
F U L L
COLOR

T R I S T A N B U N N

L E A R N P Y T H O N
V I S U A L L Y

C R E A T I V E C O D I N G W I T H
P R O C E S S I N G . P Y

LEARN PYTHON VISUALLY

San Francisco

L E A R N P Y T H O N
V I S U A L LY

C R E A T I V E C O D I N G W I T H P R O C E S S I N G . P Y

by Tr is tan Bunn

LEARN PYTHON VISUALLY. Copyright © 2021 by Tristan Bunn.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

25 24 23 22 21 1 2 3 4 5 6 7 8 9

ISBN-13: 978-1-7185-0096-9 (print)
ISBN-13: 978-1-7185-0097-6 (ebook)

Publisher: William Pollock
Executive Editor: Barbara Yien
Production Editor: Katrina Taylor
Developmental Editors: Annie Choi and Jill Franklin
Cover Design: Gina Redman
Interior Design: Octopod Studios
Technical Reviewer: Paddy Gaunt
Copyeditor: Sharon Wilkey
Compositor: Craig Woods, Happenstance Type-O-Rama
Proofreader: Emelie Battaglia
Indexer: BIM Creatives, LLC

For information on book distributors or translations, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1-415-863-9900; info@nostarch.com
www.nostarch.com

Library of Congress Control Number: 2020950273

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in it.

About the Author
Tristan Bunn kicked off his web design career back in the days of
PlayStation 1, grunge music, and dial-up modems. Since then, he’s worked
on a diverse range of digital projects for varied clients. He’s currently
involved in lecturing, research, and work that blends code, interaction,
interface design, and creativity. Tristan has years of experience teaching
coding for art, games, web, and other creative technologies.

About the Tech Reviewer
Paddy Gaunt studied engineering at Cambridge University (UK), working
in the chemical and gas industries as well as textile manufacturing. Much
of the time, he had the responsibility of implementing IT systems as these
became a more significant part of management and marketing. Since its
launch in 2012, he has been the chief maintainer of the pi3d Python mod-
ule for fast 3D graphics on the Raspberry Pi microcomputer.

B R I E F C O N T E N T S

Acknowledgments . xiii

Introduction . xv

Chapter 1: Hello, World! . 1

Chapter 2: Drawing More Complicated Shapes . 29

Chapter 3: Introduction to Strings and Working with Text . 53

Chapter 4: Conditional Statements . 69

Chapter 5: Iteration and Randomness . 85

Chapter 6: Motion and Transformation . 105

Chapter 7: Working with Lists and Reading Data . 133

Chapter 8: Dictionaries and JSON . 159

Chapter 9: Functions and Periodic Motion . 175

Chapter 10: Object-Oriented Programming and PVector . 207

Chapter 11: Mouse and Keyboard Interaction . 239

Afterword . 255

Index . 259

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS XIII

INTRODUCTION XV
Who Is This Book For? . xvi
What Is Python Mode for Processing? . xvi
What Are Algorithms? . xvii
What Is Creative Coding? . .xviii
Where Can I Find Help? . xx

Online Resources . xxi
Source Code and Solutions . xxi

What’s in This Book? . xxi
Let’s Go! . xxii

1
HELLO, WORLD! 1
Processing Installation and Python Mode Setup . 2
Your First Sketch . 4

Comments . 6
Whitespace . 7
Errors . 8
Color . 8
Fills and Strokes . 11
Background Color . 13

Color Modes . 14
2D Primitives . 16

triangle() . 17
ellipse() . 17
quad() . 18
line() . 18

Challenge #1: Rainbow Task . 18
Variables . 19
Arithmetic Operators . 21

Basic Operations . 21
Modulo Operator . 23
Arcs . 24

Challenge #2: Disk Usage Analyzer . 27
Summary . 28

2
DRAWING MORE COMPLICATED SHAPES 29
Displaying a Grid . 30
Drawing Curves Using Catmull-Rom Splines . 31

Curving Lines with curve() . 32
Changing Curves with curveTightness() . 34

C O N T E N T S I N D E T A I L

CREATIVE CODING WITH PROCESSING.PY III
About the Author .v
About the Tech Reviewer .v

ACKNOWLEDGMENTS XIII

INTRODUCTION XV
Who Is This Book For? . xvi
What Is Python Mode for Processing? . xvi
What Are Algorithms? . xvii
What Is Creative Coding? .xviii
Where Can I Find Help? . xx
Online Resources . xxi
Source Code and Solutions . xxi
What’s in This Book? . xxi
Let’s Go! . xxii

1

HELLO, WORLD! 1
Processing Installation and Python Mode Setup . 2
Your First Sketch . 4
Comments . 6
Whitespace . 7
Errors . 8
Color . 8
Fills and Strokes . 11
Background Color . 13
Color Modes . 14
2D Primitives . 16
triangle() . 17
ellipse() . 17
quad() . 18
line() . 18

CHALLENGE #1: RAINBOW TASK 18
Variables . 19
Arithmetic Operators . 21
Basic Operations . 21
Modulo Operator . 23
Arcs . 24

CHALLENGE #2: DISK USAGE ANALYZER 27
Summary . 28

x Contents in Detail

Drawing Bézier Curves . 36
Using the bezier() Function . 36
Positioning Anchor and Control Points . 38

Drawing Shapes Using Vertices . 40
Bézier Vertices . 43

Using Vector Graphics Software for Generating Shapes . 50
Summary . 51

3
INTRODUCTION TO STRINGS AND WORKING WITH TEXT 53
Strings . 54

Creating Strings in Python . 54
Using Concatenation and String Formatting . 56
Working with String Length . 57

String Manipulation . 57
Slice Notation . 58
String Methods . 60

Typography . 62
Fonts . 63
Text Functions . 64

Summary . 67

4
CONDITIONAL STATEMENTS 69
Control Flow . 70
Conditional Statements . 71

The Boolean Data Type . 71
Relational Operators . 72
if Statements . 73
elif Statements . 76
else Statements . 77
Logical Operators . 78

Challenge #3: Four-Square Task . 80
Summary . 83

5
ITERATION AND RANDOMNESS 85
Iteration . 86

Using Iteration to Draw Concentric Circles . 86
while Loops . 87
for Loops . 90

Challenge #4: Create Line Patterns . 92
break and continue Statements . 92
Randomness . 94

random() Function . 94
Random Seed . 96

Truchet Tiles . 97
Summary . 103

Contents in Detail xi

6
MOTION AND TRANSFORMATION 105
Perceiving Motion . 106
Adding Motion to Processing Sketches . 108

The draw() and setup() Functions . 108
Global Variables . 111
Saving Frames . 115

Challenge #5: DVD Screensaver . 116
Transformations . 119

Processing Transformation Functions . 120
translate() . 120
rotate() . 123
scale() . 124
shearX() and shareY() . 125
pushMatrix() and popMatrix() . 126

Challenge #6: Analog Clock . 129
Summary . 132

7
WORKING WITH LISTS AND READING DATA 133
Introducing Lists . 134

Creating and Accessing Lists . 135
Modifying Lists . 136

Combining Loops and Lists . 138
Drawing Shapes by Using a List of Color Values . 140
Looping with enumerate() . 143

Creating Lists of Lists . 144
Challenge #7: Breakout Level. 150
Reading Data . 153

File Formats . 153
CSV . 154

Challenge #8: Games Sales Chart. 156
Summary . 158

8
DICTIONARIES AND JSON 159
Introducing Dictionaries . 160

Accessing Dictionaries . 161
Modifying Dictionaries . 162

Nesting Dictionaries and Lists . 162
Combining Loops and Dictionaries . 163

Iterating Keys . 164
Iterating Values . 165
Iterating Items . 165

Working with JSON . 167
Understanding JSON Syntax . 168
Using Web APIs . 169
Reading in JSON Data . 170

Challenge #9: Coffee Chart. 172
Summary . 173

xii

9
FUNCTIONS AND PERIODIC MOTION 175
Defining Functions . 176

Creating a Simple Speech Bubble Function . 176
Drawing Compound Shapes Using a Function . 179
Adding Arguments and Parameters . 181
Using Keyword Arguments . 183
Setting Default Values . 184
Mixing Positional and Keyword Arguments . 186
Returning Values . 187

Defining Functions for Periodic Motion . 188
An Introduction to Trigonometric Functions . 190
Circular and Elliptical Motion . 192
Sine Waves . 195
Lissajous Curves . 198
Creating Screensaver-Like Patterns with Lissajous Curves 203

Summary . 206

10
OBJECT-ORIENTED PROGRAMMING AND PVECTOR 207
Working with Classes . 208

Defining a New Class . 209
Creating an Instance from a Class . 210
Adding Attributes to a Class . 211
Adding Methods to a Class . 216

Splitting Your Python Code into Multiple Files . 222
Programming Movement with Vectors . 224

The PVector Class . 225
Moving an Amoeba with PVector . 226

Adding Many Amoebas to the Simulation . 233
Challenge #10: Collision Detection . 236
Summary . 237

11
MOUSE AND KEYBOARD INTERACTION 239
Mouse Interaction . 240

Mouse Variables . 240
Mouse Events . 243
Creating a Paint App . 243

Keyboard Interaction . 251
Adding Keyboard Shortcuts to the Paint App . 251

Challenge #11: Adding Paint App Features . 252
Summary . 253

AFTERWORD 255

INDEX 259

A C K N O W L E D G M E N T S

I’ve been a fan of No Starch Press books for years, and I’m thrilled to have
them publish my first book. I’d like to thank everybody there, in particular
my editors, Jill Franklin and Annie Choi, for their invaluable feedback and
direction. Thanks to Paddy Gaunt, the technical reviewer, for checking over
all my code and offering some excellent suggestions to improve it.

Additionally, I’d like to thank the creators, maintainers, and community
surrounding Processing and its related projects, and also the developers of
the Python programming language. You’ve inspired my students and me, and
it’s a privilege to share your hard work with everybody who reads this book.

When I first encountered programming
code, I stared, amazed and bewildered, at

a screen of obscure commands and symbols
and wondered how anybody could understand

it, let alone write it. I’d hit the F5 key, and the program
would magically spawn a cityscape in which two play-
ers, depicted as gorillas, could hurl explosive bananas
at each other. I tried changing a few lines to see what
would happen, and on occasion, it was something pre-
dictable or cool. More often than not, the game would
simply fail to run. In a futile attempt to be helpful, the computer would diag-
nose my errors, rambling on about syntax and “illegal” operations of varying
description.

For some years thereafter, I was content to avoid learning to program.
That began to change when I became interested in making my creative
work more interactive. You may already have encountered a few of the same

I N T R O D U C T I O N

xvi Introduction

barriers that frustrated me. Maybe you were getting by just fine with visual
tools but then hit a wall. Or to your disappointment (and horror?), you dis-
covered that what you sought to accomplish required delving into code.

Software applications, with all of their graphical widgets, make us feel
like we’re in control. The illusion, however, soon fades when you discover
that the tool you desire is missing. Through learning to program, you gain
a true mastery of your computer.

Who Is This Book For?
This book assumes no prior programming experience. It strives to make
the process of learning to program as visual and entertaining as possible.
The content is based on my extensive experience teaching first-time coders,
designers, and interactive media students. The skills and knowledge you’ll
gain are fundamental to programming for an ever-expanding horizon of
creative technologies, such as games, the web, augmented/virtual reality,
and even visual effects for films.

If you’re an artist, student, designer, researcher, or just somebody keen
on picking up coding skills, Python Mode for Processing is excellent for
learning to program in a visual context.

For anybody with prior programming experience, this book would be
useful for learning Python, Python Mode for Processing, or creative coding
techniques.

You may have experience with another visual programming language—
something like Scratch, where you connect together graphical elements like
boxes, icons, and arrows. Python is not such a language—rather, it is a tex-
tual programming language that requires you to type code. To make learn-
ing visual, though, you’ll focus on writing code that produces drawings,
patterns, animations, data visualizations, user interfaces, and simulations.
This approach not only makes for cool-looking graphics, but also helps you
visualize the underlying concepts of programming.

What Is Python Mode for Processing?
Python Mode for Processing combines the Python programming language and
Processing, a development environment for interactive and graphics program-
ming. You’ll also see Python Mode for Processing referred to as Processing.py.
The project started as a command line tool named Processing.py, but its
developer decided to label it Python Mode when it was made available for
the Processing development environment. In this book, you can consider the
terms largely interchangeable.

Python is one of the most popular programming languages in use
today. There are many good reasons for this, but here’s why you should
care. First, Python is a beginner-friendly language. It’s more approachable
than languages like Java or C++, so you’ll find it easier to read, write, and

Introduction xvii

understand. Second, it’s a general-purpose language, suitable for program-
ming artificial intelligence (AI), games, simulations, web applications, and
just about everything in between.

Processing, which has been around since the early 2000s, is composed
of a programming language and an editor for writing and compiling code.
It provides a collection of special commands that allow you to draw, animate,
and handle user input by using code. The creators, Casey Reas and Ben Fry,
developed Processing to make programming more accessible for designers
and artists, although its thriving user base has grown to include researchers,
hobbyists, and educators.

Java is the basis for the original Processing programming language,
but other variants have since appeared, including JavaScript (p5.js) and
Ruby (JRubyArt) versions. In 2010, Jonathan Feinberg created Processing.py,
which you can think of as a sort of extension for Processing that allows you
to write Python instead of Java-esque code.

Both Python and Processing are open source and won’t cost you a cent.
What’s more, you can use them on just about any platform, including Linux,
macOS, and Microsoft Windows.

What Are Algorithms?
You’ll encounter the term algorithm frequently in the domain of pro-
gramming. You can think of an algorithm as a set of rules a computer or
machine must follow to achieve a particular goal. As an example, an algo-
rithm for making a cup of instant coffee would read as follows:

 1. Place one teaspoon of coffee granules in a mug.

 2. Fill the kettle with water.

 3. Switch on the kettle.

 4. Once the water has boiled, add 240 ml boiling water to the mug.

 5. Add one level teaspoon of sugar to the same mug.

 6. Stir the contents.

 7. Serve.

However, this set of steps is insufficient for programming a real-life
coffee-making robot. Should the sizes of the mugs vary, smaller ones would
overflow. Furthermore, the robot would ignore any requests for milk or
extra sugar. Computers cannot make any assumptions, and require explicit
and unambiguous direction, communicated in a language that machines
understand—like Python. Learning the Python language may be the hur-
dle you face initially, but as you grow more fluent, the challenge will shift
toward the mastery of algorithmic thinking.

xviii Introduction

What Is Creative Coding?
Creative coding is computer programming for creative output. This broad term
encompasses, but is not limited to, computer-generated audio and visual art,
interactive installations, experimental games, and data visualizations.

Take, for example, Frederic Brodbeck’s Cinemetrics project. Using Python,
Brodbeck developed a program that analyzes DVD movie data to generate
visual fingerprints of films. The fingerprint is an open ring formed from many
segments; a single segment represents a span of 10 shots, and the concentric
bands show the color breakdown for each of those segments. The diagonal
length of each segment indicates the amount of motion. Figure 1 is a
Cinemetrics fingerprint for the film Quantum of Solace (2008).

amount of
motion

chapter
color palette

1 segment
= 10 shots

beginning

end

Figure 1: Quantum of Solace fingerprint, created by Frederic Brodbeck. Screenshot from http://cinemetrics .site/.

The fingerprints can also be animated, in which case motion is instead
visualized using pulsating segments. An interactive interface provides a
selection of presets and filters so that you can arrange fingerprints along-
side one another and make comparisons—for example, between originals
and remakes, different genres, the works of a single director, and so forth.
Figure 2 compares (from left to right) 2001: A Space Odyssey (1968), The
Simpsons Movie (2007), and a soccer match.

http://cinemetrics.site/

Introduction xix

Figure 2: Fingerprints comparing (left to right) 2001: A Space Odyssey, The Simpsons Movie, and a soccer
match. Screenshots from http://cinemetrics .site/.

Many creative coding projects employ a similar underlying approach, in
which data is fed into a program to influence how it controls output. Music
visualizations with real-time audio synchronization—like those featured
in popular media player software—are a good example. However, you can
experiment with plenty of other data sources, such as web feeds, fitness track-
ers, environmental sensors, and a plethora of public datasets.

In some instances, it’s useful to opt for randomized data values.
Consider procedurally generated game content. As opposed to construct-
ing levels manually, you can program games to generate dungeon layouts,
terrain, narrative elements, and enemy spawn locations automatically. Of
course, such games should include sensible constraints; for instance, a cap
on the total number of enemies that can appear at once, and algorithms
for ensuring that stage layouts are not impossible to traverse.

Game characters may be composed using a random selection of modu-
lar components, or generated entirely from shapes and formulas. As an
example, I’ve written a Processing Python program that generates the
randomized microbial beasties displayed in Figure 3. The code—an adap-
tation of Lieven Menschaert’s NodeBox script Aquatics!—spawns a creature
with a random fill color, shape (defined by something named the superfor-
mula), and no fewer than three eyes. There’s a 70 percent chance that hair
will grow along the creature’s edges, which can be swayed by the force of a
randomly directed current.

http://cinemetrics.site/

xx Introduction

Figure 3: A Processing.py adaption of Lieven Menschaert’s NodeBox script Aquatics!

Countless examples of cool, creative coding projects exist—from
robots that doodle and write poetry, to evolutionary simulators, and even
a program that pores over satellite imagery in search of architecture or
infrastructure that resembles letters (The Aerial Bold Project by Benedikt
Groß and Joey Lee, 2016).

Perhaps this creative coding thing sounds a bit too artsy for you?
Processing also isn’t ideal for that race car sim you’ve always dreamed of
building, and it’s definitely no good for backend web development. That’s
okay. Creative coding with Processing’s Python Mode need not be the ulti-
mate goal of reading this book. Think of it as a starting point for exploring
Python, other frameworks, creative applications for coding, and program-
ming in general.

Where Can I Find Help?
Programming is rewarding, in part because it’s challenging. If you find
yourself struggling with something, do not stress; that’s normal! With a
little perseverance, you’ll soon grasp whatever has you snagged.

Introduction xxi

Online Resources
If you’re getting nowhere, reach out to online communities. You’ll find a
dedicated category for Processing.py in the official Processing forum at
https://discourse.processing.org/. You’ll often discover that somebody has already
encountered and received a solution for the challenge you’re facing; if not, go
ahead and create a new topic. Incidentally, the author of this book is known
to lurk about in this friendly and welcoming corner of the internet.

The official Python Mode reference is available at https://py.processing
.org/reference/. Each entry includes a description and brief code example. It’s
handy to keep this web page open while you work in the Processing develop-
ment environment.

Source Code and Solutions
You’ll be typing a lot of code. This is a good thing because the best way
to learn is by doing. At times, however, you might mistype something or
be unable to figure why your code refuses to work. In such instances, it
can be helpful to have access to a complete, working version of the file.
You can access all of the code in this book, as well as solutions to the chal-
lenges in each chapter, at https://github.com/tabreturn/processing.py-book/.
You can also find any updates to this book at https://www.nostarch.com/
Learn-Python-Visually/.

What’s in This Book?
This book begins with the basics and builds up toward more advanced
topics as you progress. Each chapter, therefore, requires a grasp of the
concepts introduced in the chapters preceding it. You’ll be working, step
by step, through a series of practical tasks. You’ll also find some theory,
plenty of visuals, and challenges to consolidate what you’ve learned.

The following outline provides a brief overview of the contents in
each chapter:

Chapter 1: Hello, World! This chapter covers the installation and
setup procedure for the book and introduces the basics of drawing with
code. You’ll also learn how computers manage color, how you can store
and reuse values (using variables), and how to perform basic arithmetic
operations using Python.

Chapter 2: Drawing More Complicated Shapes Having covered some
drawing essentials in the first chapter, you’ll move on to drawing more
organic shapes, as opposed to geometric ones. You’ll learn to define
shapes by using points (or vertices) and curves, which enable you to
draw just about any shape with code.

Chapter 3: Introduction to Strings and Working with Text In this
chapter, you’ll learn how to use Python’s string features to manipulate
text. You’ll also learn how to use Processing functions to draw text to the
display window, in different styles and colors, and in different fonts.

https://discourse.processing.org/
https://github.com/tabreturn/processing.py-book/.
https://py.processing.org/reference/

xxii Introduction

Chapter 4: Conditional Statements This is where you really begin to
think like a programmer. In this chapter, you’ll introduce control flow
to your programs. In other words, you’ll learn how to write programs
that can make decisions, executing different actions to respond to dif-
ferent situations.

Chapter 5: Iteration and Randomness In this chapter, you’ll learn how
to write programs that can repeat an operation a specified number of
times or until a certain requirement is met. Toward the end of the chap-
ter, you’ll experiment with randomness and creating tiled patterns.

Chapter 6: Motion and Transformation This chapter focuses primar-
ily on adding motion to your Processing programs and transforming the
drawing space. You’ll also learn how to save frames as images and how to
get time values from your computer. You’ll use these skills to create an
animated screensaver and analog clock.

Chapter 7: Working with Lists and Reading Data Python lists will
unlock powerful ways to manage and manipulate values in collections.
You’ll explore techniques for data visualization. You’ll also learn to read
in list data from external files. For the final task, you’ll render a chart by
using a CSV file.

Chapter 8: Dictionaries and JSON Dictionaries are similar to lists
in that they store collections of items. With dictionaries, however, you
access items by using a key (usually a word) instead of referring to the
item position. Once again, you’ll get to use your new dictionary skills
for data visualization. You’ll also learn to work with JSON data.

Chapter 9: Functions and Periodic Motion You’ll use functions to
divide a program into named sections of reusable code. This will make
your code more modular, and easier to read and modify. You’ll also delve
into some trigonometry for generating elliptical and wave-type motions.

Chapter 10: Object-Oriented Programming and PVector You can use
object-oriented programming to structure programs by modeling real-
world objects. In this chapter, you’ll employ an object-oriented approach
to building an amoeba simulation. You’ll also learn to program the
amoebas’ motion by using Processing’s PVector class.

Chapter 11: Mouse and Keyboard Interaction In this chapter, you’ll
add interactivity to your programs. Processing can handle input from
various devices, but here you’ll focus on mouse and keyboard input to
build a paint app. In the process, you’ll learn about event functions and
how to control Processing’s draw loop behavior.

Let’s Go!
The speed at which you progress through these chapters is likely to be influ-
enced by your prior experience in similar areas. If you’ve done any type of
programming before, Python or otherwise, you’ll encounter some familiar
concepts. That said, it’s not a race! Enjoy the ride, stop for breaks, and if
you’re feeling really inspired, feel free to head off-road.

When learning a new programming lan
guage, it’s a longstanding tradition that

the first code you write is to display the
message ‘Hello, World!’ In keeping with that

tradition, you’ll do that here too—but that’s not
all. This chapter introduces everything you need to
understand the fundamentals of Processing, and
you’ll quickly move on from a simple ‘Hello, World!’
to drawing with code.

To get started, you’ll set up Python Mode for Processing so you can create
your own sketches. Along the way, you’ll learn the basic rules of writing code
in Processing, as well as how to deal with errors, use variables, and perform
arithmetic operations. You’ll also learn about how Processing handles color
and how to measure angles using radians. By the end of this chapter, you’ll be
comfortable drawing colorful geometric shapes by using various Processing
functions. Let’s get started.

1
H E L L O, W O R L D !

2 Chapter 1

Processing Installation and Python Mode Setup
Before writing any code, you first need to set up Python Mode for Processing.
Head over to the Processing downloads web page (https://processing.org/
download/) and grab the version of Processing appropriate for your system
(Windows, Linux, or macOS). As of January 2021, Processing 3.5.4 is the lat
est stable release.

Processing does not employ an installation program. Instead, you simply
extract the file you have downloaded (usually a .zip archive) and run the
application. The exact process varies slightly between operating systems:

•	 On Windows, unzip all of the contents by rightclicking the file and
selecting Extract All, and then follow the instructions. Extract or move
the folder to any location on your computer, including your Program
Files folder or Desktop.

•	 On macOS, unzip the file by doubleclicking it, and then move the
extracted app to any location on your computer, including your
Applications folder or Desktop.

•	 The Linux version of Processing is a .tar archive. Extract or move the
folder to any location on your computer, including your home folder
or desktop.

Once you’re finished, open the newly extracted folder. Figure 11 shows
an abridged listing of what you can expect to see in your file manager. Next,
locate and run the executable file named processing. On macOS, you’ll just
have a single file named processing.

processing-x.x.x

core

... ...
processing
tools
modes
lib
java

Figure 1-1: The contents of a freshly
extracted processing folder for Windows
or Linux

The application layout may vary slightly among systems and Processing
versions, but the key elements are outlined in Figure 12. If you’re a Mac user,
you’ll find the menu bar in its usual position at the top of your screen. Note
that the upper right button in the Processing interface is labeled Java. This is
because Processing comes bundled with Java mode as the default.

https://processing.org/download/
https://processing.org/download/

Hello, World! 3

Java

Filename

Console

code goes here ...1

Processing

File Edit Sketch Tools Help

Toolbar

Menu bar

Tabs

Code editor

Message area

Console area

Figure 1-2: The Processing interface

Next, activate Python Mode. Click the Java button and select Add Mode
from the dropdown menu; then, from the Contribution Manager window
that appears, choose Python Mode for Processing. Finally, click Install. You
can now change between Python and Java mode by using the dropdown
menu. Switch to Python (Figure 13).

Python

Processing

File Edit Sketch Tools Help

Figure 1-3: The button to the right indicates that Python Mode is activated.

You’re now ready to write your first lines of code!

N O T E For a demonstration of what Processing can do, take a look at the Python
examples (FileExamples) included with Processing. To run any example,
use the play () button.

4 Chapter 1

Your First Sketch
Processing refers to programs as sketches. Given the visual and artistic nature
of what you are likely to produce, it’s a fitting term. Select FileNew to cre
ate a new sketch, or use the associated keyboard shortcut (listed alongside
the menu entry).

Enter the following lines of code:

size(500, 500)
print('Hello, World!')

I’ll go through the specifics of this code in a bit. For now, save the
sketch by using FileSave As and name it hello_world.

You will notice that Processing creates a new folder named hello_world;
within it, there are two files: hello_world.pyde and sketch.properties (Figure 14).
Depending on your system’s configuration, you may or may not see the file
extension (.pyde). To reopen any sketch, locate and open the .pyde file.

hello_world

hello_world.pyde
sketch.properties

Figure 1-4: The contents of your hello_world
sketch folder

You may want to add other assets to your sketch folders, such as images
and fonts, but more on that later.

Next, click the play () button to execute the code. Better yet, use the
associated keyboard shortcut: CTRLR for Windows and Linux, or R for
macOS. A gray 500 × 500 pixel display window should appear. In the console,
which is the black area at the bottom of the editor, Processing should dis
play Hello, World! (Figure 15).

Now let’s get back to the code you entered in this file; it uses two
Processing functions: size() and print(). Functions are named instructions,
sort of like dog commands for computers. Some commands are simple, like
“sit,” but something like “fetch” may involve specifying what it is that Fido
should retrieve.

Python functions consist of a function name followed by opening and
closing parentheses, which is where you provide arguments. In the case of my
dogcommand analogy, “ball” could be an argument for “fetch.” The size()
function (Figure 16) takes two arguments: the first represents the width of
your sketch, and the second is the height.

In this case, the display window is 500 pixels wide by 500 pixels high.

Hello, World! 5

hello_world

Console

File Edit Sketch Tools He

Hello, World!

hello_world

1
2

size(500, 500)
print('Hello, World!')

Figure 1-5: Display window (left) and an editor with ′Hello, World!′ displayed in
the console (right)

Function
name

width height

Arguments

size(500, 500)

Figure 1-6: Anatomy of a size() function

The print() function writes to the console. This function takes a single
argument: the phrase 'Hello, World!' Because this is text—or technically,
string data—you need to wrap it in quotation marks. You can use single or
double quotes, but be sure to use the same type for both opening and clos
ing quotes.

Python classifies every value according to a data type, which deter
mines how the value is handled and the operations you can perform on
it. For example, you can perform arithmetic operations—like division or
subtraction—on numeric data types but not on strings. In this chapter,
you’ll deal with three data types:

String Text data, like ‘Hello, World!’

Integer Numbers without decimal points, such as 1, –27, or 422

Floating-point Numbers that include a decimal point, such as 1.618

6 Chapter 1

What separates Processing code from standard Python code are some
of its functions; the size() function, for example, is Processingspecific. In
other words, it won’t work outside the Processing environment. The print()
function, on the other hand, is a builtin element of the standard Python
programming language. It works in Processing’s Python Mode and any
other Python program.

Throughout this book, I usually refer to Processingexclusive features in
the context of Processing, and standard Python features with the term Python.
If this is confusing, think of them as one and the same. At this point, distin
guishing Processing from Python isn’t crucial; you will understand the dif
ferences in time.

HOW DO I KNOW W H AT A RGUMEN T S TO PROV IDE?

The type, number, and order of arguments vary according to the function,
and some functions don’t require arguments. For a complete list of Processing
functions and the arguments they require, as well as many standard Python
elements, refer to the Processing.py reference at https://py.processing.org/
reference/.

This book covers a lot of that online content, but the reference should be
your go-to source for in-depth descriptions of each function.

Comments
If you want Python to ignore any part of your code, you can comment it
out. This feature is useful for leaving notes, in plain English, to yourself
or anybody else editing your code. Let’s add a few comments to your
hello_world file:

1 # dimensions of the display window measured in pixels
size(500, 500)
print('Hello, World!') # writes hello world to the console area

2 '''
This is a multiline comment.
Any code between the opening and closing triple-quotes is ignored.
'''
print('How are you?')

Comments come in two types: single and multiline. As shown here,
use a # character for singleline comments 1 and ''' (or """) for multiline
comments 2.

https://py.processing.org/reference/
https://py.processing.org/reference/

Hello, World! 7

While working through the tasks in this book, add comments to remind
yourself how the code works. Comments are also useful for debugging code.
For instance, if you suspect that some lines are causing your program to
fail, you can temporarily disable them by commenting them out.

Whitespace
Python, and by extension Processing’s Python Mode, is whitespace
sensitive. You need to be careful where you insert space characters or tabs.
As an example, add a few spaces to the beginning of the size() line; then
run the sketch:

dimensions of the display window measured in pixels
 size(500, 500)
print('Hello, World!') # writes hello world to the console area
. . .

When you run the sketch, the message bar turns red, and Processing
displays an error message (Figure 17). Python relies on indentation to
distinguish blocks of code. The indented line breaks the program because
Python did not encounter any code to define a new block for the size()
function.

Console

dimensions of the display window measured in pixels
 size(500, 500)
print('Hello, World!') # writes hello world to the console area
'''
This is a multi-line comment.
Any code between the opening and closing triple-quotes is ignored.
'''
print('How are you?')

processing.app.SketchException: mismatched input ' '
expecting ...

mismatched input ' ' expecting EOF

hello_world

Figure 1-7: A whitespace error

Correct the code by removing the problematic space characters you’ve
just added.

You’ll come to understand more about when and where to use inden
tation as you progress through these chapters. For now, though, pay care
ful attention to any space and tab characters that affect the indentation of
your code.

8 Chapter 1

Errors
Whitespace issues are not the only error type you will encounter. On occa
sion, you’re likely to miss the odd parenthesis, comma, or quotation mark,
especially when starting out. Try removing the closing parenthesis from
your size() function, like so:

dimensions of the display window measured in pixels
size(500, 500
print('Hello, World!') # writes hello world to the console area
. . .

Now run the code and observe the console output. Note the suggestion
in the message bar (Figure 18). Pretty smart, huh?

Console

dimensions of the display window measured in pixels
size(500, 500
print('Hello, World!') # writes hello world to the console area
'''
This is a multi-line comment.
Any code between the opening and closing triple-quotes is ignored.
'''
print('How are you?')

processing.app.SketchException: Maybe there's an unclosed paren or...

Maybe there's an unclosed paren or quote mark somewhere before this line?

hello_world

Figure 1-8: The alert in the message bar (red) suggests a possible cause for the error
that Processing encountered.

This is an example of a syntax error, and it’s not the first you’ll encoun
ter. Just as English sentences must begin with a capital letter and end with
a full stop, Python functions must have an opening and a closing parenthe
sis. When you have multiple arguments, you need to separate them using
commas. This set of rules is called syntax. If you don’t conform to the rules,
Python will be confounded and report an error.

Error messages are not always so clear or accurate, but they can provide
a clue as to where to start searching for bugs. Copying and pasting the mes
sages into a search engine can sometimes help you find a solution.

Color
You can describe colors in various ways in Processing. To keep things simple,
I’ll stick with hexadecimal values for the first example. If you’re familiar with

Hello, World! 9

graphics software like Adobe Photoshop, Adobe Illustrator, Inkscape, or
GIMP, you may have seen hexadecimal values in the color picker for those
programs.

Processing includes its own color selector (Figure 19), which you can
access from the menu bar by selecting ToolsColor Selector. You can use
this color selector to mix and sample color values. The value that begins
with a hash mark (#) is the hexadecimal; you use the Copy button to copy
it, so that you can paste it into the code editor.

Color Selector

R
G
B

H
S
B

#66CE89

Copy

102
206
137

140°
50%
80%

Figure 1-9: Processing color selector

Your screen displays color pixels by mixing three primary colors—much
as you mix red, yellow, and blue paint in art class. However, your screen relies
on red, green, and blue primaries instead. Furthermore, because light blends
color in an additive manner, pixels that combine all three primaries at full
intensity appear as white. Conversely, a complete absence of any color results
in a black pixel. Other colors contain varied quantities of red, green, and
blue. For example, a bright red mixture is created as follows:

100% | 0% | 0%
A hexadecimal color value is composed of six hexadecimal digits

(0, 1, 2, . . . , 9, A, B, C, D, E, F) and can be split into three pairs. Each pair
corresponds to a primary color. Here’s the value for bright red:

#FF0000
The FF represents a red quantity; the middle 00 is for green; the right

most 00 is for blue. For reasons I won’t get into here, FF is the equivalent of
100 percent. Also, remember that you are mixing light, so #FFFFFF is white,
and #000000 is black. Here are some other examples:

100 percent blue #0000FF

Dark green #006600

Dark gray #505050

10 Chapter 1

Use the selector to experiment further and observe how the hexadeci
mal values change as you select different colors.

The fill() function sets the color used to fill shapes. It accepts up to
four arguments, depending on the color system you are using. For hexa
decimal color, use a single argument: the sixdigit value prefixed with a #,
wrapped in quotes.

Add the following line to the bottom of your hello_world sketch:

. . .
fill('#FF0000')

You have now set the fill color to red. To see this in effect, let’s draw a
rectangle. The rect() function is used for drawing rectangles, and it takes
four arguments:

rect(x_coordinate, y_coordinate, width, height)

The first two arguments specify the location of the rectangle’s upper
left corner (Figure 110). Processing’s xcoordinates begin from the left
edge of the display window; the ycoordinates begin from the top edge.

y_coordinate
x_coordinate,

0 500

500

width

height

x-axis

y-axis

Figure 1-10: Processing’s coordinate system

The xy coordinate for the upper left corner of the display window is
(0, 0), and the lower right is (500, 500). So to move the rectangle down,
increase the ycoordinate value. Add a new rectangle line to your hello_world
sketch:

. . .
fill('#FF0000')
rect(100, 150, 200, 300)

Hello, World! 11

Run the sketch to confirm that the output matches Figure 111.
Experiment with the rect() arguments to affect the rectangle’s size and
position.

hello_world

150

100
200

300

Figure 1-11: rect(100, 150, 200, 300)

You now should be familiar with Processing’s coordinate system. The
rect() is one of many drawing functions; you’ll be introduced to a few
more shortly.

In this section, you’ve also learned to define color using hexadecimal
values that describe different quantities of red, green, and blue light. And
you now can use a color picker, like the one included with Processing, to
mix and sample any values you require. You’ll see other systems for defining
color in Processing, but for most of this book, you’ll use hexadecimal.

Fills and Strokes
When you write a fill() line, every shape thereafter is filled in with the color
you specify. That color won’t change until Processing encounters the next
fill() line. In this way, Processing is like painting: you grab a brush and dip
it in paint, and then everything you paint is influenced by the brush and
color you last selected. When you want to paint in a different style or color,
you change out your brush or dip it in a different pot. If you want to disable
the fill altogether, use noFill().

Add the following code to the end of your hello_world file to draw a
smaller red rectangle, an orange square, and a square with no fill:

. . .

small red rectangle
rect(10, 15, 20, 30)

orange square

12 Chapter 1

fill('#FF9900')
1 rect(50, 100, 150, 150)

fill-less square
noFill()

2 square(250, 100, 150)

For a square, you have two options: use a rect() 1 with matching width
and height (third and fourth) arguments. Or, use the square() 2 function,
which takes three arguments: x, y, and extent.

Processing interprets lines of code from top to bottom. As a result,
shapes at the bottom of your code appear at the top of the visual “stack.”
So the previous code produces the shapes in Figure 112.

Figure 1-12: The no-fill square—the last line of
your code—is the topmost shape.

Stroke is another term for outline, and you’re likely to use the follow
ing three stroke functions: stroke() to change the color, strokeWeight() to
change the width, and noStroke() to disable the stroke altogether. Like
fill() and noFill(), the stroke functions affect everything below them.

For a white stroke, 3 pixels in width, insert the following lines above the
shape code:

. . .
stroke('#FFFFFF')
strokeWeight(3)

fill('#FF0000')
. . .

Hello, World! 13

The stroke() line affects every shape that follows it. Figure 113 shows
how all of the shapes now have white strokes.

Figure 1-13: Adding white strokes

For thicker strokes, you may want to specify whether the corners and
tips are rounded or sharp. For more information, consult the relevant
Processing.py reference entries for strokeCap() and strokeJoin().

Background Color
To change the background color, use the background() function. Add a back
ground line to the end of your sketch:

. . .
square(250, 100, 150)
background('#004477')

Run the sketch and note how everything has disappeared; the entire dis
play window is now a flat shade of blue. This is because background('#004477')
draws over everything before it, which will be useful when you start working
with animation. For now, move that line to the top of your code so you can
see the shapes again (Figure 114):

dimension of the display window in units of pixels
size(500, 500)
background('#004477')
. . .

Note that the background function can also accept an image as an
argument (I’ll introduce images in Chapter 2).

14 Chapter 1

Figure 1-14: Adding a background color

Color Modes
I’ll use hexadecimal color values for the rest of the chapter, but here’s a
quick introduction to other color modes, because at some point, you may
need to express colors in something other than hexadecimal. For example,
say you want to write code that darkens a bright red fill. First, you will recall
that this is a shade of bright red:

fill('#FF0000')

You can also represent this color as the following in RGB:

fill(255, 0, 0)

In this arrangement, each red/green/blue value is commaseparated.
As you might have already deduced, 255 is equivalent to FF (which itself is
equivalent to 100 percent). To make the red half as bright, you can subtract
127 from 255. However, trying to subtract 127 from FF is tricky because you’re
dealing with a mix of hexadecimal and decimal numbers. In this instance,
it’s easier to stick with decimal values (255 – 127 = 128).

To use the fill(255, 0, 0) notation, Processing must have its colorMode()
set to RGB. You don’t need to specify this, though, as it’s the default mode.
Here’s how it works: if Processing detects a single argument in quotes (like
'#FF0000'), it interprets it as hexadecimal, but if you provide three argu
ments, it automatically knows that you are using the system of 0 to 255.

However, you can use another mode: HSB. Once set to HSB mode, the
three fill() arguments represent hue, saturation, and brightness, respectively.
To better understand how those variables affect color, let’s take a look at the
color picker of GIMP, an open source image editor (Figure 115).

Hello, World! 15

Rotating the large triangle adjusts the H value between 0 and
360 degrees; the H (hue) field corresponds to the white line at the
triangle’s lower right tip. You move the small white circle (inside the
triangle) to adjust the S (saturation) and V (value) fields. Value and
brightness are interchangeable terms in this context, so the V corresponds
to the B in HSB.

Figure 1-15: Hue: 330 degrees; saturation:
90 percent; value/brightness: 80 percent

If you have GIMP installed, or software with a similar color picker,
I encourage you to experiment with it. To mimic the GIMP scheme in
Processing, set the color mode accordingly:

colorMode(HSB, 360, 100, 100)

The HSB represents the mode, 360 represents the range of degrees for hue,
and the two 100 arguments represent a range of 0 to 100 percent for satura
tion and brightness. You would now write a red fill as follows:

fill(0, 100, 100)

This is because bright red lies at 0 degrees of rotation on the hue
ring (which begins at “East” in the GIMP mixer) and has a saturation and
brightness of 100 percent (Figure 116).

 Figure 1-16: Hue: 0 degrees; saturation:
100 percent; value/brightness: 100 percent

16 Chapter 1

In HSB mode, shifting along the color spectrum—from red to orange
to yellow to green, and so on—is a simple matter of adding to or subtract
ing from the H value. Attempting the same in RGB mode is not so easy, as
you need to adjust the proportions of each primary color.

The chapters to come will cover even more on color. Consult the rel
evant Processing.py reference entries for colorMode() and fill() if you need
more detail.

2D Primitives
Let’s move on to drawing basic shapes. Begin a new sketch (FileNew) and
save it as primitives_2d (FileSave As). Add this code to set things up before
proceeding:

size(600, 300)
background('#004477')
noFill()
stroke('#FFFFFF')
strokeWeight(3)

Now when you run the sketch, thanks to background('#004477'), an empty
blue display window appears. Any shapes that you draw will have no fill and
a white stroke of 3 pixels.

Next, draw three points by using the point() function (Figure 117):

point(100, 25)
point(200, 25)
point(150, 75)

The point() function accepts two arguments, which represent the x and
ycoordinates. The active strokeWeight() determines the size of the points.

Figure 1-17: Three points drawn with the point() function

Hello, World! 17

What follows are descriptions for several drawing functions, along with
code to add to your working sketch. Experiment with the arguments to see
how the finished version (Figure 118) responds.

Figure 1-18: An assortment of 2D primitives

triangle()
The triangle() function draws a triangle. The six arguments represent three
xy coordinate pairs. I have grouped each xy pair by removing the space
character after every other argument so it’s easier to read:

triangle(100,25, 200,25, 150,75)

Python is not sensitive to whitespace between arguments, so if you find
it helpful to format your code in a similar fashion, feel free to do so.

ellipse()
The ellipse() function draws an ellipse. The first pair of arguments repre
sents an xy coordinate that marks the center of the ellipse; the second pair
of arguments represents the ellipse’s width and height:

ellipse(100,100, 100, 50)

For a circle, you can use the ellipse() function with matching width
and height (third and fourth) arguments. Alternatively, you can use the
circle() function, which takes three arguments: x, y, and diameter.

circle(100,100, 50)

The circle() and square() functions are relatively new to Processing, so
you may find that many of the examples (FileExamples) and online code
rely on only ellipse() and rect().

18 Chapter 1

EL L IP SE A ND R EC T MODES

You have seen how Processing draws rectangles from their upper left cor-
ner and how ellipses are instead centered on their x-y coordinates. If you
want to alter this behavior—for example, have rectangles that are centered
like ellipses—consult the relevant Processing.py reference entries (at https://
py.processing.org/reference/) for ellipseMode() and rectMode().

quad()
The quad() function draws a quadrilateral (a foursided polygon). Essentially,
it’s like a triangle function with an extra point, and its eight arguments rep
resent four xy coordinate pairs:

quad(260,180, 360,200, 380,250, 260,280)

line()
The line() function draws a straight line between two points. The first pair of
arguments represents the starting xy coordinates, and the second pair, the
ending xy coordinates:

line(450,80, 520,220)

As with points and shapes, the width of a line is affected by any preced
ing strokeWeight() function.

The 2D primitive functions provide an easy way to draw shapes in the
display window. There’s one more shape function to review, arc(), but it’s a
bit more involved than the other shapes. Variables and arithmetic operators
will prove useful for drawing arcs, so I’ll cover those first. Before moving
on, though, here’s a quick challenge to practice what you’ve learned so far.

Challenge #1: Rainbow Task
Begin a new sketch (FileNew) and save it as rainbow (FileSave As). Add
this code to get started:

size(600, 300)
background('#004477')
noStroke()

Using what you’ve learned so far, complete the rainbow in Figure 119.
Clue: think about how you can overlap shapes to mask others. If you

need help, you can access the solution at https://github.com/tabreturn/
processing.py-book/tree/master/chapter-01-hello,world!/rainbow/.

https://py.processing.org/reference/
https://py.processing.org/reference/
https://github.com/tabreturn/processing.py-book/tree/master/chapter-01-hello%2C_world!/rainbow/
https://github.com/tabreturn/processing.py-book/tree/master/chapter-01-hello%2C_world!/rainbow/

Hello, World! 19

Figure 1-19: Recreate this rainbow.

Variables
Variables are placeholders for information—much like when you use letters
in algebra to represent a value. In fact, Python variables look and behave
quite similarly.

Begin a new sketch and save it as variables. To keep things simple, you’ll
print values to the console area. Add the following code to set up the sketch
and print its width and height (in pixels):

size(600, 400)
background('#004477')
noStroke()

print(width)
print(height)

If you run the sketch, the display window’s width and height should be
printed to the console, as shown in Figure 120.

But notice that you never explicitly defined width or height. Processing
automatically assigned the width and height of the display window to these
two variables. From this, you can establish that width and height are variables
for which Processing maintains the values. Predefined variables like these
are called system variables.

However, you are not limited to system variables; you can also define
your own. When declaring new variables, assign them a value by using an
equal sign (=), which is called the assignment operator. Try this out with a new
variable named x:

. . .
x = 10
print(x) # displays 10 in the console

20 Chapter 1

variables

Console

size(600, 400)
background('#004477')
noStroke()

print(width)
print(height)

File Edit Sketch Tools H

600
400

variables

Figure 1-20: Printing variables to the console

The variable x is equal to 10, so the print() function displays a 10 in the
console.

You can name your variables whatever you like, provided that the name
contains only alphanumeric and underscore characters, doesn’t begin with
a number, and doesn’t clash with any reserved keywords or variables (like
width). For example, the following shows several possible variable names
(the comments indicate which are correct):

playerlives = 3 # correct
playerLives = 3 # correct
player_lives = 3 # correct
player lives = 3 # incorrect (contains a space)
player-lives = 3 # incorrect (contains a hyphen)
player2lives = 3 # correct
2playerlives = 3 # incorrect (begins with a number)

Whether you should name a multiword variable using camelCase, under
scores, or another convention is a matter of style (and vociferous debate),
but it’s good to decide on a naming convention and stick to it, as you’ll
make extensive use of variables in Processing.

N O T E The camelCase convention is used to form one word from multiple words; each
new word except the first starts with a capital letter. In this way, you can tell words
apart without using spaces. You’ll use the camelCase convention for naming user-
defined functions (Chapter 9) and the UpperCamelCase convention for objects
(Chapter 10).

Hello, World! 21

Now, add three more variables to your script for use as arguments in a
rect() function:

. . .
y = 30
w = 100
h = w
rect(x, y, w, h)

The y variable indicates the ycoordinate; w indicates the width; and h
indicates the height value for the rect() function. Notice that the h value is
equal to the w value (of 100). You’ve already defined x as equal to 10. Run
the sketch to confirm that it displays a white square positioned near the
upper left corner of the display window (Figure 121).

Figure 1-21: A square using variables as coordinates

Experiment further on your own with shapes and variables. In the next
section, you’ll learn to use variables to perform mathematical calculations.

Arithmetic Operators
Arithmetic operators perform arithmetic operations on operands; this is far sim
pler than it probably sounds. For instance, in the expression 1 + 3, the plus
sign is the operator, and the numbers 1 and 3 are the operands. To better
understand how this all works in Python, let’s go through some examples.

Basic Operations
Add the following line to the end of your variables sketch to calculate what
variable x plus 2 is equal to:

. . .
print(x + 2)

Run the sketch and check the bottom line of the console output. I’m
guessing the code did exactly what you expected. Earlier in the chapter, you
assigned a value of 10 to variable x, and 10 + 2 is equal to 12, which is what
you will see in your console.

22 Chapter 1

You can also subtract (see the comments for the result):

. . .
print(x + 2) # displays 12
print(x - 2) # displays 8

Use the * operator for multiplication:

. . .
print(x * 2) # displays 20

Now try this line, but before running it, see if you can predict the result:

. . .
print(1 + 2 * 3) # displays ???

The console displays a 7 and not a 9 because multiplication occurs
before addition. Certain operators take precedence over others. Remember
PEMDAS? It’s an acronym to help you recall the order of operations, which is
parentheses first, then exponents, then multiplication/division, then addi
tion/subtraction. (Some people may be more familiar with the acronyms
BEDMAS or BODMAS, which use the terms brackets for parentheses, and of
or order to indicate exponents.)

If you want the addition to happen first, use parentheses:

print (1 + 2 * 3) # displays 7
print((1 + 2) * 3) # displays 9

For division, use a forward slash (/):

print(4 / 2) # displays 2

Be aware that dividing two integers always produces an integer result
(integers are whole numbers, as opposed to those with a decimal point). For
example:

print(3 / 2) # displays 1

Processing discards any decimal digits, effectively rounding down the
result. Note, however, that this is Python 2 behavior. At the time of this
writing, Processing’s Python Mode uses Python 2.7. If you ever find your
self writing Python 3 code, the result will be 1.5.

For floatingpoint division in Python 2, define at least one of your oper
ands by using a decimal point:

print(3 / 2.0) # displays 1.5

This line displays a 1.5 in Python versions 2 and 3. This book avoids
any Python code that isn’t compatible with Python 3. Rest assured, you can
apply your newly acquired coding skills in Python 2 and 3 development.
Should Processing switch to Python 3, your code will still run fine.

Hello, World! 23

Of course, divisionbyzero operations will result in errors (Figure 122).

