
M A N N I N G

Hobson Lane
Cole Howard

Hannes Max Hapke
Foreword by Dr. Arwen Griffioen

Understanding, analyzing, and generating text with Python

IN ACTION

Chatbot Recirculating (Recurrent) Pipeline

Database
Statements
responses

scroes
user profiles

Scored
statements

Scored
statement

Scored
responses

Response
string

Possible
responses

3. Generate

Search
templates

FSM
MCMC
RBM
RNN

4. Execute
Generalize & classify

update models
update objective

update dialog plan
select response

2. Analyze

Check spelling
check grammar

analyze sentiment
analyze humanness

analyze style
CNN
GAN

1. Parse

Tokenizers
regular expressions

tag
NER

extract information
reduce dimensions

Structured
data

(feature
vector)

Text

Response
feature
vector

Natural Language Processing in Action

ii

Natural Language
Processing in Action
Understanding, analyzing, and generating text with Python

HOBSON LANE
COLE HOWARD

HANNES MAX HAPKE

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Acquisitions editor: Brian Sawyer
20 Baldwin Road Development editor: Karen Miller
PO Box 761 Technical development editor: René van den Berg
Shelter Island, NY 11964 Review editor: Ivan Martinović

Production editor: Anthony Calcara
Copy editor: Darren Meiss
Proofreader: Alyson Brener

Technical proofreader: Davide Cadamuro
Typesetter and cover designer: Marija Tudor

ISBN 9781617294631
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – SP – 24 23 22 21 20 19

http://www.manning.com

brief contents
PART 1 WORDY MACHINES .. 1

1 ■ Packets of thought (NLP overview) 3
2 ■ Build your vocabulary (word tokenization) 30
3 ■ Math with words (TF-IDF vectors) 70
4 ■ Finding meaning in word counts (semantic analysis) 97

PART 2 DEEPER LEARNING (NEURAL NETWORKS) 153
5 ■ Baby steps with neural networks

(perceptrons and backpropagation) 155
6 ■ Reasoning with word vectors (Word2vec) 181
7 ■ Getting words in order with convolutional

neural networks (CNNs) 218
8 ■ Loopy (recurrent) neural networks (RNNs) 247
9 ■ Improving retention with long short-term memory networks 274

10 ■ Sequence-to-sequence models and attention 311

PART 3 GETTING REAL (REAL-WORLD NLP CHALLENGES) 337
11 ■ Information extraction (named entity extraction and

question answering) 339
12 ■ Getting chatty (dialog engines) 365
13 ■ Scaling up (optimization, parallelization, and

batch processing) 403
v

BRIEF CONTENTSvi

contents
foreword xiii
preface xv
acknowledgments xxi
about this book xxiv
about the authors xxvii
about the cover illustration xxix

PART 1 WORDY MACHINES ... 1

1 Packets of thought (NLP overview) 3
1.1 Natural language vs. programming language 4
1.2 The magic 4

Machines that converse 5 ■ The math 6

1.3 Practical applications 8
1.4 Language through a computer’s “eyes” 9

The language of locks 10 ■ Regular expressions 11
A simple chatbot 12 ■ Another way 16

1.5 A brief overflight of hyperspace 19
1.6 Word order and grammar 21
1.7 A chatbot natural language pipeline 22
1.8 Processing in depth 25
1.9 Natural language IQ 27
vii

CONTENTSviii
2 Build your vocabulary (word tokenization) 30
2.1 Challenges (a preview of stemming) 32
2.2 Building your vocabulary with a tokenizer 33

Dot product 41 ■ Measuring bag-of-words overlap 42
A token improvement 43 ■ Extending your vocabulary with
n-grams 48 ■ Normalizing your vocabulary 54

2.3 Sentiment 62
VADER—A rule-based sentiment analyzer 64 ■ Naive Bayes 65

3 Math with words (TF-IDF vectors) 70
3.1 Bag of words 71
3.2 Vectorizing 76

Vector spaces 79

3.3 Zipf’s Law 83
3.4 Topic modeling 86

Return of Zipf 89 ■ Relevance ranking 90 ■ Tools 93
Alternatives 93 ■ Okapi BM25 95 ■ What’s next 95

4 Finding meaning in word counts (semantic analysis) 97
4.1 From word counts to topic scores 98

TF-IDF vectors and lemmatization 99 ■ Topic vectors 99
Thought experiment 101 ■ An algorithm for scoring topics 105
An LDA classifier 107

4.2 Latent semantic analysis 111
Your thought experiment made real 113

4.3 Singular value decomposition 116
U—left singular vectors 118 ■ S—singular values 119
VT—right singular vectors 120 ■ SVD matrix orientation 120
Truncating the topics 121

4.4 Principal component analysis 123
PCA on 3D vectors 125 ■ Stop horsing around and get back to
NLP 126 ■ Using PCA for SMS message semantic analysis 128
Using truncated SVD for SMS message semantic analysis 130
How well does LSA work for spam classification? 131

4.5 Latent Dirichlet allocation (LDiA) 134
The LDiA idea 135 ■ LDiA topic model for SMS messages 137
LDiA + LDA = spam classifier 140 ■ A fairer comparison:
32 LDiA topics 142

CONTENTS ix
4.6 Distance and similarity 143
4.7 Steering with feedback 146

Linear discriminant analysis 147

4.8 Topic vector power 148
Semantic search 150 ■ Improvements 152

PART 2 DEEPER LEARNING (NEURAL NETWORKS) 153

5 Baby steps with neural networks (perceptrons and
backpropagation) 155
5.1 Neural networks, the ingredient list 156

Perceptron 157 ■ A numerical perceptron 157 ■ Detour
through bias 158 ■ Let’s go skiing—the error surface 172
Off the chair lift, onto the slope 173 ■ Let’s shake things up a
bit 174 ■ Keras: neural networks in Python 175 ■ Onward
and deepward 179 ■ Normalization: input with style 179

6 Reasoning with word vectors (Word2vec) 181
6.1 Semantic queries and analogies 182

Analogy questions 183

6.2 Word vectors 184
Vector-oriented reasoning 187 ■ How to compute Word2vec
representations 191 ■ How to use the gensim.word2vec
module 200 ■ How to generate your own word vector
representations 202 ■ Word2vec vs. GloVe (Global Vectors) 205
fastText 205 ■ Word2vec vs. LSA 206 ■ Visualizing word
relationships 207 ■ Unnatural words 214 ■ Document
similarity with Doc2vec 215

7 Getting words in order with convolutional neural networks
(CNNs) 218
7.1 Learning meaning 220
7.2 Toolkit 221
7.3 Convolutional neural nets 222

Building blocks 223 ■ Step size (stride) 224 ■ Filter
composition 224 ■ Padding 226 ■ Learning 228

7.4 Narrow windows indeed 228
Implementation in Keras: prepping the data 230 ■ Convolutional
neural network architecture 235 ■ Pooling 236
Dropout 238 ■ The cherry on the sundae 239 ■ Let’s get to

CONTENTSx
learning (training) 241 ■ Using the model in a pipeline 243
Where do you go from here? 244

8 Loopy (recurrent) neural networks (RNNs) 247
8.1 Remembering with recurrent networks 250

Backpropagation through time 255 ■ When do we update
what? 257 ■ Recap 259 ■ There’s always a catch 259
Recurrent neural net with Keras 260

8.2 Putting things together 264
8.3 Let’s get to learning our past selves 266
8.4 Hyperparameters 267
8.5 Predicting 269

Statefulness 270 ■ Two-way street 271 ■ What is this thing? 272

9 Improving retention with long short-term memory networks 274
9.1 LSTM 275

Backpropagation through time 284 ■ Where does the rubber hit the
road? 287 ■ Dirty data 288 ■ Back to the dirty data 291
Words are hard. Letters are easier. 292 ■ My turn to chat 298
My turn to speak more clearly 300 ■ Learned how to say, but
not yet what 308 ■ Other kinds of memory 308 ■ Going
deeper 309

10 Sequence-to-sequence models and attention 311
10.1 Encoder-decoder architecture 312

Decoding thought 313 ■ Look familiar? 315 ■ Sequence-to-
sequence conversation 316 ■ LSTM review 317

10.2 Assembling a sequence-to-sequence pipeline 318
Preparing your dataset for the sequence-to-sequence training 318
Sequence-to-sequence model in Keras 320 ■ Sequence
encoder 320 ■ Thought decoder 322 ■ Assembling the
sequence-to-sequence network 323

10.3 Training the sequence-to-sequence network 324
Generate output sequences 325

10.4 Building a chatbot using sequence-to-sequence
networks 326
Preparing the corpus for your training 326 ■ Building your
character dictionary 327 ■ Generate one-hot encoded training
sets 328 ■ Train your sequence-to-sequence chatbot 329

CONTENTS xi
Assemble the model for sequence generation 330 ■ Predicting a
sequence 330 ■ Generating a response 331 ■ Converse with
your chatbot 331

10.5 Enhancements 332
Reduce training complexity with bucketing 332 ■ Paying
attention 333

10.6 In the real world 334

PART 3 GETTING REAL (REAL-WORLD NLP
CHALLENGES) .. 337

11 Information extraction (named entity extraction and question
answering) 339

11.1 Named entities and relations 339
A knowledge base 340 ■ Information extraction 343

11.2 Regular patterns 343
Regular expressions 344 ■ Information extraction as ML feature
extraction 345

11.3 Information worth extracting 346
Extracting GPS locations 347 ■ Extracting dates 347

11.4 Extracting relationships (relations) 352
Part-of-speech (POS) tagging 353 ■ Entity name normalization 357
Relation normalization and extraction 358 ■ Word patterns 358
Segmentation 359 ■ Why won’t split('.!?') work? 360
Sentence segmentation with regular expressions 361

11.5 In the real world 363

12 Getting chatty (dialog engines) 365
12.1 Language skill 366

Modern approaches 367 ■ A hybrid approach 373

12.2 Pattern-matching approach 373
A pattern-matching chatbot with AIML 375 ■ A network view of
pattern matching 381

12.3 Grounding 382
12.4 Retrieval (search) 384

The context challenge 384 ■ Example retrieval-based
chatbot 386 ■ A search-based chatbot 389

CONTENTSxii
12.5 Generative models 391
Chat about NLPIA 392 ■ Pros and cons of each approach 394

12.6 Four-wheel drive 395
The Will to succeed 395

12.7 Design process 396
12.8 Trickery 399

Ask questions with predictable answers 399 ■ Be entertaining 399
When all else fails, search 400 ■ Being popular 400 ■ Be a
connector 400 ■ Getting emotional 400

12.9 In the real world 401

13 Scaling up (optimization, parallelization, and batch
processing) 403

13.1 Too much of a good thing (data) 404
13.2 Optimizing NLP algorithms 404

Indexing 405 ■ Advanced indexing 406 ■ Advanced indexing
with Annoy 408 ■ Why use approximate indexes at all? 412
An indexing workaround: discretizing 413

13.3 Constant RAM algorithms 414
Gensim 414 ■ Graph computing 415

13.4 Parallelizing your NLP computations 416
Training NLP models on GPUs 416 ■ Renting vs. buying 417
GPU rental options 418 ■ Tensor processing units 419

13.5 Reducing the memory footprint during model
training 419

13.6 Gaining model insights with TensorBoard 422
How to visualize word embeddings 423

appendix A Your NLP tools 427
appendix B Playful Python and regular expressions 434
appendix C Vectors and matrices (linear algebra fundamentals) 440
appendix D Machine learning tools and techniques 446
appendix E Setting up your AWS GPU 459
appendix F Locality sensitive hashing 473

resources 481
glossary 490

index 497

foreword
I first met Hannes in 2006 when we started different post-graduate degrees in the
same department. He quickly became known for his work leveraging the union of
machine learning and electrical engineering and, in particular, a strong commitment
to having a positive world impact. Throughout his career, this commitment has
guided each company and project he has touched, and it was by following this inter-
nal compass that he connected with Hobson and Cole, who share similar passion for
projects with a strong positive impact.

 When approached to write this foreword, it was this passion for the application of
machine learning (ML) for good that persuaded me. My personal journey in machine
learning research was similarly guided by a strong desire to have a positive impact on
the world. My path led me to develop algorithms for multi-resolution modeling eco-
logical data for species distributions in order to optimize conservation and survey
goals. I have since been determined to continue working in areas where I can improve
lives and experiences through the application of machine learning.

With great power comes great responsibility.

 —Voltaire?

Whether you attribute these words to Voltaire or Uncle Ben, they hold as true today as
ever, though perhaps in this age we could rephrase to say, “With great access to data
comes great responsibility.” We trust companies with our data in the hope that it is
used to improve our lives. We allow our emails to be scanned to help us compose
more grammatically correct emails; snippets of our daily lives on social media are
studied and used to inject advertisements into our feeds. Our phones and homes
respond to our words, sometimes when we are not even talking to them. Even our
xiii

FOREWORDxiv
news preferences are monitored so that our interests, opinions, and beliefs are
indulged. What is at the heart of all these powerful technologies?

 The answer is natural language processing. In this book you will learn both the the-
ory and practical skills needed to go beyond merely understanding the inner workings
of these systems, and start creating your own algorithms or models. Fundamental
computer science concepts are seamlessly translated into a solid foundation for the
approaches and practices that follow. Taking the reader on a clear and well-narrated
tour through the core methodologies of natural language processing, the authors
begin with tried and true methods, such as TF-IDF, before taking a shallow but deep
(yes, I made a pun) dive into deep neural networks for NLP.

 Language is the foundation upon which we build our shared sense of humanity.
We communicate not just facts, but emotions; through language we acquire knowl-
edge outside of our realm of experience, and build understanding through sharing
those experiences. You have the opportunity to develop a solid understanding, not
just of the mechanics of NLP, but the opportunities to generate impactful systems that
may one day understand humankind through our language. The technology of NLP
has great potential for misuse, but also great potential for good. Through sharing
their knowledge, via this book, the authors hope to tip us towards a brighter future.

DR. ARWEN GRIFFIOEN

SENIOR DATA SCIENTIST - RESEARCH

ZENDESK

preface
Around 2013, natural language processing and chatbots began dominating our lives.
At first Google Search had seemed more like an index, a tool that required a little skill
in order to find what you were looking for. But it soon got smarter and would accept
more and more natural language searches. Then smart phone autocomplete began to
get sophisticated. The middle button was often exactly the word you were looking for.1

 In late 2014, Thunder Shiviah and I were collaborating on a Hack Oregon project
to mine natural language campaign finance data. We were trying to find connections
between political donors. It seemed politicians were hiding their donors' identities
behind obfuscating language in their campaign finance filings. The interesting thing
wasn’t that we were able to use simple natural language processing techniques to
uncover these connections. What surprised me the most was that Thunder would
often respond to my rambling emails with a succinct but apt reply seconds after I hit
send on my email. He was using Smart Reply, a Gmail Inbox “assistant” that composes
replies faster than you can read your email.

 So I dug deeper, to learn the tricks behind the magic. The more I learned, the
more these impressive natural language processing feats seemed doable, understand-
able. And nearly every machine learning project I took on seemed to involve natural
language processing.

 Perhaps this was because of my fondness for words and fascination with their role
in human intelligence. I would spend hours debating whether words even have
“meaning” with John Kowalski, my information theorist boss at Sharp Labs. As I

1 Hit the middle button (https://www.reddit.com/r/ftm/comments/2zkwrs/middle_button_game/:) repeat-
edly on a smart phone predictive text keyboard to learn what Google thinks you want to say next. It was first
introduced on Reddit as the “SwiftKey game” (https://blog.swiftkey.com/swiftkey-game-winning-is/) in 2013.
xv

https://www.reddit.com/r/ftm/comments/2zkwrs/middle_button_game/:
https://blog.swiftkey.com/swiftkey-game-winning-is/

PREFACExvi
gained confidence, and learned more and more from my mentors and mentees, it
seemed like I might be able to build something new and magical myself.

 One of the tricks I learned was to iterate through a collection of documents and
count how often words like “War” and “Hunger” are followed by words like “Games”
or “III.” If you do that for a large collection of texts, you can get pretty good at guess-
ing the right word in a “chain” of words, a phrase, or sentence. This classical approach
to language processing was intuitive to me.

 Professors and bosses called this a Markov chain, but to me it was just a table of
probabilities. It was just a list of the counts of each word, based on the preceding
word. Professors would call this a conditional distribution, probabilities of words con-
ditioned on the preceding word. The spelling corrector that Peter Norvig built for
Google showed how this approach scales well and takes very little Python code.2 All
you need is a lot of natural language text. I couldn’t help but get excited as I thought
about the possibilities for doing such a thing on massive free collections of text like
Wikipedia or the Gutenberg Project.3

 Then I heard about latent semantic analysis (LSA). It seemed to be just a fancy way
of describing some linear algebra operations I’d learned in college. If you keep track
of all the words that occur together, you can use linear algebra to group those words
into “topics.” LSA could compress the meaning of an entire sentence or even a long
document into a single vector. And, when used in a search engine, LSA seemed to
have an uncanny ability to return documents that were exactly what I was looking for.
Good search engines would do this even when I couldn’t think of the words that
might be in those documents!

 Then gensim released a Python implementation of Word2vec word vectors, mak-
ing it possible to do semantic math with individual words. And it turned out that this
fancy neural network math was equivalent to the old LSA technique if you just split up
the documents into smaller chunks. This was an eye-opener. It gave me hope that I
might be able to contribute to the field. I’d been thinking about hierarchical semantic
vectors for years—how books are made of chapters of paragraphs of sentences of
phrases of words of characters. Tomas Mikolov, the Word2vec inventor, had the insight
that the dominant semantics of text could be found in the connection between two
layers of the hierarchy, between words and 10-word phrases. For decades, NLP
researchers had been thinking of words as having components, like niceness and emo-
tional intensity. And these sentiment scores, components, could be added and sub-
tracted to combine the meanings of multiple words. But Mikolov had figured out how
to create these vectors without hand-crafting them, or even defining what the compo-
nents should be. This made NLP fun!

2 See the web page titled “How to Write a Spelling Corrector” by Peter Norvig (http://www.norvig.com/spell-
correct.html).

3 If you appreciate the importance of having freely accessible books of natural language, you may want to keep
abreast of the international effort to extend copyrights far beyond their original “use by” date: gutenberg.org
(http://www.gutenberg.org) and gutenbergnews.org (http://www.gutenbergnews.org/20150208/copyright-
term-extensions-are-looming:).

http://www.norvig.com/spell-correct.html
http://www.norvig.com/spell-correct.html
http://www.gutenberg.org
http://www.gutenbergnews.org/20150208/copyright-term-extensions-are-looming:
http://www.gutenbergnews.org/20150208/copyright-term-extensions-are-looming:

PREFACE xvii
 About that time, Thunder introduced me to his mentee, Cole. And later others
introduced me to Hannes. So the three of us began to “divide and conquer” the field
of NLP. I was intrigued by the possibility of building an intelligent-sounding chatbot.
Cole and Hannes were inspired by the powerful black boxes of neural nets. Before
long they were opening up the black box, looking inside and describing what they
found to me. Cole even used it to build chatbots, to help me out in my NLP journey.

 Each time we dug into some amazing new NLP approach it seemed like something
I could understand and use. And there seemed to be a Python implementation for
each new technique almost as soon as it came out. The data and pretrained models we
needed were often included with these Python packages. “There’s a package for that”
became a common refrain on Sunday afternoons at Floyd’s Coffee Shop where
Hannes, Cole, and I would brainstorm with friends or play Go and the “middle button
game.” So we made rapid progress and started giving talks and lectures to Hack Ore-
gon classes and teams.

 In 2015 and 2016 things got more serious. As Microsoft’s Tay and other bots began
to run amok, it became clear that natural language bots were influencing society. In
2016 I was busy testing a bot that vacuumed up tweets in an attempt to forecast elec-
tions. At the same time, news stories were beginning to surface about the effect of
Twitter bots on the US presidential election. In 2015 I had learned of a system used to
predict economic trends and trigger large financial transactions based only on the
“judgment” of algorithms about natural language text.4 These economy-influencing
and society-shifting algorithms had created an amplifier feedback loop. “Survival of
the fittest” for these algorithms appeared to favor the algorithms that generated the
most profits. And those profits often came at the expense of the structural founda-
tions of democracy. Machines were influencing humans, and we humans were train-
ing them to use natural language to increase their influence. Obviously these
machines were under the control of thinking and introspective humans, but when you
realize that those humans are being influenced by the bots, the mind begins to bog-
gle. Could those bots result in a runaway chain reaction of escalating feedback? Per-
haps the initial conditions of those bots could have a big effect on whether that chain
reaction was favorable or unfavorable to human values and concerns.

 Then Brian Sawyer at Manning Publishing came calling. I knew immediately what
I wanted to write about and who I wanted to help me. The pace of development in
NLP algorithms and aggregation of natural language data continued to accelerate as
Cole, Hannes, and I raced to keep up.

 The firehose of unstructured natural language data about politics and economics
helped NLP become a critical tool in any campaign or finance manager’s toolbox. It’s
unnerving to realize that some of the articles whose sentiment is driving those predic-
tions are being written by other bots. These bots are often unaware of each other. The
bots are literally talking to each other and attempting to manipulate each other, while

4 See the web page titled “Why Banjo Is the Most Important Social Media Company You’ve Never Heard Of”
(https://www.inc.com/magazine/201504/will-bourne/banjo-the-gods-eye-view.html).

https://www.inc.com/magazine/201504/will-bourne/banjo-the-gods-eye-view.html

PREFACExviii
the health of humans and society as a whole seems to be an afterthought. We’re just
along for the ride.

 One example of this cycle of bots talking to bots is illustrated by the rise of fintech
startup Banjo in 2015.5 By monitoring Twitter, Banjo’s NLP could predict newsworthy
events 30 minutes to an hour before the first Reuters or CNN reporter filed a story.
Many of the tweets it was using to detect those events would have almost certainly been
favorited and retweeted by several other bots with the intent of catching the “eye” of
Banjo’s NLP bot. And the tweets being favorited by bots and monitored by Banjo
weren’t just curated, promoted, or metered out according to machine learning algo-
rithms driven by analytics. Many of these tweets were written entirely by NLP engines.6

 More and more entertainment, advertisement, and financial reporting content
generation can happen without requiring a human to lift a finger. NLP bots compose
entire movie scripts.7 Video games and virtual worlds contain bots that converse with
us, sometimes talking about bots and AI themselves. This “play within a play” will get
ever more “meta” as movies about video games and then bots in the real world write
reviews to help us decide which movies to watch. Authorship attribution will become
harder and harder as natural language processing can dissect natural language style
and generate text in that style.8

 NLP influences society in other less straightforward ways. NLP enables efficient
information retrieval (search), and being a good filter or promoter of some pages
affects the information we consume. Search was the first commercially successful
application of NLP. Search powered faster and faster development of NLP algorithms,
which then improved search technology itself. We help you contribute to this virtuous
cycle of increasing collective brain power by showing you some of the natural lan-
guage indexing and prediction techniques behind web search. We show you how to
index this book so that you can free your brain to do higher-level thinking, allowing
machines to take care of memorizing the terminology, facts, and Python snippets
here. Perhaps then you can influence your own culture for yourself and your friends
with your own natural language search tools.

 The development of NLP systems has built to a crescendo of information flow and
computation through and among human brains. We can now type only a few charac-
ters into a search bar, and often retrieve the exact piece of information we need to
complete whatever task we’re working on, like writing the software for a textbook on
NLP. The top few autocomplete options are often so uncannily appropriate that we
feel like we have a human assisting us with our search. Of course we authors used vari-
ous search engines throughout the writing of this textbook. In some cases these

5 Banjo, https://www.inc.com/magazine/201504/will-bourne/banjo-the-gods-eye-view.html
6 The 2014 financial report by Twitter revealed that >8% of tweets were composed by bots, and in 2015 DARPA

held a competition (https://arxiv.org/ftp/arxiv/papers/1601/1601.05140.pdf) to try to detect them and
reduce their influence on society in the US.

7 Five Thirty Eight, http://fivethirtyeight.com/features/some-like-it-bot/
8 NLP has been used successfully to help quantify the style of 16th century authors like Shakespeare

(https://pdfs.semanticscholar.org/3973/ff27eb173412ce532c8684b950f4cd9b0dc8.pdf).

https://www.inc.com/magazine/201504/will-bourne/banjo-the-gods-eye-view.html
https://arxiv.org/ftp/arxiv/papers/1601/1601.05140.pdf
http://fivethirtyeight.com/features/some-like-it-bot/
https://pdfs.semanticscholar.org/3973/ff27eb173412ce532c8684b950f4cd9b0dc8.pdf

PREFACE xix
search results included social posts and articles curated or written by bots, which in
turn inspired many of the NLP explanations and applications in the following pages.

 What is driving NLP advances?

 A new appreciation for the ever-widening web of unstructured data?
 Increases in processing power catching up with researchers' ideas?
 The efficiency of interacting with a machine in our own language?

It’s all of the above and much more. You can enter the question “Why is natural lan-
guage processing so important right now?” into any search engine,9 and find the Wiki-
pedia article full of good reasons.10

 There are also some deeper reasons. One such reason is the accelerating pursuit of
artificial general intelligence (AGI), or Deep AI. Human intelligence may only be pos-
sible because we are able to collect thoughts into discrete packets of meaning that we
can store (remember) and share efficiently. This allows us to extend our intelligence
across time and geography, connecting our brains to form a collective intelligence.

 One of the ideas in Steven Pinker’s The Stuff of Thought is that we actually think in
natural language.11 It’s not called an “inner dialog” without reason. Facebook,
Google, and Elon Musk are betting on the fact that words will be the default commu-
nication protocol for thought. They have all invested in projects that attempt to trans-
late thought, brain waves, and electrical signals into words.12 In addition, the Sapir-
Whorf hypothesis is that words affect the way we think.13 And natural language cer-
tainly is the communication medium of culture and the collective consciousness.

 So if it’s good enough for human brains, and we’d like to emulate or simulate
human thought in a machine, then natural language processing is likely to be critical.
Plus there may be important clues to intelligence hidden in the data structures and
nested connections between words that you’re going to learn about in this book. After
all, you’re going to use these structures, and connection networks make it possible for
an inanimate system to digest, store, retrieve, and generate natural language in ways
that sometimes appear human.

 And there’s another even more important reason why you might want to learn how
to program a system that uses natural language well… you might just save the world.
Hopefully you’ve been following the discussion among movers and shakers about the
AI Control Problem and the challenge of developing “Friendly AI.”14 Nick Bostrom,15

9 Duck Duck Go query about NLP (https://duckduckgo.com/?q=Why+is+natural+language+processing+so
+important+right+now:)

10 See the Wikipedia article “Natural language processing” (https://en.wikipedia.org/wiki/Natural_language
_processingWikipedia/NLP).

11 Steven Pinker, https://en.wikipedia.org/wiki/The_Stuff_of_Thought
12 See the Wired Magazine Article “We are Entering the Era of the Brain Machine Interface” (https://backchan-

nel.com/we-are-entering-the-era-of-the-brain-machine-interface-75a3a1a37fd3).
13 See the web page titled “Linguistic relativity” (https://en.wikipedia.org/wiki/Linguistic _relativity).
14 Wikipedia, AI Control Problem, https://en.wikipedia.org/wiki/AI_control_problem
15 Nick Bostrom, home page, http://nickbostrom.com/

https://en.wikipedia.org/wiki/AI_control_problem
https://duckduckgo.com/?q=Why+is+natural+language+processing+so+important+right+now:
https://duckduckgo.com/?q=Why+is+natural+language+processing+so+important+right+now:
https://en.wikipedia.org/wiki/Natural_language_processingWikipedia/NLP
https://en.wikipedia.org/wiki/Natural_language_processingWikipedia/NLP
https://en.wikipedia.org/wiki/The_Stuff_of_Thought
https://backchannel.com/we-are-entering-the-era-of-the-brain-machine-interface-75a3a1a37fd3
https://backchannel.com/we-are-entering-the-era-of-the-brain-machine-interface-75a3a1a37fd3
https://en.wikipedia.org/wiki/Linguistic_relativity
http://nickbostrom.com/

PREFACExx
Calum Chace,16 Elon Musk,17 and many others believe that the future of humanity
rests on our ability to develop friendly machines. And natural language is going to be
an important connection between humans and machines for the foreseeable future.

 Even once we are able to “think” directly to/with machines, those thoughts will
likely be shaped by natural words and languages within our brains. The line between
natural and machine language will be blurred just as the separation between man and
machine fades. In fact this line began to blur in 1984. That’s the year of the Cyborg
Manifesto,18 making George Orwell’s dystopian predictions both more likely and eas-
ier for us to accept.19, 20

 Hopefully the phrase “help save the world” didn’t leave you incredulous. As you
progress through this book, we show you how to build and connect several lobes of a
chatbot “brain.” As you do this, you’ll notice that very small nudges to the social feed-
back loops between humans and machines can have a profound effect, both on the
machines and on humans. Like a butterfly flapping its wings in China, one small deci-
mal place adjustment to your chatbot’s “selfishness” gain can result in a chaotic storm
of antagonistic chatbot behavior and conflict.21 And you’ll also notice how a few kind,
altruistic systems will quickly gather a loyal following of supporters that help quell the
chaos wreaked by shortsighted bots—bots that pursue “objective functions” targeting
the financial gain of their owners. Prosocial, cooperative chatbots can have an outsized
impact on the world, because of the network effect of prosocial behavior.22

 This is how and why the authors of this book came together. A supportive commu-
nity emerged through open, honest, prosocial communication over the internet using
the language that came naturally to us. And we’re using our collective intelligence to
help build and support other semi-intelligent actors (machines).23 We hope that our
words will leave their impression in your mind and propagate like a meme through
the world of chatbots, infecting others with passion for building prosocial NLP sys-
tems. And we hope that when superintelligence does eventually emerge, it will be
nudged, ever so slightly, by this prosocial ethos.

16 Calum Chace, Surviving AI, https://www.singularityweblog.com/calum-chace-on-surviving-ai/
17 See the web page titled “Why Elon Musk Spent $10 Million To Keep Artificial Intelligence Friendly”

(http://www.forbes.com/sites/ericmack/2015/01/15/elon-musk-puts-down-10-million-to-fight-skynet/
#17f7ee7b4bd0).

18 Haraway, Cyborg Manifesto, https://en.wikipedia.org/wiki/A_Cyborg_Manifesto
19 Wikipedia on George Orwell’s 1984, https://en.wikipedia.org/wiki/Nineteen_Eighty-Four
20 Wikipedia, The Year 1984, https://en.wikipedia.org/wiki/1984
21 A chatbot’s main tool is to mimic the humans it is conversing with. So dialog participants can use that influ-

ence to engender both prosocial and antisocial behavior in bots. See the Tech Republic article “Why Micro-
soft’s Tay AI Bot Went Wrong” (http://www.techrepublic.com/article/why-microsofts-tay-ai-bot-went-wrong).

22 An example of autonomous machines “infecting” humans with their measured behavior can be found in stud-
ies of the impact self-driving cars are likely to have on rush-hour traffic (https://www.enotrans.org/wp-con-
tent/uploads/AV-paper.pdf). In some studies, as few as 1 in 10 vehicles around you on the freeway will help
moderate human behavior, reducing congestion and producing smoother, safer traffic flow.

23 Toby Segaran’s Programming Collective Intelligence kicked off my adventure with machine learning in 2010
(https://www.goodreads.com/book/show/1741472.Programming_Collective_Intelligence).

http://www.forbes.com/sites/ericmack/2015/01/15/elon-musk-puts-down-10-million-to-fight-skynet/#17f7ee7b4bd0
http://www.forbes.com/sites/ericmack/2015/01/15/elon-musk-puts-down-10-million-to-fight-skynet/#17f7ee7b4bd0
https://en.wikipedia.org/wiki/A_Cyborg_Manifesto
https://en.wikipedia.org/wiki/Nineteen_Eighty-Four
https://en.wikipedia.org/wiki/1984
http://www.techrepublic.com/article/why-microsofts-tay-ai-bot-went-wrong
https://www.enotrans.org/wp-content/uploads/AV-paper.pdf
https://www.enotrans.org/wp-content/uploads/AV-paper.pdf
https://www.goodreads.com/book/show/1741472.Programming_Collective_Intelligence

acknowledgments
Assembling this book and the software to make it live would not have been possible
without a supportive network of talented developers, mentors, and friends. These con-
tributors came from a vibrant Portland community sustained by organizations like
PDX Python, Hack Oregon, Hack University, Civic U, PDX Data Science, Hopester,
PyDX, PyLadies, and Total Good.

 Kudos to Zachary Kent who designed, built, and maintained openchat (PyCon
Open Spaces Twitter bot) and Riley Rustad who prototyped its data schema as the
book and our skills progressed. Santi Adavani implemented named entity recognition
using the Stanford CoreNLP library, developed tutorials for SVD and PCA, and sup-
ported us with access to his RocketML HPC framework to train a real-time video
description model for people who are blind. Eric Miller allocated some of Squishy
Media’s resources to bootstrap Hobson’s NLP visualization skills. Erik Larson and
Aleck Landgraf generously gave Hobson and Hannes leeway to experiment with
machine learning and NLP at their startup.

 Anna Ossowski helped design the PyCon Open Spaces Twitter bot and then shep-
herded it through its early days of learning to help it tweet responsibly. Chick Wells
cofounded Total Good, developed a clever and entertaining IQ Test for chatbots, and
continuously supported us with his devops expertise. NLP experts, like Kyle Gorman,
generously shared their time, NLP expertise, code, and precious datasets with us.
Catherine Nikolovski shared her Hack Oregon and Civic U community and resources.
Chris Gian contributed his NLP project ideas to the examples in this book, and val-
iantly took over as instructor for the Civic U Machine Learning class when the teacher
bailed halfway through the climb. You’re a Sky Walker. Rachel Kelly gave us the expo-
sure and support we needed during the early stages of material development.
xxi

ACKNOWLEDGMENTSxxii
Thunder Shiviah provided constant inspiration through his tireless teaching and
boundless enthusiasm for machine learning and life.

 Molly Murphy and Natasha Pettit at Hopester are responsible for giving us a cause,
inspiring the concept of a prosocial chatbot. Jeremy Robin and the Talentpair crew
provided valuable software engineering feedback and helped to bring some concepts
mentioned in this book to life. Dan Fellin helped kickstart our NLP adventures with
teaching assistance at the PyCon 2016 tutorial and a Hack University class on Twitter
scraping. Aira’s Alex Rosengarten, Enrico Casini, Rigoberto Macedo, Charlina Hung,
and Ashwin Kanan “mobilized” the chatbot concepts in this book with an efficient,
reliable, maintainable dialog engine and microservice. Thank you, Ella and Wesley
Minton, for being our guinea pigs as you experimented with our crazy chatbot ideas
while learning to write your first Python programs. Suman Kanuganti and Maria Mac-
Mullin had the vision to found “Do More Foundation” to make Aira’s visual inter-
preter affordable for students. Thank you, Clayton Lewis, for keeping me engaged in
his cognitive assistance research, even when I had only enthusiasm and hacky code to
bring to the table for his workshop at the Coleman Institute.

 Some of the work discussed in this book was supported by the National Science
Foundation (NSF) grant 1722399 to Aira Tech Corp. Any opinions, findings, and rec-
ommendations expressed in this book are those of the authors and do not necessarily
reflect the views of the organizations or individuals acknowledged here.

 Finally, we would like to thank everyone at Manning Publications for their hard
work, as well as Dr. Arwen Griffioen for contributing the foreword, Dr. Davide Cad-
amuro for his technical review, and all our reviewers, whose feedback and help
improving our book added significantly to our collective intelligence: Chung-Yao
Chuang, Fradj Zayen, Geoff Barto, Jared Duncan, Mark Miller, Parthasarathy Man-
dayam, Roger Meli, Shobha Iyer, Simona Russo, Srdjan Santic, Tommaso Teofili, Tony
Mullen, Vladimir Kuptsov, William E. Wheeler, and Yogesh Kulkarni.

Hobson Lane

I’m eternally grateful to my mother and father for filling me with delight at words and
math. To Larissa Lane, the most intrepid adventurer I know, I’m forever in your debt
for your help in achieving two lifelong dreams, sailing the world and writing a book.

 To Arzu Karaer I’m forever in debt to you for your grace and patience in helping
me pick up the pieces of my broken heart, reaffirming my faith in humanity, and
ensuring this book maintained its hopeful message.

Hannes Max Hapke

I owe many thanks to my partner, Whitney, who supported me endlessly in this
endeavor. Thank you for your advice and feedback. I also would like to thank my fam-
ily, especially my parents, who encouraged me to venture out into the world to dis-
cover it. All this work wouldn’t have been possible without them. All of my life

ACKNOWLEDGMENTS xxiii
adventures wouldn’t have been possible without the brave men and women changing
the world on a November night in '89. Thank you for your bravery.

Cole Howard

I would like to thank my wife, Dawn. Her superhuman patience and understanding is
truly an inspiration. And my mother, for the freedom to experiment and the encour-
agement to always be learning.

about this book
Natural Language Processing in Action is a practical guide to processing and generating
natural language text in the real world. In this book we provide you with all the tools and
techniques you need to build the backend NLP systems to support a virtual assistant
(chatbot), spam filter, forum moderator, sentiment analyzer, knowledge base builder,
natural language text miner, or nearly any other NLP application you can imagine.

