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Introduction

This is a textbook for students and professionals who want to know about 

Fuzzy Networks and their applications in Python. We have tried to explain 

the topics with examples that readers can understand easily and that make 

the concepts relevant to real-life scenarios. The initial part of the book 

talks about Fuzzy Networks, logic, and inference systems. The second half 

mainly talks about the amalgamation of Deep Learning with Fuzzy Logic. 

It explores the architectures that are currently used in the industry.

We have tried to keep the level of mathematics as simple as possible, so 

that the concepts can be understood readily. Readers from mathematical 

backgrounds and those having prior knowledge of Machine Learning will 

find it easier to understand, but the book is structured in such a way that 

even readers without this prior knowledge will not find it overly tough.

We start this book by introducing Fuzzy Sets in Chapter 1. Chapter 2  

introduces the concepts of Fuzzy Rules and reasoning and explains 

membership functions. In Chapter 3, we discuss Fuzzy Inference Systems, 

which are mainly used to make Fuzzy Control Systems.

In Chapters 4 and 5, we discuss the concepts of Machine Learning and 

neural networks, which will help you understand the further concepts of 

Fuzzy Networks. We cover optimization and parameter tuning as well. In 

Chapter 6, we start discussing Fuzzy Neural Networks and their different 

architectures and finally, in Chapter 7, we discuss some of the advanced 

concepts related to Deep Fuzzy Networks.

Overall, this book is written with the intention to make the concept of 

Fuzzy Networks simple to the readers and they should not only understand 

the mathematics behind it, but also they should be able to understand the 

practical implementation in Python.



1© Himanshu Singh, Yunis Ahmad Lone 2020 
H. Singh and Y. A. Lone, Deep Neuro-Fuzzy Systems with Python,  
https://doi.org/10.1007/978-1-4842-5361-8_1

CHAPTER 1

Introduction to Fuzzy 
Set Theory
This chapter sets the foundation for the rest of the book. You will be 

introduced to soft computing and Fuzzy Systems. You will learn about 

the Classical and Fuzzy Sets and the differences between them. You will 

then look at the properties of different sets, and you’ll learn how different 

operations can be performed on them. This chapter also includes a basic 

introduction to membership functions, which are then explained in 

detail in the next chapter. Wherever required, Python code is provided for 

execution purposes.

�Soft Computing and Fuzzy Systems
When you have crisply defined data that is precise and easy to understand, 

applying hard computing to it is perfect. Hard computing is based on binary 

logic, classical sets, crisp (precise) systems and software, basic numerical 

analysis, etc. But when you try to apply this same approach to real-world 

problems that include imprecise data—maybe the dataset is partially true, it 

has a lot of approximations, and so on—hard computing fails. The best way 

to tackle this situation is to use the soft computing approach.

A very basic example is 2+2. In this scenario, you can use hard 

computing to arrive at 4. But when you change the equation to 2+x, where 



2

x ranges from 0 to 5, soft computing always gives better results. Before 

you move on to understanding exactly what soft computing is, study the 

flowchart in Figure 1-1. It depicts the difference between hard and soft 

computing when it comes to problem solving.

Soft computing tries to imitate the human mind in order to make 

decisions. These models have cognitive abilities, which include:

•	 Ability to think

•	 Ability to reason

•	 Ability to organize

•	 Ability to memorize

•	 Ability to recognize

•	 Ability to process

When your data is imprecise (it has partial truths and is full of 

approximations), soft computing is the best approach. The following are 

features of soft computing-based problem-solving approaches:

•	 Biologically inspired

•	 Fault tolerant

•	 Full of optimizations

•	 Helps make wiser and more intelligent machines

Figure 1-1.  Hard computing versus soft computing

Chapter 1  Introduction to Fuzzy Set Theory
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•	 Helps in achieving robustness, tractability,  

and lower costs

•	 Heavy computation

•	 Goal driven

Table 1-1 lists the basic constituents of the soft computing approach.

Now that you have read about the basics of soft computing, turn your 

attention to understanding Fuzzy Systems. Fuzzy Systems are one of the 

core parts of soft computing, so you need to understand them. Fuzzy 

Systems, along with soft computing, make a very strong foundation for an 

inference system, also called an Adaptive Neuro-Fuzzy Inference System, 

which is discussed later in this book.

Fuzzy Systems are comprised of Fuzzy Sets and not the normal, 

classical sets. In these systems, you try to follow Fuzzy Logic, because 

traditional logic cannot be applied to real-world applications. Let’s look at 

Fuzzy Systems with the help of an example.

When you drive a car, it’s a combination of pressing the accelerator 

and the brake. Whenever you speed up, you press the accelerator, and 

whenever you want to slow down, you press the brakes. Suppose you are 

talking about self-driving cars. In this scenario, both systems should be 

managed simultaneously, without any manual intervention.

Table 1-1.  Basic Constituents of Soft Computing

Constituent Benefits

Neural Networks To learn and adapt based on uncertainty in data

Fuzzy Set Theory Knowledge representation

Genetic Algorithms For efficient searching

Traditional AI Using mathematical approaches

Chapter 1  Introduction to Fuzzy Set Theory
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If you consider traditional logic, it follows classical sets (called crisp sets). 

In these sets, the value is equal to 0 or 1. Suppose the functioning is defined 

as shown Table 1-2.

The problem with this encoding is that 1 represents a full pressing and 

0 represents a full release. There is no intermediate response. Suppose a 

car turns in front of your car. In this scenario, the 1 code will get activated 

and full brakes will be applied. If that car accelerates and is farther away 

from you, full brakes will be released and the full accelerator will be 

pressed (codes 0 and 1 will get activated).

�Classical Sets
Classical sets, also called crisp sets, are a collection of objects. Objects 

can be anything belonging in the real world, and sometimes outside the 

domain as well. For example:

Cars = {Audi, BMW, Mercedes, Porsche}

This set shows a list of premium cars. You denote a set by using the 

curly braces, {}.

Table 1-2.  Applying Brakes 

Represented Using Crisp Sets

Function Set Code

Press the accelerator 1

Release the accelerator 0

Press the brakes 1

Release the brakes 0

Chapter 1  Introduction to Fuzzy Set Theory
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Once you have effectively defined different sets, you can visualize 

them as well. A Venn diagram is a visual way to represent sets and their 

relationships with each other. Figure 1-2 shows a normal Venn diagram.

The circles in Figure 1-2 represent two sets, A and B. All the elements 

that are part of Set A will be present in Circle A, while all the elements that 

are part of Set B will be present in Circle B. The circles are called Venn 

diagrams of Set A and Set B.

�Universe of Discourse
All the possible elements that can share a domain, or have similar 

characteristics, are contained in a set. The set of those elements is called 

the Universe of Discourse. Once you have this set, you can form various 

subsets as well. Formally speaking, the Universe of Discourse can be 

defined as follows:

“In every discourse, whether of the mind conversing with its 
own thoughts, or of the individual in his intercourse with 
others, there is an assumed or expressed limit within which the 
subjects of its operation are confined. … Now, whatever may 
be the extent of the field within which all the objects of our 
discourse are found, that field may properly be termed the 
Universe of Discourse. (Boole 1854/1958, p. 42)”

Figure 1-2.  Simple Venn diagram

Chapter 1  Introduction to Fuzzy Set Theory
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Look at the Universe of Discourse with the following example:

	 E Domain of Machine Learning={ }   �

Let Set E be the Universe of Discourse. It has the complete domain of 

Machine Learning. Then the possible sets that can be part of E are:

•	 Set of Machine Learning algorithms

•	 Set of basic statistical methods

•	 Set of neural networks, etc.

�Properties of Classical Sets
This section explains the various properties of classical sets. These are:

•	 Membership of elements

•	 Cardinality of sets

•	 Family of sets

•	 Null set

•	 Singleton set

•	 Subset

•	 Superset

•	 Powerset

•	 Countable set

•	 Uncountable set

Chapter 1  Introduction to Fuzzy Set Theory
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�Membership of Elements
If an element is a part of a set, it is called a member of the set. It is denoted 

by X ε A, which means that Element X is a member of Set A.

	 A ={ }1 2 3 4 5, , , , �

In the set of integers from 1 to 5, each number is called a member of 

Set A.

�Cardinality of Sets
In a set, if you count the total number of elements present, that number is 

called the cardinality of the set. It can be denoted by n(A) or |A| or #A.

	 A ={ }1 2 3 4 5, , , , �

This set has a cardinality of 5.

�Family of Sets
A set can contain anything. But if a set contains a collection of different 

sets, then that set is referred to as a family of sets. For example:

	
A = ( ) ( ) ( ){ }1 3 5 2 4 6 5 10 15, , , , , , , , �

Here, (1, 3, 5), (2, 4, 6), and (5, 10, 15) are individual sets contained in 

Set A. Therefore, Set A is the family of sets, as shown in Figure 1-3.

Chapter 1  Introduction to Fuzzy Set Theory
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�Null Set
If a set has a cardinality of 0, it’s called a null set or empty set. That means 

that there are no elements inside it.

A = {} is a null set.

�Singleton Set
If a set has a cardinality of 1, it is called a singleton set. That means that 

there is only one element inside it.

A = {1} is a singleton set.

�Subset
Say you have two sets, A and X. If all the elements of X are part of A, then 

X is called a subset of A. It is represented by X⊂A. Figure 1-4 shows a Venn 

diagram representing Superset A containing Subset X.

Figure 1-3.  The Family Set A contains different sets

Chapter 1  Introduction to Fuzzy Set Theory
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�Superset
Say you have two sets, A and X. If all the elements of X are part of A, then A 

is called the superset of X. It is represented by A⊃X. In the Figure 1-4, A is 

the superset of X.

�Powerset
Say you have a set A. A set containing all the possible subsets from A, 

including the null set, is called the powerset. It is represented by P(A). The 

cardinality of the powerset of A is 2|A|.

For example:

	 If A ={ }2010 2011, �

	
P A( ) = ( ) ( ) ( ) ( ){ }2010 2011 2010 2011, , , , �

As you can see, |A| = 2, while |P(A)| = 4.

Figure 1-4.  Venn diagram representing Superset A and Subset X

Chapter 1  Introduction to Fuzzy Set Theory



10

�Countable Set
A countable set is where for every element can be labeled a unique natural 

number. Also, by the time you finish labeling the elements, more labels are 

left in the form of natural numbers, or otherwise you have exhausted all 

the natural numbers. Therefore, infinite sets can also be countable, but not 

every time.

�Uncountable Set
An uncountable set is where, for every element present, you cannot label 

a unique natural number. That means, by the time you finish assigning 

labels, the natural numbers list is exhausted. For example, when you take 

real numbers, the list of natural numbers will be exhausted much before 

the labeling of a set of real numbers is finished.

�Classical Set Operations
This section looks at some of the operations that can be applied to 

classical sets:

•	 Union

•	 Intersection

•	 Complement

•	 Difference

�Union
A union of two sets merges the values in both sets into one single set.

	 A ={ }1 3 5, , �

Chapter 1  Introduction to Fuzzy Set Theory
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	 B ={ }2 4, �

	 A BÈ ={ }1 2 3 4 5, , , , �

Figure 1-5 represents a union between two sets, A and B. The shaded 

region represents the union part.

�Intersection
An intersection of two sets finds the common values present in both sets 

and makes them one single set.

	 A ={ }1 3 5, , �

	 B ={ }3 �

	 A BÇ ={ }3 �

Figure 1-5.  Union of Sets A and B

Chapter 1  Introduction to Fuzzy Set Theory
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Figure 1-6 represents an intersection between two Sets A and B. The 

shaded region represents the intersection part.

�Complement
A complement of a set is all the values present in the Universe of Discourse, 

except the ones present in the set.

	 A ={ }1 3 5, , �

	 B ={ }3 �

If A is the Universe of Discourse for B, then Ac will be all the values 

except the existing one. That is:

	 Ac ={ }1 5, �

Figure 1-7 represents the complement of Set A. If U is the Universe of 

Discourse, then the shaded region represents the complement of A.

Figure 1-6.  Intersection of Sets A and B

Chapter 1  Introduction to Fuzzy Set Theory
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�Difference
Say you have two sets, A and B, and you need to find the difference 

between them. All those values that are not common to both sets become 

a set. That means that the difference between Sets A and B becomes the set 

of elements. That set contains elements only in A but not in B.

	 A ={ }1 3 5, , �

	 B ={ }3 �

	 A B- ={ }1 5, �

	 B A- ={ } �

Figure 1-8 shows a Venn diagram representing the difference between 

Sets A and B.

Figure 1-7.  Complement of Set A

Chapter 1  Introduction to Fuzzy Set Theory
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Here’s the Python implementation:

# Example Sets

A = {0, 2, 4, 6, 8}

B = {1, 2, 3, 4, 5}

# union of above sets

print("Union :", A | B)

# intersection of above sets

print("Intersection :", A & B)

# difference between above sets

print("Difference :", A - B)

�Crisp Set Properties
This section discusses the following properties of classical/crisp sets:

•	 Law of Commutativity

•	 Law of Associativity

•	 Law of Distributivity

•	 Idempotent Law

Figure 1-8.  Difference between Sets A and B

Chapter 1  Introduction to Fuzzy Set Theory
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•	 Identity Law

•	 Law of Absorption

•	 Involution Law

•	 Law of Transitivity

•	 Law of Excluded Middle

•	 Law of Contradiction

•	 De Morgan laws

�Law of Commutativity
The union or intersection of two sets will produce the same the result, 

regardless of which set you list first. That means you can take A first or B 

first, but the results will always be the same.

	 A B B AÈ( ) = È( ) �

	 A B B AÇ( ) = Ç( ) �

�Law of Associativity
If you have three sets, the Law of Associativity says that a union or 

intersection of the first two sets with the third one is equal to a union or 

intersection of the last two sets with the first one.

	 A B C A B CÈ( )È = È È( ) �

	 A B C A B CÇ( )Ç = Ç Ç( ) �

Chapter 1  Introduction to Fuzzy Set Theory
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�Law of Distributivity
The Law of Distributivity says that a union of the first set with an 

intersection of the last two sets is equal to a union of the first set with the 

second, a union of the first set with the third, and then an intersection of 

both outputs. This same rule applies when you interchange the union and 

intersection operations.

	 A B C A B A CÈ Ç( ) = È( )Ç È( ) �

	 A B C A B A CÇ È( ) = Ç( )È Ç( ) �

�Idempotent Law
The Idempotent Law states that an intersection or union of a set with the 

same set is the same set itself.

	 A A AÈ = �

	 A A AÇ = �

�Identity Law
If Φ is an empty set and E is a Universe of Discourse, then the Identity Law 

states that:

	 A AÈ =F �

	 A E EÈ = �

	 AÇ =F F �

	 A E AÇ = �

Chapter 1  Introduction to Fuzzy Set Theory
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In other words:

•	 A union of a set with an empty set leads to the same set

•	 An intersection of a set with an empty set leads to an 

empty set

•	 A union of a set with a Universe of Discourse leads to 

the Union of Discourse

•	 An intersection of a set with a Universe of Discourse 

leads to the same set

�Law of Absorption
If A is a subset of B, then:

	 A A B AÈ Ç( ) = �

	 A A B AÇ È( ) = �

This means that the union of a set with its intersection with another set 

is the same set, and vice versa.

�Involution Law
The Involution Law states that the double complement of a set is the 

same set:

(Ac)c = A

Chapter 1  Introduction to Fuzzy Set Theory
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�Law of Transitivity
The Law of Transitivity states that if A is a subset of B and B is a subset of C, 

then A will be a subset of C.

	 If A B B C thenA CÍ Í Í, , �

�Law of Excluded Middle
The Law of Excluded Middle states that a union of a set with its 

complement is its Universe of Discourse.

	
A A EcÈ( ) = �

�Law of Contradiction
The Law of Contradiction states that an intersection of a set with its 

complement is an empty set.

	
A AcÇ( ) =F �

�De Morgan Laws
If there are two sets and you find the complement of the union between 

them, then it is equal to the intersection of the complements of the 

individual sets. Similarly, if you find the complement of the intersection 

between the two sets, it is equal to the union of the complements of the 

individual sets. This rule is called the De Morgan Laws.

	 A B A B
c c cÈ( ) = Ç �

	 A B A B
c c cÇ( ) = È �

Chapter 1  Introduction to Fuzzy Set Theory
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�Fuzzy Sets
Classical sets involve exactly defined values. This means that the Universe 

of Discourse is split into two groups—members and non-members. 

Therefore, you cannot say that any member has a partial membership. For 

example, if you are pressing brakes or releasing them, these processes can 

be represented by 1 or 0.

With Fuzzy Sets, on the other hand, you can have values in between 

as well. Therefore, you can say that the Fuzzy Sets have a degree of 

membership between 0 and 1. For example, you can have values like  

{0, 0.3, 0.5, 0.7, 1}. The 1 means a full brake, 0.7 means a little less brake, 

0.5 means half the pressure, 0.3 means very little pressure, and 0 means no 

pressure. In the real world, you rarely see classical sets in action. You deal 

with the values represented by Fuzzy Sets.

There are several properties associated with Fuzzy Sets. The next 

sections explain them:

•	 Law of Commutativity

•	 Law of Associativity

•	 Law of Distributivity

•	 Idempotent Law

•	 Identity Law

•	 Involution Law

•	 Law of Transitivity

•	 De Morgan laws

Chapter 1  Introduction to Fuzzy Set Theory
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�Law of Commutativity
The union or intersection of two sets produces the same the result, 

regardless of which set you list first. That means you can take A first or B 

first, but the results will always be the same.

(A ∪ B) = (B ∪ A)

(A ∩ B) = (B ∩ A)

�Law of Associativity
Say you have three sets. The Law of Associativity says that a union or 

intersection of the first two sets with the third one is equal to a union or 

intersection of the last two sets with the first one.

(A ∪ B) ∪ C = A ∪ (B ∪ C)

(A ∩ B) ∩ C = A ∩ (B ∩ C)

�Law of Distributivity
The Law of Distributivity says that a union of the first set with an 

intersection of the last two sets is equal to a union of the first set with the 

second, a union of the first set with the third, and then an intersection of 

both outputs. This same rule applies when you interchange the union and 

intersection operations.

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

Chapter 1  Introduction to Fuzzy Set Theory
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�Idempotent Law
The Idempotent Law states that an intersection or union of a set with the 

same set is the same set itself.

A ∪ A = A

A ∩ A = A

�Identity Law
If Φ is an empty set and E is a universe of discourse, the Identity Law 

states that:

A ∪ 𝛷 = A

A ∪ E = E

A ∩ 𝛷 = 𝛷

A ∩ E = A

In other words:

•	 A union of a set with an empty set leads to the same set

•	 An intersection of a set with an empty set leads to an 

empty set

•	 A union of a set with a Universe of Discourse leads to a 

Union of Discourse

•	 An intersection of a set with a Universe of Discourse 

leads to the same set

Chapter 1  Introduction to Fuzzy Set Theory
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�Involution Law
The Involution Law states that a double complement of a set leads to the 

same set:

(Ac)c = A

�Law of Transitivity
The Law of Transitivity states that if A is a subset of B and B is a subset of C, 

A will be a subset of C.

If A ⊆ B, B ⊆ C, then A ⊆ C

�De Morgan Laws
If there are two sets and you find the complement of the union between 

them, it is equal to the intersection of the complements of the individual 

sets. Similarly, if you find the complement of an intersection between the 

two sets, it is equal to the union of the complements of the individual sets. 

This rule is called De Morgan Laws.

	 A B A B
c c cÈ( ) = Ç �

	 A B A B
c c cÇ( ) = È �

Now, before you learn about the operations that can be applied to 

Fuzzy Sets, you need to understand the concept of membership functions.

Chapter 1  Introduction to Fuzzy Set Theory
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�Introduction to Membership Functions
In the previous section, you learned that instead of having crisp values of 

0 and 1, each element can be mapped to a value between 0 and 1. Each 

value is called the degree of membership and is represented by a curve, 

which depicts a function called a membership function. The value is called 

the membership value. In Figure 1-9, you can see the difference between 

crisp and Fuzzy Sets.

Figure 1-9.  Difference between Fuzzy and crisp set representations

Chapter 1  Introduction to Fuzzy Set Theory
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In a crisp set, you only have two values, represented by 0 and 1, but in 

a Fuzzy Set, there is a range of values, based on the pressure at which the 

breaks are applied. The curve representing the range is the membership 

function curve. With a different pressure, a different membership value 

will be present, and that can be represented in the membership function 

curve.

Let’s look at the membership function and its related concepts in a 

little more depth.

A Fuzzy Set is an extension and gross oversimplification of a classical 

set. If X is the Universe of Discourse and its elements are denoted by x, 

then a Fuzzy Set A in X is defined as a set of ordered pairs.

	
A x A x x X= ( ){ },m ee �

μA(x) is called the membership function of x in A. The membership 

function maps each element of X to a membership value between 0 and 1. 

There are different types of membership functions, which are covered in 

detail in the next chapter. For now, let’s list some of them and look at the 

curves that they represent. This example uses the Scikit Fuzzy package, 

which has multiple methods and classes, so that you can apply the basic 

Fuzzy Operations effectively. You can use the following line to install the 

Scikit Fuzzy package in the Python environment:

	 pip install scikit fuzzy- �

Figures 1-10 through 1-14 show the different types of membership 

functions and the curves that they represent.

Chapter 1  Introduction to Fuzzy Set Theory
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The graph in Figure 1-10 represents a triangular membership function, 

and you can use the trimf method from the skfuzzy package to find and 

plot the points.

Here is the sample code. The next chapter discusses this function in 

detail.

The following code takes an example where a person goes into a 

restaurant and tips a waiter. For tipping purposes, the quality of service is 

rated from 0 to 10. This example looks only at the service quality for now, 

but later it will discuss the actual tipping problem.

import numpy as np

import skfuzzy as sk

#Defining the Numpy array for Tip Quality

x_qual = np.arange(0, 11, 1)

#Defining the Numpy array for Triangular membership functions

qual_lo = sk.trimf(x_qual, [0, 0, 5])

The graph in Figure 1-11 represents a trapezoidal membership 

function, and you can use the trapmf method from the skfuzzy package to 

find and plot the points.

Figure 1-10.  Triangular membership function

Chapter 1  Introduction to Fuzzy Set Theory
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Here is the sample code.

import numpy as np

import skfuzzy as sk

#Defining the Numpy array for Tip Quality

x_qual = np.arange(0, 11, 1)

#Defining the Numpy array for Trapezoidal membership functions

qual_lo = sk.trapmf(x_qual, [0, 0, 5,5])

The graph in Figure 1-12 represents a Gaussian membership function, 

and you can use the gaussmf method from the skfuzzy package to find 

and plot the points.

Figure 1-11.  Trapezoidal membership function
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Here is the sample code.

import numpy as np

import skfuzzy as sk

#Defining the Numpy array for Tip Quality

x_qual = np.arange(0, 11, 1)

#Defining the Numpy array for Gaussian membership functions

qual_lo = sk.gaussmf(x_qual, np.mean(x_qual), np.std(x_qual))

The graph in Figure 1-13 represents a generalized bell membership 

function, and you can use the gbellmf method from the skfuzzy package 

to find and plot the points.

Figure 1-12.  Gaussian membership function
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Here is the sample code.

import numpy as np

import skfuzzy as sk

#Defining the Numpy array for Tip Quality

x_qual = np.arange(0, 11, 1)

#Defining the Numpy array for Generalized Bell membership 

functions

qual_lo = sk.gbellmf(x_qual, 0.5, 0.5, 0.5)

The graph in Figure 1-14 represents a sigmoidal membership function, 

and you can use the sigmf method from the skfuzzy package to find and 

plot the points.

Figure 1-13.  Generalized bell membership function
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Here is the sample code.

import numpy as np

import skfuzzy as sk

#Defining the Numpy array for Tip Quality

x_qual = np.arange(0, 11, 1)

#Defining the Numpy array for Sigmoid membership functions

qual_lo = sk.sigmf(x_qual, 0.5,0.5)

Later chapters cover all these functions in greater detail.

�Fuzzy Set Operations
Now that you have learned about the concept of membership functions, 

it’s time to look at some of the operations that can be done with Fuzzy Sets. 

This section discusses the following operations:

•	 Union

•	 Intersection

Figure 1-14.  Sigmoidal membership function
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•	 Complement

•	 Product

•	 Equality

•	 Power

•	 Difference

•	 Disjunctive sum

Suppose there are two Fuzzy Sets, A and B, having a membership value 

as μA(x) and μB(x), where X is the Universe of Discourse. Based on this 

information, the following sections consider each operation in detail.

�Union
The union of two Fuzzy Sets A and B is a new Fuzzy Set, A ∪ B, also on X 

with a membership function defined as follows:

	
m m m m mA B A B A Bx x x xÈ( ) = ( ) ( )( ) = ( )Ù ( )max , �

∧ is called the maximum operator.

Here is the Python implementation:

import skfuzzy as sk

import numpy as np

#Defining the Numpy array for Tip Quality

x_qual = np.arange(0, 11, 1)

#Defining the Numpy array for two membership functions (Triangular)

qual_lo = sk.trimf(x_qual, [0, 0, 5])

qual_md = sk.trimf(x_qual, [0, 5, 10])

#Finding the Maximum (Fuzzy Or)

sk.fuzzy_or(x_qual,qual_lo,x_qual,qual_hi)
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�Intersection
An intersection of Fuzzy Sets A and B is a new Fuzzy Set, A ∩ B, also on X 

whose membership function is defined by:

	
m m m m mA B A B A Bx x x xÇ( ) = ( ) ( )( ) = ( )Ú ( )min , �

is called the minimum operator.

