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Preface

AI and ML reflect the natural evolution of technology as increased
computing power enables computers to sort through large data sets and
crunch numbers to identify patterns and outliers.

—BlackRock (2019)

Financial modeling has a long history with many successfully accomplished
task but at the same time it has been fiercely critized due mainly to lack of
flexibility and non-inclusiveness of these models. 2007-2008 financial crisis
fueled this debate and paved the way for innovations and different
approaches in the field of financial modeling.

Of course, this financial crisis is not the mere reason that precipitates the
growth of AI applications in finance but also two more main drivers have
spurred the adoption of AI in finance. That being said, data availability has
enhanced computing power and intensified researches in 1990s.

Financial Stability Board (2017) stresses the validity this fact by stating:

“Many applications, or use “cases”, of AI and machine learning
already exist. The adoption of these use cases has been driven by both
supply factors, such as technological advances and the availability of
financial sector data and infrastructure, and by demand factors, such as
profitability needs, competition with other firms, and the demands of
financial regulation.”

—FSB

As a sub-branch of financial modeling, financial risk management has been
evolving with the adoption of AI in paralell with ever-growing role in
financial decision making process. In his celebrated book, Bostrom (2014)
denotes that there are two important revolutions in the history of mankind:
Agricultural Revolution and Industrial Revolution. These two revolutions
have such a profound impact that any third revolution of similar magnitude
would double in size of world economy in 2 weeks. Even more strikingly, if



the third revolution accomplishes by artificial intelligence, the impact would
be way more profound.

So, the expectation is sky-high about AI applications shaping financial risk
management at an unprecedented scale by making use of big data and
understanding the complex structure of risk processes.

With this study, I aim to fill the void about machine learning-based
applications in finance so that predictive and measurement performance of
financial models can be improved. As parametric models suffer from low
variance-high bias issue, machine learning models, with their flexibility, can
address this problem. Moreover, as a common problem in finance, changing
distribution of the data always poses a thread to the realibility of the model
result but machine learning models can adapt themselves to this changing
pattern in a way that models fits better. So, there is a huge need and demand
about applicable machine learning models in finance and what mainly
distinguish this book is the inclusion of brand new machine learning-based
modeling approaches in financial risk management.

In a nutshell, this book aims to shift the current landscape of financial risk
management, which is heavily based on the parametric models. The main
motivation for this shift is the recent experience in highly accurate financial
models based on Machine Learning models. Thus, this book is intended for
those who has some initial thoughts about finance and Machine Learning in
the sense that I just provide brief explanations on these topics.

Consequently, the targeted audience of the book includes, but not limited to,
financial risk analysts, financial engineers, risk associates, risk modelers,
model validators, quant risk analysts, portfolio analyst and those who are
interested in finance and data science.

In light of the background of the targeted audience, having introductory level
of finance and data science knowledge would enable the highest benefit that
you can get from the book. It does not, however, mean that people from
different background cannot follow this book topics. Rather, readers from
different background can grasp the concepts as long as they spend enough



time and refer to some other finance and data science books along with this
one.

The book consists of ten chapters.

Chapter 1

Gives an introduction about the main risk management concepts. So, it
covers risks, types of risks such as market, credit, operational, liquidity,
risk management. After defining what the risk is, types of risks are
discussed, and then risk management is explained and the issues of why it
is important and how it can be used to mitigate losses is addressed. In
what follows, asymmetric information, which can address the market
failures are discussed. To do that, we will focus on the information
asymmetry and adverse selection.

Chapter 2

Shows the time-series applications using traditional models, namely
moving average model, autoregressive model, autoregressive integrated
moving average model. In this part, we learn how to use an API to access
financial data and how to employ it. This chapter main aims to provide us
a benchmark to compare the traditional time series approach with recent
development in time series modeling, which is the main focus of the next
chapter.

Chapter 3

Introduces the deep learning tools for time series modeling. Recurrent
Neural Network and Long Short Term Memory are two approaches by
which we are able to model the data with time dimension. Besides, this
chapter gives us an impression about the applicability of deep learning
models to time series modeling.

Chapter 4

Focuses on the volatility prediction. Increased integration of financial
markets has led to a prolonged uncertainty in financial markets, which in



turn stresses the importance of volatility. Volatility is used in measuring
the degree of risk, which is one of the main engagements of the area of
finance. The fourth chapter deals with the novel volatility modeling
based on Support Vector Regression, Neural Network, Deep Learning,
and Bayesian approach. For the sake of comparison of the performances,
traditional ARCH and GARCH-type models are also employed.

Chapter 5

Employs machine learning-based models to boost estimation
performance of the traditional market risk models, namely Value-at-Risk
(VaR) and Expected Shortfall (ES). VaR is a quantitative approach for
the potential loss of fair value due to market movements that will not be
exceeded in a defined period of time and with a defined confidence
level. Expected Shortfall, on the other hand, focuses on the tail of the
distribution refering to big and unexpected losses. VaR model is
developed using denoised covariance matrix and ES is developed
incorporating liqudity dimension of the data.

Chapter 6

Tries to introduce comprehensive machine learning-based approach to
estimate credit risk. Machine Learning models are applied based on the
past credit information along with others. The approach starts with risk
bucketing, which is suggested by Basel Accord and continue with
different models bayesian estimation, Markov Chain model, support
vector classification, random forest, neural network, and deep learning.
In the last part of the chapter, the performance of these models will be
compared.

Chapter 7

Gaussian Mixture model is used to model the liquidity, which is thought
to be a neglected dimension in risk management. This model allows us to
incorporate different aspects of the liquidity proxies in this chapter so



that we will be able to capture the effect of liquidity on financial risk in a
more robust way.

Chapter 8

Covers the operational risk, which may result in a failure mostly due to
companies internal weakness. There are several sources of operational
risks but fraud risk is one of the most time-consuming and detrimental one
to the companies operations. Here, in this chapter, fraud is will be our
main focus and new approaches will be developed to have better-
performing fraud application based on machie learning models.

Chapter 9

Introduces a brand new approach in modeling the corporate governance
risk: Stock Price Crash. Many studies find an empirical link between
stock price crash and corporate governance. This chapter, using
Minimum Covariance Determinant model, attempts to unveil the
relationship between the components of corporate governance risk and
stock price crash.

Chapter 10

Makes use of synthetic data to estimate different financial risks. The aim
of this chapter is to highlight the emergence of synthetic data that helps us
to minimize the impact of limited historical data. So, synthetic data
allows us to have large enough and high-quality data, which improves the
quality of the model.



Part I. Risk Management
Foundation



Chapter 1. Fundamentals of
Risk Management

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 1st chapter of the final book. Please note that the GitHub
repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at mcronin@oreilly.com.

In 2007, no one would have thought that risk functions could have
changed as much as they have in the last eight years. It is a natural
temptation to expect that the next decade has to contain less change.
However, we believe that the opposite will likely be true.

—Harle et al. (2016)

Risk management is a constantly evolving process. Constant evolution is
inevitable due to the fact that long-standing risk management practice cannot
keep pace with recent development or be a precursor of unfolding crises.
Therefore, it is of importance to monitor and adopt the changes brought by
structural breaks in a risk management process. Adoption to the changes
implies re-defining the components and tools of risk management and this is
what this book is all about.

Traditionally, in finance, empirical research in finance has a strong focus on
statistical inference. Econometric has been built upon the rationale of
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statistical inference. These types of models concentrate on the structure of
underlying data generating process and relationship among variables.
Machine learning models, however, are not assumed to define the underlying
data generating process but are considered as a means to an end for the
purpose of prediction (Lommers et al. 2021). Thus, machine learning models
are tend to be more data-centric and prediction accuracy-oriented.

Moreover, data scarcity and unavailability has always been an issue in
finance and it is not hard to guess that the econometric models cannot
perform well in this case. Given the solution of machine learning models to
the data unavailability via synthetic data generation, machine learning models
has been on the top of the agenda in finance and financial risk management is,
of course, no exception.

Before going into the detail and discuss these tools, it is worth introducing
the main risk management concepts. Thus, this part of the book presents basic
concepts of financial risk management, which I will refer throughout the
book. These concepts include risk, types of risks, risk management, returns,
and some concepts related to risk management.

Risk
Risk is always out there during the course of life but understanding and
assessing risk is a bit tougher than knowing it due to its abstract nature. Risk
is perceived as something hazardous and it might be in the forms of expected
or unexpected. The expected risk is something that is priced but the
unexpected risk can be barely accounted for, so it might be devastating.

As you can imagine there is no general consensus on the definition of risk.
However, from the financial standpoint, risk refers to a likely potential loss
or the level of uncertainty to which a company can expose. Differently,
McNeil et al. (2015) define risk as:



Any event or action that may adversely affect an organization’s ability to
achieve its objectives and execute its strategies or, alternatively, the
quantifiable likelihood of loss or less-than-expected returns.

—Harle et al. (2016)

These definitions focus on the downside of the risk implying that cost goes
hand in hand with risk but it should also be noted that there is no necessarily
one-to-one relationship among them. For instance, if a risk is expected, a cost
incurred is relatively lower (or even ignorable) than that of unexpected risk.

Return
All financial investments are undertaken to gain profit, which is also called
return. More formally, return is the gain made on an investment in a given
period of time. Thus, return refers to the upside of the risk. Throughout the
book, risk and return will refer to downside and upside risk, respectively.

As you can imagine, there is a trade-off between risk and return, the higher
risk assumed, the greater the return realized. As it is a formidable task to
come up with a optimum solution, this trade-off is one of the most
controversial issues in finance. However, Markowitz (1952) proposes an
intuitive and appealing solution to this long-standing issue. The way he
defined risk, which was until then ambiguous, is nice and clean and led to a
shift in landscape in financial research. Markowitz (1952) used standard
deviation σRi

 to quantify risk. This intuitive definition allows researchers to
use mathematics and statistics in finance. The standard deviation can be
mathematically defined as (Hull, 2012):

σ = √E(R2) − [E(R)]2

where R and E symbols refer to annual return and expectation, respectively.
The book uses the symbol E numerous times as expected return represent the
return of interest. This is because it is probability we are talking about in
defining risk. When it comes to portfolio variance, covariance comes into the
picture and the formula turns out to be:



σ2
p = w2

aσ2
a + w2

bσ2
b + 2wawbCov(ra, rb)

where w denotes weight, σ2 is variance, and Cov is covariance matrix.

Taking square root of the variance obtained above gives us the portfolio
standard deviation:

σp = √σ2
p

In other words, portfolio expected return is a weighted average of the
individual returns and can be shown as:

E(R) = ∑n
i wiRi = w1R1 + w2R2 ⋯ + wnRn

Let us explore the risk-return relationship by visualization. To do that, an
hypothetical portfolio is constructed to calculate necessary statistics with
Python.

In [1]: import statsmodels.api as sm
        import numpy as np
        import plotly.graph_objs as go
        import matplotlib.pyplot as plt
        import plotly
        import warnings
        warnings.filterwarnings('ignore')

In [2]: n_assets = 5
        n_simulation = 500

In [3]: returns = np.random.randn(n_assets, n_simulation)

In [4]: rand = np.random.rand(n_assets)
        weights = rand/sum(rand)

        def port_return(returns):
            rets = np.mean(returns, axis=1)
            cov = np.cov(rets.T, aweights=weights, ddof=1)
            portfolio_returns = np.dot(weights, rets.T)
            portfolio_std_dev = np.sqrt(np.dot(weights, np.dot(cov, weights)))
            return portfolio_returns, portfolio_std_dev

In [5]: portfolio_returns, portfolio_std_dev = port_return(returns)



In [6]: print(portfolio_returns)
        print(portfolio_std_dev)
        0.005773455631074148
        0.016994274496417057

In [7]: portfolio = np.array([port_return(np.random.randn(n_assets, i))
                              for i in range(1, 101)])

In [8]: best_fit = sm.OLS(portfolio[:, 1], sm.add_constant(portfolio[:, 0]))\ 
                   .fit().fittedvalues

In [9]: fig = go.Figure()
        fig.add_trace(go.Scatter(name='Risk-Return Relationship', x=portfolio[:,0],
                                 y=portfolio[:,1], mode='markers'))
        fig.add_trace(go.Scatter(name='Best Fit Line', x=portfolio[:,0],
                                 y=best_fit, mode='lines'))
        fig.update_layout(xaxis_title = 'Return', yaxis_title = 'Standard 
Deviation',
                          width=900, height=470)
        plotly.offline.iplot(fig, filename="images/risk_return.png")
        fig.show()

Number of assets considered

Number of simulations conducted

Generating random samples from normal distribution used as returns

Generating random number to calculate weights

Calculating weights

Function used to calculate expected portfolio return and portfolio
standard deviation

Calling the result of the function

Printing the result of the expected portfolio return and portfolio standard
deviation



Rerunning the function 100 times

To draw the best fit line, I run linear regression

Drawing interactive plot for visualization purposes



Figure 1-1. Risk-Return Relationship

Figure 1-1, generated via the above-given Python code, confirms that the risk
and return goes in tandem but the magnitude of this correlation varies
depending on the individual stock and the financial market conditions.



Risk Management
Financial risk management is a process to deal with the uncertainties
resulting from financial markets. It involves assessing the financial risks
facing an organization and developing management strategies consistent with
internal priorities and policies (Horcher, 2011).

According to this definition, as every organization faces different type of
risks, the way that a company deals with it is completely unique. Every
company should properly assess and take necessary action against risk. It,
however, does not necessarily mean that once a risk is identified, it needs to
be mitigated as much as a company can do.

Risk management is, therefore, not about mitigating risk at all costs.
Mitigating risk may require sacrificing return and it can be tolerable up to
certain level as companies are searching for higher return as much as
lowering risk. Thus, to maximize profit while lowering the risk should be
delicate and well-defined task.

Managing risk is a delicate task as it comes with a cost and even though
dealing with it requires specific company policies, there exists a general
framework for possible risk strategies. These are:

Ignore: In this strategy, companies accept all risks and their
consequences and prefer to do nothing.

Transfer: This strategy involves transferring the risks to a third-
party by hedging or some other ways.

Mitigate: Companies develop a strategy to mitigate risk partly
because its harmful effect might be considered too much to bear
and/or supprass the benefit attached to it.

Accept risk: If companies embrace the strategy of accepting the
risk, they properly identify risks and acknowledge the benefit of
them. In other words, when assuming certain risks arising from some
activities bring values to shareholder, this strategy can be picked.



Main Financial Risks
Financial companies face various risks over their business life. These risks
can be divided into different categories in a way to identify and assess in an
easier manner. These main financial risk types are market risk, credit risk,
operational risk, and liquidity risk but again this is not an exhaustive list.
However, we confine our attention to the main financial risk types throughout
the book. Let’s take a look at these risk categories.

Market Risk
This risk arises due to a change in factors in financial market. To be clearer,
for instance, an increase in interest rate might badly affect a company, which
has a short position.

A second example can be given about another source of market risk;
exchange rate. An company involving involving international trade, whose
commodities are priced in US dollars, are highly exposed to a change in US
dollars.

As you can imagine, any change in commodity price might pose a threat to a
company’s financial sustainability. There are many fundamentals that have
direct effect on commodity price, which are market players, transportation
cost and so on.

Credit Risk
Credit risk is one of the most pervasive risks. Credit risk emerges when
counterparty fails to honor debt. For instance, if a borrower is unable to pay
its payment, credit risk is realized. The deterioration of credit quality is also
a source of risk through the reduced market value of securities that an
organization might own (Horcher, 2011).

Liquidity Risk
Liquidity risk has been overlooked until 2007-2008 financial crisis, which
hit the financial market hard. From that point on, researches on liquidity risk
have been intensified. Liquidity refers to speed and ease with which an



investor executes her transaction. This definition is also known as trading
liquidity risk. The other dimension of liquidity risk is funding liquidity risk,
which can be defined as the ability to raise cash or availability of credit to
finance a company’s operations.

If a company cannot turn its assets into cash within a short period of time,
this falls under liquidity risk category and it is quite detrimental to
company’s financial management and reputation.

Operational Risk
Managing operational risk is beyond being a clear and foreseeable task and
exploits a great deal of resources of a company due to intricate and internal
nature of the risk. Now the questions are: How do financial companies do a
good job for managing risk? Do they allocate necessary resources for this
task? Is the importance of risk to a companies sustainability gauged
properly?

As the name suggests, operational risk arises when inherent operation(s) in a
company or industry poses a threat to day-to-day operations, profitability, or
sustainability of that company. Operational risk includes fraudulent activities,
failure to adhere regulations or internal procedures, losses due to lack of
training etc.

Well, what happens if a company exposes to one or more than one of these
risks in an unprepared way. Though it is not frequent, we know the answer
from the historical events, company might default and run into a big financial
bottleneck.

Big Financial Collapse
How important is the risk management? This question can be addressed by a
book with hundreds of pages but, in fact, the rise of risk management in
financial institutions speaks itself. In particular, after the global financial
crisis, the risk management is characterized as “colossal failure of risk
management” (Buchholtz and Wiggins,2019). In fact, the global financial
crisis, emerged in 2007-2008, is just a tip of the iceberg. Numerous failures



in risk management pave the way for this breakdown in the financial system.
To understand this breakdown, we need to go back to dig into past financial
risk management failures. A hedge fund called Long-Term Capital
Management (LTCM) presents a vivid instance of a financial collapse.

LCTM forms a team with top-notch academics and practitioners. This led to
a fund inflow to the firm and began trading with 1 billion USD. In 1998,
LCTM controlled over $100 billion and heavily invested in some emerging
markets including Russia. So, Russian debt default deeply affected the
LCTM’s portfolio due to fligh to quality  and it got a severe blow, which
led LCTM to bust (Allen, 2003).

Metallgesellschaft (MG) is another company that no longer exists due to bad
financial risk management. MG was largely operating in gas and oil markets.
Due to high exposure to the gas and oil prices, MG needed funds in the
aftermath of the large drop in gas and oil prices. Closing the short position
resulted in losses around 1.5 billion USD.

Amaranth Advisors (AA) is another hedge fund, which went into bankruptcy
due to heavily investing in a single market and misjudging the risks arising
from its investments. By 2006, AA attracted roughly $9 billion USD worth of
assets under management but lost nearly half of it because of the natural gas
futures and options downward move. The default of AA is attributed to low
natural gas prices and misleading risk models (Chincarini, 2008).

Long story short, Stulz’s paper titled “Risk management failures: What are
they and when do they happen?” (2008) summarizes the main risk
management failures resulting in default:

1) Mismeasurement of known risks

2) Failure to take risks into account

3) Failure in communicating the risks to top management

4) Failure in monitoring risks

5) Failure in managing risks

6) Failure to use appropriate risk metrics

1



Thus, the global financial crisis was not the sole event that led regulators and
institutions to redesign its financial risk management. Rather, it is the drop
that filled the glass and, in the aftermath of the crisis, both regulators and
institutions have adopted lessons learned and improved their process.
Eventually, these series of events led to a rise in financial risk management.

Information Asymmetry in Financial Risk
Management
Though it is theoretically intuitive, the assumption of completely rational
decision maker, main building block in modern finance theory, is too perfect
to be real. This idea, therefore, attacked by behavioral economists, who
believes that psychology plays a key role in decision making process.

Making decisions is like speaking prose—people do it all the time,
knowingly or unknowingly. It is hardly surprising, then, that the topic of
decision making is shared by many disciplines, from mathematics and
statistics, through economics and political science, to sociology and
psychology.

—Kahneman and Tversky (1984)

Information asymmetry and financial risk management goes hand in hand as
cost of financing and firm valuation are deeply affected by the information
asymmetry. That is, uncertainty in valuation of a firm’s assets might raise the
borrowing cost posing a threat to a firm’s sustainability (See DeMarzo and
Darrell (1995) and Froot, Scharfstein, and Stein (1993)).

Thus, roots of the failures described above lie deeper in such a way that
perfect hypothetical world in which rational decision maker lives is unable
to explain them. At this point, human instincts and imperfect world come into
play and a mixture of disciplines provide more plausible justifications. So, it
turns out Adverse Selection and Moral Hazard are two prominents
categories accounting for the market failures.

Adverse Selection



It is a type of asymmetric information in which one party tries to exploit its
informational advantage. Adverse selection arises when seller are better
informed than buyers. This phemomenon is perfectly coined by Akerlof
(1970) as “The Markets for Lemons”. Within this framework, lemons refer to
low-quality.

Consider a market with lemon and high-quality cars and buyers know that it
is likely to buy a lemon, which lowers then equilibrium price. However,
seller is better informed if the car is lemon or high-quality. So, in this
situation, benefit from exchange might disappear and no transaction takes
place.

Due to the complexity and opaqueness, mortgage market in the pre-crisis era
is a good example of adverse selection. More elaborately, borrowers knew
more about their willingness and ability to pay than lenders. Financial risk
was created through the securitizations of the loans, i.e., mortgage backed
securities. From this point on, the originators of the mortgage loans knew
more about the risks than the people they were selling them to investors in the
mortgage backed securities.

Let us try to model adverse selection using Python. It is readily observable in
insurance industry and therefore I would like to focus on this industry to
model adverse selection.

Suppose that the consumer utility function is:

U(x) = eγx

where x is income and γ is a parameter, which takes on values between 0
and 1.

NOTE
Utility function is a tool used to represent consumer preferences for goods and service and
it is concave for risk-averse individuals.



The ultimate aim of this example is to decide whether or not to buy an
insurance based on consumer utility.

For the sake of practice, I assume that the income is $2 USD and cost of the
accident is $1.5 USD.

Now it is time to calculate the probability of loss, π, which is exogenously
given and it is uniformly distributed.

As a last step, in order to find equilibrium, I have to define supply and
demand for insurance coverage. The following code block indicates how we
can model the adverse selection.

In [10]: import matplotlib.pyplot as plt
         import numpy as np
         plt.style.use('seaborn')

In [11]: def utility(x):
             return(np.exp(x ** gamma))

In [12]: pi = np.random.uniform(0,1,20)
         pi = np.sort(pi)

In [13]: print('The highest three probability of losses are {}'.format(pi[-3:]))
         The highest three probability of losses are [0.73279622 0.82395421
          0.88113894]

In [14]: y = 2
         c = 1.5
         Q = 5
         D = 0.01
         gamma = 0.4

In [15]: def supply(Q):
             return(np.mean(pi[-Q:]) * c)

In [16]: def demand(D):
             return(np.sum(utility(y - D) > pi * utility(y - c) + (1 - pi) * 
utility(y)))

In [17]: plt.figure()
         plt.plot([demand(i) for i in np.arange(0, 1.9, 0.02)], np.arange(0, 1.9, 
0.02),
                  'r', label='insurance demand')
         plt.plot(range(1,21), [supply(j) for j in range(1,21)],



                  'g', label='insurance supply')
         plt.ylabel("Average Cost")
         plt.xlabel("Number of People")
         plt.legend()
         plt.savefig('images/adverse_selection.png')
         plt.show()

Writing a function for risk-averse utility function.

Generating random samples from uniform distribution.

Picking the last three items.

Writing a function for supply of insurance contracts.

Writing a function for demand of insurance contracts.

Figure 1-2 exhibits the insurance supply and demand curve. Surprisingly,
both curve are downward sloping implying that as more people demand
contract and more people is added on the contract, the risk lowers that affects
the price of the insurance contract.

Straight line presents the insurance supply and average cost of the contract
and the line, showing step-wise downward slope, denotes the demand for
insurance contracts. As we start analysis with the risky customers as you can
add more and more people to the contract the level of riskiness diminishes in
parallel with the average cost.



Figure 1-2. Adverse Selection

Moral Hazard
Market failures also result from asymmetric information. In moral hazard
situation, one party of the contract assumes more risk than the other party.
Formally, moral hazard may be defined as a situation in which more
informed party takes advantages of the private information at his disposal to
the detriment of others.

For a better understanding of moral hazard, a simple example can be given
from the credit market: Suppose that entity A demands credit for use in
financing the project, which is considered as feasible to finance. Moral
hazard arises if entity A utilizes the loan for the payment of credit debt to
bank C, without prior notice to the lender bank. While allocating credit, the
moral hazard situation that banks may encounter arises as a result of
asymmetric information, decreases banks’ lending appetites and appears as
one of the reasons why banks put so much labor on credit allocation process.



Some argue that rescue operation undertaken by FED for LCTM can be
considered as moral hazard in a way that FED enters into contracts on bad
faith.

Conclusion
This chapter presents the main concepts of financial risk management with a
view to make sure that we are all on the same page. This refresher helps us a
lot throughout this book because we use these terms and concepts.

In addition to that, a behavioral approach, attacking the rationale of a finance
agent, is discussed in the last part of the first chapter so that we have more
encompassing tools to account for the sources of financial risk.

In the next chapter, we will discuss the time series approach, which is one of
the main pillars of the financial analysis in the sense that most of the financial
data has a time dimension requiring special attention and technique to deal
with.
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Chapter 2. Introduction to Time
Series Modeling

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the author’s
raw and unedited content as they write—so you can take advantage of these
technologies long before the official release of these titles.

This will be the 2nd chapter of the final book. Please note that the GitHub
repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this chapter,
please reach out to the editor at mcronin@oreilly.com.

Market behavior is examined using large amounts of past data, such as high-
frequency bid-ask quotes of currencies or stock prices. It is the abundance of
data that makes possible the empirical study of the market. Although it is not
possible to run controlled experiments, it is possible to extensively test on
historical data.

— Henri Poincare

Some models account better for some phenomena, certain approaches capture the
characteristics of an event in a solid way. Time series modeling is a vivid
example for this because vast majority of financial data have time dimension,
which makes time series applications a necessary tool for finance. In simple
terms, the ordering of the data and correlation among them is of importance.

