.2 dna_search.py continued

Listing 2.3 dna_search.py continued

Listing 2.4 dna_search.py continued

1 nucleotide

Part of a gene

AA TT AT GT ACGC

1 codon
(3 nucleotides)

Figure 2.1 A nucleotide is represented by one of the letters A, C, G, and T. A codon is composed
of three nucleotides, and a gene is composed of multiple codons.

27DNA search
 return gene
 # initialize codon out of three nucleotides
 codon: Codon = (Nucleotide[s[i]], Nucleotide[s[i + 1]],

Nucleotide[s[i + 2]])
 gene.append(codon) # add codon to gene
 return gene

string_to_gene() continually goes through the provided str and converts its next
three characters into Codons that it adds to the end of a new Gene. If it finds that there
is no Nucleotide two places into the future of the current place in s that it is examin-
ing (see the if statement within the loop), then it knows it has reached the end of an
incomplete gene, and it skips over those last one or two nucleotides.

 string_to_gene() can be used to convert the str gene_str into a Gene.

my_gene: Gene = string_to_gene(gene_str)

2.1.2 Linear search

One basic operation we may want to perform on a gene is to search it for a particular
codon. The goal is to simply find out whether the codon exists within the gene or not.

 A linear search goes through every element in a search space, in the order of the
original data structure, until what is sought is found or the end of the data structure is
reached. In effect, a linear search is the most simple, natural, and obvious way to
search for something. In the worst case, a linear search will require going through
every element in a data structure, so it is of O(n) complexity, where n is the number of
elements in the structure. This is illustrated in figure 2.2.

It is trivial to define a function that performs a linear search. It simply must go
through every element in a data structure and check for its equivalence to the item
being sought. The following code defines such a function for a Gene and a Codon and
then tries it out for my_gene and Codons called acg and gat.

def linear_contains(gene: Gene, key_codon: Codon) -> bool:
 for codon in gene:
 if codon == key_codon:
 return True
 return False

Listing 2.5 dna_search.py continued

Listing 2.6 dna_search.py continued

Start Worst case

Step 1 2 3 4 5 6 7 8 9 10 11 Figure 2.2 In the worst case of a linear
search, you’ll sequentially look through
every element of the array.

28 CHAPTER 2 Search problems
acg: Codon = (Nucleotide.A, Nucleotide.C, Nucleotide.G)
gat: Codon = (Nucleotide.G, Nucleotide.A, Nucleotide.T)
print(linear_contains(my_gene, acg)) # True
print(linear_contains(my_gene, gat)) # False

NOTE This function is for illustrative purposes only. The Python built-in
sequence types (list, tuple, range) all implement the __contains__()
method, which allows us to do a search for a specific item in them by simply
using the in operator. In fact, the in operator can be used with any type that
implements __contains__(). For instance, we could search my_gene for acg
and print out the result by writing print(acg in my_gene).

2.1.3 Binary search

There is a faster way to search than looking at every element, but it requires us to
know something about the order of the data structure ahead of time. If we know that
the structure is sorted, and we can instantly access any item within it by its index, we
can perform a binary search. Based on this criteria, a sorted Python list is a perfect
candidate for a binary search.

 A binary search works by looking at the middle element in a sorted range of ele-
ments, comparing it to the element sought, reducing the range by half based on that
comparison, and starting the process over again. Let’s look at a concrete example.

 Suppose we have a list of alphabetically sorted words like ["cat", "dog", "kanga-
roo", "llama", "rabbit", "rat", "zebra"] and we are searching for the word “rat”:

1 We could determine that the middle element in this seven-word list is “llama.”
2 We could determine that “rat” comes after “llama” alphabetically, so it must be

in the (approximately) half of the list that comes after “llama.” (If we had found
“rat” in this step, we could have returned its location; if we had found that our
word came before the middle word we were checking, we could be assured that
it was in the half of the list before “llama.”)

3 We could rerun steps 1 and 2 for the half of the list that we know “rat” is still
possibly in. In effect, this half becomes our new base list. These steps continu-
ally run until “rat” is found or the range we are looking in no longer contains
any elements to search, meaning that “rat” does not exist within the word list.

Figure 2.3 illustrates a binary search. Notice that it does not involve searching every
element, unlike a linear search.

 A binary search continually reduces the search space by half, so it has a worst-case
runtime of O(lg n). There is a sort-of catch, though. Unlike a linear search, a binary

S
te

p
4

S
te

p
3

S
te

p
2

S
te

p
1

StartWorst Case

Figure 2.3 In the worst case of a
binary search, you’ll look through
just lg(n) elements of the list.

29DNA search
search requires a sorted data structure to search through, and sorting takes time. In
fact, sorting takes O(n lg n) time for the best sorting algorithms. If we are only going
to run our search once, and our original data structure is unsorted, it probably makes
sense to just do a linear search. But if the search is going to be performed many times,
the time cost of doing the sort is worth it, to reap the benefit of the greatly reduced
time cost of each individual search.

 Writing a binary search function for a gene and a codon is not unlike writing one
for any other type of data, because the Codon type can be compared to others of its
type, and the Gene type is just a list.

def binary_contains(gene: Gene, key_codon: Codon) -> bool:
 low: int = 0
 high: int = len(gene) - 1
 while low <= high: # while there is still a search space
 mid: int = (low + high) // 2
 if gene[mid] < key_codon:
 low = mid + 1
 elif gene[mid] > key_codon:
 high = mid - 1
 else:
 return True
 return False

Let’s walk through this function line by line.

low: int = 0
high: int = len(gene) - 1

We start by looking at a range that encompasses the entire list (gene).

while low <= high:

We keep searching as long as there is a still a range to search within. When low is
greater than high, it means that there are no longer any slots to look at within the list.

mid: int = (low + high) // 2

We calculate the middle, mid, by using integer division and the simple mean formula
you learned in grade school.

if gene[mid] < key_codon:
 low = mid + 1

If the element we are looking for is after the middle element of the range we are look-
ing at, we modify the range that we will look at during the next iteration of the loop by
moving low to be one past the current middle element. This is where we halve the
range for the next iteration.

elif gene[mid] > key_codon:
 high = mid - 1

Listing 2.7 dna_search.py continued

30 CHAPTER 2 Search problems
Similarly, we halve in the other direction when the element we are looking for is less
than the middle element.

else:
 return True

If the element in question is not less than or greater than the middle element, that
means we found it! And, of course, if the loop ran out of iterations, we return False
(not reproduced here), indicating that it was never found.

 We can try running our function with the same gene and codon, but we must
remember to sort first.

my_sorted_gene: Gene = sorted(my_gene)
print(binary_contains(my_sorted_gene, acg)) # True
print(binary_contains(my_sorted_gene, gat)) # False

TIP You can build a performant binary search using the Python standard
library’s bisect module: https://docs.python.org/3/library/bisect.html.

2.1.4 A generic example

The functions linear_contains() and binary_contains() can be generalized to
work with almost any Python sequence. The following generalized versions are nearly
identical to the versions you saw before, with only some names and type hints
changed.

NOTE There are many imported types in the following code listing. We will
be reusing the file generic_search.py for many further generic search algo-
rithms in this chapter, and this gets the imports out of the way.

NOTE Before proceeding with the book, you will need to install the typing_
extensions module via either pip install typing_extensions or pip3
install typing_extensions, depending on how your Python interpreter is
configured. You will need this module to access the Protocol type, which will
be in the standard library in a future version of Python (as specified by
PEP 544). Therefore, in a future version of Python, importing the typing_
extensions module should be unnecessary, and you will be able to use
from typing import Protocol instead of from typing_extensions import
Protocol.

from __future__ import annotations
from typing import TypeVar, Iterable, Sequence, Generic, List, Callable, Set,

Deque, Dict, Any, Optional
from typing_extensions import Protocol
from heapq import heappush, heappop

T = TypeVar('T')

Listing 2.8 dna_search.py continued

Listing 2.9 generic_search.py

https://docs.python.org/3/library/bisect.html

31DNA search
def linear_contains(iterable: Iterable[T], key: T) -> bool:
 for item in iterable:
 if item == key:
 return True
 return False

C = TypeVar("C", bound="Comparable")

class Comparable(Protocol):
 def __eq__(self, other: Any) -> bool:
 ...

 def __lt__(self: C, other: C) -> bool:
 ...

 def __gt__(self: C, other: C) -> bool:
 return (not self < other) and self != other

 def __le__(self: C, other: C) -> bool:
 return self < other or self == other

 def __ge__(self: C, other: C) -> bool:
 return not self < other

def binary_contains(sequence: Sequence[C], key: C) -> bool:
 low: int = 0
 high: int = len(sequence) - 1
 while low <= high: # while there is still a search space
 mid: int = (low + high) // 2
 if sequence[mid] < key:
 low = mid + 1
 elif sequence[mid] > key:
 high = mid - 1
 else:
 return True
 return False

if __name__ == "__main__":
 print(linear_contains([1, 5, 15, 15, 15, 15, 20], 5)) # True
 print(binary_contains(["a", "d", "e", "f", "z"], "f")) # True
 print(binary_contains(["john", "mark", "ronald", "sarah"], "sheila")) #

False

Now you can try doing searches on other types of data. These functions can be reused
for almost any Python collection. That is the power of writing code generically. The
only unfortunate element of this example is the convoluted hoops that had to be
jumped through for Python’s type hints, in the form of the Comparable class.
A Comparable type is a type that implements the comparison operators (<, >=, and so
on). There should be a more succinct way in future versions of Python to create a type
hint for types that implement these common operators.

32 CHAPTER 2 Search problems
2.2 Maze solving
Finding a path through a maze is analogous to many common search problems in
computer science. Why not literally find a path through a maze, then, to illustrate the
breadth-first search, depth-first search, and A* algorithms?

 Our maze will be a two-dimensional grid of Cells. A Cell is an enum with str val-
ues where " " will represent an empty space and "X" will represent a blocked space.
There are also other cases for illustrative purposes when printing a maze.

from enum import Enum
from typing import List, NamedTuple, Callable, Optional
import random
from math import sqrt
from generic_search import dfs, bfs, node_to_path, astar, Node

class Cell(str, Enum):
 EMPTY = " "
 BLOCKED = "X"
 START = "S"
 GOAL = "G"
 PATH = "*"

Once again, we are getting a large number of imports out of the way. Note that the last
import (from generic_search) is of symbols we have not yet defined. It is included
here for convenience, but you may want to comment it out until you need it.

 We will need a way to refer to an individual location in the maze. This will simply
be a NamedTuple with properties representing the row and column of the location in
question.

class MazeLocation(NamedTuple):
 row: int
 column: int

2.2.1 Generating a random maze

Our Maze class will internally keep track of a grid (a list of lists) representing its state.
It will also have instance variables for the number of rows, number of columns, start
location, and goal location. Its grid will be randomly filled with blocked cells.

 The maze that is generated should be fairly sparse so that there is almost always a
path from a given starting location to a given goal location. (This is for testing our algo-
rithms, after all.) We’ll let the caller of a new maze decide on the exact sparseness, but
we will provide a default value of 20% blocked. When a random number beats the
threshold of the sparseness parameter in question, we will simply replace an empty
space with a wall. If we do this for every possible place in the maze, statistically, the
sparseness of the maze as a whole will approximate the sparseness parameter supplied.

Listing 2.10 maze.py

Listing 2.11 maze.py continued

33Maze solving

class Maze:
 def __init__(self, rows: int = 10, columns: int = 10, sparseness: float =

0.2, start: MazeLocation = MazeLocation(0, 0), goal: MazeLocation =
MazeLocation(9, 9)) -> None:

 # initialize basic instance variables
 self._rows: int = rows
 self._columns: int = columns
 self.start: MazeLocation = start
 self.goal: MazeLocation = goal
 # fill the grid with empty cells
 self._grid: List[List[Cell]] = [[Cell.EMPTY for c in range(columns)]

for r in range(rows)]
 # populate the grid with blocked cells
 self._randomly_fill(rows, columns, sparseness)
 # fill the start and goal locations in
 self._grid[start.row][start.column] = Cell.START
 self._grid[goal.row][goal.column] = Cell.GOAL

 def _randomly_fill(self, rows: int, columns: int, sparseness: float):
 for row in range(rows):
 for column in range(columns):
 if random.uniform(0, 1.0) < sparseness:
 self._grid[row][column] = Cell.BLOCKED

Now that we have a maze, we also want a way to print it succinctly to the console. We
want its characters to be close together so it looks like a real maze.

return a nicely formatted version of the maze for printing
def __str__(self) -> str:
 output: str = ""
 for row in self._grid:
 output += "".join([c.value for c in row]) + "\n"
 return output

Go ahead and test these maze functions.

maze: Maze = Maze()
print(maze)

2.2.2 Miscellaneous maze minutiae

It will be handy later to have a function that checks whether we have reached our goal
during the search. In other words, we want to check whether a particular Maze-
Location that the search has reached is the goal. We can add a method to Maze.

def goal_test(self, ml: MazeLocation) -> bool:
 return ml == self.goal

Listing 2.12 maze.py continued

Listing 2.13 maze.py continued

Listing 2.14 maze.py continued

34 CHAPTER 2 Search problems
How can we move within our mazes? Let’s say that we can move horizontally and verti-
cally one space at a time from a given space in the maze. Using these criteria, a
successors() function can find the possible next locations from a given MazeLocation.
However, the successors() function will differ for every Maze because every Maze has a
different size and set of walls. Therefore, we will define it as a method on Maze.

def successors(self, ml: MazeLocation) -> List[MazeLocation]:
 locations: List[MazeLocation] = []
 if ml.row + 1 < self._rows and self._grid[ml.row + 1][ml.column] !=

Cell.BLOCKED:
locations.append(MazeLocation(ml.row + 1, ml.column))

 if ml.row - 1 >= 0 and self._grid[ml.row - 1][ml.column] != Cell.BLOCKED:
locations.append(MazeLocation(ml.row - 1, ml.column))

 if ml.column + 1 < self._columns and self._grid[ml.row][ml.column + 1] !=
Cell.BLOCKED:

locations.append(MazeLocation(ml.row, ml.column + 1))
 if ml.column - 1 >= 0 and self._grid[ml.row][ml.column - 1] !=

Cell.BLOCKED:
locations.append(MazeLocation(ml.row, ml.column - 1))

 return locations

successors() simply checks above, below, to the right, and to the left of a Maze-
Location in a Maze to see if it can find empty spaces that can be gone to from that
location. It also avoids checking locations beyond the edges of the Maze. It puts every
possible MazeLocation that it finds into a list that it ultimately returns to the caller.

2.2.3 Depth-first search

A depth-first search (DFS) is what its name suggests: a search that goes as deeply as it can
before backtracking to its last decision point if it reaches a dead end. We’ll implement
a generic depth-first search that can solve our maze problem. It will also be reusable
for other problems. Figure 2.4 illustrates an in-progress depth-first search of a maze.

STACKS

The depth-first search algorithm relies on a data structure known as a stack. (If you
read about stacks in chapter 1, feel free to skip this section.) A stack is a data structure
that operates under the Last-In-First-Out (LIFO) principle. Imagine a stack of papers.
The last paper placed on top of the stack is the first paper pulled off the stack. It is
common for a stack to be implemented on top of a more primitive data structure like
a list. We will implement our stack on top of Python’s list type.

 Stacks generally have at least two operations:

 push()—Places an item on top of the stack
 pop()—Removes the item from the top of the stack and returns it

We will implement both of these, as well as an empty property to check if the stack has
any more items in it. We will add the code for the stack to the generic_search.py file
that we were working with earlier in the chapter. We already have completed all of the
necessary imports.

Listing 2.15 maze.py continued

35Maze solving
class Stack(Generic[T]):
 def __init__(self) -> None:

self._container: List[T] = []

 @property
 def empty(self) -> bool:

return not self._container # not is true for empty container

 def push(self, item: T) -> None:
self._container.append(item)

 def pop(self) -> T:
return self._container.pop() # LIFO

 def __repr__(self) -> str:
return repr(self._container)

Listing 2.16 generic_search.py continued

Start

Goal

Barrier

Path of
exploration

1

3

2

5

4 6

7 8

Figure 2.4 In depth-first search, the search proceeds along a continuously deeper path until
it hits a barrier and must backtrack to the last decision point.

36 CHAPTER 2 Search problems
Note that implementing a stack using a Python list is as simple as always appending
items onto its right end and always removing items from its extreme right end. The
pop() method on list will fail if there are no longer any items in the list, so pop() will
fail on a Stack if it is empty as well.

THE DFS ALGORITHM

We will need one more little tidbit before we can get to implementing DFS. We need a
Node class that we will use to keep track of how we got from one state to another state
(or from one place to another place) as we search. You can think of a Node as a wrap-
per around a state. In the case of our maze-solving problem, those states are of type
MazeLocation. We’ll call the Node that a state came from its parent. We will also
define our Node class as having cost and heuristic properties and with __lt__()
implemented, so we can reuse it later in the A* algorithm.

class Node(Generic[T]):
 def __init__(self, state: T, parent: Optional[Node], cost: float = 0.0,

heuristic: float = 0.0) -> None:
self.state: T = state
self.parent: Optional[Node] = parent
self.cost: float = cost
self.heuristic: float = heuristic

 def __lt__(self, other: Node) -> bool:
return (self.cost + self.heuristic) < (other.cost + other.heuristic)

TIP The Optional type indicates that a value of a parameterized type may be
referenced by the variable, or the variable may reference None.

TIP At the top of the file, the from __future__ import annotations allows
Node to reference itself in the type hints of its methods. Without it, we would
need to put the type hint in quotes as a string (for example, 'Node'). In
future versions of Python, importing annotations will be unnecessary. See
PEP 563, “Postponed Evaluation of Annotations,” for more information:
http://mng.bz/pgzR.

An in-progress depth-first search needs to keep track of two data structures: the stack
of states (or “places”) that we are considering searching, which we will call the
frontier; and the set of states that we have already searched, which we will call
explored. As long as there are more states to visit in the frontier, DFS will keep check-
ing whether they are the goal (if a state is the goal, DFS will stop and return it) and
adding their successors to the frontier. It will also mark each state that has already
been searched as explored, so that the search does not get caught in a circle, reaching
states that have prior visited states as successors. If the frontier is empty, it means there
is nowhere left to search.

Listing 2.17 generic_search.py continued

http://mng.bz/pgzR

37Maze solving

def dfs(initial: T, goal_test: Callable[[T], bool], successors: Callable[[T],
List[T]]) -> Optional[Node[T]]:

 # frontier is where we've yet to go
 frontier: Stack[Node[T]] = Stack()
 frontier.push(Node(initial, None))
 # explored is where we've been
 explored: Set[T] = {initial}

 # keep going while there is more to explore
 while not frontier.empty:
 current_node: Node[T] = frontier.pop()
 current_state: T = current_node.state
 # if we found the goal, we're done
 if goal_test(current_state):
 return current_node
 # check where we can go next and haven't explored
 for child in successors(current_state):
 if child in explored: # skip children we already explored
 continue
 explored.add(child)
 frontier.push(Node(child, current_node))
 return None # went through everything and never found goal

If dfs() is successful, it returns the Node encapsulating the goal state. The path from
the start to the goal can be reconstructed by working backward from this Node and its
priors using the parent property.

def node_to_path(node: Node[T]) -> List[T]:
 path: List[T] = [node.state]
 # work backwards from end to front
 while node.parent is not None:
 node = node.parent
 path.append(node.state)
 path.reverse()
 return path

For display purposes, it will be useful to mark up the maze with the successful path,
the start state, and the goal state. It will also be useful to be able to remove a path so
that we can try different search algorithms on the same maze. The following two
methods should be added to the Maze class in maze.py.

def mark(self, path: List[MazeLocation]):
 for maze_location in path:
 self._grid[maze_location.row][maze_location.column] = Cell.PATH
 self._grid[self.start.row][self.start.column] = Cell.START
 self._grid[self.goal.row][self.goal.column] = Cell.GOAL

def clear(self, path: List[MazeLocation]):

Listing 2.18 generic_search.py continued

Listing 2.19 generic_search.py continued

Listing 2.20 maze.py continued

38 CHAPTER 2 Search problems
 for maze_location in path:
self._grid[maze_location.row][maze_location.column] = Cell.EMPTY

 self._grid[self.start.row][self.start.column] = Cell.START
 self._grid[self.goal.row][self.goal.column] = Cell.GOAL

It has been a long journey, but we are finally ready to solve the maze.

if __name__ == "__main__":
 # Test DFS
 m: Maze = Maze()
 print(m)
 solution1: Optional[Node[MazeLocation]] = dfs(m.start, m.goal_test,

m.successors)
if solution1 is None:

print("No solution found using depth-first search!")
 else:

path1: List[MazeLocation] = node_to_path(solution1)
m.mark(path1)
print(m)
m.clear(path1)

A successful solution will look something like this:

S****X X
 X *****

X*
 XX******X
 X*
 X**X
 X *****

*
X *X

*G

The asterisks represent the path that our depth-first search function found from the
start to the goal. Remember, because each maze is randomly generated, not every
maze has a solution.

2.2.4 Breadth-first search

You may notice that the solution paths to the mazes found by depth-first traversal
seem unnatural. They are usually not the shortest paths. Breadth-first search (BFS)
always finds the shortest path by systematically looking one layer of nodes farther away
from the start state in each iteration of the search. There are particular problems in
which a depth-first search is likely to find a solution more quickly than a breadth-first
search, and vice versa. Therefore, choosing between the two is sometimes a trade-off
between the possibility of finding a solution quickly and the certainty of finding the
shortest path to the goal (if one exists). Figure 2.5 illustrates an in-progress breadth-
first search of a maze.

Listing 2.21 maze.py continued

39Maze solving
To understand why a depth-first search sometimes returns a result faster than a
breadth-first search, imagine looking for a marking on a particular layer of an onion.
A searcher using a depth-first strategy may plunge a knife into the center of the onion
and haphazardly examine the chunks cut out. If the marked layer happens to be near
the chunk cut out, there is a chance that the searcher will find it more quickly than
another searcher using a breadth-first strategy, who painstakingly peels the onion one
layer at a time.

 To get a better picture of why breadth-first search always finds the shortest solution
path where one exists, consider trying to find the path with the fewest number of stops
between Boston and New York by train. If you keep going in the same direction and
backtracking when you hit a dead end (as in depth-first search), you may first find a
route all the way to Seattle before it connects back to New York. However, in a
breadth-first search, you will first check all of the stations one stop away from Boston.
Then you will check all of the stations two stops away from Boston. Then you will
check all of the stations three stops away from Boston. This will keep going until you
find New York. Therefore, when you do find New York, you will know you have found
the route with the fewest stops, because you already checked all of the stations that are
fewer stops away from Boston, and none of them was New York.

Start

Goal

Barrier

Path of
exploration

1

6

3 7

4 8

2 5 9

Figure 2.5 In a breadth-first search, the closest elements to the starting location are
searched first.

40 CHAPTER 2 Search problems
QUEUES

To implement BFS, a data structure known as a queue is required. Whereas a stack is
LIFO, a queue is FIFO (First-In-First-Out). A queue is like a line to use a restroom.
The first person who got in line goes to the restroom first. At a minimum, a queue has
the same push() and pop() methods as a stack. In fact, our implementation for Queue
(backed by a Python deque) is almost identical to our implementation of Stack, with
the only changes being the removal of elements from the left end of the _container
instead of the right end and the switch from a list to a deque. (I use the word “left”
here to mean the beginning of the backing store.) The elements on the left end are
the oldest elements still in the deque (in terms of arrival time), so they are the first ele-
ments popped.

class Queue(Generic[T]):
 def __init__(self) -> None:

self._container: Deque[T] = Deque()

 @property
 def empty(self) -> bool:

return not self._container # not is true for empty container

 def push(self, item: T) -> None:
self._container.append(item)

 def pop(self) -> T:
return self._container.popleft() # FIFO

 def __repr__(self) -> str:
return repr(self._container)

TIP Why did the implementation of Queue use a deque as its backing store,
whereas the implementation of Stack used a list as its backing store? It has
to do with where we pop. In a stack, we push to the right and pop from the
right. In a queue we push to the right as well, but we pop from the left. The
Python list data structure has efficient pops from the right but not from the
left. A deque can efficiently pop from either side. As a result, there is a built-in
method on deque called popleft() but no equivalent method on list. You
could certainly find other ways to use a list as the backing store for a queue,
but they would be less efficient. Popping from the left on a deque is an O(1)
operation, whereas it is an O(n) operation on a list. In the case of the list,
after popping from the left, every subsequent element must be moved one to
the left, making it inefficient.

THE BFS ALGORITHM

Amazingly, the algorithm for a breadth-first search is identical to the algorithm for a
depth-first search, with the frontier changed from a stack to a queue. Changing the

Listing 2.22 generic_search.py continued

41Maze solving
frontier from a stack to a queue changes the order in which states are searched and
ensures that the states closest to the start state are searched first.

def bfs(initial: T, goal_test: Callable[[T], bool], successors: Callable[[T],
List[T]]) -> Optional[Node[T]]:

 # frontier is where we've yet to go
 frontier: Queue[Node[T]] = Queue()
 frontier.push(Node(initial, None))
 # explored is where we've been
 explored: Set[T] = {initial}

 # keep going while there is more to explore
 while not frontier.empty:
 current_node: Node[T] = frontier.pop()
 current_state: T = current_node.state
 # if we found the goal, we're done
 if goal_test(current_state):
 return current_node
 # check where we can go next and haven't explored
 for child in successors(current_state):
 if child in explored: # skip children we already explored
 continue
 explored.add(child)
 frontier.push(Node(child, current_node))
 return None # went through everything and never found goal

If you try running bfs(), you will see that it always finds the shortest solution to the
maze in question. The following trial is added just after the previous one in the if
__name__ == "__main__": section of the file, so results can be compared on the
same maze.

Test BFS
solution2: Optional[Node[MazeLocation]] = bfs(m.start, m.goal_test,

m.successors)
if solution2 is None:
 print("No solution found using breadth-first search!")
else:
 path2: List[MazeLocation] = node_to_path(solution2)
 m.mark(path2)
 print(m)
 m.clear(path2)

It is amazing that you can keep an algorithm the same and just change the data struc-
ture that it accesses and get radically different results. The following is the result of
calling bfs() on the same maze that we earlier called dfs() on. Notice how the path
marked by the asterisks is more direct from start to goal than in the prior example.

Listing 2.23 generic_search.py continued

Listing 2.24 maze.py continued

42 CHAPTER 2 Search problems
S X X
*X
* X
*XX X
* X
* X X
*X
*
* X X
*********G

2.2.5 A* search

It can be very time-consuming to peel back an onion, layer-by-layer, as a breadth-first
search does. Like a BFS, an A* search aims to find the shortest path from start state to
goal state. Unlike the preceding BFS implementation, an A* search uses a combina-
tion of a cost function and a heuristic function to focus its search on pathways most
likely to get to the goal quickly.

 The cost function, g(n), examines the cost to get to a particular state. In the case
of our maze, this would be how many previous steps we had to go through to get to
the state in question. The heuristic function, h(n), gives an estimate of the cost to get
from the state in question to the goal state. It can be proved that if h(n) is an admissible
heuristic, then the final path found will be optimal. An admissible heuristic is one that
never overestimates the cost to reach the goal. On a two-dimensional plane, one
example is a straight-line distance heuristic, because a straight line is always the short-
est path.1

 The total cost for any state being considered is f(n), which is simply the combina-
tion of g(n) and h(n). In fact, f(n) = g(n) + h(n). When choosing the next state to
explore from the frontier, an A* search picks the one with the lowest f(n). This is how
it distinguishes itself from BFS and DFS.

PRIORITY QUEUES

To pick the state on the frontier with the lowest f(n), an A* search uses a priority queue
as the data structure for its frontier. A priority queue keeps its elements in an internal
order, such that the first element popped out is always the highest-priority element.
(In our case, the highest-priority item is the one with the lowest f(n).) Usually this
means the internal use of a binary heap, which results in O(lg n) pushes and O(lg n)
pops.

 Python’s standard library contains heappush() and heappop() functions that will
take a list and maintain it as a binary heap. We can implement a priority queue by
building a thin wrapper around these standard library functions. Our PriorityQueue
class will be similar to our Stack and Queue classes, with the push() and pop() meth-
ods modified to use heappush() and heappop().

1 For more information on heuristics, see Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern
Approach, 3rd edition (Pearson, 2010), page 94.

43Maze solving

class PriorityQueue(Generic[T]):
 def __init__(self) -> None:
 self._container: List[T] = []

 @property
 def empty(self) -> bool:
 return not self._container # not is true for empty container

 def push(self, item: T) -> None:
 heappush(self._container, item) # in by priority

 def pop(self) -> T:
 return heappop(self._container) # out by priority

 def __repr__(self) -> str:
 return repr(self._container)

To determine the priority of a particular element versus another of its kind, heap-
push() and heappop(), compare them by using the < operator. This is why we needed
to implement __lt__() on Node earlier. One Node is compared to another by looking
at its respective f(n), which is simply the sum of the properties cost and heuristic.

HEURISTICS

A heuristic is an intuition about the way to solve a problem.2 In the case of maze solv-
ing, a heuristic aims to choose the best maze location to search next, in the quest to
get to the goal. In other words, it is an educated guess about which nodes on the fron-
tier are closest to the goal. As was mentioned previously, if a heuristic used with an A*
search produces an accurate relative result and is admissible (never overestimates the
distance), then A* will deliver the shortest path. Heuristics that calculate smaller val-
ues end up leading to a search through more states, whereas heuristics closer to the
exact real distance (but not over it, which would make them inadmissible) lead to a
search through fewer states. Therefore, ideal heuristics come as close to the real dis-
tance as possible without ever going over it.

EUCLIDEAN DISTANCE

As we learn in geometry, the shortest path between two points is a straight line. It
makes sense, then, that a straight-line heuristic will always be admissible for the maze-
solving problem. The Euclidean distance, derived from the Pythagorean theorem,
states that distance = √((difference in x)2 + (difference in y)2). For our mazes,
the difference in x is equivalent to the difference in columns between two maze loca-
tions, and the difference in y is equivalent to the difference in rows. Note that we are
implementing this back in maze.py.

Listing 2.25 generic_search.py continued

2 For more about heuristics for A* pathfinding, check out the “Heuristics” chapter in Amit Patel’s Amit’s
Thoughts on Pathfinding, http://mng.bz/z7O4.

http://mng.bz/z7O4

44 CHAPTER 2 Search problems
def euclidean_distance(goal: MazeLocation) -> Callable[[MazeLocation],
float]:

 def distance(ml: MazeLocation) -> float:
xdist: int = ml.column - goal.column
ydist: int = ml.row - goal.row
return sqrt((xdist * xdist) + (ydist * ydist))

 return distance

euclidean_distance() is a function that returns another function. Languages like
Python that support first-class functions enable this interesting pattern. distance()
captures the goal MazeLocation that euclidean_distance() is passed. Capturing
means that distance() can refer to this variable every time it’s called (permanently).
The function it returns makes use of goal to do its calculations. This pattern enables
the creation of a function that requires fewer parameters. The returned distance()
function takes just the start maze location as an argument and permanently “knows”
the goal.

 Figure 2.6 illustrates Euclidean distance within the context of a grid, like the
streets of Manhattan.

MANHATTAN DISTANCE

Euclidean distance is great, but for our particular problem (a maze in which you can
move only in one of four directions) we can do even better. The Manhattan distance is
derived from navigating the streets of Manhattan, the most famous of New York City’s
boroughs, which is laid out in a grid pattern. To get from anywhere to anywhere in
Manhattan, one needs to walk a certain number of horizontal blocks and a certain
number of vertical blocks. (There are almost no diagonal streets in Manhattan.) The
Manhattan distance is derived by simply finding the difference in rows between two
maze locations and summing it with the difference in columns. Figure 2.7 illustrates
Manhattan distance.

Listing 2.26 maze.py continued

Euclidean distance

Figure 2.6 Euclidean distance is
the length of a straight line from
the starting point to the goal.

45Maze solving

def manhattan_distance(goal: MazeLocation) -> Callable[[MazeLocation],
float]:

 def distance(ml: MazeLocation) -> float:
 xdist: int = abs(ml.column - goal.column)
 ydist: int = abs(ml.row - goal.row)
 return (xdist + ydist)
 return distance

Because this heuristic more accurately follows the actuality of navigating our mazes
(moving vertically and horizontally instead of in diagonal straight lines), it comes
closer to the actual distance between any maze location and the goal than Euclidean
distance does. Therefore, when an A* search is coupled with Manhattan distance, it
will result in searching through fewer states than when an A* search is coupled with
Euclidean distance for our mazes. Solution paths will still be optimal, because Man-
hattan distance is admissible (never overestimates distance) for mazes in which only
four directions of movement are allowed.

THE A* ALGORITHM

To go from BFS to A* search, we need to make several small modifications. The first is
changing the frontier from a queue to a priority queue. This way, the frontier will pop
nodes with the lowest f(n). The second is changing the explored set to a dictionary.
A dictionary will allow us to keep track of the lowest cost (g(n)) of each node we may
visit. With the heuristic function now at play, it is possible some nodes may be visited
twice if the heuristic is inconsistent. If the node found through the new direction has
a lower cost to get to than the prior time we visited it, we will prefer the new route.

 For the sake of simplicity, the function astar() does not take a cost-calculation
function as a parameter. Instead, we just consider every hop in our maze to be a cost
of 1. Each new Node gets assigned a cost based on this simple formula, as well as a heu-
ristic score using a new function passed as a parameter to the search function called
heuristic(). Other than these changes, astar() is remarkably similar to bfs().
Examine them side by side for comparison.

Listing 2.27 maze.py continued

Manhattan distance

Figure 2.7 In Manhattan distance,
there are no diagonals. The path
must be along parallel or
perpendicular lines.

46 CHAPTER 2 Search problems
def astar(initial: T, goal_test: Callable[[T], bool], successors:
Callable[[T], List[T]], heuristic: Callable[[T], float]) ->
Optional[Node[T]]:

 # frontier is where we've yet to go
 frontier: PriorityQueue[Node[T]] = PriorityQueue()
 frontier.push(Node(initial, None, 0.0, heuristic(initial)))
 # explored is where we've been
 explored: Dict[T, float] = {initial: 0.0}

 # keep going while there is more to explore
 while not frontier.empty:

current_node: Node[T] = frontier.pop()
current_state: T = current_node.state
if we found the goal, we're done
if goal_test(current_state):
 return current_node
check where we can go next and haven't explored
for child in successors(current_state):
 new_cost: float = current_node.cost + 1 # 1 assumes a grid, need

a cost function for more sophisticated apps

 if child not in explored or explored[child] > new_cost:
explored[child] = new_cost
frontier.push(Node(child, current_node, new_cost,

heuristic(child)))
 return None # went through everything and never found goal

Congratulations. If you have followed along this far, you have learned not only how to
solve a maze, but also some generic search functions that you can use in many differ-
ent search applications. DFS and BFS are suitable for many smaller data sets and state
spaces where performance is not critical. In some situations, DFS will outperform
BFS, but BFS has the advantage of always delivering an optimal path. Interestingly,
BFS and DFS have identical implementations, only differentiated by the use of a
queue instead of a stack for the frontier. The slightly more complicated A* search,
coupled with a good, consistent, admissible heuristic, not only delivers optimal paths,
but also far outperforms BFS. And because all three of these functions were imple-
mented generically, using them on nearly any search space is just an import generic_
search away.

 Go ahead and try out astar() with the same maze in maze.py’s testing section.

Test A*
distance: Callable[[MazeLocation], float] = manhattan_distance(m.goal)
solution3: Optional[Node[MazeLocation]] = astar(m.start, m.goal_test,

m.successors, distance)
if solution3 is None:
 print("No solution found using A*!")
else:
 path3: List[MazeLocation] = node_to_path(solution3)

m.mark(path3)
print(m)

Listing 2.28 generic_search.py

Listing 2.29 maze.py continued

47Missionaries and cannibals
The output will interestingly be a little different from bfs(), even though both bfs()
and astar() are finding optimal paths (equivalent in length). Due to its heuristic,
astar() immediately drives through a diagonal toward the goal. It will ultimately
search fewer states than bfs(), resulting in better performance. Add a state count to
each if you want to prove this to yourself.

S** X X
 X**
 * X
 XX* X
 X*
 X**X
 X ****
 *
 X * X
 **G

2.3 Missionaries and cannibals
Three missionaries and three can-
nibals are on the west bank of a
river. They have a canoe that can
hold two people, and they all
must cross to the east bank of the
river. There may never be more
cannibals than missionaries on
either side of the river, or the can-
nibals will eat the missionaries.
Further, the canoe must have at
least one person on board to
cross the river. What sequence of
crossings will successfully take the
entire party across the river? Fig-
ure 2.8 illustrates the problem.

2.3.1 Representing the problem

We will represent the problem by
having a structure that keeps
track of the west bank. How many
missionaries and cannibals are on
the west bank? Is the boat on the
west bank? Once we have this
knowledge, we can figure out
what is on the east bank, because
anything not on the west bank is
on the east bank.

 C
an

nib
als

N

S

W E

 M
iss

ion
ar

ies

Figure 2.8 The missionaries and cannibals must use their
single canoe to take everyone across the river from west
to east. If the cannibals ever outnumber the missionaries,
they will eat them.

48 CHAPTER 2 Search problems
 First, we will create a little convenience variable for keeping track of the maximum
number of missionaries or cannibals. Then we will define the main class.

from __future__ import annotations
from typing import List, Optional
from generic_search import bfs, Node, node_to_path

MAX_NUM: int = 3

class MCState:
 def __init__(self, missionaries: int, cannibals: int, boat: bool) ->

None:
self.wm: int = missionaries # west bank missionaries
self.wc: int = cannibals # west bank cannibals
self.em: int = MAX_NUM - self.wm # east bank missionaries
self.ec: int = MAX_NUM - self.wc # east bank cannibals
self.boat: bool = boat

 def __str__(self) -> str:
return ("On the west bank there are {} missionaries and {}

cannibals.\n"
"On the east bank there are {} missionaries and {}

cannibals.\n"
"The boat is on the {} bank.")\

 .format(self.wm, self.wc, self.em, self.ec, ("west" if self.boat
else "east"))

The class MCState initializes itself based on the number of missionaries and cannibals
on the west bank as well as the location of the boat. It also knows how to pretty-print
itself, which will be valuable later when displaying the solution to the problem.

 Working within the confines of our existing search functions means that we must
define a function for testing whether a state is the goal state and a function for finding
the successors from any state. The goal test function, as in the maze-solving problem,
is quite simple. The goal is simply when we reach a legal state that has all of the mis-
sionaries and cannibals on the east bank. We add it as a method to MCState.

def goal_test(self) -> bool:
 return self.is_legal and self.em == MAX_NUM and self.ec == MAX_NUM

To create a successors function, it is necessary to go through all of the possible moves
that can be made from one bank to another and then check if each of those moves
will result in a legal state. Recall that a legal state is one in which cannibals do not out-
number missionaries on either bank. To determine this, we can define a convenience
property (as a method on MCState) that checks if a state is legal.

Listing 2.30 missionaries.py

Listing 2.31 missionaries.py continued

49Missionaries and cannibals

@property
def is_legal(self) -> bool:
 if self.wm < self.wc and self.wm > 0:
 return False
 if self.em < self.ec and self.em > 0:
 return False
 return True

The actual successors function is a bit verbose, for the sake of clarity. It tries adding
every possible combination of one or two people moving across the river from the
bank where the canoe currently resides. Once it has added all possible moves, it filters
for the ones that are actually legal via a list comprehension. Once again, this is a
method on MCState.

def successors(self) -> List[MCState]:
 sucs: List[MCState] = []
 if self.boat: # boat on west bank
 if self.wm > 1:
 sucs.append(MCState(self.wm - 2, self.wc, not self.boat))
 if self.wm > 0:
 sucs.append(MCState(self.wm - 1, self.wc, not self.boat))
 if self.wc > 1:
 sucs.append(MCState(self.wm, self.wc - 2, not self.boat))
 if self.wc > 0:
 sucs.append(MCState(self.wm, self.wc - 1, not self.boat))
 if (self.wc > 0) and (self.wm > 0):
 sucs.append(MCState(self.wm - 1, self.wc - 1, not self.boat))
 else: # boat on east bank
 if self.em > 1:
 sucs.append(MCState(self.wm + 2, self.wc, not self.boat))
 if self.em > 0:
 sucs.append(MCState(self.wm + 1, self.wc, not self.boat))
 if self.ec > 1:
 sucs.append(MCState(self.wm, self.wc + 2, not self.boat))
 if self.ec > 0:
 sucs.append(MCState(self.wm, self.wc + 1, not self.boat))
 if (self.ec > 0) and (self.em > 0):
 sucs.append(MCState(self.wm + 1, self.wc + 1, not self.boat))
 return [x for x in sucs if x.is_legal]

2.3.2 Solving

We now have all of the ingredients in place to solve the problem. Recall that when we
solve a problem using the search functions bfs(), dfs(), and astar(), we get back a
Node that ultimately we convert using node_to_path() into a list of states that leads to
a solution. What we still need is a way to convert that list into a comprehensible
printed sequence of steps to solve the missionaries and cannibals problem.

Listing 2.32 missionaries.py continued

Listing 2.33 missionaries.py continued

50 CHAPTER 2 Search problems
 The function display_solution() converts a solution path into printed output—
a human-readable solution to the problem. It works by iterating through all of the
states in the solution path while keeping track of the last state as well. It looks at the
difference between the last state and the state it is currently iterating on to find out
how many missionaries and cannibals moved across the river and in which direction.

def display_solution(path: List[MCState]):
 if len(path) == 0: # sanity check

return
 old_state: MCState = path[0]
 print(old_state)
 for current_state in path[1:]:

if current_state.boat:
 print("{} missionaries and {} cannibals moved from the east bank

to the west bank.\n"
.format(old_state.em - current_state.em, old_state.ec -

current_state.ec))
else:
 print("{} missionaries and {} cannibals moved from the west bank

to the east bank.\n"
.format(old_state.wm - current_state.wm, old_state.wc -

current_state.wc))
print(current_state)
old_state = current_state

The display_solution() function takes advantage of the fact that MCState knows
how to pretty-print a nice summary of itself via __str__().

 The last thing we need to do is actually solve the missionaries-and-cannibals prob-
lem. To do so we can conveniently reuse a search function that we have already imple-
mented, because we implemented them generically. This solution uses bfs()
(because using dfs() would require marking referentially different states with the
same value as equal, and astar() would require a heuristic).

if __name__ == "__main__":
 start: MCState = MCState(MAX_NUM, MAX_NUM, True)
 solution: Optional[Node[MCState]] = bfs(start, MCState.goal_test,

MCState.successors)
 if solution is None:

print("No solution found!")
 else:

path: List[MCState] = node_to_path(solution)
display_solution(path)

It is great to see how flexible our generic search functions can be. They can easily be
adapted for solving a diverse set of problems. You should see output something like
the following (abridged):

On the west bank there are 3 missionaries and 3 cannibals.
On the east bank there are 0 missionaries and 0 cannibals.

Listing 2.34 missionaries.py continued

Listing 2.35 missionaries.py continued

51Exercises
The boast is on the west bank.
0 missionaries and 2 cannibals moved from the west bank to the east bank.

On the west bank there are 3 missionaries and 1 cannibals.
On the east bank there are 0 missionaries and 2 cannibals.
The boast is on the east bank.
0 missionaries and 1 cannibals moved from the east bank to the west bank.

…

On the west bank there are 0 missionaries and 0 cannibals.
On the east bank there are 3 missionaries and 3 cannibals.
The boast is on the east bank.

2.4 Real-world applications
Search plays some role in all useful software. In some cases, it is the central element
(Google Search, Spotlight, Lucene); in others, it is the basis for using the structures
that underlie data storage. Knowing the correct search algorithm to apply to a data
structure is essential for performance. For example, it would be very costly to use lin-
ear search, instead of binary search, on a sorted data structure.

 A* is one of the most widely deployed path-finding algorithms. It is only beaten by
algorithms that do precalculation in the search space. For a blind search, A* is yet to
be reliably beaten in all scenarios, and this has made it an essential component of
everything from route planning to figuring out the shortest way to parse a program-
ming language. Most directions-providing map software (think Google Maps) uses
Dijkstra’s algorithm (which A* is a variant of) to navigate. (There is more about Dijks-
tra’s algorithm in chapter 4.) Whenever an AI character in a game is finding the short-
est path from one end of the world to the other without human intervention, it is
probably using A*.