Console

print(x * 2) # displays 20
print(1 + 2 * 3) # displays 7
print((1 + 2) * 3) # displays 9
print(4 / 2) # displays 2
print(3 / 2) # displays 1
print(3 / 2.0) # displays 1.5
print(3 / 0) # error

7
9
2
1
1.5
processing.app.SketchException: ZeroDivisionError: integer division ...

ZeroDivisionError: integer division or modulo by zero

Figure 1-22: Division-by-zero error

Processing uses other arithmetic operators (for floor division and expo
nents) that aren’t necessary to review here. The modulo operator, however,
warrants a brief introduction.

Modulo Operator
The modulo operator calculates the remainder of a division operation and is
expressed as a percentage sign (%). Take 5 divided by 2 as an example. You
could say the answer is 2.5, or you could say the answer is 2 remainder 1,
because 2 “goes into” 5 twice with 1 left over.

The modulo operator performs the latter operation and provides the
remainder. Here’s some code contrasting division and modulus (as before,
the comments show the output):

print(5.0 / 2) # displays 2.5
print(5.0 % 2) # displays 1.0

It may not be evident why this operator is useful. However, many impor
tant algorithms, such as those used in cryptography, use modular arithme
tic. For now, consider that modulo operations resulting in a 0 indicate that
numbers divide exactly. Among other uses, this is handy for establishing
whether a number is odd or even:

print(7 % 2) # displays 1, therefore 7 is odd
print(6 % 2) # displays 0, therefore 6 is even

You’ll use the modulo operator in the chapters to come.

24 Chapter 1

Arcs
Now that I’ve covered variables and some basic math, I can introduce
the arc() function, which is used to draw elliptical arcs. Let’s look at a few
examples to see how this one works. Create a new sketch and save it as
disk_space_analyzer. Add the following setup code that will define some
visual parameters to get started:

size(600, 600)
background('#004477')
stroke('#FFFFFF')
strokeWeight(3)
noFill()

The arc() function takes the following arguments, expanded across
multiple lines here for easier comprehension (recall that Python is not sen
sitive to whitespace between function arguments):

arc(
 x_coordinate, y_coordinate,
 width, height,
 start_angle, end_angle
)

Add an arc to your sketch by using a start_angle of 0 and end_angle of 2:

. . .
arc(
 width/2, height/2,
 200, 200,
 0, 2
)

The green overlay in Figure 123 helps illustrate how the arguments
work. Processing draws the arc along the perimeter of an invisible ellipse cen
tered in the display window. The center of this ellipse has an xy coordinate
of width/2, height/2; it’s 200 pixels wide and 200 pixels high. An angle of 0 is
positioned at East, which opens clockwise to an angle of 2, which looks more
like around 115 degrees of rotation.

The reason for this large angle is that Processing uses radians and not
degrees to measure angles; 1 radian is equal to roughly 57.3 degrees. Why
use radians? Radians, a standard unit of angular measure used in many
areas of mathematics, provide more natural and elegant formulas for cir
cular motion. Think about this: why are there 360 degrees in a full circle?
Why not 300 or 100, or even a million degrees? While I’m on the topic, why
are there 60 minutes in an hour? Or 24 hours in a day? Much of this has to
do with ancient counting systems.

Hello, World! 25

0

2

Figure 1-23: An arc with a start angle value
of 0 and end angle of 2

Rather than dividing a circle into an arbitrary number of slices (like
360), the radian system is based on a proportional measurement involving
a circle’s radius. Figure 124 illustrates how radians are defined. Beginning
with the left graphic, take the radius of any circle; create an arc of that
same length; then measure the angle formed between the tips of the arc
and the center of the circle to derive one radian.

radius
1 radian

Figure 1-24: Defining a radian

If 1 radian is equal to approximately 57.3 degrees, 2 radians equal
114.6 degrees. This makes 180 degrees equivalent to roughly 3.142 radians
(Figure 125). Do you recognize that number? Yep, it’s pi!

2 radians 3.142 radians

2π radians

Figure 1-25: Measuring the number of radians in a half- and full circle

26 Chapter 1

Processing provides the degrees() and radians() functions for convert
ing between the systems, but you should be fine working in radians if you
can remember a few key measurements. For starters, 0 degrees is equal to
0 radians, and 180 degrees is equal to π radians. Therefore, 360 degrees
is equal to 2π radians. In Processing, you can use the system variable PI
instead of writing a lengthy decimal.

Add the following code to draw a halfcircle and a full circle using arc()
functions:

. . .
arc(width/2, height/2, 300, 300, 0, PI) # half-circle
arc(width/2, height/2, 400, 400, 0, PI*2) # full-circle

Run the sketch. The first new arc begins at 0 and ends at PI, resulting in
a halfcircle; the second outermost and largest arc has an end angle of PI*2,
and therefore, it appears as a complete circle.

If you want to close an arc, so as to form a “slice,” add an additional PIE
argument. Add the following line to test this out:

. . .
arc(width/2, height/2, 350, 350, 3.4, (PI*2)-(PI/2), PIE)

The arc spans from 3.4 radians (around 10 o’clock) to ~4.7 radians
(12 o’clock). Figure 126 depicts the final result. You can identify the most
recent arc by its slice shape.

Figure 1-26: Here are four arcs, and one of them
is a complete circle. The slice-like arc (upper left)
uses the PIE argument.

Hello, World! 27

Challenge #2: Disk Usage Analyzer
Now for a final challenge before moving on to Chapter 2. A disk usage ana-
lyzer presents a graphical representation of a disk drive’s contents. The
Linux GNOME Disk Usage Analyzer (also known as Baobab) is one example
of such software, and its charts make good use of arcs.

Recreate the ring chart graphic in Figure 127 by using what you have
learned thus far. Begin by commenting out your existing arc lines, and
then continue to work in the same sketch file. (The text and number labels
have been added to assist you with calculations; do not add them to your
recreation.)

metal
200 MB

rap
200 MB

music
400 MB docs

300 MB

photos
200 MB

work
100 MB

vacation
100 MB

videos
700 MB

HDD
1400 MB

Figure 1-27: Disk usage analyzer chart

If you need help, remember you can access all of the solutions to the
challenges at https://github.com/tabreturn/processing.py-book/.

https://github.com/tabreturn/processing.py-book/

28 Chapter 1

Summary
You now have Python Mode for Processing up and running. You also know
how to set up a new sketch, set the size of your display window, and apply a
background color. You’ve learned to display messages like ‘Hello, World!’
in the console and draw shapes using 2D primitive functions. You’ve also
learned about color and how to define the color of your strokes and fills in
hexadecimal, or using RGB and HSB color modes. In addition, you should
understand how to use radians to measure angles and work with the arc()
function.

While getting started with Processing, you’ve also learned a few Python
programming fundamentals, like how to manage whitespace, add code com
ments, and use arithmetic operators to perform mathematical operations.
You’ve also seen how to use Python variables, which are placeholders for
data. Processing includes system variables, like width and height, but you can
store values in your own variables, provided that the variable names adhere
to Python’s naming rules.

In Chapter 2, you’ll learn how to draw more organic, as opposed to
geometric, shapes. You’ll also gain insight into the inner workings of vector
graphics software like Adobe Illustrator and Inkscape.

In Chapter 1, you learned about 2D primi-
tives, including arcs, ellipses, lines, points,

quads, rectangles, and triangles. However,
some shapes, like hearts, stars, octagons, and

Pikachu silhouettes, don’t fit into any such category
and require more than shape functions to create.

In this chapter, you’ll learn how to draw more complicated shapes with
points and curves, as well as vertex functions for laying points. Using these
techniques, you’ll draw shapes that blend straight and curved lines, and
you’ll create negative shapes by subtracting one shape from another.

You’ll also learn how to work with two types of curves: Catmull-Rom splines
and Bézier curves. Although both involve complicated math, Processing’s curve
functions handle the underlying calculus, allowing you to create curves with
just the coordinates of a few control points.

2
D R A W I N G M O R E

C O M P L I C A T E D S H A P E S

30 Chapter 2

Displaying a Grid
The best way to understand how curves work in Processing is to draw a few
and then manipulate them. It’s easier to plot points and curves by using
a grid background for reference, so you’ll add one by using a ready-made
graphic. Create a new sketch and save it as curves, and then follow these
instructions to download the grid graphic:

 1. Open your web browser and go to https://github.com/tabreturn/processing
.py-book/.

 2. Navigate to chapter-02-drawing_more_complicated_shapes.

 3. Download the grid.png file.

Additional sketch assets (images, fonts, and other media) belong in
a subfolder named data, so create a new data subfolder within your curves
sketch folder and place the grid.png file within it (Figure 2-1).

curves

data
grid.png

sketch.properties
curves.pyde

Figure 2-1: Place the grid graphic within
your data subfolder.

N O T E By default, many operating systems hide file extensions. However, if you dig around
in your Windows File Explorer or Mac Finder preferences, you can change the settings
so extensions, such as .png, show in the file manager.

This grid graphic will lie beneath everything you draw (Figure 2-2),
assisting you in gauging x-y coordinates. Set up your sketch by using the
following code:

size(500, 500)
1 grid = loadImage('grid.png')
2 image(grid, 0, 0)

noFill()
strokeWeight(3)

The loadImage() function loads the graphic file and assigns it to a vari-
able named grid 1. The image() function 2 draws the image to the display
window. The three arguments (grid, 0, 0) represent the loaded image file,
x-coordinate, and y-coordinate, respectively.

The image is drawn at its original dimensions unless it’s resized using
an additional fourth (width) and fifth (height) image() function argument.

https://github.com/tabreturn/processing.py-book/
https://github.com/tabreturn/processing.py-book/

Drawing More Complicated Shapes 31

curves

Figure 2-2: Displaying the grid image

Drawing Curves Using Catmull-Rom Splines
To draw a curved line in Processing, you can use the curve() function. This
function accepts eight arguments, which represent four pairs of x-y coor-
dinates; these are the starting control point, start of the curve, end of the
curve, and ending control point.

Let’s begin with a standard line and then adapt it into a curve. This
way, you can visualize how the curve() function operates by comparing it
with the simpler and more familiar line() function. Add a diagonal line to
your curves sketch (Figure 2-3):

. . .
stroke('#0099FF') # pale blue
line(100,100, 400,400)

Figure 2-3: A straight line to adapt into a curve

32 Chapter 2

Processing draws a line between the specified pairs of x-y coordinates:
(100, 100) and (400, 400). Note that the line’s coordinates correspond to
the grid beneath.

CAT MUL L-ROM SPL INES

Processing’s curve() function is an implementation of Catmull-Rom splines.
Named after Edwin Catmull and Raphael Rom, a Catmull-Rom spline is a
curve whose position and curvature depend on four points. The term comes
from devices called splines, which are the long, thin, flexible strips of wood,
plastic, or metal that draftsmen would use to draw smooth curves before they
had computers.

Curving Lines with curve()
To use the curve() function to draw the same line, comment out the line()
function in the curves sketch and replace it with a curve() function:

. . .
stroke('#0099FF') # pale blue
#line(100,100, 400,400)
curve(0,0, 100,100, 400,400, 500,500)

When you run the sketch, the visual result should be exactly the same,
as shown previously in Figure 2-3. The four middle values within the curve()
function’s parentheses match those of the line() function, and they also
indicate the starting and ending x-y coordinates of the curve.

But the curve() function takes four additional outer arguments (in this
example, 0,0 and 500,500), which represent two pairs of control-point coordi-
nates. The positions of these control points determine the direction and
amount of curvature you apply to the line. Before exploring this in detail,
add the following new lines to the end of your code to draw a yellow line of
the same length, at the same position, but with some curvature:

. . .
stroke('#FFFF00') # yellow
curve(0,250, 100,100, 400,400, 500,250)

In this instance, the four middle arguments remain the same, but the
control-point coordinates have been changed to 0,250 and 500,250. The result
is a yellow curve with a slight S-bend (Figure 2-4). By comparing the blue and
yellow lines, you can visualize how changing the control points has manipu-
lated the curve.

Drawing More Complicated Shapes 33

Control point 2
500,250

Control point 1
0,250

Figure 2-4: The yellow curve’s control points, circled in orange,
would otherwise be invisible.

To understand how the control points influence the curve, imagine that
each end of the yellow curve extends to its neighboring control point. The
closer you bring the control point to the center of the display window, the
harder you are “flexing” this curve. Conversely, with control points 1 and
2 positioned at the upper left and lower left corners of the display window,
respectively, the four points lie in a row, and the curve does not have to flex,
resulting in a straight line.

To see how the control points work, add the following orange curves to
serve as visual aids:

. . .
stroke('#FF9900') # orange
control point 1:

1 curve(0,250, 0,250, 100,100, 400,400)
control point 2:

2 curve(100,100, 400,400, 500,250, 500,250)

The first curve() function 1 draws an orange curve from control
point 1 to the starting point of the yellow curve; the second curve() func-
tion 2 draws another orange curve from the end point of the yellow
curve to control point 2. The result (Figure 2-5) is a three-part curve
(orange-yellow-orange) that shows how the control points determine the
curvature of the yellow part.

34 Chapter 2

Figure 2-5: Your Processing curve (left) and a traditional spline (right). (Illustration: Pearson Scott Foresman,
licensed under public domain.)

As you can see, the orange curves extend the yellow curve and illus-
trate what the yellow curve would look like as a physically complete spline.
To the right in Figure 2-5, you can see the flexible strip for drawing such
a curve without the aid of a computer. As mentioned earlier, it’s this strip
from which the spline takes its name. The two nails correspond to the
starting and ending points of the curve() function, and the L-pieces at
each end represent the control points.

Changing Curves with curveTightness()
The curveTightness() function determines how rigidly the curve conforms
to the points that control it, as if you were replacing the draftsman’s spline
with a strip of less or more pliable material, or feeding a shorter or longer
length of spline into the same area. The function accepts values ranging
from –5.0 to 5.0, with 0 being the default.

To experiment, add a curveTightness() line above the yellow stroke:

. . .
curveTightness(0) # try values between -0.5 and 0.5
stroke('#FFFF00') # yellow

Enter different values to affect the curves below it. Figure 2-6 shows
curves with different curveTightness() values.

Drawing More Complicated Shapes 35

Figure 2-6: Clockwise from the top left: curveTightness(-1), curveTightness(0), curveTightness(1),
and curveTightness(5)

The lower right curve in Figure 2-6, with its tightness argument set to 1,
fits so rigidly that the result is a straight yellow line. The more you adjust the
tightness value away from 1, the more the curve will deform. For curves that
overshoot their starting and ending points, use values greater than 1. For
instance, at an upper tightness limit of 5 (bottom left), the spline loops as it
passes through the starting and ending points. With a tightness argument of
-1 (top left), the lengthier spline is rerouted to better align with the points it
passes through; hence, there is increased curvature but no looping.

36 Chapter 2

The curve() function is intuitive and useful for generating curved lines
quickly. However, you’re most likely to encounter Bézier curves in 3D mod-
eling, animation, computer-aided design (CAD), and vector illustration
software, so let’s look at those next.

Drawing Bézier Curves
Bézier curves provide an intuitive and versatile means of modeling smooth
curves using a series of anchor and control points. You may have encoun-
tered these curves in vector graphics drawing software, such as Adobe
Illustrator or Inkscape. In this section, you’ll draw curves using the bezier()
function. In graphics software, you have visual nodes to grab and manipu-
late; in Processing, you define the positions of your anchor and control
points, using bezier() function arguments.

Using the bezier() Function
The bezier() function takes eight arguments, expanded across multiple
lines here for easier readability:

bezier(
 anchor_point_1_x, anchor_point_1_y,
 control_point_1_x, control_point_1_y,
 control_point_2_x, control_point_2_y,
 anchor_point_2_x, anchor_point_2_y
)

The first and last pair of arguments are the starting and ending
points for your curve. When using Bézier curves, you typically refer to
the points that your visible lines connect to as anchor points. The curvature
of the line as it heads away from the first anchor point (anchor_point_1_x,
anchor_point_1_y) is controlled by the position of its associated control point
(control_point_1_x, control_point_1_y). The other control point (control_
point_2_x, control_point_2_y) controls the curvature of the line as it heads
toward the ending anchor point (Figure 2-7). This is not spline-like behav-
ior, though; instead, the control points behave more like magnets, causing
the line to bulge toward them.

To draw a Bézier curve, create four variables to represent the x-y coordi-
nate pairs of the two control points:

. . .
stroke('#FF99FF') # pink
cp1x = 250
cp1y = 250
cp2x = 250
cp2y = 250
bezier(400,100, cp1x,cp1y, cp2x,cp2y, 100,400)

Drawing More Complicated Shapes 37

Control point 2

Anchor point 2

Control point 1

Anchor point 1

Figure 2-7: The anchor and control points manipulate
the position and curvature of the Bézier curve.

The first pair of bezier() coordinates positions anchor point 1 near the
top right of the grid; the last pair of coordinates positions anchor point 2
near the bottom left. All of the control point variables (cp1x,cp1y, cp2x,cp2y)
reference the center of the display window (250, 250). By placing the control
points along the diagonal path formed between anchor points 1 and 2, you
form a straight line. You’ll next shift these control points outward to observe
how this curves the line.

Run this sketch to render a pink line that represents a straightened
Bézier curve (Figure 2-8).

Anchor point 2

Anchor point 1

Figure 2-8: The pink line represents a
straightened Bézier curve.

The pink line should cross the yellow curve at the center of the display
window (250, 250).

38 Chapter 2

Positioning Anchor and Control Points
To manipulate the pink line into a curve (Figure 2-9), set the cp1x variable
to 200. In addition to this change, add two extra lines of code:

. . .
cp1x = 200
. . .
bezier(400,100, cp1x,cp1y, cp2x,cp2y, 100,400)
stroke('#FF0000') # red
line(400,100, cp1x,cp1y)

Control
point 1

Anchor point 1

Figure 2-9: Curving the pink line by
adjusting a control point

The additional code creates a red line connecting anchor point 1 (400,
100) and its control point (cp1x,cp1y). This red line is useful because you can
now visualize where the control point sits and which anchor point it controls.
Moreover, sharing variables between the bezier() and red line() functions
means that each time you adjust the values that position the curve’s control
point (cp1x,cp1y), the red line adapts accordingly. Setting the value of cp1x to
200 applies curvature to the pink line because—as the control point moves
away from the pink line—the pink line bulges toward it.

The top half of the curve is affected most by the control point that con-
nects to its top anchor point (control point 1); this will become more appar-
ent when you manipulate the control point for the lower anchor point.

Now add another red line to connect (the lower) anchor point 2 and
control point 2:

. . .
cp2x = 320
cp2y = 420
. . .
line(400,100, cp1x,cp1y)
line(100,400, cp2x,cp2y)

Drawing More Complicated Shapes 39

The new red line visually connects anchor point 2 (100,400) to its control
point (cp2x,cp2y). Run the sketch to see the result (Figure 2-10). Experiment
with different control-point values to see how they affect the curve.

Control point 2

Anchor point 2

Figure 2-10: Adjusting control point 2

Observe that the lower part of the pink curve is “magnetically” pulled
toward control point 2. Knowing where to place the anchor and control
points for your desired curve takes some skill. Try downloading and prac-
ticing in Inkscape (or Illustrator if you have it installed). Alternatively, try
playing The Bézier Game in your web browser at https://bezier.method.ac/.

BÉ ZIER CURV ES IN V EC TOR GR A PHICS

Vector graphic formats (such as Scalable Vector Graphics, or SVG) employ
Bézier curves to render shapes scalable to any size, with no sacrifice in quality.
You refer to vector graphics as resolution independent, being defined by a series
of mathematical formulas rather than a grid of pixels. You can create SVG files
in vector graphics software, like Inkscape and Illustrator, by using selectable
nodes to position the anchor and control points of Bézier curves (Figure 2-11).

Figure 2-11: Editing a Bézier curve in Inkscape
(continued)

https://bezier.method.ac

40 Chapter 2

Contrast this with a raster graphic, where, as you zoom further and further
in toward a given point, discernible squares of color appear (Figure 2-12).

Figure 2-12: Editing a vector version of the Python logo in Illustrator (left),
and editing a raster version of the same graphic in Photoshop (right)

This is because pixel-based graphic formats used for photos—such as Joint
Photographic Experts Group (JPG) and Portable Network Graphics (PNG)—are
composed of a pixel grid, the dimensions of which limit the overall resolution.

You can now draw curved lines by using Catmull-Rom splines and
Bézier curves. The curve() and bezier() functions are useful for standalone
curves, but to form shapes composed of multiple curve segments, you’ll
need vertices.

Drawing Shapes Using Vertices
In Processing, a vertex is a point used to connect lines in order to form a
shape. Vertices is the plural of vertex. You can think of vertices as the dots
in a connect-the-dots drawing puzzle. For example, a triangle requires 3
vertices; a pentagon requires 5; and a five-pointed star () requires 10.
When using straight lines and curves to connect vertices, the shape possi-
bilities become limitless. A vertex is not limited to 2D space—for instance,
Blender’s Suzanne (a monkey head) has around 500 vertices positioned in
3D space (Figure 2-13).

Figure 2-13: Three of the 500 or so vertices circled in yellow

Drawing More Complicated Shapes 41

You’ll draw a square-type shape by using a series of vertex() functions.
Create a new sketch and save it as vertices. Within the new vertices folder,
add a data folder containing a copy of the grid.png file from your preceding
sketch (Figure 2-14).

vertices

data
grid.png

vertices.pyde
sketch.properties

Figure 2-14: The vertices sketch folder structure

Add code to set up the initial parameters:

size(800, 800)
grid = loadImage('grid.png')
image(grid, 0, 0)
noFill()
stroke('#FFFFFF')
strokeWeight(3)

Again, you load and display the grid image to help you gauge coordi-
nates in the display window. Each shape that you draw will have no fill and a
white stroke of 3 pixels.

Now, instead of using a rect() or square() function, use vertices to draw
a square:

beginShape() # begins recording vertices for a shape ...
vertex(100, 100)
vertex(200, 100)
vertex(200, 200)
vertex(100, 200)
endShape() # stops recording

The beginShape() and endShape() functions are essential for separating
groups of vertices into individual shapes. Without those two functions, Pro-
cessing would have to assume that all the vertices in your sketch belong to the
same shape. That said, Processing ignores any rogue vertex() lines placed out-
side the beginShape() and endShape() pair. As depicted in Figure 2-15, the code
draws a square with no left side.

42 Chapter 2

Figure 2-15: An open square drawn using vertices

The shape will not close automatically unless you include an
endShape(CLOSE) argument or add a final vertex that connects with the
start. However, an active fill() will fill in color regardless (Figure 2-16).

vertices

size(800, 800)
grid = loadImage('grid.png')
image(grid, 0, 0)
noFill()
stroke('#FFFFFF')
strokeWeight(3)

fill('#6633FF')

beginShape() # begins recording vertices for a shape ...
vertex(100, 100)
vertex(200, 100)
vertex(200, 200)
vertex(100, 200)
endShape() # stops recording

y

Figure 2-16: Despite the open side, the shape is filled with color.

Drawing More Complicated Shapes 43

You also can provide various parameters to the beginShape() function to
determine how the enclosed vertices are connected, if at all (Figure 2-17).

Figure 2-17: The functions beginShape(POINTS) (left), and beginShape(LINES) (right)

For a shape composed of only dots, use beginShape(POINTS). For a line
between every other vertex, use beginShape(LINES). Consult the reference for
more details on beginShape() arguments.

Bézier Vertices
The bezierVertex() function allows you to draw curved lines between verti-
ces. A curveVertex() function is also available for Catmull-Rom-type curves,
but this book focuses on the Bézier type, as it provides for greater control
and more graceful curves.

The bezierVertex() function takes six arguments. To understand how
those arguments operate, you’ll work toward completing the remaining
shapes shown in Figure 2-18.

I have manually added the pale blue lines, the dotted tips of which pro-
vide a visual indication of the control points. Use these lines for reference
purposes only; you don’t need to redraw them.

44 Chapter 2

vertices

Figure 2-18: A Chinese coin (lower left), S-curve (middle),
and heart (right)

S-Curve

The S-curve is just a curved line that comprises two vertices, with each vertex
attached to its own control point. You’ll draw it with a bezierVertex() function
to keep this first example as simple as possible, but ordinarily, you would
draw an S-curve by using bezier().

Within beginShape() and endShape(), combine the bezierVertex() and
vertex() functions however necessary. Your first point, however, is always
created with vertex(). Begin a new shape and plot the first (in this case,
upper) vertex:

. . .
s-curve
beginShape()
vertex(400, 200) # starting (upper) vertex
endShape()

Run the sketch. There is no second vertex with which to form a line,
so the isolated vertex should appear as a point at (400, 200).

Now add the second vertex by using bezierVertex():

. . .
s-curve
beginShape()

Drawing More Complicated Shapes 45

vertex(400,200) # starting (upper) vertex
bezierVertex(
 300, 300, # control point for the starting vertex
 500, 500, # control point for the second (lower) vertex
 400, 600 # second (lower) vertex coordinates
)
endShape()

The last pair of bezierVertex() arguments (400, 600) denotes the posi-
tion of the second (lower) vertex. The second vertex is attached to a control
point positioned by the second pair of arguments (500, 500). The first pair of
arguments (300, 300) represents the control point for the vertex() function
that immediately precedes bezierVertex(). With the positions of the vertices
presented for you in the reference image (Figure 2-18), creating this shape
(Figure 2-19) is really just a matter of typing in the correct sequence of
coordinates.

Figure 2-19: The complete S-curve

This is an open shape, so it would look odd if filled. Next, you’ll examine
a closed shape, but feel free to experiment with different vertex and control-
point values before moving along.

Heart

You can think of the heart shape as two curved lines connected to two verti-
ces. To begin, draw one half of the heart (Figure 2-20):

. . .
heart
beginShape()
vertex(600, 400)
bezierVertex(420,300, 550,150, 600,250)
endShape()

46 Chapter 2

Figure 2-20: Half a heart

All that is left for you to do is complete the right half of the heart. Add
a second bezierVertex() line and see if you can fill in the missing arguments:

. . .
heart
beginShape()
vertex(600, 400)
bezierVertex(420,300, 550,150, 600,250)
bezierVertex(___,___, ___,___, 600,400)
endShape()

Refer back to Figure 2-18 to see where the control points lie. Remember
that you can access all of the solutions to the challenges at https://github.com/
tabreturn/processing.py-book/.

Chinese Coin

Round metal coins with square holes in the center were first introduced
in China many centuries ago, but replicating that shape makes for a good
example to learn Processing. To create the purple coin shape in Figure 2-18,
you’ll use the beginContour() and endContour() functions to subtract a square
from a circle.

First, you’ll create the outer shape by using the beginShape(), endShape(),
and vertex() functions. You’ll then place the beginContour() and endContour()
functions within the beginShape() and endShape() functions. Within this pair
of contour functions, you’ll draw a second shape that’s also composed of
vertex() and bezierVertex() functions; the contour functions subtract this
shape from the outer shape.

https://github.com/tabreturn/processing.py-book/
https://github.com/tabreturn/processing.py-book/

Drawing More Complicated Shapes 47

The first challenge is creating the outer circle. The beginContour() and
endContour() functions cannot subtract from predefined shape functions—
like rect(), ellipse(), or circle()—so you need to construct the outer circle
by using vertices. However, it is possible to draw circles by using Bézier
curves, which you’ll do by creating a diamond and then using the control
points to form it into something round.

Begin by forming a diamond shape with vertex() functions (shown in
Figure 2-21):

. . .
coin
beginShape()
vertex(100, 600)
vertex(200, 500)
vertex(300, 600)
vertex(200, 700)
vertex(100, 600)
endShape()

Figure 2-21: The diamond shape that you’ll
form into a circle

With the vertices in the correct positions, you can proceed to add cur-
vature to the diamond. Of course, this will require bezierVertex() functions,
for which you’ll reference the coordinates of the vertices currently in place.
For an idea of where to position the additional control-point coordinates,
see Figure 2-22.

48 Chapter 2

55.2% of the radius

Figure 2-22: Positioning vertices and control points to form a circle

Figure 2-22 indicates how the control points should be positioned to
form the most circular shape. Now replace each vertex() with a bezierVertex()
function. Remember, though, that the first point must remain a vertex() to
form your circle (Figure 2-23):

coin
beginShape()
vertex(100, 600)
bezierVertex(100,545, 145,500, 200,500)
bezierVertex(255,500, 300,545, 300,600)
bezierVertex(300,655, 255,700, 200,700)
bezierVertex(145,700, 100,655, 100,600)
endShape()

Figure 2-23: A circle formed using
bezierVertex() functions

Drawing More Complicated Shapes 49

With the circle in place, you can go about removing a square from
the middle. Once again, define this square by using vertices and not a pre-
defined shape function, like rect() or square(). This is a relatively straight-
forward exercise, but be aware that you need to use reverse winding for the
subtracted shape: you must lay the vertices of the square in a direction
that’s opposite to the one you used to place the vertices of the exterior
shape (the circle).

Read through the circle code again and notice that the vertices are
plotted in a clockwise sequence; this means that the square’s vertices must
be plotted counterclockwise—that is, opposite to the winding of the shape
from which it will subtract. If you fail to get this direction correct, no sub-
traction will take place.

Place the square’s vertices within a beginContour() and endContour()
function. Of course, you can’t observe the effect (shown in Figure 2-24)
unless you add a fill:

coin
1 fill('#6633FF')

beginShape()
vertex(100, 600)
bezierVertex(100,545, 145,500, 200,500)
bezierVertex(255,500, 300,545, 300,600)
bezierVertex(300,655, 255,700, 200,700)
bezierVertex(145,700, 100,655, 100,600)

2 beginContour()
vertex(180, 580)
vertex(180, 620)
vertex(220, 620)
vertex(220, 580)

3 endContour()
endShape()

Figure 2-24: The completed coin

50 Chapter 2

Without the fill 1, you would see only white outlines. The beginContour()
function 2 starts recording the vertices that make up the negative shape.
No bezierVertex() functions are necessary, because a square has no curves.
The vertices follow a counterclockwise sequence, beginning at the upper left
corner of the square (180, 580), proceeding directly downward (to 180, 620)
and then farther around before the endContour() stops recording 3.

Using Vector Graphics Software for Generating Shapes
You can use vector graphics drawing software to draw shapes, and then ref-
erence the positions of the vertices and control points for writing Processing
code. This is how I mapped out the blue guidelines for the Python logo
shown in Figure 2-25.

verticesvererrrrrrrrtictictictictictictictictictictictti esee

Figure 2-25: Tracing a Python logo that includes the positions of the
vertices and control points. (The Python Software Foundation logo trademark
policy is available at https://www.python.org/psf/trademarks/.)

If you’re up for a challenge, clear out your curves sketch and try finishing
the half of the Python logo I’ve begun in Figure 2-25. Here is some code to
get the outline started:

beginShape()
vertex(262, 238)
vertex(262, 178)

https://www.python.org/psf/trademarks/

Drawing More Complicated Shapes 51

bezierVertex(262,40, 370,30, 500,30)
bezierVertex(630,30, 730,40, 735,178)
endShape()

You can also export vector graphics as SVG files for use in Processing
with the loadShape() and shape() functions, as opposed to the loadImage() and
image() functions. But be warned: SVG support is not always dependable,
and you may spend some time fiddling with your SVG export settings to get
them to display properly in Processing.

Summary
You’ve now learned most of Processing’s essential drawing features. Using a
grid graphic as a reference for your coordinates, you learned to plot curves
that mimic physical splines. In addition, you learned to draw Bézier curves—
smooth, graceful curves that you can control with anchor and control points.
You also saw how to draw shapes by using a series of vertices. When you con-
nect vertices with straight lines and curves, the shape possibilities are limit-
less. You’ll be using curves, vertices, and the skills you learned in Chapter 1
in many of the tasks to come.

In Chapter 3, you’ll move on to explore Processing’s text features. This
includes drawing text to the display window, styling it, and loading fonts.
You’ll also look at Python’s built-in features for manipulating string data.
Later in this book, you’ll use text functions to label graphs and graphical
interface elements, and to add speech bubbles to images.

In Chapter 1, you created a ‘Hello, World!’
string and printed it to the console, but

Python can do far more than just print string
data. In this chapter, you’ll use operators, func-

tions, and methods to manipulate strings. Strings are
fundamental data types common to most program-
ming languages, and you’ll use them in almost all the
programs you write. If you need to communicate information to your user,
capture input from text fields, retrieve data from the web, or perform just
about any task that involves text, you’ll be using strings.

In this chapter, you’ll also learn how to use Processing’s text functions to
render any string as text in the display window. Processing can draw text in
various colors and styles, using different fonts, at different sizes and positions.
You might use these features to paint with letters, label a graph, display a
table of high scores, or construct an interactive interface.

3
I N T R O D U C T I O N T O S T R I N G S

A N D W O R K I N G W I T H T E X T

54 Chapter 3

Strings
Before exploring Processing’s text-rendering functions, you’ll need a proper
introduction to strings. By definition, a string contains a sequence of one or
many characters. For example, ‘hello’ is a string that’s five characters long;
it begins with an h and ends with an o. You already briefly encountered the
string data type in Chapter 1, where you used it to define hexadecimal color
values and print text messages to yourself in the console.

To create a new ‘hello’ string and assign it to a variable named greeting,
use the following code:

greeting = 'hello'

Python recognizes hello as a string because it’s wrapped in quotes. You
can use single or double quotes, but always make sure you close them using
the same type with which you opened them.

In Python, you can manipulate strings in various ways. To convert hello
to Hello!, you would make the first character uppercase and insert an excla-
mation mark at the end of the string. Python has many built-in features for
performing those types of operations, and I cover some of the most useful
features in this section.

You’ll look at how to combine strings, and how to find, count, and extract
specific sequences of characters. Most of those features work exclusively with
the string data type. For instance, you cannot convert an integer or a floating-
point value to uppercase, because those things are numbers. And if you tack
an ! character to the end of a number, it’s not a number anymore; it’s a string
with digit characters and an exclamation mark. On the other hand, you can’t
divide a string by a number.

The following example uses the division operator to divide the integer
6 by 3, which prints a 2 in the console. But attempting to divide 'hello' by
3 results in an error:

print(6 / 3) # displays a 2
print('hello' / 3) # displays an error

Python cannot divide a string by an integer, so you get a TypeError mes-
sage. However, certain mathematical operators do work on strings. For
instance, 'hello' * 3 gives you hellohellohello. Later in this chapter, you’ll
learn how to use the + operator to join strings.

Creating Strings in Python
Let’s begin by creating a few new string variables, looking at the way Python
deals with different kinds of quotation marks, and working around some
issues you might encounter when creating strings.

Start a new sketch and save it as strings. Add the following code:

greeting = 'Hello, World!'
print(greeting)

Introduction to Strings and Working with Text 55

When you run the sketch, the print() function writes Hello, World! to
the console.

Recall that Python expects a string to begin and end with quotation
marks, so what happens when the string itself contains a quote character?
Add another string variable to see what happens when you have unpaired
quotes:

. . .
whatsup = 'What's up?'

Python interprets this string as What, ignoring everything after the apos-
trophe. Some dangling characters and an unpaired quote (s up?') are left
over. Run the sketch and observe the error message (Figure 3-1).

Console

greeting = 'Hello, World!'
print(greeting)
whatsup = 'What's up?'

processing.app.SketchException: Maybe there's an unclosed paren or ...

Maybe there's an unclosed paren or quote mark somewhere before this line?

Figure 3-1: An error caused by an apostrophe

To fix this, use double quotes:

whatsup = "What's up?"

Or, you can escape the apostrophe character by using a backslash:

whatsup = 'What\'s up?'

The backslash indicates that Python should treat the apostrophe as an
ordinary character, not part of the language syntax. If you print the whatsup
variable now, it displays this:

What's up?

Note that no backslash displays in the console output.
The backslash is an escape character, so if you need to include a back-

slash in your string, you must prepend it with another backslash. For exam-
ple, print('\\') displays a single backslash in the console.

You’ve seen how to nest a single quote within a string delimited in double
quotes. This works both ways, though. For example, add a new question vari-
able that uses double quotes nested within single quotes:

greeting = 'Hello, World!'
print(greeting)

56 Chapter 3

whatsup = "What's up?"
question = 'Is your name really "World"?'
print(whatsup)
print(question)

Run the sketch to confirm that it has no errors. The console should
display the contents of the three print statements.

Using Concatenation and String Formatting
The + operator performs arithmetic addition on integers and floats, but you
also can use the + operator to concatenate multiple strings into a series or
chain. Concatenation is programming terminology for joining together, and it’s
useful for many tasks, such as chaining together words into sentences and
paragraphs. Try this example in your sketch:

. . .
all = greeting + whatsup + question
print(all)

This should display the following line in the console:

Hello, World!What's up?Is your name really "World"?

Note that concatenation joins strings together precisely as they are
defined, with no additional spaces, so you need to insert the required space
characters explicitly.

To fix the preceding output, edit the all variable line:

. . .
all = greeting + ' ' + whatsup + ' ' + question
print(all)

The console should display the following:

Hello, World! What's up? Is your name really "World"?

The line now includes the spaces specified in the code.
An alternative to concatenation is string formatting, and Python pro-

vides the format() method for this (I explain more about methods in
“String Methods” on page 60). What you need to understand here is that
format() works by substituting placeholder symbols with values, as opposed
to chaining them together in a sequence. You’ll find that the concatena-
tion operator is okay for simpler tasks, but it can be clumsy when you’re
constructing lengthier and more intricate strings.

Here’s the same line constructed using format():

. . .
all = '{} {} {}'.format(greeting, whatsup, question)
print(all)

Introduction to Strings and Working with Text 57

In this approach, Python substitutes each pair of curly brackets ({})
with its corresponding variable—that is, greeting for the first pair of curly
brackets, whatsup for the second, and question for the third. This saves you
from needing to insert each space character by using + ' ' +.

If the format() alternative doesn’t seem much simpler, consider this
example that uses concatenation:

firstname = 'World'
o2 = 21
hi = "Hi! I'm " + firstname + ". My atmosphere is " + str(o2) + "% oxygen."

If you print hi, you get Hi! I'm World. My atmosphere is 21% oxygen. With
concatenation, you have to place your space characters carefully, and it’s
tricky to read what the hi line is doing. Moreover, you have to wrap the o2
variable in the str() function to convert the value from a number to a string;
if you don’t, Python will attempt (and fail) to add an integer and a string
arithmetically.

Compare this to using the format() approach for the same line:

hi = "Hi! I'm {}. My atmosphere is {}% oxygen.".format(firstname, o2)

This provides a better idea of the result you’re going to get. The format()
method also manages the conversion of numbers to strings. Use whichever
approach works best for the task at hand.

Working with String Length
The len() function returns the total number of characters in a string. You
might use it to check whether a string contains more than 1 character or
to verify that it fits into a tweet (280 characters). You can also use the len()
function to find the total number of items in a list (Chapter 7) or dictionary
(Chapter 8).

The len() function accepts a single argument; try this using your
greeting variable:

print(len(greeting))

This should display 13, the total number of characters in the greeting
string.

So far, you’ve learned how to define new strings and construct strings
from smaller strings, but you can do far more in Python. In the next section,
you’ll learn how to manipulate strings by using slice notation and string
methods.

String Manipulation
Let’s add code to your working sketch so you can try some string manipu-
lation methods. You’ll extract partial strings by using slice notation, con-
vert between uppercase and lowercase characters, and find and count the

58 Chapter 3

occurrences of specific character sequences. You can use these techniques
to automate the processes involved in handling string data—for example, to
scan data for keywords, dissect strings, or shorten them. Feel free to experi-
ment with values and arguments on your own to see how things respond.

Slice Notation
Python slice notation provides a simple yet powerful means of extracting
characters from strings. You can use slice notation to retrieve a single
character or substring. A substring is any contiguous sequence of charac-
ters that form part of a longer string. For example, a string that’s a URL
might begin with the substring http://.

To experiment with slice notation on a new string variable named url,
add this variable to your strings sketch:

url = 'http://www.nostarch.com'

You’ll specify the position (index) of the character(s) you want to retrieve
by using a pair of square brackets ([]). To keep things simple, let’s extract
the first character in the url string. Note, however, that this indexing sys-
tem is zero-based, meaning that the character indices start at 0, not 1. See
Figure 3-2 as a reference for the character indices.

0 21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

http://www.nostarch.com
Figure 3-2: The string indexing system begins at 0.

Use 0 (zero) to retrieve the first character:

print(url[0]) # displays: h

The console should display an h.
The index for the second character is 1:

print(url[1]) # displays: t

The console should display a t, the first t in http.
Use a colon (:) to specify a range of characters. Use this to extract the

scheme (http) along with the colon-slash-slash (://) in the URL string, which
spans from index 0 up to index 7:

print(url[0:7]) # displays: http://

The :7 to the right of the 0 retrieves the characters up to, but not
including, the first w. But because your range begins at index 0, you can
omit the 0 in front of the colon to produce the same result:

print(url[:7]) # displays: http://

Introduction to Strings and Working with Text 59

The colon precedes the index value (7), which means that Python
must retrieve everything from the left/start of the string up to the seventh
character.

If you place the colon after the index, Python returns everything from
the specified index to the end of the string. You can use this to retrieve every-
thing to the right of the colon-slash-slash, which is the part of the URL you
usually type into the browser address bar:

print(url[7:]) # displays: www.nostarch.com

You now should see www.nostarch.com in your console. This is a combina-
tion of the URL’s subdomain (www), domain (nostarch), and top-level domain
(com), separated by dot characters (Figure 3-3).

Scheme Subdomain Domain Top-level
domain

http://www.nostarch.com

Figure 3-3: The parts of a URL

You can isolate each part of the URL with string-slicing operations.
Assuming that the top-level domain (com) is always three characters, you
can retrieve it by using an index of -3 followed by a colon:

print(url[-3:]) # displays: com

A negative value counts index positions starting from the end (right side)
of a string, so url[-3] will retrieve just c. You can include a colon to retrieve
the c and every character that follows it. No matter how long the URL, this
code will always display the last three characters. Conversely, using [:-3], with
the colon to the left of -3, retrieves everything up to the third-to-last charac-
ter (http://www.nostarch.).

To extract the domain (nostarch), retrieve the substring between index
11 and -4:

print(url[11:-4]) # displays: nostarch

This will adapt to any domain. For instance, if you change the url
value to http://www.nostarchpress.com, Python prints nostarchpress. But this
works only if the scheme is http and the subdomain is www. You can use
string methods that will adapt to schemes, subdomains, and top-level
domains of any length.

This notation slices strings in a few other ways, but these should be
sufficient for now. You can also use slice notation to extract items from
lists and dictionaries, so you’ll encounter it again in the chapters that
deal with those data types.

60 Chapter 3

String Methods
String methods perform various operations on strings, such as converting
characters between uppercase and lowercase, and searching for and count-
ing characters and substrings. You’ll use string methods in your sketch to
verify that your URL contains a scheme, subdomain, domain, and top-level
domain. This is not an exhaustive review of string methods, but it will famil-
iarize you with how some of them operate. Any decent Python reference
will cover the rest.

Methods vs. Functions

A Python method looks and behaves much like a function. You call a func-
tion by its name—like print()—and it performs a predefined task for you.
Methods work similarly, but they’re associated with specific objects, such as
strings for string methods. A function may or may not accept arguments,
depending on the function you’re using; the same is true for methods.

As an example, let’s contrast the len() function with a method. There’s
no len() method, but we’ll pretend there is to focus on the syntactical dif-
ferences between how you write a method versus a function.

Recall that the len() function returns the total number of characters in
any string:

urllength = len(url)

The len() function takes the url argument and returns the length of
the string it holds. The total length of the url string is 23 characters, so the
variable urllength is equal to the integer 23.

Methods begin with a dot (.) and are appended to data you want to
affect. If the len() function were a method, you would write it like this:

urllength = url.len()

Next, you’ll use the upper() method to convert string characters to
uppercase.

upper() and lower() Methods

The upper() method returns a version of the string with all the lowercase
characters converted to uppercase. It takes no arguments. Here’s an example:

urlupper = url.upper()
print(urlupper) # HTTP://WWW.NOSTARCH.COM

The upper() method is a string method, so you must append it to a string.
The syntax might look similar to format(), which is the method you used to
replace curly brackets with text values in strings earlier. In this instance, the
variable urlupper is equal to HTTP://WWW.NOSTARCH.COM. This method might be

Introduction to Strings and Working with Text 61

useful to emphasize certain key phrases when you’re unable to use bold or
italics. The lower() method is the inverse of upper(), and it converts all upper-
case characters to lowercase.

count() Method

Now, let’s verify that the url string contains a www subdomain. The count()
method returns the total number of times that a character, or character
sequence, appears in a string, and it needs an argument to indicate which
character(s) you want to count. For instance, you can use the count() method
to verify that the URL contains three instances of the letter w:

print(url.count('w')) # 3

Your console should confirm that there are three w characters. But it
doesn’t indicate whether they are contiguous; that letter might be scattered
throughout the string. To be more explicit, use an argument of 'www':

print(url.count('www')) # 1

The substring www appears only once in this string. Still, you can’t be
sure that this is the subdomain. What if the domain part of the URL has a
www in it? You could be more specific and count the instances of http://www,
but HTTP isn’t the only scheme for web addresses. For example, HTTPS,
a secure extension of HTTP, is used to encrypt communication over com-
puter networks. To make matters more complicated, a subdomain can be
something other than www.

find() Method

Let’s try another approach. The find() method returns the index of any
character or substring. Note how the colon-slash-slash (://) splits the
scheme and subdomain. Use the find() method to retrieve the index of
the colon-slash-slash. Add code to find the index, store it in a variable
named css, and then use this to extract the scheme:

css = url.find('://') # 4
scheme = url[:css] # http

The find() method retrieves the index for the first occurrence of any
:// in the url string. More specifically, it’s the index of the first character in
the substring, the colon. If the substring cannot be found, the result is a -1.
In this instance, it’s an index of 4. Note that this argument is case-sensitive.

The subdomain sits between the colon-slash-slash and the first dot. Use
the find() method to locate the index of the first dot, and use slice notation
to extract and assign the subdomain to a variable named subdomain:

dot1 = url.find('.') # 10
subdomain = url[css+3:dot1] # www

62 Chapter 3

The css+3 is equal to 7, the index of the first w in www. I’ve added the
3 to offset the starting index by the length of the colon-slash-slash. This
will work for www or any other subdomain (although you will encounter
issues if there’s no subdomain).

The top-level domain (com) spans from the second dot to the end of
the string. If a character or substring appears multiple times—like the
dot—you can provide a second find() argument indicating the index where
the search should begin. You can use the dot1 variable for this offset, but
you need to add 1 to start from the character immediately after it. Assign
the top-level domain to a variable named tld:

dot2 = url.find('.', dot1+1) # 19
tld = url[dot2 + 1:] # com

The dot2 variable is equal to 19, the index of the second dot in your
URL. In the tld line, I’ve added 1 to the start index argument (of 19),
because I don’t want the dot in .com.

The find() method can accept an additional third argument to indicate
where along the string the search should terminate.

Finally, assign the domain (nostarch) to a variable named domain:

domain = url[dot1+1:dot2] # nostarch

The domain substring sits between the first and second dot, but add 1
to dot1 to avoid retrieving the first dot character.

You’ve now separated a URL into parts by using slice notation.
Combining slice notation with string methods provides a more robust
way of doing this, so your program can handle schemes, subdomains,
and top-level domains of varying lengths.

N O T E For more powerful and dynamic find operations, you can use regular expressions
(also known as regex). Regular expressions are a popular way to define search pat-
terns using characters. Python and many other programming languages include sup-
port for regex, but this book does not cover that topic.

In the next section, you’ll learn how to use Processing text functions to
display strings as text in the display window, so you’re no longer constrained
to printing strings in the console. You can use text decoratively, to label ele-
ments in your visual output, or provide feedback to users.

Typography
Typography refers to the arranging and styling of text (or type) to make it more
readable and aesthetically appealing. Typographical treatment can truly
make or break a design. For instance, headings work best if they stand out
from the rest of your text; letter spacing should be tighter than word spac-
ing, and you probably agree that cursive fonts are not ideal for road signs.
Although I wouldn’t recommend that you lay out a book in Processing, it does
offer useful functions for controlling the appearance of text.

Introduction to Strings and Working with Text 63

Fonts
Fonts comprise many glyphs; a glyph is any individual character, such as A,
a, or ?. If you don’t specify which font Processing should use to draw text,
it relies on a predefined default. Your computer includes a bundle of pre-
installed fonts, but the selection varies among operating systems. You can also
install additional fonts on your system to expand your selection. However,
you might run into problems if you’re moving or sharing sketches between
computers (with different collections of fonts). If a sketch requires a specific
font, and it’s not installed, Processing cannot load it. To avoid these issues, I’ll
explain how to bundle font files with your sketches.

Because early computer fonts were pixel-based, they required a separate
set of glyphs for each font size. For example, if a font had three sizes and an
italic variant, it included six complete sets of character graphics. However,
modern fonts are vector-based, which is why you can scale text to any size
you like without encountering pixelation. You no longer require a file for
every font size, but bold and italic variants are still separate font files.

By default, Processing will render text in the display window by using
a standard sans serif font. In font terminology, serifs are the small lines
attached to the tips of characters (circled in Figure 3-4). The term sans
means without; hence, a sans serif font has no serifs.

monospace

sans-serif
serif

Figure 3-4: Classifying fonts

Monospace fonts may also be serifed, but what distinguishes them is that
each character occupies the same amount of horizontal space. Proportionately
spaced fonts (like the serif and sans serif examples in Figure 3-4) make type
more legible by using built-in metrics that specify how far a given charac-
ter should sit from its neighbors. For example, having an i and m character
occupy the same size “container” results in awkward spacing issues, which
many monospaced fonts attempt to resolve by adding oversize serifs to the i
and cramping the m (Figure 3-5). This also means that monospace characters
vertically align across multiple lines of text.