In this chapter of the book, classical time series models will be discussed and the
performance of these models will be compared. On top of that, the deep learning
based time series analysis will be introduced in the [Link to Come], which has
entirely different approach in terms of data preparation and model structure. The
classical models to be visited include moving average model (MA),
autoregressive model (AR), and finally autoregressive integrated moving average

mailto:mcronin@oreilly.com


model (ARIMA). What is common across these models are the information
carried by the historical observations. If these historical observations are
obtained from error terms, it is referred to as moving average, if these
observations come out of time series itself, it turns out to be autoregressive. The
other model, namely ARIMA, is an extension of these models.

Here is a formal definition of time series:

A time series is a set of observations Xt, each one being recorded at a
specific time t. A discrete-time time series (the type to which this book is
primarily devoted) is one in which the set T0 of times at which observations
are made is a discrete set, as is the case, for example, when observations are
made at fixed time intervals. Continuous time series are obtained when
observations are recorded continuously over some time interval.

—Brockwell and Davis (2016)

Let us observe what data with time dimension looks like. Figure 2-1 exhibits the
oil prices for the period of 1980-2020 and the following Python code shows us a
way of producing this plot.

In [1]: import quandl
        import matplotlib.pyplot as plt
        import warnings
        warnings.filterwarnings('ignore')
        plt.style.use('seaborn')

In [2]: oil = quandl.get("NSE/OIL", authtoken="vEjGTysiCFBuN-z5bjGP",
                         start_date="1980-01-01",
                         end_date="2020-01-01")

In [3]: plt.figure(figsize=(10, 6))
        plt.plot(oil.Close)
        plt.ylabel('$')
        plt.xlabel('Date')
        plt.savefig('images/Oil_Price.png')
        plt.show()

Extracting data from Quandl database



Figure 2-1. Oil Price between 1980-2020

NOTE
An API, or Application Programming Interface, is a tool designed for retrieving data using code.
We will make use of different APIs throughout the book. In the preceding practice, Quandl API
is used.

Quandl API allows us to access financial, economic, and alternative data from the Quandl
website. In order to have your Qnadl API,please visit quanld website first and get your own API
key following the necessary steps.

As can be understood from the definition provided above, time series models can
be applicable to diverse areas such as:

Health Care

Finance

Economics

Network Analysis

https://www.quandl.com/tools/api


Astronomy

Weather

The superiority of time series approach comes from the idea that correlation of
observations in time explain better the current value. Having data with correlated
structure in time implies a violation the famous identically and independently
distribution, IID assumption for short, which is at the heart of many models.

THE DEFINITION OF IID
IID assumption enables us to model joint probability of data as the product of
probability of observations. The process Xt is said to be an IID with mean 0
and variance σ2:

Xt ∼ IID(0,σ2)

So, due to the correlation in time, the dynamics of contemporaneous stock price
can be better understood by its own historical values. How can we comprehend
the dynamics of the data? This is a question that we can address by elaborating the
components of time series.

Time Series Component
Time series has four components, namely trend, seasonality, cyclicality, and
residual. In python, we can easily visualize the components of a time series by
seasonal_decompose function:

In [4]: import yfinance as yf
        import numpy as np
        import pandas as pd
        import datetime
        import statsmodels.api as sm
        from statsmodels.tsa.stattools import adfuller
        from statsmodels.tsa.seasonal import seasonal_decompose

In [5]: ticker = '^GSPC'
        start = datetime.datetime(2015, 1, 1)
        end = datetime.datetime(2021, 1, 1)
        SP_prices = yf.download(ticker, start=start, end=end, interval='1mo').Close



        [*********************100%***********************]  1 of 1 completed

In [6]: seasonal_decompose(SP_prices, period=12).plot()
        plt.savefig('images/decomposition.png')
        plt.show()

Denoting ticker of S&P-500

Identifying the start and end dates

Accessing the closing price of S&P-500

In the top panel of the Figure 2-2, we see the plot of raw data and in the second
panel trend can be observed showing upward movement. In the third panel,
seasonality is exhibited and finally residual is presented exhibiting an erratic
fluctuations. You might wonder where the cyclicality component is, noise and
cyclical component are put together under residual component.

Figure 2-2. Time Series Decomposition of S&P-500

Becoming familiar with time series components is important for further analysis
so that we are able to understand characteristic of the data and propose a suitable



model. Let’s start with trend component.

Trend
Trend indicates a general tendency of an increase or decrease during a given time
period. Generally speaking, trend is present when the starting and ending points
are different or having upward/downward slope in a time series.

In [7]: plt.figure(figsize=(10, 6))
        plt.plot(SP_prices) 
        plt.title('S&P-500 Prices')
        plt.ylabel('$')
        plt.xlabel('Date')
        plt.savefig('images/SP_price.png')
        plt.show()

Aside from the period in which S&P-500 index price plunges, we see a clear
upward trend in the Figure 2-3 between 2010 and 2020.

Figure 2-3. S&P-500 Price



Plotting line plot is not the mere option used for understanding trend. Rather we
have some other strong tool for this task. So, at this point, it is worthwhile to talk
about the two important statistical concepts:

Autocorrelation Function

Partial Autorcorrelation Function

Autocorrelation function, known as ACF, is a statistical tool to analyze the
relationship between current value of a time series and its lagged values.
Graphing ACF enables us to readily observe the serial dependence in a time
series.

ρ̂(h) =
Cov(Xt,Xt−h)

Var(Xt)

Figure 2-4 denotes autocorrelation function plot. The vertical lines shown in the
Figure 2-4 represents the correlation coefficients, the first line denotes the
correlation of the series with its 0 lag, i.e., it is the correlation with itself. The
second line indicates the correlation between series value at time t-1 and t. In the
light of these, we can conclude that S&P-500 shows a serial dependence. It
appears to be a strong dependence between the current value and lagged values of
S&P-500 data because the correlation coefficients, represented by lines in the
ACF plot, decays in a slow fashion.

In [8]: sm.graphics.tsa.plot_acf(SP_prices,lags=30)
        plt.xlabel('Number of Lags')
        plt.savefig('images/acf_SP.png')
        plt.show()

Plotting Autocorrelation Function



Figure 2-4. Autocorrelation Function Plot of S&P-500

Now, the question is what would be the likely sources of autocorrelations? Here
are some reasons:

The primary source of autocorrelation is “carryover” meaning that the
preceding observation has an impact on the current one.

Model misspecification.

Measurement error, which is basically the difference between observed
and actual values.

Dropping a variable, which has an explanatory power.

Partial autocorrelation function (PACF) is another method to examine the
relationship between Xt and Xt−p, p ∈ Z. ACF is commonly considered as a
useful tool in MA(q) model simply because PACF does not decay fast but
approaches towards 0. However, the pattern of ACF is more applicable to MA.
PACF is, on the other hand, work well with AR(p) process.

PACF provides information on correlation between current value of a time series
and its lagged values controlling for the other correlations.



It is not easy to figure out what is going on at first glance. Let me give you an
example. Suppose that we want to compute the partial correlation Xt and Xt−h.
To do that, I take into account the correlation structure between Xt and Xt−1 and 
Xt−2.

Put mathematically:

ρ̂(h) = Cov(Xt,Xt−h|Xt−1,Xt−2...Xt−h−1)

√Var(Xt|Xt−1,Xt−2,...,Xt−h−1)Var(Xt−h|Xt−1,Xt−2,...,Xt−h−1)

where h is the lag.

In [9]: sm.graphics.tsa.plot_pacf(SP_prices, lags=30)
        plt.xlabel('Number of Lags')
        plt.savefig('images/pacf_SP.png')
        plt.show()

Plotting Partial Autocorrelation Function

Figure 2-5 exhibits the PACF of raw S&P-500 data. In interpreting the PACF, we
focus on the spikes outside the dark region representing confidence interval.
Figure 2-5 exhibits some spikes at different lags but the lag 16 is outside the
confidence interval. So, it may be wise to select a model with 16 lags so that I am
able to include all the lags up to lag 16.



Figure 2-5. Partial Autocorrelation Function Plot of S&P-500

As discussed, PACF measures the correlation between current values of series
and lagged values of it in a way to isolate in between effects.

Seasonality
Seasonality exists if there are regular fluctuations over a given period of time. For
instance, energy usages can show seasonality characteristic. To be more specific,
energy usage goes up and down in certain periods over a year.

To show how we can detect seasonality component, let us use FRED database,
which includes more than 500,000 economic data series from over 80 sources
covering issues and information relating to many areas such as banking,
employment, exchange rates, gross domestic product, interest rates, trade and
international transactions, and so on.

In [10]: from fredapi import Fred
         import statsmodels.api as sm

In [11]: fred = Fred(api_key='78b14ec6ba46f484b94db43694468bb1')#insert you api key

In [12]: energy = fred.get_series("CAPUTLG2211A2S",
                                  observation_start="2010-01-01",



                                  observation_end="2020-12-31")
         energy.head(12)
Out[12]: 2010-01-01    83.7028
         2010-02-01    84.9324
         2010-03-01    82.0379
         2010-04-01    79.5073
         2010-05-01    82.8055
         2010-06-01    84.4108
         2010-07-01    83.6338
         2010-08-01    83.7961
         2010-09-01    83.7459
         2010-10-01    80.8892
         2010-11-01    81.7758
         2010-12-01    85.9894
         dtype: float64

In [13]: plt.plot(energy)
         plt.title('Energy Capacity Utilization')
         plt.ylabel('$')
         plt.xlabel('Date')
         plt.savefig('images/energy.png')
         plt.show()
In [14]: sm.graphics.tsa.plot_acf(energy,lags=30)
         plt.xlabel('Number of Lags')
         plt.savefig('images/energy_acf.png')
         plt.show()

Accessing the energy capacity utilization from Fred database for the period of
2010-2020.

Figure 2-6 indicates a periodic ups and downs over nearly 10-year period as to
have high capacity utilization in the first months of every year and then goes down
towards the end of year confirming that there is a seasonality in energy capacity
utilization.



Figure 2-6. Seasonality in Energy Capacity Utilization

Figure 2-7. ACF of Energy Capacity Utilization



Cyclicality
What if data does not show fixed period movements? At this point, cyclicality
comes into the picture. It exists when higher periodic variation than the trend
emerges. Some confuse cyclicality and seasonality in a sense that they both exhibit
expansion and contraction. We can, however, think of cyclicality as business
cycles, which takes a long time to complete its cycle and the ups and downs over
a long horizon. So, cyclicality is different from seasonality in the sense that there
is no fluctuation in a fixed period. An example for cyclicality may be the house
purchases (or sales) depending on mortgage rate. That is, when a mortgage rate is
cut (or raise), it leads to a boost for house purchase (or sales).

Residual
Residual is known as irregular component of time series. Technically speaking,
residual is equal to the difference between observations and related fitted values.
So, we can think of it as a left over from the model.

As we have discussed before time series models lack in some core assumptions
but it does not necessarily mean that time series models are free from
assumptions. I would like to stress the most prominents one, which is called
stationarity.

Stationarity means that statistical properties such as mean, variance, and
covariance of the time series do not change over time.

There are two forms of stationarity:

1) Weak Stationarity: Time series, Xt, is said to be stationarity if

Xt has finite variance, E(X2
t ) < ∞, ∀t ∈ Z

Mean value of Xt is constant and does solely depend on time,
E(Xt) = μ, t∀ ∈ Z

Covariance structure, γ(t, t + h), depends on the time difference only:

γ(h) = γh + γ(t + h, t)

In words, time series should have finite variance with constant mean, and
covariance structure that is a function of time difference.



2) Strong Stationarity: If the joint distribution of Xt1,Xt2, . . .Xtk is the same
with the shifted version of set Xt1+h,Xt2+h, . . .Xtk+h, it is referred to as strong
stationarity. Thus, strong stationarity implies that distribution of random variable
of a random process is the same with shifting time index.

The question is now why do we need stationarity? The reason is two fold.

First, in the estimation process, it is essential to have some distribution as time
goes on. In other words, if distribution of a time series change over time, it
becomes unpredictable and cannot be modeled.

The ultimate aim of time series models is forecasting. To do that we should
estimate the coefficients first, which corresponds to learning in Machine Learning.
Once we learn and conduct forecasting analysis, we assume that the distribution of
the data in estimation stays the same in a way that we have the same estimated
coefficients. If this is not the case, we should re-estimate the coefficients because
we are unable to to forecast with the previous estimated coefficients.

Having structural break such as financial crisis generates a shift in distribution.
We need to take care of this period cautiously and separately.

The other reason of having stationarity data is, by assumption, some statistical
models require stationarity data, but it does not mean that some models requires
stationary only. Instead, all models require stationary but event if you feed the
model witn non-stationary data, some model, by design, turn it into stationary one
and process it. Built-in functions in Python facilitates this analysis as follows:

In [15]: stat_test = adfuller(SP_prices)[0:2]
         print("The test statistic and p-value of ADF test are {}".format(stat_test))
         The test statistic and p-value of ADF test are (0.030295120072926063,
          0.9609669053518538)

ADF test for stationarity

Printing the first four decimals test statistic and p-value of ADF test

Figure 2-4 below shows the slow decaying lags amounting to non-stationary
because persistence of the high correlation between lag of the time series
continues.



There are, by and large, two ways to understand the non-stationarity: Visualization
and statistical method. The latter, of course, has better and robust way of detecting
the non-stationarity. However, to improve our understanding, let’s start with the
ACF. Slow-decaying ACF implies that the data is non-stationary because it
presents a strong correlation in time. That is what I observe in S&P-500 data.

The statistical way of detecting non-stationarity is more reliable and ADF test is
widely appreciated test. According to this test result given above, the p-value of
0.99 suggests that there is non-stationarity in the data, which we need to deal with
before moving forward.

Taking difference is an efficient technique to remove the stationarity. Taking
difference is nothing but to subtract current value of series from its first lagged
value, i.e., xt − xt−1 and the following python code presents how to apply this
technique:

In [16]: diff_SP_price = SP_prices.diff()

In [17]: plt.figure(figsize=(10, 6))
         plt.plot(diff_SP_price)
         plt.title('Differenced S&P-500 Price')
         plt.ylabel('$')
         plt.xlabel('Date')
         plt.savefig('images/diff_SP_price.png')
         plt.show()
In [18]: sm.graphics.tsa.plot_acf(diff_SP_price.dropna(),lags=30)
         plt.xlabel('Number of Lags')
         plt.savefig('images/diff_acf_SP.png')
         plt.show()
In [19]: stat_test2=adfuller(diff_SP_price.dropna())[0:2]
         print("The test statistic and p-value of ADF test after differencing are {}"\ 
               .format(stat_test2))
         The test statistic and p-value of ADF test after differencing are
          (-7.0951058730170855, 4.3095548146405375e-10)

Taking difference of S&P-500 prices

ADF test result based on differenced S&P-500 data

After taking first difference, we re-run the ADF test to see if it worked and yes it
does. The very low p-value of ADF tells me that S&P-500 data is stationary now.



This can be observable from the line plot provided below. Unlike the raw S&P-
500 plot, Figure 2-8 exhibits fluctuations around the mean with similar volatility
meaning that we have a stationary series.

Figure 2-8. Detrended S&P-500 Price



Figure 2-9. Detrended S&P-500 Price

Needless to say, trend is not the only indicator of non-stationarity. Seasonality is
another source of it and now we are about to learn a method to deal with it.

First, let us observe the ACF of energy capacity utilization Figure 2-7 showing
periodic ups and downs, which is a sign of non-stationarity.

In order to get rid of seasonality, we first apply resample method to calculate
annual mean, which is used as denominator in the following formula:

Seasonal Index =
Value of a Seasonal Time Series

Seasonal Average

Thus, the result of the application, seasonal index, gives us the de-seasonalized
time series. The following code shows us how we code this formula in Python.

In [20]: seasonal_index = energy.resample('Q').mean()

In [21]: dates = energy.index.year.unique()
         deseasonalized = []
         for i in dates:
             for j in range(1, 13):
                 deseasonalized.append((energy[str(i)][energy[str(i)].index.month==j]))
         concat_deseasonalized = np.concatenate(deseasonalized)



In [22]: deseason_energy = []
         for i,s in zip(range(0, len(energy), 3), range(len(seasonal_index))):
             deseason_energy.append(concat_deseasonalized[i:i+3] / 
seasonal_index.iloc[s])
         concat_deseason_energy = np.concatenate(deseason_energy)
         deseason_energy = pd.DataFrame(concat_deseason_energy, index=energy.index)
         deseason_energy.columns = ['Deaseasonalized Energy']
         deseason_energy.head()
Out[22]:             Deaseasonalized Energy
         2010-01-01                1.001737
         2010-02-01                1.016452
         2010-03-01                0.981811
         2010-04-01                0.966758
         2010-05-01                1.006862

In [23]: sm.graphics.tsa.plot_acf(deseason_energy, lags=10)
         plt.xlabel('Number of Lags')
         plt.savefig('images/deseason_energy_acf.png')
         plt.show()
In [24]: sm.graphics.tsa.plot_pacf(deseason_energy, lags=10)
         plt.xlabel('Number of Lags')
         plt.savefig('images/deseason_energy_pacf.png')
         plt.show()

Calculation quarterly mean of energy utilization.

Defining the years in which seasonality analysis is run.

Computing the numerator of Seasonal Index formula.

Concatenating the de-seasonalized energy utilization.

Computing Seasonal Index using pre-defined formula.

Figure 2-10 suggests that there is a statistically significant correlation at lag 1 and
2 but ACF does not show any periodic characteristics, which is another way of
saying de-seasonalization.



Figure 2-10. De-seasonalized ACF of Energy Utilization

Similarly, in the Figure 2-11, though we have spike at some lags, PACF do not
show any periodic ups and downs. So, we can say that the data is de-seasonalized
using seasonal index formula.



Figure 2-11. De-seasonalized PACF of Energy Utilization

What we have now is the less periodic ups and down in energy capacity
utilization, meaning that the data turns out to be de-seasonalized.

Finally, we are ready to move forward and discuss the time series models.

Time Series Models
Traditional time series models are univariate models and they follow the
following phases:

Identification: In this process, we explore the data using ACF, PACF,
identifying pattern, and conducting statistical tests.

Estimation: This part belongs to estimation coefficients via proper
optimization technique.

Diagnostics: Having estimated, we need to check if information criteria
or ACF/PACF suggest that the model is valid. If so, we move on to
forecasting stage.



Forecast: This part is more about the performance of the model. In
forecasting, we predict future values based on our estimation.

Figure 2-12 indicates the modeling process. Accordingly, subsequent to
identification of the variables and the estimation process, model is run. Only after
running a proper diagnostics, we are able to perform the forecast analysis.

Figure 2-12. Modeling Process

In modeling a data with a time dimension, we should consider correlation in
adjacent points in time. This consideration takes us to time series modeling as we
discuss before. My aim, in modeling time series, is to fit a model and comprehend
statistical character of a time series, which fluctuates randomly in time.

Recall the discussion about the IID process, which is the most basic time series
model and is sometimes referred to as white noise. Let’s touch the concept of
white noise.



White Noise
The time series ϵt is said to be white noise if it satisfies the following:

ϵt ∼ WN(0,σ2
ϵ)

Corr(ϵt, ϵs) = 0, ∀t ≠ s

In words, ϵt has mean of 0 and constant variance. Moreover, there is no
correlation between successive terms of ϵt.

Well, it is easy to say that white noise process is stationary and plot of white
noise exhibits fluctuations around mean in a random fashion in time.

However, as the white noise is formed by uncorrelated sequence, it is not an
appealing model from forecasting standpoint. Differently, uncorrelation prevents
us to forecast future values.

As we can observe from the Figure Figure 2-13 below, white noise oscillates
around mean and it is completely erratic.

In [25]: mu = 0 
         std = 1 
         WN = np.random.normal(mu, std, 1000) 
 
         plt.plot(WN) 
         plt.xlabel('Number of Simulation') 
         plt.savefig('images/WN.png') 
         plt.show()



Figure 2-13. White Noise Process

From this point on, we need to identify the optimum number of lag before running
the time series model. As you can imagine deciding the optimal number of lag is a
challenging task. The most widely used methods are: ACF, PACF, and
information criteria. ACF and PACF have been discussed and, for the sake of
comprehensiveness, information criteria, AIC for short, will also be introduced.



INFORMATION CRITERIA
Detecting the optimal number of lag is a cumbersome task. We need to have a
criteria to decide which model fits best to the data as there may be numerous
potentially good models. Akaike Information Criteria, a.k.a AIC, as
Cavanaugh and Neath (2019) denote that

AIC is introduced as an extension to the Maximum Likelihood Principle.
Maximum likelihood is conventionally applied to estimate the
parameters of a model once structure and dimension of the model have
been formulated.

AIC can be mathematically defined as:

AIC = −2ln(MaximumLikelihood) + 2d

where d is the total number of parameters. The last term, 2d in the equation
aims at reducing the risk of overfitting. It is also called as penalty term by
which I can filter out the unnecessary redundancy in the model.

BIC is the other information criteria used to select best model. The penalty
term in BIC is larger than that of AIC.

BIC = −2ln(MaximumLikelihood) + ln(n) * d

where n is the number of observations.

Please note that you need to treat the AIC with caution if the proposed model is
finite dimensional. This fact is well put by Clifford and Hurvich (1989):

If the true model is infinite dimensional, a case which seems most realistic in
practice, AIC provides an asymptotically efficient selection of a finite
dimensional approximating model. If the true model is finite dimensional,
however, the asymptotically efficient methods, e.g., Akaike’s FPE (Akaike,
1970), AIC, and Parzen’s CAT (Parzen, 1977), do not provide consistent
model order selections.

Let’s get started to visit classical time series model with Moving Average model.

Moving Average Model



Moving average (MA) and residuals are closely related models. Moving average
can be considered as smoothing model as it tends to take into account the lag
values of residual. For the sake of simplicity, let us start with MA(1):

Xt = ϵt + αϵt−1

As long as α ≠ 0, it has nontrivial correlation structure. Intuitively, MA(1) tells
us that the time series has been affected by ϵt and ϵt−1 only.

In general form, MA(q) equation becomes:

Xt = ϵt + α1ϵt−1 + α2ϵt−2... + αqϵt−q

From this point on, to be consistent, we will model the data of two major IT
companies, namely Apple and Microsoft. Yahoo Finance provides a convenient
tool to access closing price of the related stocks for the period of 01-01-2019 and
01-01-2021.

As a first step, we dropped the missing values and check if the data is stationary
and it turns out neither Apple nor Microsoft stock prices have stationary structure
as expected. Thus, taking first difference to make these data stationary and
splitting the data as train and test are the steps to be taken at this point. The
following code shows us how we can do these in Python.

In [26]: ticker = ['AAPL', 'MSFT']
         start = datetime.datetime(2019, 1, 1)
         end = datetime.datetime(2021, 1, 1)
         stock_prices = yf.download(ticker, start=start, end = end, interval='1d').Close
         [*********************100%***********************]  2 of 2 completed

In [27]: stock_prices = stock_prices.dropna()

In [28]: for i in ticker:
             stat_test = adfuller(stock_prices[i])[0:2]
             print("The ADF test statistic and p-value of {} are  
{}".format(i,stat_test))
         The ADF test statistic and p-value of AAPL are  (0.29788764759932335,
          0.9772473651259085)
         The ADF test statistic and p-value of MSFT are  (-0.8345360070598484,
          0.8087663305296826)

In [29]: diff_stock_prices = stock_prices.diff().dropna()

In [30]: split = int(len(diff_stock_prices['AAPL'].values) * 0.95)



         diff_train_aapl = diff_stock_prices['AAPL'].iloc[:split]
         diff_test_aapl = diff_stock_prices['AAPL'].iloc[split:]
         diff_train_msft = diff_stock_prices['MSFT'].iloc[:split]
         diff_test_msft = diff_stock_prices['MSFT'].iloc[split:]

In [31]: diff_train_aapl.to_csv('diff_train_aapl.csv')
         diff_test_aapl.to_csv('diff_test_aapl.csv')
         diff_train_msft.to_csv('diff_train_msft.csv')
         diff_test_msft.to_csv('diff_test_msft.csv')

In [32]: fig, ax = plt.subplots(2, 1, figsize=(10, 6))
         plt.tight_layout()
         sm.graphics.tsa.plot_acf(diff_train_aapl,lags=30, ax=ax[0], title='ACF - Apple')
         sm.graphics.tsa.plot_acf(diff_train_msft,lags=30, ax=ax[1], title='ACF - 
Microsoft')
         plt.savefig('images/acf_ma.png')
         plt.show()

Retrieving monthly closing stock prices.

Splitting data as 95% and 5%.

Assigning 95% of the Apple stock price data to the train set.

Assigning 5% of the Apple stock price data to the test set.

Assigning 95% of the Microsoft stock price data to the train set.

Assigning 5% of the Microsoft stock price data to the test set.

Saving the data for future use.

Looking at the first panel of Figure 2-14, it can be observed that there is a
significant spikes at some lags and, to be on the safe side, we choose lag 9 for
short moving average model and 22 for long moving average. These implies that
order of 9 will be our short-term order and 22 will become our long-term order in
modeling MA.



Figure 2-14. ACF After First Difference

In [33]: short_moving_average_appl = diff_train_aapl.rolling(window=9).mean()
         long_moving_average_appl = diff_train_aapl.rolling(window=22).mean()

In [34]: fig, ax = plt.subplots(figsize=(10, 6))
         ax.plot(diff_train_aapl.loc[start:end].index,
                 diff_train_aapl.loc[start:end],
                 label='Stock Price', c='b')
         ax.plot(short_moving_average_appl.loc[start:end].index,
                 short_moving_average_appl.loc[start:end],
                 label = 'Short MA',c='g')
         ax.plot(long_moving_average_appl.loc[start:end].index,
                 long_moving_average_appl.loc[start:end],
                 label = 'Long MA',c='r')
         ax.legend(loc='best')
         ax.set_ylabel('Price in $')
         ax.set_title('Stock Prediction-Apple')
         plt.savefig('images/ma_apple.png')
         plt.show()

Moving average with short window for Apple stock

Moving average with long window for Apple stock



Line plot of first differenced Apple stock prices

Visualization of short window Moving Average result for Apple

Visualization of long window Moving Average result for Apple

Figure 2-15 exhibits the short-term moving average model result with green color
and long-term moving average model result with red color. As expected, it turns
out that short-term moving average tends to more reactive to daily Apple stock
price change compared to long-term moving average. It makes sense because
taking into account a long moving average generates smooth prediction.