 Breadth-first search and depth-first search are often the basis for more complex
search algorithms like uniform-cost search and backtracking search (which you will
see in the next chapter). Breadth-first search is often a sufficient technique for find-
ing the shortest path in a fairly small graph. But due to its similarity to A*, it is easy to
swap out for A* if a good heuristic exists for a larger graph.

2.5 Exercises
1 Show the performance advantage of binary search over linear search by creat-

ing a list of one million numbers and timing how long it takes the linear_
contains() and binary_contains() functions defined in this chapter to find
various numbers in the list.

2 Add a counter to dfs(), bfs(), and astar() to see how many states each
searches through for the same maze. Find the counts for 100 different mazes to
get statistically significant results.

3 Find a solution to the missionaries-and-cannibals problem for a different num-
ber of starting missionaries and cannibals. Hint: you may need to add overrides
of the __eq__() and __hash__() methods to MCState.

Constraint-satisfaction
problems
A large number of problems that computational tools are used to solve can be
broadly categorized as constraint-satisfaction problems (CSPs). CSPs are composed
of variables with possible values that fall into ranges known as domains. Constraints
between the variables must be satisfied in order for constraint-satisfaction problems
to be solved. Those three core concepts—variables, domains, and constraints—are
simple to understand, and their generality underlies the wide applicability of
constraint-satisfaction problem solving.

 Let’s consider an example problem. Suppose you are trying to schedule a Friday
meeting for Joe, Mary, and Sue. Sue has to be at the meeting with at least one other
person. For this scheduling problem, the three people—Joe, Mary, and Sue—may
be the variables. The domain for each variable may be their respective hours of
availability. For instance, the variable Mary has the domain 2 p.m., 3 p.m., and
4 p.m. This problem also has two constraints. One is that Sue has to be at the meet-
ing. The other is that at least two people must attend the meeting. A constraint-
satisfaction problem solver will be provided with the three variables, three domains,
and two constraints, and it will then solve the problem without having the user
explain exactly how. Figure 3.1 illustrates this example.

 Programming languages like Prolog and Picat have facilities for solving
constraint-satisfaction problems built in. The usual technique in other languages is
to build a framework that incorporates a backtracking search and several heuristics
to improve the performance of that search. In this chapter we will first build a
framework for CSPs that solves them using a simple recursive backtracking search.
Then we will use the framework to solve several different example problems.
52

53Building a constraint-satisfaction problem framework
3.1 Building a constraint-satisfaction problem framework
Constraints will be defined using a Constraint class. Each Constraint consists of the
variables it constrains and a method that checks whether it is satisfied(). The
determination of whether a constraint is satisfied is the main logic that goes into
defining a specific constraint-satisfaction problem. The default implementation
should be overridden. In fact, it must be, because we are defining our Constraint
class as an abstract base class. Abstract base classes are not meant to be instantiated.
Instead, only their subclasses that override and implement their @abstractmethods
are for actual use.

from typing import Generic, TypeVar, Dict, List, Optional
from abc import ABC, abstractmethod

V = TypeVar('V') # variable type

Listing 3.1 csp.py

Friday meeting

+ and/or

Domain

JoeMary Sue

Variables

JoeSue Mary

Constraints

12 1
2
39

10
11

4
567

8

Figure 3.1 Scheduling problems are
a classic application of constraint-
satisfaction frameworks.

54 CHAPTER 3 Constraint-satisfaction problems
D = TypeVar('D') # domain type

Base class for all constraints
class Constraint(Generic[V, D], ABC):
 # The variables that the constraint is between
 def __init__(self, variables: List[V]) -> None:

self.variables = variables

 # Must be overridden by subclasses
 @abstractmethod
 def satisfied(self, assignment: Dict[V, D]) -> bool:

...

TIP Abstract base classes serve as templates for a class hierarchy. They are
more prevalent in other languages, like C++, as a user-facing feature than they
are in Python. In fact, they were only introduced to Python about halfway
through the language’s lifetime. With that said, many of the collection classes
in Python’s standard library are implemented via abstract base classes. The
general advice is not to use them in your own code unless you are sure that
you are building a framework upon which others will build, and not just a
class hierarchy for internal use. For more information, see chapter 11 of Flu-
ent Python by Luciano Ramalho (O’Reilly, 2015).

The centerpiece of our constraint-satisfaction framework will be a class called CSP. CSP
is the gathering point for variables, domains, and constraints. In terms of its type
hints, it uses generics to make itself flexible enough to work with any kind of variables
and domain values (V keys and D domain values). Within CSP, the variables, domains,
and constraints collections are of types that you would expect. The variables col-
lection is a list of variables, domains is a dict mapping variables to lists of possible
values (the domains of those variables), and constraints is a dict that maps each
variable to a list of the constraints imposed on it.

A constraint satisfaction problem consists of variables of type V
that have ranges of values known as domains of type D and constraints
that determine whether a particular variable's domain selection is valid
class CSP(Generic[V, D]):
 def __init__(self, variables: List[V], domains: Dict[V, List[D]]) ->

None:
self.variables: List[V] = variables # variables to be constrained
self.domains: Dict[V, List[D]] = domains # domain of each variable
self.constraints: Dict[V, List[Constraint[V, D]]] = {}
for variable in self.variables:
 self.constraints[variable] = []
 if variable not in self.domains:

raise LookupError("Every variable should have a domain
assigned to it.")

 def add_constraint(self, constraint: Constraint[V, D]) -> None:
for variable in constraint.variables:

Listing 3.2 csp.py continued

55Building a constraint-satisfaction problem framework
 if variable not in self.variables:
 raise LookupError("Variable in constraint not in CSP")
 else:
 self.constraints[variable].append(constraint)

The __init__() initializer creates the constraints dict. The add_constraint()
method goes through all of the variables touched by a given constraint and adds itself to
the constraints mapping for each of them. Both methods have basic error-checking in
place and will raise an exception when a variable is missing a domain or a constraint
is on a nonexistent variable.

 How do we know if a given configuration of variables and selected domain values
satisfies the constraints? We will call such a given configuration an “assignment.” We
need a function that checks every constraint for a given variable against an assignment
to see if the variable’s value in the assignment works for the constraints. Here, we
implement a consistent() function as a method on CSP.

Check if the value assignment is consistent by checking all constraints
for the given variable against it
def consistent(self, variable: V, assignment: Dict[V, D]) -> bool:
 for constraint in self.constraints[variable]:
 if not constraint.satisfied(assignment):
 return False
 return True

consistent() goes through every constraint for a given variable (it will always be the
variable that was just added to the assignment) and checks if the constraint is satisfied,
given the new assignment. If the assignment satisfies every constraint, True is
returned. If any constraint imposed on the variable is not satisfied, False is returned.

 This constraint-satisfaction framework will use a simple backtracking search to find
solutions to problems. Backtracking is the idea that once you hit a wall in your search, you
go back to the last known point where you made a decision before the wall, and choose
a different path. If you think that sounds like depth-first search from chapter 2, you are
perceptive. The backtracking search implemented in the following backtracking_
search() function is a kind of recursive depth-first search, combining ideas you saw in
chapters 1 and 2. This function is added as a method to the CSP class.

def backtracking_search(self, assignment: Dict[V, D] = {}) ->
Optional[Dict[V, D]]:

 # assignment is complete if every variable is assigned (our base case)
 if len(assignment) == len(self.variables):
 return assignment

 # get all variables in the CSP but not in the assignment
 unassigned: List[V] = [v for v in self.variables if v not in assignment]

 # get the every possible domain value of the first unassigned variable

Listing 3.3 csp.py continued

Listing 3.4 csp.py continued

56 CHAPTER 3 Constraint-satisfaction problems
 first: V = unassigned[0]
 for value in self.domains[first]:

local_assignment = assignment.copy()
local_assignment[first] = value
if we're still consistent, we recurse (continue)
if self.consistent(first, local_assignment):
 result: Optional[Dict[V, D]] = self.backtracking_search(local_

assignment)
 # if we didn't find the result, we will end up backtracking
 if result is not None:

return result
 return None

Let’s walk through backtracking_search(), line by line.

if len(assignment) == len(self.variables):
 return assignment

The base case for the recursive search is having found a valid assignment for every
variable. Once we have, we return the first instance of a solution that was valid. (We do
not keep searching.)

unassigned: List[V] = [v for v in self.variables if v not in assignment]
first: V = unassigned[0]

To select a new variable whose domain we will explore, we simply go through all of the
variables and find the first that does not have an assignment. To do this, we create a
list of variables in self.variables but not in assignment through a list compre-
hension, and call it unassigned. Then we pull out the first value in unassigned.

for value in self.domains[first]:
 local_assignment = assignment.copy()
 local_assignment[first] = value

We try assigning all possible domain values for that variable, one at a time. The new
assignment for each is stored in a local dictionary called local_assignment.

if self.consistent(first, local_assignment):
 result: Optional[Dict[V, D]] = self.backtracking_search(local_assignment)
 if result is not None:

return result

If the new assignment in local_assignment is consistent with all of the constraints
(that is what consistent() checks for), we continue recursively searching with the
new assignment in place. If the new assignment turns out to be complete (the base
case), we return the new assignment up the recursion chain.

return None # no solution

Finally, if we have gone through every possible domain value for a particular variable,
and there is no solution utilizing the existing set of assignments, we return None, indi-
cating no solution. This will lead to backtracking up the recursion chain to the point
where a different prior assignment could have been made.

57The Australian map-coloring problem
3.2 The Australian map-coloring problem
Imagine you have a map of Australia that you want to color by state/territory (which
we will collectively call “regions”). No two adjacent regions should share a color. Can
you color the regions with just three different colors?

 The answer is yes. Try it out on your own. (The easiest way is to print out a map of
Australia with a white background.) As human beings, we can quickly figure out the
solution by inspection and a little trial and error. It is a trivial problem, really, and a
great first problem for our backtracking constraint-satisfaction solver. The problem is
illustrated in figure 3.2.

To model the problem as a CSP, we need to define the variables, domains, and con-
straints. The variables are the seven regions of Australia (at least the seven that we will
restrict ourselves to): Western Australia, Northern Territory, South Australia,
Queensland, New South Wales, Victoria, and Tasmania. In our CSP, they can be mod-
eled with strings. The domain of each variable is the three different colors that can

Northern
Territory

Western Australia

Queensland

South Australia

New
South Wales

Victoria

Tasmania

Figure 3.2 In a solution to the Australian map-coloring problem, no two adjacent parts of
Australia can be colored with the same color.

58 CHAPTER 3 Constraint-satisfaction problems
possibly be assigned. (We will use red, green, and blue.) The constraints are the tricky
part. No two adjacent regions can be colored with the same color, so our constraints
will be dependent on which regions border one another. We can use what are called
binary constraints (constraints between two variables). Every two regions that share a
border will also share a binary constraint indicating that they cannot be assigned the
same color.

 To implement these binary constraints in code, we need to subclass the Constraint
class. The MapColoringConstraint subclass will take two variables in its constructor:
the two regions that share a border. Its overridden satisfied() method will check first
whether the two regions have domain values (colors) assigned to them; if either does
not, the constraint is trivially satisfied until they do. (There cannot be a conflict when
one does not yet have a color.) Then it will check whether the two regions are assigned
the same color. Obviously, there is a conflict, meaning that the constraint is not satis-
fied, when they are the same.

 The class is presented here in its entirety. MapColoringConstraint itself is not
generic in terms of type hinting, but it subclasses a parameterized version of the
generic class Constraint that indicates both variables and domains are of type str.

from csp import Constraint, CSP
from typing import Dict, List, Optional

class MapColoringConstraint(Constraint[str, str]):
 def __init__(self, place1: str, place2: str) -> None:

super().__init__([place1, place2])
self.place1: str = place1
self.place2: str = place2

 def satisfied(self, assignment: Dict[str, str]) -> bool:
If either place is not in the assignment, then it is not
yet possible for their colors to be conflicting
if self.place1 not in assignment or self.place2 not in assignment:
 return True
check the color assigned to place1 is not the same as the
color assigned to place2
return assignment[self.place1] != assignment[self.place2]

TIP super() is sometimes used to call a method on the superclass, but you
can also use the name of the class itself, as in Constraint.__init__
([place1, place2]). This is especially helpful when dealing with multiple
inheritance, so that you know which superclass’s method you are calling.

Now that we have a way of implementing the constraints between regions, fleshing out
the Australian map-coloring problem with our CSP solver is simply a matter of filling
in domains and variables, and then adding constraints.

Listing 3.5 map_coloring.py

59The eight queens problem

if __name__ == "__main__":
 variables: List[str] = ["Western Australia", "Northern Territory", "South

Australia", "Queensland", "New South Wales", "Victoria", "Tasmania"]
 domains: Dict[str, List[str]] = {}
 for variable in variables:
 domains[variable] = ["red", "green", "blue"]
 csp: CSP[str, str] = CSP(variables, domains)
 csp.add_constraint(MapColoringConstraint("Western Australia", "Northern

Territory"))
 csp.add_constraint(MapColoringConstraint("Western Australia", "South

Australia"))
 csp.add_constraint(MapColoringConstraint("South Australia", "Northern

Territory"))
 csp.add_constraint(MapColoringConstraint("Queensland", "Northern

Territory"))
 csp.add_constraint(MapColoringConstraint("Queensland", "South

Australia"))
 csp.add_constraint(MapColoringConstraint("Queensland", "New South

Wales"))
 csp.add_constraint(MapColoringConstraint("New South Wales", "South

Australia"))
 csp.add_constraint(MapColoringConstraint("Victoria", "South Australia"))
 csp.add_constraint(MapColoringConstraint("Victoria", "New South Wales"))
 csp.add_constraint(MapColoringConstraint("Victoria", "Tasmania"))

Finally, backtracking_search() is called to find a solution.

solution: Optional[Dict[str, str]] = csp.backtracking_search()
if solution is None:
 print("No solution found!")
else:
 print(solution)

A correct solution will include an assigned color for every region.

{'Western Australia': 'red', 'Northern Territory': 'green', 'South
Australia': 'blue', 'Queensland': 'red', 'New South Wales': 'green',
'Victoria': 'red', 'Tasmania': 'green'}

3.3 The eight queens problem
A chessboard is an eight-by-eight grid of squares. A queen is a chess piece that can
move on the chessboard any number of squares along any row, column, or diagonal.
A queen is attacking another piece if in a single move, it can move to the square the
piece is on without jumping over any other piece. (In other words, if the other piece is
in the line of sight of the queen, then it is attacked by it.) The eight queens problem
poses the question of how eight queens can be placed on a chessboard without any
queen attacking another queen. The problem is illustrated in figure 3.3.

Listing 3.6 map_coloring.py continued

Listing 3.7 map_coloring.py continued

60 CHAPTER 3 Constraint-satisfaction problems
To represent squares on the chessboard, we will assign each an integer row and an
integer column. We can ensure each of the eight queens is not on the same column
by simply assigning them sequentially the columns 1 through 8. The variables in our
constraint-satisfaction problem can just be the column of the queen in question. The
domains can be the possible rows (again, 1 through 8). The following code listing
shows the end of our file, where we define these variables and domains.

if __name__ == "__main__":
 columns: List[int] = [1, 2, 3, 4, 5, 6, 7, 8]
 rows: Dict[int, List[int]] = {}
 for column in columns:

rows[column] = [1, 2, 3, 4, 5, 6, 7, 8]
 csp: CSP[int, int] = CSP(columns, rows)

To solve the problem, we will need a constraint that checks whether any two queens
are on the same row or diagonal. (They were all assigned different sequential columns
to begin with.) Checking for the same row is trivial, but checking for the same diago-
nal requires a little bit of math. If any two queens are on the same diagonal, the differ-
ence between their rows will be the same as the difference between their columns.
Can you see where these checks take place in QueensConstraint? Note that the fol-
lowing code is at the top of our source file.

from csp import Constraint, CSP
from typing import Dict, List, Optional

Listing 3.8 queens.py

Listing 3.9 queens.py continued

8

7

6

5

4

3

2

1

a b c d e f g h

Figure 3.3 In a solution to the
eight queens problem (there are
many solutions), no two queens can
be threatening each other.

61Word search
class QueensConstraint(Constraint[int, int]):
 def __init__(self, columns: List[int]) -> None:
 super().__init__(columns)
 self.columns: List[int] = columns

 def satisfied(self, assignment: Dict[int, int]) -> bool:
 # q1c = queen 1 column, q1r = queen 1 row
 for q1c, q1r in assignment.items():
 # q2c = queen 2 column
 for q2c in range(q1c + 1, len(self.columns) + 1):
 if q2c in assignment:
 q2r: int = assignment[q2c] # q2r = queen 2 row
 if q1r == q2r: # same row?
 return False
 if abs(q1r - q2r) == abs(q1c - q2c): # same diagonal?
 return False
 return True # no conflict

All that is left is to add the constraint and run the search. We’re now back at the bot-
tom of the file.

csp.add_constraint(QueensConstraint(columns))
solution: Optional[Dict[int, int]] = csp.backtracking_search()
if solution is None:
 print("No solution found!")
else:
 print(solution)

Notice that we were able to reuse the constraint-satisfaction problem-solving frame-
work that we built for map coloring fairly easily for a completely different type of
problem. This is the power of writing code generically! Algorithms should be imple-
mented in as broadly applicable a manner as possible unless a performance optimiza-
tion for a particular application requires specialization.

 A correct solution will assign a column and row to every queen.

{1: 1, 2: 5, 3: 8, 4: 6, 5: 3, 6: 7, 7: 2, 8: 4}

3.4 Word search
A word search is a grid of letters with hidden words placed along rows, columns, and
diagonals. A player of a word-search puzzle attempts to find the hidden words by care-
fully scanning through the grid. Finding places to put the words so that they all fit on
the grid is a kind of constraint-satisfaction problem. The variables are the words, and
the domains are the possible locations of those words. The problem is illustrated in
figure 3.4.

 For the purposes of expediency, our word search will not include words that over-
lap. You can improve it to allow for overlapping words as an exercise.

Listing 3.10 queens.py continued

62 CHAPTER 3 Constraint-satisfaction problems
The grid of this word-search problem is not entirely dissimilar from the mazes of chap-
ter 2. Some of the following data types should look familiar.

from typing import NamedTuple, List, Dict, Optional
from random import choice
from string import ascii_uppercase
from csp import CSP, Constraint

Grid = List[List[str]] # type alias for grids

class GridLocation(NamedTuple):
 row: int
 column: int

Initially, we will fill the grid with the letters of the English alphabet (ascii_
uppercase). We will also need a function for displaying the grid.

def generate_grid(rows: int, columns: int) -> Grid:
 # initialize grid with random letters
 return [[choice(ascii_uppercase) for c in range(columns)] for r in

range(rows)]

def display_grid(grid: Grid) -> None:
 for row in grid:

print("".join(row))

To figure out where words can fit in the grid, we will generate their domains. The
domain of a word is a list of lists of the possible locations of all of its letters
(List[List[GridLocation]]). Words cannot just go anywhere, though. They must
stay within a row, column, or diagonal that is within the bounds of the grid. In other

Listing 3.11 word_search.py

Listing 3.12 word_search.py continued

x d b g s a l l y

i m q n r s m i e

m a a p b e o j d

a e n t r u y z c

r q u l t c l v w

y p n f i h g s t

r a l m o q e r s

d b i o y x z w r

s a r a h d e j k Figure 3.4 A classic word search, such as
you might find in a children’s puzzle book

63Word search
words, they should not go off the end of the grid. The purpose of generate_domain()
is to build these lists for every word.

def generate_domain(word: str, grid: Grid) -> List[List[GridLocation]]:
 domain: List[List[GridLocation]] = []
 height: int = len(grid)
 width: int = len(grid[0])
 length: int = len(word)
 for row in range(height):
 for col in range(width):
 columns: range = range(col, col + length + 1)
 rows: range = range(row, row + length + 1)
 if col + length <= width:
 # left to right
 domain.append([GridLocation(row, c) for c in columns])
 # diagonal towards bottom right
 if row + length <= height:
 domain.append([GridLocation(r, col + (r - row)) for r in

rows])
 if row + length <= height:
 # top to bottom
 domain.append([GridLocation(r, col) for r in rows])
 # diagonal towards bottom left
 if col - length >= 0:
 domain.append([GridLocation(r, col - (r - row)) for r in

rows])
 return domain

For the range of potential locations of a word (along a row, column, or diagonal), list
comprehensions translate the range into a list of GridLocation by using that class’s
constructor. Because generate_domain() loops through every grid location from the
top left through to the bottom right for every word, it involves a lot of computation.
Can you think of a way to do it more efficiently? What if we looked through all of the
words of the same length at once, inside the loop?

 To check if a potential solution is valid, we must implement a custom constraint for
the word search. The satisfied() method of WordSearchConstraint simply checks
whether any of the locations proposed for one word are the same as a location pro-
posed for another word. It does this using a set. Converting a list into a set will
remove all duplicates. If there are fewer items in a set converted from a list than
there were in the original list, that means the original list contained some dupli-
cates. To prepare the data for this check, we will use a somewhat complicated list com-
prehension to combine multiple sublists of locations for each word in the assignment
into a single larger list of locations.

class WordSearchConstraint(Constraint[str, List[GridLocation]]):
 def __init__(self, words: List[str]) -> None:

Listing 3.13 word_search.py continued

Listing 3.14 word_search.py continued

64 CHAPTER 3 Constraint-satisfaction problems
super().__init__(words)
self.words: List[str] = words

 def satisfied(self, assignment: Dict[str, List[GridLocation]]) -> bool:
if there are any duplicates grid locations, then there is an

overlap
all_locations = [locs for values in assignment.values() for locs in

values]
return len(set(all_locations)) == len(all_locations)

Finally, we are ready to run it. For this example, we have five words in a nine-by-nine
grid. The solution we get back should contain mappings between each word and the
locations where its letters can fit in the grid.

if __name__ == "__main__":
 grid: Grid = generate_grid(9, 9)
 words: List[str] = ["MATTHEW", "JOE", "MARY", "SARAH", "SALLY"]
 locations: Dict[str, List[List[GridLocation]]] = {}
 for word in words:

locations[word] = generate_domain(word, grid)
 csp: CSP[str, List[GridLocation]] = CSP(words, locations)
 csp.add_constraint(WordSearchConstraint(words))
 solution: Optional[Dict[str, List[GridLocation]]] = csp.backtracking_

search()
 if solution is None:

print("No solution found!")
 else:

for word, grid_locations in solution.items():
 # random reverse half the time
 if choice([True, False]):

grid_locations.reverse()
 for index, letter in enumerate(word):

(row, col) = (grid_locations[index].row, grid_
locations[index].column)

grid[row][col] = letter
display_grid(grid)

There is a finishing touch in the code that fills the grid with words. Some words are
randomly chosen to be reversed. This is valid, because this example does not allow
overlapping words. Your ultimate output should look something like the following.
Can you find Matthew, Joe, Mary, Sarah, and Sally?

LWEHTTAMJ
MARYLISGO
DKOJYHAYE
IAJYHALAG
GYZJWRLGM
LLOTCAYIX
PEUTUSLKO
AJZYGIKDU
HSLZOFNNR

Listing 3.15 word_search.py continued

65SEND+MORE=MONEY
3.5 SEND+MORE=MONEY
SEND+MORE=MONEY is a cryptarithmetic puzzle, meaning that it is about finding
digits that replace letters to make a mathematical statement true. Each letter in the
problem represents one digit (0–9). No two letters can represent the same digit.
When a letter repeats, it means a digit repeats in the solution.

 To solve this puzzle by hand, it helps to line up the words.

 SEND
 +MORE
=MONEY

It is absolutely solvable by hand, with a bit of algebra and intuition. But a fairly simple
computer program can solve it faster by brute-forcing many possible solutions. Let’s
represent SEND+MORE=MONEY as a constraint-satisfaction problem.

from csp import Constraint, CSP
from typing import Dict, List, Optional

class SendMoreMoneyConstraint(Constraint[str, int]):
 def __init__(self, letters: List[str]) -> None:
 super().__init__(letters)
 self.letters: List[str] = letters

 def satisfied(self, assignment: Dict[str, int]) -> bool:
 # if there are duplicate values, then it's not a solution
 if len(set(assignment.values())) < len(assignment):
 return False

 # if all variables have been assigned, check if it adds correctly
 if len(assignment) == len(self.letters):
 s: int = assignment["S"]
 e: int = assignment["E"]
 n: int = assignment["N"]
 d: int = assignment["D"]
 m: int = assignment["M"]
 o: int = assignment["O"]
 r: int = assignment["R"]
 y: int = assignment["Y"]
 send: int = s * 1000 + e * 100 + n * 10 + d
 more: int = m * 1000 + o * 100 + r * 10 + e
 money: int = m * 10000 + o * 1000 + n * 100 + e * 10 + y
 return send + more == money
 return True # no conflict

SendMoreMoneyConstraint’s satisfied() method does a few things. First, it checks if
multiple letters represent the same digits. If they do, that’s an invalid solution, and it
returns False. Next, it checks if all letters have been assigned. If they have, it checks to
see if the formula (SEND+MORE=MONEY) is correct with the given assignment. If it
is, a solution has been found, and it returns True. Otherwise, it returns False. Finally,

Listing 3.16 send_more_money.py

66 CHAPTER 3 Constraint-satisfaction problems
if all letters have not yet been assigned, it returns True. This is to ensure that a partial
solution continues to be worked on.

 Let’s try running it.

if __name__ == "__main__":
 letters: List[str] = ["S", "E", "N", "D", "M", "O", "R", "Y"]
 possible_digits: Dict[str, List[int]] = {}
 for letter in letters:

possible_digits[letter] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
 possible_digits["M"] = [1] # so we don't get answers starting with a 0
 csp: CSP[str, int] = CSP(letters, possible_digits)
 csp.add_constraint(SendMoreMoneyConstraint(letters))
 solution: Optional[Dict[str, int]] = csp.backtracking_search()
 if solution is None:

print("No solution found!")
 else:

print(solution)

You will notice that we preassigned the answer for the letter M. This was to ensure that
the answer doesn’t include a 0 for M, because if you think about it, our constraint has
no notion of the concept that a number can’t start with zero. Feel free to try it out
without that preassigned answer.

 The solution should look something like this:

{'S': 9, 'E': 5, 'N': 6, 'D': 7, 'M': 1, 'O': 0, 'R': 8, 'Y': 2}

3.6 Circuit board layout
A manufacturer needs to fit certain rectangular chips onto a rectangular circuit
board. Essentially, this problem asks, “How can several different-sized rectangles all fit
snugly inside of another rectangle?” A constraint-satisfaction problem solver can find
the solution. The problem is illustrated in figure 3.5.

Listing 3.17 send_more_money.py continued

Figure 3.5 The circuit board
layout problem is very similar to
the word-search problem, but the
rectangles are of variable width.

67Exercises
The circuit board layout problem is similar to the word-search problem. Instead of
1×N rectangles (words), the problem presents M×N rectangles. Like in the word-
search problem, the rectangles cannot overlap. The rectangles cannot be put on diag-
onals, so in that sense the problem is actually simpler than the word search.

 On your own, try rewriting the word-search solution to accommodate circuit board
layout. You can reuse much of the code, including the code for the grid.

3.7 Real-world applications
As was mentioned in the introduction to this chapter, constraint-satisfaction problem
solvers are commonly used in scheduling. Several people need to be at a meeting, and
they are the variables. The domains consist of the open times on their calendars. The
constraints may involve what combinations of people are required at the meeting.

 Constraint-satisfaction problem solvers are also used in motion planning. Imagine
a robot arm that needs to fit inside of a tube. It has constraints (the walls of the tube),
variables (the joints), and domains (possible movements of the joints).

 There are also applications in computational biology. You can imagine constraints
between molecules required for a chemical reaction. And, of course, as is common
with AI, there are applications in games. Writing a Sudoku solver is one of the follow-
ing exercises, but many logic puzzles can be solved using constraint-satisfaction prob-
lem solving.

 In this chapter, we built a simple backtracking, depth-first search, problem-solving
framework. But it can be greatly improved by adding heuristics (remember A*?)—
intuitions that can aid the search process. A newer technique than backtracking,
known as constraint propagation, is also an efficient avenue for real-world applications.
For more information, check out chapter 6 of Stuart Russell and Peter Norvig’s Artifi-
cial Intelligence: A Modern Approach, third edition (Pearson, 2010).

3.8 Exercises
1 Revise WordSearchConstraint so that overlapping letters are allowed.
2 Build the circuit board layout problem solver described in section 3.6, if you

have not already.
3 Build a program that can solve Sudoku problems using this chapter’s con-

straint-satisfaction problem-solving framework.

Graph problems
A graph is an abstract mathematical construct that is used for modeling a real-world
problem by dividing the problem into a set of connected nodes. We call each of the
nodes a vertex and each of the connections an edge. For instance, a subway map can
be thought of as a graph representing a transportation network. Each of the dots
represents a station, and each of the lines represents a route between two stations.
In graph terminology, we would call the stations “vertices” and the routes “edges.”

 Why is this useful? Not only do graphs help us abstractly think about a problem,
but they also let us apply several well-understood and performant search and opti-
mization techniques. For instance, in the subway example, suppose we want to
know the shortest route from one station to another. Or suppose we want to know
the minimum amount of track needed to connect all of the stations. Graph algo-
rithms that you will learn in this chapter can solve both of those problems. Further,
graph algorithms can be applied to any kind of network problem—not just trans-
portation networks. Think of computer networks, distribution networks, and utility
networks. Search and optimization problems across all of these spaces can be
solved using graph algorithms.

4.1 A map as a graph
In this chapter, we won’t work with a graph of subway stations, but instead cities of
the United States and potential routes between them. Figure 4.1 is a map of the
continental United States and the 15 largest metropolitan statistical areas (MSAs)
in the country, as estimated by the U.S. Census Bureau.1

1 Data is from the United States Census Bureau’s American Fact Finder, https://factfinder.census.gov/.
68

https://factfinder.census.gov/

69A map as a graph
Famous entrepreneur Elon Musk has suggested building a new high-speed transporta-
tion network composed of capsules traveling in pressurized tubes. According to Musk,
the capsules would travel at 700 miles per hour and be suitable for cost-effective trans-
portation between cities less than 900 miles apart.2 He calls this new transportation
system the “Hyperloop.” In this chapter we will explore classic graph problems in the
context of building out this transportation network.

 Musk initially proposed the Hyperloop idea for connecting Los Angeles and San
Francisco. If one were to build a national Hyperloop network, it would make sense to
do so between America’s largest metropolitan areas. In figure 4.2, the state outlines
from figure 4.1 are removed. In addition, each of the MSAs is connected with some of
its neighbors. To make the graph a little more interesting, those neighbors are not
always the MSA’s closest neighbors.

 Figure 4.2 is a graph with vertices representing the 15 largest MSAs in the United
States and edges representing potential Hyperloop routes between cities. The routes
were chosen for illustrative purposes. Certainly, other potential routes could be part
of a new Hyperloop network.

 This abstract representation of a real-world problem highlights the power of
graphs. With this abstraction, we can ignore the geography of the United States and
concentrate on thinking about the potential Hyperloop network simply in the context
of connecting cities. In fact, as long as we keep the edges the same, we can think about
the problem with a different-looking graph. In figure 4.3, for example, the location of

2 Elon Musk, “Hyperloop Alpha,” http://mng.bz/chmu.

Los
Angeles

Houston

New York

Miami

Chicago

Dallas

Washington

Philadelphia

Atlanta

Boston

San Francisco

Phoenix

Detroit

Seattle

Riverside

Figure 4.1 A map of the 15 largest MSAs in the United States

http://mng.bz/chmu

70 CHAPTER 4 Graph problems
Miami has moved. The graph in figure 4.3, being an abstract representation, can
address the same fundamental computational problems as the graph in figure 4.2,
even if Miami is not where we would expect it. But for our sanity, we will stick with the
representation in figure 4.2.

Los
Angeles

Houston

New York

Miami

Chicago

Dallas

Washington

Philadelphia

Atlanta

Boston

San Francisco

Phoenix

Detroit

Seattle

Riverside

Figure 4.2 A graph with vertices representing the 15 largest MSAs in the United States and
edges representing potential Hyperloop routes between them

Los
Angeles

Houston

New YorkChicago

Dallas

Miami

Washington

Philadelphia

Atlanta

Boston

San Francisco

Phoenix

Detroit

Seattle

Riverside

Figure 4.3 An equivalent graph to that in figure 4.2, with the location of Miami moved

71Building a graph framework
4.2 Building a graph framework
Python can be programmed in many different styles. But at its heart, Python is an
object-oriented programming language. In this section we will define two different
types of graphs: unweighted and weighted. Weighted graphs, which we will discuss
later in the chapter, associate a weight (read number, such as a length in the case of
our example) with each edge.

 We will make use of the inheritance model, fundamental to Python’s object-
oriented class hierarchies, so we do not duplicate our effort. The weighted classes in
our data model will be subclasses of their unweighted counterparts. This will allow
them to inherit much of their functionality, with small tweaks for what makes a
weighted graph distinct from an unweighted graph.

 We want this graph framework to be as flexible as possible so that it can represent
as many different problems as possible. To achieve this goal, we will use generics to
abstract away the type of the vertices. Every vertex will ultimately be assigned an inte-
ger index, but it will be stored as the user-defined generic type.

 Let’s start work on the framework by defining the Edge class, which is the simplest
machinery in our graph framework.

from __future__ import annotations
from dataclasses import dataclass

@dataclass
class Edge:
 u: int # the "from" vertex
 v: int # the "to" vertex

 def reversed(self) -> Edge:
 return Edge(self.v, self.u)

 def __str__(self) -> str:
 return f"{self.u} -> {self.v}"

An Edge is defined as a connection between two vertices, each of which is represented
by an integer index. By convention, u is used to refer to the first vertex, and v is used
to represent the second vertex. You can also think of u as “from” and v as “to.” In this
chapter, we are only working with undirected graphs (graphs with edges that allow
travel in both directions), but in directed graphs, also known as digraphs, edges can also
be one-way. The reversed() method is meant to return an Edge that travels in the
opposite direction of the edge it is applied to.

NOTE The Edge class uses a new feature in Python 3.7: dataclasses. A class
marked with the @dataclass decorator saves some tedium by automatically
creating an __init__() method that instantiates instance variables for any
variables declared with type annotations in the class’s body. Dataclasses can
also automatically create other special methods for a class. Which special

Listing 4.1 edge.py

72 CHAPTER 4 Graph problems
methods are automatically created is configurable via the decorator. See the
Python documentation on dataclasses for details (https://docs.python.org/
3/library/dataclasses.html). In short, a dataclass is a way of saving ourselves
some typing.

The Graph class focuses on the essential role of a graph: associating vertices with
edges. Again, we want to let the actual types of the vertices be whatever the user of the
framework desires. This lets the framework be used for a wide range of problems with-
out needing to make intermediate data structures that glue everything together. For
example, in a graph like the one for Hyperloop routes, we might define the type of
the vertices to be str, because we would use strings like “New York” and “Los Angeles”
as the vertices. Let’s begin the Graph class.

from typing import TypeVar, Generic, List, Optional
from edge import Edge

V = TypeVar('V') # type of the vertices in the graph

class Graph(Generic[V]):
 def __init__(self, vertices: List[V] = []) -> None:

self._vertices: List[V] = vertices
self._edges: List[List[Edge]] = [[] for _ in vertices]

The _vertices list is the heart of a Graph. Each vertex will be stored in the list, but we
will later refer to them by their integer index in the list. The vertex itself may be a
complex data type, but its index will always be an int, which is easy to work with. On
another level, by putting this index between graph algorithms and the _vertices
array, it allows us to have two vertices that are equal in the same graph. (Imagine a
graph with a country’s cities as vertices, where the country has more than one city
named “Springfield.”) Even though they are the same, they will have different integer
indexes.

 There are many ways to implement a graph data structure, but the two most com-
mon are to use a vertex matrix or adjacency lists. In a vertex matrix, each cell of the
matrix represents the intersection of two vertices in the graph, and the value of that
cell indicates the connection (or lack thereof) between them. Our graph data struc-
ture uses adjacency lists. In this graph representation, every vertex has a list of vertices
that it is connected to. Our specific representation uses a list of lists of edges, so for
every vertex there is a list of edges via which the vertex is connected to other vertices.
_edges is this list of lists.

 The rest of the Graph class is now presented in its entirety. You will notice the use
of short, mostly one-line methods, with verbose and clear method names. This should
make the rest of the class largely self-explanatory, but short comments are included so
that there is no room for misinterpretation.

Listing 4.2 graph.py

https://docs.python.org/3/library/dataclasses.html
https://docs.python.org/3/library/dataclasses.html
https://docs.python.org/3/library/dataclasses.html

73Building a graph framework
@property
def vertex_count(self) -> int:
 return len(self._vertices) # Number of vertices

@property
def edge_count(self) -> int:
 return sum(map(len, self._edges)) # Number of edges

Add a vertex to the graph and return its index
def add_vertex(self, vertex: V) -> int:
 self._vertices.append(vertex)
 self._edges.append([]) # Add empty list for containing edges
 return self.vertex_count - 1 # Return index of added vertex

This is an undirected graph,
so we always add edges in both directions
def add_edge(self, edge: Edge) -> None:
 self._edges[edge.u].append(edge)
 self._edges[edge.v].append(edge.reversed())

Add an edge using vertex indices (convenience method)
def add_edge_by_indices(self, u: int, v: int) -> None:
 edge: Edge = Edge(u, v)
 self.add_edge(edge)

Add an edge by looking up vertex indices (convenience method)
def add_edge_by_vertices(self, first: V, second: V) -> None:
 u: int = self._vertices.index(first)
 v: int = self._vertices.index(second)
 self.add_edge_by_indices(u, v)

Find the vertex at a specific index
def vertex_at(self, index: int) -> V:
 return self._vertices[index]

Find the index of a vertex in the graph
def index_of(self, vertex: V) -> int:
 return self._vertices.index(vertex)

Find the vertices that a vertex at some index is connected to
def neighbors_for_index(self, index: int) -> List[V]:
 return list(map(self.vertex_at, [e.v for e in self._edges[index]]))

Look up a vertice's index and find its neighbors (convenience method)
def neighbors_for_vertex(self, vertex: V) -> List[V]:
 return self.neighbors_for_index(self.index_of(vertex))

Return all of the edges associated with a vertex at some index
def edges_for_index(self, index: int) -> List[Edge]:
 return self._edges[index]

Look up the index of a vertex and return its edges (convenience method)
def edges_for_vertex(self, vertex: V) -> List[Edge]:
 return self.edges_for_index(self.index_of(vertex))

Make it easy to pretty-print a Graph
def __str__(self) -> str:

Listing 4.3 graph.py continued

74 CHAPTER 4 Graph problems
 desc: str = ""
 for i in range(self.vertex_count):

desc += f"{self.vertex_at(i)} -> {self.neighbors_for_index(i)}\n"
 return desc

Let’s step back for a moment and consider why this class has two versions of most of its
methods. We know from the class definition that the list _vertices is a list of elements
of type V, which can be any Python class. So we have vertices of type V that are stored in
the _vertices list. But if we want to retrieve or manipulate them later, we need to
know where they are stored in that list. Hence, every vertex has an index in the array
(an integer) associated with it. If we don’t know a vertex’s index, we need to look it up
by searching through _vertices. That is why there are two versions of every method.
One operates on int indices, and one operates on V itself. The methods that operate
on V look up the relevant indices and call the index-based function. Therefore, they
can be considered convenience methods.

 Most of the functions are fairly self-explanatory, but neighbors_for_index()
deserves a little unpacking. It returns the neighbors of a vertex. A vertex’s neighbors are
all of the other vertices that are directly connected to it by an edge. For example, in
figure 4.2, New York and Washington are the only neighbors of Philadelphia. We find
the neighbors for a vertex by looking at the ends (the vs) of all of the edges going out
from it.

def neighbors_for_index(self, index: int) -> List[V]:
 return list(map(self.vertex_at, [e.v for e in self._edges[index]]))

_edges[index] is the adjacency list, the list of edges through which the vertex in ques-
tion is connected to other vertices. In the list comprehension passed to the map() call,
e represents one particular edge, and e.v represents the index of the neighbor that
the edge is connected to. map() will return all of the vertices (as opposed to just their
indices), because map() applies the vertex_at() method on every e.v.

 Another important thing to note is the way add_edge() works. add_edge() first
adds an edge to the adjacency list of the “from” vertex (u) and then adds a reversed
version of the edge to the adjacency list of the “to” vertex (v). The second step is nec-
essary because this graph is undirected. We want every edge to be added in both direc-
tions; that means that u will be a neighbor of v in the same way that v is a neighbor of
u. You can think of an undirected graph as being “bidirectional” if it helps you remem-
ber that it means any edge can be traversed in either direction.

def add_edge(self, edge: Edge) -> None:
 self._edges[edge.u].append(edge)
 self._edges[edge.v].append(edge.reversed())

As was mentioned earlier, we are only dealing with undirected graphs in this chapter.
Beyond being undirected or directed, graphs can also be unweighted or weighted.
A weighted graph is one that has some comparable value, usually numeric, associated
with each of its edges. We could think of the weights in our potential Hyperloop net-
work as being the distances between the stations. For now, though, we will deal with an

75Building a graph framework
unweighted version of the graph. An unweighted edge is simply a connection between
two vertices; hence, the Edge class is unweighted, and the Graph class is unweighted.
Another way of putting it is that in an unweighted graph we know which vertices are
connected, whereas in a weighted graph we know which vertices are connected and
also know something about those connections.

4.2.1 Working with Edge and Graph

Now that we have concrete implementations of Edge and Graph, we can create a repre-
sentation of the potential Hyperloop network. The vertices and edges in city_graph
correspond to the vertices and edges represented in figure 4.2. Using generics, we can
specify that vertices will be of type str (Graph[str]). In other words, the str type fills
in for the type variable V.

if __name__ == "__main__":
 # test basic Graph construction
 city_graph: Graph[str] = Graph(["Seattle", "San Francisco", "Los

Angeles", "Riverside", "Phoenix", "Chicago", "Boston", "New York",
"Atlanta", "Miami", "Dallas", "Houston", "Detroit", "Philadelphia",
"Washington"])

 city_graph.add_edge_by_vertices("Seattle", "Chicago")
 city_graph.add_edge_by_vertices("Seattle", "San Francisco")
 city_graph.add_edge_by_vertices("San Francisco", "Riverside")
 city_graph.add_edge_by_vertices("San Francisco", "Los Angeles")
 city_graph.add_edge_by_vertices("Los Angeles", "Riverside")
 city_graph.add_edge_by_vertices("Los Angeles", "Phoenix")
 city_graph.add_edge_by_vertices("Riverside", "Phoenix")
 city_graph.add_edge_by_vertices("Riverside", "Chicago")
 city_graph.add_edge_by_vertices("Phoenix", "Dallas")
 city_graph.add_edge_by_vertices("Phoenix", "Houston")
 city_graph.add_edge_by_vertices("Dallas", "Chicago")
 city_graph.add_edge_by_vertices("Dallas", "Atlanta")
 city_graph.add_edge_by_vertices("Dallas", "Houston")
 city_graph.add_edge_by_vertices("Houston", "Atlanta")
 city_graph.add_edge_by_vertices("Houston", "Miami")
 city_graph.add_edge_by_vertices("Atlanta", "Chicago")
 city_graph.add_edge_by_vertices("Atlanta", "Washington")
 city_graph.add_edge_by_vertices("Atlanta", "Miami")
 city_graph.add_edge_by_vertices("Miami", "Washington")
 city_graph.add_edge_by_vertices("Chicago", "Detroit")
 city_graph.add_edge_by_vertices("Detroit", "Boston")
 city_graph.add_edge_by_vertices("Detroit", "Washington")
 city_graph.add_edge_by_vertices("Detroit", "New York")
 city_graph.add_edge_by_vertices("Boston", "New York")
 city_graph.add_edge_by_vertices("New York", "Philadelphia")
 city_graph.add_edge_by_vertices("Philadelphia", "Washington")
 print(city_graph)

city_graph has vertices of type str, and we indicate each vertex with the name of the
MSA that it represents. It is irrelevant in what order we add the edges to city_graph.