 Natural Language Processing in Action is aimed at intermediate to advanced Python
developers. Readers already capable of designing and building complex systems will
also find most of this book useful, since it provides numerous best-practice examples
and insight into the capabilities of state-of-the art NLP algorithms. While knowledge
of object-oriented Python development may help you build better systems, it’s not
required to use what you learn in this book.

 For special topics, we provide sufficient background material and cite resources
(both text and online) for those who want to gain an in-depth understanding.

Roadmap

If you are new to Python and natural language processing, you should first read part 1
and then any of the chapters of part 3 that apply to your interests or on-the-job chal-
lenges. If you want to get up to speed on the new NLP capabilities that deep learning
enables, you’ll also want to read part 2, in order. It builds your understanding of neu-
ral networks, incrementally ratcheting up the complexity and capability of those neu-
ral nets.

 As soon as you find a chapter or section with a snippet that you can “run in your
head,” you should run it for real on your machine. And if any of the examples look
like they might run on your own text documents, you should put that text into a CSV
or text file (one document per line) in the nlpia/src/nlpia/data/ directory. Then you
xxiv

ABOUT THIS BOOK xxv
can use the nlpia.data.loaders.get_data() function to retrieve that data and run
the examples on your own data.

About this book

The chapters of part 1 deal with the logistics of working with natural language and turn-
ing it into numbers that can be searched and computed. This “blocking and tackling”
of words comes with the reward of some surprisingly useful applications such as infor-
mation retrieval and sentiment analysis. Once you master the basics, you’ll find that
some very simple arithmetic, computed over and over and over in a loop, can solve
some pretty important problems, such as spam filtering. Spam filters of the type you’ll
build in chapters 2 through 4 are what saved the global email system from anarchy and
stagnation. You’ll learn how to build a spam filter with better than 90% accuracy using
1990s era technology—calculating nothing more than the counts of words and some
simple averages of those counts.

 All this math with words may sound tedious, but it’s actually quite fun. Very quickly
you’ll be able to build algorithms that can make decisions about natural language as
well or better than you can (and certainly much faster). This may be the first time in
your life that you have the perspective to fully appreciate the way that words reflect
and empower your thinking. The high-dimensional vector-space view of words and
thoughts will hopefully leave your brain spinning in recurrent loops of self-discovery.

 That crescendo of learning may reach a high point toward the middle of this book.
The core of this book in part 2 will be your exploration of the complicated web of com-
putation and communication within neural networks. The network effect of small log-
ical units interacting in a web of “thinking” has empowered machines to solve problems
that only smart humans even bothered to attempt in the past, things such as analogy
questions, text summarization, and translation between natural languages.

 Yes, you’ll learn about word vectors, don’t worry, but oh so much more. You’ll be
able to visualize words, documents, and sentences in a cloud of connected concepts
that stretches well beyond the three dimensions you can readily grasp. You’ll start
thinking of documents and words like a Dungeons and Dragons character sheet with a
myriad of randomly selected characteristics and abilities that have evolved and grown
over time, but only in our heads.

 An appreciation for this intersubjective reality of words and their meaning will be
the foundation for the coup-de-grace of part 3, where you learn how to build
machines that converse and answer questions as well as humans.

About the code

This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

ABOUT THIS BOOKxxvi
 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 The source code for all listings in this book is available for download from the
Manning website at https://www.manning.com/books/natural-language-processing-
in-action and from GitHub at https://github.com/totalgood/nlpia.

liveBook discussion forum

Purchase of Natural Language Processing in Action includes free access to a private web
forum run by Manning Publications where you can make comments about the book,
ask technical questions, and receive help from the authors and from other users. To
access the forum, go to https://livebook.manning.com/#!/book/natural-language-
processing-in-action/discussion. You can also learn more about Manning’s forums
and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions lest their interest stray!
The forum and the archives of previous discussions will be accessible from the pub-
lisher’s website as long as the book is in print.

https://livebook.manning.com/#!/book/natural-language-processing-in-action/discussion
https://livebook.manning.com/#!/book/natural-language-processing-in-action/discussion
https://livebook.manning.com/#!/discussion
https://www.manning.com/books/natural-language-processing-in-action
https://www.manning.com/books/natural-language-processing-in-action
https://github.com/totalgood/nlpia

about the authors
HOBSON LANE has 20 years of experience building autonomous
systems that make important decisions on behalf of humans. At
Talentpair Hobson taught machines to read and understand
resumes with less bias than most recruiters. At Aira he helped
build their first chatbot to interpret the visual world for those who
are blind. Hobson is passionate about openness and prosocial AI.
He’s an active contributor to open source projects such as Keras,
scikit-learn, PyBrain, PUGNLP, and ChatterBot. He’s currently

pursuing open science research and education projects for Total Good including
building an open source cognitive assistant. He has published papers and presented
talks at AIAA, PyCon, PAIS, and IEEE and has been awarded several patents in Robot-
ics and Automation.

HANNES MAX HAPKE is an electrical engineer turned machine
learning engineer. He became fascinated with neural networks in
high school while investigating ways to compute neural networks
on micro-controllers. Later in college, he applied concepts of
neural nets to control renewable energy power plants effectively.
Hannes loves to automate software development and machine
learning pipelines. He co-authored deep learning models and
machine learning pipelines for recruiting, energy, and healthcare

applications. Hannes presented on machine learning at various conferences includ-
ing OSCON, Open Source Bridge, and Hack University.
xxvii

ABOUT THE AUTHORSxxviii
COLE HOWARD is a machine learning engineer, NLP practitioner,
and writer. A lifelong hunter of patterns, he found his true home in
the world of artificial neural networks. He has developed large-scale
e-commerce recommendation engines and state-of-the-art neural
nets for hyperdimensional machine intelligence systems (deep
learning neural nets), which perform at the top of the leader board
for the Kaggle competitions. He has presented talks on Convolu-

tional Neural Nets, Recurrent Neural Nets, and their roles in natural language pro-
cessing at the Open Source Bridge Conference and Hack University.

about the cover illustration
The figure on the cover of Natural Language Processing in Action is captioned “Woman
from Kranjska Gora, Slovenia.” This illustration is taken from a recent reprint of
Balthasar Hacquet’s Images and Descriptions of Southwestern and Eastern Wends, Illyrians,
and Slavs, published by the Ethnographic Museum in Split, Croatia, in 2008. Hacquet
(1739–1815) was an Austrian physician and scientist who spent many years studying
the botany, geology, and ethnography of the Julian Alps, the mountain range that
stretches from northeastern Italy to Slovenia and that is named after Julius Caesar.
Hand drawn illustrations accompany the many scientific papers and books that Hac-
quet published.

 The rich diversity of the drawings in Hacquet’s publications speaks vividly of the
uniqueness and individuality of the eastern Alpine regions just 200 years ago. This was
a time when the dress codes of two villages separated by a few miles identified people
uniquely as belonging to one or the other, and when members of a social class or
trade could be easily distinguished by what they were wearing. Dress codes have
changed since then and the diversity by region, so rich at the time, has faded away. It is
now often hard to tell the inhabitant of one continent from another, and today the
inhabitants of the picturesque towns and villages in the Slovenian Alps are not readily
distinguishable from the residents of other parts of Slovenia or the rest of Europe.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life of two
centuries ago‚ brought back to life by the pictures from this collection.

xxix

ABOUT THE COVER ILLUSTRATIONxxx

Part 1

Wordy machines

Part 1 kicks off your natural language processing (NLP) adventure with an
introduction to some real-world applications.

 In chapter 1, you’ll quickly begin to think of ways you can use machines that
process words in your own life. And hopefully you’ll get a sense for the magic—
the power of machines that can glean information from the words in a natural
language document. Words are the foundation of any language, whether it’s the
keywords in a programming language or the natural language words you
learned as a child.

 In chapter 2, we give you the tools you need to teach machines to extract
words from documents. There’s more to it than you might guess, and we show
you all the tricks. You’ll learn how to automatically group natural language
words together into groups of words with similar meanings without having to
hand-craft synonym lists.

 In chapter 3, we count those words and assemble them into vectors that rep-
resent the meaning of a document. You can use these vectors to represent the
meaning of an entire document, whether it’s a 140-character tweet or a 500-page
novel.

 In chapter 4, you’ll discover some time-tested math tricks to compress your
vectors down to much more useful topic vectors.

 By the end of part 1, you’ll have the tools you need for many interesting NLP
applications—from semantic search to chatbots.

2 CHAPTER

Packets of thought
(NLP overview)
You are about to embark on an exciting adventure in natural language processing.
First we show you what NLP is and all the things you can do with it. This will get
your wheels turning, helping you think of ways to use NLP in your own life, both at
work and at home.

 Then we dig into the details of exactly how to process a small bit of English text
using a programming language like Python, which will help you build up your NLP
toolbox incrementally. In this chapter, you’ll write your first program that can read

This chapter covers
 What natural language processing (NLP) is

 Why NLP is hard and only recently has become
widespread

 When word order and grammar is important and
when it can be ignored

 How a chatbot combines many of the tools of NLP

 How to use a regular expression to build the start
of a tiny chatbot
3

4 CHAPTER 1 Packets of thought (NLP overview)
and write English statements. This Python snippet will be the first of many you’ll use to
learn all the tricks needed to assemble an English language dialog engine—a chatbot.

1.1 Natural language vs. programming language
Natural languages are different from computer programming languages. They aren’t
intended to be translated into a finite set of mathematical operations, like program-
ming languages are. Natural languages are what humans use to share information
with each other. We don’t use programming languages to tell each other about our
day or to give directions to the grocery store. A computer program written with a pro-
gramming language tells a machine exactly what to do. But there are no compilers or
interpreters for natural languages such as English and French.

DEFINITION Natural language processing is an area of research in computer sci-
ence and artificial intelligence (AI) concerned with processing natural lan-
guages such as English or Mandarin. This processing generally involves
translating natural language into data (numbers) that a computer can use to
learn about the world. And this understanding of the world is sometimes used
to generate natural language text that reflects that understanding.

Nonetheless, this chapter shows you how a machine can process natural language. You
might even think of this as a natural language interpreter, just like the Python inter-
preter. When the computer program you develop processes natural language, it will
be able to act on those statements or even reply to them. But these actions and replies
aren’t precisely defined, which leaves more discretion up to you, the developer of the
natural language pipeline.

DEFINITION A natural language processing system is often referred to as a
pipeline because it usually involves several stages of processing where natural
language flows in one end and the processed output flows out the other.

You’ll soon have the power to write software that does interesting, unpredictable
things, like carry on a conversation, which can make machines seem a bit more
human. It may seem a bit like magic—at first, all advanced technology does. But we
pull back the curtain so you can explore backstage, and you’ll soon discover all the
props and tools you need to do the magic tricks yourself.

“Everything is easy, once you know the answer.”

 —Dave Magee

1.2 The magic
What’s so magical about a machine that can read and write in a natural language?
Machines have been processing languages since computers were invented. However,
these “formal” languages—such as early languages Ada, COBOL, and Fortran—were
designed to be interpreted (or compiled) only one correct way. Today Wikipedia lists

5The magic
more than 700 programming languages. In contrast, Ethnologue1 has identified 10 times
as many natural languages spoken by humans around the world. And Google’s index of
natural language documents is well over 100 million gigabytes.2 And that’s just the
index. And it’s incomplete. The size of the actual natural language content currently
online must exceed 100 billion gigabytes.3 But this massive amount of natural language
text isn’t the only reason it’s important to build software that can process it.

 The interesting thing about the process is that it’s hard. Machines with the capabil-
ity of processing something natural isn’t natural. It’s kind of like building a structure
that can do something useful with architectural diagrams. When software can process
languages not designed for machines to understand, it seems magical—something we
thought was a uniquely human capability.

 The word “natural” in “natural language” is used in the same sense that it is used in
“natural world.” Natural, evolved things in the world about us are different from
mechanical, artificial things designed and built by humans. Being able to design and
build software that can read and process language like what you’re reading here—
language about building software that can process natural language… well that’s very
meta, very magical.

 To make your job a little easier, we focus on only one natural language, English.
But you can use the techniques you learn in this book to build software that can pro-
cess any language, even a language you don’t understand, or has yet to be deciphered
by archaeologists and linguists. And we’re going to show you how to write software to
process and generate that language using only one programming language, Python.

 Python was designed from the ground up to be a readable language. It also
exposes a lot of its own language processing “guts.” Both of these characteristics make
it a natural choice for learning natural language processing. It’s a great language for
building maintainable production pipelines for NLP algorithms in an enterprise envi-
ronment, with many contributors to a single codebase. We even use Python in lieu of
the “universal language” of mathematics and mathematical symbols, wherever possi-
ble. After all, Python is an unambiguous way to express mathematical algorithms,4 and
it’s designed to be as readable as possible for programmers like you.

1.2.1 Machines that converse

Natural languages can’t be directly translated into a precise set of mathematical oper-
ations, but they do contain information and instructions that can be extracted. Those
pieces of information and instruction can be stored, indexed, searched, or immediately

1 Ethnologue is a web-based publication that maintains statistics about natural languages.
2 See the web page titled “How Google’s Site Crawlers Index Your Site - Google Search” (https://www.google

.com/search/howsearchworks/crawling-indexing/).
3 You can estimate the amount of actual natural language text out there to be at least 1000 times the size of

Google’s index.
4 Mathematical notation is ambiguous. See the “Mathematical notation” section of the Wikipedia article “Ambi-

guity” (https://en.wikipedia.org/wiki/Ambiguity#Mathematical_notation).

https://www.google.com/search/howsearchworks/crawling-indexing/
https://www.google.com/search/howsearchworks/crawling-indexing/
https://en.wikipedia.org/wiki/Ambiguity#Mathematical_notation

6 CHAPTER 1 Packets of thought (NLP overview)
acted upon. One of those actions could be to generate a sequence of words in response
to a statement. This is the function of the “dialog engine” or chatbot that you’ll build.

 We focus entirely on English text documents and messages, not spoken statements.
We bypass the conversion of spoken statements into text—speech recognition, or
speech to text (STT). We also ignore speech generation or text to speech, converting
text back into some human-sounding voice utterance. But you can still use what you
learn to build a voice interface or virtual assistant like Siri or Alexa, because speech-to-
text and text-to-speech libraries are freely available. Android and iOS mobile operat-
ing systems provide high quality speech recognition and generation APIs, and there
are Python packages to accomplish similar functionality on a laptop or server.

1.2.2 The math

Processing natural language to extract useful information can be difficult. It requires
tedious statistical bookkeeping, but that’s what machines are for. And like many other
technical problems, solving it is a lot easier once you know the answer. Machines still
cannot perform most practical NLP tasks, such as conversation and reading compre-
hension, as accurately and reliably as humans. So you might be able to tweak the algo-
rithms you learn in this book to do some NLP tasks a bit better.

 The techniques you’ll learn, however, are powerful enough to create machines
that can surpass humans in both accuracy and speed for some surprisingly subtle
tasks. For example, you might not have guessed that recognizing sarcasm in an iso-
lated Twitter message can be done more accurately by a machine than by a human.5

Don’t worry, humans are still better at recognizing humor and sarcasm within an
ongoing dialog, due to our ability to maintain information about the context of a
statement. But machines are getting better and better at maintaining context. And
this book helps you incorporate context (metadata) into your NLP pipeline, in case
you want to try your hand at advancing the state of the art.

Speech recognition systems
If you want to build a customized speech recognition or generation system, that un-
dertaking is a whole book in itself; we leave that as an “exercise for the reader.” It
requires a lot of high quality labeled data, voice recordings annotated with their pho-
netic spellings, and natural language transcriptions aligned with the audio files.
Some of the algorithms you learn in this book might help, but most of the recognition
and generation algorithms are quite different.

5 Gonzalo-Ibanez et al. found that educated and trained human judges couldn’t match the performance of
their simple classification algorithm of 68% reported in their ACM paper. The Sarcasm Detector (https://
github.com/MathieuCliche/Sarcasm_detector) and the web app (http://www.thesarcasmdetector.com/) by
Matthew Cliche at Cornell achieve similar accuracy (>70%).

https://github.com/MathieuCliche/Sarcasm_detector
https://github.com/MathieuCliche/Sarcasm_detector
http://www.thesarcasmdetector.com/

7The magic
 Once you extract structured numerical data, vectors, from natural language, you
can take advantage of all the tools of mathematics and machine learning. We use the
same linear algebra tricks as the projection of 3D objects onto a 2D computer screen,
something that computers and drafters were doing long before natural language pro-
cessing came into its own. These breakthrough ideas opened up a world of “semantic”
analysis, allowing computers to interpret and store the “meaning” of statements rather
than just word or character counts. Semantic analysis, along with statistics, can help
resolve the ambiguity of natural language—the fact that words or phrases often have
multiple meanings or interpretations.

 So extracting information isn’t at all like building a programming language com-
piler (fortunately for you). The most promising techniques bypass the rigid rules of
regular grammars (patterns) or formal languages. You can rely on statistical relation-
ships between words instead of a deep system of logical rules.6 Imagine if you had to
define English grammar and spelling rules in a nested tree of if…then statements.
Could you ever write enough rules to deal with every possible way that words, letters,
and punctuation can be combined to make a statement? Would you even begin to cap-
ture the semantics, the meaning of English statements? Even if it were useful for some
kinds of statements, imagine how limited and brittle this software would be. Unantici-
pated spelling or punctuation would break or befuddle your algorithm.

 Natural languages have an additional “decoding” challenge that is even harder to
solve. Speakers and writers of natural languages assume that a human is the one doing
the processing (listening or reading), not a machine. So when I say “good morning”, I
assume that you have some knowledge about what makes up a morning, including not
only that mornings come before noons and afternoons and evenings but also after
midnights. And you need to know they can represent times of day as well as general
experiences of a period of time. The interpreter is assumed to know that “good morn-
ing” is a common greeting that doesn’t contain much information at all about the
morning. Rather it reflects the state of mind of the speaker and her readiness to speak
with others.

 This theory of mind about the human processor of language turns out to be a pow-
erful assumption. It allows us to say a lot with few words if we assume that the “proces-
sor” has access to a lifetime of common sense knowledge about the world. This degree
of compression is still out of reach for machines. There is no clear “theory of mind”
you can point to in an NLP pipeline. However, we show you techniques in later chap-
ters to help machines build ontologies, or knowledge bases, of common sense knowl-
edge to help interpret statements that rely on this knowledge.

6 Some grammar rules can be implemented in a computer science abstraction called a finite state machine.
Regular grammars can be implemented in regular expressions. There are two Python packages for running
regular expression finite state machines, re which is built in, and regex which must be installed, but may
soon replace re. Finite state machines are just trees of if…then…else statements for each token (character/
word/n-gram) or action that a machine needs to react to or generate.

8 CHAPTER 1 Packets of thought (NLP overview)
1.3 Practical applications
Natural language processing is everywhere. It’s so ubiquitous that some of the exam-
ples in table 1.1 may surprise you.

A search engine can provide more meaningful results if it indexes web pages or docu-
ment archives in a way that takes into account the meaning of natural language text.
Autocomplete uses NLP to complete your thought and is common among search
engines and mobile phone keyboards. Many word processors, browser plugins, and
text editors have spelling correctors, grammar checkers, concordance composers, and
most recently, style coaches. Some dialog engines (chatbots) use natural language
search to find a response to their conversation partner’s message.

 NLP pipelines that generate (compose) text can be used not only to compose
short replies in chatbots and virtual assistants, but also to assemble much longer pas-
sages of text. The Associated Press uses NLP “robot journalists” to write entire finan-
cial news articles and sporting event reports.7 Bots can compose weather forecasts that
sound a lot like what your hometown weather person might say, perhaps because
human meteorologists use word processors with NLP features to draft scripts.

 NLP spam filters in early email programs helped email overtake telephone and fax
communication channels in the '90s. And the spam filters have retained their edge in
the cat and mouse game between spam filters and spam generators for email, but may
be losing in other environments like social networks. An estimated 20% of the tweets

Table 1.1 Categorized NLP applications

Search Web Documents Autocomplete

Editing Spelling Grammar Style

Dialog Chatbot Assistant Scheduling

Writing Index Concordance Table of contents

Email Spam filter Classification Prioritization

Text mining Summarization Knowledge extraction Medical diagnoses

Law Legal inference Precedent search Subpoena classification

News Event detection Fact checking Headline composition

Attribution Plagiarism detection Literary forensics Style coaching

Sentiment analysis Community morale monitoring Product review triage Customer care

Behavior prediction Finance Election forecasting Marketing

Creative writing Movie scripts Poetry Song lyrics

7 “AP’s 'robot journalists' are writing their own stories now,” The Verge, Jan 29, 2015, http://www.theverge
.com/2015/1/29/7939067/ap-journalism-automation-robots-financial-reporting.

http://www.theverge.com/2015/1/29/7939067/ap-journalism-automation-robots-financial-reporting
http://www.theverge.com/2015/1/29/7939067/ap-journalism-automation-robots-financial-reporting

9Language through a computer’s “eyes”
about the 2016 US presidential election were composed by chatbots.8 These bots
amplify their owners’ and developers’ viewpoints. And these “puppet masters” tend to
be foreign governments or large corporations with the resources and motivation to
influence popular opinion.

 NLP systems can generate more than just short social network posts. NLP can be
used to compose lengthy movie and product reviews on Amazon and elsewhere. Many
reviews are the creation of autonomous NLP pipelines that have never set foot in a
movie theater or purchased the product they’re reviewing.

 There are chatbots on Slack, IRC, and even customer service websites—places
where chatbots have to deal with ambiguous commands or questions. And chatbots
paired with voice recognition and generation systems can even handle lengthy conver-
sations with an indefinite goal or “objective function” such as making a reservation at
a local restaurant.9 NLP systems can answer phones for companies that want some-
thing better than a phone tree but don’t want to pay humans to help their customers.

NOTE With its Duplex demonstration at Google IO, engineers and managers
overlooked concerns about the ethics of teaching chatbots to deceive
humans. We all ignore this dilemma when we happily interact with chatbots
on Twitter and other anonymous social networks, where bots don’t share
their pedigree. With bots that can so convincingly deceive us, the AI control
problem10 looms, and Yuval Harari’s cautionary forecast of “Homo Deus”11

may come sooner than we think.

NLP systems exist that can act as email “receptionists” for businesses or executive assis-
tants for managers. These assistants schedule meetings and record summary details in
an electronic Rolodex, or CRM (customer relationship management system), interact-
ing with others by email on their boss’s behalf. Companies are putting their brand and
face in the hands of NLP systems, allowing bots to execute marketing and messaging
campaigns. And some inexperienced daredevil NLP textbook authors are letting bots
author several sentences in their book. More on that later.

1.4 Language through a computer’s “eyes”
When you type “Good Morn’n Rosa,” a computer sees only “01000111 01101111
01101111 …”. How can you program a chatbot to respond to this binary stream
intelligently? Could a nested tree of conditionals (if… else… statements) check each
one of those bits and act on them individually? This would be equivalent to writing a

8 New York Times, Oct 18, 2016, https://www.nytimes.com/2016/11/18/technology/automated-pro-trump-
bots-overwhelmed-pro-clinton-messages-researchers-say.html and MIT Technology Review, Nov 2016,
https://www.technologyreview.com/s/602817/how-the-bot-y-politic-influenced-this-election/.

9 Google Blog May 2018 about their Duplex system https://ai.googleblog.com/2018/05/advances-in-semantic-
textual-similarity.html.

10 See the web page titled “AI control problem - Wikipedia” (https://en.wikipedia.org/wiki/AI_control
_problem).

11 WSJ Blog, March 10, 2017 https://blogs.wsj.com/cio/2017/03/10/homo-deus-author-yuval-noah-harari-says-
authority-shifting-from-people-to-ai/.

https://ai.googleblog.com/2018/05/advances-in-semantic-textual-similarity.html
https://ai.googleblog.com/2018/05/advances-in-semantic-textual-similarity.html
https://en.wikipedia.org/wiki/AI_control_problem
https://en.wikipedia.org/wiki/AI_control_problem
https://www.nytimes.com/2016/11/18/technology/automated-pro-trump-bots-overwhelmed-pro-clinton-messages-researchers-say.html
https://www.nytimes.com/2016/11/18/technology/automated-pro-trump-bots-overwhelmed-pro-clinton-messages-researchers-say.html
https://www.technologyreview.com/s/602817/how-the-bot-y-politic-influenced-this-election/
https://blogs.wsj.com/cio/2017/03/10/homo-deus-author-yuval-noah-harari-says-authority-shifting-from-people-to-ai/
https://blogs.wsj.com/cio/2017/03/10/homo-deus-author-yuval-noah-harari-says-authority-shifting-from-people-to-ai/

10 CHAPTER 1 Packets of thought (NLP overview)
special kind of program called a finite state machine (FSM). An FSM that outputs a
sequence of new symbols as it runs, like the Python str.translate function, is called
a finite state transducer (FST). You’ve probably already built an FSM without even know-
ing it. Have you ever written a regular expression? That’s the kind of FSM we use in the
next section to show you one possible approach to NLP: the pattern-based approach.

 What if you decided to search a memory bank (database) for the exact same string
of bits, characters, or words, and use one of the responses that other humans and
authors have used for that statement in the past? But imagine if there was a typo or
variation in the statement. Our bot would be sent off the rails. And bits aren’t continu-
ous or forgiving—they either match or they don’t. There’s no obvious way to find sim-
ilarity between two streams of bits that takes into account what they signify. The bits
for “good” will be just as similar to “bad!” as they are to “okay.”

 But let’s see how this approach would work before we show you a better way. Let’s
build a small regular expression to recognize greetings like “Good morning Rosa” and
respond appropriately—our first tiny chatbot!

1.4.1 The language of locks

Surprisingly, the humble combination lock is actually a simple language processing
machine. So, if you’re mechanically inclined, this section may be illuminating. But if
you don’t need mechanical analogies to help you understand algorithms and how reg-
ular expressions work, then you can skip this section.

 After finishing this section, you’ll never think of your combination bicycle lock the
same way again. A combination lock certainly can’t read and understand the textbooks
stored inside a school locker, but it can understand the language of locks. It can under-
stand when you try to “tell” it a “password”: a combination. A padlock combination is
any sequence of symbols that matches the “grammar” (pattern) of lock language. Even
more importantly, the padlock can tell if a lock “statement” matches a particularly
meaningful statement, the one for which there’s only one correct “response”: to release
the catch holding the U-shaped hasp so you can get into your locker.

 This lock language (regular expressions) is a particularly simple one. But it’s not
so simple that we can’t use it in a chatbot. We can use it to recognize a key phrase or
command to unlock a particular action or behavior.

 For example, we’d like our chatbot to recognize greetings such as “Hello Rosa,”
and respond to them appropriately. This kind of language, like the language of locks,
is a formal language because it has strict rules about how an acceptable statement
must be composed and interpreted. If you’ve ever written a math equation or coded a
programming language expression, you’ve written a formal language statement.

 Formal languages are a subset of natural languages. Many natural language state-
ments can be matched or generated using a formal language grammar, like regular
expressions. That’s the reason for this diversion into the mechanical, “click, whirr”12

language of locks.

12 One of Cialdini’s six psychology principles in his popular book, Influence http://changingminds.org/
techniques/general/cialdini/click-whirr.htm

http://changingminds.org/techniques/general/cialdini/click-whirr.htm
http://changingminds.org/techniques/general/cialdini/click-whirr.htm

11Language through a computer’s “eyes”
1.4.2 Regular expressions

Regular expressions use a special kind (class) of formal language grammar called a
regular grammar. Regular grammars have predictable, provable behavior, and yet are
flexible enough to power some of the most sophisticated dialog engines and chatbots
on the market. Amazon Alexa and Google Now are mostly pattern-based engines that
rely on regular grammars. Deep, complex regular grammar rules can often be
expressed in a single line of code called a regular expression. There are successful
chatbot frameworks in Python, like Will, that rely exclusively on this kind of language
to produce some useful and interesting behavior. Amazon Echo, Google Home, and
similarly complex and useful assistants use this kind of language to encode the logic
for most of their user interaction.

NOTE Regular expressions implemented in Python and in Posix (Unix) appli-
cations such as grep aren’t true regular grammars. They have language and
logic features such as look-ahead and look-back that make leaps of logic and
recursion that aren’t allowed in a regular grammar. As a result, regular expres-
sions aren’t provably halting; they can sometimes “crash” or run forever.13

You may be saying to yourself, “I’ve heard of regular expressions. I use grep. But that’s
only for search!” And you’re right. Regular expressions are indeed used mostly for
search, for sequence matching. But anything that can find matches within text is also
great for carrying out a dialog. Some chatbots, like Will, use “search” to find sequences
of characters within a user statement that they know how to respond to. These recog-
nized sequences then trigger a scripted response appropriate to that particular regular
expression match. And that same regular expression can also be used to extract a useful
piece of information from a statement. A chatbot can add that bit of information to its
knowledge base about the user or about the world the user is describing.

 A machine that processes this
kind of language can be thought of as
a formal mathematical object called a
finite state machine or deterministic
finite automaton (DFA). FSMs come
up again and again in this book. So
you’ll eventually get a good feel for
what they’re used for without digging
into FSM theory and math. For those
who can’t resist trying to understand
a bit more about these computer
science tools, figure 1.1 shows where

13 Stack Exchange went down for 30 minutes on July 20, 2016 when a regex “crashed” (http://stackstatus.net/
post/147710624694/outage-postmortem-july-20-2016).

Combinational logic

Finite-state machine

Pushdown automaton

Turing machine

Figure 1.1 Kinds of automata

http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016

12 CHAPTER 1 Packets of thought (NLP overview)
FSMs fit into the nested world of automata (bots). And the side note that follows
explains a bit more formal detail about formal languages.

1.4.3 A simple chatbot

Let’s build a quick and dirty chatbot. It won’t be very capable, and it will require a lot
of thinking about the English language. You will also have to hardcode regular expres-
sions to match the ways people may try to say something. But don’t worry if you think
you couldn’t have come up with this Python code yourself. You won’t have to try to
think of all the different ways people can say something, like we did in this example.
You won’t even have to write regular expressions (regexes) to build an awesome chat-
bot. We show you how to build a chatbot of your own in later chapters without hard-
coding anything. A modern chatbot can learn from reading (processing) a bunch of
English text. And we show you how to do that in later chapters.

 This pattern matching chatbot is an example of a tightly controlled chatbot. Pat-
tern matching chatbots were common before modern machine learning chatbot

Formal mathematical explanation of formal languages
Kyle Gorman describes programming languages this way:

 Most (if not all) programming languages are drawn from the class of context-
free languages.

 Context-free languages are parsed with context-free grammars, which provide
efficient parsing.

 The regular languages are also efficiently parsable and used extensively in
computing for string matching.

 String matching applications rarely require the expressiveness of context-
free.

 There are a number of formal language classes, a few of which are shown
here (in decreasing complexity):a

– Recursively enumerable
– Context-sensitive
– Context-free
– Regular

Natural languages:

 Are not regularb

 Are not context-freec

 Can’t be defined by any formal grammard

a See the web page titled “Chomsky hierarchy - Wikipedia” (https://en.wikipedia.org/wiki/Chomsky_hierarchy).
b “English is not a regular language” (http://cs.haifa.ac.il/~shuly/teaching/08/nlp/complexity.pdf#page=20) by Shuly

Wintner.
c “Is English context-free?” (http://cs.haifa.ac.il/~shuly/teaching/08/nlp/complexity.pdf#page=24) by Shuly Wintner.
d See the web page titled “1.11. Formal and Natural Languages — How to Think like a Computer Scientist: Interactive

Edition” (http://interactivepython.org/runestone/static/CS152f17/GeneralIntro/FormalandNaturalLanguages.html).

https://en.wikipedia.org/wiki/Chomsky_hierarchy
http://cs.haifa.ac.il/~shuly/teaching/08/nlp/complexity.pdf#page=20
http://cs.haifa.ac.il/~shuly/teaching/08/nlp/complexity.pdf#page=24
http://interactivepython.org/runestone/static/CS152f17/GeneralIntro/FormalandNaturalLanguages.html

13Language through a computer’s “eyes”
techniques were developed. And a variation of the pattern matching approach we
show you here is used in chatbots like Amazon Alexa and other virtual assistants.

 For now let’s build an FSM, a regular expression, that can speak lock language
(regular language). We could program it to understand lock language statements,
such as “01-02-03.” Even better, we’d like it to understand greetings, things like “open
sesame” or “hello Rosa.” An important feature for a prosocial chatbot is to be able to
respond to a greeting. In high school, teachers often chastised me for being impolite
when I’d ignore greetings like this while rushing to class. We surely don’t want that for
our benevolent chatbot.

 In machine communication protocol, we’d define a simple handshake with an ACK
(acknowledgement) signal after each message passed back and forth between two
machines. But our machines are going to be interacting with humans who say things
like “Good morning, Rosa.” We don’t want it sending out a bunch of chirps, beeps, or
ACK messages, like it’s syncing up a modem or HTTP connection at the start of a con-
versation or web browsing session. Instead let’s use regular expressions to recognize
several different human greetings at the start of a conversation handshake:

>>> import re
>>> r = "(hi|hello|hey)[]*([a-z]*)"
>>> re.match(r, 'Hello Rosa', flags=re.IGNORECASE)
<_sre.SRE_Match object; span=(0, 10), match='Hello Rosa'>
>>> re.match(r, "hi ho, hi ho, it's off to work ...", flags=re.IGNORECASE)
<_sre.SRE_Match object; span=(0, 5), match='hi ho'>
>>> re.match(r, "hey, what's up", flags=re.IGNORECASE)
<_sre.SRE_Match object; span=(0, 3), match='hey>

In regular expressions, you can specify a character class with square brackets. And you
can use a dash (-) to indicate a range of characters without having to type them all
out individually. So the regular expression "[a-z]" will match any single lowercase let-
ter, “a” through “z.” The star ('*') after a character class means that the regular expres-
sion will match any number of consecutive characters if they are all within that
character class.

 Let’s make our regular expression a lot more detailed to try to match more greetings:

>>> r = r"[^a-z]*([y]o|[h']?ello|ok|hey|(good[])?(morn[gin']{0,3}|"\
... r"afternoon|even[gin']{0,3}))[\s,;:]{1,3}([a-z]{1,20})"
>>> re_greeting = re.compile(r, flags=re.IGNORECASE)

There are two “official” regular expression packages in
Python. We use the re package here just because it’s

installed with all versions of Python. The regex
package comes with later versions of Python and is

much more powerful, as you’ll see in chapter 2.

'|' means “OR,” and '*' means the
preceding character can occur 0 or more

times and still match. So our regex will
match greetings that start with “hi” or

“hello” or “hey” followed by any
number of '<space>' characters and

then any number of letters.

Ignoring the case of text
characters is common,

 to keep the regular
expressions simpler.

You can compile regular expressions so
you don’t have to specify the options

(flags) each time you use them.

14 CHAPTER 1 Packets of thought (NLP overview)
>>> re_greeting.match('Hello Rosa')
<_sre.SRE_Match object; span=(0, 10), match='Hello Rosa'>
>>> re_greeting.match('Hello Rosa').groups()
('Hello', None, None, 'Rosa')
>>> re_greeting.match("Good morning Rosa")
<_sre.SRE_Match object; span=(0, 17), match="Good morning Rosa">
>>> re_greeting.match("Good Manning Rosa")
>>> re_greeting.match('Good evening Rosa Parks').groups()
('Good evening', 'Good ', 'evening', 'Rosa')
>>> re_greeting.match("Good Morn'n Rosa")
<_sre.SRE_Match object; span=(0, 16), match="Good Morn'n Rosa">
>>> re_greeting.match("yo Rosa")
<_sre.SRE_Match object; span=(0, 7), match='yo Rosa'>

TIP The “r” before the quote specifies a raw string, not a regular expression.
With a Python raw string, you can send backslashes directly to the regular
expression compiler without having to double-backslash ("\\") all the special
regular expression characters such as spaces ("\\ ") and curly braces or han-
dlebars ("\\{ \\}").

There’s a lot of logic packed into that first line of code, the regular expression. It gets
the job done for a surprising range of greetings. But it missed that “Manning” typo,
which is one of the reasons NLP is hard. In machine learning and medical diagnostic
testing, that’s called a false negative classification error. Unfortunately, it will also
match some statements that humans would be unlikely to ever say—a false positive,
which is also a bad thing. Having both false positive and false negative errors means
that our regular expression is both too liberal and too strict. These mistakes could
make our bot sound a bit dull and mechanical. We’d have to do a lot more work to
refine the phrases that it matches to be more human-like.

 And this tedious work would be highly unlikely to ever succeed at capturing all the
slang and misspellings people use. Fortunately, composing regular expressions by
hand isn’t the only way to train a chatbot. Stay tuned for more on that later (the entire
rest of the book). So we only use them when we need precise control over a chatbot’s
behavior, such as when issuing commands to a voice assistant on your mobile phone.