Figure 2-15. Moving Average Model Prediction Result for Apple

In the next step, we try to predict Microsoft stock price using moving average
model with different window. But before proceeding, let me say that choosing
proper window for short and long moving average analysis is a key to good
modeling. In the second panel of Figure 2-14, it seems to have significant spikes
at 2 and 23 and these lags are used in short and long moving average analysis,



respectively. After identifying the window, let us fit data to moving average model
with the following application.

In [35]: short_moving_average_msft = diff_train_msft.rolling(window=2).mean() 
         long_moving_average_msft = diff_train_msft.rolling(window=23).mean() 
 
In [36]: fig, ax = plt.subplots(figsize=(10, 6)) 
         ax.plot(diff_train_msft.loc[start:end].index, 
                 diff_train_msft.loc[start:end], 
                 label='Stock Price',c='b') 
         ax.plot(short_moving_average_msft.loc[start:end].index, 
                 short_moving_average_msft.loc[start:end], 
                 label = 'Short MA',c='g') 
         ax.plot(long_moving_average_msft.loc[start:end].index, 
                 long_moving_average_msft.loc[start:end], 
                 label = 'Long MA',c='r') 
         ax.legend(loc='best') 
         ax.set_ylabel('$') 
         ax.set_xlabel('Date') 
         ax.set_title('Stock Prediction-Microsoft') 
         plt.savefig('images/ma_msft.png') 
         plt.show()

Similarly, predictions based on short moving average analysis tends to be more
reactive than those of long moving average model in Figure 2-16. But, in
Microsoft case, the short-term moving average prediction appears to be very
close to the real data.



Figure 2-16. Moving Average Model Prediction Result for Microsoft

Autoregressive Model
Dependence structure of succesive terms is the most distinctive feature of the
autoregressive model in the sense that current value is regressed over its own lag
values in this model. So, we basically forecast the current value of the time series 
Xt by using a linear combination of its past values. Mathematically, the general
form of AR(p) can be written as:

Xt = c + α1Xt−1 + α2Xt−2... + αpXt−p + ϵt

where ϵt denotes the residuals and c is the intercet term. AR(p) model implies that
past values up to order p have somewhat explanatory power on Xt. If the
relationship has shorter memory, then it is likely to model Xt with less number of
lags.

We have discussed the one of the main properties in time series, which is
stationarity and the other important property is invertibility. After introducing



AR model, it is time to show the invertibility of the MA process. It is said to be
invertible if it can be converted to infinite AR model.

Differently, under some circumstances, MA can be written as an infinite AR
process. These circumstances are to have stationary covariance structure,
deterministic part, and invertible MA process. In doing so, we have another
model called infinite AR thanks to the assumption of |α| < 1.

Xt = ϵt + αϵt−1

= ϵt + α(Xt−1 − αϵt−2)

= ϵt + αXt−1 − α2ϵt−2

= ϵt + αXt−1 − α2(Xt−2 + αϵt−3)

= ϵt + αXt−1 − α2Xt−2 + α3ϵt−3)

= ...

= αXt−1 − α2Xt−2 + α3ϵt−3 − α4ϵt−4 + ... − (−α)nϵt−n

After doing necessary math equation gets the following form:

αnϵt−n = ϵt −
n−1

∑
i=0

αiXt−i

In this case, if |α| < 1. Then n → ∞

E(ϵt −
n−1

∑
i=0

αiXt−i)
2

) = E(α2nϵ2
t−n → ∞)

Finally, MA(1) process turns out to be:

ϵt =
∞

∑
i=0

αiXt−i

Due to the duality between AR and MA processes, it is possible to represent
AR(1) as infinite MA, MA(∞). In other words, the AR(1) process can be



expressed as a function of past values of innovations.

Xt = ϵt + θXt−1

= θ(θXt−2 + ϵt−1) + ϵt

= θ2Xt−2 + θϵt−1 + ϵt

= θ2(θXt−3 + θϵt−2)θϵt−1 + ϵt

Xt = ϵt + ϵt−1 + θ2ϵt−2 + ... + θtXt

As n → ∞, θt → 0, so I can represent AR(1) as an infite MA process.

In the following analysis, we run autoregressive model to predict Apple and
Microsoft stock prices. Unlike moving average, partial autocorrelation function is
a useful tool to find out the optimum order in autoregressive model. This is
because, in AR, we aim at finding out the relationship of a time series between
two different time, say Xt and Xt−k and to do that I need to filter out the effect of
other lags in between.

In [37]: sm.graphics.tsa.plot_pacf(diff_train_aapl,lags=30) 
         plt.title('PACF of Apple') 
         plt.xlabel('Number of Lags') 
         plt.savefig('images/pacf_ar_aapl.png') 
         plt.show()
In [38]: sm.graphics.tsa.plot_pacf(diff_train_msft,lags=30) 
         plt.title('PACF of Microsoft') 
         plt.xlabel('Number of Lags') 
         plt.savefig('images/pacf_ar_msft.png') 
         plt.show()

Based on Figure 2-17, obtained from first differenced of Apple stock price, we
observe a significant spike at lag 29 and Figure 2-18 exhibits that we have a
similar spike at lag 23. Thus, 29 and 23 are the lags that we am going to use in
modeling AR for Apple and Microsoft, respectively.



Figure 2-17. PACF for Apple

Figure 2-18. PACF for Microsoft



In [39]: from statsmodels.tsa.ar_model import AutoReg 
         import warnings 
         warnings.filterwarnings('ignore') 
 
In [40]: ar_aapl = AutoReg(diff_train_aapl.values, lags=26) 
         ar_fitted_aapl = ar_aapl.fit()  
 
In [41]: ar_predictions_aapl = ar_fitted_aapl.predict(start=len(diff_train_aapl), 
                                                      end=len(diff_train_aapl)\ 
                                                      + len(diff_test_aapl) - 1, 
                                                      dynamic=False)  
 
In [42]: for i in range(len(ar_predictions_aapl)): 
             print('==' * 25) 
             print('predicted values:{:.4f} & actual values:
{:.4f}'.format(ar_predictions_aapl[i], 
                                                                           
diff_test_aapl[i]))  
         ================================================== 
         predicted values:1.9207 & actual values:1.3200 
         ================================================== 
         predicted values:-0.6051 & actual values:0.8600 
         ================================================== 
         predicted values:-0.5332 & actual values:0.5600 
         ================================================== 
         predicted values:1.2686 & actual values:2.4600 
         ================================================== 
         predicted values:-0.0181 & actual values:3.6700 
         ================================================== 
         predicted values:1.8889 & actual values:0.3600 
         ================================================== 
         predicted values:-0.6382 & actual values:-0.1400 
         ================================================== 
         predicted values:1.7444 & actual values:-0.6900 
         ================================================== 
         predicted values:-1.2651 & actual values:1.5000 
         ================================================== 
         predicted values:1.6208 & actual values:0.6300 
         ================================================== 
         predicted values:-0.4115 & actual values:-2.6000 
         ================================================== 
         predicted values:-0.7251 & actual values:1.4600 
         ================================================== 
         predicted values:0.4113 & actual values:-0.8300 
         ================================================== 
         predicted values:-0.9463 & actual values:-0.6300 
         ================================================== 
         predicted values:0.7367 & actual values:6.1000 
         ================================================== 
         predicted values:-0.0542 & actual values:-0.0700 
         ================================================== 



         predicted values:0.1617 & actual values:0.8900 
         ================================================== 
         predicted values:-1.0148 & actual values:-2.0400 
         ================================================== 
         predicted values:0.5313 & actual values:1.5700 
         ================================================== 
         predicted values:0.3299 & actual values:3.6500 
         ================================================== 
         predicted values:-0.2970 & actual values:-0.9200 
         ================================================== 
         predicted values:0.9842 & actual values:1.0100 
         ================================================== 
         predicted values:0.3299 & actual values:4.7200 
         ================================================== 
         predicted values:0.7565 & actual values:-1.8200 
         ================================================== 
         predicted values:0.3012 & actual values:-1.1500 
         ================================================== 
         predicted values:0.7847 & actual values:-1.0300 
 
In [43]: ar_predictions_aapl = pd.DataFrame(ar_predictions_aapl)  
         ar_predictions_aapl.index = diff_test_aapl.index  
 
In [44]: ar_msft = AutoReg(diff_train_msft.values, lags=26) 
         ar_fitted_msft = ar_msft.fit()  
 
In [45]: ar_predictions_msft = ar_fitted_msft.predict(start=len(diff_train_msft), 
                                                      end=len(diff_train_msft)\ 
                                                      +len(diff_test_msft) - 1, 
                                                      dynamic=False)  
 
In [46]: ar_predictions_msft = pd.DataFrame(ar_predictions_msft)  
         ar_predictions_msft.index = diff_test_msft.index

Fitting Apple stock data with AR model.

Predicting the stock prices for Apple.

Comparing the predicted and real observations.

Turning array into dataframe to assign index.

Assign test data indices to predicted values.

Fitting Microsoft stock data with AR model.



Predicting the stock prices for Microsoft.

Turn array into dataframe to assign index.

Assign test data indices to predicted values.

In [47]: fig, ax = plt.subplots(2,1, figsize=(18, 15)) 
 
         ax[0].plot(diff_test_aapl, label='Actual Stock Price', c='b') 
         ax[0].plot(ar_predictions_aapl, c='r', label="Prediction") 
         ax[0].set_title('Predicted Stock Price-Apple') 
         ax[0].legend(loc='best') 
         ax[1].plot(diff_test_msft, label='Actual Stock Price', c='b') 
         ax[1].plot(ar_predictions_msft, c='r', label="Prediction") 
         ax[1].set_title('Predicted Stock Price-Microsoft') 
         ax[1].legend(loc='best') 
         for ax in ax.flat: 
             ax.set(xlabel='Date', ylabel='$') 
         plt.savefig('images/ar.png') 
 
         plt.show()

Figure 2-19 indicates the predictions based on AR model. Red lines represent the
Apple and Microsoft stock price predictions and blue lines denote the real data.
The result reveals that AR model is outperformed by MA model in capturing the
stock price.



Figure 2-19. Autoregressive Model Prediction Results



Autoregressive Integrated Moving Average Model
Autoregressive Integrated Moving Average Model, ARIMA for short, is a function
of past values of a time series and white noise. However, ARIMA is proposed as
a generalization of AR and MA but they do not have intergration parameter, which
helps us to feed model with the raw data. To this respect, even if we include non-
stationary data, ARIMA makes it stationary by properly defining the integration
parameter.

ARIMA has three parameters, namely p, d, q. As we are familiar from previous
time series models p and q refer to order of AR and MA, respectively. But d
controls for level difference. If d=1, it amounts to first difference and if it takes
the value of 0, it means that the model is ARMA.

It is possible to have d greater than one but it is not as common as having d of 1.
The ARIMA (p,1,q) equation has the following structure:

Xt = α1dXt−1 + α2dXt−2... + αpdXt−p + ϵt + β1dϵt−1 + β2dϵt−2... + βqdϵt−q

where d refers to difference.

As it is widely embraced and applicable model, Let us discuss the pros and cons
of the ARIMA model to get more familiar with the model.

Pros

ARIMA allows us to work with raw data without considering if it is
stationary.

It performs well with high-frequent data.

It is less sensitive to the fluctuation in the data compared to other models.

Cons

ARIMA might fail in capturing seasonality.

It work better with a long series and short-term (daily, hourly) data.

As no automatic updating occurs in ARIMA, no structural break during
the analysis period should be observed.

Having no adjustment in the ARIMA process leads to instability.



Now, we will show how ARIMA works and performs using the same stocks,
namely Apple and Microsoft.

In [48]: from statsmodels.tsa.arima_model import ARIMA

In [49]: split = int(len(stock_prices['AAPL'].values) * 0.95)
         train_aapl = stock_prices['AAPL'].iloc[:split]
         test_aapl = stock_prices['AAPL'].iloc[split:]
         train_msft = stock_prices['MSFT'].iloc[:split]
         test_msft = stock_prices['MSFT'].iloc[split:]

In [50]: arima_aapl = ARIMA(train_aapl,order=(9, 1, 9))
         arima_fitted_aapl = arima_aapl.fit()

In [51]: arima_msft = ARIMA(train_msft, order=(6, 1, 6))
         arima_fitted_msft = arima_msft.fit()

In [52]: arima_predictions_aapl = arima_fitted_aapl.predict(start=len(train_aapl),
                                                           end=len(train_aapl)\ 
                                                           + len(test_aapl) - 1,
                                                           dynamic=False)
         arima_predictions_msft = arima_fitted_msft.predict(start=len(train_msft),
                                                           end=len(train_msft)\ 
                                                           + len(test_msft) - 1,
                                                           dynamic=False)

In [53]: arima_predictions_aapl = pd.DataFrame(arima_predictions_aapl)
         arima_predictions_aapl.index = diff_test_aapl.index
         arima_predictions_msft = pd.DataFrame(arima_predictions_msft)
         arima_predictions_msft.index = diff_test_msft.index

Configuring the ARIMA model for Apple stock.

Fitting ARIMA model to Apple stock price.

Configuring the ARIMA model for Apple stock.

Fitting ARIMA model to Microsoft stock price.

Predicting the Apple stock prices based on ARIMA.

Predicting the Microsoft stock prices based on ARIMA.

Forming index for predictions



In [54]: fig, ax = plt.subplots(2, 1, figsize=(18, 15)) 
 
         ax[0].plot(diff_test_aapl, label='Actual Stock Price', c='b') 
         ax[0].plot(arima_predictions_aapl, c='r', label="Prediction") 
         ax[0].set_title('Predicted Stock Price-Apple') 
         ax[0].legend(loc='best') 
         ax[1].plot(diff_test_msft, label='Actual Stock Price', c='b') 
         ax[1].plot(arima_predictions_msft, c='r', label="Prediction") 
         ax[1].set_title('Predicted Stock Price-Microsoft') 
         ax[1].legend(loc='best') 
         for ax in ax.flat: 
             ax.set(xlabel='Date', ylabel='$') 
         plt.savefig('images/ARIMA.png') 
         plt.show()

Figure 2-20 exhibits the result of the prediction based on Apple and Microsoft
stock price and as I employ the same order in AR and MA model, it turns out to be
the same with these models.



Figure 2-20. ARIMA Prediction Results



At this conjecture, it is worthwhile discussing the alternative method for optimum
lag selection for time series models. AIC is the method that I apply here to select
the proper number of lags. Please note that, even though the result of the AIC
suggests (4, 0, 4), the model does not convergence with this orders. So, (4, 1, 4) is
applied instead.

In [55]: import itertools

In [56]: p = q = range(0, 9)
         d = range(0, 3)
         pdq = list(itertools.product(p, d, q))
         arima_results_aapl = []
         for param_set in pdq:
             try:
                 arima_aapl = ARIMA(train_aapl, order=param_set)
                 arima_fitted_aapl = arima_aapl.fit()
                 arima_results_aapl.append(arima_fitted_aapl.aic)
             except:
                 continue
         print('**'*25)
         print('The Lowest AIC score is {:.4f} and the corresponding parameters are {}'
               .format(pd.DataFrame(arima_results_aapl)
                      .where(pd.DataFrame(arima_results_aapl).T.notnull().all()).min()
[0],
                      pdq[arima_results_aapl.index(min(arima_results_aapl))]))
         **************************************************
         The Lowest AIC score is 1951.9810 and the corresponding parameters are (4,
          0, 4)

In [57]: arima_aapl = ARIMA(train_aapl, order=(4, 1, 4))
         arima_fitted_aapl = arima_aapl.fit()

In [58]: p = q = range(0, 6)
         d = range(0, 3)
         pdq = list(itertools.product(p, d, q))
         arima_results_msft = []
         for param_set in pdq:
             try:
                 arima_msft = ARIMA(stock_prices['MSFT'], order=param_set)
                 arima_fitted_msft = arima_msft.fit()
                 arima_results_msft.append(arima_fitted_msft.aic)
             except:
                 continue
         print('**'*25)
         print('The Lowest AIC score is {:.4f} and the corresponding parameters are {}'
               .format(pd.DataFrame(arima_results_msft)
                       .where(pd.DataFrame(arima_results_msft).T.notnull().all()).min()
[0],



                       pdq[arima_results_msft.index(min(arima_results_msft))]))
         **************************************************
         The Lowest AIC score is 2640.6367 and the corresponding parameters are (4,
          2, 4)

In [59]: arima_msft = ARIMA(stock_prices['MSFT'], order=(4, 2 ,4))
         arima_fitted_msft= arima_msft.fit()

In [60]: arima_predictions_aapl = arima_fitted_aapl.predict(start=len(train_aapl),
                                                           end=len(train_aapl)\ 
                                                           +len(test_aapl) - 1,
                                                           dynamic=False)
         arima_predictions_msft = arima_fitted_msft.predict(start=len(train_msft),
                                                           end=len(train_msft)\ 
                                                           + len(test_msft) - 1,
                                                           dynamic=False)

In [61]: arima_predictions_aapl = pd.DataFrame(arima_predictions_aapl)
         arima_predictions_aapl.index = diff_test_aapl.index
         arima_predictions_msft = pd.DataFrame(arima_predictions_msft)
         arima_predictions_msft.index = diff_test_msft.index

Defining a range for AR and MA orders.

Defining a range difference term.

Applying iteration over p, d, and q.

Create an empty list to store AIC values.

Configuring ARIMA model to fit Apple data.

Running the ARIMA model with all possible lags.

Storing AIC values into a list.

Printing the lowest AIC value for Apple data.

Configuring and fitting ARIMA model with optimum orders.

Running ARIMA model with all possible lags for Microsoft data.

Fitting ARIMA model to Microsoft data with optimum orders.



Predicting Apple and Microsoft stock prices.

In [62]: fig, ax = plt.subplots(2, 1, figsize=(18, 15)) 
 
         ax[0].plot(diff_test_aapl, label='Actual Stock Price', c='b') 
         ax[0].plot(arima_predictions_aapl, c='r', label="Prediction") 
         ax[0].set_title('Predicted Stock Price-Apple') 
         ax[0].legend(loc='best') 
         ax[1].plot(diff_test_msft, label='Actual Stock Price', c='b') 
         ax[1].plot(arima_predictions_msft, c='r', label="Prediction") 
         ax[1].set_title('Predicted Stock Price-Microsoft') 
         ax[1].legend(loc='best') 
         for ax in ax.flat: 
             ax.set(xlabel='Date', ylabel='$') 
         plt.savefig('images/ARIMA_AIC.png') 
         plt.show()

Orders identified for Apple and Microsoft are (4, 1, 4) and (4, 2, 4), respectively.
ARIMA does a good job in predicting the stock prices. However, please note that,
improper identification of the orders results in a poor fit and this, in turn,
produces predictions, which are far from being satisfactory.



Figure 2-21. ARIMA Prediction Results



Conclusion
Time series analysis has a central role in financial analysis. It is simply because
most of the financial data has time dimension and this type of data should be
modeled cautiously. So, this chapter is the first attempt to model data with time
dimension and to do that we have employed classical time series model, namely
moving average, autoregressive model, and finally autoregressive integrated
moving average. Do you think that that is the whole story? Absolutely, no! In the
next chapter, we will see how a time series can be modeled using deep learning
models.
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Chapter 3. Deep Learning for
Time Series Modeling

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 3rd chapter of the final book. Please note that the GitHub
repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at mcronin@oreilly.com.

... Yes, it is true that a Turing machine can compute any computable
function given enough memory and enough time, but nature had to solve
problems in real time. To do this, it made use of the brain’s neural
networks that, like the most powerful computers on the planet, have
massively parallel processors. Algorithms that run efficiently on them
will eventually win out.

— Terrence J. Sejnowski (2018)

Deep Learning has recently become a buzzword for some good reasons
though the attempt to improve deep learning practices are not the first of it
kind. However, it is quite understandable why deep learning has been
appreciated for nearly two decades. Deep learning is an abstract concept,
which makes it hard to define in a couple of words.

Differently from neural network, deep learning has more complex structure
and hidden layers define the complexity. Therefore, some researchers use

mailto:mcronin@oreilly.com


number of hidden layer as a comparison benchmark to distinguish the neural
network and deep learning, it is useful but not a rigorous way to make this
separation. So, a decent definition makes thing clear.

At a high level, deep learning can be defined as:

Deep-learning methods are representation-learningfootnote:
[Representation learning helps us to define a concept in a unique way.
For instance, if the task is to detect whether or not it is a circle, then
edges play a key role as circle has no edge. So, using color, shape, size,
we can create a representation for an object. In essence, this is how
human brain works and we know that deep learning structure inspires
from the functioning of it.] methods with multiple levels of
representation, obtained by composing simple but non-linear modules
that each transform the representation at one level (starting with the
raw input) into a representation at a higher, slightly more abstract level.

—Le Cunn et al. (2015)

Applications of deep learning dates back to 1940s in which Cybernetics is
published and then Connectivist thinking dominates the years between 1980s
and 1990s.Finally, recent development in deep learning such as
backpropagation and neural network has created the field as we know as
deep learning. Well, basically we are talking about three waves of deep
learning and now, it is tempting to ask why deep learning is living its
heyday? Goodfellow et al. (2016) list some plausible reasons, which are:

Increasing Data Sizes

Increasing Model Sizes

Increasing Accuracy, Complexity, and Real World Impact

It seems like modern technology and data availability pave the way for deep
learning era in which new data-driven methods are proposed so that we are
able to model time series using unconventional models. This development
has given rise a new wave of Deep Learning. In Deep Learning, two methods
stand out with their ability to include longer time periods: “Recurrent Neural
Network” (RNN) and “Long Short-Term Memory” (LSTM).



RNN and LSTM are two of them. In this part, we will concentrate on the
practicality of these models in Python after briefly discussing the theoretical
background.

Recurrent Neural Network
Recurrent Neural Network has a neural network structure with at least one
feedback connection so that network can learn sequences. Feedback
connection results in a loop enabling us unveil the non-linear characteristics.
This type of connection brings us a new and quite useful property: Memory.
Thus, RNN cannot only make use of the input data, but also the previous
outputs, which sounds compelling when it comes to time series modeling.

RNN comes in many forms such as:

One-to-One: It consists of single input and single output, which
makes it most basic type of RNN.

One-to-Many: In this form, RNN produces multiple outputs for a
single input.

Many-to-One: As opposed to One-to-Many structure, Many-to-one
has multiple inputs for a singly output.

Many-to-Many: It has multiple outputs and inputs and is known as
most complicated structure of RNN.

Hidden unit in RNN feeds itself back into the neural network so that RNN
has, unlike feed-forward neural network, recurrent layers, which makes it a
suitable method to model a time series data. Therefore, in RNN, activations
of a neuron comes from previous time step indication that RNN represents
accumulating state of the network instance (Buduma, 2017)

As summarized by Nielsen (2019):

RNN has time steps one at a time in an orderly fashion.

The state of the network stays as it is from one time step to another.



RNN updates its state based on the time step.

These dimensions are illustrated in Figure 3-1. As can be readily seen, RNN
structure on the right hand side has time step, which is the main difference
from feed forward network.

Figure 3-1. RNN Structure.

RNN has three dimensional inpuy, which are:

Batch size

Time steps

Number of feature

Batch size denotes the number of observations or number of rows of a data.
Time steps is the number of times to feed the model. Finally, number of

1



feature is the number of columns of each sample.

In [1]: import numpy as np
        import pandas as pd
        import math
        import datetime
        import yfinance as yf
        import matplotlib.pyplot as plt
        import tensorflow as tf
        from tensorflow.keras.models import Sequential
        from tensorflow.keras.callbacks import EarlyStopping
        from tensorflow.keras.layers import (Dense, Dropout, Activation,
                                             Flatten, MaxPooling2D,SimpleRNN)
        from sklearn.model_selection import train_test_split
        import warnings
        warnings.filterwarnings('ignore')

In [2]: n_steps = 13
        n_features = 1

In [3]: model = Sequential()
        model.add(SimpleRNN(512, activation='relu',
                            input_shape=(n_steps, n_features),
                            return_sequences=True))
        model.add(Dropout(0.2))
        model.add(Dense(256, activation = 'relu'))
        model.add(Flatten())
        model.add(Dense(1, activation='linear'))

In [4]: model.compile(optimizer='rmsprop', loss='mean_squared_error',metrics=
['mse'])

Defining the number of step to feed to RNN model.

Defining number of feature as 1.

Calling a Sequential model to run RNN.

Identifying number of hidden neurons, and activation function, input
shape.

Putting a dropout layer to prevent overfitting.



Adding one more hidden layer with 256 neuron with relu activation
function.

Flattenning the model to transform 3-dimensional matrix into a vector.

Adding an output layer with linear activation function.

Compiling RNN model.

In [5]: def split_sequence(sequence, n_steps):
            X, y = [], []
            for i in range(len(sequence)):
                end_ix = i + n_steps
                if end_ix > len(sequence) - 1:
                    break
                seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]
                X.append(seq_x)
                y.append(seq_y)
            return np.array(X), np.array(y)

Writing a function called split_sequence function to define look back
period.

Figure 3-2 indicates the stock price prediction results for Apple and
Microsoft. Although the prediction result do seem fine it fails to capture the
extreme values.





Figure 3-2. RNN Prediction Results

Even if we can have satisfactory predictive performance, the drawbacks of
the RNN model should not be overlooked. The main drawbacks of the model
are:

Vanishing or exploding gradient problem. Please see the side note
below for detailed explanation.