Listing 4.4 graph.py continued

76 CHAPTER 4 Graph problems
Because we implemented __str__() with a nicely printed description of the graph,
we can now pretty-print (that’s a real term!) the graph. You should get output similar
to the following:

Seattle -> ['Chicago', 'San Francisco']
San Francisco -> ['Seattle', 'Riverside', 'Los Angeles']
Los Angeles -> ['San Francisco', 'Riverside', 'Phoenix']
Riverside -> ['San Francisco', 'Los Angeles', 'Phoenix', 'Chicago']
Phoenix -> ['Los Angeles', 'Riverside', 'Dallas', 'Houston']
Chicago -> ['Seattle', 'Riverside', 'Dallas', 'Atlanta', 'Detroit']
Boston -> ['Detroit', 'New York']
New York -> ['Detroit', 'Boston', 'Philadelphia']
Atlanta -> ['Dallas', 'Houston', 'Chicago', 'Washington', 'Miami']
Miami -> ['Houston', 'Atlanta', 'Washington']
Dallas -> ['Phoenix', 'Chicago', 'Atlanta', 'Houston']
Houston -> ['Phoenix', 'Dallas', 'Atlanta', 'Miami']
Detroit -> ['Chicago', 'Boston', 'Washington', 'New York']
Philadelphia -> ['New York', 'Washington']
Washington -> ['Atlanta', 'Miami', 'Detroit', 'Philadelphia']

4.3 Finding the shortest path
The Hyperloop is so fast that for optimizing travel time from one station to another, it
probably matters less how long the distances are between the stations and more how
many hops it takes (how many stations need to be visited) to get from one station to
another. Each station may involve a layover, so just like with flights, the fewer stops the
better.

 In graph theory, a set of edges that connects two vertices is known as a path. In
other words, a path is a way of getting from one vertex to another vertex. In the con-
text of the Hyperloop network, a set of tubes (edges) represents the path from one
city (vertex) to another (vertex). Finding optimal paths between vertices is one of the
most common problems that graphs are used for.

 Informally, we can also think of a list of vertices sequentially connected to one
another by edges as a path. This description is really just another side of the same
coin. It is like taking a list of edges, figuring out which vertices they connect, keeping
that list of vertices, and throwing away the edges. In this brief example, we will find
such a list of vertices that connects two cities on our Hyperloop.

4.3.1 Revisiting breadth-first search (BFS)

In an unweighted graph, finding the shortest path means finding the path that has
the fewest edges between the starting vertex and the destination vertex. To build out
the Hyperloop network, it might make sense to first connect the furthest cities on the
highly populated seaboards. That raises the question “What is the shortest path
between Boston and Miami?”

TIP This section assumes that you have read chapter 2. Before continuing,
ensure that you are comfortable with the material on breadth-first search in
chapter 2.

77Finding the shortest path
Luckily, we already have an algorithm for finding shortest paths, and we can reuse it to
answer this question. Breadth-first search, introduced in chapter 2, is just as viable for
graphs as it is for mazes. In fact, the mazes we worked with in chapter 2 really are
graphs. The vertices are the locations in the maze, and the edges are the moves that
can be made from one location to another. In an unweighted graph, a breadth-first
search will find the shortest path between any two vertices.

 We can reuse the breadth-first search implementation from chapter 2 and use it to
work with Graph. In fact, we can reuse it completely unchanged. This is the power of
writing code generically!

 Recall that bfs() in chapter 2 requires three parameters: an initial state, a
Callable (read function-like object) for testing for a goal, and a Callable that finds
the successor states for a given state. The initial state will be the vertex represented by
the string “Boston.” The goal test will be a lambda that checks if a vertex is equiva-
lent to “Miami.” Finally, successor vertices can be generated by the Graph method
neighbors_for_vertex().

 With this plan in mind, we can add code to the end of the main section of graph.py
to find the shortest route between Boston and Miami on city_graph.

NOTE In listing 4.5, bfs, Node, and node_to_path are imported from the
generic_search module in the Chapter2 package. To do this, the parent
directory of graph.py is added to Python’s search path ('..'). This works
because the code structure for the book’s repository has each chapter in its
own directory, so our directory structure includes roughly Book->Chapter2->
generic_search.py and Book->Chapter4->graph.py. If your directory structure
is significantly different, you will need to find a way to add generic_search.py
to your path and possibly change the import statement. In a worst-case sce-
nario, you can just copy generic_search.py to the same directory that contains
graph.py and change the import statement to from generic_search import
bfs, Node, node_to_path.

Reuse BFS from chapter 2 on city_graph
import sys
sys.path.insert(0, '..') # so we can access the Chapter2 package in the

parent directory
from Chapter2.generic_search import bfs, Node, node_to_path

bfs_result: Optional[Node[V]] = bfs("Boston", lambda x: x == "Miami", city_
graph.neighbors_for_vertex)

if bfs_result is None:
 print("No solution found using breadth-first search!")
else:
 path: List[V] = node_to_path(bfs_result)
 print("Path from Boston to Miami:")
 print(path)

Listing 4.5 graph.py continued

78 CHAPTER 4 Graph problems
The output should look something like this:

Path from Boston to Miami:
['Boston', 'Detroit', 'Washington', 'Miami']

Boston to Detroit to Washington to Miami, composed of three edges, is the shortest
route between Boston and Miami in terms of the number of edges. Figure 4.4 high-
lights this route.

4.4 Minimizing the cost of building the network
Imagine that we want to connect all 15 of the largest MSAs to the Hyperloop network.
Our goal is to minimize the cost of rolling out the network, so that means using a min-
imum amount of track. Then the question is “How can we connect all of the MSAs
using the minimum amount of track?”

4.4.1 Workings with weights

To understand the amount of track that a particular edge may require, we need to
know the distance that the edge represents. This is an opportunity to re-introduce the
concept of weights. In the Hyperloop network, the weight of an edge is the distance
between the two MSAs that it connects. Figure 4.5 is the same as figure 4.2 except that
it has a weight added to each edge, representing the distance in miles between the two
vertices that the edge connects.

 To handle weights, we will need a subclass of Edge (WeightedEdge) and a subclass
of Graph (WeightedGraph). Every WeightedEdge will have a float associated with it,

Los
Angeles

Houston

New York

Miami

Chicago

Dallas

Washington

Philadelphia

Atlanta

Boston

San Francisco

Phoenix

Detroit

Seattle

Riverside

Figure 4.4 The shortest route between Boston and Miami, in terms of the number of edges, is
highlighted.

79Minimizing the cost of building the network
representing its weight. Jarník’s algorithm, which we will cover shortly, requires the
ability to compare one edge with another to determine the edge with the lowest
weight. This is easy to do with numeric weights.

from __future__ import annotations
from dataclasses import dataclass
from edge import Edge

@dataclass
class WeightedEdge(Edge):
 weight: float

 def reversed(self) -> WeightedEdge:
 return WeightedEdge(self.v, self.u, self.weight)

 # so that we can order edges by weight to find the minimum weight edge
 def __lt__(self, other: WeightedEdge) -> bool:
 return self.weight < other.weight

 def __str__(self) -> str:
 return f"{self.u} {self.weight}> {self.v}"

The implementation of WeightedEdge is not immensely different from that of Edge. It
only differs in the addition of a weight property and the implementation of the < oper-
ator via __lt__(), so that two WeightedEdges are comparable. The < operator is only
interested in looking at weights (as opposed to including the inherited properties u and
v), because Jarník’s algorithm is interested in finding the smallest edge by weight.

Listing 4.6 weighted_edge.py

Los
Angeles

Houston

New York

Miami

Chicago

Dallas

Washington

Philadelphia

Atlanta

Boston

San Francisco

Phoenix

Detroit

Seattle

613
190

81

123

482

396
238

543

923

588

604

968

702

721

225

805

1704

1737

887

1015

307

357

50

386
348

678

Riverside

Figure 4.5 A weighted graph of the 15 largest MSAs in the United States, where each of the
weights represents the distance between two MSAs in miles

80 CHAPTER 4 Graph problems
 A WeightedGraph inherits much of its functionality from Graph. Other than that, it
has init methods; it has convenience methods for adding WeightedEdges; and it imple-
ments its own version of __str__(). There is also a new method, neighbors_for_
index_with_weights(), that returns not only each neighbor, but also the weight of
the edge that got to it. This method is useful for the new version of __str__().

from typing import TypeVar, Generic, List, Tuple
from graph import Graph
from weighted_edge import WeightedEdge

V = TypeVar('V') # type of the vertices in the graph

class WeightedGraph(Generic[V], Graph[V]):
 def __init__(self, vertices: List[V] = []) -> None:

self._vertices: List[V] = vertices
self._edges: List[List[WeightedEdge]] = [[] for _ in vertices]

 def add_edge_by_indices(self, u: int, v: int, weight: float) -> None:
edge: WeightedEdge = WeightedEdge(u, v, weight)
self.add_edge(edge) # call superclass version

 def add_edge_by_vertices(self, first: V, second: V, weight: float) ->
None:

u: int = self._vertices.index(first)
v: int = self._vertices.index(second)
self.add_edge_by_indices(u, v, weight)

 def neighbors_for_index_with_weights(self, index: int) -> List[Tuple[V,
float]]:

distance_tuples: List[Tuple[V, float]] = []
for edge in self.edges_for_index(index):
 distance_tuples.append((self.vertex_at(edge.v), edge.weight))
return distance_tuples

 def __str__(self) -> str:
desc: str = ""
for i in range(self.vertex_count):
 desc += f"{self.vertex_at(i)} -> {self.neighbors_for_index_with_

weights(i)}\n"
return desc

It is now possible to actually define a weighted graph. The weighted graph we will
work with is a representation of figure 4.5 called city_graph2.

if __name__ == "__main__":
 city_graph2: WeightedGraph[str] = WeightedGraph(["Seattle", "San

Francisco", "Los Angeles", "Riverside", "Phoenix", "Chicago", "Boston",
"New York", "Atlanta", "Miami", "Dallas", "Houston", "Detroit",
"Philadelphia", "Washington"])

Listing 4.7 weighted_graph.py

Listing 4.8 weighted_graph.py continued

81Minimizing the cost of building the network
 city_graph2.add_edge_by_vertices("Seattle", "Chicago", 1737)
 city_graph2.add_edge_by_vertices("Seattle", "San Francisco", 678)
 city_graph2.add_edge_by_vertices("San Francisco", "Riverside", 386)
 city_graph2.add_edge_by_vertices("San Francisco", "Los Angeles", 348)
 city_graph2.add_edge_by_vertices("Los Angeles", "Riverside", 50)
 city_graph2.add_edge_by_vertices("Los Angeles", "Phoenix", 357)
 city_graph2.add_edge_by_vertices("Riverside", "Phoenix", 307)
 city_graph2.add_edge_by_vertices("Riverside", "Chicago", 1704)
 city_graph2.add_edge_by_vertices("Phoenix", "Dallas", 887)
 city_graph2.add_edge_by_vertices("Phoenix", "Houston", 1015)
 city_graph2.add_edge_by_vertices("Dallas", "Chicago", 805)
 city_graph2.add_edge_by_vertices("Dallas", "Atlanta", 721)
 city_graph2.add_edge_by_vertices("Dallas", "Houston", 225)
 city_graph2.add_edge_by_vertices("Houston", "Atlanta", 702)
 city_graph2.add_edge_by_vertices("Houston", "Miami", 968)
 city_graph2.add_edge_by_vertices("Atlanta", "Chicago", 588)
 city_graph2.add_edge_by_vertices("Atlanta", "Washington", 543)
 city_graph2.add_edge_by_vertices("Atlanta", "Miami", 604)
 city_graph2.add_edge_by_vertices("Miami", "Washington", 923)
 city_graph2.add_edge_by_vertices("Chicago", "Detroit", 238)
 city_graph2.add_edge_by_vertices("Detroit", "Boston", 613)
 city_graph2.add_edge_by_vertices("Detroit", "Washington", 396)
 city_graph2.add_edge_by_vertices("Detroit", "New York", 482)
 city_graph2.add_edge_by_vertices("Boston", "New York", 190)
 city_graph2.add_edge_by_vertices("New York", "Philadelphia", 81)
 city_graph2.add_edge_by_vertices("Philadelphia", "Washington", 123)

 print(city_graph2)

Because WeightedGraph implements __str__(), we can pretty-print city_graph2. In
the output, you will see both the vertices that each vertex is connected to and the
weights of those connections.

Seattle -> [('Chicago', 1737), ('San Francisco', 678)]
San Francisco -> [('Seattle', 678), ('Riverside', 386), ('Los Angeles', 348)]
Los Angeles -> [('San Francisco', 348), ('Riverside', 50), ('Phoenix', 357)]
Riverside -> [('San Francisco', 386), ('Los Angeles', 50), ('Phoenix', 307),

('Chicago', 1704)]
Phoenix -> [('Los Angeles', 357), ('Riverside', 307), ('Dallas', 887),

('Houston', 1015)]
Chicago -> [('Seattle', 1737), ('Riverside', 1704), ('Dallas', 805),

('Atlanta', 588), ('Detroit', 238)]
Boston -> [('Detroit', 613), ('New York', 190)]
New York -> [('Detroit', 482), ('Boston', 190), ('Philadelphia', 81)]
Atlanta -> [('Dallas', 721), ('Houston', 702), ('Chicago', 588),

('Washington', 543), ('Miami', 604)]
Miami -> [('Houston', 968), ('Atlanta', 604), ('Washington', 923)]
Dallas -> [('Phoenix', 887), ('Chicago', 805), ('Atlanta', 721), ('Houston',

225)]
Houston -> [('Phoenix', 1015), ('Dallas', 225), ('Atlanta', 702), ('Miami',

968)]
Detroit -> [('Chicago', 238), ('Boston', 613), ('Washington', 396), ('New

York', 482)]
Philadelphia -> [('New York', 81), ('Washington', 123)]
Washington -> [('Atlanta', 543), ('Miami', 923), ('Detroit', 396),

('Philadelphia', 123)]

82 CHAPTER 4 Graph problems
4.4.2 Finding the minimum spanning tree

A tree is a special kind of graph that has one, and only one, path between any two verti-
ces. This implies that there are no cycles in a tree (which is sometimes called acyclic).
A cycle can be thought of as a loop: if it is possible to traverse a graph from a starting
vertex, never repeat any edges, and get back to the same starting vertex, then it has a
cycle. Any graph that is not a tree can become a tree by pruning edges. Figure 4.6
illustrates pruning an edge to turn a graph into a tree.

A connected graph is a graph that has some way of getting from any vertex to any other
vertex. (All of the graphs we are looking at in this chapter are connected.) A spanning
tree is a tree that connects every vertex in a graph. A minimum spanning tree is a tree that
connects every vertex in a weighted graph with the minimum total weight (compared
to other spanning trees). For every weighted graph, it is possible to efficiently find its
minimum spanning tree.

 Whew—that was a lot of terminology! The point is that finding a minimum span-
ning tree is the same as finding a way to connect every vertex in a weighted graph with
the minimum weight. This is an important and practical problem for anyone design-
ing a network (transportation network, computer network, and so on): how can every
node in the network be connected for the minimum cost? That cost may be in terms
of wire, track, road, or anything else. For instance, for a telephone network, another
way of posing the problem is “What is the minimum length of cable one needs to con-
nect every phone?”

REVISITING PRIORITY QUEUES

Priority queues were covered in chapter 2. We will need a priority queue for Jarník’s
algorithm. You can import the PriorityQueue class from chapter 2’s package (see the
note immediately previous to listing 4.5 for details), or you can copy the class into a new
file to go with this chapter’s package. For completeness, we will recreate PriorityQueue
from chapter 2 here, with specific import statements that assume that it will be put in its
own stand-alone file.

A

B ED

C

(a)

A

B ED

C

(b)

Figure 4.6 In the left graph, a cycle exists between vertices B, C, and
D, so it is not a tree. In the right graph, the edge connecting C and D
has been pruned, so the graph is a tree.

83Minimizing the cost of building the network

from typing import TypeVar, Generic, List
from heapq import heappush, heappop

T = TypeVar('T')

class PriorityQueue(Generic[T]):
 def __init__(self) -> None:
 self._container: List[T] = []

 @property
 def empty(self) -> bool:
 return not self._container # not is true for empty container

 def push(self, item: T) -> None:
 heappush(self._container, item) # in by priority

 def pop(self) -> T:
 return heappop(self._container) # out by priority

 def __repr__(self) -> str:
 return repr(self._container)

CALCULATING THE TOTAL WEIGHT OF A WEIGHTED PATH

Before we develop a method for finding a minimum spanning tree, we will develop a
function we can use to test the total weight of a solution. The solution to the mini-
mum spanning tree problem will consist of a list of weighted edges that compose the
tree. First, we will define a WeightedPath as a list of WeightedEdge. Then we will
define a total_weight() function that takes a list of WeightedPath and finds the
total weight that results from adding all of its edges’ weights together.

from typing import TypeVar, List, Optional
from weighted_graph import WeightedGraph
from weighted_edge import WeightedEdge
from priority_queue import PriorityQueue

V = TypeVar('V') # type of the vertices in the graph
WeightedPath = List[WeightedEdge] # type alias for paths

def total_weight(wp: WeightedPath) -> float:
 return sum([e.weight for e in wp])

JARNíK’S ALGORITHM

Jarník’s algorithm for finding a minimum spanning tree works by dividing a graph
into two parts: the vertices in the still-being-assembled minimum spanning tree and
the vertices not yet in the minimum spanning tree. It takes the following steps:

1 Pick an arbitrary vertex to include in the minimum spanning tree.
2 Find the lowest-weight edge connecting the minimum spanning tree to the ver-

tices not yet in the minimum spanning tree.

Listing 4.9 priority_queue.py

Listing 4.10 mst.py

84 CHAPTER 4 Graph problems
3 Add the vertex at the end of that minimum edge to the minimum spanning
tree.

4 Repeat steps 2 and 3 until every vertex in the graph is in the minimum span-
ning tree.

NOTE Jarník’s algorithm is commonly referred to as Prim’s algorithm. Two
Czech mathematicians, Otakar Boruº vka and Vojtĕch Jarník, interested in min-
imizing the cost of laying electric lines in the late 1920s, came up with algo-
rithms to solve the problem of finding a minimum spanning tree. Their
algorithms were “rediscovered” decades later by others.3

To run Jarník’s algorithm efficiently, a priority queue is used. Every time a new vertex
is added to the minimum spanning tree, all of its outgoing edges that link to vertices
outside the tree are added to the priority queue. The lowest-weight edge is always
popped off the priority queue, and the algorithm keeps executing until the priority
queue is empty. This ensures that the lowest-weight edges are always added to the tree
first. Edges that connect to vertices already in the tree are ignored when they are
popped.

 The following code for mst() is the full implementation of Jarník’s algorithm,4

along with a utility function for printing a WeightedPath.

WARNING Jarník’s algorithm will not necessarily work correctly in a graph
with directed edges. It also will not work in a graph that is not connected.

def mst(wg: WeightedGraph[V], start: int = 0) -> Optional[WeightedPath]:
 if start > (wg.vertex_count - 1) or start < 0:

return None
 result: WeightedPath = [] # holds the final MST
 pq: PriorityQueue[WeightedEdge] = PriorityQueue()
 visited: [bool] = [False] * wg.vertex_count # where we've been

 def visit(index: int):
visited[index] = True # mark as visited
for edge in wg.edges_for_index(index):
 # add all edges coming from here to pq
 if not visited[edge.v]:

pq.push(edge)

 visit(start) # the first vertex is where everything begins

 while not pq.empty: # keep going while there are edges to process
edge = pq.pop()
if visited[edge.v]:
 continue # don't ever revisit

3 Helena Durnová, “Otakar Boruº vka (1899-1995) and the Minimum Spanning Tree” (Institute of Mathematics
of the Czech Academy of Sciences, 2006), http://mng.bz/O2vj.

4 Inspired by a solution by Robert Sedgewick and Kevin Wayne, Algorithms, 4th Edition (Addison-Wesley Profes-
sional, 2011), p. 619.

Listing 4.11 mst.py continued

http://mng.bz/O2vj

85Minimizing the cost of building the network
 # this is the current smallest, so add it to solution
 result.append(edge)
 visit(edge.v) # visit where this connects

 return result

def print_weighted_path(wg: WeightedGraph, wp: WeightedPath) -> None:
 for edge in wp:
 print(f"{wg.vertex_at(edge.u)} {edge.weight}> {wg.vertex_

at(edge.v)}")
 print(f"Total Weight: {total_weight(wp)}")

Let’s walk through mst(), line by line.

def mst(wg: WeightedGraph[V], start: int = 0) -> Optional[WeightedPath]:
 if start > (wg.vertex_count - 1) or start < 0:
 return None

The algorithm returns an optional WeightedPath representing the minimum span-
ning tree. It does not matter where the algorithm starts (assuming the graph is con-
nected and undirected), so the default is set to vertex index 0. If it so happens that the
start is invalid, mst() returns None.

result: WeightedPath = [] # holds the final MST
pq: PriorityQueue[WeightedEdge] = PriorityQueue()
visited: [bool] = [False] * wg.vertex_count # where we've been

result will ultimately hold the weighted path containing the minimum spanning
tree. This is where we will add WeightedEdges, as the lowest-weight edge is popped off
and takes us to a new part of the graph. Jarník’s algorithm is considered a greedy algo-
rithm because it always selects the lowest-weight edge. pq is where newly discovered
edges are stored and the next-lowest-weight edge is popped. visited keeps track of
vertex indices that we have already been to. This could also have been accomplished
with a Set, similar to explored in bfs().

def visit(index: int):
 visited[index] = True # mark as visited
 for edge in wg.edges_for_index(index):
 # add all edges coming from here
 if not visited[edge.v]:
 pq.push(edge)

visit() is an inner convenience function that marks a vertex as visited and adds all of
its edges that connect to vertices not yet visited to pq. Note how easy the adjacency-list
model makes finding edges belonging to a particular vertex.

visit(start) # the first vertex is where everything begins

It does not matter which vertex is visited first unless the graph is not connected. If the
graph is not connected, but is instead made up of disconnected components, mst() will
return a tree that spans the particular component that the starting vertex belongs to.

while not pq.empty: # keep going while there are edges to process
 edge = pq.pop()

86 CHAPTER 4 Graph problems
 if visited[edge.v]:
continue # don't ever revisit

 # this is the current smallest, so add it
 result.append(edge)
 visit(edge.v) # visit where this connects

return result

While there are still edges on the priority queue, we pop them off and check if they
lead to vertices not yet in the tree. Because the priority queue is ascending, it pops the
lowest-weight edges first. This ensures that the result is indeed of minimum total
weight. Any edge popped that does not lead to an unexplored vertex is ignored. Oth-
erwise, because the edge is the lowest seen so far, it is added to the result set, and the
new vertex it leads to is explored. When there are no edges left to explore, the result is
returned.

 Let’s finally return to the problem of connecting all 15 of the largest MSAs in the
United States by Hyperloop, using a minimum amount of track. The route that
accomplishes this is simply the minimum spanning tree of city_graph2. Let’s try run-
ning mst() on city_graph2.

if __name__ == "__main__":
 city_graph2: WeightedGraph[str] = WeightedGraph(["Seattle", "San

Francisco", "Los Angeles", "Riverside", "Phoenix", "Chicago", "Boston",
"New York", "Atlanta", "Miami", "Dallas", "Houston", "Detroit",
"Philadelphia", "Washington"])

 city_graph2.add_edge_by_vertices("Seattle", "Chicago", 1737)
 city_graph2.add_edge_by_vertices("Seattle", "San Francisco", 678)
 city_graph2.add_edge_by_vertices("San Francisco", "Riverside", 386)
 city_graph2.add_edge_by_vertices("San Francisco", "Los Angeles", 348)
 city_graph2.add_edge_by_vertices("Los Angeles", "Riverside", 50)
 city_graph2.add_edge_by_vertices("Los Angeles", "Phoenix", 357)
 city_graph2.add_edge_by_vertices("Riverside", "Phoenix", 307)
 city_graph2.add_edge_by_vertices("Riverside", "Chicago", 1704)
 city_graph2.add_edge_by_vertices("Phoenix", "Dallas", 887)
 city_graph2.add_edge_by_vertices("Phoenix", "Houston", 1015)
 city_graph2.add_edge_by_vertices("Dallas", "Chicago", 805)
 city_graph2.add_edge_by_vertices("Dallas", "Atlanta", 721)
 city_graph2.add_edge_by_vertices("Dallas", "Houston", 225)
 city_graph2.add_edge_by_vertices("Houston", "Atlanta", 702)
 city_graph2.add_edge_by_vertices("Houston", "Miami", 968)
 city_graph2.add_edge_by_vertices("Atlanta", "Chicago", 588)
 city_graph2.add_edge_by_vertices("Atlanta", "Washington", 543)
 city_graph2.add_edge_by_vertices("Atlanta", "Miami", 604)
 city_graph2.add_edge_by_vertices("Miami", "Washington", 923)
 city_graph2.add_edge_by_vertices("Chicago", "Detroit", 238)
 city_graph2.add_edge_by_vertices("Detroit", "Boston", 613)
 city_graph2.add_edge_by_vertices("Detroit", "Washington", 396)
 city_graph2.add_edge_by_vertices("Detroit", "New York", 482)
 city_graph2.add_edge_by_vertices("Boston", "New York", 190)
 city_graph2.add_edge_by_vertices("New York", "Philadelphia", 81)

Listing 4.12 mst.py continued

87Minimizing the cost of building the network
 city_graph2.add_edge_by_vertices("Philadelphia", "Washington", 123)

 result: Optional[WeightedPath] = mst(city_graph2)
 if result is None:
 print("No solution found!")
 else:
 print_weighted_path(city_graph2, result)

Thanks to the pretty-printing printWeightedPath() method, the minimum spanning
tree is easy to read.

Seattle 678> San Francisco
San Francisco 348> Los Angeles
Los Angeles 50> Riverside
Riverside 307> Phoenix
Phoenix 887> Dallas
Dallas 225> Houston
Houston 702> Atlanta
Atlanta 543> Washington
Washington 123> Philadelphia
Philadelphia 81> New York
New York 190> Boston
Washington 396> Detroit
Detroit 238> Chicago
Atlanta 604> Miami
Total Weight: 5372

In other words, this is the cumulatively shortest collection of edges that connects all of
the MSAs in the weighted graph. The minimum length of track needed to connect all
of them is 5,372 miles. Figure 4.7 illustrates the minimum spanning tree.

Los
Angeles

Houston

New York

Miami

Chicago

Dallas

Washington

Philadelphia

Atlanta

Boston

San Francisco

Phoenix

Detroit

Seattle

Riverside

Figure 4.7 The highlighted edges represent a minimum spanning tree that connects all 15 MSAs.

88 CHAPTER 4 Graph problems
4.5 Finding shortest paths in a weighted graph
As the Hyperloop network gets built, it is unlikely the builders will have the ambition
to connect the whole country at once. Instead, it is likely the builders will want to min-
imize the cost to lay track between key cities. The cost to extend the network to partic-
ular cities will obviously depend on where the builders start.

 Finding the cost to any city from some starting city is a version of the “single-source
shortest path” problem. That problem asks, “What is the shortest path (in terms of
total edge weight) from some vertex to every other vertex in a weighted graph?”

4.5.1 Dijkstra’s algorithm

Dijkstra’s algorithm solves the single-source shortest path problem. It is provided a
starting vertex, and it returns the lowest-weight path to any other vertex on a weighted
graph. It also returns the minimum total weight to every other vertex from the starting
vertex. Dijkstra’s algorithm starts at the single-source vertex and then continually
explores the closest vertices to the starting vertex. For this reason, like Jarník’s algo-
rithm, Dijkstra’s algorithm is greedy. When Dijkstra’s algorithm encounters a new ver-
tex, it keeps track of how far it is from the starting vertex and updates this value if it
ever finds a shorter path. It also keeps track of which edge got it to each vertex, like a
breadth-first search.

 Here are all of the algorithm’s steps:

1 Add the starting vertex to a priority queue.
2 Pop the closest vertex from the priority queue (at the beginning, this is just the

starting vertex); we’ll call it the current vertex.
3 Look at all of the neighbors connected to the current vertex. If they have not

previously been recorded, or if the edge offers a new shortest path to them,
then for each of them record its distance from the start, record the edge that
produced this distance, and add the new vertex to the priority queue.

4 Repeat steps 2 and 3 until the priority queue is empty.
5 Return the shortest distance to every vertex from the starting vertex and the

path to get to each of them.

The code for Dijkstra’s algorithm includes DijkstraNode, a simple data structure for
keeping track of costs associated with each vertex explored so far and for comparing
them. This is similar to the Node class in chapter 2. It also includes utility functions for
converting the returned array of distances to something easier to use for looking up
by vertex and for calculating a shortest path to a particular destination vertex from the
path dictionary returned by dijkstra().

 Without further ado, here is the code for Dijkstra’s algorithm. We will go over it
line by line after.

89Finding shortest paths in a weighted graph

from __future__ import annotations
from typing import TypeVar, List, Optional, Tuple, Dict
from dataclasses import dataclass
from mst import WeightedPath, print_weighted_path
from weighted_graph import WeightedGraph
from weighted_edge import WeightedEdge
from priority_queue import PriorityQueue

V = TypeVar('V') # type of the vertices in the graph

@dataclass
class DijkstraNode:
 vertex: int
 distance: float

 def __lt__(self, other: DijkstraNode) -> bool:
 return self.distance < other.distance

 def __eq__(self, other: DijkstraNode) -> bool:
 return self.distance == other.distance

def dijkstra(wg: WeightedGraph[V], root: V) -> Tuple[List[Optional[float]],
Dict[int, WeightedEdge]]:

 first: int = wg.index_of(root) # find starting index
 # distances are unknown at first
 distances: List[Optional[float]] = [None] * wg.vertex_count
 distances[first] = 0 # the root is 0 away from the root
 path_dict: Dict[int, WeightedEdge] = {} # how we got to each vertex
 pq: PriorityQueue[DijkstraNode] = PriorityQueue()
 pq.push(DijkstraNode(first, 0))

 while not pq.empty:
 u: int = pq.pop().vertex # explore the next closest vertex
 dist_u: float = distances[u] # should already have seen it
 # look at every edge/vertex from the vertex in question
 for we in wg.edges_for_index(u):
 # the old distance to this vertex
 dist_v: float = distances[we.v]
 # no old distance or found shorter path
 if dist_v is None or dist_v > we.weight + dist_u:
 # update distance to this vertex
 distances[we.v] = we.weight + dist_u
 # update the edge on the shortest path to this vertex
 path_dict[we.v] = we
 # explore it soon
 pq.push(DijkstraNode(we.v, we.weight + dist_u))

 return distances, path_dict

Helper function to get easier access to dijkstra results
def distance_array_to_vertex_dict(wg: WeightedGraph[V], distances:

List[Optional[float]]) -> Dict[V, Optional[float]]:
 distance_dict: Dict[V, Optional[float]] = {}
 for i in range(len(distances)):

Listing 4.13 dijkstra.py

90 CHAPTER 4 Graph problems
distance_dict[wg.vertex_at(i)] = distances[i]
 return distance_dict

Takes a dictionary of edges to reach each node and returns a list of
edges that goes from `start` to `end`
def path_dict_to_path(start: int, end: int, path_dict: Dict[int,

WeightedEdge]) -> WeightedPath:
 if len(path_dict) == 0:

return []
 edge_path: WeightedPath = []
 e: WeightedEdge = path_dict[end]
 edge_path.append(e)
 while e.u != start:

e = path_dict[e.u]
edge_path.append(e)

 return list(reversed(edge_path))

The first few lines of dijkstra() use data structures you have become familiar with,
except for distances, which is a placeholder for the distances to every vertex in the
graph from the root. Initially all of these distances are None, because we do not yet
know how far each of them is; that is what we are using Dijkstra’s algorithm to figure
out!

def dijkstra(wg: WeightedGraph[V], root: V) -> Tuple[List[Optional[float]],
Dict[int, WeightedEdge]]:

 first: int = wg.index_of(root) # find starting index
 # distances are unknown at first
 distances: List[Optional[float]] = [None] * wg.vertex_count
 distances[first] = 0 # the root is 0 away from the root
 path_dict: Dict[int, WeightedEdge] = {} # how we got to each vertex
 pq: PriorityQueue[DijkstraNode] = PriorityQueue()
 pq.push(DijkstraNode(first, 0))

The first node pushed onto the priority queue contains the root vertex.

while not pq.empty:
 u: int = pq.pop().vertex # explore the next closest vertex
 dist_u: float = distances[u] # should already have seen it

We keep running Dijkstra’s algorithm until the priority queue is empty. u is the cur-
rent vertex we are searching from, and dist_u is the stored distance for getting to
u along known routes. Every vertex explored at this stage has already been found, so it
must have a known distance.

look at every edge/vertex from here
for we in wg.edges_for_index(u):
 # the old distance to this
 dist_v: float = distances[we.v]

Next, every edge connected to u is explored. dist_v is the distance to any known ver-
tex attached by an edge from u.

no old distance or found shorter path
if dist_v is None or dist_v > we.weight + dist_u:

91Finding shortest paths in a weighted graph
 # update distance to this vertex
 distances[we.v] = we.weight + dist_u
 # update the edge on the shortest path
 path_dict[we.v] = we
 # explore it soon
 pq.push(DijkstraNode(we.v, we.weight + dist_u))

If we have found a vertex that has not yet been explored (dist_v is None), or we have
found a new, shorter path to it, we record that new shortest distance to v and the edge
that got us there. Finally, we push any vertices that have new paths to them to the pri-
ority queue.

return distances, path_dict

dijkstra() returns both the distances to every vertex in the weighted graph from the
root vertex, and the path_dict that can unlock the shortest paths to them.

 It is safe to run Dijkstra’s algorithm now. We will start by finding the distance from
Los Angeles to every other MSA in the graph. Then we will find the shortest path
between Los Angeles and Boston. Finally, we will use print_weighted_path() to
pretty-print the result.

if __name__ == "__main__":
 city_graph2: WeightedGraph[str] = WeightedGraph(["Seattle", "San

Francisco", "Los Angeles", "Riverside", "Phoenix", "Chicago", "Boston",
"New York", "Atlanta", "Miami", "Dallas", "Houston", "Detroit",
"Philadelphia", "Washington"])

 city_graph2.add_edge_by_vertices("Seattle", "Chicago", 1737)
 city_graph2.add_edge_by_vertices("Seattle", "San Francisco", 678)
 city_graph2.add_edge_by_vertices("San Francisco", "Riverside", 386)
 city_graph2.add_edge_by_vertices("San Francisco", "Los Angeles", 348)
 city_graph2.add_edge_by_vertices("Los Angeles", "Riverside", 50)
 city_graph2.add_edge_by_vertices("Los Angeles", "Phoenix", 357)
 city_graph2.add_edge_by_vertices("Riverside", "Phoenix", 307)
 city_graph2.add_edge_by_vertices("Riverside", "Chicago", 1704)
 city_graph2.add_edge_by_vertices("Phoenix", "Dallas", 887)
 city_graph2.add_edge_by_vertices("Phoenix", "Houston", 1015)
 city_graph2.add_edge_by_vertices("Dallas", "Chicago", 805)
 city_graph2.add_edge_by_vertices("Dallas", "Atlanta", 721)
 city_graph2.add_edge_by_vertices("Dallas", "Houston", 225)
 city_graph2.add_edge_by_vertices("Houston", "Atlanta", 702)
 city_graph2.add_edge_by_vertices("Houston", "Miami", 968)
 city_graph2.add_edge_by_vertices("Atlanta", "Chicago", 588)
 city_graph2.add_edge_by_vertices("Atlanta", "Washington", 543)
 city_graph2.add_edge_by_vertices("Atlanta", "Miami", 604)
 city_graph2.add_edge_by_vertices("Miami", "Washington", 923)
 city_graph2.add_edge_by_vertices("Chicago", "Detroit", 238)
 city_graph2.add_edge_by_vertices("Detroit", "Boston", 613)
 city_graph2.add_edge_by_vertices("Detroit", "Washington", 396)
 city_graph2.add_edge_by_vertices("Detroit", "New York", 482)
 city_graph2.add_edge_by_vertices("Boston", "New York", 190)
 city_graph2.add_edge_by_vertices("New York", "Philadelphia", 81)

Listing 4.14 dijkstra.py continued

92 CHAPTER 4 Graph problems
 city_graph2.add_edge_by_vertices("Philadelphia", "Washington", 123)

 distances, path_dict = dijkstra(city_graph2, "Los Angeles")
 name_distance: Dict[str, Optional[int]] = distance_array_to_vertex_

dict(city_graph2, distances)
 print("Distances from Los Angeles:")
 for key, value in name_distance.items():
 print(f"{key} : {value}")
 print("") # blank line

 print("Shortest path from Los Angeles to Boston:")
 path: WeightedPath = path_dict_to_path(city_graph2.index_of("Los

Angeles"), city_graph2.index_of("Boston"), path_dict)
 print_weighted_path(city_graph2, path)

Your output should look something like this:

Distances from Los Angeles:
Seattle : 1026
San Francisco : 348
Los Angeles : 0
Riverside : 50
Phoenix : 357
Chicago : 1754
Boston : 2605
New York : 2474
Atlanta : 1965
Miami : 2340
Dallas : 1244
Houston : 1372
Detroit : 1992
Philadelphia : 2511
Washington : 2388

Shortest path from Los Angeles to Boston:
Los Angeles 50> Riverside
Riverside 1704> Chicago
Chicago 238> Detroit
Detroit 613> Boston
Total Weight: 2605

You may have noticed that Dijkstra’s algorithm has some resemblance to Jarník’s algo-
rithm. They are both greedy, and it is possible to implement them using quite similar
code if one is sufficiently motivated. Another algorithm that Dijkstra’s algorithm
resembles is A* from chapter 2. A* can be thought of as a modification of Dijkstra’s
algorithm. Add a heuristic and restrict Dijkstra’s algorithm to finding a single destina-
tion, and the two algorithms are the same.

NOTE Dijkstra’s algorithm is designed for graphs with positive weights.
Graphs with negatively weighted edges can pose a challenge for Dijkstra’s
algorithm and will require modification or an alternative algorithm.

93Exercises
4.6 Real-world applications
A huge amount of our world can be represented using graphs. You have seen in this
chapter how effective they are for working with transportation networks, but many
other kinds of networks have the same essential optimization problems: telephone
networks, computer networks, utility networks (electricity, plumbing, and so on). As a
result, graph algorithms are essential for efficiency in the telecommunications, ship-
ping, transportation, and utility industries.

 Retailers must handle complex distribution problems. Stores and warehouses can
be thought of as vertices and the distances between them as edges. The algorithms are
the same. The internet itself is a giant graph, with each connected device a vertex and
each wired or wireless connection being an edge. Whether a business is saving fuel or
wire, minimum spanning tree and shortest path problem-solving are useful for more
than just games. Some of the world’s most famous brands became successful by opti-
mizing graph problems: think of Walmart building out an efficient distribution net-
work, Google indexing the web (a giant graph), and FedEx finding the right set of
hubs to connect the world’s addresses.

 Some obvious applications of graph algorithms are social networks and map appli-
cations. In a social network, people are vertices, and connections (friendships on Face-
book, for instance) are edges. In fact, one of Facebook’s most prominent developer
tools is known as the Graph API (https://developers.facebook.com/docs/graph-api).
In map applications like Apple Maps and Google Maps, graph algorithms are used to
provide directions and calculate trip times.

 Several popular video games also make explicit use of graph algorithms. Mini-
Metro and Ticket to Ride are two examples of games that closely mimic the problems
solved in this chapter.

4.7 Exercises
1 Add support to the graph framework for removing edges and vertices.
2 Add support to the graph framework for directed graphs (digraphs).
3 Use this chapter’s graph framework to prove or disprove the classic Bridges of

Königsberg problem, as described on Wikipedia: https://en.wikipedia.org/wiki/
Seven_Bridges_of_Königsberg.

https://en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg
https://en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg
https://en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg
https://developers.facebook.com/docs/graph-api

Genetic algorithms
Genetic algorithms are not used for everyday programmatic problems. They are
called upon when traditional algorithmic approaches are insufficient for arriving at
a solution to a problem in a reasonable amount of time. In other words, genetic
algorithms are usually reserved for complex problems without easy solutions. If you
need a sense of what some of these complex problems might be, feel free to read
ahead in section 5.7 before proceeding. One interesting example, though, is
protein-ligand docking and drug design. Computational biologists need to design
molecules that will bind to receptors to deliver drugs. There may be no obvious
algorithm for designing a particular molecule, but as you will see, sometimes
genetic algorithms can provide an answer without much direction beyond a defini-
tion of the goal of a problem.

5.1 Biological background
In biology, the theory of evolution is an explanation of how genetic mutation, cou-
pled with the constraints of an environment, leads to changes in organisms over
time (including speciation—the creation of new species). The mechanism by
which the well-adapted organisms succeed and the less well-adapted organisms fail
is known as natural selection. Each generation of a species will include individuals
with different (and sometimes new) traits that come about through genetic muta-
tion. All individuals compete for limited resources to survive, and because there are
more individuals than there are resources, some individuals must die.

 An individual with a mutation that makes it better adapted for survival in its
environment will have a higher probability of living and reproducing. Over time,
the better-adapted individuals in an environment will have more children and
94

95A generic genetic algorithm
through inheritance will pass on their mutations to those children. Therefore, a muta-
tion that benefits survival is likely to eventually proliferate amongst a population.

 For example, if bacteria are being killed by a specific antibiotic, and one individual
bacterium in the population has a mutation in a gene that makes it more resistant to
the antibiotic, it is more likely to survive and reproduce. If the antibiotic is continually
applied over time, the children who have inherited the gene for antibiotic resistance
will also be more likely to reproduce and have children of their own. Eventually the
whole population may gain the mutation, as continued assault by the antibiotic kills
off the individuals without the mutation. The antibiotic does not cause the mutation
to develop, but it does lead to the proliferation of individuals with the mutation.

 Natural selection has been applied in spheres beyond biology. Social Darwinism is
natural selection applied to the sphere of social theory. In computer science, genetic
algorithms are a simulation of natural selection to solve computational challenges.

 A genetic algorithm includes a population (group) of individuals known as chromo-
somes. The chromosomes, each composed of genes that specify their traits, are compet-
ing to solve some problem. How well a chromosome solves a problem is defined by a
fitness function.

 The genetic algorithm goes through generations. In each generation, the chromo-
somes that are more fit are more likely to be selected to reproduce. There is also a prob-
ability in each generation that two chromosomes will have their genes merged. This is
known as crossover. And finally, there is the important possibility in each generation
that a gene in a chromosome may mutate (randomly change).

 After the fitness function of some individual in the population crosses some speci-
fied threshold, or the algorithm runs through some specified maximum number of
generations, the best individual (the one that scored highest in the fitness function) is
returned.

 Genetic algorithms are not a good solution for all problems. They depend on
three partially or fully stochastic (randomly determined) operations: selection, cross-
over, and mutation. Therefore, they may not find an optimal solution in a reasonable
amount of time. For most problems, more deterministic algorithms exist with better
guarantees. But there are problems for which no fast deterministic algorithm exists.
In these cases, genetic algorithms are a good choice.

5.2 A generic genetic algorithm
Genetic algorithms are often highly specialized and tuned for a particular application.
In this chapter, we will define a generic genetic algorithm that can be used with multi-
ple problems while not being particularly well tuned for any of them. It will include
some configurable options, but the goal is to show the algorithm’s fundamentals
instead of its tunability.

 We will start by defining an interface for the individuals that the generic algorithm
can operate on. The abstract class Chromosome defines four essential features. A chro-
mosome must be able to do the following:

96 CHAPTER 5 Genetic algorithms
 Determine its own fitness
 Create an instance with randomly selected genes (for use in filling the first gen-

eration)
 Implement crossover (combine itself with another of the same type to create

children)—in other words, mix itself with another chromosome
 Mutate—make a small, fairly random change in itself

Here is the code for Chromosome, codifying these four needs.

from __future__ import annotations
from typing import TypeVar, Tuple, Type
from abc import ABC, abstractmethod

T = TypeVar('T', bound='Chromosome') # for returning self

Base class for all chromosomes; all methods must be overridden
class Chromosome(ABC):
 @abstractmethod
 def fitness(self) -> float:
 ...