64 Chapter 3

mmm
iii

mmm
iii

proportionally spacedmonospace

Figure 3-5: Monospace characters have a fixed width

That said, monospace fonts are more legible in certain situations. For
instance, a monospace font is useful when you need to have characters line
up in columns:

Sam Jan Amy Tim | Total
99 359 11 3 | 472

This characteristic makes monospace fonts preferable for writing
code, which is why the default font for the Processing editor (and every
other code editor) is monospaced.

Text Functions
Let’s create a new sketch to experiment with Processing text functions.
You’ll use these functions to draw text in the display window and to set
your font, font size, line spacing, and text alignment.

Start a new sketch and save it as typography. Add the following code to
get started:

size(500, 320)
background('#004477')
fill('#FFFFFF')
stroke('#0099FF')
strokeWeight(3)

This code sets the background to blue and the fill color to white. As
you’ll soon see, the fill() color will affect the text you draw. Any strokes
are pale blue and 3 pixels wide.

A pangram is a sentence that uses every letter in a given alphabet at least
once. Create a variable called pangram that holds a perfect English pangram:

pangram = 'Quartz jock vends BMW glyph fix'

From here on, you’ll render different versions of the string stored in
pangram, as shown in Figure 3-6.

To recreate Figure 3-6, begin with the text() function, which draws
text to the display window, the font color of which is determined by the
active fill:

text(pangram, 0, 50)

Introduction to Strings and Working with Text 65

typography

Figure 3-6: You will render these versions of the same pangram.

Run the sketch. You should see the first (top) version of the pangram
rendered in the display window. The arguments (pangram, 0, 50) represent
the string value, x-coordinate, and y-coordinate, respectively. You can add
additional third and fourth arguments to specify a width and height for the
text area, which you’ll use shortly.

The textSize() function sets the font size (in pixels) for all subsequent
text() functions. Add the following code to display the second version of
the pangram:

textSize(20)
text(pangram, 0, 100)

Run the sketch to confirm that you have a smaller and larger version of
the pangram.

Observe that the vertical, pale blue line (Figure 3-6) precisely marks the
end of the longest/larger line of text. The purpose of adding this line is to
explore the textWidth() function, which you use to calculate the width of any
text you might display. In this instance, you want to measure the width of
the second pangram and draw a vertical line at the end of it. Use textWidth()
functions as arguments for a line function:

line(
 textWidth(pangram), 0,
 textWidth(pangram), height
)

The width of the pangram now serves as the starting as well as ending
x-coordinate for the line; the starting and ending y-coordinates are the top
and bottom edges of the display window, respectively. This will draw a pale
blue vertical rule, the height of the display window, that marks the end of
the second pangram.

66 Chapter 3

You’ll render the third pangram in a serif font. To switch to a different
font, you need to know the font name to reference. To list the fonts installed
on your computer, use PFont.list():

print(PFont.list())

Scroll through the console output to see if you can spot Cambria or
Georgia. Both are serif fonts. If neither Cambria nor Georgia is installed
on your system, you won’t find them in the list. In that case, any other
serif font will work, such as Times New Roman.

Processing uses its own font format, so you need to convert your font
before you can use it, using the createFont() function.

Add a createFont() line that includes a string argument with the name
of the serif font you will use:

seriffont = createFont('Cambria', 20)

The createFont() function takes two arguments: a font name (as it appears
in the console listing) and point size. The preceding line assigns the converted
font to a variable named seriffont, which you’ll use in the next step.

LOA DING FON T F IL ES DIR EC T LY

The fonts listed by PFont.list() reside somewhere on your computer, but the
location varies among systems. If you know how to locate these files, it’s a good
idea to place any you use—TrueType Font (TTF) or OpenType Font (OTF)—in your
sketch’s data folder, because not every computer is likely to have the fonts you’ve
used installed, or perhaps you’ll need to reopen this sketch sometime in the future
on a freshly installed system. If you’ve downloaded font files from the web, place
a copy of them directly in the data folder.

To load fonts directly from the sketch’s data subfolder, reference the full
filename. Here’s an example:

somefont = createFont(′font_name.ttf′, 20)

Be sure to include the file extension.

To activate the new font, use textFont(). Then, draw the pangram once
more (the third version) to confirm that it’s working:

textFont(seriffont)
text(pangram, 0, 150)

The textFont() function accepts a single argument, a Processing-readied
font. All subsequent text() functions will use the seriffont until Processing
encounters another textFont() function.

Introduction to Strings and Working with Text 67

The textLeading() function controls the leading of your text. Leading
(which rhymes with wedding) is the typographic term to describe the spacing
between each line of text.

The textAlign() function controls text alignment; you can use an argu-
ment of LEFT, CENTER, or RIGHT to set the horizontal alignment of your text.

You’ll use the textLeading() and textAlign() functions to render the
bottom two (fourth and fifth) versions of the pangram in Figure 3-6. Add
a left- and right-aligned pangram:

1 textLeading(10)
text(pangram, 0, 200, 250, 100)
textAlign(RIGHT)
text(pangram, 0, 250, 250, 100)

The first pangram is left-aligned because that’s the Processing default.
I’ve added width and height arguments to the text() functions to invoke
word wrapping. Each pangram is constrained to its own rectangular area
that’s 250 pixels wide by 100 pixels high. If a line of text exceeds the width
of 250 pixels, Processing automatically pushes the words that don’t fit onto
a new line. If any lines even partially exceed the height of the text area
(100 pixels), you do not see them, although this doesn’t happen here. The
leading is reduced to 10 pixels 1, causing the lines to overlap. Ordinarily,
the leading value is proportionate to the font size.

Just like fill, stroke, and many other Processing attributes, the text
parameters you set remain in effect until you specify otherwise. But if you
adjust the text size—using another textSize() function—the leading will
reset to a proportional value.

Summary
This brief introduction explored manipulating strings by using Python’s
slice notation and string methods, and drawing text in the display window
with Processing’s text() function. Processing’s typography functions allow
you to control font size, horizontal alignment, line spacing/leading, and
font selection. You’ll be using string methods and text functions in many
of the tasks to come.

In Chapter 4, you’ll explore topics including control flow and conditional
statements—techniques that allow you to write programs that can skip, jump
to, and repeat lines of code. These tools are helpful because they let you
change the order of your code’s execution, and whether it executes at all,
based on specific rules and values.

The programs you have written so far
execute line by line, beginning at the top

of the code and ending at the bottom. You
can visualize this flow as a series of steps that

execute in a linear fashion, which means that the pro-
gram can run in only one way. In this chapter, you’ll
explore how to write divergent paths for Python to
follow, depending on whether certain conditions are met. This is useful
because you can execute different actions in your program depending on
the scenario—think of the way a video game directs you to different levels
or screens contingent on your performance.

To evaluate a condition, you’ll use the Boolean data type, which repre-
sents one of two states: true or false. You’ll learn to write Boolean expres-
sions to test whether a statement is true or false. Then you’ll use if, elif,
and else statements to make your code carry out different actions in
response to the true or false outcomes.

4
C O N D I T I O N A L S T A T E M E N T S

70 Chapter 4

Control Flow
Control flow refers to the order in which your lines of code execute. By
default, this flow begins from the top of your code and proceeds one line
at a time until it reaches the bottom. Using control flow statements like if,
elif, else, while, and for, you can direct Python to skip, jump to, and repeat
lines of code.

For example, say you want to fill the display window with circles.
Figure 4-1 depicts two arrangements: 9 circles aligned three by three,
and 81 circles aligned nine by nine.

Figure 4-1: The 9-circle (left) and 81-circle (right) arrangements

You could write a circle() function for each and every circle displayed. If
you’re drawing only 9 circles, writing 9 circle() functions might be manage-
able, but writing 81 circle() functions is tedious and can lead to errors. If
you want several circles, the better approach is to write a single circle() line
and have Python repeat it as many times as needed. Figure 4-2 shows these
two approaches, using flowcharts representing the programming logic.

setup sketch

draw circle

draw circle

setup sketch

draw circle

start start

stop stop

81?
true

false

Figure 4-2: Flowcharts comparing manual (left) and conditional (right) approaches
to drawing multiple circles

Conditional Statements 71

The manual method is shown on the left. Each draw circle represents a
circle() function; in this case, there are two draw circle steps, but you can
add as many as required.

The flowchart on the right in Figure 4-2 repeats the draw circle step
until a particular condition is met. The diamond containing 81? represents
a decision step, which checks whether the current number of circles is 81.
If true, the program proceeds to the stop step; if false, Processing draws
another circle and returns to the decision step.

This chapter and the next examine how to implement this kind of
logic in Python, which will be your first foray into algorithmic thinking.
In later chapters, you’ll be applying flow control techniques in most of
your sketches.

Conditional Statements
Conditional statements are used to test one or many conditions and then exe-
cute appropriate responses.

To explore Python’s various conditional statements, create a new sketch
and save it as conditional_statements. In the sections that follow, you’ll enter
code into this working sketch.

The Boolean Data Type
As mentioned previously, a Boolean is a value that can represent one of two
possible states: True or False. To see how the Boolean data type operates, add
these two variables to the sketch:

ball_is_red = True
ball_is_spiky = False

The first letter of a Boolean value is always uppercase, and no quotation
marks are used since that would make it a string.

Whenever Python is required to manage Booleans as numeric values,
it converts a True value to 1, and a False value to 0; this, however, works both
ways. For instance, Python’s bool() function, which converts any value to
Boolean, converts a 1 to True and a 0 to False. This will prove useful when
you encounter if statements, where you’ll instruct Python to execute differ-
ent lines of code based on True/False outcomes.

In your sketch, add a series of print() functions to test this behavior:

. . .
print(ball_is_red) # displays: True
print(ball_is_spiky) # displays: False
print(ball_is_red + True) # displays: 2
print(bool(1)) # displays: True
print(bool(0)) # displays: False

The first two print statements repeat the variable values back to the
console. The third print statement uses an arithmetic addition (+) operator

72 Chapter 4

to add one True Boolean to another. Adding True and True results in 2. Con-
verting Booleans to numbers works with mathematical operators or any
functions that convert values to numbers, such as the int() function for con-
verting to integers. The final two print statements, which contain bool() func-
tions, convert 1 and 0 to their respective Boolean equivalents.

Relational Operators
The previous example explicitly defines whether the ball is red and/or spiky,
but relational operators also can direct your program to make its own deci-
sions as to what is true or false. Relational operators, like greater-than (>) and
less-than (<) signs, determine the relationship between two operands. For
example, given 3 > 2, the 3 and 2 are the operands, and the greater-than
sign is the relational operator. Because 3 is indeed greater than 2, this state-
ment is true.

To see how this works, add the following code to your conditional_
statements sketch:

. . .
x = 2
print(x > 1) # displays: True
print(x < 1) # displays: False

The variable x is equal to 2, which is greater than 1, so the console
should display True. However, 2 is not less than 1, so the final line should
print False. Notice that the relational operators return a Boolean value.
This will be important for the next section, where the results of such
comparisons determine which lines of code your program will execute.
Table 4-1 shows a list of Python’s relational operators.

Table 4-1: Relational Operators

Operator Description Example

> Left operand is greater than right 2 > 1 returns True

< Left operand is less than right 1 < 2 returns True

>= Left operand is greater than or equal to right 1 >= 2 returns False

<= Left operand is less than or equal to right 2 <= 2 returns True

== Left operand is equal to right 2 == 2 returns True

!= Left operand is not equal to right 2 != 2 returns False

What Table 4-1 doesn’t show is that the == and != operators can operate
on both numbers and strings. Add the following code to test this:

. . .
name = 'Jo'
print(name == 'Jo') # displays: True
print(name != 'Em') # displays: True

Conditional Statements 73

Next you’ll combine relational operators with if and other conditional
statements to specify the conditions for executing lines of code.

if Statements
The if statement requires two ingredients: an expression that returns True
or False, and code to execute should the former evaluate as True. Figure 4-3
illustrates the syntax of an if statement.

if ball is red :
 place in red bucket

Condition

If the condition is true, do this

Figure 4-3: An if statement syntax

Everything in pale blue is placeholder pseudocode, which is just English
text that describes what’s happening in the code; the idea is that you could
later replace this with Python.

Assigning a Passing Grade

To get started with if statements, you’ll build a simple program that assigns
letter grades to students, depending on their percentage test scores. Begin
by adding this code to your working sketch:

. . .
score = 60

if score >= 50:
 print('PASS')

This awards a PASS grade for any score greater than or equal to 50. In this
instance, the score >= 50 returns True, so the print('PASS') line is executed. Be
sure to indent the print line, which you can do by using the TAB key.

N O T E Whenever you press TAB, the Processing editor inserts four spaces and not a tab
character. Python permits indentation using any number of space or tab characters,
provided that you’re consistent, but two or four spaces is most common. That said,
the Processing editor will automatically indent using four spaces as you press ENTER
after any line that ends in a colon (:). I recommend sticking to Processing’s default.

74 Chapter 4

Everything indented beneath the if line is executed if the condition
returns True. For example, add the following line to your code:

. . .
if score >= 50:
 print('PASS')
 print('Well done!')

This should now print both PASS and Well done! for any score greater
than or equal to 50.

On the other hand, a print line flush against the left margin prints Well
done!, regardless of whether the score exceeds 50:

. . .
score = 10

if score >= 50:
 print('PASS')
print('Well done!')

If you ever need to nest an if statement within another if statement,
increase the indentation accordingly. Most code editors allow you to select
multiple lines of code and press the TAB key to indent them simultane-
ously. Processing’s editor is no exception. If you need to “out-dent,” hold
the SHIFT key while pressing TAB.

Without adding this next example to your code, see if you can predict
the result:

score = 60
1 language = 'ES' # for Español (Spanish)

2 if score >= 50:
 3 print('PASS')

 4 if language == 'EN':
 print('Well done!')

 5 if language == 'ES':
 print('Bien hecho!')

If you predicted that the console would display a PASS line followed by
Bien hecho!, you’re correct. The 'ES' string value is assigned to a new variable
named language 1. The score is greater than or equal to 50, so the program
executes the contents of the outermost if statement 2. The PASS line 3 is
first to print. The condition of the next if statement 4, however, evaluates as
False, so the program skips the Well done! line. The final if statement 5 then
tests for Spanish. Because the language variable is equal to 'ES', Processing
prints Bien hecho! to the console.

Conditional Statements 75

E X PR ESSIONS W IT H NO R EL AT ION A L OPER ATOR

When evaluating a Boolean value, you may leave out the == operator. Here’s a
practical example:

ball_is_red = True

if ball_is_red == True: 1
 print('The ball is red')

is the same as:

if ball_is_red: 2
 print('The ball is red')

Because True is assigned to the ball_is_red variable, ball_is_red ==
True 1 is equivalent to True == True. Either way, the expression evaluates to
True. As a shortcut, Python allows you to enter just the variable name 2, no
equal-to operator required.

Recall, also, that different values will evaluate as true or false. For example,
a 1 is converted to True:

ball_is_red = 1

if ball_is_red:
 print('The ball is red')

print(bool(ball_is_red)) # displays: True

Here again, you’ve avoided a relational operator. If you need to verify
what ball_is_red or any other value will evaluate as, use the bool() function.

Assigning Letter Grades

Currently, your grading program can award only a PASS. To assign letter
grades like A, B, or C, you’ll need to use additional if statements.

Adapt your code, changing the PASS string to a C and inserting a new if
statement that awards a B for any score greater than or equal to 65:

. . .
score = 60

if score >= 65:
 print('B')

76 Chapter 4

if score >= 50:
 print('C')

Run the sketch. Because the score variable holds a value greater than
50, the console displays a C. But there’s an issue—when you change the score
value to a 70, you get B and C (Figure 4-4).

B
C

Console

score = 70

if mark >= 65:
 print('B')

if mark >= 50:
 print('C')

Figure 4-4: A score of 70 is awarded both B and C.

Because the score is greater than 65 and greater than 50, both if state-
ments are triggered to print, resulting in two letter grades. To avoid getting
more than one grade, you need to chain together the if statements, such
that, if the first condition is found to be true, the subsequent if statement is
skipped. This is where the else-if style structure comes into play.

elif Statements
An else-if statement, or elif in Python, runs only after an if condition
returns False. Using an elif will solve the preceding problem of having
both if statements operate independently. So, just change the second if
to an elif:

. . .
score = 60

if score >= 65:
 print('B')

elif score >= 50:
 print('C')

Now, if the value of score results in B, there is no need to check the C
condition, and Python will skip the elif statement altogether. On the other
hand, should the initial if statement condition return False, the elif will
test whether score is greater than or equal to 50; if so, it prints a C.

Set the score variable to something B-worthy, like 70, and then run the
sketch. The console should now display a B, but no C.

Conditional Statements 77

Order Matters

It’s important to order this if...elif logic correctly. Consider, for instance,
the following code that places the C condition first:

score = 70

if score >= 50:
 print('C')

elif score >= 65:
 print('B')

In this scenario, any score greater than or equal to 50 gets a C, even if
it’s higher than 65 and should get a B. In fact, no B grades will ever print to
the console, because the program can never check the B condition.

Checking for A

In your conditional_statements sketch, insert a new if statement to handle
A grades (80 or greater). Also, change the B statement to an elif. Adjust the
score to test that this is working correctly:

score = 87

if score >= 80:
 print('A')

elif score >= 65:
 print('B')

elif score >= 50:
 print('C')

You can add as many elif statements as you need, but it’s always a single
if that marks the beginning of the if...elif chain.

Your A/B/C logic is now in place, but a score below 50 will pass through
all of the if...elif statements without invoking any actions, not receiving
any grade at all.

else Statements
If a student does not receive an A, B, or C, you can conclude that the grade
is a FAIL. To handle FAIL cases, use an else statement to account for any condi-
tion that doesn’t match those in the if...elif grouping. You don’t need to
check whether the score variable is less than 50, as this is implied by its fail-
ing to match any of the preceding criteria. To handle FAIL cases, add the
following else statement to your code:

. . .
 print('C')

78 Chapter 4

else:
 print('FAIL')

The else statement has no condition and always comes at the end of the
if...elif grouping.

Adjust the score value to something like 40 and test the code. The con-
sole should display a FAIL.

else Statements Without elif

An else statement need not necessarily follow an elif. You can use an if...
else structure where you don’t require elif clauses. Consider a program
that grades any score 50 and above as a PASS, and everything else as a FAIL:

if score >= 50:
 print('PASS')
else:
 print('FAIL')

There are no elif statements, so the else handles any score that the
if doesn’t catch. Of course, whether you include any elif statements all
depends on the logic you intend to implement.

Logical Operators
So far, each if...elif statement has relied on the outcome of a single
relational operation. But often it’s useful to evaluate multiple relational
operations within a single expression. For example, you might want to
check whether the ball from earlier is red and spiky. To do this, you can
use logical operators, or an if statement nested within another if statement,
to make a decision based on the outcomes of multiple conditions.

Let’s modify the earlier example to handle red, spiky balls. You could
use a nested if statement as shown in the following pseudocode:

if ball is red:

 if ball is spiky:
 place in red & spiky bucket

The outer if checks whether the ball is red, and then the inner if
checks whether it’s spiky.

You can do the same thing by using a single if statement with the
logical operator and:

if ball is red and ball is spiky:
 place in red & spiky bucket

The and operator returns True if the expressions on both sides of the
operator also return True.

Conditional Statements 79

Table 4-2 provides a list of Python’s logical operators, along with a brief
description of each and an example.

Table 4-2: Logical Operators

Operator Description Example

and Returns True if both operands are true 2 > 1 and 4 > 3 returns True

or Returns True if at least one operand
is true

2 > 1 or 4 < 3 returns True

not True becomes False, and vice versa not 4 < 3 returns True

Now let’s join two expressions by using the and operator to check for a
much narrower condition. Add another if statement to check whether the
student’s score is greater than or equal to 45 and less than 50, and display
OFFER RETAKE if so:

. . .
if score >= 45 and score < 50:
 print('OFFER RETAKE')

This condition includes the logical operator and. For this to evaluate
as True, both score >= 45 and score < 50 must return True. Change the score
value to something within this range, like 46, and confirm that the console
displays FAIL and OFFER RETAKE.

Checking for Invalid Input

Now, let’s add another if statement that uses the or condition to account
for any scores outside the valid range (0 to 100). Place this at the top of the
if...elif chain, and change the A statement to an elif:

. . .
score = 105

1 if score < 0 or score > 100:
 print('INVALID SCORE')

2 elif score >= 80 :
 print('A')
. . .

Now, if the score is 105, the program should print INVALID SCORE. For the
or operation 1 to evaluate as True, at least one of its two operands, score < 0
and score > 100, must return True. Experiment with different score values to
test the code. If the console displays the invalid score message as well as a
grade, ensure that you’ve changed the second statement to an elif 2.

80 Chapter 4

Displaying a Message for Invalid Input

There is room for one last improvement. Currently, if the user enters a
score of 0, the program grades it as a FAIL. However, a score of 0 is relatively
unusual, so add one final if statement to display a warning message that
the user may have entered invalid input.

Here is the complete grading program:

. . .
score = 0

if score < 0 or score > 100:
 print('INVALID SCORE')
elif score >= 80:
 print('A')
elif score >= 65:
 print('B')
elif score >= 50:
 print('C')
else:
 print('FAIL')

if score >= 45 and score < 50:
 print('OFFER RETAKE')

if not1 score:
 print('WARNING: SCORE IS ZERO')

Recall that, when dealing with Booleans, Python interprets a 0 as False.
This means if the score is assigned a 0, it’s evaluated as False. However, the
not operator 1 reverses this Boolean, converting it to a True, thereby trigger-
ing the warning message. You could use mark == 0 to test the same condition,
which is more explicit and easier to read, but this was a good opportunity to
show the not operator in action. Note that this is a separate if statement, so
for a score of 0, the console displays both the FAIL and a warning message.

You might decide that the program could use some clickable buttons and
input fields. Chapter 11 covers mouse and keyboard interaction techniques
you can use to add a graphical user interface to this kind of program.

Challenge #3: Four-Square Task
In this challenge, you’ll use conditional statements to gauge the position of
a point in a four-colored square. Add the following code:

size(600, 600)
noFill()
noStroke()

fill('#FF0000') # red quadrant
rect(width/2, 0, width/2, height/2)

Conditional Statements 81

fill('#004477') # blue quadrant
rect(0, 0, width/2, height/2)

fill('#6633FF') # violet quadrant
rect(0, height/2, width/2, height/2)

fill('#FF9900') # orange quadrant
rect(width/2, height/2, width/2, height/2)

Run the sketch. The display window should appear, equally divided into
different-colored quadrants (Figure 4-5). Each fill() and rect() line pair
draws a colored square spanning from the center of the display window to
each corner.

Figure 4-5: Grid with four colors

Next, place a single text character in the upper right quadrant:

. . .
x = 400
y = 100

1 txt = '?'

fill('#FFFFFF')
textSize(40)
textAlign(CENTER, CENTER)

2 text(txt, x, y)

The txt value 1, a question mark, is positioned in the red quadrant
(Figure 4-6). The text() function 2 relies on the x and y variables to con-
trol this character’s position.

82 Chapter 4

Figure 4-6: Placing the question mark in the
red (upper right) quadrant

Your challenge is to write conditional statements to replace the ? char-
acter with an R (for red), B (for blue), P (for purple), or O (for orange) in
the appropriate squares to match the color beneath it.

To start, insert an if statement to manage the R (red) condition:

. . .
txt = '?'

if x >= width/2:
 txt = 'R'

fill('#FFFFFF')
. . .

The if statement sets the txt variable to 'R' for any x values to the right of
the display window’s center. Run the sketch to confirm that the code displays
an R over the red quadrant. If you’re still seeing a question mark, ensure that
you have inserted the if statement above the fill('#FFFFFF') line.

Now, set the y value to 400 to place the character in the orange quadrant.
Run the sketch. It’s still an R. To display an O instead, you need to add an
elif statement (and a logical and operator). Once the O is working correctly,
try positioning the character in another quadrant, and so forth. Figure 4-7
displays four screenshots of the completed task; the caption lists the corre-
sponding x-y coordinates.

Now that you have a good grasp of if...elif...else logic, you’re ready
to use Boolean expressions for iteration. If you need help, you can access
the solution at https://github.com/tabreturn/processing.py-book/tree/master/
chapter-04-conditional_statements/four_square/.

https://github.com/tabreturn/processing.py-book/tree/master/chapter-04-conditional_statements/four_square/
https://github.com/tabreturn/processing.py-book/tree/master/chapter-04-conditional_statements/four_square/

Conditional Statements 83

Figure 4-7: Clockwise from the upper left: the x-y coordinates of each letter are
R = (400, 100), O = (400, 400), P = (250, 485), and B = (38, 121).

Summary
In this chapter, you learned about the Boolean data type, relational opera-
tors, and how to write Boolean expressions that work with if statements to
instruct Python to execute particular lines of code. You explored logical
operators for constructing richer expressions, as well as how to combine if,
elif, and else statements.

In Chapter 5, you’ll take control flow a step further and learn how to
write programs that can repeat an operation until a certain requirement is
met. For some especially interesting results, you’ll be adding randomness
to your creations.

In Chapter 4, you learned how to program
divergent paths for Python to follow. In this

chapter, you’ll create looped paths with while
and for loop statements. Loop statements repeat

actions, so you don’t need to rewrite the same or simi-
lar code multiple times, resulting in fewer lines of
code. In other words, you can solve problems more
efficiently with code that’s easier to adapt. You’ll use these loop statements
to generate visual patterns in Processing.

You’ll also learn to apply randomness to your patterns to make them
more compelling and unpredictable. Processing’s random() function is use-
ful for generating randomized arguments in your shape functions, allowing
you to create irregular designs. You can also randomize the conditions for
your control flow statements so that your code executes differently on each
run. Randomness is, undoubtedly, one of the most useful and exciting tools
in the creative coder’s toolset, because it allows you to write programs that
can produce unpredictable results.

5
I T E R A T I O N A N D R A N D O M N E S S

86 Chapter 5

Iteration
In computer programming, iteration is the process of repeating a series of
instructions a specified number of times or until a condition is met. As an
example, say you want to tile a floor. Starting in one corner, you lay one tile.
Then you place another tile next to it, repeating the process until you’ve
reached the opposite wall, at which point you move down a row and continue.
In this scenario, placing an individual tile is a single iteration. In many itera-
tive processes, the result of a previous iteration defines the starting point of
the next.

Tasks like tiling can be tedious work, though. Humans are exemplary in
reasoning and creative thought, but if not sufficiently stimulated, they tend
to lose interest in performing such monotonous activities. Computers, how-
ever, excel at performing repetitive tasks rapidly and accurately, especially
when numbers are involved.

Using Iteration to Draw Concentric Circles
To begin exploring iteration in Processing, create a new sketch and save it
as concentric_circles. Add the following code:

size(500, 500)
background('#004477')
noFill()
stroke('#FFFFFF')
strokeWeight(3)

circle(width/2, height/2, 30)
circle(width/2, height/2, 60)
circle(width/2, height/2, 90)

Each circle() function has its x-y coordinate placed in the center of the
display window. The first circle is the smallest, with a diameter argument of
30; each subsequent circle is 30 pixels larger in diameter than the one pre-
ceding it. The program runs each circle() function line by line, advancing
toward a display window filled with concentric circles (Figure 5-1).

Figure 5-1: Three circles rendered using
three circle() functions

Iteration and Randomness 87

However, to fill the entire window, you’d need to write many more
circle() lines. Instead of adding circle() functions manually, you can use
a Python while loop to run them iteratively.

while Loops
A while loop is a control flow statement that looks and behaves much like
if. The key difference is that while continues to execute the lines indented
beneath it until its accompanying condition is no longer true.

Back in your concentric_circles sketch, comment out the circle() lines by
using ''' for multiline comments, and add a basic while loop structure:

. . .
'''
circle(width/2, height/2, 30, 30)
circle(width/2, height/2, 60, 60)
circle(width/2, height/2, 90, 90)
'''
i = 0

while i < 24:
 print(i)

The i variable is defined to serve as your loop counter, controlling the
iterations of the while statement. For the while expression, i is equal to 0
and, therefore, is less than 24. Unlike an if statement that would execute
the print() function a single time, the while repeatedly executes the print
line until the value of i reaches 24—which, in this case, is never.

N O T E As with any other variable, you can name i whatever you like, but it’s a popular con-
vention to represent a loop counter value with an i.

Running the sketch should print an endless list of 0 digits to the con-
sole (Figure 5-2).

0
0
0
0

Console

circle(width/2, height/2, 90)
'''
i = 0

while i < 24:
 print(i)

Figure 5-2: The console lists endless lines of zeros.

88 Chapter 5

This code has crashed your program by sending it into an infinitive
loop! To exit the program, click the Stop button. Processing may take some
time to respond. The variable i remains 0, and the i < 24 condition never
achieves the False required to conclude the loop.

To correct this, add 1 to i with each iteration of the while loop:

. . .
while i < 24:
 print(i)
 i = i + 1

This new line states that the loop counter, i, is equal to itself plus 1. On the
first iteration, i is 0, which is less than 24, so the program prints 0, adds 1 to i,
and then begins the process again. On the next iteration, i is 1, which is still
less than 24, so the program prints 1, adds 1 to it, and restarts the process. The
iteration continues as long as i < 24 evaluates to True. Once i reaches 24, the
program exits the loop and runs any other code that follows the while block.

Note that the output never reaches 24 (Figure 5-3), because the while
condition states “where i is less than 24,” not “less than or equal to 24.”

To draw 24 circles, place a circle() function within the loop:

. . .
while i < 24:
 print(i)
 circle(width/2, height/2, 30*i)
 i = i + 1

19
20
21
22
23

Console

i = 0

while i < 24:
 print(i)
 i = i + 1

Figure 5-3: The console displays 0 to 23, but not 24.

To avoid drawing 24 circles of exactly the same size, in the same posi-
tion, use i as a multiplier for the circle() diameter argument. On the first
iteration, the diameter argument is equal to 30*0. Therefore, the first circle,
placed in the very center of the display window, has a diameter of 0 and
doesn’t render (Figure 5-4).

The other 23 circles are enough to fill the 500 × 500 pixel area. By
changing the number in the while statement, you may draw as many (or
as few) circles as you like.

Iteration and Randomness 89

Figure 5-4: The drawing now has 24 circles
(one invisible, and some partially cropped).

AUGMEN T ED A SSIGNMEN T OPER ATORS

You’re already familiar with the = operator (assignment), but not its arithmetic
variants. In the concentric_circles example, you incremented i by using this line
of code:

i = i + 1

This states that i is equal to itself plus 1. To simplify this statement, you can
instead write this:

i += 1

The result is exactly the same, but the latter is easier to read and write.
Table 5-1 provides a list of these augmented assignment operators, along with
an example of each.

Table 5-1: Augmented Assignment Operators

Operator Example

+= i += 1 is equivalent to i = i + 1

-= i -= 1 is equivalent to i = i - 1

*= i *= 1 is equivalent to i = i * 1

/= i /= 1 is equivalent to i = i / 1

90 Chapter 5

for Loops
The Python for loop executes a given block of code a specified number of
times. Unlike the while loop that relies on a conditional expression, the for
loop iterates a sequence. A sequence is a collection of values; for instance,
string data is a sequence of characters. Python lists are particularly versatile
sequences, which I cover in Chapter 7. To generate sequences for the for
loops in this section, you’ll use the range() function.

A for loop is more appropriate than a while loop when you’ve established
the number of iterations required before entering the loop. Generally speak-
ing, the for loop is shorter and simpler, and won’t trigger infinite loops.
When either a while or for will do, opt for the for loop.

One of the easiest ways to understand the for loop is to convert some-
thing you already wrote that uses a while statement. Save concentric_circles as
a new sketch called for_loop by using FileSave As. Comment out the while
loop parts, and add the following for loop:

. . .
'''

1 i = 0

while i < 24:
 print(i)
 circle(width/2, height/2, 30*i)

2 i = i + 1
'''

3 for i in range(24):
 print(i)
 circle(width/2, height/2, 30*i)

In the while loop version, recall that you had to define the i variable to
serve as a loop counter. With each iteration of the while block, you also had
to increment i to avoid entering an endless loop. The for statement does
away with the need to define and manage a separate counter variable.

So, i = 0 1 is no longer necessary, nor is the nested statement to incre-
ment it 2. Instead, the range() function takes its argument of 24 to generate
a sequence from 0 up to but not including 24 that controls the for 3 loop
iteration behavior. On the first iteration, i is equal to 0, the first value in
the sequence. With each subsequent iteration, the next value in the range()
sequence is assigned to i. When i reaches 23, the for block runs for the last
time, and then Python exits the loop. Run the sketch to confirm that the
display window looks the same as Figure 5-4.

The range() function can handle up to three parameters. Provide two
arguments for a start and end value, respectively:

. . .
for i in range(10, 13):
 print(i)
 circle(width/2, height/2, 30*i)

Iteration and Randomness 91

In this instance, the circle() function should execute three times, for
i = 10, i = 11, and i = 12. Run the sketch to see the result (Figure 5-5).

You should see three concentric rings.

Console

for i in range(10, 13):
 print(i)
 circle(width/2, height/2, 30*i)

10
11
12

Figure 5-5: Result for range(10, 13)

Now use three range arguments to represent a start, end, and step
size, respectively. The step size is the difference between each integer in
the sequence:

. . .
for i in range(3, 13, 3):
 print(i)
 circle(width/2, height/2, 30*i)

In this instance, the circle() function should execute four times, for
i = 3, i = 6, i = 9, and i = 12. The result should be four rings with enlarged
spacing (Figure 5-6).

Console

for i in range(3, 13, 3):
 print(i)
 circle(width/2, height/2, 30*i)

3
6
9
12

Figure 5-6: Result for range(3, 13, 3)

Experiment with different range arguments to see how the circles are
affected.

92 Chapter 5

Challenge #4: Create Line Patterns
In this challenge, recreate the three patterns shown in Figure 5-7 by using
the line() function and one for loop for each. Don’t worry if your code pro-
duces a slightly different result, as long as the basic pattern remains the same.

If you’re not sure where to begin, here are a few clues to help you
approach each pattern:

•	 The left pattern is similar to the concentric circles, except it has
12 diagonal lines.

•	 For the middle pattern, the line spacing increases by a multiple of 1.5
with each for loop iteration. Defining an additional variable may help.

•	 The right pattern requires an if...else structure nested within the for
loop. You might consider using a modulo (%) operator, described in
Chapter 1, to establish whether i is odd or even.

If you need help, you can find the solution at https://github.com/
tabreturn/processing.py-book/tree/master/chapter-05-iteration_and_randomness/
for_loop_patterns/.

Figure 5-7: Three for loop patterns

break and continue Statements
Loops provide an efficient way to automate and repeat tasks. Sometimes,
though, you need to exit a loop prematurely. For example, when you draw
a series of concentric circles to fill the display window, like in the earlier
task, you might want to break the loop if the circles reach the edge of the
display window before exhausting the sequence of range() values. If Python
encounters a break statement within a for or while loop, it will immediately
terminate the loop. Once the loop is terminated, your program will move
along as usual.

Sometimes you need to terminate an iteration (not the entire loop),
prompting Python to begin the next iteration immediately. For this, use
the continue statement.

https://github.com/tabreturn/processing.py-book/tree/master/chapter-05-iteration_and_randomness/for_loop_patterns/
https://github.com/tabreturn/processing.py-book/tree/master/chapter-05-iteration_and_randomness/for_loop_patterns/
https://github.com/tabreturn/processing.py-book/tree/master/chapter-05-iteration_and_randomness/for_loop_patterns/

Iteration and Randomness 93

Let’s look at a brief example comparing an ordinary loop, a loop with
a break statement, and a loop with a continue statement. There’s no need to
write any code. Figure 5-8 depicts three dotted lines, drawn from left to
right using each type of loop.

The loop for the pale blue (top) dotted line looks like this:

for i in range(20, width, 20):
 fill('#0099FF')
 circle(i, 75, 10)

With each iteration, the circle() function draws a new dot, placing it 20
pixels to the right of its predecessor. The first dot has an x-coordinate of 20;
the loop completes as the dotted line reaches the width of the display win-
dow. This loop is not concerned with the two vertical red bands and draws
dots right through them.

Figure 5-8: Drawing dotted lines using different loops

The loop for the orange (middle) dotted line looks like this:

for i in range(20, width, 20):

 if red(get(i, 150)) == 255:
 break

 fill('#FF9900')
 circle(i, 150, 10)

The get() function accepts an x-y coordinate and returns the color for
the pixel at that position; to extract the red value for the pixel, you wrap the
get() function with a red() function. This will return a red value between 0
and 255 based on the RGB mixture, which means a value of 255 for any pixels
in the bright red bands (#FF0000). The loop will check for a red pixel before
it draws a dot; if detected, the break statement will terminate the loop. The
fill() and circle() functions do not draw a dot on the final iteration, because
the break statement exits the loop immediately.

94 Chapter 5

The loop for the green (bottom) dotted line looks like this:

for i in range(20, width, 20):

 if red(get(i, 225)) == 255:
 continue

 fill('#00FF00')
 circle(i, 225, 10)

This loop will check for a red pixel before it draws a dot; if the pixel is
detected, the continue statement immediately terminates the current itera-
tion of the loop to start at the beginning of the next, skipping over the
fill() and circle() functions.

Randomness
Randomness is an important concept in computer programming because of
its applications in cryptography. Moreover, randomness is programmed into
everything from video games to simulations to gambling software. However,
computer-generated random numbers aren’t truly random, because they’re
created using a specific algorithm. If you know the algorithm and the con-
ditions used to generate “random” numbers, you can predict patterns in the
sequence. Therefore, a computer can simulate randomness only by generat-
ing pseudorandom numbers, which are not truly random but statistically simi-
lar enough to actual random numbers.

In this section, you’ll use the Processing random() and randomSeed() func-
tions to generate pseudorandom values. With these randomized values,
you’ll draw more interesting patterns than you might be able to create with
predefined values.

random() Function
Each time you call Processing’s random() function, it produces an unexpected
value within a specified range. To begin experimenting with randomness,
create a new sketch and save it as random_functions. Add the following setup
code:

size(600, 250)
background('#004477')
noFill()
stroke('#FFFFFF')
strokeWeight(9)

The new sketch has a blue background. Soon, you’ll draw points; the
size of your points is affected by the strokeWeight() function.

Iteration and Randomness 95

The random() function can accept up to two arguments. In the case of a
single argument, you’re defining an upper limit:

print(random(5))

This code will display a random floating-point value ranging from 0 up
to but not including 5.

Two arguments represent an upper and lower limit, respectively:

print(random(5, 10))

This time around, the console displays a random floating-point number
ranging from 5 up to but not including 10.

If you want a random integer instead, wrap the random() function in
int(). This converts the floating point to an integer by removing the decimal
point and everything that follows it:

print(int(random(5, 10)))

Figure 5-9 shows what you can expect to see. Of course, given that the
values are random, the console output will appear differently on your com-
puter, as well as each time you run the sketch.

Console

print(random(5))
print(random(5, 10))
print(int(random(5, 10)))

2.21987342834
8.80465507507
6

random_fu

Figure 5-9: Experimenting with different random() arguments

Next, let’s generate 50 random values. Rather than print a long list in
the console area, plot them as a series of points sharing a y-coordinate.
Add the following code:

. . .
for i in range(50):
 point(random(width), height/2)

This point() function uses the random() function to define its x-coordinate.
The y-coordinate is always height/2. The points should distribute differently
each time you run the sketch (Figure 5-10).

96 Chapter 5

Figure 5-10: Random values distributed along a line

Now change the range argument from 50 to 500, and plot the point using
random x- and y-coordinates:

. . .
for i in range(500):
 point(random(width), random(height))

The result should be a display window filled with 500 randomly posi-
tioned points (Figure 5-11).

Figure 5-11: Filling the display window with randomly positioned points

Each time you run the sketch, it produces a (slightly) different
arrangement.

Random Seed
In Figures 5-10 and 5-11, Processing picks the coordinates from a pseudo-
random sequence of numbers. This pseudorandom sequence itself relies on
a random seed, which is an initial number the random function selects based
on something unpredictable, like keystroke timing. For instance, you may
have pressed your last key 684 milliseconds past the tick of the previous

Iteration and Randomness 97

second. For a random number between 0 and 9, your computer can grab
the last digit of the 684 (which is a 4). The random seed determines what
you’ll get from your first random() call as well as all subsequent calls.

You can use Processing’s randomSeed() function to set the random seed
manually. Change the range argument to 10, and insert a randomSeed() line
at the very top of your working sketch:

randomSeed(213)
size(600, 250)
. . .
for i in range(10):
 point(random(width), random(height))

This randomSeed() function accepts a single argument, any integer of your
choice, but you’ll use 213 for this example. Unlike the 500-point (Figure 5-11)
version in which no random seed had been defined, every run of the code
produces the same pattern, on any computer that executes it.

This ability to ensure that the program generates the same sequence of
pseudorandom numbers with every run is useful in many applications. For
example, suppose you developed a platform game using levels composed
of randomly positioned obstacles. Not having to place obstacles manually
would save a lot of time. However, you discover that specific sequences of
pseudorandom numbers produce more engaging levels than others. What’s
more, the resulting levels vary in difficulty, so you need to control the order
in which the player progresses through them. If you’re aware of the seed
values that produce each level, you can reproduce any of them, on demand,
with just an integer.

In the next section, you’ll combine a for loop and the random() function
to create interesting tile arrangements.

Truchet Tiles
Sébastien Truchet (1657–1729), a French Dominican priest, was active in
the fields of mathematics, hydraulics, graphics, and typography. Among
his many contributions, he developed a scheme for creating interesting
patterns using tiles, which have since become known as Truchet tiles. The
original Truchet tile is square and divided by a diagonal line between its
opposing corners. This tile can be rotated in multiples of 90 degrees to
produce four variants, as shown in Figure 5-12.

Figure 5-12: A Truchet tile, presented in its four possible orientations

98 Chapter 5

These tiles are arranged on a square grid, either randomly or according
to a pattern, to create aesthetically pleasing designs. Figure 5-13 presents just
four possible arrangements, including a randomized tiling (bottom right)
with some ordered approaches.

Figure 5-13: Four Truchet tile layouts

Next, you’ll use the quarter-circle Truchet tile, shown in Figure 5-14, in
its two possible orientations.

Let’s apply the looping and randomness techniques you learned in this
chapter to create different patterns using this tile. Create a new sketch and
save it as truchet_tiles. Add the following setup code:

size(600, 600)
background('#004477')
noFill()
stroke('#FFFFFF')
strokeWeight(3)

for i in range(1, 145):
 arc(0, 0, 50, 50, 0, PI/2)
 arc(50, 50, 50, 50, PI, PI*1.5)

The new sketch has a blue background. Every shape you draw will have
no fill and a white stroke of 3 pixels. This is for drawing the quarter-circle
designs shown in Figure 5-14. Each tile is 50 × 50 pixels, so there’s room
for exactly 12 (600 ÷ 50) columns and 12 rows. Filling the display window,
therefore, requires 144 (12 × 12) tiles, hence the range(1, 145).

Iteration and Randomness 99

Figure 5-14: Quarter-circle Truchet tiles

Run the sketch. A single tile should appear in the upper left corner
(Figure 5-15).

Figure 5-15: All 144 tiles placed in the upper left corner

In actuality, in Figure 5-15, you’re looking at all 144 tiles placed in the
same position!

To control the column and row positioning, use col and row variables.
Amend your script as per the boldface code:

. . .
col = 0
row = 0

for i in range(1, 145):
 arc(col, row, 50, 50, 0, PI/2)
 arc(col+50, row+50, 50, 50, PI, PI*1.5)
 col += 50

100 Chapter 5

With each iteration of the loop, the col variable (tile y-coordinate) is
increased by 50. The result should be that each tile is placed to the right of
its predecessor, as shown in Figure 5-16.

Figure 5-16: The remaining 132 tiles lie beyond the
right edge.

There’s a problem, though: the program doesn’t know when to return
to the left edge and begin a new row. Instead, the tiles overflow, extending
out beyond the right edge where you cannot see them.

To correct this, nest an if statement within the loop:

. . .
for i in range(1, 145):
 . . .
 if i % 12 == 0:
 row += 50
 col = 0

The i % 12 will return 0 for any value of i divisible by 12. In other words,
if the remainder of a divide-by-12 operation is equal to 0, you know that
you’ve just laid another 12 tiles. At this moment, the row variable is advanced
by 50, and the col resets to 0. The next tile is now set up for placement at the
beginning of a new row, which should result in a display window filled with
tiles (Figure 5-17).

Iteration and Randomness 101

Figure 5-17: The display window filled with
quarter-circle Truchet tiles

To make things more interesting, randomize the orientation of each
tile by adding this if...else structure:

. . .
for i in range(1, 145):

 if int(random(2)1):
 arc(col, row, 50, 50, 0, PI/2)
 arc(col+50, row+50, 50, 50, PI, PI*1.5)

 2 else:
 arc(col+50, row, 50, 50, PI/2, PI)
 arc(col, row+50, 50, 50, PI*1.5, 2*PI)

 col += 50
 . . .

A random(2) function 1 will return a floating-point value ranging from 0
up to but not including 2. Converting the result to an integer by wrapping it
in an int(), therefore, produces a 0 or 1. This is akin to flipping a coin, which
is now performed with each iteration to decide which of the two tile orienta-
tions to pick. Because this “coin flip” operation returns a Boolean-compatible
value—a 0 or 1—it can stand alone as the if statement’s condition, no rela-
tional operators necessary. The else code 2 runs if the result of the coin flip
is a 0, because a 0 is equivalent to False (and if runs only on a True).

102 Chapter 5

Each time you run the sketch, the display window presents a different
pattern (Figure 5-18).

Figure 5-18: An arrangement of randomized
quarter-circle Truchet tiles

If you’ve ever played the strategy game Trax, this pattern will look famil-
iar. Another tile-based strategy game, Tantrix, uses a hexagonal adaptation
of a Truchet tile. Of course, there’s far more to tiles than the Truchet vari-
ety. You can try adding fills, switching out semicircles for diagonal lines,
adding extra tiles to the set, or adding rules about which tiles can be placed
next to one another (Figure 5-19). If you’re looking for some fun projects,
plenty of tiling patterns are available for inspiration.

Figure 5-19: Variations of Truchet tiles

Iteration and Randomness 103

You can find code for some Truchet tile variations at https://github.com/
tabreturn/processing.py-book/tree/master/chapter-05-iteration_and_randomness/
truchet_tiles_variations.

As your programs grow more complex, you’ll find multiple ways to
code the same outcome. For example, you could have laid the quarter-circle
Truchet tiles by using a loop within a loop, using range() functions with a
step-size argument, in various combinations. Among the Truchet tile varia-
tions on Github, you’ll find an example named loop_within_a_loop that uses
this approach. Now that you understand control flow, you can begin think-
ing about how to optimize your algorithms for improved readability and
efficiency.

Summary
You’ve now learned about iteration and how to program loops using while and
for statements; this allows you to accomplish more in fewer lines of code, with
code that’s more adaptable. Loops will reappear throughout the course of
this book, providing plenty more opportunities for you to master them.

This chapter also introduced randomness, which is useful in a variety of
computing applications, including creative coding. The Processing random()
function generates sequences of pseudorandom numbers, which you can con-
trol using a random seed in order to produce the same sequence of values each
time you run your sketch.

The next chapter deals with motion. You’ll learn how to add movement
to your Processing sketches, and you’ll also look at transformation func-
tions as efficient ways to move, rotate, and scale your elements, which is
especially useful for groups of shapes.

https://github.com/tabreturn/processing.py-book/tree/master/chapter-05-iteration_and_randomness/truchet_tiles_variations
https://github.com/tabreturn/processing.py-book/tree/master/chapter-05-iteration_and_randomness/truchet_tiles_variations

Applying movement to graphics of both liv-
ing and inanimate objects instills them with

character. Bouncy animation suggests playful-
ness; precise movement implies intensity, while

slow motion can suggest heaviness. These techniques
are applied in film, animation, dance choreography,
and, of course, your favorite Pixar flick. But that’s not
all. Motion is prevalent in interface design, such as sub-
tle button-hover effects or elaborate spinning graphics
that appear while your content is loading.

In this chapter, you’ll make things move by coding with motion and
transformation functions. You’ll learn how to manipulate the coordinate
system with transformation functions, making it simpler to move, rotate,
and scale your elements. In addition, you’ll learn how to structure an ani-
mated Processing sketch by using the setup() and draw() functions. Motion
literally adds a new dimension—time—to your Processing sketches.

6
M O T I O N A N D T R A N S F O R M A T I O N

106 Chapter 6

Perceiving Motion
First, consider how motion is perceived. The brain is fed a snapshot from
your retina many times each second. Provided that their screen can display
a sequence of static images at a rate exceeding roughly 10 to 12 frames per
second, the viewer will experience the illusion of smooth, flowing move-
ment. Higher frame rates will appear even smoother.

Take a moment to note the two circles in Figure 6-1.

Figure 6-1: Two circles (positioned left and right)

If you displayed only the left circle for four seconds, followed by only
the right circle for another four seconds, looping the sequence indefinitely
(Figure 6-2), this would be an effective frame rate of 0.25 frames per second
(or 0.25 fps). The result, most observers would agree, is a pair of alternating
images depicting circles in two different positions.

1

Frame #

2 3 4

Figure 6-2: Displaying alternating circles

However, speed up the frame rate to around 2.5 fps (10 times faster), and
the observer will begin to interpret the sequence as a single circle bouncing
between two points—as if the circle were moving across the gap in the mid-
dle. The illusion is referred to as beta movement. Increase the frame rate fur-
ther, and the two circles will appear to flicker in sync with one another. From
this experiment, you can see how frame rate doesn’t affect only how fast or
slow something moves, but also how you perceive the object’s motion.