Here is the Python implementation:

import skfuzzy as sk

import numpy as np

#Defining the Numpy array for Tip Quality

x_qual = np.arange(0, 11, 1)

#Defining the Numpy array for two membership functions 

(Triangular)

qual_lo = sk.trimf(x_qual, [0, 0, 5])

qual_md = sk.trimf(x_qual, [0, 5, 10])

#Finding the Minimum (Fuzzy AND)

sk.fuzzy_and(x_qual,qual_lo,x_qual,qual_hi)

�Complement
The complement of a Fuzzy Set A is A with this membership function:

	 m m
A Ax x( ) = - ( )1 �

Here is the Python implementation:

import skfuzzy as sk

import numpy as np
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#Defining the Numpy array for Tip Quality

x_qual = np.arange(0, 11, 1)

#Defining the Numpy array for two membership functions (Triangular)

qual_lo = sk.trimf(x_qual, [0, 0, 5])

qual_md = sk.trimf(x_qual, [0, 5, 10])

#Finding the Complement (Fuzzy NOT)

sk.fuzzy_not(qual_lo)

�Product
The product of two Fuzzy Sets A and B is a new Fuzzy Set, A.B, with this 

membership function:

	 m m mA B A Bx x x. ( ) = ( )× ( ) �

Here is the Python implementation:

import skfuzzy as sk

import numpy as np

#Defining the Numpy array for Tip Quality

x_qual = np.arange(0, 11, 1)

#Defining the Numpy array for two membership functions 

(Triangular)

qual_lo = sk.trimf(x_qual, [0, 0, 5])

qual_md = sk.trimf(x_qual, [0, 5, 10])

#Finding the Product (Fuzzy Cartesian)

sk.cartprod(qual_lo, qual_hi)
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�Difference
The difference of two Fuzzy Sets A and B is a new Fuzzy Set, A-B, which is 

defined as

	 A B A B- = Ç( ) �

Here is the Python implementation:

import skfuzzy as sk

import numpy as np

#Defining the Numpy array for Tip Quality

x_qual = np.arange(0, 11, 1)

#Defining the Numpy array for two membership functions 

(Triangular)

qual_lo = sk.trimf(x_qual, [0, 0, 5])

qual_md = sk.trimf(x_qual, [0, 5, 10])

#Finding the Difference (Fuzzy Subtract)

sk.fuzzy_sub(x_qual,qual_lo,x_qual,qual_hi)

�Disjunctive Sum
The disjunctive sum is the new Fuzzy Set defined as follows:

	
AÅ = Ç( )È Ç( )B A B A B �
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�Power
The alpha power of a Fuzzy Set A is a new Fuzzy Set Aα, whose 

membership function is as follows:

	
m ma a

A Ax x( ) = ( )éë ùû �

�Summary
This chapter discussed the classical/crisp sets and Fuzzy Sets. You looked 

at the differences between them and their properties. You also looked at 

some of the operations that can be performed on Fuzzy Sets, as well as the 

Python implementation. To understand these operations, you read about 

the basics of membership functions.

The next chapter discusses Fuzzy Logic in detail and explains 

membership functions with their applications.
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CHAPTER 2

Fuzzy Rules and 
Reasoning
The previous chapter discussed different kinds of sets as well as their 

properties and operations that can be performed on them. You also looked 

at some of the operations and their applications in Python. That chapter 

concluded with a small introduction to the different types of membership 

functions and their Python applications.

This chapter discusses the membership functions and their applications 

in detail. You will be looking at their diverse properties and operations. After 

understanding their roles, you will move on to Fuzzy Relations. You will 

learn what a Fuzzy Relation is and the properties that influence it.

After you have all the basic understanding required, you will finally 

move on to Fuzzy Rules and Reasoning, the core of Fuzzy Logic. You will 

learn about the different kinds of rules and how they are applicable. You will 

learn how to combine different kinds of rules, which will constitute Fuzzy 

Reasoning. You will see applications of these concepts in Python as well.

�Membership Functions
Membership functions represent the degree of truth of a member in a 

defined Fuzzy Set. They are curves that define how each point in the input 

space is mapped to a degree of membership lying between 0 and 1. You 

may understand this better with the help of an example.
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Suppose you want to rate the service of a particular restaurant. You 

might rate the service in the following ways:

•	 Awesome

•	 Average

•	 Worst

In classical sets, this can be represented as follows:

	 X Awesome Average Worst={ }‘ ‘ ’ ‘, , �

This can be coded and represented as X = {}, where 2 represents 

Awesome, 1 represents Average, and 0 represents Worst.

But you might not want to rate the restaurant in only these three 

ways. You need different ways for customers to express their sentiments. 

Therefore, you could add these ratings as well:

•	 Awesome

•	 Nice

•	 Good

•	 Average

•	 OK

•	 Poor

•	 Worst

If you again use a classical set, it will contain a lot of code. Instead, 

you can define a function wherein each rating has a specific value. 

This function will allow you to go beyond the ratings. This function has 

an upper limit and a lower limit. Consider, for example, the sigmoid 

function (You learn about all the membership functions in detail, later 

in this chapter.) The sigmoid function has an upper limit of 1 and a 

Chapter 2  Fuzzy Rules and Reasoning
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lower limit of 0. That means that all the rating categories will have a 

value that will fall at a point on that curve (see Figure 2-1).

Looking at this curve, you can redefine the crisp set as a Fuzzy Set 

having values between 0 and 1. Now, if a person gives a rating, the value 

(membership value) of that rating can be retrieved from the curve. This 

is what is meant when we say that membership functions represent the 

degree of truth of a member. You can see in this example that every rating 

has a value that tells about its degree of truth.

�Formal Definition of a Membership Function
You can write a formal definition of all the rating examples using Fuzzy 

Notations.

Suppose you have Fuzzy Set A with three members:

	 A x x x={ }1 2 3, , �

Figure 2-1.  Curve showing all the rating points as specific values
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All three members will have a membership function value associated 

with them, which will define their degree of truth. It can be represented as 

shown here:

	
A x A x x A x x A x x x x X= ( )( ) ( )( ) ( )( )Ú Î{ }1 1 2 2 3 3 1 2 3, , , , , , ,m m m �

The higher the membership value, the higher the degree of belonging 

or truth inside the set. This process where every member of the Fuzzy Set 

gets a membership value associated with it is called Fuzzification. You can 

now extend the formal notation of the membership function value.

If μA(x) is the membership value of elements and if μA(x) is equal 

to 1, you say that x is totally present in the Fuzzy Set A, or it has a 

full membership. If μA(x) is equal to 0, it is not part of A or it has no 

membership. Any value between 0 and 1 defines its membership, which 

can be termed part of the membership.

�Terminology Related to Fuzzy Membership 
Functions
To understand Fuzzy Membership Functions in more detail, you must first 

understand some terminology related to them. This list of terminology will 

help you understand applications of membership functions better.

•	 Support

•	 Core

•	 Boundary

•	 Crossover

•	 Normality

•	 Fuzzy Singleton

•	 α– cut
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•	 Strong α– cut

•	 Convexity

•	 Bandwidth

•	 Symmetry

•	 Open Left

•	 Open Right

•	 Closed

�Support

The support of a membership function for a Fuzzy Set is defined as that 

region of the universe that is characterized by nonzero membership in Set 

A. It is a set of all the points whose membership value is greater than 0, as 

represented in Figure 2-2. Mathematically, it can be represented as follows:

	
Support A x A x A x( ) = ( )( )Ú ( ) >{ },m m 0 �

Figure 2-2.  Support, core, and boundary
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�Core

The core of a membership function for a Fuzzy Set is defined as that region 

of the universe that is characterized by complete and full membership in 

Set A. It is a set of all the points whose membership value is equal to 1, as 

represented in Figure 2-2. Mathematically, it can be represented as:

	
Core A x A x A x( ) = ( )( )Ú ( ) ={ },m m 1 �

�Boundary

The boundaries of a membership function for a Fuzzy Set are defined 

as that region of the universe containing elements that have a nonzero 

membership but not complete membership. It is a set of all the points 

whose membership value is greater than 0, but less than 1, as represented 

in Figure 2-2. Mathematically, it can be represented as follows:

	 0 1< ( ) <mA x �

�Crossover

The crossover points of a membership function are defined as the 

elements in the universe for which a Fuzzy Set has values equal to 0.5. A 

set of all the points whose membership value is equal to 0.5 is called the 

crossover of Fuzzy Set A:

	
Crossover A x A x A x( ) = ( )( )Ú ( ) ={ },m m 0 5. �
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�Normality

A normal Fuzzy Set is one whose membership function has at least one 

element x in the universe whose membership value is unity (see Figure 2-3). 

In other words, if you find the core of a set and it’s not an empty set, you say 

that the Fuzzy Set A is normal:

	 if ,Core A AisNormal( ) ¹Æ® �

�Fuzzy Singleton

If a Fuzzy Set has only one single point, having a membership value of 1, it 

is called a Fuzzy Singleton:

	
A x A x A x= ( )( )Ú ( ) ={ },m m 1 �

�α– Cut

An alpha cut of Fuzzy Set A is a set containing all the values with 

membership values greater than or equal to alpha:

	
A x X A xa m a= Î Ú ( ) ³{ } �

Figure 2-3.  Normality of a Fuzzy Set

Chapter 2  Fuzzy Rules and Reasoning



42

�Strong α– Cut

A string alpha cut of Fuzzy Set A is a set containing all the values having 

membership values greater than alpha:

	
A x X A xa m a= Î Ú ( ) >{ } �

�Convexity

A convex Fuzzy Set is described by a membership function whose membership 

values are strictly monotonically increasing, or whose membership values 

are strictly monotonically decreasing, or whose membership values are 

strictly monotonically increasing and then strictly monotonically decreasing, 

with increasing values for elements in the universe. In simpler terms, a Fuzzy 

Set is called convex if and only if it follows this rule:

	
m l l m mA A Ax y x y+ -( )( ) ³ ( ) ( ){ }1 min , �

�Bandwidth

If you have a set A, which is normal and convex, and if you find its 

crossover set and select two unique points, the distance between the two is 

called the bandwidth set. Simply speaking, for a normal and convex Fuzzy 

Set, the bandwidth is defined as the distance between the two unique 

crossover points:

	 Bandwidth A x x x xA A( ) = ® ( ) = ( ) =2 1 1 2 0 5– .m m �

�Symmetry

If the membership function of a Fuzzy Set A satisfies the following criteria, 

at a point c, it is called a symmetric set (see Figure 2-4).

	 m mA Ax c c x x X+( ) = ( )" Î– �
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�Open Left

A Fuzzy Set is open left if (see Figure 2-5):

	 A x xA AÛ ( ) = Ù ( ) =m m1 0 �

�Open Right

A Fuzzy Set is open right if (see Figure 2-5):

	 A x xA AÛ ( ) = Ù ( ) =m m0 1 �

�Closed

A Fuzzy Set is closed if (see Figure 2-5):

	 A x xA AÛ ( ) = ( ) =m m 0 �

Figure 2-4.  Symmetry of Fuzzy Set
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�Types of Membership Functions
The first chapter covered the different types of membership functions in 

brief. This section discusses them in detail. A membership function is 

used to define Fuzziness present in a problem statement. This means that 

you don’t have to represent all the values in a sample space using discrete 

numbers. Sometimes a member can be a decimal representing its degree 

of membership.

For example, consider the penalty kick concept in soccer. In discrete 

terms, the kick can be either 1 (a full kick) or 0 (no kick). In real life, that 

is not the case. The kick speed depends not only on the mindset of the 

shooter, but also on the anticipation of where the goalkeeper will move.

In this situation, the shooter decides the speed of the kick as well as 

the direction in which he aims. Speed also cannot be defined just by two 

discrete values, 0 and 1. The speed will range from 0 to 1; 0 being no speed 

and 1 being full speed. Suppose the shooter wants to aim for the top-right 

corner of the goal post. In this situation, the major decision is finding the 

most accurate speed that can give the ball a perfect swing. Too fast and the 

ball will leave the post, while too slow might help the goalkeeper anticipate 

the direction or prevent the ball from swinging properly. Hence, instead of 

Figure 2-5.  Open Left, closed, and open right sets
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going for 1, the shooter may go for 0.7 from a Fuzzy Set, which according 

to him is the ideal speed to kick the ball. This concept in a Fuzzy Set is 

represented by the membership functions.

The next section discusses the different types of membership functions 

that are used.

�Triangular Membership Function

Just as a triangle has three coordinates, a triangular membership function 

has three parameters: a, b, and c.

•	 a is the lower boundary

•	 b is the center

•	 c is the upper boundary

The following equation depicts the triangular membership function:
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x a

x a

b a
a x b

c x

c b
b x c

c x

; , ,( ) =

£
-
-

£ £

-
-

£ £

£

ì

í

ï
ï
ï

î

ï
ï
ï

ü

ý

ï
ï

0

0

,

,

,

,

ïï

þ

ï
ï
ï �

Alternatively, this can also be represented as follows:

	
f x a b c
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You can understand the triangular membership functions with the help 

of an example. This example uses the triangular membership function with 

a soccer example. Suppose the shooter can take four kinds of penalty shots:

•	 Full speed straight shot

•	 Medium powered curvy shot
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•	 Slow straight shot

•	 Medium fast left shot

On average, the top speed at which a shooter takes a penalty kick is 80 

mph. Therefore, there is no way you can say that this speed is slow. Hence 

you assign a 0% membership to 80mph. Similarly, a speed of 60 mph 

can be considered 70% fast and 30% medium. Likewise, you can assign 

different memberships to different speeds.

If you use a triangular membership function, it contains three limits: 

lower, full, and upper. The lower and upper bounds have a membership 

of 0% while the full value is 100%. The remaining values tread linearly. 

You can assign the following triangular membership functions to these 

categories:

•	 Full speed as [60, 80, 80]

•	 Medium powered as [40, 50, 70]

•	 Slow as [20, 20, 45]

•	 Medium fast as [50, 60, 80]

For example, if you defined the triangular membership function for 

“medium powered” as [40, 50, 70], the membership would be 0% at 40 

mph, which linearly increases to 100% at 50 mph, and linearly decreases 

to 0% at 70 mph. The following Python code shows the execution of these 

triangular membership functions. Figure 2-6 shows the result.

#Importing Necessary Packages

import numpy as np

import skfuzzy as fuzz

import matplotlib.pyplot as plt

%matplotlib inline

#Defining the Fuzzy Range from a speed of 30 to 90

x = np.arange(30, 80, 0.1)
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#Defining the triangular membership functions

slow = fuzz.trimf(x, [30, 30, 50])

medium = fuzz.trimf(x, [30, 50, 70])

medium_fast = fuzz.trimf(x, [50, 60, 80])

full_speed = fuzz.trimf(x, [60, 80, 80])

#Plotting the Membership Functions Defined

plt.figure()

plt.plot(x, full_speed, 'b', linewidth=1.5, label='Full Speed')

plt.plot(x, medium_fast, 'k', linewidth=1.5, label='Medium Fast')

plt.plot(x, medium, 'm', linewidth=1.5, label='Medium Powered')

plt.plot(x, slow, 'r', linewidth=1.5, label='Slow')

plt.title('Penalty Kick Fuzzy')

plt.ylabel('Membership')

plt.xlabel("Speed (Miles Per Hour)")

plt.legend(loc='center right', bbox_to_anchor=(1.25, 0.5), 

ncol=1, fancybox=True, shadow=True)

Figure 2-6.  Triangular membership of the soccer example
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�Trapezoidal Membership Function

A trapezoid has four coordinates, so the membership function also has 

four coordinates values: a, b, c, and d, for a crisp value x. However, keep in 

mind this rule:

	 b c d< < �

You can describe the function using this equation:
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This equation can be expanded with multiple cut-points:
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In trapezoidal membership functions, you need to provide four 

points. With the soccer example, you have to provide a range based on 

a specific class. In this membership function, the membership reaches 

100% from 0% in the center, and then again drops to 0%. Instead of three 

points, as with the triangular membership function, you have four points. 

This applies the soccer example to the trapezoidal membership function, 

whose classes are defined as follows:

•	 Full speed as [60, 80, 80, 90]

•	 Medium powered as [30, 50, 50, 70]
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•	 Slow as [20, 30, 30, 50]

•	 Medium fast as [50, 60, 60, 80])

Here is the Python implementation; the result is shown in Figure 2-7.

#Importing Necessary Packages

import numpy as np

import skfuzzy as fuzz

import matplotlib.pyplot as plt

%matplotlib inline

#Defining the Fuzzy Range from a speed of 30 to 90

x = np.arange(30, 90, 0.1)

#Defining the trapezoidal membership functions

slow = fuzz.trapmf(x, [20, 30, 30, 50])

medium = fuzz.trapmf(x, [30, 50, 50, 70])

medium_fast = fuzz.trapmf(x, [50, 60, 60, 80])

full_speed = fuzz.trapmf(x, [60, 80, 80, 90])

#Plotting the Membership Functions Defined

plt.figure()

plt.plot(x, full_speed, 'b', linewidth=1.5, label='Full Speed')

plt.plot(x, medium_fast, 'k', linewidth=1.5, label='Medium Fast')

plt.plot(x, medium, 'm', linewidth=1.5, label='Medium Powered')

plt.plot(x, slow, 'r', linewidth=1.5, label='Slow')

plt.title('Penalty Kick Fuzzy')

plt.ylabel('Membership')

plt.xlabel("Speed (Miles Per Hour)")

plt.legend(loc='center right', bbox_to_anchor=(1.25, 0.5), 

ncol=1, fancybox=True, shadow=True)
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�Gaussian Membership Function

When you know the mean and standard deviation of the crisp values and 

want to take into consideration the customizable Fuzzification Factor as 

well, you use Gaussian membership functions. They can be represented 

using the equation:

	 mA

x c

sx c s m e

m

, , ,( ) =
- -1

2 �

where c and s are the mean and standard deviation, respectively, and 

m is the Fuzzification Factor.

When you apply the Gaussian membership function to the soccer 

example, you can see that the values are represented much better and 

the interpolation is smooth. You define the Gaussian membership of the 

classes as follows:

•	 Full speed has a mean of 80 mph and a standard 

deviation of 4

Figure 2-7.  Trapezoidal membership of the soccer example
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•	 Medium powered has a mean of 50 mph and a 

standard deviation of 4

•	 Slow has a mean of 30 mph and a standard deviation of 4

•	 Medium fast has a mean of 60 mph and a standard 

deviation of 4

You can always play with the standard deviation. Here is the Python 

implementation of the soccer example using the Gaussian membership 

function. Figure 2-8 shows the result.

#Importing Necessary Packages

import numpy as np

import skfuzzy as fuzz

import matplotlib.pyplot as plt

%matplotlib inline

#Defining the Fuzzy Range from a speed of 30 to 90

x = np.arange(30, 90, 0.1)

#Defining the gaussian membership functions

full_speed = fuzz.gaussmf(x, 80, 4)

medium_fast = fuzz.gaussmf(x, 60, 4)

medium = fuzz.gaussmf(x, 50, 4)

slow = fuzz.gaussmf(x, 30, 4)

#Plotting the Membership Functions Defined

plt.figure()

plt.plot(x, full_speed, 'b', linewidth=1.5, label='Full Speed')

plt.plot(x, medium_fast, 'k', linewidth=1.5, label='Medium Fast')

plt.plot(x, medium, 'm', linewidth=1.5, label='Medium Powered')

plt.plot(x, slow, 'r', linewidth=1.5, label='Slow')

plt.title('Penalty Kick Fuzzy')

plt.ylabel('Membership')
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plt.xlabel("Speed (Miles Per Hour)")

plt.legend(loc='center right', bbox_to_anchor=(1.25, 0.5), 

ncol=1, fancybox=True, shadow=True)

�Generalized Bell Membership Function

The generalized bell membership function takes into consideration three 

parameters:

•	 The slope

•	 The center

•	 The width of the curve

It is represented by the following equation:

	

gbell x a b c
x c
b

b, , ,( ) =
+

-

1
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�

Figure 2-8.  Gaussian membership of the soccer example
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where a represents the width, b represents the slope, and c represents the 

center.

If you solve the soccer example with the generalized bell function, 

you’ll get the following membership functions:

•	 Full speed has a center at 80 mph while the width and 

slope are 8 and 4, respectively

•	 Medium powered has a center at 50 mph while the 

width and slope are 8 and 4, respectively

•	 Slow has a center at 30 mph while the width and slope 

are 8 and 4, respectively

•	 Medium fast has a center at 60 mph while the width 

and slope are 8 and 4, respectively

#Importing Necessary Packages

import numpy as np

import skfuzzy as fuzz

import matplotlib.pyplot as plt

%matplotlib inline

#Defining the Fuzzy Range from a speed of 30 to 90

x = np.arange(30, 90, 0.1)

#Defining the generalized bell membership functions

full_speed = fuzz.gbellmf(x, 8,4,80)

medium_fast = fuzz.gbellmf(x, 8,4,60)

medium = fuzz.gbellmf(x, 8,4,50)

slow = fuzz.gbellmf(x, 8,4,30)

#Plotting the Membership Functions Defined

plt.figure()

plt.plot(x, full_speed, 'b', linewidth=1.5, label='Full Speed')

plt.plot(x, medium_fast, 'k', linewidth=1.5, label='Medium Fast')
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plt.plot(x, medium, 'm', linewidth=1.5, label='Medium Powered')

plt.plot(x, slow, 'r', linewidth=1.5, label='Slow')

plt.title('Penalty Kick Fuzzy')

plt.ylabel('Membership')

plt.xlabel("Speed (Miles Per Hour)")

plt.legend(loc='center right', bbox_to_anchor=(1.25, 0.5), 

ncol=1, fancybox=True, shadow=True)

Figure 2-9 shows the result.

�Sigmoidal Membership Function

This is one of the most widely used membership functions, especially in 

the field of neural networks. The formula is given here:

	
Sigmoid x a c

e a x c
; ,( ) =

+ - -( )
1

1 �

where a represents the slope and c represents the crossover point.

Figure 2-9.  Generalized bell membership of the soccer example
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When you come to a specific instance wherein you must take care of 

very high values or very low values, you use the sigmoidal membership 

function as the target.

You must provide two points, and the most important point is the 

c point (crossover point), which represents the center. Therefore, for 

the soccer example, the classes will be redefined using the sigmoidal 

membership function as follows:

•	 Full speed has a crossover at 80 mph and a slope of 2

•	 Medium powered has a crossover at 50 mph and a 

slope of 2

•	 Slow has a crossover at 30 mph and a slope of 2

•	 Medium fast has a crossover at 60 mph and a slope of 2

Here is the Python implementation.

#Importing Necessary Packages

import numpy as np

import skfuzzy as fuzz

import matplotlib.pyplot as plt

%matplotlib inline

#Defining the Fuzzy Range from a speed of 30 to 90

x = np.arange(30, 90, 0.1)

#Defining the sigmoidal membership functions

full_speed = fuzz.sigmf(x, 80,2)

medium_fast = fuzz.sigmf(x, 60,2)

medium = fuzz.sigmf(x, 50,2)

slow = fuzz.sigmf(x, 30,2)

#Plotting the Membership Functions Defined

plt.figure()

plt.plot(x, full_speed, 'b', linewidth=1.5, label='Full Speed')
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plt.plot(x, medium_fast, 'k', linewidth=1.5, label='Medium Fast')

plt.plot(x, medium, 'm', linewidth=1.5, label='Medium Powered')

plt.plot(x, slow, 'r', linewidth=1.5, label='Slow')

plt.title('Penalty Kick Fuzzy')

plt.ylabel('Membership')

plt.xlabel("Speed (Miles Per Hour)")

plt.legend(loc='center right', bbox_to_anchor=(1.25, 0.5), 

ncol=1, fancybox=True, shadow=True)

Figure 2-10 shows the result.

It is always a question of debate about which membership function to 

use. There is no single best answer, but you can use one of the following 

approaches:

•	 Look at the distribution of the data, for example, with 

the help of a histogram. If you cannot deduce patterns 

from the visualization, it is best to use the triangular 

Figure 2-10.  Sigmoidal membership of the soccer example
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or trapezoidal membership functions. Otherwise, use 

others based on the distribution shape.

•	 Start the problem with the simple membership functions 

like triangular or trapezoidal. If they provide good 

results, all is well and good. Otherwise, move to others, 

especially Gaussian. Most of the time, the Gaussian 

membership function will give you the best results.

•	 Train the model on the membership functions that 

you want to compare. Later, compare the results using 

metrics like MAPE (mean average percentage error). 

Whichever method gives you the lowest error is the 

best model.

�Polynomial Membership Function

The polynomial membership function is basically made up of three types:

•	 z-shaped

•	 s-shaped

•	 pi-shaped

These functions are named based on how each curve looks. They are 

also called spline-based membership functions. The equations for all three 

membership functions are explained in the following sections.