 @classmethod
 @abstractmethod
 def random_instance(cls: Type[T]) -> T:
 ...

 @abstractmethod
 def crossover(self: T, other: T) -> Tuple[T, T]:
 ...

 @abstractmethod
 def mutate(self) -> None:
 ...

TIP You’ll notice in its constructor that the TypeVar T is bound to Chromo-
some. This means that anything that fills in a variable that is of type T must be
an instance of a Chromosome or a subclass of Chromosome.

We will implement the algorithm itself (the code that will manipulate chromosomes)
as a generic class that is open to subclassing for future specialized applications. Before
we do so, though, let’s revisit the description of a genetic algorithm from the begin-
ning of the chapter and clearly define the steps that a genetic algorithm takes:

1 Create an initial population of random chromosomes for the first generation of
the algorithm.

2 Measure the fitness of each chromosome in this generation of the population.
If any exceeds the threshold, return it, and the algorithm ends.

3 Select some individuals to reproduce, with a higher probability of selecting
those with the highest fitness.

Listing 5.1 chromosome.py

97A generic genetic algorithm
4 Crossover (combine), with some probability, some of the selected chromo-
somes to create children that represent the population of the next generation.

5 Mutate, usually with a low probability, some of those chromosomes. The popu-
lation of the new generation is now complete, and it replaces the population of
the last generation.

6 Return to step 2 unless the maximum number of generations has been reached.
If that is the case, return the best chromosome found so far.

This general outline of a genetic algorithm (illustrated in figure 5.1) is missing a lot of
important details. How many chromosomes should be in the population? What is the
threshold that stops the algorithm? How should the chromosomes be selected for
reproduction? How should they be combined (crossover) and at what probability? At
what probability should mutations occur? How many generations should be run?

All of these points will be configurable in our GeneticAlgorithm class. We will define
it piece by piece so we can talk about each piece separately.

from __future__ import annotations
from typing import TypeVar, Generic, List, Tuple, Callable
from enum import Enum
from random import choices, random

Listing 5.2 genetic_algorithm.py

Measure

If fitness is above some
threshold, we’re done

Create

Start of a new generation

Select

For reproduction, with a
higher probability of selecting

fitter chromosomes

Mutate

Some chromosomes have
random changes

Crossover

Combine some of the
selected chromosomes

Select

For reproduction, with a
higher probability of selecting

fitter chromosomes

Crossover

Combine some of the
selected chromosomes

Mutate

Some chromosomes have
random changes

Measure

If fitness is above some
threshold, we’re done

Figure 5.1 The general outline
of a genetic algorithm

98 CHAPTER 5 Genetic algorithms
from heapq import nlargest
from statistics import mean
from chromosome import Chromosome

C = TypeVar('C', bound=Chromosome) # type of the chromosomes

class GeneticAlgorithm(Generic[C]):
 SelectionType = Enum("SelectionType", "ROULETTE TOURNAMENT")

GeneticAlgorithm takes a generic type that conforms to Chromosome, and its name is
C. The enum SelectionType is an internal type used for specifying the selection
method used by the algorithm. The two most common genetic algorithm selection
methods are known as roulette-wheel selection (sometimes called fitness proportionate selec-
tion) and tournament selection. The former gives every chromosome a chance of being
picked, proportionate to its fitness. In tournament selection, a certain number of ran-
dom chromosomes are challenged against one another, and the one with the best fit-
ness is selected.

def __init__(self, initial_population: List[C], threshold: float, max_
generations: int = 100, mutation_chance: float = 0.01, crossover_chance:
float = 0.7, selection_type: SelectionType = SelectionType.TOURNAMENT) -
> None:

self._population: List[C] = initial_population
self._threshold: float = threshold
self._max_generations: int = max_generations
self._mutation_chance: float = mutation_chance
self._crossover_chance: float = crossover_chance
self._selection_type: GeneticAlgorithm.SelectionType = selection_type
self._fitness_key: Callable = type(self._population[0]).fitness

The preceding are all properties of the genetic algorithm that will be configured at
the time of creation, through __init__(). initial_population is the chromosomes
in the first generation of the algorithm. threshold is the fitness level that indicates
that a solution has been found for the problem that the genetic algorithm is trying to
solve. max_generations is the maximum number of generations to run. If we have
run that many generations and no solution with a fitness level beyond threshold has
been found, the best solution that has been found will be returned. mutation_chance
is the probability of each chromosome in each generation mutating. crossover_
chance is the probability that two parents selected to reproduce have children that are
a mixture of their genes; otherwise, the children are just duplicates of the parents.
Finally, selection_type is the type of selection method to use, as delineated by the
enum SelectionType.

 The preceding init method takes a long list of parameters, most of which have
default values. They set up instance versions of the configurable properties we just dis-
cussed. In our examples, _population is initialized with a random set of chromo-
somes using the Chromosome class’s random_instance() class method. In other words,
the first generation of chromosomes is just composed of random individuals. This is a

Listing 5.3 genetic_algorithm.py continued

99A generic genetic algorithm
point of potential optimization for a more sophisticated genetic algorithm. Instead of
starting with purely random individuals, the first generation could contain individuals
that are closer to the solution, through some knowledge of the problem. This is
referred to as seeding.

 _fitness_key is a reference to the method we will be using throughout Genetic-
Algorithm for calculating the fitness of a chromosome. Recall that this class needs to
work with any subclass of Chromosome. Therefore, _fitness_key will differ by subclass.
To get to it, we use type() to refer to the specific subclass of Chromosome that we are
finding the fitness of.

 Now we will examine the two selection methods that our class supports.

Use the probability distribution wheel to pick 2 parents
Note: will not work with negative fitness results
def _pick_roulette(self, wheel: List[float]) -> Tuple[C, C]:
 return tuple(choices(self._population, weights=wheel, k=2))

Roulette-wheel selection is based on each chromosome’s proportion of fitness to the
sum of all fitnesses in a generation. The chromosomes with the highest fitness have a
better chance of being picked. The values that represent each chromosome’s fitness
are provided in the parameter wheel. The actual picking is conveniently done by the
choices() function from the Python standard library’s random module. This function
takes a list of things we want to pick from, an equal-length list containing weights for
each item in the first list, and how many items we want to pick.

 If we were to implement this ourselves, we could calculate percentages of total fit-
ness for each item (proportional fitnesses) that are represented by floating-point val-
ues between 0 and 1. A random number (pick) between 0 and 1 could be used to
figure out which chromosome to select. The algorithm would work by decreasing
pick by each chromosome’s proportional fitness value sequentially. When pick
crosses 0, that’s the chromosome to select.

 Does it make sense to you why this process results in each chromosome’s being
pickable by its proportion? If not, think about it with pencil and paper. Consider draw-
ing a proportional roulette wheel, as in figure 5.2.

 The most basic form of tournament selection is simpler than roulette-wheel selec-
tion. Instead of figuring out proportions, we simply pick k chromosomes from the
whole population at random. The two chromosomes with the best fitness out of
the randomly selected bunch win.

Choose num_participants at random and take the best 2
def _pick_tournament(self, num_participants: int) -> Tuple[C, C]:
 participants: List[C] = choices(self._population, k=num_participants)
 return tuple(nlargest(2, participants, key=self._fitness_key))

Listing 5.4 genetic_algorithm.py continued

Listing 5.5 genetic_algorithm.py continued

100 CHAPTER 5 Genetic algorithms
The code for _pick_tournament() first uses choices() to randomly pick num_
participants from _population. Then it uses the nlargest() function from the
heapq module to find the two largest individuals by _fitness_key. What is the right
number for num_participants? As with many parameters in a genetic algorithm, trial
and error may be the best way to determine it. One thing to keep in mind is that a
higher number of participants in the tournament leads to less diversity in the popula-
tion, because chromosomes with poor fitness are more likely to be eliminated in
matchups.1 More sophisticated forms of tournament selection may pick individuals
that are not the best, but second- or third-best, based on some kind of decreasing
probability model.

 These two methods, _pick_roulette() and _pick_tournament(), are used for selec-
tion, which occurs during reproduction. Reproduction is implemented in _reproduce_
and_replace(), and it also takes care of ensuring that a new population of an equal num-
ber of chromosomes replaces the chromosomes in the last generation.

1 Artem Sokolov and Darrell Whitley, “Unbiased Tournament Selection,” GECCO’05 (June 25–29, 2005, Wash-
ington, D.C., U.S.A.), http://mng.bz/S7l6.

If the roulette wheel algorithm
spins a 0.6, then for the data in
the table, chromosome 4 will be
chosen.

Chromosome Fitness Chance Fractional

1 54.5 25% 0.250

2 17.44 8% 0.080

3 37.06 17% 0.170

4 27.25 13% 0.125

5 81.75 38% 0.375

Sum 218 100% 1.000

1: 0.25

2: 0.08

3: 0.17

4: 0.125

5: 0.375

Start spin

Pick: 0.6

0.25

0.33

0.5

0.625

Figure 5.2 An example of roulette-wheel selection in action

http://mng.bz/S7l6

101A generic genetic algorithm

Replace the population with a new generation of individuals
def _reproduce_and_replace(self) -> None:
 new_population: List[C] = []
 # keep going until we've filled the new generation
 while len(new_population) < len(self._population):
 # pick the 2 parents
 if self._selection_type == GeneticAlgorithm.SelectionType.ROULETTE:
 parents: Tuple[C, C] = self._pick_roulette([x.fitness() for x in

self._population])
 else:
 parents = self._pick_tournament(len(self._population) // 2)
 # potentially crossover the 2 parents
 if random() < self._crossover_chance:
 new_population.extend(parents[0].crossover(parents[1]))
 else:
 new_population.extend(parents)
 # if we had an odd number, we'll have 1 extra, so we remove it
 if len(new_population) > len(self._population):
 new_population.pop()
 self._population = new_population # replace reference

In _reproduce_and_replace(), the following steps occur in broad strokes:

1 Two chromosomes, called parents, are selected for reproduction using one of
the two selection methods. For tournament selection, we always run the tourna-
ment amongst half of the total population, but this too could be a configura-
tion option.

2 There is _crossover_chance that the two parents will be combined to produce
two new chromosomes, in which case they are added to new_population. If
there are no children, the two parents are just added to new_population.

3 If new_population has as many chromosomes as _population, it replaces it.
Otherwise, we return to step 1.

The method that implements mutation, _mutate(), is very simple, with the details of
how to perform a mutation being left to individual chromosomes.

With _mutation_chance probability mutate each individual
def _mutate(self) -> None:
 for individual in self._population:
 if random() < self._mutation_chance:
 individual.mutate()

We now have all of the building blocks needed to run the genetic algorithm. run()
coordinates the measurement, reproduction (which includes selection), and muta-
tion steps that bring the population from one generation to another. It also keeps
track of the best (fittest) chromosome found at any point in the search.

Listing 5.6 genetic_algorithm.py continued

Listing 5.7 genetic_algorithm.py continued

102 CHAPTER 5 Genetic algorithms
Run the genetic algorithm for max_generations iterations
and return the best individual found
def run(self) -> C:
 best: C = max(self._population, key=self._fitness_key)
 for generation in range(self._max_generations):

early exit if we beat threshold
if best.fitness() >= self._threshold:
 return best
print(f"Generation {generation} Best {best.fitness()} Avg

{mean(map(self._fitness_key, self._population))}")
self._reproduce_and_replace()
self._mutate()
highest: C = max(self._population, key=self._fitness_key)
if highest.fitness() > best.fitness():
 best = highest # found a new best

 return best # best we found in _max_generations

best keeps track of the best chromosome found so far. The main loop executes _max_
generations times. If any chromosome exceeds threshold in fitness, it is returned, and
the method ends. Otherwise, it calls _reproduce_and_replace() as well as _mutate() to
create the next generation and run the loop again. If _max_generations is reached, the
best chromosome found so far is returned.

5.3 A naive test
The generic genetic algorithm, GeneticAlgorithm, will work with any type that imple-
ments Chromosome. As a test, we will start by implementing a simple problem that can
be easily solved using traditional methods. We will try to maximize the equation 6x – x2

+ 4y – y2. In other words, what values for x and y in that equation will yield the largest
number?

 The maximizing values can be found, using calculus, by taking partial derivatives
and setting each equal to zero. The result is x = 3 and y = 2. Can our genetic algorithm
reach the same result without using calculus? Let’s dig in.

from __future__ import annotations
from typing import Tuple, List
from chromosome import Chromosome
from genetic_algorithm import GeneticAlgorithm
from random import randrange, random
from copy import deepcopy

class SimpleEquation(Chromosome):
 def __init__(self, x: int, y: int) -> None:

self.x: int = x
self.y: int = y

 def fitness(self) -> float: # 6x - x^2 + 4y - y^2
return 6 * self.x - self.x * self.x + 4 * self.y - self.y * self.y

Listing 5.8 genetic_algorithm.py continued

Listing 5.9 simple_equation.py

103A naive test
 @classmethod
 def random_instance(cls) -> SimpleEquation:
 return SimpleEquation(randrange(100), randrange(100))

 def crossover(self, other: SimpleEquation) -> Tuple[SimpleEquation,
SimpleEquation]:

 child1: SimpleEquation = deepcopy(self)
 child2: SimpleEquation = deepcopy(other)
 child1.y = other.y
 child2.y = self.y
 return child1, child2

 def mutate(self) -> None:
 if random() > 0.5: # mutate x
 if random() > 0.5:
 self.x += 1
 else:
 self.x -= 1
 else: # otherwise mutate y
 if random() > 0.5:
 self.y += 1
 else:
 self.y -= 1

 def __str__(self) -> str:
 return f"X: {self.x} Y: {self.y} Fitness: {self.fitness()}"

SimpleEquation conforms to Chromosome, and true to its name, it does so as simply as
possible. The genes of a SimpleEquation chromosome can be thought of as x and y.
The method fitness() evaluates x and y using the equation 6x – x2 + 4y – y2. The
higher the value, the more fit the individual chromosome is, according to Genetic-
Algorithm. In the case of a random instance, x and y are initially set to be random
integers between 0 and 100, so random_instance() does not need to do anything
other than instantiate a new SimpleEquation with these values. To combine one
SimpleEquation with another in crossover(), the y values of the two instances are
simply swapped to create the two children. mutate() randomly increments or decre-
ments x or y. And that is pretty much it.

 Because SimpleEquation conforms to Chromosome, we can already plug it into
GeneticAlgorithm.

if __name__ == "__main__":
 initial_population: List[SimpleEquation] = [SimpleEquation.random_

instance() for _ in range(20)]
 ga: GeneticAlgorithm[SimpleEquation] = GeneticAlgorithm(initial_

population=initial_population, threshold=13.0, max_generations = 100,
mutation_chance = 0.1, crossover_chance = 0.7)

 result: SimpleEquation = ga.run()
 print(result)

Listing 5.10 simple_equation.py continued

104 CHAPTER 5 Genetic algorithms
The parameters used here were derived through guess-and-check. You can try others.
threshold is set to 13.0 because we already know the correct answer. When x = 3 and
y = 2, the equation evaluates to 13.

 If you did not previously know the answer, you might want to see the best result
that could be found in a certain number of generations. In that case, you would set
threshold to some arbitrarily large number. Remember, because genetic algorithms
are stochastic, every run will be different.

 Here is some sample output from a run in which the genetic algorithm solved the
equation in nine generations:

Generation 0 Best -349 Avg -6112.3
Generation 1 Best 4 Avg -1306.7
Generation 2 Best 9 Avg -288.25
Generation 3 Best 9 Avg -7.35
Generation 4 Best 12 Avg 7.25
Generation 5 Best 12 Avg 8.5
Generation 6 Best 12 Avg 9.65
Generation 7 Best 12 Avg 11.7
Generation 8 Best 12 Avg 11.6
X: 3 Y: 2 Fitness: 13

As you can see, it came to the proper solution derived earlier with calculus, x = 3 and
y = 2. You may also note that almost every generation, it got closer to the right answer.

 Take into consideration that the genetic algorithm took more computational
power than other methods would have to find the solution. In the real world, such a
simple maximization problem would not be a good use of a genetic algorithm. But its
simple implementation at least suffices to prove that our genetic algorithm works.

5.4 SEND+MORE=MONEY revisited
In chapter 3, we solved the classic cryptarithmetic problem SEND+MORE=MONEY
using a constraint-satisfaction framework. (For a refresher on what the problem is all
about, look back to the description in chapter 3.) The problem can also be solved in a
reasonable amount of time using a genetic algorithm.

 One of the largest difficulties in formulating a problem for a genetic algorithm
solution is determining how to represent it. A convenient representation for crypt-
arithmetic problems is to use list indices as digits.2 Hence, to represent the 10 possible
digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), a 10-element list is required. The characters to be
searched within the problem can then be shifted around from place to place. For
example, if it is suspected that the solution to a problem includes the character “E”
representing the digit 4, then list[4] = "E". SEND+MORE=MONEY has eight dis-
tinct letters (S, E, N, D, M, O, R, Y), leaving two slots in the array empty. They can be
filled with spaces indicating no letter.

2 Reza Abbasian and Masoud Mazloom, “Solving Cryptarithmetic Problems Using Parallel Genetic Algorithm,”
2009 Second International Conference on Computer and Electrical Engineering, http://mng.bz/RQ7V.

http://mng.bz/RQ7V

105SEND+MORE=MONEY revisited
 A chromosome that represents the SEND+MORE=MONEY problem is repre-
sented in SendMoreMoney2. Note how the fitness() method is strikingly similar to
satisfied() from SendMoreMoneyConstraint in chapter 3.

from __future__ import annotations
from typing import Tuple, List
from chromosome import Chromosome
from genetic_algorithm import GeneticAlgorithm
from random import shuffle, sample
from copy import deepcopy

class SendMoreMoney2(Chromosome):
 def __init__(self, letters: List[str]) -> None:
 self.letters: List[str] = letters

 def fitness(self) -> float:
 s: int = self.letters.index("S")
 e: int = self.letters.index("E")
 n: int = self.letters.index("N")
 d: int = self.letters.index("D")
 m: int = self.letters.index("M")
 o: int = self.letters.index("O")
 r: int = self.letters.index("R")
 y: int = self.letters.index("Y")
 send: int = s * 1000 + e * 100 + n * 10 + d
 more: int = m * 1000 + o * 100 + r * 10 + e
 money: int = m * 10000 + o * 1000 + n * 100 + e * 10 + y
 difference: int = abs(money - (send + more))
 return 1 / (difference + 1)

 @classmethod
 def random_instance(cls) -> SendMoreMoney2:
 letters = ["S", "E", "N", "D", "M", "O", "R", "Y", " ", " "]
 shuffle(letters)
 return SendMoreMoney2(letters)

 def crossover(self, other: SendMoreMoney2) -> Tuple[SendMoreMoney2,
SendMoreMoney2]:

 child1: SendMoreMoney2 = deepcopy(self)
 child2: SendMoreMoney2 = deepcopy(other)
 idx1, idx2 = sample(range(len(self.letters)), k=2)
 l1, l2 = child1.letters[idx1], child2.letters[idx2]
 child1.letters[child1.letters.index(l2)], child1.letters[idx2] =

child1.letters[idx2], l2
 child2.letters[child2.letters.index(l1)], child2.letters[idx1] =

child2.letters[idx1], l1
 return child1, child2

 def mutate(self) -> None: # swap two letters' locations
 idx1, idx2 = sample(range(len(self.letters)), k=2)
 self.letters[idx1], self.letters[idx2] = self.letters[idx2],

self.letters[idx1]

 def __str__(self) -> str:

Listing 5.11 send_more_money2.py

106 CHAPTER 5 Genetic algorithms
s: int = self.letters.index("S")
e: int = self.letters.index("E")
n: int = self.letters.index("N")
d: int = self.letters.index("D")
m: int = self.letters.index("M")
o: int = self.letters.index("O")
r: int = self.letters.index("R")
y: int = self.letters.index("Y")
send: int = s * 1000 + e * 100 + n * 10 + d
more: int = m * 1000 + o * 100 + r * 10 + e
money: int = m * 10000 + o * 1000 + n * 100 + e * 10 + y
difference: int = abs(money - (send + more))
return f"{send} + {more} = {money} Difference: {difference}"

There is, however, a major difference between satisfied() in chapter 3 and
fitness() here. Here, we return 1 / (difference + 1). difference is the absolute
value of the difference between MONEY and SEND+MORE. This represents how far
off the chromosome is from solving the problem. If we were trying to minimize the
fitness(), returning difference on its own would be fine. But because Genetic-
Algorithm tries to maximize the value of fitness(), it needs to be flipped (so smaller
values look like larger values), and that is why 1 is divided by difference. 1 is added to
difference first, so that a difference of 0 does not yield a fitness() of 0 but instead
of 1. Table 5.1 illustrates how this works.

Remember, lower differences are better, and higher fitnesses are better. Because this
formula causes those two facts to line up, it works well. Dividing 1 by a fitness value is a
simple way to convert a minimization problem into a maximization problem. It does
introduce some biases, though, so it is not foolproof.3

 random_instance() makes use of the shuffle() function in the random module.
crossover() selects two random indices in the letters lists of both chromosomes
and swaps letters so that we end up with one letter from the first chromosome in
the same place in the second chromosome, and vice versa. It performs these swaps in

Table 5.1 How the equation 1 / (difference + 1) yields fitnesses for maximization

difference difference + 1 fitness (1/(difference + 1))

0 1 1

1 2 0.5

2 3 0.25

3 4 0.125

3 For example, we might end up with more numbers closer to 0 than we will closer to 1 if we were to simply
divide 1 by a uniform distribution of integers, which—with the subtleties of how typical microprocessors inter-
pret floating-point numbers—could lead to some unexpected results. An alternative way to convert a minimi-
zation problem into a maximization problem is to simply flip the sign (make it negative instead of positive).
However, this will only work if the values are all positive to begin with.

107Optimizing list compression
children so that the placement of letters in the two children ends up being a combina-
tion of the parents. mutate() swaps two random locations in the letters list.

 We can plug SendMoreMoney2 into GeneticAlgorithm just as easily as we plugged
in SimpleEquation. But be forewarned: This is a fairly tough problem, and it will take
a long time to execute if the parameters are not well tweaked. And there’s still some
randomness even if one gets them right! The problem may be solved in a few seconds
or a few minutes. Unfortunately, that is the nature of genetic algorithms.

if __name__ == "__main__":
 initial_population: List[SendMoreMoney2] = [SendMoreMoney2.random_

instance() for _ in range(1000)]
 ga: GeneticAlgorithm[SendMoreMoney2] = GeneticAlgorithm(initial_

population=initial_population, threshold=1.0, max_generations = 1000,
mutation_chance = 0.2, crossover_chance = 0.7, selection_
type=GeneticAlgorithm.SelectionType.ROULETTE)

 result: SendMoreMoney2 = ga.run()
 print(result)

The following output is from a run that solved the problem in 3 generations using
1,000 individuals in each generation (as created above). See if you can mess around
with the configurable parameters of GeneticAlgorithm and get a similar result with
fewer individuals. Does it seem to work better with roulette selection than it does with
tournament selection?

Generation 0 Best 0.0040650406504065045 Avg 8.854014252391551e-05
Generation 1 Best 0.16666666666666666 Avg 0.001277329479413134
Generation 2 Best 0.5 Avg 0.014920889170684687
8324 + 913 = 9237 Difference: 0

This solution indicates that SEND = 8324, MORE = 913, and MONEY = 9237. How is
that possible? It looks like letters are missing from the solution. In fact, if M = 0, there
are several solutions to the problem not possible in the version from chapter 3. MORE
is actually 0913 here, and MONEY is 09237. The 0 is just ignored.

5.5 Optimizing list compression
Suppose that we have some information we want to compress. Suppose that it is a list
of items, and we do not care about the order of the items, as long as all of them are
intact. What order of the items will maximize the compression ratio? Did you even
know that the order of the items will affect the compression ratio for most compres-
sion algorithms?

 The answer will depend on the compression algorithm used. For this example, we
will use the compress() function from the zlib module with its standard settings. The
solution is shown here in its entirety for a list of 12 first names. If we do not run the
genetic algorithm and we just run compress() on the 12 names in the order they were
originally presented, the resulting compressed data will be 165 bytes.

Listing 5.12 send_more_money2.py continued

108 CHAPTER 5 Genetic algorithms
from __future__ import annotations
from typing import Tuple, List, Any
from chromosome import Chromosome
from genetic_algorithm import GeneticAlgorithm
from random import shuffle, sample
from copy import deepcopy
from zlib import compress
from sys import getsizeof
from pickle import dumps

165 bytes compressed
PEOPLE: List[str] = ["Michael", "Sarah", "Joshua", "Narine", "David",

"Sajid", "Melanie", "Daniel", "Wei", "Dean", "Brian", "Murat", "Lisa"]

class ListCompression(Chromosome):
 def __init__(self, lst: List[Any]) -> None:

self.lst: List[Any] = lst

 @property
 def bytes_compressed(self) -> int:

return getsizeof(compress(dumps(self.lst)))

 def fitness(self) -> float:
return 1 / self.bytes_compressed

 @classmethod
 def random_instance(cls) -> ListCompression:

mylst: List[str] = deepcopy(PEOPLE)
shuffle(mylst)
return ListCompression(mylst)

 def crossover(self, other: ListCompression) -> Tuple[ListCompression,
ListCompression]:

child1: ListCompression = deepcopy(self)
child2: ListCompression = deepcopy(other)
idx1, idx2 = sample(range(len(self.lst)), k=2)
l1, l2 = child1.lst[idx1], child2.lst[idx2]
child1.lst[child1.lst.index(l2)], child1.lst[idx2] =

child1.lst[idx2], l2
child2.lst[child2.lst.index(l1)], child2.lst[idx1] =

child2.lst[idx1], l1
return child1, child2

 def mutate(self) -> None: # swap two locations
idx1, idx2 = sample(range(len(self.lst)), k=2)
self.lst[idx1], self.lst[idx2] = self.lst[idx2], self.lst[idx1]

 def __str__(self) -> str:
return f"Order: {self.lst} Bytes: {self.bytes_compressed}"

if __name__ == "__main__":
 initial_population: List[ListCompression] = [ListCompression.random_

instance() for _ in range(1000)]
 ga: GeneticAlgorithm[ListCompression] = GeneticAlgorithm(initial_

population=initial_population, threshold=1.0, max_generations = 1000,

Listing 5.13 list_compression.py

109Challenges for genetic algorithms
mutation_chance = 0.2, crossover_chance = 0.7, selection_
type=GeneticAlgorithm.SelectionType.TOURNAMENT)

 result: ListCompression = ga.run()
 print(result)

Note how similar this implementation is to the implementation from SEND+
MORE=MONEY in section 5.4. The crossover() and mutate() functions are essen-
tially the same. In both problems’ solutions, we are taking a list of items and continu-
ally rearranging them and testing those rearrangements. One could write a generic
superclass for both problems’ solutions that would work with a wide variety of prob-
lems. Any problem that can be represented as a list of items that needs to find its opti-
mal order could be solved the same way. The only real point of customization for the
subclasses would be their respective fitness functions.

 If we run list_compression.py, it may take a very long time to complete. This is
because we don’t know what constitutes the “right” answer ahead of time, unlike the
prior two problems, so we have no real threshold that we are working toward. Instead,
we set the number of generations and the number of individuals in each generation
to an arbitrarily high number and hope for the best. What is the minimum number of
bytes that rearranging the 12 names will yield in compression? Frankly, we don’t know
the answer to that. In my best run, using the configuration in the preceding solution,
after 546 generations, the genetic algorithm found an order of the 12 names that
yielded 159 bytes compressed.

 That’s only a savings of 6 bytes over the original order—a ~4% savings. One might
say that 4% is irrelevant, but if this were a far larger list that would be transferred
many times over the network, that could add up. Imagine if this were a 1 MB list that
would eventually be transferred across the internet 10,000,000 times. If the genetic
algorithm could optimize the order of the list for compression to save 4%, it would
save ~40 kilobytes per transfer and ultimately 400 GB in bandwidth across all transfers.
That’s not a huge amount, but perhaps it could be significant enough that it’s worth
running the algorithm once to find a near optimal order for compression.

 Consider this, though—we don’t really know if we found the optimal order for the
12 names, let alone for the hypothetical 1 MB list. How would we know if we did?
Unless we have a deep understanding of the compression algorithm, we would have to
try compressing every possible order of the list. Just for a list of 12 items, that’s a fairly
unfeasible 479,001,600 possible orders (12!, where ! means factorial). Using a genetic
algorithm that attempts to find optimality is perhaps more feasible, even if we don’t
know whether its ultimate solution is truly optimal.

5.6 Challenges for genetic algorithms
Genetic algorithms are not a panacea. In fact, they are not suitable for most problems.
For any problem in which a fast deterministic algorithm exists, a genetic algorithm
approach does not make sense. Their inherently stochastic nature makes their run-
times unpredictable. To solve this problem, they can be cut off after a certain number
of generations. But then it is not clear if a truly optimal solution has been found.

110 CHAPTER 5 Genetic algorithms
 Steven Skiena, author of one of the most popular texts on algorithms, even went so
far as to write this:

I have never encountered any problem where genetic algorithms seemed to me the right way
to attack it. Further, I have never seen any computational results reported using genetic
algorithms that have favorably impressed me.4

Skiena’s view is a little extreme, but it is indicative of the fact that genetic algorithms
should only be chosen when you are reasonably confident that a better solution does
not exist. Another issue with genetic algorithms is determining how to represent a
potential solution to a problem as a chromosome. The traditional practice is to repre-
sent most problems as binary strings (sequences of 1s and 0s, raw bits). This is often
optimal in terms of space usage, and it lends itself to easy crossover functions. But
most complex problems are not easily represented as divisible bit strings.

 Another, more specific issue worth mentioning is challenges related to the roulette-
wheel selection method described in this chapter. Roulette-wheel selection, some-
times referred to as fitness proportional selection, can lead to a lack of diversity in a
population due to the dominance of relatively fit individuals each time selection is
run. On the other hand, if fitness values are close together, roulette-wheel selection
can lead to a lack of selection pressure.5 Further, roulette-wheel selection, as con-
structed in this chapter, does not work for problems in which fitness can be measured
with negative values, as in our simple equation example in section 5.3.

 In short, for most problems large enough to warrant using them, genetic algo-
rithms cannot guarantee the discovery of an optimal solution in a predictable amount
of time. For this reason, they are best utilized in situations that do not call for an opti-
mal solution, but instead for a “good enough” solution. They are fairly easy to imple-
ment, but tweaking their configurable parameters can take a lot of trial and error.

5.7 Real-world applications
Despite what Skiena wrote, genetic algorithms are frequently and effectively applied in
a myriad of problem spaces. They are often used on hard problems that do not require
perfectly optimal solutions, such as constraint-satisfaction problems too large to be
solved using traditional methods. One example is complex scheduling problems.

 Genetic algorithms have found many applications in computational biology. They
have been used successfully for protein-ligand docking, which is a search for the con-
figuration of a small molecule when it is bound to a receptor. This is used in pharma-
ceutical research and to better understand mechanisms in nature.

 The Traveling Salesman Problem, which we will revisit in chapter 9, is one of the
most famous problems in computer science. A traveling salesman wants to find the
shortest route on a map that visits every city exactly once and brings him back to
his starting location. It may sound like minimum spanning trees in chapter 4, but it is

4 Steven Skiena, The Algorithm Design Manual, 2nd edition (Springer, 2009), p. 267.
5 A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computation, 2nd edition (Springer, 2015), p. 80.

111Exercises
different. In the Traveling Salesman, the solution is a giant cycle that minimizes the
cost to traverse it, whereas a minimum spanning tree minimizes the cost to connect
every city. A person traveling a minimum spanning tree of cities may have to visit the
same city twice to reach every city. Even though they sound similar, there is no reason-
ably timed algorithm for finding a solution to the Traveling Salesman problem for an
arbitrary number of cities. Genetic algorithms have been shown to find suboptimal,
but pretty good, solutions in short periods of time. The problem is widely applicable
to the efficient distribution of goods. For example, dispatchers of FedEx and UPS
trucks use software to solve the Traveling Salesman problem every day. Algorithms
that help solve the problem can cut costs in a large variety of industries.

 In computer-generated art, genetic algorithms are sometimes used to mimic pho-
tographs using stochastic methods. Imagine 50 polygons placed randomly on a screen
and gradually twisted, turned, moved, resized, and changed in color until they match
a photograph as closely as possible. The result looks like the work of an abstract artist
or, if more angular shapes are used, a stained-glass window.

 Genetic algorithms are part of a larger field called evolutionary computation. One
area of evolutionary computation closely related to genetic algorithms is genetic pro-
gramming, in which programs use the selection, crossover, and mutation operations to
modify themselves to find nonobvious solutions to programming problems. Genetic
programming is not a widely used technique, but imagine a future where programs
write themselves.

 A benefit of genetic algorithms is that they lend themselves to easy parallelization.
In the most obvious form, each population can be simulated on a separate processor.
In the most granular form, each individual can be mutated and crossed, and have its
fitness calculated in a separate thread. There are also many possibilities in between.

5.8 Exercises
1 Add support to GeneticAlgorithm for an advanced form of tournament selec-

tion that may sometimes choose the second- or third-best chromosome, based
on a diminishing probability.

2 Add a new function to the constraint-satisfaction framework from chapter 3
that solves any arbitrary CSP using a genetic algorithm. A possible measure of
fitness is the number of constraints that are resolved by a chromosome.

3 Create a class, BitString, that implements Chromosome. Recall what a bit string
is from chapter 1. Then use your new class to solve the simple equation prob-
lem from section 5.3. How can the problem be encoded as a bit string?

K-means clustering
Humanity has never had more data about more facets of society than it does today.
Computers are great for storing data sets, but those data sets have little value to
society until they are analyzed by human beings. Computational techniques can
guide humans on the road to deriving meaning from a data set.

 Clustering is a computational technique that divides the points in a data set into
groups. A successful clustering results in groups that contain points that are related
to one another. Whether those relationships are meaningful generally requires
human verification.

 In clustering, the group (a.k.a. cluster) that a data point belongs to is not prede-
termined, but instead is decided during the run of the clustering algorithm. In fact,
the algorithm is not guided to place any particular data point in any particular clus-
ter by presupposed information. For this reason, clustering is considered an unsu-
pervised method within the realm of machine learning. You can think of
unsupervised as meaning not guided by foreknowledge.

 Clustering is a useful technique when you want to learn about the structure of a
data set but you do not know ahead of time its constituent parts. For example,
imagine you own a grocery store, and you collect data about customers and their
transactions. You want to run mobile advertisements of specials at relevant times of
the week to bring customers into your store. You could try clustering your data by
day of the week and demographic information. Perhaps you will find a cluster that
indicates younger shoppers prefer to shop on Tuesdays, and you could use that
information to run an ad specifically targeting them on that day.
112

113Preliminaries
6.1 Preliminaries
Our clustering algorithm will require some statistical primitives (mean, standard devi-
ation, and so on). Since Python version 3.4, the Python standard library provides sev-
eral useful statistical primitives in the statistics module. It should be noted that
while we keep to the standard library in this book, there are more performant third-
party libraries for numerical manipulation, like NumPy, that should be utilized in
performance-critical applications—notably, those dealing with big data.

 For simplicity’s sake, the data sets we will work with in this chapter are all express-
ible with the float type, so there will be many operations on lists and tuples of floats.
The statistical primitives sum(), mean(), and pstdev() are defined in the standard
library. Their definitions follow directly from the formulas you would find in a statis-
tics textbook. In addition, we will need a function for calculating z-scores.

from __future__ import annotations
from typing import TypeVar, Generic, List, Sequence
from copy import deepcopy
from functools import partial
from random import uniform
from statistics import mean, pstdev
from dataclasses import dataclass
from data_point import DataPoint

def zscores(original: Sequence[float]) -> List[float]:
 avg: float = mean(original)
 std: float = pstdev(original)
 if std == 0: # return all zeros if there is no variation
 return [0] * len(original)
 return [(x - avg) / std for x in original]

TIP pstdev() finds the standard deviation of a population, and stdev(),
which we are not using, finds the standard deviation of a sample.

zscores() converts a sequence of floats into a list of floats with the original numbers’
respective z-scores relative to all of the numbers in the original sequence. There will
be more about z-scores later in the chapter.

NOTE It is beyond the purview of this book to teach elementary statistics, but
you do not need more than a rudimentary understanding of mean and stan-
dard deviation to follow the rest of the chapter. If it has been a while and you
need a refresher, or you never previously learned these terms, it may be
worthwhile to quickly peruse a statistics resource that explains these two fun-
damental concepts.

All clustering algorithms work with points of data, and our implementation of k-means
will be no exception. We will define a common interface called DataPoint. For cleanli-
ness, we will define it in its own file.

Listing 6.1 kmeans.py

114 CHAPTER 6 K-means clustering
from __future__ import annotations
from typing import Iterator, Tuple, List, Iterable
from math import sqrt

class DataPoint:
 def __init__(self, initial: Iterable[float]) -> None:

self._originals: Tuple[float, ...] = tuple(initial)
self.dimensions: Tuple[float, ...] = tuple(initial)

 @property
 def num_dimensions(self) -> int:

return len(self.dimensions)

 def distance(self, other: DataPoint) -> float:
combined: Iterator[Tuple[float, float]] = zip(self.dimensions,

other.dimensions)
differences: List[float] = [(x - y) ** 2 for x, y in combined]
return sqrt(sum(differences))

 def __eq__(self, other: object) -> bool:
if not isinstance(other, DataPoint):
 return NotImplemented
return self.dimensions == other.dimensions

 def __repr__(self) -> str:
return self._originals.__repr__()

Every data point must be comparable to other data points of the same type for
equality (__eq__()) and must be human-readable for debug printing (__repr__()).
Every data point type has a certain number of dimensions (num_dimensions). The
tuple dimensions stores the actual values for each of those dimensions as floats.
The __init__() method takes an iterable of values for the dimensions that are
required. These dimensions may later be replaced with z-scores by k-means, so we
also keep a copy of the initial data in _originals for later printing.

 One final preliminary we need before we can dig into k-means is a way of calculat-
ing the distance between any two data points of the same type. There are many ways to
calculate distance, but the form most commonly used with k-means is Euclidean dis-
tance. This is the distance formula familiar to most from a grade-school course in
geometry, derivable from the Pythagorean theorem. In fact, we already discussed the
formula and derived a version of it for two-dimensional spaces in chapter 2, where we
used it to find the distance between any two locations within a maze. Our version for
DataPoint needs to be more sophisticated, because a DataPoint can involve any num-
ber of dimensions.

 This version of distance() is especially compact and will work with DataPoint
types with any number of dimensions. The zip() call creates tuples filled with pairs of
each dimension of the two points, combined into a sequence. The list comprehension
finds the difference between each point at each dimension and squares that value.
sum() adds all of these values together, and the final value returned by distance() is
the square root of this sum.

Listing 6.2 data_point.py

115The k-means clustering algorithm
6.2 The k-means clustering algorithm
K-means is a clustering algorithm that attempts to group data points into a certain
predefined number of clusters, based on each point’s relative distance to the center of
the cluster. In every round of k-means, the distance between every data point and
every center of a cluster (a point known as a centroid) is calculated. Points are assigned
to the cluster whose centroid they are closest to. Then the algorithm recalculates all of
the centroids, finding the mean of each cluster’s assigned points and replacing the
old centroid with the new mean. The process of assigning points and recalculating
centroids continues until the centroids stop moving or a certain number of iterations
occurs.

 Each dimension of the initial points provided to k-means needs to be comparable
in magnitude. If not, k-means will skew toward clustering based on dimensions with
the largest differences. The process of making different types of data (in our case, dif-
ferent dimensions) comparable is known as normalization. One common way of nor-
malizing data is to evaluate each value based on its z-score (also known as standard score)
relative to the other values of the same type. A z-score is calculated by taking a value,
subtracting the mean of all of the values from it, and dividing that result by the stan-
dard deviation of all of the values. The zscores() function devised near the begin-
ning of the previous section does exactly this for every value in an iterable of floats.

 The main difficulty with k-means is choosing how to assign the initial centroids. In
the most basic form of the algorithm, which is what we will be implementing, the initial
centroids are placed randomly within the range of the data. Another difficulty is decid-
ing how many clusters to divide the data into (the “k” in k-means). In the classical algo-
rithm, that number is determined by the user, but the user may not know the right
number, and this will require some experimentation. We will let the user define “k.”

 Putting all of these steps and considerations together, here is our k-means cluster-
ing algorithm:

1 Initialize all of the data points and “k” empty clusters.
2 Normalize all of the data points.
3 Create random centroids associated with each cluster.
4 Assign each data point to the cluster of the centroid it is closest to.
5 Recalculate each centroid so it is the center (mean) of the cluster it is associ-

ated with.
6 Repeat steps 4 and 5 until a maximum number of iterations is reached or the

centroids stop moving (convergence).

Conceptually, k-means is actually quite simple: In each iteration, every data point is
associated with the cluster that it is closest to in terms of the cluster’s center. That cen-
ter moves as new points are associated with the cluster. This is illustrated in figure 6.1.

116 CHAPTER 6 K-means clustering
We will implement a class for maintaining state and running the algorithm, similar to
GeneticAlgorithm in chapter 5. We now return to the kmeans.py file.

Point = TypeVar('Point', bound=DataPoint)

class KMeans(Generic[Point]):
 @dataclass
 class Cluster:

points: List[Point]
centroid: DataPoint

KMeans is a generic class. It works with DataPoint or any subclass of DataPoint, as
defined by the Point type’s bound. It has an internal class, Cluster, that keeps track of
the individual clusters in the operation. Each Cluster has data points and a centroid
associated with it.

 Now we will continue with the outer class’s __init__() method.

def __init__(self, k: int, points: List[Point]) -> None:
 if k < 1: # k-means can't do negative or zero clusters

raise ValueError("k must be >= 1")
 self._points: List[Point] = points
 self._zscore_normalize()
 # initialize empty clusters with random centroids
 self._clusters: List[KMeans.Cluster] = []
 for _ in range(k):

rand_point: DataPoint = self._random_point()

Listing 6.3 kmeans.py continued

Listing 6.4 kmeans.py continued

Generation 1 Generation 2 Generation 3

Figure 6.1 An example of k-means running through three generations on an arbitrary data
set. Stars indicate centroids. Colors and shapes represent current cluster membership
(which changes).

117The k-means clustering algorithm
 cluster: KMeans.Cluster = KMeans.Cluster([], rand_point)
 self._clusters.append(cluster)

@property
def _centroids(self) -> List[DataPoint]:
 return [x.centroid for x in self._clusters]

KMeans has an array, _points, associated with it. This is all of the points in the data set.
The points are further divided between the clusters, which are stored in the appropri-
ately titled _clusters variable. When KMeans is instantiated, it needs to know how
many clusters to create (k). Every cluster initially has a random centroid. All of the
data points that will be used in the algorithm are normalized by z-score. The com-
puted _centroids property returns all of the centroids associated with the clusters
that are associated with the algorithm.

def _dimension_slice(self, dimension: int) -> List[float]:
 return [x.dimensions[dimension] for x in self._points]

_dimension_slice() is a convenience method that can be thought of as returning a col-
umn of data. It will return a list composed of every value at a particular index in every
data point. For instance, if the data points were of type DataPoint, then _dimension_
slice(0) would return a list of the value of the first dimension of every data point. This
is helpful in the following normalization method.

def _zscore_normalize(self) -> None:
 zscored: List[List[float]] = [[] for _ in range(len(self._points))]
 for dimension in range(self._points[0].num_dimensions):
 dimension_slice: List[float] = self._dimension_slice(dimension)
 for index, zscore in enumerate(zscores(dimension_slice)):
 zscored[index].append(zscore)
 for i in range(len(self._points)):
 self._points[i].dimensions = tuple(zscored[i])

_zscore_normalize() replaces the values in the dimensions tuple of every data point
with its z-scored equivalent. This uses the zscores() function that we defined for
sequences of float earlier. Although the values in the dimensions tuple are replaced,
the _originals tuple in the DataPoint are not. This is useful; the user of the algo-
rithm can still retrieve the original values of the dimensions before normalization
after the algorithm runs if they are stored in both places.

def _random_point(self) -> DataPoint:
 rand_dimensions: List[float] = []
 for dimension in range(self._points[0].num_dimensions):
 values: List[float] = self._dimension_slice(dimension)
 rand_value: float = uniform(min(values), max(values))

Listing 6.5 kmeans.py continued

Listing 6.6 kmeans.py continued

Listing 6.7 kmeans.py continued

118 CHAPTER 6 K-means clustering
rand_dimensions.append(rand_value)
 return DataPoint(rand_dimensions)

The preceding _random_point() method is used in the __init__() method to create
the initial random centroids for each cluster. It constrains the random values of each
point to be within the range of the existing data points’ values. It uses the constructor
we specified earlier on DataPoint to create a new point from an iterable of values.