Note the numbering of the circles shown in Figure 6-3.
Now, suppose you want to animate this. Using the numbering to dictate

the order, remove a single circle on each frame. On the first frame, remove
just the circle labeled 0. On the second frame, replace circle 0 and remove
only circle 1. Continue this process around the ring, and loop the anima-
tion indefinitely. Removing successive circles from each frame results in a
gap that moves around the ring in a clockwise progression (Figure 6-4).

Motion and Transformation 107

0

1

2

3

4

5

6

7

Figure 6-3: A ring of circles numbered in
a clockwise sequence

1

Frame #

2 3 4

Figure 6-4: Animating the ring of circles

If you run the animation at 1 fps, the circle just ahead of a gap appears
to jump into the void left by the vacant circle (Figure 6-5).

Figure 6-5: At 1 fps, the next circle seems
to leap into the gap.

At 25 fps, however, a rapidly moving phantom white dot seems to obscure
the circles beneath it as it races around the ring—an illusion called the phi
phenomenon (Figure 6-6).

Now you’re ready to build a Processing sketch that, in addition to intro-
ducing Processing’s animation functions, will allow you to experiment with
these phenomena.

108 Chapter 6

Figure 6-6: At 25 fps, a phantom white dot
seems to obscure the circles.

Adding Motion to Processing Sketches
Processing gives you the option to draw to the display window a single time
or multiple times over. For animation, you use the latter approach. To make
an object move, you adjust its position with each frame drawn—and if you
do it rapidly enough, in small enough increments, the result is smooth,
flowing motion.

The draw() and setup() Functions
To make Processing draw something multiple times, you’ll need to structure
your code by using the setup() and draw() functions. Beneath those two func-
tions, you can nest any of the functions or statements covered in the book so
far. As indicated in Figure 6-7, where you place your code depends on when
you want it to execute.

def setup():
 run this code once at the start

def draw():
 run this code every frame

Figure 6-7: Structuring code for motion

Any def keyword is followed by a function name, parentheses, and a
colon. Chapter 9 covers def in more detail, but for now, just be aware that
any code indented beneath a def belongs to that respective function.

The setup() code runs once at startup, and it typically includes things
like your size() function and other lines that define your environmental
properties. I’ll get to draw() in more detail shortly, but first, create a new
sketch, save it as perceiving_motion, and then add the following code:

def setup():
 size(500, 500)
 background('#004477')
 noFill()
 stroke('#FFFFFF')
 strokeWeight(3)

Motion and Transformation 109

This code resembles just about every other sketch you’ve set up so far,
except for the def setup() line. Whenever you intend to use a draw() function,
you have to use setup() too. Now add the draw() function:

. . .
def draw():
 print(frameCount)

Processing invokes the code indented beneath the draw() function with
each new frame. The frameCount is a system variable containing the number of
frames displayed since starting the sketch. With each new frame, the draw()
function calls the print() function, which in turn displays the current frame
count in the console.

By default, draw() executes at approximately 60 fps. However, as the
complexity of an animation increases, the frame rate is likely to drop as
your computer struggles to accommodate the demands placed on it. Adjust
the frame rate by using the frameRate() function (within the setup() block),
and add a condition to draw() to print on even-numbered frames only:

def setup():
 . . .
 frameRate(2.5)

def draw():
 if frameCount % 2 == 0:
 print(frameCount)

With the frameRate set to 2.5, the draw line runs two and a half times
every second; this means that each frame is 400 milliseconds (0.4 of a sec-
ond) in duration. Because the print line executes on every second frame, a
new line appears in the console every 800 milliseconds (Figure 6-8).

42
6
8
10
12

Console

 frameRate(2.5)

def draw():
 if frameCount % 2 == 0:
 print(frameCount)

Figure 6-8: Printing the frame count on every even-numbered frame

110 Chapter 6

To draw a circle on every even frame instead, use the following
circle() line:

. . .
def draw():
 if frameCount % 2 == 0:
 circle(420, 250, 80)

Now run the sketch. You may be surprised to find that the circle does
not flash on and off (Figure 6-9).

Figure 6-9: The circle does not “blink.”

The reason the circle does not disappear on odd frames is that every-
thing in Processing persists after it’s drawn. On every even frame, the pro-
gram draws another circle atop the existing “pile.” The background() color
within the setup() function runs once at the start, filling the display window
in blue to form the bottommost layer of this persistent arrangement. To
“wipe” each frame before drawing the next, you can redraw a background
over everything.

Copy the background('#004477') line into the draw() section of your sketch:

. . .
def draw():
 background('#004477')
 if frameCount % 2 == 0:
 circle(420, 250, 80)

The new background() line clears every frame before it. Be sure you have
placed it above the if statement. In most instances, a background() function
will sit somewhere near the top of draw() to avoid clearing other shapes in
the current frame.

Test the code. The result should be a blinking circle.

Motion and Transformation 111

To recreate the ring of circles experiment from earlier (Figure 6-3),
replace the existing if statement with a series of if statements:

. . .
def draw():
 background('#004477')
 hide = frameCount % 81

 if hide != 0:
 circle(250, 80, 80)
 if hide != 1:
 circle(370, 130, 80)
 if hide != 2:
 circle(420, 250, 80)
 if hide != 3:
 circle(370, 370, 80)
 if hide != 4:
 circle(250, 420, 80)
 if hide != 5:
 circle(130, 370, 80)
 if hide != 6:
 circle(80, 250, 80)
 if hide != 7:
 circle(130, 130, 80)

The current frame count is divided by 8 1, and the remainder is assigned
to the hide variable. Each if statement will draw a separate circle provided it
hasn’t been flagged as the one to hide. For instance, on the 16th frame, hide is
equal to 0 because 16 divides evenly by 8. On the 15th frame, hide is equal to
7 because 15 divided by 8 leaves a remainder of 7. On the 17th frame, hide is
equal to 1. The result is a stream of numbers that counts from 0 up to 7, then
restarts at 0.

Run the sketch. Focus on the gap as it moves around the circle. At the
current frame rate of 2.5 fps, the circle just ahead of a gap appears to jump
into the void left by the vacant circle. But adjust the frame rate to 25 fps,
and a phantom background-colored dot appears to obscure the circles
beneath it as it races around the ring.

Global Variables
A global variable is one that you can access anywhere within your program. Up
until this point in the book, almost every variable you have defined has been
a global variable. You’ll need to understand more about global variables to
manage data across multiple frames.

Global variables are declared outside any function definitions (indented
blocks beginning with def), usually somewhere near the top of your code. For
instance, any variables that you declare outside setup() and draw() are auto-
matically global. Conversely, any variables declared inside the indented lines
of those two functions are accessible within that function alone.

112 Chapter 6

As an example of this behavior in action, create a new sketch and save it
as global_variables. Add the following code:

def setup():
 1 y = 1

def draw():
 2 print(y)

The y variable 1 is declared within the setup() function. As such, y is
accessible only within the indented lines of the setup() block. The y variable’s
scope, therefore, is considered to be local to setup(). Scope, in programming,
deals with the regions where a variable (or other entity) may be accessed. In
this instance, running the sketch produces an error (Figure 6-10), because
you have attempted to access and print variable y from within the draw()
function 2.

processing.app.SketchException: NameError: global name 'y' is not ...

NameError: global name 'y' is not defined

Console

def setup():
 y = 1

def draw():
 print(y)

Figure 6-10: The draw() function cannot access the y variable declared in setup().

Alternatively, you can move the y = 1 line outside the setup() function,
which places it in the global scope; this permits either function to read it.
Move this line to the top of your code and insert a pass statement in place
of the location you moved it from:

y = 1

def setup():
 pass

def draw():
 print(y)

The draw() function has no problems accessing y now that it’s declared
outside setup(). The pass statement is a null operation—that is, nothing hap-
pens when it executes. You need to include a pass line because Python does
not allow empty function definitions. This makes pass a useful placeholder
for any code you have yet to write. Upon running the sketch, the console
should print endless lines of 1s.

Motion and Transformation 113

You can override the global y variable on a local level with another
variable of the same name—in this case, another variable named y. Make
the following adjustments to your code:

y = 1

def setup():
 1 y = 0
 2 print(y)

def draw():
 3 print(y)

The setup() function runs first—just once—and its print line 2 displays
a 0. This is because within the setup() function, you define the y as a 0 1. The
outer (global) y is still equal to 1, and it’s said to be shadowed by the setup()’s
inner (local) y variable. The draw() code executes after the setup() code, and
with every new frame, prints 3 a 1 to the console. Run the sketch, quickly
stop it, and then scroll up through the console output. The first line displayed
is a 0; from there down, it’s all 1s (Figure 6-11).

Console

 y = 0
 print(y)

def draw():
 print(y)

0
1
1
...

Figure 6-11: The global y variable is shadowed by the y = 0.

Next, remove the y = 0 line and add code that attempts to increment
the global y variable by 1 with each frame:

. . .

def draw():
 y += 1
 print(y)

While you can read (or shadow) any global variable, writing or reas-
signing values requires additional code. As a result, this code should cause
Processing to display an error (Figure 6-12).

114 Chapter 6

UnboundLocalError: local variable 'y' referenced before assignment

Console

 print(y)

def draw():
 y += 1
 print(y)

1
processing.app.SketchException: UnboundLocalError: local variable
...

Figure 6-12: The draw() function cannot reassign a value to y.

This is where the global statement is useful. Edit your code, inserting a
global y line at the top of the draw() block:

. . .

def draw():
 global y
 y += 1
 print(y)

The global y variable is now bound to the local scope of draw(), and you
may modify it as you wish. Run the sketch. The global y variable should now
increment by 1 with each new frame (Figure 6-13).

Console

def draw():
 global y
 y += 1
 print(y)

1
2
...

Figure 6-13: The global y variable is incremented by 1 with each new frame.

Global variables allow you to keep track of and update values between
frames easily, which is especially useful for animating objects. Add a mov-
ing circle, the y-coordinate of which is controlled by the y variable:

y = 1

def setup():
 print(y)
 size(500, 500)

Motion and Transformation 115

 noFill()
 stroke('#FFFFFF')
 strokeWeight(3)

def draw():
 . . .
 background('#004477')
 circle(height/2, y, 50)

I’ve placed the size, fill, and stroke properties in the setup() section
of the code. Given that the stroke and fill are unchanged throughout the
animation, there’s no need to apply those properties repeatedly in draw().
The circle’s y-coordinate, represented by variable y, moves the circle down
as the frames advance. In Figure 6-14, a motion trail has been added to
convey the direction of motion.

Figure 6-14: The circle moves down from
the top of the display window.

When the circle reaches the bottom of the display window, it continues
out of sight beyond the lower edge.

Saving Frames
Processing provides the saveFrame() function to save frames as image files.
Whenever your sketch calls a saveFrame(), it saves a Tagged Image File Format,
or TIFF, image in the sketch folder. You’ll want to place this call at the end
of your draw() function to ensure that you capture every shape rendered on
the current frame. For instance, say you add the following code to a draw()
function:

. . .
def draw():
 . . .
 if frameCount % 100 == 0:
 saveFrame()

 square(10, 10, 100)

116 Chapter 6

As the animation encounters every 100th frame, a new image file
appears in your sketch folder. This image file is named screen- followed
by a four-digit frame count; where necessary, this frame count is padded
with leading zeros, as shown in Figure 6-15. Because saveFrame() precedes
the square() line, the square appears in every frame of the animation, but
never in the saved image files.

sketch_name

screen-0100.tif
screen-0200.tif
screen-0300.tif
sketch_name.pyde
sketch.properties

Figure 6-15: The saveFrame() function
generates an image file named using
the frame count.

If you want to save the file in an image format other than TIFF, such
as JPG, PNG, or TARGA, include a filename argument with the relevant
extension:

 . . .
 saveFrame('frame.png')

In this case, you’d use the same filename for every image saved, which
is okay for capturing a single frame, but will lead to overwriting when you
call the same saveFrame() function multiple times. However, you can include
a series of hash marks to make the frame count appear in the filename.
This code generates a uniquely named PNG file with every save:

 . . .
 saveFrame('frame-####.png')

Processing replaces the hash marks with the frame count and, if neces-
sary, pads the count with leading zeros.

Challenge #5: DVD Screensaver
In this task, you’ll combine setup(), draw(), global variables, and if statements
to animate an object that bounces off the edges of the display window.

DVD players commonly feature a bouncing DVD logo as a screen-
saver (Figure 6-16), which appears after a given period of inactivity. You
may have seen a variation of this on other devices, albeit with a different
graphic. Intriguingly, people often find themselves staring at the pointless
animation in the hope of witnessing the logo land perfectly in the corner
of the screen.

Motion and Transformation 117

DVD

DVD

Figure 6-16: The logo bounces off edges
of the screen.

Create a new sketch and save it as dvd_screensaver. Add the following code:

y = 100
yspeed = 2

def setup():
 size(800, 600)
 fill('#0099FF')
 textSize(50)

def draw():
 1 global y, yspeed

 background('#000000')
 2 y += yspeed

 text('DVD', 100, y3)

The code is similar to that of the previous example using the circle
(Figure 6-14). In this instance, you include a yspeed variable. To use a single
global statement for multiple variables, comma-separate them 1. With each
new frame, the program adds yspeed to the y variable 2, which serves as the
y-coordinate for the DVD text 3. Upon running the sketch, the logo should
move directly down (Figure 6-17), soon passing beyond the bottom edge of
the display window.

Figure 6-17: The DVD text moves downward.

118 Chapter 6

To make the logo rebound off the bottom edge of the display window,
add the following if statement:

. . .

def draw():
 . . .
 if y > height:
 yspeed *= -1

When the y variable exceeds the height of the display window, the
yspeed is multiplied by -1, sending the logo in the opposite direction. Run
the sketch; the logo should rebound as it hits the bottom edge.

To move the logo diagonally, add some x values:

. . .
x = 100
xspeed = 2

. . .

def draw():
 global y, yspeed, x, xspeed
 background('#000000')
 y += yspeed
 x += xspeed
 text('DVD', x, y)
 . . .

Here, you’ve replicated everything you did with the y and yspeed variables
for the text() function’s x argument. The logo should now move vertically and
horizontally. Run the sketch (Figure 6-18).

Figure 6-18: The diagonally moving DVD text
rebounds near the lower-right corner.

When the logo rebounds off the bottom edge, the yspeed is inverted,
but not the xspeed. This is the behavior you seek, but then the logo passes

Motion and Transformation 119

through the right edge. Instead, the logo must rebound off every edge it
encounters. Your challenge is to complete the task. If you need help, you
can access the solution at https://github.com/tabreturn/processing.py-book/tree/
master/chapter-06-motion_and_transformation/dvd_screensaver/.

Transformations
Processing’s transformation functions provide convenient ways to manipulate
elements by using translate, rotate, scale, and shear operations (Figure 6-19).
You may apply transformations to individual shapes, groups of elements, or
the entire drawing space.

Figure 6-19: From left to right: translation, rotation, scaling, and shear transformations

Suppose you want to rotate a star shape (as shown in Figure 6-20) in a
clockwise direction. This star is composed of vertices using a series of vertex()
functions; an x-y coordinate pair defines the position of each vertex.

Figure 6-20: Rotating a star shape

Calculating the new positions of each vertex requires a matrix. You can
think of a matrix as a table of numbers. For different transformations, you
can add, subtract, or multiply each x-y coordinate pair with a transformation
matrix. In the case of the star rotation, the matrix operation would look some-
thing like Figure 6-21. The x and y values in the square brackets labeled vertex
represent the coordinate pair for a given vertex; this is multiplied by the trans-
formation matrix to calculate a new rotated vertex position. The equation in
the result brackets reveals the workings of the matrix math.

https://github.com/tabreturn/processing.py-book/tree/master/chapter-06-motion_and_transformation/dvd_screensaver/
https://github.com/tabreturn/processing.py-book/tree/master/chapter-06-motion_and_transformation/dvd_screensaver/

120 Chapter 6

transformation
matrix resultvertex

0.9 –0.3
0.3 0.9

× = (x × 0.9) + (y ×–0.3)
(x × 0.3) + (y × 0.9)

x
y

Figure 6-21: A transformation matrix for rotation

If matrix math looks a little confusing, don’t worry; Processing quietly
handles all of it for you.

In the next section, you’ll learn about the translate(), rotate(), scale(),
shearX(), and shearY() functions. You’ll also see how to use the pushMatrix()
and popMatrix() functions for applying transformations to selected groups
of elements.

Processing Transformation Functions
Create a new sketch and save it as transformation_functions. Within the
sketch’s folder, create a data subfolder and then follow these steps:

 1. Open your web browser and go to https://github.com/tabreturn/
processing.py-book/.

 2. Navigate to chapter-06-motion_and_transformation.

 3. Download the grid.png and grid-overlay.png files.

 4. Place both files in your data subfolder.

Add the following setup code:

size(800, 800)
noFill()
noStroke()
grid = loadImage('grid.png')
image(grid, 0, 0)
grido = loadImage('grid-overlay.png')

The grid variable and image() lines load and display the grid.png graphic.
The grid-overlay.png file is loaded into the variable grido, but it’s not rendered
in the display window yet; you’ll display it later in this task.

translate()
The translate() function accepts two arguments: an x-offset and y-offset.
Ordinarily, an x-y coordinate of (0, 0) marks the upper left corner of the dis-
play window. This point is called the origin. Using translate(), you can reposi-
tion the coordinate system, which shifts the origin and influences everything
you draw after that.

Add a translate() function to your transformation_functions code, and
display the grid-overlay graphic by using a new image() line.

https://github.com/tabreturn/processing.py-book/
https://github.com/tabreturn/processing.py-book/

Motion and Transformation 121

. . .
translate(150, 100)
image(grido, 0, 0)

The translate() function moves the entire coordinate system 150 pixels
across and 100 pixels down. The image() function draws the grid-overlay
graphic—a pale blue version of the first grid image—at (0, 0). The grid-
overlay.png graphic has a transparent background, so you should see the
grid.png file showing through it. Run the sketch to confirm that the output
matches Figure 6-22.

Figure 6-22: The grid image with the translated grid-overlay
displayed above it

The x-y coordinate (0, 0) no longer aligns with the upper left corner of
the display window. The grid-overlay graphic serves as a visual representa-
tion of your new, shifted coordinate system.

Add a red and a yellow square:

. . .
fill('#FF0000')
square(0, 0, 100)

fill('#FFFF00')
square(100, 0, 100)

122 Chapter 6

The red and yellow squares share a y-argument of 0, but the yellow square
has an x-coordinate of 100. Run the sketch. Processing positions both squares
relative to your new origin. The yellow square should appear to the right of
the red (Figure 6-23).

Transformations are cumulative, meaning that each subsequent trans-
formation uses the current coordinate system as a reference, so you could
have placed the yellow square 100 pixels to the right by using an additional
translate(100, 0):

. . .
translate(100, 0)
fill('#FFFF00')
square(0, 0, 100)

The new translate() line has an x argument of 100, and the x argu-
ment for the square() is now 0. The visual result should be the same as
Figure 6-23.

Figure 6-23: Horizontally adjacent red
and yellow squares

T R A NSFOR M AT IONS W IT HIN DR AW()

Transformations within the draw() block are reset every time it re-executes.
While you may have several translate() and/or other transformation functions
within your draw() block, the effects will not carry over into the next frame.

For cumulative transformations across frames, you can use global variables
as transformation arguments. In this way, the values can increment with each
frame.

Motion and Transformation 123

In Chapter 5, you learned how to use a loop to arrange Truchet tiles. A
row and column variable kept track of where to place the tiles. Alternatively,
you could have used translate(), moving the coordinate system with each
iteration of the loop.

rotate()
The rotate() function rotates the coordinate system around its origin (0, 0).
It accepts a single argument specified in radians. Positive values rotate clock-
wise, and negative values rotate counterclockwise. As with all transformation
functions, the effect is cumulative. Moreover, you can mix rotate() and other
transformation functions as you please.

Add a new rotate() line beneath your first translate() function to rotate
the grid-overlay graphic and red and yellow squares:

. . .
translate(150, 100)
rotate(QUARTER_PI)
. . .

The rotate() function uses an argument of QUARTER_PI radians, equiva-
lent to 45 degrees. Note that QUARTER_PI is a predefined Processing variable,
equivalent to writing PI/4.

Run the sketch. The two squares should appear to be rotated as a group,
along with the grid-overlay graphic (Figure 6-24).

Figure 6-24: Rotating the grid-overlay
graphic and two squares

The coordinate system is rotated around the current origin, which serves
as the pivot point. Recall that this origin has been offset by 150 pixels for x
and 100 pixels for y by the translate() function.

The order of functions matters. For instance, switching the translate()
and rotate() lines produces different visual results. Figure 6-25 provides a

124 Chapter 6

comparison. The ghosted squares depict the result of the transformation that
occurred first. The right image is produced by performing the rotate() first,
when the origin is aligned with the upper left corner of the display window.

Figure 6-25: The order of the translate() and rotate() functions matters; the image on the left shows
translate() first, and the image on the right shows rotate() first.

To rotate a square around its center, as opposed to its upper left corner,
align the center of the square with the origin by offsetting the x and y argu-
ments for square().

scale()
The scale() function resizes the coordinate system. One argument will scale
proportionately; two arguments control the x-scale and y-scale. A scale(1) or
scale(1, 1) will have no effect, as those are the default scale values.

To decrease the scale, use a floating-point value between 0 and 1. Reduce
the size of your existing elements:

. . .
translate(150, 100)
rotate(QUARTER_PI)
scale(0.5)
. . .

The scale value of 0.5 scales the elements to half their original size. Just
as with rotate(), the scaling is relative to the origin of the current coordinate
system. In other words, (0, 0) stays in place, and everything shrinks toward
this point (Figure 6-26).

Motion and Transformation 125

Figure 6-26: Halving the size by using scale(0.5)

Any value above 1 scales upward. For instance, to double the size of
everything, use scale(2). To reflect/flip on a given axis, use a negative value.
For example, scale(-1, 1) flips everything horizontally, producing a mirror
image of your elements.

shearX() and shearY()
Shearing a shape skews it along the horizontal or vertical axis. The result is a
distorted shape with the same area. A typical shear example is transforming
a rectangle into a parallelogram with slanted sides.

The shearX() and shearY() functions apply a horizontal and vertical shear,
respectively. Each function accepts a single argument specified in radians.

To apply a vertical shear to your grid-overlay graphic and two squares,
comment out the rotate() line and apply a 45-degree vertical shear by using
a shearY() function:

. . .
translate(150, 100)
#rotate(QUARTER_PI)
scale(0.5)
shearY(QUARTER_PI)
. . .

The rotate() function is commented to make the direction of the shear
more visually apparent. The shearY() argument is a positive number, so the
shear is applied in a clockwise direction. Figure 6-27 contrasts the result of
these code changes (left image) and a shearX() operation (right).

You now know how to combine transformation functions; however,
you’ll often want to contain the transformation effects to a limited selec-
tion of elements. Next, let’s look at how to use multiple coordinate matrices
within a single sketch.

126 Chapter 6

Figure 6-27: shearY(QUARTER_PI) (left) and shearX(QUARTER_PI) (right)

pushMatrix() and popMatrix()
The pushMatrix() and popMatrix() functions allow you to isolate the effects
of any transformation functions. In this way, you can perform different
transformations on selected elements, which is especially useful for groups
of elements.

Any elements you add to your sketch are positioned relative to the coor-
dinate system’s origin. Recall that each new transformation function affects
the position or orientation of the origin and that each new transformation
is influenced by any that precede it.

R ESE T T ING T HE COOR DIN AT E S YS T EM W IT H R ESE T M AT R I X()

If you need to clear all of your transformations, you can use the resetMatrix()
function to replace the current matrix with the identity matrix, which resets to the
default coordinate system. For example, add the resetMatrix() line just before
the yellow square to clear all of the transformations preceding it:

. . .
resetMatrix()
fill('#FFFF00')
square(0, 0, 100)
. . .

The yellow square is now rendered relative to the original origin (upper left
corner of the display window), at the standard scale, without any of the rotation
or shear effects (Figure 6-28).

Motion and Transformation 127

Figure 6-28: The yellow square code is
preceded by resetMatrix().

Remove the resetMatrix() line before you continue.

If you want to apply translate() and scale() to the yellow square, but not
shearY(), isolate the red and yellow squares, placing each within pushMatrix()
and popMatrix():

. . .
1 translate(150, 100)

#rotate(QUARTER_PI)
scale(0.5)

pushMatrix()
2 shearY(QUARTER_PI)

image(grido, 0, 0)
fill('#FF0000')
square(0, 0, 100)
popMatrix()

pushMatrix()
3 translate(100, 0)

image(grido, 0, 0)
fill('#FFFF00')
square(0, 0, 100)
popMatrix()

The pushMatrix() functions create new matrices for shearY() 2 and
translate() 3, which both extend upon the translate(150, 100) above 1.
The popMatrix() function restores the coordinate system before the previ-
ous pushMatrix() line. I’ve added another grid-overlay graphic to help visu-
alize what is happening with the two coordinate systems.

128 Chapter 6

As an alternative, you could undo the shear by adding shearY(-QUARTER_PI)
after the red square, but pushing and popping matrices is the more elegant
solution.

Run the sketch. As shown in Figure 6-29, the yellow square should
appear translated and scaled, but not sheared.

Figure 6-29: The yellow square is translated and scaled,
but not sheared.

Now imagine that you want to move drawings made of multiple shapes
across the display window. Figure 6-30 depicts a fish tank simulation; each
fish is composed of many shapes. Each eye (a circle) has its own x-y coordi-
nate, and so does every vertex that defines a curve or straight line.

Figure 6-30: Translating groups of shapes
by using pushMatrix() and popMatrix()

Motion and Transformation 129

To track and update all of these x-y coordinates, you must store them in
global variables to increment with each frame. The more efficient approach
is to define each fish within a pair of pushMatrix() and popMatrix() functions.
In this way, you can control the position of one fish by using one global x-y
coordinate pair and a translate() function.

Experiment with the pushMatrix() and popMatrix() functions contain-
ing different groups of shapes, each employing a different sequence of
transformation functions. You can add animation if you like. Reuse the
image(grido, 0, 0) line within each of your pushMatrix()... popMatrix()
stacks to help visualize what’s happening.

Challenge #6: Analog Clock
In this challenge, you’ll use all the techniques you’ve learned in this chap-
ter to create an analog clock that displays the current time. The clock will
update every second, so you’ll need to use draw(). To rotate the second,
minute, and hour hands, you’ll use transformation functions.

Create a new sketch and save it as analog_clock. Add the following code:

def setup():
 size(600, 600)
 frameRate(1)
 noFill()
 stroke('#FFFFFF')

def draw():
 background('#004477')

The frame rate is set to 1, enough to update the second hand’s position
each second.

To retrieve the relevant time values, use the Processing hour(), minute(),
and second() functions. Each function communicates with your computer
clock to return an integer value; these functions require no arguments.
Add code to the draw block that displays the current time in the console:

 . . .
 h = hour()
 m = minute()
 s = second()
 print('{}:{}:{}'.format(h, m, s))

Run the sketch. With each new frame, your console displays the current
hours (0 to 23), minutes (0 to 59), and seconds (0 to 59), separated by colons.
The time should match that of your system clock, usually displayed in the
corner of your screen.

Creating a digital-style clock (that is, no hands, just numbers) in
Processing is a simple matter of combining time and text() functions.
For an analog clock, however, you need to convert the hours, minutes,
and seconds into angles of rotation.

130 Chapter 6

Begin your clock by drawing the face and hour hand:

 . . .
 1 translate(width/2, height/2)

 strokeWeight(3)
 2 circle(0, 0, 350)

 # hour hand
 3 strokeWeight(10)

 line(0, 0, 1004, 0)

The translate() function 1 positions the origin in the center of the dis-
play window. This will make rotating the clock hands simpler, because the
rotate() function rotates around the origin of the coordinate system. The
circle() function, with its x-y arguments both set at zero 2, is centered in
the display window (Figure 6-31). The hour hand is the thickest (and short-
est), with a stroke weight of 10 3 and length of 100 pixels 4.

Figure 6-31: A clock face with an hour hand

The hour hand currently rests along 0 radians (pointing east). Recall
that when drawing using the arc() function, the angle opens from this point,
clockwise (southward). However, your clock will be offset by three hours
should the hand begin from a three o’clock position. Calibrate this using a
rotate() function:

 . . .
 rotate(-HALF_PI)
 # hour hand
 . . .

The HALF_PI is equivalent to PI / 2; by prepending this with a – sign, you
rotate counterclockwise. Run the sketch. The hour hand should now point
to twelve o’clock (directly upward).

Motion and Transformation 131

The next step is to calculate how many radians the hand advances
with each hour. Consider that a complete rotation is 2π radians; therefore,
one hour equals PI * 2 / 12. So, six o’clock is PI * 2 / 12 * 6. Rather than
writing PI * 2, though, you can use TAU. For example, six o’clock is equal to
TAU / 12 * 6.

N O T E Recall that π represents only a half circle in radians, so 2π tends to spring up in
many formulas. In 2001, Robert Palais proposed that a new constant be devised to
denote the number of radians in a “full turn,” equal to 2π; in 2010, it was decided
that this value would be represented using the tau symbol (τ).

Rotate your hour hand to the current hour:

 . . .
 # hour hand
 rotate(TAU / 12 * h)
 . . .

At twelve o’clock, the hour hand points directly upward. This is because
TAU / 12 * 12 is equal to TAU, or one complete rotation. For every other hour,
the hand should point to the correct position (Figure 6-32). Of course, the
angle of the hand will depend on what time of day it is.

Now add the minute and second hands. The final result should look
something like Figure 6-33.

The second hand should advance each second. Compare the time in
the console to the visual output to ensure that your code is working correctly.
If you need help, you can access the solution at https://github.com/tabreturn/
processing.py-book/tree/master/chapter-06-motion_and_transformation/analog_clock/.

Figure 6-32: The hour hand pointing to
two o’clock

https://github.com/tabreturn/processing.py-book/tree/master/chapter-06-motion_and_transformation/analog_clock/
https://github.com/tabreturn/processing.py-book/tree/master/chapter-06-motion_and_transformation/analog_clock/

132 Chapter 6

Figure 6-33: The completed clock

Summary
In this chapter, you learned how to structure a Processing sketch for anima-
tion. To manage variables between frames, you learned how to use global
variables. You can increment global variables every frame to control shape
coordinates for smooth animation. You also now know how to save frames
as images. You might save an animation as a sequence of images so that you
can combine them into a movie by using video editing software.

You also saw how transformation functions manipulate the coordinate
system, allowing you to translate, rotate, scale, and shear your elements. And
you learned to modify the coordinate system to apply transformations to a
select group of elements. It’s far easier to move a group of shapes by using
a single translate operation than to manage a large number of coordinate
variables. Moreover, applying rotate, scale, and shear operations to a single
shape, let alone group, would otherwise involve complex matrix calculations.

In the next chapter, you’ll learn about Python lists and how to read
in data from external files. Lists will unlock powerful ways to manage and
manipulate values as collections of elements, rather than individually. To
help visualize list values, you’ll also explore data visualization techniques.

When you need to work with multiple
values, you can group them into a single

variable by using a Python list. The list data
type stores any number of items in collections

you can manage and manipulate dynamically and
efficiently. For example, you could create a list to
store the titles of your favorite movies and use built-in
methods to insert new favorites, reorder the rankings,
or display only titles ranked between 30 and 40.

In this chapter, you’ll learn to create and manipulate lists, and then
you’ll combine them with loops to access and perform actions with each
item. In keeping with this book’s visual theme, you’ll generate graphical
representations of list data, including a chart that displays brightness and
RGB mixtures for a list of colors and another that plots the bestselling video
games of all time. You’ll see how to adjust list values to affect visual output,
observing how the charts adapt to changing data.

7
W O R K I N G W I T H L I S T S

A N D R E A D I N G D A T A

134 Chapter 7

You’ll also learn how to read in data from text files and how text-based
formats differ from other file formats. You’ll move your Python list data into
CSV-formatted text files and load it in when your sketch runs, allowing you
to prepare data with other tools, such as spreadsheets.

Introducing Lists
Lists hold multiple values that are related or belong together. For exam-
ple, consider programming a video game in which players wander about
collect ing various objects—keys, weapons, armor upgrades, and so forth—
to advance to a new level. Your game needs to track those items, which you
can store in an inventory list.

To denote a list, use square brackets and separate each element with a
comma. As an example, here’s a simple list for some game items:

inventory = ['key', 'gem', 'sword', 'apple', 'book']

This list contains five strings and is assigned to a variable named
inventory.

Performing repetitive operations on collections of items is a common
programming challenge. Suppose you want to display a grid with all the
objects a player has collected (Figure 7-1). You can write a loop statement to
access each item in the inventory and draw it in a cell. If the size of the list
changes—because the player has added or dropped items—the loop will
adapt, so you can write the code once and then have the program fill the
appropriate number of cells to depict the inventory items.

Figure 7-1: A player inventory from the game Minetest

In Python, a single list can contain any mix of data types and duplicate
values. For example, this top-score entry stores multiple types of data:

topscore = ['LEO', 54120]

Working with Lists and Reading Data 135

The player name LEO is a string, and the high score is an integer.
Lists can include as many elements as you want, and you can even define

an empty list by using just a pair of square brackets with nothing within them,
which is useful if you intend to add items while your program is running.

Lists are ordered, and ordering is significant in many situations—for
example, in this sequence of rainbow colors:

rainbow = [
 'red',
 'orange',
 'yellow',
 'green',
 'blue',
 'indigo',
 'violet',
]

When defining a list, you can write it across multiple lines, as shown
here, to make your code easier to read and edit. Python also permits an
optional trailing comma after the last element. Having this extra comma
can help when you want to add or shuffle list values; just be careful not to
forget a comma where necessary.

Creating and Accessing Lists
To familiarize yourself with defining, accessing, and modifying lists, create
a new sketch. Save it as rainbow_list and add the following code:

rainbow = ['blue', 'orange', 'yellow']
print(rainbow)

For now, this rainbow is missing a few colors, and the sequence is
incorrect, so you’ll use various list operations to add and shuffle colors as
you progress through this section. First, run the code to verify the follow-
ing console output:

['blue', 'orange', 'yellow']

Printing the rainbow variable displays all three values, complete with
square brackets and commas.

In many instances, you’ll want to retrieve an individual element instead
of a whole list. To display a given color, specify its position, or index, in square
brackets. Note that Python list indices start at 0, so to print the first element,
enter the following:

. . .
print(rainbow[0])

Run the sketch to confirm that the console displays blue.

136 Chapter 7

The second element, orange, has an index of 1, and the last element in
this list, yellow, has an index of 2. To print items 1 and 2, enter the following
(note that throughout this chapter, the comments alongside the print lines
indicate what should appear in your console):

. . .
print(rainbow[1]) # displays: orange
print(rainbow[2]) # displays: yellow

 This syntax may remind you of slice notation from working with strings
in Chapter 3, and it should, because it works the same way. Just as with slice
notation, use -1 to access the last element of the list, and extract a subset of
elements by using a range defined with a colon. Try the following code:

. . .
print(rainbow[-1]) # displays: yellow
print(rainbow[-2]) # displays: orange
print(rainbow[0:2]) # displays: ['blue', 'orange']

If you specify any index beyond the bounds of the list, such as rainbow[3]
or higher, Processing will display an IndexError message.

Modifying Lists
Lists can be dynamic in behavior, changing while your program runs. You
can overwrite any element with a new value and use different list methods
to insert new elements or remove existing ones. For a game inventory, you
might replace a weapon if a player finds a more powerful one, and add or
remove elements as the player trades items.

Returning to the rainbow example, you need to replace blue with red as
the first color in the rainbow list. To modify an existing list element, reassign it
a new value as you would any other variable, but with lists, you need to specify
the element index in square brackets. Add the following line to the end of
your rainbow_list sketch:

. . .
rainbow[0] = 'red'

The red string now replaces blue, overwriting it as the first item in the
list. Printing the rainbow list should confirm this:

print(rainbow) # ['red', 'orange', 'yellow']

Blue is no longer in the rainbow list.
Let’s look at several of the most useful list methods, along with code to

add to your working sketch. Each example builds on the code before it, so
work through all of them sequentially, entering the lines as you progress.

Working with Lists and Reading Data 137

The append() Method

The append() method adds an element to the very end of a list, whatever its
length. Add blue to the end of the rainbow list:

rainbow.append('blue')
print(rainbow) # red, orange, yellow, blue

Note that the comments after the print() function in these examples con-
tain only the sequence of colors; when you actually print the list, the console
will display ['red', ...,'blue'] with all of the brackets and quotation marks.

The extend() Method

To add all the elements in one list to the end of another, use the extend()
method:

colors = ['indigo', 'violet']
rainbow.extend(colors)
print(rainbow) # red, orange, yellow, blue, indigo, violet

The colors list, which contains indigo and violet, is now added to the
original rainbow list.

The index() Method

The index() method returns the index (the position in the list as an integer)
for any element that matches the argument provided. If there are multiple
matches, this method detects the first instance. Use an argument of 'yellow'
to test this:

yellowindex = rainbow.index('yellow')
print(yellowindex) # 2

Try different color arguments. If no matching value exists, Processing
displays a ValueError message.

The insert() Method

The insert() method accepts two arguments: the first is the index at which
to insert the element; the second is the value. Insert green into the middle
of the list with an index argument of 3:

rainbow.insert(3, 'green')
print(rainbow) # red, orange, yellow, green, blue, . . .

Green is now in the position that blue used to occupy, shifting blue one
index higher along with every color to the right of it.

138 Chapter 7

The pop() Method

The pop() method accepts a single argument: the index of an element
to remove. The “popped” value is returned should you need to use it for
another operation. Pop indigo from the list and assign it to a variable
named i; then print i and rainbow to confirm that your console output
matches the comments shown here:

i = rainbow.pop(5)
print(i) # indigo
print(rainbow) # red, orange, yellow, green, blue, violet

If you aren’t concerned with using the popped value, remove the i = part.
Now, use pop() with no argument to remove the last item in the list:

i = rainbow.pop()
print(rainbow) # red, orange, yellow, green, blue

The console output should confirm that violet is removed from the list.

The remove() Method

The remove() method removes the first element with a value that matches
the argument provided. Re-add indigo and violet by using the extend()
method, and then remove indigo with the remove() method:

rainbow.extend(colors)
print(rainbow) # red, orange, yellow, green, blue, indigo, violet
rainbow.remove('indigo')
print(rainbow) # red, orange, yellow, green, blue, violet

After extending the list, rainbow is back to a seven-color list. After the
remove line, the list is down to six colors again, with no indigo.

Python provides other list methods, but these should suffice for you to
start manipulating lists. Any decent Python reference or internet search
should cover the rest. For example, if you want to reorder list elements,
look up the reverse() and alphanumerical sort() methods. The Processing
reference also includes several list methods, which are standard Python
(as opposed to Processing) features, and they are functional in any Python
environment.

Combining Loops and Lists
You can program loops to work on lists, potentially saving countless lines
of manual instruction. As an example, say you want to create a Breakout-
style game (Figure 7-2). In this type of game, the player controls the paddle
at the bottom of the screen with the goal of bouncing the ball upward to
destroy all the bricks. You could create a list to store the bricks so that when

Working with Lists and Reading Data 139

the player hits a brick with the ball, that brick would be removed from the
list. In some levels, you could have additional bricks appear during play,
which would mean you’d need to insert new list elements.

Figure 7-2: LBreakout2, an open source Breakout clone

You’ve likely played a variant of this game and are probably aware
that, upon destruction, certain bricks drop power-ups. You also know that
the bricks come in different colors, and that some may be invisible but
solid, while others may take multiple hits to destroy. You can program all
of those additional properties by using lists of lists. Lists can contain other
lists, which, in turn, can contain further nested lists (see “Creating Lists
of Lists” on page 144).

If your list is named bricks and contains the fills for 60 bricks, rendering
each brick would require at least as many lines of code as you have elements.
For instance, you might use the following code to draw each brick with a
rect() function:

bricks = [
 '#FF0000',
 '#FF0000',
 . . .

brick A1
fill(bricks[0])
rect(0, 0, 30, 10)
brick A2

140 Chapter 7

fill(bricks[1])
rect(30, 0, 30, 10)
. . .
brick F10
fill(bricks[59])
rect(270, 50, 30, 10)

Notice that every brick rendered requires a fill() and rect() function.
Even if you remove the comments, that’s 120 lines (60 × 2) of code to draw
the complete list. This is hardly efficient, nor can the code handle a list that
might fluctuate in length.

Drawing Shapes by Using a List of Color Values
For this exercise, you’ll draw a rainbow-colored sequence of bands from a
list of hexadecimal values, beginning with a single band using a fill() and
rect() function. You’ll then adapt the code to use a loop that draws the
entire list. To begin, add the following code to your rainbow_list sketch:

. . .
size(500, 500)
noStroke()
background('#004477')

bands = [
 '#FF0000', # red
 '#FF9900', # orange
 '#FFFF00', # yellow
 '#00FF00', # green
 '#0099FF', # blue
 '#6633FF' # violet
]

red band
translate(0, 100)
fill(bands[0])
rect(0, 0, width, 50)

Up until this point, the sketch has relied exclusively on the console for
output. This code begins by defining a display window size, no stroke, and
a background color. The bands list holds hexadecimal values for a six-color
rainbow with comments to identify each color value. The first (red) band
is drawn using translate(), fill(), and rect() functions. Run the sketch.
The result should be a single, horizontal red band on a blue background
(Figure 7-3).

Working with Lists and Reading Data 141

Figure 7-3: The result of running the sketch
is a single red band.

You’ve drawn the first band in the list, and the next step is to adapt the
code to use a for loop that draws all six bands.

When you combine a for loop with a list, Python assigns each successive
list value to the loop variable, using the length of the list to determine the
number of iterations required. To make your program draw every band in
the bands list, comment out the existing fill() and rect() functions, and then
add a loop that draws the complete rainbow for you:

. . .
#fill(bands[0])
#rect(0, 0, width, 50)

for band1 in bands:
 fill(band)
 rect(0, 0, width, 50)
 translate(0, 502)

In this instance, the code is easier to understand if you name the
loop variable band 1 instead of something like i. The band variable is
equal to '#FF0000' on the first iteration, '#FF9900' on the second, and
so forth. A translate() function moves the coordinate system down the
height of a band 2. With each iteration, Processing applies the next fill
in the list and draws a new rectangle below the last one. The result is
a stack of six rainbow-colored bands that span the width of the display
window (Figure 7-4). Note that the green band will be brighter on a com-
puter screen than it is in a printed book. Standard printing inks (cyan,
magenta, yellow, and key/black—CMYK) cannot replicate the intensity of
the shades of green on a digital display.

142 Chapter 7

Figure 7-4: A rainbow sequence of six color bands

In this example, Python retrieves each element in the list, so you don’t
need to specify any index values. In the next section, you’ll use the enumerate()
function to retrieve the index for each element as well as the value.

SI X- COLOR R A INBOW S?

Hold on! What happened to indigo? According to Wictionary.org, indigo is
a “purplish-blue color,” and violet is a “blueish-purple color.” So, why is there
indigo and violet, but no purple band in a rainbow?

Purple is a combination of two spectral colors. There is no wavelength
of purple light; it exists only as a combination of red and blue waves. Violet,
however, is an actual spectral color with its own wavelength of approximately
380 to 420 nanometers. Indigo lies somewhere between blue and violet, but
exactly where, if at all, is a matter for debate. In his famous prism experiments,
Isaac Newton defined seven rainbow colors, squeezing in indigo just before
violet. You may wonder, why seven colors from a blended array spanning the
visible spectrum? It’s because the number seven has occult significance. It’s no
coincidence that there are seven colors in the rainbow, seven days of the week,
and seven musical notes that make up the Western major scale. Today, however,
color scientists are inclined to divide the spectrum at blue and violet, leaving no
room for indigo.

Pink Floyd’s iconic The Dark Side of the Moon album cover depicts a prism
that splits a white beam into an array of rainbow-like bands. Have you ever
counted the color bands in this design?

In this book, we’ll drop indigo in favor of the six-color rainbow.

Working with Lists and Reading Data 143

Looping with enumerate()
For some looping tasks, you need each element’s index and value. For
instance, say you have an ordered list of your favorite movies and want
to print each title alongside its rank (the index). You can do so with the
enumerate() function.

To use the enumerate() function to get the index of each color band in
your rainbow, provide two variable names between the for and in. These two
variables will hold your index and a corresponding value, respectively, for
any iteration. Modify the code in your rainbow_list sketch:

. . .
#for band in bands:

1 for i, band in enumerate(bands):
 fill(band)
 rect(0, 0, width, 50)

 2 fill('#FFFFFF')
 textSize(25)
 text(i, 20, 35)
 translate(0, 50)

The i and band variables represent the index and fill value, respectively 1.
The extra fill and the two text lines below it draw index numbers over each
rectangle 2.

Run the sketch. You should now see a white number in each band
(Figure 7-5), although the 2 doesn’t show up particularly well over the
yellow.

Figure 7-5: A numbered sequence of rainbow bands

Use an enumerate() function wherever you need to work with list indices
or keep count of loop iterations. For any other loop operations on lists, a
plain for loop should suffice.

144 Chapter 7

Creating Lists of Lists
Although the concept of having lists within lists may seem complicated,
appropriately nested lists make complex datasets easier to manage. In this
practical data visualization task, you’ll create a variation of a bar chart. This
chart will measure the relative brightness of six colors. Figure 7-6 shows a
simplified representation of what you’re working toward. Notice that yellow,
the brightest color, has the longest bar.

red

orange

yellow

green

blue

violet

Figure 7-6: A simplified, outlined
representation of the bar chart

The final chart will include color, and the bars will be further divided
into segments of red, green, and blue to represent the RGB mixture of each
color (more on this later).

DATA V ISUA L IZ AT ION

Data visualization is the graphical representation of data using charts, graphs,
maps, and other diagrams. This topic relates neatly to many coding concepts,
and it makes for some intriguing and enlightening visual output. A good example
is Frederic Brodbeck’s Cinemetrics project (see “What Is Creative Coding?” on
page xviii) that analyzes DVD movie data to generate visual fingerprints of films.
For many inspiring data visualizations, you can peruse the collection of works
showcased at https://informationisbeautiful.net/. When writing Processing code,
you’re no longer limited to whatever your spreadsheet software can conjure.
Instead, you can explore novel ways to visualize data, ranging from highly
abstract or playful to highly informative to anything in between.

The first step in creating the bar chart is to start a new sketch and save
it as lists_of_lists. Add the following setup code:

size(500, 380)
background('#004477')
noFill()
stroke('#FFFFFF')

https://informationisbeautiful.net/

Working with Lists and Reading Data 145

strokeWeight(3)

h = 50
translate(100, 40)

bands = 6
rect(0, 0, 40, h*bands)

The h variable defines the bar height, and the translate() function
defines the upper left corner. The visual result should appear as a vertical
bar; this represents a total number of six bands (Figure 7-7). The height
of the bar represents a single integer value: 6. If bands were equal to 7, the
rectangle that defines the bar would extend beyond the bottom of the dis-
play window.

Figure 7-7: A bar 6 × 50 pixels tall

The next step is to split the existing bar into six segments, which will later
form the horizontal bars. Add a new bands1 list of rainbow colors to the end of
your sketch, along with a loop that draws a rectangle using each color:

. . .
bands1 = [
 '#FF0000',
 '#FF9900',
 '#FFFF00',
 '#00FF00',
 '#0099FF',
 '#6633FF'
]

for band in bands1:
 fill(band)
 rect(0, 0, 40, h)
 translate(0, h)

146 Chapter 7

This bands1 list contains a series of six hexadecimal color values. These
define the fills for each segment. The for loop draws the rainbow-colored
segments in a column arrangement that conceals the first bar (Figure 7-8).

Figure 7-8: Rainbow-colored rectangles placed over the
original bar

The next step is to extend each block of color toward the right to form
horizontal bars. The width of each bar will be determined by the brightness
of its respective color. To calculate brightness, add together the red, green,
and blue values that make up any color. For example, consider white. It’s the
brightest “color” on your screen; it’s represented in hexadecimal as #FFFFFF,
and if converted to percentages, expressed as 100 percent red, 100 percent
green, and 100 percent blue. That’s an overall brightness of 300 percent, or
if you prefer to average it out, it’s 300 ÷ 3 = 100 percent bright.

To manage the colors as RGB percentages, you’ll need an integer
value for each R/G/B primary, as opposed to a single hexadecimal string
value. Add a new bands2 list to the end of your code, wherein each element
contains a list of three integers representing the red/green/blue mix of
each color:

. . .
bands2 = [
 [100, 0, 0],
 [100, 60, 0],
 [100, 100, 0],
 [0, 100, 0],
 [0, 60, 100],
 [40, 20, 100]
]

Working with Lists and Reading Data 147

To access any list element within another list element directly, include
a second pair of square brackets. For example, to retrieve the percentage of
green in the second (orange) band, enter the following:

print(bands2[1][1]) # 60

In this case, the green value is 60, which you can confirm in the console.
To work with the percentages in the bands2 list, set colorMode() to use

RGB values between 0 and 100. To draw the bars, reset and translate the
coordinate system, and then add a loop that draws rectangles filled in with
various shades of gray:

. . .
colorMode(RGB, 100)
resetMatrix()
translate(100, 40)

for band1 in bands2:
 r = band[0]
 g = band[1]
 b = band[2]

 2 sum = r + g + b
 3 avg = sum / 3
 4 fill(avg, avg, avg)

 rect(0, 0, sum5, h)
 translate(0, h)

With each iteration, band is assigned the next list of RGB percentage
values 1. These values are added together 2, averaged to calculate a bright-
ness value 3, and the bar fill is set to a shade of gray using equal quantities
of red/green/blue based on this average 4. The brightness value also deter-
mines the width of the bar 5. Run the sketch to view the result (Figure 7-9).