Training an RNN is a very difficult task as it require consideranle
amount of data.

RNN is unable to process very long sequences when tanh activation
function is used.

NOTE
Vanishing gradient is a commonplace problem in deep learning, which is not properly
designed. Vanishing gradient problem arises if the gradient tends to get smaller as we are
conducting backpropagation. It implies that neurons are learning so slow that optimization
grind to a halt.

Unlike vanishing gradient problem, exploding gradient problem occurs when small changes
in the backpropagation result in huge updates in the weights during optimization process.



ACTIVATION FUNCTIONS
Activation functions are mathematical equations that are used to
determine the output in neural network structure. Activation function is a
tool to introduce non-linearity in the hidden layers so that we are able to
model the non-linear issues.

Of the activation function, the followings are the most famous ones:

Sigmoid: This activation function allows us to incorporate small
amount of output as we introduce small changes in the model. It
takes values between 0 and 1. The mathematical representation
of sigmoid is:

sigmoid(x) =
1

1 + exp(−∑i wixi − b)

where w is weight, x denotes data, b represents bias, and subscript i
shows features.

Tanh: If you are handling with negative numbers, tanh is your
activation function. As opposed to sigmoid function, it ranges
between -1 and 1. The tanh formula is:

tanh(x) =
sinh(x)

cosh(x)

Linear: Using linear activation function enables us to build
linear relationship between independent and dependent
variables. Linear activation function takes the inputs and
multiplies by the weights and form the outputs. proportional to
the input. So, it is convenient activation function for time-series
models. Linear activation function takes the form of:

f(x) = wx



Rectified Linear: Rectified Linear activation function, known as
ReLu, can take 0 if the input is zero or below zero. If the input is
greater than 0, it goes up in line with x. Mathematically:

ReLu(x) = max(0, x)

Softmax: It is widely applicable to classification problem as in
sigmoid because softmax converts input into probabilistic
distribution proportional to the exponential of the input
numbers:

softmax(xi) =
exp(xi)

∑i exp(xi)

Drawbacks of RNN are well-stated by Haviv et al. (2019) as:

This is due to the dependency of the network on its past states, and
through them on the entire input history. This ability comes with a cost -
RNNs are known to be hard to train (Pascanu et al., 2013a). This
difficulty is commonly associated with the vanishing gradient that
appears when trying to propagate errors over long times (Hochreiter,
1998). When training is successful, the network’s hidden state represents
these memories. Understanding how such representation forms
throughout training can open new avenues for improving learning of
memory-related tasks.

Long-Short Term Memory
Long-Short Term Memory, LSTM for short, deep learning approach has been
developed by Hochreiter and Schmidhuber (1997) and it is mainly based on
Gated Recurrent Unit (GRU).

GRU is proposed to deal with vanishing gradient problem, which is a
common problem in neural network structure and occurs when weight update
becomes too small to create a significant change in the network. GRU



consists of two gates: Update and reset. When an early observation is
detected as highly important, then we do not update the hidden state. In a
similar fashion, when early observations are not significant, it leads to reset
the state.

As we previously discussed, the one of the most appealing features of RNN
is its ability to connect past and present information. However, this ability
turns out to be a failure when “long-term dependencies” comes into the
picture. Long-term dependencies mean that model learns from early
observations.

For instance, let us examine the following sentence:

Countries have their own currencies as in USA where people transact with
dollar

In the case of short-dependencies, it is known that the next predicted word is
about a currency but if it is asked which currency is that? Then, things get
complicated as we might have various currencies in the text implying long-
term dependencies. It is needed to go way back to find something relevant
about country using dollar.

LSTM tries to attack the weakness of RNN in long-term dependencies in a
way that LSTM has a quite useful tool to get rid of the unnecessary
information so that it works more efficiently. LSTM works with gates,
enabling LSTM to forget irrelevant data. These are:

Forget gates

Input gates

Output gates

Forget gates is created to sort out the necessary and unnecessary information
so that LSTM performs more efficiently than RNN. In doing so, the value of
activation function, sigmoid, becomes zero if the information is irrelevant.
Forget gate can be formulated as:

Ft = σ(XtWI + ht−1Wf + bf)



where σ is activation function, ht−1 is previous hidden state, WI  and Wh are
weights, and finally bf  is bias parameter in forget cell.

Input gate is fed by current timestep, Xt, and hidden state of the previous
timestep t − 1. The goal of input gate is to determine the extent to
information that should be added to the long-term state. The input gate can be
formulated like this:

It = σ(XtWI + ht−1Wh + bI)

Output gate basically determines the extent of the output that should be read
and works as follows:

Ot = σ(XtWO + ht−1WO + bI)

The gates are not the sole components of LSTM. The other components are:

Candidate Memory cell

Memory cell

Hidden state

Candidate memory cell determines the extent to which information passes to
the cell state. Differently, the activation function in the candidate cell is tanh
and takes the following form:

Ĉt = ϕ(XtWc + ht−1Wc + bc)

Memory cell allows LSTM to remember or to forget the information:

Ct = Ft ⊙ C + t − 1 + It ⊙ Ĉt

where ⊙ is hadamard product.

In this recurrent network, hidden state is a tool to circulate information.
Memory cell relates output gate to hidden state:

ht = ϕ(ct) ⊙ Ot



Let us try to predict the Apple and Microsoft stock price using LSTM and see
how it works:

In [18]: from tensorflow.keras.layers import LSTM

In [19]: n_steps = 13
         n_features = 1

In [20]: model = Sequential()
         model.add(LSTM(512, activation='relu',
                   input_shape=(n_steps, n_features),
                   return_sequences=True))
         model.add(Dropout(0.2))
         model.add(LSTM(256,activation='relu'))
         model.add(Flatten())
         model.add(Dense(1, activation='linear'))

In [21]: model.compile(optimizer='rmsprop', loss='mean_squared_error', metrics=
['mse'])

Calling LSTM model and identifying the number of neurons and features

In [22]: history = model.fit(X_aapl, y_aapl, 
                             epochs=400, batch_size=150, verbose=0, 
                             validation_split = 0.10) 
 
In [23]: start = X_aapl[X_aapl.shape[0] - 13] 
         x_input = start 
         x_input = x_input.reshape((1, n_steps, n_features)) 
 
In [24]: tempList_aapl = [] 
         for i in range(len(diff_test_aapl)): 
             x_input = x_input.reshape((1, n_steps, n_features)) 
             yhat = model.predict(x_input, verbose=0) 
             x_input = np.append(x_input, yhat) 
             x_input = x_input[1:] 
             tempList_aapl.append(yhat)



NOTE
The central idea of Root Mean Square Propagation, RMSprop for short, is a optimization
method in which we calculate weighted average of squares gradients and exponential
average of squares of gradients the moving average of the squared gradients for each
weight. Then, find the difference of weight, which is to be used to compute new weight.

vt = ρvt−1 + 1 − ρg2
t

Δwt = −
ν

√η + ϵ
gt

wt+1 = wt + Δwt

Figure 3-3 exhibits the prediction results and LSTM seems to outperform the
RNN in particular fitting the extreme values.





Figure 3-3. LSTM Prediction Results

Conclusion
This chapter is dedicated to the deep learning-based stock price prediction.
The models used are RNN and LSTM, which have ability on process longer
time period. These models do not suggest remarkable improvement but still
can be employed to model time series data. LSTM considers, in our case,
13-step look back period for prediction. For an extension, it would be wise
approach to include multiple features into the Deep Learning-based models,
which is not allowed in parametric time series models.

In the next part, volatility prediction will be discussed based on parametric
and machine learning models so that we will be able to compare the
performance of these models.
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Part II. Machine Learning for
Market, Credit, Liquidity, and

Operational Risks



Chapter 4. Machine Learning-
Based Volatility Prediction

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 4th chapter of the final book. Please note that the GitHub
repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at mcronin@oreilly.com.

The most critical feature of the conditional return distribution is
arguably its second moment structure, which is empirically the dominant
time-varying characteristic of the distribution. This fact has spurred an
enormous literature on the modeling and forecasting of return volatility.

—Andersen et al. (2003)

“Some concepts are easy to understand but hard to define. This also holds
true for volatility” This could be a quote from someone living before
Markowitz because the way he model the volatility is very clear and
intuitive. Markowitz proposes his celebrated portfolio theory in which
volatility is defined as standard deviation so that from then onward finance
has become more intertwined with mathematics.

Volatility is the backbone of finance in the sense that it does not only provide
information signal to investors but also inputs of various financial models.

mailto:mcronin@oreilly.com


What makes volatility so important? The answer stresses the importance of
uncertainty, which is the main characteristic of the financial model.

Increased integration of financial markets has led to a prolonged uncertainty
in financial market which in turn stresses the importance of volatility, degree
at which values of financial assets changes. Volatility has been used as a
proxy of risk that in an among the most important variable in many field such
as asset pricing and risk management. Its strong presence and latency make it
even compulsory to model. Basel Accord, therefore, came into effect in
1996, and volatility as a risk measure has taken the key role in risk
management (Karasan and Gaygisiz, 2020).

There is a large and growing body of literature regarding the volatility
estimation after the ground-breaking study of Black (1976), Raju and Ghosh
(2004), Andersen and Bollerslev (1997), Dokuchaev (2014), and De Stefani
et al. (2017). So, we are talking about a long tradition in volatility prediction
using ARCH and GARCH-type models in which there are certain drawbacks
that might cause failures, e.g., volatility clustering, information asymmetry
and so on. Even though, this issues are addressed via differently models, the
recent fluctuations in financial markets coupled with the development in
machine learning make researchers to rethink volatility estimation.

In this chapter, our aim is to show how we can enhance the predictive
performance using machine learning-based model. We will visit various
machine learning algorithms, namely support vector regression, neural
network, and deep learning, so that we are able to compare the predictive
performance.

Modeling volatility amounts to modeling uncertainty so that we better
understand and approach the uncertainty enabling us to have good enough
approximation to the real world. In order to gauge the extent to which
proposed model accounts for the real situation, we need to calculate the
return volatility, which is also known as realized volatility. Realized
volatility is the square root of realized variance, which is the sum of squared
return. Realized volatility is used to calculate the performance of the
volatility prediction method. Here is the formula for return volatility:



σ̂ = √ 1

n − 1
∑N

n=1
(rn − μ)2

where r and μ are return and mean of return, n is number of observations.

Let’s see how return volatility is computed in Python:

In [1]: import numpy as np
        from scipy.stats import norm
        import scipy.optimize as opt
        import yfinance as yf
        import pandas as pd
        import datetime
        import time
        from arch import arch_model
        import matplotlib.pyplot as plt
        from numba import jit
        from sklearn.metrics import mean_squared_error
        import warnings
        warnings.filterwarnings('ignore')

In [2]: stocks = '^GSPC'
        start = datetime.datetime(2010, 1, 1)
        end = datetime.datetime(2021, 8, 1)
        s_p500 = yf.download(stocks, start=start, end = end, interval='1d')
        [*********************100%***********************]  1 of 1 completed

In [3]: ret = 100 * (s_p500.pct_change()[1:]['Adj Close'])
        realized_vol = ret.rolling(5).std()

In [4]: plt.figure(figsize=(10, 6))
        plt.plot(realized_vol.index,realized_vol)
        plt.title('Realized Volatility- S&P-500')
        plt.ylabel('Volatility')
        plt.xlabel('Date')
        plt.savefig('images/realized_vol.png')
        plt.show()

Calculating the returns of S&P-500 based on adjusted closing prices.

Figure 4-1 shows the realized volatility of S&P-500 over the period of
2010-2021. The most striking observations is the spikes around Covid-19
pandemic.



Figure 4-1. Realized Volatility- S&P-500

The way volatility is estimated has an undeniable impact on the reliablity and
accuracy of the related analysis. So, this chapter deals with both classical
and ML-based volatility prediction techniques with a view to show the
superior prediction performance of the ML-based models. In order to
compare the brand new ML-based models, we start with modeling the
classical volatility models. Some very well known classical volatility
models are, but not limited to:

ARCH

GARCH

GJR-GARCH

EGARCH



It is time to dig into the classical volatilility models. Let’s start off with
ARCH model.

ARCH Model
One of the early attempt to model the volatility was proposed by Engel
(1982) and it is known as ARCH model. ARCH model is a univariate model
and it is based on the historical asset returns. The ARCH(p) model has the
following form:

σ2
t = ω +

p

∑
k=1

αk(rt−k)2

where

rt = σtϵt

where ϵt is assumed to be normally distributed. In this parametric model, we
need to satisfy some assumptions to have strictly positive variance. To this
respect, following condition should hold:

ω > 0

αk ≥ 0

All these equations tell us that ARCH is a univariate and non-linear model in
which volatility is estimated with squared of past returns. The one of the
most distinctive feature of ARCH is that it has the property of the time-
varying conditional variance  so that ARCH is able to model the
phenomenon known as volatility clustering, that is large changes tend to be
followed by large changes of either sign, and small changes tend to be
followed by small changes as put by Benoit Mandelbrot (1963). Hence, once
an important announcement arrives into the market, it might results in a huge
volatility.
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The following code block shows how to plot clustering and what it looks
like:

In [5]: retv = ret.values

In [6]: plt.figure(figsize=(10, 6))
        plt.plot(s_p500.index[1:], ret)
        plt.title('Volatility clustering of S&P-500')
        plt.ylabel('Daily returns')
        plt.xlabel('Date')
        plt.savefig('images/vol_clustering.png')
        plt.show()

Return dataframe into numpy representation.

Similar to spikes in realized volatility, Figure 4-2 suggests some large
movements and, unsurprisingly, these ups and downs happen around
important events such as Covid-19 pandemic in the mid-2020.



Figure 4-2. Volatility Clustering- S&P-500

Despite its appealing features such as simplicity, non-linearity, easiness, and
adjustment for forecast, it has certain drawbacks, which can be listed as:

Equal response to the positive and negative shocks.

Strong assumptions such as restrictions on parameters.

Possible misprediction due to slow-adjustment to large movements.

These drawbacks motivate researchers to work on extensions of ARCH
model and Bollerslev (1986) and Taylor (2008) proposed GARCH model.

Now, we will employ ARCH model to predict volatility but first let us
generate our own Python code and then compare it to see the difference with
the built-in Python code.

In [7]: n = 252
        split_date = ret.iloc[-n:].index



In [8]: sgm2 = ret.var()
        K = ret.kurtosis()
        alpha = (-3.0 * sgm2 + np.sqrt(9.0 * sgm2 ** 2 - 12.0 *
                                     (3.0 * sgm2 - K) * K)) / (6 * K)
        omega = (1 - alpha) * sgm2
        initial_parameters = [alpha, omega]
        omega,alpha
Out[8]: (0.6345749196895419, 0.46656704131150534)

In [9]: @jit(nopython=True, parallel=True)
        def arch_likelihood(initial_parameters, retv):
            omega = abs(initial_parameters[0])
            alpha = abs(initial_parameters[1])
            T = len(retv)
            logliks = 0
            sigma2 = np.zeros(T)
            sigma2[0] = np.var(retv)
            for t in range(1, T):
                sigma2[t] = omega + alpha * (retv[t - 1]) ** 2 
            logliks = np.sum(0.5 * (np.log(sigma2)+retv ** 2 / sigma2))
            return logliks

In [10]: logliks = arch_likelihood(initial_parameters, retv)
         logliks
Out[10]: 1453.127184488521

In [11]: def opt_params(x0, retv):
             opt_result = opt.minimize(arch_likelihood, x0=x0, args = (retv),
                                       method='Nelder-Mead',
                                       options={'maxiter': 5000})
             params = opt_result.x
             print('\nResults of Nelder-Mead minimization\n{}\n{}'
                   .format(''.join(['-'] * 28), opt_result))
             print('\nResulting params = {}'.format(params))
             return params

In [12]: params = opt_params(initial_parameters, retv)

         Results of Nelder-Mead minimization
         ----------------------------
          final_simplex: (array([[0.70168795, 0.39039044],
                [0.70163494, 0.3904423 ],
         [0.70163928, 0.39033154]]), array([1385.79241695, 1385.792417  ,
          1385.79241907]))
                    fun: 1385.7924169507244
                message: 'Optimization terminated successfully.'



                   nfev: 62
                    nit: 33
                 status: 0
                success: True
                      x: array([0.70168795, 0.39039044])

         Resulting params = [0.70168795 0.39039044]

In [13]: def arch_apply(ret):
                 omega = params[0]
                 alpha = params[1]
                 T = len(ret)
                 sigma2_arch = np.zeros(T + 1)
                 sigma2_arch[0] = np.var(ret)
                 for t in range(1, T):
                     sigma2_arch[t] = omega + alpha * ret[t - 1] ** 2
                 return sigma2_arch

In [14]: sigma2_arch = arch_apply(ret)

Defining the split location and assign the splitted data to split variable.

Calculating variance of S&P-500.

Calculating kurtosis of S&P-500.

Identifying the initial value for slope coefficient α.

Identifying the initial value for constant term ω.

Using paralel processing to decrease the processing time.

Taking absolute values and assigning the initial values into related
variables.

Identifying the initial values of volatility.

Iterating the variance of S&P-500.

Calculation log-likelihood.



Calling the function.

Minimizing the log-likelihood function.

Creating a variable params for optimized parameters.

Well, we model volatility via ARCH using our own optimization method and
ARCH equation. How about comparing it with the built-in Python code. This
built-in code can be imported from ARCH library and it is extremely easy-
to-apply. The result of built-in code is provided below and it turns out that
these two results are very similar to each other.

In [15]: arch = arch_model(ret, mean='zero', vol='ARCH', p=1).fit(disp='off') 
         print(arch.summary()) 
         Zero Mean - ARCH Model Results 
 
         ====================================================================== 
          ======== 
         Dep. Variable:              Adj Close   R-squared: 
          0.000 
         Mean Model:                 Zero Mean   Adj. R-squared: 
          0.000 
         Vol Model:                       ARCH   Log-Likelihood: 
          -4063.63 
         Distribution:                  Normal   AIC: 
          8131.25 
         Method:            Maximum Likelihood   BIC: 
          8143.21 
         No. Observations:                 2914 
 
         Date:                Tue, Sep 07 2021   Df Residuals: 
          2914 
         Time:                        11:19:08   Df Model: 
            0 
                                     Volatility Model 
         ======================================================================== 
                          coef    std err          t      P>|t|  95.0% Conf. Int. 
         ------------------------------------------------------------------------ 
         omega          0.7018  5.006e-02     14.018  1.214e-44 [  0.604,  0.800] 
         alpha[1]       0.3910  7.016e-02      5.573  2.506e-08 [  0.253,  0.529] 
         ======================================================================== 
 
         Covariance estimator: robust



Although developing our own code is always helpful and improve our
understanding, the beauty of built-in code is not only restricted to its
simplicity. Finding the optimal lag value using built-in code is another
advantage of it along with the optimized running procedure.

All we need is to create a for loop and define a proper information criteria.
Below, Bayesian Information Criteria (BIC) is chosen as the model selection
method and in order to select lag. The reason why BIC is picked is that as
long as we have large enough samples, BIC is a reliable tool for model
selection as discussed by Burnham and Anderson (2002 and 2004). Now, we
iterate ARCH model from 1 to 5 lags.

In [16]: bic_arch = []

         for p in range(1,5):
                 arch = arch_model(ret, mean='zero', vol='ARCH', p=p)\ 
                         .fit(disp='off')
                 bic_arch.append(arch.bic)
                 if arch.bic == np.min(bic_arch):
                     best_param = p
         arch = arch_model(ret, mean='Constant', vol='ARCH', p=p)\ 
                 .fit(disp='off')
         print(arch.summary())
         forecast = arch.forecast(start=split_date[0])
         forecast_arch = forecast
         Constant Mean - ARCH Model Results

         ======================================================================
          ========
         Dep. Variable:              Adj Close   R-squared:
          0.000
         Mean Model:             Constant Mean   Adj. R-squared:
          0.000
         Vol Model:                       ARCH   Log-Likelihood:
          -3691.03
         Distribution:                  Normal   AIC:
          7394.06
         Method:            Maximum Likelihood   BIC:
          7429.92
         No. Observations:                 2914

         Date:                Tue, Sep 07 2021   Df Residuals:
          2913
         Time:                        11:19:11   Df Model:



            1
         Mean Model

         ======================================================================
          ====
         coef    std err          t      P>|t|    95.0% Conf. Int.

         ----------------------------------------------------------------------
          ----
         mu             0.0852  1.391e-02      6.128  8.877e-10 [5.798e-02,
          0.113]
         Volatility Model

         ======================================================================
          ====
         coef    std err          t      P>|t|    95.0% Conf. Int.

         ----------------------------------------------------------------------
          ----
         omega          0.2652  2.618e-02     10.130  4.052e-24   [  0.214,
          0.317]
         alpha[1]       0.1674  3.849e-02      4.350  1.361e-05 [9.198e-02,
          0.243]
         alpha[2]       0.2357  3.679e-02      6.406  1.496e-10   [  0.164,
          0.308]
         alpha[3]       0.2029  3.959e-02      5.127  2.950e-07   [  0.125,
          0.281]
         alpha[4]       0.1910  4.270e-02      4.474  7.687e-06   [  0.107,
          0.275]
         ======================================================================
          ====

         Covariance estimator: robust

In [17]: rmse_arch = np.sqrt(mean_squared_error(realized_vol[-n:] / 100,
                                                np.sqrt(forecast_arch\ 
                                                        .variance.iloc[-
len(split_date):]
                                                        / 100)))
         print('The RMSE value of ARCH model is {:.4f}'.format(rmse_arch))
         The RMSE value of ARCH model is 0.0896

In [18]: plt.figure(figsize=(10, 6))
         plt.plot(realized_vol / 100, label='Realized Volatility')
         plt.plot(forecast_arch.variance.iloc[-len(split_date):] / 100,
                  label='Volatility Prediction-ARCH')
         plt.title('Volatility Prediction with ARCH', fontsize=12)
         plt.legend()



         plt.savefig('images/arch.png')
         plt.show()

Iterating ARCH parameter p over specified interval.

Running ARCH model with different p values.

Finding the minimum Bayesian Information Criteria score to select the
best model.

Running ARCH model with the best p value.

Forecasting the volatility based on the optimized ARCH model.

Calculating the RMSE score.

The result of volatility prediction based on our first model is shown in
Figure 4-3.



Figure 4-3. Volatility Prediction with ARCH

GARCH Model
GARCH model is an extension of ARCH model incorporating lagged
conditional variance. So, ARCH is improved by adding p number of delated
conditional variance, which makes GARCH model a multivariate one in the
sense that it is a autoregressive moving average models for conditional
variance with p number of lagged squared returns and q number of lagged
conditional variance. GARCH (p, q) can be formulated as:

σ2
t = ω +

q

∑
k=1

αkr
2
t−k +

p

∑
k=1

βkσ
2
t−k

where ω, β, and α are parameters to be estimated and q and p are maximum
lag in the model. In order to have consistent GARCH, following conditions



should hold:

ω > 0

β ≥ 0

α ≥ 0

β + α < 1

ARCH model is unable to capture the influence of historical innovations.
However, as a more parsimonious model, GARCH model can account for the
change in historical innovations because GARCH models can be expressed
as an infinite-order ARCH. Let’s show how GARCH can be shown as
infinite order of ARCH.

σ2
t = ω + αr2

t−1 + βσ2
t−1

Then replace σ2
t−1 by ω + αr2

t−2 + βσ2
t−2

σ2
t = ω + αr2

t−1 + β(ω + αr2
t−2σ

2
t−2)

= ω(1 + β) + αr2
t−1 + βαr2

t−2 + β2σ2
t−2)

Now, let us substitute σ2
t−2 by ω + αr2

t−3 + βσ2
t−3 and do the necessary

math, we end up with:

σ2
t = ω(1 + β + β2+. . . ) + α

∞

∑
k=1

βk−1rt−k

Similar to ARCH model, there are more than one way to model volatility
using GARCH in Python. Let us try to develop our own Python-based code
using optimization technique first. In what follows, arch library will be used
to predict volatility.