Z-Shaped

In this membership function, points a and b represent the extreme 

portions of the curve. It is an asymmetrical polynomial curve open to the 

left. Figure 2-11 represents a z-shaped membership function, followed by 

its equations.
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Continuing with the soccer example, the following categories will be 

defined for the Z-shaped membership functions (see Figure 2-12):

•	 Full speed has a declining point at 80 mph, until 60 mph

•	 Medium fast has a declining point at 60 mph, until 50 mph

•	 Medium has a declining point at 50 mph, until 30 mph

•	 Slow has a declining point at 30 mph, until 20mph

The Python code is as follows:

Figure 2-11.  Z-shaped membership function
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#Importing Necessary Packages

import numpy as np

import skfuzzy as fuzz

import matplotlib.pyplot as plt

%matplotlib inline

#Defining the Fuzzy Range from a speed of 30 to 90

x = np.arange(30, 90, 0.1)

#Defining the z-shaped membership functions

full_speed = fuzz.smf(x, 60,80)

medium_fast = fuzz.smf(x, 50,60)

medium = fuzz.smf(x, 30,50)

slow = fuzz.smf(x, 20,30)

#Plotting the Membership Functions Defined

plt.figure()

plt.plot(x, full_speed, 'b', linewidth=1.5, label='Full Speed')

plt.plot(x, medium_fast, 'k', linewidth=1.5, label='Medium Fast')

plt.plot(x, medium, 'm', linewidth=1.5, label='Medium Powered')

plt.plot(x, slow, 'r', linewidth=1.5, label='Slow')

plt.title('Penalty Kick Fuzzy')

plt.ylabel('Membership')

plt.xlabel("Speed (Miles Per Hour)")

plt.legend(loc='center right', bbox_to_anchor=(1.25, 0.5), 

ncol=1, fancybox=True, shadow=True)
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S-Shaped

In this membership function, points a and b represent the extreme 

portions of the curve. This is a mirror image of the Z-shaped membership 

functions, which are open to the right. Figure 2-13 represents an s-shaped 

membership function, followed by its equations.

Figure 2-12.  Z-shaped membership of the soccer example

Figure 2-13.  S-shaped membership function
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The following categories will be defined for the s-shaped membership 

functions in the soccer example (see Figure 2-14):

•	 Full speed has an inclining point at 60 mph, until 80 mph

•	 Medium fast has an inclining point at 50 mph, until  

60 mph

•	 Medium has an inclining point at 30 mph, until 50 mph

•	 Slow has an inclining point at 20 mph, until 30 mph

The Python code is as follows:

#Importing Necessary Packages

import numpy as np

import skfuzzy as fuzz

import matplotlib.pyplot as plt

%matplotlib inline

#Defining the Fuzzy Range from a speed of 30 to 90

x = np.arange(30, 90, 0.1)

#Defining the s-shaped membership functions

full_speed = fuzz.zmf(x, 60,80)

medium_fast = fuzz.zmf(x, 50,60)

medium = fuzz.zmf(x, 30,50)

slow = fuzz.zmf(x, 20,30)
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#Plotting the Membership Functions Defined

plt.figure()

plt.plot(x, full_speed, 'b', linewidth=1.5, label='Full Speed')

plt.plot(x, medium_fast, 'k', linewidth=1.5, label='Medium Fast')

plt.plot(x, medium, 'm', linewidth=1.5, label='Medium Powered')

plt.plot(x, slow, 'r', linewidth=1.5, label='Slow')

plt.title('Penalty Kick Fuzzy')

plt.ylabel('Membership')

plt.xlabel("Speed (Miles Per Hour)")

plt.legend(loc='center right', bbox_to_anchor=(1.25, 0.5), 

ncol=1, fancybox=True, shadow=True)

Pi-Shaped

Pi-shaped curves have four parameters. Parameters a and d indicate the 

feet of the curve, while b and c represent the shoulders. This curve can be 

defined as a product of the z-shaped and s-shaped membership functions. 

Figure 2-14.  S-shaped membership of the soccer example
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It has zero values on both extremes, with a rise in the middle. Figure 2-15 

represents a pi-shaped membership function, followed by its equations.
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The following categories will be defined for the z-shaped membership 

functions (see Figure 2-16):

•	 Full speed has the feet points defined as [60mph, 

100mph] while the shoulder points are defined as 

[70mph, 80mph]

Figure 2-15.  Pi-shaped membership function
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•	 Medium fast has the feet points defined as [50mph, 

80mph] while shoulder points are defined as [55mph, 

60mph]

•	 Medium has the feet points defined as [30mph, 60mph] 

while shoulder points are defined as [45mph, 50mph]

•	 Slow has the feet points defined as [60mph, 100mph] 

while shoulder points are defined as [70mph, 80mph]

The Python code is as follows:

#Importing Necessary Packages

import numpy as np

import skfuzzy as fuzz

import matplotlib.pyplot as plt

%matplotlib inline

#Defining the Fuzzy Range from a speed of 30 to 90

x = np.arange(30, 90, 0.1)

#Defining the pi-shaped membership functions

full_speed = fuzz.pimf(x, 60,70,80,100)

medium_fast = fuzz.pimf(x, 50,55,60,80)

medium = fuzz.pimf(x, 30,45,50,60)

slow = fuzz.pimf(x, 20,25,35,50)

#Plotting the Membership Functions Defined

plt.figure()

plt.plot(x, full_speed, 'b', linewidth=1.5, label='Full Speed')

plt.plot(x, medium_fast, 'k', linewidth=1.5, label='Medium Fast')

plt.plot(x, medium, 'm', linewidth=1.5, label='Medium Powered')

plt.plot(x, slow, 'r', linewidth=1.5, label='Slow')

plt.title('Penalty Kick Fuzzy')

plt.ylabel('Membership')
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plt.xlabel("Speed (Miles Per Hour)")

plt.legend(loc='center right', bbox_to_anchor=(1.25, 0.5), 

ncol=1, fancybox=True, shadow=True)

�Composite and Non-Composite Membership Functions

Projection and cylindrical extension of Fuzzy Sets are the concepts you 

use when you want to extend a one-dimensional membership function to 

two-dimensional membership function. These concepts are discussed in 

the next section on Fuzzy Relations. After applying one of these concepts, 

you get a 2D membership function. This membership function can be of 

two types:

•	 Composite membership function

•	 Non-composite membership function

A 2D membership function, if it can be broken into two single 

membership functions, is called a composite membership function. 

Otherwise, it’s called a non-composite membership function.

Figure 2-16.  Pi-shaped membership of the soccer example
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For example, suppose you have a membership function defined as 

follows:

	 mA

x
y

x y e,( ) =
-

-æ
è
ç

ö
ø
÷- -( )5

4
9

2

�

This equation can be broken into two parts:

	 e e
x

y
-

-æ
è
ç

ö
ø
÷ -( )*

5

4 9
2

�

If you look at this carefully, they are nothing but two Gaussian 

membership functions. Therefore, you can rewrite them as follows:

	 gaussian x gaussian y, , , ,5 4 9 1( )* ( ) �

Since you have successfully broken the 2D membership functions to 

1D membership functions, this is a composite membership function.

But consider the following equation:

	

mA x y
x y

,( ) =
+ - -

1

1 3 4
7

�

In this scenario, you won’t be able to break it. Hence, it is a non-

composite membership function.

�Fuzzy Relations
As you learned in the last chapter, there are different kinds of sets—crisp 

sets and Fuzzy Sets. Whenever you try to determine the relationship 

between two or more sets, the terminology used is relation, and specifically 

with Fuzzy Sets, this is called Fuzzy Relation.
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Suppose there are two Fuzzy Sets, X, Y, both belonging to the domain 

of real numbers and part of a Universe of Discourse.

The Fuzzy Relation, X × Y, will have a relationship defined by this set:

R = {[(x, y), μR(x, y)] ∨ (x, y) ∈ X × Y}

To represent this relationship in matrix format, consider the following 

example.

Suppose:

	 X x x xn Y y y yn= ¼{ } = ¼{ }1 2 1 2, , , , �

The Fuzzy Relation R will be represented by the following matrix:

	

y y ynx x y x y x yn x x y x yR R R R R1 2 1 1 1 1 2 1 2 2 1 2 2¼ ( ) ( )¼ ( ) ( ) ( )¼m m m m m, , , , ,

mm m m mR R R Rx yn xn xn y xn y xn yn2 1 2, , , ,( )¼ ( ) ( )¼ ( ) �

Let’s look at this concept with an example.

Suppose:

X = {1, 2, 3} and Y = {1, 2}

If the membership function between the two is given by:

μR(x, y) = 1/1+ e-(x-y)

Using these two formulations, you can define the relationship R as:

�
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If you want to represent this relation in matrix format, you get the 

following matrix:

	 0 500 270 730 500 880 50. . . . . .[ ] �

Now you know what a Fuzzy Relation is. The next section looks at some 

of its properties.

�Properties of Fuzzy Relations
This section discusses the following properties of Fuzzy Relations:

•	 Projection

•	 Cylindrical extension

•	 Reflexive relation

•	 Anti-reflexive relation

•	 Symmetric relation

•	 Anti-symmetric relation

•	 Transitive relation

•	 Similarity relation

•	 Anti-similarity relation

•	 Weak similarity relation

•	 Order relation

•	 Pre-order relation

•	 Half order relation
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�Projection of Fuzzy Relation

Because a crisp relation is defined in the product space of two or more 

sets, the concept of projection was proposed. Suppose you have a Fuzzy 

Relation represented by the following matrix:

R = [0.10.20.40.20.40.80.40.81]

This is the same matrix you got in the previous section, with columns 

representing members of the X set, and rows representing members of the 

Y set. Individual values are the membership function’s values. Now, if you 

want to project this relation onto X or Y, it can be defined as follows:
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When you apply both projections to this matrix, you get the following 

results:

	 mR x1 1 0 1 0 2 0 4 0 4( ) = ( ) =. , . , . . �

	 mR x1 2 0 2 0 4 0 8 0 8( ) = ( ) =. , . , . . �

	 mR x1 3 0 4 0 8 1 1( ) = ( ) =. , . , �

Therefore, R1 becomes:
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Similarly, you can get R2 values as follows:

	 mR y1 1 0 1 0 2 0 4 0 4( ) = ( ) =. , . , . . �

	 mR y1 2 0 2 0 4 0 8 0 8( ) = ( ) =. , . , . . �

	 mR y1 3 0 4 0 8 1 1( ) = ( ) =. , . , �
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y
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,
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Remember, for projection onto X, you do a row-wise comparison. But 

for projection onto Y, you do a column-wise comparison.

�Cylindrical Extension of Fuzzy Relations

Once you have the projection of relation on two sets, you directly refill the 

values of the original matrix with the membership values. That is called a 

cylindrical extension of a Fuzzy Relation. It is represented by:

	 cylA x y A x,( ) = ( ) �

	 " Îx X �

	 " Îy Y �

You can understand this better by extending the previous example.
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You got the R1 and R2 values. Now you just redefine the matrix with the 

combined values:

R1 = 

0 40 4

0 80 8

11

. .

. .

é

ë

ê
ê
ê

ù

û

ú
ú
ú

R2 = 

0 40 4

0 80 8

11

. .

. .

é

ë

ê
ê
ê

ù

û

ú
ú
ú

�Reflexive Relation

If the Fuzzy Relation between two same sets is R, such that for each same 

value combination, you have a membership function value of 1, then 

you call the relation reflexive. Therefore, if R is a Fuzzy Relation, it will be 

reflexive if:

	 mR x x x X,( ) = " Î1 �

For example, if X = {1,2,3,4}, the Relation R will be equal to:

R = 

10 90 60 2

0 910 70 3

0 60 710 9

0 20 30 91

. . .

. . .

. . .

. . .
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ê
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û
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ú

As you can see, the diagonals of this matrix are 1, proving it to be a 

reflexive relation.

�Anti-Reflexive Relation

If the Fuzzy Relation between two same sets is R, such that for each same 

value combination, you have a membership function value of 0, then you 

call the relation anti-reflexive. It is represented by:

	 mR x x x X,( ) = " Î0 �
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For example, if X = {1,2,3}, then the Relation R will be equal to:

R = 

000 6

0 300

00 30

.

.

.

é

ë

ê
ê
ê

ù

û

ú
ú
ú

As you can see, the diagonals of this matrix are 0, proving it to be an 

anti-reflexive relation.

�Symmetric Relation

If you have two or more members of a Fuzzy Set, x, y, belonging to same set 

X, and if the membership function value of relation between x and y is the 

same as the membership function value of relation between y and x, you 

call the relation a symmetric relation.

	 m mR Rx y y x x y X, ,( ) = ( )" Î, �

For example, if X = {1,2,3}, then:

If, R = 

0 80 10 7

0 110 6

0 70 60 5

. . .

. .

. . .
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This is a symmetric relation because μR(x, y) and μR(y, x) have the same 

values.

�Anti-Symmetric Relation

If you have two or more members of a Fuzzy Set, x, y, belonging to the 

same set X, and if the membership function value of relation between x 

and y is greater than 0, and the membership function value of relation 

between y and x is 0, you call this an anti-symmetric relation.

If μR(x, y) > 0, then μR(y, x) = 0, ∀x, y ∈ X, and x ≠ y.
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For example:

If R = 

000 7

0 100

00 60

.

.

.
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This is an anti-symmetric relation, because when μR(x, y) > 0, then 

μR(y, x) = 0.

�Transitive Relation

A Fuzzy Relation is transitive if:

	
m m mR R Rx z x y y z x z X, , , ,( ) ³ ( ) ( )( )( ) Îmax min , �

This means that you first need to find the R2 value using the max-min 

approach, and then check whether it is not always less than or equal to the 

original membership matrix of R. If it doesn’t follow, the equation is transitive.

Suppose you have a relation matrix as follows:

R = 

0 70 90 4

0 10 30 5

0 20 10

. . .
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The first step is to find R2 value. For this, you use the following steps:

R.R = 

0 70 90 4

0 10 30 5

0 20 10

0 70 90 4

0 10 30 5

0 20
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é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û
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Applying the max-min composition, you get the following matrix:

R2 = 

0 70 70 5

0 10 30 5

0 20 10

. . .

. . .

. .

é

ë

ê
ê
ê

ù

û

ú
ú
ú

You can see that the values are sometimes greater than the original 

matrix. Therefore, the matrix is not transitive.

�Similarity Relation

If there are two Fuzzy Sets, which are reflexive, symmetric, and transitive, 

the relation is a similarity relation.

R = 

10 210 60 20 6

0 210 20 20 80 2

10 210 60 20 6

0 60 20 610 20

. . . .

. . . . .

. . . .

. . . . ..

. . . . .

. . . . .

8

0 20 80 20 210 2

0 60 20 60 80 21

é

ë

ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
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This relation is a similarity relation because:

•	 μR(x, x) = 1

Which proves that the relation is reflexive.

•	 μR(x, y) = μR(y, x)

Which proves that the relation is symmetric.

•	 μR(x, z) ≥ ((μR(x, y), μR(y, z)))x, y, z ∈ X

Which proves that the relation is transitive.

Since it follows all these principles, it is a similarity relation.

�Anti-Similarity Relation

The complement of a similarity relation is an anti-similarity relation. 

Therefore, you can write it as follows:

	 m m¢ = - ( )R R x y1 , �

Suppose:

If R = 

10 10 7

0 110 7

0 70 71

. .

. .

. .

é

ë

ê
ê
ê

ù

û

ú
ú
ú

	

Then m ¢ ( ) = -
é

ë

ê
ê
ê

ù

û

ú
ú
ú

R x y, 1

10 10 7

0 110 7

0 70 71

. .

. .

. . �

This is equal to this matrix:

	

00 90 3

0 900 3

0 30 30

. .

. .

. .

é

ë

ê
ê
ê

ù

û

ú
ú
ú �
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You can say that this is anti-reflexive, symmetric, and transitive. 

Therefore, R is an anti-similarity relation.

�Weak Similarity Relation

If a relation is reflexive and symmetric, but not transitive, the relation is 

called a weak similarity relation.

If R = 

10 10 80 20 30 1

100 310 80

10 700 20 30 7

10 60 3100 61

. . . . .

. .

. . . .

. . .

é

ë

ê
ê
ê
êê

ù

û

ú
ú
ú
ú

When you apply the rules of reflexive, symmetric, and transitive 

relations, you can see that it is following the first two, but not following 

the transitive relation property. Therefore, you can say that it is a weak 

similarity relation.

�Half Order Relation

Before talking about a half order relation, you must know what a weak anti-

symmetric relation means. This Fuzzy Relation follows these rules:

If

	 mR x y,( ) > 0 �

	 mR y x,( ) > 0 �

Then

	 x y= �
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Now that you know about it, a half order relation is reflexive as well as 

weakly symmetric. For example, if

R = 

1 1 8 0 2 0 6 0 6 0 4

0 1 0 0 0 6 0

0 0 1 0 0 5 0

0 0 0 1 0 6 0 4

0 0 0 0 1 0

0 0 0 0 0 1

. . . . .

.

.

. .

é

ë

ê
ê
êê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú

Then this relation follows the property of half order relation.

�Fuzzy Rules
In Fuzzy Logic, if you want to incorporate conditional statements, you use 

Fuzzy Rules (see Figure 2-17). The most important thing to understand is 

the Fuzzy If-Then Rules. A single sample Fuzzy Rule looks like this:

	 If x A y Bis then is �

In this statement, A and B are called linguistic values. These are the 

values that assume that it has been derived from statistical research, a 

mathematical model, etc. For example, it can take categorical values 

(good, average, or best), probabilistic values (0.1, 0.3, or 0.9), or any other 

part of an experiment. These values can be part of a Fuzzy Set, which can 

be a member of the Universe of Discourse X and Y.

If you break the previous statement into two halves:

•	 x is A

•	 y is B

The first part is called an antecedent or premise, while the second part 

is called the consequent or conclusion (see Figure 2-2).
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For example, consider the following rules:

•	 If road is good then condition of car is good

•	 If company is good then employees are satisfied

•	 If service is good then tip is average

As stated, A and B are Fuzzy Sets, so they have a value between 0 and 

1. That means you provide a value between 0 and 1 as the antecedent, and 

you get a value from 0 to 1 as the consequent. So, in the previous example, 

good can be assigned a number between 0 and 1, and you’ll get a response 

between 0 and 1, which will represent good, average, or satisfied, based on 

the problem statement.

When you apply If-Then Rules, then input is set as a value between 0 

and 1, but the output is an entire Fuzzy Set. After this, you need to apply 

one of the Fuzzy Operations, called Defuzzification, which then gives you a 

crisp output value between 0 and 1.

The process of the If-Then Rule involves:

	 1.	 Reading the antecedent

	 2.	 Converting the input to a Fuzzy Set

	 3.	 Applying the necessary Fuzzy Operators

	 4.	 Applying the result to a consequent

	 5.	 Getting a Fuzzy Set as output

	 6.	 Defuzzifying to get a crisp answer

These examples are binary. Antecedents and consequents can both 

have multiple parts. For example:

•	 If sky is gray and wind is strong and barometer is 

falling, then ...

•	 If temperature is cold then hot water valve is open and 

cold water valve is shut
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With this logic, the rules can be divided into two parts:

•	 Fuzzy Mapping Rule. This rule first Fuzzified the 

antecedent inputs, in this case, service and food, and 

then applied the max operator. This gives the final crisp 

value that needs to be sent to the consequent.

•	 Fuzzy Implication Rule. In this rule, the consequent 

receives the crisp input from the antecedent, and then 

it decides what the Fuzzy Set will look like. You get a 

Fuzzy Set as output after this step.

Figure 2-17.  Fuzzy Rules in a service example
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Once you learn about Fuzzy Inference Systems, you will understand 

the process of Defuzzifying the output Fuzzy Set into a crisp set.

�Fuzzy Reasoning: The Theory 
of Approximate Reasoning
Say you know some Fuzzy Rules related to an Antecedent Fuzzy Set, called 

A, and a Consequent Fuzzy Set, called C. Suppose you also know a fact, 

which is nothing but a member of Fuzzy Set A. Using these rules, you 

can get a consequence from Fuzzy Set C, using approximate reasoning. 

Consider the following example.

Suppose you have three Fuzzy If-Then Rules:

•	 If service is good then tip is average

•	 If service is worst then tip is poor

•	 If service is best then tip is good

If you know that the service is good, through approximate reasoning, 

you can say that the tip is average. Here’s a formal notation of this idea.

	 R if x is A then y is C1 1 1: , �

	 R if x is A then y is C2 2 2: , �

	 

�

	 Rn if x is A then y is Cn n: �

	 : !x is A �

	 so consequence y is C, : �
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Now that you know the basics, let’s look at some formal definitions 

related to Fuzzy Reasoning:

•	 Entailment rule

•	 Conjunction rule

•	 Disjunction rule

•	 Projection rule

•	 Negation rule

•	 Generalized modus ponens

•	 Generalized modus tollens

�Entailment Rule
If you know that service is poor, and poor is a subset of bad, you can say 

that the service is bad. This is called an entailment rule, represented by:

	 x is A �

	 A BÌ �

	 x is B �

�Conjunction Rule
This can also be called the AND rule. If service is not very good and service 

is not very bad, you can say that service is not very good and not very bad. 

This is called a conjunction rule, and it’s represented by:

	

x is A

x is B

x is A BÇ �
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�Disjunction Rule
This can also be called the OR rule. If service is not very good or service is 

not very bad, you can say that service is not very good or not very bad. This 

is called a conjunction rule, and it’s represented by:

	

x is A

x is B

x is A BÈ �

�Projection Rule
If you have two members of Fuzzy Set X ∧ Y: x, y respectively, and you have 

a relation R between them, then you can define a projection rule on them.

If you say that (x, y) is close to (4, 5), then you can conclude that x is 

close to 4 and y is close to 5.

�Negation Rule
If you say that x is high, but a fact disproves it by saying, not(x is high), then 

you can conclude using the negation rule that x is not high. This can be 

represented by:

	

not x is A

x is A

( )
Ø �

�Generalized Modus Ponens
You know that if the service is poor, the tip is bad. You also know as a fact 

that the service is good. Keeping those two situations in mind, you can 

say that the tip is nice, considering nice is a complement of bad, and good 
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is a complement of poor. This is what the generalized modus ponens 

(GMP) says. Here it is in representation format:

	 if x is A then y is B Premise® �

	 x is A¢® ! �

	 y is B Consequence¢® �

There are some properties that GMP needs to follow.

Basic property:

	 x is A then y is B Premise® �

	 x is A® ! �

	 y is B Consequence® �

Total Indeterminacy property:

	 x is A then y is B Premise® �

	 x is AØ ® ! �

	 y isUnknown Consequence® �

Subset property:

	 x is A then y is B Premise® �

	 x is A A¢ Ì ® ! �

	 y is B Consequence® �
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Superset property:

	 x is A then y is B Premise® �

	 x is A¢® ! �

	 y is B B Consequence¢ É ® �

�Generalized Modus Tollens
Again, if you know that the service is good, that means the tip is nice. 

You also know as a fact that the tip is bad. Keeping these two situations 

in mind, you can say that the service is poor, considering bad is a 

complement of nice, and poor is a complement of good. This is what the 

generalized modus tollens says:

	 if x is A then y is B Premise® �

	 y is B¢® ! �

	 x is A Consequence¢® �

�Aggregation in Fuzzy System Modeling
Before look at aggregation, you must know the steps required for any Fuzzy 

Inference Process:

	 1.	 Whatever the input is, you must match every rule 

with it.

	 2.	 Determine the output of every rule as a Fuzzy Set.

	 3.	 Aggregate all the rule outputs to get the overall 

Fuzzy System output Fuzzy Set.

	 4.	 Perform an action based on the output Fuzzy Set.
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The consideration in this section is the third point: aggregation of the 

output rules. You can represent this operation as follows:

	
F y Agg R y R y R yn( ) = ( ) ( ) ¼ ( )( )1 2, , �

In the previous equation, Agg represented the aggregation operator. All 

the parameters present inside the operator are the membership grades of 

the output rules for every value of y present in Fuzzy Set Y.

For aggregation operations, the following three conditions need to be 

satisfied:

•	 Commutativity

•	 Monotonicity

•	 Fixed identity

�Commutativity

All the elements on which the aggregation operation is going to be 

performed can be unordered and can contain duplicate values. This 

means that indexing doesn’t play a role here. So R1 can come after R45, 

which can come after R2.

�Monotonicity

Suppose there are two elements, y1 and y2. You know that R(y1) and R(y2) 

represent the degree of membership. This tells you the probability of y1 

being the correct solution versus y2 being correct. If all the rules applied 

on y1 and y2 state that R(y1) ≥ R(y2), the overall system will prefer y1 over 

y2. This can be represented by the monotonicity condition:

	
R y R yj j1 2( ) ³ ( ) �

This means that, for all the values of j, the membership of y1 will be 

greater than or equal to the membership of y2.
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�Fixed Identity

Suppose there are few rules that don’t ensure an output. In that scenario, 

these rules will not affect the output of all the other rules, which do 

determine potential outputs. This is the property of fixed identity.

When you combine all three conditions, the aggregation is called 

Monotonic Identity Commutative Aggregation (MICA). The following is a 

list of the MICA operators:

•	 Triangular norms

•	 Triangular Co-Norms

•	 Averaging and Compensatory operators

�Triangular Norms

The intersection of two Fuzzy Sets can be represented by triangular norms 

(aka T-Norms, shown in Figure 2-18). If you have two Fuzzy Sets A and B, 

their intersection can be defined by:

	
m m mA B A Bx T x xÇ ( ) = ( ) ( )( ), �

This intersection operator has the following characteristics:

•	 Boundary

•	 Monotonicity

•	 Commutativity

•	 Associativity

Boundary:

	 T 0 0 0,( ) = �

	 T a T a a, ,1 1( ) = ( ) = �
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Monotonicity:

	 T a b T c d if a c b d, ,( ) £ ( ) £ Ù £ �

Commutativity:

	 T a b T b a, ,( ) = ( ) �

Associativity:

	

x T y z T T x y z

T

, , , ,( ) = ( )( )
�

Figure 2-18.  Minimum, Product, Lukasiewicz, and Drastic Product 
T-Norms
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There are different types of triangular norms used in various 

applications. Some of them are:

Minimum T-Norm:

	 T x y x yM , ,( ) = ( )min �

Product T-Norm:

	 T x y x yP ,( ) = . �

Lukasiewicz T-Norm:

	 T x y x yL , ,( ) = + -( )max 1 0 �

Drastic Product T-Norm (the weakest t-norm):

	 T x y if x y otherwiseD , , ,( ) = ( )Î( ){ 0 1
2

�

Out of all these triangular norms, the Drastic Product T-Norm is 

considered the smallest one, while the Minimum T-Norm is considered the 

largest one. The Minimum T-Norm treats each member as an idempotent 

element. The Product T-Norm is considered a strict T-Norm, while 

the Lukasiewicz is considered a nilpotent t-norm. The following code 

shows the Python implementation of these triangular norms. It finds the 

triangular norm of the two Fuzzy Sets defined earlier—full speed and slow.

import numpy as np

#Defining the T-Norm Function

def t_norm(mfx,mfy):

     tnorm = np.fmin(mfx, mfy)

     return tnorm

#Defining sigmoidal membership function

full_speed = fuzz.sigmf(x, 80,2)

slow = fuzz.sigmf(x, 30,2)
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#Finding the Intersection

t_norm(full_speed,slow)

You have looked at the different properties of T-Norms, as well as their 

types. Later chapters include their applications. For now, one thing should 

be clear that T-Norms are used when you find the intersection between 

two Fuzzy Sets.