 Now we will look to our method for finding the appropriate cluster for a data point
to belong to.

Find the closest cluster centroid to each point and assign the point to
that cluster

def _assign_clusters(self) -> None:
 for point in self._points:

closest: DataPoint = min(self._centroids,
key=partial(DataPoint.distance, point))

idx: int = self._centroids.index(closest)
cluster: KMeans.Cluster = self._clusters[idx]
cluster.points.append(point)

Throughout the book, we have created several functions that find the minimum or
find the maximum in a list. This one is not dissimilar. In this case we are looking for
the cluster centroid that has the minimum distance to each individual point. The
point is then assigned to that cluster. The only tricky bit is the use of a function medi-
ated by partial() as a key for min(). partial() takes a function and provides it with
some of its parameters before the function is applied. In this case, we supply the
DataPoint.distance() method with the point we are calculating from as its other
parameter. This will result in each centroid’s distance to the point being computed
and the lowest-distance centroid’s being returned by min().

Find the center of each cluster and move the centroid to there
def _generate_centroids(self) -> None:
 for cluster in self._clusters:

if len(cluster.points) == 0: # keep the same centroid if no points
 continue
means: List[float] = []
for dimension in range(cluster.points[0].num_dimensions):
 dimension_slice: List[float] = [p.dimensions[dimension] for p in

cluster.points]
 means.append(mean(dimension_slice))
cluster.centroid = DataPoint(means)

After every point is assigned to a cluster, the new centroids are calculated. This
involves calculating the mean of each dimension of every point in the cluster. The
means of each dimension are then combined to find the “mean point” in the cluster,
which becomes the new centroid. Note that we cannot use _dimension_slice() here,

Listing 6.8 kmeans.py continued

Listing 6.9 kmeans.py continued

119Clustering governors by age and longitude
because the points in question are a subset of all of the points (just those belonging to
a particular cluster). How could _dimension_slice() be rewritten to be more
generic?

 Now let’s look at the method that will actually execute the algorithm.

def run(self, max_iterations: int = 100) -> List[KMeans.Cluster]:
 for iteration in range(max_iterations):
 for cluster in self._clusters: # clear all clusters
 cluster.points.clear()
 self._assign_clusters() # find cluster each point is closest to
 old_centroids: List[DataPoint] = deepcopy(self._centroids) # record
 self._generate_centroids() # find new centroids
 if old_centroids == self._centroids: # have centroids moved?
 print(f"Converged after {iteration} iterations")
 return self._clusters
 return self._clusters

run() is the purest expression of the original algorithm. The only change to the algo-
rithm you may find unexpected is the removal of all points at the beginning of each
iteration. If this were not to occur, the _assign_clusters() method, as written, would
end up putting duplicate points in each cluster.

 You can perform a quick test using test DataPoints and k set to 2.

if __name__ == "__main__":
 point1: DataPoint = DataPoint([2.0, 1.0, 1.0])
 point2: DataPoint = DataPoint([2.0, 2.0, 5.0])
 point3: DataPoint = DataPoint([3.0, 1.5, 2.5])
 kmeans_test: KMeans[DataPoint] = KMeans(2, [point1, point2, point3])
 test_clusters: List[KMeans.Cluster] = kmeans_test.run()
 for index, cluster in enumerate(test_clusters):
 print(f"Cluster {index}: {cluster.points}")

Because there is randomness involved, your results may vary. The expected result is
something along these lines:

Converged after 1 iterations
Cluster 0: [(2.0, 1.0, 1.0), (3.0, 1.5, 2.5)]
Cluster 1: [(2.0, 2.0, 5.0)]

6.3 Clustering governors by age and longitude
Every American state has a governor. In June 2017, those governors ranged in age
from 42 to 79. If we take the United States from east to west, looking at each state by
its longitude, perhaps we can find clusters of states with similar longitudes and similar-
age governors. Figure 6.2 is a scatter plot of all 50 governors. The x-axis is state longi-
tude, and the y-axis is governor age.

Listing 6.10 kmeans.py continued

Listing 6.11 kmeans.py continued

120 CHAPTER 6 K-means clustering
Are there any obvious clusters in figure 6.2? In this figure, the axes are not normal-
ized. Instead, we are looking at raw data. If clusters were always obvious, there would
be no need for clustering algorithms.

 Let’s try running this data set through k-means. First, we will need a way of repre-
senting an individual data point.

from __future__ import annotations
from typing import List
from data_point import DataPoint
from kmeans import KMeans

class Governor(DataPoint):
 def __init__(self, longitude: float, age: float, state: str) -> None:

super().__init__([longitude, age])
self.longitude = longitude
self.age = age
self.state = state

Listing 6.12 governors.py

–68–160 –150 –140 –130 –120 –110 –100 –90 –80

A
ge

Alabama

Longitude

Arizona

Alaska

California

Arkansas

Colorado

Florida

Hawaii

Georgia

Idaho

Delaware Connecticut

Indiana

Kansas

Tennessee

Iowa

Louisiana Kentucky

Maine

Maryland

Michigan

Minnesota

Mississippi

Missouri

Nebraska

Montana

Nevada

New Hampshire

New Mexico

New Jersey

Massachusetts

New YorkNorth Carolina

Oklahoma

Oregon

North Dakota

Pennsylvania

West Virginia

Ohio

Rhode Island

South Carolina

Illinois

Texas

South Dakota

Utah

Virginia

Vermont

Washington

Wisconsin

Wyoming

80

41

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

Figure 6.2 State governors, as of June 2017, plotted by state longitude and governor age

121Clustering governors by age and longitude
 def __repr__(self) -> str:
 return f"{self.state}: (longitude: {self.longitude}, age:

{self.age})"

A Governor has two named and stored dimensions: longitude and age. Other than
that, Governor makes no modifications to the machinery of its superclass, DataPoint,
other than an overridden __repr__() for pretty printing. It would be pretty unreason-
able to enter the following data manually, so check out the source code repository that
accompanies this book.

if __name__ == "__main__":
 governors: List[Governor] = [Governor(-86.79113, 72, "Alabama"),

Governor(-152.404419, 66, "Alaska"),
 Governor(-111.431221, 53, "Arizona"), Governor(-92.373123,

66, "Arkansas"),
 Governor(-119.681564, 79, "California"), Governor(-

105.311104, 65, "Colorado"),
 Governor(-72.755371, 61, "Connecticut"), Governor(-

75.507141, 61, "Delaware"),
 Governor(-81.686783, 64, "Florida"), Governor(-83.643074,

74, "Georgia"),
 Governor(-157.498337, 60, "Hawaii"), Governor(-114.478828,

75, "Idaho"),
 Governor(-88.986137, 60, "Illinois"), Governor(-86.258278,

49, "Indiana"),
 Governor(-93.210526, 57, "Iowa"), Governor(-96.726486, 60,

"Kansas"),
 Governor(-84.670067, 50, "Kentucky"), Governor(-91.867805,

50, "Louisiana"),
 Governor(-69.381927, 68, "Maine"), Governor(-76.802101, 61,

"Maryland"),
 Governor(-71.530106, 60, "Massachusetts"), Governor(-

84.536095, 58, "Michigan"),
 Governor(-93.900192, 70, "Minnesota"), Governor(-89.678696,

62, "Mississippi"),
 Governor(-92.288368, 43, "Missouri"), Governor(-110.454353,

51, "Montana"),
 Governor(-98.268082, 52, "Nebraska"), Governor(-117.055374,

53, "Nevada"),
 Governor(-71.563896, 42, "New Hampshire"), Governor(-

74.521011, 54, "New Jersey"),
 Governor(-106.248482, 57, "New Mexico"), Governor(-

74.948051, 59, "New York"),
 Governor(-79.806419, 60, "North Carolina"), Governor(-

99.784012, 60, "North Dakota"),
 Governor(-82.764915, 65, "Ohio"), Governor(-96.928917, 62,

"Oklahoma"),
 Governor(-122.070938, 56, "Oregon"), Governor(-77.209755,

68, "Pennsylvania"),
 Governor(-71.51178, 46, "Rhode Island"), Governor(-

80.945007, 70, "South Carolina"),

Listing 6.13 governors.py continued

122 CHAPTER 6 K-means clustering
Governor(-99.438828, 64, "South Dakota"), Governor(-
86.692345, 58, "Tennessee"),

 Governor(-97.563461, 59, "Texas"), Governor(-111.862434, 70,
"Utah"),

Governor(-72.710686, 58, "Vermont"), Governor(-78.169968,
60, "Virginia"),

Governor(-121.490494, 66, "Washington"), Governor(-
80.954453, 66, "West Virginia"),

Governor(-89.616508, 49, "Wisconsin"), Governor(-107.30249,
55, "Wyoming")]

We will run k-means with k set to 2.

kmeans: KMeans[Governor] = KMeans(2, governors)
gov_clusters: List[KMeans.Cluster] = kmeans.run()
for index, cluster in enumerate(gov_clusters):
 print(f"Cluster {index}: {cluster.points}\n")

Because it starts with randomized centroids, every run of KMeans may potentially
return different clusters. It takes some human analysis to see if the clusters are actually
relevant. The following result is from a run that did have an interesting cluster:

Converged after 5 iterations
Cluster 0: [Alabama: (longitude: -86.79113, age: 72), Arizona: (longitude: -

111.431221, age: 53), Arkansas: (longitude: -92.373123, age: 66),
Colorado: (longitude: -105.311104, age: 65), Connecticut: (longitude: -
72.755371, age: 61), Delaware: (longitude: -75.507141, age: 61),
Florida: (longitude: -81.686783, age: 64), Georgia: (longitude: -
83.643074, age: 74), Illinois: (longitude: -88.986137, age: 60),
Indiana: (longitude: -86.258278, age: 49), Iowa: (longitude: -93.210526,
age: 57), Kansas: (longitude: -96.726486, age: 60), Kentucky:
(longitude: -84.670067, age: 50), Louisiana: (longitude: -91.867805,
age: 50), Maine: (longitude: -69.381927, age: 68), Maryland: (longitude:
-76.802101, age: 61), Massachusetts: (longitude: -71.530106, age: 60),
Michigan: (longitude: -84.536095, age: 58), Minnesota: (longitude: -
93.900192, age: 70), Mississippi: (longitude: -89.678696, age: 62),
Missouri: (longitude: -92.288368, age: 43), Montana: (longitude: -
110.454353, age: 51), Nebraska: (longitude: -98.268082, age: 52),
Nevada: (longitude: -117.055374, age: 53), New Hampshire: (longitude: -
71.563896, age: 42), New Jersey: (longitude: -74.521011, age: 54), New
Mexico: (longitude: -106.248482, age: 57), New York: (longitude: -
74.948051, age: 59), North Carolina: (longitude: -79.806419, age: 60),
North Dakota: (longitude: -99.784012, age: 60), Ohio: (longitude: -
82.764915, age: 65), Oklahoma: (longitude: -96.928917, age: 62),
Pennsylvania: (longitude: -77.209755, age: 68), Rhode Island:
(longitude: -71.51178, age: 46), South Carolina: (longitude: -80.945007,
age: 70), South Dakota: (longitude: -99.438828, age: 64), Tennessee:
(longitude: -86.692345, age: 58), Texas: (longitude: -97.563461, age:
59), Vermont: (longitude: -72.710686, age: 58), Virginia: (longitude: -
78.169968, age: 60), West Virginia: (longitude: -80.954453, age: 66),
Wisconsin: (longitude: -89.616508, age: 49), Wyoming: (longitude: -
107.30249, age: 55)]

Listing 6.14 governors.py continued

123Clustering governors by age and longitude
Cluster 1: [Alaska: (longitude: -152.404419, age: 66), California:
(longitude: -119.681564, age: 79), Hawaii: (longitude: -157.498337, age:
60), Idaho: (longitude: -114.478828, age: 75), Oregon: (longitude: -
122.070938, age: 56), Utah: (longitude: -111.862434, age: 70),
Washington: (longitude: -121.490494, age: 66)]

Cluster 1 represents the extreme Western states, all geographically next to each other
(if you consider Alaska and Hawaii next to the Pacific coast states). They all have rela-
tively old governors and hence formed an interesting cluster. Do folks on the Pacific
Rim like older governors? We cannot determine anything conclusive from these clus-
ters beyond a correlation. Figure 6.3 illustrates the result. Squares are cluster 1, and
circles are cluster 0.

TIP It cannot be emphasized enough that your results with k-means using
random initialization of centroids will vary. Be sure to run k-means multiple
times with any data set.

–68–160 –150 –140 –130 –120 –110 –100 –90 –80

80

41

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

A
ge

Alabama

Longitude

Alaska

Arizona

California

Arkansas

Colorado

Florida

Hawaii

Georgia

Idaho

Delaware Connecticut

Indiana

Kansas

Tennessee

Iowa

Louisiana

Maine

Kentucky

Maryland

Michigan

Massachusetts

Minnesota

Mississippi

Missouri

Nebraska

Montana

Nevada

New Hampshire

New Mexico

New Jersey

New York
North Carolina

Oregon

Oklahoma

North Dakota

Pennsylvania

West Virginia

Ohio

Rhode Island

South Carolina

South Dakota

Illinois

Texas

Utah

Vermont

Virginia

Washington

Wisconsin

Wyoming

Figure 6.3 Data points in cluster 0 are designated by circles, and data points in cluster 1 are designated by
squares.

124 CHAPTER 6 K-means clustering
6.4 Clustering Michael Jackson albums by length
Michael Jackson released 10 solo studio albums. In the following example, we will
cluster those albums by looking at two dimensions: album length (in minutes) and
number of tracks. This example is a nice contrast with the preceding governors exam-
ple because it is easy to see the clusters in the original data set without even running
k-means. An example like this can be a good way of debugging an implementation of
a clustering algorithm.

NOTE Both of the examples in this chapter make use of two-dimensional data
points, but k-means can work with data points of any number of dimensions.

The example is presented here in its entirety as one code listing. If you look at the
album data in the following code listing before even running the example, it is clear
that Michael Jackson made longer albums toward the end of his career. So the two
clusters of albums should probably be divided between earlier albums and later
albums. HIStory: Past, Present, and Future, Book I is an outlier and can also logically end
up in its own solo cluster. An outlier is a data point that lies outside the normal limits of
a data set.

from __future__ import annotations
from typing import List
from data_point import DataPoint
from kmeans import KMeans

class Album(DataPoint):
 def __init__(self, name: str, year: int, length: float, tracks: float) ->

None:
super().__init__([length, tracks])
self.name = name
self.year = year
self.length = length
self.tracks = tracks

 def __repr__(self) -> str:
return f"{self.name}, {self.year}"

if __name__ == "__main__":
 albums: List[Album] = [Album("Got to Be There", 1972, 35.45, 10),

Album("Ben", 1972, 31.31, 10),
Album("Music & Me", 1973, 32.09, 10),

Album("Forever, Michael", 1975, 33.36, 10),
Album("Off the Wall", 1979, 42.28, 10),

Album("Thriller", 1982, 42.19, 9),
Album("Bad", 1987, 48.16, 10), Album("Dangerous",

1991, 77.03, 14),
Album("HIStory: Past, Present and Future, Book I",

1995, 148.58, 30), Album("Invincible", 2001, 77.05, 16)]
 kmeans: KMeans[Album] = KMeans(2, albums)

Listing 6.15 mj.py

125K-means clustering problems and extensions
 clusters: List[KMeans.Cluster] = kmeans.run()
 for index, cluster in enumerate(clusters):
 print(f"Cluster {index} Avg Length {cluster.centroid.dimensions[0]}

Avg Tracks {cluster.centroid.dimensions[1]}: {cluster.points}\n")

Note that the attributes name and year are only recorded for labeling purposes and
are not included in the actual clustering. Here is an example output:

Converged after 1 iterations
Cluster 0 Avg Length -0.5458820039179509 Avg Tracks -0.5009878988684237: [Got

to Be There, 1972, Ben, 1972, Music & Me, 1973, Forever, Michael, 1975,
Off the Wall, 1979, Thriller, 1982, Bad, 1987]

Cluster 1 Avg Length 1.2737246758085523 Avg Tracks 1.1689717640263217:
[Dangerous, 1991, HIStory: Past, Present and Future, Book I, 1995,
Invincible, 2001]

The reported cluster averages are interesting. Note that the averages are z-scores.
Cluster 1’s three albums, Michael Jackson’s final three albums, were about one stan-
dard deviation longer than the average of all ten of his solo albums.

6.5 K-means clustering problems and extensions
When k-means clustering is implemented using random starting points, it may com-
pletely miss useful points of division within the data. This often results in a lot of trial
and error for the operator. Figuring out the right value for “k” (the number of clus-
ters) is also difficult and error prone if the operator does not have good insight into
how many groups of data should exist.

 There are more sophisticated versions of k-means that can try to make educated
guesses or do automatic trial and error regarding these problematic variables. One
popular variant is k-means++, which attempts to solve the initialization problem by
choosing centroids based on a probability distribution of distance to every point
instead of pure randomness. An even better option for many applications is to choose
good starting regions for each of the centroids based on information about the data
that is known ahead of time—in other words, a version of k-means where the user of
the algorithm chooses the initial centroids.

 The runtime for k-means clustering is proportional to the number of data points,
the number of clusters, and the number of dimensions of the data points. It can
become unusable in its basic form when there are a high number of points that have a
large number of dimensions. There are extensions that try to not do as much calcula-
tion between every point and every center by evaluating whether a point really has the
potential to move to another cluster before doing the calculation. Another option for
numerous-point or high-dimension data sets is to run just a sampling of the data
points through k-means. This will approximate the clusters that the full k-means algo-
rithm may find.

 Outliers in a data set may result in strange results for k-means. If an initial centroid
happens to fall near an outlier, it could form a cluster of one (as could potentially

126 CHAPTER 6 K-means clustering
happen with the HIStory album in the Michael Jackson example). K-means may run
better with outliers removed.

 Finally, the mean is not always considered a good measure of the center. K-medians
looks at the median of each dimension, and k-medoids uses an actual point in the
data set as the middle of each cluster. There are statistical reasons beyond the scope of
this book for choosing each of these centering methods, but common sense dictates
that for a tricky problem it may be worth trying each of them and sampling the results.
The implementations of each are not that different.

6.6 Real-world applications
Clustering is often the purview of data scientists and statistical analysts. It is used
widely as a way to interpret data in a variety of fields. K-means clustering, in particular,
is a useful technique when little is known about the structure of the data set.

 In data analysis, clustering is an essential technique. Imagine a police department
that wants to know where to put cops on patrol. Imagine a fast-food franchise that
wants to figure out where its best customers are, to send promotions. Imagine a boat-
rental operator that wants to minimize accidents by analyzing when they occur and
who causes them. Now imagine how they could solve their problems using clustering.

 Clustering helps with pattern recognition. A clustering algorithm may detect a pat-
tern that the human eye misses. For instance, clustering is sometimes used in biology
to identify groups of incongruous cells.

 In image recognition, clustering helps to identify nonobvious features. Individual
pixels can be treated as data points with their relationship to one another being
defined by distance and color difference.

 In political science, clustering is sometimes used to find voters to target. Can a
political party find disenfranchised voters concentrated in a single district that they
should focus their campaign dollars on? What issues are similar voters likely to be con-
cerned about?

6.7 Exercises
1 Create a function that can import data from a CSV file into DataPoints.
2 Create a function using an external library like matplotlib that creates a color-

coded scatter plot of the results of any run of KMeans on a two-dimensional data
set.

3 Create a new initializer for KMeans that takes initial centroid positions instead of
assigning them randomly.

4 Research and implement the k-means++ algorithm.

Fairly simple
neural networks
When we hear about advances in artificial intelligence these days, in the late 2010s,
they generally concern a particular subdiscipline known as machine learning (com-
puters learning some new information without being explicitly told it). More often
than not those advances are being driven by a particular machine-learning tech-
nique known as neural networks. Although invented decades ago, neural networks
have been going through a kind of renaissance as improved hardware and newly
discovered research-driven software techniques enable a new paradigm known as
deep learning.

 Deep learning has turned out to be a broadly applicable technique. It has been
found useful in everything from hedge-fund algorithms to bioinformatics. Two
deep-learning applications that consumers have become familiar with are image
recognition and speech recognition. If you have ever asked your digital assistant
what the weather is or had a photo program recognize your face, there was proba-
bly some deep learning going on.

 Deep-learning techniques utilize the same building blocks as simpler neural
networks. In this chapter we will explore those blocks by building a simple neural
network. It will not be state of the art, but it will give you a basis for understanding
deep learning (which is based on more complex neural networks than we will
build). Most practitioners of machine learning do not build neural networks from
scratch. Instead, they use popular, highly optimized, off-the-shelf frameworks that
do the heavy lifting. Although this chapter will not help you learn how to use any
specific framework, and the network we will build will not be useful for an actual
application, it will help you understand how those frameworks work at a low level.
127

128 CHAPTER 7 Fairly simple neural networks
7.1 Biological basis?
The human brain is the most incredible computational device in existence. It cannot
crunch numbers as fast as a microprocessor, but its ability to adapt to new situations,
learn new skills, and be creative is unsurpassed by any known machine. Since the
dawn of computers, scientists have been interested in modeling the brain’s machin-
ery. Each nerve cell in the brain is known as a neuron. Neurons in the brain are net-
worked to one another via connections known as synapses. Electricity passes through
synapses to power these networks of neurons—also known as neural networks.

NOTE The preceding description of biological neurons is a gross oversimplifi-
cation for analogy’s sake. In fact, biological neurons have parts like axons,
dendrites, and nuclei that you may remember from high-school biology. And
synapses are actually gaps between neurons where neurotransmitters are
secreted to enable those electrical signals to pass.

Although scientists have identified the parts and functions of neurons, the details of
how biological neural networks form complex thought patterns are still not well
understood. How do they process information? How do they form original thoughts?
Most of our knowledge of how the brain works comes from looking at it on a macro
level. Functional magnetic resonance imaging (fMRI) scans of the brain show where
blood flows when a human is doing a particular activity or thinking a particular
thought (illustrated in figure 7.1). This and other macro-techniques can lead to infer-
ences about how the various parts are connected, but they do not explain the myster-
ies of how individual neurons aid in the development of new thoughts.

Public domain, U.S. National Institute for Mental Health

Figure 7.1 A researcher studies fMRI images of the brain. fMRI images do not tell us much about how
individual neurons function or how neural networks are organized.

129Artificial neural networks
Teams of scientists are racing around the globe to unlock the brain’s secrets, but con-
sider this: The human brain has approximately 100,000,000,000 neurons, and each of
them may have connections with as many as tens of thousands of other neurons. Even
for a computer with billions of logic gates and terabytes of memory, a single human
brain would be impossible to model using today’s technology. Humans will still likely
be the most advanced general-purpose learning entities for the foreseeable future.

NOTE A general-purpose learning machine that is equivalent to human
beings in abilities is the goal of so-called strong AI (also known as artificial gen-
eral intelligence). At this point in history, it is still the stuff of science fiction.
Weak AI is the type of AI you see every day: computers intelligently solving spe-
cific tasks they were preconfigured to accomplish.

If biological neural networks are not fully understood, then how has modeling them
been an effective computational technique? Although digital neural networks, known
as artificial neural networks, are inspired by biological neural networks, inspiration is
where the similarities end. Modern artificial neural networks do not claim to work like
their biological counterparts. In fact, that would be impossible, because we do not
completely understand how biological neural networks work to begin with.

7.2 Artificial neural networks
In this section we will look at what is arguably the most common type of artificial neu-
ral network, a feed-forward network with backpropagation—the same type we will later be
developing. Feed-forward means the signal is generally moving in one direction
through the network. Backpropagation means we will determine errors at the end of
each signal’s traversal through the network and try to distribute fixes for those errors
back through the network, especially affecting the neurons that were most responsible
for them. There are many other types of artificial neural networks, and perhaps this
chapter will pique your interest in exploring further.

7.2.1 Neurons

The smallest unit in an artificial neural network is a neuron. It holds a vector of
weights, which are just floating-point numbers. A vector of inputs (also just floating-
point numbers) is passed to the neuron. It combines those inputs with its weights
using a dot product. It then runs an activation function on that product and spits the
result out as its output. This action can be thought of as analagous to a real neuron
firing.

 An activation function is a transformer of the neuron’s output. The activation
function is almost always nonlinear, which allows neural networks to represent solu-
tions to nonlinear problems. If there were no activation functions, the entire neural
network would just be a linear transformation. Figure 7.2 shows a single neuron and
its operation.

130 CHAPTER 7 Fairly simple neural networks
NOTE There are some math terms in this section that you may not have seen
since a precalculus or linear algebra class. Explaining what vectors or dot
products are is beyond the scope of this chapter, but you will likely get an
intuition of what a neural network does by following along in this chapter,
even if you do not understand all of the math. Later in the chapter there will
be some calculus, including the use of derivatives and partial derivatives, but
even if you do not understand all of the math, you should be able to follow
the code. In fact, this chapter will not explain how to derive the formulas
using calculus. Instead, it will focus on using the derivations.

7.2.2 Layers

In a typical feed-forward artificial neural network, neurons are organized in layers.
Each layer consists of a certain number of neurons lined up in a row or column
(depending on the diagram; the two are equivalent). In a feed-forward network,
which is what we will be building, signals always pass in a single direction from one
layer to the next. The neurons in each layer send their output signal to be used as
input to the neurons in the next layer. Every neuron in each layer is connected to
every neuron in the next layer.

 The first layer is known as the input layer, and it receives its signals from some exter-
nal entity. The last layer is known as the output layer, and its output typically must be
interpreted by an external actor to get an intelligent result. The layers between the
input and output layers are known as hidden layers. In simple neural networks like the

Inside the neuron the inputs and
weights are combined into a single
output by taking the dot product.

Neuron

= Output
Input 1
Input 2
Input 3

Weight 1
Weight 2
Weight 3

Final
output

Before the output leaves the
neuron, an activation function (f())

is applied to it.

Input 1

Input 2

Input 3

Weight 1

Weight 2

Weight 3 f(Output) = Final output

Activation function

Figure 7.2 A single neuron combines its weights with input signals to produce an output signal
that is modified by an activation function.

131Artificial neural networks
one we will be building in this chapter, there is just one hidden layer, but deep-
learning networks have many. Figure 7.3 shows the layers working together in a simple
network. Note how the outputs from one layer are used as the inputs to every neuron
in the next layer.

 These layers just manipulate floating-point numbers. The inputs to the input layer
are floating-point numbers, and the outputs from the output layer are floating-point
numbers.

 Obviously, these numbers must represent something meaningful. Imagine that the
network was designed to classify small black-and-white images of animals. Perhaps the
input layer has 100 neurons representing the grayscale intensity of each pixel in a 10 x
10 pixel animal image, and the output layer has 5 neurons representing the likelihood
that the image is of a mammal, reptile, amphibian, fish, or bird. The final classifica-
tion could be determined by the output neuron with the highest floating-point out-
put. If the output numbers were 0.24, 0.65, 0.70, 0.12, and 0.21, respectively, the
image would be determined to be an amphibian.

7.2.3 Backpropagation

The last piece of the puzzle, and the inherently most complex part, is backpropaga-
tion. Backpropagation finds the error in a neural network’s output and uses it to mod-
ify the weights of neurons. The neurons most responsible for the error are most
heavily modified. But where does the error come from? How can we know the error?
The error comes from a phase in the use of a neural network known as training.

Input layer

Hidden layer

Output layer

Figure 7.3 A simple neural network with one input layer of two neurons,
one hidden layer of four neurons, and one output layer of three neurons.
The number of neurons in each layer in this figure is arbitrary.

132 CHAPTER 7 Fairly simple neural networks
TIP There are steps written out (in English) for several mathematical formu-
las in this section. Pseudo formulas (not using proper notation) are in the
accompanying figures. This approach will make the formulas readable for
those uninitiated in (or out of practice with) mathematical notation. If the
more formal notation (and the derivation of the formulas) interests you,
check out chapter 18 of Norvig and Russell’s Artificial Intelligence.1

Before they can be used, most neural networks must be trained. We must know the
right outputs for some inputs so that we can use the difference between expected out-
puts and actual outputs to find errors and modify weights. In other words, neural net-
works know nothing until they are told the right answers for a certain set of inputs, so
that they can prepare themselves for other inputs. Backpropagation only occurs
during training.

NOTE Because most neural networks must be trained, they are considered a
type of supervised machine learning. Recall from chapter 6 that the k-means
algorithm and other cluster algorithms are considered a form of unsupervised
machine learning because once they are started, no outside intervention is
required. There are other types of neural networks than the one described in
this chapter that do not require pretraining and are considered a form of
unsupervised learning.

The first step in backpropagation is to calculate the error between the neural net-
work’s output for some input and the expected output. This error is spread across all
of the neurons in the output layer. (Each neuron has an expected output and its
actual output.) The derivative of the output neuron’s activation function is then
applied to what was output by the neuron before its activation function was applied.
(We cache its pre-activation function output.) This result is multiplied by the neuron’s
error to find its delta. This formula for finding the delta uses a partial derivative, and
its calculus derivation is beyond the scope of this book, but we are basically figuring
out how much of the error each output neuron was responsible for. See figure 7.4 for
a diagram of this calculation.

 Deltas must then be calculated for every neuron in the hidden layer(s) in the net-
work. We must determine how much each neuron was responsible for the incorrect
output in the output layer. The deltas in the output layer are used to calculate the del-
tas in the preceding hidden layer. For each previous layer, the deltas are calculated by
taking the dot product of the next layer’s weights with respect to the particular neu-
ron in question and the deltas already calculated in the next layer. This value is multi-
plied by the derivative of the activation function applied to a neuron’s last output
(cached before the activation function was applied) to get the neuron’s delta. Again,
this formula is derived using a partial derivative, which you can read about in more
mathematically focused texts.

1 Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 3rd edition (Pearson, 2010).

133Artificial neural networks
Figure 7.5 shows the actual calculation of deltas for neurons in hidden layers. In a net-
work with multiple hidden layers, neurons O1, O2, and O3 could be neurons in the
next hidden layer instead of in the output layer.

delta is stored in the
neuron for use in

calculating deltas in the
previous layer.

f1() is the
derivative of the

activation function. e stands for error.

OutputCache is what was
fed into the activation
function during feed-

forward processing of the
last signal.

The expected output is
provided externally by the
data in the training set; it
is the known right answer
that the neuron should
have outputted.

Output
neuron delta = f '(OutputCache) * e e = Expected output – Actual output

Figure 7.4 The mechanism by which an output neuron’s delta is calculated during the backpropagation
phase of training

delta =
f '(OutputCache) * temp

temp =

O2w1

O3w1

Output
neuron

(O2)

O1Delta
O2Delta
O3Delta

O1w1
O2w1
O3w1

Hidden
neuron

(N1)

delta is stored in
the neuron.

O1w1

Output
neuron

(O1)

O1w1 is the weight
coming into 01 that
corresponds to the

signal coming from N1.

The deltas of other hidden
neurons are calculated
the same way with their
respective next layer weights
and output caches.

Output
neuron

(O3)

Hidden
neuron

(N2)

O1, O2, and O3 had
their deltas calculated

in figure 7.4.

Figure 7.5 How a delta is calculated for a neuron in a hidden layer

134 CHAPTER 7 Fairly simple neural networks
Last, but most important, all of the weights for every neuron in the network must be
updated by multiplying each individual weight’s last input with the delta of the neu-
ron and something called a learning rate, and adding that to the existing weight. This
method of modifying the weight of a neuron is known as gradient descent . It is like
climbing down a hill representing the error function of the neuron toward a point of
minimal error. The delta represents the direction we want to climb, and the learning
rate affects how fast we climb. It is hard to determine a good learning rate for an
unknown problem without trial and error. Figure 7.6 shows how every weight in the
hidden layer and output layer is updated.

Once the weights are updated, the neural network is ready to be trained again with
another input and expected output. This process repeats until the network is deemed
well trained by the neural network’s user. This can be determined by testing it against
inputs with known correct outputs.

 Backpropagation is complicated. Do not worry if you do not yet grasp all of the
details. The explanation in this section may not be enough. Ideally, implementing
backpropagation will take your understanding to the next level. As we implement our
neural network and backpropagation, keep in mind this overarching theme: Back-
propagation is a way of adjusting each individual weight in the network according to
its responsibility for an incorrect output.

Every weight will be updated according to the formula:
w = w + learningRate * lastInput * delta

where lastInput is the last input a weight was multiplied with in the
last round of forward-propagation. So, N1w1 would be:

N1w1 = N1w1 + learningRate * lastInput1 * N1Delta.

Recall that N1Delta was calculated in the previous

step. See figure 7.5.

The learning rate is determined by the user of the

network, often through some trial and error.

lastInput1

lastInput2

N1w2

N1w1 Hidden
neuron

(N1)

Input
neuron

(l2)

Input
neuron

(l1)

Figure 7.6 The weights of every hidden layer and output layer neuron are updated
using the deltas calculated in the previous steps, the prior weights, the prior inputs,
and a user-determined learning rate.

135Preliminaries
7.2.4 The big picture

We covered a lot of ground in this section. Even if the details do not yet make sense, it
is important to keep the main themes in mind for a feed-forward network with back-
propagation:

 Signals (floating-point numbers) move through neurons organized in layers in
one direction. Every neuron in each layer is connected to every neuron in the
next layer.

 Each neuron (except in the input layer) processes the signals it receives by com-
bining them with weights (also floating-point numbers) and applying an activa-
tion function.

 During a process called training, network outputs are compared with expected
outputs to calculate errors.

 Errors are backpropagated through the network (back toward where they came
from) to modify weights so that they are more likely to create correct outputs.

There are more methods for training neural networks than the one explained here.
There are also many other ways for signals to move within neural networks. The
method explained here, and that we will be implementing, is just a particularly com-
mon form that serves as a decent introduction. Appendix B lists further resources for
learning more about neural networks (including other types) and the math.

7.3 Preliminaries
Neural networks utilize mathematical mechanisms that require a lot of floating-point
operations. Before we develop the actual structures of our simple neural network, we
will need some mathematical primitives. These simple primitives are used extensively
in the code that follows, so if you can find ways to accelerate them, it will really
improve the performance of your neural network.

WARNING The complexity of the code in this chapter is arguably greater than
any other in the book. There is a lot of build-up, with actual results seen only
at the very end. There are many resources about neural networks that help
you build one in very few lines of code, but this example is aimed at exploring
the machinery and how the different components work together in a read-
able and extensible fashion. That is our goal, even if the code is a little longer
and more expressive.

7.3.1 Dot product

As you will recall, dot products are required both for the feed-forward phase and for
the backpropagation phase. Luckily, a dot product is simple to implement using the
Python built-in functions zip() and sum(). We will keep our preliminary functions in
a util.py file.

136 CHAPTER 7 Fairly simple neural networks
from typing import List
from math import exp

dot product of two vectors
def dot_product(xs: List[float], ys: List[float]) -> float:
 return sum(x * y for x, y in zip(xs, ys))

7.3.2 The activation function

Recall that the activation function transforms the output of a neuron before the signal
passes to the next layer (see figure 7.2). The activation function has two purposes: It
allows the neural network to represent solutions that are not just linear transforma-
tions (as long as the activation function itself is not just a linear transformation), and
it can keep the output of each neuron within a certain range. An activation function
should have a computable derivative so that it can be used for backpropagation.

 Sigmoid functions are a popular set of activation functions. One particularly popu-
lar sigmoid function (often just referred to as “the sigmoid function”) is illustrated in
figure 7.7 (referred to in the figure as S(x)), along with its equation and derivative
(S'(x)). The result of the sigmoid function will always be a value between 0 and 1. Hav-
ing the value consistently be between 0 and 1 is useful for the network, as you will see.
You will shortly see the formulas from the figure written out in code.

 There are other activation functions, but we will use the sigmoid function. Here is
a straightforward conversion of the formulas in figure 7.7 into code:

the classic sigmoid activation function
def sigmoid(x: float) -> float:
 return 1.0 / (1.0 + exp(-x))

def derivative_sigmoid(x: float) -> float:
 sig: float = sigmoid(x)
 return sig * (1 - sig)

7.4 Building the network
We will create classes to model all three organizational units in the network: neurons,
layers, and the network itself. For the sake of simplicity, we will start from the smallest
(neurons), move to the central organizing component (layers), and build up to the
largest (the whole network). As we go from smallest component to largest compo-
nent, we will encapsulate the previous level. Neurons only know about themselves.
Layers know about the neurons they contain and other layers. And the network knows
about all of the layers.

NOTE There are many long lines of code in this chapter that do not neatly fit
in the column limits of a printed book. I strongly recommend downloading
the source code for this chapter from the book’s source code repository and

Listing 7.1 util.py

Listing 7.2 util.py continued

137Building the network
following along on your computer screen as you read: https://github.com/
davecom/ClassicComputerScienceProblemsInPython.

7.4.1 Implementing neurons

Let’s start with a neuron. An individual neuron will store many pieces of state, includ-
ing its weights, its delta, its learning rate, a cache of its last output, and its activation
function, along with the derivative of that activation function. Some of these elements
could be more efficiently stored up a level (in the future Layer class), but they are
included in the following Neuron class for illustrative purposes.

from typing import List, Callable
from util import dot_product

class Neuron:

Listing 7.3 neuron.py

1.5

y

x

1

0.5

0

–0.5

–2.5–5 52.5

S′(x) = S(x) * (1 – S(x))

1

1 + e–x
S(x) =

Figure 7.7 The sigmoid activation function (S(x)) will always return a value between 0 and 1.
Note that its derivative is easy to compute as well (S'(x)).

https://github.com/davecom/ClassicComputerScienceProblemsInPython
https://github.com/davecom/ClassicComputerScienceProblemsInPython
https://github.com/davecom/ClassicComputerScienceProblemsInPython

138 CHAPTER 7 Fairly simple neural networks
 def __init__(self, weights: List[float], learning_rate: float,
activation_function: Callable[[float], float], derivative_activation_
function: Callable[[float], float]) -> None:

self.weights: List[float] = weights
self.activation_function: Callable[[float], float] = activation_

function
self.derivative_activation_function: Callable[[float], float] =

derivative_activation_function
self.learning_rate: float = learning_rate
self.output_cache: float = 0.0
self.delta: float = 0.0

 def output(self, inputs: List[float]) -> float:
self.output_cache = dot_product(inputs, self.weights)
return self.activation_function(self.output_cache)

Most of these parameters are initialized in the __init__() method. Because delta
and output_cache are not known when a Neuron is first created, they are just initial-
ized to 0. All of the neuron’s variables are mutable. In the life of the neuron (as we will
be using it) their values may never change, but there is still a reason to make them
mutable: flexibility. If this Neuron class were to be used with other types of neural net-
works, it is possible that some of these values might change on the fly. There are neu-
ral networks that change the learning rate as the solution approaches and that
automatically try different activation functions. Here, we are trying to keep the Neuron
class maximally flexible for other neural network applications.

 The only other method, other than __init__(), is output(). output() takes the
input signals (inputs) coming to the neuron and applies the formula discussed ear-
lier in the chapter (see figure 7.2). The input signals are combined with the weights
via a dot product, and this is cached in output_cache. Recall from the section on
backpropagation that this value, obtained before the activation function is applied, is
used to calculate delta. Finally, before the signal is sent on to the next layer (by being
returned from output()), the activation function is applied to it.

 That is it! An individual neuron in this network is fairly simple. It cannot do much
beyond take an input signal, transform it, and send it off to be processed further. It
maintains several elements of state that are used by the other classes.

7.4.2 Implementing layers

A layer in our network will need to maintain three pieces of state: its neurons, the
layer that preceded it, and an output cache. The output cache is similar to that of a
neuron, but up one level. It caches the outputs (after activation functions are applied)
of every neuron in the layer.

 At creation time, a layer’s main responsibility is to initialize its neurons. Our Layer
class’s __init__() method therefore needs to know how many neurons it should be
initializing, what their activation functions should be, and what their learning rates
should be. In this simple network, every neuron in a layer has the same activation
function and learning rate.

139Building the network

from __future__ import annotations
from typing import List, Callable, Optional
from random import random
from neuron import Neuron
from util import dot_product

class Layer:
 def __init__(self, previous_layer: Optional[Layer], num_neurons: int,

learning_rate: float, activation_function: Callable[[float], float],
derivative_activation_function: Callable[[float], float]) -> None:

 self.previous_layer: Optional[Layer] = previous_layer
 self.neurons: List[Neuron] = []
 # the following could all be one large list comprehension
 for i in range(num_neurons):
 if previous_layer is None:
 random_weights: List[float] = []
 else:
 random_weights = [random() for _ in range(len(previous_

layer.neurons))]
 neuron: Neuron = Neuron(random_weights, learning_rate,

activation_function, derivative_activation_function)
 self.neurons.append(neuron)
 self.output_cache: List[float] = [0.0 for _ in range(num_neurons)]

As signals are fed forward through the network, the Layer must process them through
every neuron. (Remember that every neuron in a layer receives the signals from every
neuron in the previous layer.) outputs() does just that. outputs() also returns the
result of processing them (to be passed by the network to the next layer) and caches
the output. If there is no previous layer, that indicates the layer is an input layer, and it
just passes the signals forward to the next layer.

def outputs(self, inputs: List[float]) -> List[float]:
 if self.previous_layer is None:
 self.output_cache = inputs
 else:
 self.output_cache = [n.output(inputs) for n in self.neurons]
 return self.output_cache

There are two distinct types of deltas to calculate in backpropagation: deltas for neurons
in the output layer and deltas for neurons in hidden layers. The formulas are described
in figures 7.4 and 7.5, and the following two methods are rote translations of those for-
mulas. These methods will later be called by the network during backpropagation.

should only be called on output layer
def calculate_deltas_for_output_layer(self, expected: List[float]) -> None:
 for n in range(len(self.neurons)):

Listing 7.4 layer.py

Listing 7.5 layer.py continued

Listing 7.6 layer.py continued

140 CHAPTER 7 Fairly simple neural networks
 self.neurons[n].delta = self.neurons[n].derivative_activation_
function(self.neurons[n].output_cache) * (expected[n] - self.output_
cache[n])

should not be called on output layer
def calculate_deltas_for_hidden_layer(self, next_layer: Layer) -> None:
 for index, neuron in enumerate(self.neurons):
 next_weights: List[float] = [n.weights[index] for n in next_

layer.neurons]
 next_deltas: List[float] = [n.delta for n in next_layer.neurons]
 sum_weights_and_deltas: float = dot_product(next_weights, next_

deltas)
 neuron.delta = neuron.derivative_activation_function(neuron.output_

cache) * sum_weights_and_deltas

7.4.3 Implementing the network

The network itself has only one piece of state: the layers that it manages. The Network
class is responsible for initializing its constituent layers.

 The __init__() method takes an int list describing the structure of the network.
For example, the list [2, 4, 3] describes a network with 2 neurons in its input layer,
4 neurons in its hidden layer, and 3 neurons in its output layer. In this simple network,
we will assume that all layers in the network will make use of the same activation func-
tion for their neurons and the same learning rate.

from __future__ import annotations
from typing import List, Callable, TypeVar, Tuple
from functools import reduce
from layer import Layer
from util import sigmoid, derivative_sigmoid

T = TypeVar('T') # output type of interpretation of neural network

class Network:
 def __init__(self, layer_structure: List[int], learning_rate: float,

activation_function: Callable[[float], float] = sigmoid, derivative_
activation_function: Callable[[float], float] = derivative_sigmoid) ->
None:

 if len(layer_structure) < 3:
 raise ValueError("Error: Should be at least 3 layers (1 input, 1

hidden, 1 output)")
 self.layers: List[Layer] = []
 # input layer
 input_layer: Layer = Layer(None, layer_structure[0], learning_rate,

activation_function, derivative_activation_function)
 self.layers.append(input_layer)
 # hidden layers and output layer
 for previous, num_neurons in enumerate(layer_structure[1::]):
 next_layer = Layer(self.layers[previous], num_neurons, learning_

rate, activation_function, derivative_activation_function)
 self.layers.append(next_layer)

Listing 7.7 network.py

141Building the network
The outputs of the neural network are the result of signals running through all of its
layers. Note how compactly reduce() is used in outputs() to pass signals from one
layer to the next repeatedly through the whole network.