In [19]: a0 = 0.0001 
         sgm2 = ret.var() 
         K = ret.kurtosis() 



         h = 1 - alpha / sgm2 
         alpha = np.sqrt(K * (1 - h ** 2) / (2.0 * (K + 3))) 
         beta = np.abs(h - omega) 
         omega = (1 - omega) * sgm2 
         initial_parameters = np.array([omega, alpha, beta]) 
         print('Initial parameters for omega, alpha, and beta  are \n{}\n{}\n{}' 
               .format(omega, alpha, beta)) 
         Initial parameters for omega, alpha, and beta  are 
         0.43471178001576827 
         0.512827280537482 
         0.02677799855546381 
 
In [20]: retv = ret.values 
 
In [21]: @jit(nopython=True, parallel=True) 
         def garch_likelihood(initial_parameters, retv): 
             omega = initial_parameters[0] 
             alpha = initial_parameters[1] 
             beta = initial_parameters[2] 
             T =  len(retv) 
             logliks = 0 
             sigma2 = np.zeros(T) 
             sigma2[0] = np.var(retv) 
             for t in range(1, T): 
                 sigma2[t] = omega + alpha * (retv[t - 1]) ** 2 + beta * sigma2[t-1] 
             logliks = np.sum(0.5 * (np.log(sigma2) + retv ** 2 / sigma2)) 
             return logliks 
 
In [22]: logliks = garch_likelihood(initial_parameters, retv) 
         print('The Log likelihood  is {:.4f}'.format(logliks)) 
         The Log likelihood  is 1387.7215 
 
In [23]: def garch_constraint(initial_parameters): 
             alpha = initial_parameters[0] 
             gamma = initial_parameters[1] 
             beta = initial_parameters[2] 
             return np.array([1 - alpha - beta]) 
 
In [24]: bounds = [(0.0, 1.0), (0.0, 1.0), (0.0, 1.0)] 
 
In [25]: def opt_paramsG(initial_parameters, retv): 
             opt_result = opt.minimize(garch_likelihood, 
                                       x0=initial_parameters, 
                                       constraints=np.array([1 - alpha - beta]), 
                                       bounds=bounds, args = (retv), 
                                       method='Nelder-Mead', 
                                       options={'maxiter': 5000}) 
             params = opt_result.x 



             print('\nResults of Nelder-Mead minimization\n{}\n{}'\ 
                   .format('-' * 35, opt_result)) 
             print('-' * 35) 
             print('\nResulting parameters = {}'.format(params)) 
             return params 
 
In [26]: params = opt_paramsG(initial_parameters, retv) 
 
         Results of Nelder-Mead minimization 
         ----------------------------------- 
          final_simplex: (array([[0.03918956, 0.17370549, 0.78991502], 
                [0.03920507, 0.17374466, 0.78987403], 
                [0.03916671, 0.17377319, 0.78993078], 
         [0.03917324, 0.17364595, 0.78998753]]), array([979.87109624, 979.8710967 , 
          979.87109865, 979.8711147 ])) 
                    fun: 979.8710962352685 
                message: 'Optimization terminated successfully.' 
                   nfev: 178 
                    nit: 102 
                 status: 0 
                success: True 
                      x: array([0.03918956, 0.17370549, 0.78991502]) 
         ----------------------------------- 
 
         Resulting parameters = [0.03918956 0.17370549 0.78991502] 
 
In [27]: def garch_apply(ret): 
                 omega = params[0] 
                 alpha = params[1] 
                 beta = params[2] 
                 T = len(ret) 
                 sigma2 = np.zeros(T + 1) 
                 sigma2[0] = np.var(ret) 
                 for t in range(1, T): 
                     sigma2[t] = omega + alpha * ret[t - 1] ** 2 + beta * sigma2[t-
1] 
                 return sigma2

The parameters we get from our own GARCH code are approximately:

ω = 0.0375

α = 0.1724

β = 0.7913



The following built-in Python code confirms that we did a great job on as the
parameters obtained via the built-in code is almost the same with ours. So,
we have learned how to code GARCH and ARCH models to predict
volatility.

In [28]: garch = arch_model(ret, mean='zero', vol='GARCH', p=1, o=0, q=1)\ 
                 .fit(disp='off') 
         print(garch.summary()) 
         Zero Mean - GARCH Model Results 
 
         ====================================================================== 
          ======== 
         Dep. Variable:              Adj Close   R-squared: 
          0.000 
         Mean Model:                 Zero Mean   Adj. R-squared: 
          0.000 
         Vol Model:                      GARCH   Log-Likelihood: 
          -3657.62 
         Distribution:                  Normal   AIC: 
          7321.23 
         Method:            Maximum Likelihood   BIC: 
          7339.16 
         No. Observations:                 2914 
 
         Date:                Tue, Sep 07 2021   Df Residuals: 
          2914 
         Time:                        11:19:28   Df Model: 
            0 
         Volatility Model 
 
         ====================================================================== 
          ====== 
         coef    std err          t      P>|t|      95.0% Conf. Int. 
 
         ---------------------------------------------------------------------- 
          ------ 
         omega          0.0392  8.422e-03      4.652  3.280e-06 
          [2.268e-02,5.569e-02] 
         alpha[1]       0.1738  2.275e-02      7.637  2.225e-14     [  0.129, 
          0.218] 
         beta[1]        0.7899  2.275e-02     34.715 4.607e-264     [  0.745, 
          0.835] 
         ====================================================================== 
          ====== 
 
         Covariance estimator: robust



It is apparent that it is easy to work with GARCH(1, 1) but how do we know
that theses parameters are the optimum one. Let us decide the optimum
parameter set given the lowest BIC value.

In [29]: bic_garch = [] 
 
         for p in range(1, 5): 
             for q in range(1, 5): 
                 garch = arch_model(ret, mean='zero',vol='GARCH', p=p, o=0, q=q)\ 
                         .fit(disp='off') 
                 bic_garch.append(garch.bic) 
                 if garch.bic == np.min(bic_garch): 
                     best_param = p, q 
         garch = arch_model(ret, mean='zero', vol='GARCH', p=p, o=0, q=q)\ 
                 .fit(disp='off') 
         print(garch.summary()) 
         forecast = garch.forecast(start=split_date[0]) 
         forecast_garch = forecast 
         Zero Mean - GARCH Model Results 
 
         ====================================================================== 
          ======== 
         Dep. Variable:              Adj Close   R-squared: 
          0.000 
         Mean Model:                 Zero Mean   Adj. R-squared: 
          0.000 
         Vol Model:                      GARCH   Log-Likelihood: 
          -3653.12 
         Distribution:                  Normal   AIC: 
          7324.23 
         Method:            Maximum Likelihood   BIC: 
          7378.03 
         No. Observations:                 2914 
 
         Date:                Tue, Sep 07 2021   Df Residuals: 
          2914 
         Time:                        11:19:30   Df Model: 
            0 
         Volatility Model 
 
         ====================================================================== 
          ===== 
         coef    std err          t      P>|t|     95.0% Conf. Int. 
 
         ---------------------------------------------------------------------- 
          ----- 



         omega          0.1013  6.895e-02      1.469      0.142 [-3.388e-02, 
          0.236] 
         alpha[1]       0.1347  3.680e-02      3.660  2.525e-04  [6.255e-02, 
          0.207] 
         alpha[2]       0.1750      0.103      1.707  8.781e-02 [-2.593e-02, 
          0.376] 
         alpha[3]       0.0627      0.163      0.386      0.700    [ -0.256, 
          0.382] 
         alpha[4]       0.0655  8.901e-02      0.736      0.462    [ -0.109, 
          0.240] 
         beta[1]    1.7151e-15      0.734  2.337e-15      1.000    [ -1.438, 
          1.438] 
         beta[2]        0.2104      0.298      0.707      0.480    [ -0.373, 
          0.794] 
         beta[3]        0.2145      0.547      0.392      0.695    [ -0.857, 
          1.286] 
         beta[4]        0.0440      0.233      0.189      0.850    [ -0.412, 
          0.500] 
         ====================================================================== 
          ===== 
 
         Covariance estimator: robust 
 
In [30]: rmse_garch = np.sqrt(mean_squared_error(realized_vol[-n:] / 100, 
                                                 np.sqrt(forecast_garch\ 
                                                         .variance.iloc[-
len(split_date):] 
                                                         / 100))) 
         print('The RMSE value of GARCH model is {:.4f}'.format(rmse_garch)) 
         The RMSE value of GARCH model is 0.0878 
 
In [31]: plt.figure(figsize=(10,6)) 
         plt.plot(realized_vol / 100, label='Realized Volatility') 
         plt.plot(forecast_garch.variance.iloc[-len(split_date):] / 100, 
                  label='Volatility Prediction-GARCH') 
         plt.title('Volatility Prediction with GARCH', fontsize=12) 
         plt.legend() 
         plt.savefig('images/garch.png') 
         plt.show()



Figure 4-4. Volatility Prediction with GARCH

The main reasons of applying GARCH to volatility modeling are returns are
well fitted by GARCH model partly due to the volatility clustering and
GARCH does not assume that the returns are independent that allows
modeling the leptokurtic property of returns. However, despite these useful
properties and intuitiveness, GARCH is not able to asymmetric response of
the shocks (Karasan and Gaygisiz (2020)). To remedy this issue, GJR-
GARCH was proposed by Glosten, Jagannathan and Runkle (1993).

GJR-GARCH
This model performs well in modeling the asymmetric effects of the
announcements in a way that bad news has larger impact than that of good
news. In other words, in the presence of asymmetry, distribution of losses has
a fatter tail than the distribution of gains. The equation of the model includes
one more parameter γ and it takes the following form:
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where γ controls for the asymmetry of the announcements and if

γ = 0, then the response to the past shock is the same

γ > 0, then the response to the past negative shock is stronger than
that of a positive one

γ < 0, then the response to the past positive shock is stronger than
that of a negative one

In [32]: bic_gjr_garch = [] 
 
         for p in range(1, 5): 
             for q in range(1, 5): 
                 gjrgarch = arch_model(ret,mean='zero', p=p, o=1, q=q)\ 
                            .fit(disp='off') 
                 bic_gjr_garch.append(gjrgarch.bic) 
                 if gjrgarch.bic == np.min(bic_gjr_garch): 
                     best_param = p, q 
         gjrgarch = arch_model(ret,mean='zero', p=p, o=1, q=q)\ 
                    .fit(disp='off') 
         print(gjrgarch.summary()) 
         forecast = gjrgarch.forecast(start=split_date[0]) 
         forecast_gjrgarch = forecast 
         Zero Mean - GJR-GARCH Model Results 
 
         ====================================================================== 
          ======== 
         Dep. Variable:              Adj Close   R-squared: 
          0.000 
         Mean Model:                 Zero Mean   Adj. R-squared: 
          0.000 
         Vol Model:                  GJR-GARCH   Log-Likelihood: 
          -3588.89 
         Distribution:                  Normal   AIC: 
          7197.78 
         Method:            Maximum Likelihood   BIC: 
          7257.55 
         No. Observations:                 2914 
 
         Date:                Tue, Sep 07 2021   Df Residuals: 



          2914 
         Time:                        11:19:35   Df Model: 
            0 
         Volatility Model 
 
         ====================================================================== 
          ====== 
         coef    std err          t      P>|t|      95.0% Conf. Int. 
 
         ---------------------------------------------------------------------- 
          ------ 
         omega          0.0538  1.510e-02      3.560  3.712e-04 
          [2.416e-02,8.336e-02] 
         alpha[1]   8.9183e-03  5.189e-02      0.172      0.864  [-9.277e-02, 
          0.111] 
         alpha[2]       0.0000  6.279e-02      0.000      1.000     [ -0.123, 
          0.123] 
         alpha[3]       0.0000  6.520e-02      0.000      1.000     [ -0.128, 
          0.128] 
         alpha[4]       0.0480  4.966e-02      0.966      0.334  [-4.937e-02, 
          0.145] 
         gamma[1]       0.3271  7.842e-02      4.171  3.029e-05     [  0.173, 
          0.481] 
         beta[1]        0.7296      0.488      1.494      0.135     [ -0.228, 
          1.687] 
         beta[2]        0.0000      0.462      0.000      1.000     [ -0.905, 
          0.905] 
         beta[3]        0.0000      0.370      0.000      1.000     [ -0.725, 
          0.725] 
         beta[4]        0.0103      0.293  3.512e-02      0.972     [ -0.563, 
          0.584] 
         ====================================================================== 
          ====== 
 
         Covariance estimator: robust 
 
In [33]: rmse_gjr_garch = np.sqrt(mean_squared_error(realized_vol[-n:] / 100, 
                                                     np.sqrt(forecast_gjrgarch\ 
                                                             .variance.iloc[-
len(split_date):] 
                                                             / 100))) 
         print('The RMSE value of GJR-GARCH models is 
{:.4f}'.format(rmse_gjr_garch)) 
         The RMSE value of GJR-GARCH models is 0.0880 
 
In [34]: plt.figure(figsize=(10, 6)) 
         plt.plot(realized_vol / 100, label='Realized Volatility') 
         plt.plot(forecast_gjrgarch.variance.iloc[-len(split_date):] / 100, 



                  label='Volatility Prediction-GJR-GARCH') 
         plt.title('Volatility Prediction with GJR-GARCH', fontsize=12) 
         plt.legend() 
         plt.savefig('images/gjr_garch.png') 
         plt.show()

Figure 4-5. Volatility Prediction with GJR-GARCH

EGARCH
Together with the GJR-GARCH model, EGARCH proposed by Nelson
(1991), is a also tool for controlling for the effect of the asymmetric
announcements and additionally it is specified in logarithmic form, there is
no need to put restriction to avoid negative volatility.
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The main difference of EGARCH equation is that logarithm is taken of the
variance on the left-hand-side of the equation. This indicates the leverage
effect meaning that there exists a negative correlation between past asset
returns and volatility. If γ < 0, it implies leverage effect and if γ ≠ 0, it
shows asymmetry in volatility.

In [35]: bic_egarch = [] 
 
         for p in range(1, 5): 
             for q in range(1, 5): 
                 egarch = arch_model(ret, mean='zero',vol='EGARCH', p=p, o=1, q=q)\ 
                          .fit(disp='off') 
                 bic_egarch.append(egarch.bic) 
                 if egarch.bic == np.min(bic_egarch): 
                     best_param = p, q 
         egarch = arch_model(ret, mean='zero', vol='EGARCH', p=p, o=1, q=q)\ 
                  .fit(disp='off') 
         print(egarch.summary()) 
         forecast = egarch.forecast(start=split_date[0]) 
         forecast_egarch = forecast 
         Zero Mean - EGARCH Model Results 
 
         ====================================================================== 
          ======== 
         Dep. Variable:              Adj Close   R-squared: 
          0.000 
         Mean Model:                 Zero Mean   Adj. R-squared: 
          0.000 
         Vol Model:                     EGARCH   Log-Likelihood: 
          -3575.09 
         Distribution:                  Normal   AIC: 
          7170.17 
         Method:            Maximum Likelihood   BIC: 
          7229.94 
         No. Observations:                 2914 
 
         Date:                Tue, Sep 07 2021   Df Residuals: 
          2914 
         Time:                        11:19:38   Df Model: 
            0 
         Volatility Model 
 
         ====================================================================== 
          ======== 
         coef    std err          t      P>|t|       95.0% Conf. Int. 



 
         ---------------------------------------------------------------------- 
          -------- 
         omega      -1.9786e-03  8.231e-03     -0.240      0.810 
          [-1.811e-02,1.415e-02] 
         alpha[1]        0.1879  8.662e-02      2.170  3.004e-02    [1.816e-02, 
          0.358] 
         alpha[2]        0.0661      0.130      0.508      0.612      [ -0.189, 
          0.321] 
         alpha[3]       -0.0129      0.212 -6.081e-02      0.952      [ -0.429, 
          0.403] 
         alpha[4]        0.0936  9.336e-02      1.003      0.316   [-8.936e-02, 
          0.277] 
         gamma[1]       -0.2230  3.726e-02     -5.986  2.149e-09      [ -0.296, 
          -0.150] 
         beta[1]         0.8400      0.333      2.522  1.168e-02      [  0.187, 
          1.493] 
         beta[2]     4.1051e-14      0.658  6.235e-14      1.000      [ -1.290, 
          1.290] 
         beta[3]     1.2375e-14      0.465  2.659e-14      1.000      [ -0.912, 
          0.912] 
         beta[4]         0.0816      0.202      0.404      0.686      [ -0.314, 
          0.478] 
         ====================================================================== 
          ======== 
 
         Covariance estimator: robust 
 
In [36]: rmse_egarch = np.sqrt(mean_squared_error(realized_vol[-n:] / 100, 
                                                  np.sqrt(forecast_egarch.variance\ 
                                                          .iloc[-len(split_date):] 
                                                          / 100))) 
         print('The RMSE value of EGARCH models is {:.4f}'.format(rmse_egarch)) 
         The RMSE value of EGARCH models is 0.0895 
 
In [37]: plt.figure(figsize=(10, 6)) 
         plt.plot(realized_vol / 100, label='Realized Volatility') 
         plt.plot(forecast_egarch.variance.iloc[-len(split_date):] / 100, 
                  label='Volatility Prediction-EGARCH') 
         plt.title('Volatility Prediction with EGARCH', fontsize=12) 
         plt.legend() 
         plt.savefig('images/egarch.png') 
         plt.show()



Figure 4-6. Volatility Prediction with GJR-GARCH

Given the RMSE result, the best and worst performing models are GARCH
and ARCH, respectively. But there is no big differences among the
performance of the model we have used above. In particular, during
bad/good news announcement, the performances of EGARCH and GJR-
GARCH might be different due to the asymmetry in the market.

Model RMSE

ARCH 0.0896

GARCH 0.0878

GJR-GARCH 0.0880

EGARCH 0.0895



Up to now, we have discussed the classical volatility models but from this
point on we will see how Machine Learning and Bayesian Approach can be
used to model volatility. In the context of Machine Learning, Support Vector
Machines and Neural Network will be the first models to visit. Let’s get
started.

Support Vector Regression-GARCH
Support Vector Machines (SVM) is a supervised learning algorithm, which
can be applicable to both classification and regression. The aim in SVM is to
find a line that separate two classes. It sounds easy but here is the
challenging part: There are almost infinitely many lines that can be used to
distinguish the classes. But we are looking for the optimal line by which the
classes can be perfectly discriminated.

In linear algebra, the optimal line is called hyperplane, which maximize the
distance between the points, which are closest to the hyperplane but
belonging to different classes. The distance between the two points, i.e.,
support vectors, is known as margin. So, in SVM, what we are trying to do is
to maximize the margin between support vectors.

SVM for classification is labeled as Support Vector Classification (SVC).
Keeping all characteristics of SVM, it can be applicable to regression.
Again, in regression, the aim is to find the hyperplane that minimize the error
and maximize the margin. This method is called Support Vector Regression
(SVR) and, in this part, we will apply this method to GARCH model.
Combining these two models comes up with a different name: SVR-GARCH.



KERNEL FUNCTION
What happens if the data we are working on cannot be linearly
separable. That would be a huge headache for us but no worries we have
Kernel functions to remedy this problem. It is a nice and easy method to
model non-linear and high dimensional data. The steps we take in Kernel
SVM are:

1. Move the data into high dimension

2. Find suitable hyperplane

3. Go back to initial data

To do that we use kernel functions. Using the idea of feature map
indicating that our original variables mapped to new set of quantities and
passed to learning algorithm.

Finally, instead of input data we use following main Kernel functions in
optimization procedures:

Polynomial Kernel: K(x, z) = (xTz + b).

Radial Basis (Gaussian) Kernel: K(x, z) = exp(−
|x−z|2

2σ2 ).

Exponential Kernel: K(x, z) = exp(− |x−z|
σ
). where x is

input, b is bias or constant, and z is linear combination of x .

The following code shows us the preparations before running then SVR-
GARCH in Python. The most crucial step here is to obtain independent
variables, which are realized volatility and square of historical returns.

In [38]: from sklearn.svm import SVR
         from scipy.stats import uniform as sp_rand
         from sklearn.model_selection import RandomizedSearchCV
         from sklearn.metrics import mean_squared_error

2



In [39]: realized_vol = ret.rolling(5).std()
         realized_vol = pd.DataFrame(realized_vol)
         realized_vol.reset_index(drop=True, inplace=True)

In [40]: returns_svm = ret ** 2
         returns_svm = returns_svm.reset_index()
         del returns_svm['Date']

In [41]: X = pd.concat([realized_vol, returns_svm], axis=1, ignore_index=True)
         X = X[4:].copy()
         X = X.reset_index()
         X.drop('index', axis=1, inplace=True)

In [42]: realized_vol = realized_vol.dropna().reset_index()
         realized_vol.drop('index', axis=1, inplace=True)

In [43]: svr_poly = SVR(kernel='poly')
         svr_lin = SVR(kernel='linear')
         svr_rbf = SVR(kernel='rbf')

Computing realized volatility and assign a new variable to it named
realized_vol.

Creating a new variables for different SVR kernel.

Let us run and see our first SVR-GARCH application with linear kernel.
Root mean squared error (RMSE) is the metric to be used to compare.

In [44]: para_grid = {'gamma': sp_rand(),
                      'C': sp_rand(),
                      'epsilon': sp_rand()}
         clf = RandomizedSearchCV(svr_lin, para_grid)
         clf.fit(X.iloc[:-n].values,
                 realized_vol.iloc[1:-(n-1)].values.reshape(-1,))
         predict_svr_lin = clf.predict(X.iloc[-n:])

In [45]: predict_svr_lin = pd.DataFrame(predict_svr_lin)
         predict_svr_lin.index = ret.iloc[-n:].index

In [46]: rmse_svr = np.sqrt(mean_squared_error(realized_vol.iloc[-n:] / 100,
                                              predict_svr_lin / 100))
         print('The RMSE value of SVR with Linear Kernel is 
{:.6f}'.format(rmse_svr))



         The RMSE value of SVR with Linear Kernel is 0.000648

In [47]: realized_vol.index = ret.iloc[4:].index

In [48]: plt.figure(figsize=(10, 6))
         plt.plot(realized_vol / 100, label='Realized Volatility')
         plt.plot(predict_svr_lin / 100, label='Volatility Prediction-SVR-GARCH')
         plt.title('Volatility Prediction with SVR-GARCH (Linear)', fontsize=12)
         plt.legend()
         plt.savefig('images/svr_garch_linear.png')
         plt.show()

Identifying the hyperparameter space for tuning.

Applying hyperparameter tuning with RandomizedSearchCV.

Fitting SVR-GARCH with linear kernel to data.

Predicting the volatilities based on the last 252 observations and store
them in the predict_svr_lin.



Figure 4-7. Volatility Prediction with SVR-GARCH Linear Kernel

Figure 4-7 exhibits the predicted values and actual observation. By
eyeballing, one can tell that SVR-GARCH perform well. As you can guess,
linear kernel works fine if the dataset is linearly separable and it is also the
suggestion of _Occam’s Razor_ . What if it does not? Let’s continue with
RBF and Polynomial kernels. The former one uses elliptical curves around
the observations and the latter, differently from the first two, focuses on the
combinations of samples, too. Let’s now see how they work.

SVR-GARCH application with RBF kernel, a function that projections data
into a new vector space, can be found below. From the practical standpoint,
SVR-GARCH application with different kernels is not a labor-intensive
process, all we need to switch the kernel name.

In [49]: para_grid ={'gamma': sp_rand(), 
                     'C': sp_rand(), 
                     'epsilon': sp_rand()} 
         clf = RandomizedSearchCV(svr_rbf, para_grid) 

3



         clf.fit(X.iloc[:-n].values, 
                 realized_vol.iloc[1:-(n-1)].values.reshape(-1,)) 
         predict_svr_rbf = clf.predict(X.iloc[-n:]) 
 
In [50]: predict_svr_rbf = pd.DataFrame(predict_svr_rbf) 
         predict_svr_rbf.index = ret.iloc[-n:].index 
 
In [51]: rmse_svr_rbf = np.sqrt(mean_squared_error(realized_vol.iloc[-n:] / 100, 
                                                   predict_svr_rbf / 100)) 
         print('The RMSE value of SVR with RBF Kernel is  
{:.6f}'.format(rmse_svr_rbf)) 
         The RMSE value of SVR with RBF Kernel is  0.000942 
 
In [52]: plt.figure(figsize=(10, 6)) 
         plt.plot(realized_vol / 100, label='Realized Volatility') 
         plt.plot(predict_svr_rbf / 100, label='Volatility Prediction-SVR_GARCH') 
         plt.title('Volatility Prediction with SVR-GARCH (RBF)', fontsize=12) 
         plt.legend() 
         plt.savefig('images/svr_garch_rbf.png') 
         plt.show()

Both RMSE score and the visualization suggests that SVR-GARCH with
linear kernel outperforms SVR-GARCH with RBF kernel. The RMSE of
SVR-GARCH with linear and RBF kernels are 0.000453 and 0.000986,
respectively. So, SVR with linear kernel does performs well.



Figure 4-8. Volatility Prediction with SVR-GARCH RBF Kernel

Lastly, SVR-GARCH with polynomial kernel is employed but it turns out that
it has the lowest RMSE implying that it is the worst performing kernel among
these three different applications.

In [53]: para_grid = {'gamma': sp_rand(), 
                     'C': sp_rand(), 
                     'epsilon': sp_rand()} 
         clf = RandomizedSearchCV(svr_poly, para_grid) 
         clf.fit(X.iloc[:-n].values, 
                 realized_vol.iloc[1:-(n-1)].values.reshape(-1,)) 
         predict_svr_poly = clf.predict(X.iloc[-n:]) 
 
In [54]: predict_svr_poly = pd.DataFrame(predict_svr_poly) 
         predict_svr_poly.index = ret.iloc[-n:].index 
 
In [55]: rmse_svr_poly = np.sqrt(mean_squared_error(realized_vol.iloc[-n:] / 100, 
                                                   predict_svr_poly / 100)) 
         print('The RMSE value of SVR with Polynomial Kernel is {:.6f}'\ 
               .format(rmse_svr_poly)) 
         The RMSE value of SVR with Polynomial Kernel is 0.005291 



 
In [56]: plt.figure(figsize=(10, 6)) 
         plt.plot(realized_vol/100, label='Realized Volatility') 
         plt.plot(predict_svr_poly/100, label='Volatility Prediction-SVR-GARCH') 
         plt.title('Volatility Prediction with SVR-GARCH (Polynomial)', fontsize=12) 
         plt.legend() 
         plt.savefig('images/svr_garch_poly.png') 
         plt.show()

Figure 4-9. Volatility Prediction with SVR-GARCH Polynomial Kernel

Neural Network
Neural Network (NN) is the building block for deep learning. In NN, data is
processed by multiple stages in a way to make a decision. Each neuron takes
a result of a dot product as input and use it as input in activation function to
make a decision.

z = w1x1 + w2x2 + b



where b is bias, w is weight, and x is input data.

During this process, input data is undertaken various mathematical
manipulation in hidden and output layers. Generally speaking, NN has three
types of layers:

Input layer

Hidden layer

Output layer

Input layer includes raw data. In going from input layer to hidden layer, we
learn coefficients. There may be one or more than one hidden layers
depending on the network structuree. The more hidden layer the network has,
the more complicated it is. Hidden layer, locating between inout and output
layers, perform nonlinear transformation via activation function.

Finally, output layer is the layer in which output is produced and decision is
made.