�Triangular Co-Norms

The union of two Fuzzy Sets can be represented by triangular Co-Norms 

(aka T-Co-Norm, shown in Figure 2-19). If you have two Fuzzy Sets A and 

B, their intersection can be defined by:

	
m m mA B A Bx S x xÈ ( ) = ( ) ( )( ), �

This intersection operator has the following characteristics:

•	 Boundary

•	 Monotonicity

•	 Commutativity

•	 Associativity

Boundary:

	 S 0 0 0,( ) = �

	 S a S a a, ,0 0( ) = ( ) = �

Monotonicity:

	 S a b S c d if a c b d, ,( ) £ ( ) £ Ù £ �
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Commutativity:

	 S a b S b a, ,( ) = ( ) �

Associativity:

	

x S y z S S x y z

S

, , , ,( ) = ( )( )
�

Figure 2-19.  Maximum, Probabilistic Sum, Lukasiewicz, and Drastic 
Sum Bounded T-Co-Norms
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There are different types of triangular co-norms used in various 

applications. Some of them are:

Maximum T-Co-Norm:

	 S x y x yM , ,( ) = ( )max �

Probabilistic Sum T-Co-Norm:

	 S x y x y x yP ,( ) = + - . �

Lukasiewicz T-Co-Norm:

	 S x y x yL , ,( ) = +( )min 1 �

Drastic Sum Bounded Sum T-Co-Norm (Strongest T-Co-Norm):

	 S x y if x yD , , ,( ) = ( )Î( ){ 0 1
2

�

	 max x y otherwise,( ) �

The following code shows the Python implementation of these 

Triangular Co-Norms. It finds the triangular Co-Norm of the two Fuzzy 

Sets defined before—full speed and slow.

import numpy as np

#Defining the T-Conorm Function

def t_conorm(mfx,mfy):

     tnorm = np.fmax(mfx, mfy)

     return tnorm

#Defining sigmoidal membership function

full_speed = fuzz.sigmf(x, 80,2)

slow = fuzz.sigmf(x, 30,2)

#Finding the Intersection

t_conorm(full_speed,slow)
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�Summary
This chapter explained membership functions in detail. It covered the 

different types of membership functions and explained how they are used. 

Because it’s sometimes tricky to determine which membership function 

to use, this chapter discussed a few approaches. The chapter also applied 

every membership function in Python. It then moved on to Fuzzy Rules 

and explained how they are applied. The chapter concluded by explaining 

the Fuzzy T-Norm and T-Co-Norm operators.

The next chapter discusses the Fuzzy Inference System in detail. The 

chapter discusses how all these processes are used and how they form a 

complete structure.
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CHAPTER 3

Fuzzy Inference 
Systems
The previous two chapters explained the core concepts related to Fuzzy 

Logic. They discussed Fuzzy Sets and how they are different from the 

classical/crisp sets. You also learned about various operations that can be 

done on them and their properties. Then you learned about membership 

functions, which define the membership values of each element present 

in a Fuzzy Set. You learned about the different types of membership 

functions. Later, you learned about the Fuzzy Rules and reasoning 

approaches that utilize the concepts of membership functions to give 

various Fuzzy Solutions.

This chapter looks at real applications of all the concepts that you 

have learned so far. The chapter covers different types of Fuzzy Inference 

Systems, through which various real-life problems are solved in the 

industry. To understand these systems, you first need to understand the 

processes of Fuzzification and Defuzzification. You have already seen 

the Fuzzification process in the previous chapter, when you found the 

membership function values of each element of a set to make it a member 

of a Fuzzy Set. This chapter starts with the concept of Defuzzification and 

then moves on to different Fuzzy Inference Systems.
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�Defuzzification
Defuzzification is the process of converting a Fuzzy Set into a crisp set. 

You know that in most applications you have to use Fuzzy Sets, as people’s 

opinions are never crisp. But when you incorporate these Fuzzy values 

and have to make a decision, you must convert the Fuzzy output into crisp 

values. Therefore, Defuzzification helps convert output given in a Fuzzy 

Set to crisp values. If control system functioning depends on input, the 

process of Defuzzification determines what exactly needs to be done once 

that input is provided. The general process of a Fuzzy System, of which 

Defuzzification is a part, is illustrated in Figure 3-1.

Figure 3-1.  The process of a Fuzzy Inference System

Formally, you can define the Defuzzification process as follows:

“A Defuzzification method on a certain referential set V as a 
mapping from the class of fuzzy Subsets of V into V. A nonre-
strictive coherence condition is that the associated point must 
belong to the support of the original fuzzy subset.”

There are different types of Defuzzification approaches. The most 

common ones are shown in Figure 3-2.
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Figure 3-2.  Types of Defuzzifiers

The following sections discuss the different types of Defuzzification 

methods.

�λ CUT METHOD
Suppose you have a Fuzzy Set given by:

A
a b c d e f

=
ì
í
î

ü
ý
þ

1 0 9 0 6 0 3 0 01 0
, , , , , ,
. . . .

It can be represented as a discrete graph, as shown in Figures 3-3 

through 3-9.
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Figure 3-3.  Discrete representation of Fuzzy Set A

Figure 3-4.  Discrete representation of Fuzzy Set A1

Figure 3-5.  Discrete representation of Fuzzy Set A0.9
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Figure 3-6.  Discrete representation of Fuzzy Set A0.6

Figure 3-7.  Discrete representation of Fuzzy Set A0.3

Figure 3-8.  Discrete representation of Fuzzy Set A0+
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You can produce different crisp sets derived from different values of 

lambda (1, 0.9, 0.6, 0.3, 0+, 0):

A a1 ={ }

A a b0 9. = { },

A a b c0 6. ={ }, ,

A a b c d0 3. ={ }, , ,

A a b c d e
0+
={ }, , , ,

A A0 ={ }

If you define λ-cut sets using Fuzzy Set notation, you’ll get something 

like this:

A
a b c d e f0 9

1 1 0 0 0 0
. =

ì
í
î

ü
ý
þ

, , , , , ,

Figure 3-9.  Discrete representation of Fuzzy Set A0
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Consider the properties of λ-cuts:

	 1.	 A B A BÈ( ) = È
l l l

	 2.	 A B A BÇ( ) = Ç
l l l

	 3.	 A A( ) ¹
l l except for the λ value of 0.5

	 4.	 Aα ⊆ Aλ where, λ ≤ α ∣ 0 ≤ α ≤ 1 ∣ A0 = X

If you visualize this using a Sigmoid membership function, you get the 

diagrams in Figures 3-10 and 3-11.

Figure 3-10.  Sigmoid membership function
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Consider another example:

A
x x x x

=
ì
í
î

ü
ý
þ

0 9 0 5 0 2 0 3

1 2 3 4

. . . .
, , ,

Based on the previous computation, you would get A0.6 as:

\ =
ì
í
î

ü
ý
þ
=A

x x x x
x0 6

1 2 3 4
1

1 0 0 0
. , , ,

�Max Membership Principle/Height Method
This method is used only when the output membership function has peaks 

(for example, the triangular membership functions).

m mA AZ Z for all z Z*( ) ³ ( ) Î

Figure 3-11.  Gaussian membership function
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Formally, it obtains Z0 as a weighted average of all the representative 

points zi of Ci by the heights hi of C′i. This can be represented 

mathematically as:

Z
h z h z h z

h h h
i i

i

* =
+ +¼+
+ +¼+

1 1 2 2

1 2

Z∗ is the Defuzzified value, also known as the output of Fuzzy Set 

A. One important point is that height should be considered unique in this 

method (see Figure 3-12).

Figure 3-12.  Height method
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�First/Last/Mean of Maximum Method
This method takes the union of all the possible Fuzzy Outputs and finds 

the smallest value with the maximum membership degree.

First of Maximum z z Zinf z Z z hgt cc  |= = Î Î ( ) = ( ){ }* m

Last of Maximum z z Zsup z Z z hgt cc  |= = Î Î ( ) = ( ){ }* m

hgt c z Zsup zc( ) = Î ( ){ }m

In the previous equation, hgt(c) represents the highest height present 

in the diagram of the union. You can better understand this with an 

example. Suppose the output membership function looks like the graph in 

Figure 3-13.

Figure 3-13.  Last of maximum method
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Now, based on these equations, you can see that the highest peak 

comes at 8. Either it is the first of the maximum method or the last of the 

maximum method.

�Center of Gravity Method or Centroid Method
This method considers the entire Fuzzy Output and finds the centroid 

of it to give you the Defuzzified output. This can be represented by the 

following formula:

z
z z dz

z dz
A

A

* =
ò ( )
ò ( )
m
m

. .

.

For a discrete set of values, the formula is revised as follows:

z
A x

A
i

n

i i

i

n

i

* =

=

=
*å

å
1

1

where A represents the sub-areas and x represents the centroid.

You can better understand this concept with the help of Figure 3-14.

Figure 3-14.  COG method
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You can see in the diagram in Figure 3-14 that the membership 

functions can be divided into six separate areas. When you’re using the 

Center of Gravity method, you need to determine the centroid and the 

areas of each specific sub-area. Start by determining the areas:

•	 The total area of sub-area 6 is ½ ∗ 2 ∗ 0.5 = 0.5

•	 The total area of sub-area 5 is (7-3) ∗ 0.5 = 4 ∗ 0.5 = 2

•	 The total area of the sub-area 4 is ½ ∗ (7.5-7) ∗ 0.2 = 0.5 

∗ 0.5 ∗ 0.2 =.05

•	 The total area of sub-area 3 is 0.5 ∗ 0.3 = .15

•	 The total area of sub-area 2 is 0.5 ∗ 0.3 = .15

•	 The total area of sub-area 1 is ½ ∗ 1 ∗ 0.3 = .15

The second step is to determine the centroid:

•	 The centroid of sub-area 6 is (1+3+3)/3 = 7/3 = 2.333

•	 The centroid of sub-area 5 is (7+3)/2 = 10/2 = 5

•	 The centroid of sub-area 4 is (7+7+7.5)/3 = 21.5/3 = 7.166

•	 The centroid of sub-area 3 is (7+7.5)/2 = 14.5/2 = 7.25

•	 The centroid of sub-are 2 is (7.5+8)/2 = 15.5/2 = 7.75

•	 The centroid of sub-area 1 is (8+8+9)/3 = 25/3 = 8.333

Now, using the formula that you already learned about, you can get the 

Defuzzified value as follows:

1 665 10 0 3583 1 0875 1 1625 1 2499

0 5 2 0 05 0 15 0 15 0

. . . . .

. . . .

+ + + + +
+ + + + + ..

.
15

5 008=

Therefore, z∗=5.008.
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�Weighted Average Method
This method is considered faster in computation and is mainly used in the 

Sugeno and Tsukamoto Fuzzy Inference Systems. It is represented by the 

following formula:

Z
Z Z

Z

A

A

* =
å ( )
å ( )
m

m

.

Figure 3-15 shows this Defuzzification method.

Figure 3-15.  Weighted average method
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The diagram in Figure 3-15 shows four triangular Fuzzy Sets with 

different membership values. You need to Defuzzify them to a crisp value 

using the weighted average method. For this, you use the discrete weighted 

average Defuzzification formula:

z
x x

x
i

n

i

i

n
* =

=

=
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å
å

1

1
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where x represents the element having the maximum membership 

function. You will get the following results when you apply the formula,

60 0 6 70 0 4 80 0 2 90 0 2

0 6 0 4 0 2 0 2
70

* + * + * + *
+ + +

=
. . . .

. . . .

�Center of Sum Method
The Center of Sum Method has the following properties:

•	 It is one of the fastest Defuzzification approaches.

•	 It is not limited to symmetric membership functions, 

unlike other methods. It can be applied to non-

symmetric membership functions as well.

This method can be represented by the following formula:

z
z Z dz

Z dz
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m
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Z  is the distance of the centroid from each membership function.

Chapter 3  Fuzzy Inference Systems



107

The Defuzzified value, when you take discrete elements into 

consideration, is given by this formula:

z
x

x
i
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i k
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For example, you can use the same example used for the Center of 

Gravity approach (see Figure 3-16).

You have two Fuzzy membership functions, therefore you have to 

consider two areas.

A1

1

2
9 3 8 4 0 3

3

2
1 5= * -( )+ -( )éë ùû * = =. .

A2

1

2
8 1 7 3 0 5

55

20
2 75= * -( )+ -( )éë ùû * = =. .

Therefore, the Defuzzified value will be:

2 75 5 1 5 6

2 75 1 5
5 35

. .

. .
.

* + *
+

=

Figure 3-16.  Center of Sum method

Chapter 3  Fuzzy Inference Systems



108

This section doesn’t cover all the available Defuzzifiers. The next 

section starts with the Fuzzy Inference Systems. You will see the Python 

applications of different Fuzzifiers in that section.

�Fuzzy Inference Systems
When you have to design a system that is quite uncertain, one of the best 

approaches is using Fuzzy Inference Systems. Fuzzy Logic is used when 

you have a fixed set of rules and need to create systems based on that. But, 

when you add uncertainties inside the process, it requires some kind of 

inference of the process from the existing data. Using a Fuzzy Inference 

System is the way to infer those processes.

A Fuzzy Inference System (FIS) provides a way of mapping an input 

space to an output space with Fuzzy Logic. FIS tries to mimic the process 

with which humans solve any problem statement using reasoning. FIS 

does that by using Fuzzy Logic, especially Fuzzy If-Then rules. Figure 3-17 

represents the Fuzzy Inference System structure.

Figure 3-17.  Fuzzy Inference System process
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All the blocks in the diagram in Figure 3-17 are explained here:

•	 A database of all the Fuzzy If-Then Rules describing a 

system

•	 Database of membership functions

•	 Inference operations on Fuzzy Rules

•	 Defuzzification of Fuzzy Results into crisp outputs

When you combine all the rules and the membership functions 

database, it is called a knowledge base.

Now that you know the basic structure of the Fuzzy Inference System, 

you can look at some of its types. Fuzzy Inference Systems can be divided 

into three types:

•	 Mamdani model

•	 Takagi-Sugeno model

•	 Tsukamoto model

�Mamdani Fuzzy Inference System
The Mamdani method is the most widely used Fuzzy Inference System. 

Because of its simple structure, it is used to solve all general decision-

making problems. Mamdani FIS follows these general steps:

	 1.	 Step 1: Fuzzify the input.

	 2.	 Step 2: Find and evaluate the antecedent of each 

rule.

	 3.	 Step 3: Find the consequent of each rule.

	 4.	 Step 4: Aggregate the consequents.

	 5.	 Step 5: Defuzzify the results.
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First, you convert the crisp inputs to Fuzzy Sets (aka, Fuzzification). For 

each input, you try to find the membership value. Suppose the antecedent 

has multiple parts. In that case, you use an aggregation operation like 

T-Norm or T-Co-Norm to get a single membership value.

You can better understand this with the help of an example. Suppose 

the rulebase says the following:

“If the product reviews are excellent or the product 

is beautiful.”

You can divide the product reviews and the product aesthetics in a 

rating between 1 and 5. A review of 1 means poor and a review of 5 means 

excellent. For the product, 1 means a bad design and 5 means an awesome 

design. Now that you have defined the preliminaries, you can look at the 

first part: Fuzzification.

If you use sigmoid membership function, the graph will look like 

Figure 3-18.

Figure 3-18.  Sigmoid representation

Suppose you got input about the review as 1, and input about the 

design as 4. If you apply membership functions over the items, you may 

get 0.0 in the sigmoid curve for reviews and 0.7 in the sigmoid curve for the 

product, as shown in Figure 3-19.
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Since there is an OR condition in between, that means you must 

apply the T-co-Norm operator here, which also means you apply the MAX 

operator.

max 0 0 0 7 0 7. . .,( ) =

This is the final membership value for the input part. Suppose the 

consequents membership function is again sigmoid, and the rule says that:

“If the antecedent is true, the product is 

recommended.”

Figure 3-19.  Fuzzification
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Figure 3-20 shows the curve.

You can apply one of the implication operators to truncate the 

consequent membership function. This example uses the MIN operator. 

Once you get the output, the next step is to aggregate it into a single Fuzzy 

Set. This can be done using Fuzzy Aggregation Operators (see Figure 3-21).

Figure 3-21.  Aggregation

Figure 3-20.  Output membership function
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You might better understand this with the help of some examples, only 

this time you will take the triangular membership functions as output. 

Suppose, in the rulebase, you have three Fuzzy If-Then rules:

•	 If product reviews are excellent or the product is 

beautiful, the product is recommended.

•	 If product reviews are good or the product is nice, the 

product is somewhat recommended.

•	 If the product reviews are poor or the product is bad 

looking, the product is not recommended.

Suppose you get the same input as in the previous example: Review = 1 

and Design = 4.
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Figure 3-22 illustrates the entire process.

Now that you have an aggregated Fuzzy Set, the next thing you want is 

crisp output (see Figure 3-23). This can be done using the Defuzzification 

approach. There are a lot of Defuzzification approaches, as you have 

already seen, but the one used here is the Centroid method. So, you need 

to find the centroid of the aggregation, which is the Center of Area. Using 

this approach, you find the region with the highest area and then return 

the Center of Gravity of that area.

Figure 3-22.  Rulebase
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You can see that c1 has the largest area. Hence, you will find x’ (the 

center of gravity) fit.

x
x x dx

x dx
c

c

m

m

* =
ò ( )
ò ( )

¢m

m

.

With this formula, you get the answer as 13.7%.

The main advantages of using the Mamdani method are as follows:

•	 It’s intuitive

•	 It enjoys widespread acceptance

•	 It’s well suited for human input

Figure 3-23.  Output aggregated fuzzy
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Apart from the advantages, Mamdani methods come with their own set of 

problems. Some of the disadvantages of the Mamdani methods are as follows:

•	 If the number of variables in the antecedent increases, 

the number of rules increases exponentially.

•	 The more rules you construct, the harder it is to know if 

they are suitable to your problem.

•	 It may become difficult to find a relationship between 

antecedents and consequents if the number of 

variables in the antecedent is too large.

To overcome these disadvantages, you can use another method, called 

the Takagi-Sugeno-Kang (TSK) method.

To make a Fuzzy Inference System in Python, you have a library named 

FuzzyLite. To install this package on your system, execute the following 

command:

pip install pyfuzzylite

Fuzzylite is a free and open source Fuzzy Logic control library 

programmed in C++ for multiple platforms (e.g., Windows, Linux, Mac, 

and iOS). The goal of the FuzzyLite libraries is to easily design and 

efficiently operate Fuzzy Logic controllers following an object-oriented 

programming model, without relying on external libraries. For detailed 

exploration of this library, clone the GitHub page:

https://github.com/fuzzylite/pyfuzzylite.git

You can see the application of the Mamdani FIS in Python using this 

package:

import fuzzylite as fl

#Declaring and Initializing the Fuzzy Engine

engine = fl.Engine(

      name="SimpleDimmer",
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      �description="Simple Dimmer Fuzzy System which dims light 

based upon Light Conditions"

)

#Defining the Input Variables (Fuzzification)

engine.input_variables = [

      fl.InputVariable(

      name="Ambient",

      description="",

      enabled=True,

      minimum=0.000,

      maximum=1.000,

      lock_range=False,

      terms=[

      �fl.Triangle("DARK", 0.000, 0.250, 0.500), #Triangular 

Membership Function defining "Dark"

      �fl.Triangle("MEDIUM", 0.250, 0.500, 0.750), #Triangular 

Membership Function defining "Medium"

      �fl.Triangle("BRIGHT", 0.500, 0.750, 1.000) #Triangular 

Membership Function defining "Bright"

      ]

      )

]

#Defining the Output Variables (Defuzzification)

engine.output_variables = [

      fl.OutputVariable(

      name="Power",

      description="",

      enabled=True,

      minimum=0.000,

      maximum=1.000,

      lock_range=False,

      aggregation=fl.Maximum(),
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      defuzzifier=fl.Centroid(200),

      lock_previous=False,

      terms=[

      �fl.Triangle("LOW", 0.000, 0.250, 0.500), #Triangular 

Membership Function defining "LOW Light"

      �fl.Triangle("MEDIUM", 0.250, 0.500, 0.750), #Triangular 

Membership Function defining "MEDIUM light"

      �fl.Triangle("HIGH", 0.500, 0.750, 1.000) #Triangular 

Membership Function defining "HIGH Light"

      ]

      )

]

#Creation of Fuzzy Rule Base

engine.rule_blocks = [

      fl.RuleBlock(

      name="",

      description="",

      enabled=True,

      conjunction=None,

      disjunction=None,

      implication=fl.Minimum(),

      activation=fl.General(),

      rules=[

      �fl.Rule.create("if Ambient is DARK then Power is HIGH", 

engine),

      �fl.Rule.create("if Ambient is MEDIUM then Power is 

MEDIUM", engine),

      �fl.Rule.create("if Ambient is BRIGHT then Power is LOW", 

engine)

      ]

      )

]
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You can see in this code that the Defuzzifier is called Centroid. 

FuzzyLite provides different kinds of Fuzzifiers, as listed here. All you 

need to do is replace them in the previous code:

•	 fl.Centroid()

•	 fl.LargestOfMaximum()

•	 fl.MeanOfMaximum()

•	 fl.SmallestOfMaximum()

•	 fl.WeightedAverage()

•	 fl.Weighted Sum()

�Takagi-Sugeno-Kang Fuzzy Inference System
Takagi-Sugeno-Kang Fuzzy Inference Systems are used to model complex 

non-linear systems. The entire process of applying a Fuzzy Operator and 

then Fuzzifying the inputs is the same as with the Mamdani approach. The 

only change comes in the output membership function, which is either 

linear or constant. This section looks at the TSK approach.

Whatever output membership function you get, you apply a weighted 

average method of Defuzzification and get the final crisp output. As you 

have seen, there are different implication operators—the Mamdani or 

Sugeno approach. Here’s what the different operators are composed of:

•	 For AND operations in rulebase, you use T-Norm

•	 For OR operations in rulebase, you use T-Co-Norm

•	 For implication operations, you use T-Norm

•	 For aggregation operations, you use T-Co-Norm

Using the same example you saw in Mamdani FIS, you can see how the 

TSK method works (see Figure 3-24).
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Figure 3-24.  The TSK method
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The diagram in Figure 3-24 represents the same Fuzzy If-Then rules 

you saw in Mamdani:

•	 If the product reviews are excellent or the product is 

beautiful, the product is recommended.

•	 If the product reviews are good or the product is nice, 

the product is somewhat recommended.

•	 If the product reviews are poor or the product is bad 

looking, the product is not recommended.

As mentioned, the TSK method uses the weighted average approach to 

find the Defuzzified crisp output. Therefore, using the following formula:
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you get the final result as 13.3%.

You can use the FuzzyLite package to see the TSK application:

import fuzzylite as fl

#Declaring and Initializing the Fuzzy Engine

engine = fl.Engine(

      name="SimpleDimmer",

      �description="Simple Dimmer Fuzzy System which dims light 

based upon Light Conditions"

)

#Defining the Input Variables (Fuzzification)

engine.input_variables = [

      fl.InputVariable(

      name="Ambient",

      description="",

      enabled=True,
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      minimum=0.000,

      maximum=1.000,

      lock_range=False,

      terms=[

      �fl.Triangle("DARK", 0.000, 0.250, 0.500), #Triangular 

Membership Function defining "Dark"

      �fl.Triangle("MEDIUM", 0.250, 0.500, 0.750), #Triangular 

Membership Function defining "Medium"

      �fl.Triangle("BRIGHT", 0.500, 0.750, 1.000) #Triangular 

Membership Function defining "Bright"

      ]

      )

]

#Defining the Output Variables (Defuzzification)

engine.output_variables = [

      fl.OutputVariable(

      name="Power",

      description="",

      enabled=True,

      minimum=0.000,

      maximum=1.000,

      lock_range=False,

      aggregation=None,

      defuzzifier=fl.WeightedAverage("TakagiSugeno"),

      lock_previous=False,

      terms=[

      �fl.Constant("LOW", 0.250), #Constant Membership Function 

defining "LOW"

      ��fl.Constant("MEDIUM", 0.500), #Constant Membership 

Function defining "MEDIUM"
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      �fl.Constant("HIGH", 0.750) #Constant Membership Function 

defining "HIGH"

      ]

      )

]

#Creation of Fuzzy Rule Base

engine.rule_blocks = [

      fl.RuleBlock(

      name="",

      description="",

      enabled=True,

      conjunction=None,

      disjunction=None,

      implication=None,

      activation=fl.General(),

      rules=[

      �fl.Rule.create("if Ambient is DARK then Power is HIGH", 

engine),

      �fl.Rule.create("if Ambient is MEDIUM then Power is 

MEDIUM", engine),

      �fl.Rule.create("if Ambient is BRIGHT then Power is LOW", 

engine)

      ]

      )

]
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�Tsukamoto Fuzzy Inference System
In Tsukamoto FIS, instead of having constant or linear output Fuzzy 

Membership, you have a monotonic membership function, which you 

Defuzzify using the weighted average approach. Figure 3-25 shows the 

Tsukamoto FIS process.