Oddly, the green bar (fourth from the top) is indicated as equivalent in
brightness to the red (top) bar. Recall also that the green is even brighter
on your screen than in print. The math is correct, but the human eye has a
greater number of green receptors, making us more sensitive to green light,
so the green band appears brighter. There are ways to compensate for this
mathematically. If you’d like to test it out, you can multiply the r, g, b vari-
ables using the following values:

 . . .
 r = band[0] * 0.64
 g = band[1] * 2.15
 b = band[2] * 0.22
 . . .

148 Chapter 7

Figure 7-9: The widths of each bar represent the relative brightness
of each color.

Now, the yellow bar (third from the top) is the only bar wider/brighter
than the green one. For this task, however, I want to work with the averaging
formula, so remove any multipliers to revert to the averaged values.

N O T E This list-of-lists structure is called a two-dimensional list. You might even refer
to the list of hexadecimal values (bands1) as a one-dimensional list, but it’s less
common to hear that term unless programmers are contrasting one type with the
other. List structures actually reflect the dimensionality of the data. So, adding
data to bands1 affects the y-axis; with bands2, the data controls both the x- and
y-axes (a two-dimensional system).

Next, adapt the existing loop so that each bar indicates the different
quantities of primary color that make up its fill:

 . . .
 r = band[0]
 g = band[1]
 b = band[2]
 #sum = r + g + b
 #avg = sum / 3
 #fill(avg, avg, avg)
 #rect(0, 0, sum, h)

 1 fill('#FF0000')
 rect(0, 0, r, h)

 2 fill('#00FF00')
 rect(r, 0, g, h)

 3 fill('#0099FF')
 rect(r+g, 0, b, h)
 translate(0, h)

Working with Lists and Reading Data 149

The rect() functions form horizontal bars containing up to three
segments each. The size and fill of each segment are governed by how
much red 1, green 2, and blue 3 the color band contains. Even with
the colorMode() set to RGB, Processing can still interpret fill arguments in
quotes as hexadecimal.

Run the sketch to view the result (Figure 7-10). Red, the top bar, is mixed
using nothing but red. Violet, the bottom bar, is predominantly blue, but also
contains some red and a little green.

Figure 7-10: Each bar displays its proportion of RGB primaries.

If you show the chart to others, they likely will have no idea what color
each bar represents, so adding labels will help elucidate matters. Add a
label element to each band:

. . .
bands2 = [
 [100, 0, 0, 'red'],
 [100, 60, 0, 'orange'],
 [100, 100, 0, 'yellow'],
 [0, 100, 0, 'green'],
 [0, 60, 100, 'blue'],
 [40, 20, 100, 'violet']
]
. . .

Then, add some lines to your loop to draw each label:

. . .
for band in bands2:
 . . .
 fill('#FFFFFF')
 textAlign(RIGHT)
 text(band[3], -20, 30)
 translate(0, h)

150 Chapter 7

This sets the text fill to white, right-aligns it, and writes a color label
alongside the bar. Run the code to view the result (Figure 7-11).

Figure 7-11: Completed graph with labels

Many lists work just fine with a single dimension, such as shopping
lists. You can think of two-dimensional lists as grids or tables, which makes
them useful for plotting 2D graphics. Three-dimensional and other higher-
dimensional lists have their places, but before employing such a structure,
consider whether adding another position to your two-dimensional list may
be more sensible.

Challenge #7: Breakout Level
In this challenge, you’ll recreate a Breakout level. The setup code will include
a three-dimensional list. Working with such a list requires a nested loop—
that is, a loop inside another loop.

The result should look like Figure 7-12. Note that you’re not creating
a playable game with working inputs; it’s more like a screenshot grabbed
during play.

Create a new sketch and save it as breakout_level. Add the following code
to draw the ball and paddle:

size(600, 600)
noStroke()
background('#000000')

ball and paddle
fill('#FFFFFF')
circle(350, 440, 18)
rect(300, 520, 190, 40)

Working with Lists and Reading Data 151

Figure 7-12: Completed Breakout task

This code should render an empty black stage with the white ball and
paddle, but no bricks yet.

Now add the data for the bricks. To save time, copy and paste the code
from my GitHub repository:

1. Open your browser and go to https://github.com/tabreturn/
processing.py-book/.

2. Navigate to chapter-07-working_with_lists_and_reading_data.

3. Locate and open the bricks.txt file.

4. Copy and paste the contents of bricks.txt into your sketch.

Here’s the code if you’d prefer to type it in:

r = '#FF0000' # red
o = '#FF9900' # orange
y = '#FFFF00' # yellow
g = '#00FF00' # green
b = '#0099FF' # blue
p = '#6633FF' # violet

bricks = [
 # col 0 col 1 col 2 col 3
 [[r,1], [o,1], [y,1], [g,1]], # row 0
 [[o,1], [y,1], [g,1], [b,1]], # row 1
 [[y,1], [g,1], [b,1], [p,1]], # row 2
 [[g,1], [b,2], [p,2], [b,1]], # row 3
 [[b,1], [p,2], [], [g,1]], # row 4

https://github.com/tabreturn/processing.py-book/.
https://github.com/tabreturn/processing.py-book/.

152 Chapter 7

 [[p,1], [], [], [y,1]], # row 5
 [[], [], [], [o,1]], # row 6
 [[g,1], [], [], []] # row 7
]

To make this more readable, I’ve entered the bricks list in a way that
reflects the visual positioning of each brick. In the following order, each
brick has a fill color and hit count (indicating the number of hits required
to destroy it). I represent each missing brick by using an empty list.

Take the first brick as an example: [r,1]. This brick has a fill of red and
requires one (remaining) hit to destroy. You can infer the column and row
positions from the lists in which the brick resides; in this case, it’s row 0,
column 0. Add two print() statements to confirm this information:

. . .
1 print(bricks[0]) # displays row 0 items
2 print(bricks[0][0]) # displays the very first brick

These print lines display the first element in bricks, a list of the four
bricks that make up row 0 1, and the first brick in row 0 2. If you want to
retrieve the color of the first brick, enter the following:

print(bricks[0][0][0]) # displays #FF0000

Note that the color variable r holds a hexadecimal value, so what you
see in the console is the hexadecimal value for red.

As I mentioned previously, you’ll need to employ a nested loop for this
task. The following lines will help you get started:

. . .
bw = width / 4
bh = height / 15
translate(0, bh)

for row in bricks:

 for col, brick in enumerate(row):

 if len(brick):
 # code to draw a brick
 x = col * bw

The bw variable defines a brick width based on fitting four columns
into the display window; bh calculates the brick height. The outer for
loops through the rows; the inner for loops through the bricks within
each row. The col and brick variables hold the column number and brick,
respectively. You use the len() function to determine whether this brick
is a placeholder (an empty list). A brick with a length of 0 is equivalent to
False, and Python skips the x = col * bw line. The x variable will hold the
x-coordinate to draw each brick. Complete the task to match the result
shown in Figure 7-12. Note that the bricks located roughly in the center

Working with Lists and Reading Data 153

have a hit count of 2 and must include a shine effect. If you need help,
you can access the code at https://github.com/tabreturn/processing.py-book/tree/
master/chapter-07-working_with_lists_and_reading_data/breakout_level/.

In the next section, you’ll learn how to work with data from external
files, and you’ll use list techniques with Processing functions that read in
the contents of text files.

Reading Data
Python—and by extension, Processing—can handle many types of file data.
For instance, you could use Processing to create a game that incorporates
various audio and video files, storing these multimedia assets in your data
subfolder. You’ve loaded image data from PNG files into your Processing
sketches in previous chapters; this section focuses on loading data stored in
text-based files.

You’ve also worked with values stored in lists, but using Python’s list syn-
tax to retype data from other sources can be tedious, especially for large and
swappable datasets. An alternative is to manage and prepare data outside
Processing by using something like a spreadsheet, save it in a text-based for-
mat, and then read in the file contents when you run your sketch. To under-
stand what separates text-based files from other files, and how you might use
them to store data, let’s start with a brief introduction to file formats.

File Formats
A file format is a standardized means of encoding information for storage on
a digital medium. Many formats exist, and each is interpreted differently.
For example, applications are encoded in executable formats, such as Android
Package Kit (APK) files for Android or executable (EXE) files for Windows.
Some multimedia formats include MPEG-1/2 Audio Layer III (MP3) for music
or JPG for images.

You can identify a file’s format by its file extension. File extensions typi-
cally comprise three letters, always preceded by a dot, and tacked onto the
end of a filename. To simplify user interaction, many operating systems hide
file extensions, but if you dig around in your Windows File Explorer or Mac
Finder settings, you can make your file manager show the extensions. Your
system relies on these file extensions to open files with the appropriate app
and to display icons or generate thumbnails (Figure 7-13).

untitled folder

anthem.mp3 to-do.txt sunset.jpg

Figure 7-13: A file manager in icon view
with file extensions revealed

https://github.com/tabreturn/processing.py-book/tree/master/chapter-07-working_with_lists_and_reading_data/breakout_level/
https://github.com/tabreturn/processing.py-book/tree/master/chapter-07-working_with_lists_and_reading_data/breakout_level/

154 Chapter 7

When you remove or rename a file extension, this association is lost.
Perhaps you’ve tried to open an MP3 file in a text editor and gotten a bunch
of garbled characters, something like this:

. . .
���:����zc��E9���yoO��F�;#C��@##�&�#�##HV�D��#���X���#�&
2XNf�##M�#�#���#J��,8,#`}##�#�4R�f�#E��V���d@��P������G��r
jS#gbx�:P+�A��'��Q�IF��5�0�i.�A���sG�P"����oA~�#
. . .

Text editors are designed for editing text-encoded files; therefore, they
attempt to interpret the audio data as characters. Although you might be
able to spot some intelligible metadata in there somewhere, it’s 99 percent
gobbledygook. If you open this same file with iTunes, Windows Media
Player, or VLC, you’ll hear music.

Some file formats are text based, which means you can open them in
any text or code editor and make some sense of the content. To clarify, by
text based, I mean plaintext, not a Microsoft Word document with fonts of
varying colors and sizes in bold and italic. You may be wondering why peo-
ple even use plaintext, but it’s appropriate for simple to-do lists and writ-
ing just about any programming language, Python included. For instance,
Processing files are plaintext, albeit with a .pyde file extension.

CSV
Comma-separated values (CSV) files, which have the .csv extension, provide a
simple approach to formatting plaintext data. You’ll download a CSV that
contains a track list of Pink Floyd’s album The Dark Side of the Moon.

Each line of a CSV file is one entry, and each entry consists of one or
more fields separated by commas. Here’s an abridged track listing of The
Dark Side of the Moon in CSV format:

location,title,creator,album,trackNum
file:///music/SpeakToMe.mp3,Speak to Me,Pink Floyd,The Dark Side of the Moon,1
file:///music/Breathe.mp3,Breathe,Pink Floyd,The Dark Side of the Moon,2
. . .

The first line of this file contains the field headings, and the following
lines provide the details of each track. Your spreadsheet software (Microsoft
Excel, LibreOffice Calc, or similar) will associate itself with any files bear-
ing the .csv extension. Opening any CSV file in a spreadsheet displays the
information in the typical row-and-column arrangement (Figure 7-14). This
is useful for preparing CSV data, but be aware that none of the styling (cell
sizes, font colors, and so on) is retained once you save back to CSV.

Working with Lists and Reading Data 155

Figure 7-14: The full playlist.csv file open in LibreOffice Calc

N O T E CSV files don’t always rely on a comma to delimit each field. For instance, tab- and
space-separated values are common as well.

You’ll now write code that loads the track-list data from a CSV file.
Create a new sketch named csv with a data subfolder and complete the fol-
lowing steps:

1. Open your browser and go to https://github.com/tabreturn/processing.py-book/.

2. Navigate to chapter-07-working_with_lists_and_reading_data.

3. Download the data.zip file.

4. Extract the ZIP archive, and move playlist.csv to the sketch data
subfolder.

Processing provides the loadStrings() function to read in text-based
files. It accepts a single argument (a path) that points to your text file and
returns the contents as a list of strings, each element representing a line of
text. Add the following code to test the function:

csv = loadStrings('playlist.csv')

for entry in csv:
 print(entry)

The playlist.csv data is assigned to a list named csv. Each csv element
holds a line of text representing a single track. The for loop prints each
entry on a new line in the console:

location,title,creator,album,trackNum
file:///music/SpeakToMe.mp3,Speak to Me,Pink Floyd,The Dark Side of the Moon,1
file:///music/Breathe.mp3,Breathe,Pink Floyd,The Dark Side of the Moon,2
. . .

https://github.com/tabreturn/processing.py-book/

156 Chapter 7

The loadStrings() function cannot distinguish between different plain-
text formats; this could be a bestselling novel or the latest stock market
figures.

To interpret the CSV data, use the split() method to break each line into
further lists. In this case, you’re splitting each entry so you can extract the
number and title of each track; you don’t need the file location, creator, or
album. The split() method works by using a delimiter argument of your pref-
erence. In this case, you’ll use a comma. Amend your for loop code like this:

. . .
1 for entry in csv[1:]:
 2 track = entry.split(',')

 print('{}. {}'.format(track[4], track[1]))

By adding [1:], the for loop skips the first item in the csv list 1 to avoid
printing the field headings. With each iteration, the split() method assigns
a new list to the track variable 2. The elements tracks[4] and track[1] hold
the entry track number and title, respectively.

Run the sketch to confirm that the console displays a list of 10 numbered
tracks:

1. Speak to Me
2. Breathe
. . .

If you want to write text to a file, look up the saveStrings() function in
the online Processing reference; it’s effectively an inverse loadStrings().

Formatting plaintext data in CSV files is a good way to avoid having to
manage your data in the Processing editor. The beauty of CSV lies in its
simplicity, but it isn’t great for dealing with hierarchically structured data.
In Chapter 8, you’ll learn about other text-based formats (XML and JSON).

N O T E Python provides a csv module to deal with CSV data, and it’s worth exploring if you
want to do more advanced CSV processing.

Challenge #8: Games Sales Chart
In this final challenge, you’ll generate a bar chart of the bestselling video
games of all time. Figure 7-15 presents the final result (left) along with a
zoomed-in version to provide more detail (right).

Working with Lists and Reading Data 157

Figure 7-15: Completed chart (left) and chart detail (right)

The data has been sourced from a Wikipedia article titled “List of best-
selling video games” (https://en.wikipedia.org/wiki/List_of_best-selling_video_
games) and converted from an HTML table to a tab-separated file. The
rankings likely have shuffled since this book was published, but that doesn’t
matter for the purpose of this exercise.

You’ll read in the sales data by using a loadStrings() function, and
then plot the chart by using the techniques you’ve learned in this chapter.
Create a new sketch named game_sales_chart with a data subfolder. In the
preceding exercise, you downloaded a data.zip file, which also contains a
list_of_best-selling_video_games.tsv file; place this in the sketch data subfolder.

This file uses tab-separated values, hence the .tsv file extension. I used
tabs because it’s highly unlikely that any game titles or studio/publisher
names will contain tab characters, but there may be commas that could
interfere with a split(',') style approach. You may want to open the TSV
file in your preferred spreadsheet application to inspect the values. There
are 50 games in all, ordered with the bestselling game at the top. If you
use a text editor to open the file, you should see something like this:

Rank Title Sales Developer(s) Publisher(s)
1 Minecraft 180000000 Mojang Xbox Game Studios
2 Tetris 170000000 Elektronorgtechnica Various
. . .

A single, invisible tab character separates each field. Note that tab
sizes may vary among editors and will not always form visually aligned
columns, so the file may look a little different, depending on the editor
you use.

https://en.wikipedia.org/wiki/List_of_best-selling_video_games
https://en.wikipedia.org/wiki/List_of_best-selling_video_games

158 Chapter 7

Add basic setup code to your sketch that will define the display window
size and background color, as well as read in the TSV data:

size(800, 800)
background('#004477')
tsv = loadStrings('list_of_best-selling_video_games.tsv')
noStroke()

A list named tsv holds the game sales entries. None of the graphic
elements have strokes, so I’ve included a noStroke() line.

You’ll need to perform calculations to scale the bars relative to the dis-
play window. Although the sales figures appear to be numbers, Processing
treats them as text. Recall that you cannot perform mathematical opera-
tions on string data. Fortunately, there’s an easy fix. The int() and float()
functions convert various data types to integer and floating-point values,
respectively. Here’s an example:

entry1 = tsv[1].split('\t') # Minecraft entry
sales1 = entry1[2] # 180000000
print(int(sales1) + 1) # 180000001

The split() method must create a list from the first entry (Minecraft)
using a tab character as a delimiter; to specify a tab, use '\t' as an argument.
The variable sales1 is equal to the value at index 2, the Sales column. Despite
looking like a number, this value is a string, so the print line wraps sales1 with
an int() function to convert it to an integer before adding 1 to it.

Now, complete the chart as shown in Figure 7-15. It’s probably best
to start with a loop that prints each entry. Then, get the labels to display
before creating the bars. Once you have the labels, create plain white bars
of the correct width, and finish it off with the rainbow sequence effect. If
you need help, you can access the solution at https://github.com/tabreturn/
processing.py-book/tree/master/chapter-07-working_with_lists_and_reading_data/
game_sales_chart/.

Summary
In this chapter, you learned about Python’s suite of methods for various list
operations, how to manage collections of items using lists, and how lists are
particularly powerful when combined with loops. You also learned to harness
nested lists in order to manage more complex data and practiced a few data
visualization techniques.

In addition, you saw how to work with data stored in plaintext formats,
like CSV and TSV, allowing you to read in values from external files when you
run a sketch. This means you don’t need to manage values in the Processing
editor, making it easier to swap out datasets.

The next chapter moves on to dictionaries, which are similar to lists in
that they store collections of items. With dictionaries, however, you access
values by using a word instead of an index. Once again, you’ll create novel
data visualizations with your new skills.

https://github.com/tabreturn/processing.py-book/tree/master/chapter-07-working_with_lists_and_reading_data/game_sales_chart/
https://github.com/tabreturn/processing.py-book/tree/master/chapter-07-working_with_lists_and_reading_data/game_sales_chart/
https://github.com/tabreturn/processing.py-book/tree/master/chapter-07-working_with_lists_and_reading_data/game_sales_chart/

Dictionaries hold collections of items,
similar to the ordered lists you learned

about in Chapter 7. Dictionaries, however,
are unordered, and you use an associated value

to access each item, which makes it easier to remem-
ber what the items in your dictionary represent. In
this chapter, you’ll learn about Python’s dictionary
syntax and methods, how to combine loops and dic-
tionaries, and how to nest dictionaries and lists.

You’ll also learn how to work with another plaintext file format: JavaScript
Object Notation (JSON). The syntax isn’t quite as simple as CSV, but it’s better
suited for handling more complex data structures. You’ll use Python’s built-in
json module to read in dictionary data from a JSON file, and as in Chapter 7,
you’ll then create a data visualization.

8
D I C T I O N A R I E S A N D J S O N

160 Chapter 8

Introducing Dictionaries
In a dictionary, each unordered item is associated with a value called a key.
A key is usually a short string, and each dictionary item is composed of a key-
value pair. This means dictionaries are associative, and some programming
languages refer to dictionary-type structures as associative arrays. Dictionaries
are different from lists, which are numerically indexed, because each element
in a list corresponds to a number (index) indicating its position in a sequence
of items.

As an example of how key-value pairs work, you might use a dictionary
to note the favorite movie of each of your friends. In such a dictionary, each
key would be a friend’s name, and each value would be a corresponding
film title. To insert or retrieve your friend Lee’s favorite movie, you’d use
the key 'Lee'. Figure 8-1 is a conceptual diagram of this dictionary.

Keys

'Lee'

'Sam'

'...

'Citizen Kane'

'Titanic'

'...

Values

Dictionary

Figure 8-1: A diagram of a dictionary indicating the
mapping between keys and values

For your first exercise in working with Python dictionaries, you’ll write
code to manage student records. Create a new sketch named dictionaries,
and add the following code that shows the difference between a list and
dictionary:

1 student = ['Sam', 24]
2 student = {'name': 'Sam', 'age': 24}

First, note that dictionaries use curly brackets ({}), whereas lists use
square brackets ([]). The list 1 and dictionary 2 variants store the same
values: 'Sam' and 24. However, each dictionary item includes a value and a
key. In this instance, the dictionary keys are 'name' and 'age'. Keep in mind
that sensibly named keys help identify what the values represent. This
student dictionary holds two key-value pairs (Figure 8-2).

You’ll use the meaningfully named keys to retrieve values from the
student dictionary. To use the student list, you would need to recall the
seemingly arbitrary positions for each value. Lists are better at handling
an ordered sequence of items, but if you have a set of unique keys that
map to values, use a dictionary.

Dictionaries and JSON 161

Key Value

Key-value pair

Key Value

Key-value pair

student = { 'name':'Sam', 'age':24 }

Figure 8-2: A dictionary with two key-value pairs

Dictionaries can hold all types of data, including strings, numbers,
Booleans, lists, and even other dictionaries. You can store as many key-
value pairs as you like in a dictionary. Technically speaking, there is an
upper limit, but if you’re managing such large volumes of data, you should
probably look at a database solution.

Accessing Dictionaries
To access any dictionary value, use the dictionary name along with the
associated key in square brackets. Try the following code:

. . .
print(student['age']) # displays: 24
print(student['name']) # displays: Sam

The comments alongside each print() function confirm what should
appear in your console.

To print the entire dictionary, omit the square brackets and key, leaving
only the dictionary name:

print(student) # {'name': 'Sam', 'age': 24}

The console should display every key-value pair, complete with the curly
brackets, colons, and commas.

The order of the key-value pairs won’t always match the order in
which you defined them, and this can vary among Python environments.
Dictionaries are inherently orderless; Python is concerned with the con-
nections between the keys and values. If you need to order your dictionary
items—by key or value—you can use various functions and methods. You’ll
see some sorting techniques in “Combining Loops and Dictionaries” on
page 163.

If you try to reference a nonexistent key—say, student['grade']—
Processing displays a KeyError message. If you need to check whether a
key exists, use the in operator:

. . .
if 'age' in student:
 print(student['age'])

162 Chapter 8

The in checks whether the 'age' key exists in the student dictionary. If
found, the operation returns True, and the if statement executes the print
line displaying the age value (which is 24 in this case).

Modifying Dictionaries
Dictionaries are dynamic structures, so you can add and modify key-value
pairs as you please. To change an existing value, reassign it as you would a
list element, but use the key as opposed to a numeric index. To illustrate, in
your dictionaries sketch, change the student’s age to 25:

. . .
student['age'] = 25
print(student) # {'name': 'Sam', 'age': 25}

The console output should confirm that the age has changed from 24
to 25.

To add a new key-value pair, follow the same process. Add a student ID
number to the student dictionary:

. . .
student['id'] = 199505011
print(student) # {'name': 'Sam', 'id': 19950501, 'age': 25}

The id value here represents a birth date (1995-05-01) 1. The system
can use this information to calculate the student’s age, so now it’s no lon-
ger necessary to store the individual’s age value. To remove this, use the del
statement:

. . .
del student['age']
print(student) # {'name': 'Sam', 'id': 19950501}

The del statement permanently removes the age key and its correspond-
ing value.

Nesting Dictionaries and Lists
Dictionaries can hold other dictionaries or lists, and lists also can hold dic-
tionaries. Let’s look at two examples: a dictionary of lists, and a list of diction-
aries. Both are valid ways to structure data, but as you’ll see, you’ll choose one
depending on which works best in your particular application.

At this point, your program stores the details of a single student. A sys-
tem that can manage just one student isn’t very useful, so to handle multiple
students, try a dictionary of lists. Add the following code to the bottom of your
dictionaries sketch:

. . .
students = {

 1 'names': ['Sam', 'Lee'],

Dictionaries and JSON 163

 2 'ids': [19950501, 19991114]
}
print(students['names'][1]3) # Lee

The names list item holds a list of two names 1; the ids list holds their
respective ID numbers 2. To access any list element directly within a dic-
tionary item, use the associated key followed by a second pair of square
brackets containing the element index 3.

Another approach to structuring this data is with a list of dictionaries.
Rather than separating the student names into one list and the IDs into
another, you could use a dictionary for each student. Add the following
code to the bottom of your sketch, effectively overwriting the former
students dictionary entirely:

. . .
students = [
 {'name': 'Sam', 'id': 19950501},
 {'name': 'Lee', 'id': 19991114}
]
print(students[1]['name']1) # Lee

This retrieves the name Lee by using an element index, followed by
another pair of square brackets containing the dictionary key 1.

The latter of the two approaches (the list of dictionaries) is arguably the
more sensible structure in this scenario. Each item is like a row in a spread-
sheet that contains the details for a single student, and each student may have
a different number of columns. This means you can add an extra key-value
pair to Sam’s dictionary without having to do the same for Lee. Doing this,
however, would be tricky using the first approach.

What you name your keys and how you elect to nest lists and diction-
aries should help relate your data to real-world models while reducing
complexity. Keep your key names short and descriptive, and bear in mind
that well-structured data will make for more self-evident algorithms fur-
ther along in your program. In other words, you’ll end up saving time and
energy writing code if it’s structured around intuitively organized data.

Combining Loops and Dictionaries
You’ll often want to loop through your dictionaries. For example, you
could dynamically generate reports for every student in your system by
using a single loop to populate a predefined template. Considering that a
dictionary can hold thousands or even millions of key-value pairs, this is
a powerful technique. Because of the key-value system, though, iterating
dictionaries is a little different from iterating lists.

You can iterate a dictionary’s keys, values, or key-value pairs with Python’s
keys(), values(), and items() methods. Note that many list methods—such as
append(), extend(), index(), insert(), and remove()—do not work on the diction-
ary data type.

164 Chapter 8

To begin, add a new dictionary, named courses, to the end of your
dictionaries sketch:

. . .
courses = {
 'game development': 'Prof. Smith',
 'web design': 'Prof. Ncube',
 'code art': 'Prof. Sato'
}

The dictionary keys represent course titles; the associated values are the
professors who coordinate each course. Next, you’ll look at ways to combine
this dictionary with for loops.

Iterating Keys
You can write a for loop that deals only with keys, which is useful if you don’t
need to work with the values in your dictionary. Key iteration happens implic-
itly wherever you use a for...in line with a dictionary. Test this behavior in
the following example, which should display all of the course titles in your
console:

. . .
for course in courses:
 print(course)

With each iteration, Python assigns the next key in courses to course.
The print line displays each course title on its own line in the console, and
the loop is complete after all of the keys are exhausted:

web design
game development
code art

Recall that you cannot rely on the ordering of dictionary items. If you
want to ensure that keys are retrieved in alphanumeric order, wrap a sorted()
function around courses:

. . .
for course in sorted(courses):
 print(course)

The amended for line prints the keys in the following order:

code art
game development
web design

Dictionaries and JSON 165

If you simply need a list of keys, use the keys() method, and to sort
them, include a sorted() function:

print(sorted(courses.keys()))
displays: ['code art', 'game development', 'web design']

This prints a list of the keys in the console, complete with square brackets
and commas.

Iterating Values
The values() method returns all of a dictionary’s values, which is useful if
you don’t need to work with the keys in your dictionary. Add a new loop
to your sketch, using the values() method to retrieve the names of each
professor:

. . .
for prof in courses.values():
 print(prof)

With each iteration, Python assigns the next value in courses to prof.
I’ve named this variable prof as an abbreviation for professor (representing
the value it will hold). The print line displays the name of each course’s
professor on a new line in the console.

Iterating Items
Often you’ll want both the dictionary key and the corresponding value for
your loop. The items() method returns all of the dictionary’s key-value pairs.
Before writing any loop code, print the items in your courses dictionary by
using the items() method:

print(courses.items())

Here’s the console output (it doesn’t fit on a single line, which is indi-
cated with the ellipsis):

[('web design', 'Prof. Ncube'), ('game development', ...

You should be able to identify each key-value pair, grouped within
parentheses. The parentheses surrounding each key-value pair denote a
tuple. This book does not cover tuples in detail, so for now, consider them
interchangeable with lists.

Add this loop to print each key-value tuple on its own line in the
console:

. . .
for kv in courses.items():
 print(kv)

166 Chapter 8

T UPL ES

You can pronounce tuple as too-ple or tuh-ple, depending on whom you want
to annoy.

To access tuple items, use the same syntax as lists. Here’s an example:

newcourse = ('visual effects', 'Prof. Kovalenko')
print(newcourse[0]) # visual effects
print(newcourse[1]) # Prof. Kovalenko

In the first line, a new tuple, defined using parentheses, is assigned to a
variable named newcourse. Tuple elements are numerically indexed, relying on
the list-style syntax to retrieve values, as you can see from the print lines. In a
nutshell, the key difference between lists and tuples is that tuples, once defined,
cannot be modified. The technical term for this quality is immutable. For example,
the following code would result in a TypeError because you’re attempting to alter
a tuple value:

newcourse[0] = 'VFX'

Conversely, lists and dictionaries are mutable data types, because you can
add, remove, or edit items as you please.

When you use an items() method with a for loop, Python is assigning
a tuple to your loop variable. I’ve named this kv as an abbreviation for key-
value, but you could name it whatever you like. For example, on the code art
iteration, kv is equal to ('code art', 'Prof. Sato'). Run the sketch to confirm
that the console displays each key-value pair, complete with parentheses and
commas.

To make iterating dictionary items more convenient, Python allows
you to include two variables between the for and in, one for the key and
one for the corresponding value. You can name these variables whatever
you like, but the order of assignment is always key first, value second; this
matches the ordering in the tuple. Add this example to assign the course
title and professor to separate variables. Additionally, this code includes a
sorted() function:

. . .
for course1, prof2 in sorted(courses.items()):
 print('{} coordinates the {} course.'.format(prof, course))

Dictionaries and JSON 167

With each iteration, Python assigns the key (course title) to the first
variable 1 and the value (professor name) to the second variable 2. The
console should display the following:

Prof. Sato coordinates the code art course.
Prof. Smith coordinates the game development course.
Prof. Ncube coordinates the web design course.

Notice that the sorted() function always operates on keys, so the sen-
tences are ordered alphabetically by course title, not professor. To reverse
the order, add a reversed() function:

. . .
#for course, prof in sorted(courses.items()):
for course, prof in reversed(sorted(courses.items())):
 print('{} coordinates the {} course.'.format(prof, course))

Now, the code art course will be listed as the last line in your console.

Working with JSON
JavaScript Object Notation was derived from JavaScript, but it’s a language-
independent data format. Many programming languages support JSON,
Python included, and it’s popular for web development. You can use JSON
to store dictionary-like data in plaintext files, with key-value pairs, to con-
struct nested dictionary- and list-style structures.

For this exercise, you’ll use JSON to format data in a plaintext file, just
as you did with CSV in Chapter 7, except with a different syntax and the
.json file extension. Python’s built-in json module will handle the data you
read in. As mentioned previously, JSON syntax isn’t quite as simple as CSV,
but it’s more descriptive and versatile.

L IBR A R IES A ND MODUL ES

A module is a set of prewritten, reusable code. You can write your own mod-
ules or import an existing module that contains the functionality you require.
A library is a collection of modules. You’ll use a few libraries and modules in
the chapters to come.

168 Chapter 8

Understanding JSON Syntax
To understand how JSON syntax works, let’s contrast it with CSV. In
Chapter 7, you stored an album track list (for The Dark Side of the Moon)
in CSV format. Here’s an abridged version of that file:

location,title,creator,album,trackNum
file:///music/SpeakToMe.mp3,Speak to Me,Pink Floyd,The Dark Side of the Moon,1
file:///music/Breathe.mp3,Breathe,Pink Floyd,The Dark Side of the Moon,2
. . .

The first line contains the field headings. Lines 2 and beyond provide
the details of each track.

Here’s the same (abridged) track list formatted as JSON:

[
 {
 "location": "file:///music/SpeakToMe.mp3",
 "title": "Speak to Me",
 "creator": "Pink Floyd",
 "album": "The Dark Side of the Moon",
 "trackNum": 1
 },
 {
 "location": "file:///music/Breathe.mp3",
 "title": "Breathe",
 "creator": "Pink Floyd",
 "album": "The Dark Side of the Moon",
 "trackNum": 2
 },
 . . .

Each value has a corresponding key—just like a Python dictionary! If you
study the code, you’ll realize that it looks like a list of dictionaries written in
Python. However, subtle differences exist between JSON and Python’s data
structure syntax. For instance, with JSON, you must use double quotes for
strings; in Python, you have the option of single quotes. The terminology is
a little different too. In JSON, curly brackets denote an object (not a diction-
ary), and square brackets define an array (not a list). What you name your
keys and how you nest your elements is up to you.

N O T E Python permits an optional trailing comma after the last element in any list or
dictionary. JSON, however, disallows trailing commas in objects and arrays.

Because this is a track list for an individual album, every track has the
same creator and album information, which seems redundant. To avoid rep-
etition, you can restructure your JSON as follows:

{
 "creator": "Pink Floyd",
 "album": "The Dark Side of the Moon",

Dictionaries and JSON 169

 "tracklist": [
 {
 "location": "file:///music/SpeakToMe.mp3",
 "title": "Speak to Me",
 "trackNum": 1
 },
 {
 "location": "file:///music/Breathe.mp3",
 "title": "Breathe",
 "trackNum": 2
 },
 . . .

The new structure nests the tracks within tracklist. The creator and
album information is placed at the top level of the structure because it applies
to every track.

You can write your own JSON data, generate it dynamically, or source it
online.

Using Web APIs
Vast repositories of JSON data, ranging from music metadata to cat facts,
are available via web APIs. A web application programming interface (API) is a
web-based service you can use to request or post data. For example, you
might request data from the Twitter API to generate a graph measuring
your tweet frequency or to program a Twitter bot that autonomously posts
tweets of your code art.

This book doesn’t cover how to use web APIs. However, if you want
to explore web APIs, you should know a couple of things. Each API works
slightly differently, which means you’ll need to refer to the service-specific
developer documentation. Many APIs are accessible directly via a URL,
which allows you to interface with them by using your web browser. For
example, OpenAQ provides air-quality data from around the world. If you
enter the following URL into your web browser, you’ll get a JSON summary
of the air-quality data for every city in Norway: https://api.openaq.org/v1/
cities?country=NO.

The api.openaq.org part is the API domain name. The /v1 indicates that
you are using version 1, the first release of the API. The /cities part requests
the data for every city in OpenAQ’s database, but the ?country=NO limits the
cities to those located in Norway. For a copy of the data, use the Save Page As
option in your browser menu, or copy and paste the contents into any plain-
text editor.

You’re also likely to come across APIs that provide CSV and XML data.
CSV, JSON, and XML have their own strengths and weaknesses, so

weigh the relative merits of each format when considering what’s best for
your projects. The beauty of CSV lies in its simplicity, but it cannot support
hierarchically structured data. Unlike JSON, which allows you to nest objects
within objects several levels deep, CSV limits you to a single value per field.
XML is an established, widely supported, and flexible data exchange format,

https://api.openaq.org/v1/cities?country=NO
https://api.openaq.org/v1/cities?country=NO

170 Chapter 8

but it can be overly complex and bloated at times. JSON provides somewhat
of a middle ground, and it has become increasingly popular on the web, as
its syntax is more concise than XML’s.

X ML

Extensible Markup Language (XML) files are plaintext files with the .xml exten-
sion. To give you an idea of what the syntax looks like, here’s an XML adaption
of The Dark Side of the Moon’s track list:

<?xml version="1.0" encoding="UTF-8"?>
<tracklist creator="Pink Floyd" album="The Dark Side of the Moon">
 <track>
 <location>file:///music/SpeakToMe.mp3</location>
 <title>Speak to Me</title>
 <trackNum>1</trackNum>
 </track>
 <track>
 <location>file:///music/Breathe.mp3</location>
 <title>Breathe</title>
 <trackNum>2</trackNum>
 </track>
 . . .

Even if you have never written or viewed any XML before, you can
likely make some sense of the playlist contents in the code. You can discern
the details of each track within opening and closing pairs of track tags
(<track>...</track>). The opening tracklist tag includes two attributes that
contain the creator and album information.

You’re likely to encounter XML, or a similar markup language (like HyperText
Markup Language, or HTML), on your programming journeys. Python provides
various modules for dealing with markup languages, but I do not cover them in
this book.

Reading in JSON Data
You can read in JSON data when your sketch runs. In this example, you’ll
use coffee data stored in a JSON file to generate a chart. Create a new
sketch named coffee_chart with a data subfolder, and then complete the
following steps:

1. Open your browser and go to https://github.com/tabreturn/processing.py-book/.

2. Navigate to chapter-08-dictionaries_and_json.

3. Download the data.zip file.

4. Extract the ZIP archive, and move coffees.json to the sketch data subfolder.

https://github.com/tabreturn/processing.py-book/

Dictionaries and JSON 171

Here is a snippet of the coffees.json file contents:

[
 {
 "name": "Espresso",
 "ingredients": [
 {"ingredient":"espresso"1, "quantity":30 2, "color":"#221100"3}
]
 },
 . . .
 {
 "name": "Irish Coffee",
 "ingredients": [
 {"ingredient":"espresso", "quantity":60, "color":"#221100"},
 {"ingredient":"whiskey", "quantity":40, "color":"#FFCC77"},
 {"ingredient":"whippedcream", "quantity":20, "color":"#FFFFFF"}
]
 },
]

Each top-level object holds the details for a different type of coffee. This
code shows two types of coffee: Espresso and Irish Coffee. These are the first
and last recipes; there are nine types of coffee in all. Each ingredient object
has three key-value pairs: an ingredient name 1, quantity in milliliters 2,
and fill color 3. Note that these quantities are not necessarily accurate, so
the final chart might not impress baristas and coffee aficionados, but it will
look pretty cool.

The next step is to load the data from the coffees.json file. Python’s open()
function can open any file, plaintext or otherwise, and return a file object.
For a JSON file, load the file object into a Python data structure by using
the built-in json module. Add this code to your sketch:

import json
jsondata = open('coffees.json')
coffees = json.load(jsondata)

The import line imports the json module. The open() function opens the
JSON file and assigns the file object to the variable jsondata. The json.load()
function converts the JSON to Python data. To confirm it’s working, print
the quantity of whiskey in the Irish Coffee:

print(coffees[8]['ingredients'][1]['quantity']) # 40

The Irish Coffee is the last element in a list of nine coffees; hence, it has
an index of 8. The whiskey content is the second ingredient (['ingredients']
[1]). The final ['quantity'] represents the quantity value of the ingredient,
40 milliliters.

When you retrieved CSV data by using loadStrings(), everything was data-
typed as a string, numbers included. You had to convert values to integers by
using the int() function before performing any arithmetic; to create lists, you
had to use a split() function. The json module, however, handles all of this

172 Chapter 8

conversion for you. A JSON value like 40, with no decimal point or quotation
marks, is interpreted as an integer; comma-separated values within square
brackets are turned into Python lists automatically; and so forth. Now that
you can access the data in Python, you can use it to render a chart.

Challenge #9: Coffee Chart
You’ll visualize the data for all nine coffees by using nine mugs arranged in
a 3 × 3 grid fashion. Figure 8-3 shows a screenshot of the final result.

Figure 8-3: The complete coffee chart

Add the following code to define a display window size, background
color, and some variables, and to lay out nine empty mugs:

. . .
size(800, 800)
background('#004477')
mug = 120
spacing = 230
col = 1

Dictionaries and JSON 173

translate(100, 100)

for coffee in coffees:
 1 # ingredients code goes here

 # mug
 strokeWeight(5)
 stroke('#FFFFFF')
 noFill()
 square(0, 0, mug)
 arc(mug, mug/2, 40, 40, -HALF_PI, HALF_PI)
 arc(mug, mug/2, 65, 65, -HALF_PI, HALF_PI)

 # label
 fill('#FFFFFF')
 textSize(16)
 label = coffee['name']
 text(label, mug/2-textWidth(label)/2, mug+40)

 2 if col = 3:
 translate(spacing*-2, spacing)
 col = 1

 3 else:
 translate(spacing, 0)
 col += 1

The lines above the for line define the main parameters for the sketch,
such as the display window size and background color. The mug and spacing
variables control the mug sizing and spacing, respectively; the col variable
serves as a column counter. Comments within the for loop indicate where the
mug and label drawing code begins. After drawing each mug 3, Processing
translates the drawing space 230 pixels to the right and adds 1 to col. When
col reaches 3 2 (every third mug), the drawing space is shifted back to the
left edge of the display window and down one row, and col resets to 1. The
ingredients code has been left for you to complete; the comment indicates
where you should write it 1.

Run the sketch. You should see nine empty mugs with labels. Now,
complete the chart so it looks like Figure 8-3. If you need help, you can
access the solution at https://github.com/tabreturn/processing.py-book/tree/
master/chapter-08-dictionaries_and_json/coffee_chart/.

Summary
In this chapter, you learned to organize a collection of items in a dictionary
that can associate values with meaningfully named keys. Furthermore, you
combined dictionaries and lists to create more intuitive data structures. You
also learned how to define, access, modify, and nest dictionaries, and how
to loop through dictionaries by using keys, then values.

This chapter also introduced you to JSON. You learned how it’s similar
to Python dictionaries and lists, and how to read in JSON data. You can store

https://github.com/tabreturn/processing.py-book/tree/master/chapter-08-dictionaries_and_json/coffee_chart/
https://github.com/tabreturn/processing.py-book/tree/master/chapter-08-dictionaries_and_json/coffee_chart/

174 Chapter 8

dictionary and list data in JSON files to separate your Python code from
your data. If you’re looking for interesting data to work with, many online
sources host JSON datasets that you can access for free.

In Chapter 9, you’ll learn how to define and work with functions,
which are named sections of code. You decide what to name your func-
tions, and whenever you want to run a function, you call it by its name.
This helps reduce repetition in your code because you can repeat a one-
line function call instead of many lines of code. Think of functions as
reusable blocks of code that will make your sketches more efficient and
easier to maintain. You’ll write functions, including some to generate
elliptical and wave-like motion, and then you’ll use these functions to
program animated effects that employ trigonometry.

As your programs grow more complex,
your line counts will increase, and you’ll

begin repeating the same or similar code.
By using functions, you can divide your pro-

grams into named blocks of reusable code. This
makes your code more modular, allowing you to
reuse lines without needing to rewrite them.

You’ve already used many Processing functions, like size(), print(), and
rect(), and in this chapter, you’ll learn how to define your own functions.
As an example, Processing has no function for drawing diamonds, but you
can create one. You decide what to name this function and what arguments
it will accept. Perhaps your diamond() function accepts an x, y, width, height,
and optional rotation argument.

You’ll also create functions for generating elliptical and wave-type
motion, which will involve delving into some trigonometry. You’ll incor-
porate the mathematical functions sine and cosine by using Processing’s
built-in functions for performing these calculations. If the mention of

9
F U N C T I O N S A N D

P E R I O D I C M O T I O N

176 Chapter 9

trigonometry triggers disturbing flashbacks from math class, take a deep
breath and relax. This will be a practical and visual reintroduction to
these concepts, with Processing crunching all the numbers for you.

Defining Functions
Sensibly named functions make your code easier to understand and work
with. A 1,000-line program can be tricky to comprehend, especially for
somebody who didn’t write it.

Imagine programming a music player. You might create a function
named play() that executes 20 or so lines of code necessary to load and
play an MP3 file. When you need to play a track, you simply call your
play() function by using a file argument, like play('track_1.mp3'). You don’t
need to concern yourself with the details of how the play() function oper-
ates after you’ve defined it, and neither does anybody else working with
your code. Additionally, you could define functions for stop(), pause(),
skipBack(), and skipForward().

In this section, you’ll learn to define functions with the def keyword
and then how to handle arguments. You might call these user-defined func-
tions to distinguish them from those that come built-in with Python and
Processing.

Creating a Simple Speech Bubble Function
Let’s begin with a simple function that takes no arguments and draws speech
bubbles, like the ones you find in comic strips, in the console. You’ve already
used functions that work without arguments, like Processing’s noFill() that
relies on just a function name and parentheses. Conversely, a function like
fill() requires at least one argument, such as a hexadecimal color value.

Your speech bubble function will form an outline, using plaintext char-
acters, that surrounds a caption. Once you have this working, you’ll move
on to defining a more dynamic function that accepts a range of arguments
to draw speech bubbles in the display window.

Create a new sketch and save it as speech_bubbles. Add the following code
that prints a question in the console, followed by the answer in a speech
bubble five seconds later:

wait = 5000
1 print('1. What do you get if you multiply six by seven?')
2 delay(wait)

print(' ------------------- ')
print('| The answer is 42! |')
print('| ------------------ ')
print('|/')

Functions and Periodic Motion 177

When you run the sketch, you should see the question appear in your
console immediately 1. The Processing delay() function halts the pro-
gram for 5,000 milliseconds (five seconds) 2, then reveals the answer in
a speech bubble using the four print lines that follow it. Run the sketch to
confirm this:

1. What do you get if you multiply six by seven?

The answer is 42!
/

This might not look like the most convincing speech bubble, but it’ll do
for now.

Make the following changes to your code to define a function for print-
ing the answer:

wait = 5000

def printAnswer():
 print(' ------------------- ')
 print('| The answer is 42! |')
 print('| ------------------ ')
 print('|/')

print('What do you get if you multiply six by seven?')
delay(wait)
printAnswer()

The def keyword defines a new function. You can name this function
whatever you like, but make the name descriptive. Like variable names, func-
tion names should contain only alphanumeric and underscore characters,
and they must start with a letter or an underscore; in this case, I’ve chosen
printAnswer. Always include the parentheses and a colon at the end of the def
line. The four print() lines are in the body of the function definition, which
is the indented section of code beneath the def line. The function won’t exe-
cute the print lines until you call it. On the last line, where the program must
reveal the answer, is the printAnswer() function call.

N O T E Python will process your code line by line, beginning at the top of the file. If it attempts
to execute a function call before it has processed the corresponding definition, the pro-
gram will fail. In other words, you cannot call printAnswer() on the first line of your
sketch, because Python would not yet have encountered the def printAnswer() line.

When you run the sketch, the program should work as before, printing
the question followed by the answer in a speech bubble five seconds later.

178 Chapter 9

S T Y L E GUIDES

A style guide is a document that contains rules for writing code. This typically
includes guidelines on how to indent code, where to use blank lines, what
comments should look like, and how to name variables and functions.

If a team of programmers adheres to an agreed-upon style guide, their
collaborative project code should turn out looking clean, consistent, and well
formatted—as if one person wrote it. This kind of code is easier to modify and
maintain, in part, because it’s more readable. When you’re adding features to
an existing program, you’ll often spend more time reading and comprehending
code than writing it.

Some teams devise their own style guides, while others make use of or
expand upon an existing guide. PEP 8 is considered the de facto style guide for
Python; you can access it at https://www.python.org/dev/peps/pep-0008/. The
document covers many aspects of the Python language you’ve yet to encounter,
and it’s an excellent resource for any Python programmer.

The PEP 8 style guide recommends that “function names should be
lowercase, with words separated by underscores as necessary to improve
readability.” In other words, the printAnswer() function instead should be
named print_answer(). However, when an existing style is established, inter-
nal consistency is usually preferred.

I’ve opted for a camelCase function name to match the convention used
for Processing’s built-in functions, like noFill() or pushMatrix(). As noted in
Chapter 1, camelCase combines multiple words into one and uses a capital
letter to start the second and subsequent words. The style is also referred to as
mixedCase, or sometimes lowerCamelCase (to contrast it with UpperCamelCase).

Add a second question to the end of your sketch:

. . .
delay(wait/2)
print('2. How many US gallons are there in a barrel of oil?')
delay(wait)
printAnswer()

After displaying the answer to question 1, the program waits two and
a half seconds and prints question 2. The answer to question 2 is revealed
five seconds after this. Once again, the answer is 42, but there’s no need to
retype the four lines of code for displaying the speech bubble. Instead, you
can call the printAnswer() function a second time.

You can add as many questions as you like. If the answer to each ques-
tion is 42, you can call the printAnswer() function to display the answer.
If you want to restyle all of your speech bubbles—for example, using
different characters for the outline—edit the body of the printAnswer()
definition. You need to change the code in only one place to affect every
speech bubble.

https://www.python.org/dev/peps/pep-0008/

Functions and Periodic Motion 179

For each answer, you have a neat, one-line function call with a name
that indicates what it does. Other programmers won’t need to understand
the inner workings of the printAnswer() function to use it, but if necessary,
they can read through the definition code to find out how it works.

Before proceeding to the next section, set the wait value (at the top of
your code) to 0:

wait = 0
. . .

This change cancels the effects of the delay() functions, because a delay
time of zero means there is no delay. As a result, your sketch doesn’t pause,
and the next section of code you add can run immediately.

The printAnswer() function is limited to drawing speech bubbles in the
console, and it always prints the same answer of 42, so next, you’ll define a
function that can accept arguments.

Drawing Compound Shapes Using a Function
To define a function that draws speech bubbles with shapes and text in the
display window, continue working in your speech_bubbles sketch. First, you’ll
need an image over which to place your speech bubbles.

I’ve chosen Jan van Eyck’s Arnolfini Portrait for this example because the
painting has three speech bubble candidates: a man, a woman, and a dog.
It’s also public domain. Figure 9-1 presents the original painting on the left,
and the result you’re working toward on the right.

Figure 9-1: The original Arnolfini Portrait, 1434 (left); a version with speech bubbles (right)

180 Chapter 9

You can download the Arnolfini Portrait image from Wikipedia (https://
en.wikipedia.org/wiki/File:Van_Eyck_-_Arnolfini_Portrait.jpg); the 561 × 768 pixel
resolution will suffice. If you want to use a different image, that’s fine too; just
choose one with at least three subjects.

Create a new data subfolder and add your image to this; then add the
following code to load and display it:

. . .
size(561, 768)
art = loadImage('561px-Van_Eyck_-_Arnolfini_Portrait.jpg')
image(art, 0, 0, width, height)

If you’re not using the Arnolfini Portrait, adjust the size() and loadImage()
arguments accordingly.