 But let’s go ahead and finish up our one-trick chatbot by adding an output genera-
tor. It needs to say something. We use Python’s string formatter to create a “template”
for our chatbot response:

>>> my_names = set(['rosa', 'rose', 'chatty', 'chatbot', 'bot',
... 'chatterbot'])
>>> curt_names = set(['hal', 'you', 'u'])
>>> greeter_name = ''
>>> match = re_greeting.match(input())
...
>>> if match:
... at_name = match.groups()[-1]

Notice that this regular
expression cannot recognize

(match) words with typos.

Our chatbot can
separate different parts

of the greeting into groups,
but it will be unaware of Rosa’s famous last name, because we

don’t have a pattern to match any characters after the first name.

We don’t yet know who is
chatting with the bot, and we
won’t worry about it here.

15Language through a computer’s “eyes”
... if at_name in curt_names:

... print("Good one.")

... elif at_name.lower() in my_names:

... print("Hi {}, How are you?".format(greeter_name))

So if you run this little script and chat to our bot with a phrase like “Hello Rosa,” it will
respond by asking about your day. If you use a slightly rude name to address the chat-
bot, she will be less responsive, but not inflammatory, to try to encourage politeness.14

If you name someone else who might be monitoring the conversation on a party line
or forum, the bot will keep quiet and allow you and whomever you are addressing to
chat. Obviously there’s no one else out there watching our input() line, but if this
were a function within a larger chatbot, you’d want to deal with these sorts of things.

 Because of the limitations of computational resources, early NLP researchers had to
use their human brains’ computational power to design and hand-tune complex logical
rules to extract information from a natural language string. This is called a pattern-
based approach to NLP. The patterns don’t have to be merely character sequence pat-
terns, like our regular expression. NLP also often involves patterns of word sequences,
or parts of speech, or other “higher level” patterns. The core NLP building blocks like
stemmers and tokenizers as well as sophisticated end-to-end NLP dialog engines (chat-
bots) like ELIZA were built this way, from regular expressions and pattern matching.
The art of pattern-matching approaches to NLP is coming up with elegant patterns that
capture just what you want, without too many lines of regular expression code.

CLASSICAL COMPUTATIONAL THEORY OF MIND This classical NLP pattern-
matching approach is based on the computational theory of mind (CTM).
CTM assumes that human-like NLP can be accomplished with a finite set of
logical rules that are processed in series.15 Advancements in neuroscience and
NLP led to the development of a “connectionist” theory of mind around the
turn of the century, which allows for parallel pipelines processing natural lan-
guage simultaneously, as is done in artificial neural networks.16, 17

You’ll learn more about pattern-based approaches—such as the Porter stemmer or
the Treebank tokenizer—to tokenizing and stemming in chapter 2. But in later chap-
ters we take advantage of modern computational resources, as well as our larger data-
sets, to shortcut this laborious hand programming and refining.

 If you’re new to regular expressions and want to learn more, you can check out
appendix B or the online documentation for Python regular expressions. But you

14 The idea for this defusing response originated with Viktor Frankl’s Man’s Search for Meaning, his Logotherapy
(https://en.wikipedia.org/wiki/Logotherapy) approach to psychology, and the many popular novels where
a child protagonist like Owen Meany has the wisdom to respond to an insult with a response like this.

15 Stanford Encyclopedia of Philosophy, Computational Theory of Mind, https://plato.stanford.edu/entries/
computational-mind/.

16 Stanford Encyclopedia of Philosophy, Connectionism, https://plato.stanford.edu/entries/connectionism/.
17 Christiansen and Chater, 1999, Southern Illinois University, https://crl.ucsd.edu/~elman/Bulgaria/

christiansen-chater-soa.pdf.

https://plato.stanford.edu/entries/computational-mind/
https://plato.stanford.edu/entries/computational-mind/
https://en.wikipedia.org/wiki/Logotherapy
https://crl.ucsd.edu/~elman/Bulgaria/christiansen-chater-soa.pdf
https://crl.ucsd.edu/~elman/Bulgaria/christiansen-chater-soa.pdf
https://plato.stanford.edu/entries/connectionism/

16 CHAPTER 1 Packets of thought (NLP overview)
don’t have to understand them just yet. We’ll continue to provide you with example
regular expressions as we use them for the building blocks of our NLP pipeline. So
don’t worry if they look like gibberish. Human brains are pretty good at generalizing
from a set of examples, and I’m sure it will become clear by the end of this book. And
it turns out machines can learn this way as well.

1.4.4 Another way

Is there a statistical or machine learning approach that might work in place of the
pattern-based approach? If we had enough data could we do something different?
What if we had a giant database containing sessions of dialog between humans, state-
ments and responses for thousands or even millions of conversations? One way to
build a chatbot would be to search that database for the exact same string of charac-
ters our chatbot user just “said” to our chatbot. Couldn’t we then use one of the
responses to that statement that other humans have said in the past?

 But imagine how a single typo or variation in the statement would trip up our bot.
Bit and character sequences are discrete. They either match or they don’t. Instead,
we’d like our bot to be able to measure the difference in meaning between character
sequences.

 When we use character sequence matches to measure distance between natural
language phrases, we’ll often get it wrong. Phrases with similar meaning, like “good”
and “okay,” can often have different character sequences and large distances when we
count up character-by-character matches to measure distance. And sequences with
completely different meanings, like “bad” and “bar,” might be too close to one other
when we use metrics designed to measure distances between numerical sequences.
Metrics like Jaccard, Levenshtein, and Euclidean vector distance can sometimes add
enough “fuzziness” to prevent a chatbot from stumbling over minor spelling errors or
typos. But these metrics fail to capture the essence of the relationship between two
strings of characters when they are dissimilar. And they also sometimes bring small
spelling differences close together that might not really be typos, like “bad” and “bar.”

 Distance metrics designed for numerical sequences and vectors are useful for a few
NLP applications, like spelling correctors and recognizing proper nouns. So we use
these distance metrics when they make sense. But for NLP applications where we are
more interested in the meaning of the natural language than its spelling, there are
better approaches. We use vector representations of natural language words and text
and some distance metrics for those vectors for these NLP applications. We show you
each approach, one by one, as we talk about these different vector representations
and the kinds of applications they are used with.

 We won’t stay in this confusing binary world of logic for long, but let’s imagine we’re
famous World War II-era code-breaker Mavis Batey at Bletchley Park and we’ve just
been handed that binary, Morse code message intercepted from communication

17Language through a computer’s “eyes”
between two German military officers. It could hold the key to winning the war. Where
would we start? Well the first step in our analysis would be to do something statistical
with that stream of bits to see if we can find patterns. We can first use the Morse code
table (or ASCII table, in our case) to assign letters to each group of bits. Then, if the
characters are gibberish to us, as they are to a computer or a cryptographer in WWII,
we could start counting them up, looking up the short sequences in a dictionary of all
the words we’ve seen before and putting a mark next to the entry every time it occurs.
We might also make a mark in some other log book to indicate which message the word
occurred in, creating an encyclopedic index to all the documents we’ve read before.
This collection of documents is called a corpus, and the collection of words or sequences
we’ve listed in our index is called a lexicon.

 If we’re lucky, and we’re not at war, and the messages we’re looking at aren’t
strongly encrypted, we’ll see patterns in those German word counts that mirror counts
of English words used to communicate similar kinds of messages. Unlike a crypto-
grapher trying to decipher German Morse code intercepts, we know that the symbols
have consistent meaning and aren’t changed with every key click to try to confuse us.
This tedious counting of characters and words is just the sort of thing a computer can
do without thinking. And surprisingly, it’s nearly enough to make the machine appear
to understand our language. It can even do math on these statistical vectors that coin-
cides with our human understanding of those phrases and words. When we show you
how to teach a machine our language using Word2Vec in later chapters, it may seem
magical, but it’s not. It’s just math, computation.

 But let’s think for a moment about what information has been lost in our effort to
count all the words in the messages we receive. We assign the words to bins and store
them away as bit vectors like a coin or token sorter directing different kinds of tokens
to one side or the other in a cascade of decisions that piles them in bins at the bottom.
Our sorting machine must take into account hundreds of thousands if not millions of
possible token “denominations,” one for each possible word that a speaker or author
might use. Each phrase or sentence or document we feed into our token sorting
machine will come out the bottom, where we have a “vector” with a count of the tokens
in each slot. Most of our counts are zero, even for large documents with verbose vocab-
ulary. But we haven’t lost any words yet. What have we lost? Could you, as a human,
understand a document that we presented you in this way, as a count of each possible
word in your language, without any sequence or order associated with those words? I
doubt it. But if it was a short sentence or tweet, you’d probably be able to rearrange
them into their intended order and meaning most of the time.

 Here’s how our token sorter fits into an NLP pipeline right after a tokenizer (see
chapter 2). We’ve included a stopword filter as well as a “rare” word filter in our
mechanical token sorter sketch. Strings flow in from the top, and bag-of-word vectors
are created from the height profile of the token “stacks” at the bottom.

18 CHAPTER 1 Packets of thought (NLP overview)
 It turns out that machines can
handle this bag of words quite well
and glean most of the information
content of even moderately long
documents this way. Each docu-
ment, after token sorting and
counting, can be represented as a
vector, a sequence of integers for
each word or token in that docu-
ment. You see a crude example in
figure 1.2, and then chapter 2
shows some more useful data
structures for bag-of-word vectors.
 This is our first vector space
model of a language. Those bins
and the numbers they contain for
each word are represented as
long vectors containing a lot of
zeros and a few ones or twos scat-
tered around wherever the word
for that bin occurred. All the dif-
ferent ways that words could be
combined to create these vectors
is called a vector space. And rela-
tionships between vectors in this
space are what make up our
model, which is attempting to
predict combinations of these
words occurring within a collec-
tion of various sequences of words
(typically sentences or docu-
ments). In Python, we can repre-
sent these sparse (mostly empty)
vectors (lists of numbers) as dic-

tionaries. And a Python Counter is a special kind of dictionary that bins objects
(including strings) and counts them just like we want:

>>> from collections import Counter

>>> Counter("Guten Morgen Rosa".split())
Counter({'Guten': 1, 'Rosa': 1, 'morgen': 1})
>>> Counter("Good morning, Rosa!".split())
Counter({'Good': 1, 'Rosa!': 1, 'morning,': 1})

Tokenizer

C
at

batany

A
ny

B
at

Good

Good

Bag of words

bat

bat
any

and

Rosa

Stop

Rare

A
A

a

a

A bat and a rat

Bag-of-words
vector [3, 1, 4, 8, 9, 0,..,]

Figure 1.2 Token sorting tray

19A brief overflight of hyperspace
You can probably imagine some ways to clean those tokens up. We do just that in the
next chapter. But you might also think to yourself that these sparse, high-dimensional
vectors (many bins, one for each possible word) aren’t very useful for language pro-
cessing. But they are good enough for some industry-changing tools like spam filters,
which we discuss in chapter 3.

 We can imagine feeding into this machine, one at a time, all the documents, state-
ments, sentences, and even single words we could find. We’d count up the tokens in
each slot at the bottom after each of these statements was processed, and we’d call
that a vector representation of that statement. All the possible vectors a machine
might create this way is called a vector space. And this model of documents and state-
ments and words is called a vector space model. It allows us to use linear algebra to
manipulate these vectors and compute things like distances and statistics about natu-
ral language statements, which helps us solve a much wider range of problems with
less human programming and less brittleness in the NLP pipeline.

 One statistical question that is asked of bag-of-words vector sequences is “What is
the combination of words most likely to follow a particular bag of words?” Or, even
better, if a user enters a sequence of words, “What is the closest bag of words in our
database to a bag-of-words vector provided by the user?” This is a search query. The
input words are the words you might type into a search box, and the closest bag-of-
words vector corresponds to the document or web page you were looking for. The
ability to efficiently answer these two questions would be sufficient to build a machine
learning chatbot that could get better and better as we gave it more and more data.

 But wait a minute, perhaps these vectors aren’t like any you’ve ever worked with
before. They’re extremely high-dimensional. It’s possible to have millions of dimen-
sions for a 3-gram vocabulary computed from a large corpus. In chapter 3, we discuss
the curse of dimensionality and some other properties that make high dimensional
vectors difficult to work with.

1.5 A brief overflight of hyperspace
In chapter 3, we show you how to consolidate words into a smaller number of vector
dimensions to help mitigate the curse of dimensionality and maybe turn it to our
advantage. When we project these vectors onto each other to determine the distance
between pairs of vectors, this will be a reasonable estimate of the similarity in their
meaning rather than merely their statistical word usage. This vector distance metric is
called cosine distance metric, which we talk about in chapter 3, and then reveal its true
power on reduced dimension topic vectors in chapter 4. We can even project
(“embed” is the more precise term) these vectors in a 2D plane to have a “look” at
them in plots and diagrams to see if our human brains can find patterns. We can then
teach a computer to recognize and act on these patterns in ways that reflect the
underlying meaning of the words that produced those vectors.

 Imagine all the possible tweets or messages or sentences that humans might write.
Even though we do repeat ourselves a lot, that’s still a lot of possibilities. And when
those tokens are each treated as separate, distinct dimensions, there’s no concept that

20 CHAPTER 1 Packets of thought (NLP overview)
“Good morning, Hobs” has some shared meaning with “Guten Morgen, Hannes.” We
need to create some reduced dimension vector space model of messages so we can
label them with a set of continuous (float) values. We could rate messages and words
for qualities like subject matter and sentiment. We could ask questions like

 How likely is this message to be a question?
 How much is it about a person?
 How much is it about me?
 How angry or happy does it sound?
 Is it something I need to respond to?

Think of all the ratings we could give statements. We could put these ratings in order
and “compute” them for each statement to compile a “vector” for each statement. The
list of ratings or dimensions we could give a set of statements should be much smaller
than the number of possible statements. And statements that mean the same thing
should have similar values for all our questions.

 These rating vectors become something that a machine can be programmed to
react to. We can simplify and generalize vectors further by clumping (clustering) state-
ments together, making them close on some dimensions and not on others.

 But how can a computer assign values to each of these vector dimensions? Well, we
simplify our vector dimension questions to things like “Does it contain the word
‘good’?” Does it contain the word “morning?” And so on. You can see that we might be
able to come up with a million or so questions resulting in numerical values that a com-
puter could assign to a phrase. This is the first practical vector space model, called a bit
vector language model, or the sum of “one-hot encoded” vectors. You can see why com-
puters are just now getting powerful enough to make sense of natural language. The
millions of million-dimensional vectors that humans might generate simply “Does not
compute!” on a supercomputer of the 80s, but is no problem on a commodity laptop in
the 21st century. More than just raw hardware power and capacity made NLP practical;
incremental, constant-RAM, linear algebra algorithms were the final piece of the puzzle
that allowed machines to crack the code of natural language.

 There’s an even simpler, but much larger representation that can be used in a chat-
bot. What if our vector dimensions completely described the exact sequence of charac-
ters. It would contain the answer to questions like, “Is the first letter an A? Is it a B? …
Is the second letter an A?” and so on. This vector has the advantage that it retains all the
information contained in the original text, including the order of the characters and
words. Imagine a player piano that could only play a single note at a time, and it had 52
or more possible notes it could play. The “notes” for this natural language mechanical
player piano are the 26 uppercase and lowercase letters plus any punctuation that the
piano must know how to “play.” The paper roll wouldn’t have to be much wider than for
a real player piano, and the number of notes in some long piano songs doesn’t exceed
the number of characters in a small document. But this one-hot character sequence
encoding representation is mainly useful for recording and then replaying an exact

21Word order and grammar
piece rather than composing something new or extracting the essence of a piece. We
can’t easily compare the piano paper roll for one song to that of another. And this rep-
resentation is longer than the original ASCII-encoded representation of the document.
The number of possible document representations just exploded in order to retain
information about each sequence of characters. We retained the order of characters
and words, but expanded the dimensionality of our NLP problem.

 These representations of documents don’t cluster together well in this character-
based vector world. The Russian mathematician Vladimir Levenshtein came up with a
brilliant approach for quickly finding similarities between sequences (strings of char-
acters) in this world. Levenshtein’s algorithm made it possible to create some surpris-
ingly fun and useful chatbots, with only this simplistic, mechanical view of language.
But the real magic happened when we figured out how to compress/embed these
higher dimensional spaces into a lower dimensional space of fuzzy meaning or topic
vectors. We peek behind the magician’s curtain in chapter 4 when we talk about latent
semantic indexing and latent Dirichlet allocation, two techniques for creating much
more dense and meaningful vector representations of statements and documents.

1.6 Word order and grammar
The order of words matters. Those rules that govern word order in a sequence of
words (like a sentence) are called the grammar of a language. That’s something that
our bag of words or word vector discarded in the earlier examples. Fortunately, in
most short phrases and even many complete sentences, this word vector approxima-
tion works OK. If you just want to encode the general sense and sentiment of a short
sentence, word order is not terribly important. Take a look at all these orderings of
our “Good morning Rosa” example:

>>> from itertools import permutations

>>> [" ".join(combo) for combo in\
... permutations("Good morning Rosa!".split(), 3)]
['Good morning Rosa!',
'Good Rosa! morning',
'morning Good Rosa!',
'morning Rosa! Good',
'Rosa! Good morning',
'Rosa! morning Good']

Now if you tried to interpret each of these strings in isolation (without looking at the
others), you’d probably conclude that they all probably had similar intent or mean-
ing. You might even notice the capitalization of the word “Good” and place the word
at the front of the phrase in your mind. But you might also think that “Good Rosa” was
some sort of proper noun, like the name of a restaurant or flower shop. Nonetheless,
a smart chatbot or clever woman of the 1940s in Bletchley Park would likely respond
to any of these six permutations with the same innocuous greeting, “Good morning
my dear General.”

22 CHAPTER 1 Packets of thought (NLP overview)
 Let’s try that (in our heads) on a much longer, more complex phrase, a logical
statement where the order of the words matters a lot:

>>> s = """Find textbooks with titles containing 'NLP',
... or 'natural' and 'language', or
... 'computational' and 'linguistics'."""
>>> len(set(s.split()))
12
>>> import numpy as np
>>> np.arange(1, 12 + 1).prod() # factorial(12) = arange(1, 13).prod()
479001600

The number of permutations exploded from factorial(3) == 6 in our simple greet-
ing to factorial(12) == 479001600 in our longer statement! And it’s clear that the
logic contained in the order of the words is important to any machine that would like
to reply with the correct response. Even though common greetings aren’t usually gar-
bled by bag-of-words processing, more complex statements can lose most of their
meaning when thrown into a bag. A bag of words isn’t the best way to begin process-
ing a database query, like the natural language query in the preceding example.

 Whether a statement is written in a formal programming language like SQL, or in
an informal natural language like English, word order and grammar are important
when a statement intends to convey logical relationships between things. That’s why
computer languages depend on rigid grammar and syntax rule parsers. Fortunately,
recent advances in natural language syntax tree parsers have made possible the extrac-
tion of syntactical and logical relationships from natural language with remarkable
accuracy (greater than 90%).18 In later chapters, we show you how to use packages
like SyntaxNet (Parsey McParseface) and SpaCy to identify these relationships.

 And just as in the Bletchley Park example greeting, even if a statement doesn’t rely
on word order for logical interpretation, sometimes paying attention to that word
order can reveal subtle hints of meaning that might facilitate deeper responses. These
deeper layers of natural language processing are discussed in the next section. And
chapter 2 shows you a trick for incorporating some of the information conveyed by
word order into our word-vector representation. It also shows you how to refine the
crude tokenizer used in the previous examples (str.split()) to more accurately bin
words into more appropriate slots within the word vector, so that strings like “good”
and “Good” are assigned the same bin, and separate bins can be allocated for tokens
like “rosa” and “Rosa” but not “Rosa!”.

1.7 A chatbot natural language pipeline
The NLP pipeline required to build a dialog engine, or chatbot, is similar to the pipe-
line required to build a question answering system described in Taming Text (Manning,
2013).19 However, some of the algorithms listed within the five subsystem blocks may

18 A comparison of the syntax parsing accuracy of SpaCy (93%), SyntaxNet (94%), Stanford’s CoreNLP (90%),
and others is available at https://spacy.io/docs/api/.

19 Ingersol, Morton, and Farris, http://www.manning.com/books/taming-text.

https://spacy.io/docs/api/
http://www.manning.com/books/taming-text

23A chatbot natural language pipeline
be new to you. We help you implement these in Python to accomplish various NLP
tasks essential for most applications, including chatbots.

 A chatbot requires four kinds of processing as well as a database to maintain a mem-
ory of past statements and responses. Each of the four processing stages can contain
one or more processing algorithms working in parallel or in series (see figure 1.3):

1 Parse—Extract features, structured numerical data, from natural language text.
2 Analyze—Generate and combine features by scoring text for sentiment, gram-

maticality, and semantics.
3 Generate—Compose possible responses using templates, search, or language

models.
4 Execute—Plan statements based on conversation history and objectives, and

select the next response.

Each of these four stages can be implemented using one or more of the algorithms listed
within the corresponding boxes in the block diagram. We show you how to use Python
to accomplish near state-of-the-art performance for each of these processing steps. And
we show you several alternative approaches to implementing these five subsystems.

Figure 1.3 Chatbot recirculating (recurrent) pipeline

Database
Statements
responses

scroes
user profiles

Scored
statements

Scored
statement

Scored
responses

Response
string

Possible
responses

3. Generate

Search
templates

FSM
MCMC
LSTM

4. Execute
Generalize & classify

update models
update objective

update dialog plan
select response

2. Analyze

Check spelling
check grammar

analyze sentiment
analyze humanness

analyze style
LSTM

1. Parse

Tokenizers
regular expressions

tag
NER

extract information
reduce dimensions

Structured
data

(feature
vector)

Text

Response
feature
vector

24 CHAPTER 1 Packets of thought (NLP overview)
Most chatbots will contain elements of all five of these subsystems (the four processing
stages as well as the database). But many applications require only simple algorithms for
many of these steps. Some chatbots are better at answering factual questions, and oth-
ers are better at generating lengthy, complex, convincingly human responses. Each of
these capabilities require different approaches; we show you techniques for both.

 In addition, deep learning and data-driven programming (machine learning, or
probabilistic language modeling) have rapidly diversified the possible applications for
NLP and chatbots. This data-driven approach allows ever greater sophistication for an
NLP pipeline by providing it with greater and greater amounts of data in the domain
you want to apply it to. And when a new machine learning approach is discovered that
makes even better use of this data, with more efficient model generalization or regu-
larization, then large jumps in capability are possible.

 The NLP pipeline for a chatbot shown in figure 1.3 contains all the building blocks
for most of the NLP applications that we described at the start of this chapter. As in
Taming Text, we break out our pipeline into four main subsystems or stages. In addi-
tion, we’ve explicitly called out a database to record data required for each of these
stages and persist their configuration and training sets over time. This can enable
batch or online retraining of each of the stages as the chatbot interacts with the world.
We’ve also shown a “feedback loop” on our generated text responses so that our
responses can be processed using the same algorithms used to process the user state-
ments. The response “scores” or features can then be combined in an objective func-
tion to evaluate and select the best possible response, depending on the chatbot’s
plan or goals for the dialog. This book is focused on configuring this NLP pipeline for
a chatbot, but you may also be able to see the analogy to the NLP problem of text
retrieval or “search,” perhaps the most common NLP application. And our chatbot
pipeline is certainly appropriate for the question answering application that was the
focus of Taming Text.

 The application of this pipeline to financial forecasting or business analytics may
not be so obvious. But imagine the features generated by the analysis portion of your
pipeline. These features of your analysis or feature generation can be optimized for
your particular finance or business prediction. That way they can help you incorpo-
rate natural language data into a machine learning pipeline for forecasting. Despite
focusing on building a chatbot, this book gives you the tools you need for a broad
range of NLP applications, from search to financial forecasting.

 One processing element in figure 1.3 that isn’t typically employed in search, fore-
casting, or question answering systems is natural language generation. For chatbots this
is their central feature. Nonetheless, the text generation step is often incorporated
into a search engine NLP application and can give such an engine a large competitive
advantage. The ability to consolidate or summarize search results is a winning feature
for many popular search engines (DuckDuckGo, Bing, and Google). And you can
imagine how valuable it is for a financial forecasting engine to be able to generate
statements, tweets, or entire articles based on the business-actionable events it detects
in natural language streams from social media networks and news feeds.

25Processing in depth
 The next section shows how the layers of such a system can be combined to create
greater sophistication and capability at each stage of the NLP pipeline.

1.8 Processing in depth
The stages of a natural language processing pipeline can be thought of as layers, like
the layers in a feed-forward neural network. Deep learning is all about creating more
complex models and behavior by adding additional processing layers to the conven-
tional two-layer machine learning model architecture of feature extraction followed
by modeling. In chapter 5, we explain how neural networks help spread the learning
across layers by backpropagating model errors from the output layers back to the
input layers. But here we talk about the top layers and what can be done by training
each layer independently of the other layers.

 The top four layers in figure 1.4 correspond to the first two stages in the chatbot
pipeline (feature extraction and feature analysis) in the previous section. For exam-
ple, the part-of-speech tagging (POS tagging) is one way to generate features within
the Analyze stage of our chatbot pipeline. POS tags are generated automatically by the
default SpaCY pipeline, which includes all the top four layers in this diagram. POS tag-
ging is typically accomplished with a finite state transducer like the methods in the
nltk.tag package.

Figure 1.4 Example layers for an NLP pipeline

Regular
expression

POS
tagger
(FST)

Information
extractor
(FST)

Logic
compiler
(FST)

Data structureAlgorithm Example

.82

.87

.74

Applications

Cryptography, compression,
spelling correction, predictive
text, search, dialog (chatbot)

Search, stylistics, spam filter,
sentiment analysis, word2vec math,
semantic search, dialog (chatbot)

Spelling and grammar correction,
stylistics, dialog (chatbot)

Question answering, stylistics, complex
dialog, grammar correction, writing coach

Knowledge extraction and
inference, medical diagnosis,
question answering, game playing

Theorem proving, inference,
natural language database
queries, artificial general
intelligence (AGI)

morning daypart
of

goodmorning

Person

female

English

Rosa name
of

Entity relationships

Syntax tree

Tagged tokens

Tokens

Characters

Knowledge base

26 CHAPTER 1 Packets of thought (NLP overview)
The bottom two layers (Entity relationships and a Knowledge base) are used to popu-
late a database containing information (knowledge) about a particular domain. And
the information extracted from a particular statement or document using all six of
these layers can then be used in combination with that database to make inferences.
Inferences are logical extrapolations from a set of conditions detected in the environ-
ment, like the logic contained in the statement of a chatbot user. This kind of “infer-
ence engine” in the deeper layers of this diagram is considered the domain of artificial
intelligence, where machines can make inferences about their world and use those
inferences to make logical decisions. However, chatbots can make reasonable decisions
without this knowledge database, using only the algorithms of the upper few layers. And
these decisions can combine to produce surprisingly human-like behaviors.

 Over the next few chapters, we dive down through the top few layers of NLP. The
top three layers are all that’s required to perform meaningful sentiment analysis and
semantic search, and to build human-mimicking chatbots. In fact, it’s possible to build
a useful and interesting chatbot using only a single layer of processing, using the text
(character sequences) directly as the features for a language model. A chatbot that
only does string matching and search is capable of participating in a reasonably con-
vincing conversation, if given enough example statements and responses.

 For example, the open source project ChatterBot simplifies this pipeline by
merely computing the string “edit distance” (Levenshtein distance) between an input
statement and the statements recorded in its database. If its database of statement-
response pairs contains a matching statement, the corresponding reply (from a previ-
ously “learned” human or machine dialog) can be reused as the reply to the latest user
statement. For this pipeline, all that is required is step 3 (Generate) of our chatbot
pipeline. And within this stage, only a brute force search algorithm is required to find
the best response. With this simple technique (no tokenization or feature generation
required), ChatterBot can maintain a convincing conversion as the dialog engine for
Salvius, a mechanical robot built from salvaged parts by Gunther Cox.20

 Will is an open source Python chatbot framework by Steven Skoczen with a com-
pletely different approach.21 Will can only be trained to respond to statements by pro-
gramming it with regular expressions. This is the labor-intensive and data-light
approach to NLP. This grammar-based approach is especially effective for question
answering systems and task-execution assistant bots, like Lex, Siri, and Google Now.
These kinds of systems overcome the “brittleness” of regular expressions by employing
“fuzzy regular expressions”22 and other techniques for finding approximate grammar
matches. Fuzzy regular expressions find the closest grammar matches among a list of

20 ChatterBot by Gunther Cox and others at https://github.com/gunthercox/ChatterBot.
21 See the GitHub page for “Will,” a chatbot for HipChat by Steven Skoczen and the HipChat community

(https://github.com/skoczen/will). In 2018 it was updated to integrate with Slack.
22 The Python regex package is backward compatible with re and adds fuzziness among other features. It will

replace the re package in the future (https://pypi.python.org/pypi/regex). Similarly TRE agrep, or “approx-
imate grep,” (https://github.com/laurikari/tre) is an alternative to the UNIX command-line application
grep.

https://github.com/gunthercox/ChatterBot
https://github.com/skoczen/will
https://pypi.python.org/pypi/regex
https://github.com/laurikari/tre

27Natural language IQ
possible grammar rules (regular expressions) instead of exact matches by ignoring
some maximum number of insertion, deletion, and substitution errors. However,
expanding the breadth and complexity of behaviors for a grammar-based chatbot
requires a lot of human development work. Even the most advanced grammar-based
chatbots, built and maintained by some of the largest corporations on the planet
(Google, Amazon, Apple, Microsoft), remain in the middle of the pack for depth and
breadth of chatbot IQ.

 A lot of powerful things can be done with shallow NLP. And little, if any, human
supervision (labeling or curating of text) is required. Often a machine can be left to
learn perpetually from its environment (the stream of words it can pull from Twitter
or some other source).23 We show you how to do this in chapter 6.

1.9 Natural language IQ
Like human brainpower, the power of an NLP pipeline cannot be easily gauged with a
single IQ score without considering multiple “smarts” dimensions. A common way to
measure the capability of a robotic system is along the dimensions of complexity of
behavior and degree of human supervision required. But for a natural language pro-
cessing pipeline, the goal is to build systems that fully automate the processing of nat-
ural language, eliminating all human supervision (once the model is trained and
deployed). So a better pair of IQ dimensions should capture the breadth and depth of
the complexity of the natural language pipeline.

 A consumer product chatbot or virtual assistant like Alexa or Allo is usually designed
to have extremely broad knowledge and capabilities. However, the logic used to
respond to requests tends to be shallow, often consisting of a set of trigger phrases that
all produce the same response with a single if-then decision branch. Alexa (and the
underlying Lex engine) behave like a single layer, flat tree of (if, elif, elif, …) state-
ments.24 Google Dialogflow (which was developed independently of Google’s Allo and
Google Assistant) has similar capability to Amazon Lex, Contact Flow, and Lambda, but
without the drag-and-drop user interface for designing your dialog tree.

 On the other hand, the Google Translate pipeline (or any similar machine transla-
tion system) relies on a deep tree of feature extractors, decision trees, and knowledge
graphs connecting bits of knowledge about the world. Sometimes these feature extrac-
tors, decision trees, and knowledge graphs are explicitly programmed into the system,
as in figure 1.4. Another approach rapidly overtaking this “hand-coded” pipeline is
the deep learning data-driven approach. Feature extractors for deep neural networks
are learned rather than hard-coded, but they often require much more training data
to achieve the same performance as intentionally designed algorithms.

23 Simple neural networks are often used for unsupervised feature extraction from character and word
sequences.

24 More complicated logic and behaviors are now possible when you incorporate Lambdas into an AWS Contact
Flow dialog tree. See “Creating Call Center Bot with AWS Connect” (https://greenice.net/creating-call-
center-bot-aws-connect-amazon-lex-can-speak-understand).

https://greenice.net/creating-call-center-bot-aws-connect-amazon-lex-can-speak-understand
https://greenice.net/creating-call-center-bot-aws-connect-amazon-lex-can-speak-understand

28 CHAPTER 1 Packets of thought (NLP overview)
 You’ll use both approaches
(neural networks and hand-coded
algorithms) as you incrementally
build an NLP pipeline for a chat-
bot capable of conversing within a
focused knowledge domain. This
will give you the skills you need to
accomplish the natural language
processing tasks within your indus-
try or business domain. Along the
way you’ll probably get ideas
about how to expand the breadth
of things this NLP pipeline can
do. Figure 1.5 puts the chatbot in
its place among the natural lan-
guage processing systems that are

already out there. Imagine the chatbots you have interacted with. Where do you think
they might fit on a plot like this? Have you attempted to gauge their intelligence by
probing them with difficult questions or something like an IQ test?25 You’ll get a
chance to do exactly that in later chapters, to help you decide how your chatbot stacks
up against some of the others in this diagram.

 As you progress through this book, you’ll be building the elements of a chatbot.
Chatbots require all the tools of NLP to work well:

 Feature extraction (usually to produce a vector space model)
 Information extraction to be able to answer factual questions
 Semantic search to learn from previously recorded natural language text or

dialog
 Natural language generation to compose new, meaningful statements

Machine learning gives us a way to trick machines into behaving as if we’d spent a life-
time programming them with hundreds of complex regular expressions or algo-
rithms. We can teach a machine to respond to patterns similar to the patterns defined
in regular expressions by merely providing it examples of user statements and the
responses we want the chatbot to mimic. And the “models” of language, the FSMs,
produced by machine learning are much better. They are less picky about mispelings
and typoz.

 And machine learning NLP pipelines are easier to “program.” We don’t have to
anticipate every possible use of symbols in our language. We just have to feed the
training pipeline with examples of the phrases that match and example phrases that

25 A good question suggested by Byron Reese is: “What’s larger? The sun or a nickel?” (https://gigaom.com/
2017/11/20/voices-in-ai-episode-20-a-conversation-with-marie-des-jardins). Here are a couple more (https://
github.com/totalgood/nlpia/blob/master/src/nlpia/data/iq_test.csv) to get you started.

Depth

Recruiting &
match-making

Finance
prediction

Legal
advice

Sports
reporting

ChatterBot

Breadth

You are
here
(NLPIA)

Siri

Lex

Will

IQ
(Complexity)

Figure 1.5 2D IQ of some natural language processing
systems

https://gigaom.com/2017/11/20/voices-in-ai-episode-20-a-conversation-with-marie-des-jardins
https://gigaom.com/2017/11/20/voices-in-ai-episode-20-a-conversation-with-marie-des-jardins
https://github.com/totalgood/nlpia/blob/master/src/nlpia/data/iq_test.csv
https://github.com/totalgood/nlpia/blob/master/src/nlpia/data/iq_test.csv

29Summary
don’t match. As long we label them during training, so that the chatbot knows which
is which, it will learn to discriminate between them. And there are even machine
learning approaches that require little if any “labeled” data.

 We’ve given you some exciting reasons to learn about natural language processing.
You want to help save the world, don’t you? And we’ve attempted to pique your interest
with some practical NLP applications that are revolutionizing the way we communicate,
learn, do business, and even think. It won’t be long before you’re able to build a system
that approaches human-like conversational behavior. And you should be able to see in
upcoming chapters how to train a chatbot or NLP pipeline with any domain knowledge
that interests you—from finance and sports to psychology and literature. If you can find
a corpus of writing about it, then you can train a machine to understand it.

 The rest of this book is about using machine learning to save us from having to
anticipate all the ways people can say things in natural language. Each chapter incre-
mentally improves on the basic NLP pipeline for the chatbot introduced in this chap-
ter. As you learn the tools of natural language processing, you’ll be building an NLP
pipeline that can not only carry on a conversation but help you accomplish your goals
in business and in life.

Summary
 Good NLP may help save the world.
 The meaning and intent of words can be deciphered by machines.
 A smart NLP pipeline will be able to deal with ambiguity.
 We can teach machines common sense knowledge without spending a lifetime

training them.
 Chatbots can be thought of as semantic search engines.
 Regular expressions are useful for more than just search.

Build your vocabulary
(word tokenization)
So you’re ready to save the world with the power of natural language processing?
Well the first thing you need is a powerful vocabulary. This chapter will help you
split a document, any string, into discrete tokens of meaning. Our tokens are lim-
ited to words, punctuation marks, and numbers, but the techniques we use are eas-
ily extended to any other units of meaning contained in a sequence of characters,
like ASCII emoticons, Unicode emojis, mathematical symbols, and so on.

This chapter covers
 Tokenizing your text into words and n-grams

(tokens)

 Dealing with nonstandard punctuation and
emoticons, like social media posts

 Compressing your token vocabulary with
stemming and lemmatization

 Building a vector representation of a statement

 Building a sentiment analyzer from handcrafted
token scores
30

31
 Retrieving tokens from a document will require some string manipulation beyond
just the str.split() method employed in chapter 1. You’ll need to separate punctua-
tion from words, like quotes at the beginning and end of a statement. And you’ll need
to split contractions like “we’ll” into the words that were combined to form them. Once
you’ve identified the tokens in a document that you’d like to include in your vocabu-
lary, you’ll return to the regular expression toolbox to try to combine words with similar
meaning in a process called stemming. Then you’ll assemble a vector representation of
your documents called a bag of words, and you’ll try to use this vector to see if it can
help you improve upon the greeting recognizer sketched out at the end of chapter 1.