Pushes input data to the first layer, then output from the first
as input to the second, second to the third, etc.
def outputs(self, input: List[float]) -> List[float]:
 return reduce(lambda inputs, layer: layer.outputs(inputs), self.layers,

input)

The backpropagate() method is responsible for computing deltas for every neuron
in the network. It uses the Layer methods calculate_deltas_for_output_layer()
and calculate_deltas_for_hidden_layer() in sequence. (Recall that in backpropa-
gation, deltas are calculated backward.) It passes the expected values of output for a
given set of inputs to calculate_deltas_for_output_layer(). That method uses the
expected values to find the error used for delta calculation.

Figure out each neuron's changes based on the errors of the output
versus the expected outcome
def backpropagate(self, expected: List[float]) -> None:
 # calculate delta for output layer neurons
 last_layer: int = len(self.layers) - 1
 self.layers[last_layer].calculate_deltas_for_output_layer(expected)
 # calculate delta for hidden layers in reverse order
 for l in range(last_layer - 1, 0, -1):
 self.layers[l].calculate_deltas_for_hidden_layer(self.layers[l + 1])

backpropagate() is responsible for calculating all deltas, but it does not actually modify
any of the network’s weights. update_weights() must be called after backpropagate()
because weight modification depends on deltas. This method follows directly from the
formula in figure 7.6.

backpropagate() doesn't actually change any weights
this function uses the deltas calculated in backpropagate() to
actually make changes to the weights
def update_weights(self) -> None:
 for layer in self.layers[1:]: # skip input layer
 for neuron in layer.neurons:
 for w in range(len(neuron.weights)):
 neuron.weights[w] = neuron.weights[w] + (neuron.learning_rate

* (layer.previous_layer.output_cache[w]) * neuron.delta)

Neuron weights are modified at the end of each round of training. Training sets
(inputs coupled with expected outputs) must be provided to the network. The
train() method takes a list of lists of inputs and a list of lists of expected outputs.

Listing 7.8 network.py continued

Listing 7.9 network.py continued

Listing 7.10 network.py continued

142 CHAPTER 7 Fairly simple neural networks
It runs each input through the network and then updates its weights by calling
backpropagate() with the expected output (and update_weights() after that). Try
adding code here to print out the error rate as the network goes through a training
set to see how the network gradually decreases its error rate as it rolls down the hill in
gradient descent.

train() uses the results of outputs() run over many inputs and compared
against expecteds to feed backpropagate() and update_weights()
def train(self, inputs: List[List[float]], expecteds: List[List[float]]) ->

None:
 for location, xs in enumerate(inputs):

ys: List[float] = expecteds[location]
outs: List[float] = self.outputs(xs)
self.backpropagate(ys)
self.update_weights()

Finally, after a network is trained, we need to test it. validate() takes inputs and
expected outputs (not unlike train()), but uses them to calculate an accuracy per-
centage rather than perform training. It is assumed that the network is already
trained. validate() also takes a function, interpret_output(), that is used for inter-
preting the output of the neural network to compare it to the expected output. (Per-
haps the expected output is a string like "Amphibian" instead of a set of floating-point
numbers.) interpret_output() must take the floating-point numbers it gets as out-
put from the network and convert them into something comparable to the expected
outputs. It is a custom function specific to a data set. validate() returns the number
of correct classifications, the total number of samples tested, and the percentage of
correct classifications.

for generalized results that require classification
this function will return the correct number of trials
and the percentage correct out of the total
def validate(self, inputs: List[List[float]], expecteds: List[T], interpret_

output: Callable[[List[float]], T]) -> Tuple[int, int, float]:
 correct: int = 0
 for input, expected in zip(inputs, expecteds):

result: T = interpret_output(self.outputs(input))
if result == expected:
 correct += 1

 percentage: float = correct / len(inputs)
 return correct, len(inputs), percentage

The neural network is done! It is ready to be tested with some actual problems.
Although the architecture we built is general-purpose enough to be used for a variety
of problems, we will concentrate on a popular kind of problem: classification.

Listing 7.11 network.py continued

Listing 7.12 network.py continued

143Classification problems
7.5 Classification problems
In chapter 6 we categorized a data set with k-means clustering, using no preconceived
notions about where each individual piece of data belonged. In clustering, we know
we want to find categories of data, but we do not know ahead of time what those cate-
gories are. In a classification problem, we are also trying to categorize a data set, but
there are preset categories. For example, if we were trying to classify a set of pictures
of animals, we might decide ahead of time on categories like mammal, reptile,
amphibian, fish, and bird.

 There are many machine-learning techniques that can be used for classification
problems. Perhaps you have heard of support vector machines, decision trees, or
naive Bayes classifiers. (There are others, too.) Recently, neural networks have
become widely deployed in the classification space. They are more computationally
intensive than some of the other classification algorithms, but their ability to classify
seemingly arbitrary kinds of data makes them a powerful technique. Neural network
classifiers are behind much of the interesting image classification that powers modern
photo software.

 Why is there renewed interest in using neural networks for classification problems?
Hardware has become fast enough that the extra computation involved, compared to
other algorithms, makes the benefits worthwhile.

7.5.1 Normalizing data

The data sets that we want to work with generally require some “cleaning” before they
are input into our algorithms. Cleaning may involve removing extraneous characters,
deleting duplicates, fixing errors, and other menial tasks. The aspect of cleaning we
will need to perform for the two data sets we are working with is normalization. In
chapter 6 we did this via the zscore_normalize() method in the KMeans class. Nor-
malization is about taking attributes recorded on different scales and converting them
to a common scale.

 Every neuron in our network outputs values between 0 and 1 due to the sigmoid
activation function. It sounds logical that a scale between 0 and 1 would make sense
for the attributes in our input data set as well. Converting a scale from some range to a
range between 0 and 1 is not challenging. For any value, V, in a particular attribute
range with maximum, max, and minimum, min, the formula is just newV = (oldV - min)
/ (max - min). This operation is known as feature scaling. Here is a Python implementa-
tion to add to util.py.

assume all rows are of equal length
and feature scale each column to be in the range 0 - 1
def normalize_by_feature_scaling(dataset: List[List[float]]) -> None:
 for col_num in range(len(dataset[0])):
 column: List[float] = [row[col_num] for row in dataset]
 maximum = max(column)

Listing 7.13 util.py continued

144 CHAPTER 7 Fairly simple neural networks
minimum = min(column)
for row_num in range(len(dataset)):
 dataset[row_num][col_num] = (dataset[row_num][col_num] -

minimum) / (maximum - minimum)

Look at the dataset parameter. It is a reference to a list of lists that will be modified in
place. In other words, normalize_by_feature_scaling() does not receive a copy of
the data set. It receives a reference to the original data set. This is a situation where we
want to make changes to a value rather than receive back a transformed copy.

 Note also that our program assumes that data sets are two-dimensional lists of
floats.

7.5.2 The classic iris data set

Just as there are classic computer science problems, there are classic data sets in
machine learning. These data sets are used to validate new techniques and compare
them to existing ones. They also serve as good starting points for people learning
machine learning for the first time. Perhaps the most famous is the iris data set. Origi-
nally collected in the 1930s, the data set consists of 150 samples of iris plants (pretty
flowers), split amongst three different species (50 of each). Each plant is measured on
four different attributes: sepal length, sepal width, petal length, and petal width.

 It is worth noting that a neural network does not care what the various attributes
represent. Its model for training makes no distinction between sepal length and petal
length in terms of importance. If such a distinction should be made, it is up to the
user of the neural network to make appropriate adjustments.

 The source code repository that accompanies this book contains a comma-
separated values (CSV) file that features the iris data set.2 The iris data set is from the
University of California’s UCI Machine Learning Repository: M. Lichman, UCI
Machine Learning Repository (Irvine, CA: University of California, School of Infor-
mation and Computer Science, 2013), http://archive.ics.uci.edu/ml. A CSV file is just
a text file with values separated by commas. It is a common interchange format for
tabular data, including spreadsheets.

 Here are a few lines from iris.csv:

5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa

Each line represents one data point. The four numbers represent the four attributes
(sepal length, sepal width, petal length, and petal width), which, again, are arbitrary
to us in terms of what they actually represent. The name at the end of each line rep-
resents the particular iris species. All five lines are for the same species because this

2 The repository is available from GitHub at https://github.com/davecom/ClassicComputerScienceProblems
InPython.

https://github.com/davecom/ClassicComputerScienceProblemsInPython
https://github.com/davecom/ClassicComputerScienceProblemsInPython
https://github.com/davecom/ClassicComputerScienceProblemsInPython
http://archive.ics.uci.edu/ml

145Classification problems
sample was taken from the top of the file, and the three species are clumped together,
with fifty lines each.

 To read the CSV file from disk, we will use a few functions from the Python stan-
dard library. The csv module will help us read the data in a structured way. The built-
in open() function creates a file object that is passed to csv.reader(). Beyond those
few lines, the rest of the following code listing just rearranges the data from the CSV
file to prepare it to be consumed by our network for training and validation.

import csv
from typing import List
from util import normalize_by_feature_scaling
from network import Network
from random import shuffle

if __name__ == "__main__":
 iris_parameters: List[List[float]] = []
 iris_classifications: List[List[float]] = []
 iris_species: List[str] = []
 with open('iris.csv', mode='r') as iris_file:

irises: List = list(csv.reader(iris_file))
shuffle(irises) # get our lines of data in random order
for iris in irises:
 parameters: List[float] = [float(n) for n in iris[0:4]]
 iris_parameters.append(parameters)
 species: str = iris[4]
 if species == "Iris-setosa":

iris_classifications.append([1.0, 0.0, 0.0])
 elif species == "Iris-versicolor":

iris_classifications.append([0.0, 1.0, 0.0])
 else:

iris_classifications.append([0.0, 0.0, 1.0])
 iris_species.append(species)

 normalize_by_feature_scaling(iris_parameters)

iris_parameters represents the collection of four attributes per sample that we are
using to classify each iris. iris_classifications is the actual classification of each
sample. Our neural network will have three output neurons, with each representing
one possible species. For instance, a final set of outputs of [0.9, 0.3, 0.1] will repre-
sent a classification of iris-setosa, because the first neuron represents that species, and
it is the largest number.

 For training, we already know the right answers, so each iris has a premarked
answer. For a flower that should be iris-setosa, the entry in iris_classifications will
be [1.0, 0.0, 0.0]. These values will be used to calculate the error after each train-
ing step. iris_species corresponds directly to what each flower should be classified
as in English. An iris-setosa will be marked as "Iris-setosa" in the data set.

WARNING The lack of error-checking code makes this code fairly dangerous.
It is not suitable as is for production, but it is fine for testing.

Listing 7.14 iris_test.py

146 CHAPTER 7 Fairly simple neural networks
Let’s define the neural network itself.

iris_network: Network = Network([4, 6, 3], 0.3)

The layer_structure argument specifies a network with three layers (one input
layer, one hidden layer, and one output layer) with [4, 6, 3]. The input layer has
four neurons, the hidden layer has six neurons, and the output layer has three neu-
rons. The four neurons in the input layer map directly to the four parameters that are
used to classify each specimen. The three neurons in the output layer map directly to
the three different species that we are trying to classify each input within. The hidden
layer’s six neurons are more the result of trial and error than some formula. The same
is true of learning_rate. These two values (the number of neurons in the hidden
layer and the learning rate) can be experimented with if the accuracy of the network
is suboptimal.

def iris_interpret_output(output: List[float]) -> str:
 if max(output) == output[0]:

return "Iris-setosa"
 elif max(output) == output[1]:

return "Iris-versicolor"
 else:

return "Iris-virginica"

iris_interpret_output() is a utility function that will be passed to the network’s
validate() method to help identify correct classifications.

 The network is finally ready to be trained.

train over the first 140 irises in the data set 50 times
iris_trainers: List[List[float]] = iris_parameters[0:140]
iris_trainers_corrects: List[List[float]] = iris_classifications[0:140]
for _ in range(50):
 iris_network.train(iris_trainers, iris_trainers_corrects)

We train on the first 140 irises out of the 150 in the data set. Recall that the lines read
from the CSV file were shuffled. This ensures that every time we run the program, we
will be training on a different subset of the data set. Note that we train over the 140
irises 50 times. Modifying this value will have a large effect on how long it takes your
neural network to train. Generally, the more training, the more accurately the neural
network will perform. The final test will be to verify the correct classification of the
final 10 irises from the data set.

Listing 7.15 iris_test.py continued

Listing 7.16 iris_test.py continued

Listing 7.17 iris_test.py continued

147Classification problems

test over the last 10 of the irises in the data set
iris_testers: List[List[float]] = iris_parameters[140:150]
iris_testers_corrects: List[str] = iris_species[140:150]
iris_results = iris_network.validate(iris_testers, iris_testers_corrects,

iris_interpret_output)
print(f"{iris_results[0]} correct of {iris_results[1]} = {iris_results[2] *

100}%")

All of the work leads up to this final question: Out of 10 randomly chosen irises from
the data set, how many can our neural network correctly classify? Because there is ran-
domness in the starting weights of each neuron, different runs may give you different
results. You can try tweaking the learning rate, the number of hidden neurons, and
the number of training iterations to make your network more accurate.

 Ultimately, you should see a result like this:

9 correct of 10 = 90.0%

7.5.3 Classifying wine

We are going to test our neural network with another data set, one based on the
chemical analysis of wine cultivars from Italy.3 There are 178 samples in the data set.
The machinery of working with it will be much the same as with the iris data set, but
the layout of the CSV file is slightly different. Here is a sample:

1,14.23,1.71,2.43,15.6,127,2.8,3.06,.28,2.29,5.64,1.04,3.92,1065
1,13.2,1.78,2.14,11.2,100,2.65,2.76,.26,1.28,4.38,1.05,3.4,1050
1,13.16,2.36,2.67,18.6,101,2.8,3.24,.3,2.81,5.68,1.03,3.17,1185
1,14.37,1.95,2.5,16.8,113,3.85,3.49,.24,2.18,7.8,.86,3.45,1480
1,13.24,2.59,2.87,21,118,2.8,2.69,.39,1.82,4.32,1.04,2.93,735

The first value on each line will always be an integer from 1 to 3 representing one of
three cultivars that the sample may be a kind of. But notice how many more parame-
ters there are for classification. In the iris data set, there were just four. In this wine
data set, there are 13.

 Our neural network model will scale just fine. We simply need to increase the num-
ber of input neurons. wine_test.py is analogous to iris_test.py, but there are some
minor changes to account for the different layouts of the respective files.

import csv
from typing import List
from util import normalize_by_feature_scaling
from network import Network
from random import shuffle

Listing 7.18 iris_test.py continued

3 M. Lichman, UCI Machine Learning Repository (Irvine, CA: University of California, School of Information
and Computer Science, 2013), http://archive.ics.uci.edu/ml.

Listing 7.19 wine_test.py

http://archive.ics.uci.edu/ml

148 CHAPTER 7 Fairly simple neural networks
if __name__ == "__main__":
 wine_parameters: List[List[float]] = []
 wine_classifications: List[List[float]] = []
 wine_species: List[int] = []
 with open('wine.csv', mode='r') as wine_file:
 wines: List = list(csv.reader(wine_file, quoting=csv.QUOTE_

NONNUMERIC))
 shuffle(wines) # get our lines of data in random order
 for wine in wines:
 parameters: List[float] = [float(n) for n in wine[1:14]]
 wine_parameters.append(parameters)
 species: int = int(wine[0])
 if species == 1:
 wine_classifications.append([1.0, 0.0, 0.0])
 elif species == 2:
 wine_classifications.append([0.0, 1.0, 0.0])
 else:
 wine_classifications.append([0.0, 0.0, 1.0])
 wine_species.append(species)
 normalize_by_feature_scaling(wine_parameters)

The layer configuration for the wine-classification network needs 13 input neurons, as
was already mentioned (one for each parameter). It also needs three output neurons.
(There are three cultivars of wine, just as there were three species of iris.) Interest-
ingly, the network works well with fewer neurons in the hidden layer than in the input
layer. One possible intuitive explanation is that some of the input parameters are not
actually helpful for classification, and it is useful to cut them out during processing.
This is not, in fact, exactly how having fewer neurons in the hidden layer works, but it
is an interesting intuitive idea.

wine_network: Network = Network([13, 7, 3], 0.9)

Once again, it can be interesting to experiment with a different number of hidden-
layer neurons or a different learning rate.

def wine_interpret_output(output: List[float]) -> int:
 if max(output) == output[0]:
 return 1
 elif max(output) == output[1]:
 return 2
 else:
 return 3

wine_interpret_output() is analogous to iris_interpret_output(). Because we do
not have names for the wine cultivars, we are just working with the integer assignment
in the original data set.

Listing 7.20 wine_test.py continued

Listing 7.21 wine_test.py continued

149Speeding up neural networks

train over the first 150 wines 10 times
wine_trainers: List[List[float]] = wine_parameters[0:150]
wine_trainers_corrects: List[List[float]] = wine_classifications[0:150]
for _ in range(10):
 wine_network.train(wine_trainers, wine_trainers_corrects)

We will train over the first 150 samples in the data set, leaving the last 28 for valida-
tion. We will train 10 times over the samples, significantly less than the 50 for the iris
data set. For whatever reason (perhaps innate qualities of the data set or tuning of
parameters like the learning rate and number of hidden neurons), this data set
requires less training to achieve significant accuracy than the iris data set.

test over the last 28 of the wines in the data set
wine_testers: List[List[float]] = wine_parameters[150:178]
wine_testers_corrects: List[int] = wine_species[150:178]
wine_results = wine_network.validate(wine_testers, wine_testers_corrects,

wine_interpret_output)
print(f"{wine_results[0]} correct of {wine_results[1]} = {wine_results[2] *

100}%")

With a little luck, your neural network should be able to classify the 28 samples quite
accurately.

27 correct of 28 = 96.42857142857143%

7.6 Speeding up neural networks
Neural networks require a lot of vector/matrix math. Essentially, this means taking a
list of numbers and doing an operation on all of them at once. Libraries for opti-
mized, performant vector/matrix math are increasingly important as machine learn-
ing continues to permeate our society. Many of these libraries take advantage of
GPUs, because GPUs are optimized for this role. (Vectors/matrices are at the heart of
computer graphics.) An older library specification you may have heard of is BLAS
(Basic Linear Algebra Subprograms). A BLAS implementation underlies the popular
Python numerical library NumPy.

 Beyond the GPU, CPUs have extensions that can speed up vector/matrix process-
ing. NumPy includes functions that make use of single instruction, multiple data (SIMD)
instructions. SIMD instructions are special microprocessor instructions that allow mul-
tiple pieces of data to be processed at once. They are sometimes known as vector
instructions .

 Different microprocessors include different SIMD instructions. For example, the
SIMD extension to the G4 (a PowerPC architecture processor found in early ’00s
Macs) was known as AltiVec. ARM microprocessors, like those found in iPhones, have
an extension known as NEON. And modern Intel microprocessors include SIMD
extensions known as MMX, SSE, SSE2, and SSE3. Luckily, you do not need to know

Listing 7.22 wine_test.py continued

Listing 7.23 wine_test.py continued

150 CHAPTER 7 Fairly simple neural networks
the differences. A library like NumPy will automatically choose the right instructions
for computing efficiently on the underlying architecture that your program is run-
ning on.

 It is no surprise, then, that real-world neural network libraries (unlike our toy
library in this chapter) use NumPy arrays as their base data structure instead of Python
standard library lists. But they go even further. Popular Python neural network librar-
ies like TensorFlow and PyTorch not only make use of SIMD instructions, but also
make extensive use of GPU computing. Because GPUs are explicitly designed for fast
vector computations, this accelerates neural networks by an order of magnitude com-
pared with running on a CPU alone.

 Let’s be clear: You would never want to naively implement a neural network for production
using just the Python standard library as we did in this chapter. Instead, you should use a
well optimized, SIMD- and GPU-enabled library like TensorFlow. The only exceptions
would be a neural network library designed for education or one that had to run on
an embedded device without SIMD instructions or a GPU.

7.7 Neural network problems and extensions
Neural networks are all the rage right now, thanks to advances in deep learning, but
they have some significant shortcomings. The biggest problem is that a neural net-
work solution to a problem is something of a black box. Even when neural networks
work well, they do not give the user much insight into how they solve the problem. For
instance, the iris data set classifier we worked on in this chapter does not clearly show
how much each of the four parameters in the input affects the output. Was sepal
length more important than sepal width for classifying each sample?

 It is possible that careful analysis of the final weights for the trained network could
provide some insight, but such analysis is nontrivial and does not provide the kind of
insight that, say, linear regression does in terms of the meaning of each variable in the
function being modeled. In other words, a neural network may solve a problem, but it
does not explain how the problem is solved.

 Another problem with neural networks is that to become accurate, they often
require very large data sets. Imagine an image classifier for outdoor landscapes. It may
need to classify thousands of different types of images (forests, valleys, mountains,
streams, steppes, and so on). It will potentially need millions of training images. Not
only are such large data sets hard to come by, but also, for some applications they may
be completely non-existent. It tends to be large corporations and governments that
have the data-warehousing and technical facilities for collecting and storing such mas-
sive data sets.

 Finally, neural networks are computationally expensive. As you probably noticed,
just training on the iris data set can bring your Python interpreter to its knees. Pure
Python is not a computationally performant environment (without C-backed libraries
like NumPy at least), but on any computational platform where neural networks are
used, it is the sheer number of calculations that have to be performed in training the

151Real-world applications
network, more than anything else, that takes so much time. Many tricks abound to
make neural networks more performant (like using SIMD instructions or GPUs), but
ultimately, training a neural network requires a lot of floating-point operations.

 One nice caveat is that training is much more computationally expensive than
actually using the network. Some applications do not require ongoing training. In
those instances, a trained network can just be dropped into an application to solve a
problem. For example, the first version of Apple’s Core ML framework does not even
support training. It only supports helping app developers run pretrained neural net-
work models in their apps. An app developer creating a photo app can download a
freely licensed image-classification model, drop it into Core ML, and start using per-
formant machine learning in an app instantly.

 In this chapter, we only worked with a single type of neural network: a feed-forward
network with backpropagation. As has been mentioned, many other kinds of neural
networks exist. Convolutional neural networks are also feed-forward, but they have
multiple different types of hidden layers, different mechanisms for distributing
weights, and other interesting properties that make them especially well designed for
image classification. In recurrent neural networks, signals do not just travel in one
direction. They allow feedback loops and have proven useful for continuous input
applications like handwriting recognition and voice recognition.

 A simple extension to our neural network that would make it more performant
would be the inclusion of bias neurons. A bias neuron is like a dummy neuron in a
layer that allows the next layer’s output to represent more functions by providing a
constant input (still modified by a weight) into it. Even simple neural networks used
for real-world problems usually contain bias neurons. If you add bias neurons to our
existing network, you will likely find that it requires less training to achieve a similar
level of accuracy.

7.8 Real-world applications
Although they were first imagined in the middle of the 20th century, artificial neural
networks did not become commonplace until the last decade. Their widespread appli-
cation was held back by a lack of sufficiently performant hardware. Today, artificial
neural networks have become the most explosive growth area in machine learning
because they work!

 Artificial neural networks have enabled some of the most exciting user-facing com-
puting applications in decades. These include practical voice recognition (practical in
terms of sufficient accuracy), image recognition, and handwriting recognition. Voice
recognition is present in typing aids like Dragon Naturally Speaking and digital assis-
tants like Siri, Alexa, and Cortana. A specific example of image recognition is Face-
book’s automatic tagging of people in a photo using facial recognition. In recent
versions of iOS, you can search works within your notes, even if they are handwritten,
by employing handwriting recognition.

152 CHAPTER 7 Fairly simple neural networks
 An older recognition technology that can be powered by neural networks is OCR
(optical character recognition). OCR is used every time you scan a document and it
comes back as selectable text instead of an image. OCR enables toll booths to read
license plates and envelopes to be quickly sorted by the postal service.

 In this chapter you have seen neural networks used successfully for classification
problems. Similar applications that neural networks work well in are recommendation
systems. Think of Netflix suggesting a movie you might like to watch or Amazon sug-
gesting a book you might want to read. There are other machine learning techniques
that work well for recommendation systems, too (Amazon and Netflix do not neces-
sarily use neural networks for these purposes; the details of their systems are likely
proprietary), so neural networks should only be selected after all options have been
explored.

 Neural networks can be used in any situation where an unknown function needs to
be approximated. This makes them useful for prediction. Neural networks can be
employed to predict the outcome of a sporting event, election, or the stock market
(and they are). Of course, their accuracy is a product of how well they are trained, and
that has to do with how large a data set relevant to the unknown-outcome event is
available, how well the parameters of the neural network are tuned, and how many
iterations of training are run. With prediction, like most neural network applications,
one of the hardest parts is deciding upon the structure of the network itself, which is
often ultimately determined by trial and error.

7.9 Exercises
1 Use the neural network framework developed in this chapter to classify items in

another data set.
2 Create a generic function, parse_CSV(), with flexible-enough parameters that

it could replace both of the CSV parsing examples in this chapter.
3 Try running the examples with a different activation function. (Remember to

also find its derivative.) How does the change in activation function affect the
accuracy of the network? Does it require more or less training?

4 Take the problems in this chapter and re-create their solutions using a popular
neural network framework like TensorFlow or PyTorch.

5 Rewrite the Network, Layer, and Neuron classes using NumPy to accelerate the
execution of the neural network developed in this chapter.

Adversarial search
A two-player, zero-sum, perfect information game is one in which both opponents
have all of the information about the state of the game available to them, and any
gain in advantage for one is a loss of advantage for the other. Such games include
tic-tac-toe, Connect Four, checkers, and chess. In this chapter we will study how to
create an artificial opponent that can play such games with great skill. In fact, the
techniques discussed in this chapter, coupled with modern computing power, can
create artificial opponents that play simple games of this class perfectly and that
can play complex games beyond the ability of any human opponent.

8.1 Basic board game components
As with most of our more complex problems in this book, we will try to make our
solution as generic as possible. In the case of adversarial search, that means making
our search algorithms non-game-specific. Let’s start by defining some simple base
classes that define all of the state our search algorithms will need. Later, we can sub-
class those base classes for the specific games we are implementing (tic-tac-toe and
Connect Four) and feed the subclasses into the search algorithms to make them
“play” the games. Here are those base classes:

from __future__ import annotations
from typing import NewType, List
from abc import ABC, abstractmethod

Move = NewType('Move', int)

class Piece:

Listing 8.1 board.py
153

154 CHAPTER 8 Adversarial search
 @property
 def opposite(self) -> Piece:

raise NotImplementedError("Should be implemented by subclasses.")

class Board(ABC):
 @property
 @abstractmethod
 def turn(self) -> Piece:

...

 @abstractmethod
 def move(self, location: Move) -> Board:

...

 @property
 @abstractmethod
 def legal_moves(self) -> List[Move]:

...

 @property
 @abstractmethod
 def is_win(self) -> bool:

...

 @property
 def is_draw(self) -> bool:

return (not self.is_win) and (len(self.legal_moves) == 0)

 @abstractmethod
 def evaluate(self, player: Piece) -> float:

...

The Move type will represent a move in a game. It is, at heart, just an integer. In games
like tic-tac-toe and Connect Four, an integer can represent a move by indicating a
square or column where a piece should be placed. Piece is a base class for a piece on
the board in a game. It will also double as our turn indicator. This is why the opposite
property is needed. We need to know whose turn follows a given turn.

TIP Because tic-tac-toe and Connect Four only have one kind of piece, the
Piece class can double as a turn indicator in this chapter. For a more com-
plex game, like chess, that has different kinds of pieces, turns can be indi-
cated by an integer or a Boolean. Alternatively, just the “color” attribute of a
more complex Piece type could be used to indicate turn.

The Board abstract base class is the actual maintainer of state. For any given game that
our search algorithms will compute, we need to be able to answer four questions:

 Whose turn is it?
 What legal moves can be played in the current position?
 Is the game won?
 Is the game drawn?

That last question, about draws, is actually a combination of the previous two ques-
tions for many games. If the game is not won but there are no legal moves, then it is a

155Tic-tac-toe
draw. This is why our abstract base class, Game, can already have a concrete implemen-
tation of the is_draw property. In addition, there are a couple of actions we need to
be able to take:

 Make a move to go from the current position to a new position.
 Evaluate the position to see which player has an advantage.

Each of the methods and properties in Board is a proxy for one of the preceding ques-
tions or actions. The Board class could also be called Position in game parlance, but
we will use that nomenclature for something more specific in each of our subclasses.

8.2 Tic-tac-toe
Tic-tac-toe is a simple game, but it can be used to illustrate the same minimax algo-
rithm that can be applied in advanced strategy games like Connect Four, checkers,
and chess. We will build a tic-tac-toe AI that plays perfectly using minimax.

NOTE This section assumes that you are familiar with the game tic-tac-toe and
its standard rules. If not, a quick search on the web should get you up to
speed.

8.2.1 Managing tic-tac-toe state

Let’s develop some structures to keep track of the state of a tic-tac-toe game as it
progresses.

 First, we need a way of representing each square on the tic-tac-toe board. We will
use an enum called TTTPiece, a subclass of Piece. A tic-tac-toe piece can be X, O, or
empty (represented by E in the enum).

from __future__ import annotations
from typing import List
from enum import Enum
from board import Piece, Board, Move

class TTTPiece(Piece, Enum):
 X = "X"
 O = "O"
 E = " " # stand-in for empty

 @property
 def opposite(self) -> TTTPiece:

if self == TTTPiece.X:
 return TTTPiece.O
elif self == TTTPiece.O:
 return TTTPiece.X
else:
 return TTTPiece.E

def __str__(self) -> str:
 return self.value

Listing 8.2 tictactoe.py

156 CHAPTER 8 Adversarial search
The class TTTPiece has a property, opposite, that returns another TTTPiece. This will
be useful for flipping from one player’s turn to the other player’s turn after a tic-tac-
toe move. To represent moves, we will just use an integer that corresponds to a square
on the board where a piece is placed. As you recall, Move was defined as an integer in
board.py.

 A tic-tac-toe board has nine positions organized in
three rows and three columns. For simplicity, these nine
positions can be represented using a one-dimensional
list. Which squares receive which numeric designation
(a.k.a., index in the array) is arbitrary, but we will follow
the scheme outlined in figure 8.1.

 The main holder of state will be the class TTTBoard.
TTTBoard keeps track of two different pieces of state: the
position (represented by the aforementioned one-
dimensional list) and the player whose turn it is.

class TTTBoard(Board):
 def __init__(self, position: List[TTTPiece] = [TTTPiece.E] * 9, turn:

TTTPiece = TTTPiece.X) -> None:
self.position: List[TTTPiece] = position
self._turn: TTTPiece = turn

 @property
 def turn(self) -> Piece:

return self._turn

A default board is one where no moves have yet been made (an empty board). The
constructor for Board has default parameters that initialize such a position, with X to
move (the usual first player in tic-tac-toe). You may wonder why the _turn instance
variable and turn property exist. This was a trick to ensure that all Board subclasses
will keep track of whose turn it is. There is no clear and obvious way in Python to spec-
ify in an abstract base class that subclasses must include a particular instance variable,
but there is such a mechanism for properties.

 TTTBoard is an informally immutable data structure; TTTBoards should not be
modified. Instead, every time a move needs to be played, a new TTTBoard with the
position changed to accommodate the move will be generated. This will later be help-
ful in our search algorithm. When the search branches, we will not inadvertently
change the position of a board from which potential moves are still being analyzed.

def move(self, location: Move) -> Board:
 temp_position: List[TTTPiece] = self.position.copy()
 temp_position[location] = self._turn
 return TTTBoard(temp_position, self._turn.opposite)

Listing 8.3 tictactoe.py continued

Listing 8.4 tictactoe.py continued

0 1 2

3 4 5

6 7 8

Figure 8.1 The one-
dimensional list indices that
correspond to each square in
the tic-tac-toe board

157Tic-tac-toe
A legal move in tic-tac-toe is any empty square. The following property, legal_moves,
uses a list comprehension to generate potential moves for a given position.

@property
def legal_moves(self) -> List[Move]:
 return [Move(l) for l in range(len(self.position)) if self.position[l] ==

TTTPiece.E]

The indices that the list comprehension acts on are int indexes into the position list.
Conveniently (and purposely), a Move is also defined as a type of int, allowing this
definition of legal_moves to be so succinct.

 There are many ways to scan the rows, columns, and diagonals of a tic-tac-toe
board to check for wins. The following implementation of the property is_win does
so with a hard-coded, seemingly endless amalgamation of and, or, and ==. It is not the
prettiest code, but it does the job in a straightforward manner.

@property
def is_win(self) -> bool:
 # three row, three column, and then two diagonal checks
 return self.position[0] == self.position[1] and self.position[0] ==

self.position[2] and self.position[0] != TTTPiece.E or \
 self.position[3] == self.position[4] and self.position[3] ==

self.position[5] and self.position[3] != TTTPiece.E or \
 self.position[6] == self.position[7] and self.position[6] ==

self.position[8] and self.position[6] != TTTPiece.E or \
 self.position[0] == self.position[3] and self.position[0] ==

self.position[6] and self.position[0] != TTTPiece.E or \
 self.position[1] == self.position[4] and self.position[1] ==

self.position[7] and self.position[1] != TTTPiece.E or \
 self.position[2] == self.position[5] and self.position[2] ==

self.position[8] and self.position[2] != TTTPiece.E or \
 self.position[0] == self.position[4] and self.position[0] ==

self.position[8] and self.position[0] != TTTPiece.E or \
 self.position[2] == self.position[4] and self.position[2] ==

self.position[6] and self.position[2] != TTTPiece.E

If all of a row’s, column’s, or diagonal’s squares are not empty, and they contain the
same piece, the game has been won.

 A game is drawn if it is not won and there are no more legal moves left; that prop-
erty was already covered by the Board abstract base class. Finally, we need a way of eval-
uating a particular position and pretty-printing the board.

 def evaluate(self, player: Piece) -> float:
 if self.is_win and self.turn == player:
 return -1
 elif self.is_win and self.turn != player:

Listing 8.5 tictactoe.py continued

Listing 8.6 tictactoe.py continued

Listing 8.7 tictactoe.py continued

158 CHAPTER 8 Adversarial search
 return 1
 else:
 return 0

 def __repr__(self) -> str:
 return f"""{self.position[0]}|{self.position[1]}|{self.position[2]}

{self.position[3]}|{self.position[4]}|{self.position[5]}

{self.position[6]}|{self.position[7]}|{self.position[8]}"""

For most games, an evaluation of a position needs to be an approximation, because
we cannot search the game to the very end to find out with certainty who wins or loses
depending on what moves are played. But tic-tac-toe has a small enough search space
that we can search from any position to the very end. Therefore, the evaluate()
method can simply return one number if the player wins, a worse number for a draw,
and an even worse number for a loss.

8.2.2 Minimax

Minimax is a classic algorithm for finding the best move in a two-player, zero-sum
game with perfect information, like tic-tac-toe, checkers, or chess. It has been
extended and modified for other types of games as well. Minimax is typically imple-
mented using a recursive function in which each player is designated either the maxi-
mizing player or the minimizing player.

 The maximizing player aims to find the move that will lead to maximal gains. How-
ever, the maximizing player must account for moves by the minimizing player. After
each attempt to maximize the gains of the maximizing player, minimax is called recur-
sively to find the opponent’s reply that minimizes the maximizing player’s gains. This
continues back and forth (maximizing, minimizing, maximizing, and so on) until a
base case in the recursive function is reached. The base case is a terminal position (a
win or a draw) or a maximal search depth.

 Minimax will return an evaluation of the starting position for the maximizing
player. For the evaluate() method of the TTTBoard class, if the best possible play by
both sides will result in a win for the maximizing player, a score of 1 will be returned. If
the best play will result in a loss, -1 is returned. A 0 is returned if the best play is a draw.

 These numbers are returned when a base case is reached. They then bubble up
through all of the recursive calls that led to the base case. For each recursive call to
maximize, the best evaluations one level further down bubble up. For each recursive
call to minimize, the worst evaluations one level further down bubble up. In this way, a
decision tree is built. Figure 8.2 illustrates such a tree that facilitates bubbling up for a
game with two moves left.

 For games that have too deep a search space to reach a terminal position (such as
checkers and chess), minimax is stopped after a certain depth (the number of moves
deep to search, sometimes called ply). Then the evaluation function kicks in, using
heuristics to score the state of the game. The better the game is for the originating

159Tic-tac-toe
player, the higher the score that is awarded. We will come back to this concept with
Connect Four, which has a much larger search space than tic-tac-toe.

 Here is minimax() in its entirety:

from __future__ import annotations
from board import Piece, Board, Move

Find the best possible outcome for original player
def minimax(board: Board, maximizing: bool, original_player: Piece, max_

depth: int = 8) -> float:
 # Base case – terminal position or maximum depth reached
 if board.is_win or board.is_draw or max_depth == 0:
 return board.evaluate(original_player)

 # Recursive case - maximize your gains or minimize the opponent's gains
 if maximizing:
 best_eval: float = float("-inf") # arbitrarily low starting point
 for move in board.legal_moves:
 result: float = minimax(board.move(move), False, original_player,

max_depth - 1)
 best_eval = max(result, best_eval)
 return best_eval
 else: # minimizing

Listing 8.8 minimax.py

Turn 0:
O’s turn

maximizing

Evaluation = 1

Evaluation = 1

Max (1, 0)

Evaluation = 0

Evaluation = 0

X O X

O X

X O

Turn 1:
X’s turn

minimizing

X O X

O X

X O O

X O X

O O X

X O

Turn 2:
O’s turn

maximizing

X O X

O O X

X X O

Figure 8.2 A minimax decision tree for a tic-tac-toe game with two moves left. To maximize
the likelihood of winning, the initial player, O, will choose to play O in the bottom center.
Arrows indicate the positions from which a decision is made.

160 CHAPTER 8 Adversarial search
worst_eval: float = float("inf")
for move in board.legal_moves:
 result = minimax(board.move(move), True, original_player, max_

depth - 1)
 worst_eval = min(result, worst_eval)
return worst_eval

In each recursive call, we need to keep track of the board position, whether we are max-
imizing or minimizing, and who we are trying to evaluate the position for (original_
player). The first few lines of minimax() deal with the base case: a terminal node (a
win, loss, or draw) or the maximum depth being reached. The rest of the function is the
recursive cases.

 One recursive case is maximization. In this situation, we are looking for a move
that yields the highest possible evaluation. The other recursive case is minimization,
where we are looking for the move that results in the lowest possible evaluation.
Either way, the two cases alternate until we reach a terminal state or the maximum
depth (base case).

 Unfortunately, we cannot use our implementation of minimax() as is to find the
best move for a given position. It returns an evaluation (a float value). It does not tell
us what best first move led to that evaluation.

 Instead, we will create a helper function, find_best_move(), that loops through
calls to minimax() for each legal move in a position to find the move that evaluates to
the highest value. You can think of find_best_move() as the first maximizing call to
minimax(), but with us keeping track of those initial moves.

Find the best possible move in the current position
looking up to max_depth ahead
def find_best_move(board: Board, max_depth: int = 8) -> Move:
 best_eval: float = float("-inf")
 best_move: Move = Move(-1)
 for move in board.legal_moves:

result: float = minimax(board.move(move), False, board.turn, max_
depth)

if result > best_eval:
 best_eval = result
 best_move = move

 return best_move

We now have everything ready to find the best possible move for any tic-tac-toe
position.

8.2.3 Testing minimax with tic-tac-toe

Tic-tac-toe is such a simple game that it’s easy for us, as humans, to figure out the defi-
nite correct move in a given position. This makes it possible to easily develop unit
tests. In the following code snippet, we will challenge our minimax algorithm to find
the correct next move in three different tic-tac-toe positions. The first is easy and only

Listing 8.9 minimax.py continued

161Tic-tac-toe
requires it to think to the next move for a win. The second requires a block; the AI
must stop its opponent from scoring a victory. The last is a little bit more challenging
and requires the AI to think two moves into the future.

import unittest
from typing import List
from minimax import find_best_move
from tictactoe import TTTPiece, TTTBoard
from board import Move

class TTTMinimaxTestCase(unittest.TestCase):
 def test_easy_position(self):
 # win in 1 move
 to_win_easy_position: List[TTTPiece] = [TTTPiece.X, TTTPiece.O,

TTTPiece.X,
 TTTPiece.X, TTTPiece.E,

TTTPiece.O,
 TTTPiece.E, TTTPiece.E,

TTTPiece.O]
 test_board1: TTTBoard = TTTBoard(to_win_easy_position, TTTPiece.X)
 answer1: Move = find_best_move(test_board1)
 self.assertEqual(answer1, 6)

 def test_block_position(self):
 # must block O's win
 to_block_position: List[TTTPiece] = [TTTPiece.X, TTTPiece.E,

TTTPiece.E,
 TTTPiece.E, TTTPiece.E,

TTTPiece.O,
 TTTPiece.E, TTTPiece.X,

TTTPiece.O]
 test_board2: TTTBoard = TTTBoard(to_block_position, TTTPiece.X)
 answer2: Move = find_best_move(test_board2)
 self.assertEqual(answer2, 2)

 def test_hard_position(self):
 # find the best move to win 2 moves
 to_win_hard_position: List[TTTPiece] = [TTTPiece.X, TTTPiece.E,

TTTPiece.E,
 TTTPiece.E, TTTPiece.E,

TTTPiece.O,
 TTTPiece.O, TTTPiece.X,

TTTPiece.E]
 test_board3: TTTBoard = TTTBoard(to_win_hard_position, TTTPiece.X)
 answer3: Move = find_best_move(test_board3)
 self.assertEqual(answer3, 1)

if __name__ == '__main__':
 unittest.main()

All three of the tests should pass when you run tictactoe_tests.py.

Listing 8.10 tictactoe_tests.py

162 CHAPTER 8 Adversarial search
TIP It does not take much code to implement minimax, and it will work for
many more games than just tic-tac-toe. If you plan to implement minimax for
another game, it is important to set yourself up for success by creating data
structures that work well for the way minimax is designed, like the Board class.
A common mistake for students learning minimax is to use a modifiable data
structure that gets changed by a recursive call to minimax and then cannot be
rewound to its original state for additional calls.

8.2.4 Developing a tic-tac-toe AI

With all of these ingredients in place, it is trivial to take the next step and develop a
full artificial opponent that can play an entire game of tic-tac-toe. Instead of evaluat-
ing a test position, the AI will just evaluate the position generated by each opponent’s
move. In the following short code snippet, the tic-tac-toe AI plays against a human
opponent who goes first:

from minimax import find_best_move
from tictactoe import TTTBoard
from board import Move, Board

board: Board = TTTBoard()

def get_player_move() -> Move:
 player_move: Move = Move(-1)
 while player_move not in board.legal_moves:

play: int = int(input("Enter a legal square (0-8):"))
player_move = Move(play)

 return player_move

if __name__ == "__main__":
 # main game loop
 while True:

human_move: Move = get_player_move()
board = board.move(human_move)
if board.is_win:
 print("Human wins!")
 break
elif board.is_draw:
 print("Draw!")
 break
computer_move: Move = find_best_move(board)
print(f"Computer move is {computer_move}")
board = board.move(computer_move)
print(board)
if board.is_win:
 print("Computer wins!")
 break
elif board.is_draw:
 print("Draw!")
 break

Listing 8.11 tictactoe_ai.py

163Connect Four
Because the default max_depth of find_best_move() is 8, this tic-tac-toe AI will always
see to the very end of the game. (The maximum number of moves in tic-tac-toe is
nine, and the AI goes second.) Therefore, it should play perfectly every time. A per-
fect game is one in which both opponents play the best possible move every turn. The
result of a perfect game of tic-tac-toe is a draw. With this in mind, you should never be
able to beat the tic-tac-toe AI. If you play your best, it will be a draw. If you make a mis-
take, the AI will win. Try it out yourself. You should not be able to beat it

8.3 Connect Four
In Connect Four,2 two players alternate dropping different-colored pieces in a seven-
column, six-row vertical grid. Pieces fall from the top of the grid to the bottom until
they hit the bottom or another piece. In essence, the player’s only decision each turn
is which of the seven columns to drop a piece into. The player may not drop it into a
full column. The first player that has four pieces of their color next to one another
with no breaks in a row, column, or diagonal wins. If no player achieves this, and the
grid is completely filled, the game is a draw.