In Machine Learning, Gradient Descent is the tool applied to minimize the
cost function but employing only gradient descent in neural network is not
feasible due to the chain-like structure in neural network. Thus, a new
concept known as backpropagation is proposed to minimize the cost function.
The idea of backpropagation rest upon the calculating error between
observed and actual output and pass this error to the hidden layer. So, we
move backward and the main equation takes the form of:

δl =
δJ

δzlj

where z is linear transformation and δ represents error. There is much more
to say but to keep myself on track I stop here. For those who wants to dig
more into math behind Neural Network please refer to Wilmott (2013) and
Alpaydin (2020).



GRADIENT DESCENT
Suppose that we are at the top of the hill and try to reach to the plateau at
which we minimize the cost function. Formally, Gradient Descent is an
optimization algorithm used to search for best parameter space (w, b)
which minimize cost function via following update rule:

θt+1 = θt − λ
δJ

δθt

where θ(w, b) is the function of weight, w, and bias, b. J is cost function,
and λ is the learning rate, which is a constant number deciding how fast
we want to minimize the cost function. Well, at each iteration, we update
the parameters to minimize the error.

Shortly, The gradient descent algorithm works in the following way:

1. Select initial values for w and b.

2. Take an λ step in the direction opposite to where the gradient
points.

3. Update w and b at each iteration.

4. Repeat from step 2 until convergence.

Now, we apply neural network based volatility prediction using
MLPRegressor module from scikit-learn Python even though we have
various options  to run neural network in Python. Given the neural network
structure we introduce, the result is given below.

In [57]: from sklearn.neural_network import MLPRegressor
         NN_vol = MLPRegressor(learning_rate_init=0.001, random_state=1)
         para_grid_NN = {'hidden_layer_sizes': [(100, 50), (50, 50), (10, 100)],
                        'max_iter': [500, 1000],
                        'alpha': [0.00005, 0.0005 ]}
         clf = RandomizedSearchCV(NN_vol, para_grid_NN)
         clf.fit(X.iloc[:-n].values,
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                 realized_vol.iloc[1:-(n-1)].values.reshape(-1, ))
         NN_predictions = clf.predict(X.iloc[-n:])

In [58]: NN_predictions = pd.DataFrame(NN_predictions)
         NN_predictions.index = ret.iloc[-n:].index

In [59]: rmse_NN = np.sqrt(mean_squared_error(realized_vol.iloc[-n:] / 100,
                                              NN_predictions / 100))
         print('The RMSE value of NN is {:.6f}'.format(rmse_NN))
         The RMSE value of NN is 0.000583

In [60]: plt.figure(figsize=(10, 6))
         plt.plot(realized_vol / 100, label='Realized Volatility')
         plt.plot(NN_predictions / 100, label='Volatility Prediction-NN')
         plt.title('Volatility Prediction with Neural Network', fontsize=12)
         plt.legend()
         plt.savefig('images/NN.png')
         plt.show()

Importing MLPRegressor library.

Configuring Neural Network model.

Fitting Neural Network model to the training data .

Predicting the volatilities based on the last 252 observations and store
them in the NN_predictions variable.

Figure 4-10 shows the volatility prediction result based on neural network
model. Despite its reasonable performance, we can play with the number of
hidden neurons to find generate a deep learning model. To do that, we can
apply Keras library, Python interface for artificial neural networks.
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Figure 4-10. Volatility Prediction with Neural Network

Now, it is time to predict volatility using deep learning. Based on Keras, it is
easy to configure the network structure. All we need is to determine the
number of neuron of the specific layer. Here, the number of neuron for first
and second hidden layers are 256 and 128, respectively. As volatility has a
continuous type, we have only one output neuron.

In [61]: import tensorflow as tf
         from tensorflow import keras
         from tensorflow.keras import layers

In [62]: model = keras.Sequential(
             [layers.Dense(256, activation="relu"),
              layers.Dense(128, activation="relu"),
              layers.Dense(1, activation="linear"),])

In [63]: model.compile(loss='mse', optimizer='rmsprop')

In [64]: epochs_trial = np.arange(100, 400, 4)
         batch_trial = np.arange(100, 400, 4)



         DL_pred = []
         DL_RMSE = []
         for i, j, k in zip(range(4), epochs_trial, batch_trial):
             model.fit(X.iloc[:-n].values,
                       realized_vol.iloc[1:-(n-1)].values.reshape(-1,),
                       batch_size=k, epochs=j, verbose=False)
             DL_predict = model.predict(np.asarray(X.iloc[-n:]))
             DL_RMSE.append(np.sqrt(mean_squared_error(realized_vol.iloc[-n:] / 100,
                                     DL_predict.flatten() / 100)))
             DL_pred.append(DL_predict)
             print('DL_RMSE_{}:{:.6f}'.format(i+1, DL_RMSE[i]))
         DL_RMSE_1:0.000524
         DL_RMSE_2:0.001118
         DL_RMSE_3:0.000676
         DL_RMSE_4:0.000757

In [65]: DL_predict = pd.DataFrame(DL_pred[DL_RMSE.index(min(DL_RMSE))])
         DL_predict.index = ret.iloc[-n:].index

In [66]: plt.figure(figsize=(10, 6))
         plt.plot(realized_vol / 100,label='Realized Volatility')
         plt.plot(DL_predict / 100,label='Volatility Prediction-DL')
         plt.title('Volatility Prediction with Deep Learning',  fontsize=12)
         plt.legend()
         plt.savefig('images/DL.png')
         plt.show()

Configuring network structure by deciding number of layers and neurons.

Compiling model with loss and optimizer.

Deciding the epoch and batch size using np.arange.

Fitting the deep learning model.

Predicting the volatility based on the weights obtained from the training
phase.

Calculating RMSE score by flattening the predictions.

It turns out that we get minimum RMSE score as we increase the layer size,
which is quite understandable because most of the time number of layers and



model performance goes hand in hand up a point in which model tends to
overfit. Figuring out the proper number of layer for a specific data is a key in
deep learning in the sense that we stop adding more layer before model get
into the overfitting problem.

Figure 4-11 shows the volatility prediction result derived from the following
code and it implies that deep learning provides a strong tool in modeling
volatility, too.

Figure 4-11. Volatility Prediction with Deep Learning

Bayesian Approach
The way we approach to the probability is of central importance in the sense
that it distinquishes the classical (or frequentist) and Bayesian approach.
According to the former method, the relative frequency will converge to the
true probability. However, Bayesian application is based on the subjective



interpretation. Unlike frequentists, Bayesian statisticians consider the
probability distribution as uncertain and it is revised as new information
comes in.

Due to the different interpretation of the probability of these two approaches,
likelihood, defined as, given a set of parameters, the probability of observed
event, is computed differently.

Starting from joint density function, we can give the mathematical
representation of likelihood function:

L (θ|x1,x2, . . . ,xp) =Pr (x1,x2, . . . ,xp|θ)

Among possible θ values, what we are trying to do is to decide which one is
more likely. Under the statistical model proposed by likelihood function, the
observed data x1, . . . ,xp is the most probable.

In fact, you are familiar with the method based on the approach, which is
maximum likelihood estimation. Having defined the main difference between
Bayesian and Frequentist approaches, it is time to delve more into the Bayes’
Theorem.

Bayes’ Theorem
Bayesian approach is based on conditional distribution, which states that
probability gauges the extent to which one has about a uncertain event. So,
Bayesian application suggests a rule that can be used to update the beliefs
that one holds in light of new information:

Bayesian estimation is used when we have some prior information
regarding a parameter. For example, before looking at a sample to
estimate the mean of a distribution, we may have some prior belief that
it is close to 2, between 1 and 3. Such prior beliefs are especially
important when we have a small sample. In such a case, we are
interested in combining what the data tells us, namely, the value
calculated from the sample, and our prior information.

— (Rachev et al., 2008)



Similar to the frequentist application, Bayesian estimation is based on
probability density Pr (x|θ). However, as we have discussed before, the
way Bayesian and frequentist methods treat parameter set θ differently.
Frequentist assumes θ to be fixed whereas it is, in Bayesian setting, taken as
random variable, whose probability is known as prior density Pr (θ). Oh no!
We have another different term but no worries it is easy to understand.

In the light of this information, we can estimate L (x|θ) using prior density 
Pr (θ) and we come up with the following formula. Prior is employed when
we need to estimate the conditional distribution of the parameters given
observations.

Pr (θ|x1,x2, . . . ,xp) =
L (x1,x2, . . . ,xp|θ) Pr (θ)

Pr (x1,x2, . . . ,xp)

or

Pr (θ|data) =
L (data|θ) Pr (θ)

Pr (data)

where

Pr (θ|data) is the posterior density,which gives us the information
about the parameters given observed data.

L (data|θ) is the likelihood function, which estimates the
probability of the data given parameters.

Pr (θ) is prior probability. It is the probability of the parameteres.
Prior is basicallt the initial beliefs about estimates.

Finally, Pr is the evidence, which is used to update the prior.

Consequently, Bayes’ Theorem suggests that the posterior density is directly
proportional to the prior and likelihood terms but inverserly related to the
evidence term. As the evidence is there for scaling, we can describe this
process as:



Posterior ∝ Likelihoodxprior

where ∝ means “is proportional to”

Within this context, Bayes’ Theorem sounds attractive, doesn’t it? Well, it
does but it comes with a cost, which is analytical intractability. Even if
Bayes’ Theorem is theoretically intuitive, it is, by and large, hard to solve
analytically. This is the major drawback in wide applicability of Bayes’
Theorem. However, good news is that numerical methods provide solid
methods to solve this probabilistic model.

So, some methods proposed to deal with the computational issue in Bayes’
Theorem. These methods provides solution with approximation, which can
be listed as:

Quadrature approximation

Maximum a posteriori estimation

Grid Approach

Sampling Based Approach

Metropolis-Hastings

Gibbs Sampler

No U-Turn Sampler

Of these approaches, let us restrict our attention to the Metropolis-Hastings
algorithm, which will be our method to be used in modeling Bayes’
Theorem. Metropolis-Hastings (M-H) method is rest upon the Markov Chain
Monte Carlo (MCMC). Alos, maximum a posteriori estimation will be
discussed in the [Link to Come]. So, before moving forward, it would be
better to talk about MCMC method.

Markov Chain Monte Carlo
Markov Chain is a model for us to describe the transition probabilities
among states, which is a rule of a game. A chain is called Markovian if the



probability of current state st depends only on the most recent state st−1.

Pr (st|st−1, st−2, . . . , st−p) =Pr (st|st−1)

Thus, MCMC relies on Markov Chain to find the parameter space θ with
highest posterior probability. As the sample size grows, parameter values
approximate to the posterior density.

lim
j→+∞

θj
D
→Pr (θ|x)

where D refers to distributional approximation. Realized values of parameter
space can be used to make inference about posterior. In a nutshell, MCMC
method helps us to gather i.i.d sample from posterior density so that we can
calculate the posterior probability.

To illustrate, we can refer to Figure 4-12. This figure tells us the probability
of moving from one state to another. For the sake of simplicity, we set the
probability to be 0.2 indicating, for instance, that transition from study to
sleeping has a probability of 0.2.

In [67]: import quantecon as qe 
         from quantecon import MarkovChain 
         import networkx as nx 
         from pprint import pprint 
 
In [68]: P = [[0.5, 0.2, 0.3], 
              [0.2, 0.3, 0.5], 
              [0.2, 0.2, 0.6]] 
 
         mc = qe.MarkovChain(P, ('studying', 'travelling', 'sleeping')) 
         mc.is_irreducible
Out[68]: True 
 
In [69]: states = ['studying', 'travelling', 'sleeping'] 
         initial_probs = [0.5, 0.3, 0.6] 
         state_space = pd.Series(initial_probs, index=states, name='states') 
 
In [70]: q_df = pd.DataFrame(columns=states, index=states) 
         q_df = pd.DataFrame(columns=states, index=states) 
         q_df.loc[states[0]] = [0.5, 0.2, 0.3] 
         q_df.loc[states[1]] = [0.2, 0.3, 0.5] 



         q_df.loc[states[2]] = [0.2, 0.2, 0.6] 
 
In [71]: def _get_markov_edges(Q): 
             edges = {} 
             for col in Q.columns: 
                 for idx in Q.index: 
                     edges[(idx,col)] = Q.loc[idx,col] 
             return edges 
         edges_wts = _get_markov_edges(q_df) 
         pprint(edges_wts) 
         {('sleeping', 'sleeping'): 0.6, 
          ('sleeping', 'studying'): 0.2, 
          ('sleeping', 'travelling'): 0.2, 
          ('studying', 'sleeping'): 0.3, 
          ('studying', 'studying'): 0.5, 
          ('studying', 'travelling'): 0.2, 
          ('travelling', 'sleeping'): 0.5, 
          ('travelling', 'studying'): 0.2, 
          ('travelling', 'travelling'): 0.3} 
 
In [72]: G = nx.MultiDiGraph() 
         G.add_nodes_from(states) 
         for k, v in edges_wts.items(): 
             tmp_origin, tmp_destination = k[0], k[1] 
             G.add_edge(tmp_origin, tmp_destination, weight=v, label=v) 
 
         pos = nx.drawing.nx_pydot.graphviz_layout(G, prog='dot') 
         nx.draw_networkx(G, pos) 
         edge_labels = {(n1, n2):d['label'] for n1, n2, d in G.edges(data=True)} 
         nx.draw_networkx_edge_labels(G , pos, edge_labels=edge_labels) 
         nx.drawing.nx_pydot.write_dot(G, 'mc_states.dot')



Figure 4-12. Interactions of different states

There are two common MCMC methods: Metropolis-Hastings and Gibbs
Sampler. Here, we delve into the former one.

Metropolis-Hastings
Metropolis-Hastings (M-H) allows us to have efficient sampling procedure
with two steps: First we draw sample from proposal density and, in the
second step, we decide either to accept or reject.

Let q(θ θt−1) be a proposal density and θ be a parameter space. The entire
algorithm of M-H can be summarized as:

1. Select initial value for θ1 from parameter space θ∣



2. Select a new parameter value θ2 from proposal density, which can
be, for the sake of easiness, Gaussian or Uniform distribution.

3. Compute the following acceptance probability:

Pra (θ*, θt−1) = min(1,
p(θ*)/q(θ* θt−1)

p(θt−1)/q(θt−1 θ*)
)

4. If Pra (θ*, θt−1) is greater than a sample value drawn from uniform
distribution U(0,1).

5. Repeat from step 2.

Well, it appears intimidating but don’t be. We have built-in code in Python
makes the applicability of the M-H algorithm way easier. We use PyFlux
library to make use of Bayes’ Theorem. Let’s go and apply M-H algorithm to
predict volatility.

In [73]: import pyflux as pf
         from scipy.stats import kurtosis

In [74]: model = pf.GARCH(ret.values, p=1, q=1)
         print(model.latent_variables)
         model.adjust_prior(1, pf.Normal())
         model.adjust_prior(2, pf.Normal())
         x = model.fit(method='M-H', iterations='1000')
         print(x.summary())
         Index    Latent Variable           Prior           Prior Hyperparameters
            V.I. Dist  Transform
         ======== ========================= ===============
          ========================= ========== ==========
         0        Vol Constant              Normal          mu0: 0, sigma0: 3
            Normal     exp
         1        q(1)                      Normal          mu0: 0, sigma0: 0.5
            Normal     logit
         2        p(1)                      Normal          mu0: 0, sigma0: 0.5
            Normal     logit
         3        Returns Constant          Normal          mu0: 0, sigma0: 3
            Normal     None
         Acceptance rate of Metropolis-Hastings is 0.00285
         Acceptance rate of Metropolis-Hastings is 0.2444 ∣ ∣



         Tuning complete! Now sampling.
         Acceptance rate of Metropolis-Hastings is 0.237925
         GARCH(1,1)

         =======================================================
          ==================================================
         Dependent Variable: Series                              Method: Metropolis
          Hastings
         Start Date: 1                                           Unnormalized Log
          Posterior: -3635.1999
         End Date: 2913                                          AIC:
          7278.39981852521
         Number of observations: 2913                            BIC:
          7302.307573553048
         ======================================================================
          ====================================
         Latent Variable                          Median             Mean
              95% Credibility Interval
         ======================================== ==================
          ================== =========================
         Vol Constant                             0.0425             0.0425
              (0.0342 | 0.0522)
         q(1)                                     0.1966             0.1981
              (0.1676 | 0.2319)
         p(1)                                     0.7679             0.767
              (0.7344 | 0.7963)
         Returns Constant                         0.0854             0.0839
              (0.0579 | 0.1032)
         ======================================================================
          ====================================
         None

In [75]: model.plot_z([1, 2])
         model.plot_fit(figsize=(15, 5))
         model.plot_ppc(T=kurtosis, nsims=1000)

Configuring GARCH model using PyFlux library.

Printing the estimation of latent variables (parameters).

Adjusting the priors for the model latent variables.

Fitting the model using M-H process.



Plotting the latent variables.

Plotting the fitted model.

Plotting the histogram for posterior check.

It is worthile to visualize the results of what we have done so far for
volatility prediction with Bayesian-based Garch Model.

Figure 4-13 exhibits the distribution of latent variables. Latent variable q
gathers around 0.2 and the other latent variable p mostly takes values
between 0.7 and 0.8.



Figure 4-13. Latent Variables

Figure 4-14 indicates the demeaned volatility series and the GARCH
prediction result based on Bayesian approach.



Figure 4-14. Model Fit

Figure 4-15 visualizes the posterior predictions of the Bayesian model with
the data so that we are able to detect systematic discrepancies, if any. The



vertical line represents the test statistic and it turns out the observed value is
larger than that of our model.





Figure 4-15. Posterior Prediction

After we are done with the training part, we all set to move on to the next
phase, which is prediction. Prediction analysis is done for the 252 step ahead
and the RMSE is calculated given the realized volatility.

In [76]: bayesian_prediction = model.predict_is(n, fit_method='M-H')
         Acceptance rate of Metropolis-Hastings is 0.1127
         Acceptance rate of Metropolis-Hastings is 0.17795
         Acceptance rate of Metropolis-Hastings is 0.2532

         Tuning complete! Now sampling.
         Acceptance rate of Metropolis-Hastings is 0.255425

In [77]: bayesian_RMSE = np.sqrt(mean_squared_error(realized_vol.iloc[-n:] / 100,
                                  bayesian_prediction.values / 100))
         print('The RMSE of Bayesian model is {:.6f}'.format(bayesian_RMSE))
         The RMSE of Bayesian model is 0.004090

In [78]: bayesian_prediction.index = ret.iloc[-n:].index

In [79]: plt.figure(figsize=(10, 6))
         plt.plot(realized_vol / 100,
                  label='Realized Volatility')
         plt.plot(bayesian_prediction['Series'] / 100,
                  label='Volatility Prediction-Bayesian')
         plt.title('Volatility Prediction with M-H Approach', fontsize=12)
         plt.legend()
         plt.savefig('images/bayesian.png')
         plt.show()

In-sample volatility prediction.

Calculating the RMSE score.

Eventually, we are ready to observe the prediction result of the Bayesian
approach and the following code does it for us.

Figure 4-16 visualizes the volatility prediction based on Metropolis-Hasting
based Bayesian approach and it seems to overshot towards the end of 2020



and overall performance of this method shows that it is not among the best
methods as it just outperforms SVR-GARCH with polynomial kernel.

Figure 4-16. Bayesian Volatility Prediction

Conclusion
Volatility prediction is a key to understand the dynamics of financial market
in the sense that it helps us to gauge the uncertainty. With that being said, it is
used as input in many financial model including risk models. These facts
emphasize the importance of having accurate volatility prediction.
Traditionally, parametric methods such ARCH, GARCH and their extensions
have been extensively used but these models suffer from being inflexible. To
remedy this issue, data-driven models are found promising and this chapter
attempts to make use of these models, namely, Support Vector Machines,
Neural Network, and Deep Learning-based models, and it turns out data-
driven model outperforms the parametric models.



In the next chapter, market risk, a core financial risk topic, will be discussed
both from theoretical and empirical standpoints and the machine learning
models will be incorporate to further improve the estimation of this risk.
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Chapter 5. Market Risk

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 5th chapter of the final book. Please note that the GitHub
repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at mcronin@oreilly.com.

Risk is ubiquitous in finance but it is hard to quantify. The first and foremost
thing to know is differentiating the sources of financial risks on the grounds
that it might not be a wise move to utilize same tools against financial risk
arising from different sources.

Thus, treating different sources of financial risk is crucial as the impact of
different financial risks as well as tools developed to mitigate risk are
completely different. Pretending that firms are subject to large market
fluctuations, all assets in the portfolio of the firms are susceptible to risk
originating from these fluctuations. However, a different tool should be
developed to cope with a risk emanating from customer profile. In addition,
it should be kept in mind that different risk factors contribute significantly to
the asset prices. All these examples implies that assessing risk factors need
careful consideration in finance.

As is briefly discussed previously, these are, mainly, market, credit,
liquidity, and operational risks. It is evident that some other types can be
added to this list of financial risks but they can be thought of a subset of these
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main four risk types. So, these types of risks will be our focus throughout this
chapter.

Market risk is the risk arising from changes on financial indicators such as
exchange rate, interest rate, inflation and so on. Differently, market risk can
be referred to a risk of losses in on and off-balance-sheet positions arising
from movements in market prices (BIS, 2020). Let us now see how these
factors affect market risk. Suppose that a raise in inflation rate might pose a
threat to current profitability of the financial institutions with a view to
inflation creates pressure to interest rate. This, in turn, affects borrower’s
cost of funds. These instances can be amplified but we should also note the
interactions of these financial risk sources. That is, while a single source of
financial risk changes, other risk sources cannot stay constant. With that being
said, to some extent, financial indicators are interrelated, meaning that
interactions of these risks sources should be taken into account.

As you can imagine, there are different tools to measure market risk. Of them,
the most prominent and widely acceptable tools are Value-at-Risk (VaR) and
Expected Shortfall (ES). The ultimate aim of this chapter is to augment these
approaches using recent developments in Machine Learning. At this juncture,
it would be tempting to ask: Does the traditional model fail in finance? And
what makes the ML-based model different?

I will start tackling the first question. The first and foremost challenge that
traditional models unable to address is the complexity of the financial
system. Due either to the some strong assumptions or simply inability to
capture the complexity introduced by the data, long-standing traditional
models has been started to be replaced by ML-based models.

This fact is well put by Prado:

Considering the complexity of modern financial systems, it is unlikely
that a researcher will be able to uncover the ingredients of a theory by
visual inspection of the data or by running a few regressions.

—Prado (Machine Learning for Asset Managers, 2020, p.4)



To address the second question, it would be wise to think about the working
logic of ML models. ML models, as opposed to old statistical methods, tries
to unveil the association between variables, identify key variables, and
enable us to to find out the impact of the variables on the dependent variable
without a need of a well established theory. This is, in fact, the beauty of ML
model as ML models, without requiring many restrictive and strong
assumptions, allow us to discover theories, let alone require them.

Many methods from statistics and machine learning (ML) may, in
principle, be used for both prediction and inference. However, statistical
methods have a long-standing focus on inference, which is achieved
through the creation and fitting of a project-specific probability model...
By contrast, ML concentrates on prediction by using general-pur- pose
learning algorithms to find patterns in often rich and unwieldy data.

—Bzdok (Statistics versus machine learning, 2018, p.232)

In the following part, we initiate our discussion on the market risk models.
We, first, talk about the application of Value-at-Risk (VaR) and Expected
Shortfall (ES). Subsequent to the traditional application of these models, we
will learn how to them using the ML-based approach. Let’s jump in.

Value-at-Risk
The emergence of VaR model rests upon a request for a JP Morgan executive
who wanted to have a summary report showing possible losses as well as
risks in one day that JP Morgan is exposed to. In this report, executives are
informed about the risk assumed by the institution in an aggregated manner.
The method by which market risk is computed is known as VaR. So, it is the
starting point of VaR and, now, it has become so widespread that its adoption
has been forced by regulators.

The adoption of VaR dates back to 1990s and despite numerous extensions to
VaR and new proposed models, it is still in use. So, what makes it so
appealing? maybe the question to be addressed. The answer comes from
Kevin Dowd:



The VaR figure has two important characteristics. The first is that it
provides a common consistent measure of risk across different positions
and risk factors. It enables us to measure the risk associated with a
fixed-income position, say, in a way that is comparable to and consistent
with a measure of the risk associated with equity positions. VaR provides
us with a common risk yardstick, and this yardstick makes it possible for
institutions to manage their risks in new ways that were not possible
before. The other characteristic of VaR is that it takes account of the
correlations between different risk factors. If two risks offset each other,
the VaR allows for this offset and tells us that the overall risk is fairly
low.

—Dowd (2002, p.10)

In fact, VaR basically address one of the most common question of an
investor:

Given the risk level, what is the maximum expected loss of my investment?

VaR provides a very intuitive and practical answer to this question. In this
regard, it is used to measure the worst expected loss of a company over a
given period and a pre-defined confidence interval. Suppose that a daily VaR
of an investment is $10 million with 95% confidence interval. This reads as:
There is a 5% chance that investor can incur a loss greater than $10 million
loss in a day.

Based on the above-given definition, it turns out that the components of VaR
are confidence interval, time period, value of an asset or portfolio and
standard deviation as we are talking about risk.

In summary, there are some important points in VaR analysis that needs to be
highlighted:

VaR needs an estimation of the probability of loss

VaR concentrates on the potential losses. We are not talking about
actual or realized losses rather VaR is a kind of loss projection

VaR has three key ingredients:



Standard deviation that defines the level of loss

Fixed time horizon over which risk is assessed

Confidence Interval

Well, VaR can be measured via three different approaches:

Variance-Covariance VaR

Historical Simulation VaR

Monte-Carlo VaR

Variance-Covariance Method
Variance-Covariance Method is also known as parametric method, because
the data is assumed to be normally distributed. Variance-Covariance method
is commonplace due to this assumption, however it is worth noting that
returns are not normal distributed. Parametric form assumption makes the
application of Variance-Covariance method practical and easy-to-apply.