As you can see, the process remains the same, but the Defuzzification 

process changes. Therefore, the final result of this output will be given by 

the following formula:

Z
W Z W Z

W W
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Since it is a weighted average approach, the process becomes 

very fast and hence time is not wasted during the detailed process of 

Defuzzification. The output of the Tsukamoto FIS is always crisp, no matter 

what the input types are.

The following sample code shows the application on Tsukamoto FIS in 

Python, using the FuzzyLite package:

import fuzzylite as fl

Figure 3-25.  The Tsukamoto method
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#Declaring and Initializing the Fuzzy Engine

engine = fl.Engine(

      name="SimpleDimmer",

      �description="Simple Dimmer Fuzzy System which dims light 

based upon Light Conditions"

)

#Defining the Input Variables (Fuzzification)

engine.input_variables = [

      fl.InputVariable(

      name="Ambient",

      description="",

      enabled=True,

      minimum=0.000,

      maximum=1.000,

      lock_range=False,

      terms=[

      �fl.Bell("Dark", -10.000, 5.000, 3.000), #Generalized Bell 

Membership Function defining "Dark"

      �fl.Bell("medium", 0.000, 5.000, 3.000), #Generalized 

Bell  Membership Function defining "Medium"

      �fl.Bell("Bright", 10.000, 5.000, 3.000) #Generalized 

Bell  Membership Function defining "Bright"

      ]

      )

]

#Defining the Output Variables (Defuzzification)

engine.output_variables = [

      fl.OutputVariable(

      name="Power",

      description="",

      enabled=True,
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      minimum=0.000,

      maximum=1.000,

      lock_range=False,

      aggregation=fl.Maximum(),

      defuzzifier=fl.Centroid(200),

      lock_previous=False,

      terms=[

      �fl.Sigmoid("LOW", 0.500, -30.000), #Triangular Membership 

Function defining "LOW Light"

      �fl.Sigmoid("MEDIUM", 0.130, 30.000), #Triangular 

Membership Function defining "MEDIUM light"

      �fl.Sigmoid("HIGH", 0.830, 30.000) #Triangular Membership 

Function defining "HIGH Light"

      fl.Triangle("HIGH", 0.500, 0.750, 1.000)

      ]

      )

]

#Creation of Fuzzy Rule Base

engine.rule_blocks = [

      fl.RuleBlock(

      name="",

      description="",

      enabled=True,

      conjunction=None,

      disjunction=None,

      implication=None,

      activation=fl.General(),

      rules=[

      �fl.Rule.create("if Ambient is DARK then Power is HIGH", 

engine),

      �fl.Rule.create("if Ambient is MEDIUM then Power is 

MEDIUM", engine),
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      �fl.Rule.create("if Ambient is BRIGHT then Power is LOW", 

engine)

      ]

      )

]

�Comparative Analysis of the Mamdani 
and TSK Fuzzy Inference System
The following list compares the two systems:

•	 Mamdani is not adaptable to any other algorithms, 

while TSK is adaptable.

•	 Mamdani uses the Defuzzification method for the 

evaluation of output, but TSK uses a weighted average 

method.

•	 When it comes to controlling the system with perfection, 

Mamdani does a good job in comparison to TSK.

•	 Mamdani has too many parameters as compared to TSK.

�Summary
This chapter discussed the Fuzzy Inference Systems in detail. It first 

reviewed the different types of Defuzzifiers, with examples. Later, the 

chapter moved on to three Fuzzy Inference Systems: Mamdani, TSK, and 

Tsukamoto Fuzzy Inference Systems. You learned about the application of 

all the inference systems in Python using the Fuzzylite package.

The next chapter sets the foundation of Machine Learning, which will 

act as a base to understanding the concept of Fuzzy Neural Networks in 

the upcoming chapters.
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CHAPTER 4

Introduction 
to Machine Learning
The previous chapter discussed different Fuzzy Inference Systems, which 

are used to make various practical control systems. But these systems are 

static, which means the fuzzification process, defuzzification process, 

defining memberships, etc. is all done manually. With intelligent systems, 

it is always better to learn most of the things from the data, rather than 

hard-coding it directly. This area of Fuzzy Inference Systems is where most 

of the parameters are learned. The neural networks approach is called 

Fuzzy Neural Networks.

This chapter sets the foundation of Machine Learning. You will learn 

about different concepts of Machine Learning that’ll help you understand 

the core concepts of Fuzzy Neural Networks later in this book.

This chapter starts by giving an introduction to Machine Learning. You 

will learn about different types of problems that Machine Learning can 

solve and how to measure the effectiveness of various models. It covers 

how the data is represented and partitioned in Machine Learning and 

what the advantages of having these partitions are.

Machine Learning is a branch of Artificial Intelligence that involves 

the ability to learn from the data, continuously from experience, 

without having to explicitly program the parameters. Machine Learning 

learns from the data provided to it by applying different statistical and 
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mathematical approaches. Machine Learning tries to determine the 

hidden patterns present inside the data. Based on these patterns, the 

model tries to predict something when new data is provided.

�Machine Learning
Figure 4-1 illustrates the categories of Machine Learning. Classification 

Machine Learning (ML) models help you solve the problems when the 

output is categorical. A categorical output includes the variables that can 

be nominal or ordinal. For example, based on some specific traits, you ask 

your model to determine whether the stock price of a particular company 

is going to move up or down in the coming months. This is a classification 

problem.

Figure 4-1.  Machine Learning algorithms

Similarly, if you provide an image and want the ML model to classify 

whether the image is a person or an animal, this is again a classification 

problem. Conversely, instead of asking the ML model to classify the data, 

if you ask it to directly predict the output in the form of a numerical value, 

that’s called a regression problem. For example, say you try to predict 

the price of a stock next month or the age of a person based on an image 

provided. This is a regression problem.
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As discussed in the previous section, when an ML model tries to 

predict the category based on the data, that’s a classification problem. 

An ML model can classify data into two classes or multiple classes. When 

you classify data into two classes, the ML problem is called a binary 

classification problem (see Figure 4-2). If there are more than two classes, 

it’s called a multiclass classification problem.

Figure 4-2.  Binary classification
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�Classification Machine Learning Problems
The following are a few examples of binary and multiclass classification 

problems:

•	 Given an image, is it a cat or a dog—binary 

classification

•	 Whether a person will be able to pay their loan or  

not—binary classification

•	 Classifying an ECG signal to one of 13 health  

issues—multiclass classification

•	 A chatbot sending issues to different departments 

based on the question asked—multiclass classification

•	 Classifying different types of driver  

distractions—multiclass classification

�Regression Machine Learning Problems
An ML model that tries to predict an actual numerical value based on the 

data is within the domain of a regression ML problem (see Figure 4-3). 

Here are some examples of regression problems:

•	 Predicting a stock market price

•	 Predicting a company’s revenue in the next quarter

•	 Finding the optimal speed of a self-driving car
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Whether they are classification or regression problems, an ML model 

always learns from experience. The next section explains what exactly is 

meant by experience.

�The Experience
Experience for an ML model is simply the data that you give to it, from 

which it learns the hidden patterns and then solves a problem. Data 

given to the model is specific to the type of problem that you expect the 

model to solve. When you talk about learning from the data in relation to 

classification and regression problems, different features are present in it 

along with the feature that you want to predict or classify. For example, if 

you want to predict the stock price or classify the stock price movement, 

you may have data containing different features, such as information about 

high, low, open, and close to a specific stock. Past movement of the stock 

or past stock price information is also provided. So, the model looks at the 

entire dataset and then the actual value for that specific time. Based on 

that, it learns the relationship between all the variables. Once the learning 

Figure 4-3.  Regression
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process is done and you provide new data, the model looks at all the new 

features, understands the relationship, and then tries to predict or classify 

the new data.

This value that you are predicting or classifying is called the target 

variable or dependent variable (say, Y). All the other variables are called 

independent variables (say, x). You can say that the target variable is a 

function of all the independent variables, as given here. The function can 

be linear or nonlinear. Figure 4-4 shows gradient descent graph, which is 

one of the learning algorithms.

Y = f(X)

In classification and regression problems, the data always contains 

a dependent variable, which is the variable that you want to predict or 

classify. There is one field of ML where the dependent variable is not given. 

These problems are the clustering or association types. Therefore, based 

on the data available, Machine Learning approaches fall into two areas:

•	 Supervised learning

•	 Unsupervised learning

Figure 4-4.  Learning graph (gradient descent)
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�Supervised and Unsupervised Learning
If you are crossing a road with the support of someone, this can be called 

a supervised approach. But, if you start crossing the road without anyone’s 

help, it's an unsupervised approach. Taking a hint from this example, you 

can say that a supervised learning approach includes data that contains 

dependent variables. That’s when the model looks at the input and output 

variables and tries to learn the relationship between them.

With unsupervised learning, the data doesn’t contain the target 

variable (Y, as specified in supervised learning). It must look at the 

dataset and then find the similarities/differences/patterns between them. 

Based on that, you can have different unsupervised learning approaches. 

You have already seen the supervised learning approaches, which are 

classification and regression. Unsupervised learning approaches include 

clustering, decomposition, and association. Figure 4-5 represents both 

problem statements visually.

Figure 4-5.  Supervised versus unsupervised learning
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The following algorithms use supervised learning approaches:

•	 Linear/logistic regression

•	 K-nearest neighbor

•	 Naive Bayes theorem

•	 Decision trees

•	 Ensemble trees

•	 Support vector machines

•	 Neural networks

The following algorithms use unsupervised learning approaches:

•	 Hierarchical clustering

•	 K-means clustering

•	 Apriori rule

•	 Neural networks

Once you have decided what kind of problem your Machine Learning 

model needs to solve and select one of the algorithms from these lists, you 

come to the next phase, which is finding the performance of the model.

�The Measure of Performance
Once your model is ready, it’s time to ensure that you get accurate results. 

For that, you measure the performance of the model, based on the 

problem that it is trying to solve—classification or regression.

For Classification problems, the following are some of the measures 

you use:

•	 Accuracy

•	 Precision
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•	 Recall or sensitivity

•	 F1-score

•	 Confusion matrix

For regression problems, here are some of the metrics:

•	 Root mean squared error

•	 AIC

•	 R2-score

The next sections discuss these measurements and metrics using the 

Titanic and House Price datasets.

�Understanding Titanic and House Price 
Datasets
This section explains the accuracy measures using the two datasets available 

in the public domain—the Titanic and House Price datasets. You will use 

the Titanic dataset to learn about the classification measures and the House 

Price dataset for regression measures. You can download both datasets from 

Kaggle. Here are the links that you can follow for the downloads:

https://www.kaggle.com/c/titanic/data

https://www.kaggle.com/alphaepsilon/housing-prices-dataset

Remember, you’ll need to register at kaggle.com to use these datasets.

Assuming that the datasets have been downloaded, you’ll start by 

understanding and exploring the Titanic dataset in Python. The Titanic 

dataset contains information about the people who survived the sinking of 

the Titanic, as well as the people who died. The main aim of this dataset is 

to help determine the likelihood of survival based on the information you 

report about a person (such as age, gender, class of ticket purchased, etc.). 

Let’s look at the features in this dataset by loading it in Python.
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#Reading data

import pandas as pd

data = pd.read_csv("train.csv")

data.head()

Once you execute this code, you’ll get top five rows of the entire 

dataset, as shown in Figure 4-6.

In total, there are 11 columns in this dataset. (A subset of an entire 

database is called a dataset.) Here’s an explanation of the columns:

•	 Survived: 1 means the person survived, 0 means the 

person did not survive

•	 Pclass: Passenger’s class

•	 Name: Passenger’s name

•	 Sex: Passenger’s sex

•	 Age: Passenger’s age

•	 SibSp: Number of siblings/spouses aboard

•	 Parch: Number of parents/children aboard

•	 Ticket: Ticket number

•	 Fare: Amount paid for the tickets

•	 Cabin: Cabin

•	 Embarked: Port of embarkation

Figure 4-6.  Titanic dataset
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Since the dataset classifies whether a person survived the incident 

or not, Survived is the dependent variable. The others are independent 

variables. You will use this dataset for all the classification measures in the 

next section. Let’s move on to the Housing Price dataset.

Using the House Price dataset (see Figure 4-7), you can predict the 

price of house based on different features. This dataset contains 81 

columns, with SalePrice as the dependent variable. You can explore the 

dataset using the following Python statements:

#Reading data

import pandas as pd

data = pd.read_csv("train_hp.csv")

data.head()

This example uses the 80 columns to predict the target variable, 

SalePrice. Before moving to the measures, you must also understand the 

different types of splits in data.

�Different Types of Data (Datasets)
Machine Learning generally has three types of datasets (see Figure 4-8):

•	 Training set

•	 Validation set

•	 Test set

Figure 4-7.  House Price dataset
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You’ll get the entire database as one single file. It can be in any format, 

including CSV, XLSX, SQL, etc. This example divides this data into three 

parts. The training set consists of the data with which the model learns. 

The validation set is where you test the performance of the model. The 

main data is also split into two parts. The first part contains most of the 

data and is called the training set and the remaining data is the validation 

set. The test set is totally unseen data. This is where you accept or reject the 

model. This is similar to the validation set, but the data is not a part of the 

training set. It’s a totally new set of data that you get from the new source.

The next section discusses different types of performance measures. 

Later sections will discuss these sets more as well.

�Classification Problems: Measures
�Confusion Matrix

Once you apply the model to the test data, you get the confusion matrix, 

by which you can determine the performance of the model. In the Titanic 

dataset, you have a binary classification problem, whereby you want to 

classify whether a person survived or not. The confusion matrix in that 

case will look like Figure 4-9.

Figure 4-8.  Dataset partition
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In a binary confusion matrix, you have two rows and two columns. 

Rows contain the actual values present in the test data, while columns 

contain the predicted value of the model. You can then determine how 

many times the model predicted the right results and how many times the 

wrong results were predicted.

There are 50 instances where NO was predicted and the actual value 

was also NO. There are 100 instances where YES was predicted and the 

actual data was YES. But there are also 10 instances where the predicted 

was YES and the actual data was NO, as well as 5 instances where the 

predicted data was NO and the actual data was YES. Therefore, you can 

say that most of the time, the model gives accurate results, but there 

are chances of errors. If you quantify the table, you come to different 

accuracy measures. But, before moving to those metrics, you first need to 

understand the different terminologies related to the confusion matrix.

•	 True Positives: If it’s actually YES, how often the model 

predicts YES.

•	 True Negatives: If it’s actually NO, how often the model 

predicts YES.

•	 False Positives (Type I Error): If it’s actually NO, how 

often the model predicts NO.

•	 False Negatives (Type II Error): If it’s actually YES, how 

often the model predicts NO.

Figure 4-9.  Confusion matrix
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�Accuracy

This is the overall accuracy of the model. It’s determined using this 

formula:
	

accuracy
True Positive True Negative

True Positive False Po
=

+
+

  

  ssitive True Negative False Negative+ +  	

True Negative Rate

TNR represents the negatives that are correctly classified. It is also called 

the specificity of the model. You can get the True Negative Rate of a model 

by using this formula:

specificity
True Negative

False Positive True Negative
=

+
 

  

Recall or True Positive Rate

If you want to know how many instances have been misclassified as false 

negatives, then you are looking for recall. It is also called the true positive 

rate or sensitivity. You can get the recall of a model by using the formula:

recall
True Positive

True Positive False Negative
=

+

�Precision

If you want to know how many instances have been misclassified as false 

positives, you are looking for precision. You can get the precision of a 

model by using the formula:

precision
True Positive

True Positive False Positive
=

+
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�F1-Score

When you take the weighted average of recall and precision, it’s called the 

F1-score. It reflects the model’s accuracy, considering both precision and 

recall.

f
Precision Recall

Precision Recall
1

2
=

* *
+( )

�ROC Curve

When you plot the true positive rates of the model with the false positive 

rate, in order to visualize the model summary, it is called the ROC curve 

(see Figure 4-10).

Figure 4-10.  ROC curve
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You can plot this diagram at different classification thresholds. 

The higher the area under the curve, the better the model. To better 

understand all these concepts, let’s apply them to the Titanic dataset. This 

example uses Logistic Regression as an example model to test accuracy.

#Reading data

import pandas as pd

data = pd.read_csv("train_hp.csv")

#Splitting Data into Categorical and Numerical Dataframes

import numpy as np

data_cat = data.select_dtypes(include=[object])

data_num = data.select_dtypes(include=np.number)

#Checking the number of null values

data_cat.isnull().sum()

 

data_num.isnull().sum()
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#Dropping the Columns having null values and columns which are 

not important

data_cat.drop(["Cabin","Embarked","Name","Ticket"], axis=1, 

inplace=True)

data_num.drop(["Age","PassengerId"], axis=1, inplace=True)

#Checking the null values again

data_cat.isnull().sum()

 

data_num.isnull().sum()

 

#Converting categorical variables into numbers

from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()

data_cat = data_cat.apply(le.fit_transform)

#Combining both dataframes

data = pd.concat([data_cat,data_num], axis=1)

#Defining dependent and independent variables

X = data.drop(["Survived"], axis=1)

Y = pd.DataFrame(data[["Survived"]])
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#Defining data into train and test set

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_

size=0.20)

#Applying Logistic Regression

from sklearn.linear_model import LogisticRegression

lr = LogisticRegression()

lr.fit(X_train,y_train)

#Predicting Values

pred = lr.predict(X_test)

#Finding different classification measures

from sklearn.metrics import confusion_matrix, accuracy_score, 

recall_score, precision_score, f1_score

confusion_matrix(pred,y_test)

 

accuracy_score(pred,y_test)

 

recall_score(pred,y_test)

 

precision_score(pred,y_test)
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f1_score(pred,y_test)

 

from sklearn.metrics import roc_auc_score, roc_curve

from matplotlib import pyplot

# predict probabilities

probs = lr.predict_proba(X_test)

# keep probabilities for the positive outcome only

probs = probs[:, 1]

# calculate AUC

auc = roc_auc_score(y_test, probs)

print('AUC: %.3f' % auc)

# calculate roc curve

fpr, tpr, thresholds = roc_curve(y_test, probs)

# plot no skill

pyplot.plot([0, 1], [0, 1], linestyle='--')

# plot the roc curve for the model

pyplot.plot(fpr, tpr, marker='.')

# show the plot

pyplot.show()

So, you can see from the code that:

•	 The accuracy was 79%

•	 The precision was 68.8%

•	 The recall was 70%

•	 The F1-score was 69%

•	 The area under the curve was 80.9%

You can now use other Machine Learning algorithms to see if they give 

better results than Logistic Regression.
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�Regression Problems
Now that you understand the metrics for classification models, it’s time to 

look at the regression model performance metrics.

�Root Mean Squared Error

Root Mean Squared (RMS) Error is given by this formula:

error
y y

n
i

n

=
-( )=å 1

2ˆ

Using this formula, you get the error of the model. The smaller the 

error, the better the model. ŷ  is the predicted value while y is the original 

value. n is the total number of observations.

�R-Squared Summary

This measure indicates how close the data is to the predicted regression 

line. This model explains the variation in the dependent variable. This 

information is given by R Squared Summary. It can be stated using the 

following formula:

R
Explained variation

Total variation
2 =

 

 

Mathematically, R2 can be represented as follows:

R
SS

SS
residual

total

2 1= -

where:

SS eresidual ii

n
=å 2  and SS y ytotal ii

n
= -( )å

2
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The value of R-squared is always between 0 and 100%:

•	 0% means that the model is not able to explain any 

variance present in the data.

•	 100% means that the model is able to explain all the 

variance present in the data.

�Adjusted R-Squared Summary

The R2 score has a fault in that it assumes every independent variable 

affects the dependent variable. In real life, this may not be the case. 

Therefore, adjusted R2 takes only those variables into consideration that 

actually have some effect on the dependent variable. It is represented by 

the following formula:

adjR
R n

n k
2

2

1
1 1

1
= -

-( ) -( )
- -

�Akaike Information Criteria

If you know the Root Mean Squared Error of the model, the square of it 

will give you the Mean Squared Error. Using it, you can find the AIC of the 

model, as given here:

AIC nlog MSE k= ( )+ 2

Where MSE is the Mean Squared Error, n is the total number of 

observations, and k is the number of regression coefficients, which can be 

called independent variables.

People use the AIC score because sometimes when you try to add 

new parameters inside the model, the chances of overfitting increases. 

AIC tries to solve this problem by introducing a penalty for the number of 

parameters inside the model.
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�Bayesian Information Criteria

Bayesian Information Criteria (BIC) is similar to AIC, but the strength of 

penalty is greater. It can be represented by the following formula:

BIC k n L= * ( )- * ( )( )log log2 q

L(θ) represents the likelihood of the model tested.

Let’s apply all the measures to the Housing Price dataset. This example 

uses linear regression to understand the applications.

#Reading Data

import pandas as pd

house_price = pd.read_csv("train_hp.csv")

#Partition into Categorical and Numerical Variables

import numpy as np

cat = house_price.select_dtypes(include=[object])

num = house_price.select_dtypes(include=[np.number])

#Checking Null Values

cat.isnull().sum()

num.isnull().sum()

#Removing unnecessary columns

cat.drop(["Alley", "PoolQC", "Fence", "MiscFeature"], axis=1, 

inplace=True)

#Removing Categorical Null Values with Mode

cat.BsmtCond.value_counts().idxmax() cat.BsmtCond.fillna(cat.

BsmtCond.value_counts().idxmax(),inplace=True)

cat.BsmtQual.fillna(cat.BsmtQual.value_counts().

idxmax(),inplace=True)
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cat.BsmtExposure.fillna(cat.BsmtExposure.value_counts().

idxmax(),inplace=True)

cat.BsmtFinType1.fillna(cat.BsmtFinType1.value_counts().

idxmax(),inplace=True)

cat.BsmtFinType2.fillna(cat.BsmtFinType2.value_counts().

idxmax(),inplace=True)

cat.FireplaceQu.fillna(cat.FireplaceQu.value_counts().

idxmax(),inplace=True)

cat.GarageCond.fillna(cat.GarageCond.value_counts().

idxmax(),inplace=True)

cat.GarageFinish.fillna(cat.GarageFinish.value_counts().

idxmax(),inplace=True)

cat.GarageQual.fillna(cat.GarageQual.value_counts().

idxmax(),inplace=True)

cat.GarageType.fillna(cat.GarageType.value_counts().

idxmax(),inplace=True)

cat.Electrical.fillna(cat.Electrical.value_counts().

idxmax(),inplace=True)

cat.MasVnrType.fillna(cat.MasVnrType.value_counts().

idxmax(),inplace=True)

#Removing Numerical Null Values with Mean

num.LotFrontage.fillna(num.LotFrontage.mean(),inplace=True)

num.GarageYrBlt.fillna(num.GarageYrBlt.mean(),inplace=True)

num.MasVnrArea.fillna(num.MasVnrArea.mean(),inplace=True)

#Converting words to Integers

from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()

cat1 = cat.apply(le.fit_transform)

#Combining two dataframes

house_price2 = pd.concat([cat1, num], axis=1)
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#Getting Dependent and Independent Variables

X = house_price2.drop(["SalePrice"], axis=1)

Y = pd.DataFrame(house_price2["SalePrice"])

#Getting Train and Test Set

from sklearn.model_selection import train_test_split

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_

size=0.20)

#Applying Linear Regression

import statsmodels.api as sm

est = sm.OLS(Y_train, X_train)

est2 = est.fit()

est2.summary()

You can see in Figure 4-11 that, with summary(), you can see all the 

measures. There are various other Python packages that provide these 

measures explicitly.

Figure 4-11.  Numerical measures
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�Overfitting versus Underfitting
The next chapter looks at some of these Machine Learning approaches, but 

before that, you must be able to determine if your model is giving you poor 

performance. This can either be due to overfitting or underfitting of the data.

The data that you get to make the model is only a sample of all the 

data present in the universe. You can say that the data is incomplete and 

noisy. That’s why, when you train the model, it tries to learn how well it 

is generalizing to new data. In other words, you can say that whatever the 

model has learned, whether it is able to apply these concepts to new data 

successfully is referred to as generalization.

If the model is applied to the data a little too well, it is called an 

overfitting problem. Sometimes there are too many details present in the 

data and a lot of unnecessary information is also present. If the model 

learns from this highly specific data, especially the details and the extra 

noise, it could lead to overfitting. This negatively impacts the performance. 

In underfitting, the model is not able to learn from the data, so it can’t 

perform well on the new unseen data.

Underfitting and overfitting happen when you have imbalanced 

datasets. Suppose for a binary classification problem, you have 90% of the 

data from one category and the remaining from the other. In this case, the 

model will learn most of the things related to the first category and very 

little related to the second category. This can also happen if you train the 

model a little too vigorously or add parameters to the model.

Overfitting happens when you train the model a little too long, while 

underfitting happens when the model is not trained long enough. In other 

words, you can say that if you train the model to such an extent where error 

starts to increase, overfitting may happen. But, if you stop training the 

model when the error is high and can still be reduced, underfitting may 

happen.
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The best approach to solve this issue is to find the perfect spot between 

overfitting and underfitting. Figure 4-12 shows this best method. This 

concept is called a bias-variance tradeoff, and it’s explained in the next 

section.

�Bias and Variance
When a model is trained by giving very little attention to the training data, 

then it becomes a biased model. In this scenario, the difference between 

the prediction and the original value becomes quite high. In other words, 

the error is large.