 Think for a moment about what a word or token represents to you. Does it repre-
sent a single concept, or some blurry cloud of concepts? Could you be sure you could
always recognize a word? Are natural language words like programming language key-
words that have precise definitions and a set of grammatical usage rules? Could you
write software that could recognize a word? Is “ice cream” one word or two to you?
Don’t both words have entries in your mental dictionary that are separate from the
compound word “ice cream”? What about the contraction “don’t”? Should that string
of characters be split into one or two “packets of meaning?”

 And words could be divided even further into smaller packets of meaning. Words
themselves can be divided up into smaller meaningful parts. Syllables, prefixes, and
suffixes, like “re,” “pre,” and “ing” have intrinsic meaning. And parts of words can be
divided further into smaller packets of meaning. Letters or graphemes (https://
en.wikipedia.org/wiki/Grapheme) carry sentiment and meaning.1

 We’ll talk about character-based vector space models in later chapters. But for
now let’s just try to resolve the question of what a word is and how to divide up text
into words.

 What about invisible or implied words? Can you think of additional words that are
implied by the single-word command “Don’t!”? If you can force yourself to think like a
machine and then switch back to thinking like a human, you might realize that there
are three invisible words in that command. The single statement “Don’t!” means
“Don’t you do that!” or “You, do not do that!” That’s three hidden packets of meaning
for a total of five tokens you’d like your machine to know about. But don’t worry
about invisible words for now. All you need for this chapter is a tokenizer that can rec-
ognize words that are spelled out. You’ll worry about implied words and connotation
and even meaning itself in chapter 4 and beyond.2

1 Morphemes are parts of words that contain meaning in and of themselves. Geoffrey Hinton and other deep
learning deep thinkers have demonstrated that even graphemes (letters)—the smallest indivisible piece of
written text—can be treated as if they are intrinsically meaningful.

2 If you want to learn more about exactly what a “word” really is, check out the introduction to The Morphology
of Chinese by Jerome Packard where he discusses the concept of a “word” in detail. The concept of a “word”
didn’t exist at all in the Chinese language until the 20th century when it was translated from English grammar
into Chinese.

https://en.wikipedia.org/wiki/Grapheme
https://en.wikipedia.org/wiki/Grapheme

32 CHAPTER 2 Build your vocabulary (word tokenization)
 In this chapter, we show you straightforward algorithms for separating a string into
words. You’ll also extract pairs, triplets, quadruplets, and even quintuplets of tokens.
These are called n-grams. Pairs of words are 2-grams (bigrams), triplets are 3-grams
(trigrams), quadruplets are 4-grams, and so on. Using n-grams enables your machine
to know about “ice cream” as well as the “ice” and “cream” that comprise it. Another
2-gram that you’d like to keep together is “Mr. Smith.” Your tokens and your vector
representation of a document will have a place for “Mr. Smith” along with “Mr.” and
“Smith,” too.

 For now, all possible pairs (and short n-grams) of words will be included in your
vocabulary. But in chapter 3, you’ll learn how to estimate the importance of words
based on their document frequency, or how often they occur. That way you can filter
out pairs and triplets of words that rarely occur together. You’ll find that the
approaches we show aren’t perfect. Feature extraction can rarely retain all the infor-
mation content of the input data in any machine learning pipeline. That’s part of the
art of NLP, learning when your tokenizer needs to be adjusted to extract more or dif-
ferent information from your text for your particular application.

 In natural language processing, composing a numerical vector from text is a par-
ticularly “lossy” feature extraction process. Nonetheless the bag-of-words (BOW) vec-
tors retain enough of the information content of the text to produce useful and
interesting machine learning models. The techniques for sentiment analyzers at the
end of this chapter are the same techniques Gmail used to save us from a flood of
spam that almost made email useless.

2.1 Challenges (a preview of stemming)
As an example of why feature extraction from text is hard, consider stemming—group-
ing the various inflections of a word into the same “bucket” or cluster. Very smart peo-
ple spent their careers developing algorithms for grouping inflected forms of words
together based only on their spelling. Imagine how difficult that is. Imagine trying to
remove verb endings like “ing” from “ending” so you’d have a stem called “end” to
represent both words. And you’d like to stem the word “running” to “run,” so those
two words are treated the same. And that’s tricky, because you have to remove not only
the “ing” but also the extra “n.” But you want the word “sing” to stay whole. You
wouldn’t want to remove the “ing” ending from “sing” or you’d end up with a single-
letter “s.”

 Or imagine trying to discriminate between a pluralizing “s” at the end of a word
like “words” and a normal “s” at the end of words like “bus” and “lens.” Do isolated
individual letters in a word or parts of a word provide any information at all about that
word’s meaning? Can the letters be misleading? Yes and yes.

 In this chapter we show you how to make your NLP pipeline a bit smarter by deal-
ing with these word spelling challenges using conventional stemming approaches.
Later, in chapter 5, we show you statistical clustering approaches that only require you

33Building your vocabulary with a tokenizer
to amass a collection of natural language text containing the words you’re interested
in. From that collection of text, the statistics of word usage will reveal “semantic stems”
(actually, more useful clusters of words like lemmas or synonyms), without any hand-
crafted regular expressions or stemming rules.

2.2 Building your vocabulary with a tokenizer
In NLP, tokenization is a particular kind of document segmentation. Segmentation
breaks up text into smaller chunks or segments, with more focused information con-
tent. Segmentation can include breaking a document into paragraphs, paragraphs
into sentences, sentences into phrases, or phrases into tokens (usually words) and
punctuation. In this chapter, we focus on segmenting text into tokens, which is called
tokenization.

 You may have heard of tokenizers before, if you took a computer science class
where you learned about how compilers work. A tokenizer used for compiling com-
puter languages is often called a scanner or lexer. The vocabulary (the set of all the
valid tokens) for a computer language is often called a lexicon, and that term is still
used in academic articles about NLP. If the tokenizer is incorporated into the com-
puter language compiler’s parser, the parser is often called a scannerless parser. And
tokens are the end of the line for the context-free grammars (CFG) used to parse
computer languages. They are called terminals because they terminate a path from the
root to the leaf in CFG. You’ll learn more about formal grammars like CFGs and regu-
lar expressions in chapter 11 when you will use them to match patterns and extract
information from natural language.

 For the fundamental building blocks of NLP, there are equivalents in a computer
language compiler:

 tokenizer—scanner, lexer, lexical analyzer
 vocabulary—lexicon
 parser—compiler
 token, term, word, or n-gram—token, symbol, or terminal symbol

Tokenization is the first step in an NLP pipeline, so it can have a big impact on the
rest of your pipeline. A tokenizer breaks unstructured data, natural language text,
into chunks of information that can be counted as discrete elements. These counts of
token occurrences in a document can be used directly as a vector representing that
document. This immediately turns an unstructured string (text document) into a
numerical data structure suitable for machine learning. These counts can be used
directly by a computer to trigger useful actions and responses. Or they might also be
used in a machine learning pipeline as features that trigger more complex decisions
or behavior. The most common use for bag-of-words vectors created this way is for
document retrieval, or search.

 The simplest way to tokenize a sentence is to use whitespace within a string as the
“delimiter” of words. In Python, this can be accomplished with the standard library

34 CHAPTER 2 Build your vocabulary (word tokenization)
method split, which is available on all str object instances as well as on the str
built-in class itself. See the following listing and figure 2.1 for an example.

>>> sentence = """Thomas Jefferson began building Monticello at the
... age of 26."""
>>> sentence.split()
['Thomas',
'Jefferson',
'began',
'building',
'Monticello',
'at',
'the',
'age',
'of',
'26.']

>>> str.split(sentence)
['Thomas',
'Jefferson',
'began',
'building',
'Monticello',
'at',
'the',
'age',
'of',
'26.']

Figure 2.1 Tokenized phrase

As you can see, this built-in Python method already does a decent job tokenizing a
simple sentence. Its only “mistake” was on the last word, where it included the
sentence-ending punctuation with the token “26.” Normally you’d like tokens to be
separated from neighboring punctuation and other meaningful tokens in a sentence.
The token “26.” is a perfectly fine representation of a floating point number 26.0, but
that would make this token different than another word “26” that occurred elsewhere
in the corpus in the middle of sentences or the word “26?” that might occur at the end
of a question. A good tokenizer should strip off this extra character to create the word
“26” as an equivalent class for the words “26,” “26!”, “26?”, and “26.” And a more accu-
rate tokenizer would also output a separate token for any sentence-ending punctua-
tion so that a sentence segmenter or sentence boundary detector can find the end of
that sentence.

Listing 2.1 Example Monticello sentence split into tokens

Thomas Jefferson began building Monticello at the age of 26.

35Building your vocabulary with a tokenizer
 For now, let’s forge ahead with your imperfect tokenizer. You’ll deal with punctua-
tion and other challenges later. With a bit more Python, you can create a numerical
vector representation for each word. These vectors are called one-hot vectors, and soon
you’ll see why. A sequence of these one-hot vectors fully captures the original docu-
ment text in a sequence of vectors, a table of numbers. That will solve the first prob-
lem of NLP, turning words into numbers:

>>> import numpy as np
>>> token_sequence = str.split(sentence)
>>> vocab = sorted(set(token_sequence))
>>> ', '.join(vocab)
'26., Jefferson, Monticello, Thomas, age, at, began, building, of, the'
>>> num_tokens = len(token_sequence)
>>> vocab_size = len(vocab)
>>> onehot_vectors = np.zeros((num_tokens,
... vocab_size), int)
>>> for i, word in enumerate(token_sequence):
... onehot_vectors[i, vocab.index(word)] = 1
>>> ' '.join(vocab)
'26. Jefferson Monticello Thomas age at began building of the'
>>> onehot_vectors
array([[0, 0, 0, 1, 0, 0, 0, 0, 0, 0],

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]])

If you have trouble quickly reading all those ones and zeros, you’re not alone. Pandas
DataFrames can help make this a little easier on the eyes and more informative. Pan-
das wraps a 1D array with some helper functionality in an object called a Series. And
Pandas is particularly handy with tables of numbers like lists of lists, 2D numpy arrays,
2D numpy matrices, arrays of arrays, dictionaries of dictionaries, and so on.

 A DataFrame keeps track of labels for each column, allowing you to label each col-
umn in our table with the token or word it represents. A DataFrame can also keep
track of labels for each row in the DataFrame.index, for speedy lookup. But this is
usually just a consecutive integer for most applications. For now you’ll use the default
index of integers for the rows in your table of one-hot word vectors for this sentence
about Thomas Jefferson, shown in the following listing.

str.split () is your
quick-and-dirty tokenizer.

Your vocabulary lists all the
unique tokens (words) that
you want to keep track of.

Sorted lexographically (lexically) so
numbers come before letters, and capital

letters come before lowercase letters.

The empty table is as wide as your
count of unique vocabulary terms
and as high as the length of your

document, 10 rows by 10 columns.

For each word in the sentence,
mark the column for that word

in your vocabulary with a 1.

36 CHAPTER 2 Build your vocabulary (word tokenization)

>>> import pandas as pd
>>> pd.DataFrame(onehot_vectors, columns=vocab)

26. Jefferson Monticello Thomas age at began building of the
0 0 0 0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 1 0 0 0
3 0 0 0 0 0 0 0 1 0 0
4 0 0 1 0 0 0 0 0 0 0
5 0 0 0 0 0 1 0 0 0 0
6 0 0 0 0 0 0 0 0 0 1
7 0 0 0 0 1 0 0 0 0 0
8 0 0 0 0 0 0 0 0 1 0
9 1 0 0 0 0 0 0 0 0 0

One-hot vectors are super-sparse, containing only one nonzero value in each row vec-
tor. So we can make that table of one-hot row vectors even prettier by replacing zeros
with blanks. Don’t do this with any DataFrame you intend to use in your machine
learning pipeline, because it’ll create a lot of non-numerical objects within your
numpy array, mucking up the math. But if you just want to see how this one-hot vector
sequence is like a mechanical music box cylinder, or a player piano drum, the follow-
ing listing can be a handy view of your data.

>>> df = pd.DataFrame(onehot_vectors, columns=vocab)
>>> df[df == 0] = ''
>>> df

26. Jefferson Monticello Thomas age at began building of the
0 1
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1

In this representation of your one-sentence document, each row is a vector for a single
word. The sentence has 10 words, all unique, and it doesn’t reuse any words. The table
has 10 columns (words in your vocabulary) and 10 rows (words in the document). A
“1” in a column indicates a vocabulary word that was present at that position in the
document. So if you wanted to know what the third word in a document was, you’d go
to the third row in the table. And you’d look up at the column heading for the “1”
value in the third row (the row labeled 2, because the row numbers start at 0). At the
top of that column, the seventh column in the table, you can find the natural lan-
guage representation of that word, “began.”

Listing 2.2 One-hot vector sequence for the Monticello sentence

Listing 2.3 Prettier one-hot vectors

37Building your vocabulary with a tokenizer
 Each row of the table is a binary row vector, and you can see why it’s also called a
one-hot vector: all but one of the positions (columns) in a row are 0 or blank. Only
one column, or position in the vector, is “hot” (“1”). A one (1) means on, or hot. A
zero (0) means off, or absent. And you can use the vector [0, 0, 0, 0, 0, 0, 1, 0,
0, 0] to represent the word “began” in your NLP pipeline.

 One nice feature of this vector representation of words and tabular representation
of documents is that no information is lost.3 As long as you keep track of which words
are indicated by which column, you can reconstruct the original document from this
table of one-hot vectors. And this reconstruction process is 100% accurate, even
though your tokenizer was only 90% accurate at generating the tokens you thought
would be useful. As a result, one-hot word vectors like this are typically used in neural
nets, sequence-to-sequence language models, and generative language models.
They’re a good choice for any model or NLP pipeline that needs to retain all the
meaning inherent in the original text.

 This one-hot vector table is like a recording of the original text. If you squint hard
enough you might be able to imagine that the matrix of ones and zeros above is a
player piano paper roll.4 Or maybe it’s the bumps on the metal drum of a music
box.5 The vocabulary key at the top tells the machine which “note” or word to play
for each row in the sequence of words or piano music. Unlike a player piano, your
mechanical word recorder and player is only allowed to use one “finger” at a time. It
can only play one “note” or word at a time. It’s one-hot. And each note or word is
played for the same amount of “time” with a consistent pace. There’s no variation in
the spacing of the words.

 But this is just one way of thinking of one-hot word vectors. You can come up with
whatever mental model makes sense for you. The important thing is that you’ve
turned a sentence of natural language words into a sequence of numbers, or vectors.
Now you can have the computer read and do math on the vectors just like any other
vector or list of numbers. This allows your vectors to be input into any natural lan-
guage processing pipeline that requires this kind of vector.

 You could also play a sequence of one-hot encoded vectors back if you want to
generate text for a chat bot, just like a player piano might play a song for a less artifi-
cial audience. Now all you need to do is figure out how to build a player piano that
can “understand” and combine those word vectors in new ways. Ultimately, you’d like
your chatbot or NLP pipeline to play us, or say something, you haven’t heard before.
We get to that in chapters 9 and 10 when we talk about LSTM models, and similar
neural networks.

3 Except for the distinction between various white spaces that were “split” with your tokenizer. If you wanted to
get the original document back, unless your tokenizer keeps track of the white spaces it discarded during
tokenization, you can’t. If your tokenizer didn’t preserve that information, there’s no way to tell whether a
space or a newline or a tab or even nothing should be inserted at each position between words. But the infor-
mation content of whitespace is low, negligible in most English documents. And many modern NLP parsers
and tokenizers retain that whitespace information for you, if you ever need it.

4 See the “Player piano” article on Wikipedia (https://en.wikipedia.org/wiki/Player_piano).
5 See the web page titled “Music box” (https://en.wikipedia.org/wiki/Music_box).

https://en.wikipedia.org/wiki/Player_piano
https://en.wikipedia.org/wiki/Music_box

38 CHAPTER 2 Build your vocabulary (word tokenization)
 This representation of a sentence in one-hot word vectors retains all the detail,
grammar, and order of the original sentence. And you’ve successfully turned words
into numbers that a computer can “understand.” They are also a particular kind of
number that computers like a lot: binary numbers. But this is a big table for a short
sentence. If you think about it, you’ve expanded the file size that would be required to
store your document. For a long document this might not be practical. Your docu-
ment size (the length of the vector table) would grow to be huge. The English lan-
guage contains at least 20,000 common words, millions if you include names and
other proper nouns. And your one-hot vector representation requires a new table
(matrix) for every document you want to process. This is almost like a raw “image” of
your document. If you’ve done any image processing, you know that you need to do
dimension reduction if you want to extract useful information from the data.

 Let’s run through the math to give you an appreciation for just how big and
unwieldy these “player piano paper rolls” are. In most cases, the vocabulary of tokens
you’ll use in an NLP pipeline will be much more than 10,000 or 20,000 tokens. Some-
times it can be hundreds of thousands or even millions of tokens. Let’s assume you
have a million tokens in your NLP pipeline vocabulary. And let’s say you have a mea-
ger 3,000 books with 3,500 sentences each and 15 words per sentence—reasonable
averages for short books. That’s a whole lot of big tables (matrices):

>>> num_rows = 3000 * 3500 * 15
>>> num_rows
157500000
>>> num_bytes = num_rows * 1000000
>>> num_bytes
157500000000000
>>> num_bytes / 1e9
157500 # gigabytes
>>> _ / 1000
157.5 # terabytes

You’re talking more than a million million bits, even if you use a single bit for each
cell in your matrix. At one bit per cell, you’d need nearly 20 terabytes of storage for a
small bookshelf of books processed this way. Fortunately, you don’t ever use this data
structure for storing documents. You only use it temporarily, in RAM, while you’re
processing documents one word at a time.

 So storing all those zeros, and trying to remember the order of the words in all
your documents, doesn’t make much sense. It’s not practical. And what you really
want to do is compress the meaning of a document down to its essence. You’d like to
compress your document down to a single vector rather than a big table. And you’re
willing to give up perfect “recall.” You just want to capture most of the meaning (infor-
mation) in a document, not all of it.

 What if you split your documents into much shorter chunks of meaning, say sen-
tences. And what if you assumed that most of the meaning of a sentence can be gleaned

Number of rows
in the table

Number of bytes, if you use only one
byte for each cell in your table

In a python interactive console, the variable name "_" is
automatically assigned the value of the previous output. This is handy
if you forget to explicitly assign the output of a function or expression
to a variable name like you did for num_bytes and num_rows.

39Building your vocabulary with a tokenizer
from just the words themselves. Let’s assume you can ignore the order and grammar of
the words, and jumble them all up together into a “bag,” one bag for each sentence or
short document. That turns out to be a reasonable assumption. Even for documents
several pages long, a bag-of-words vector is still useful for summarizing the essence of a
document. You can see that for your sentence about Jefferson, even after you sorted all
the words lexically, a human can still guess what the sentence was about. So can a
machine. You can use this new bag-of-words vector approach to compress the informa-
tion content for each document into a data structure that’s easier to work with.

 If you summed all these one-hot vectors together, rather than “replaying” them
one at a time, you’d get a bag-of-words vector. This is also called a word frequency vec-
tor, because it only counts the frequency of words, not their order. You could use this
single vector to represent the whole document or sentence in a single, reasonable-
length vector. It would only be as long as your vocabulary size (the number of unique
tokens you want to keep track of).

 Alternatively, if you’re doing basic keyword search, you could OR the one-hot word
vectors into a binary bag-of-words vector. And you could ignore a lot of words that
wouldn’t be interesting as search terms or keywords. This would be fine for a search
engine index or the first filter for an information retrieval system. Search indexes only
need to know the presence or absence of each word in each document to help you
find those documents later.

 Just like laying your arm on the piano, hitting all the notes (words) at once doesn’t
make for a pleasant, meaningful experience. Nonetheless this approach turns out to
be critical to helping a machine “understand” a whole group of words as a unit. And if
you limit your tokens to the 10,000 most important words, you can compress your
numerical representation of your imaginary 3,500 sentence book down to 10 kilo-
bytes, or about 30 megabytes for your imaginary 3,000-book corpus. One-hot vector
sequences would require hundreds of gigabytes.

 Fortunately, the words in your vocabulary are sparsely utilized in any given text.
And for most bag-of-words applications, we keep the documents short; sometimes just
a sentence will do. So rather than hitting all the notes on a piano at once, your bag-of-
words vector is more like a broad and pleasant piano chord, a combination of notes
(words) that work well together and contain meaning. Your chatbot can handle these
chords even if there’s a lot of “dissonance” from words in the same statement that
aren’t normally used together. Even dissonance (odd word usage) is useful informa-
tion about a statement that a machine learning pipeline can make use of.

 Here’s how you can put the tokens into a binary vector indicating the presence or
absence of a particular word in a particular sentence. This vector representation of a
set of sentences could be “indexed” to indicate which words were used in which docu-
ment. This index is equivalent to the index you find at the end of many textbooks,
except that instead of keeping track of which page a word occurs on, you can keep
track of the sentence (or the associated vector) where it occurred. Whereas a textbook
index generally only cares about important words relevant to the subject of the book,
you keep track of every single word (at least for now).

40 CHAPTER 2 Build your vocabulary (word tokenization)
 Here’s what your single text document, the sentence about Thomas Jefferson,
looks like as a binary bag-of-words vector:

>>> sentence_bow = {}
>>> for token in sentence.split():
... sentence_bow[token] = 1
>>> sorted(sentence_bow.items())
[('26.', 1)
('Jefferson', 1),
('Monticello', 1),
('Thomas', 1),
('age', 1),
('at', 1),
('began', 1),
('building', 1),
('of', 1),
('the', 1)]

One thing you might notice is that Python’s sorted() puts decimal numbers before
characters, and capitalized words before lowercase words. This is the ordering of char-
acters in the ASCII and Unicode character sets. Capital letters come before lowercase
letters in the ASCII table. The order of your vocabulary is unimportant. As long as you
are consistent across all the documents you tokenize this way, a machine learning
pipeline will work equally well with any vocabulary order.

 And you might also notice that using a dict (or any paired mapping of words to
their 0/1 values) to store a binary vector shouldn’t waste much space. Using a diction-
ary to represent your vector ensures that it only has to store a 1 when any one of the
thousands, or even millions, of possible words in your dictionary appear in a particu-
lar document. You can see how it would be much less efficient to represent a bag of
words as a continuous list of 0’s and 1’s with an assigned location in a “dense” vector
for each of the words in a vocabulary of, say, 100,000 words. This dense binary vector
representation of your “Thomas Jefferson” sentence would require 100 kB of storage.
Because a dictionary “ignores” the absent words, the words labeled with a 0, the dic-
tionary representation only requires a few bytes for each word in your 10-word sen-
tence. And this dictionary could be made even more efficient if you represented each
word as an integer pointer to each word’s location within your lexicon—the list of
words that makes up your vocabulary for a particular application.

 So let’s use an even more efficient form of a dictionary, a Pandas Series. And
you’ll wrap that up in a Pandas DataFrame so you can add more sentences to your
binary vector “corpus” of texts about Thomas Jefferson. All this hand waving about
gaps in the vectors and sparse versus dense bags of words should become clear as you
add more sentences and their corresponding bag-of-words vectors to your DataFrame
(table of vectors corresponding to texts in a corpus):

>>> import pandas as pd
>>> df = pd.DataFrame(pd.Series(dict([(token, 1) for token in
... sentence.split()])), columns=['sent']).T
>>> df

26. Jefferson Monticello Thomas age at began building of the
sent 1 1 1 1 1 1 1 1 1 1

41Building your vocabulary with a tokenizer
Let’s add a few more texts to your corpus to see how a DataFrame stacks up. A
DataFrame indexes both the columns (documents) and rows (words) so it can be an
“inverse index” for document retrieval, in case you want to find a Trivial Pursuit
answer in a hurry.

>>> sentences = """Thomas Jefferson began building Monticello at the\
... age of 26.\n"""
>>> sentences += """Construction was done mostly by local masons and\
... carpenters.\n"""
>>> sentences += "He moved into the South Pavilion in 1770.\n"
>>> sentences += """Turning Monticello into a neoclassical masterpiece\
... was Jefferson's obsession."""
>>> corpus = {}
>>> for i, sent in enumerate(sentences.split('\n')):
... corpus['sent{}'.format(i)] = dict((tok, 1) for tok in
... sent.split())
>>> df = pd.DataFrame.from_records(corpus).fillna(0).astype(int).T
>>> df[df.columns[:10]]

1770. 26. Construction ... Pavilion South Thomas
sent0 0 1 0 ... 0 0 1
sent1 0 0 1 ... 0 0 0
sent2 1 0 0 ... 1 1 0
sent3 0 0 0 ... 0 0 0

With a quick scan, you can see little overlap in word usage for these sentences. Among
the first seven words in your vocabulary, only the word “Monticello” appears in more
than one sentence. Now you need to be able to compute this overlap within your pipe-
line whenever you want to compare documents or search for similar documents. One
way to check for the similarities between sentences is to count the number of overlap-
ping tokens using a dot product.

2.2.1 Dot product

You’ll use the dot product a lot in NLP, so make sure you understand what it is. Skip
this section if you can already do dot products in your head.

 The dot product is also called the inner product because the “inner” dimension of
the two vectors (the number of elements in each vector) or matrices (the rows of the
first matrix and the columns of the second matrix) must be the same, because that’s
where the products happen. This is analogous to an “inner join” on two relational
database tables.

 The dot product is also called the scalar product because it produces a single scalar
value as its output. This helps distinguish it from the cross product, which produces a vec-
tor as its output. Obviously, these names reflect the shape of the symbols used to indi-
cate the dot product (".") and cross product ("x") in formal mathematical notation.

Listing 2.4 Construct a DataFrame of bag-of-words vectors

This is the original sentence
defined in listing 2.1.

Normally you should use .splitlines() but here you
explicitly add a single '\n' character to the end of each line/
sentence, so you need to explicitly split on this character.

This shows only the first 10 tokens
(DataFrame columns), to avoid wrapping.

42 CHAPTER 2 Build your vocabulary (word tokenization)
The scalar value output by the scalar product can be calculated by multiplying all the
elements of one vector by all the elements of a second vector, and then adding up
those normal multiplication products.

 Here’s a Python snippet you can run in your Pythonic head to make sure you
understand what a dot product is.

>>> v1 = pd.np.array([1, 2, 3])
>>> v2 = pd.np.array([2, 3, 4])
>>> v1.dot(v2)
20
>>> (v1 * v2).sum()
20
>>> sum([x1 * x2 for x1, x2 in zip(v1, v2)])
20

TIP The dot product is equivalent to the matrix product, which can be
accomplished in numpy with the np.matmul() function or the @ operator.
Since all vectors can be turned into Nx1 or 1xN matrices, you can use this
shorthand operator on two column vectors (Nx1) by transposing the first
one so their inner dimensions line up, like this: v1.reshape(-1, 1).T @
v2.reshape(-1, 1), which outputs your scalar product within a 1x1 matrix:
array([[20]]).

2.2.2 Measuring bag-of-words overlap

If we can measure the bag of words overlap for two vectors, we can get a good estimate
of how similar they are in the words they use. And this is a good estimate of how simi-
lar they are in meaning. So let’s use your newfound dot product understanding to esti-
mate the bag-of-words vector overlap between some new sentences and the original
sentence about Thomas Jefferson (sent0).

>>> df = df.T
>>> df.sent0.dot(df.sent1)
0
>>> df.sent0.dot(df.sent2)
1
>>> df.sent0.dot(df.sent3)
1

From this you can tell that one word was used in both sent0 and sent2. Likewise one
of the words in your vocabulary was used in both sent0 and sent3. This overlap of
words is a measure of their similarity. Interestingly, that oddball sentence, sent1, was
the only sentence that did not mention Jefferson or Monticello directly, but used a com-
pletely different set of words to convey information about other anonymous people.

Listing 2.5 Example dot product calculation

Listing 2.6 Overlap of word counts for two bag-of-words vectors

Multiplication of numpy arrays is a
“vectorized” operation that is very efficient.

You shouldn’t iterate through
vectors this way unless you want
to slow down your pipeline.

43Building your vocabulary with a tokenizer
Here’s one way to find the word that is shared by sent0 and sent3, the word that gave
you that last dot product of 1:

>>> [(k, v) for (k, v) in (df.sent0 & df.sent3).items() if v]
[('Monticello', 1)]

This is your first vector space model (VSM) of natural language documents (sen-
tences). Not only are dot products possible, but other vector operations are defined
for these bag-of-word vectors: addition, subtraction, OR, AND, and so on. You can
even compute things such as Euclidean distance or the angle between these vectors.
This representation of a document as a binary vector has a lot of power. It was a main-
stay for document retrieval and search for many years. All modern CPUs have hard-
wired memory addressing instructions that can efficiently hash, index, and search a
large set of binary vectors like this. Though these instructions were built for another
purpose (indexing memory locations to retrieve data from RAM), they are equally
efficient at binary vector operations for search and retrieval of text.

2.2.3 A token improvement

In some situations, other characters besides spaces are used to separate words in a sen-
tence. And you still have that pesky period at the end of your “26.” token. You need
your tokenizer to split a sentence not just on whitespace, but also on punctuation such
as commas, periods, quotes, semicolons, and even hyphens (dashes). In some cases
you want these punctuation marks to be treated like words, as independent tokens. In
other cases you may want to ignore them.

 In the preceding example, the last token in the sentence was corrupted by a period
at the end of “26.” The trailing period can be misleading for the subsequent sections
of an NLP pipeline, like stemming, where you would like to group similar words
together using rules that rely on consistent word spellings. The following listing shows
one way.

>>> import re
>>> sentence = """Thomas Jefferson began building Monticello at the\
... age of 26."""
>>> tokens = re.split(r'[-\s.,;!?]+', sentence)
>>> tokens
['Thomas',
'Jefferson',
'began',
'building',
'Monticello',
'at',
'the',
'age',
'of',
'26',
'']

Listing 2.7 Tokenize the Monticello sentence with a regular expression

This splits the sentence on whitespace
or punctuation that occurs at least
once (note the '+' after the closing

square bracket in the regular
expression). See sidenote that follows.

44 CHAPTER 2 Build your vocabulary (word tokenization)
We promised we’d use more regular expressions. Hopefully they’re starting to make a
little more sense than they did when we first used them. If not, the following sidenote
will walk you through each character of the regular expression. And if you want to dig
even deeper, check out appendix B.

HOW REGULAR EXPRESSIONS WORK

Here’s how the regular expression in listing 2.7 works. The square brackets ([and])
are used to indicate a character class, a set of characters. The plus sign after the closing
square bracket (]) means that a match must contain one or more of the characters
inside the square brackets. The \s within the character class is a shortcut to a pre-
defined character class that includes all whitespace characters like those created when
you press the [space], [tab], and [return] keys. The character class r'[\s]' is
equivalent to r' \t\n\r\x0b\x0c'. The six whitespace characters are space (' '),
tab ('\t'), return ('\r'), newline ('\n'), and form-feed ('\f').

 You didn’t use any character ranges here, but you may want to later. A character
range is a special kind of character class indicated within square brackets and a
hyphen, like r'[a-z]' to match all lowercase letters. The character range r'[0-9]'
matches any digit 0 through 9 and is equivalent to r'[0123456789]'. The regular
expression r'[_a-zA-Z]' would match any underscore character ('_') or letter of the
English alphabet (upper- or lowercase).

 The hyphen (-) right after the opening square bracket is a bit of a quirk of
regexes. You can’t put a hyphen just anywhere inside your square brackets, because
the regex parser may think you mean a character range like r'[0-9]'. To let it know
that you really mean a literal hyphen character, you have to put it right after the open
square bracket for the character class. So whenever you want to indicate an actual
hyphen (dash) character in your character class, you need to make sure it’s the first
character, or you need to escape it with a backslash.

 The re.split function goes through each character in the input string (the sec-
ond argument, sentence) left to right looking for any matches based on the “pro-
gram” in the regular expression (the first argument, r'[-\s.,;!?]+'). When it finds
a match, it breaks the string right before that matched character and right after it,
skipping over the matched character or characters. So the re.split line will work just
like str.split, but it will work for any kind of character or multicharacter sequence
that matches your regular expression.

 The parentheses ("(" and ")") are used to group regular expressions just like
they’re used to group mathematical, Python, and most other programming language
expressions. These parentheses force the regular expression to match the entire
expression within the parentheses before moving on to try to match the characters
that follow the parentheses.

IMPROVED REGULAR EXPRESSION FOR SEPARATING WORDS

Let’s compile our regular expression so that our tokenizer will run faster. Compiled
regular expression objects are handy for a lot of reasons, not just speed.

45Building your vocabulary with a tokenizer
This simple regular expression is helping to split off the period from the end of the
token “26.” However, you have a new problem. You need to filter the whitespace and
punctuation characters you don’t want to include in your vocabulary. See the follow-
ing code and figure 2.2:

>>> sentence = """Thomas Jefferson began building Monticello at the\
... age of 26."""
>>> tokens = pattern.split(sentence)
>>> [x for x in tokens if x and x not in '- \t\n.,;!?']
['Thomas',
'Jefferson',
'began',
'building',
'Monticello',
'at',
'the',
'age',
'of',
'26']

Figure 2.2 Tokenized phrase

So the built-in Python re package seems to do just fine on this example sentence, as
long as you are careful to filter out undesirable tokens. There’s really no reason to
look elsewhere for regular expression packages, except…

When to compile your regex patterns
The regular expression module in Python allows you to precompile regular expres-
sions,a which you then can reuse across your code base. For example, you might have
a regex that extracts phone numbers. You could use re.compile() to precompile
the expression and pass it along as an argument to a function or class doing tokeni-
zation. This is rarely a speed advantage, because Python caches the compiled ob-
jects for the last MAXCACHE=100 regular expressions. But if you have more than 100
different regular expressions at work, or you want to call methods of the regular
expression rather than the corresponding re functions, re.compile can be useful:

>>> pattern = re.compile(r"([-\s.,;!?])+")
>>> tokens = pattern.split(sentence)
>>> tokens[-10:] # just the last 10 tokens
['the', ' ', 'age', ' ', 'of', ' ', '26', '.', '']

If you want practice with
lambda and filter(), use

list(filter(lambda x: x if x
and x not in '- \t\n.,;!?'

else None, tokens)).

Thomas Jefferson began building Monticello at the age of 26 .

a) See stack overflow or the latest Python documentation for more details (http://stackoverflow.com/a/452143/
623735).

http://stackoverflow.com/a/452143/623735
http://stackoverflow.com/a/452143/623735

46 CHAPTER 2 Build your vocabulary (word tokenization)
As you can imagine, tokenizers can easily become complex. In one case, you might
want to split based on periods, but only if the period isn’t followed by a number, in
order to avoid splitting decimals. In another case, you might not want to split after a
period that is part of “smiley” emoticon symbol, such as in a Twitter message.

 Several Python libraries implement tokenizers, each with its own advantages and
disadvantages:

 spaCy—Accurate , flexible, fast, Python
 Stanford CoreNLP—More accurate, less flexible, fast, depends on Java 8
 NLTK—Standard used by many NLP contests and comparisons, popular, Python

NLTK and Stanford CoreNLP have been around the longest and are the most widely
used for comparison of NLP algorithms in academic papers. Even though the Stan-
ford CoreNLP has a Python API, it relies on the Java 8 CoreNLP backend, which must
be installed and configured separately. So you can use the Natural Language Toolkit
(NLTK) tokenizer here to get you up and running quickly; it will help you duplicate
the results you see in academic papers and blog posts.

 You can use the NLTK function RegexpTokenizer to replicate your simple
tokenizer example like this:

>>> from nltk.tokenize import RegexpTokenizer
>>> tokenizer = RegexpTokenizer(r'\w+|$[0-9.]+|\S+')
>>> tokenizer.tokenize(sentence)
['Thomas',
'Jefferson',
'began',
'building',
'Monticello',

When to use the new regex module in Python
There’s a new regular expression package called regex that will eventually replace
the re package. It’s completely backward compatible and can be installed with pip
from pypi. It’s useful new features include support for

 Overlapping match sets
 Multithreading
 Feature-complete support for Unicode
 Approximate regular expression matches (similar to TRE’s agrep on UNIX systems)
 Larger default MAXCACHE (500 regexes)

Even though regex will eventually replace the re package and is completely back-
ward compatible with re, for now you must install it as an additional package using
a package manager such as pip:

$ pip install regex

You can find more information about the regex module on the PyPI website (https://
pypi.python.org/pypi/regex).

https://pypi.python.org/pypi/regex
https://pypi.python.org/pypi/regex

47Building your vocabulary with a tokenizer
'at',
'the',
'age',
'of',
'26',
'.']

This tokenizer is a bit better than the one you used originally, because it ignores
whitespace tokens. It also separates sentence-ending trailing punctuation from tokens
that do not contain any other punctuation characters.

 An even better tokenizer is the Treebank Word Tokenizer from the NLTK package.
It incorporates a variety of common rules for English word tokenization. For example,
it separates phrase-terminating punctuation (?!.;,) from adjacent tokens and retains
decimal numbers containing a period as a single token. In addition it contains rules for
English contractions. For example “don’t” is tokenized as ["do", "n’t"]. This tokeni-
zation will help with subsequent steps in the NLP pipeline, such as stemming. You can
find all the rules for the Treebank Tokenizer at http://www.nltk.org/api/nltk.tokenize
.html#module-nltk.tokenize.treebank. See the following code and figure 2.3:

>>> from nltk.tokenize import TreebankWordTokenizer
>>> sentence = """Monticello wasn't designated as UNESCO World Heritage\
... Site until 1987."""
>>> tokenizer = TreebankWordTokenizer()
>>> tokenizer.tokenize(sentence)
['Monticello',
'was',
"n't",
'designated',
'as',
'UNESCO',
'World',
'Heritage',
'Site',
'until',
'1987',
'.']