8.3.1 Connect Four game machinery

Connect Four, in many ways, is similar to tic-tac-toe. Both games are played on a grid
and require the player to line up pieces to win. But because the Connect Four grid is
larger and has many more ways to win, evaluating each position is significantly more
complex.

 Some of the following code will look very familiar, but the data structures and the
evaluation method are quite different from tic-tac-toe. Both games are implemented
as subclasses of the same base Piece and Board classes you saw at the beginning of the
chapter, making minimax() usable for both games.

from __future__ import annotations
from typing import List, Optional, Tuple
from enum import Enum
from board import Piece, Board, Move

class C4Piece(Piece, Enum):
 B = "B"
 R = "R"
 E = " " # stand-in for empty

 @property
 def opposite(self) -> C4Piece:
 if self == C4Piece.B:
 return C4Piece.R
 elif self == C4Piece.R:
 return C4Piece.B

2 Connect Four is a trademark of Hasbro, Inc. It is used here only in a descriptive and positive manner.

Listing 8.12 connectfour.py

164 CHAPTER 8 Adversarial search
else:
 return C4Piece.E

 def __str__(self) -> str:
return self.value

The C4Piece class is almost identical to the TTTPiece class.
 Next, we have a function for generating all of the potential winning segments in a

certain-size Connect Four grid:

def generate_segments(num_columns: int, num_rows: int, segment_length: int) -
> List[List[Tuple[int, int]]]:

segments: List[List[Tuple[int, int]]] = []
generate the vertical segments
for c in range(num_columns):

for r in range(num_rows - segment_length + 1):
 segment: List[Tuple[int, int]] = []
 for t in range(segment_length):

segment.append((c, r + t))
 segments.append(segment)

 # generate the horizontal segments
 for c in range(num_columns - segment_length + 1):

for r in range(num_rows):
 segment = []
 for t in range(segment_length):

segment.append((c + t, r))
 segments.append(segment)

 # generate the bottom left to top right diagonal segments
 for c in range(num_columns - segment_length + 1):

for r in range(num_rows - segment_length + 1):
 segment = []
 for t in range(segment_length):

segment.append((c + t, r + t))
 segments.append(segment)

 # generate the top left to bottom right diagonal segments
 for c in range(num_columns - segment_length + 1):

for r in range(segment_length - 1, num_rows):
 segment = []
 for t in range(segment_length):

segment.append((c + t, r - t))
 segments.append(segment)

 return segments

This function returns a list of lists of grid locations (tuples of column/row combina-
tions). Each list in the list contains four grid locations. We call each of these lists of
four grid locations a segment. If any segment from the board is all the same color, that
color has won the game.

 Being able to quickly search all of the segments on the board is useful for both
checking whether a game is over (someone has won) and for evaluating a position.

Listing 8.13 connectfour.py continued

165Connect Four
Hence, you will notice in the next code snippet that we cache the segments for a given
size board as a class variable called SEGMENTS in the C4Board class.

class C4Board(Board):
 NUM_ROWS: int = 6
 NUM_COLUMNS: int = 7
 SEGMENT_LENGTH: int = 4
 SEGMENTS: List[List[Tuple[int, int]]] = generate_segments(NUM_COLUMNS,

NUM_ROWS, SEGMENT_LENGTH)

The C4Board class has an internal class called Column. This class is not strictly neces-
sary because we could use a one-dimensional list to represent the grid as we did for tic-
tac-toe or a two-dimensional list just as well. And using the Column class probably
slightly decreases performance as opposed to either of those solutions. But thinking
about the Connect Four board as a group of seven columns is conceptually powerful
and makes writing the rest of the C4Board class slightly easier.

class Column:
 def __init__(self) -> None:
 self._container: List[C4Piece] = []

 @property
 def full(self) -> bool:
 return len(self._container) == C4Board.NUM_ROWS

 def push(self, item: C4Piece) -> None:
 if self.full:
 raise OverflowError("Trying to push piece to full column")
 self._container.append(item)

 def __getitem__(self, index: int) -> C4Piece:
 if index > len(self._container) - 1:
 return C4Piece.E
 return self._container[index]

 def __repr__(self) -> str:
 return repr(self._container)

 def copy(self) -> C4Board.Column:
 temp: C4Board.Column = C4Board.Column()
 temp._container = self._container.copy()
 return temp

The Column class is very similar to the Stack class we used in earlier chapters. This
makes sense, because conceptually during play, a Connect Four column is a stack that
can be pushed to but never popped. But unlike our earlier stacks, a column in Con-
nect Four has an absolute limit of six items. Also interesting is the __getitem__() spe-
cial method that allows a Column instance to be subscripted by index. This enables a
list of columns to be treated like a two-dimensional list. Note that even if the backing

Listing 8.14 connectfour.py continued

Listing 8.15 connectfour.py continued

166 CHAPTER 8 Adversarial search
_container does not have an item at some particular row, __getitem__() will still
return an empty piece.

 The next four methods are relatively similar to their tic-tac-toe equivalents.

def __init__(self, position: Optional[List[C4Board.Column]] = None, turn:
C4Piece = C4Piece.B) -> None:

 if position is None:
self.position: List[C4Board.Column] = [C4Board.Column() for _ in

range(C4Board.NUM_COLUMNS)]
 else:

self.position = position
 self._turn: C4Piece = turn

@property
def turn(self) -> Piece:
 return self._turn

def move(self, location: Move) -> Board:
 temp_position: List[C4Board.Column] = self.position.copy()
 for c in range(C4Board.NUM_COLUMNS):

temp_position[c] = self.position[c].copy()
 temp_position[location].push(self._turn)
 return C4Board(temp_position, self._turn.opposite)

@property
def legal_moves(self) -> List[Move]:
 return [Move(c) for c in range(C4Board.NUM_COLUMNS) if not

self.position[c].full]

A helper method, _count_segment(), returns the number of black and red pieces in a
particular segment. It is followed by the win-checking method, is_win(), which looks
at all of the segments in the board and determines a win by using _count_segment()
to see if any segments have four of the same color.

Returns the count of black and red pieces in a segment
def _count_segment(self, segment: List[Tuple[int, int]]) -> Tuple[int, int]:
 black_count: int = 0
 red_count: int = 0
 for column, row in segment:

if self.position[column][row] == C4Piece.B:
 black_count += 1
elif self.position[column][row] == C4Piece.R:
 red_count += 1

 return black_count, red_count

@property
def is_win(self) -> bool:
 for segment in C4Board.SEGMENTS:

black_count, red_count = self._count_segment(segment)
if black_count == 4 or red_count == 4:
 return True

 return False

Listing 8.16 connectfour.py continued

Listing 8.17 connectfour.py continued

167Connect Four
Like TTTBoard, C4Board can use the abstract base class Board’s is_draw property with-
out modification.

 Finally, to evaluate a position, we will evaluate all of its representative segments,
one segment at a time, and sum those evaluations to return a result. A segment that
has both red and black pieces will be considered worthless. A segment that has two of
the same color and two empties will be considered a score of 1. A segment with three
of the same color will be scored 100. Finally, a segment with four of the same color (a
win) is scored 1,000,000. If the segment is the opponent’s segment, we will negate its
score. _evaluate_segment() is a helper method that evaluates a single segment using
the preceding formula. The composite score of all segments using _evaluate_
segment() is generated by evaluate().

def _evaluate_segment(self, segment: List[Tuple[int, int]], player: Piece) ->
float:

 black_count, red_count = self._count_segment(segment)
 if red_count > 0 and black_count > 0:
 return 0 # mixed segments are neutral
 count: int = max(red_count, black_count)
 score: float = 0
 if count == 2:
 score = 1
 elif count == 3:
 score = 100
 elif count == 4:
 score = 1000000
 color: C4Piece = C4Piece.B
 if red_count > black_count:
 color = C4Piece.R
 if color != player:
 return -score
 return score

def evaluate(self, player: Piece) -> float:
 total: float = 0
 for segment in C4Board.SEGMENTS:
 total += self._evaluate_segment(segment, player)
 return total

def __repr__(self) -> str:
 display: str = ""
 for r in reversed(range(C4Board.NUM_ROWS)):
 display += "|"
 for c in range(C4Board.NUM_COLUMNS):
 display += f"{self.position[c][r]}" + "|"
 display += "\n"
 return display

Listing 8.18 connectfour.py continued

168 CHAPTER 8 Adversarial search
8.3.2 A Connect Four AI

Amazingly, the same minimax() and find_best_move() functions we developed for
tic-tac-toe can be used unchanged with our Connect Four implementation. In the fol-
lowing code snippet, there are only a couple of changes from the code for our tic-tac-
toe AI. The big difference is that max_depth is now set to 3. That enables the com-
puter’s thinking time per move to be reasonable. In other words, our Connect Four AI
looks at (evaluates) positions up to three moves in the future.

from minimax import find_best_move
from connectfour import C4Board
from board import Move, Board

board: Board = C4Board()

def get_player_move() -> Move:
 player_move: Move = Move(-1)
 while player_move not in board.legal_moves:

play: int = int(input("Enter a legal column (0-6):"))
player_move = Move(play)

 return player_move

if __name__ == "__main__":
 # main game loop
 while True:

human_move: Move = get_player_move()
board = board.move(human_move)
if board.is_win:
 print("Human wins!")
 break
elif board.is_draw:
 print("Draw!")
 break
computer_move: Move = find_best_move(board, 3)
print(f"Computer move is {computer_move}")
board = board.move(computer_move)
print(board)
if board.is_win:
 print("Computer wins!")
 break
elif board.is_draw:
 print("Draw!")
 break

Try playing the Connect Four AI. You will notice that it takes a few seconds to generate
each move, unlike the tic-tac-toe AI. It will probably still beat you unless you’re care-
fully thinking about your moves. It at least will not make any completely obvious mis-
takes. We can improve its play by increasing the depth that it searches, but each
computer move will take exponentially longer to compute.

Listing 8.19 connectfour_ai.py

169Connect Four
TIP Did you know Connect Four has been “solved” by computer scientists?
To solve a game means to know the best move to play in any position. The
best first move in Connect Four is to place your piece in the center column.

8.3.3 Improving minimax with alpha-beta pruning

Minimax works well, but we are not getting a very deep search at present. There is a
small extension to minimax, known as alpha-beta pruning, that can improve search
depth by excluding positions in the search that will not result in improvements over
positions already searched. This magic is accomplished by keeping track of two values
between recursive minimax calls: alpha and beta. Alpha represents the evaluation of the
best maximizing move found up to this point in the search tree, and beta represents the
evaluation of the best minimizing move found so far for the opponent. If beta is ever
less than or equal to alpha, it’s not worth further exploring this branch of the search,
because a better or equivalent move has already been found than what will be found
farther down this branch. This heuristic decreases the search space significantly.

 Here is alphabeta() as just described. It should be put into our existing minimax.py
file.

def alphabeta(board: Board, maximizing: bool, original_player: Piece, max_
depth: int = 8, alpha: float = float("-inf"), beta: float =
float("inf")) -> float:

 # Base case – terminal position or maximum depth reached
 if board.is_win or board.is_draw or max_depth == 0:
 return board.evaluate(original_player)

 # Recursive case - maximize your gains or minimize the opponent's gains
 if maximizing:
 for move in board.legal_moves:
 result: float = alphabeta(board.move(move), False, original_

player, max_depth - 1, alpha, beta)
 alpha = max(result, alpha)
 if beta <= alpha:
 break
 return alpha
 else: # minimizing
 for move in board.legal_moves:
 result = alphabeta(board.move(move), True, original_player, max_

depth - 1, alpha, beta)
 beta = min(result, beta)
 if beta <= alpha:
 break
 return beta

Now you can make two very small changes to take advantage of our new function.
Change find_best_move() in minimax.py to use alphabeta() instead of minimax(),
and change the search depth in connectfour_ai.py to 5 from 3. With these changes,
your average Connect Four player will not be able to beat our AI. On my computer,
using minimax() at a depth of 5, our Connect Four AI takes about 3 minutes per

Listing 8.20 minimax.py continued

170 CHAPTER 8 Adversarial search
move, whereas using alphabeta() at the same depth takes about 30 seconds per
move. That’s one sixth of the time! That is quite an incredible improvement.

8.4 Minimax improvements beyond alpha-beta pruning
The algorithms presented in this chapter have been deeply studied, and many
improvements have been found over the years. Some of those improvements are
game-specific, such as “bitboards” in chess decreasing the time it takes to generate
legal moves, but most are general techniques that can be utilized for any game.

 One common technique is iterative deepening. In iterative deepening, first the
search function is run to a maximum depth of 1. Then it is run to a maximum depth
of 2. Then it is run to a maximum depth of 3, and so on. When a specified time limit is
reached, the search is stopped. The result from the last completed depth is returned.

 The examples in this chapter were hardcoded to a certain depth. This is okay if the
game is played without a game clock and time limits or if we do not care how long the
computer takes to think. Iterative deepening enables an AI to take a fixed amount of
time to find its next move instead of a fixed amount of search depth with a variable
amount of time to complete it.

 Another potential improvement is quiescence search. In this technique, the mini-
max search tree will be further expanded along routes that cause large changes in
position (captures in chess, for instance), rather than routes that have relatively
“quiet” positions. In this way, ideally the search will not waste computing time on bor-
ing positions that are unlikely to gain the player a significant advantage.

 The two best ways to improve upon minimax search is to search to a greater depth
in the allotted amount of time or improve upon the evaluation function used to assess
a position. Searching more positions in the same amount of time requires spending
less time on each position. This can come from finding code efficiencies or using
faster hardware, but it can also come at the expense of the latter improvement tech-
nique—improving the evaluation of each position. Using more parameters or heuris-
tics to evaluate a position may take more time, but it can ultimately lead to a better
engine that needs less search depth to find a good move.

 Some evaluation functions used for minimax search with alpha-beta pruning in
chess have dozens of heuristics. Genetic algorithms have even been used to tune these
heuristics. How much should the capture of a knight be worth in a game of chess?
Should it be worth as much as a bishop? These heuristics can be the secret sauce that
separates a great chess engine from one that is just good.

8.5 Real-world applications
Minimax, combined with further extensions like alpha-beta pruning, is the basis of
most modern chess engines. It has been applied to a wide variety of strategy games
with great success. In fact, most of the board-game artificial opponents that you play
on your computer probably use some form of minimax.

171Exercises
 Minimax (with its extensions, like alpha-beta pruning) has been so effective in
chess that it led to the famous 1997 defeat of the human chess world champion, Gary
Kasparov, by Deep Blue, a chess-playing computer made by IBM. The match was a
highly anticipated and game-changing event. Chess was seen as a domain of the high-
est intellectual caliber. The fact that a computer could exceed human ability in chess
meant, to some, that artificial intelligence should be taken seriously.

 Two decades later, the vast majority of chess engines still are based on minimax.
Today’s minimax-based chess engines far exceed the strength of the world’s best
human chess players. New machine-learning techniques are starting to challenge pure
minimax-based (with extensions) chess engines, but they have yet to definitively prove
their superiority in chess.

 The higher the branching factor for a game, the less effective minimax will be. The
branching factor is the average number of potential moves in a position for some
game. This is why recent advances in computer play of the board game Go have
required exploration of other domains, like machine learning. A machine-learning-
based Go AI has now defeated the best human Go player. The branching factor (and
therefore the search space) for Go is simply overwhelming for minimax-based algo-
rithms that attempt to generate trees containing future positions. But Go is the excep-
tion rather than the rule. Most traditional board games (checkers, chess, Connect
Four, Scrabble, and the like) have search spaces small enough that minimax-based
techniques can work well.

 If you are implementing a new board-game artificial opponent or even an AI for a
turn-based purely computer-oriented game, minimax is probably the first algorithm
you should reach for. Minimax can also be used for economic and political simula-
tions, as well as experiments in game theory. Alpha-beta pruning should work with any
form of minimax.

8.6 Exercises
1 Add unit tests to tic-tac-toe to ensure that the properties legal_moves, is_win,

and is_draw work correctly.
2 Create minimax unit tests for Connect Four.
3 The code in tictactoe_ai.py and connectfour_ai.py is almost identical. Refactor

it into two methods that can be used for either game.
4 Change connectfour_ai.py to have the computer play against itself. Does the

first player or the second player win? Is it the same player every time?
5 Can you find a way (through profiling the existing code or otherwise) to opti-

mize the evaluation method in connectfour.py to enable a higher search depth
in the same amount of time?

6 Use the alphabeta() function developed in this chapter together with a Python
library for legal chess move generation and maintenance of chess game state to
develop a chess AI.

Miscellaneous problems
Throughout this book we have covered a myriad of problem-solving techniques rel-
evant to modern software development tasks. To study each technique, we have
explored famous computer science problems. But not every famous problem fits
the mold of the prior chapters. This chapter is a gathering point for famous prob-
lems that did not quite fit into any other chapter. Think of these problems as a
bonus: more interesting problems with less scaffolding around them.

9.1 The knapsack problem
The knapsack problem is an optimization problem that takes a common computa-
tional need—finding the best use of limited resources given a finite set of usage
options—and spins it into a fun story. A thief enters a home with the intent to steal.
He has a knapsack, and he is limited in what he can steal by the capacity of the
knapsack. How does he figure out what to put into the knapsack? The problem is
illustrated in figure 9.1.

 If the thief could take any amount of any item, he could simply divide each
item’s value by its weight to figure out the most valuable items for the available
capacity. But to make the scenario more realistic, let’s say that the thief cannot take
half of an item (such as 2.5 televisions). Instead, we will come up with a way to solve
the 0/1 variant of the problem, so-called because it enforces another rule: The
thief may only take one or none of each item.
172

173The knapsack problem
First, let’s define a NamedTuple to hold our items.

from typing import NamedTuple, List

class Item(NamedTuple):
 name: str
 weight: int
 value: float

If we tried to solve this problem using a brute-force approach, we would look at every
combination of items available to be put in the knapsack. For the mathematically
inclined, this is known as a powerset, and a powerset of a set (in our case, the set of
items) has 2^N different possible subsets, where N is the number of items. Therefore,
we would need to analyze 2^N combinations (O(2^N)). This is okay for a small num-
ber of items, but it is untenable for a large number. Any approach that solves a prob-
lem using an exponential number of steps is an approach we want to avoid.

 Instead, we will use a technique known as dynamic programming, which is similar in
concept to memoization (chapter 1). Instead of solving a problem outright with a
brute-force approach, in dynamic programming one solves subproblems that make up
the larger problem, stores those results, and utilizes those stored results to solve the
larger problem. As long as the capacity of the knapsack is considered in discrete steps,
the problem can be solved with dynamic programming.

 For instance, to solve the problem for a knapsack with a 3-pound capacity and three
items, we can first solve the problem for a 1-pound capacity and one possible item,
2-pound capacity and one possible item, and 3-pound capacity and one possible item.
We can then use the results of that solution to solve the problem for 1-pound capacity

Listing 9.1 knapsack.py

Maximum
capacity

How can
I maximize
the value of

the things that
I steal?

50 lbs and $500

2 lbs
and $300

100 lbs
and $300

3 lbs and $1000
1 lb

and $4000

Things available for stealing

200 lbs and $700

75
lbs

???????

Figure 9.1 The burgler must decide what items to steal because the
capacity of the knapsack is limited.

174 CHAPTER 9 Miscellaneous problems
and two possible items, 2-pound capacity and two possible items, and 3-pound capacity
and two possible items. Finally, we can solve for all three possible items.

 All along the way we will fill in a table that tells us the best possible solution for
each combination of items and capacity. Our function will first fill in the table and
then figure out the solution based on the table.1

def knapsack(items: List[Item], max_capacity: int) -> List[Item]:
 # build up dynamic programming table
 table: List[List[float]] = [[0.0 for _ in range(max_capacity + 1)] for _

in range(len(items) + 1)]
 for i, item in enumerate(items):

for capacity in range(1, max_capacity + 1):
 previous_items_value: float = table[i][capacity]
 if capacity >= item.weight: # item fits in knapsack

value_freeing_weight_for_item: float = table[i][capacity -
item.weight]

only take if more valuable than previous item
table[i + 1][capacity] = max(value_freeing_weight_for_item +

item.value, previous_items_value)
 else: # no room for this item

table[i + 1][capacity] = previous_items_value
 # figure out solution from table
 solution: List[Item] = []
 capacity = max_capacity
 for i in range(len(items), 0, -1): # work backwards

was this item used?
if table[i - 1][capacity] != table[i][capacity]:
 solution.append(items[i - 1])
 # if the item was used, remove its weight
 capacity -= items[i - 1].weight

 return solution

The inner loop of the first part of this function will execute N * C times, where N is the
number of items and C is the maximum capacity of the knapsack. Therefore, the algo-
rithm performs in O(N * C) time, a significant improvement over the brute-force
approach for a large number of items. For instance, for the 11 items that follow, a
brute-force algorithm would need to examine 2^11 or 2,048 combinations. The pre-
ceding dynamic programming function will execute 825 times, because the maximum
capacity of the knapsack in question is 75 arbitrary units (11 * 75). This difference
would grow exponentially with more items.

 Let’s look at the solution in action.

Listing 9.2 knapsack.py continued

1 I studied several resources to write this solution, the most authoritative of which was Algorithms (Addison-Wes-
ley, 1988), 2nd edition, by Robert Sedgewick (p. 596). I looked at several examples of the 0/1 knapsack prob-
lem on Rosetta Code, most notably the Python dynamic programming solution (http://mng.bz/kx8C), which
this function is largely a port of, back from the Swift version of the book. (It went from Python to Swift and
back to Python again.)

http://mng.bz/kx8C

175The knapsack problem

if __name__ == "__main__":
 items: List[Item] = [Item("television", 50, 500),
 Item("candlesticks", 2, 300),
 Item("stereo", 35, 400),
 Item("laptop", 3, 1000),
 Item("food", 15, 50),
 Item("clothing", 20, 800),
 Item("jewelry", 1, 4000),
 Item("books", 100, 300),
 Item("printer", 18, 30),
 Item("refrigerator", 200, 700),
 Item("painting", 10, 1000)]
 print(knapsack(items, 75))

If you inspect the results printed to the console, you will see that the optimal items to
take are the painting, jewelry, clothing, laptop, stereo, and candlesticks. Here’s some
sample output showing the most valuable items for the thief to steal, given the limited-
capacity knapsack:

[Item(name='painting', weight=10, value=1000), Item(name='jewelry', weight=1,
value=4000), Item(name='clothing', weight=20, value=800),
Item(name='laptop', weight=3, value=1000), Item(name='stereo',
weight=35, value=400), Item(name='candlesticks', weight=2, value=300)]

To get a better idea of how this all works, let’s look at some of the particulars of the
function:

for i, item in enumerate(items):
 for capacity in range(1, max_capacity + 1):

For each possible number of items, we loop through all of the capacities in a linear
fashion, up to the maximum capacity of the knapsack. Notice that I say “each possible
number of items” instead of each item. When i equals 2, it does not just represent
item 2. It represents the possible combinations of the first two items for every
explored capacity. item is the next item that we are considering stealing:

previous_items_value: float = table[i][capacity]
if capacity >= item.weight: # item fits in knapsack

previous_items_value is the value of the last combination of items at the current
capacity being explored. For each possible combination of items, we consider
whether adding in the latest “new” item is even possible.

 If the item weighs more than the knapsack capacity we are considering, we simply
copy over the value for the last combination of items that we considered for the capac-
ity in question:

else: # no room for this item
 table[i + 1][capacity] = previous_items_value

Otherwise, we consider whether adding in the “new” item will result in a higher value
than the last combination of items at that capacity that we considered. We do this by

Listing 9.3 knapsack.py continued

176 CHAPTER 9 Miscellaneous problems
adding the value of the item to the value already computed in the table for the previ-
ous combination of items at a capacity equal to the item’s weight, subtracted from the
current capacity we are considering. If this value is higher than the last combination
of items at the current capacity, we insert it; otherwise, we insert the last value:

value_freeing_weight_for_item: float = table[i][capacity - item.weight]
only take if more valuable than previous item
table[i + 1][capacity] = max(value_freeing_weight_for_item + item.value,

previous_items_value)

That concludes building up the table. To actually find which items are in the solution,
though, we need to work backward from the highest capacity and the final explored
combination of items:

for i in range(len(items), 0, -1): # work backwards
 # was this item used?
 if table[i - 1][capacity] != table[i][capacity]:

We start from the end and loop through our table from right to left, checking whether
there was a change in the value inserted into the table at each stop. If there was, that
means we added the new item that was considered in a particular combination
because the combination was more valuable than the prior one. Therefore, we add
that item to the solution. Also, capacity is decreased by the weight of the item, which
can be thought of as moving up the table:

solution.append(items[i - 1])
if the item was used, remove its weight
capacity -= items[i - 1].weight

NOTE Throughout both the build-up of the table and the solution search,
you may have noticed some manipulation of iterators and table size by 1. This
is done for convenience from a programmatic perspective. Think about how
the problem is built from the bottom up. When the problem begins, we are
dealing with a zero-capacity knapsack. If you work your way up from the bot-
tom in a table, it will become clear why we need the extra row and column.

Are you still confused? Table 9.1 is the table the knapsack() function builds. It would
be quite a large table for the preceding problem, so instead, let’s look at a table for
a knapsack with 3-pound capacity and three items: matches (1 pound), flashlight
(2 pounds), and book (1 pound). Assume those items are valued at $5, $10, and $15,
respectively.

Table 9.1 An example of a knapsack problem of three items

0 lb. 1 lb. 2 lb. 3 lb.

Matches (1 lb., $5) 0 5 5 5

Flashlight (2 lbs., $10) 0 5 10 15

Book (1 lb., $15) 0 15 20 25

177The Traveling Salesman Problem
As you look across the table from left to right, the weight is increasing (how much you
are trying to fit in the knapsack). As you look down the table from top to bottom, the
number of items you are attempting to fit is increasing. On the first row, you are only
trying to fit the matches. On the second row, you fit the most valuable combination of
the matches and the flashlight that the knapsack can hold. On the third row, you fit the
most valuable combination of all three items.

 As an exercise to facilitate your understanding, try filling in a blank version of this
table yourself, using the algorithm described in the knapsack() function with these
same three items. Then use the algorithm at the end of the function to read back the
right items from the table. This table corresponds to the table variable in the function.

9.2 The Traveling Salesman Problem
The Traveling Salesman Problem is one of the most classic and talked-about problems
in all of computing. A salesman must visit all of the cities on a map exactly once,
returning to his start city at the end of the journey. There is a direct connection from
every city to every other city, and the salesman may visit the cities in any order. What is
the shortest path for the salesman?

 The problem can be thought of as a graph problem (chapter 4), with the cities
being the vertices and the connections between them being the edges. Your first
instinct might be to find the minimum spanning tree, as described in chapter 4.
Unfortunately, the solution to the Traveling Salesman Problem is not so simple. The
minimum spanning tree is the shortest way to connect all of the cities, but it does not
provide the shortest path for visiting all of them exactly once.

 Although the problem, as posed, appears fairly simple, there is no algorithm that
can solve it quickly for an arbitrary number of cities. What do I mean by “quickly”?
I mean that the problem is what is known as NP hard. An NP-hard (non-deterministic
polynomial hard) problem is a problem for which no polynomial time algorithm
exists. (The time it takes is a polynomial function of the size of the input.) As the num-
ber of cities that the salesman needs to visit increases, the difficulty of solving the
problem grows exceptionally quickly. It is much harder to solve the problem for 20 cit-
ies than 10. It is impossible (to the best of current knowledge), in a reasonable
amount of time, to solve the problem perfectly (optimally) for millions of cities.

NOTE The naive approach to the Traveling Salesman Problem is O(n!). Why
this is the case is discussed in section 9.2.2. We suggest reading section 9.2.1
before reading 9.2.2, though, because the implementation of a naive solution
to the problem will make its complexity obvious.

9.2.1 The naive approach

The naive approach to the problem is simply to try every possible combination of cit-
ies. Attempting the naive approach will illustrate the difficulty of the problem and this
approach’s unsuitability for brute-force attempts at larger scales.

178 CHAPTER 9 Miscellaneous problems
OUR SAMPLE DATA

In our version of the Traveling Salesman Problem, the salesman is interested in visit-
ing five of the major cities of Vermont. We will not specify a starting (and therefore
ending) city. Figure 9.2 illustrates the five cities and the driving distances between
them. Note that there is a distance listed for the route between every pair of cities.

Perhaps you have seen driving distances in table form before. In a driving-distance
table, one can easily look up the distance between any two cities. Table 9.2 lists the
driving distances for the five cities in the problem.

67
46

98

65

40

55 75

91

122 153

White River
Junction

Rutland

Burlington

Bennington
Brattleboro Figure 9.2 Five cities in Vermont and

the driving distances between them

179The Traveling Salesman Problem

We will need to codify both the cities and the distances between them for our prob-
lem. To make the distances between cities easy to look up, we will use a dictionary of
dictionaries, with the outer set of keys representing the first of a pair and the inner set
of keys representing the second. This will be the type Dict[str, Dict[str, int]],
and it will allow lookups like vt_distances["Rutland"]["Burlington"], which
should return 67.

from typing import Dict, List, Iterable, Tuple
from itertools import permutations

vt_distances: Dict[str, Dict[str, int]] = {
 "Rutland":
 {"Burlington": 67,
 "White River Junction": 46,
 "Bennington": 55,
 "Brattleboro": 75},
 "Burlington":
 {"Rutland": 67,
 "White River Junction": 91,
 "Bennington": 122,
 "Brattleboro": 153},
 "White River Junction":
 {"Rutland": 46,
 "Burlington": 91,
 "Bennington": 98,
 "Brattleboro": 65},
 "Bennington":
 {"Rutland": 55,
 "Burlington": 122,
 "White River Junction": 98,
 "Brattleboro": 40},
 "Brattleboro":
 {"Rutland": 75,
 "Burlington": 153,
 "White River Junction": 65,
 "Bennington": 40}
}

Table 9.2 Driving distances between cities in Vermont

Rutland Burlington
White River

Junction
Bennington Brattleboro

Rutland 0 67 46 55 75

Burlington 67 0 91 122 153

White River Junction 46 91 0 98 65

Bennington 55 122 98 0 40

Brattleboro 75 153 65 40 0

Listing 9.4 tsp.py

180 CHAPTER 9 Miscellaneous problems
FINDING ALL PERMUTATIONS

The naive approach to solving the Traveling Salesman Problem requires generating
every possible permutation of the cities. There are many permutation-generation
algorithms; they are simple enough to ideate that you could almost certainly come up
with one on your own.

 One common approach is backtracking. You first saw backtracking in chapter 3 in
the context of solving a constraint-satisfaction problem. In constraint-satisfaction prob-
lem solving, backtracking is used after a partial solution is found that does not satisfy
the problem’s constraints. In such a case, you revert to an earlier state and continue the
search along a different path than that which led to the incorrect partial solution.

 To find all of the permutations of the items in a list (say, our cities), you could also
use backtracking. After making a swap between elements to go down a path of further
permutations, you can backtrack to the state before the swap was made so that a differ-
ent swap can be made in order to go down a different path.

 Luckily, there is no need to reinvent the wheel by writing a permutation-generation
algorithm, because the Python standard library has a permutations() function in its
itertools module. In the following code snippet, we generate all of the permutations
of the Vermont cities that our travelling salesman would need to visit. Because there
are five cities, this is 5! (5 factorial), or 120 permutations.

vt_cities: Iterable[str] = vt_distances.keys()
city_permutations: Iterable[Tuple[str, ...]] = permutations(vt_cities)

BRUTE-FORCE SEARCH

We can now generate all of the permutations of the city list, but this is not quite the
same as a Traveling Salesman Problem path. Recall that in the Traveling Salesman
Problem, the salesman must return, at the end, to the same city that he started in. We
can easily add the first city in a permutation to the end of a permutation using a list
comprehension.

tsp_paths: List[Tuple[str, ...]] = [c + (c[0],) for c in city_permutations]

We are now ready to try testing the paths we have permuted. A brute-force search
approach painstakingly looks at every path in a list of paths and uses the distance
between two cities lookup table (vt_distances) to calculate each path’s total dis-
tance. It prints both the shortest path and that path’s total distance.

if __name__ == "__main__":
 best_path: Tuple[str, ...]
 min_distance: int = 99999999999 # arbitrarily high number
 for path in tsp_paths:

Listing 9.5 tsp.py continued

Listing 9.6 tsp.py continued

Listing 9.7 tsp.py continued

181The Traveling Salesman Problem
 distance: int = 0
 last: str = path[0]
 for next in path[1:]:
 distance += vt_distances[last][next]
 last = next
 if distance < min_distance:
 min_distance = distance
 best_path = path
 print(f"The shortest path is {best_path} in {min_distance} miles.")

We finally can brute-force the cities of Vermont, finding the shortest path to reach all
five. The output should look something like the following, and the best path is illus-
trated in figure 9.3.

The shortest path is ('Rutland', 'Burlington', 'White River Junction',
'Brattleboro', 'Bennington', 'Rutland') in 318 miles.

67

65

40

55

91

Burlington

White River
Junction

Bennington
Brattleboro

Rutland

Figure 9.3 The shortest path for the
salesman to visit all five cities in Vermont
is illustrated.

182 CHAPTER 9 Miscellaneous problems
9.2.2 Taking it to the next level

There is no easy answer to the Traveling Salesman Problem. Our naive approach
quickly becomes infeasible. The number of permutations generated is n factorial (n!),
where n is the number of cities in the problem. If we were to include just one more
city (six instead of five), the number of evaluated paths would grow by a factor of six.
Then it would be seven times harder to solve the problem for just one more city after
that. This is not a scalable approach!

 In the real world, the naive approach to the Traveling Salesman Problem is seldom
used. Most algorithms for instances of the problem with a large number of cities are
approximations. They try to solve the problem for a near-optimal solution. The near-
optimal solution may be within a small known band of the perfect solution. (For
example, perhaps they will be no more than 5% less efficient.)

 Two techniques that have already appeared in this book have been used to attempt
the Traveling Salesman Problem on large data sets. Dynamic programming, which we
used in the knapsack problem earlier in this chapter, is one approach. Another is
genetic algorithms, as described in chapter 5. Many journal articles have been pub-
lished attributing genetic algorithms to near-optimal solutions for the traveling sales-
man with large numbers of cities.

9.3 Phone number mnemonics
Before there were smartphones with built-in
address books, telephones included letters on each
of the keys on their number pads. The reason for
these letters was to provide easy mnemonics by
which to remember phone numbers. In the United
States, typically the 1 key would have no letters,
2 would have ABC, 3 DEF, 4 GHI, 5 JKL, 6 MNO,
7 PQRS, 8 TUV, 9 WXYZ, and 0 no letters. For
example, 1-800-MY-APPLE corresponds to the
phone number 1-800-69-27753. Once in a while
you will still find these mnemonics in advertise-
ments, so the numbers on the keypad have made
their way into modern smartphone apps, as evi-
denced by figure 9.4.

 How does one come up with a new mnemonic
for a phone number? In the 1990s there was popular
shareware to help with the effort. These pieces of
software would generate every permutation of a
phone number’s letters and then look through a dic-
tionary to find words that were contained in the per-
mutations. They would then show the permutations

Figure 9.4 The Phone app in iOS
retains the letters on keys that its
telephone forebears contained.

183Phone number mnemonics
with the most complete words to the user. We will do the first half of the problem. The
dictionary lookup will be left as an exercise.

 In the last problem, when we looked at permutation generation, we used the
permutations() function to generate the potential paths for the Traveling Salesman
Problem. However, as was mentioned, there are many different ways to generate per-
mutations. For this problem in particular, instead of swapping two positions in an
existing permutation to generate a new one, we will generate each permutation from
the ground up. We will do this by looking at the potential letters that match each
numeral in the phone number and continually add more options to the end as we go
to each successive numeral. This is a kind of Cartesian product, and once again, the
Python standard library’s itertools module has us covered.

 First, we will define a mapping of numerals to potential letters.

from typing import Dict, Tuple, Iterable, List
from itertools import product

phone_mapping: Dict[str, Tuple[str, ...]] = {"1": ("1",),
 "2": ("a", "b", "c"),
 "3": ("d", "e", "f"),
 "4": ("g", "h", "i"),
 "5": ("j", "k", "l"),
 "6": ("m", "n", "o"),
 "7": ("p", "q", "r", "s"),
 "8": ("t", "u", "v"),
 "9": ("w", "x", "y", "z"),
 "0": ("0",)}

The next function combines all of those possibilities for each numeral into a list of pos-
sible mnemonics for a given phone number. It does this by creating a list of tuples of
potential letters for each digit in the phone number and then combining them through
the Cartesian product function product() from itertools. Note the use of the unpack
(*) operator to use the tuples in letter_tuples as the arguments for product().

def possible_mnemonics(phone_number: str) -> Iterable[Tuple[str, ...]]:
 letter_tuples: List[Tuple[str, ...]] = []
 for digit in phone_number:
 letter_tuples.append(phone_mapping.get(digit, (digit,)))
 return product(*letter_tuples)

 Now we can find all of the possible mnemonics for a phone number.

if __name__ == "__main__":
 phone_number: str = input("Enter a phone number:")
 print("Here are the potential mnemonics:")

Listing 9.8 tsp.py continued

Listing 9.9 tsp.py continued

Listing 9.10 tsp.py continued

184 CHAPTER 9 Miscellaneous problems
 for mnemonic in possible_mnemonics(phone_number):
print("".join(mnemonic))

It turns out that the phone number 1440787 can also be written as 1GH0STS. That is
easier to remember.

9.4 Real-world applications
Dynamic programming, as used with the knapsack problem, is a widely applicable
technique that can make seemingly intractable problems solvable by breaking them
into constituent smaller problems and building up a solution from those parts. The
knapsack problem itself is related to other optimization problems where a finite
amount of resources (the capacity of the knapsack) must be allocated amongst a finite
but exhaustive set of options (the items to steal). Imagine a college that needs to allo-
cate its athletic budget. It does not have enough money to fund every team, and it has
some expectation of how much alumni donations each team will bring in. It can run a
knapsack-like problem to optimize the budget’s allocation. Problems like this are com-
mon in the real world.

 The Traveling Salesman Problem is an everyday occurrence for shipping and distri-
bution companies like UPS and FedEx. Package delivery companies want their drivers
to travel the shortest routes possible. Not only does this make the drivers’ jobs more
pleasant, but it also saves fuel and maintenance costs. We all travel for work or for
pleasure, and finding optimal routes when visiting many destinations can save
resources. But the Traveling Salesman Problem is not just for routing travel; it comes
up in almost any routing scenario that requires singular visits to nodes. Although a
minimum spanning tree (chapter 4) may minimize the amount of wire needed to con-
nect a neighborhood, it does not tell us the optimal amount of wire if every house
must be forward-connected to just one other house as part of a giant circuit that
returns to its origination. The Traveling Salesman Problem does.

 Permutation-generation techniques like the ones used in the naive approach to the
Traveling Salesman Problem and the phone number mnemonics problem are useful
for testing all sorts of brute-force algorithms. For instance, if you were trying to crack a
short password, you could generate every possible permutation of the characters that
could potentially be in the password. Practitioners of such large-scale permutation-
generation tasks would be wise to use an especially efficient permutation-generation
algorithm like Heap’s algorithm.2

9.5 Exercises
1 Reprogram the naive approach to the Traveling Salesman Problem, using the

graph framework from chapter 4.
2 Implement a genetic algorithm, as described in chapter 5, to solve the Traveling

Salesman Problem. Start with the simple data set of Vermont cities described in

2 Robert Sedgewick, “Permutation Generation Methods” (Princeton University), http://mng.bz/87Te.

http://mng.bz/87Te

185Exercises
this chapter. Can you get the genetic algorithm to arrive at the optimal solution
in a short amount of time? Then attempt the problem with an increasingly
large number of cities. How well does the genetic algorithm hold up? You can
find a large number of data sets specifically made for the Traveling Salesman
Problem by searching the web. Develop a testing framework for checking the
efficiency of your method.

3 Use a dictionary with the phone number mnemonics program and return only
permutations that contain valid dictionary words.

 appendix A
Glossary

This appendix defines a selection of key terms from throughout the book.

activation function A function that transforms the output of a neuron in an artifi-
cial neural network, generally to render it capable of handling nonlinear trans-
formations or to ensure its output value is clamped within some range
(chapter 7).

acyclic A graph with no cycles (chapter 4).

admissible heuristic A heuristic for the A* search algorithm that never overesti-
mates the cost to reach the goal (chapter 2).

artificial neural network A simulation of a biological neural network using compu-
tational tools to solve problems not easily reduced into forms amenable to
traditional algorithmic approaches. Note that the operation of an artificial
neural network generally strays significantly from its biological counterpart
(chapter 7).

auto-memoization A version of memoization implemented at the language level, in
which the results of function calls without side effects are stored for lookup
upon further identical calls (chapter 1).

backpropagation A technique used for training neural network weights according
to a set of inputs with known-correct outputs. Partial derivatives are used to
calculate each weight’s “responsibility” for the error between actual results
and expected results. These deltas are used to update the weights for future
runs (chapter 7).

backtracking Returning to an earlier decision point (to go a different direction
than was last pursued) after hitting a wall in a search problem (chapter 3).

bit string A data structure that stores a sequence of 1s and 0s represented using a
single bit of memory for each. This is sometimes referred to as a bit vector or bit
array (chapter 1).
186

187APPENDIX A Glossary
centroid The center point in a cluster. Typically, each dimension of this point is the
mean of the rest of the points in that dimension (chapter 6).

chromosome In a genetic algorithm, each individual in the population is referred to
as a chromosome (chapter 5).

cluster See clustering (chapter 6).

clustering An unsupervised learning technique that divides a data set into groups of
related points, known as clusters (chapter 6).

codon A combination of three nucleotides that form an amino acid (chapter 2).

compression Encoding data (changing its form) to require less space (chapter 1).

connected A graph property that indicates there is a path from any vertex to any
other vertex (chapter 4).

constraint A requirement that must be fulfilled in order for a constraint-satisfaction
problem to be solved (chapter 3).

crossover In a genetic algorithm, combining individuals from the population to cre-
ate offspring that are a mixture of the parents and that will be a part of the next
generation (chapter 5).

CSV A text interchange format in which rows of data sets have their values separated
by commas, and the rows themselves are generally separated by newline charac-
ters. CSV stands for comma-separated values. CSV is a common export format from
spreadsheets and databases (chapter 7).

cycle A path in a graph that visits the same vertex twice without backtracking (chapter 4).

decompression Reversing the process of compression, returning the data to its origi-
nal form (chapter 1).

deep learning Something of a buzzword, deep learning can refer to any of several
techniques that use advanced machine-learning algorithms to analyze big data.
Most commonly, deep learning refers to using multilayer artificial neural networks
to solve problems using large data sets (chapter 7).

delta A value that is representative of a gap between the expected value of a weight
in a neural network and its actual value. The expected value is determined
through the use of training data and backpropagation (chapter 7).

digraph See directed graph (chapter 4).

directed graph Also known as a digraph, a directed graph is a graph in which edges
may only be traversed in one direction (chapter 4).

domain The possible values of a variable in a constraint-satisfaction problem (chap-
ter 3).

dynamic programming Instead of solving a large problem outright using a brute-
force approach, in dynamic programming the problem is broken up into
smaller subproblems that are each more manageable (chapter 9).