When overfitting happens in the model, that is when a lot of attention 

is given to the data, including the noise and the details. The variance of 

the model becomes high. Therefore, in this scenario, the model performs 

really well in the training data but not on the unseen data.

To solve these problems, you use the concept of a Bias-Variance 

Tradeoff. In this scenario, you try to find a middle approach where neither 

the bias nor the variance is high. In other words, you try to avoid both 

overfitting and underfitting in the data. Figure 4-13 shows how bias and 

variance are related to the concepts of overfitting and underfitting.

Figure 4-12.  Overfitting vs. underfitting
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Here are some approaches that can be used to solve the problem of 

overfitting.

•	 Adding cross-validations

•	 Training with more data

•	 Removing features

•	 Early stopping of training

•	 Adding regularizations

•	 Using the concept of ensembling

Figure 4-13.  Bias and variance
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You can solve the problem of underfitting by:

•	 Adding features

•	 Training with more data

•	 Increasing the training time

•	 Removing regularizations

�Summary
This chapter looked at the basic knowledge required to understand 

Machine Learning, as well as Fuzzy Neural Network architectures. It 

discussed supervised and unsupervised learning methods, and Machine 

Learning applications in classification and regression problems. The 

chapter also discussed different accuracy measures for both problems and 

how they are applied in Python.

The next chapter discusses some of these Machine Learning 

algorithms in detail. You will learn how to apply most of the concepts 

discussed in this chapter there.
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CHAPTER 5

Artificial Neural 
Networks
The previous chapter discussed various terminology related to Machine 

Learning and some of the metrics used to check the accuracy of the model. 

This chapter discusses the concepts of neural networks.

This chapter begins by explaining artificial neural networks and their 

components. It covers some of these components in detail, like activation 

functions, layers, etc. It then covers some of the advanced architectures 

of neural networks, like convolutional neural networks, recurrent neural 

networks, long short-term memory, and gated recurrent units. It also 

shows some applications of these concepts in Python.

�Artificial Neural Networks Primer
Artificial neural networks (ANNs) are inspired by the functioning of 

biological neurons. Core Machine Learning algorithms use statistical 

concepts to learn different patterns present in the data. ANNs try to mimic 

human brain and neurons as much as possible to learn patterns. By using 

the mathematical techniques of linear algebra and calculus, ANNs learn 

from the data and try to find patterns.
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An ANN consists of the following layers:

•	 Input layer

•	 Hidden layer

•	 Output layer

The input layer contains the examples with which you want to train the 

network. All the data you have, with which you want to make the system learn, 

is provided to the input layer. Training the network means that the machine 

tries to find all the possible patterns present in the data and then learn it. The 

benefit of training is that when you give a new set of data, the machine tries to 

apply the learned patterns to the new set. If the patterns match, a decision is 

made based on what was done to the training data following this pattern.

Hidden layers try to look at different combinations of the input layer 

and decide which of them is important, and how much importance should 

be given to them. They do this with the help of weights. Therefore, you can 

say that the hidden layers take weighted input.

Once all the processing is done, the output layer computes all the 

outputs of the program and provides the results. Figure 5-1 shows the basic 

representation of all three layers.

Neural networks operate by applying the concepts of forward and 

backpropagation. Therefore, it is imperative that you understand these 

concepts before moving on to ANN architectures in detail.

The graph in Figure 5-1 is also called a computational graph. Each 

node in the graph is represented by a circle and represents a variable. This 

variable can be a scalar, vector, or tensor. Sometimes it can also be another 

variable. Each node is computed by applying some operation on the 

previous node. Therefore, in Figure 5-1, the hidden nodes are computed 

from input nodes and the output nodes are computed from the hidden 

nodes. This process where the output node is computed by the operations 

of previous nodes and the information provided from the input nodes are 

passed right to the output node is called forward propagation.

Chapter 5  Artificial Neural Networks



159

Once the output nodes are created and their values are computed 

using the forward propagation approach, there is a need to compute the 

gradient, which requires the information to flow backward from the output 

node to input node. This concept is called backpropagation. In neural 

networks, it becomes very important to calculate gradients using the 

backpropagation approach because it helps minimize the cost function, 

which leads to much better and more accurate predictions.

Mathematically, the process of backpropagation can be represented by:

Dx f x y,( )

Figure 5-1.  Computational graph of ANNs
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You can calculate the gradient of a function f(), where x is the set of 

variables whose derivatives are required and y are the variables whose 

derivatives are not required (for example, input nodes). In learning 

algorithms like neural networks, this output function is called a cost 

function, and it’s represented by:

J q( )

For a binary classification problem, the loss function J(θ) can be 

defined as follows:

J
N

y p y y p y
i

N

q( ) = - * ( )( ) + -( )* -( )( )
=

å1
1 1

1

log log

So this equation is differentiated with respect to the input nodes, until 

the time when the loss value is minimum. This minimum value is known 

by reaching a minimum point, called the global minima, in the gradient 

descent process. Figure 5-2 shows the gradient descent process.

Figure 5-2.  Gradient descent
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Every time you differentiate the cost function to find the gradients, 

you move down the parabolic curve shown in Figure 5-2. The aim of 

backpropagation is to reach a point at the bottom of the curve where 

the value of the loss function is at a minimum. As the value becomes 

minimum, you find the values of variables that gave that value. In the case 

of neural networks, these variables are called weights and bias. You use 

these variables to predict the next set of values in the test set.

Keeping these concepts in mind, it's time to dive deeper into ANNs. 

ANNs can be classified into two types:

•	 Perceptrons

•	 Multi-layer ANNs

The next sections explain these two ANNs and then the chapter moves 

forward to explain some of the complex neural network architectures used 

in the domain of computer vision and natural language processing.

�Perceptrons
A perceptron is a single-layered neural network, which means it only has 

the input layer. Using different parameters, you can get the output. Its 

architecture may look like Figure 5-3.
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Perceptron is mainly used as a linear (binary) classifier. A binary 

classifier classifies the input into only two categories. A perceptron consists 

of the following parts, as depicted in Figure 5-3:

•	 Input layer

•	 Weights and bias parameters

•	 Summation of weighted inputs

•	 Applying activation/step function on the weighted sum 

to get the output

So, in a perceptron, all the inputs are multiplied with the learned 

weights (w). These weights are learned through the process of 

backpropagation. The summation of the weighted input takes place 

and the output is passed to the activation function, which provides the 

final output. There are different types of activation functions, which give 

different outputs based on the formula. To get a binary classification, you 

use the sigmoid or ReLU activation functions. Before you move further to 

multi-layered perceptrons, take a look at activation functions.

Figure 5-3.  Typical perceptron architecture
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�Activation Functions
Each neuron in the hidden layer or output layer has its own activation 

function. This helps to decide whether the output from a particular neuron 

is important or not. The weights that the system has learned are multiplied 

with the input neuron value. Then, a bias value is added. The output value 

is based on the activation function, which determines the importance. 

When you have an activation function in the output neuron, it takes the 

output of all the previous neurons, where activation function is applied, 

and gives a final answer by performing the weighted sum. There are 

different types of activation functions, some of which are:

•	 Sigmoid

•	 Tanh

•	 Softmax

•	 ReLU

•	 Leaky ReLU

�Sigmoid Activation Function

A sigmoid activation function has an s-shaped curve. Its range lies from 

0 to 1. Since its upper and lower limit is 0 and 1, it is most widely used 

with binary classification problems. Here is the formula and the curve of 

the sigmoid activation function (see Figure 5-4), followed by the Python 

implementation.

Sigmoid x
e x( ) =

+ -

1

1

import numpy as np

def sigmoid(x):

      return 1 / (1 + np.exp(-x))
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�Tanh Activation Function

Tanh is also referred to as the hyperbolic tangent function. The shape of 

this function is also like an s, but its limit is from -1 to +1. This function 

is used when you want to consider negative outputs. Generally, in the 

hidden layers using Tanh is recommended because it allows the output 

of different layers to give negative values as well. Outputs of the output 

layer can be given to the sigmoid function to get positive values, but in the 

middle layers, more information should be captured from the data and 

Tanh provides you with a way to do that. Here is the formula and curve 

of the Tanh activation function (see Figure 5-5), followed by the Python 

implementation.

tanh x
e x( ) =

+ -

2

1 2

import numpy as np

def tanh(x):

      return np.tanh(x)

Figure 5-4.  Sigmoid activation function
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�Softmax Activation Function

When you have binary classification problems, you use sigmoid functions. 

But if you have multiple classes, you should use softmax activation 

functions instead. The output of a softmax function is the probability 

of each class, concerning all the classes. The class with the maximum 

probability is considered the predicted class. Here is the formula and 

curve of a softmax function (see Figure 5-6), followed by the Python 

implementation.

softmax x
e

e

i

i( ) =
S

import numpy as np

def softmax(x):

      exps = np.exp(x)

      return exps / np.sum(exps, axis=1).reshape(-1,1)

Figure 5-5.  Tanh activation function
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�Rectified Linear Unit (ReLU) Activation Function

ReLU activation functions have a lower limit of 0, but no upper limit. This 

means that if the weighted sum is an integer or whole number, the exact 

value will be returned as output. But if the output is less than 0, the output 

will be converted into 0. It can be represented by the following formula and 

curve in Figure 5-7.

ReLU x x( ) = ( )max 0,

Figure 5-6.  Softmax activation function
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The following is the Python implementation.

import numpy as np

def relu(x):

      return 1.0*(x>0)

�Leaky ReLU Activation Functions

This is exactly same as ReLU, but instead of having a lower limit as 

exactly 0, the values can be less than 0 so that the “dying ReLU problem” 

(discussed next) can be solved. You take a value α and multiply it by 

the original value so that the new value can be less than 0. Here is the 

formula and curve of leaky ReLU (see Figure 5-8), followed by the Python 

implementation.

LeakyReLU x x if x( ) = >{ }, 0

ax otherwise,{ }

Figure 5-7.  ReLU activation function
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import numpy as np

def leaky_relu(x, leaky_slope):

      d=np.zeros_like(x)

      d[X<=0]= leaky_slope

      d[X>0]=1

      return d

Here’s the application of these Python methods:

import numpy as np

#Defining dummy values of x

x = np.linspace(-np.pi, np.pi, 12)

#Finding the Activation Function Outputs

sigmoid_output = sigmoid(x)

tanh_output = tanh(x)

softmax_output = softmax(x)

relu_output = relu(x)

leaky_relu_output = leaky_relu(x)

#Printing the Outputs

print(sigmoid_output)

Figure 5-8.  Leaky ReLU activation function
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print(tanh_output)

print(softmax_output)

print(relu_output)

print(leaky_relu_output)

What Is the Dying ReLU Problem?

Once the system has learned the weights and the bias of each neuron, and 

you give ReLU as an activation function, it usually gives the same output 

as it received as the input. But since any values that are less than 0 are 

converted to 0, the neurons may not be able to differentiate between the 

inputs. This problem is called the dying ReLU problem.

This makes a neuron practically dead. Even the slope of negative 

values is zero. If you keep moving forward and don’t heed this problem, 

eventually a large part of the neural network will end up doing nothing. 

This problem generally happens when the learning rate is too high. By 

making the learning rate smaller or changing the activation function, for 

example to leaky- ReLU, you can solve the problem.

�Multi-Layer ANNs
There are different types of multi-layer artificial neural networks. This 

chapter discusses the most relevant ones. The general architecture of a 

multi-layer ANN is shown in Figure 5-9.
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The following sections review these ANNs:

•	 Convolutional neural networks

•	 Recurrent neural networks

•	 Long short-term memory

•	 Gated recurrent units

�Convolutional Neural Networks
Convolutional neural networks are used in areas like image recognition, 

image classification, object detection, face recognition, etc. Before looking 

at the architecture and the process involved in a CNN, you should first 

understand how a computer looks and understands an image.

Computers break an image into a matrix of pixels and store the color 

code for each pixel, as you can see in Figure 5-10.

Figure 5-9.  Typical multi-layered ANN architecture
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In the image in Figure 5-10, 1 represents white and 256 represents the 

darkest shade. It is not recommended to use normal neural networks when 

it comes to image processing. The more pixels there are, the more weights 

there are. This means if you have an RGB image that’s 64x64, the number of 

pixels will be 12,288, and hence the number of weights will also be 12,288. 

There are images above 1000x800. Hence, even after a lot of computations, 

you will not get good accuracy. The solution for this is CNN. Instead of 

analyzing the entire input, CNN looks at a small part of it.

CNN image classifications take an input image (animal images, in this 

case), process it, and classify it under certain categories (e.g., dog, cat, or 

tiger). There are four basic components that define a basic convolutional 

network.

•	 The convolutional layer

•	 The activation function layer

Figure 5-10.  Pixel matrix
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•	 The pooling layer

•	 The output layer

Let’s look at each of these in a little more detail.

�The Convolutional Layer

The convolution layer is the main building block of a convolutional neural 

network. The convolution layer is used to understand the patterns present 

in the image and extract the interesting features from them. The total 

number of convolutional layers defines the total number of features that 

you want to extract from the image. For example, five convolutional layers 

means that five features are learned from an image. These features can 

be decipherable, like finding the edges or the threshold image, etc. or it 

they may be too complex for a human to understand. Hence, this is the 

main layer responsible for learning features, such as what unique features 

an image containing a human has and how they are different from the 

features present in an image of an animal. The values of all the filters are 

learnable, which means you must provide the matrix dimensions to a 

CNN, and it will automatically learn the best values for the convolution. 

This matrix of convolution is also called a kernel or filter.

Mathematically, each kernel operation happens in a way represented 

in Figure 5-11.
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Based on the size of the kernel matrix, a matrix dot product happens at 

a specific portion of the image. This operation is continued until the kernel 

covers the entire image. This results in a new image with a smaller number 

of dimensions, as compared to the original image, but the depth of image 

is higher. The output is called an activation map and the process is called 

strides.

Figure 5-11.  Process of convolving through filters
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�Padding

The filter might fit inside the image perfectly. But if it does not, you use 

the concept of padding. In this process, you add a few extra values in the 

input image so that the filter fits in well. The most commonly used value is 

0 (called zero-padding). Alternatively, you can drop the part of the image 

where the filter doesn’t fit.

Activation Function

The actual decision of classification is taken in this layer. The most used 

activation function in CNN is ReLU, the rectified linear unit. This helps 

the neurons give exact pixel values as output for all the positive values, but 

for all the negative values the output is always zero. This results in sparse 

matrix generation and hence means lesser computation time with better 

learning. Generally, pixel values are positive, so the problem of dying ReLU 

doesn’t apply.

Pooling Layer

If an image is taken from a DSLR camera, the resolution will be very 

high. Since the resolution is high, the number of pixels will be high. Even 

though you use filters with a smaller dimension than the input image, the 

computational time will still be long. Therefore, to overcome this issue, 

you can use pooling. It is used to reduce the size of the input image, as 

well as the outcomes of convolutions. Because of this, the number of 

parameters that need to be analyzed is smaller. Hence, the computational 

time decreases. This layer operates on each feature map (the outcome of 

individual convolutions) independently.
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Pooling, also called subsampling or downsampling, can be of different 

types:

•	 Max pooling

•	 Average pooling

•	 Sum pooling

The most common pooling approach is max pooling. Max pooling 

takes the largest element from the convolved matrix. Instead of the 

maximum, if you find the average number, it’s called average pooling. 

Summing all elements in the convolved matrix is called sum pooling.

An example of the max pooling operation is shown in Figure 5-12.

The Output Layer

After the processes of pooling and convolution are finished, the last layer 

operation starts, and the layer is called the output layer. The output layer 

is a network of fully connected layers, which means all the neurons in the 

previous layer are connected to all the neurons in the output layer. In the 

output layer, the normal operation of a neural network begins.

Figure 5-12.  Max pooling operation
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This means that once all the features are learned and extracted from 

multiple images, using the convolution and pooling operations, these 

learned features are passed to a regular neural network, which finally 

classifies the images using that information.

Figure 5-13 shows the entire operation of convolutional neural networks.

The following is the implementation of CNN on digits recognition 

applied to a MNIST dataset. You can find the segregated version of this 

code in the GitHub repository.

from keras.datasets import mnist

import matplotlib.pyplot as plt

from keras.models import Sequential

from keras.layers import Dense, Conv2D, Flatten

from keras.utils import to_categorical

#download mnist data and split into train and test sets

(X_train, y_train), (X_test, y_test) = mnist.load_data()

f1 = plt.figure(1)

plt.imshow(X_train[0])

f2 = plt.figure(2)

Figure 5-13.  Typical architecture of a CNN
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plt.imshow(X_train[1])

plt.show()

#check image shape and data count

print(X_train[0].shape, len(X_train))

print(X_train[0].shape, len(X_test))

#reshape data to fit model

X_train = X_train.reshape(len(X_train),28,28,1)

X_test = X_test.reshape(len(X_test),28,28,1)

#One-hot encode target column

y_train = to_categorical(y_train)

y_test = to_categorical(y_test)

y_train[0]

#Create model

model = Sequential()

#Add Input CNN Layer

model.add(Conv2D(64, kernel_size=3, activation='relu', input_

shape=(28,28,1)))

#Add second CNN Layer

model.add(Conv2D(32, kernel_size=3, activation='relu'))

#Add the fully connected layer

model.add(Flatten())

model.add(Dense(10, activation='softmax'))

#Compile model using accuracy to measure model performance

model.compile(optimizer='adam', loss='categorical_

crossentropy', metrics=['accuracy'])

#Train the model

model.fit(X_train, y_train, validation_data=(X_test, y_test), 

epochs=3)
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#predict first 6 images in the test set

model.predict(X_test[:6])

#actual results for first 6 images in the test set

y_test[:6]

�Recurrent Neural Networks
Recurrent neural networks are used for sequential data analysis and 

prediction, especially in the finance, video analysis, and audio analysis 

domains. They can understand the context of the data and retain the 

information. Most traditional Machine Learning problems assume that 

the past values of the inputs are not related and are independent. But if 

you look at the aforementioned fields, you can see that the variables have 

relationships with their past values. The current stock price is related to 

the previous day’s or month’s stock price. The current word in a sentence 

depends on the word that came before.

This kind of data is called time series data. RNNs provide a way to 

effectively come up with computations that can predict the next sequence 

based on the sequence currently provided.

A simple RNN structure is provided in Figures 5-14 and 5-15.

Figure 5-14.  Sequence of RNN cells (arXiv:1808.03314v4 [cs.LG] 4 
Nov 2018)
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Here is an explanation of the RNN notations used in the previous 

diagrams:

•	 S is the hidden state

•	 x is the input vector

•	 W is the weights

•	 r is the activated output

Let’s now look at the entire process of an RNN cell. At timestep t, 

the RNN cell takes an input x. It also takes the value of the hidden state 

from the previous RNN cell. This helps RNN take into consideration the 

previous context and understand the new input. The new state (hidden) 

is calculated in this RNN by applying the Tanh activation function to the 

previous state and the input. In all the combined RNN cells, the weight 

matrix W is shared throughout the process.

Figure 5-15.  Single RNN cell (arXiv:1808.03314v4 [cs.LG]  
4 Nov 2018)
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import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from keras.models import Sequential

from keras.layers import Dense, SimpleRNN

#Generating Random Data

t=np.arange(0,1000)

x=np.sin(0.02∗t)+2∗np.random.rand(1000)
df = pd.DataFrame(x)

df.head()

#Splitting into Train and Test set

values=df.values

train, test = values[0:800,:], values[800:1000,:]

# convert dataset into matrix

def convertToMatrix(data, step=4):

    X, Y =[], []

    for i in range(len(data)-step):

        d=i+step

        X.append(data[i:d,])

        Y.append(data[d,])

    return np.array(X), np.array(Y)

trainX,trainY =convertToMatrix(train,6)

testX,testY =convertToMatrix(test,6)

trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))

testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1]))

#Making the RNN Structure

model = Sequential()

model.add(SimpleRNN(units=32, input_shape=(1,6), 

activation="relu"))

Chapter 5  Artificial Neural Networks



181

model.add(Dense(8, activation="relu"))

model.add(Dense(1))

#Compiling the Code

model.compile(loss='mean_squared_error', optimizer='rmsprop')

model.summary()

#Training the Model

model.fit(trainX,trainY, epochs=1, batch_size=500, verbose=2)

#Predicting with the Model

trainPredict = model.predict(trainX)

testPredict= model.predict(testX)

predicted=np.concatenate((trainPredict,testPredict),axis=0)

The problem with RNNs is that they suffer from the problems of 

vanishing and exploding gradients. You already know that RNNs are best 

suited for time series data. But imagine a body of text consisting of multiple 

paragraphs. In the first paragraph, the author tells the readers that she is 

talking about England. In all the subsequent paragraphs, she is talking 

about the same country, but doesn’t reference the name of the country. As 

human readers, we understand that the country of interest is England, but 

for RNNs, this ambiguity may cause problems.

Neural networks learn from the concept of backpropagation. The 

process starts from the last layer of the neural network and can move up to 

the first layer. To move from one layer to another, backwards, you use the 

concept of matrix multiplication and linear algebra. This causes problems 

if the current value is too large or too small. If the values are <1, you keep 

on moving backward and the values keep shrinking until they vanish. This 

makes it impossible to learn from the data and the problem is called the 

vanishing gradient problem. Similarly, if the values are too large, they keep 

on getting larger and larger until they crash the model. This problem is 

called the exploding gradient problem.
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To overcome these problems, you can use LSTM (long short-term 

memory) and GRUs (gated recurrent units). The following sections look at 

LSTM followed by GRUs.

�Long Short-Term Memory
As mentioned, RNNs often fail to recall what was said long before. 

Consider this text:

“Since childhood, Shreya was crazy about dance. She knows 
many different styles of dance. Mostly she does break dancing, 
but now she works in corporate. She works on Deep Learning.”

Shreya can dance which dance style?

This is where a recurrent neural network may not work! The reason 

behind this is the vanishing gradient problem. Once many words are fed 

in, this information gets lost somewhere. This problem can be solved by 

using a slightly modified version of RNN, which is known as LSTM (long 

short-term memory).

LSTM consists of the following components:

•	 Cell

•	 Cell state

•	 Hidden state

•	 Gates

A cell is a memory unit that stores the information. A cell also has the 

power to decide what to store and when to allow the reads. Hence, it gives 

LSTMs the power to selectively remember or forget things.

To make cells apply this decisive power, they are fed by two states: the 

cell state and the hidden state. The entire forgetting and remembering 

mechanism is done in LSTMs using something called gates. Gates are 

similar to the neural network nodes, wherein they either block the 
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information or pass it. They do this by learning the weight and bias 

parameter from the information given as input. The weights are learned 

using the backpropagation approach. Figure 5-16 shows the architecture of 

LSTMs. Let’s look at the components of LSTMs in a little more detail.

The horizontal line running through the center of Figure 5-16, s, is 

considered the cell state. Values of the cell state can be changed using the 

following gates:

•	 Forget gate

•	 Input gate

•	 Output gate

Figure 5-16.  Simple LSTM cell (arXiv:1808.03314v4 [cs.LG] 4 Nov 
2018)
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�Forget Gate
As the name suggests, if you want to remove some of the unnecessary 

information from a cell state, you use this gate. This decision is made by 

passing the past cell state and current input to a sigmoid function. The 

output is either a 0 or a 1. A value of 0 means forget the output and 1 means 

keep it. Hence, wherever the value is 0, that number is removed from the 

cell state matrix. Mathematical operations in this cell can be represented by:

f W h x bt f t t f= [ ]+( )-s . 1 ,

Figure 5-17 shows these operations.

The next step is to decide what new information you’re going to store 

in the cell state. This has two parts. First, a sigmoid layer called the input 

gate layer decides which values you’ll update. Next, a Tanh layer creates a 

vector of new candidate values, Ct, that could be added to the state. In the 

next step, you combine these two to create an update to the state.

Figure 5-17.  Forget gate
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�Input Gate
Once you have removed the trivial information, the next step adds the new 

information. First, a sigmoid function is used where you transfer the past 

cell state and the current input. This gives an output of 0 or 1. Wherever 

you get 1, that information is going to be passed to the new cell state. Next, 

you pass the same two inputs to a Tanh function. This helps you get all the 

possible information that can be added to a cell state. Finally, the Tanh and 

sigmoid outputs will be multiplied (using Hadamard multiplication) and 

the final output will be added to the cell state. This process is represented 

by following mathematical operations:

i W h x bt i t t i= [ ]+( )-s . 1 ,

C W h x bt c t t c
 = [ ]+( )-tanh . 1 ,

C f C i Ct t t t t= * +-1


Figure 5-18 shows all the operations.
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�Output Gate
In this gate, you first scale the values of the cell state to -1 and +1. This 

is done by passing the current state to a Tanh function. Next, you use 

the same sigmoid filter of the forget gate and apply it here. This helps to 

determine which values need to be outputted. A combination will give 

you the final output as well as the cell state input for the next LSTM cell. 

Mathematically, it’s as follows:

o W h x bt o t t= [ ]+( )-s . 1 0,

h o Ct t t= * ( )tanh

Figure 5-18.  Input gate
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Figure 5-19 shows the operations of the output gate.