Figure 2.3 Tokenized phrase

CONTRACTIONS

You might wonder why you would split the contraction wasn’t into was and n’t. For
some applications, like grammar-based NLP models that use syntax trees, it’s impor-
tant to separate the words was and not to allow the syntax tree parser to have a consis-
tent, predictable set of tokens with known grammar rules as its input. There are a
variety of standard and nonstandard ways to contract words. By reducing contractions
to their constituent words, a dependency tree parser or syntax parser only need be

Monticello was n’t designated as UNESCO World Heritage Site until 1987 .

http://www.nltk.org/api/nltk.tokenize.html#module-nltk.tokenize.treebank
http://www.nltk.org/api/nltk.tokenize.html#module-nltk.tokenize.treebank

48 CHAPTER 2 Build your vocabulary (word tokenization)
programmed to anticipate the various spellings of individual words rather than all
possible contractions.

2.2.4 Extending your vocabulary with n-grams

Let’s revisit that “ice cream” problem from the beginning of the chapter. Remember
we talked about trying to keep “ice” and “cream” together:

I scream, you scream, we all scream for ice cream.

But I don’t know many people that scream for “cream.” And nobody screams for “ice,”
unless they’re about to slip and fall on it. So you need a way for your word-vectors to
keep “ice” and “cream” together.

WE ALL GRAM FOR N-GRAMS

An n-gram is a sequence containing up to n elements that have been extracted from a
sequence of those elements, usually a string. In general the “elements” of an n-gram
can be characters, syllables, words, or even symbols like “A,” “T,” “G,” and “C” used to
represent a DNA sequence.6

 In this book, we’re only interested in n-grams of words, not characters.7 So in this
book, when we say 2-gram, we mean a pair of words, like “ice cream.” When we say
3-gram, we mean a triplet of words like “beyond the pale” or “Johann Sebastian Bach”

Tokenize informal text from social networks such as Twitter and Facebook
The NLTK library includes a tokenizer—casual_tokenize—that was built to deal
with short, informal, emoticon-laced texts from social networks where grammar and
spelling conventions vary widely.

The casual_tokenize function allows you to strip usernames and reduce the num-
ber of repeated characters within a token:

>>> from nltk.tokenize.casual import casual_tokenize
>>> message = """RT @TJMonticello Best day everrrrrrr at Monticello.\
... Awesommmmmmeeeeeeee day :*)"""
>>> casual_tokenize(message)
['RT', '@TJMonticello',
'Best', 'day','everrrrrrr', 'at', 'Monticello', '.',
'Awesommmmmmeeeeeeee', 'day', ':*)']

>>> casual_tokenize(message, reduce_len=True, strip_handles=True)
['RT',
'Best', 'day', 'everrr', 'at', 'Monticello', '.',
'Awesommmeee', 'day', ':*)']

6 Linguistic and NLP techniques are often used to glean information from DNA and RNA. This site provides a
list of nucleic acid symbols that can help you translate nucleic acid language into a human-readable language:
“Nucleic Acid Sequence” (https://en.wikipedia.org/wiki/Nucleic_acid_sequence).

7 You may have learned about trigram indexes in your database class or the documentation for PostgreSQL
(postgres). But these are triplets of characters. They help you quickly retrieve fuzzy matches for strings in a
massive database of strings using the "%," "~," and "*" symbols in SQL full text search queries.

https://en.wikipedia.org/wiki/Nucleic_acid_sequence

49Building your vocabulary with a tokenizer
or “riddle me this.” n-grams don’t have to mean something special together, like com-
pound words. They merely have to be frequent enough together to catch the atten-
tion of your token counters.

 Why bother with n-grams? As you saw earlier, when a sequence of tokens is vector-
ized into a bag-of-words vector, it loses a lot of the meaning inherent in the order of
those words. By extending your concept of a token to include multiword tokens,
n-grams, your NLP pipeline can retain much of the meaning inherent in the order of
words in your statements. For example, the meaning-inverting word “not” will remain
attached to its neighboring words, where it belongs. Without n-gram tokenization, it
would be free floating. Its meaning would be associated with the entire sentence or
document rather than its neighboring words. The 2-gram “was not” retains much
more of the meaning of the individual words “not” and “was” than those 1-grams
alone in a bag-of-words vector. A bit of the context of a word is retained when you tie it
to its neighbor(s) in your pipeline.

 In the next chapter, we show you how to recognize which of these n-grams contain
the most information relative to the others, which you can use to reduce the number
of tokens (n-grams) your NLP pipeline has to keep track of. Otherwise it would have
to store and maintain a list of every single word sequence it came across. This prioriti-
zation of n-grams will help it recognize “Thomas Jefferson” and “ice cream,” without
paying particular attention to “Thomas Smith” or “ice shattered.” In chapter 4, we
associate word pairs, and even longer sequences, with their actual meaning, indepen-
dent of the meaning of their individual words. But for now, you need your tokenizer
to generate these sequences, these n-grams.

 Let’s use your original sentence about Thomas Jefferson to show what a 2-gram
tokenizer should output, so you know what you’re trying to build:

>>> tokenize_2grams("Thomas Jefferson began building Monticello at the\
... age of 26.")
['Thomas Jefferson',
'Jefferson began',
'began building',
'building Monticello',
'Monticello at',
'at the',
'the age',
'age of',
'of 26']

I bet you can see how this sequence of 2-grams retains a bit more information than if
you’d just tokenized the sentence into words. The later stages of your NLP pipeline
will only have access to whatever tokens your tokenizer generates. So you need to let
those later stages know that “Thomas” wasn’t about “Isaiah Thomas” or the “Thomas
& Friends” cartoon. n-grams are one of the ways to maintain context information as
data passes through your pipeline.

 Here’s the original 1-gram tokenizer:

>>> sentence = """Thomas Jefferson began building Monticello at the\
... age of 26."""

50 CHAPTER 2 Build your vocabulary (word tokenization)
>>> pattern = re.compile(r"([-\s.,;!?])+")
>>> tokens = pattern.split(sentence)
>>> tokens = [x for x in tokens if x and x not in '- \t\n.,;!?']
>>> tokens
['Thomas',
'Jefferson',
'began',
'building',
'Monticello',
'at',
'the',
'age',
'of',
'26']

And this is the n-gram tokenizer from nltk in action:

>>> from nltk.util import ngrams
>>> list(ngrams(tokens, 2))
[('Thomas', 'Jefferson'),
('Jefferson', 'began'),
('began', 'building'),
('building', 'Monticello'),
('Monticello', 'at'),
('at', 'the'),
('the', 'age'),
('age', 'of'),
('of', '26')]

>>> list(ngrams(tokens, 3))
[('Thomas', 'Jefferson', 'began'),
('Jefferson', 'began', 'building'),
('began', 'building', 'Monticello'),
('building', 'Monticello', 'at'),
('Monticello', 'at', 'the'),
('at', 'the', 'age'),
('the', 'age', 'of'),
('age', 'of', '26')]

TIP In order to be more memory efficient, the ngrams function of the NLTK
library returns a Python generator. Python generators are “smart” functions
that behave like iterators, yielding only one element at a time instead of
returning the entire sequence at once. This is useful within for loops, where
the generator will load each individual item instead of loading the whole item
list into memory. However, if you want to inspect all the returned n-grams at
once, convert the generator to a list as you did in the earlier example. Keep in
mind that you should only do this in an interactive session, not within a long-
running task tokenizing large texts.

The n-grams are provided in the previous listing as tuples, but they can easily be joined
together if you’d like all the tokens in your pipeline to be strings. This will allow the
later stages of the pipeline to expect a consistent datatype as input, string sequences:

>>> two_grams = list(ngrams(tokens, 2))
>>> [" ".join(x) for x in two_grams]

51Building your vocabulary with a tokenizer
['Thomas Jefferson',
'Jefferson began',
'began building',
'building Monticello',
'Monticello at',
'at the',
'the age',
'age of',
'of 26']

You might be able to sense a problem here. Looking at your earlier example, you can
imagine that the token “Thomas Jefferson” will occur across quite a few documents.
However the 2-grams “of 26” or even “Jefferson began” will likely be extremely rare. If
tokens or n-grams are extremely rare, they don’t carry any correlation with other words
that you can use to help identify topics or themes that connect documents or classes of
documents. So rare n-grams won’t be helpful for classification problems. You can imag-
ine that most 2-grams are pretty rare—even more so for 3- and 4-grams.

 Because word combinations are rarer than individual words, your vocabulary size is
exponentially approaching the number of n-grams in all the documents in your cor-
pus. If your feature vector dimensionality exceeds the length of all your documents,
your feature extraction step is counterproductive. It’ll be virtually impossible to avoid
overfitting a machine learning model to your vectors; your vectors have more dimen-
sions than there are documents in your corpus. In chapter 3, you’ll use document fre-
quency statistics to identify n-grams so rare that they are not useful for machine
learning. Typically, n-grams are filtered out that occur too infrequently (for example,
in three or fewer different documents). This scenario is represented by the “rare
token” filter in the coin-sorting machine of chapter 1.

 Now consider the opposite problem. Consider the 2-gram “at the” in the previous
phrase. That’s probably not a rare combination of words. In fact it might be so com-
mon, spread among most of your documents, that it loses its utility for discriminating
between the meanings of your documents. It has little predictive power. Just like words
and other tokens, n-grams are usually filtered out if they occur too often. For example,
if a token or n-gram occurs in more than 25% of all the documents in your corpus, you
usually ignore it. This is equivalent to the “stop words” filter in the coin-sorting
machine of chapter 1. These filters are as useful for n-grams as they are for individual
tokens. In fact, they’re even more useful.

STOP WORDS

Stop words are common words in any language that occur with a high frequency but
carry much less substantive information about the meaning of a phrase. Examples of
some common stop words include8

 a, an
 the, this

8 A more comprehensive list of stop words for various languages can be found in NLTK’s corpora (https://
raw.githubusercontent.com/nltk/nltk_data/gh-pages/packages/corpora/stopwords.zip).

https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/packages/corpora/stopwords.zip
https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/packages/corpora/stopwords.zip

52 CHAPTER 2 Build your vocabulary (word tokenization)
 and, or
 of, on

Historically, stop words have been excluded from NLP pipelines in order to reduce
the computational effort to extract information from a text. Even though the words
themselves carry little information, the stop words can provide important relational
information as part of an n-gram. Consider these two examples:

 Mark reported to the CEO
 Suzanne reported as the CEO to the board

In your NLP pipeline, you might create 4-grams such as reported to the CEO and
reported as the CEO. If you remove the stop words from the 4-grams, both examples
would be reduced to "reported CEO", and you would lack the information about the
professional hierarchy. In the first example, Mark could have been an assistant to the
CEO, whereas in the second example Suzanne was the CEO reporting to the board.
Unfortunately, retaining the stop words within your pipeline creates another problem:
it increases the length of the n-grams required to make use of these connections
formed by the otherwise meaningless stop words. This issue forces us to retain at least
4-grams if you want to avoid the ambiguity of the human resources example.

 Designing a filter for stop words depends on your particular application. Vocabu-
lary size will drive the computational complexity and memory requirements of all sub-
sequent steps in the NLP pipeline. But stop words are only a small portion of your
total vocabulary size. A typical stop word list has only 100 or so frequent and unim-
portant words listed in it. But a vocabulary size of 20,000 words would be required to
keep track of 95% of the words seen in a large corpus of tweets, blog posts, and news
articles.9 And that’s just for 1-grams or single-word tokens. A 2-gram vocabulary
designed to catch 95% of the 2-grams in a large English corpus will generally have
more than 1 million unique 2-gram tokens in it.

 You may be worried that vocabulary size drives the required size of any training set
you must acquire to avoid overfitting to any particular word or combination of words.
And you know that the size of your training set drives the amount of processing
required to process it all. However, getting rid of 100 stop words out of 20,000 isn’t
going to significantly speed up your work. And for a 2-gram vocabulary, the savings
you’d achieve by removing stop words is minuscule. In addition, for 2-grams you lose a
lot more information when you get rid of stop words arbitrarily, without checking for
the frequency of the 2-grams that use those stop words in your text. For example, you
might miss mentions of “The Shining” as a unique title and instead treat texts about
that violent, disturbing movie the same as you treat documents that mention “Shining
Light” or “shoe shining.”

 So if you have sufficient memory and processing bandwidth to run all the NLP
steps in your pipeline on the larger vocabulary, you probably don’t want to worry

9 See the web page titled “Analysis of text data and Natural Language Processing” (http://rstudio-pubs-
static.s3.amazonaws.com/41251_4c55dff8747c4850a7fb26fb9a969c8f.html).

http://rstudio-pubs-static.s3.amazonaws.com/41251_4c55dff8747c4850a7fb26fb9a969c8f.html
http://rstudio-pubs-static.s3.amazonaws.com/41251_4c55dff8747c4850a7fb26fb9a969c8f.html

53Building your vocabulary with a tokenizer
about ignoring a few unimportant words here and there. And if you’re worried about
overfitting a small training set with a large vocabulary, there are better ways to select
your vocabulary or reduce your dimensionality than ignoring stop words. Including
stop words in your vocabulary allows the document frequency filters (discussed in
chapter 3) to more accurately identify and ignore the words and n-grams with the least
information content within your particular domain.

 If you do decide to arbitrarily filter out a set of stop words during tokenization, a
Python list comprehension is sufficient. Here you take a few stop words and ignore
them when you iterate through your token list:

>>> stop_words = ['a', 'an', 'the', 'on', 'of', 'off', 'this', 'is']
>>> tokens = ['the', 'house', 'is', 'on', 'fire']
>>> tokens_without_stopwords = [x for x in tokens if x not in stop_words]
>>> print(tokens_without_stopwords)
['house', 'fire']

You can see that some words carry a lot more meaning than others. And you can lose
more than half the words in some sentences without significantly affecting their mean-
ing. You can often get your point across without articles, prepositions, or even forms
of the verb “to be.” Imagine someone doing sign language or in a hurry to write a note
to themselves. Which words would they chose to always skip? That’s how stop words
are chosen.

 To get a complete list of “canonical” stop words, NLTK is probably the most gener-
ally applicable list. See the following listing.

>>> import nltk
>>> nltk.download('stopwords')
>>> stop_words = nltk.corpus.stopwords.words('english')
>>> len(stop_words)
153
>>> stop_words[:7]
['i', 'me', 'my', 'myself', 'we', 'our', 'ours']
>>> [sw for sw in stopwords if len(sw) == 1]
['i', 'a', 's', 't', 'd', 'm', 'o', 'y']

A document that dwells on the first person is pretty boring, and more importantly for
you, has low information content. The NLTK package includes pronouns (not just
first person ones) in its list of stop words. And these one-letter stop words are even
more curious, but they make sense if you’ve used the NLTK tokenizer and Porter
stemmer a lot. These single-letter tokens pop up a lot when contractions are split and
stemmed using NLTK tokenizers and stemmers.

WARNING The set of English stop words that sklearn uses is quite different
from those in NLTK. At the time of this writing, sklearn has 318 stop words.
Even NLTK upgrades its corpora periodically, including the stop words list.

Listing 2.8 NLTK list of stop words

54 CHAPTER 2 Build your vocabulary (word tokenization)
When we reran listing 2.8 to count the NLTK stop words with nltk version 3.2.5
in Python 3.6, we got 179 stop words instead of 153 from an earlier version.

This is another reason to consider not filtering stop words. If you do, others
may not be able to reproduce your results.

Depending on how much natural language information you want to discard ;), you
can take the union or the intersection of multiple stop word lists for your pipeline.
Here’s a comparison of sklearn stop words (version 0.19.2) and nltk stop words (ver-
sion 3.2.5).

>>> from sklearn.feature_extraction.text import\
... ENGLISH_STOP_WORDS as sklearn_stop_words
>>> len(sklearn_stop_words)
318
>>> len(stop_words)
179
>>> len(stop_words.union(sklearn_stop_words))
378
>>> len(stop_words.intersection(sklearn_stop_words))
119

2.2.5 Normalizing your vocabulary

So you’ve seen how important vocabulary size is to the performance of an NLP pipe-
line. Another vocabulary reduction technique is to normalize your vocabulary so that
tokens that mean similar things are combined into a single, normalized form. Doing
so reduces the number of tokens you need to retain in your vocabulary and also
improves the association of meaning across those different “spellings” of a token or n-
gram in your corpus. And as we mentioned before, reducing your vocabulary can
reduce the likelihood of overfitting.

CASE FOLDING

Case folding is when you consolidate multiple “spellings” of a word that differ only in
their capitalization. So why would we use case folding at all? Words can become case
“denormalized” when they are capitalized because of their presence at the beginning
of a sentence, or when they’re written in ALL CAPS for emphasis. Undoing this
denormalization is called case normalization, or more commonly, case folding. Normaliz-
ing word and character capitalization is one way to reduce your vocabulary size and
generalize your NLP pipeline. It helps you consolidate words that are intended to
mean the same thing (and be spelled the same way) under a single token.

 However, some information is often communicated by capitalization of a word—
for example, 'doctor' and 'Doctor' often have different meanings. Often capitalization
is used to indicate that a word is a proper noun, the name of a person, place, or thing.
You’ll want to be able to recognize proper nouns as distinct from other words, if

Listing 2.9 NLTK list of stop words

NTLK’s list contains 60 stop words
that aren’t in the larger sklearn set.

NLTK and sklearn agree on fewer than a
third of their stop words (119 out of 378).

55Building your vocabulary with a tokenizer
named entity recognition is important to your pipeline. However, if tokens aren’t case
normalized, your vocabulary will be approximately twice as large, consume twice as
much memory and processing time, and might increase the amount of training data
you need to label for your machine learning pipeline to converge to an accurate, gen-
eral solution. Just as in any other machine learning pipeline, your labeled dataset used
for training must be “representative” of the space of all possible feature vectors your
model must deal with, including variations in capitalization. For 100,000-D bag-of-
words vectors, you usually must have 100,000 labeled examples, and sometimes even
more than that, to train a supervised machine learning pipeline without overfitting.
In some situations, cutting your vocabulary size by half can be worth the loss of infor-
mation content.

 In Python, you can easily normalize the capitalization of your tokens with a list
comprehension:

>>> tokens = ['House', 'Visitor', 'Center']
>>> normalized_tokens = [x.lower() for x in tokens]
>>> print(normalized_tokens)
['house', 'visitor', 'center']

And if you’re certain that you want to normalize the case for an entire document, you
can lower() the text string in one operation, before tokenization. But this will pre-
vent advanced tokenizers that can split camel case words like “WordPerfect,” “FedEx,”
or “stringVariableName.”10 Maybe you want WordPerfect to be it’s own unique thing
(token), or maybe you want to reminisce about a more perfect word processing era.
It’s up to you to decide when and how to apply case folding.

 With case normalization, you are attempting to return these tokens to their “nor-
mal” state before grammar rules and their position in a sentence affected their capital-
ization. The simplest and most common way to normalize the case of a text string is to
lowercase all the characters with a function like Python’s built-in str.lower().11 Unfor-
tunately this approach will also “normalize” away a lot of meaningful capitalization in
addition to the less meaningful first-word-in-sentence capitalization you intended to
normalize away. A better approach for case normalization is to lowercase only the first
word of a sentence and allow all other words to retain their capitalization.

 Lowercasing on the first word in a sentence preserves the meaning of proper
nouns in the middle of a sentence, like “Joe” and “Smith” in “Joe Smith.” And it prop-
erly groups words together that belong together, because they’re only capitalized
when they are at the beginning of a sentence, since they aren’t proper nouns. This
prevents “Joe” from being confused with “coffee” (“joe”)12 during tokenization. And

10 See the web page titled “Camel case case” (https://en.wikipedia.org/wiki/Camel_case_case).
11 We’re assuming the behavior of str.lower() in Python 3. In Python 2, bytes (strings) could be lowercased

by just shifting all alpha characters in the ASCII number (ord) space, but in Python 3 str.lower properly
translates characters so it can handle embellished English characters (like the “acute accent” diactric mark
over the e in resumé) as well as the particulars of capitalization in non-English languages.

12 The trigram “cup of joe” (https://en.wiktionary.org/wiki/cup_of_joe) is slang for “cup of coffee.”

https://en.wikipedia.org/wiki/Camel_case_case
https://en.wiktionary.org/wiki/cup_of_joe

56 CHAPTER 2 Build your vocabulary (word tokenization)
this approach prevents the blacksmith connotation of “smith” being confused with the
proper name “Smith” in a sentence like “A word smith had a cup of joe.” Even with
this careful approach to case normalization, where you lowercase words only at the
start of a sentence, you will still introduce capitalization errors for the rare proper
nouns that start a sentence. “Joe Smith, the word smith, with a cup of joe.” will pro-
duce a different set of tokens than “Smith the word with a cup of joe, Joe Smith.” And
you may not want that. In addition, case normalization is useless for languages that
don’t have a concept of capitalization.

 To avoid this potential loss of information, many NLP pipelines don’t normalize
for case at all. For many applications, the efficiency gain (in storage and processing)
for reducing one’s vocabulary size by about half is outweighed by the loss of informa-
tion for proper nouns. But some information may be “lost” even without case normal-
ization. If you don’t identify the word “The” at the start of a sentence as a stop word,
that can be a problem for some applications. Really sophisticated pipelines will detect
proper nouns before selectively normalizing the case for words at the beginning of
sentences that are clearly not proper nouns. You should implement whatever case nor-
malization approach makes sense for your application. If you don’t have a lot of
“Smith’s” and “word smiths” in your corpus, and you don’t care if they get assigned to
the same tokens, you can just lowercase everything. The best way to find out what
works is to try several different approaches, and see which approach gives you the best
performance for the objectives of your NLP project.

 By generalizing your model to work with text that has odd capitalization, case nor-
malization can reduce overfitting for your machine learning pipeline. Case normaliza-
tion is particularly useful for a search engine. For search, normalization increases the
number of matches found for a particular query. This is often called the “recall” per-
formance metric for a search engine (or any other classification model).13

 For a search engine without normalization, if you searched for “Age” you would
get a different set of documents than if you searched for “age.” “Age” would likely
occur in phrases like “New Age” or “Age of Reason.” In contrast, “age” would more
likely occur in phrases like “at the age of” in your sentence about Thomas Jefferson.
By normalizing the vocabulary in your search index (as well as the query), you can
ensure that both kinds of documents about “age” are returned, regardless of the capi-
talization in the query from the user.

 However, this additional recall accuracy comes at the cost of precision, returning
many documents that the user may not be interested in. Because of this issue, modern
search engines allow users to turn off normalization with each query, typically by quot-
ing those words for which they want only exact matches returned. If you’re building
such a search engine pipeline, in order to accommodate both types of queries you will
have to build two indexes for your documents: one with case-normalized n-grams, and
another with the original capitalization.

13 Check our appendix D to learn more about precision and recall . Here’s a comparison of the recall of various
search engines on the Webology site (http://www.webology.org/2005/v2n2/a12.html).

http://www.webology.org/2005/v2n2/a12.html

57Building your vocabulary with a tokenizer
STEMMING

Another common vocabulary normalization technique is to eliminate the small mean-
ing differences of pluralization or possessive endings of words, or even various verb
forms. This normalization, identifying a common stem among various forms of a
word, is called stemming. For example, the words housing and houses share the same
stem, house. Stemming removes suffixes from words in an attempt to combine words
with similar meanings together under their common stem. A stem isn’t required to be
a properly spelled word, but merely a token, or label, representing several possible
spellings of a word.

 A human can easily see that “house” and “houses” are the singular and plural
forms of the same noun. However, you need some way to provide this information to
the machine. One of its main benefits is in the compression of the number of words
whose meanings your software or language model needs to keep track of. It reduces
the size of your vocabulary while limiting the loss of information and meaning, as
much as possible. In machine learning this is referred to as dimension reduction. It
helps generalize your language model, enabling the model to behave identically for
all the words included in a stem. So, as long as your application doesn’t require your
machine to distinguish between “house” and “houses,” this stem will reduce your pro-
gramming or dataset size by half or even more, depending on the aggressiveness of
the stemmer you chose.

 Stemming is important for keyword search or information retrieval. It allows you to
search for “developing houses in Portland” and get web pages or documents that use
both the word “house” and “houses” and even the word “housing,” because these words
are all stemmed to the “hous” token. Likewise you might receive pages with the words
“developer” and “development” rather than “developing,” because all these words typ-
ically reduce to the stem “develop.” As you can see, this is a “broadening” of your search,
ensuring that you are less likely to miss a relevant document or web page. This broad-
ening of your search results would be a big improvement in the “recall” score for how
well your search engine is doing its job at returning all the relevant documents.14

 But stemming could greatly reduce the “precision” score for your search engine,
because it might return many more irrelevant documents along with the relevant ones.
In some applications this “false-positive rate” (proportion of the pages returned that
you don’t find useful) can be a problem. So most search engines allow you to turn off
stemming and even case normalization by putting quotes around a word or phrase.
Quoting indicates that you only want pages containing the exact spelling of a phrase,
such as “‘Portland Housing Development software.’” That would return a different sort
of document than one that talks about a “‘a Portland software developer’s house’”. And
there are times when you want to search for “Dr. House’s calls” and not “dr house call,”
which might be the effective query if you used a stemmer on that query.

14 Review appendix D if you’ve forgotten how to measure recall or visit the Wikipedia page to learn more
(https://en.wikipedia.org/wiki/Precision_and_recall).

https://en.wikipedia.org/wiki/Precision_and_recall

58 CHAPTER 2 Build your vocabulary (word tokenization)
 Here’s a simple stemmer implementation in pure Python that can handle trailing
S’s:

>>> def stem(phrase):
... return ' '.join([re.findall('^(.*ss|.*?)(s)?$',
... word)[0][0].strip("'") for word in phrase.lower().split()])
>>> stem('houses')
'house'
>>> stem("Doctor House's calls")
'doctor house call'

The preceding stemmer function follows a few simple rules within that one short reg-
ular expression:

 If a word ends with more than one s, the stem is the word and the suffix is a
blank string.

 If a word ends with a single s, the stem is the word without the s and the suffix
is the s.

 If a word does not end on an s, the stem is the word and no suffix is returned.

The strip method ensures that some possessive words can be stemmed along with
plurals.

 This function works well for regular cases, but is unable to address more complex
cases. For example, the rules would fail with words like dishes or heroes. For more
complex cases like these, the NLTK package provides other stemmers.

 It also doesn’t handing the “housing” example from your “Portland Housing”
search.

 Two of the most popular stemming algorithms are the Porter and Snowball stem-
mers. The Porter stemmer is named for the computer scientist Martin Porter.15 Porter
is also responsible for enhancing the Porter stemmer to create the Snowball stemmer.16

Porter dedicated much of his lengthy career to documenting and improving stemmers,
due to their value in information retrieval (keyword search). These stemmers imple-
ment more complex rules than our simple regular expression. This enables the stem-
mer to handle the complexities of English spelling and word ending rules:

>>> from nltk.stem.porter import PorterStemmer
>>> stemmer = PorterStemmer()
>>> ' '.join([stemmer.stem(w).strip("'") for w in
... "dish washer's washed dishes".split()])
'dish washer wash dish'

Notice that the Porter stemmer, like the regular expression stemmer, retains the trail-
ing apostrophe (unless you explicitly strip it), which ensures that possessive words will
be distinguishable from nonpossessive words. Possessive words are often proper

15 See “An algorithm for suffix stripping,” 1993 (http://www.cs.odu.edu/~jbollen/IR04/readings/readings5
.pdf) by M.F. Porter.

16 See the web page titled “Snowball: A language for stemming algorithms” (http://snowball.tartarus.org/texts/
introduction.html).

http://www.cs.odu.edu/~jbollen/IR04/readings/readings5.pdf
http://www.cs.odu.edu/~jbollen/IR04/readings/readings5.pdf
http://snowball.tartarus.org/texts/introduction.html
http://snowball.tartarus.org/texts/introduction.html

59Building your vocabulary with a tokenizer
nouns, so this feature can be important for applications where you want to treat
names differently than other nouns.

LEMMATIZATION

If you have access to information about connections between the meanings of various
words, you might be able to associate several words together even if their spelling is
quite different. This more extensive normalization down to the semantic root of a
word—its lemma—is called lemmatization.

 In chapter 12, we show how you can use lemmatization to reduce the complexity of
the logic required to respond to a statement with a chatbot. Any NLP pipeline that
wants to “react” the same for multiple different spellings of the same basic root word

More on the Porter stemmer
Julia Menchavez has graciously shared her translation of Porter’s original stemmer
algorithm into pure Python (https://github.com/jedijulia/porter-stemmer/blob/
master/stemmer.py). If you are ever tempted to develop your own stemmer, consider
these 300 lines of code and the lifetime of refinement that Porter put into them.

There are eight steps to the Porter stemmer algorithm: 1a, 1b, 1c, 2, 3, 4, 5a, and
5b. Step 1a is a bit like your regular expression for dealing with trailing S’s:a

def step1a(self, word):
if word.endswith('sses'):

word = self.replace(word, 'sses', 'ss')
elif word.endswith('ies'):

word = self.replace(word, 'ies', 'i')
elif word.endswith('ss'):

word = self.replace(word, 'ss', 'ss')
elif word.endswith('s'):

word = self.replace(word, 's', '')
return word

The remainining seven steps are much more complicated because they have to deal
with the complicated English spelling rules for the following:

 Step 1a—“s” and “es” endings
 Step 1b—“ed,” “ing,” and “at” endings
 Step 1c—“y” endings
 Step 2—“nounifying” endings such as “ational,” “tional,” “ence,” and “able”
 Step 3—adjective endings such as “icate,”b “ful,” and “alize”
 Step 4—adjective and noun endings such as “ive,” “ible,” “ent,” and “ism”
 Step 5a—stubborn “e” endings, still hanging around
 Step 5b—trailing double consonants for which the stem will end in a single “l”

This isn’t at all like
str.replace(). Julia’s
self.replace() modifies only
the ending of a word.

a) This is a trivially abbreviated version of Julia Menchavez’s implementation of porter-stemmer on GitHub
(https://github.com/jedijulia/porter-stemmer/blob/master/stemmer.py).

b) Sorry Chick, Porter doesn’t like your obsfucate username ;).

https://github.com/jedijulia/porter-stemmer/blob/master/stemmer.py
https://github.com/jedijulia/porter-stemmer/blob/master/stemmer.py
https://github.com/jedijulia/porter-stemmer/blob/master/stemmer.py

60 CHAPTER 2 Build your vocabulary (word tokenization)
can benefit from a lemmatizer. It reduces the number of words you have to respond
to, the dimensionality of your language model. Using it can make your model more
general, but it can also make your model less precise, because it will treat all spelling
variations of a given root word the same. For example “chat,” “chatter,” “chatty,” “chat-
ting,” and perhaps even “chatbot” would all be treated the same in an NLP pipeline
with lemmatization, even though they have different meanings. Likewise “bank,”
“banked,” and “banking” would be treated the same by a stemming pipeline, despite
the river meaning of “bank,” the motorcycle meaning of “banked,” and the finance
meaning of “banking.”

 As you work through this section, think about words where lemmatization would
drastically alter the meaning of a word, perhaps even inverting its meaning and pro-
ducing the opposite of the intended response from your pipeline. This scenario is
called spoofing—when someone intentionally tries to elicit the wrong response from a
machine learning pipeline by cleverly constructing a difficult input.

 Lemmatization is a potentially more accurate way to normalize a word than stem-
ming or case normalization because it takes into account a word’s meaning. A lemma-
tizer uses a knowledge base of word synonyms and word endings to ensure that only
words that mean similar things are consolidated into a single token.

 Some lemmatizers use the word’s part of speech (POS) tag in addition to its spell-
ing to help improve accuracy. The POS tag for a word indicates its role in the gram-
mar of a phrase or sentence. For example, the noun POS is for words that refer to
“people, places, or things” within a phrase. An adjective POS is for a word that modi-
fies or describes a noun. A verb refers to an action. The POS of a word in isolation
cannot be determined. The context of a word must be known for its POS to be identi-
fied. So some advanced lemmatizers can’t be run-on words in isolation.

 Can you think of ways you can use the part of speech to identify a better “root” of a
word than stemming could? Consider the word better. Stemmers would strip the “er”
ending from “better” and return the stem “bett” or “bet.” However, this would lump
the word “better” with words like “betting,” “bets,” and “Bet’s,” rather than more simi-
lar words like “betterment,” “best,” or even “good” and “goods.”

 So lemmatizers are better than stemmers for most applications. Stemmers are only
really used in large-scale information retrieval applications (keyword search). And if
you really want the dimension reduction and recall improvement of a stemmer in
your information retrieval pipeline, you should probably also use a lemmatizer right
before the stemmer. Because the lemma of a word is a valid English word, stemmers
work well on the output of a lemmatizer. This trick will reduce your dimensionality
and increase your information retrieval recall even more than a stemmer alone.17

 How can you identify word lemmas in Python? The NLTK package provides func-
tions for this. Notice that you must tell the WordNetLemmatizer which part of speech
your are interested in, if you want to find the most accurate lemma:

17 Thank you Kyle Gorman for pointing this out.

61Building your vocabulary with a tokenizer
>>> nltk.download('wordnet')
>>> from nltk.stem import WordNetLemmatizer
>>> lemmatizer = WordNetLemmatizer()
>>> lemmatizer.lemmatize("better")
'better'
>>> lemmatizer.lemmatize("better", pos="a")
'good'
>>> lemmatizer.lemmatize("good", pos="a")
'good'
>>> lemmatizer.lemmatize("goods", pos="a")
'goods'
>>> lemmatizer.lemmatize("goods", pos="n")
'good'
>>> lemmatizer.lemmatize("goodness", pos="n")
'goodness'
>>> lemmatizer.lemmatize("best", pos="a")
'best'

You might be surprised that the first attempt to lemmatize the word “better” didn’t
change it at all. This is because the part of speech of a word can have a big effect on its
meaning. If a POS isn’t specified for a word, then the NLTK lemmatizer assumes it’s a
noun. Once you specify the correct POS, “a” for adjective, the lemmatizer returns the
correct lemma. Unfortunately, the NLTK lemmatizer is restricted to the connections
within the Princeton WordNet graph of word meanings. So the word “best” doesn’t
lemmatize to the same root as “better.” This graph is also missing the connection
between “goodness” and “good.” A Porter stemmer, on the other hand, would make
this connection by blindly stripping off the “ness” ending of all words:

>>> stemmer.stem('goodness')
'good'

USE CASES

When should you use a lemmatizer or a stemmer? Stemmers are generally faster to
compute and require less-complex code and datasets. But stemmers will make more
errors and stem a far greater number of words, reducing the information content or
meaning of your text much more than a lemmatizer would. Both stemmers and lem-
matizers will reduce your vocabulary size and increase the ambiguity of the text. But
lemmatizers do a better job retaining as much of the information content as possible
based on how the word was used within the text and its intended meaning. Therefore,
some NLP packages, such as spaCy, don’t provide stemming functions and only offer
lemmatization methods.

 If your application involves search, stemming and lemmatization will improve the
recall of your searches by associating more documents with the same query words.
However, stemming, lemmatization, and even case folding will significantly reduce the
precision and accuracy of your search results. These vocabulary compression
approaches will cause an information retrieval system (search engine) to return many
documents not relevant to the words’ original meanings. Because search results can
be ranked according to relevance, search engines and document indexes often use

The default part of speech
is “n” for noun.

“a” indicates the adjective
part of speech.

62 CHAPTER 2 Build your vocabulary (word tokenization)
stemming or lemmatization to increase the likelihood that the search results include
the documents a user is looking for. But they combine search results for stemmed and
unstemmed versions of words to rank the search results that they present to you.18

 For a search-based chatbot, however, accuracy is more important. As a result, a
chatbot should first search for the closest match using unstemmed, unnormalized
words before falling back to stemmed or filtered token matches to find matches. It
should rank such matches of normalized tokens lower than the unnormalized token
matches.

IMPORTANT Bottom line, try to avoid stemming and lemmatization unless
you have a limited amount of text that contains usages and capitalizations of
the words you are interested in. And with the explosion of NLP datasets, this
is rarely the case for English documents, unless your documents use a lot of
jargon or are from a very small subfield of science, technology, or literature.
Nonetheless, for languages other than English, you may still find uses for lem-
matization. The Stanford information retrieval course dismisses stemming
and lemmatization entirely, due to the negligible recall accuracy improve-
ment and the significant reduction in precision.19

2.3 Sentiment
Whether you use raw single-word tokens, n-grams, stems, or lemmas in your NLP pipe-
line, each of those tokens contains some information. An important part of this infor-
mation is the word’s sentiment—the overall feeling or emotion that the word invokes.
This sentiment analysis—measuring the sentiment of phrases or chunks of text—is a
common application of NLP. In many companies it’s the main thing an NLP engineer
is asked to do.