188 APPENDIX A Glossary
edge A connection between two vertices (nodes) in a graph (chapter 4).

exclusive or See XOR (chapter 1).

feed-forward A type of neural network in which signals propagate in one direction
(chapter 7).

fitness function A function that evaluates the effectiveness of a potential solution to
a problem (chapter 5).

generation One round in the evaluation of a genetic algorithm; also used to refer to
the population of individuals active in a round (chapter 5).

genetic programming Programs that modify themselves using the selection, crossover,
and mutation operators to find solutions to programming problems that are non-
obvious (chapter 5).

gradient descent The method of modifying an artificial neural network’s weights using
the deltas calculated during backpropagation and the learning rate (chapter 7).

graph An abstract mathematical construct that is used for modeling a real-world
problem by dividing the problem into a set of connected nodes. The nodes are
known as vertices, and the connections are known as edges (chapter 4).

greedy algorithm An algorithm that always selects the best immediate choice at any
decision point, hopeful that it will lead to the globally optimal solution (chap-
ter 4).

heuristic An intuition about the way to solve a problem that points in the right direc-
tion (chapter 2).

hidden layer Any layers between the input layer and the output layer in a feed-forward
artificial neural network (chapter 7).

infinite loop A loop that does not terminate (chapter 1).

infinite recursion A set of recursive calls that does not terminate but instead contin-
ues to make additional recursive calls. Analogous to an infinite loop. Usually
caused by the lack of a base case (chapter 1).

input layer The first layer of a feed-forward artificial neural network that receives its
input from some kind of external entity (chapter 7).

learning rate A value, usually a constant, used to adjust the rate at which weights are
modified in an artificial neural network, based on calculated deltas (chapter 7).

memoization A technique in which the results of computational tasks are stored for
later retrieval from memory, saving additional computation time to re-create the
same results (chapter 1).

minimum spanning tree A spanning tree that connects all vertices using the minimum
total weight of edges (chapter 4).

mutate In a genetic algorithm, randomly changing some property of an individual
before it is included in the next generation (chapter 5).

189APPENDIX A Glossary
natural selection The evolutionary process by which well-adapted organisms succeed
and poorly adapted organisms fail. Given a limited set of resources in the envi-
ronment, the organisms best suited to leverage those resources will survive and
propagate. Over several generations, this leads to helpful traits being propagated
amongst a population, hence being naturally selected by the constraints of the
environment (chapter 5).

neural network A network of multiple neurons that act in concert to process informa-
tion. Neurons are often thought about as being organized in layers (chapter 7).

neuron An individual nerve cell, such as those in the human brain (chapter 7).

normalization The process of making different types of data comparable (chapter 6).

NP-hard A problem that belongs to a class of problems for which there is no known
polynomial time algorithm to solve (chapter 9).

nucleotide One instance of one of the four bases of DNA: adenine (A), cytosine (C),
guanine (G), and thymine (T) (chapter 2).

output layer The last layer in a feed-forward artificial neural network that is used for
determining the result of the network for a given input and problem (chapter 7).

path A set of edges that connects two vertices in a graph (chapter 4).

ply A turn (often thought of as a move) in a two-player game (chapter 8).

population In a genetic algorithm, the population is the collection of individuals
(each representing a potential solution to the problem) competing to solve the
problem (chapter 5).

priority queue A data structure that pops items based on a “priority” ordering. For
instance, a priority queue may be used with a collection of emergency calls in
order to respond to the highest-priority calls first (chapter 2).

queue An abstract data structure that enforces the ordering FIFO (First-In-First-
Out). A queue implementation provides at least the operations push and pop
for adding and removing elements, respectively (chapter 2).

recursive function A function that calls itself (chapter 1).

selection The process of selecting individuals in a generation of a genetic algorithm
for reproduction to create individuals for the next generation (chapter 5).

sigmoid function One of a set of popular activation functions used in artificial neural
networks. The eponymous sigmoid function always returns a value between 0 and
1. It is also useful for ensuring that results beyond just linear transformations can
be represented by the network (chapter 7).

SIMD instructions Microprocessor instructions optimized for doing calculations
using vectors, also sometimes known as vector instructions. SIMD stands for sin-
gle instruction, multiple data (chapter 7).

spanning tree A tree that connects every vertex in a graph (chapter 4).

190 APPENDIX A Glossary
stack An abstract data structure that enforces the Last-In-First-Out (LIFO) ordering.
A stack implementation provides at least the operations push and pop for add-
ing and removing elements, respectively (chapter 2).

supervised learning Any machine-learning technique in which the algorithm is
somehow guided toward correct results using outside resources (chapter 7).

synapses Gaps between neurons in which neurotransmitters are released to allow for
the conduction of electrical current. In layman’s terms, these are the connec-
tions between neurons (chapter 7).

training A phase in which an artificial neural network has its weights adjusted by using
backpropagation with known-correct outputs for some given inputs (chapter 7).

tree A graph that has only one path between any two vertices. A tree is acyclic (chap-
ter 4).

unsupervised learning Any machine-learning technique that does not use fore-
knowledge to reach its conclusions—in other words, a technique that is not
guided but instead runs on its own (chapter 6).

variable In the context of a constraint-satisfaction problem, a variable is some
parameter that must be solved for as part of the problem’s solution. The possible
values of the variable are its domain. The requirements for a solution are one or
more constraints (chapter 3).

vertex A single node in a graph (chapter 4).

XOR A logical bitwise operation that returns true when either of its operands is true
but not when both are true or neither is true. The abbreviation stands for exclu-
sive or. In Python, the ^ operator is used for XOR (chapter 1).

z-score The number of standard deviations a data point is away from the mean of a
data set (chapter 6).

appendix B
More resources

Where should you go next? This book covered a wide swath of topics, and this
appendix will connect you with great resources that will help you explore them
further.

B.1 Python
As was stated in the introduction, Classic Computer Science Problems in Python assumes
you have at least an intermediate knowledge of the Python language. Here, I list
two Python books that I personally have used and recommend to take your Python
knowledge to the next level. These titles are not appropriate for Python beginners
(instead, check out The Quick Python Book by Naomi Ceder [Manning, 2018] for
that), but rather can turn intermediate Python users into advanced Python users.

 Luciano Ramalho, Fluent Python: Clear, Concise, and Effective Programming
(O’Reilly, 2015)
– One of the only popular Python language books that doesn’t straddle the

line between beginner and intermediate/advanced; this book is clearly
aimed at intermediate/advanced programmers

– Covers a large swath of advanced Python topics
– Teaches best practices; this is the book that will teach you to write

“Pythonic” code
– Contains numerous code examples for every topic and explains the inner

workings of the Python standard library
– Can be a bit verbose in parts, but you can easily skip those bits

 David Beazley and Brian K. Jones, Python Cookbook, 3rd edition (O’Reilly,
2013)
– Teaches common everyday programming tasks by example
– Some of the tasks go well beyond beginners’ tasks.
– Makes strong use of the Python standard library
191

192 APPENDIX B More resources
– A little dated (doesn’t include the latest standard library tools) due to its five-
year-old release date; I hope a fourth edition will come out soon

B.2 Algorithms and data structures
To quote this book’s introduction, “This is not a data structures and algorithms text-
book.” There is little use of big-O notation in this book, and there are no mathemati-
cal proofs. This is more of a hands-on tutorial to important programming techniques,
and there is value in having a real textbook too. Not only will it provide you with a
more formal explanation of why certain techniques work, but it will also serve as a use-
ful reference. Online resources are great, but sometimes it is good to have informa-
tion that has been meticulously vetted by academics and publishers.

 Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein, Introduc-
tion to Algorithms, 3rd edition (MIT Press, 2009), https://mitpress.mit.edu/
books/introduction-algorithms-third-edition.
– This is one of the most-cited texts in computer science—so definitive that it

is often just referred to by the initials of its authors: CLRS
– Comprehensive and rigorous in its coverage
– Its teaching style is sometimes seen as less approachable than other texts, but

it is still an excellent reference.
– Pseudocode is provided for most algorithms.
– A fourth edition is being developed, and because this book is expensive, it

may be worth looking into when the fourth edition is due to be released.

 Robert Sedgewick and Kevin Wayne, Algorithms, 4th edition (Addison-Wesley
Professional, 2011), http://algs4.cs.princeton.edu/home/.
– An approachable yet comprehensive introduction to algorithms and data

structures
– Well organized with full examples of all algorithms in Java
– Popular in college algorithms classes

 Steven Skiena, The Algorithm Design Manual, 2nd edition (Springer, 2011),
http://www.algorist.com.
– Different in its approach from other textbooks in this discipline
– Offers less code but more descriptive discussion of appropriate uses of each

algorithm
– Offers a “choose your own adventure”-like guide to a wide range of algorithms

 Aditya Bhargava, Grokking Algorithms (Manning, 2016), https://www.manning.
com/books/grokking-algorithms.
– A graphical approach to teaching basic algorithms, with cute cartoons to

boot
– Not a reference textbook, but instead a guide to learning some basic selected

topics for the first time

https://mitpress.mit.edu/books/introduction-algorithms-third-edition
https://mitpress.mit.edu/books/introduction-algorithms-third-edition
https://mitpress.mit.edu/books/introduction-algorithms-third-edition
http://algs4.cs.princeton.edu/home/
http://www.algorist.com
https://www.manning.com/books/grokking-algorithms
https://www.manning.com/books/grokking-algorithms
https://www.manning.com/books/grokking-algorithms

193Functional programming
B.3 Artificial intelligence
Artificial intelligence is changing our world. In this book you not only were intro-
duced to some traditional artificial intelligence search techniques like A* and mini-
max, but also to techniques from its exciting subdiscipline, machine learning, like
k-means and neural networks. Learning more about artificial intelligence is not only
interesting, but also will ensure you are prepared for the next wave of computing.

 Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 3rd edi-
tion (Pearson, 2009), http://aima.cs.berkeley.edu.
– The definitive textbook on AI, often used in college courses
– Wide in its breadth
– Excellent source code repositories (implemented versions of the pseudo-

code in the book) available online

 Stephen Lucci and Danny Kopec, Artificial Intelligence in the 21st Century, 2nd
edition (Mercury Learning and Information, 2015), http://mng.bz/1N46.
– An approachable text for those looking for a more down-to-earth and color-

ful guide than Russell and Norvig
– Interesting vignettes on practitioners and many references to real-world

applications

 Andrew Ng, “Machine Learning” course (Stanford University), https://www
.coursera.org/learn/machine-learning/.
– A free online course that covers many of the fundamental algorithms in

machine learning
– Taught by a world-renowned expert
– Often referenced as a great starting point in the field by practitioners

B.4 Functional programming
Python can be programmed in a functional style, but it wasn’t really designed for that.
Delving into the reaches of functional programming is possible in Python itself, but it
can also be helpful to work in a purely functional language and then take some of the
ideas you learn from that experience back to Python.

 Harold Abelson and Gerald Jay Sussman with Julie Sussman, Structure and Inter-
pretation of Computer Programs (MIT Press, 1996), https://mitpress.mit.edu/
sicp/.
– A classic introduction to functional programming often used in introductory

computer science college classes
– Teaches in Scheme, an easy-to-pick-up, purely functional language
– Available online for free

 Aslam Khan, Grokking Functional Programming (Manning, 2018), https://www
.manning.com/books/grokking-functional-programming.
– A graphical and friendly introduction to functional programming

https://www.manning.com/books/grokking-functional-programming
https://www.manning.com/books/grokking-functional-programming
https://www.manning.com/books/grokking-functional-programming
http://aima.cs.berkeley.edu
http://mng.bz/1N46
https://www.coursera.org/learn/machine-learning/
https://www.coursera.org/learn/machine-learning/
https://www.coursera.org/learn/machine-learning/
https://mitpress.mit.edu/sicp/
https://mitpress.mit.edu/sicp/
https://mitpress.mit.edu/sicp/

194 APPENDIX B More resources
 David Mertz, Functional Programming in Python (O’Reilly, 2015), https://www
.oreilly.com/programming/free/functional-programming-python.csp.
– Gives a basic introduction to some functional programming utilities in the

Python standard library
– Free
– Only 37 pages long—not very comprehensive, but instead a kickstart

B.5 Open source projects useful for machine learning
There are several useful third-party Python libraries optimized for high-performance
machine learning. A couple of these projects were mentioned in chapter 7. These
projects offer more features and utility than you can probably develop yourself. For
serious machine learning or big data applications, you should use these libraries (or
their equivalents).

 NumPy, http://www.numpy.org.
– The de facto standard Python numeric library
– Implemented largely in C for fast performance
– Underlies many Python machine-learning libraries, including TensorFlow

and scikit-learn

 TensorFlow, https://www.tensorflow.org.
– One of the most popular Python libraries for working with neural networks

 pandas, https://pandas.pydata.org.
– Popular library for importing data sets into Python and manipulating them

 scikit-learn, http://scikit-learn.org/stable/.
– Well-tested and feature-full versions of several of the machine-learning algo-

rithms taught in this book (and many, many more)

http://www.numpy.org
https://www.oreilly.com/programming/free/functional-programming-python.csp
https://www.oreilly.com/programming/free/functional-programming-python.csp
https://www.oreilly.com/programming/free/functional-programming-python.csp
https://github.com/davecom/SwiftCSP
https://pandas.pydata.org
http://scikit-learn.org/stable/
https://www.tensorflow.org

appendix C
A brief introduction

to type hints
Python introduced type hints (or type annotations) as an official part of the lan-
guage through PEP 484 and Python version 3.5. Since then, type hints have
become more common throughout many Python codebases, and the language has
added more robust support for them. Type hints are used in every source code list-
ing in this book. In this short appendix, I aim to introduce type hints, explain why
they are useful, explain some of their problems, and link you to more in-depth
resources about them.

WARNING This appendix is not meant to be comprehensive. Instead, it’s a
brief kickstart. Please see the official Python documentation for details:
https://docs.python.org/3/library/typing.html.

C.1 What are type hints?
Type hints are a way of annotating the expected types of variables, function param-
eters, and function return types in Python. In other words, they are a way that a
programmer can indicate the type that is expected in a certain part of a Python
program. Most Python programs are written without type hints. In fact, before
reading this book, even if you are an intermediate Python programmer, it is very
possible that you have never seen a Python program with type hints.

 Because Python does not require the programmer to specify the type of a vari-
able, the only way to figure out the type of a variable without type hints is through
inspection (literally reading the source code up to that point or running it and
printing the type) or documentation. This is problematic because it makes Python
code harder to read (although some would say the opposite, and we will get to that
later in this appendix). Another issue is that because Python is very flexible, it
allows the programmer to use the same variable to refer to multiple types of
195

https://docs.python.org/3/library/typing.html

196 APPENDIX C A brief introduction to type hints
objects, which can lead to errors. Type hints can help prevent this style of program-
ming and alleviate these errors.

 Now that Python has type hints, we call it a gradually typed language—meaning that
you can use type annotations when you want to, but they are not required. In this
short introduction I hope to convince you (despite perhaps your resistance to how
they fundamentally change the look of the language) that having type hints available
is a good thing—a good thing that you should take advantage of in your code.

C.2 What do type hints look like?
Type hints are added to the line of code where a variable or a function is declared.
A colon (:) is used to indicate the start of a type hint for a variable or a function
parameter, and an arrow (->) is used to indicate the start of a type hint for a function
return type. For example, take the following line of Python code:

def repeat(item, times):

Without reading the function definition, can you tell what this function is supposed to
do? Is it supposed to print out a string a certain number of times? Is it supposed to do
something else? Of course, one could read the function definition to figure out what
it’s supposed to do, but that would take more time. The author of this function has
also, unfortunately, not provided any documentation. Let’s try it again with type hints:

def repeat(item: Any, times: int) -> List[Any]:

That’s a lot clearer. Just looking at the type hints, it would appear that this function
takes an item of Any type and returns a List filled with times number of that item. Of
course, documentation would still help make this function more understandable, but
at least the user of this library now knows what kind of values to supply it and what
kind of value it can be expected to return.

 Suppose the library that this function is supposed to be used with only works with
floating-point numbers, and this function was meant to be used as a setup for lists to be
used in other functions. We can easily change the type hints to indicate the floating-
point constraint:

def repeat(item: float, times: int) -> List[float]:

Now it’s clear that item must be a float, and the returned list will be filled with
floats. Well, the word must is rather strong. Type hints, as of Python 3.7, have no bear-
ing on the execution of a Python program. They truly are just hints rather than musts.
At runtime, a Python program can completely ignore its type hints and break any of its
supposed constraints. However, type-checker tooling can evaluate the type hints in a
program during development and tell the programmer if there are any illegitimate
calls to a function. A call of repeat("hello", 30) can be caught before it enters pro-
duction (because "hello" is not a float).

 Let’s look at one more example. This time, we will examine a type hint for a vari-
able declaration:

myStrs: List[str] = repeat(4.2, 2)

197Why are type hints useful?
That type hint does not make sense. It says that myStrs is expected to be a list of
strings. But we know from the previous type hint that repeat() returns a list of floats.
Again, because Python, as of version 3.7, does not verify type hints for correctness
during execution, this mistaken type hint will have no effect on the running of the
program. However, a type checker could catch this programmer error or misconcep-
tion about the right type before it became a disaster

C.3 Why are type hints useful?
Now that you know what type hints are, you may be wondering why all of this trouble
is worth it. After all, you have also learned that type hints are ignored by Python at
runtime. Why would one spend all this time adding type annotations to the code
when the Python interpreter couldn’t care less? As has already been touched upon,
type hints are a good idea for two primary reasons: They self-document the code, and
they allow a type checker to verify the correctness of a program prior to execution.

 In most programming languages with static typing (like Java or Haskell), required
type declarations make it very clear what parameters a function (or method) expects
and what type it will return. This alleviates some of the documentation burden on the
programmer. For instance, it is completely unnecessary to specify what the following
Java method expects as parameters or return type:

/* Eats the world, returning the amount of money generated as refuse. */
public float eatWorld(World w, Software s) { … }

Contrast this with the required documentation for the equivalent method written in
traditional Python, without type hints:

Eat the world
Parameters:
w – the World to eat
s – the Software to eat the World with
Returns:
The amount of money generated by eating the world as a float
def eat_world(w, s):

By allowing us to self-document our code, type hints make Python documentation as
succinct as statically typed languages:

Eat the world, returning the amount of money generated as refuse.
def eat_world(w: World, s: Software) -> float:

Take it to an extreme. Imagine you inherit a codebase that has no comments whatso-
ever. Will a commentless codebase be easier to make sense of with type hints or with-
out type hints? The type hints will save you from having to dig into the actual code of
a commentless function to understand what types to pass it as parameters and what
type to expect it to return.

 Remember, a type hint is essentially a way of stating what type is expected at some
point in a program. Yet Python does nothing to verify this expectation. That’s where a
type checker comes in. A type checker can take a file of Python source code filled with
type hints and verify if they actually will hold when the program is run.

198 APPENDIX C A brief introduction to type hints
 There are multiple different type checkers for Python type hints. For example, the
popular Python IDE PyCharm has a type checker built in. If you edit a program in
PyCharm with type hints, it will automatically point out type errors. This will help you
catch your mistakes before you even finish writing a function.

 The leading Python type checker, as I write this book, is mypy. The mypy project is
led by Guido van Rossum, the same person who originally created Python itself. Does
that leave any doubt in your mind that type hints could potentially have a very promi-
nent role in the future of Python? After you install mypy, using it is as simple as run-
ning mypy example.py, where example.py is the name of the file you want to type
check. mypy will spit out to the console all of the type errors in your program or noth-
ing if there are no errors.

 There may be other ways type hints will be useful in the future. Right now, type
hints have no impact on the performance of a running Python program. (To reiterate
one last time, they are ignored at runtime.) But it is possible that future versions of
Python will use the type information from type hints to perform optimizations. In
such a world, perhaps you will be able to speed up the execution of your Python pro-
gram by simply adding type hints. This is pure speculation, of course. I know of no
plans to implement type hint-based optimizations in Python.

C.4 What are the downsides of type hints?
There are three potential downsides of using type hints:

 Code with type hints takes longer to write than code without type hints.
 Type hints can arguably lead to a decrease of readability in some cases.
 Type hints are still not fully baked, and implementing some typing constraints

with Python’s current implementations can be confusing.

Code with type hints takes longer to write for two reasons: It’s simply more typing (lit-
erally more keys hit on the keyboard), and you have to reason more about your code.
Reasoning about your code is almost always a good thing, but doing extra reasoning
will slow you down. However, you will hopefully make up for that lost time by catching
errors with a type checker before your program even runs. The time spent debugging
errors that could be caught by a type checker is probably greater than the time spent
reasoning about types at composition time for any complex codebase.

 Some people find Python code with type hints less readable than Python code
without them. The two reasons for this are probably unfamiliarity and verbosity. Any
syntax you are not familiar with is going to be less readable than a syntax you are
familiar with. Type hints really do change the look of Python programs, making them
potentially unfamiliar at first. This can only be alleviated by writing and reading more
Python code with type hints. The second issue, verbosity, is more fundamental. Python
is famous for its concise syntax. Often the same program in Python is significantly
shorter than its equivalent in another language. Python code with type hints is not as
compact. It cannot be as quickly scanned by the naked eye; there’s just a lot more

199Getting more information
there. The tradeoff is that the understanding of the code can be greater following the
first read, even if that read takes longer. With type hints, you immediately see all of the
expected types, which is a leg up over having to scan the code itself to understand the
types or having to read the documentation.

 Finally, type hints are still in flux. They have definitely improved since they were
first introduced in Python 3.5, but there are still edge cases in which type hints do not
work well. An example of this is in chapter 2. The Protocol type, usually an important
part of a type system, is not yet in the Python standard library’s typing module, so it
was necessary in chapter 2 to include the third-party typing_extensions module.
There are plans to include Protocol in a future version of the official Python standard
library, but the fact that it’s not included is a testament to the fact that these are still
early days for type hints in Python. Throughout the writing of this book, I ran into sev-
eral such edge cases that were confusing to solve, given the existing primitives avail-
able in the standard library. Because type hints are not required in Python, it is okay at
this stage to just ignore them in areas where they would be inconvenient to use. You
can still get some benefit by using type hints halfway.

C.5 Getting more information
Every chapter of this book is filled with examples of type hints, but it is not a tutorial on
using type hints. The best place to get started with type hints is Python’s official docu-
mentation for the typing module (https://docs.python.org/3/library/typing.html).
That documentation explains not only all of the different built-in types that are avail-
able, but also how to use them for several advanced scenarios, beyond the scope of this
brief introduction.

 The other type hint resource that you should really check out is the mypy project
(http://mypy-lang.org). mypy is the leading Python type checker. In other words, it is
the piece of software that you will use to actually verify the validity of your type hints.
Beyond installing it and using it, you should also check out mypy’s documentation
(https://mypy.readthedocs.io/). The documentation is rich and explains how to use
type hints in some scenarios that the standard library’s documentation does not. For
instance, one particularly confusing area is generics. The mypy generics documenta-
tion is a good starting point. Another nice resource is the “type hints cheat sheet” put
out by mypy (https://mypy.readthedocs.io/en/stable/cheat_sheet_py3.html).

https://docs.python.org/3/library/typing.html
http://mypy-lang.org
https://mypy.readthedocs.io/
https://mypy.readthedocs.io/en/stable/cheat_sheet_py3.html

index

Symbols

@abstractmethods annotation
53

@dataclass decorator 71
@functools.lru_cache()

function 10
@lru_cache() decorator 24
^ operator 18

A

A* searches 42–47
algorithm for 45–47
heuristics 43–45

Euclidean distance 43–44
Manhattan distance

44–45
priority queues 42–43

acg Codon 27
activation functions 129, 136,

186, 190
acyclic trees 82, 190
add_edge() function 74
adjacency lists 72
admissible heuristics 42, 46,

186
adversarial search 153–171

basic board game
components 153–155

Connect Four 163–170
alpha-beta pruning

169–170
code for 163–167
developing AI for

168–169
iterative deepening 170

minimax algorithm
158–162, 170

quiescence search 170
real-world applications for

170–171
tic-tac-toe 155–163

developing AI for
162–163

managing states 155–158
minimax algorithm

158–162
AI (artificial intelligence),

resources for 193
algorithms, resources for 192
alphabeta() function 169, 171
artificial general intelligence

129
artificial neural networks

129–135
backpropagation 131–134
layers 130–131
neurons 129–130
overview 135

astar() function 45–46, 49–51
Australian map-coloring

problem 57–59
auto-memoization 24, 186

B

backpropagation 129, 131–134,
186–188, 190

backtracking 55, 186–187
backtracking_search()

function 55, 59
base cases 8–9

Basic Linear Algebra Subpro-
grams (BLAS) 149

BFS (breadth-first
searches) 38–42,
76–78

algorithm for 40–42
queues 40

bfs() function 41, 47, 49–51,
85

binary search 28–30
binary_contains() function

30, 51
bit array 186
bit string 13–15, 17, 24, 186
bit vector 186
bit_length() function 15
BitString class 111
BLAS (Basic Linear Algebra

Subprograms) 149
Board class 154–157, 162–163
breadth-first search. See BFS
brute-force searches 180–181

C

C4Board class 165
C4Piece class 164
calculatePi() function 20
Callable function 77
Cell enum 32
centroid 115, 187
character encoding 16
choices() function 99–100
Chromosome class 95–96,

98–99, 102, 111
chromosomes 187
circuit board layouts 66–67
201

202 INDEX
classic computer science prob-
lems, defined 2

classification problems
143–149

classifying wine 147–149
iris data set 144–147
normalizing data 143–144

Cluster class 116
clustering 112, 187

by age 119–123
by longitude 119–123
See also k-means clustering

Codon type 29
codons 25, 187
colons 196
Column class 165
comma-separated values (CSV)

144, 187
Comparable class 31
_compress() function 14
compress() function 107
CompressedGene class 14, 16,

24
compression 12–16, 187

optimizing list compression
107–109

real-world applications of 24
trivial 12–16

Connect Four 163–170
alpha-beta pruning 169–170
code for 163–167
developing AI for 168–169

connected graphs 82
connected property 187
consistent() function 55–56
Constraint class 53, 58
constraint propagation 67
constraints 187, 190
constraint-satisfaction prob-

lems. See CSPs (con-
straint-satisfaction
problems)

costs of building networks,
minimizing 78–87

finding minimum spanning
tree 82–87

calculating total weight of
weighted paths 83

Jarník’s algorithm 83–87
priority queues 82

working with weights 78–81
crossover 95, 187
crossover operator 188
crossover() function 103, 106,

109

cryptarithmetic puzzles 65–66,
104–107

CSP class 54–55
CSPs (constraint-satisfaction

problems) 52–67
Australian map-coloring

problem 57–59
building frameworks for

53–56
circuit board layouts 66–67
cryptarithmetic puzzles

65–66
eight queens problem 59–61
real-world applications of 67
word searches 61–64

CSV (comma-separated
values) 144, 187

csv module 145
csv.reader() function 145
cycles 82, 187

D

data
large data sets 182
normalizing 143–144
resources for data structures

192
DataPoint interface 113–114,

116, 118
decompress() function 15
decompression 12, 187
decrypting 18–19
deep learning 127, 187
deltas 132, 187
DFS (depth-first searches)

34–38
algorithm for 36–38
stacks 34–36

dfs() function 37, 41, 49–51
Dijkstra’s algorithm 51, 88,

90–92
dijkstra() function 88, 90–91
DijkstraNode 88
_dimension_slice() function

119
directed graphs (digraphs) 71,

93, 187
display_solution() function 50
distance() function 44, 114
DNA search problem 25–31

binary search 28–30
example of 30–31
linear search 27–28
storing DNA 25–27

domain() function 63
domains 52, 187, 190
dot products 135
dynamic programming 188

defined 173
knapsack problem 172–177
real-world applications

for 184

E

Edge class 71, 75
Edge protocol, implementing

75–76
edges 188–189
eight queens problem 59–61
encrypt() function 18
encryption 16–19

decryption and 18–19
getting data in order 16–18
real-world applications of 24

endianness 18
Euclidean distance 43–44, 114
euclidean_distance()

function 44

F

feature scaling 143
feed-forward artificial neural

network
defined 129, 188
first layer of 188
last layer of 189

feed-forward artificial neural
network. See artificial
neural networks

fib() function 8
fib1() function 7, 11
fib2() function 8–9, 11
fib3() function 10
fib4() function 10
fib5() function 11
fib6() function 24
Fibonacci sequence 6–12

first recursive attempt 6–7
generating with generator

11–12
iterative approach to 11
memoization 9–10
utilizing base cases 8–9

FIFO (First-In-First-Out) 40,
189

203INDEX
find_best_move() function
160, 168–169

fitness function 188
fitness proportionate selection

98
float type 113
floating-point numbers 20,

129, 131, 135, 142
fMRI (functional magnetic res-

onance imaging) 128
frameworks

for constraint-satisfaction
problems 53–56

for graphs 71–76
Edge protocol 75–76
Graph protocol 75–76

functional programming,
resources for 193–194

G

gat Codon 27
Gene type 29
generate_domain() function

63
generations 188–189
genetic algorithms 94–111

biological background
for 94–95

challenges for 109–110
cryptarithmetic puzzles

104–107
generic genetic algorithm

95–102
naive test 102–104
optimizing list compression

107–109
real-world applications of

110–111
genetic programming 111, 188
GeneticAlgorithm class 97–99,

102–103, 106–107, 111,
116

gradient descent 134, 188
gradually typed language 196
Graph class 72, 75, 77
graph problems 68–93

building graph frameworks
71–76

Edge protocol 75–76
Graph protocol 75–76

finding shortest paths 76–78
breadth-first search 76–78
in weighted graphs 88–92

maps as graphs 68–70
minimizing costs of building

networks 78–87
finding minimum span-

ning tree 82–87
working with weights

78–81
real-world applications of 93

Graph protocol, implementing
75–76

graphics 5
graphs 188
greedy algorithm 85, 88, 188
GridLocation 63

H

hanoi() function 23
heappop() function 42
heappush() function 42
heapq module 100
heuristic() function 45
heuristics 43–45, 188

Euclidean distance 43–44
Manhattan distance 44–45

hidden layers 130, 188
Hyperloop network 69–70, 72,

74–76, 78, 86, 88

I

if statement 16, 27
import statement 77, 82
infinite loops 188
infinite recursion 7–8, 188
__init__() function 55
input layers 130, 188
int type 13–14, 17, 24
int.from_bytes() function

17–18
integer-division (//) 19
IntEnum type 25
interpret_output()

function 142
iris data set 144–147
iris_classifications 145
iris_interpret_output()

function 146, 148
iterative deepening 170
itertools module 180, 183

J

Jarník’s algorithm 79, 82–88,
92

K

KMeans class 116–117, 122,
126, 143

k-means clustering 112–126
album example 124–125
algorithm for 115–119
clustering by age and

longitude 119–123
extensions 125–126
preliminaries of 113–114
problems with 125–126
real-world applications of

126
knapsack problem 172–177

L

Last-In-First-Out (LIFO) 20,
34, 190

Layer class 137–139, 152
layers 130–131, 138–140
layer_structure argument 146
learning rate 134, 137–138,

140, 146–149, 188
LIFO (Last-In-First-Out) 20,

34, 190
linear search 27–28
linear_contains() function 30,

51
local_assignment dictionary 56

M

machine learning 127
Manhattan distance 44–45
map() function 74
MapColoringConstraint class

58
maps, as graphs 68–70
matplotlib library 126
max_depth function 168
Maze class 32, 37
maze problems 32–47

A* search 42–47
algorithm for 45–47
heuristics 43–45
priority queues 42–43

breadth-first search 38–42
algorithm for 40–42
queues 40

depth-first search 34–38
algorithm for 36–38
stacks 34–36

204 INDEX
maze problems (continued)
generating random mazes

32–33
maze minutiae 33–34

MazeLocation 33, 36
MCState class 48–49, 51
mean() function 113
memoization 9–10, 173, 186

automatic 10
real-world applications of 24

metropolitan statistical areas
(MSAs) 68–69

min() function 118
minimax algorithm 158–160

improving 170
with alpha-beta pruning

169–170
with iterative deepening

170
with quiescence search

170
testing 160–162

minimax() function 159–160,
163, 168–169

minimum spanning trees.
See spanning trees, find-
ing minimum

missionaries and cannibals
problem 47–51

representation of problem
47–49

solving 49–51
mnemonics for phone numbers

182–184
MSAs (metropolitan statistical

areas) 68–69
mst() function 84–86
mutate() function 103, 107,

109
mutation operator 188
my_gene function 27
mypy project 199

N

NamedTuple class 173
neighbors_for_index()

function 74
Network class 152
networks

building 136–142
implementing layers

138–140
implementing

neurons 137–138

implementing 140–142
minimizing costs of building

78–87
finding minimum span-

ning tree 82–87
working with weights

78–81
neural networks 127–152, 186

artificial 129–135
backpropagation 131–134
layers 130–131
neurons 129–130
overview 135

biological basis of 128–129
building networks 136–142

implementing layers
138–140

implementing networks
140–142

implementing neurons
137–138

classification problems
143–149

classifying wine 147–149
iris data set 144–147
normalizing data 143–144

defined 189
extensions 150–151
preliminaries for 135

activation functions 136
dot products 135

problems with 150–151
real-world applications of

151–152
speeding up 149–150

Neuron class 137–138, 152
neurons 128–130, 137–138,

189–190
nlargest() function 100
Node class 36, 88
node_to_path() function 49
normalization 115, 189
normalize_by_feature_

scaling() function 144
normalizing data 143–144
NP-hard (non-deterministic

polynomial hard)
problem 177, 189

nucleotides 25, 187, 189
NumPy 194

O

open source projects, resources
for 194

open() function 145
Optional type 36
output layers 130, 188–189

P

pandas 194
parse_CSV() function 152
partial() function 118
paths 76

defined 189
finding shortest 76–78
finding shortest in weighted

graphs 88–92
Dijkstra’s algorithm 88–92

weighted 83
permutation generation

phone number mnemonics
182–184

real-world applications for
184

Traveling Salesman Problem
180

permutations() function 180,
183

phone number mnemonics
182–184

pi, calculating 19–20
_pick_tournament() function

100
Piece class 154, 163
pip install typing_extensions

30
pip3 install typing_extensions

30
ply 158, 189
pop operation 20
pop() function 34
population 189
powerset 173
Prim’s algorithm 84
print() function 21
print_weighted_path()

function 91
priority queues 42–43, 82, 189
PriorityQueue class 42, 82
product() function 183
Protocol type 30, 199
pseudocode 192
pstdev() function 113
push operation 20
push() function 34
python filename.py file 4
Python IDE PyCharm 198

205INDEX
Python programming
language 1–2

resources for 191–192
source code repository 4
versioning 4

python3 filename.py file 4

Q

QueensConstraint class 60
Queue class 42
queues 40, 42–43, 189
quiescence search 170

R

random module 99, 106
random_instance() function

103, 106
random_key() function 18
recursive functions 6–8, 189
reduce() function 141
repeat() function 196–197
__repr__() function 21
_reproduce_and_replace()

function 100, 102
roulette-wheel selection 98–99
run() function 101, 119

S

satisfied() function 53, 106
scikit-learn 194
search problems 25–51

DNA search 25–31
binary search 28–30
example of 30–31
linear search 27–28
storing DNA 25–27

maze problems 32–47
A* search 42–47
breadth-first search 38–42
depth-first search 34–38
generating random mazes

32–33
maze minutiae 33–34

missionaries and cannibals
problem 47–51

representation of problem
47–49

solving 49–51
real-world applications of 51
See also adversarial search

secrets package 17

seeding 99
selection operator 188
SelectionType enum 98
SEND+MORE=MONEY puzzle

65–66, 104–107
shuffle() function 106
sigmoid functions 136, 190
SIMD (single instruction, multi-

ple data) 149, 190
SimpleEquation 103, 107
spanning trees, finding

minimum 82–87
calculating total weight of

weighted paths 83
Jarník's algorithm 83–87
priority queues 82

Stack class 21, 42, 165
stacks 34–36, 190
standard score 115
states, managing 155–158
statistics module 113
stdev() function 113
stochastic operations 95
stringToGene() function 27
strong AI 129
successors() function 34
sum() function 113–114, 135
supervised learning 132, 190
switch statement 16
synapses 128, 190
sys.getsizeof() function 13

T

table variable 177
TensorFlow 194
testing genetic algorithms

102–104
tic-tac-toe 155–163

developing AI for 162–163
managing states 155–158
minimax algorithm 158–162

token_bytes() function 17
total_weight() function 83
tournament selection 98–101,

107, 111
Towers of Hanoi 20–23

modeling the towers 20–22
solving 22–23

training 131, 190
Traveling Salesman Problem

177–182
naive approach to 177–181

brute-force searches
180–181

permutation generation
180

sample data 178–179
real-world applications

for 184
with large data sets 182

TTTBoard class 156, 158
TTTPiece class 155–156, 164
type hints 4, 195–199

downsides of using 198–199
examples of 196–197
overview 195–196
resources for 199
usefulness of 197–198

type() function 99
typing import Protocol 30
typing module 199
typing package 25
typing_extensions module 4,

30, 199

U

unbreakable encryption 16–19
decrypting 18–19
encrypting 18–19
getting data in order 16–18

undirected graphs 71, 74
unsupervised learning 132, 190
unsupervised methods 112
unweighted graph 71, 76–77
user interface code 5

V

validate() function 142
variables 52–54, 190
vector instructions 149
vertex matrix 72
vertices 188, 190
_vertices array 72
_vertices list 72, 74
visit() function 85

W

weighted graph 71, 74, 79–80,
82, 87, 91

WeightedEdge class 78–79
WeightedEdges class 85
WeightedGraph class 78, 80
WeightedPath class 85
weights

finding shortest paths in
weighted graphs 88–92

206 INDEX
weights, finding shortest paths
in weighted graphs
(continued)

Dijkstra’s algorithm 88–92
of weighted paths, calculat-

ing total 83
working with 78–81

wine_interpret_output()
function 148

word searches 61–64
WordSearchConstraint

class 63, 67

X

XOR (exclusive or)
operation 18, 190

Y

yield statement 11–12

Z

zip() function 114, 135

zlib module 107
z-score 115, 190
_zscore_normalize()

function 116–117
zscores() function 113, 115,

117

David Kopec

C
omputer science problems that seem new or unique are
often rooted in classic algorithms, coding techniques,
and engineering principles. And classic approaches are

still the best way to solve them! Understanding these tech-
niques in Python expands your potential for success in web
development, data munging, machine learning, and more.

Classic Computer Science Problems in Python sharpens your CS
problem-solving skills with time-tested scenarios, exercises,
and algorithms, using Python. You’ll tackle dozens of coding
challenges, ranging from simple tasks like binary search algo-
rithms to clustering data using k-means. You’ll especially enjoy
the feeling of satisfaction as you crack problems that connect
computer science to the real-world concerns of apps, data,
performance, and even nailing your next job interview!

What’s Inside
● Search algorithms
● Common techniques for graphs
● Neural networks
● Genetic algorithms
● Adversarial search
● Uses type hints throughout

For intermediate Python programmers.

David Kopec is an assistant professor of Computer Science and
Innovation at Champlain College in Burlington, Vermont. He
is the author of Dart for Absolute Beginners (Apress, 2014) and
Classic Computer Science Problems in Swift (Manning, 2018).

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/classic-computer-science-problems-in-python

$39.99 / Can $52.99 [INCLUDING eBOOK]

Classic Computer Science Problems in Python

COMPUTER PROGRAMMING/PYTHON

M A N N I N G

“Whether you’re a novice or
a seasoned professional, there’s

an Aha! moment in this
 book for everyone.”
—James Watson, Adaptive

“A fun way to get hands-on
experience with classical

computer science problems
 in modern Python.”

—Jens Christian Bredahl Madsen
IT Relation

“Highly recommended to
everyone who is interested in
deepening their understand-
ing, not only of the Python

language, but also of practical
computer science.”—Daniel Kenney-Jung, MD
University of Minnesota

“Classic problems presented
in a wonderfully entertaining

way with a language that
always seems to have

 something new to offer.”
—Sam Zaydel, RackTop Systems

See first page

	Classic Computer Science Problems in Python
	contents
	acknowledgments
	about this book
	Trademarks
	Book forum

	about the author
	about the cover illustration
	Introduction
	Why Python?
	What is a classic computer science problem?
	What kinds of problems are in this book?
	Who is this book for?
	Python versioning, source code repository, and type hints
	No graphics, no UI code, just the standard library
	Part of a series

	1 Small problems
	1.1 The Fibonacci sequence
	1.1.1 A first recursive attempt
	1.1.2 Utilizing base cases
	1.1.3 Memoization to the rescue
	1.1.4 Automatic memoization
	1.1.5 Keep it simple, Fibonacci
	1.1.6 Generating Fibonacci numbers with a generator

	1.2 Trivial compression
	1.3 Unbreakable encryption
	1.3.1 Getting the data in order
	1.3.2 Encrypting and decrypting

	1.4 Calculating pi
	1.5 The Towers of Hanoi
	1.5.1 Modeling the towers
	1.5.2 Solving The Towers of Hanoi

	1.6 Real-world applications
	1.7 Exercises

	2 Search problems
	2.1 DNA search
	2.1.1 Storing DNA
	2.1.2 Linear search
	2.1.3 Binary search
	2.1.4 A generic example

	2.2 Maze solving
	2.2.1 Generating a random maze
	2.2.2 Miscellaneous maze minutiae
	2.2.3 Depth-first search
	2.2.4 Breadth-first search
	2.2.5 A* search

	2.3 Missionaries and cannibals
	2.3.1 Representing the problem
	2.3.2 Solving

	2.4 Real-world applications
	2.5 Exercises

	3 Constraint-satisfaction problems
	3.1 Building a constraint-satisfaction problem framework
	3.2 The Australian map-coloring problem
	3.3 The eight queens problem
	3.4 Word search
	3.5 SEND+MORE=MONEY
	3.6 Circuit board layout
	3.7 Real-world applications
	3.8 Exercises

	4 Graph problems
	4.1 A map as a graph
	4.2 Building a graph framework
	4.2.1 Working with Edge and Graph

	4.3 Finding the shortest path
	4.3.1 Revisiting breadth-first search (BFS)

	4.4 Minimizing the cost of building the network
	4.4.1 Workings with weights
	4.4.2 Finding the minimum spanning tree

	4.5 Finding shortest paths in a weighted graph
	4.5.1 Dijkstra?s algorithm

	4.6 Real-world applications
	4.7 Exercises

	5 Genetic algorithms
	5.1 Biological background
	5.2 A generic genetic algorithm
	5.3 A naive test
	5.4 SEND+MORE=MONEY revisited
	5.5 Optimizing list compression
	5.6 Challenges for genetic algorithms
	5.7 Real-world applications
	5.8 Exercises

	6 K-means clustering
	6.1 Preliminaries
	6.2 The k-means clustering algorithm
	6.3 Clustering governors by age and longitude
	6.4 Clustering Michael Jackson albums by length
	6.5 K-means clustering problems and extensions
	6.6 Real-world applications
	6.7 Exercises

	7 Fairly simple neural networks
	7.1 Biological basis?
	7.2 Artificial neural networks
	7.2.1 Neurons
	7.2.2 Layers
	7.2.3 Backpropagation
	7.2.4 The big picture

	7.3 Preliminaries
	7.3.1 Dot product
	7.3.2 The activation function

	7.4 Building the network
	7.4.1 Implementing neurons
	7.4.2 Implementing layers
	7.4.3 Implementing the network

	7.5 Classification problems
	7.5.1 Normalizing data
	7.5.2 The classic iris data set
	7.5.3 Classifying wine

	7.6 Speeding up neural networks
	7.7 Neural network problems and extensions
	7.8 Real-world applications
	7.9 Exercises

	8 Adversarial search
	8.1 Basic board game components
	8.2 Tic-tac-toe
	8.2.1 Managing tic-tac-toe state
	8.2.2 Minimax
	8.2.3 Testing minimax with tic-tac-toe
	8.2.4 Developing a tic-tac-toe AI

	8.3 Connect Four
	8.3.1 Connect Four game machinery
	8.3.2 A Connect Four AI
	8.3.3 Improving minimax with alpha-beta pruning

	8.4 Minimax improvements beyond alpha-beta pruning
	8.5 Real-world applications
	8.6 Exercises

	9 Miscellaneous problems
	9.1 The knapsack problem
	9.2 The Traveling Salesman Problem
	9.2.1 The naive approach
	9.2.2 Taking it to the next level

	9.3 Phone number mnemonics
	9.4 Real-world applications
	9.5 Exercises

	appendix A Glossary
	appendix B More resources
	B.1 Python
	B.2 Algorithms and data structures
	B.3 Artificial intelligence
	B.4 Functional programming
	B.5 Open source projects useful for machine learning

	appendix C A brief introduction to type hints
	C.1 What are type hints?
	C.2 What do type hints look like?
	C.3 Why are type hints useful?
	C.4 What are the downsides of type hints?
	C.5 Getting more information

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Back Cover