The following is an example implementation of the same example 

used in RNN, but this time using LSTMs.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from keras.models import Sequential

from keras.layers import Dense, LSTM

Figure 5-19.  Output gate
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#Generating Random Data

t=np.arange(0,1000)

x=np.sin(0.02∗t)+2∗np.random.rand(1000)
df = pd.DataFrame(x)

df.head()

#Splitting into Train and Test set

values=df.values

train, test = values[0:800,:], values[800:1000,:]

# convert dataset into matrix

def convertToMatrix(data, step=4):

    X, Y =[], []

    for i in range(len(data)-step):

        d=i+step

        X.append(data[i:d,])

        Y.append(data[d,])

    return np.array(X), np.array(Y)

trainX,trainY =convertToMatrix(train,6)

testX,testY =convertToMatrix(test,6)

trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.

shape[1]))

testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1]))

#Making the LSTM Structure

model = Sequential()

model.add(LSTM(units=4, input_shape=(1,6), activation="relu"))

model.add(Dense(8, activation="relu"))

model.add(Dense(1))

#Compiling the Code

model.compile(loss='mean_squared_error', optimizer='rmsprop')

model.summary()
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#Training the Model

model.fit(trainX,trainY, epochs=1, batch_size=500, verbose=2)

#Predicting with the Model

trainPredict = model.predict(trainX)

testPredict= model.predict(testX)

predicted=np.concatenate((trainPredict,testPredict),axis=0)

Another version of RNN that solves the vanishing and exploding 

gradient problem is called gated recurrent units (GRU). The next section 

discusses this architecture in detail.

�Gated Recurrent Units
Similar to LSTMs, gated recurrent units also operate through gates, which 

help them overcome the problems that RNNs face. Figure 5-20 shows a 

simple structure of a GRU cell.
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GRUs have only two gates as compared to LSTMs. These gates are:

•	 Reset gate

•	 Update gate

As with LSTMs, these gates also decide what information needs to be 

passed to the output. The next sections look at each gate’s operation in a 

GRU cell.

�Update Gate
This gate gives an output range of 0 to 1. This gate helps the model decide 

how much of the past information to pass to the future. If the model wants 

to, it can decide to copy all the information present in the previous time 

Figure 5-20.  Single GRU cell (LSTM Gating. Chung, Junyoung, et al. 
“Empirical evaluation of gated recurrent neural networks on sequence 
modeling.” (2014))

Chapter 5  Artificial Neural Networks



191

steps and hence eliminate the risk of a vanishing gradient descent. Here 

are the mathematical operations that are performed at this gate:

z W x U ht
z

t
z

t= +( )( ) ( )
-s 1

Figure 5-21 shows the operations of the update gate.

�Reset Gate
The reset gate has exactly the same structure as the update gate, which is 

shown in Figure 5-21. This gate tells the model about the information that 

needs to be forgotten from the past. This operation is performed by the 

following mathematical equation:

r W x U ht
r

t
r

t= +( )( ) ( )
-s 1

Figure 5-21.  Update gate
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Figure 5-22 shows the operations of the reset gate.

In a GRU cell, the reset gate is used to forget the past information. All 

the relevant information is stored in memory using the following equation 

(see Figure 5-23).

¢ = +( )-h Wx r Uht t t ttanh  1

Figure 5-22.  Reset gate
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The update gate is applied to the output to determine the information 

that needs to be collected from the current memory. This can be achieved 

using the following mathematical equation:

h z h z ht t t t t= + -( ) ¢- 1 1

Figure 5-23.  Forgetting the information
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This is the final output that is passed to the next GRU cell. Here’s the 

application of GRU in Python.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from keras.models import Sequential

from keras.layers import Dense, GRU

#Generating Random Data

t=np.arange(0,1000)

x=np.sin(0.02∗t)+2∗np.random.rand(1000)
df = pd.DataFrame(x)

df.head()

#Splitting into Train and Test set

values=df.values

train, test = values[0:800,:], values[800:1000,:]

# convert dataset into matrix

def convertToMatrix(data, step=4):

      X, Y =[], []

      for i in range(len(data)-step):

      d=i+step

      X.append(data[i:d,])

      Y.append(data[d,])

      return np.array(X), np.array(Y)

trainX,trainY =convertToMatrix(train,6)

testX,testY =convertToMatrix(test,6)

trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))

testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1]))

#Making the GRU Structure

model = Sequential()
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model.add(GRU(units=4, input_shape=(1,6), activation="relu"))

model.add(Dense(8, activation="relu"))

model.add(Dense(1))

#Compiling the Code

model.compile(loss='mean_squared_error', optimizer='rmsprop')

model.summary()

#Training the Model

model.fit(trainX,trainY, epochs=10, batch_size=500, verbose=1)

#Predicting with the Model

trainPredict = model.predict(trainX)

testPredict= model.predict(testX)

predicted=np.concatenate((trainPredict,testPredict),axis=0)

This finishes the discussion of basic Deep Learning architectures. 

Before moving on to the next chapter, take a look at one live use case of 

LSTMs and GRUs. This example uses them to predict the closing price  

of a stock (Carriage Services Inc.). The code is applied to the Carriage 

Services Inc. Stock Price dataset, which you can download from the 

https://finance.yahoo.com/quote/CSV/history?p=CSV link.

import numpy

import pandas as pd

from keras.models import Sequential

from keras.layers import Dense, LSTM, GRU

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import mean_squared_error

import math

# convert an array of values into a dataset matrix

def create_dataset(dataset, step=1):

      dataX, dataY = [], []
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      for i in range(len(dataset)-step-1):

      a = dataset[i:(i+step), 0]

      dataX.append(a)

      dataY.append(dataset[i + step, 0])

      return numpy.array(dataX), numpy.array(dataY)

# load the dataset

dataframe = pd.read_csv('carriage.csv', usecols=[1])

dataset = dataframe.values

dataset = dataset.astype('float32')

# standardize the dataset

scaler = StandardScaler()

dataset = scaler.fit_transform(dataset)

# split into train and test sets

train_size = int(len(dataset) ∗ 0.90)
test_size = len(dataset) - train_size

train, test = dataset[0:train_size,:], dataset[train_

size:len(dataset),:]

# Reshaping Data for the model

step = 1

train_X, train_Y = create_dataset(train, step)

test_X, test_Y = create_dataset(test, step)

train_X = numpy.reshape(train_X, (train_X.shape[0], 1, train_X.

shape[1]))

test_X = numpy.reshape(test_X, (test_X.shape[0], 1, test_X.

shape[1]))

# create and fit the LSTM network

model = Sequential()

model.add(LSTM(10, input_shape=(1, step)))
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model.add(Dense(1))

model.compile(loss='mean_squared_error', optimizer='adam')

model.summary()

model.fit(train_X, train_Y, epochs=10, batch_size=50, verbose=1)

# create and fit the GRU network

model1 = Sequential()

model1.add(GRU(10, input_shape=(1, step)))

model1.add(Dense(1))

model1.compile(loss='mean_squared_error', optimizer='adam')

model1.summary()

model1.fit(train_X, train_Y, epochs=10, batch_size=50, 

verbose=1)

# make predictions from LSTM

trainPredict = model.predict(train_X)

testPredict = model.predict(test_X)

# make predictions from GRU

trainPredict1 = model1.predict(train_X)

testPredict1 = model1.predict(test_X)

# invert predictions from LSTM

trainPredict = scaler.inverse_transform(trainPredict)

train_Y = scaler.inverse_transform([train_Y])

testPredict = scaler.inverse_transform(testPredict)

test_Y = scaler.inverse_transform([test_Y])

# invert predictions from GRU

trainPredict1 = scaler.inverse_transform(trainPredict1)

testPredict1 = scaler.inverse_transform(testPredict1)
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# calculate root mean squared error for LSTM

print("∗∗∗∗∗Results for LSTMs∗∗∗∗∗")
trainScore = math.sqrt(mean_squared_error(train_Y[0], 

trainPredict[:,0]))

print('Error in Training data is: %.2f RMSE' % (trainScore))

testScore = math.sqrt(mean_squared_error(test_Y[0], 

testPredict[:,0]))

print('Error in Testing data is: %.2f RMSE' % (testScore))

# calculate root mean squared error for GRU

print("∗∗∗∗∗Results for GRUs∗∗∗∗∗")
trainScore1 = math.sqrt(mean_squared_error(train_Y[0], 

trainPredict1[:,0]))

print('Error in Training data is: %.2f RMSE' % (trainScore1))

testScore1 = math.sqrt(mean_squared_error(test_Y[0], 

testPredict1[:,0]))

print('Error in Testing data is: %.2f RMSE' % (testScore1))

�Summary
This chapter discussed artificial neural networks. To understand the 

concepts of Fuzzy Neural Networks, a foundation of neural networks 

is necessary. This chapter set that foundation. You learned about how 

a typical ANN operates and the role of backpropagation and forward 

propagation for learning the patterns. Then you looked at the specific 

applications of neural networks in computer vision, through convolutional 

neural networks, and natural language processing, through recurrent 

neural networks. Finally, you looked at some of the disadvantages met by 

RNNs and how LSTMs and GRUs try to address these issues. You looked at 

the practical aspects of all these architectures using Python.

The next chapter covers some of these Fuzzy Neural Networks and 

related algorithms in detail.
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CHAPTER 6

Fuzzy Neural 
Networks
In the previous chapters, you saw neural networks based on crisp inputs, 

weights, parameters, etc. But in real-life applications, it’s not necessary 

that you always get the same kind of inputs. Fuzziness in neural networks 

results in networks having Fuzzy Signals, Fuzzy Weights, etc., in which 

case you are dealing with Fuzzy Neural Networks. This chapter looks at 

the different architectures of Fuzzy Neural Networks and the components 

that define them. You will later learn about the Adaptive Neuro Fuzzy 

Architecture and its different versions.

Fuzzy Neural Networks are used to find the parameters related to a 

Fuzzy System by learning them through the given data, with the help of 

neural networks. These parameters can be Fuzzy Sets, Fuzzy Rules, Fuzzy 

Membership Functions, etc. Simple Fuzzy Neural Networks have the 

following properties:

•	 A Fuzzy Neural Network is based on a data-driven 

approach using the methodology of neural networks.

•	 Fuzzy Neural Networks can be made with or without 

the prior knowledge of the Fuzzy Rules, as they can be 

learned from the data parallel using neural networks.
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•	 The properties of the underlying Fuzzy System are 

maintained throughout, even though the parameters 

are learned along the way.

•	 A Fuzzy System can be represented as having multiple 

nodes, as shown in Figure 6-1.

Figure 6-1.  Fuzzy Neural System

	 a.	 The first layer is the input layer

	 b.	 The second layer represents the Fuzzy Rules

	 c.	 The third layer contains the output nodes

If you have normal Neural Networks and apply some Fuzzy Set 

Operators like Max and Min (T-Norm and S-Norm) to them, they are an 

extension and are called Hybrid Neural Networks. You will learn about the 

Hybrid Neural Networks in the next section.

Why would you use use Fuzzy Neural Networks when Fuzzy Systems 

are capable of doing the task? Fuzzy Systems are used to find the 

relationship between the input and output domain. This is defined by 
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a set of rules (Fuzzy Rules). But what if you cannot capture all the rules 

that may be present in the system? To solve this issue, you can have a 

neural network-based system where you learn different rules based on the 

membership functions and then make the entire architecture.

In a nutshell, you can say that if you have data, you can find Neuro 

Fuzzy Systems out of it using Fuzzy Neural Networks. Also, if you already 

have a Fuzzy System, you can enhance and optimize it using the same 

approach. Let’s start the chapter by first covering Fuzzy Neurons and their 

architecture.

�Fuzzy Neurons
The previous chapter talked about normal neural networks. Neurons 

are the core component of artificial neural networks and they are used 

to compute some operations. They take some values as inputs and then 

perform some kind of operations over them to give a processed output.

Figure 6-2 represents one of the simple neurons showing a basic 

operation. In the diagram, you can see that there are two inputs and based 

on that, we are defining an output, called y. w1 and w2 are the weights that 

we learn and, based on that, we take a weighted sum as an output.

Figure 6-2.  Fuzzy Neuron
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This diagram doesn’t have any of the core components of a neural 

network architecture, like hidden layers or activation functions, but it can 

still be considered a simple neural network. Therefore, the output can be 

expressed as follows:

y f w x w x= +( )1 1 2 2

The function f can be of any type. It can be nothing, or you can add 

an activation function like Sigmoid or Relu. Note that we are using a 

normal mathematical operation like addition. If you use operators like 

addition, subtraction, or activation functions like Sigmoid or Relu, this 

neural network is called a regular neural net. But instead, if you apply 

Fuzzy Operators like T-Norm or S-Norm, it is called a hybrid neural net. It 

is a Fuzzy Architecture and has different signals, weights, and functions 

in a classical set format. You can apply different operations of T-Norm 

and T-Co-Norm to the inputs and weights later. One processing unit of a 

Hybrid Neural Net is called a Fuzzy Neuron.

Let’s look at the different types of Fuzzy Neurons in a Hybrid Neural 

Net architecture. Figures 6-3 and 6-4 show these neurons specific to 

T-Norm and T-Co-Norm operations.
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In Figure 6-3, you can see that it’s doing a T-Co-Norm operation 

followed by T-Norm. Figure 6-4 shows the exact opposite. This specific 

operation of applying one continuous function to the output of another 

continuous function comes under the domain of a Fuzzy Neuron. So the 

first diagram (Figure 6-3) represents an AND-Fuzzy Neuron and the second 

one (Figure 6-4) is an OR-Fuzzy Neuron, where:

Y T S w x S w x S w xAND n n= ( ) ( ) ¼ ( )( )1 1 2 2, , , , , ,

Y S T w x T w x T w xOR n n= ( ) ( ) ¼ ( )( )1 1 2 2, , , , , ,

You have already seen in previous chapters that the Fuzzy Systems 

consist of membership functions. The AND or OR Fuzzy Neuron basically 

operates on the membership values obtained from the MFs. Since you 

have to learn the values of w1 and w2 in the diagram, they will directly 

Figure 6-3.  T-Norm operation

Figure 6-4.  T-Co-Norm operation
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relate to the output of the system. This means that if the weights are very 

high, then in the case of OR neurons, the input will strongly affect the 

output. In the case of AND neurons, the input will weakly affect the output. 

Here are some other neurons used in Fuzzy Neural Networks:

•	 Implication-OR Neuron

•	 Kwan and Cai’s Neuron

•	 K&C’s Max Neuron

•	 K&C’s Min Neuron

Let’s review how these neurons operate. Figure 6-5 shows the 

Implication-OR Neuron. This neuron has an implication operator applied 

between the input x and the weight w. After that, it applies the Triangular 

Co-norm operator on the output.

In the neuron shown in Figure 6-5, you have an implication.

Figure 6-5.  Implication-OR neuron
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Next is a series of K&C neurons (see Figure 6-6).

Kwan and Cai’s Fuzzy Neurons have a somewhat complex structure. 

First, for each input x, we multiply it by its learned weight, w. Once you 

do this for all the input nodes, you aggregate them and convert them 

into one single input. Next, you find the state of this input, which can be 

represented by:

s f z= -( )q

In this equation, you use f as the selected activation function, while θ 

represents the activation threshold. Finally, you get the output by applying 

a function to the state. Let’s apply the concept to two types of K&C Fuzzy 

Neurons: K&C Max neurons (see Figure 6-7) and Min neurons (see 

Figure 6-8).

Figure 6-6.  K&C neuron

Figure 6-7.  K&C Max neuron
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The K&C Max neuron uses the T-Co-Norm operation, while the K&C 

Min neuron uses the T-Norm operation.

You’ll keep on learning about Fuzzy Neurons throughout the chapter.

�Fuzzy Inference Neural Networks
Just by the name, you can say that if you combine the concept of Fuzzy 

Inference Systems and Neural Networks, FINN (Fuzzy Inference Neural 

Networks) is born. Before going through a detailed analysis of FINNs, you 

need to first understand their types. Basically, FINNs can be placed into 

the following categories:

•	 Cooperative FINNs

•	 Concurrent FINNs

•	 Integrated/Fused FINNs

When you have training data and use the neural networks to find the 

membership functions and Fuzzy Rules, this comes under the domain of 

Cooperative FINNs (see Figure 6-9).

Figure 6-8.  K&C min neuron

Chapter 6  Fuzzy Neural Networks



207

When you are not able to measure the input variables directly, then 

instead of using Cooperative FINNs, you use Concurrent FINNs. In this 

process, neural networks continuously help the FIS so that the final 

system is always the best. Figure 6-10 shows a concurrent FINN where 

the input data is fed to a neural network, which helps determine the 

best membership functions to be processed by the Fuzzy Systems later. 

Combining neural networks with Fuzzy does not optimize the Fuzzy 

Systems, but improves the overall performance of the system.

Figure 6-9.  Cooperative FINNs

Figure 6-10.  Concurrent FINNs
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Integrated FINNs are used to find the parameters of FIS. Say you have 

a common shared database that stores knowledge representations and 

data structures. This database is shared between the neural network and 

the Fuzzy Inference System. Neural networks and Fuzzy Inference Systems 

have some disadvantages of their own. But when you combine both 

concepts, you get integrated FINNs, which result in much more efficient 

architectures.

Now that you know the categories of Fuzzy Inference Neural Networks, 

it’s time to look at some of the most popular FINNs used in the domain. 

We’ll discuss the following architectures:

•	 Fuzzy Associative Memories

•	 Mamdani Integrated FINNs

•	 Takagi-Sugeno Integrated FINNs

�Fuzzy Associative Memories
Before learning about Fuzzy Associative Memories, you must first know 

what the name associative memory means. Any associative memory 

has a primary task of storing the input and output patterns and also the 

relationship and mapping between them. The major task is to find an 

output pattern when an incomplete or noisy input pattern is provided.

An associative memory can be represented by the following equations:

a x y i ni i= ( ) = ¼{ }, | , ,1 2 3

G x yi i( ) =
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In the previous equations, a represents the finite set of associations 

where x is the input pattern and y is the output pattern. G(x) is a function 

that defines the mapping between x and y. Some of the terminology related 

to associative memories is as follows

•	 Fundamental memory set

•	 Fundamental memory

•	 Auto-associative memory

•	 Hetero-associative memory

•	 Recording phase

•	 Associative mapping

•	 Neural associative memory

•	 Fuzzy associative memory

All the associations present, which is a = {(xi, yi) | i = 1,2,3…n}, are 

called the fundamental memory set, while each association, (xi and yi), is 

called a fundamental memory. When the association is related to itself, 

it is called auto-associative memory, but if it is different, then it’s called 

hetero-associative memory. Therefore, a = {(xi, xi) | i = 1,2,3…n} is an auto-

associative memory, but a = {(xi, yi) | i = 1,2,3…n} is a hetero-associative 

memory.

The process of finding the function G(x) is called the recording phase, 

whereas G is called associative mapping. When the associative mapping 

is a neural network, it is called neural associative memory and when it is 

a Fuzzy Neural Network, it’s called Fuzzy Associative Memory. In a Fuzzy 

Associative Memory, the input and output patterns are Fuzzy Sets.

Generally, a Fuzzy Associative Memory (FAM) is a Fuzzy Inference 

Neural Network that stores a rule in the system. This rule is a Fuzzy Rule 

with the following format:

“If x is xk then y is yk”
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Fuzzy Associative Memories can be of two types:

•	 Max-Min Fuzzy Associative Memory

•	 Max-Product Fuzzy Associative Memory

Since a Fuzzy Associative Memory is a Fuzzy Neural Network, their 

main component is Fuzzy Neurons. The two FAMs differ in terms of the 

types of neurons. If a FAM contains a Max-CM neuron, then it is called 

a Max-Min FAM, but if it contains a Max-CP neuron, it’s called a Max-

Product FAM. A Max-C Fuzzy Neuron can be represented by the following 

equation:

y C w xj
n

j j= ( )éë ùû=V V1 , q

In the previous equation, C represents the Fuzzy Conjunction 

Operation, while θ denotes the bias. If this neuron has the maximum 

operation applied, it is called a Max-CM neuron, whereas if a product 

operation is applied, it’s called a Max-CP neuron.

�Mamdani Integrated Finns
Mamdani Integrated FINNs (also known as Mamdani Integrated 

Neuro Fuzzy Systems) use the method of backpropagation to learn the 

parameters of a membership function. In this method, you try to find 

the best values of a parameter by minimizing a cost function. Recall that 

Chapter 5 discussed the backpropagation method. Because this method 

utilizes the concept of backpropagation, it comes under the domain of 

supervised learning methods.
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Figure 6-11 shows how a Mamdani Integrated FINN looks.

The architecture of Mamdani Integrated FINNs consists of five layers:

•	 Layer 1: This layer consists of the direct inputs, hence 

it’s called the input layer. Each node in this layer 

consists of individual inputs that are passed directly to 

the next layer’s nodes.

•	 Layer 2: This is also called the fuzzification layer. 

Here you convert the crisp inputs passed from the 

input layer into Fuzzy Sets. It tries to find the degree 

of membership of each individual input value in the 

Figure 6-11.  Mamdani Integrated FINNs
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Fuzzy Set. Fuzzy Clustering approaches are used to 

define the number and type of membership functions 

for each input variable. Throughout the process of 

backpropagation, the membership function’s numbers 

and types will keep on changing to fine-tune the entire 

system.

•	 Layer 3: This layer is used to define the antecedents 

of the rule base. Therefore, this layer is called the 

rule antecedent layer. Each node in this layer uses the 

T-Norm operation. The output of this layer is the firing 

strength of the corresponding Fuzzy Rule.

•	 Layer 4: This layer is called the rule consequent layer. 

As the name suggests, it is used to determine the 

consequents for each rule antecedent. It helps to define 

the membership of each antecedent to the output 

value. The number of nodes in this layer are equal to 

the number of rules in the previous layer.

•	 Layer 5: This is the final defuzzification layer. In this 

layer, all the rule consequents are combined using the 

T-Co-Norm operation and then they are converted into 

crisp outputs using the defuzzification approaches.

�Takagi Sugeno Integrated FINNs
In this method, the propagation happens in two steps. These two steps 

require a combination of backpropagation and mean least squares 

estimation. The first method is used to fine-tune the membership 

functions, whereas the second method is used to find the parameters. 

Figure 6-12 shows the diagram that represents a Takagi Sugeno FINN.
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Layer 1 is the input layer. It passes the crisp inputs directly to the 

second layer. Layer 2 converts the crisp inputs received into Fuzzy Sets. 

Layer 3 finds the antecedents of the Fuzzy Rules. These three layers work 

exactly similar to the Mamdani FINNs.

Layer 4 is used to determine each rule’s firing strength and then 

normalize it. This is done by finding each rule’s firing strength and 

then dividing it by the sum of all the rules’ firing strengths. This can be 

represented by this formula:

w
w

w
i

i

i

n

i

=
=å 1

Figure 6-12.  Takagi Sugeno integrated FINNs
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Layer 5 is used to determine the consequents of the rule using the least 

squares method. This is done using this formula:

w f w p x q x ri i i i i i= + +( )1 2

In this equation, p, q, i represent the parameter sets.

Layer 6 is used to aggregate all the outputs coming from the previous 

layer. This can be represented by:

Output
w f

w
i

n

i i

i

n

i

= =å
å

1

�Adaptive Neuro Fuzzy Inference Systems
Chapter 4 discussed Sugeno and Tsukamoto Fuzzy Inference Systems. 

Using Adaptive Neuro-Fuzzy Inference System (ANFIS), you can represent 

both the Sugeno and Tsukamoto systems. That’s why it is named an 

adaptive network, as with one network, you can represent multiple 

networks with minor changes.

You can also represent Mamdani FIS using ANFIS, but that requires 

a complex mathematical approach and is out of the scope of this book. 

This chapter discusses the Sugeno and Tsukamoto approaches using 

ANFIS. The example will use a system with two inputs and one output, for 

the sake of the understanding.

�ANFIS Representing Sugeno FIS
The Sugeno Fuzzy Inference System (FIS) rules take the following format, 

as discussed in previous chapters:

If x is A1 and y is B1 then f1 = p1x+q1y+r1

If x is A2 and y is B2 then f2 = p2x+q2y+r2
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Figure 6-13 is the result of representing these two rules graphically 

using the Sugeno approach. Chapter 3 discussed this concept in detail.

Figure 6-14 shows the structure of ANFIS representing the same 

architecture of Sugeno.

We cover this architecture layer-wise in the following sections.

Figure 6-13.  Sugeno defuzzification

Figure 6-14.  ANFIS based on Sugeno
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�Layer 1: Membership Function Layer

This layer is a combination of membership functions for each input. If 

you look at the rules, you know that the inputs x and y are defined by 

the membership functions A1, A2, B1, and B2. These functions can be 

represented by:

A1 = μA1(x)

A2 = μA2(x)

B1 = μB1(y)

B2 = μB2(y)

�Layer 2: Antecedent Layer

In this layer, you define the antecedent for the rules. All the signals that are 

coming to this layer generate the output for them by finding the product of 

them. This can be represented by:

w1 = μA1(x). μB1(y)

w2 = μA2(x). μB2(y)

In this layer, you use the T-Norm operator.

�Layer 3: Normalization Layer

Here you normalize the antecedent layer output, which can also be 

referred to as Normalized Firing Strength. To normalize the past layer 

output, you divide it by the overall firing strength. This can be represented 

as follows:

w w w w1 1 1 2= +( )/

w w w w2 2 1 2= +( )/
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�Layer 4: Consequent Layer

In this layer, you deal with the consequent of the rule. In Sugeno, you saw 

the consequent of the rules. In this layer, you must generate similar output.

w f w p x q x r1 1 1 1 1 1= + +( )

w f w p x q x r2 2 2 2 2 2= + +( )

In the previous equations, p, q, r represent the parameter set.

�Layer 5: Aggregation Layer

Once you get the consequent layer outputs where you included different 

parameter sets, in this layer you find the aggregate of all the outputs of the 

previous layer. This operation can be represented by this equation:

i

n

i i
i

n

i i

i

n

i

w f
w f

w
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=

�ANFIS Representing Tsukamoto FIS
In the Tsukamoto FIS, you get the consequent as follows:

f
w f w f

w w
=

+
+

1 1 2 2

1 2

Figures 6-15 and 6-16 show diagrams representing the defuzzification 

process for the Tsukamoto FIS and its ANFIS counterpart.
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As you can see in Figure 6-16, the system is similar to that of a Sugeno-

based ANFIS, only instead of using a linear membership function, a 

weighted membership function is used. Therefore, all the layers remain 

exactly the same as with the Sugeno-based example, but in the last layer 

the defuzzification equation changes.