 Companies like to know what users think of their products. So they often will pro-
vide some way for you to give feedback. A star rating on Amazon or Rotten Tomatoes
is one way to get quantitative data about how people feel about products they’ve pur-
chased. But a more natural way is to use natural language comments. Giving your user
a blank slate (an empty text box) to fill up with comments about your product can
produce more detailed feedback.

 In the past you’d have to read all that feedback. Only a human can understand
something like emotion and sentiment in natural language text, right? However, if
you had to read thousands of reviews you’d see how tedious and error-prone a human
reader can be. Humans are remarkably bad at reading feedback, especially criticism
or negative feedback. And customers generally aren’t very good at communicating
feedback in a way that can get past your natural human triggers and filters.

18 Additional metadata is also used to adjust the ranking of search results. Duck Duck Go and other popular web
search engines combine more than 400 independent algorithms (including user-contributed algorithms) to
rank your search results (https://duck.co/help/results/sources).

19 See the web page titled “Stemming and lemmatization” (https://nlp.stanford.edu/IR-book/html/htmledi-
tion/stemming-and-lemmatization-1.html).

https://duck.co/help/results/sources
https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html

63Sentiment
 But machines don’t have those biases and emotional triggers. And humans aren’t
the only things that can process natural language text and extract information, and
even meaning, from it. An NLP pipeline can process a large quantity of user feedback
quickly and objectively, with less chance for bias. And an NLP pipeline can output a
numerical rating of the positivity or negativity or any other emotional quality of the text.

 Another common application of sentiment analysis is junk mail and troll message fil-
tering. You’d like your chatbot to be able to measure the sentiment in the chat messages
it processes so it can respond appropriately. And even more importantly, you want your
chatbot to measure its own sentiment of the statements it’s about to send out, which you
can use to steer your bot to be kind and pro-social with the statements it makes. The sim-
plest way to do this might be to do what Moms told us to do: if you can’t say something
nice, don’t say anything at all. So you need your bot to measure the niceness of every-
thing you’re about to say and use that to decide whether to respond.

 What kind of pipeline would you create to measure the sentiment of a block of text
and produce this sentiment positivity number? Say you just want to measure the posi-
tivity or favorability of a text—how much someone likes a product or service that they
are writing about. Say you want your NLP pipeline and sentiment analysis algorithm to
output a single floating point number between -1 and +1. Your algorithm would out-
put +1 for text with positive sentiment like, “Absolutely perfect! Love it! :-) :-) :-).” And
your algorithm should output -1 for text with negative sentiment like, “Horrible! Com-
pletely useless. :(.” Your NLP pipeline could use values near 0, like say +0.1, for a state-
ment like, “It was OK. Some good and some bad things.”

 There are two approaches to sentiment analysis:

 A rule-based algorithm composed by a human
 A machine learning model learned from data by a machine

The first approach to sentiment analysis uses human-designed rules, sometimes called
heuristics, to measure sentiment. A common rule-based approach to sentiment analysis
is to find keywords in the text and map each one to numerical scores or weights in a
dictionary or “mapping”—a Python dict, for example. Now that you know how to do
tokenization, you can use stems, lemmas, or n-gram tokens in your dictionary, rather
than just words. The “rule” in your algorithm would be to add up these scores for each
keyword in a document that you can find in your dictionary of sentiment scores. Of
course you need to hand-compose this dictionary of keywords and their sentiment
scores before you can run this algorithm on a body of text. We show you how to do
this using the VADER algorithm (in sklearn) in the upcoming code.

 The second approach, machine learning, relies on a labeled set of statements or
documents to train a machine learning model to create those rules. A machine learning
sentiment model is trained to process input text and output a numerical value for the
sentiment you are trying to measure, like positivity or spamminess or trolliness. For the
machine learning approach, you need a lot of data, text labeled with the “right” senti-
ment score. Twitter feeds are often used for this approach because the hash tags, such

64 CHAPTER 2 Build your vocabulary (word tokenization)

e,
as #awesome or #happy or #sarcasm, can often be used to create a “self-labeled” dataset.
Your company may have product reviews with five-star ratings that you could associate
with reviewer comments. You can use the star ratings as a numerical score for the pos-
itivity of each text. We show you shortly how to process a dataset like this and train a
token-based machine learning algorithm called Naive Bayes to measure the positivity of
the sentiment in a set of reviews after you’re done with VADER.

2.3.1 VADER—A rule-based sentiment analyzer

Hutto and Gilbert at GA Tech came up with one of the first successful rule-based sen-
timent analysis algorithms. They called their algorithm VADER, for Valence Aware Dic-
tionary for sEntiment Reasoning.20 Many NLP packages implement some form of this
algorithm. The NLTK package has an implementation of the VADER algorithm in
nltk.sentiment.vader. Hutto himself maintains the Python package vaderSentiment.
You’ll go straight to the source and use vaderSentiment here.

 You’ll need to pip install vaderSentiment to run the following example.21 We
haven’t included it in the nlpia package:

>>> from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
>>> sa = SentimentIntensityAnalyzer()
>>> sa.lexicon
{ ...
':(': -1.9,
':)': 2.0,
...
'pls': 0.3,
'plz': 0.3,
...
'great': 3.1,
... }
>>> [(tok, score) for tok, score in sa.lexicon.items()
... if " " in tok]
[("('}{')", 1.6),
("can't stand", -2.0),
('fed up', -1.8),
('screwed up', -1.5)]

>>> sa.polarity_scores(text=\
... "Python is very readable and it's great for NLP.")
{'compound': 0.6249, 'neg': 0.0, 'neu': 0.661,
'pos': 0.339}
>>> sa.polarity_scores(text=\

20 “VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text” by Hutto and Gil-
bert (http://comp.social.gatech.edu/papers/icwsm14.vader.hutto.pdf)

21 You can find more detailed installation instructions with the package source code on github (https://
github.com/cjhutto/vaderSentiment).

SentimentIntensityAnalyzer.lexicon contains that
dictionary of tokens and their scores that we talked about.

A tokenizer better be good at dealing with
punctuation and emoticons (emojis) for VADER
to work well. After all, emoticons are designed
to convey a lot of sentiment (emotion).

If you use a stemmer (or lemmatizer) in your pipeline, you’ll need to
apply that stemmer to the VADER lexicon, too, combining the scores
for all the words that go together in a single stem or lemma.

Out of 7500 tokens defined in VADER, only 3
contain spaces, and only 2 of those are actually
n-grams; the other is an emoticon for “kiss.”

The VADER algorithm considers the intensity of
sentiment polarity in three separate scores (positiv
negative, and neutral) and then combines them
together into a compound positivity sentiment.

http://comp.social.gatech.edu/papers/icwsm14.vader.hutto.pdf
https://github.com/cjhutto/vaderSentiment
https://github.com/cjhutto/vaderSentiment

65Sentiment
... "Python is not a bad choice for most applications.")
{'compound': 0.431, 'neg': 0.0, 'neu': 0.711,
'pos': 0.289}

Let’s see how well this rule-based approach does for the example statements we men-
tioned earlier:

>>> corpus = ["Absolutely perfect! Love it! :-) :-) :-)",
... "Horrible! Completely useless. :(",
... "It was OK. Some good and some bad things."]
>>> for doc in corpus:
... scores = sa.polarity_scores(doc)
... print('{:+}: {}'.format(scores['compound'], doc))
+0.9428: Absolutely perfect! Love it! :-) :-) :-)
-0.8768: Horrible! Completely useless. :(
+0.3254: It was OK. Some good and some bad things.

This looks a lot like what you wanted. So the only drawback is that VADER doesn’t
look at all the words in a document, only about 7,500. What if you want all the words
to help add to the sentiment score? And what if you don’t want to have to code your
own understanding of the words in a dictionary of thousands of words or add a bunch
of custom words to the dictionary in SentimentIntensityAnalyzer.lexicon? The
rule-based approach might be impossible if you don’t understand the language,
because you wouldn’t know what scores to put in the dictionary (lexicon)!

 That’s what machine learning sentiment analyzers are for.

2.3.2 Naive Bayes

A Naive Bayes model tries to find keywords in a set of documents that are predictive of
your target (output) variable. When your target variable is the sentiment you are try-
ing to predict, the model will find words that predict that sentiment. The nice thing
about a Naive Bayes model is that the internal coefficients will map words or tokens to
scores just like VADER does. Only this time you won’t have to be limited to just what
an individual human decided those scores should be. The machine will find the “best”
scores for any problem.

 For any machine learning algorithm, you first need to find a dataset. You need a
bunch of text documents that have labels for their positive emotional content (positiv-
ity sentiment). Hutto compiled four different sentiment datasets for us when he and
his collaborators built VADER. You’ll load them from the nlpia package:22

>>> from nlpia.data.loaders import get_data
>>> movies = get_data('hutto_movies')

22 If you haven’t already installed nlpia, check out the installation instructions at http://github.com/
totalgood/nlpia.

Notice that VADER handles negation pretty well—“great”
has a slightly more positive sentiment than “not bad.”
VADER’s built-in tokenizer ignores any words that aren’t
in its lexicon, and it doesn’t consider n-grams at all.

http://github.com/totalgood/nlpia
http://github.com/totalgood/nlpia

66 CHAPTER 2 Build your vocabulary (word tokenization)
>>> movies.head().round(2)
sentiment text

id
1 2.27 The Rock is destined to be the 21st Century...
2 3.53 The gorgeously elaborate continuation of ''...
3 -0.60 Effective but too tepid ...
4 1.47 If you sometimes like to go to the movies t...
5 1.73 Emerges as something rare, an issue movie t...
>>> movies.describe().round(2)

sentiment
count 10605.00
mean 0.00
min -3.88
max 3.94

Now let’s tokenize all those movie review texts to create a bag of words for each one.
You’ll put them all into a Pandas DataFrame like you did earlier in this chapter:

>>> import pandas as pd
>>> pd.set_option('display.width', 75)
>>> from nltk.tokenize import casual_tokenize
>>> bags_of_words = []
>>> from collections import Counter
>>> for text in movies.text:
... bags_of_words.append(Counter(casual_tokenize(text)))
>>> df_bows = pd.DataFrame.from_records(bags_of_words)
>>> df_bows = df_bows.fillna(0).astype(int)
>>> df_bows.shape
(10605, 20756)
>>> df_bows.head()

! " # $ % & ' ... zone zoning zzzzzzzzz ½ élan – ’
0 0 0 0 0 0 0 4 ... 0 0 0 0 0 0 0
1 0 0 0 0 0 0 4 ... 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0
>>> df_bows.head()[list(bags_of_words[0].keys())]

The Rock is destined to be ... Van Damme or Steven Segal .
0 1 1 1 1 2 1 ... 1 1 1 1 1 1
1 2 0 1 0 0 0 ... 0 0 0 0 0 4
2 0 0 0 0 0 0 ... 0 0 0 0 0 0
3 0 0 1 0 4 0 ... 0 0 0 0 0 1
4 0 0 0 0 0 0 ... 0 0 0 0 0 1

It looks like movies were rated
on a scale from -4 to +4.

This line helps display wide
DataFrames in the console
so they look prettier.

NLTK’s casual_tokenize can handle
emoticons, unusual punctuation, and slang

better than Treebank Word Tokenizer or
the other tokenizers in this chapter.

The Python built-in
Counter takes a list of

objects and counts them,
returning a dictionary

where the keys are the
objects (tokens in your

case) and the values are
the integer counts of

those objects.

The from_records() DataFrame constructor takes a
sequence of dictionaries. It creates columns for all the

keys, and the values are added to the table in the
appropriate columns, filling missing values with NaN.

Numpy and Pandas can only represent NaNs in float
objects, so once you fill all the NaNs with zeros you

can convert the DataFrame to integers, which are
much more compact (in memory and to display).

A bag-of-words table can grow quite large
quickly, especially when you don’t use case
normalization, stop word filters, stemming,
and lemmatization, which we discussed
earlier in this chapter. Try inserting some of
these dimension reducers here and see
how they affect your pipeline.

67Sentiment
Now you have all the data that a Naive Bayes model needs to find the keywords that
predict sentiment from natural language text:

>>> from sklearn.naive_bayes import MultinomialNB
>>> nb = MultinomialNB()
>>> nb = nb.fit(df_bows, movies.sentiment > 0)
>>> movies['predicted_sentiment'] =\
... nb.predict_proba(df_bows) * 8 - 4
>>> movies['error'] = (movies.predicted_sentiment - movies.sentiment).abs()
>>> movies.error.mean().round(1)
2.4
>>> movies['sentiment_ispositive'] = (movies.sentiment > 0).astype(int)
>>> movies['predicted_ispositiv'] = (movies.predicted_sentiment > 0).astype(int)
>>> movies['''sentiment predicted_sentiment sentiment_ispositive\
... predicted_ispositive'''.split()].head(8)

sentiment predicted_sentiment sentiment_ispositive predicted_ispositive
id
1 2.266667 4 1 1
2 3.533333 4 1 1
3 -0.600000 -4 0 0
4 1.466667 4 1 1
5 1.733333 4 1 1
6 2.533333 4 1 1
7 2.466667 4 1 1
8 1.266667 -4 1 0
>>> (movies.predicted_ispositive ==
... movies.sentiment_ispositive).sum() / len(movies)
0.9344648750589345

This is a pretty good start at building a sentiment analyzer with only a few lines of code
(and a lot of data). You didn’t have to compile a list of 7500 words and their sentiment
like VADER did. You just gave it a bunch of text and labels for that text. That’s the
power of machine learning and NLP!

 How well do you think it will work on a completely different set of sentiment
scores, like for product reviews instead of movie reviews?

 If you want to build a real sentiment analyzer like this, remember to split your
training data (and leave out a test set—see appendix D for more on test/train splits).
You forced your classifier to rate all the text as thumbs up or thumbs down, so a ran-
dom guess would have had a MAP error of about 4. So you’re about twice as good as a
random guesser:

>>> products = get_data('hutto_products')
... bags_of_words = []
>>> for text in products.text:
... bags_of_words.append(Counter(casual_tokenize(text)))

Naive Bayes models are classifiers, so you need to
convert your output variable (sentiment float) to

a discrete label (integer, string, or bool).

Convert your binary
classification variable

(0 or 1) to -4 or 4 so you
can compare it to the

“ground truth” sentiment.
Use nb.predict_proba to

get a continuous value.

The average absolute value of
the prediction error (mean

absolute error or MAE) is 2.4.
You got the “thumbs up” rating

correct 93% of the time.

68 CHAPTER 2 Build your vocabulary (word tokenization)
>>> df_product_bows = pd.DataFrame.from_records(bags_of_words)
>>> df_product_bows = df_product_bows.fillna(0).astype(int)
>>> df_all_bows = df_bows.append(df_product_bows)
>>> df_all_bows.columns
Index(['!', '"', '#', '#38', '$', '%', '&', ''', '(', '(8',

...
'zoomed', 'zooming', 'zooms', 'zx', 'zzzzzzzzz', '~', '½', 'élan',
'–', '’'],

dtype='object', length=23302)
>>> df_product_bows = df_all_bows.iloc[len(movies):][df_bows.columns]
>>> df_product_bows.shape
(3546, 20756)
>>> df_bows.shape
(10605, 20756)
>>> products[ispos] =

➥ (products.sentiment > 0).astype(int)
>>> products['predicted_ispositive'] =

➥ nb.predict(df_product_bows.values).astype(int)
>>> products.head()
id sentiment text ispos pred
0 1_1 -0.90 troubleshooting ad-2500 and ad-2600 ... 0 0
1 1_2 -0.15 repost from january 13, 2004 with a ... 0 0
2 1_3 -0.20 does your apex dvd player only play ... 0 0
3 1_4 -0.10 or does it play audio and video but ... 0 0
4 1_5 -0.50 before you try to return the player ... 0 0
>>> (products.pred == products.ispos).sum() / len(products)
0.5572476029328821

So your Naive Bayes model does a poor job of predicting whether a product review is
positive (thumbs up). One reason for this subpar performance is that your vocabulary
from the casual_tokenize product texts has 2546 tokens that weren’t in the movie
reviews. That’s about 10% of the tokens in your original movie review tokenization,
which means that all those words won’t have any weights or scores in your Naive Bayes
model. Also the Naive Bayes model doesn’t deal with negation as well as VADER does.
You’d need to incorporate n-grams into your tokenizer to connect negation words
(such as “not” or “never”) to the positive words they might be used to qualify.

 We leave it to you to continue the NLP action by improving on this machine learn-
ing model. And you can check your progress relative to VADER at each step of the way
to see if you think machine learning is a better approach than hard-coding algorithms
for NLP.

Summary
 You implemented tokenization and configured a tokenizer for your application.
 n-gram tokenization helps retain some of the word order information in a

document.

Your new bags of words have some tokens that
weren’t in the original bags of words DataFrame

(23302 columns now instead of 20756 before).

You need to make sure your
new product DataFrame of

bags of words has the exact
same columns (tokens) in the

exact same order as the
original one used to train
your Naive Bayes model.

This is the original
movie bags of words.

69Summary
 Normalization and stemming consolidate words into groups that improve the
“recall” for search engines but reduce precision.

 Lemmatization and customized tokenizers like casual_tokenize() can improve
precision and reduce information loss.

 Stop words can contain useful information, and discarding them is not always
helpful.

Math with words
(TF-IDF vectors)
Having collected and counted words (tokens), and bucketed them into stems or lem-
mas, it’s time to do something interesting with them. Detecting words is useful for
simple tasks, like getting statistics about word usage or doing keyword search. But
you’d like to know which words are more important to a particular document and
across the corpus as a whole. Then you can use that “importance” value to find rel-
evant documents in a corpus based on keyword importance within each document.

This chapter covers
 Counting words and term frequencies to analyze

meaning

 Predicting word occurrence probabilities with
Zipf’s Law

 Vector representation of words and how to start
using them

 Finding relevant documents from a corpus using
inverse document frequencies

 Estimating the similarity of pairs of documents
with cosine similarity and Okapi BM25
70

71Bag of words
 That will make a spam detector a little less likely to get tripped up by a single curse
word or a few slightly-spammy words within an email. And you’d like to measure how
positive and prosocial a tweet is when you have a broad range of words with various
degrees of “positivity” scores or labels. If you have an idea about the frequency with
which those words appear in a document in relation to the rest of the documents, you
can use that to further refine the “positivity” of the document. In this chapter, you’ll
learn about a more nuanced, less binary measure of words and their usage within a
document. This approach has been the mainstay for generating features from natural
language for commercial search engines and spam filters for decades.

 The next step in your adventure is to turn the words of chapter 2 into continuous
numbers rather than just integers representing word counts or binary “bit vectors”
that detect the presence or absence of particular words. With representations of words
in a continuous space, you can operate on their representation with more exciting
math. Your goal is to find numerical representation of words that somehow capture
the importance or information content of the words they represent. You’ll have to
wait until chapter 4 to see how to turn this information content into numbers that rep-
resent the meaning of words.

 In this chapter, we look at three increasingly powerful ways to represent words and
their importance in a document:

 Bags of words—Vectors of word counts or frequencies
 Bags of n-grams—Counts of word pairs (bigrams), triplets (trigrams), and so on
 TF-IDF vectors—Word scores that better represent their importance

IMPORTANT TF-IDF stands for term frequency times inverse document frequency.
Term frequencies are the counts of each word in a document, which you
learned about in previous chapters. Inverse document frequency means that
you’ll divide each of those word counts by the number of documents in which
the word occurs.

Each of these techniques can be applied separately or as part of an NLP pipeline.
These are all statistical models in that they are frequency based. Later in the book,
you’ll see various ways to peer even deeper into word relationships and their patterns
and non-linearities.

 But these “shallow” NLP machines are powerful and useful for many practical
applications such as spam filtering and sentiment analysis.

3.1 Bag of words
In the previous chapter, you created your first vector space model of a text. You used
one-hot encoding of each word and then combined all those vectors with a binary OR
(or clipped sum) to create a vector representation of a text. And this binary bag-of-
words vector makes a great index for document retrieval when loaded into a data
structure such as a Pandas DataFrame.

72 CHAPTER 3 Math with words (TF-IDF vectors)
 You then looked at an even more useful vector representation that counts the
number of occurrences, or frequency, of each word in the given text. As a first approx-
imation, you assume that the more times a word occurs, the more meaning it must
contribute to that document. A document that refers to “wings” and “rudder” fre-
quently may be more relevant to a problem involving jet airplanes or air travel, than
say a document that refers frequently to “cats” and “gravity.” Or if you have classified
some words as expressing positive emotions—words like “good,” “best,” “joy,” and
“fantastic”—the more a document that contains those words is likely to have positive
“sentiment.” You can imagine though how an algorithm that relied on these simple
rules might be mistaken or led astray.

 Let’s look at an example where counting occurrences of words is useful:

>>> from nltk.tokenize import TreebankWordTokenizer
>>> sentence = """The faster Harry got to the store, the faster Harry,
... the faster, would get home."""
>>> tokenizer = TreebankWordTokenizer()
>>> tokens = tokenizer.tokenize(sentence.lower())
>>> tokens
['the',
'faster',
'harry',
'got',
'to',
'the',
'store',
',',
'the',
'faster',
'harry',
',',
'the',
'faster',
',',
'would',
'get',
'home',
'.']

With your simple list, you want to get unique words from the document and their
counts. A Python dictionary serves this purpose nicely, and because you want to count
the words as well, you can use Counter, as you did in previous chapters:

>>> from collections import Counter
>>> bag_of_words = Counter(tokens)
>>> bag_of_words
Counter({'the': 4,

'faster': 3,
'harry': 2,
'got': 1,
'to': 1,
'store': 1,
',': 3,
'would': 1,

73Bag of words
'get': 1,
'home': 1,
'.': 1})

As with any good Python dictionary, the order of your keys got shuffled. The new
order is optimized for storage, update, and retrieval, not consistent display. The infor-
mation content contained in the order of words within the original statement has
been discarded.

NOTE A collections.Counter object is an unordered collection, also
called a bag or multiset. Depending on your platform and Python version,
you may find that a Counter is displayed in a seemingly reasonable order,
like lexical order or the order that tokens appeared in your statement. But
just as for a standard Python dict, you cannot rely on the order of your
tokens (keys) in a Counter.

For short documents like this one, the unordered bag of words still contains a lot of
information about the original intent of the sentence. And the information in a bag of
words is sufficient to do some powerful things such as detect spam, compute senti-
ment (positivity, happiness, and so on), and even detect subtle intent, like sarcasm. It
may be a bag, but it’s full of meaning and information. So let’s get these words
ranked—sorted in some order that’s easier to think about. The Counter object has a
handy method, most_common, for just this purpose:

>>> bag_of_words.most_common(4)
[('the', 4), (',', 3), ('faster', 3), ('harry', 2)]

Specifically, the number of times a word occurs in a given document is called the term
frequency, commonly abbreviated TF. In some examples you may see the count of word
occurrences normalized (divided) by the number of terms in the document.1

 So your top four terms or tokens are “the,” “,”, “harry,” and “faster.” But the word
“the” and the punctuation “,” aren’t very informative about the intent of this docu-
ment. And these uninformative tokens are likely to appear a lot during your hurried
adventure. So for this example, you’ll ignore them, along with a list of standard Eng-
lish stop words and punctuation. This won’t always be the case, but for now it helps
simplify the example. That leaves you with “harry” and “faster” among the top tokens
in your TF vector (bag of words).

 Let’s calculate the term frequency of “harry” from the Counter object (bag_
of_words) you defined above:

>>> times_harry_appears = bag_of_words['harry']
>>> num_unique_words = len(bag_of_words)

1 However, normalized frequency is really a probability, so it should probably not be called frequency.

By default, most_common() lists all tokens
from most frequent to least, but you’ve

limited the list to the top four here.

The number of unique tokens
from your original source

74 CHAPTER 3 Math with words (TF-IDF vectors)
>>> tf = times_harry_appears / num_unique_words
>>> round(tf, 4)
0.1818

Let’s pause for a second and look a little deeper at normalized term frequency, a
phrase (and calculation) we use often throughout this book. It’s the word count tem-
pered by how long the document is. But why “temper” it all? Let’s say you find the
word “dog” 3 times in document A and 100 times in document B. Clearly “dog” is way
more important to document B. But wait. Let’s say you find out document A is a
30-word email to a veterinarian and document B is War & Peace (approx 580,000
words!). Your first analysis was straight-up backwards. The following equations take
the document length into account:

TF(“dog,” documentA) = 3/30 = .1
TF(“dog,” documentB) = 100/580000 = .00017

Now you have something you can see that describes “something” about the two docu-
ments and their relationship to the word “dog” and each other. So instead of raw word
counts to describe your documents in a corpus, you can use normalized term frequen-
cies. Similarly you could calculate each word and get the relative importance to the
document of that term. Your protagonist, Harry, and his need for speed are clearly
central to the story of this document. You’ve made some great progress in turning text
into numbers, beyond just the presence or absence of a given word. Now this is a
clearly contrived example, but you can quickly see how meaningful results could come
from this approach. Let’s look at a bigger piece of text. Take these first few paragraphs
from the Wikipedia article on kites:

A kite is traditionally a tethered heavier-than-air craft with wing surfaces that react
against the air to create lift and drag. A kite consists of wings, tethers, and anchors.
Kites often have a bridle to guide the face of the kite at the correct angle so the wind
can lift it. A kite’s wing also may be so designed so a bridle is not needed; when
kiting a sailplane for launch, the tether meets the wing at a single point. A kite may
have fixed or moving anchors. Untraditionally in technical kiting, a kite consists of
tether-set-coupled wing sets; even in technical kiting, though, a wing in the system is
still often called the kite.

The lift that sustains the kite in flight is generated when air flows around the kite’s
surface, producing low pressure above and high pressure below the wings. The
interaction with the wind also generates horizontal drag along the direction of the
wind. The resultant force vector from the lift and drag force components is opposed
by the tension of one or more of the lines or tethers to which the kite is attached. The
anchor point of the kite line may be static or moving (such as the towing of a kite by
a running person, boat, free-falling anchors as in paragliders and fugitive parakites
or vehicle).

The same principles of fluid flow apply in liquids and kites are also used under water.

A hybrid tethered craft comprising both a lighter-than-air balloon as well as a kite
lifting surface is called a kytoon.

75Bag of words
Kites have a long and varied history and many different types are flown
individually and at festivals worldwide. Kites may be flown for recreation, art or
other practical uses. Sport kites can be flown in aerial ballet, sometimes as part of a
competition. Power kites are multi-line steerable kites designed to generate large forces
which can be used to power activities such as kite surfing, kite landboarding, kite
fishing, kite buggying and a new trend snow kiting. Even Man-lifting kites have
been made.

—Wikipedia

Then you’ll assign the text to a variable:

>>> from collections import Counter
>>> from nltk.tokenize import TreebankWordTokenizer
>>> tokenizer = TreebankWordTokenizer()
>>> from nlpia.data.loaders import kite_text
>>> tokens = tokenizer.tokenize(kite_text.lower())
>>> token_counts = Counter(tokens)
>>> token_counts
Counter({'the': 26, 'a': 20, 'kite': 16, ',': 15, ...})

NOTE The TreebankWordTokenizer returns 'kite.' (with a period) as a
token. The Treebank Tokenizer assumes that your document has already been
segmented into separate sentences, so it’ll only ignore punctuation at the very
end of the string. Sentence segmentation is tricky and you won’t learn about it
until chapter 11. Nonetheless, the spaCy parser is faster and more accurate
because it does sentence segmentation and tokenization (along with a lot of
other things)2 in one pass. So use spaCy in your production app rather than the
NLTK components we used for these simple examples.

Okay, back to the example. So that is a lot of stop words. It’s not likely that this Wikipe-
dia article is about the articles “the” and “a,” nor the conjunction “and” and the other
stop words. So let’s ditch them for now:

>>> import nltk
>>> nltk.download('stopwords', quiet=True)
True
>>> stopwords = nltk.corpus.stopwords.words('english')
>>> tokens = [x for x in tokens if x not in stopwords]
>>> kite_counts = Counter(tokens)
>>> kite_counts
Counter({'kite': 16,

'traditionally': 1,
'tethered': 2,
'heavier-than-air': 1,
'craft': 2,
'wing': 5,
'surfaces': 1,
'react': 1,

2 See the web page titled “spaCy 101: Everything you need to know” (https://spacy.io/usage/spacy-101
#annotations-token).

kite_text = “A kite is
traditionally …” as above

https://spacy.io/usage/spacy-101#annotations-token
https://spacy.io/usage/spacy-101#annotations-token

76 CHAPTER 3 Math with words (TF-IDF vectors)
'air': 2,
...,
'made': 1})}

By looking purely at the number of times words occur in this document, you’re learn-
ing something about it. The terms kite(s), wing, and lift are all important. And, if you
didn’t know what this document was about, you just happened across this document
in your vast database of Google-like knowledge, you might “programmatically” be able
to infer it has something to do with “flight” or “lift” or, in fact, “kites.”

 Across multiple documents in a corpus, things get a little more interesting. A set of
documents may all be about, say, kite flying. You would imagine all the documents
may refer to string and wind quite often, and the term frequencies TF("string") and
TF("wind") would therefore rank highly in all the documents. Now let’s look at a way
to more gracefully represent these numbers for mathematical intents.

3.2 Vectorizing
You’ve transformed your text into numbers on a basic level. But you’ve still just stored
them in a dictionary, so you’ve taken one step out of the text-based world and into the
realm of mathematics. Next you’ll go ahead and jump in all the way. Instead of
describing a document in terms of a frequency dictionary, you’ll make a vector of
those word counts. In Python, this will be a list, but in general it’s an ordered collec-
tion or array. You can do this quickly with

>>> document_vector = []
>>> doc_length = len(tokens)
>>> for key, value in kite_counts.most_common():
... document_vector.append(value / doc_length)
>>> document_vector
[0.07207207207207207,
0.06756756756756757,
0.036036036036036036,
...,
0.0045045045045045045]

This list, or vector, is something you can do math on directly.

TIP You can speed up processing of these data structures many ways.3 For
now you’re just playing with the nuts and bolts, but soon you’ll want to speed
things up.

Math isn’t very interesting with just one element. Having one vector for one docu-
ment isn’t enough. You can grab a couple more documents and make vectors for each
of them as well. But the values within each vector need to be relative to something
consistent across all the vectors. If you’re going to do math on them, they need to rep-
resent a position in a common space, relative to something consistent. Your vectors
need to have the same origin and share the same scale, or “units,” on each of their

3 See the web page titled “NumPy” (http://www.numpy.org/).

http://www.numpy.org/

77Vectorizing
dimensions. The first step in this process is to normalize the counts by calculating nor-
malized term frequency instead of raw count in the document (as you did in the last
section); the second step is to make all the vectors of standard length or dimension.

 Also, you want the value for each element of the vector to represent the same word
in each document’s vector. But you may notice that your email to the vet isn’t going to
contain many of the words that are in War & Peace (or maybe it will, who knows?). But
it’s fine (and as it happens, necessary) if your vectors contain values of 0 in various
positions. You’ll find every unique word in each document and then find every unique
word in the union of those two sets. This collections of words in your vocabulary is
often called a lexicon, which is the same concept referenced in earlier chapters, just in
terms of your special corpus. Let’s look at what that would look like with something
shorter than War & Peace. Let’s check in on Harry. You had one “document” already—
let’s round out the corpus with a couple more:

>>> docs = ["The faster Harry got to the store, the faster and faster Harry

➥ would get home."]
>>> docs.append("Harry is hairy and faster than Jill.")
>>> docs.append("Jill is not as hairy as Harry.")

TIP If you’re playing along with us rather than typing these out, you can
import them from the nlpia package: from nlpia.data.loaders import
harry_docs as docs.

First, let’s look at your lexicon for this corpus containing three documents:

>>> doc_tokens = []
>>> for doc in docs:
... doc_tokens += [sorted(tokenizer.tokenize(doc.lower()))]
>>> len(doc_tokens[0])
17
>>> all_doc_tokens = sum(doc_tokens, [])
>>> len(all_doc_tokens)
33
>>> lexicon = sorted(set(all_doc_tokens))
>>> len(lexicon)
18
>>> lexicon
[',',
'.',
'and',
'as',
'faster',
'get',
'got',
'hairy',
'harry',
'home',
'is',
'jill',
'not',
'store',
'than',

78 CHAPTER 3 Math with words (TF-IDF vectors)
'the',
'to',
'would']

Each of your three document vectors will need to have 18 values, even if the docu-
ment for that vector doesn’t contain all 18 words in your lexicon. Each token is
assigned a “slot” in your vectors corresponding to its position in your lexicon. Some of
those token counts in the vector will be zeros, which is what you want:

>>> from collections import OrderedDict
>>> zero_vector = OrderedDict((token, 0) for token in lexicon)
>>> zero_vector
OrderedDict([(',', 0),

('.', 0),
('and', 0),
('as', 0),
('faster', 0),
('get', 0),
('got', 0),
('hairy', 0),
('harry', 0),
('home', 0),
('is', 0),
('jill', 0),
('not', 0),
('store', 0),
('than', 0),
('the', 0),
('to', 0),
('would', 0)])

Now you’ll make copies of that base vector, update the values of the vector for each
document, and store them in an array:

>>> import copy
>>> doc_vectors = []
>>> for doc in docs:
... vec = copy.copy(zero_vector)
... tokens = tokenizer.tokenize(doc.lower())
... token_counts = Counter(tokens)
... for key, value in token_counts.items():
... vec[key] = value / len(lexicon)
... doc_vectors.append(vec)

You have three vectors, one for each document. So what? What can you do with them?
Your document word-count vectors can do all the cool stuff any vector can do, so let’s
learn a bit more about vectors and vector spaces first.4

4 If you’d like more details about linear algebra and vectors, take a look at appendix C.

copy.copy() creates an independent copy, a separate instance of
your zero vector, rather than reusing a reference (pointer) to

the original object’s memory location. Otherwise you’d just be
overwriting the same zero_vector with new values in each loop,

and you wouldn’t have a fresh zero on each pass of the loop.

79Vectorizing
3.2.1 Vector spaces

Vectors are the primary building blocks of linear algebra, or vector algebra. They’re
an ordered list of numbers, or coordinates, in a vector space. They describe a location
or position in that space. Or they can be used to identify a particular direction and
magnitude or distance in that space. A space is the collection of all possible vectors that
could appear in that space. So a vector with two values would lie in a 2D vector space,
a vector with three values in 3D vector space, and so on.

 A piece of graph paper, or a grid of pixels in an image, are both nice 2D vector
spaces. You can see how the order of these coordinates matter. If you reverse the x and
y coordinates for locations on your graph paper, without reversing all your vector cal-
culations, all your answers for linear algebra problems would be flipped. Graph paper
and images are examples of rectilinear, or Euclidean spaces, because the x and y coor-
dinates are perpendicular to each other. The vectors we talk about in this chapter are
all rectilinear, Euclidean spaces.

 What about latitude and longitude on a map or globe? That map or globe is definitely
a 2D vector space because it’s an ordered list of two numbers: latitude and longitude.
But each of the latitude-longitude pairs describes a point on an approximately spherical,
bumpy surface—the Earth’s surface. And latitude and longitude coordinates aren’t
exactly perpendicular, so a latitude-longitude vector space isn’t rectilinear. That means
you have to be careful when you calculate things like distance or closeness (similarity)
between two points represented by a pair of 2D latitude-longitude vectors, or vectors in
any non-Euclidean space. Think about how you would calculate the distance between
the latitude and longitude coordinates of Portland, OR and New York, NY.5

 Figure 3.1 is one way to draw the 2D vectors (5, 5), (3, 2), and (-1, 1). The
head of a vector (represented by the pointy tip of an arrow) is used to identify a

5 You’d need to use a package like GeoPy (https://geopy.readthedocs.io) to get the math right.

Vectors in 2D space

10

0

–1

–1–2

(–1, 1)

(3, 2)

(5, 5)

2 3 4 5 6

1

2

3

4

5

6

Figure 3.1 2D vectors

https://geopy.readthedocs.io

80 CHAPTER 3 Math with words (TF-IDF vectors)
location in a vector space. So the vector heads in this diagram will be at those three
pairs of coordinates. The tail of a position vector (represented by the “rear” of the
arrow) is always at the origin, or (0, 0).

 What about 3D vector spaces? Positions and velocities in the 3D physical world you
live in can be represented by x, y, and z coordinates in a 3D vector. Or the curvilinear
space formed by all the latitude-longitude-altitude triplets describing locations near
the surface of the Earth.

 But you aren’t limited to normal 3D space. You can have 5 dimensions, 10 dimen-
sions, 5,000, whatever. The linear algebra all works out the same. You might need
more computing power as the dimensionality grows. And you’ll run into some “curse-
of-dimensionality” issues, but you can wait to deal with that until the last chapter,
chapter 13.6

 For a natural language document vector space, the dimensionality of your vector
space is the count of the number of distinct words that appear in the entire corpus.
For TF (and TF-IDF to come), sometimes we call this dimensionality capital letter “K.”
This number of distinct words is also the vocabulary size of your corpus, so in an aca-
demic paper it’ll usually be called “|V|.” You can then describe each document within
this K-dimensional vector space by a K-dimensional vector. K = 18 in your three-
document corpus about Harry and Jill. Because humans can’t easily visualize spaces of
more than three dimensions, let’s set aside most of those dimensions and look at two
for a moment, so you can have a visual representation of the vectors on this flat page
you’re reading. So in figure 3.2, K is reduced to two for a two-dimensional view of the
18-dimensional Harry and Jill vector space.