Run the sketch to confirm that the image spans your display window.
Define and then call a new speech bubble function by adding this code

to the end of your sketch:

. . .
def speechBubble():
 x = 190
 y = 150
 txt = 'Check out my hat!'
 noStroke()
 pushMatrix()
 translate(x, y)

 # tail
 fill('#FFFFFF')
 beginShape()
 vertex(0, 0) # tip
 vertex(15, -40)
 vertex(35, -40)
 endShape(CLOSE)

 # bubble
 textSize(15)
 by = -85
 bw = textWidth(txt)
 pad = 20
 rect(0, by, bw+pad*2, 45, 10)
 fill('#000000')
 textAlign(LEFT, CENTER)
 text(txt, pad, by+pad)

 popMatrix()

speechBubble()

If you’re using a different image, adjust the x, y, and txt variables. The x
and y variables control the position of the speech bubble—specifically, the
x-y coordinate for the tip of the “tail” that’s attached to the bubble. Before

https://en.wikipedia.org/wiki/File:Van_Eyck_-_Arnolfini_Portrait.jpg
https://en.wikipedia.org/wiki/File:Van_Eyck_-_Arnolfini_Portrait.jpg

Functions and Periodic Motion 181

drawing anything, a translate() function repositions the drawing space so
that the vertex coordinates for this tip are (0, 0); the other tail vertices and
the bubble are positioned relative to this point.

The txt variable defines the text that appears within the bubble. You
can use any txt string you like, but keep it short. The speech bubbles will
not accommodate multiline captions.

The code beneath the bubble comment draws a rounded rectangular
bubble above the tail. The rect() function includes a fifth argument (10)
that controls the corner radius. The larger you make this value, the rounder
the corners become. The result is a rounded rectangular speech bubble
with a tail at its bottom left (Figure 9-2).

Figure 9-2: The tip of the speech bubble tail has an x-y coordinate of (190, 150).

You can call the speechBubble() function 100 times, but the visual result
always appears the same because every speech bubble draws over the one
before it, at the same size, with the same text, in the same position. But, if
you modify the x, y, and txt variables each time you call the speechBubble()
function, you can customize the x-coordinate, y-coordinate, and caption.
You can accomplish this by adding parameters to your function definition
that allow you to pass values to the function using different arguments in
your function call.

Adding Arguments and Parameters
Now you’ll edit your speechBubble() definition so that the function can accept
three arguments, allowing you to pass your coordinate and caption values to
the function to manipulate the appearance of each speech bubble you draw.
Arguments are assigned to corresponding parameters, but more on those
shortly.

Currently, three variables control the speech bubble’s appearance: x, y,
and txt. To control those variable values via arguments, adapt your function
definition as follows:

. . .
1 def speechBubble(x, y, txt):

 #x = 190

182 Chapter 9

 #y = 150
 #txt = 'Check out my hat!'
 . . .

2 speechBubble(190, 150, 'Check out my hat!')

The definition parentheses now include three parameters: x, y, and
txt 1. A parameter is a placeholder for a value that’s provided by way of an
argument. These parameters are made available within the local scope of
the function; in other words, Python can access x, y, and txt only within the
speechBubble() function block. You need to comment out (or delete) the old
x, y, and txt lines to avoid overwriting the values that you pass in with the
function call 2.

Because you have three parameters, you must provide three argu-
ments when you call the speechBubble() function. The first argument of
190 is assigned to parameter x, the second argument of 150 is assigned
to parameter y, and so on, in the same order the parameters appear in
the def line. These are called positional arguments because the order of
the arguments determines which values are assigned to each parameter
(Figure 9-3).

def speechBubble(x, y, txt):

(190, 150, 'Check out my hat!')
Figure 9-3: Positional arguments

Run the sketch to confirm that the visual result is unchanged. Try test-
ing different arguments to change the appearance of the speech bubble.

N O T E It’s not unusual to hear the terms argument and parameter used interchangeably.
If you happen to mix them up, you aren’t likely to confuse anybody.

Call a second speechBubble() function:

. . .
speechBubble(315, 650, 'Woof')

The first and second (x and y) arguments position the speech bubble
above the dog. The third argument specifies that the caption must read,
“Woof” (Figure 9-4).

Functions and Periodic Motion 183

Figure 9-4: A second speech bubble

You now have a working speechBubble() function that accepts positional
arguments. However, you can also call this function by using arguments in
an arbitrary order if you use keyword arguments.

Using Keyword Arguments
When you call a function, you can state explicitly which value belongs to
which parameter by using keyword arguments. These arguments include
both a keyword and value. Each keyword takes its name from a parameter
in the function definition. Consider this example, where both lines pro-
duce the same result:

speechBubble(315, 650, 'Woof') # positional arguments
speechBubble(txt='Woof', x=315, y=650) # keyword arguments

The first speechBubble() call employs a positional argument approach.
The second call uses keyword arguments; notice that each value has a key-
word in front of it. Python uses the keywords in your function call to match
values and parameters (Figure 9-5).

def speechBubble(x, y, txt):

(txt='Woof', x=315, y=675)
Figure 9-5: Keyword arguments

This means you can order the arguments in your function call how-
ever you please. Just be sure to name your keywords exactly the same as
the parameters in the function definition.

184 Chapter 9

Setting Default Values
When you define a function, you can specify a default value for each param-
eter, which is like a backup Python can use if you leave out an argument in
your function call. This behavior is useful for defining optional arguments.
For example, the rect() function can accept an optional fifth argument for
the corner radius. If you call the rect() function with four arguments, you
get a rectangle with 90-degree corners, which is what users seem to want
more often than not. But, if you provide the fifth argument (of something
other than zero), you get a rectangle with rounded corners.

Use an equal sign to assign a default value to a parameter. For example,
the following adds a default value of 'Hello' to your txt parameter:

. . .
def speechBubble(x, y, txt='Hello'):
 . . .

The default txt parameter is a string, but you can use any data type you
like, including numbers and lists.

You can now call the speechBubble() function using two positional argu-
ments, leaving txt (the third argument) to rely on its default value:

. . .
speechBubble(445, 125)

The 445 and 125 are positional arguments for x and y. As there’s no third
argument, txt defaults to 'Hello', as per the function definition. The result
(Figure 9-6) is a speech bubble positioned above the woman’s head that
reads, “Hello.”

Figure 9-6: Drawing a speech bubble using the default txt parameter, Hello

To replace Hello with Meh, call the speechBubble() function using three
arguments:

. . .
speechBubble(445, 125, 'Meh')

Functions and Periodic Motion 185

Because you provided the positional argument for the txt parameter,
the woman’s speech bubble will now read, “Meh.”

The lady clearly isn’t overly impressed with her partner’s hat, so she might
choose not to risk offending him. A thought bubble could be more appropriate
(Figure 9-7).

Figure 9-7: A speech bubble (left) and a thought bubble (right)

To draw a thought bubble, modify the speechBubble() function to draw
a chain of small circles instead of a triangular tail. However, you want the
speechBubble() function to depict speech bubbles by default, as they are
more common than thought bubbles.

Add an additional type parameter to the function definition:

. . .
def speechBubble(x, y, txt='Hello', type='speech'):
 . . .

Now you have two parameters with default values. Notice that these
come after the parameters with no default values. If you’re defining any
function with default values, place those parameters at the end of the list.

The next step is to modify the function body, specifically the section
beneath the tail comment. The type parameter must determine whether
Processing should draw a triangular tail or a chain of circles. Modify the
code as follows:

 . . .
 # tail
 if type == 'speech':
 fill('#FFFFFF')
 beginShape()
 vertex(0, 0) # tip
 vertex(15, -40)
 vertex(35, -40)
 endShape(CLOSE)

 elif type == 'thought':
 fill('#FFFFFF')
 circle(0, 0, 8)

186 Chapter 9

 circle(10, -20, 20)
 . . .

The if statement code will draw a triangular tail if the type parameter is
equal to 'speech', the default value assigned in the function definition. The
elif statement will draw a chain of two circles whenever the function call
includes a type argument of 'thought'. Edit your function call to see this in
action:

. . .
speechBubble(445, 125, 'Meh', 'thought')

The thought argument switches the speechBubble() function to “thought
bubble mode.” If you omit this argument, the function defaults to drawing
the speech bubble with the tail. Run the sketch to confirm that the result
matches Figure 9-7.

Mixing Positional and Keyword Arguments
You can use positional arguments for your x and y coordinates, leave out the
txt argument, and include a keyword argument for type. This way, Python
can utilize the default value for txt ('Hello'), but render it in a thought bub-
ble. As an example, you might want to replace the dog’s speech bubble with
a thought bubble that reads, “Hello.” One option is to include a third argu-
ment of 'Hello' explicitly in the function call—a fully positional approach.
For example:

speechBubble(315, 650, 'Hello', 'thought')

Each argument here corresponds to a parameter. This seems redun-
dant, though, given that 'Hello' is the default value for parameter 3. If you
just omit the 'Hello' argument in your function call, Processing will draw a
speech bubble with the word thought in it:

a speech bubble that says, thought
speechBubble(315, 640, 'thought')

Recall that the third positional argument is for the txt parameter and
that leaving out the fourth argument means Python has to adopt the default
value for the fourth type parameter (speech bubble mode). A simple solution
to this problem exists, however; use a keyword argument instead of relying
on a positional argument:

speechBubble(315, 650, type='thought')

In this case, you’ve explicitly stated that the value 'thought' belongs to
the type parameter. You might notice that you can arrange the arguments
in any order if you use keyword arguments for every value. This is true, so
decide what combination of positional and keyword arguments works best
in a particular situation.

Functions and Periodic Motion 187

If you’re missing one or many required arguments in a function call,
Processing displays an error message (Figure 9-8). For example, if you call
the speechBubble() function with no arguments, the error message indicates
that you require at least two.

processing.app.SketchException: TypeError: SpeechBubble() takes at ...

TypeError: speechBubble() takes at least 2 arguments (0 given)

Console

speechBubble()

Figure 9-8: An error message for missing arguments

If you provide too many arguments, the error message indicates that
speechBubble() takes at most four arguments.

Returning Values
You can use a function to operate on data and then have it return the result
to the main program. This is different from the functions you’ve created so
far, which execute a predefined section of code before resuming the regu-
lar flow of the main program.

To help explain this difference, here’s some code to contrast a function
that returns a value with one that does not:

x = random(100)
square(x, 40, 20)

Two Processing functions are in use here: random() and square(). The
first one returns a value; the second does not. The random() function gener-
ates a floating-point value ranging from 0 up to but not including 100. The
random function returns the value, which is assigned to a variable named
x. The square() function draws a square in the display window; it does not
return a value.

To define your own function that returns a value, use the return keyword.
As an example, create a new function named shout(). This function accepts a
single string argument, and then converts this string to uppercase and adds
three exclamation marks to the end. Enter the following code above your
speechBubble() calls to ensure that the shout() definition precedes any shout()
function call:

. . .
def shout(txt):
 return txt.upper() + '!!!'
. . .

In the return line, the upper() method converts the string assigned to txt
to uppercase; the final result is a concatenation of this and three exclamation

188 Chapter 9

marks. Once Python processes the return statement, it exits the function
immediately. In other words, if you add any further code to the shout() defini-
tion below the return line, Python ignores it.

You could use this function to add emphasis to the text in any speech
bubble. Here’s an example:

speechBubble(190, 150, shout('Check out my hat'))

The shout() function converts the string to “CHECK OUT MY HAT!!!”
before it’s passed to the speechBubble() function. This wraps the argument
with shout() to avoid having to create an intermediate variable, which you
would then pass to the speechBubble() function.

This was a simple example to introduce how the return keyword works.
Many functions that return values perform more complex tasks, like Pro-
cessing’s sqrt() function that calculates the square root of any number.

Defining Functions for Periodic Motion
In this section, you’ll learn how to simulate periodic motion in Processing
by defining functions that employ trigonometry to draw circular patterns
and waves. In physics, periodic motion is motion that repeats itself at regular
intervals, such as a swinging pendulum, waves moving through water, or the
moon orbiting the Earth. A cycle is one complete repetition of the motion.
The period is the time it takes to complete a cycle. The period for the moon’s
orbit of the Earth is roughly 27.3 days; the second hand of a clock has a
period of 60 seconds.

Trigonometry, or trig, is a branch of mathematics that studies triangles
and uses various mathematical functions, such as sine and cosine, to cal-
culate angles and distances. It also has applications in many fields of pro-
gramming. For instance, games that incorporate physics must continuously
calculate the position and speed of objects in motion, and those calcula-
tions involve triangles.

Trig is also useful for controlling steering and aiming behavior. For
example, if you know the x-y coordinates of the player and enemy turret
in Figure 9-9, you can calculate how to rotate the enemy gun to aim it at
the player.

You’ll use right triangles to calculate points along the circumference of
a circle, using sine and cosine functions. The coordinates for those points
are what you use to simulate smooth, periodic motion.

Functions and Periodic Motion 189

Player

Enemy turret
?

Figure 9-9: If only the enemy turret had listened in math class.

Create a new sketch and save it as periodic_motion. Add the following
code to set up the drawing space:

def setup():
 size(800, 600)

def draw():
 background('#004477')
 noFill()
 strokeWeight(3)
 stroke('#0099FF')
 line(width/2, height, width/2, 0)
 line(0, height/2, width, height/2)
 # flip the y-axis
 scale(1, -1)
 translate(0, -height)
 # reposition the origin
 translate(width/2, height/2)

The preceding code structures an animated sketch by using setup() and
draw() functions with two (pale blue) lines that intersect at the center of the
display window. The y-axis is flipped, so y-coordinates decrease as you move
downward; I’ll elaborate on why I did that soon. The final translate() func-
tion shifts the coordinate system so that the origin (0, 0) sits in the center
of the display window. This means that the x-coordinate for the left edge of
the display window is –400, and the x-coordinate for the right edge is 400.
The y-coordinate for the top edge is 300; for the bottom edge, it’s –300
(Figure 9-10). The modified coordinate space, with its flipped y-axis, now
behaves like a regular Cartesian plane, with four quadrants that allow you to
plot any x-y coordinates ranging between (–400, –300) and (400, 300).

You’ve likely encountered this system in math classes before, which is
why I’ve set up the coordinate space this way. You’ll use it as a platform to
experiment with elliptical and wave motion, but first, you may require a
brief refresher on trigonometric functions.

190 Chapter 9

(0, 0)

y

–300

–400

x

400

300

Figure 9-10: The Cartesian plane with four quadrants

An Introduction to Trigonometric Functions
Sine, cosine, and tangent are three common trigonometric functions. These are
mathematical (as opposed to programming) functions, but you can use
them in Python thanks to Processing’s built-in trig functions. Sin, cos, and
tan—as they are often abbreviated—are based on ratios obtained from a
right triangle (Figure 9-11). A right triangle (or right-angled triangle) has one
angle that measures exactly 90 degrees, usually denoted by a small square.
The θ symbol, theta, is commonly used to represent an unknown angle.

Adjacent

θ

Hypotenuse
Opposite

Figure 9-11: A right triangle

You can calculate the size of theta if you know the lengths of any two
sides of this triangle. Depending on the lengths you have, you’ll use either
sin, cos, or tan for the calculation. SOHCAHTOA, pronounced phonetically
as so-ka-toe-uh, is a handy mnemonic device to help you remember the fol-
lowing trigonometric ratios:

SOH sin(θ) = opposite / hypotenuse

CAH cos(θ) = adjacent / hypotenuse

TOA tan(θ) = opposite / adjacent

Functions and Periodic Motion 191

As an example, if you know the length of the opposite and hypotenuse in
Figure 9-11, you can find angle theta by using sin(θ). If you know the length
of the adjacent and hypotenuse, use cos(θ). You can also rearrange these
equations to find the length of an unknown side in cases when you know
theta and one length. I’ll return to this point shortly.

You’ll apply sin and cos to a simple example to determine an x-y coordi-
nate along the perimeter of a circle. To begin, draw a circle with its center
positioned at (0, 0) with a radius of 200. Add a line starting at (0, 0) that’s
the same length as the circle radius and rotated 1 radian:

. . .
radius = 200
theta = 1

def draw():
 . . .
 circle(0, 0, radius*2)
 stroke('#FFFFFF')
 pushMatrix()
 rotate(theta) # approximately 57.3 degrees
 line(0, 0, radius, 0)
 popMatrix()

The code renders the circle in a pale blue outline. A white line the
length of the radius extends from the center of the circle to its perimeter;
this forms an angle of 1 radian (equal to roughly 57.3 degrees), as labeled
in Figure 9-12. Notice that the rotate() function applies counterclockwise
to the line because the y-axis is inverted. The task is to work out the x-y
coordinate for the point where the white line connects to the circle perim-
eter, labeled A. The other yellow markings reveal the right triangle upon
which you’ll base your calculations.

1 radian

A

Figure 9-12: You’ll find the x-y coordinate for the point labeled A.

192 Chapter 9

Observe that the y-coordinate for point A is equal to the length
(or height) of the opposite side. You know the angle (theta variable) and
the length of the hypotenuse (radius), which you can use to calculate the
length of the opposite. Recall that the SOH in SOHCAHTOA stands for
sin(θ) = opposite / hypotenuse.

You have the values for θ and hypotenuse, so rearrange the equation to
isolate opposite: opposite = sin(θ) × hypotenuse.

If you substitute the placeholders with the variable names in your pro-
gram, this is y = sin(theta) * radius.

To calculate the x-coordinate for point A, you need to find the length
(or width) of the adjacent side. Recall that the CAH in SOHCAHTOA stands
for cos(θ) = adjacent / hypotenuse, which you can rearrange as x = cos(theta)
* radius.

Add the following code to the end of your draw() function:

 . . .
 # white dot
 noStroke()
 fill('#FFFFFF')
 x = cos(theta) * radius
 y = sin(theta) * radius
 circle(x, y, 15)

The cos() and sin() functions return floating-point values ranging
from –1 to 1 for various values of theta. Processing’s trig functions work
with radians, so there’s no need to convert the theta argument to degrees.
In this case, theta is equal to 1 radian, and the cos() and sin() functions
return values of 0.54 and 0.84, respectively (rounded to two decimal
places). When you multiply 0.54 and 0.84 by the radius value of 200, you
get an x-y coordinate of (108, 168). The circle(x, y, 15) function renders
a white dot by using this x-y coordinate pair. Run the sketch to confirm
the position of the white dot at point A, where the white line connects
to the circle boundary.

You can adjust the theta value to move the white dot to different points
along the perimeter of the pale blue circle. To position the dot at 90 degrees,
directly above the origin, use theta = HALF_PI; for 180 degrees, use theta = PI;
and so forth. A theta value of TAU brings you back around to the starting
point, visually indistinguishable from a dot at theta = 0. If theta is greater
than TAU, there’s a wraparound effect. In other words, cos(TAU+1) is equivalent
to cos(1).

The next task is to get the dot moving. You don’t need the white line
anymore; remove it by deleting the lines starting from pushMatrix() up to
and including popMatrix().

Circular and Elliptical Motion
You’ll begin by moving the dot along a circle perimeter (a circular motion),
and you’ll create a user-defined function for handling the necessary math.
You’ll then use this same function to create a spiral variant of the circular

Functions and Periodic Motion 193

motion. Once you have the circular and spiral motions working, you’ll
define a new function for elliptical motion. Figure 9-13 depicts examples of
each motion.

Figure 9-13: Circular (left), spiral (middle), and elliptical (right) motion

Circles

Recall that the size of angle theta, stored in a variable named theta, governs
the position of the white dot. To make the dot move along the perimeter
of the circle in a counterclockwise direction, add code to increment theta
each time the draw function executes. Include a period variable to control
the increment size:

. . .
period = 2.1

def draw():
 global theta

 1 theta += TAU / (frameRate * period)
 . . .

At the default frameRate of 60 fps, with a period of 2.1 seconds, the
theta increment is equal to approximately 0.05 1. This means your angle
extends 0.05 of a radian with each new frame. Run the sketch to test this
out. The white dot should take about 2.1 seconds to complete a lap of the
circle perimeter.

The larger the value you add to theta, the faster the dot will move.
Subtracting from theta moves the dot in the opposite direction (clockwise).

Define a new function named circlePoint() for calculating points along
the perimeter of a circle. In your draw() function, substitute the x and y lines
with a circlePoint() function call:

def circlePoint(t, r):
 x = cos(t) * r
 y = sin(t) * r
 return [x, y]1

. . .
def draw():
 . . .

194 Chapter 9

 #y = sin(theta) * radius
 #x = cos(theta) * radius
 x, y2 = circlePoint(theta, radius)
 circle(x, y, 15)

The circlePoint() definition includes two parameters: t for theta (the
angle) and r for the radius. Because the function must calculate the x- and
y-coordinates for some point along a circle perimeter, it needs to return two
values. Use a list to return more than one value 1; you could also use a dic-
tionary (or a tuple).

When you call the function, Python can unpack the list values and
assign them to multiple variables. To invoke this unpacking behavior, pro-
vide a corresponding variable for each list item, separating each variable
with a comma. In this case, the function returns a list of two values, which
are assigned to variables x and y 2. Alternatively, you could assign the list
to a single variable using something like a = circlePoint(theta, radius), but
then you’d have to refer to x and y by using a[0] and a[1], respectively, which
isn’t as neat or descriptive.

Spirals

For an outward spiral motion (the center image in Figure 9-13), you can use
a radius value that increases over time. Here’s an example:

 . . .
 x, y = circlePoint(theta, frameCount)
 circle(x, y, 15)

Recall that frameCount is a system variable containing the number
of frames displayed since starting the sketch. The radius argument (the
frameCount) begins at 0 and grows larger as the animation progresses, caus-
ing the dot to move outward in a spiral motion. The dot gains speed as it
moves away from the center of the display window because each full rota-
tion maintains the same period, regardless of the circlePoint() radius. In
other words, the dot must cover a larger distance in the same time, so it
moves faster.

Ellipses

For an elliptical motion, you need two radii: one for the horizontal axis
and one for the vertical axis. These radii control the width and height of
the ellipse shape that guides the white dot’s trajectory (see the right image
in Figure 9-13). Define a new ellipsePoint() function with parameters for
an angle, horizontal radius, and vertical radius:

def ellipsePoint(t, hr, vr):
 x = cos(t) * hr
 y = sin(t) * vr
 return [x, y]
. . .

Functions and Periodic Motion 195

The function body is similar to that of the circlePoint() function. The
difference is that you multiply the x and y values by the hr (horizontal-radius)
and vr (vertical-radius) parameters, respectively.

The following ellipsePoint() function call makes the dot move in an
elliptical motion:

 . . .
 x, y = ellipsePoint(theta, radius*1.5, radius)
 circle(x, y, 15)

The ellipsePoint() function’s second argument (horizontal radius) is
larger than the third argument (vertical radius), so the resulting ellipse
is wider than it is tall.

Sine Waves
A sine wave is a geometric waveform that repeats itself periodically, like a
continuous chain of S-shaped curves connected end to end. This waveform
features in many mathematical and physical applications. For example, you
can use sine waves to model musical tones, radio waves, tides, and electrical
currents.

The shape of a sine wave is formed using a sin() function. Figure 9-14
depicts a yellow sine wave.

Wavelength

Amplitude

Figure 9-14: A sine wave

196 Chapter 9

The wavelength is the length of one complete cycle, measured as the
distance from crest to crest (or trough to trough). Wavelength is related to
period, but period is a reference to time (taken to complete a cycle), and
wavelength is a reference to distance.

The amplitude is the distance from the resting position (y = 0) to the
crest. A wave with an amplitude of 0 would lie flat along the x-axis. You can
determine that the yellow wave in Figure 9-14 has an amplitude of 200 by
comparing it to the radius of the pale blue circle.

To simulate sine wave motion, add the following code to your
periodic_motion sketch. This is the same as drawing a circle, but using
a fixed x-coordinate:

. . .
def draw():
 . . .
 amplitude = radius
 y = sin(theta) * amplitude
 circle(0, y, 15)

The wave’s amplitude is equal to the radius of the pale blue circle,
although you can test any value you like. The y-coordinate for the white dot
is calculated using sin(theta) multiplied by the amplitude; the x-coordinate
is always 0. The result is a white dot that moves directly up and down from
the origin.

Run the sketch and pay careful attention to how the dot is accelerating
and decelerating, as if the wave shown in Figure 9-14 were passing through
water with the dot floating on its surface. As the dot approaches a crest or
trough, it begins to slow down, and then it accelerates after it makes a turn;
it’s moving fastest as it crosses the y-axis.

You can use this motion to draw a whole wave of moving dots or to
simulate a weight hanging from a spring (Figure 9-15).

Figure 9-15: A wave of dots (left) and a weight hanging from a spring (right)

The code for each of these examples follows. You’ll need to add it to
the end of the draw() block of your periodic_motion sketch. You can add both
code listings if you want to draw the spring and weight over the wave of
dots, or instead replace one listing with the other.

Functions and Periodic Motion 197

Drawing a Sine Wave of Dots

Use a loop to draw a whole wave of dots. There are 51 dots in all, equally
spread along the x-axis. Each dot has a different y-coordinate based on a
theta value that’s incrementally larger than the dot preceding it:

 amplitude = radius

 for i in range(51):
 1 f = 0.125 * 2

 t = theta + i * f
 2 x = -400 + i * 16
 3 y = sin(t) * amplitude

 circle(x, y, 15)

The loop draws 51 dots, beginning at an x-coordinate of –400, at x inter-
vals of 16 pixels 2. The y value for each dot is calculated using a theta value
that’s 0.125 * 2 of a radian (or 0.25) 1 larger than the neighbor to its left.
You can change this multiplier to 1 for a single wave that spans the width of
the display window, leave it as 2 for two waves (as in Figure 9-15), make it 3 for
three waves, and so forth. I’ve named the variable f, for frequency, which refers
to the number of times an event repeats itself in a fixed time period.

Wavelength is inversely proportional to frequency, so as you increase
the frequency, you decrease the wavelength (and the waves begin to look
spikier). The wave motion travels from right to left, but the horizontal posi-
tions of the dots don’t change.

Simulating a Weight Hanging from a Spring

Use a loop to draw the spring, which is a shape composed of vertices. The
weight dangling on the end of the spring is a rectangle. Adjust the fill and
stroke to draw outlines instead of filled shapes:

 amplitude = radius
 y = sin(theta) * amplitude
 noFill()
 stroke('#FFFFFF')
 strokeJoin(ROUND)
 bends = 35

 beginShape()
 for i in range(bends):
 vx = 30 + 60 * (i % 2 - 1)
 vy = 300 - (300 - y) / (bends - 1) * i
 vertex(vx, vy)
 endShape()

 rect(-100, y-80, 200, 80)

The tight corners of the spring’s bends will produce sharp joints, which
result in elongated “elbows.” Processing clips these when they get too long
and sharp, but jumping between mitered (sharp) and beveled (clipped) joints

198 Chapter 9

makes the animation look bad. To prevent this, I’ve set the strokeJoin to
ROUND. A loop is nested within the beginShape() and endShape() functions for
plotting the zigzagging spring vertices.

Ordinarily, some energy is dissipated or lost in such a system, and the
amplitude should decay over time. You could simulate this by reducing
the (global) radius value every frame until it reaches 0, when the weight
will come to a rest.

Now that you’ve learned how to return values from functions and incor-
porate trigonometry for elliptical and wave animation, let’s look at a special
curve created by combining waves.

Lissajous Curves
In this section, you’ll create a function for drawing Lissajous curves con-
trolled by arguments. A Lissajous curve—named after French physicist
Jules Antoine Lissajous—is formed by combining x- and y-coordinates
from two waves.

You can create these curves mechanically by setting up a Y-shaped
pendulum with a sand-filled cup hanging at the end of it. As the cup
swings about, sand drains through a hole at the bottom, drawing a curve.
Figure 9-16 shows an example of this device (left) and an image of a curve
drawn with sand (right). The point labeled r indicates where the pendulum
merges into a single string. The ratio of the upper to lower section of the
pendulum, and the angle and power of your initial swing, determine the
shape of the resulting curve.

Figure 9-16: Blackburn’s Y-shaped pendulum, from Sound by John Tyndall, 1879 (left),
and a Lissajous curve drawn with sand (right)

Functions and Periodic Motion 199

To begin, suppose that you have two circles of different sizes
(Figure 9-17). Circle A has a radius labeled A that is 200 units, and
Circle B has a radius labeled B that is 100 units.

A

B
y

x

Circle A

Circle B

θ

θ

Result

Figure 9-17: Combining x and y values from different
circles to form an ellipse

The Result ellipse (lower left) is formed by using x-coordinates from
Circle A and y-coordinates from Circle B. The ellipse turns out as wide
as Circle A and as tall as Circle B. The math for this is relatively simple
and uses what you already know about drawing ellipses with trigonometric
functions.

To find the x-y coordinate for any point along the perimeter of the
Result ellipse, you use the following:

x = cos(θ) × A

y = sin(θ) × B

Create a new sketch, save it as lissajous_curves, and add the following
code to recreate the ellipse from Figure 9-17:

def lissajousPoint(t, A, B):
 x = cos(t) * A
 y = sin(t) * B
 return [x, y]

def setup():
 size(800, 600)
 frameRate(30)
 background('#004477')
 fill('#FFFFFF')

200 Chapter 9

 noStroke()

theta = 0
period = 10

def draw():
 global theta
 theta += TAU / (frameRate * period)
 # flip the y-axis and reposition the origin
 scale(1, -1)
 translate(width/2, height/2-height)

 x, y = lissajousPoint(theta, 200, 100)
 circle(x, y, 15)

The drawing space is set up like your preceding sketch. You have an
inverted y-axis, and the origin is shifted to the center of the display window.
The theta value increments by approximately 0.01 each frame, which serves
as the first argument in the lissajousPoint() function call. Right now, this
function performs exactly the same operation as the ellipsePoint() function
in your period_motion sketch—the only difference is the naming of the func-
tion and its variables.

Notice that there’s no background() call within the draw() section of the
code, so Processing won’t clear each frame. Because of this, the moving
white dot forms a continuous line. Run the sketch; it should draw a com-
plete ellipse in a counterclockwise motion (Figure 9-18).

Figure 9-18: Drawing an ellipse by
using the ellipsePoint() function

When theta reaches τ radians (~6.28), the oval is complete, and
Processing continues to draw over the existing line. Even though the ani-
mation might appear complete, the dot is still moving along the perimeter.

The next step is to modify the lissajousPoint() function so that it can
draw Lissajous curves (as opposed to ellipses). But first, consider what’s hap-
pening here in terms of waves. Study Figure 9-19, which represents each
circle as a wave, and take note of how the dots on each wave control the
position of the dot along the ellipse’s perimeter.

Functions and Periodic Motion 201

Circle A

Circle B

A

B

Result

x

y

Figure 9-19: Circle A and Circle B represented in wave form

Figure 9-19 presents the x-coordinates of Circle A as a cosine wave that
oscillates between –1 and 1, which is scaled by the circle radius (the wave
amplitude) of A. Similarly, the y-coordinates of Circle B are presented as a
sine wave with an amplitude of B.

In Figure 9-20, you can see how dots move along the waves to form the
ellipse shape.

Figure 9-20: Theta = 2 (left), theta = 3 (middle), theta = 4 (right)

Currently, the frequencies of both waves match. In other words, it takes
the same amount of time for each wave to complete a single cycle. The result
is an ellipse.

Lissajous curves occur when the wave frequencies differ. In Figure 9-21,
the frequency of the Circle B wave is twice that of the Circle A wave. The dot
following the Circle B wave must complete two cycles in the same amount of
time that the Circle A dot will complete one. The a and b values (lowercase)
represent a frequency of 1 and 2, respectively.

202 Chapter 9

a

b

Circle A

Circle BResult

Figure 9-21: The Circle B wave has a frequency
twice that of Circle A.

Frequencies a and b could be 3 and 6, 40 and 80, or 620 and 1,240. Any
pair of numbers with a ratio of 1:2 will produce a ∞ shape. This will be impor-
tant when you return to writing the code. You can think of this in another
way as well: in Figure 9-17, the Circle B dot must always complete two journeys
around the perimeter in the same amount of time that the Circle A dot com-
pletes one.

Figure 9-22 shows how the dots move along the waves to form the
Lissajous curve.

Adapt your lissajousPoint() definition, adding a parameter for frequency
a and frequency b. Use these two parameters as multipliers for theta (t) in
your x and y lines, respectively:

def lissajousPoint(t, A, B, a, b):
 x = cos(t * a) * A
 y = sin(t * b) * B
 return [x, y]
 . . .

Figure 9-22: From left to right: theta = 2; theta = 3; theta = 4

Functions and Periodic Motion 203

Now, add arguments for parameters a and b to your function call:

 x, y = lissajousPoint(theta, 200, 100, 1, 2)

Run the sketch and watch Processing draw a Lissajous curve
(Figure 9-23).

Figure 9-23: Drawing a Lissajous curve
by using the lissajousPoint() function

The a and b arguments determine the number of horizontal and vertical
“lobes” in the Lissajous curve. Recall that it’s the ratio that matters, so 1, 2 will
produce the same curve as 5, 10. However, the latter pair will complete draw-
ing the curve in less time, and even larger numbers will create discernible
spacing between the dots (that would otherwise form a solid line). Figure 9-24
shows the results of a few a, b arguments. Try experimenting with other
numbers.

a = 1, b = 3 a = 3, b = 1 a = 3, b = 2 a = 3, b = 5

Figure 9-24: Drawing Lissajous curves using different a, b arguments

You can create intriguing visual patterns by moving shapes, points,
and lines around with trigonometric functions. Simply experimenting, with
no predefined idea of what you want to accomplish, can lead to impressive
visual results. Think of this approach to coding like a musical jam session,
where instrumentalists improvise until they stumble upon something that
sounds good.

The next task uses Lissajous curves and a line() function for animated
patterns, which should provide some interesting ideas for you to riff off.

Creating Screensaver-Like Patterns with Lissajous Curves
In Chapter 6, you programmed a simple DVD screensaver; now let’s cre-
ate a more elaborate one using Lissajous curves. The original purpose

204 Chapter 9

of a screensaver was to “save” your screen. Older cathode-ray tube (CRT)
monitors were susceptible to burn-in: if you displayed the same graphic in
the same position for too long, it would leave a permanent “ghost” image.
Modern displays aren’t susceptible to burn-in, but many people still use
screensavers because they look cool.

You’ll use your lissajousPoint() function to create a pattern inspired by
popular screensaver designs. Figure 9-25 shows the final result with lines
and colors morphing smoothly as the pattern twists about the screen.

Figure 9-25: An animated pattern based on Lissajous curves

This movement relies on two Lissajous curves, using a line() function to
draw a straight line between the leading tip of each curve. Figure 9-26 illus-
trates how this works.

theta = 1 theta = 2

theta = 3 theta = 4

Figure 9-26: Drawing a straight line between two Lissajous curves

Functions and Periodic Motion 205

Of course, you don’t see the curves, just the straight line, but it’s two
lissajousPoint() calls that are calculating the x-y coordinate for your line()
function. When theta reaches τ radians, the Lissajous curves are complete
and the motion repeats itself.

Add the following code to the end of the draw() function in your
lissajous_curves sketch:

 . . .
 1 for i in range(10):

 # curves
 t = theta + i / 15.0
 x1, y1 = lissajousPoint(t, 300, 150, 3, 1)
 x2, y2 = lissajousPoint(t, 250, 220, 1, 3)
 # background color

 2 fill(0x55000000)
 noStroke()
 rect(-width/2, -height/2, width, height)
 # line
 colorMode(HSB, 360, 100, 100)

 3 h = (frameCount + i * 15) % 360
 strokeWeight(7)
 stroke(h, 100, 100)
 line(x1, y1, x2, y2)

The loop will draw 10 lines 1 in all—one solid line leading a trail of
nine lines that gradually fade behind it. You use two lissajousPoint() func-
tions, one for each curve (that together define the x-y coordinate for each
end of the line). With each iteration, Processing draws a semiopaque black
square that spans the entire display window, dimming the lines of previ-
ous iterations.

To define a semiopaque color, you use Processing’s 0x notation 2.
The hexadecimal value is expressed with a leading 0x, without quotes,
using eight hexadecimal digits. The first two digits define the alpha (trans-
parency) component; for example, 11 is highly transparent, and EE highly
opaque. This example uses 55, somewhere in between, but nearer the
transparent side. The remaining six characters are your standard RGB
hexadecimal mixture, in this case black (000000). For the stroke color, set
the colorMode() to HSB (see “Color Modes” on page 14). For the first 360
frames, you can use frameCount to shift the hue value a single degree per
frame. However, frameCount will soon exceed 360, so you use a modulo
operation to “wrap around” back to 0 3.

Run the sketch to observe the output.

N O T E Drawing so many semiopaque black rectangles over the display window each frame is
a demanding operation for Processing to perform. If your computer is struggling, try
setting a lower frame rate, or reducing the for loop iterations from 10 to a more man-
ageable value.

206 Chapter 9

Try different lissajousPoint() arguments, or add new curves and lines;
maybe even try to connect three lines between three curves for morphing
triangles. Keep experimenting to see what you come up with.

Summary
In this chapter, you’ve learned how to define your own functions, which
reduce repetition and help you structure more modular programs.
Remember that well-named functions will make your code easier to read
and understand, for yourself and anybody else dealing with it.

You can add parameters to any function to make it more versatile, and
the function call will include different arguments that correspond to those
parameters to control how it works. You can call a function by using posi-
tional and/or keyword arguments. For optional arguments, you can define
parameters that include default values for Python to fall back on.

You can also define functions that return values, which means you can
use a function to process data and hand back a result to the function caller.
If a function returns a value, you can assign it to a variable. Additionally,
you can wrap a function around an argument to process and return a value
for another function.

This chapter also introduced trigonometry concepts and how to use
them to simulate periodic motion. You learned about built-in Processing
trig functions, like sin() and cos(), which you used to draw circles, spirals,
ellipses, sine waves, and Lissajous curves. Experiment with trigonometry
to generate compelling patterns and movements like those you see in
some screensavers.

In the next chapter, you’ll write classes, which you will use to create
objects. These techniques enable you to structure your code more efficiently,
especially for larger, more complex programs, by modeling your programs
around real-world objects. You’ll also learn about vectors for programming
motion.

Object-oriented programming (OOP) deals with
data structures known as objects. You create

new objects from a class, and you can think of
a class as an object template, composed of a col-

lection of related functions and variables. You define a
class for each category of objects you want to work with,
and each new object will automatically adopt the fea-
tures you define in its class. OOP combines everything
you’ve learned so far, including variables, conditional statements, lists, dic-
tionaries, and functions. OOP adds a remarkably effective way to organize
your programs by modeling real-world objects.

You can use classes to model tangible objects, like buildings, people,
cats, and cars. Or, you can use them to model more abstract things, like bank
accounts, personalities, and physical forces. Although a class will define the
general features of a category of objects, you can assign unique attributes

10
O B J E C T - O R I E N T E D

P R O G R A M M I N G A N D P V E C T O R

208 Chapter 10

to differentiate each object you create. In this chapter, you’ll apply OOP
techniques to program an amoeba simulation. You’ll learn how to define an
amoeba class, and how to “spawn” varied amoeba from it.

You’ll program amoeba movement by simulating physical forces. For
this, you’ll use a built-in Processing class named PVector. The PVector class is
an implementation of Euclidean vectors that includes a suite of methods for
performing mathematical operations, which you’ll use to calculate the posi-
tion and movement of each amoeba.

To better manage your code, you’ll learn how to split your program into
multiple files. You can then switch between the files that make up your sketch
by using tabs in the Processing editor.

Working with Classes
A class is like a blueprint for an object. As an example, consider a Car class
that might specify, by default, that all cars have four wheels, a windshield,
and so on. Certain features, like the paint color, can vary among individual
cars, so when you create a new car object by using the Car class, you get to
select a color. Such features are called attributes. In Python, attributes are
variables that belong to a class. You can decide which attributes have pre-
defined values (the four wheels and windshield) and which are assigned
when you create a new car (the paint color).

In this way, you can create multiple cars, each a different color, using a
single class. Figure 10-1 illustrates this concept. The Car class includes attri-
butes to describe the paint color, engine type, and model of each car.

Car class

color

engine

model

Car objects

red
electric
sedan

blue
gasoline
sedan

orange
diesel
pickup

Figure 10-1: The Car class serves as a blueprint for car objects.

Drivers control a vehicle by steering, accelerating, and braking. So in
addition to attributes, your Car class can include definitions for performing
those actions, referred to as methods. In Python, methods are functions that
belong to a class that define the operations or activities it can perform.

Object-Oriented Programming and PVector 209

INHER ITA NCE

To get even more out of OOP, you can explore inheritance in Python. This allows
one class to derive its attributes and methods from another class. For example,
you could create a Vehicle class with accelerate, brake, and steer methods.
Based on the Vehicle class, you can create Car and Motorcycle classes, with
additional and unique attributes of their own (a steering wheel for the car, han-
dlebars for the motorbike, and so on). I do not cover inheritance in this book.

Now, let’s define an Amoeba class that includes a set of attributes and
methods for controlling the appearance and behavior of amoeba objects.
You’ll use that class to create many amoebas. Figure 10-2 depicts the final
result of the amoeba simulation that you’re working toward.

Figure 10-2: A screenshot of the complete amoeba simulation

The amoebas will wobble and distort as they move about the display
window. This is not a scientifically correct representation of amoebas, but it
should look pretty cool. As an extra challenge, you’ll add collision-detection
code to prevent them from passing over or through one another. You’ll begin
with a basic Amoeba class definition, and then add attributes and methods as
you progress through the task.

Defining a New Class
In Python, you define a class by using the class keyword. You may name
a class whatever you like, but as with variable and function names, you’re
limited to alphanumeric and underscore characters. Because you cannot
use space characters, the recommended naming convention for classes is
UpperCamelCase, in which the first letter of each word begins with a capital
letter, starting with the first word.

210 Chapter 10

To begin, your Amoeba class won’t do much else than print a line to the
console. Start a new sketch and save it as microscopic. Define a new Amoeba class:

class Amoeba(object):

 def __init__(self):
 print('amoeba initialized')

The class keyword defines a new class. Here the class name is Amoeba,
and it’s followed by object in parentheses, and a colon.

If you run the sketch, nothing interesting should happen, and the
console will be empty.

N O T E Python 2 has “old-style” and “new-style” classes. You’ll want to use the new style,
which is why I include object in parentheses. This isn’t required in Python 3, because
its classes are always new style. That said, it won’t make a difference if you happen to
include the object part in your Python 3 programs.

Functions that you define within the body of a class are referred to as meth-
ods. The Amoeba class includes a definition for a special method named __init__
(with two underscores at either end). This method is one of a selection of magic
methods that start and end with two underscores that you won’t invoke directly.
I’ll get into more detail about the __init__() method (and the self parameter)
soon. For now, all you need to know is that Python runs the __init__() method
automatically for each new amoeba you create. You use this method to set up
your attributes and execute code at the time of object creation.

Creating an Instance from a Class
To instantiate an amoeba, you call the Amoeba class by name and assign it to a
variable—as you would a function that returns a value. Instantiate is a fancy
way of saying create a new instance, and an instance is synonymous with object.

N O T E You’ll often hear the terms object and instance used interchangeably. Correctly
speaking, you create amoeba objects from the Amoeba class. A given amoeba is an
instance of the Amoeba class. Instance emphasizes the distinct identity of a particu-
lar amoeba.

Add a line to create a new instance from your Amoeba class and assign it
to a variable named a1:

class Amoeba(object):

 def __init__(self):
 print('amoeba initialized')

a1 = Amoeba()

When you run the sketch, Python creates a new Amoeba() instance. This
will automatically invoke the __init__() method. You can use the __init__()

Object-Oriented Programming and PVector 211

method to define attributes and assign values to them, which you’ll do
shortly. This method can also include other instructions to initialize the
amoeba, as in this case, a print() function. When you run the sketch, the
console should display a single amoeba initialized message.

Adding Attributes to a Class
You can think of attributes as variables that belong to an object. And just
like a variable, an attribute can contain any data you like, including num-
bers, strings, lists, dictionaries, and even other objects. For example, a Car
class might have a string attribute for the model name and an integer attri-
bute for top speed.

In your Amoeba class, you’ll add three attributes to hold numbers for an
x-coordinate, y-coordinate, and diameter; you’ll assign values to those attri-
butes when you instantiate the new amoeba. The syntax resembles that used
to pass arguments to a function: the parentheses of the __init__() method
contain your list of corresponding parameters.

Make the following changes to your code to accommodate an x, y, and
diameter value for each new amoeba:

class Amoeba(object):

 def __init__(self, x, y, diameter):
 print('amoeba initialized')

a1 = Amoeba(400, 200, 100)

The __init__() method already includes a parameter, self; this is
required, and it’s always the first parameter. The self parameter provides
access to instance-specific values, like an x value of 400 for amoeba a1 (but
more on how that works shortly). The x, y, and diameter are added as the
second, third, and fourth parameters. I’ve added corresponding argu-
ments to the a1 line. Notice, however, that I provide only three arguments
and nothing for the self parameter. Figure 10-3 depicts how these posi-
tional arguments match up, starting from the second parameter in the
__init__() method.

def __init__(self, x, y, diameter):

a1 = Amoeba(400, 200, 100)

Figure 10-3: Don’t provide an argument for the self parameter.

You can also use keyword arguments (and specify default values for
parameters), but I’ll stick to positional arguments throughout this task.

N O T E If you pass the wrong number of arguments to __init__() or any other class method,
Python will display an error message. But this error message can confuse many begin-
ners. As an example, you can try creating a new Amoeba class with four arguments
by using Amoeba(400, 200, 100, 777). Run the sketch, and the Python error message

212 Chapter 10

will report that the __init__() method takes exactly four arguments, claiming that
you’ve given five. This is because the self parameter makes it four arguments, but
Python passes that value implicitly, leaving just three arguments for you to provide.
Keep this in mind when you’re debugging OOP code.

When you pass values to your __init__() method, it won’t automatically
store them for you. For this, you need attributes, which are like variables for
objects. Assign the x, y, and diameter parameters to new attributes. Each attri-
bute begins with a prefix of self, followed by a dot, then the attribute name:

class Amoeba(object):

 def __init__(self, x, y, diameter):
 print('amoeba initialized')
 self.x = x
 self.y = y
 self.d = diameter

a1 = Amoeba(400, 200, 100)

Notice that you assign diameter to self.d. Your attribute names need not
match your parameter names.

At this point, I can explain more about the self parameter. I’ve men-
tioned that self is an instance-specific reference. In other words, the self.d
value of 100 belongs to amoeba a1. Each amoeba instance will possess its own
set of self.x, self.y, and self.d values. For example, I might add another
amoeba, a3, with different values:

a3 = Amoeba(600, 250, 200)

This will come in handy later when you add multiple amoebas to the
simulation. Figure 10-4 provides a conceptual diagram of your Amoeba class
and three possible instances.

Next, you’ll learn how to access the x, y, and d values for amoeba a1 via
the a1 instance. You’ll use those values to draw the amoeba in the display win-
dow, resembling the one depicted in the upper right corner of Figure 10-4.

x: 400
y: 200
d: 100

x: 400
y: 200
d: 300

x: 600
y: 250
d: 200

x

y

diameter

Amoeba class

Figure 10-4: Your Amoeba class and three instances

Object-Oriented Programming and PVector 213

Accessing Attributes

To access attributes, you use dot notation. For the a1 instance, you can
access the x, y, and d attributes as a1.x, a1.y, and a1.d, respectively. This
is the instance name (a1) followed by a dot, followed by the name of the
attribute you want to access.

To get started, add this code to the end of your sketch, which draws a
circle to represent amoeba a1:

. . .
def setup():
 size(800, 400)
 frameRate(120)

def draw():
 background('#004477')
 # cell membrane
 fill(0x880099FF)
 stroke('#FFFFFF')
 strokeWeight(3)
 circle(a1.x, a1.y, a1.d)

The display window is now 800 pixels wide by 400 pixels high. The
high frame rate of 120 will help smooth the wobble animation you’ll add to
your amoeba later. A cell membrane separates an amoeba’s interior from its
outside environment, and here, I’ve given this a white stroke. The fill is a
semi-opaque pale blue. For the x-coordinate (first argument) in the circle()
function, Python checks the a1 instance for the attribute self.x—in this case,
it’s equal to 400; the y-coordinate argument is equal to 200, and the diameter
argument is equal to 100. The result (Figure 10-5) is a circle with a diameter
of 100 pixels positioned in the center of the display window.

Figure 10-5: A circle (rudimentary amoeba)
with a diameter of 100 pixels

So far, you’ve learned how to add arguments to your Amoeba class, which
you assign to attributes when you instantiate an amoeba. In addition to those,
your class can include attributes with predefined values.

Adding an Attribute with a Default Value

Think back to the car analogy. Every car rolls off the production line with
an empty gas tank. The manufacturer may fill it before it’s sold, but the
tank always starts empty. For this, you decide to add an attribute to the Car

214 Chapter 10

class—let’s call it self.fuel. It has a predefined value of 0 for each new car
object, but it’ll fluctuate over the lifetime of the vehicle. It’s redundant to
specify by way of an argument that this should start at 0; instead, the Car
class should automatically initialize the fuel attribute for you, setting it to
0 by default.

Let’s return to the amoeba task. Every amoeba will include a nucleus with
a predefined fill of red. To program this, assign a hexadecimal value (#FF0000)
to an attribute named nucleus within the body of your __init__() method.
There’s no need to add another parameter to your __init__() definition,
because you don’t require the additional argument to specify the red fill:

 . . .
 self.x = x
 self.y = y
 self.d = diameter
 self.nucleus = '#FF0000'
. . .

Now, every amoeba you create has a nucleus attribute assigned a value
of #FF0000.