Let’s look at the application of ANFIS using Python. In Python, 

there is a package named anfis that you can use to apply the concept of 

ANFIS. The dataset contains three columns. The first two columns define 

the crisp inputs, while the last column defines their fuzzified values. This 

example uses the ANFIS to predict these fuzzified values and checks 

the error of the model. You can install the anfis package by writing the 

following command:

pip install anfis

Figure 6-16.  ANFIS based on Tsukamoto

Figure 6-15.  Tsukamoto defuzzification
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Here is the code applied to a dummy dataset:

# Importing necessary libraries

import anfis

from anfis.membership import membershipfunction, mfDerivs

import numpy

training_data = numpy.loadtxt("training.txt", usecols=[1,2,3])

X = training_data [:,0:2]

Y = training_data [:,2]

# Defining the Membership Functions

mf = [[['gaussmf',{'mean':0.,'sigma':1.}],['gauss

mf',{'mean':-1.,'sigma':2.}],['gaussmf',{'mean':-

4.,'sigma':10.}],['gaussmf',{'mean':-7.,'sigma':7.}]], [['gau

ssmf',{'mean':1.,'sigma':2.}],['gaussmf',{'mean':2.,'sigma':3

.}],['gaussmf',{'mean':-2.,'sigma':10.}],['gaussmf',{'mean':-

10.5,'sigma':5.}]]]

# Updating the model with Membership Functions

mfc = membershipfunction.MemFuncs(mf)

# Creating the ANFIS Model Object

anf = anfis.ANFIS(X, Y, mfc)

# Fitting the ANFIS Model

anf.trainHybridJangOffLine(epochs=20)

# Printing Output

print(round(anf.consequents[-1][0],6))

print(round(anf.consequents[-2][0],6))

print(round(anf.fittedValues[9][0],6))

# Plotting Model Performance

anf.plotErrors()

anf.plotResults()

Figure 6-17 shows how, in each iteration, better membership functions 

are defined, which means that the error is reduced at each iteration. 

Figure 6-18 shows how the predictions fall in comparison to the actual data.
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Figure 6-17.  Reduction of error in each epoch

Figure 6-18.  Fitted line
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�Summary
This chapter looked at some of the architectures of Fuzzy Neural Networks. 

You saw how a simple FINN is composed of a Fuzzy Neuron and then 

explored various kinds of neurons. Then you explored various FINN 

architectures, starting with Fuzzy Associative Memories to the Sugeno 

Integrated FINN. Finally, you saw how an Adaptive Neuro Fuzzy Inference 

System (ANFIS) works and looked at its application using Python.

The next chapter looks at some of the advanced concepts related to 

Fuzzy Neural Networks.
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CHAPTER 7

Advanced Fuzzy 
Networks
This chapter looks at some of the advanced Fuzzy Networks.  

Figure 7-1 shows a classic Neuro Fuzzy System. But before you get too 

far, it’s important to know some of the core components that are used 

in building these systems. This chapter starts by discussing the Fuzzy 

Clustering method. Then it moves on to genetic algorithms and wraps 

up by reviewing the most commonly used architectures belonging to the 

domain of advanced Fuzzy Networks.

Figure 7-1.  Neuro-Fuzzy Inference System
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This chapter begins by discussing Fuzzy Clustering—their 

requirements and their applications.

�Fuzzy Clustering
Clustering is a method you use to group data into a few categories, based 

on the similarities present. These categories are termed clusters (see 

Figure 7-2).

Machine Learning uses different methods for clustering, such as 

K-Means Clustering, Hierarchical Clustering, DBScan, and so on. Similarly, 

when we talk about Fuzzy Networks, there are methods like Fuzzy 

C-Means Clustering, Gaussian Application to find clusters, and so on. This 

chapter discusses Fuzzy C-Means Clustering in detail.

Figure 7-2.  Clustering
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�Fuzzy C-Means Clustering
Suppose I have a set of data points, X, which I want to put into a k number 

of clusters based on some similarity metrics. In the form of a set, suppose 

the data looks like the following:

X x x x xm= ¼{ }1 2 3, , ,

To divide them into k number of clusters using the C-Means Clustering 

approach, the first thing that you do is randomly take k number of points 

from the data. Assume that these k points are the centroids (see Figure 7-3).

Using the Manhattan or Euclidean distance, you then find out that all 

the remaining points are closer to the cluster centroid point. This is how you 

get the first set of data assigned to k number of clusters. But you started by 

randomly selecting k points and calling them centroids. In reality, they are 

not. Therefore, you need to continue the process to rectify this assumption.

Figure 7-3.  C-Means Clustering
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�Euclidean Distance

A normal straight-line distance between any two points is called a 

Euclidean Distance. To get this distance, you use the following formula:

d q p q p= -( ) + -( )1 1

2

2 2

2

In the next step, you find the actual centroids of the clusters that you 

defined. Once you find that, some of the points may lose the original 

membership of that cluster. They may now be much closer to another 

cluster, as compared to the cluster that they were originally part of. Hence, 

you start reassigning these points based on the new centroids. This will 

help you get a revised k number of clusters with new member points. 

Again, you find the new centroid and repeat the process. You keep on 

repeating the process until the new clusters don’t make the points move 

from one cluster to another.

Let’s look at the entire algorithm mathematically:

	 1.	 Define N data points that need to be clustered:

x where i Ni , , ,= ¼1 2 3

	 2.	 Assume the number of cluster to be made is 

represented by C, where 2 ≤ C ≤ N

	 3.	 Define the cluster fuzziness represented by f,  

where f > 1

	 4.	 Define a membership matrix U having dimension of 

N × C × M. This matrix should be defined randomly 

following these conditions:

	 a.	 Uijm ∈ [0,1], and

	 b.	
i

n

ijmU
=
å =

1

0  for each i and fixed value of m.
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	 5.	 Determine the cluster centers. This can be done by 

using the following equation:

CC
U x

U
jm

i

N f
ijm im

i

N f
ijm

= =

=

å
å

1

1

where j represents the cluster and m represents the dimension.

	 6.	 Calculate the Euclidean Distance. You can find this 

equation by using the following equation:

D x Cijm im jm= -( )
where i represents data point j represents cluster

andm repres

   , ,

eents dimension 

	 7.	 After finding the Euclidean Distance, you have to 

update the membership matrix defined in Step 4 

with the new value. This can be done by using the 

following equation:

U
D

D

ijm

c

D ijm

icm

f

=
æ

è
ç

ö

ø
÷=

-

å

1

1

2

1

We apply the above equation only for the data points where          

DD If D then we have full membership

and the valu
ijm ijm> =0 0.      

  ee initialized is  1 0.

	 8.	 Repeat the Steps 1 to 5 until the value of U < ∈, 

where ∈ is the termination criteria.
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�Applications of Fuzzy C-Means Clustering

You can use Fuzzy C-Means Clustering for the following use cases and 

domains:

•	 When image processing, especially when clustering 

objects present inside the image. Used with image-

based segmentation as well.

•	 Used with swarm intelligence.

•	 Used with remote sensing.

�Python Implementation of Fuzzy C-Means

The following code contains two sets of data—train and test data. With 

the help of train data, you can find the final centroid of the clusters, while 

after that you should use the test data to check in which cluster the new 

data points are allocated. This example uses the Python Package called 

fuzzycmeans. You can install it using this command:

pip install fuzzycmeans

If the package shows a problem in execution, you can clone the 

GitHub repository, then copy the two Python files—fuzzy_clustering.

py and visualization.py—to your home directory and then run the code. 

Make sure to install the bokeh package before running the code, as it is a 

dependency for this Fuzzy C-Means package. You can install it by writing 

the following:

pip install bokeh

This package is an implementation of the paper “FCM: The Fuzzy 

C-Means Clustering Algorithm” by James C. Bezdek, Robert Ehrlich, and 

William Full. You can view and clone the source code as well, by going to the 

GitHub repository at https://github.com/oeg-upm/fuzzy-c-means.git.
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This example uses the AirlinesCluster dataset. You can find 

this dataset in the GitHub repository of this book. Alternatively, you 

can download it from the Kaggle website. The example uses only two 

columns—Balance and BonusMiles—to start clustering. You can use all 

the columns and visualize the output if you want.

import pandas as pd

import numpy as np

import numpy as np

import logging

from fuzzy_clustering import FCM

from visualization import draw_model_2d

from sklearn import preprocessing

dataset = pd.read_csv("AirlinesCluster.csv") #Importing the 

airlines data

dataset1 = dataset.copy() #Making a copy so that original data 

remains unaffected

dataset1 = dataset1[["Balance", "BonusMiles"]][:500] #Selecting 

only first 500 rows for faster computation

dataset1_standardized = preprocessing.scale(dataset1) 

#Standardizing the data to scale it between the upper and lower 

limit of 1 and 0

dataset1_standardized = pd.DataFrame(dataset1_standardized)

fcm.set_logger(tostdout=False) #Telling the package class to 

stop the unnecessary output

fcm = FCM(n_clusters=5) #Defining k=5

fcm.fit(dataset1_standardized) #Training on data
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predicted_membership = fcm.predict(np.array(dataset1_

standardized)) #Testing on same data

draw_model_2d(fcm, data=np.array(dataset1_standardized), 

membership=predicted_membership) #Visualizing the data

�Fuzzy Adaptive Resonance Theory
In Fuzzy C-Means Clustering, you saw that based on the distance 

between the points, you can group them into clusters. But what if you 

can control this similarity between the points in one cluster? Fuzzy 

Adaptive Resonance Theory (Fuzzy ART) provides the power to control the 

similarity between the data points inside a cluster. Therefore, Fuzzy ART 

is another approach to find the best clusters by controlling the similarity 

between them.

A lot of data is given to a Fuzzy ART model. This data contains a lot of 

patterns from which Fuzzy ART tries to extract the similarities. It finds the 

best adaptive clusters from the new data, based on the data that trained 

the model. One thing to notice in this model is that even though you train 

it on the input data, it doesn’t contain any hidden layers like other Fuzzy 

Architectures.

A Fuzzy ART Architecture mainly contains two components:

•	 Attention

•	 Orientation

Attention helps Fuzzy ART define the clusters or categories that it finds 

are the best, based on the data. Orientation helps it determine whether 

all the clusters that are found are valid. This means it helps Fuzzy ART 

accept or reject a category defined by attention. That’s why this is called an 

adaptive architecture. One more reason for the name adaptive is its ability 

to adapt to new data. Whatever patterns are learned from the training data, 
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new data can be allocated to any one of the clusters. But if the new data 

does not resemble any existing clusters, Fuzzy ART has the power to create 

a new cluster that’s totally different from an existing cluster.

Fuzzy ART is used for clustering and classification problems, and the 

input data that it takes can be discrete or continuous. Some of the features 

related to the Fuzzy ART Architecture are:

•	 The entire architecture has only one weight. Hence, it is 

easier to manage and update.

•	 It can process both binary and non-binary data.

•	 It contains the following important hyperparameters:

•	 Vigilance threshold:

This threshold generally decides the memory of 

a Fuzzy ART. It helps determine the final number 

of clusters. It is used to perform the attention 

operation.

•	 Choice parameter:

This is used to determine which cluster to keep 

and which should not be validated. If the threshold 

is surpassed, the cluster is selected; otherwise, 

it’s rejected. It’s used to perform the orientation 

operation.

•	 Learning rate:

Used to determine patterns in the input data.

Figure 7-4 shows the basic Fuzzy ART Architecture.
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As you can see, there are three layers in Fuzzy ART. The last layer is 

called the output layer and it is fully connected to the second layer. As you 

may recall from an earlier chapter on neural networks, a fully connected 

layer is a layer where each node is connected to all the nodes present in 

the previous or next layer. Therefore, in Fuzzy ART, the F2 and F1 layers 

are fully connected. In the first layer, you take m-dimensional input and, 

before passing it to the next layer, you multiply it by its complement. This 

makes the number of nodes present in the F1 layer 2m-dimensional. 

Finally, the output layer talks to the second layer continuously to 

decide whether the cluster formed is valid. If it’s valid, the outcome is 1; 

otherwise, it’s 0.

y
When node is active in Output layer

Otherwisej =
ì
í
î

1

0

,

,

      

The next sections look at the operations of each layer in a little detail.

Figure 7-4.  Fuzzy ART
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�Layer 1: F0 (Orienting Layer)
This layer takes the input fuzzy pattern, finds the complement of it, and 

then passes both the original and complemented input to the next layer. 

This operation can be summarized by this equation:

I a a a a a a a ac n n= ( ) = ¼ - - ¼ -( ), , , , , , , ,1 2 1 21 1 1

There is a Reset node that’s also present in this layer and it takes input 

from all the layers and helps transform the input patterns received.

�Layer 2: F1 and F2 (Attentional Layer)
Since the complemented input is also passed to the F1 layer, the number 

of nodes present is the double of the input layer, represented by 2n nodes. 

The F2 layer contains m nodes. Both layers are connected by connection 

weights, represented by Wi and wj. Wi represents the connection from F1 to 

F2, while wj represents the connection from F2 to F1. These weights can be 

represented by the following mathematical equations:

W W W Wi n= ¼1 2 2, , ,

w w w wj n= ¼1 2 2, , ,

In the F2 layer there are two kinds of nodes: committed and 

uncommitted. A committed node is a node where the value of the weight 

matrix should be 1; otherwise, it is called an uncommitted node. This can 

be represented by the following equation:

node
committed if w w

uncommitted otherwise
j j=
= ( ) = ¼( )ì

í
,

,

0 11 1, , ,

îî

ü
ý
þ
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Input of F2 layer can be defined as,

t i
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Fuzzy ARTMAP (see Figure 7-5) is an advanced application of Fuzzy 

ARTs. It is a supervised learning approach that can be used in different 

applications. It contains two Fuzzy ART components, called Fuzzy ARTx 

and Fuzzy ARTy, whereas the third component contains the inter-ART 

relationship. Covering Fuzzy ARTMAPs is outside the scope of this book, 

Figure 7-5 shows the architecture of a Fuzzy ARTMAP for your reference.

�Applications of Fuzzy ART
•	 Used in finding pattern recognition

•	 Used to handle time series data

•	 Used to monitor the quality of products

Figure 7-5.  Fuzzy ARTMAP
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�Python Implementation of Fuzzy ART
IRIS is a dataset collected by Edgar Anderson. It quantifies the 

morphological variations in Iris flowers. Based on their variations, the 

flowers are divided into three categories. This example uses Fuzzy ART 

to look at the morphological data and cluster the Irises based on their 

similarity.

The algorithm is quite complex, so in the code repository, you  

can find FuzzyART.py file. Just upload it in your home folder and run the 

following code.

from functools import partial

import numpy as np

import FuzzyART as f

import sklearn.datasets as ds

l1_norm = partial(np.linalg.norm, ord=1, axis=-1)#Used for 

regularization so that we can penalize the parameters that are 

not important

if __name__ == '__main__':

    �iris = ds.load_iris()#load the dataset in the python 

environment

    �data = iris['data'] / np.max(iris['data'], 

axis=0)#standardize the dataset

    �net = f.FuzzyART(alpha=0.5, rho=0.5) #Initialize the 

FuzzyART Hyperparameters

    net.train(data, epochs=100) #Train on the data

    print(net.test(data).astype(int)) #Print the Cluster Results

    print(iris['target']) #Match the cluster results
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�Genetic Algorithms
Genetic algorithms are groups of search algorithms that follow the 

biological process of natural selection and its genetics. The general 

principle of natural selection says that the fittest individuals are selected 

(by surviving) to produce the offspring of the next generation.

When you define a search problem, you first determine a few variables 

to use to make search decisions. These variables are called decision 

variables. The first step involves finding these variables and then encoding 

them to finite-length strings of alphabets.

Once you represent these variables in an encoded strings format, 

they are called chromosomes. Individual alphabets inside the string are 

called genes, while the value that they are storing is called an allele. For 

example, suppose a person wants to go from one place to another. The 

different routes that he can take are the decision variables. He can encode 

them using strings and then these routes may be called chromosomes. The 

individual cities along the route may be called genes.

Once you have to find out different types of solutions, you can 

represent them as a set. This set is called a candidate solution set. It is a 

collection of different chromosomes. Once you have all these solutions, 

the next step is to decide which ones are the best and which ones to avoid. 

Genetic algorithms use different mathematical models and computer 

simulations to differentiate between the good and bad chromosomes.

There is an ideal number of chromosomes present inside a candidate 

solution. If you have too few, you’ll get a substandard solution. But if 

you have too many, it may lead to unnecessary computations. Figure 7-6 

shows the flowchart representing the process of genetic algorithm-based 

searching.
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Figure 7-6.  Genetic algorithm steps
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The Initialization step involves a random generation of a candidate 

solutions set. In the second step, Evaluation, you try to find a fitness value 

for each chromosome and then assign it to the determined value. The 

next four steps are used to generate more chromosomes in the candidate 

solution set using different methods. When you select the chromosomes 

with high fitness values and make copies of them, that is the Selection step. 

When you combine multiple chromosomes to get a better chromosome, 

this step is called recombination. When you try to modify the current 

candidate solution’s property, it’s called mutation. Lastly, when the new 

solutions replace the older ones, it is called replacement. You will repeat 

this process until a specific threshold is reached.

�Selection
One of the most famous methods in selection is tournament method. Once 

you have a candidate solution set, you select k members from it and run 

a tournament among them. The fittest member after the tournament is 

considered to be selected. This process continues several times to get the 

best members. An individual’s chance to participate in a tournament is 

called selection pressure. An entire algorithm of the tournament method is 

illustrated in Figure 7-7 and can be summed up by these points:

	 1.	 Select k individuals from the population and 

perform a tournament amongst them.

	 2.	 Select the best individual from the k individuals.

	 3.	 Repeat Steps 1 and 2 until you have a desired 

population size.
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�Recombination
In recombination, you use crossover methods to find the fittest members. 

Using the one-point crossover method (see Figure 7-8), you first select 

two chromosomes. You randomly select any one point in the two 

chromosomes and then exchange the genes present after that point. Two-

point crossover (see Figure 7-9) involves randomly selecting two points 

in the two chromosomes. The section between the two points is later 

exchanged.

Figure 7-7.  Tournament selection
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Figure 7-8.  One-point crossover

Figure 7-9.  Two-point crossover
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Apart from these two methods, you also have uniform crossovers and 

arithmetic crossover. In uniform crossover, the combination is random 

between the two parents. This means any feature can randomly be 

selected from either parent. In arithmetic crossover, any mathematical 

operation can be applied to the two parents to give you the resulting 

offspring. Figures 7-10 and 7-11 show uniform crossover and arithmetic 

crossover having binary operations.

Figure 7-10.  Uniform crossover

Figure 7-11.  Arithmetic crossover

�Mutation
As discussed, in mutation you try to change the property of chromosomes 

to check whether they become fit. In the Flipping (Bit Flip Mutation) 

method, genes are changed to their opposites. If a chromosome contains 

0 and 1, then the 0s are flipped to 1 and vice versa. The second method 
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is Interchanging (Swap Mutation), where you select any two points in a 

chromosome and then the genes at those positions are interchanged. 

In Reversing (Inversion Mutation), you select a random point and the 

genes after that point are reversed, just like the flipping method. If, from 

the entire chromosome, a subset of genes is selected and then shuffled 

randomly, this is called a scramble mutation. Figures 7-12 through 7-15 

illustrate these concepts of mutation.

Figure 7-12.  Bit flip mutation

Figure 7-13.  Swap mutation
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�Replacement
If a child is fitter, you randomly select two less fit parents in the population 

and replace them with the children. This is called random replacement. 

This can be subdivided into weak parent replacement and both parents 

replacement. In weak parent replacement, only the weaker parent is 

replaced, while in the latter method, both parents are replaced.

Figure 7-15.  Scramble mutation

Figure 7-14.  Inversion mutation
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�Stopping
Finally, when it comes to stopping the genetic algorithm, you can use 

several methods. You can stop the process when the number of children 

generated crosses a threshold. You can also stop based on the threshold 

of the time elapsed. The most regressive process is when you stop based 

on the fitness value. This means the algorithm will stop only if you are not 

getting any major change in the fitness of the offspring.

Now that you have learned about the basics required for discussing the 

advanced Fuzzy Architecture, let’s continue this chapter by discussing the 

first architecture—Fuzzy Adaptive Learning Control Network (FALCON).

�Fuzzy Adaptive Learning Control Network 
(FALCON)
You learned about Adaptive Neuro-Fuzzy Inference Systems in the 

previous chapter. It takes advantage of neural networks to predict the 

Fuzzy Output based on the Fuzzy Inputs. FALCON uses the power of 

genetic algorithms and Fuzzy Clustering to learn the patterns from the 

input and then predict the output.

To construct a FALCON network automatically, you use a hybrid 

algorithm, and it’s called FALCON-GA (FALCON Genetic Algorithm). To 

construct the network, FALCON-GA requires the following steps:

•	 Fuzzy Clustering

•	 Genetic algorithm

•	 Backpropagation
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This section uses the Fuzzy Clustering approach to find the clusters 

in the input and output spaces using the training data. Then it uses 

genetic algorithms to find the Fuzzy Rules by looking at the association 

between the input and the output clusters found in the first step. Finally, 

the backpropagation method will fine-tune the membership functions 

of the input and output variables. Figure 7-16 shows a FALCON network 

generated using FALCON-GA.

Figure 7-16 shows a proposed FALCON in the paper by Cheng-Jian Lin 

and Chin-Teng Lin (1997). This architecture consists of five layers. Layer 1 

is the input layer. Layer 2 defines the membership functions of the input 

nodes from the previous layer. Layer 3 consists of a Fuzzy Rulebase derived 

from the first two layers. Layer 4 helps in deriving the consequents of the 

Fuzzy Rules.
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Figure 7-16.  Proposed FALCON (Cheng-Jian Lin, & Chin-
Teng Lin. (1997), an ART-based fuzzy adaptive learning control 
network. IEEE Transactions on Fuzzy Systems, 5(4), 477–496. 
doi:10.1109/91.649900)
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Finally, in Layer 5, you get the output, which is then compared to the 

desired output, and fed back in.

�Neuro-Fuzzy Systems for Classification 
of Data (NEFCLASS)
NEFCLASS is a special class of Fuzzy Perceptron. It has a total of three 

layers. In between each layer is where weight transfer happens. These 

weights are Fuzzy Sets, while in the hidden layers, each node represents a 

Fuzzy Rule. The output layer explains the patterns of classes.

The model is trained on the input data to find a rule that segregates 

similar patterns into several classes. Hence, NEFCLASS is a supervised 

learning approach, where the error is minimized using backpropagation.

The NEFCLASS rulebase follows this structure:

If x is and x is and x isn n1 1 2 2m m m¼

then x x x belongs to Class in1 2, ,   ¼( )

NEFCLASS can be used to learn the structure of these rules from the 

training data and then learn the shape of their membership functions. 

For each input xi, there can be qi Fuzzy Sets and k rules. The output of the 

NEFCLASS can be represented by:

j x c c cn( ) = ¼{ }1 2, , ,

Figure 7-17 provides an example NEFCLASS structure. It divides two 

inputs into two output classes with the help of five Fuzzy Rules.
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�Fuzzy Inference Software (FINEST)
The FINEST tool is used to build a Fuzzy Knowledge-based system, 

developed by the Laboratory of International Fuzzy Engineering (LIFE). 

FINEST consists of a small processing component called a unit (see 

Figure 7-18). Units are used to represent knowledge. Their main task is to 

Figure 7-17.  An example NEFCLASS structure
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take the input, process it in a specific way, and produce some output. The 

following is a list of units in FINEST, based on usage:

•	 Rule units

•	 Function units

•	 External units

•	 Memory units

•	 Composite units

�Rule Unit
Rule units contain one or more Fuzzy Rules. They are used for the 

inference of the input data. The result is output through the rule unit’s 

output inference.

�Function Unit
This unit uses LISP for processing. It takes input data, evaluates it, and 

then outputs the evaluated value. It has some configurable parameters 

for the task of fine-tuning. The major use of a functional unit is for the 

defuzzification process.

Figure 7-18.  View of a unit
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�External Unit
This unit is an executable UNIX file. It is an inconfigurable component. 

The computations that are done are in the form of a UNIX process.

�Memory Unit
This unit is used to store the status of a system. It is used to store the 

intermediate results as well. Different units talk with this unit and extract 

the values.

�Composite Unit
When multiple units are combined, they are called a composite unit (see 

Figure 7-19). They are used to build a complete hierarchical system.

Figure 7-19.  Structure of a composite unit (Tano, S., Miyoshi, T., 
Kato, Y., Oyama, T., Arnould, T., Bastian, A., & Umano, M. (n.d.). 
Fuzzy inference software-FINEST: overview and application 
examples, doi:10.1109/fuzzy.1995.409810)
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Some of the problems that FINEST can solve are these:

•	 Sometimes rules may represent vague meanings.

•	 Finding the best and suitable implication operator is 

difficult.

•	 It is difficult to combine the inference results of 

different processes.

•	 It’s difficult to do tuning automatically.

FINEST can be used to develop Fuzzy Systems or it can be used to 

quantify the fuzzy meaning of sentences.

�Summary
This chapter looked at some of the advanced applications of Fuzzy Neural 

Networks. It discussed some of the current work happening in the research 

domain. It also looked at genetic algorithms, which are combined with 

Fuzzy Neural Networks to make some very good models. The chapter also 

looked at some of the applications of the algorithms in Python.
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