 K-dimensional vectors work the same way, just in ways you can’t easily visualize.
Now that you have a representation of each document and know they share a com-
mon space, you have a path to compare them. You could measure the Euclidean dis-
tance between the vectors by subtracting them and computing the length of the
distance between them, which is called the 2-norm distance. It’s the distance a “crow”
would have to fly (in a straight line) to get from a location identified by the tip (head)
of one vector and the location of the tip of the other vector. Check out appendix C on
linear algebra to see why this is a bad idea for word count (term frequency) vectors.

 Two vectors are “similar” if they share similar direction. They might have similar
magnitude (length), which would mean that the word count (term frequency) vectors
are for documents of about the same length. But do you care about document length
in your similarity estimate for vector representations of words in documents? Probably

6 The curse of dimensionality is that vectors will get exponentially farther and farther away from one another,
in Euclidean distance, as the dimensionality increases. A lot of simple operations become impractical above 10
or 20 dimensions, like sorting a large list of vectors based on their distance from a “query” or “reference” vector
(approximate nearest neighbor search). To dig deeper, check out Wikipedia’s “Curse of Dimensionality” arti-
cle (https://en.wikipedia.org/wiki/Curse_of_dimensionality), explore hyperspace with one of this book’s
authors at Exploring Hyperspace (https://docs.google.com/presentation/d/1SEU8VL0KWPDKKZnBSaMx
UBDDwI8yqIxu9RQtq2bpnNg), play with the Python annoy package (https://github.com/spotify/annoy), or
search Google Scholar for “high dimensional approximate nearest neighbors” (https://scholar.google.com/
scholar?q=high+dimensional+approximate+nearest+neighbor).

https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://docs.google.com/presentation/d/1SEU8VL0KWPDKKZnBSaMxUBDDwI8yqIxu9RQtq2bpnNg
https://docs.google.com/presentation/d/1SEU8VL0KWPDKKZnBSaMxUBDDwI8yqIxu9RQtq2bpnNg
https://github.com/spotify/annoy
https://scholar.google.com/scholar?q=high+dimensional+approximate+nearest+neighbor
https://scholar.google.com/scholar?q=high+dimensional+approximate+nearest+neighbor

81Vectorizing
not. You’d like your estimate of document similarity to find use of the same words
about the same number of times in similar proportions. This accurate estimate would
give you confidence that the documents they represent are probably talking about
similar things.

 Cosine similarity is merely the cosine of the angle between two vectors (theta),
shown in figure 3.3, which can be calculated from the Euclidian dot product using

Cosine similarity is efficient to calculate because the dot product doesn’t require eval-
uation of any trigonometric functions. In addition, cosine similarity has a convenient
range for most machine learning problems: -1 to +1.

Term frequency vectors in 2D space

0.20

0.15

0.10

0.05

0.00

–0.05

–0.05

0.00 0.05 0.10

doc_0 ~(0.1, 0.17)

doc_0 ~(0.056, 0.056)

T
F

 o
f “

fa
st

er
”

TF of “harry”

doc_2 ~(0.056, 0)

0.15 0.20

Figure 3.2 2D term
frequency vectors

A · B = |A| |B | * cos Θ

Term frequency vectors in 2D space

0.20

0.15

0.10

0.05

0.00

–0.05

–0.05

0.00 0.05 0.10

doc_0 ~(0.1, 0.17)

doc_0 ~(0.056, 0.056)
Θ2

T
F

 o
f

“f
as

te
r”

TF of “harry”

doc_2 ~(0.056, 0)

0.15 0.20

Θ1

Figure 3.3 2D thetas

82 CHAPTER 3 Math with words (TF-IDF vectors)
In Python this would be

a.dot(b) == np.linalg.norm(a) * np.linalg.norm(b) / np.cos(theta)

Solving this relationship for cos(theta), you can derive the cosine similarity using

Or you can do it in pure Python without numpy, as in the following listing.

>>> import math
>>> def cosine_sim(vec1, vec2):
... """ Let's convert our dictionaries to lists for easier matching."""
... vec1 = [val for val in vec1.values()]
... vec2 = [val for val in vec2.values()]
...
... dot_prod = 0
... for i, v in enumerate(vec1):
... dot_prod += v * vec2[i]
...
... mag_1 = math.sqrt(sum([x**2 for x in vec1]))
... mag_2 = math.sqrt(sum([x**2 for x in vec2]))
...
... return dot_prod / (mag_1 * mag_2)

So you need to take the dot product of two of your vectors in question—multiply the
elements of each vector pairwise—and then sum up those products. You then divide
by the norm (magnitude or length) of each vector. The vector norm is the same as its
Euclidean distance from the head to the tail of the vector—the square root of the sum
of the squares of its elements. This normalized dot product, like the output of the cosine
function, will be a value between -1 and 1. It’s the cosine of the angle between these
two vectors. This value is the same as the portion of the longer vector that’s covered by
the shorter vector’s perpendicular projection onto the longer one. It gives you a value
for how much the vectors point in the same direction.

 A cosine similarity of 1 represents identical normalized vectors that point in
exactly the same direction along all dimensions. The vectors may have different
lengths or magnitudes, but they point in the same direction. Remember you divided
the dot product by the norm of each vector, and this can happen before or after the
dot product. So the vectors are normalized so they both have a length of 1 as you do
the dot product. So the closer a cosine similarity value is to 1, the closer the two vec-
tors are in angle. For NLP document vectors that have a cosine similarity close to 1,
you know that the documents are using similar words in similar proportion. So the
documents whose document vectors are close to each other are likely talking about
the same thing.

Listing 3.1 Compute cosine similarity in python

cos Θ = A · B
|A| |B |

83Zipf’s Law
 A cosine similarity of 0 represents two vectors that share no components. They are
orthogonal, perpendicular in all dimensions. For NLP TF vectors, this situation occurs
only if the two documents share no words in common. Because these documents use
completely different words, they must be talking about completely different things.
This doesn’t necessarily mean they have different meanings or topics, just that they
use completely different words.

 A cosine similarity of -1 represents two vectors that are anti-similar, completely
opposite. They point in opposite directions. This can never happen for simple word
count (term frequency) vectors or even normalized TF vectors (which we talk about
later). Counts of words can never be negative. So word count (term frequency) vec-
tors will always be in the same “quadrant” of the vector space. None of the term fre-
quency vectors can sneak around into one of the quadrants behind the tail of the
other vectors. None of your term frequency vectors can have components (word fre-
quencies) that are the negative of another term frequency vector, because term fre-
quencies just can’t be negative.

 You won’t see any negative cosine similarity values for pairs of vectors for natural
language documents in this chapter. But in the next chapter, we develop a concept of
words and topics that are “opposite” to each other. And this will show up as docu-
ments, words, and topics that have cosine similarities of less than zero, or even -1.

OPPOSITES ATTRACT There’s an interesting consequence of the way you cal-
culated cosine similarity. If two vectors or documents have a cosine similarity
of -1 (are opposites) to a third vector, they must be perfectly similar to each
other. They must be exactly the same vectors. But the documents those vec-
tors represent may not be exactly the same. Not only might the word order be
shuffled, but one may be much longer than the other, if it uses the same
words in the same proportion.

Later, you’ll come up with vectors that more accurately model a document. But for
now, you’ve gotten a good introduction to the tools you need.

3.3 Zipf’s Law
Now on to our main topic—sociology. Okay, not, but you’ll make a quick detour into
the world of counting people and words, and you’ll learn a seemingly universal rule
that governs the counting of most things. It turns out, that in language, like most
things involving living organisms, patterns abound.

 In the early twentieth century, the French stenographer Jean-Baptiste Estoup
noticed a pattern in the frequencies of words that he painstakingly counted by hand
across many documents (thank goodness for computers and Python). In the 1930s,
the American linguist George Kingsley Zipf sought to formalize Estoup’s observation,
and this relationship eventually came to bear Zipf’s name:

Zipf’s law states that given some corpus of natural language utterances, the
frequency of any word is inversely proportional to its rank in the frequency table.

Wikipedia

84 CHAPTER 3 Math with words (TF-IDF vectors)
Specifically, inverse proportionality refers to a situation where an item in a ranked list will
appear with a frequency tied explicitly to its rank in the list. The first item in the ranked
list will appear twice as often as the second, and three times as often as the third, for
example. One of the quick things you can do with any corpus or document is plot the
frequencies of word usages relative to their rank (in frequency). If you see any outliers
that don’t fall along a straight line in a log-log plot, it may be worth investigating.

 As an example of how far Zipf’s Law stretches beyond the world of words, figure
3.4 charts the relationship between the population of US cities and the rank of that
population. It turns out that Zipf’s Law applies to counts of lots of things. Nature is
full of systems that experience exponential growth and “network effects” like popula-
tion dynamics, economic output, and resource distribution.7 It’s interesting that
something as simple as Zipf’s Law could hold true across a wide range of natural and
manmade phenomena. Nobel Laureate Paul Krugman, speaking about economic
models and Zipf’s Law, put it this way:

The usual complaint about economic theory is that our models are oversimplified—that
they offer excessively neat views of complex, messy reality. [With Zipf’s law] the reverse is
true: You have complex, messy models, yet reality is startlingly neat and simple.

Here’s an updated version of Krugman’s city population plot.8

As with cities and social networks, so with words. Let’s first download the Brown Cor-
pus from NLTK:

The Brown Corpus was the first million-word electronic corpus of English, created in
1961 at Brown University. This corpus contains text from 500 sources, and the sources
have been categorized by genre, such as news, editorial, and so on.9

NLTK Documentation

7 See the web page titled “There is More than a Power Law in Zipf” (https://www.nature.com/articles/srep
00812).

8 Population data downloaded from Wikipedia using Pandas. See the nlpia.book.examples code on GitHub
(https://github.com/totalgood/nlpia/blob/master/src/nlpia/book/examples/ch03_zipf.py).

9 For a complete list, see http://icame.uib.no/brown/bcm-los.html.

5

5.50

0.5

1

1.5

2

3

3.5

4

4.5

2.5

0

Log of the population

L
o

g
 o

f
th

e
ra

n
k

6.50 7.50 8.50 9.50

Figure 3.4 City population distribution

https://www.nature.com/articles/srep00812
https://www.nature.com/articles/srep00812
https://github.com/totalgood/nlpia/blob/master/src/nlpia/book/examples/ch03_zipf.py
http://icame.uib.no/brown/bcm-los.html

85Zipf’s Law
>>> nltk.download('brown')
>>> from nltk.corpus import brown
>>> brown.words()[:10]
['The',
'Fulton',
'County',
'Grand',
'Jury',
'said',
'Friday',
'an',
'investigation',
'of']

>>> brown.tagged_words()[:5]
[('The', 'AT'),
('Fulton', 'NP-TL'),
('County', 'NN-TL'),
('Grand', 'JJ-TL'),
('Jury', 'NN-TL')]

>>> len(brown.words())
1161192

So with over 1 million tokens, you have something meaty to look at:

>>> from collections import Counter
>>> puncs = set((',', '.', '--', '-', '!', '?',
... ':', ';', '``', "''", '(', ')', '[', ']'))
>>> word_list = (x.lower() for x in brown.words() if x not in puncs)
>>> token_counts = Counter(word_list)
>>> token_counts.most_common(20)
[('the', 69971),
('of', 36412),
('and', 28853),
('to', 26158),
('a', 23195),
('in', 21337),
('that', 10594),
('is', 10109),
('was', 9815),
('he', 9548),
('for', 9489),
('it', 8760),
('with', 7289),
('as', 7253),
('his', 6996),
('on', 6741),
('be', 6377),
('at', 5372),
('by', 5306),
('i', 5164)]

A quick glance shows that the word frequencies in the Brown corpus follow the loga-
rithmic relationship Zipf predicted. “The” (rank 1 in term frequency) occurs roughly
twice as often as “of” (rank 2 in term frequency), and roughly three times as often as
“and” (rank 3 in term frequency). If you don’t believe us, use the example code

The Brown corpus
is about 3MB.

words() is a built-in method of the
NTLK corpus object that returns the
tokenized corpus as a sequence of strs.

You’ll learn about part-of-speech
tagging in chapter 2.

86 CHAPTER 3 Math with words (TF-IDF vectors)
(https://github.com/totalgood/nlpia/blob/master/src/nlpia/book/examples/ch03
_zipf.py) in the nlpia package to see this yourself.

 In short, if you rank the words of a corpus by the number of occurrences and list
them in descending order, you’ll find that, for a sufficiently large sample, the first
word in that ranked list is twice as likely to occur in the corpus as the second word in
the list. And it is four times as likely to appear as the fourth word in the list. So given a
large corpus, you can use this breakdown to say statistically how likely a given word is
to appear in any given document of that corpus.

3.4 Topic modeling
Now back to your document vectors. Word counts are useful, but pure word count,
even when normalized by the length of the document, doesn’t tell you much about
the importance of that word in that document relative to the rest of the documents in
the corpus. If you could suss out that information, you could start to describe docu-
ments within the corpus. Say you have a corpus of every kite book ever written. “Kite”
would almost surely occur many times in every book (document) you counted, but
that doesn’t provide any new information; it doesn’t help distinguish between those
documents. Whereas something like “construction” or “aerodynamics” might not be
so prevalent across the entire corpus, but for the ones where it frequently occurred,
you would know more about each document’s nature. For this you need another tool.

 Inverse document frequency, or IDF, is your window through Zipf in topic analysis.
Let’s take your term frequency counter from earlier and expand on it. You can count
tokens and bin them up two ways: per document and across the entire corpus. You’re
going to be counting just by document.

 Let’s return to the Kite example from Wikipedia and grab another section (the
History section); say it’s the second document in your Kite corpus:

Kites were invented in China, where materials ideal for kite building were readily
available: silk fabric for sail material; fine, high-tensile-strength silk for flying line;
and resilient bamboo for a strong, lightweight framework.

The kite has been claimed as the invention of the 5th-century BC Chinese
philosophers Mozi (also Mo Di) and Lu Ban (also Gongshu Ban). By 549 AD
paper kites were certainly being flown, as it was recorded that in that year a paper
kite was used as a message for a rescue mission. Ancient and medieval Chinese
sources describe kites being used for measuring distances, testing the wind, lifting
men, signaling, and communication for military operations. The earliest known
Chinese kites were flat (not bowed) and often rectangular. Later, tailless kites
incorporated a stabilizing bowline. Kites were decorated with mythological motifs
and legendary figures; some were fitted with strings and whistles to make musical
sounds while flying. From China, kites were introduced to Cambodia, Thailand,
India, Japan, Korea and the western world.

After its introduction into India, the kite further evolved into the fighter kite, known
as the patang in India, where thousands are flown every year on festivals such as
Makar Sankranti.

https://github.com/totalgood/nlpia/blob/master/src/nlpia/book/examples/ch03_zipf.py
https://github.com/totalgood/nlpia/blob/master/src/nlpia/book/examples/ch03_zipf.py

87Topic modeling
Kites were known throughout Polynesia, as far as New Zealand, with the
assumption being that the knowledge diffused from China along with the people.
Anthropomorphic kites made from cloth and wood were used in religious ceremonies
to send prayers to the gods. Polynesian kite traditions are used by anthropologists get
an idea of early “primitive” Asian traditions that are believed to have at one time
existed in Asia.

Wikipedia

First let’s get the total word count for each document in your corpus, intro_doc and
history_doc:

>>> from nlpia.data.loaders import kite_text, kite_history
>>> kite_intro = kite_text.lower()
>>> intro_tokens = tokenizer.tokenize(kite_intro)
>>> kite_history = kite_history.lower()
>>> history_tokens = tokenizer.tokenize(kite_history)
>>> intro_total = len(intro_tokens)
>>> intro_total
363
>>> history_total = len(history_tokens)
>>> history_total
297

Now with a couple tokenized kite documents in hand, let’s look at the term frequency
of “kite” in each document. You’ll store the TFs you find in two dictionaries, one for
each document:

>>> intro_tf = {}
>>> history_tf = {}
>>> intro_counts = Counter(intro_tokens)
>>> intro_tf['kite'] = intro_counts['kite'] / intro_total
>>> history_counts = Counter(history_tokens)
>>> history_tf['kite'] = history_counts['kite'] / history_total
>>> 'Term Frequency of "kite" in intro is: {:.4f}'.format(intro_tf['kite'])
'Term Frequency of "kite" in intro is: 0.0441'
>>> 'Term Frequency of "kite" in history is: {:.4f}'\
... .format(history_tf['kite'])
'Term Frequency of "kite" in history is: 0.0202'

Okay, you have a number twice as large as the other. Is the intro section twice as much
about kites? No, not really. So let’s dig a little deeper. First, let’s see how those num-
bers relate to some other word, say “and”:

>>> intro_tf['and'] = intro_counts['and'] / intro_total
>>> history_tf['and'] = history_counts['and'] / history_total
>>> print('Term Frequency of "and" in intro is: {:.4f}'\
... .format(intro_tf['and']))
Term Frequency of "and" in intro is: 0.0275
>>> print('Term Frequency of "and" in history is: {:.4f}'\
... .format(history_tf['and']))
Term Frequency of "and" in history is: 0.0303

“A kite is traditionally … ?”
“a kite is traditionally …”

88 CHAPTER 3 Math with words (TF-IDF vectors)
Great! You know both of these documents are about “and” just as much as they are
about “kite”! Oh, wait. That’s not helpful, huh? Just as in your first example, where the
system seemed to think “the” was the most important word in the document about
your fast friend Harry, in this example “and” is considered highly relevant. Even at
first glance, you can tell this isn’t revelatory.

 A good way to think of a term’s inverse document frequency is this: How strange is
it that this token is in this document? If a term appears in one document a lot of
times, but occurs rarely in the rest of the corpus, one could assume it’s important to
that document specifically. Your first step toward topic analysis!

 A term’s IDF is merely the ratio of the total number of documents to the number
of documents the term appears in. In the case of “and” and “kite” in your current
example, the answer is the same for both:

 2 total documents / 2 documents contain “and” = 2/2 = 1
 2 total documents / 2 documents contain “kite” = 2/2 = 1
 Not very interesting. So let’s look at another word “China.”
 2 total documents / 1 document contains “China” = 2/1 = 2

Okay, that’s something different. Let’s use this “rarity” measure to weight the term fre-
quencies:

>>> num_docs_containing_and = 0
>>> for doc in [intro_tokens, history_tokens]:
... if 'and' in doc:
... num_docs_containing_and += 1

And let’s grab the TF of “China” in the two documents:

>>> intro_tf['china'] = intro_counts['china'] / intro_total
>>> history_tf['china'] = history_counts['china'] / history_total

And finally, the IDF for all three. You’ll store the IDFs in dictionaries per document
like you did with TF:

>>> num_docs = 2
>>> intro_idf = {}
>>> history_idf = {}
>>> intro_idf['and'] = num_docs / num_docs_containing_and
>>> history_idf['and'] = num_docs / num_docs_containing_and
>>> intro_idf['kite'] = num_docs / num_docs_containing_kite
>>> history_idf['kite'] = num_docs / num_docs_containing_kite
>>> intro_idf['china'] = num_docs / num_docs_containing_china
>>> history_idf['china'] = num_docs / num_docs_containing_china

And then for the intro document you find:

>>> intro_tfidf = {}
>>> intro_tfidf['and'] = intro_tf['and'] * intro_idf['and']
>>> intro_tfidf['kite'] = intro_tf['kite'] * intro_idf['kite']
>>> intro_tfidf['china'] = intro_tf['china'] * intro_idf['china']

similarly for “kite”
and “China”

89Topic modeling
And then for the history document:

>>> history_tfidf = {}
>>> history_tfidf['and'] = history_tf['and'] * history_idf['and']
>>> history_tfidf['kite'] = history_tf['kite'] * history_idf['kite']
>>> history_tfidf['china'] = history_tf['china'] * history_idf['china']

3.4.1 Return of Zipf

You’re almost there. Let’s say, though, you have a corpus of 1 million documents
(maybe you’re baby-Google), someone searches for the word “cat,” and in your 1 mil-
lion documents you have exactly 1 document that contains the word “cat.” The raw
IDF of this is

1,000,000 / 1 = 1,000,000

Let’s imagine you have 10 documents with the word “dog” in them. Your IDF for “dog” is

1,000,000 / 10 = 100,000

That’s a big difference. Your friend Zipf would say that’s too big, because it’s likely to
happen a lot. Zipf’s Law showed that when you compare the frequencies of two words,
like “cat” and “dog,” even if they occur a similar number of times, the more frequent
word will have an exponentially higher frequency than the less frequent one. So Zipf’s
Law suggests that you scale all your word frequencies (and document frequencies)
with the log() function, the inverse of exp(). This ensures that words such as “cat”
and “dog,” which have similar counts, aren’t exponentially different in frequency. And
this distribution of word frequencies will ensure that your TF-IDF scores are more uni-
formly distributed. So you should redefine IDF to be the log of the original probability
of that word occurring in one of your documents. You’ll want to take the log of the
term frequency as well.10

 The base of log function isn’t important, because you only want to make the fre-
quency distribution uniform, not to scale it within a particular numerical range.11 If
you use a base 10 log function, you’ll get:

search: cat

idf = log(1,000,000/1) = 6

search: dog

idf = log(1,000,000/10) = 5

So now you’re weighting the TF results of each more appropriately to their occur-
rences in language, in general.

10 Gerard Salton and Chris Buckley first demonstrated the usefulness of log scaling for information retrieval in
their paper Term Weighting Approaches in Automatic Text Retrieval (https://ecommons.cornell.edu/bit-
stream/handle/1813/6721/87-881.pdf).

11 Later we show you how to normalize the TF-IDF vectors after all the TF-IDF values have been calculated using
this log scaling.

https://ecommons.cornell.edu/bitstream/handle/1813/6721/87-881.pdf
https://ecommons.cornell.edu/bitstream/handle/1813/6721/87-881.pdf

90 CHAPTER 3 Math with words (TF-IDF vectors)
 And then finally, for a given term, t, in a given document, d, in a corpus, D, you get:

So the more times a word appears in the document, the TF (and hence the TF-IDF)
will go up. At the same time, as the number of documents that contain that word goes
up, the IDF (and hence the TF-IDF) for that word will go down. So now, you have a
number—something your computer can chew on. But what is it exactly? It relates a
specific word or token to a specific document in a specific corpus, and then it assigns
a numeric value to the importance of that word in the given document, given its usage
across the entire corpus.

 In some classes, all the calculations will be done in log space so that multiplications
become additions and division becomes subtraction:

>>> log_tf = log(term_occurences_in_doc) -\
... log(num_terms_in_doc)
>>> log_log_idf = log(log(total_num_docs) -\
... log(num_docs_containing_term))
>>> log_tf_idf = log_tf + log_idf

This single number, the TF-IDF, is the humble foundation of a simple search engine.
As you’ve stepped from the realm of text firmly into the realm of numbers, it’s time
for some math. You won’t likely ever have to implement the preceding formulas for
computing TF-IDF. Linear algebra isn’t necessary for full understanding of the tools
used in natural language processing, but a general familiarity with how the formulas
work can make their use more intuitive.

3.4.2 Relevance ranking

As you saw earlier, you can easily compare two vectors and get their similarity, but you
have since learned that merely counting words isn’t as descriptive as using their TF-
IDF. Therefore, in each document vector let’s replace each word’s word_count with
the word’s TF-IDF. Now your vectors will more thoroughly reflect the meaning, or
topic, of the document, as shown in this Harry example:

>>> document_tfidf_vectors = []
>>> for doc in docs:
... vec = copy.copy(zero_vector)

idf(t, D) = log
number of documents containing t

number of documents

count(d)
count(t)

tf(t, d) =

tfidf(t, d, D) = tf(t, d) * idf(t, D)

Log probability of a particular
term in a particular document Log of the log probability of a particular

term occurring at least once in a
document—the first log is to linearize

the IDF (compensate for Zipf’s Law)

Log TF-IDF is the log of the
product of TF and IDF or the
sum of the logs of TF and IDF.

You need to copy the zero_vector to create a new,
separate object. Otherwise you’d end up overwriting
the same object/vector each time through the loop.

91Topic modeling
... tokens = tokenizer.tokenize(doc.lower())

... token_counts = Counter(tokens)

...

... for key, value in token_counts.items():

... docs_containing_key = 0

... for _doc in docs:

... if key in _doc:

... docs_containing_key += 1

... tf = value / len(lexicon)

... if docs_containing_key:

... idf = len(docs) / docs_containing_key

... else:

... idf = 0

... vec[key] = tf * idf

... document_tfidf_vectors.append(vec)

With this setup, you have K-dimensional vector representation of each document in
the corpus. And now on to the hunt! Or search, in your case. Two vectors, in a given
vector space, can be said to be similar if they have a similar angle. If you imagine each
vector starting at the origin and reaching out its prescribed distance and direction,
the ones that reach out at the same angle are similar, even if they don’t reach out to
the same distance.

 Two vectors are considered similar if their cosine similarity is high, so you can find
two similar vectors near each other if they minimize:

Now you have all you need to do a basic TF-IDF-based search. You can treat the search
query itself as a document, and therefore get the TF-IDF-based vector representation
of it. The last step is then to find the documents whose vectors have the highest cosine
similarities to the query and return those as the search results.

 If you take your three documents about Harry, and make the query “How long
does it take to get to the store?” as shown here

>>> query = "How long does it take to get to the store?"
>>> query_vec = copy.copy(zero_vector)
>>> query_vec = copy.copy(zero_vector)

>>> tokens = tokenizer.tokenize(query.lower())
>>> token_counts = Counter(tokens)

>>> for key, value in token_counts.items():
... docs_containing_key = 0
... for _doc in documents:
... if key in _doc.lower():
... docs_containing_key += 1
... if docs_containing_key == 0:
... continue

cos Θ = A · B
|A| |B |

copy.copy() ensures you’re dealing
with separate objects, not multiple
references to the same object.

You didn’t find that token in the
lexicon, so go to the next key.

92 CHAPTER 3 Math with words (TF-IDF vectors)
... tf = value / len(tokens)

... idf = len(documents) / docs_containing_key

... query_vec[key] = tf * idf
>>> cosine_sim(query_vec, document_tfidf_vectors[0])
0.5235048549676834
>>> cosine_sim(query_vec, document_tfidf_vectors[1])
0.0
>>> cosine_sim(query_vec, document_tfidf_vectors[2])
0.0

you can safely say document 0 has the most relevance for your query! And with this
you can find relevant documents in any corpus, be it articles in Wikipedia, books from
Gutenberg, or tweets from the wild west that is Twitter. Google look out!

 Actually, Google’s search engine is safe from competition from us. You have to do an
“index scan” of your TF-IDF vectors with each query. That’s an O(N) algorithm. Most
search engines can respond in constant time (O(1)) because they use an inverted
index.12 You aren’t going to implement an index that can find these matches in constant
time here, but if you’re interested you might like exploring the state-of-the-art Python
implementation in the Whoosh13 package and its source code.14 Instead of showing you
how to build this conventional keyword-based search engine, in chapter 4 we show you
the latest semantic indexing approaches that capture the meaning of text.

TIP In the preceding code, you dropped the keys that weren’t found in the
lexicon to avoid a divide-by-zero error. But a better approach is to +1 the
denominator of every IDF calculation, which ensures no denominators are
zero. In fact this approach—called additive smoothing (Laplace smoothing)15—
will usually improve the search results for TF-IDF keyword-based searches.

Keyword search is only one tool in your NLP pipeline. You want to build a chatbot.
But most chatbots rely heavily on a search engine. And some chatbots rely exclusively
on a search engine as their only algorithm for generating responses. You need to take
one additional step to turn your simple search index (TF-IDF) into a chatbot. You
need to store your training data in pairs of questions (or statements) and appropriate
responses. Then you can use TF-IDF to search for a question (or statement) most like
the user input text. Instead of returning the most similar statement in your database,
you return the response associated with that statement. Like any tough computer sci-
ence problem, ours can be solved with one more layer of indirection. And with that,
you’re chatting!

12 See the web page titled “Inverted index” (https://en.wikipedia.org/wiki/Inverted_index).
13 See the web page titled “Whoosh” (https://pypi.python.org/pypi/Whoosh).
14 See the web page titled “GitHub - Mplsbeb/whoosh: A fast pure-Python search engine” (https://github.com/

Mplsbeb/whoosh).
15 See the web page titled “Additive smoothing” (https://en.wikipedia.org/wiki/Additive_smoothing).

https://en.wikipedia.org/wiki/Additive_smoothing
https://en.wikipedia.org/wiki/Inverted_index
https://pypi.python.org/pypi/Whoosh
https://github.com/Mplsbeb/whoosh
https://github.com/Mplsbeb/whoosh

93Topic modeling
3.4.3 Tools

Now that was a lot of code for things that have long since been automated. You can
find a quick path to the same result using the scikit-learn package.16 If you
haven’t already set up your environment using appendix A so that it includes this
package, here’s one way to install it:

pip install scipy
pip install sklearn

Here’s how you can use sklearn to build a TF-IDF matrix. The sklearn TF-IDF class is a
model with .fit() and .transform() methods that comply with the sklearn API for
all machine learning models:

>>> from sklearn.feature_extraction.text import TfidfVectorizer
>>> corpus = docs
>>> vectorizer = TfidfVectorizer(min_df=1)
>>> model = vectorizer.fit_transform(corpus)
>>> print(model.todense().round(2))
[[0.16 0. 0.48 0.21 0.21 0. 0.25 0.21 0. 0. 0. 0.21 0. 0.64

0.21 0.21]
[0.37 0. 0.37 0. 0. 0.37 0.29 0. 0.37 0.37 0. 0. 0.49 0.
0. 0.]

[0. 0.75 0. 0. 0. 0.29 0.22 0. 0.29 0.29 0.38 0. 0. 0.
0. 0.]]

With scikit-learn, in four lines you created a matrix of your three documents and
the inverse document frequency for each term in the lexicon. You have a matrix (prac-
tically a list of lists in Python) that represents the three documents (the three rows of
the matrix). The TF-IDF of each term, token, or word in your lexicon make up the col-
umns of the matrix (or again, the indices of each row). They only have 16, as they
tokenize differently and drop the punctuation; you had a comma and a period. On
large texts this or some other pre-optimized TF-IDF model will save you scads of work.

3.4.4 Alternatives

TF-IDF matrices (term-document matrices) have been the mainstay of information
retrieval (search) for decades. As a result, researchers and corporations have spent a
lot of time trying to optimize that IDF part to try to improve the relevance of search

16 See the web page titled “scikit-learn: machine learning in Python” (http://scikit-learn.org/).

The TFIDFVectorizer model produces a sparse numpy matrix, because
a TF-IDF matrix usually contains mostly zeros, since most documents

use a small portion of the total words in the vocabulary.

The .todense() method converts a sparse matrix
back into a regular numpy matrix (filling in the

gaps with zeros) for your viewing pleasure.

http://scikit-learn.org/

94 CHAPTER 3 Math with words (TF-IDF vectors)
results. Table 3.1 lists some of the ways you can normalize and smooth your term fre-
quency weights.17

Search engines (information retrieval systems) match keywords (terms) between que-
ries and documents in a corpus. If you’re building a search engine and want to provide
documents that are likely to match what your users are looking for, you should spend
some time investigating the alternatives described by Piero Molino in table 3.1.

Table 3.1 Alternative TF-IDF normalization approaches (Molino 2017)

Scheme Definition

17 Word Embeddings Past, Present and Future by Piero Molino at AI with the Best 2017.

None

TF-IDF

TF-ICF

Okapi BM25

ATC

LTU

MI

PosMI

T-Test

x2

Lin98a

Lin98b

Gref94

N
nj

wij = fij

wij = log(fij) × log()

wij = log(fij) × log()

wij = log

 wij =

wij =

wij = log

wij = max(0, MI)

wij =

wij =

wij = −1 × log

wij =

N
fj

fj

fj

j

fij

0.5+1.5× + fij

fij N
max f nj

(0.5+0.5×) log()

N −nj +0.5

fij +0.5

fij N
max f nj

Σ [(0.5+0.5×) log()]2√

√

N
i=1

j
fj

(log(fij)+1.0)log()

0.8+0.2 × fj ×

N
nj

P(tij |cj)

P(tij)P(cj)

P(tij |cj)−P(tij)P(cj)

P(tij)P(cj)

fij × f
fi × fj

N
nj

log fij +1
log nj +1

See section 4.3.5 of From Distributional to Semantic Similarity
(https://www.era.lib.ed.ac.uk/bitstream/handle/1842/563/
IP030023.pdf#subsection.4.3.5) by James Richard Curran

https://www.era.lib.ed.ac.uk/bitstream/handle/1842/563/IP030023.pdf#subsection.4.3.5
https://www.era.lib.ed.ac.uk/bitstream/handle/1842/563/IP030023.pdf#subsection.4.3.5

95Topic modeling
 One such alternative to using straight TF-IDF cosine distance to rank query results
is Okapi BM25, or its most recent variant, BM25F.

3.4.5 Okapi BM25

The smart people at London’s City University came up with a better way to rank
search results. Rather than merely computing the TF-IDF cosine similarity, they nor-
malize and smooth the similarity. They also ignore duplicate terms in the query docu-
ment, effectively clipping the term frequencies for the query vector at 1. And the dot
product for the cosine similarity isn’t normalized by the TF-IDF vector norms (num-
ber of terms in the document and the query), but rather by a nonlinear function of
the document length itself:

q_idf * dot(q_tf, d_tf[i]) * 1.5 /

➥ (dot(q_tf, d_tf[i]) + .25 + .75 * d_num_words[i] / d_num_words.mean()))

You can optimize your pipeline by choosing the weighting scheme that gives your
users the most relevant results. But if your corpus isn’t too large, you might consider
forging ahead with us into even more useful and accurate representations of the
meaning of words and documents. In subsequent chapters, we show you how to imple-
ment a semantic search engine that finds documents that “mean” something similar
to the words in your query rather than just documents that use those exact words from
your query. Semantic search is much better than anything TF-IDF weighting and stem-
ming and lemmatization can ever hope to achieve. The only reason Google and Bing
and other web search engines don’t use the semantic search approach is that their
corpus is too large. Semantic word and topic vectors don’t scale to billions of docu-
ments, but millions of documents are no problem.

 So you only need the most basic TF-IDF vectors to feed into your pipeline to get
state-of-the-art performance for semantic search, document classification, dialog sys-
tems, and most of the other applications we mentioned in chapter 1. TF-IDFs are the
first stage in your pipeline, the most basic set of features you’ll extract from text. In
the next chapter, we compute topic vectors from your TF-IDF vectors. Topic vectors
are an even better representation of the meaning of the content of a bag of words
than any of these carefully normalized and smoothed TF-IDF vectors. And things only
get better from there as we move on to Word2vec word vectors in chapter 6 and neu-
ral net embeddings of the meaning of words and documents in later chapters.

3.4.6 What’s next

Now that you can convert natural language text to numbers, you can begin to manipu-
late them and compute with them. Numbers firmly in hand, in the next chapter you’ll
refine those numbers to try to represent the meaning or topic of natural language text
instead of only its words.

96 CHAPTER 3 Math with words (TF-IDF vectors)
Summary
 Any web-scale search engine with millisecond response times has the power of a

TF-IDF term document matrix hidden under the hood.
 Term frequencies must be weighted by their inverse document frequency to

ensure the most important, most meaningful words are given the heft they
deserve.

 Zipf’s law can help you predict the frequencies of all sorts of things, including
words, characters, and people.

 The rows of a TF-IDF term document matrix can be used as a vector representa-
tion of the meanings of those individual words to create a vector space model of
word semantics.

 Euclidean distance and similarity between pairs of high dimensional vectors
doesn’t adequately represent their similarity for most NLP applications.

 Cosine distance, the amount of “overlap” between vectors, can be calculated
efficiently by just multiplying the elements of normalized vectors together and
summing up those products.

 Cosine distance is the go-to similarity score for most natural language vector
representations.

Finding meaning in word
counts (semantic analysis)
You’ve learned quite a few natural language processing tricks. But now may be the
first time you’ll be able to do a little bit of magic. This is the first time we talk about
a machine being able to understand the “meaning” of words.

 The TF-IDF vectors (term frequency–inverse document frequency vectors) from
chapter 3 helped you estimate the importance of words in a chunk of text. You
used TF-IDF vectors and matrices to tell you how important each word is to the
overall meaning of a bit of text in a document collection.

This chapter covers
 Analyzing semantics (meaning) to create topic

vectors

 Semantic search using the similarity between
topic vectors

 Scalable semantic analysis and semantic search
for large corpora

 Using semantic components (topics) as features
in your NLP pipeline

 Navigating high-dimensional vector spaces
97

98 CHAPTER 4 Finding meaning in word counts (semantic analysis)
 These TF-IDF “importance” scores worked not only for words, but also for short
sequences of words, n-grams. These importance scores for n-grams are great for
searching text if you know the exact words or n-grams you’re looking for.