Insert three new lines in your draw() function to render the nucleus
beneath the cell membrane:

. . .
def draw():
 background('#004477')
 # nucleus
 fill(a1.nucleus)
 noStroke()
 circle(a1.x, a1.y, a1.d/2.5)
 # cell membrane
 . . .

The new lines set the fill and stroke, and then draw the nucleus by using
a circle() function with a diameter that’s 2.5 times smaller (a1.d/2.5) than
that of the cell membrane, placing it in the center of the amoeba. Run the
sketch to confirm that you see a mauve nucleus; it is technically red, but you
see it through the pale blue, semi-opaque membrane.

You don’t set the nucleus fill when you instantiate the amoeba, but that
doesn’t mean you’re stuck with a red nucleus. You can modify the attribute
values after you’ve created an amoeba.

Modifying an Attribute Value

Many attributes hold values that change as your program runs. To return
to the car analogy, consider the fuel attribute mentioned previously with a
value that’s continually shifting as the gas tank fluctuates between full and
empty. You can modify the value of any attribute directly via the instance by
using the same dot syntax for accessing values.

Object-Oriented Programming and PVector 215

Insert a line to change the nucleus fill for amoeba instance a1:

 . . .
 # nucleus
 a1.nucleus = '#00FF00'
 fill(a1.nucleus)
 . . .

This sets the nucleus attribute to green, overwriting the default value
of red. Run the sketch to confirm that you see a green nucleus showing
through the semi-opaque membrane.

You can also modify an attribute by using a method, which I cover in
“Adding Methods to a Class” on page 216.

Using a Dictionary for an Attribute

Recall that attributes can contain anything you like—numbers, strings,
lists, dictionaries, objects, and so on. You’ll use a dictionary attribute that
holds a mix of string (hexadecimal) and floating-point values to group
the nucleus properties.

Change your nucleus attribute to a dictionary that holds key-value
pairs for a nucleus fill, x-coordinate, y-coordinate, and diameter. To vary
the appearance of each amoeba, randomize those values:

class Amoeba(object):

 def __init__(self, x, y, diameter):
 print('amoeba initialized')
 self.x = x
 self.y = y
 self.d = diameter
 self.nucleus = {
 'fill': ['#FF0000', '#FF9900', '#FFFF00',
 '#00FF00', '#0099FF'][int(random(5))],
 'x': self.d * random(-0.15, 0.15),
 'y': self.d * random(-0.15, 0.15),
 'd': self.d / random(2.5, 4)
 }
. . .

The fill key is paired with a hexadecimal value arbitrarily selected from
a list of five colors. The nucleus color of each new amoeba is now chosen
at random (although you may explicitly overwrite it afterward). The x and
y keys are assigned randomized values proportional to the diameter of the
cell membrane; you’ll use those to position the nucleus somewhere within
the boundary of the cell membrane, but not necessarily in the center. The
diameter of the nucleus (d) is also proportional to the cell membrane and
randomly varies for each instance.

Update your draw() code to work with these changes:

. . .
def draw():

216 Chapter 10

 background('#004477')
 # nucleus
 fill(a1.nucleus['fill'])
 noStroke()
 circle(
 a1.x + a1.nucleus['x'],
 a1.y + a1.nucleus['y'],
 a1.nucleus['d']
)
 # cell membrane
 . . .

The fill() and circle() arguments reference the relevant dictionary keys
to style and position the nucleus.

Each time you run the sketch, Processing will generate a unique amoeba.
Figure 10-6 depicts four results from four runs. Of course, it’s possible (but
unlikely) that Processing will produce the same or a similar selection of ran-
domized values, and consecutive results might appear identical.

Figure 10-6: Each amoeba is generated using randomized nucleus values.

Now that you’ve set up the attributes to control the visual appearance of
your amoeba, the next step is to add methods to animate it.

Adding Methods to a Class
Functions that you define within the body of a class are referred to as methods.
To return to the car analogy, drivers can control a vehicle by using methods,
such as steering, accelerating, and braking. You could also include a method
for refueling. Methods typically perform operations by using an object’s attri-
butes. For example, an accelerate() and refuel() method will subtract from
and add to a fuel attribute.

Object-Oriented Programming and PVector 217

N O T E Another analogy for describing object-oriented programming uses parts of speech. It goes
like this: if objects (cars) are nouns, and attributes (like paint color) are adjectives, then
methods (steer, accelerate, brake, and refuel) are verbs.

You can name methods whatever you like, as long as you apply the same
naming rules and conventions for functions. In other words, use only alpha-
numeric and underscore characters, camelCase or underscores instead of
spaces, and so forth.

You’ll create a new method to draw your amoeba for each frame.
Currently, several lines in the draw() section of your code handle this oper-
ation. Move the nucleus and cell membrane code from the draw() function
into the body of a new display() method, ensuring that your indentation is
correct. Replace every a1 prefix with self in the display() method:

class Amoeba(object):
 . . .
 def display(self1):
 # nucleus
 fill(self.nucleus['fill'])
 noStroke()
 circle(
 self.x + self.nucleus['x'],
 self.y + self.nucleus['y'],
 self.nucleus['d']
)
 # cell membrane
 fill(0x880099FF)
 stroke('#FFFFFF')
 strokeWeight(3)
 circle(self.x, self.y, self.d)
. . .
def draw():
 background('#004477')

The self parameter in the definition 1 provides the body of your
display() method with access to your attributes, such as self.nucleus and
self.x. The display() method accepts zero arguments, so the definition
includes no further parameters.

Calling a Method

Once you’ve defined a method, you can use the same dot notation as for attri-
butes to call the method and execute the code in that method’s body—that
is, the instance name followed by the method, separated by a dot. Of course,
methods, like functions, include parentheses, and sometimes arguments too.

Add an a1.display() call to your draw() function to render amoeba a1:

. . .
def draw():
 background('#004477')
 a1.display()

218 Chapter 10

You have no parameters (other than self) in your display() definition,
so the method call takes no arguments. Run the sketch to confirm that it
produces the same result as before (Figure 10-6).

N O T E Just like well-named functions, well-named methods make your code easier to read
and understand, for yourself and anybody else dealing with it.

To get your amoeba wobbling, you’ll define a new method that you
call from within the Amoeba class. Additionally, this method will accept a
few arguments.

Creating a Wobbly Amoeba

Amoebas distort and ripple, like balloons full of water. To replicate this not-
quite-circular shape, you’ll replace the cell membrane’s circle() function
with a shape formed using bezierVertex() functions. This is the same code
that you used to draw the Chinese coin in Chapter 2, except here the control
points are a bit wonky.

Figure 10-7 depicts the amoeba outline with the vertex and control
points visualized. The shape isn’t perfectly round, but it is smooth with no
discernible angles. For a smooth curve, the vertex and its two control points
must form a straight line.

For a smooth curve, the vertex
and its control points must form
a straight line

Figure 10-7: Drawing the amoeba with Bézier curves

To animate the wobble effect, you need to tweak the position of the
control points for each frame. To avoid discernible angles and maintain the
rounded appearance of the curves, you’ll move your control points along
circular paths. Figure 10-8 depicts (from left to right) two control points
completing one rotation; each control point ends at the position it started,
ready to repeat the motion seamlessly.

Notice that the opposite control point is always 180 degrees ahead of
or behind its counterpart. As the control points near the vertex, the curve

Object-Oriented Programming and PVector 219

grows tighter but remains rounded. The circular trajectories maintain
the (virtual) straight line that runs from one control point to the other,
through the vertex.

Figure 10-8: Moving the control-point coordinates along circular paths

To program this effect, add a circlePoint() method for calculating
points along the perimeter of each circular path (this method is an adap-
tion of the circlePoint() function you defined in Chapter 9):

class Amoeba(object):
 . . .
 def circlePoint(self, t, r):
 x = cos(t) * r
 y = sin(t) * r
 return [x, y]
 . . .

The circlePoint() method accepts two arguments, a theta (t) value
and radius (r). The rules of function scope apply to methods too, so the
variables x and y are local to the circlePoint() method.

You can call methods via the class instance—the circlePoint() method
using a1.circlePoint(), for example. Of course, you’ll need to include the
two arguments (for t and r). You can also call a method from within its
class by using a self prefix—for example, self.circlePoint(). In this way,
you can call the circlePoint() method from within the display() function,
using the returned values to draw wobbly amoeba.

Add a circlePoint() method call to the display() block, and replace the
circle() function (for the cell membrane) with code for drawing a shape
composed of bezierVertex() functions:

 . . .
 def display(self):
 . . .
 # cell membrane
 fill(0x880099FF)
 stroke('#FFFFFF')
 strokeWeight(3)
 r = self.d / 2.0
 cpl = r * 0.55
 cpx, cpy = self.circlePoint(frameCount/(r/2), r/8)

220 Chapter 10

 xp, xm = self.x+cpx, self.x-cpx
 yp, ym = self.y+cpy, self.y-cpy
 beginShape()
 vertex(
 self.x, self.y-r # top vertex
)
 bezierVertex(
 xp+cpl, yp-r, xm+r, ym-cpl,
 self.x+r, self.y # right vertex
)
 bezierVertex(
 xp+r, yp+cpl, xm+cpl, ym+r,
 self.x, self.y+r # bottom vertex
)
 bezierVertex(
 xp-cpl, yp+r, xm-r, ym+cpl,
 self.x-r, self.y # left vertex
)
 bezierVertex(
 xp-r, yp-cpl, xm-cpl, ym-r,
 self.x, self.y-r # (back to) top vertex
)
 endShape()
. . .

The r variable represents the radius of the amoeba. The cpl value is
the distance from each control point to its vertex; recall that this is roughly
55 percent of the circle radius for perfectly round circles (see Chapter 2,
Figure 2-22). The circlePoint() method calculates the coordinates for vari-
ables cpx and cpy by using a theta value based on the advancing frameCount;
the frameCount is divided by half the amoeba radius, so that larger amoeba
wobble more slowly than smaller ones. The second circlePoint() argument,
for the radius of the circular path, is also proportional to the amoeba radius.
The rest of the code uses the cpl, cpx, and cpy variables to plot the vertices and
curves that compose the wobbly amoeba.

Run the sketch to confirm that you have a wobbling amoeba.

Modifying an Attribute by Using a Method

You can use a method to modify one or many attributes as an alternative to
changing values directly via dot notation. Here’s a brief example; there’s no
need to add this code to your sketch.

When you instantiate your a1 amoeba, your __init__() method randomly
selects a nucleus fill from a predefined list of five colors. You can change this
by assigning another value via a1.nucleus['fill']. Alternatively, you might
define a new method to do this for you:

class Amoeba(object):
 . . .
 def styleNucleus(self, fill):
 self.nucleus['fill'] = fill
 . . .

Object-Oriented Programming and PVector 221

The styleNulceus() definition includes a parameter for a fill value. After
you’ve instantiated amoeba a1, you can set the nucleus fill to black by using
a1.styleNucleus('#000000') instead of a1.nucleus['fill'] = '#000000'. This might
not seem very useful, but consider that you could add additional arguments
for the nucleus dictionary’s x, y, and d values to change them all at once. You
might even add additional logic, like an if statement to check the size of a
diameter value before applying it:

 def styleNucleus(self, fill, diameter):
 self.nucleus['fill'] = fill

 if diameter > self.d/4 and diameter < self.d/2.5:
 self.nucleus['d'] = diameter

The styleNucleus() definition now includes an additional parameter for
the nucleus diameter. But the new diameter value applies only if it’s appropri-
ately sized. The if statement will ensure that the method ignores any value
too small or too large so that you don’t end up with a tiny nucleus or an over-
size one that extends beyond the cell membrane.

Before moving on, here’s a brief recap of where you’re at in your amoeba
simulation. You’ve defined an Amoeba class, complete with attributes to vary
the appearance of each instance. You created a single amoeba, a1, but you’ll
add other instances soon. You defined an __init__() method to initialize the
attributes. Additionally, you defined a display() method to draw the amoeba
that calls another method, circlePoint(), to make the cell membrane wobble.
Later, you’ll make your amoebas move about the display window. First,
though, you’ll split your microscopic sketch into two files.

A BS T R AC T ION

This is a good point to discuss abstraction, the process of reducing something
complex to a simpler form that provides what you really need to accomplish a
task. For example, if you’re designing a road map, you wouldn’t include every
real-world detail—just the drivable roads, bodies of water, and labels for major
landmarks. In this way, a road map presents an abstracted version of a satellite
image to assist navigation better.

To use another car analogy, you don’t need to be a mechanic in order to
drive. As long as you can operate a gear lever, steering wheel, and pedals, you
can drive a car (never mind how well). Those instruments present an abstraction
of your car’s inner workings, providing an intuitive interface to control the trans-
mission, steering system, and engine.

In Python, you use abstraction on many levels. For example, you call the
print() function to display things in the console. The details of how Python
makes this happen are irrelevant to you; this function represents a complex set
of instructions abstracted down to a single print() call.

(continued)

222 Chapter 10

In object-oriented programming, you design abstractions, deciding
which details to hide and which to expose by way of attributes and methods.
For example, in Python, a car object is an abstract representation of a real-
world car using code. It’s simplified, because you don’t need to model each
bolt, gear, and electrical wire to animate a vehicle moving about the screen.
Moreover, the Car class will reduce a complex set of Python instructions—for
appearance, movement, and so on—to a selection of intuitive methods, like
shiftGear(), steer(), and accelerate().

As a programmer, you must decide how you apply abstraction in your
programs. This includes how you model objects in Python. The best approach
is not always clear, and often there’s no right or wrong way. Keep in mind,
though, that good abstraction should make your code more clean, clear,
modular, and maintainable.

Splitting Your Python Code into Multiple Files
In this book, you’ve worked through a series of relatively small program-
ming tasks. Handling each sketch in a single file has been manageable
enough, but your line counts will increase as you begin to work on more
complex programs. You might squeeze a Tetris game into several hundred
lines of Processing code, but the open source Minecraft-like game Minetest
is almost 600,000 lines of (mostly) C++ code, and Windows XP comprises
about 45 million lines of source code!

Programming languages have various mechanisms for structuring
projects across multiple files. In Python, you can import code from files.
Each Python file you import is referred to as a module. In this section,
you’ll create a separate amoeba module for your Amoeba class.

You’ll need to consider the most sensible ways to divide any program
into modules. For example, you might group a collection of related func-
tions into a single module. Sometimes it’s useful to add variables to a dedi-
cated configuration module, providing a single location to set program-wide
values. Grouping one or many related classes in a module is another great
way to organize your code.

In the Processing editor, each tab represents a module. Create a new
tab/module by using the arrow to the right of your microscopic tab, high-
lighted in magenta in Figure 10-9. From the menu that appears, select
New Tab; name the new file amoeba.

microscopic

Python

Figure 10-9: Click the arrow tab, highlighted in magenta, for various tab operations.

Object-Oriented Programming and PVector 223

This new file/module is created in the microscopic folder, alongside your
main sketch file. Processing adds .py to the amoeba filename, the standard
file extension for Python modules. The amoeba.py module should now
appear as a tab alongside the microscopic one.

You can switch between your main sketch and modules by using the tabs.
Switch to the microscopic tab and select all the code for your Amoeba class, cut it,
and then switch to the amoeba.py tab and paste the code there (Figure 10-10).

microscopic

class Amoeba(object):

 def __init__(self, x, y, diameter):
 print('amoeba initialized')
 self.x = x
 self.y = y

1
2
3
4
5
6

Python

amoeba.py

Figure 10-10: The amoeba.py tab contains the code for your Amoeba class.

Now switch back to the microscopic tab. What’s left is everything from
a1 = Amoeba(400, 200, 100) down.

To import modules, use the import keyword. Your import line must pre-
cede any code that instantiates an amoeba. Typically, import lines go at the
top of files to avoid getting this sequence wrong. Here’s the complete code
for your microscopic tab:

from amoeba import Amoeba

a1 = Amoeba(400, 200, 100)

def setup():
 size(800, 400)
 frameRate(120)

def draw():
 background('#004477')
 a1.display()

The from keyword instructs Python to open the amoeba module. The
module takes its name from the filename, amoeba.py, but omits the .py exten-
sion. This is followed by import to specify the class(es) you want to import—in
this case, Amoeba. This syntax allows you to be selective about which classes
you import from modules that contain several class definitions. You can now
use the Amoeba class as if it were defined in the microscopic tab.

Run the sketch. It should run as usual and display a single wobbling
amoeba in the center of the display window.

224 Chapter 10

You can use modules to share code among projects. For example, you
can copy your amoeba module into any Processing project folder. Then, you
simply import it to start creating amoebas. You can also store a collection of
modules in a folder-type structure known as a library or package.

This modular system makes programming more efficient. In addition
to reducing the line count of the main sketch, you conceal the inner work-
ings of each module, leaving the programmer to focus on higher-level logic.
For example, if you document your amoeba module, providing guidelines to
instantiate amoebas and work the methods, any programmer can import
and use it—creating amoebas without ever viewing the amoeba.py code.
Additionally, modules make it easier for another programmer to browse
your project code and understand your program because it’s divided into
named files.

Your a1 amoeba remains in a fixed position, wobbling as time passes.
The next step is to get it moving about the display window.

Programming Movement with Vectors
You’ll program your amoeba movement by using vectors. These are not the
vectors for scalable graphics, though, but Euclidean vectors. A Euclidean vec-
tor (also known as a geometric or spatial vector) represents a quantity that has
both magnitude and direction. You’ll use vectors to model forces that propel
your amoeba.

In Figure 10-11, the amoeba moves from position A to B; it’s propelled a
total distance of 4 units. This distance represents a magnitude; a magnitude
describes how powerful a force is. A force with a greater magnitude might
thrust the same amoeba 20 units. Here’s the thing, though—the magnitude
gives no indication of the direction in which the force is applied; you just
know, from what you can glean visually, that the movement is 4 units to the
right.

BA

Figure 10-11: A magnitude of 4 units

A magnitude is a scalar value. It’s a single quantity you can describe by
using a single value, like a floating-point number or integer. For instance,
the numbers 4, 1.5, 42, and one million are all scalar.

A vector is described by multiple scalars. In other words, it can hold
multiple floating-point or integer values. Figure 10-12 presents a vector
labeled v as a line with an arrowhead at one end. The length of v is its
magnitude; the slope and arrowhead indicate its specific direction.

Object-Oriented Programming and PVector 225

4

3
v

Figure 10-12: The vector v extends 4 units
right and 3 units up.

Each vector has an x and y component, so you can express this vec-
tor as v = (4, 3). It describes a force to move the amoeba to a new location
4 units to the right and 3 units up from its previous location. You denote
vectors in boldface type, but it’s also common to draw a small arrow above
the v in situations where bold is impractical (for example, for handwritten
formulas).

The horizontal and vertical measurement lines in Figure 10-12 form a
right triangle with v as its hypotenuse. From this triangle, you can calculate
the magnitude of the vector by using the Pythagorean theorem. The theorem
states that the square of the hypotenuse is equal to the sum of the squares
of the other two sides.

If you add 4 squared (the adjacent side) to 3 squared (the opposite side),
you get 25, the length of the hypotenuse squared. The square root of 25 is
5, the length of the hypotenuse and the magnitude of v. But you don’t need
to worry about performing such calculations. Processing provides a built-in
PVector class especially for working with vectors that includes, among other
methods, a mag() for calculating magnitude.

You’ll adapt your amoeba sketch to work with the PVector class. While
showing how to make your amoeba move with vectors, I’ll also outline how
the various PVector methods work, revealing what’s happening on a math-
ematical level.

The PVector Class
PVector is a built-in Processing class for working with Euclidean vectors. You
can use it anywhere in your sketch—no import line required. PVector can han-
dle two- and three-dimensional vectors, but we’ll stick to the 2D variety here.

To create a new 2D vector, the PVector() class requires an x and y argu-
ment. For example, this line defines the vector depicted previously in
Figure 10-12:

v = PVector(4, 3)

226 Chapter 10

The v instance is a new vector that extends 4 units across and 3 units
up. You should, however, switch the 3 to -3 to match Processing’s coordinate
system (where the y values decrease as you move up).

A vector can point in any direction, negative or positive, but the mag-
nitude is always a positive value. Use the mag() method to calculate the
magnitude of any PVector instance; for example:

magnitude = v.mag()
print(magnitude) # displays 5.0

You know that the mag() method must invoke prewritten code based on
the Pythagorean theorem. It returns a floating-point value of 5.0, confirming
our calculations from the previous section.

Moving an Amoeba with PVector
You’ll create a PVector instance to animate amoeba a1 moving across the
display window. In Chapter 6, you programmed something similar—a DVD
screensaver—as you instructed Processing to move a DVD logo a set num-
ber of pixels horizontally and vertically in each frame for smooth, diagonal
movements. The approach is similar here, but you’ll use the PVector class
instead. You’ll find that the vector-based approach is more efficient for
simulating movement and forces.

Switch to the amoeba.py tab and add a new propulsion vector to the
__init__() method:

class Amoeba(object):

 def __init__(self, x, y, diameter, xspeed, yspeed):
 . . .
 self.propulsion = PVector(xspeed, yspeed)

The propulsion vector is initialized using two additional arguments for
xspeed and yspeed that’ll determine how many pixels your amoeba is pro-
pelled horizontally and vertically in each frame. In comparison to the DVD
screensaver task, here you’re combining the xspeed and yspeed variables into
a single vector named propulsion.

Now switch to the microscopic tab. Use a fourth and fifth Amoeba() argu-
ment to set the x and y components of the propulsion vector to 3 and -1,
respectively. Use the draw() function to increment your amoeba’s x and y
attributes by those values:

. . .
a1 = Amoeba(400, 200, 100, 3, -1)
. . .
def draw():
 background('#004477')
 a1.x += a1.propulsion.x
 a1.y += a1.propulsion.y
 a1.display()

Object-Oriented Programming and PVector 227

Each frame, amoeba a1’s x value increases by 3 pixels; at the same time,
its y value decreases by 1. In the default Processing coordinate system, reduc-
ing y moves the amoeba up. If you run the sketch, the amoeba should move
(quite rapidly) along a diagonal trajectory, starting in the center of the dis-
play window and soon exiting just below the upper right corner.

You can also use a PVector instance to store your amoeba’s x- and
y-coordinates. In fact, you can use PVector to store any x-y coordinate pair;
after all, it’s an object used to store two (or three) numbers, which also
includes a bunch of handy methods for performing vector operations.
Switch to the amoeba.py tab; replace the self.x and self.y attributes with
a new vector named self.location:

class Amoeba(object):

 def __init__(self, x, y, diameter):
 print('amoeba initialized')
 self.location = PVector(x, y)
 . . .

The amoeba’s location is now a PVector instance too, albeit one that
describes a point in the display window rather than a velocity or force. But
you can’t rerun the sketch yet. First, you need to update the rest of the
amoeba.py file to work with the new location attribute.

Your Amoeba class has multiple references to self.x and self.y, and
you’ll need to ensure that you replace them all with self.location.x and
self.location.y, respectively. The easiest way to do this is by using a find-
and-replace operation. From the Processing menu bar, select EditFind
to access the Find tool (Figure 10-13). Enter self.x into the Find field, and
self.location.x into the Replace with field. Click the Replace All button to
apply the changes. The checkbox settings shouldn’t make any difference
here. Once you’re done, do the same for self.y, replacing it with self.
location.y.

Find

Find:

Replace All

Replace with:

self.x

self.location.x

............

...

Figure 10-13: The Processing Find (and Replace) tool

228 Chapter 10

Now, change a1.x and a1.y in your microscopic tab to a1.location.x and
a1.location.y, respectively:

 . . .
 a1.location.x += a1.propulsion.x
 a1.location.y += a1.propulsion.y
 . . .

You add the x components on one line and the y components on another.
However, there’s a more efficient way to do this, using PVector addition.

Adding Vectors

The + operator is used to add floating-point numbers or integers. Addition-
ally, it serves as a concatenation operator for string operands. The PVector
class is programmed to work with the + operator too. You can add one PVector
instance to another to get a vector that’s the sum of the two. By extension, +=
works as an augmented assignment operator, stating that the vector operand
to the left of the operator is equal to itself plus the right operand.

Replace your a1.x += propulsion.x and a1.y += propulsion.y lines with
a single line to add the propulsion and location, adding PVector instances
rather than individual components:

. . .
def draw():
 background('#004477')
 a1.location += a1.propulsion
 a1.display()

With each call of the draw() function (every frame), the amoeba location
is incremented by the propulsion vector. If you run the sketch, the amoeba
moves along the same trajectory as before, 3 pixels across and 1 up each
frame, exiting just below the upper right corner of the display window.

Let’s add a new force to the simulation. You’ll model a current flow-
ing diagonally across the display window; it assists the amoeba’s prevailing
motion, flowing toward northeast. As Wikipedia (https://en.wikipedia.org/wiki/
Current_(fluid)) defines it, “A current in a fluid is the magnitude and direction
of flow within that fluid.” Evidently, this is something to model using a vector.

Add a new PVector named current to your microscopic tab. Add that vector
to your location each frame by using the draw() function:

. . .
current = PVector(1, -2)
. . .
def draw():
 background('#004477')
 a1.location += a1.propulsion
 a1.location += current
 a1.display()

https://en.wikipedia.org/wiki/Current_(fluid)
https://en.wikipedia.org/wiki/Current_(fluid)

Object-Oriented Programming and PVector 229

The propulsion vector is angled at roughly 18 degrees, pushing more
rightward than upward. The current vector is angled at approximately
63 degrees, pushing more upward than rightward (Figure 10-14). This com-
bination makes the amoeba move faster, at an angle somewhere between the
two vectors (~36 degrees). If you run the sketch, the amoeba should exit the
top edge of the display window (before, it exited at the right edge).

4

–3

location

current
(1, –2)

propulsion
(3, –1)

Figure 10-14: The amoeba moves a total of 4 pixels
across and 3 up each frame.

Vector addition works by adding the x component of one vector to the x
component of another, and likewise for the y components. In this case, add-
ing the x components (3 + 1) equals 4, and adding the y components (–1 + –2)
equals –3 . Regardless of the order in which you add vectors, the result is
always the same. For example, (3, –1) + (1, –2) is the same as (1, –2) + (3, –1),
and the resultant vector is (4, –3) in both instances. This makes vector addi-
tion a commutative operation, because changing the order of your operands
doesn’t change the result.

You can experiment with different current values to see what happens.
A current vector of (–3, 1) cancels out the propulsion vector exactly, and the
amoeba won’t move from the center of the display window. A current vector
of (–3.5, 1) will overpower the propulsion’s x component and exactly match
the y component, moving the amoeba slowly and directly leftward.

The neat thing about this system is that you can add as many forces to
the object’s location as you like. For instance, you might include a vector for
wind, one for gravity, and so on.

Subtracting Vectors

In mathematics, the result of a subtraction operation is called the difference.
For example, when you subtract 4 from 6, you’re left with a difference of 2.
Likewise, when you subtract one vector from another, the resultant vector is
the difference between the two.

230 Chapter 10

You can picture vector subtraction like this: begin by placing the two
vectors tail to tail; between the head of each vector, draw a line; this new line
is the difference vector. In Figure 10-15, you subtract b from a; the difference
(dark blue vector c) is (–2, –1).

3

–2

–1

1

b

a

c = a – b

Figure 10-15: Vector c is equal to (–2, –1).

The process of vector subtraction is similar to vector addition, but rather
than adding the x (with x) and y (with y) components of each vector, you’re
subtracting them. Note, however, that subtraction is noncommutative. That
means, changing the order of the operands changes the result. For example,
if you subtract a from b, you get (2, 1) instead of (–2, –1). This makes vector c
point the opposite way, switching its head and tail.

You can subtract PVector instances by using the – operator. Here’s an
example:

print(current - a1.propulsion)

If your current vector is equal to (1, –2), this will print [-2.0, -1.0,
0.0] to the console. Processing prints a PVector instance as a list of three
floating-point values, which represent the vector’s x, y, and z components,
respectively. The z value is always a 0, unless you’re working with three-
dimensional vectors.

You’ve added a propulsion and current vector to the amoeba’s location
to get it moving across the display window. You’ll now apply what you’ve
learned about vector subtraction to get the amoeba moving toward your
mouse pointer. You’ll create a new PVector instance called pointer to store
the x-y coordinates of your mouse pointer. You’ll subtract location (which
holds the amoeba’s x-y coordinates) from pointer to find the difference vec-
tor (Figure 10-16), which you’ll use to redirect the amoeba.

Object-Oriented Programming and PVector 231

difference
(?, ?)

location

pointer

Figure 10-16: The difference vector is equal
to pointer – location.

Ensure that your current vector is set to (1, –2). Add a new PVector
named pointer and a difference variable that’s equal to the pointer minus
the amoeba location (the difference vector depicted in Figure 10-16).

. . .
current = PVector(1, -2)
. . .
def draw():
 background('#004477')
 pointer = PVector(mouseX, mouseY)
 difference = pointer - a1.location
 a1.location += difference
 . . .

The mouseX and mouseY are Processing system variables that hold the
x- and y-coordinates of your mouse pointer. Note, however, that Processing
can begin tracking the mouse position only after you move the pointer in
front of the display window; until that time, mouseX and mouseY both return a
default value of 0.

If you run the sketch, the amoeba will attach to the mouse pointer. This
happens because the amoeba reaches the pointer position in a single “leap.”
Instead, you want the amoeba to “swim” toward the pointer, advancing in
small increments over multiple frames.

Limiting Vector Magnitude

The PVector class provides the limit() method to limit the magnitude of any
vector, which does not affect the direction. It requires a scalar (integer or
floating-point) argument that represents a maximum magnitude.

You’ll use the difference vector to steer the amoeba toward the mouse
pointer by adding it to the propulsion vector. You’ll limit the propulsion
vector to a magnitude of 3 (Figure 10-17), enough to overpower the current
marginally (which has a magnitude of 2.24) when the amoeba is swimming
directly into it.

232 Chapter 10

3

Figure 10-17: The propulsion vector’s
magnitude is limited to 3.

 Make the following insertions/changes to the draw() function to steer
and propel the amoeba toward the mouse pointer:

. . .
def draw():
 . . .

 1 #a1.location += difference
 2 a1.propulsion += difference.limit(0.03)
 3 a1.location += a1.propulsion.limit(3)

 a1.location += current
 a1.display()

First, comment out or delete the existing a1.location += difference
line 1. The limit() method restricts the difference vector to a magnitude
of 0.03 2. This tiny value is added to the propulsion vector each frame—
the effect rapidly accumulating—steering the amoeba progressively toward
the mouse pointer. But even when the amoeba is heading directly at the
pointer, the propulsion vector’s magnitude will not exceed 3 3.

Run the sketch and position your mouse pointer over the display win-
dow somewhere near the lower left corner. The amoeba will have drifted
out of view. But wait for a while, and it’ll slowly make its way toward the
corner; when it reaches the pointer, it will overshoot it slightly, then turn
around and overshoot it on the way back. It continues to overshoot the
pointer, because it’s trying to reach its target as quickly as possible. Now
move your pointer to the lower right corner. Assisted by the current, the
amoeba is quick to reach the opposite side of the screen, but its higher
velocity leads it to overshoot the target dramatically.

Soon, you’ll add multiple amoebas to the simulation. To prepare them
for moving at different speeds, add an attribute for maximum propulsion to
the Amoeba class:

class Amoeba(object):

 def __init__(self, x, y, diameter, xspeed, yspeed):
 . . .
 self.maxpropulsion = self.propulsion.mag()

This attribute will limit the magnitude/power of the amoeba’s propulsion
vector based on the xspeed and yspeed arguments you provide. Adapt the code

Object-Oriented Programming and PVector 233

in your microscopic tab to work with the maxpropulsion attribute, switching out
the arguments of both limit() methods. Additionally, adjust the values for the
xspeed, yspeed, and the current vector, reducing them by a factor of 10:

. . .
a1 = Amoeba(400, 200, 100, 0.3, -0.1)
current = PVector(0.1, -0.2)
. . .
def draw():
 . . .
 a1.propulsion += difference.limit(a1.maxpropulsion/100)
 a1.location += a1.propulsion.limit(a1.maxpropulsion)
 . . .

The reduced propulsion and current values slow down the simulation,
so the amoeba movement is more steady and controlled. The amoeba won’t
wildly overshoot its target anymore, but it still makes small orbits around
the pointer. The limit for the difference vector is now proportional to the
amoeba’s maximum propulsion, so a faster amoeba has some extra steering
power to handle its higher velocity.

Performing Other Vector Operations

There’s more to vectors and the PVector class, but that’s all I cover in this
book. Consider what you’ve learned as an elementary introduction to the
topic. The PVector class can additionally handle vector multiplication, divi-
sion, normalization, 3D vectors, and more. Vectors are useful for program-
ming anything that requires physics, like video games, and you’re likely to
reencounter them in your creative coding adventures.

Adding Many Amoebas to the Simulation
You have a working amoeba module, but you’re still dealing with a single
amoeba instance, a1, so the next step is to create a colony. You can create as
many instances as you like from a single class. In this section, you’ll spawn
eight amoebas in the same display window by using the Amoeba class. Each
amoeba will vary in size, and you’ll start them at different x-y coordinates.
Recall that each amoeba instance includes a dictionary of randomized
nucleus values, so the nuclei will vary too.

One (rather manual) approach for adding amoebas is to define addi-
tional instances with personalized variable names, with explicitly differenti-
ated parameters. Consider these three new amoeba:

a1 = Amoeba(400, 200, 100, 0.3, -0.1)
sam = Amoeba(643, 105, 56, 0.4, -0.4)
bob = Amoeba(295, 341, 108, -0.3, -0.1)
lee = Amoeba(97, 182, 198, -0.1, 0.2)
. . .

234 Chapter 10

You can keep adding amoebas in this manner, but the approach has its
downsides. For one, you need to remember to call every display() method in
the body of the draw() function to render each amoeba:

def draw():
 . . .
 a1.display()
 sam.display()
 bob.display()
 lee.display()
 . . .

This will display sam, bob, and lee standing still; to get those amoebas
moving, the draw() function requires even more code. That isn’t especially
efficient if you’re dealing with 5 or so amoebas, never mind 100.

Personalized amoeba names are cute and all, but not important for this
program. Instead, you’ll store the amoebas in a list. You can conveniently use
a loop to generate a list of as many amoebas as you like. Then you can call
each amoeba’s display() method (along with the code to move it) by using
another loop.

Replace the a1 line at the top of your microscopic code with an empty
amoebas list and a loop to populate it:

from amoeba import Amoeba

amoebas = []

for i in range(8):
 diameter = random(50, 200)
 speed = 1000 / (diameter * 50)
 x, y = random(800), random(400)
 amoebas.append(Amoeba(x, y, diameter, speed, speed))
. . .

With each iteration of the for loop, Python creates a new Amoeba()
instance. The Amoeba() arguments are randomized to vary the x-coordinate,
y-coordinate, and diameter of each instance. The speed value is based on
the diameter—so bigger amoebas move slower (recall that the propulsion and
maxpropulsion attribute is derived from the xspeed and yspeed arguments).
The append() method adds the new amoeba instance to the amoebas list. The
amoebas don’t have names like sam, bob, and lee, but you can address them
by index as amoebas[0], amoebas[1], and so forth.

You must add a for loop to the draw() function to render the full list of
amoebas. Here’s your amended code:

. . .
def draw():
 background('#004477')
 pointer = PVector(mouseX, mouseY)

Object-Oriented Programming and PVector 235

 for a in amoebas:
 difference = pointer - a.location
 a.propulsion += difference.limit(a.maxpropulsion/100)
 a.location += a.propulsion.limit(a.maxpropulsion)
 a.location += current
 a.display()

The for loop iterates the entire amoebas list. For each amoeba, it calculates
an updated location, and then renders that amoeba by using its display()
method.

The larger, slower amoebas might drift out of the display window,
overwhelmed by the current, never to be seen again. To avoid this prob-
lem, add code for wraparound edges—so that if an amoeba exits the dis-
play window, it reappears on the opposite side, maintaining its speed and
trajectory:

 . . .
 for a in amoebas:
 . . .
 r = a.d / 2

 if a.location.x - r > width:
 a.location.x = 0 - r
 if a.location.x + r < 0:
 a.location.x = width + r
 if a.location.y - r > height:
 a.location.y = 0 - r
 if a.location.y + r < 0:
 a.location.y = height + r

The four if statements check each edge of the display window. It’s neces-
sary to incorporate the radius (variable r) in the conditions to ensure that
the amoeba has fully left the display window before it reappears on the oppo-
site side. Likewise, each corresponding destination is offset by r to prevent
the amoeba from reappearing halfway over the opposite edge. You can set r
to 0 if you’d like to see what happens otherwise.

Each time you run the sketch, you get a different selection of amoebas.
They all swarm toward your mouse pointer (although the current overpow-
ers some of the large, slow ones), overlapping one another in the process.
Figure 10-18 shows an example with eight amoebas.

To add or remove amoebas, you can adjust the argument in the range()
function of your first loop, and the loop in the draw() function will adapt
dynamically. If your computer seems to be struggling, you can reduce the
number of amoebas.

236 Chapter 10

Figure 10-18: A display window with eight amoebas moving toward the mouse pointer

Challenge #10: Collision Detection
The amoebas can overlap one another. To prevent this from happening,
you must first detect where overlaps occur. From there, you can apply vector
forces to push any colliding pairs apart.

The amoebas are roughly circular, so a circle-circle collision detection algo-
rithm will work nicely here. To understand how circle-circle collision detec-
tion works, refer to Figure 10-19. The pair of circles on the left have not
collided; on the right is a colliding pair. For the non-colliding circles, the dis-
tance between the centers of each circle is greater than the sum of the two
radii (r1 and r2). Conversely, where the circles have collided, the distance is
less than the sum of the two radii.

r1

r2

distance > r1 + r2 distance < r1 + r2
r1

r2

Figure 10-19: Circle-circle collision detection

To test for collisions in Processing, you’ll need to check each amoeba
against every other amoeba in the amoebas list. For this purpose, add another
for loop within the a in amoebas loop:

 . . .
 for a in amoebas:
 . . .

Object-Oriented Programming and PVector 237

 for b in amoebas:

 if a is b:
 continue

 # your solution goes here

You don’t want to check whether an amoeba is colliding with itself. At
the top of the loop, there’s an if a is b test. The is operator compares the
objects on either side of itself to determine whether they point to the same
instance; if a is the same instance as b, this will evaluate as True. The continue
line terminates the current iteration of the loop to start at the beginning of
the next, so your “solution” code is skipped.

Think about how you can use the distance vectors shown in Figure 10-19
to push apart colliding amoebas. Can you add (or subtract) a fraction of the
distance vector to push an amoeba in the opposite direction to the one it has
collided with?

If you need help, you can access the solution at https://github.com/
tabreturn/processing.py-book/tree/master/chapter-10-object-oriented_programming
_and_pvector/.

Summary
In this chapter, you learned how to use object-oriented programming to
model real-world objects in Python. You defined a new Amoeba class, to which
you added attributes and methods. A class serves as an object template,
from which you can create countless instances. Grouping related variables
(attributes) and functions (methods) into classes can help you structure
code more efficiently. This is especially effective for programming larger,
more complex projects.

You also learned how to separate classes (and other code) into differ-
ent Python files, called modules, and how to use those modules to share
code between projects or as reusable components among files in the same
project. Remember that modules reduce the line count of the main sketch,
allowing you to focus on higher-level logic.

This chapter also introduced Processing’s built-in PVector class for dealing
with Euclidean vectors. A Euclidean vector describes a quantity that has both
magnitude and direction, but you can also use a vector to store something’s
location (as an x-y coordinate). In this chapter, you used vectors to simulate
forces and control the positions of various objects in the display window.

In the next chapter, you’ll learn how to handle mouse and keyboard
interaction in Processing. I’ve already touched on the mouseX and mouseY sys-
tem variables in this chapter. However, you can do much more with captur-
ing mouse clicks and keypresses, unlocking exciting ways to interact with
your Processing sketches.

https://github.com/tabreturn/processing.py-book/tree/master/chapter-10-object-oriented_programming_and_pvector/
https://github.com/tabreturn/processing.py-book/tree/master/chapter-10-object-oriented_programming_and_pvector/
https://github.com/tabreturn/processing.py-book/tree/master/chapter-10-object-oriented_programming_and_pvector/

In this chapter, you’ll learn how to pro-
gram interactive sketches that respond to

mouse and keyboard input. You can combine
those input devices in interesting and useful

ways. For example, many computer games use a com-
bination of keys for player movement and the mouse
for aiming. Here, you’ll program sketches that use the
mouse to paint as well as to select items from a tool
palette. You’ll also add shortcut keys to activate tools
by using the keyboard.

This chapter introduces system variables you can use to monitor mouse
clicks and keypresses. You’ll also learn about event functions that execute
whenever a particular type of mouse or keyboard event occurs.

The first task you’ll complete is a simple doodling program. The second
is a more elaborate paint app that includes a tool palette for selecting colors

11
M O U S E A N D K E Y B O A R D

I N T E R A C T I O N

240 Chapter 11

and brushes. When you’re programming interactive sketches, you need to
be able to change the contents of the display window in response to user
input so both programs are set up as animated sketches.

Mouse Interaction
You can use mouse input to perform point-and-click operations. You can also
program gesture-type motions that combine mouse movements and clicks,
like a drag-and-drop or pan. Most mice include three buttons—a left button,
a right button, and a clickable scroll wheel that doubles as a center button.

Mouse Variables
Processing’s mouseX and mouseY variables hold the horizontal and vertical posi-
tion of your mouse pointer in the display window. Processing also provides
the system variables pmouseX and pmouseY that contain the mouse coordinates
of the previous frame. There’s also a mousePressed variable that’s set to True
whenever a mouse button is held down.

The first task in this chapter focuses on Processing’s mouse variables to
monitor the position of the mouse pointer and detect when mouse buttons
are pressed. You’ll program a simple sketch for making scratch art. A sheet of
scratch art paper is covered with a rainbow blend of colors, then coated in a
layer of black (Figure 11-1). The “scratcher” uses a plastic or wooden stylus
to etch lines in the black surface, revealing the colors beneath.

Figure 11-1: The layers that make up a sheet
of scratch art paper (left), and doodling
with a stylus (right)

You could buy scratch paper ready-made or make it yourself, but pixels
are cheap and reusable!

Create a new file and save it as scratch_art. Add the following code to get
your mouse drawing a trail of white circles:

def setup():
 size(800, 400)
 frameRate(20)
 background('#000000')
 stroke('#FFFFFF')

def draw():
 circle(mouseX, mouseY, 15)

Each frame, Processing draws a new circle positioned using the mouseX
and mouseY values. Those coordinates are retrieved once each frame, and

Mouse and Keyboard Interaction 241

the frame rate is relatively low (20 fps). The draw() block has no background()
function, so every circle drawn persists until you close the display window.
If you move the mouse slowly, the circles will form a solid white line; wher-
ever you move the mouse quickly, you’ll leave discernible gaps in the line
(Figure 11-2). The upper left corner of the display window always contains
a circle, because the first x-y coordinate pair for the mouse is equal to (0, 0).

Figure 11-2: The faster you move your mouse, the larger the
gaps in the line.

You can increase the frame rate to fill in the line better, but you’ll still
get gaps if you move the mouse fast enough. To ensure a continuous line,
replace the circle() function with code for drawing lines:

. . .
def draw():
 strokeWeight(15)
 line(mouseX, mouseY, pmouseX, pmouseY)

The strokeWeight() argument of 15 matches the circle diameter from
before. The line() function draws a line between the mouse coordinates of
the current frame and those of the previous frame.

Run the sketch. The first line() function will extend from the upper
left corner (0, 0) to where your mouse pointer first enters the display win-
dow. In Figure 11-3, my mouse enters the display window from the left
edge (I’m drawing the wave from left to right).

Figure 11-3: Drawing a continuous line by using a line()
function for each frame

242 Chapter 11

To turn the “brush” on and off, insert an if statement to activate the
line() function while the left mouse button is being pressed:

. . .
def draw():
 strokeWeight(15)
 if mousePressed and mouseButton == LEFT:
 line(mouseX, mouseY, pmouseX, pmouseY)

The mousePressed variable holds a Boolean value that’s set to True while
any mouse button is pressed. The mouseButton variable is equal to LEFT, RIGHT,
or CENTER, depending on which button is pressed, and 0 if it’s none of them.

N O T E The mousePressed variable will revert to False as soon as the button is released; the
mouseButton variable, however, will retain its value until a different button is pressed
(or until the mouse is moved).

Run the sketch to confirm that Processing draws a white line while you’re
holding down the left- mouse button.

For the rainbow-color scratch art effect, insert code to base the stroke
color on the position of the mouse pointer. The horizontal position will con-
trol hue, and the vertical position will control saturation:

. . .
def draw():
 colorMode(HSB, 360, 100, 100)
 h = mouseX * 360.0 / width
 s = mouseY * 100.0 / height
 b = 100
 stroke(h, s, b)
 . . .

In this example, you set the color mode to HSB (hue, saturation, bright-
ness). The h variable is assigned a hue value between 0 and 360; the s variable
is assigned a saturation value between 0 and 100. Both the h and s values are
based on the mouse pointer’s position relative to the width and height of the
display window. The color’s brightness value is always 100 percent.

Run the sketch to test out the finished scratch art program (Figure 11-4).

Figure 11-4: Doodling in the scratch art program

Mouse and Keyboard Interaction 243

Now that you’ve seen Processing’s mouse variables, in the next task,
you’ll learn about mouse event functions.

Mouse Events
Processing offers a selection of mouse event functions that run each time
a particular mouse event takes place. Those functions are mouseClicked(),
mouseDragged(), mouseMoved(), mousePressed(), mouseReleased(), and mouseWheel().
You add code to an event function block that executes when the event func-
tion is triggered. To illustrate how this works, I’ll compare an example using
a mousePressed variable with another that employs a mousePressed() event
function.

The following code uses the mousePressed system variable to switch the
background color from red to blue with the press of a mouse button:

def draw():
 background('#FF0000') # red

 if mousePressed:
 background('#0000FF') # blue

The background color is blue as long as the user is holding down a
mouse button; otherwise, it’s red. The next example uses a mouse event—
a mousePressed() function—to perform a similar operation:

def draw():
 background('#FF0000') # red

def mousePressed():
 background('#0000FF') # blue

Each time a mouse button is pressed, the mousePressed() function executes
the blue background line, and the display window will briefly flash blue (for a
single frame). It immediately returns to red, regardless of how long you hold
down the mouse button. This is because an event function executes just once
per event; in other words, the background will not flash blue again until you
release and then re-press the mouse button.

Creating a Paint App
For the next exercise, you’ll program a basic painting app that will feature
a tool palette for selecting color swatches and other options. You’ll use the
mousePressed(), mouseReleased(), and mouseWheel() functions.

The large dark blue area, to the right in Figure 11-5, is your canvas for
drawing; the tool palette sits against the left edge. You hold down the left-
mouse button to draw.

244 Chapter 11

Figure 11-5: The paint app with a (badly drawn) Python logo

To begin, create a new sketch and save it as paint_app. You’ll use the
Ernest font, created by Marc André “Mieps” Misman, to label the buttons in
your tool palette. Download this font from the book’s GitHub web page:

1. Open your web browser and go to https://github.com/tabreturn
/processing.py-book/.

2. Navigate to chapter-11-mouse_and_keyboard_interaction.

3. Download the Ernest.ttf file.

4. Create a new data subfolder within your sketch folder and place the
Ernest.ttf file in it.

Add the following code to set up your sketch. This defines the display
window size, background color, font, and global variables for the paint app:

def setup():
 size(600, 600)
 background('#004477')
 ernest = createFont('Ernest.ttf', 20)
 textFont(ernest)

swatches = ['#FF0000', '#FF9900', '#FFFF00',
 '#00FF00', '#0099FF', '#6633FF']
brushcolor = swatches[2]
brushshape = ROUND
brushsize = 3
painting = False

https://github.com/tabreturn/processing.py-book/
https://github.com/tabreturn/processing.py-book/

Mouse and Keyboard Interaction 245

paintmode = 'free'
palette = 60

You’ll use the global variables (swatches, brushcolor, and so on) to adjust
and monitor the state of the brush. The default brush color is set to yellow.
Later, you’ll use the palette variable to set the width of the tool palette. You
haven’t added anything visual yet, so if you run the sketch, all you’ll see is a
plain blue display window.

Controlling the Draw Loop with loop() and noLoop() Functions

You’ll control the draw() function behavior by using mouse events. While
the left mouse button is pressed, the draw() function will loop; once it’s
released, the looping stops, which is a convenient way to control how the
paint app works. Of course, the draw() function loops by default, so you’ll
need the loop() and noLoop() functions to take control of this behavior.

The noLoop() function stops Processing from continually executing the
code in the draw() block. A loop() function reactivates the standard draw()
function behavior, and a redraw() function is available if you need to execute
the draw() code just once.

To start, add a noLoop() function to the setup() block, and a draw()
function that prints the frame count:

def setup():
 . . .
 noLoop()
. . .
def draw():
 print(frameCount)

If you run the sketch, the console should display a single 1, confirming
that the draw() function has run only once.