As in all VaR approaches, we can either work with single asset or a
portfolio. However, working with portfolio requires careful treatment in the
sense that correlation structure and portfolio variance need to be estimated.
Exactly at this point, correlation comes into the picture and historical data is
used to calculate correlation, mean, and standard deviation. While
augmenting this with ML-based approach, correlation structure will be our
main focus.

Suppose that we have a single asset, in Figure 5-1, it is shown that the mean
of this asset is zero and standard deviation is 1 and if the holding period is 1,
the corresponding VaR value can be computed the value of the asset by
corresponding Z-value and standard deviation. Hence, normality assumption
makes things easier but it is a strong assumption because there is no
guarantee that asset returns are normally distributed rather most of the asset
returns do not follow normal distribution. Moreover, due to the normality



assumption, potential risk in tail might not be captured. Therefore normality
assumption comes with a cost.

In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import datetime
        import yfinance as yf
        from scipy.stats import norm
        import requests
        from io import StringIO
        import seaborn as sns; sns.set()
        import warnings
        warnings.filterwarnings('ignore')
        plt.rcParams['figure.figsize'] = (10,6)

In [2]: mean = 0
        std_dev = 1
        x = np.arange(-5, 5, 0.01)
        y = norm.pdf(x, mean, std_dev)
        pdf = plt.plot(x, y)
        min_ylim, max_ylim = plt.ylim()
        plt.text(np.percentile(x, 5), max_ylim * 0.9, '95%:${:.4f}'
                 .format(np.percentile(x, 5)))
        plt.axvline(np.percentile(x, 5), color='r', linestyle='dashed', linewidth=4)
        plt.title('Value-at-Risk Illustration')
        plt.savefig('images/VaR_Illustration.png')
        plt.show()
In [3]: mean = 0
        std_dev = 1
        x = np.arange(-5, 5, 0.01)
        y = norm.pdf(x, mean, std_dev)
        pdf = plt.plot(x, y)
        min_ylim, max_ylim = plt.ylim()
        plt.text(np.percentile(x, 5), max_ylim * 0.9, '95%:${:.4f}'
                 .format(np.percentile(x, 5)))
        plt.axvline(np.percentile(x, 5), color='r', linestyle='dashed', linewidth=4)
        plt.title('Value-at-Risk Illustration')
        plt.savefig('images/VaR_Illustration.png')
        plt.show()

Generating probability density function based on given x, mean, and
standard deviation.



Limiting the x-axis and y-axis.

Specifying the location of x at 5% percentile of the x data.

Figure 5-1. Value-at-Risk Illustration

NOTE
Following Fama (1965), it is realized that some stock price returns do not follow normal
distribution due to fat tail and asymmetry. Rather they follow leptokurtic distribution. This
empirical observation implies stock returns have higher kurtosis than that of normal
distribution.

Having high kurtosis amounts to fat-tail and this might results in extreme negative returns.
As the Variance-Covariance method is unable to capture fat-tail, it cannot, therefore,
estimate extreme negative return, which is likely to occur especially in the crisis period.



Let us see how we apply Variance-Covariance VaR in Python. To illustrate,
2-asset portfolio is considered and the formula of Variance-Covarince VaR is
as follows:

VaR = V σp√tZα

σp = √w2
1σ

2
1 + w2

2σ
2
2 + ρw1w2σ1σ2

σp = √w1σ1 + w2 + σ + 2w1w2∑1,2

In [4]: def getDailyData(symbol):
                parameters = {'function': 'TIME_SERIES_DAILY_ADJUSTED',
                              'symbol': symbol,
                               'outputsize':'full',
                               'datatype': 'csv',
                               'apikey': 'LL1WA15IW41XV2T2'}

                response = requests.get('https://www.alphavantage.co/query',
                                        params=parameters)

                # Process the CSV file retrieved
                csvText = StringIO(response.text)
                data = pd.read_csv(csvText, index_col='timestamp')
                return data

In [5]: symbols = ["IBM", "MSFT", "INTC"]
        data3 = []
        for symbol in symbols:
            data3.append(getDailyData(symbol)[::-1]['close']['2020-01-01': '2020-12-
31'])
        stocks = pd.DataFrame(data3).T
        stocks.columns = symbols

In [6]: stocks.head()
Out[6]:                IBM    MSFT   INTC
        timestamp
        2020-01-02  135.42  160.62  60.84
        2020-01-03  134.34  158.62  60.10
        2020-01-06  134.10  159.03  59.93
        2020-01-07  134.19  157.58  58.93
        2020-01-08  135.31  160.09  58.97



Identifying the parameters to be used in extracting the data from Alpha
Vantage.

Making a request to Alpha Vantage website.

Open the response file, which is in the text format.

Reversing the data that covers the period of examination and append the
daily stock prices of IBM, MSFT, and INTC.

NOTE
Alpha Vantage is a data providing company partnered with major exchanges and
institutions. Using Alpha Vantage API, it is possible to access stock prices with different
time interval- i.e., intraday, daily, weekly, and so on, stock fundamentals, and Forex
information. For more information, please see Alpha Vantage’s website.

In [7]: stocks_returns = (np.log(stocks) - np.log(stocks.shift(1))).dropna()
        stocks_returns
Out[7]:                  IBM      MSFT      INTC
        timestamp
        2020-01-03 -0.008007 -0.012530 -0.012238
        2020-01-06 -0.001788  0.002581 -0.002833
        2020-01-07  0.000671 -0.009160 -0.016827
        2020-01-08  0.008312  0.015803  0.000679
        2020-01-09  0.010513  0.012416  0.005580
        ...              ...       ...       ...
        2020-12-24  0.006356  0.007797  0.010679
        2020-12-28  0.001042  0.009873  0.000000
        2020-12-29 -0.008205 -0.003607  0.048112
        2020-12-30  0.004352 -0.011081 -0.013043
        2020-12-31  0.012309  0.003333  0.021711

        [252 rows x 3 columns]

In [8]: stocks_returns_mean = stocks_returns.mean()
        weights  = np.random.random(len(stocks_returns.columns))
        weights /= np.sum(weights)
        cov_var = stocks_returns.cov()
        port_std = np.sqrt(weights.T.dot(cov_var).dot(weights))

https://www.alphavantage.co/support/#support


In [9]: initial_investment = 1e6
        conf_level = 0.95

In [10]: def VaR_parametric(initial_investment, conf_level):
             alpha = norm.ppf(1 - conf_level, stocks_returns_mean, port_std)
             for i, j in zip(stocks.columns, range(len(stocks.columns))):
                 VaR_param = (initial_investment - initial_investment * (1 + alpha))
[j]
                 print("Parametric VaR result for {} is {} ".format(i, VaR_param))
             VaR_param = (initial_investment-initial_investment * (1 + alpha))
             print('--' * 25)
             return VaR_param

In [11]: VaR_param = VaR_parametric(initial_investment, conf_level)
         VaR_param
         Parametric VaR result for IBM is 42199.839069714886
         Parametric VaR result for MSFT is 40618.179754271754
         Parametric VaR result for INTC is 42702.930219301255
         --------------------------------------------------

Out[11]: array([42199.83906971, 40618.17975427, 42702.9302193 ])

Calculating logarithmic return.

Drawing random numbers for weights.

Generating weights.

Calculating covariance matrix.

Finding the portfolio standard deviation.

Computing the Z-score for a specific value using percent point function
(ppf).

Estimating the Variance-Covariance VaR model.

Given the time horizon, the result of the Value-at-Risk changes due to the fact
that holding asset for a longer period makes investor more susceptible to
risk. As it is shown in the Figure 5-2, VaR increases in relation to holding



time by the amount of √t. Additionally, the holding period is the longest for
portfolio liquidation. Taking into account the reporting purpose, a 30-day
period may be more suitable one for an investor and it is illustrated in
Figure 5-2.

In [12]: var_horizon = [] 
         time_horizon = 30 
         for j in range(len(stocks_returns.columns)): 
             for i in range(1, time_horizon + 1): 
                 var_horizon.append(VaR_param[j] * np.sqrt(i)) 
         plt.plot(var_horizon[:time_horizon], "o", 
                  c='blue', marker='*', label='IBM') 
         plt.plot(var_horizon[time_horizon:time_horizon + 30], "o", 
                  c='green', marker='o', label='MSFT') 
         plt.plot(var_horizon[time_horizon + 30:time_horizon + 60], "o", 
                  c='red', marker='v', label='INTC') 
         plt.xlabel("Days") 
         plt.ylabel("USD") 
         plt.title("VaR over 30-day period") 
         plt.savefig('images/VaR_30_day.png') 
         plt.legend() 
         plt.show()



Figure 5-2. Value-at-Risk over Different Horizon

We conclude this part listing the pros and cons of Variance-Covariance
method.

Pros

Easy to calculate

It does not require large number of samples

Cons

Observations are normally distributed

It does not work well with non-linear structure

Requires computation of covariance matrix

So, even though assuming normality sounds appealing, it may not be the best
way to estimate VaR especially in the case where the asset return do not have



normal distribution. Luckily, there are another methods not requiring
normality assumption and the models is known as Historical simulation VaR
model.

Historical-Simulation Method
Having strong assumption, like normal distribution, might be the cause of
inaccurate estimation. A solution to this issue is referred to as Historical
Simulation VaR. This is an empirical method and instead of using parametric
approach, what we do is to find the percentile, which is the Z-table
equivelant of Variance-Covariance method. Pretend that the confidence
interval is 95%, then 5% will be used in liue of Z-table value and all we
need to do is to multiply this percentile by initial investment.

Here are the steps taken in Historical Simulation VaR:

Obtain asset returns of the portfolio (or individual asset).

Find the corresponding return percentile based on confidence
interval.

Multiply this percentile by initial investment.

In [13]: def VaR_historical(initial_investment, conf_level):
             Hist_percentile95 = []
             for i, j in zip(stocks_returns.columns, 
                             range(len(stocks_returns.columns))):
                 Hist_percentile95.append(np.percentile(stocks_returns.loc[:, i], 
5))
                 print("Based on historical values 95% of {}'s return is {:.4f}"
                       .format(i, Hist_percentile95[j]))
                 VaR_historical = (initial_investment-initial_investment *
                                   (1 + Hist_percentile95[j]))
                 print("Historical VaR result for {} is {:.2f} "
                       .format(i, VaR_historical))
                 print('--' * 35)

In [14]: VaR_historical(initial_investment,conf_level) 
         Based on historical values 95% of IBM's return is -0.0371
         Historical VaR result for IBM is 37081.53
         ----------------------------------------------------------------------
         Based on historical values 95% of MSFT's return is -0.0426



         Historical VaR result for MSFT is 42583.68
         ----------------------------------------------------------------------
         Based on historical values 95% of INTC's return is -0.0425
         Historical VaR result for INTC is 42485.39
         ----------------------------------------------------------------------

Calculating the 95% percentile of stock returns

Estimating the historical simulation VaR

Historical simulation VaR method implicitly assumes that historical price
changes have similar pattern, i.e., there is no structural break. The pros and
cons of this method are as follows:

Pros

No distributional assumption

Work well with non-linear structure

Easy to calculate

Cons

Require large sample

In need of high computing power

Mislead if a company subject to ambiguity like growth company
stocks

Monte Carlo-Simulation VaR
Before delving into the Monte Carlo simulation VaR estimation, it would be
better to make a brief introduction about Monte Carlo simulation. Monte
Carlo is a computerized mathematical method used to make an estimation in
the case where there is no closed-form solution. So, it is a highly efficient
tool for numerical approximation. Monte Carlo relies on repeated random
sample form a given distribution.



The logic behind Monte Carlo is well-defined by Glasserman:

Monte Carlo methods are based on the analogy between probability and
volume. The mathematics of measure formalizes the intuitive notion of
probability, associating an event with a set of outcomes and defining the
probability of the event to be its volume or measure relative to that of a
universe of possible outcomes. Monte Carlo uses this identity in reverse,
calculating the volume of a set by interpreting the volume as a
probability.

—Glasserman (Monte Carlo Methods in Financial
Engineering, 2003, p.11)

From the application standpoint, Monte Carlo is very similar to Historical
Simulation VaR but it does not use historical observations. Rather, it
generates random samples from a given distribution. So, Monte Carlo helps
decision makers by providing link between possible outcomes and
probabilities, which makes it a efficient and applicable tool in finance.

Mathematical Monte Carlo can be defined as:

Let X1,X2, ⋯ . .Xn are independent and identically distributed random
variables and f(x) is a real-valued function. Then, Law of Large Number
states that:

E(f(X)) ≈ 1
N
∑N

i f(Xi)

In a nutshell, Monte Carlo simulation is nothing but generating random
samples and calculating its mean. Computationally, it follows the following
steps:

Define the domain

Generate random numbers

Iteration and aggregation the result

Determination of mathematical π is a toy but illustrative example for Monte
Carlo application.



Suppose we have a circle with radius r = 1 and area=4. Area of a circle is π
and area of a square in which we try to fit circle is 4. The ratio turns out to
be:
π
4 eq.1

To leave π alone, the proportion between circle and area can be defined as:
Circumferencecircle

Areasquare
= m

n
eq.2

Once we equalize eq.1 and eq.2, it turns out:

π = 4x m
n

If we go step by step, the first one is to define domain which is [-1,1]. So, the
numbers inside the circle satisfy: x2 + y2 ≤ 1.

Second step is to generate random numbers to meet the above-given
condition. That is to say, we need to have uniformly distributed random
samples, which is a rather easy task in Python. For the sake of practice, I will
generate 100 uniformly distributed random numbers by using numpy library:

In [15]: x = np.random.uniform(-1, 1, 100) 
         y = np.random.uniform(-1, 1, 100)

In [16]: sample = 100
         def pi_calc(x, y):
             point_inside_circle = 0
             for i in range(sample):
                 if np.sqrt(x[i] ** 2 + y[i] ** 2) <= 1: 
                     point_inside_circle += 1
             print('pi value is {}'.format(4 * point_inside_circle/sample))

In [17]: pi_calc(x,y)
         pi value is 3.36

In [18]: x = np.random.uniform(-1, 1, 1000000)
         y = np.random.uniform(-1, 1, 1000000)

In [19]: sample = 1000000

         def pi_calc(x, y):
             point_inside_circle = 0



             for i in range(sample):
                 if np.sqrt(x[i] ** 2 + y[i] ** 2) < 1:
                     point_inside_circle += 1
             print('pi value is {:.2f}'.format(4 * point_inside_circle/sample))

In [20]: sim_data = pd.DataFrame([])
         num_reps = 1000
         mean = np.random.random(3)
         std = np.random.random(3)
         for i in range(len(stocks.columns)):
             temp = pd.DataFrame(np.random.normal(mean[i], std[i], num_reps))
             sim_data = pd.concat([sim_data, temp],axis=1)
         sim_data.columns = ['Simulation 1', 'Simulation 2', 'Simulation 3']

In [21]: sim_data
Out[21]:      Simulation 1  Simulation 2  Simulation 3
         0        0.475188      1.587426      1.334594
         1        0.547615     -0.169073      0.684107
         2        0.486227      1.533680      0.755307
         3        0.494880     -0.230544      0.471358
         4        0.580477      0.388032      0.493490
         ..            ...           ...           ...
         995      0.517479      0.387384      0.539328
         996      0.286267      0.680610      0.409003
         997      0.398601      0.733176      0.820090
         998      0.624548      0.482050      0.821792
         999      0.627089      1.405230      1.275521

         [1000 rows x 3 columns]

In [22]: def MC_VaR(initial_investment, conf_level):
             MC_percentile95 = []
             for i, j in zip(sim_data.columns, range(len(sim_data.columns))):
                 MC_percentile95.append(np.percentile(sim_data.loc[:, i], 5))
                 print("Based on simulation 95% of {}'s return is {:.4f}"
                       .format(i, MC_percentile95[j]))
                 VaR_MC = (initial_investment-initial_investment *
                           (1 + MC_percentile95[j]))
                 print("Simulation VaR result for {} is {:.2f} ".format(i, VaR_MC))
                 print('--'*35)

In [23]: MC_VaR(initial_investment, conf_level)
         Based on simulation 95% of Simulation 1's return is 0.3294
         Simulation VaR result for Simulation 1 is -329409.17
         ----------------------------------------------------------------------
         Based on simulation 95% of Simulation 2's return is 0.0847
         Simulation VaR result for Simulation 2 is -84730.05
         ----------------------------------------------------------------------



         Based on simulation 95% of Simulation 3's return is 0.1814
         Simulation VaR result for Simulation 3 is -181376.94
         ----------------------------------------------------------------------

Generating random numbers from uniform distribution.

Checking if points are inside the circle, which has a radius of 1.

Calculating 95% of every stock returns and append the result in the list
named MC_percentile95.

Estimating Monte Carlo VaR.

Denoising
Volatility is everywhere but it is formidable task to find out what kind of
volatility is most valuable. In general, there are two types of information in
the market: noise and signal. The former generates nothing but random
information but the latter equip us with a valuable information by which
investor can make money. To illustrate, consider that there are two main
players in the market the one use noisy information called noise trader and
informed trader who exploits signal or insider information. Noise traders
trading motivation is driven by random behavior. So, information flow to the
market signals are thought to be as buying signal for some noise traders and
selling for others.

However, informed trader is considered to be a rational one in the sense that
insider informed trader is able to assess a signal because she knows that it is
a private information.

Consequently, continuous flow of information should be treated with caution.
In short, information coming from noise trader can be considered as noise
and information coming from insider can be taken as signal and this is the
sort of information that matters. Investor who cannot distinguish noise and
signal can fail to gain profit and/or assess the risk in a proper way.



Now, the problem turns out to be the differentiating the flow of information to
the financial markets. How can we differentiate noise from signal? and how
can we utilize this information.

It is now appropriate to discuss the Marcenko Pastur Theorem that helps us
to have homogeneous covariance matrix. The Marcenko-Pastur theorem
allows us to etract signal from noise using eigenvalues of covariance matrix.

NOTE
Let A ∈ R

nxn be a square matrix. Then, λ ∈ R is an eigenvalue of A and 
x ∈ mathbbRn{0} is the corresponding eigenvector of A if

Ax = λx

Eigenvalue and eigenvector have special meaning in financial context.
Eigenvector corresponds the variance in covariance matrix while eigenvalue
shows the magnitude of the eigenvector. Specifically, largest eigenvector
corresponds to largest variance and the magnitude of this equals to the
corresponding eigenvalue. Due to noise in the data some eigenvalues can be
thought of as random and it makes sense to detect and filter these eigenvalues
in order to retain signals only.

To differentiate noise and signal, we fit the Marcenko Pastur Theorem PDF
to the noisy covariance. The PDF of Marcenko Pastur Theorem takes the
following form (Prado, 2020):

f(λ) = {

where λ+andλ− are maximum and minimum eigenvalues.respectively.

In the following code block, which is slight modification of the codes
provided by Prado (2020), we will generate probability density function of
Marchenko-Pastur distribution and kernel density that allows us to model a

T
N
√(λt − λ)(λ − λ−) if λ ∈ [λ − λ−]

0, if λ ∉ [λ − λ−]



random variable in a non-parametric approach. Then, Marchenko-Pastur
distribution will be fitted to the data.

In [24]: def mp_pdf(sigma2, q, obs):
             lambda_plus = sigma2 * (1 + q ** 0.5) ** 2
             lambda_minus = sigma2 * (1 - q ** 0.5) ** 2
             l = np.linspace(lambda_minus, lambda_plus, obs)
             pdf_mp = 1 / (2 * np.pi * sigma2 * q * l) * np.sqrt((lambda_plus  - l)
                                                                 *  (l - 
lambda_minus))
             pdf_mp = pd.Series(pdf_mp, index=l)
             return pdf_mp

In [25]: from sklearn.neighbors import KernelDensity

         def kde_fit(bandwidth,obs,x=None):
             kde = KernelDensity(bandwidth, kernel='gaussian')
             if len(obs.shape) == 1:
                 kde_fit=kde.fit(np.array(obs).reshape(-1, 1))
             if x is None:
                 x=np.unique(obs).reshape(-1, 1)
             if len(x.shape) == 1:
                 x = x.reshape(-1, 1)
             logprob = kde_fit.score_samples(x)
             pdf_kde = pd.Series(np.exp(logprob), index=x.flatten())
             return pdf_kde

In [26]: corr_mat = np.random.normal(size=(10000, 1000))
         corr_coef = np.corrcoef(corr_mat, rowvar=0)
         sigma2 = 1
         obs = corr_mat.shape[0]
         q = corr_mat.shape[0] / corr_mat.shape[1]

         def plotting(corr_coef, q):
             ev, _ = np.linalg.eigh(corr_coef)
             idx = ev.argsort()[::-1]
             eigen_val = np.diagflat(ev[idx])
             pdf_mp = mp_pdf(1., q=corr_mat.shape[1] / corr_mat.shape[0], obs=1000)

             kde_pdf = kde_fit(0.01, np.diag(eigen_val))
             ax = pdf_mp.plot(title="Marchenko-Pastur Theorem",
                              label="M-P", style='r--')
             kde_pdf.plot(label="Empirical Density", style='o-', alpha=0.3)
             ax.set(xlabel="Eigenvalue", ylabel="Frequency")
             ax.legend(loc="upper right")
             plt.savefig('images/MP_fit.png')



             plt.show()
             return plt

In [27]: plotting(corr_coef, q);

Calculating maximum expected eigenvalue.

Calculating minimum expected eigenvalue

Generating probability density function of Marchenko-Pastur distribution.

Initiating kernel density estimation.

Fitting kernel density to the observations.

Assessing the log density model on observations.

Generating random samples from normal distribution.

Converting covariance matrix into correlation matrix.

Calculating eigenvalues of the correlation matrix.

Turning numpy array into diagonal matrix.

Calling the mp_pdf function to estimate the pdf of Marchenko-Pastur
distribution.

Calling the kde_fit function to fit kernel distribution to the data.

Figure 5-3 exhibits that Marchenko-Pastur distribution fit well to the data.
Thanks to Marchenko-Pastur theorem, we are able to differentiate the noise
and signal and the data in which noise is filtered is refered to as denoised.



Figure 5-3. Fitting Marchenko-Pastur Distribution

So far, we have discussed the main steps to take to denoising the covariance
matrix so that we can plug it into the VaR model, which is called Denoised
VaR estimation. Denoising covariance matrix is nothing but taking
unnecessary information (noise) out of the data. So, we make use of signal
from the market, which tells us something important is going on in the market.

Denoising the covariance matrix includes following stages :

Calculating eigenvalues and eigenvectors based on correlation
matrix.

Using Kernel Density Estimation, find eigenvector for a specific
eigenvalue.

Fitting Marchenko-Pastor distribution to Kernel Density Estimation.

Finding maximum theoretical eigenvalue using Marchenko-Pastur
distribution.

1



Average of eigenvalues greater than theoretical value are calculated.

These new eigenvalues and eigenvectors are used to calculate
denoised correlation matrix.

Denoised covariance matrix is calculated by the new correlation
matrix.

In the Appendix, you can find the algorithm including all these steps, but here
I would like to show you how easy to apply finding denoised covariance
matrix with a few lines of code utilizing the portfoliolab library in Python:

In [28]: import portfoliolab as pl

In [29]: risk_estimators = pl.estimators.RiskEstimators()

In [30]: stock_prices = stocks.copy()

In [31]: cov_matrix = stocks_returns.cov()
         cov_matrix
Out[31]:            IBM      MSFT      INTC
         IBM   0.000672  0.000465  0.000569
         MSFT  0.000465  0.000770  0.000679
         INTC  0.000569  0.000679  0.001158

In [32]: tn_relation = stock_prices.shape[0] / stock_prices.shape[1]
         kde_bwidth = 0.25
         cov_matrix_denoised = risk_estimators.denoise_covariance(cov_matrix,
                                                                  tn_relation,
                                                                  kde_bwidth)
         cov_matrix_denoised = pd.DataFrame(cov_matrix_denoised,
                                            index=cov_matrix.index,
                                            columns=cov_matrix.columns)
         cov_matrix_denoised
Out[32]:            IBM      MSFT      INTC
         IBM   0.000672  0.000480  0.000589
         MSFT  0.000480  0.000770  0.000638
         INTC  0.000589  0.000638  0.001158

In [33]: def VaR_parametric_denoised(initial_investment, conf_level):
             port_std = np.sqrt(weights.T.dot(cov_matrix_denoised).dot(weights))
             alpha = norm.ppf(1 - conf_level, stocks_returns_mean, port_std)
             for i,j in zip(stocks.columns,range(len(stocks.columns))):
                 print("Parametric VaR result for {} is {} ".format(i,VaR_param))
             VaR_params = (initial_investment - initial_investment * (1 + alpha))



             print('--' * 25)
             return VaR_params

In [34]: VaR_parametric_denoised(initial_investment, conf_level)
         Parametric VaR result for IBM is [42199.83906971 40618.17975427
          42702.9302193 ]
         Parametric VaR result for MSFT is [42199.83906971 40618.17975427
          42702.9302193 ]
         Parametric VaR result for INTC is [42199.83906971 40618.17975427
          42702.9302193 ]
         --------------------------------------------------

Out[34]: array([42259.80830949, 40678.14899405, 42762.89945907])

In [35]: symbols = ["IBM", "MSFT", "INTC"]
         data3 = []
         for symbol in symbols:
             data3.append(getDailyData(symbol)[::-1]['close']['2007-04-01': '2009-
02-01'])
         stocks_crisis = pd.DataFrame(data3).T
         stocks_crisis.columns = symbols

In [36]: stock_prices = stocks_crisis.copy()

In [37]: stocks_returns = (np.log(stocks) - np.log(stocks.shift(1))).dropna()

In [38]: cov_matrix = stocks_returns.cov()

In [39]: VaR_parametric(initial_investment, conf_level)
         Parametric VaR result for IBM is 42199.839069714886
         Parametric VaR result for MSFT is 40618.179754271754
         Parametric VaR result for INTC is 42702.930219301255
         --------------------------------------------------

Out[39]: array([42199.83906971, 40618.17975427, 42702.9302193 ])

In [40]: VaR_parametric_denoised(initial_investment, conf_level)
         Parametric VaR result for IBM is [42199.83906971 40618.17975427
          42702.9302193 ]
         Parametric VaR result for MSFT is [42199.83906971 40618.17975427
          42702.9302193 ]
         Parametric VaR result for INTC is [42199.83906971 40618.17975427
          42702.9302193 ]
         --------------------------------------------------

Out[40]: array([42259.80830949, 40678.14899405, 42762.89945907])



Relation of number of observations T to the number of variables N.

Identifying the bandwidth for kernel density estimation.

Generating the denoised covariance matrix.

Incoporating the denoised covariance matrix into the VaR formula.

The difference of the traditionally applied VaR and the denoised VaR are
even more pronounced in the crisis period. During crisis period, correlation
among assets becomes higher, it is sometimes referred to as correlation
breakdown. The likely consequences of correlation breakdown can be
twofold:

An increase on market risk that makes diversification becomes less
effective.

Making hedging even more difficult.

In order to check this phenomenon, we consider the 2017-2018 financial
crisis period and the exact crisis period is obtained from NBER, which
announces business cycles (see [https://www.nber.org/research/data/us-
business-cycle-expansions-and-contractions] for further information).

The result confirms that the correlation and thereby VaR becomes higher
during crisis period.

Now, we manage to obtained ML-based VaR using denoised covariance
matrix in lieu of empirical matrix that we calculate directly from the data.
Despite its appealing and easiness VaR is not a coherent risk measure. Being
a coherent risk measure requires certain conditions or axioms to satisfy. You
can think of these axioms as a technical requirements for a risk measure.

Let α ∈ (0, 1) be fixed confidence level and (ωFP) be a probability space
in which ω represents a sample space, F  denotes subset of sample space,
and P is probability measure.

https://www.nber.org/research/data/us-business-cycle-expansions-and-contractions


NOTE
To illustrate, say ω is the set of all possible outcomes in the event of tossing a coin, ω=
{H,T}. F  can be treated as tossing a coin twice, F=2 2. Finally, probability measure, 
P, is the odds of getting tails is 0.5.

Here is the four axioms of a coherent risk measure:

1) Translation Invariance: For all outcomes Y and a constant a ∈ R, we
have

V aR(Y1 + Y2) = V aR(Y ) + a

It means that if a riskless amount of a is added to the portfolio, it results in
lower VaR by the amount of a.

2) Sub-additivity: For all Y1 and Y2 we have

V aR(Y1 + Y2) ≤ V aR(Y1) + V aR(Y2)

This axiom stress the importance of diversification in risk management. Take 
Y1 and Y2 as two assets if you both are included in the portfolio, then it
results in lower Value-at-Risk than including them separately. Let’s check
whether or not VaR satisfy sub-additivity assumption:

In [41]: asset1 = [-0.5, 0, 0.1, 0.4]
         VaR1 = np.percentile(asset1, 90)
         print('VaR for the Asset 1 is {:.4f}'.format(VaR1))
         asset2 = [0, -0.5, 0.01, 0.4]
         VaR2 = np.percentile(asset2, 90)
         print('VaR for the Asset 2 is {:.4f}'.format(VaR2))
         VaR_all = np.percentile(asset1 + asset2, 90)
         print('VaR for the portfolio is {:.4f}'.format(VaR_all))
         VaR for the Asset 1 is 0.3100
         VaR for the Asset 2 is 0.2830
         VaR for the portfolio is 0.4000

In [42]: asset1 = [-0.5, 0, 0.05, 0.03]
         VaR1 = np.percentile(asset1, 90)
         print('VaR for the Asset 1 is {:.4f}'.format(VaR1))
         asset2 = [0, -0.5, 0.02, 0.8]
         VaR2 = np.percentile(asset2,90)

{ω}=2



         print('VaR for the Asset 2 is {:.4f}'.format(VaR2))
         VaR_all = np.percentile(asset1 + asset2 , 90)
         print('VaR for the portfolio is {:.4f}'.format(VaR_all))
         VaR for the Asset 1 is 0.0440
         VaR for the Asset 2 is 0.5660
         VaR for the portfolio is 0.2750

Asset return for the first asset

Asset return for the second asset

It turns out portfolio VaR is less that the sum of individual VaRs, which
makes no sense due to the risk mitigation throght diversification. More
elaborately, portfolio VaR should be lower than the sum of individual VaRs
via divesification as divesification mitigates risk, which in turn have a
reduce the portfolio VaR.

3) Positive homogeneity: For all outcomes Y and a>0, we have

V aR(aY ) = aV aR(L)

It implies that risk and value of the portfolio go in tandem, that is, if value of
a portfolio increases by an amount of a, the risk goes up by an amount of a.

4) Monotonicity: For any 2 outcomes, Y1 and Y2 if Y1 ≤ Y2, then

V aR(Y1) ≥ V aR(Y2)

At first, it may seem puzzling but it is intuitive. Monotonicity indicates that an
asset with higher return has a less VaR.

In the light of above discussion, we now know that VaR is not a coherent risk
measure. But do not worry, VaR is not the only tool by which we estimate
market risk. Expected shortfall is another and coherent market risk measure.

Expected Shortfall
Unlike VaR, Expected Shortfall focuses on the tail of the distribution. More
elaboratively, Expected Shortfall enable us to take into account the



unexpected risks in the market. However, it does not mean that Expected
Shortfall and VaR are two entirely different concepts. Rather, they are
related, that is, it is possible to express Expected Shortfall using VaR.

Let us now assume that loss distribution is continuous, then Expected
Shortfall can be mathematically defined as:

ESα = 1
1−α

∫ 1
α
qudu

where q denotes quantile of the loss distribution. Expected Shortfall formula
suggests that it is nothing but a probability weights average of (1 − α)% of
losses.

Let us substitute qu and VaR, which gives us the following equation:

ESα = 1
1−α

∫ 1
α
V aRudu

Alternatively, it is mean of losses exceeding VaR as shown below:

ESα = E(L|L > V aRα)

Loss distribution can be continuous or discrete and, as you can imagine, if it
takes the discrete form, the Expected Shortfall becomes different as given
below:

ESα = 1
1−α

∑1
n=0 max(Ln) * P(Ln)

where max(Ln) shows the highest nth loss and Prob(Ln) indicates
probability of pth highest loss.

In [43]: def ES_parametric(initial_investment , conf_level):
             alpha = - norm.ppf(1 - conf_level,stocks_returns_mean,port_std)
             for i,j in zip(stocks.columns, range(len(stocks.columns))):
                 VaR_param = (initial_investment * alpha)[j]
                 ES_param = (1 / (1 - conf_level)) * norm.expect(lambda x: 
VaR_param,
                                                                 lb = conf_level)
                 print(f"Parametric ES result for {i} is {ES_param}")

In [44]: ES_parametric(initial_investment, conf_level)
         Parametric ES result for IBM is 144370.82004213505



         Parametric ES result for MSFT is 138959.76972934653
         Parametric ES result for INTC is 146091.9565067016

Estimating the Variance-Covaraince VaR.

Given confidence interval, estimating the ES based on VaR.

ES can also be computed based on the historical observations. Similar to
historical simulation VaR method, parametric assumption can be relaxed. To
do that, first return (or loss) corresponding to the 95% is found and then the
mean of the observations greater than the 95% gives us the result. Here, this
is what we do:

In [45]: def ES_historical(initial_investment, conf_level):
             for i, j in zip(stocks_returns.columns, 
range(len(stocks_returns.columns))):
                 ES_hist_percentile95 = np.percentile(stocks_returns.loc[:, i], 5)
                 ES_historical = stocks_returns[str(i)][stocks_returns[str(i)] <=
                                                        ES_hist_percentile95].mean()

                 print("Historical ES result for {} is {:.4f} "
                       .format(i, initial_investment * ES_historical))

In [46]: ES_historical(initial_investment, conf_level)
         Historical ES result for IBM is -64802.3898
         Historical ES result for MSFT is -65765.0848
         Historical ES result for INTC is -88462.7404

Calculating the 95% of the returns.

Estimating the ES based on the historical observations.

Thus far, we have seen how to model the expected shortfall in a traditional
way. Now, it is time to introduce ML-based approach to further enhance the
estimation performance and reliability of the ES model.

Liquidity Augmented Expected Shortfall



As is discussed, ES provides us a coherent risk measure to gauge market
risk. However, even though we differentiate financial risk as market, credit,
liquidity, and operational, it does not necessarily mean that these risks are
entirely unrelated to each other. Rather, they are, to some extent, correlated.
That is, once a financial crisis hit the market, market risk surges align with
the drawdown on lines of credit, which in turn increase liquidity risk.

Given the situation of the economy, the effect of illiquidity varies as it
becomes commonplace during huge market downturns but it is more
manageable during normal times. Therefore, its impact will be more distinct
in down market.

This fact is supported by Antoniades stating that

Common pool of liquid assets is the resource constraint through which
liquidity risk can affect the supply of mortgage credit. During the
financial crisis of 2007–2008 the primary source of stresses to bank
funding conditions arose from the funding illiquidity experienced in the
markets for wholesale funding.

—Antoniades (Liquidity Risk and the Credit Crunch of
2007-2008: Evidence from Micro-Level Data on Mortgage

Loan Applications, 2014, p.6)

Ignoring liquidity dimension of risk may cause underestimating the market
risk. Therefore, augmenting ES with liquidity risk may result in more
accurate and reliable estimation. Well, it sounds appealing but how can we
find a proxy for liquidity?



NOTE
Liquidity can be defined as the easiness of the trasaction with which assets can be sold in
a very short time period without a significant impact on market price. There are two main
measures of liquidity:

Market liquidity: The ease with which an asset is traded.

Funding liquidity: The ease with which investor can obtain funding.

Liquidity and the risk arising from it will be discussed in a greater detail in Chapter-7. So,
much of the discussion is left to this chapter.

In the literature, bid-ask spread measures are commonly used for modeling
liquidity. Shortly, bid-ask spread is the difference of bid-ask prices. Put
differently, it is the difference between the highest available price (bid price)
that a buyer is willing to pay and the lowest price (ask price) that a seller is
willing to get. So, bid-ask spread gives a tool to measure the transaction
cost.

To the extent that bid-ask spread is a good indicator of transaction cost, it is
also a good proxy of liquidity in the sense that transaction cost is one of the
components of liquidity. Spreads can be defined various ways depending on
their focus. Here is the bid-ask spreads that we will use to incorporate
liquidity risk into ES model.

Effective Spread

Effective Spread = 2 * |(Pt − Pmid)|

where Pt is the price of trade at time t and Pmid is the midpoint of the bid-
ask offer ( (Pask − Pbid)/2) prevailing at the time of the t.

Proportional Quoted Spread

Proportional Quoted Spread = (Pask − Pbid)/Pmid

where Pask is the ask price and Pbid and Pmid are bid price and mid price,
respectively.



Quoted Spread

Quoted Spread = Pask − Pbid

Proportional Effective Spread:

Proportional Effective Spread = 2 * (|Pt − Pmid|)/Pmid

Effective Cost

Effective Cost = {

Buyer-initiated trade occurs when a trade is executed at a price abover
quoted mid price. Similarly, seller-initiated trade occurs when a trade is
executed at a price below than the quoted mid price.

Now, we need to find a way to incorporate these bid-ask spreads into the ES
model so that we are able to account for the liquidity risk as well as market
risk. We employ two different methods to accomplish this task. First one is to
take the cross-sectional mean of the bid ask spread as suggested by Chordia
et al., (2000) and Pastor and Stambaugh (2003). The second method is to
apply Principal Component Analysis (PCA) as proposed by Mancini et al.
(2013).

Cross-sectional mean is nothing but averaging the bid-ask spread. Using this
method, we are able to generate a measure for market-wide liquidity. The
averaging formula is as follows:

LM,t = 1
N
∑N

i Li,t

where LM,t is the market liquidity and Li,t is the individual liqudity
measure, namely bid-ask spread in our case.

ESL = ES + Liquidity Cost

ESL = 1
1−α

∫ 1
α
V aRudu + 1

2
Plast(μ + kσ)

where

(Pt − Pmid)/Pmid for buyer initiated

(Pmid/Pt)/Pmid for seller initiated



Plast is the closing stock price.

μ is the mean of spread.

k is the scaling factor to accommodate fat-tail.

σ is the standard deviation of the spread.

In [47]: bid_ask = pd.read_csv('bid_ask.csv')

In [48]: bid_ask['mid_price'] = (bid_ask['ASKHI'] + bid_ask['BIDLO']) / 2
         buyer_seller_initiated = []
         for i in range(len(bid_ask)):
             if bid_ask['PRC'][i] > bid_ask['mid_price'][i]:
                 buyer_seller_initiated.append(1)
             else:
                 buyer_seller_initiated.append(0)

         bid_ask['buyer_seller_init'] = buyer_seller_initiated

In [49]: effective_cost = []
         for i in range(len(bid_ask)):
             if bid_ask['buyer_seller_init'][i] == 1:
                 effective_cost.append((bid_ask['PRC'][i] - bid_ask['mid_price'][i]) 
/
                                        bid_ask['mid_price'][i])
             else:
                 effective_cost.append((bid_ask['mid_price'][i] - bid_ask['PRC']
[i])/
                                        bid_ask['mid_price'][i])
         bid_ask['effective_cost'] = effective_cost

In [50]: bid_ask['quoted'] = bid_ask['ASKHI'] - bid_ask['BIDLO']
         bid_ask['prop_quoted'] = (bid_ask['ASKHI'] - bid_ask['BIDLO']) / \ 
                                  bid_ask['mid_price']
         bid_ask['effective'] = 2 * abs(bid_ask['PRC'] - bid_ask['mid_price'])
         bid_ask['prop_effective'] = 2 * abs(bid_ask['PRC'] - bid_ask['mid_price']) 
/ \ 
                                     bid_ask['PRC']

In [51]: spread_measures = bid_ask.iloc[:, -5:]
         spread_measures.corr()
Out[51]:                 effective_cost    quoted  prop_quoted  effective  \ 
         effective_cost        1.000000  0.441290     0.727917   0.800894
         quoted                0.441290  1.000000     0.628526   0.717246
         prop_quoted           0.727917  0.628526     1.000000   0.514979



         effective             0.800894  0.717246     0.514979   1.000000
         prop_effective        0.999847  0.442053     0.728687   0.800713

                         prop_effective
         effective_cost        0.999847
         quoted                0.442053
         prop_quoted           0.728687
         effective             0.800713
         prop_effective        1.000000

In [52]: spread_measures.describe()
Out[52]: effective_cost      quoted  prop_quoted   effective  prop_effective
         count      756.000000  756.000000   756.000000  756.000000
          756.000000
         mean         0.004247    1.592583     0.015869    0.844314
          0.008484
         std          0.003633    0.921321     0.007791    0.768363
          0.007257
         min          0.000000    0.320000     0.003780    0.000000
          0.000000
         25%          0.001517    0.979975     0.010530    0.300007
          0.003029
         50%          0.003438    1.400000     0.013943    0.610000
          0.006874
         75%          0.005854    1.962508     0.019133    1.180005
          0.011646
         max          0.023283    8.110000     0.055451    6.750000
          0.047677

In [53]: high_corr = spread_measures.corr().unstack()\ 
                     .sort_values(ascending=False).drop_duplicates()
         high_corr[(high_corr > 0.80) & (high_corr != 1)]
Out[53]: effective_cost  prop_effective    0.999847
         effective       effective_cost    0.800894
         prop_effective  effective         0.800713
         dtype: float64

In [54]: sorted_spread_measures = bid_ask.iloc[:, -5:-2]

In [55]: cross_sec_mean_corr = sorted_spread_measures.mean(axis=1).mean()
         std_corr = sorted_spread_measures.std().sum() / 3

In [56]: df = pd.DataFrame(index=stocks.columns)
         last_prices = []
         for i in symbols:
             last_prices.append(stocks[i].iloc[-1])
         df['last_prices'] = last_prices



In [57]: def ES_parametric(initial_investment, conf_level):
             ES_params = []
             alpha = - norm.ppf(1 - conf_level, stocks_returns_mean, port_std)
             for i,j in zip(stocks.columns,range(len(stocks.columns))):
                 VaR_param = (initial_investment * alpha)[j]
                 ES_param = (1 / (1 - conf_level)) * norm.expect(lambda x: 
VaR_param,
                                                                 lb = conf_level)
                 ES_params.append(ES_param)
             return ES_params

In [58]: ES_params = ES_parametric(initial_investment,conf_level)
         for i in range(len(symbols)):
             print(f'The Expected Shortfall result for {symbols[i]} is 
{ES_params[i]}')
         The Expected Shortfall result for IBM is 144370.82004213505
         The Expected Shortfall result for MSFT is 138959.76972934653
         The Expected Shortfall result for INTC is 146091.9565067016

In [59]: k = 1.96
         for i, j in zip(range(len(symbols)), symbols):
             print('The liquidity Adjusted ES of {} is {}'
                   .format(j, ES_params[i] + (df.loc[j].values[0] / 2) *
                           (cross_sec_mean_corr + k * std_corr)))
         The liquidity Adjusted ES of IBM is 144443.0096816674
         The liquidity Adjusted ES of MSFT is 139087.3231105412
         The liquidity Adjusted ES of INTC is 146120.5272712512

Importing the bid_ask data.

Calculating the mid price.

Defining condition for buyer and seller initiated trade.

If the above-given condition holds, it returns 1 and it is appended into
buyer_seller_initiated list.

If the above-given condition does not hold, it returns 0 and it is appended
into buyer_seller_initiated list.

If buyer_seller_initiated variable takes the value of 1, corresponding
effective cost formula is run.



If buyer_seller_initiated variable takes the value of 0, corresponding
effective cost formula is run.

Quoted, proportional quoted, effective , and proportional effective
spreads are computed.

Correlation matrix are obtained and list them column-wise.

Sorting out the correlation greater than 80%.

Calculating the cross-sectional mean of spread measures.

Obtaining the standard deviation of spreads.

Filtering the last observed stock prices from the stocks data.

Estimating the liquidity-adjusted ES.

PCA is a method used to reduce dimensionality. It is used to extract as much
as information as possible using as few component as possible. That is, in
this example, out of 5 features, we pick 2 components relying on the
Figure 5-4 given below. So, we reduce dimensionality at the expense of
losing information. Because, depending on the cut-off point that we decide,
we pick the number of components and we lose information as much as how
many components we left off.

To be more specific, point at which Figure 5-4 gets flatter implies that we
retain less information and this is the cut-off point for the PCA. However, it
is not an easy call in that there is a trade-off between the cut-off point and
information retained. That is, on the one hand, the higher the cut-off point (the
higher number the components) we have, the more information we retain (the
less dimensionality we reduce). On the other hand, the less the cut-off point
(the less number of components we have), the less information we retain (the
higher dimensionality we reduce). Getting flatter scree plot is not the mere
criteria for selecting suitable number of components. So, what would be the



possible criteria to picking proper number of components. Here is the
possible cut-off criteria for PCA:

Greater than 80% explained variance

Greater than 1 eigenvalues

The point at which scree plot get flatter

However, dimensionality reduction is not the only thing that we take
advantage from. In this study, we apply PCA to benefit of getting peculiar
features of liquidity. Because, PCA filter the most important information from
the data for us.

The mathematics behind the PCA is discussed in detail in Appendix.

WARNING
Please note that liqudity adjustment can be applied to VAR, too. The same procedure
applies to VaR. Mathematically,

V aRL = σp√tZα + 1
2
Plast(μ + kσ)

This application is left to the reader.

In [60]: from sklearn.decomposition import PCA
         from sklearn.preprocessing import StandardScaler

In [61]: scaler = StandardScaler()
         spread_measures_scaled = scaler.fit_transform(np.abs(spread_measures))
         pca = PCA(n_components=5)
         prin_comp = pca.fit_transform(spread_measures_scaled)

In [62]: var_expl = np.round(pca.explained_variance_ratio_, decimals=4)
         cum_var = np.cumsum(np.round(pca.explained_variance_ratio_, decimals=4))
         print('Individually Explained Variances are:\n{}'.format(var_expl))
         print('=='*30)
         print('Cumulative Explained Variances are: {}'.format(cum_var))
         Individually Explained Variances are:
         [0.7494 0.1461 0.0983 0.0062 0.    ]
         ============================================================
         Cumulative Explained Variances are: [0.7494 0.8955 0.9938 1.     1.    ]



In [63]: plt.plot(pca.explained_variance_ratio_)
         plt.xlabel('Number of Components')
         plt.ylabel('Variance Explained')
         plt.title('Scree Plot')
         plt.savefig('Scree_plot.png')
         plt.show()
In [64]: pca = PCA(n_components=2)
         pca.fit(np.abs(spread_measures_scaled))
         prin_comp = pca.transform(np.abs(spread_measures_scaled))
         prin_comp = pd.DataFrame(np.abs(prin_comp), columns = ['Component 1',
                                                                'Component 2'])
         print(pca.explained_variance_ratio_*100)
         [65.65640435 19.29704671]

In [65]: def myplot(score, coeff, labels=None):
             xs = score[:, 0]
             ys = score[:, 1]
             n = coeff.shape[0]
             scalex = 1.0 / (xs.max() - xs.min())
             scaley = 1.0 / (ys.max() - ys.min())
             plt.scatter(xs * scalex * 4, ys * scaley * 4, s=5)
             for i in range(n):
                 plt.arrow(0, 0, coeff[i, 0], coeff[i, 1], color = 'r', alpha=0.5)
                 if labels is None:
                     plt.text(coeff[i, 0], coeff[i, 1], "Var"+str(i), color='black')
                 else:
                     plt.text(coeff[i,0 ], coeff[i, 1], labels[i], color='black')

             plt.xlabel("PC{}".format(1))
             plt.ylabel("PC{}".format(2))
             plt.grid()

In [66]: spread_measures_scaled_df = pd.DataFrame(spread_measures_scaled,
                                                  columns=spread_measures.columns)

In [67]: myplot(np.array(spread_measures_scaled_df)[:, 0:2],
                np.transpose(pca.components_[0:2,:]),
                list(spread_measures_scaled_df.columns))
         plt.savefig('Bi_plot.png')
         plt.show()

Standardization of the spread measures.

Identifying the number of principal components as 5.



Applying the principal component to the spread_measures_scaled.

Observing the explained variance of the five principal components.

Observing the cumulative explained variance of the five principal
components

Drawing the scree plot.

Based on scree plot, deciding the number of component as 2 to be used in
PCA analysis.

Drawing the biplot to observe the relationship between components and
features.

Figure 5-4. PCA Scree Plot



Figure 5-5. PCA Biplot

All right, we have all the necessary information now and incorporating this
information, we are able to calculate liquidity adjusted ES. Unsurprisingly,
the following code reveals that the liquidity adjusted ES provides larger
values compared to standard ES application. This implies that including
liquidity dimension in ES estimation results in higher risk. Please note that
the difference will be more pronounced during crisis.

In [68]: prin_comp1_rescaled = prin_comp.iloc[:,0] * prin_comp.iloc[:,0].std()\ 
                               + prin_comp.iloc[:, 0].mean()
         prin_comp2_rescaled = prin_comp.iloc[:,1] * prin_comp.iloc[:,1].std()\ 
                               + prin_comp.iloc[:, 1].mean()
         prin_comp_rescaled = pd.concat([prin_comp1_rescaled, prin_comp2_rescaled],
                                        axis=1)
         prin_comp_rescaled.head()
Out[68]:    Component 1  Component 2
         0     1.766661     1.256192
         1     4.835170     1.939466
         2     3.611486     1.551059



         3     0.962666     0.601529
         4     0.831065     0.734612

In [69]: mean_pca_liq = prin_comp_rescaled.mean(axis=1).mean()
         mean_pca_liq
Out[69]: 1.0647130086973815

In [70]: k = 1.96
         for i, j in zip(range(len(symbols)), symbols):
             print('The liquidity Adjusted ES of {} is {}'
                   .format(j, ES_params[i] + (df.loc[j].values[0] / 2) *
                           (mean_pca_liq + k * std_corr)))
         The liquidity Adjusted ES of IBM is 144476.18830537834
         The liquidity Adjusted ES of MSFT is 139145.94711344707
         The liquidity Adjusted ES of INTC is 146133.65849966934

Calculating the liquidity part of liquidity-adjusted ES formula for the first
principal component.

Calculating the liquidity part of liquidity-adjusted ES formula for the first
principal component.

Calculating cross-sectional mean of the two principal components.

Estimating the liquidity-adjusted ES.

Conclusion
Market risk has been always under scrutiny as it gives us the extent to which
a company is vulnerable to risk emanating from market events. In a financial
risk management textbook, it is customary to find a VaR and ES model, which
are two prominent and commonly applied model in theory and practice. In
this chapter, after providing an introduction to these models, a cutting edge
models are introduced to revisit and improve model estimation. To this end,
first we try to distinguish information flowing in the form of noise and signal,
which is called denoising. In what follows, denoised covariance matrix is
employed to improve the VaR estimation.



Then, ES model are discussed as a coherent risk measure. The method that
we applied to improve this model is liquidity-based approach by which we
revisit eS model and augment using liquidity component so that it is possible
to consider liquidity risk in estimating ES.

Further improvements in market risk estimation are also possible but the aim
is to give an idea and tools to provide a decent ground for ML-based market
risk approaches. However, you can go further and apply different tools. In the
next chapter, we will discuss the credit risk modeling suggested by
regulatory bodies such as the Basel Committee on Banking Supervision
(BCBS) and enrich this model using ML-based approach.
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