Now add code to the draw() function to make the mouse draw lines in the
display window, and add two mouse events to start and stop the flow of paint:

. . .
def draw():
 print(frameCount)
 global painting, paintmode

 1 if paintmode == 'free':

 2 if painting:
 stroke(brushcolor)
 strokeCap(brushshape)
 strokeWeight(brushsize)

 3 line(mouseX, mouseY, pmouseX, pmouseY)

 4 elif frameCount > 1:
 painting = True

246 Chapter 11

5 def mousePressed():
 # start painting
 if mouseButton == LEFT:
 loop()

6 def mouseReleased():
 # stop painting
 if mouseButton == LEFT:
 global painting
 painting = False
 noLoop()

Read over this code while simulating the process in your mind,
paying careful attention to when painting is equal to True or False, and
when the draw() function is running continuously. The sketch begins
with the painting variable set to False; the draw() function isn’t looping
at this point. When you press the left mouse button 5, the loop() func-
tion instructs Processing to resume looping the draw() function; when
you release the button 6, the noLoop() function halts the draw behavior
again. The paintmode variable is set to free 1 by default, so Python checks
whether you’re currently painting 2. You’ll add other paint modes later.
If painting is equal to True, Processing draws a line between the mouse
coordinates of the current frame and those of the previous frame 3;
if not, it checks that the frame count has passed 1 4 before setting the
painting variable to True. The if 2 and elif 4 steps are necessary to
avoid drawing straight lines between where you cease and resume paint-
ing (release the left button, move the mouse, and then press the button
again), and the frameCount > 1 stops Processing from drawing a line from
the upper left corner to where you first begin painting. In Figure 11-6, the
left screenshot depicts what happens if you omit those statements.

Figure 11-6: Processing drawing straight lines between the points where painting stops and starts (left), and
your version of the program (right)

Mouse and Keyboard Interaction 247

Run the sketch, and draw a few circles to test that the code is working.
Watch the console and note that the frame count increases only while you’re
pressing the left mouse button.

Adding Selectable Color Swatches

The tool palette will include six color swatches that you can use to change
the brush color. Add the following code to the bottom of the draw() block to
render a black panel against the left edge of the display window, and within
it, six color swatches based on the swatches list:

. . .
def draw():
 . . .
 # black panel
 noStroke()
 fill('#000000')
 rect(0, 0, palette, height)
 # color swatches
 for i, swatch in enumerate(swatches):
 sx = int(i%2) * palette/2
 sy = int(i/2) * palette/2
 fill(swatch)
 square(sx, sy, palette/2)
. . .

The for loop iterates the swatches list, drawing a grid of squares filled in
different colors. Your program draws the panel (and swatch elements) after
the brushstrokes to prevent unwanted strokes appearing over the palette as
you select things.

If a user clicks a color swatch, you must assign that color to the brushcolor
variable; add code for this to the mousePressed() function:

. . .
def mousePressed():
 . . .
 # swatch select
 if mouseButton == LEFT and mouseX < palette and mouseY < 90:
 global brushcolor
 brushcolor = get(mouseX, mouseY)

The if statement tests for a left-click and checks that the mouse
pointer is positioned somewhere over the color swatches. The get() func-
tion returns the color for the pixel under the mouse pointer and assigns it
to the brushcolor variable. You add a global line to overwrite the brushcolor
variable in the global scope, the same variable that the draw() function
uses to apply the stroke for the brush color.

Run the sketch. You can now select colors for painting (Figure 11-7).

248 Chapter 11

Figure 11-7: Click the swatches in the tool palette to change
the brush’s color.

Next, you’ll add a feature for resizing the brush, mapping this to the
scroll wheel.

Resizing the Brush by Using the Scroll Wheel

The mouseWheel() event function is used to execute code when the mouse
wheel is moved. Additionally, you can use it to retrieve positive or negative
values depending on the direction of the scroll wheel’s rotation. The direc-
tion of rotation for positive/negative values, however, depends on your sys-
tem’s configuration. Your touch pad scroll should work for this too, usually
with a two-finger drag.

Add a mouseWheel() function to the very bottom of your code:

. . .
def mouseWheel(e):
 print(e)

The e within the mouseWheel() function’s parentheses serves as a variable
to which the event details are assigned. You may name this whatever you like;
programmers commonly use e or event.

Mouse and Keyboard Interaction 249

Run the sketch, position your mouse pointer somewhere over the display
window, and use the scroll wheel. The console should display something like
the following:

<MouseEvent WHEEL@407,370 count:1 button:0>

From this output, you can establish that the type of mouse event is
WHEEL. At the moment of the event, the horizontal mouse position is 407,
and the vertical position is 370 (@407,370). The scroll direction is positive
(count:1). Of course, your values will vary somewhat.

N O T E You can also add this event variable to one of the other mouse functions—like
mousePressed() or mouseReleased(). As an example, for mousePressed(e), the e might
hold something like <MouseEvent PRESS@407,370 count:1 button:37>.

Add code that uses the mouseWheel() function to adjust the brush size.
This code will also display a brush preview below the swatches, which will
reflect the active brush’s color, size, and shape:

. . .
def draw():
 . . .
 # brush preview
 fill(brushcolor)
 if brushshape == ROUND:
 circle(palette/2, 123, brushsize)

 1 paintmode = 'free'

. . .

def mouseWheel(e):
 # resize the brush
 global brushsize, paintmode

 2 paintmode = 'select'
 3 brushsize += e.count
 4 if brushsize < 3:

 brushsize = 3
 5 if brushsize > 45:

 brushsize = 45
 redraw()

You don’t want to paint while adjusting the brush size, so paintmode is
switched to select 2. The e.count is used to retrieve the negative/positive
scroll value from the event variable, which is added to brushsize 3. It’s neces-
sary, however, to include checks (if statements) to ensure that the new brush
size remains within a reasonable range (between 3 4 and 45 5). Finally, the
redraw() function runs the draw() function, just once, to update the brush
preview and switch paintmode back to free 1.

Run the sketch to confirm that you can resize the brush by using the
scroll wheel, which updates the brush preview in the palette (Figure 11-8).

250 Chapter 11

Figure 11-8: Painting with brushes of different sizes

There’s one problem, though. When selecting swatches with a large
brush, a blob of paint might extend into the dark blue canvas area
(Figure 11-9).

Figure 11-9: Selecting a color swatch with a large brush

To solve this problem, add an if statement to the draw() function that dis-
ables painting while the mouse is over the palette. Use the paintmode variable
to control this:

. . .
def draw():
 print(frameCount)
 global painting, paintmode

 if mouseX < palette:
 paintmode = 'select'
 . . .

Run the sketch to confirm that you can select color swatches with large
brushes, without blobs encroaching on the canvas area.

Now that you understand how mouse events work, consult the online
reference if you need a mouseDragged() or mouseMoved() function. You’ll try out
a mouseClicked() function in “Challenge #11: Adding Paint App Features” on
page 252. If you’d like to change the mouse pointer from an arrow to some-
thing else, you can use the cursor() function. For example, you can add a
cursor(CROSS) function to the setup() block for a crosshair.

Mouse and Keyboard Interaction 251

Keyboard Interaction
Computers inherited their keyboard designs from typewriters. In the process,
computer keyboards spawned various new keys, such as the arrow, escape,
and function keys, and a number pad for more efficient numeric entry. They
also have modifier keys (like ALT and CTRL) that you can use in conjunc-
tion with other keys to perform specific operations. For example, the Z, X,
C, and V keys combine with CTRL or to perform undo/cut/copy/paste
operations.

N O T E The typewriter’s SHIFT key could be credited as the original modifier key, taking its
name from how it physically shifted a substantial part of the typewriting mechanism
into a position for typing uppercase letters.

Keyboard interaction in Processing works similarly to mouse interaction,
with system variables such as key and keyPressed, and event functions like
keyPressed(), keyReleased(), and keyTyped().

Now, let’s add keyboard shortcuts to the paint app for selecting colors.

Adding Keyboard Shortcuts to the Paint App
To program the shortcuts, you’ll combine the key system variable and
keyPressed() event function. The keyPressed() function runs once each time
a key is pressed. However, holding down a key may cause repeated function
calls. The operating system controls this repetitive behavior, and configura-
tions can vary among users. Processing stores the value of the most recently
used key in the key system variable.

Add a keyPressed() event function to the end of your code. For now, this
will print the key value in the console:

. . .
def keyPressed():
 print(key)

Run the sketch and press different keys. Numbers, letters, and symbols
display in the console as you might expect them to—you get a 1 when you
press the 1 key, a q when you press the Q key, and so on. If CAPS LOCK is
on, you get uppercase letters.

N O T E Special keys, like the arrow and modifier keys, work a little differently. If you need to
detect those, refer to the reference entry for keyCode.

To select different color swatches, replace the print() function with code
that uses the number keys 1 to 6:

. . .
def keyPressed():
 global brushcolor, paintmode
 paintmode = 'select'
 # color swatch shortcuts

252 Chapter 11

 if str(key).isdigit():
 k = int(key) - 1
 if k < len(swatches):
 brushcolor = swatches[k]
 redraw()

Python’s isdigit() method returns True if all of the characters in a string
are digits. This works only on characters/strings and will handle most key val-
ues fine, returning False for any letters and symbols. However, Processing rep-
resents special keys (arrows and modifiers) by using numeric codes—in other
words, integers, not strings. So, you use str(key) to convert any numeric codes
to strings to prevent certain keypresses from crashing the app. If the key value
is a digit, Python will subtract 1 from it and assign it to variable k. Because
the swatches list is zero-indexed, color 1 is equal to swatches[0], and so forth.
The final if statement verifies that the index value (k) is less than the length
of the swatches list—in other words, a number between 0 and 5. The redraw()
function updates the brush preview.

The paint app can paint in different colors, in strokes of varying thick-
ness. Experiment with adding other features to your paint app.

Challenge #11: Adding Paint App Features
One of the most useful features you can add is a Clear button so you don’t
need to close and reopen the app when you want a blank, new canvas. You’ll
program a button that resets the canvas to dark blue.

Add a button labeled CLEAR to the palette:

. . .
def draw():
 . . .
 # clear button
 fill('#FFFFFF')
 text('CLEAR', 10, height-12)

This draws CLEAR, in the Ernest font, in the lower left corner of the dis-
play window (Figure 11-10).

Figure 11-10: The Clear button

Mouse and Keyboard Interaction 253

You can use a mouseClicked() function to execute code when a mouse
button is clicked, at the moment of release. Like the other mouse events,
this code executes just once until you repeat the action. Add a mouseClicked()
function to your code:

. . .
def mouseClicked():
 circle(width/2, height/2, width)

If you click anywhere in the display window, this code will draw a cir-
cle over the entire paint app. Now replace the circle() line with code that
responds only to clicks over the Clear button and not anywhere outside
that region. Additionally, this code must draw a dark blue square over the
canvas area.

Once you have the Clear button working correctly, try adding a Save
(As Image) button, an eraser, more swatches, or maybe even a color mixer.
If you need help, you can find the solution at https://github.com/tabreturn/
processing.py-book/tree/master/chapter-11-mouse_and_keyboard_interaction/
paint_app/.

Summary
In this chapter, you learned how to add interactivity to your sketches by using
mouse and keyboard input. You learned about Processing’s system variables
for those input devices, as well as their event functions that execute, just once,
when a specific event occurs.

Processing supports a range of input devices, such as microphones,
cameras, and game controllers, and I encourage you to explore those fea-
tures. You can also connect an Arduino board to Processing if you want to
build custom input devices.

In this chapter, you programmed a simple tool palette for selecting
color swatches. Many software and web development projects require
graphic interface development, and many graphical user interface (GUI)
toolkits provide sets of ready-made widgets for things like buttons, check-
boxes, sliders, drop-down lists, and text fields. Processing has GUI libraries
to explore if you want to build more complex interfaces. For Python (out-
side of Processing), Tkinter, PyQt, and Kivy are a few options.

In the Afterword, I’ll point you to other useful resources and suggest the
next steps you might consider taking in your creative coding adventures.

https://github.com/tabreturn/processing.py-book/tree/master/chapter-11-mouse_and_keyboard_interaction/paint_app/
https://github.com/tabreturn/processing.py-book/tree/master/chapter-11-mouse_and_keyboard_interaction/paint_app/
https://github.com/tabreturn/processing.py-book/tree/master/chapter-11-mouse_and_keyboard_interaction/paint_app/

A F T E R W O R D

Well done. You’ve reached the end of this book. You’ve come a long way since
that first print() function! You’ve used Processing’s Python Mode to delve
into randomness, periodic motion, Euclidean vectors, interactivity, and more.
You learned how to write code for generating patterns, animations, and data
visualizations. You also learned to read in data from CSV and JSON files, and
how to structure your programs by using object-orientated programming
and modules. If you ever need to refer to the examples in this book, you can
access them at https://github.com/tabreturn/processing.py-book/ or look at https://
www.nostarch.com/Learn-Python-Visually/. This repository includes solutions to
the challenges in each chapter. But there’s plenty more to explore.

Your newly acquired Processing, Python, and creative coding skills are
your gateway to programming for an ever-expanding horizon of creative
technologies, such as games, the web, augmented/virtual reality, and even
visual effects for films. I’ll suggest a few topics here that you might explore
next—namely, more advanced Processing techniques, various Python frame-
works, and different creative coding environments. Your next big coding
project could range from highly expressive (like something you’d see in an
art gallery) to highly functional, or anything in between.

You can head in many directions from here. To begin, take a look
at other projects for inspiration—investigate how they’re built, the tech-
niques and programming languages involved, and so forth. Peruse the
collection of works showcased on the Creative Applications Network web-
site (https://creativeapplications.net/) and elsewhere on the web.

https://github.com/tabreturn/processing.py-book/
https://www.nostarch.com/learnpythonvisually
https://www.nostarch.com/learnpythonvisually
https://creativeapplications.net/

256 Afterword

More Python for Processing
Processing has a large community of artists, geeks, tinkerers, designers,
researchers, hobbyists, and educators who tend to gather on the official
Processing forums at https://discourse.processing.org/. You can chat with
community members, get help if you’re stuck, and keep up-to-date with
new developments and events. The site includes a dedicated category for
Processing.py and a gallery section to share your creations.

The official Python Mode for Processing reference is available at
https://py.processing.org/reference/. Each entry includes a description and brief
code example. You can also find helpful tutorials in the Tutorials section
of the website; the following are topics you may want to explore here:

•	 “Images and Pixels” so that you can manipulate graphics on a pixel level.
You can even create your very own Photoshop-esque filters this way.

•	 Processing’s 3D render mode, “P3D,” for drawing in three dimensions
using x-, y-, and z-coordinates, with texture and lighting effects.

•	 Processing’s myriad libraries, for physics, GUIs, video, AI, audio,
and more. You can find the link to the “Libraries” section on the
main Processing page (https://processing.org/). The libraries are built
for Processing Java Mode, but it’s possible to get most of them working
in Python Mode.

On that last point, you’ll find many useful algorithms written in other
languages, especially Processing’s Java Mode. Seek assistance on the forums
to help implement those in Python Mode, but after a while, you’ll likely be
able to translate Java code to Python by yourself. This also means you can
look at Processing Java resources to learn new techniques for your Python
Mode sketches.

The Nature of Code is a fantastic book by Daniel Shiffman for Processing’s
Java Mode, which you can read online at https://natureofcode.com/book/. It
teaches you how to write code to simulate things that occur naturally in
the physical world. Topics include vectors, forces, particles systems, physics,
autonomous agents, fractals, evolutionary algorithms, and neural networks.
You can find Python versions of the tasks at https://github.com/nature-of-code/
noc-examples-python/.

More Python
Python is a general-purpose language, suitable for programming AI, games,
simulations, web applications, and just about everything in between; for each
domain, there are multiple Python libraries and frameworks to explore.

No Starch Press has published several great Python books. For game
development, there’s Invent Your Own Computer Games with Python by
Al Sweigart. For some geeky fun, there’s Python Playground by Mahesh
Venkitachalam, and Impractical Python Projects by Lee Vaughan. Python

https://discourse.processing.org/
https://py.processing.org/reference/
https://processing.org/
https://natureofcode.com/book/
https://github.com/nature-of-code/noc-examples-python/
https://github.com/nature-of-code/noc-examples-python/

Afterword 257

Crash Course, 2nd edition, by Eric Matthes is an in-depth Python book that
also covers some game (Pygame), data visualization (matplotlib), and web
(Django) development.

Recall that, at the time of this writing, Python Mode for Processing
uses Python 2.7, but I’ve ensured that all the code in this book is Python 3–
compatible. You might not even realize the difference when you switch to
a Python 3 development environment.

Other Creative Coding Environments
If you’d like to learn a different programming language for creative coding,
consider Processing’s Java Mode, as well as Processing variants for JavaScript
(p5.js) and Ruby (JRubyArt). Beyond Processing, there’s openFrameworks
for creative coding in the C++ language and OPENRNDR for Kotlin. This
isn’t everything, but that list should be enough to get you looking in the
right places to discover more.

If you want to program devices that can interact with the real world,
Arduino provides an open source platform for electronics projects. It’s a
relatively cheap, programmable development board that you can connect
to sensors, motors, lights, and other electronic components. You can also
get your Arduino board talking to your Processing sketches.

I N D E X

Symbols & Numbers
" " (double quotes), 5

nesting, 55
strings, 54

' ' (single quotes), 5
nesting, 55
strings, 54

/ (division operator), 22, 54
/= operator, 89
: (colon), 58–59, 73
\ (escape character), 55
+ (addition operator), 71
+ (concatenation operator), 228
+= operator, 89
= (assignment operator), 19

augmented versions of, 89
-= operator, 89
!= (not-equal-to operator), 72
% (modulo operator), 23
() (parenthesis), 4

order of operations, 22
unclosed, 8

* (multiplication operator), 22
*= operator, 89
[] (square brackets), 22, 58, 134,

160, 168
{ } (curly brackets), 56–57, 160, 168
< (less-than operator), 72
<= (less-than-or-equal-to operator), 72
> (greater-than operator), 72
>= (greater-than-or-equal-to

operator), 72
2D primitives, 16–18

ellipses, 17
lines, 18
points, 16
quads, 18
triangles, 17

2001: A Space Odyssey (film), xviii, xix

A
abstraction, 221–222
Adding Paint App Features challenge,

251–252
addition operator (+), 71
algorithms, 23, 256

collision detection, 236
defined, xvii
randomness, 94

amplitude, 196
Analog Clock challenge, 129–132
anchor points, 36
and operator, 80
append() method, 137
Aquatics! xix, xx
arc() function, 24
arcs, 24–26

radians, 24–26
radius, 25

Arduino, 257
arithmetic operators, 21–23

addition, 21, 71
defined, 21
division, 22, 54
modulo operator, 23
multiplication, 22
order of operations, 22
subtraction, 22

Arnolfini Portrait (van Eyck), 179–180
assignment operator (=), 19

augmented versions of, 89
associative arrays, 160
attributes, 211–216

accessing, 213
adding to classes, 211–216
adding with default value,

213–214
defined, 208
dot notation, 213

260 Index

modifying value, 214–215
using dictionaries for, 215–216

augmented assignment operators, 89

B
background color, 13–14
background() function, 13, 110
beginContour() function, 46–49
beginShape() function, 41, 43–44, 46
beta movement, 106
beveled joints, 197
Bézier curves, 36–40

bezier() function, 36–37
control points, 38–39
defined, 36
positioning anchor, 38–39
vector graphics, 39–40

bezier() function, 36–37
Bézier vertices, 43–50

Chinese coin shapes, 46–50
heart shapes, 45–46
S-curves, 44–45

bezierVertex() function, 43–50
amoeba simulation, 218
Chinese coin shapes, 46–50
heart shapes, 45–46
S-curves, 44–45

bool() function, 71–72
Boolean data type

defined, 69, 71
overview of, 71–72

break statements, 92–93
Breakout game

Breakout Level challenge, 150–152
combining lists with loops,

139–140
Brodbeck, Frederic, xviii, 144

C
camelCase, 20, 178, 209
Cartesian plane, 189
Catmull, Edwin, 32
Catmull-Rom splines, 31–36

curve() function, 32–34
curveTightness() function,

34–35
defined, 32

challenges
Adding Paint App Features,

251–252
Analog Clock, 129–132
Breakout Level, 150–152
Coffee Chart, 172–173
Collision Detection, 236–237
Disk Usage Analyzer, 27
DVD Screensaver, 116–119
Four-Square Task, 80–83
Games Sales Chart, 156–158
Rainbow Task, 18–19

Chinese coin shapes, 46–50
Cinemetrics project, xviii, xix, 144
circle() function, 17, 70–71

amoeba simulation, 213–214,
216, 219

concentric circles sketch and
variations, 86–88, 91, 93–94

painting app, 241
circlePoint() function, 193–194, 219
class keyword, 209–210
classes, 207–209

adding attributes to, 210–211
adding methods to, 216–221
defined, 208
defining new, 209–210
instantiating, 210–211, 233–236

Coffee Chart challenge, 172–173
colon (:), 58–59, 73
color, 8–11

background color, 13–14
color selector, 9
colored shapes, 10–12
colored strokes, 12–13
drawing shapes by using list of

color values, 140–142
fill() function, 10
hexadecimal values, 8–10
HSB values, 14–16
RGB values, 14
selectable color swatches,

247–248
six-color rainbow, 142
strokes, 12

colorMode() function, 14–15, 147,
149, 205

attributes (continued)

Index 261

comma-separated values (CSV) files,
154–156

comments, 6–7
multiline comments, 6
single-line comments, 6

commutative operations, 229
concatenating strings, 56–57
concatenation operator (+), 228
conditional statements, 69–83

Boolean data type, 69, 71–72
control flow, 70–71
defined, 71
elif statements, 76–77

checking for A, 77
else statements without, 78
proper order, 77

else statements, 77–78
Four-Square Task challenge,

80–83
if statements, 73–76

assigning letter grades, 75–76
assigning passing grades,

73–74
logical operators, 78–80

checking for invalid input, 79
displaying messages for

invalid input, 80
relational operators, 72–73, 75

continue statements, 92–94
control flow, 70–71
control-point coordinates, 32–33
cos() function, 192
cosine, 190–192
count() method, 61
createFont() function, 66
Creative Applications Network, 255
creative coding

defined, xviii
overview of, xviii–xx

CSV (comma-separated values) files,
154–156

curly brackets ({ }), 56–57, 160, 168
cursor() function, 250
curve() function, 31–34

arguments, 31
compared to line(), 31–32
control-point coordinates, 32–33
splines, 34

curves
Bézier curves, 36–40

bezier() function, 36–37
control points, 38–39
positioning anchor, 38–39
vector graphics, 39–40

Catmull-Rom splines, 31–36
curve() function, 32–34
curveTightness() function,

34–36
curveTightness() function, 34–35
cycles, 188

D
Dark Side of the Moon, The (album), 142,

154–155, 168
data visualization, 144
def keyword, 108, 177
default values, 184

adding attributes with, 213–214
setting, 184–186

degrees() function, 25
delay() function, 177, 179
dictionaries, 159–167

accessing, 161
combining with loops, 163–167

iterating items, 165–167
iterating keys, 164–165
iterating values, 165

key-value pairs, 160–162
of lists, 162–163
lists vs., 160
modifying, 162
nesting, 162–163
using for attributes, 215–216

difference, 229–231
disk usage analyzers, 27
display() function, 217, 219, 234
display windows, 4–5
division operator (/), 22, 54
dot notation, 213
double quotes (" "), 5

nesting, 55
strings, 54

draw() function, 108–111, 189
amoeba simulation, 217, 234–235
DVD Screensaver challenge,

117–118

262 Index

painting app, 241, 245–247,
249–250

transformations within draw()
block, 122

DVD Screensaver challenge, 116–119

E
elif (else-if) statements, 76–77

checking for A, 77
else statements without, 78
proper order, 77

ellipse() function, 17–18
ellipsePoint() function, 194, 200
else statements, 77–78

without elif, 78
endContour() function, 46–49
endShape() function, 41–42, 44, 46
enumerate() function, 143
equal-to operator (==), 72, 75
error messages

accessing dictionaries, 161
arguments, 187, 211
clarifying, 8
division by zero, 23
global variables, 112–114
indexes, 136
strings, 54–55
syntax, 8
tuples, 166
values, 137
whitespace, 7

escape character (\), 55
Euclidean vectors (geometric vectors;

spatial vectors), 208, 224
extend() method, 137
Extensible Markup Language

(XML), 170

F
file extensions, 153–154

defined, 153
hiding/showing, 30
removing or renaming, 154

file formats, 153–154
fill() function, 11–12, 93–94, 176

amoeba simulation, 216
defined, 10

drawing shapes by using list of
color values, 140–141

Four-Square Task, 81–82
‘Hello, World!’ sketch, 10
HSB values, 14–15
RGB values, 14
text, 64

fills, 11–12
disabling, 11–12
shapes with open sides, 42

find() method, 61–62
fingerprints of films, xviii, xix
floating-point data type, 5
fonts, 63–64

glyphs, 63
loading files directly, 66
monospace, 63–64
proportionately spaced, 63–64
sans serif, 63
serif, 63
switching, 66

for loops, 90–91
Create Line Patterns challenge, 92
iterating keys, 164–165
painting app, 247

format() method, 56–57
Four-Square Task, 80–83
frameCount system variable, 194
frameRate() function, 109
frequency, 197
from keyword, 223
Fry, Ben, xvii
functions, 175–206

defined, 4, 175
defining, 176–188

adding arguments and
parameters, 181–183

creating simple function,
176–179

drawing compound shapes
using functions, 179–181

mixing positional and
keyword arguments,
186–187

returning values, 187–188
setting default values,

184–186
using keyword arguments, 183

draw() function (continued)

Index 263

for periodic motion, 188–206
circular motion, 192–194
elliptical motion, 194–195
Lissajous curves, 198–206
sine waves, 195–198
spiral motion, 194
trigonometric functions,

190–192

G
Games Sales Chart challenge, 156–158
geometric vectors (Euclidean vectors),

208, 224
get() function, 93, 247
GIMP, 14–15
global variables, 111–115

defined, 111
DVD Screensaver challenge, 117
local vs., 111–112
overriding, 113
scope, 111
shadowing, 113

glyphs, 63
greater-than operator (>), 72
greater-than-or-equal-to operator

(>=), 72
grid graphic, 30–31

H
heart shapes, 45–46
‘Hello, World!’ sketch

colored shapes, 10–12
comments, 6
creating, 4
executing, 4
functions and arguments, 4–5

help and information resources, xx–xxi
functions and arguments, 4–6
grid graphic, 30
Java, 256
online resources, xxi
Processing, 256
Python, 256–257
shape-drawing behavior, 18
source code and solutions, xxi

hexadecimal values, 8–10
HSB (hue, saturation, and brightness)

values, 14–16

I
i variable, 87–88
identity matrix, 126
if statements, 73–76, 110–111

assigning letter grades, 75–76
assigning passing grades, 73–74
Four-Square Task, 82
painting app, 247

Illustrator, 40
image() function, 30, 121
import keyword, 222
Impractical Python Projects (Vaughan), 256
indentation, 7, 73–74
index() method, 137
indexes

lists, 136–138
returning index of any character

or substring, 61–62
slice notation, 58–59

inheritance, 209
__init__() method, 210–212, 214,

220–221
Inkscape, 39
insert() method, 137
instantiation, 210–211, 233–236
int() function, 72, 95, 171
integer data type, 5
Invent Your Own Computer Games with

Python (Sweigart), 256
isdigit() method, 251
items() method, 165–166
iteration, 85–93

break statements, 92–93
combining loops and dictionaries,

163–167
concentric circles sketch, 86–87
continue statements, 92–94
Create Line Patterns challenge, 92
defined, 86
for loops, 90–91
Truchet tiles, 97–102
while loops, 87–89

J
Java

information resources, 256
variants of, xvii

JavaScript (p5.js), xvii, 257

264 Index

JRubyArt (Ruby version of Java),
xvii, 257

JSON (JavaScript Object Notation),
167–173

Coffee Chart challenge, 172–173
defined, 159
reading data, 170–172
syntax, 168–169
web APIs, 169–170

json module, 167

K
keyboard input, 239, 251–252
keyboard shortcuts, 251–252
keyPressed() function, 251
keys, 168

defined, 160
iterating, 164–165

keys() method, 165
keyword arguments

defined, 183
mixing with positional arguments,

186–187

L
leading, 67
len() function

Breakout Level challenge, 152
methods vs., 60
string length, 57

less-than operator (<), 72
less-than-or-equal-to operator (<=), 72
libraries, 167, 224
limit() method, 231–233
line() function, 18, 31–32, 204

Create Line Patterns challenge, 92
painting app, 241–242

Linux GNOME Disk Usage Analyzer, 27
Lissajous, Jules Antoine, 198
Lissajous curves, 198–203

creating screensaver-like patterns
with, 203–206

defined, 198
lissajousPoint() function, 200, 202,

204–206
lists, 133–152

accessing, 135–136
Breakout Level challenge, 150–152

combining with loops, 138–143
drawing shapes by using list of

color values, 140–142
enumerate() function, 143

creating, 135–136
defined, 133
dictionaries of, 162–163
dictionaries vs., 160
lists of lists, 144–150
modifying, 136–138

adding all elements from one
list to end of another, 137

adding elements to
end, 137

removing elements, 138
reordering elements, 138
returning index and value

of elements matching
arguments, 137

returning index of element to
be removed, 138

returning index of elements
matching arguments, 137

overview of, 134–138
loadImage() function, 30
loadShape() function, 51
loadStrings() function, 156, 171
logical operators, 78–80

checking for invalid input, 79
displaying messages for invalid

input, 80
list of, 79

loop() function, 245–246
loop statements, 87–94

break statements, 92–93
combining with dictionaries,

163–167
iterating items, 165–167
iterating keys, 164–165
iterating values, 165

combining with lists, 138–143
drawing shapes by using list of

color values, 140–142
enumerate() function, 143

continue statements, 92–94
defined, 85
loop counter, 87–88
for loops, 90–91

Index 265

sequences, 90
step size, 91
while loops, 87–89

lower() method, 61
lowercase, converting characters to, 61

M
mag() function, 225–226
magic methods, 210
magnitude, 224
matrices, 119–120
Matthes, Eric, 257
Menschaert, Lieven, xix, xx
methods, 216–221

adding to classes, 216–221
calling, 217–218
defined, 60, 208, 210
magic methods, 210
modifying attributes with, 220–221
naming, 217–218
wobbling motion, 218–220

Minetest, 134
Misman, Marc André, 244
mitered joints, 197
modifier keys, 251–252
modules, 167

configuration modules, 222
dividing programs into, 222–224
importing, 223
sharing code via, 224

modulo operator (%), 23
monospace fonts, 63–64
motion, 105–118

adding to sketches, 108–116
draw() and setup() functions,

108–111
global variables, 111–115
saving frames, 115–116

collision detection, 236–237
DVD Screensaver challenge,

116–119
perceiving, 106–108

animation, 106–107
beta movement, 106
phi phenomenon, 107–108

periodic, 188–206
circular motion, 192–194
cycles, 188

defined, 188
elliptical motion, 194–195
Lissajous curves, 198–206
periods, 188
sine waves, 195–198
spiral motion, 194
trigonometric functions,

190–192
programming with vectors,

224–233
Euclidean vectors, 208, 224
magnitude, 224
PVector class, 225–233
scalar value, 224

mouse and keyboard input, 239–253
mouse input, 239–250

event functions, 239
mouse events, 243
mouse variables, 240–243
painting app, 243–250

adding Clear button, 252–253
adding selectable color

swatches, 247–248
controlling draw loop, 245–247
resizing brush with scroll

wheel, 248–250
mouseClicked() function, 243, 250, 253
mouseDragged() function, 243, 250
mouseMoved() function, 243, 250
mousePressed() function, 243, 249
mousePressed variable, 242
mouseReleased() function, 243, 249
mouseWheel() function, 243, 248–249
mouseX and mouseY variables, 240
multiline comments, 6
multimedia formats, 153
multiplication operator (*), 22
music visualizations, xix

N
Nature of Code, The (Shiffman), 256
negative shapes, 29, 50
noFill() function, 11–12, 176
noLoop() function, 245–246
noStroke() function, 12, 158
not operator, 80
not-equal-to operator (!=), 72
null operations, 112

266 Index

O
object-oriented programming (OOP),

207–222
abstraction, 221–222
attributes, 208, 211–216

accessing, 213
adding to classes, 211–216
adding with default value,

213–214
dot notation, 213
modifying value, 214–215
using dictionaries for,

215–216
classes, 207–209

adding attributes to, 210–211
adding methods to, 216–221
defined, 208
defining new, 209–210
instantiating, 210–211,

233–236
Collision Detection challenge,

236–237
defined, 207
inheritance, 209
methods, 208, 210, 216–221

adding to classes, 216–221
calling, 217–218
modifying attributes with,

220–221
naming, 217–218
wobbling motion, 218–220

objects, 207
parts of speech analogy, 217

objects, 207
open() function, 171
OpenAQ, 169
openFrameworks, 257
OPENRNDR, 257
OpenType Font (OTF) files, 66
operands, 21
or operator, 80
order of operations, 22
origin, 120
OTF (OpenType Font) files, 66

P
p5.js (JavaScript), xvii, 257
packages, 224

painting app, 243–253
adding Clear button, 252–253
adding keyboard shortcuts,

251–252
adding selectable color swatches,

247–248
controlling draw loop, 245–247
resizing brush with scroll wheel,

248–250
scratch art, 240

pangrams, 64
parameters, 181–183
parentheses (()), 4

order of operations, 22
unclosed, 8

pass statements, 112
periodic motion, 188–206

circular motion, 192–194
cycles, 188
defined, 188
elliptical motion, 194–195
Lissajous curves, 198–206
periods, 188
sine waves, 195–198

drawing sine wave of dots, 197
simulating weight hanging

from spring, 197–198
spiral motion, 194
trigonometric functions, 190–192

periods, 188
phi phenomenon, 107–108
Pink Floyd, 142
pmouseX and pmouseY variables, 240
point() function, 16, 95
points, 16
pop() method, 138
popMatrix() function, 126–129
positional arguments

defined, 183
mixing with keyword arguments,

186–187
print() function, 54, 71

as built-in function, 6
‘Hello, World!’ sketch, 4–5
printing variables to console, 19–20

printAnswer() function, 177–179
procedurally generated game content,

xix, xx

Index 267

Processing development environment
activating Python Mode, 3
color selector, 9
coordinate system, 10–11
defined, xvi
downloading and installing, 2
example demonstrations, 3
file folders, 2
functions and arguments, 4–6
information resources, xxi, 256
interface, 2–3
open source, xvii
overview of, xvii
sketches, 4–14

background color, 13–14
color, 8–11
comments, 6–7
creating new, 4
defined, 4
errors, 8
executing, 4
fills, 11–12
naming, 4
reopening, 4
saving, 4
strokes, 12–13
whitespace, 7

Processing.py (Python Mode for
Processing), xvi–xvii

activating, 3
functions and arguments, 4–6
information resources, xxi, 256
official reference, xxi
setting up, 2

proportionately spaced fonts, 63–64
pseudocode, 73
pseudorandom numbers, 94
pushMatrix() function, 126–129
PVector class, 225–233

adding vectors, 228–229
animation with, 226–233
limiting vector magnitude, 231–233
subtracting vectors, 229–231

Pythagorean theorem, 225
Python, xvi

2D primitives, 16–18
ellipse() function, 17
line() function, 18

quad() function, 18
triangle() function, 17

advantages of, xvi–xvii
arcs, 24–26
arithmetic operators, 21–23

basic operations, 21–23
modulo operator, 23

color modes, 14–16
comments, 6–7
data types, 5
indentation, 7
information resources, 256–257
open source, xvii
as textual programming

language, xvi
variables, 19–21
whitespace, 7

Python Crash Course (Matthes), 256–257
Python Mode for Processing. See

Processing.py
Python Playground (Venkitachalam), 256

Q
quad() function, 18
Quantum of Solace (film), xviii

R
radians, 24–26
radians() function, 25
radius, 25
Rainbow Task, 18–19
random() function, 94–96, 101, 187
random seed, 96–97
randomness, 85, 94–102

random() function, 94–96
random seed, 96–97
Truchet tiles, 97–102

randomSeed() function, 97
range() function, 235

for loops and sequences, 90
raster graphics, 40
reading data, 153–158

CSV files, 154–156
file extensions, 153–154
file formats, 153–154
Games Sales Chart challenge,

156–158
JSON, 170–172

268 Index

Reas, Casey, xvii
rect() function, 10–12, 18, 21,

181, 185
defined, 10
drawing shapes by using list of

color values, 140–141
Four-Square Task, 81
‘Hello, World!’ sketch, 10–11

red() function, 93
redraw() function, 249
regular expressions (regex), 62
relational operators, 72–73

defined, 72
expressions without, 75
list of, 72

remove() method, 138
resetMatrix() function, 126–127
returning values, 187–188
reverse() method, 138
reverse winding, 49
RGB values, 14
right triangles, 190
Rom, Raphael, 32
rotate() function, 119, 123–124,

130, 191

S
sans serif fonts, 63
saveFrame() function, 115–116
saving frames, 116
Scalable Vector Graphics (SVG), 39
scalar value, 224
scale() function, 119, 124–125
scratch art, 240
screensavers

DVD Screensaver challenge,
116–119

Lissajous curves, 203–206
S-curves, 44–45
sequences, 90
serif fonts, 63
setup() function, 108–110, 117,

189, 250
shadowing, 113
shape() function, 51
shapes, 16–18, 29–51

circles, 17
coordinate system, 10

curves
Bézier curves, 36–40
Catmull-Rom splines, 31–36

displaying grid, 30–31
drawing, 10
drawing by using list of color

values, 140–142
ellipses, 17–18
filling with color, 10–12
lines, 18
negative, 29, 50
quadrilaterals, 18
quads, 18
rectangles, 10–12, 18
rotating, 123–124
scaling, 124–125
shearing, 125–126
squares, 12, 17
translating, 119–123
triangles, 17
vector graphics drawing software,

50–51
vertices, 40–50

Chinese coin shapes, 46–50
heart shapes, 45–46
S-curves, 44–45

shearX() and shearY() functions, 119,
125–126

Shiffman, Daniel, 256
Simpsons Movie, The (film), xviii, xix
sin() function, 192, 195–196
sine, 190–192
sine waves, 195–198

amplitude, 196
defined, 195
drawing sine wave of dots, 197
frequency, 197
simulating weight hanging from

spring, 197–198
wavelength, 196

single quotes (' '), 5
nesting, 55
strings, 54

single-line comments, 6
size() function

anatomy of, 4–5
‘Hello, World!’ sketch, 4–5
as Processing-specific function, 6

Index 269

sketches, 4–14
background color, 13–14
color, 8–11
comments, 6–7
errors, 8
fills, 11–12
whitespace, 7

slice notation, 58–59
SOHCAHTOA mnemonic, 190
sort() method, 138
spatial vectors (Euclidean vectors),

208, 224
split() function, 156–158, 171
square brackets ([]), 22, 58, 134,

160, 168
square() function, 12, 17, 187
step size, 91
str() function, 57
string data type, 5
string formatting, 56–57
string methods, 60–62

count() method, 61
find() method, 61–62
functions vs., 60
lower() method, 61
upper() method, 60–61

strings, 53–62
concatenating, 56–57
creating, 54–56
defined, 53
slice notation, 58–59
string formatting, 56–57
string length, 57
string methods, 60–62

stroke() function, 12–13
strokeCap() function, 13
strokeJoin() function, 13
strokes, 12–13

coloring, 12
corners and tips, 13
defined, 12
disabling, 12
width, 12

strokeWeight() function, 12, 16, 18, 94
style guides, 178
substrings

defined, 58
slice notation, 58

superformula, xix
SVG (Scalable Vector Graphics), 39
Sweigart, Al, 256
syntax errors, 8
system variables, 19

T
TAB key, 73–74
Tagged Image File Format

(TIFF), 115
tangent, 190
text, 53, 62–67

alignment, 67
converting case, 60–61
fonts, 63–64, 66
leading, 67
sizing, 65, 67
text functions, 64–67
typography, 62–67
width, 65

text() function, 64
DVD Screensaver challenge, 118
Four-Square Task, 81

text functions, 64–67
text() function, 64
textAlign() function, 67
textFont() function, 66
textLeading() function, 67
textSize() function, 65, 67
textWidth() function, 65

textAlign() function, 67
textFont() function, 66
textLeading() function, 67
textSize() function, 65, 67
textWidth() function, 65
TIFF (Tagged Image File Format), 115
transformation functions, 118–132

Analog Clock challenge,
129–132

matrices, 119–120
processing, 120
pushMatrix() and popMatrix()

functions, 126–129
rotate() function, 119, 123–124
scale() function, 119, 124–125
shearX() and shearY() functions,

119, 125–126
translate() function, 119–123, 181

270 Index

Analog Clock challenge, 130
cumulative nature of, 122
drawing shapes by using list of

color values, 140–141
origin, 120
transformations within draw()

block, 122
triangle() function, 17
trigonometric functions, 190–192
trigonometry (trig), 188
Truchet, Sébastien, 97
Truchet tiles, 97–102
TrueType Font (TTF) files, 66
tuples, 166
typography, 62–67

fonts, 63–64
text functions, 64–67

U
upper() method, 60–61, 187
UpperCamelCase, 209
uppercase, converting characters to,

60–61
URLs

domain, 59
slice notation, 58–59
subdomain, 59
top-level domain, 59

V
values() method, 165
van Eyck, Jan, 179
variables, 19–21

defined, 19
global variables, 111–115
naming, 20
printing to console, 19–20
system variables, 19

Vaughan, Lee, 256
vector graphics

Bézier curves, 39–40
vector graphics drawing software,

50–51
vectors, 224–233

Euclidean vectors, 208, 224
magnitude, 224
PVector class, 225–233

adding vectors, 228–229
animation with, 226–233
limiting vector magnitude,

231–233
subtracting vectors, 229–231

Pythagorean theorem, 225
scalar value, 224

Venkitachalam, Mahesh, 256
vertex() function, 41
vertices, 40–50

Bézier vertices, 43–50
Chinese coin shapes, 46–50
heart shapes, 45–46
S-curves, 44–45

defined, 40
drawing squares with, 41–42

W
wavelength, 196
web APIs (web application

programming interfaces),
169–170

while loops, 87–89
whitespace, 7
wraparound, 235

X
XML (Extensible Markup

Language), 170

translate() function (continued)

Learn Python Visually is set in New Baskerville, Futura, Dogma, and
TheSansMono Condensed.

RESOURCES
Visit https://nostarch.com/Learn-Python-Visually/ for errata and more information.

phone:
800.420.7240 or
415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

INVENT YOUR OWN COMPUTER
GAMES WITH PYTHON,
4TH EDITION
by al sweigart
376 pp., $29.95
ISBN 978-1-59327-795-6

PYTHON CRASH COURSE,
2ND EDITION
A Hands-On, Project-Based
Introduction to Programming
by eric matthes
544 pp., $39.95
ISBN 978-1-59327-928-8

PYTHON PLAYGROUND
Geeky Projects for the Curious
Programmer
by mahesh venkitachalam
352 pp., $29.95
ISBN 978-1-59327-604-1

THE SECRET LIFE OF PROGRAMS
Understand Computers—Craft Better Code
by jonathan e. steinhart
504 pp., $44.95
ISBN 978-1-59327-970-7

More no-nonsense books from NO STARCH PRESS

REAL WORLD PYTHON
A Hacker’s Guide to Solving
Problems with Code
by lee vaughan
360 pp., $34.95
ISBN 978-1-7185-0062-4

MATH ADVENTURES WITH
PYTHON
An Illustrated Guide to Exploring
Math With Code
by peter farrell
304 pp., $29.95
ISBN 978-1-59327-867-0

Never before has the world relied so heavily on the Internet
to stay connected and informed. That makes the Electronic
Frontier Foundation’s mission—to ensure that technology
supports freedom, justice, and innovation for all people—
more urgent than ever.

For over 30 years, EFF has fought for tech users through
activism, in the courts, and by developing software to over-
come obstacles to your privacy, security, and free expression.
This dedication empowers all of us through darkness. With
your help we can navigate toward a brighter digital future.

LEARN MORE AND JOIN EFF AT EFF.ORG/NO-STARCH-PRESS

THE F INEST IN GEEK ENTERTA INMENT ™

www.nostarch.com

The perfect book for first-time programmers, Learn
Python Visually introduces the fundamentals of
computer coding within a visual, graphics-based
context. Tristan Bunn’s creative teaching approach
will help you visualize core programming concepts as
you make cool pictures, animations, and simulations
using Python Mode for the open source Processing
development environment.

From the very first chapter, you’ll produce and
manipulate colorful designs as Bunn walks you through
a series of easy-to-follow graphical coding projects
that grow increasingly complex. You’ll progress from
drawing with code to animating a bouncing DVD
screensaver to creating interactive programs. Along
the way, you’ll encounter skill-building challenges on
topics as diverse as video games, coffee, fine art,
amoebas, and Pink Floyd.

You’ll learn how to:

• Apply basic coding theories and concepts, like
variables, data types, pixel coordinates, control
flow, and algorithms

• Write code that produces drawings, patterns,
animations, data visualizations, user interfaces, and
simulations

• Use code to explore randomness, handle CSV and
JSON data, and generate animations that employ
trigonometry for periodic motion and Lissajous curves

• Define functions, reduce repetition, and make your
code more modular

• Write classes and create objects to structure code
more efficiently

If you’ve ever dreamed of coding for data visualizations,
computer-generated art, games, or other creative
technologies, Learn Python Visually is the entry point
you need.

A B O U T T H E A U T H O R

For over a decade, Tristan Bunn has worked on a
diverse range of digital projects for varied clients. He’s
currently involved in lecturing, research, and work
that blends code, interaction, interface design, and
creativity.

F U L L
CO LO R

$49.99 ($65.99 CDN)

C O V E R S
P Y T H O N 3 . x

P R O C E S S I N G 3 . x

P Y T H O N
F O R V I S U A L

L E A R N E R S

	About the Author
	About the Tech Reviewer
	Acknowledgments
	Introduction
	Who Is This Book For?
	What Is Python Mode for Processing?
	What Are Algorithms?
	What Is Creative Coding?
	Where Can I Find Help?
	Online Resources
	Source Code and Solutions

	What’s in This Book?
	Let’s Go!

	Chapter 1: Hello, World!
	Processing Installation and Python Mode Setup
	Your First Sketch
	Comments
	Whitespace
	Errors
	Color
	Fills and Strokes
	Background Color

	Color Modes
	2D Primitives
	triangle()
	ellipse()
	quad()
	line()

	Challenge #1: Rainbow Task
	Variables
	Arithmetic Operators
	Basic Operations
	Modulo Operator

	Arcs

	Challenge #2: Disk Usage Analyzer
	Summary

	Chapter 2: Drawing More Complicated Shapes
	Displaying a Grid
	Drawing Curves Using Catmull-Rom Splines
	Curving Lines with curve()
	Changing Curves with curveTightness()

	Drawing Bézier Curves
	Using the bezier() Function
	Positioning Anchor and Control Points

	Drawing Shapes Using Vertices
	Bézier Vertices

	Using Vector Graphics Software for Generating Shapes
	Summary

	Chapter 3: Introduction to Strings and Working with Text
	Strings
	Creating Strings in Python
	Using Concatenation and String Formatting
	Working with String Length

	String Manipulation
	Slice Notation
	String Methods

	Typography
	Fonts
	Text Functions

	Summary

	Chapter 4: Conditional Statements
	Control Flow
	Conditional Statements
	The Boolean Data Type
	Relational Operators
	if Statements
	elif Statements
	else Statements
	Logical Operators

	Challenge #3: Four-Square Task
	Summary

	Chapter 5: Iteration and Randomness
	Iteration
	Using Iteration to Draw Concentric Circles
	while Loops
	for Loops

	Challenge #4: Create Line Patterns
	break and continue Statements
	Randomness
	random() Function
	Random Seed

	Truchet Tiles
	Summary

	Chapter 6: Motion and Transformation
	Perceiving Motion
	Adding Motion to Processing Sketches
	The draw() and setup() Functions
	Global Variables
	Saving Frames

	Challenge #5: DVD Screensaver
	Transformations
	Processing Transformation Functions
	translate()
	rotate()
	scale()
	shearX() and shearY()
	pushMatrix() and popMatrix()

	Challenge #6: Analog Clock
	Summary

	Chapter 7: Working with Lists and Reading Data
	Introducing Lists
	Creating and Accessing Lists
	Modifying Lists

	Combining Loops and Lists
	Drawing Shapes by Using a List of Color Values
	Looping with enumerate()

	Creating Lists of Lists
	Challenge #7: Breakout Level
	Reading Data
	File Formats
	CSV

	Challenge #8: Games Sales Chart
	Summary

	Chapter 8: Dictionaries and JSON
	Introducing Dictionaries
	Accessing Dictionaries
	Modifying Dictionaries

	Nesting Dictionaries and Lists
	Combining Loops and Dictionaries
	Iterating Keys
	Iterating Values
	Iterating Items

	Working with JSON
	Understanding JSON Syntax
	Using Web APIs
	Reading in JSON Data

	Challenge #9: Coffee Chart
	Summary

	Chapter 9: Functions and Periodic Motion
	Defining Functions
	Creating a Simple Speech Bubble Function
	Drawing Compound Shapes Using a Function
	Adding Arguments and Parameters
	Using Keyword Arguments
	Setting Default Values
	Mixing Positional and Keyword Arguments
	Returning Values

	Defining Functions for Periodic Motion
	An Introduction to Trigonometric Functions
	Circular and Elliptical Motion
	Sine Waves
	Lissajous Curves
	Creating Screensaver-Like Patterns with Lissajous Curves

	Summary

	Chapter 10: Object-Oriented Programming and PVector
	Working with Classes
	Defining a New Class
	Creating an Instance from a Class
	Adding Attributes to a Class
	Adding Methods to a Class

	Programming Movement with Vectors
	The PVector Class
	Moving an Amoeba with PVector

	Adding Many Amoebas to the Simulation
	Splitting Your Python Code into Multiple Files
	Challenge #10: Collision Detection
	Summary

	Chapter 11: Mouse and Keyboard Interaction
	Mouse Interaction
	Mouse Variables
	Mouse Events
	Creating a Paint App

	Keyboard Interaction
	Adding Keyboard Shortcuts to the Paint App

	Challenge #11: Adding Paint App Features
	Summary

	Afterword
	More Python for Processing
	More Python
	Other Creative Coding Environments

	INDEX