 Past NLP experimenters found an algorithm for revealing the meaning of word
combinations and computing vectors to represent this meaning. It’s called latent
semantic analysis (LSA). And when you use this tool, not only can you represent the
meaning of words as vectors, but you can use them to represent the meaning of entire
documents.

 In this chapter, you’ll learn about these semantic or topic vectors.1 You’re going to
use your weighted frequency scores from TF-IDF vectors to compute the topic “scores”
that make up the dimensions of your topic vectors. You’re going to use the correlation
of normalized term frequencies with each other to group words together in topics to
define the dimensions of your new topic vectors.

 These topic vectors will help you do a lot of interesting things. They make it possible
to search for documents based on their meaning—semantic search. Most of the time,
semantic search returns search results that are much better than keyword search (TF-
IDF search). Sometimes semantic search returns documents that are exactly what the
user is searching for, even when they can’t think of the right words to put in the query.

 And you can use these semantic vectors to identify the words and n-grams that best
represent the subject (topic) of a statement, document, or corpus (collection of docu-
ments). And with this vector of words and their relative importance, you can provide
someone with the most meaningful words for a document—a set of keywords that
summarizes its meaning.

 And you can now compare any two statements or documents and tell how “close”
they are in meaning to each other.

TIP The terms “topic,” “semantic,” and “meaning” have similar meaning and
are often used interchangeably when talking about NLP. In this chapter,
you’re learning how to build an NLP pipeline that can figure out this kind of
synonymy, all on its own. Your pipeline might even be able to find the similar-
ity in meaning of the phrase “figure it out” and the word “compute.”
Machines can only “compute” meaning, not “figure out” meaning.

You’ll soon see that the linear combinations of words that make up the dimensions of
your topic vectors are pretty powerful representations of meaning.

4.1 From word counts to topic scores
You know how to count the frequency of words. And you know how to score the
importance of words in a TF-IDF vector or matrix. But that’s not enough. You want to
score the meanings, the topics, that words are used for.

1 We use the term “topic vector” in this chapter about topic analysis and we use the term “word vector” in chapter
6 about Word2vec. Formal NLP texts such as the NLP bible by Jurafsky and Martin (https://web.stanford.edu/
~jurafsky/slp3/ed3book.pdf#chapter.15) use “topic vector.” Others, like the authors of Semantic Vector
Encoding and Similarity Search (https://arxiv.org/pdf/1706.00957.pdf), use the term “semantic vector.”

https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf#chapter.15
https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf#chapter.15
https://arxiv.org/pdf/1706.00957.pdf

99From word counts to topic scores
4.1.1 TF-IDF vectors and lemmatization

TF-IDF vectors count the exact spellings of terms in a document. So texts that restate
the same meaning will have completely different TF-IDF vector representations if they
spell things differently or use different words. This messes up search engines and doc-
ument similarity comparisons that rely on counts of tokens.

 In chapter 2, you normalized word endings so that words that differed only in their
last few characters were collected together under a single token. You used normaliza-
tion approaches such as stemming and lemmatization to create small collections of
words with similar spellings, and often similar meanings. You labeled each of these
small collections of words, with their lemma or stem, and then you processed these new
tokens instead of the original words.

 This lemmatization approach kept similarly *spelled*2 words together in your anal-
ysis, but not necessarily words with similar meanings. And it definitely failed to pair up
most synonyms. Synonyms usually differ in more ways than just the word endings that
lemmatization and stemming deal with. Even worse, lemmatization and stemming
sometimes erroneously lump together antonyms, words with opposite meaning.

 The end result is that two chunks of text that talk about the same thing but use dif-
ferent words will not be “close” to each other in your lemmatized TF-IDF vector space
model. And sometimes two lemmatized TF-IDF vectors that are close to each other
aren’t similar in meaning at all. Even a state-of-the-art TF-IDF similarity score from
chapter 3, such as Okapi BM25 or cosine similarity, would fail to connect these syn-
onyms or push apart these antonyms. Synonyms with different spellings produce TF-
IDF vectors that just aren’t close to each other in the vector space.

 For example, the TF-IDF vector for this chapter in NLPIA, the chapter that you’re
reading right now, may not be at all close to similar-meaning passages in university text-
books about latent semantic indexing. But that’s exactly what this chapter is about. But
we use modern and colloquial terms in this chapter. Professors and researchers use
more consistent, rigorous language in their textbooks and lectures. Plus, the terminol-
ogy that professors used a decade ago has likely evolved with the rapid advances of the
past few years. For example, terms such as “latent semantic indexing” were more popu-
lar than the term “latent semantic analysis” that researchers now use.3

4.1.2 Topic vectors

When you do math on TF-IDF vectors, such as addition and subtraction, these sums
and differences only tell you about the frequency of word uses in the documents
whose vectors you combined or differenced. That math doesn’t tell you much about
the meaning behind those words. You can compute word-to-word TF-IDF vectors
(word co-occurrence or correlation vectors) by multiplying your TF-IDF matrix by

2 Both stemming and lemmatization remove or alter the word endings and prefixes, the last few characters of
a word. Edit-distance calculations are better for identifying similarly spelled (or misspelled) words.

3 I love Google Ngram Viewer for visualizing trends like this (http://mng.bz/7Jnm).

http://mng.bz/7Jnm

100 CHAPTER 4 Finding meaning in word counts (semantic analysis)
itself. But “vector reasoning” with these sparse, high-dimensional vectors doesn’t work
well. When you add or subtract these vectors from each other, they don’t represent an
existing concept or word or topic well.

 So you need a way to extract some additional information, meaning, from word
statistics. You need a better estimate of what the words in a document “signify.” And
you need to know what that combination of words means in a particular document.
You’d like to represent that meaning with a vector that’s like a TF-IDF vector, but
more compact and more meaningful.

 We call these compact meaning vectors “word-topic vectors.” We call the document
meaning vectors “document-topic vectors.” You can call either of these vectors “topic
vectors,” as long as you’re clear on what the topic vectors are for, words or documents.

 These topic vectors can be as compact or as expansive (high-dimensional) as you
like. LSA topic vectors can have as few as one dimension, or they can have thousands
of dimensions.

 You can add and subtract the topic vectors you’ll compute in this chapter just like
any other vector. Only this time the sums and differences mean a lot more than they
did with TF-IDF vectors (chapter 3). And the distances between topic vectors is useful
for things like clustering documents or semantic search. Before, you could cluster and
search using keywords and TF-IDF vectors. Now you can cluster and search using
semantics, meaning!

 When you’re done, you’ll have one document-topic vector for each document in
your corpus. And, even more importantly, you won’t have to reprocess the entire cor-
pus to compute a new topic vector for a new document or phrase. You’ll have a topic
vector for each word in your vocabulary, and you can use these word topic vectors to
compute the topic vector for any document that uses some of those words.

TIP Some algorithms for creating topic vectors, such as latent Dirichlet allo-
cation, do require you to reprocess the entire corpus, every time you add a
new document.

You’ll have one word-topic vector for each word in your lexicon (vocabulary). So you
can compute the topic vector for any new document by just adding up all its word
topic vectors.

 Coming up with a numerical representation of the semantics (meaning) of words
and sentences can be tricky. This is especially true for “fuzzy” languages like English,
which has multiple dialects and many different interpretations of the same words.
Even formal English text written by an English professor can’t avoid the fact that most
English words have multiple meanings, a challenge for any new learner, including
machine learners. This concept of words with multiple meanings is called polysemy:

 Polysemy—The existence of words and phrases with more than one meaning

Here are some ways in which polysemy can affect the semantics of a word or state-
ment. We list them here for you to appreciate the power of LSA. You don’t have to
worry about these challenges. LSA takes care of all this for us:

101From word counts to topic scores
 Homonyms—Words with the same spelling and pronunciation, but different
meanings

 Zeugma—Use of two meanings of a word simultaneously in the same sentence

And LSA also deals with some of the challenges of polysemy in a voice interface—a
chatbot that you can talk to, like Alexa or Siri:

 Homographs—Words spelled the same, but with different pronunciations and
meanings

 Homophones—Words with the same pronunciation, but different spellings and
meanings (an NLP challenge with voice interfaces)

Imagine if you had to deal with a statement like the following, if you didn’t have tools
like LSA to deal with it:

She felt … less. She felt tamped down. Dim. More faint. Feint. Feigned. Fain.

Patrick Rothfuss

Keeping these challenges in mind, can you imagine how you might squash a TF-IDF vec-
tor with one million dimensions (terms) down to a vector with 200 or so dimensions
(topics)? This is like identifying the right mix of primary colors to try to reproduce the
paint color in your apartment so you can cover over those nail holes in your wall.

 You’d need to find those word dimensions that “belong” together in a topic and add
their TF-IDF values together to create a new number to represent the amount of that
topic in a document. You might even weight them for how important they are to the
topic, how much you’d like each word to contribute to the “mix.” And you could have
negative weights for words that reduce the likelihood that the text is about that topic.

4.1.3 Thought experiment

Let’s walk through a thought experiment. Let’s assume you have some TF-IDF vector
for a particular document and you want to convert that to a topic vector. You can think
about how much each word contributes to your topics.

 Let’s say you’re processing some sentences about pets in Central Park in New York
City (NYC). Let’s create three topics: one about pets, one about animals, and another
about cities. Call these topics “petness,” “animalness,” and “cityness.” So your “petness”
topic about pets will score words like “cat” and “dog” significantly, but probably ignore
words like “NYC” and “apple.” The “cityness” topic will ignore words like “cat” and “dog,”
but might give a little weight to “apple,” just because of the “Big Apple” association.

 If you “trained” your topic model like this, without using a computer, only your
common sense, you might come up with some weights like this:

>>> topic = {}
>>> tfidf = dict(list(zip('cat dog apple lion NYC love'.split(),
... np.random.rand(6)))) This tfidf vector is just a random example, as if it

were computed for a single document that
contained these words in some random proportion.

102 CHAPTER 4 Finding meaning in word counts (semantic analysis)
>>> topic['petness'] = (.3 * tfidf['cat'] +\
... .3 * tfidf['dog'] +\
... 0 * tfidf['apple'] +\
... 0 * tfidf['lion'] -\
... .2 * tfidf['NYC'] +\
... .2 * tfidf['love'])
>>> topic['animalness'] = (.1 * tfidf['cat'] +\
... .1 * tfidf['dog'] -\
... .1 * tfidf['apple'] +\
... .5 * tfidf['lion'] +\
... .1 * tfidf['NYC'] -\
... .1 * tfidf['love'])
>>> topic['cityness'] = (0 * tfidf['cat'] -\
... .1 * tfidf['dog'] +\
... .2 * tfidf['apple'] -\
... .1 * tfidf['lion'] +\
... .5 * tfidf['NYC'] +\
... .1 * tfidf['love'])

In this thought experiment, you added up the word frequencies that might be indica-
tors of each of your topics. You weighted the word frequencies (TF-IDF values) by how
likely the word is associated with a topic. You did the same, but subtracted, for words
that might be talking about something that is in some sense the opposite of your
topic. This isn’t a real algorithm walk-through, or example implementation, just a
thought experiment. You’re just trying to figure out how you can teach a machine to
think like you do. You arbitrarily chose to decompose your words and documents into
only three topics (“petness,” “animalness,” and “cityness”). And your vocabulary is lim-
ited; it has only six words in it.

 The next step is to think through how a human might decide mathematically
which topics and words are connected, and what weights those connections should
have. Once you decided on three topics to model, you then had to decide how much
to weight each word for those topics. You blended words in proportion to each other
to make your topic “color mix.” The topic modeling transformation (color mixing
recipe) is a 3 x 6 matrix of proportions (weights) connecting three topics to six words.
You multiplied that matrix by an imaginary 6 x 1 TF-IDF vector to get a 3 x 1 topic vec-
tor for that document.

 You made a judgment call that the terms “cat” and “dog” should have similar con-
tributions to the “petness” topic (weight of .3). So the two values in the upper left of
the matrix for your TF-IDF-to-topic transformation are both .3. Can you imagine ways
you might “compute” these proportions with software? Remember, you have a bunch
of documents your computer can read, tokenize, and count tokens for. You have TF-
IDF vectors for as many documents as you like. Keep thinking about how you might
use those counts to compute topic weights for a word as you read on.

 You decided that the term “NYC” should have a negative weight for the “petness”
topic. In some sense, city names, and proper names in general, and abbreviations, and
acronyms, share little in common with words about pets. Think about what “sharing in

“Hand-crafted” weights
(.3, .3, 0, 0, -.2, .2) are multiplied
by imaginary tfidf values to create
topic vectors for your imaginary
random document. You’ll compute
real topic vectors later.

103From word counts to topic scores
common” means for words. Is there something in a TF-IDF matrix that represents the
meaning that words share in common?

 You gave the word “love” a positive weight for the “pets” topic. This may be because
you often use the word “love” in the same sentence with words about pets. After all, we
humans tend to love our pets. We can only hope that our AI overlords will be similarly
loving toward us.

 Notice the small amount of the word “apple” into the topic vector for “city.” This
could be because you’re doing this by hand and we humans know that “NYC” and “Big
Apple” are often synonymous. Our semantic analysis algorithm will hopefully be able
to calculate this synonymy between “apple” and “NYC” based on how often “apple”
and “NYC” occur in the same documents.

 As you read the rest of the weighted sums in the example “code,” try to guess how
you came up with these weights for these three topics and six words. How might you
change them? What could you use as an objective measure of these proportions
(weights)? You may have a different “corpus” in your head than the one we used in
our heads. So you may have a different opinion about these words and the weights you
gave them. What could you do to come to a consensus about your opinions about
these six words and three topics?

NOTE We chose a signed weighting of words to produce the topic vectors.
This allows you to use negative weights for words that are the “opposite” of a
topic. And because you’re doing this manually by hand, we chose to normal-
ize your topic vectors by the easy-to-compute L1-norm (Manhattan, taxicab, or
city-block distance). Nonetheless, the real LSA you’ll use later in this chapter
normalizes topic vectors by the more useful L2-norm. L2-norm is the conven-
tional Euclidean distance or length that you’re familiar with from geometry
class. It’s the Pythagorean theorem solved for the length of the hypotenuse of
a right triangle.

You might have realized in reading these vectors that the relationships between words
and topics can be “flipped.” The 3 x 6 matrix of three topic vectors can be transposed
to produce topic weights for each word in your vocabulary. These vectors of weights
would be your word vectors for your six words:

>>> word_vector = {}
>>> word_vector['cat'] = .3*topic['petness'] +\
... .1*topic['animalness'] +\
... 0*topic['cityness']
>>> word_vector['dog'] = .3*topic['petness'] +\
... .1*topic['animalness'] -\
... .1*topic['cityness']
>>> word_vector['apple']= 0*topic['petness'] -\
... .1*topic['animalness'] +\
... .2*topic['cityness']
>>> word_vector['lion'] = 0*topic['petness'] +\
... .5*topic['animalness'] -\
... .1*topic['cityness']

104 CHAPTER 4 Finding meaning in word counts (semantic analysis)
>>> word_vector['NYC'] = -.2*topic['petness'] +\
... .1*topic['animalness'] +\
... .5*topic['cityness']
>>> word_vector['love'] = .2*topic['petness'] -\
... .1*topic['animalness'] +\
... .1*topic['cityness']

These six topic vectors (shown in Figure 4.1), one for each word, represent the mean-
ings of your six words as 3D vectors.

Figure 4.1 3D vectors for a thought experiment about six words about pets and NYC

Earlier, the vectors for each topic, with weights for each word, gave you 6-D vectors
representing the linear combination of words in your three topics. In your thought
experiment, you hand-crafted a three-topic model for a single natural language docu-
ment! If you just count up occurrences of these six words and multiply them by your
weights you get the 3D topic vector for any document. And 3D vectors are fun because
they’re easy for humans to visualize. You can plot them and share insights about your
corpus or a particular document in graphical form. 3D vectors (or any low-dimensional
vector space) are great for machine learning classification problems, too. An algorithm
can slice through the vector space with a plane (or hyperplane) to divide up the space
into classes.

 The documents in your corpus might use many more words, but this particular
topic vector model will only be influenced by the use of these six words. You could
extend this approach to as many words as you had the patience (or an algorithm) for.

.5

.1

z = “cityness”

NYC
[–.2, .1, .5]

apple
[0, –.1, .2]

love
[0, –.1, .2]

.3

cat
[.3, .1, 0]

dog
[.3, .1, –.1]

lion
[0, .5, –.1]

y = “animalness”

x = “petness”

105From word counts to topic scores
As long as your model only needed to separate documents according to three different
dimensions or topics, your vocabulary could keep growing as much as you like. In the
thought experiment, you compressed six dimensions (TF-IDF normalized frequen-
cies) into three dimensions (topics).

 This subjective, labor-intensive approach to semantic analysis relies on human
intuition and common sense to break down documents into topics. Common sense is
hard to code into an algorithm.4 So it isn’t repeatable—you’d probably come up with
different weights than we did. And obviously this isn’t suitable for a machine learning
pipeline. Plus it doesn’t scale well to more topics and words. A human couldn’t allo-
cate enough words to enough topics to precisely capture the meaning in any diverse
corpus of documents you might want your machine to deal with.

 So let’s automate this manual procedure. Let’s use an algorithm that doesn’t rely
on common sense to select topic weights for us.5

 If you think about it, each of these weighted sums is just a dot product. And three
dot products (weighted sums) is just a matrix multiplication, or inner product. You
multiply a 3 x n weight matrix with a TF-IDF vector (one value for each word in a doc-
ument), where n is the number of terms in your vocabulary. The output of this multi-
plication is a new 3 x 1 topic vector for that document. What you’ve done is
“transform” a vector from one vector space (TF-IDFs) to another lower-dimensional
vector space (topic vectors). Your algorithm should create a matrix of n terms by m
topics that you can multiply by a vector of the word frequencies in a document to get
your new topic vector for that document.

NOTE In mathematics, the size of a vocabulary (the set of all possible words
in a language) is usually written as |V |. And the variable V alone is used to rep-
resent the set of possible words in your vocabulary. So if you’re writing an aca-
demic paper about NLP, use |V| wherever we’ve used n to describe the size
of a vocabulary.

4.1.4 An algorithm for scoring topics

You still need an algorithmic way to determine these topic vectors. You need a trans-
formation from TF-IDF vectors into topic vectors. A machine can’t tell which words
belong together or what any of them signify, can it? J. R. Firth, a 20th century British

4 Doug Lenat at Stanford is trying to do just that, code common sense into an algorithm. See the Wired Maga-
zine article “Doug Lenat’s Artificial Intelligence Common Sense Engine” (https://www.wired.com/2016/03/
doug-lenat-artificial-intelligence-common-sense-engine).

5 The Wikipedia page for topic models has a video that shows how this might work for many more topics and
words. The darkness of the pixels represents the weight or value or score for a topic and a word, like the
weights in your manual example. And the video shows a particular algorithm, called SVD, that reorders the
words and topics, to put as much of the “weight” as possible along the diagonal. This helps identify patterns
that represent the meanings of both the topics and the words. https://upload.wikimedia.org/wikipedia/
commons/7/70/Topic_model_scheme.webm#t=00:00:01,00:00:17.600.

https://www.wired.com/2016/03/doug-lenat-artificial-intelligence-common-sense-engine
https://www.wired.com/2016/03/doug-lenat-artificial-intelligence-common-sense-engine
https://upload.wikimedia.org/wikipedia/commons/7/70/Topic_model_scheme.webm#t=00:00:01,00:00:17.600
https://upload.wikimedia.org/wikipedia/commons/7/70/Topic_model_scheme.webm#t=00:00:01,00:00:17.600

106 CHAPTER 4 Finding meaning in word counts (semantic analysis)
linguist, studied the ways you can estimate what a word or morpheme6 signifies. In
1957 he gave you a clue about how to compute the topics for words. Firth wrote

You shall know a word by the company it keeps.

 J. R. Firth

So how do you tell the “company” of a word? Well, the most straightforward approach
would be to count co-occurrences in the same document. And you have exactly what
you need for that in your bag-of-words (BOW) and TF-IDF vectors from chapter 3.
This “counting co-occurrences” approach led to the development of several algo-
rithms for creating vectors to represent the statistics of word usage within documents
or sentences.

 LSA is an algorithm to analyze your TF-IDF matrix (table of TF-IDF vectors) to
gather up words into topics. It works on bag-of-words vectors, too, but TF-IDF vectors
give slightly better results.

 LSA also optimizes these topics to maintain diversity in the topic dimensions; when
you use these new topics instead of the original words, you still capture much of the
meaning (semantics) of the documents. The number of topics you need for your
model to capture the meaning of your documents is far less than the number of words
in the vocabulary of your TF-IDF vectors. So LSA is often referred to as a dimension
reduction technique. LSA reduces the number of dimensions you need to capture the
meaning of your documents.

 Have you ever used a dimension reduction technique for a large matrix of num-
bers? What about pixels? If you’ve done machine learning on images or other high-
dimensional data, you may have run across a technique called principal component
analysis (PCA). As it turns out, PCA is exactly the same math as LSA. PCA, however, is
what you say when you’re reducing the dimensionality of images or other tables of
numbers, rather than bag-of-words vectors or TF-IDF vectors.

 Only recently did researchers discover that you could use PCA for semantic analysis
of words. That’s when they gave this particular application its own name, LSA. Even
though you’ll see the scikit-learn PCA model used shortly, the output of this fit and
transform process is a vector representing the semantics of a document. It’s still LSA.

 And here’s one more synonym for LSA you may run across. In the field of informa-
tion retrieval, where the focus is on creating indexes for full text search, LSA is often
referred to as latent semantic indexing (LSI). But this term has fallen out of favor. It
doesn’t produce an index at all. In fact, the topic vectors it produces are usually too high
dimensional to ever be indexed perfectly. So we use the term “LSA” from here on out.

TIP Indexing is what databases do to be able to retrieve a particular row in a
table quickly based on some partial information you provide it about that row.
A textbook’s index works like this. If you’re looking for a particular page, you

6 A morpheme is the smallest meaningful parts of a word. See Wikipedia article “Morpheme” (https://en.wikipe-
dia.org/wiki/Morpheme).

https://en.wikipedia.org/wiki/Morpheme
https://en.wikipedia.org/wiki/Morpheme

107From word counts to topic scores
can look up words in the index that should be on the page. Then you can go
straight to the page or pages that contain all the words you’re looking for.

LSA “COUSINS”
Two algorithms are similar to LSA, with similar NLP applications, so we mention them
here:

 Linear discriminant analysis (LDA)
 Latent Dirichlet allocation (LDiA)7

LDA breaks down a document into only one topic. LDiA is more like LSA because it
can break down documents into as many topics as you like.

TIP Because it’s one dimensional, LDA doesn’t require singular value
decomposition (SVD). You can just compute the centroid (average or mean)
of all your TF-IDF vectors for each side of a binary class, like spam and non-
spam. Your dimension then becomes the line between those two centroids.
The further a TF-IDF vector is along that line (the dot product of the TF-IDF
vector with that line) tells you how close you are to one class or another.

Here’s an example of this simple LDA approach to topic analysis first, to get you
warmed up before you tackle LSA and LDiA.

4.1.5 An LDA classifier

LDA is one of the most straightforward and fast dimension reduction and classifica-
tion models you’ll find. But this book may be one of the only places you’ll read about
it, because it’s not very flashy.8 But in many applications, you’ll find it has much better
accuracy than the fancier state-of-the art algorithms published in the latest papers. An
LDA classifier is a supervised algorithm, so you do need labels for your document
classes. But LDA requires far fewer samples than fancier algorithms.

 For this example, we show you a simplified implementation of LDA that you can’t
find in scikit-learn. The model “training” has only three steps, so you’ll just do
them all directly in Python:

1 Compute the average position (centroid) of all the TF-IDF vectors within the
class (such as spam SMS messages).

2 Compute the average position (centroid) of all the TF-IDF vectors not in the
class (such as nonspam SMS messages).

3 Compute the vector difference between the centroids (the line that connects
them).

7 We use the acronym LDiA for latent Dirichlet allocation. Perhaps Panupong (Ice) Pasupat would approve.
Panupong was an instructor at Stanford’s online CS NLP class about LDiA (https://ppasupat.github.io/
a9online/1140.html#latent-dirichlet-allocation-lda-).

8 You can find it mentioned in papers back in the 1990s, when people had to be efficient with their use of com-
puting and data resources (https://www.researchgate.net/profile/Georges_Hebrail/publication/221299406
_Automatic_Document_Classification_Natural_Language_Processing_Statistical_Analysis_and_Expert_Syste
m_Techniques_used_together/links/0c960516cf4968b29e000000.pdf).

https://ppasupat.github.io/a9online/1140.html#latent-dirichlet-allocation-lda-
https://ppasupat.github.io/a9online/1140.html#latent-dirichlet-allocation-lda-
https://www.researchgate.net/profile/Georges_Hebrail/publication/221299406_Automatic_Document_Classification_Natural_Language_Processing_Statistical_Analysis_and_Expert_System_Techniques_used_together/links/0c960516cf4968b29e000000.pdf
https://www.researchgate.net/profile/Georges_Hebrail/publication/221299406_Automatic_Document_Classification_Natural_Language_Processing_Statistical_Analysis_and_Expert_System_Techniques_used_together/links/0c960516cf4968b29e000000.pdf
https://www.researchgate.net/profile/Georges_Hebrail/publication/221299406_Automatic_Document_Classification_Natural_Language_Processing_Statistical_Analysis_and_Expert_System_Techniques_used_together/links/0c960516cf4968b29e000000.pdf

108 CHAPTER 4 Finding meaning in word counts (semantic analysis)
All you need to “train” an LDA model is to find the vector (line) between the two cen-
troids for your binary class. LDA is a supervised algorithm, so you need labels for your
messages. To do inference or prediction with that model, you just need to find out if a
new TF-IDF vector is closer to the in-class (spam) centroid than it is to the out-of-class
(nonspam) centroid. First let’s “train” an LDA model to classify SMS messages as spam
or nonspam (see the following listing).

>>> import pandas as pd
>>> from nlpia.data.loaders import get_data
>>> pd.options.display.width = 120
>>> sms = get_data('sms-spam')
>>> index = ['sms{}{}'.format(i, '!'*j) for (i,j) in\
... zip(range(len(sms)), sms.spam)]
>>> sms = pd.DataFrame(sms.values, columns=sms.columns, index=index)
>>> sms['spam'] = sms.spam.astype(int)
>>> len(sms)
4837
>>> sms.spam.sum()
638
>>> sms.head(6)

spam text
sms0 0 Go until jurong point, crazy.. Available only ...
sms1 0 Ok lar... Joking wif u oni...
sms2! 1 Free entry in 2 a wkly comp to win FA Cup fina...
sms3 0 U dun say so early hor... U c already then say...
sms4 0 Nah I don't think he goes to usf, he lives aro...
sms5! 1 FreeMsg Hey there darling it's been 3 week's n...

So you have 4,837 SMS messages, and 638 of them are labeled with the binary class
label “spam.”

 Now let’s do our tokenization and TF-IDF vector transformation on all these SMS
messages:

>>> from sklearn.feature_extraction.text import TfidfVectorizer
>>> from nltk.tokenize.casual import casual_tokenize
>>> tfidf_model = TfidfVectorizer(tokenizer=casual_tokenize)
>>> tfidf_docs = tfidf_model.fit_transform(\
... raw_documents=sms.text).toarray()
>>> tfidf_docs.shape
(4837, 9232)
>>> sms.spam.sum()
638

The nltk.casual_tokenizer gave you 9,232 words in your vocabulary. You have
almost twice as many words as you have messages. And you have almost ten times as
many words as spam messages. So your model won’t have a lot of information about
the words that will indicate whether a message is spam or not. Usually, a Naive Bayes
classifier won’t work well when your vocabulary is much larger than the number of

Listing 4.1 The SMS spam dataset

This line helps display the wide
column of SMS text within a
Pandas DataFrame printout.

This is just for display. You’ve flagged
spam messages by appending an

exclamation point, “!”, to their label.

109From word counts to topic scores
labeled examples in your dataset. That’s where the semantic analysis techniques of
this chapter can help.

 Let’s start with the simplest semantic analysis technique, LDA. You could use
the LDA model in sklearn.discriminant_analysis.LinearDiscriminant-
Analysis. But you only need compute the centroids of your binary class (spam and
nonspam) in order to “train” this model, so you’ll do that directly:

>>> mask = sms.spam.astype(bool).values
>>> spam_centroid = tfidf_docs[mask].mean(axis=0)
>>> ham_centroid = tfidf_docs[~mask].mean(axis=0)

>>> spam_centroid.round(2)
array([0.06, 0. , 0. , ..., 0. , 0. , 0.])
>>> ham_centroid.round(2)
array([0.02, 0.01, 0. , ..., 0. , 0. , 0.])

Now you can subtract one centroid from the other to get the line between them:

>>> spamminess_score = tfidf_docs.dot(spam_centroid -\
... ham_centroid)
>>> spamminess_score.round(2)
array([-0.01, -0.02, 0.04, ..., -0.01, -0. , 0.])

This raw spamminess_score is the distance along the line from the ham centroid to
the spam centroid. We calculated that score by projecting each TF-IDF vector onto
that line between the centroids using the dot product. And you did those 4,837 dot
products all at once in a “vectorized” numpy operation. This can speed things up 100
times compared to a Python loop.

 Figure 4.2 shows a view of the TF-IDF vectors in 3D and where these centroids are
for your SMS messages.

You can use this mask to select only the spam rows
from a numpy.array or pandas.DataFrame.

Because your TF-IDF vectors
are row vectors, you need to
make sure numpy computes

the mean for each column
independently using axis=0.

The dot product computes
the “shadow” or projection of
each vector on the line
between the centroids.

Figure 4.2 3D scatter plot (point cloud)
of your TF-IDF vectors

110 CHAPTER 4 Finding meaning in word counts (semantic analysis)
The arrow from the nonspam centroid to the spam centroid is the line that defines
your trained model. You can see how some of the green dots are on the back side of
the arrow, so you could get a negative spamminess score when you project them onto
this line between the centroids.

 Ideally, you’d like your score to range between 0 and 1, like a probability. The
sklearnMinMaxScaler can do that for you:

>>> from sklearn.preprocessing import MinMaxScaler
>>> sms['lda_score'] = MinMaxScaler().fit_transform(\
... spamminess_score.reshape(-1,1))
>>> sms['lda_predict'] = (sms.lda_score > .5).astype(int)
>>> sms['spam lda_predict lda_score'.split()].round(2).head(6)

spam lda_predict lda_score
sms0 0 0 0.23
sms1 0 0 0.18
sms2! 1 1 0.72
sms3 0 0 0.18
sms4 0 0 0.29
sms5! 1 1 0.55

That looks pretty good. All of the first six messages were classified correctly when you
set the threshold at 50%. Let’s see how it did on the rest of the training set:

>>> (1. - (sms.spam - sms.lda_predict).abs().sum() / len(sms)).round(3)
0.977

Wow! 97.7% of the messages were classified correctly with this simple model. You’re
not likely to achieve this result in the real world, because you haven’t separated out a
test set. This A+ score is on test “questions” that the classifier has already “seen.” But
LDA is a very simple model, with few parameters, so it should generalize well, as long
as your SMS messages are representative of the messages you intend to classify. Try it
on your own examples to find out. Or even better, check out appendix D and learn
how to do what’s called “cross validation.”

 This is the power of semantic analysis approaches. Unlike Naive Bayes or logistic
regression models, semantic analysis doesn’t rely on individual words.9 Semantic anal-
ysis gathers up words with similar semantics (such as spamminess) and uses them all
together. But remember that this training set has a limited vocabulary and some non-
English words in it. So your test messages need to use similar words if you want them
to be classified correctly.

 Let’s see what the training set confusion matrix looks like. This shows you the SMS
messages that it labeled as spam that weren’t spam at all (false positives), and the ones
that were labeled as ham that should have been labeled spam (false negatives):

>>> from pugnlp.stats import Confusion
>>> Confusion(sms['spam lda_predict'.split()])
lda_predict 0 1

9 Actually, a Naive Bayes classifier and a logistic regression model are both equivalent to this simple LDA model.
Dig into the math and the sklearn code if you want to see.

111Latent semantic analysis
spam
0 4135 64
1 45 593

That looks nice. You could adjust the 0.5 threshold on your score if the false positives
(64) or false negatives (45) were out of balance. Now you’re ready to learn about mod-
els that can compute multidimensional semantic vectors instead of just 1D semantic
scores. So far, the only thing your 1D vectors “understand” is the spamminess of words
and documents. You’d like them to learn a lot more word nuances and give you a
multidimensional vector that captures a word’s meaning.

 Before you dive into SVD, the math behind multidimensional LSA, we should
mention some other approaches first.

THE OTHER “COUSIN”
LSA has another “cousin.” And it has an abbreviation similar to LDA. LDiA stands for
latent Dirichlet allocation.10 LDiA can also be used to generate vectors that capture
the semantics of a word or document.

 LDiA takes the math of LSA in a different direction. It uses a nonlinear statistical
algorithm to group words together. As a result, it generally takes much longer to train
than linear approaches like LSA. Often this makes LDiA less practical for many real-
world applications, and it should rarely be the first approach you try. Nonetheless, the
statistics of the topics it creates sometimes more closely mirror human intuition about
words and topics. So LDiA topics will often be easier for you to explain to your boss.

 And LDiA is useful for some single-document problems such as document summa-
rization. Your corpus becomes the document, and your documents become the sen-
tences in that “corpus.” This is how gensim and other packages use LDiA to identify
the most “central” sentences of a document. These sentences can then be strung
together to create a machine-generated summary.11

 For most classification or regression problems, you’re usually better off using LSA.
So we explain LSA and its underlying SVD linear algebra first.

4.2 Latent semantic analysis
Latent semantic analysis is based on the oldest and most commonly-used technique
for dimension reduction, singular value decomposition. SVD was in widespread use
long before the term “machine learning” even existed.12 SVD decomposes a matrix
into three square matrices, one of which is diagonal.

 One application of SVD is matrix inversion. A matrix can be inverted by decom-
posing it into three simpler square matrices, transposing matrices, and then multiply-
ing them back together. You can imagine all the applications for an algorithm that

10 We chose the nonstandard LDiA acronym to distinguish it from the acronym LDA, which usually means linear
discriminant analysis, but not always. At least in this book, you won’t have to guess what we mean by that algo-
rithm. LDA will always mean linear discriminant analysis. LDiA will always mean latent Dirichlet allocation.

11 We generated some of the text in the “About this book” section using similar math, but implemented in a
neural network (see chapter 12).

12 Google Ngram Viewer (http://mng.bz/qJEA) is a great way to learn about the history of words and concepts.

http://mng.bz/qJEA

112 CHAPTER 4 Finding meaning in word counts (semantic analysis)
gives you a shortcut for inverting a large, complicated matrix. SVD is useful for
mechanical engineering problems such as truss structure stress and strain analysis. It’s
also useful for circuit analysis in electrical engineering. And it’s even used in data sci-
ence for behavior-based recommendation engines that run alongside content-based
NLP recommendation engines.

 Using SVD, LSA can break down your TF-IDF term-document matrix into three
simpler matrices. And they can be multiplied back together to produce the original
matrix, without any changes. This is like factorization of a large integer. Big whoop.
But these three simpler matrices from SVD reveal properties about the original TF-
IDF matrix that you can exploit to simplify it. You can truncate those matrices (ignore
some rows and columns) before multiplying them back together, which reduces the
number of dimensions you have to deal with in your vector space model.

 These truncated matrices don’t give the exact same TF-IDF matrix you started
with—they give you a better one. Your new representation of the documents contains
the essence, the “latent semantics” of those documents. That’s why SVD is used in
other fields for things such as compression. It captures the essence of a dataset and
ignores the noise. A JPEG image is ten times smaller than the original bitmap, but it
still contains all the information of the original image.

 When you use SVD this way in natural language processing, you call it latent
semantic analysis. LSA uncovers the semantics, or meaning, of words that is hidden
and waiting to be uncovered.

 Latent semantic analysis is a mathematical technique for finding the “best” way to
linearly transform (rotate and stretch) any set of NLP vectors, like your TF-IDF vectors
or bag-of-words vectors. And the “best” way for many applications is to line up the axes
(dimensions) in your new vectors with the greatest “spread” or variance in the word
frequencies.13 You can then eliminate those dimensions in the new vector space that
don’t contribute much to the variance in the vectors from document to document.

 Using SVD this way is called truncated singular value decomposition (truncated SVD).
In the image processing and image compression world, you might have heard of this
as principal component analysis (PCA). And we show you some tricks that help improve
the accuracy of LSA vectors. These tricks are also useful when you’re doing PCA for
machine learning and feature engineering problems in other areas.

 If you’ve taken linear algebra, you probably learned the algebra behind LSA called
singular value decomposition. And if you’ve done machine learning on images or
other high-dimensional data, like time series, you’ve probably used PCA on those
high-dimensional vectors. LSA on natural language documents is equivalent to PCA
on TF-IDF vectors.

 LSA uses SVD to find the combinations of words that are responsible, together, for
the biggest variation in the data. You can rotate your TF-IDF vectors so that the new

13 There are some great visualizations and explanations in chapter 16 of Jurafsky and Martin’s NLP textbook
(https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf#chapter.16).

https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf#chapter.16

113Latent semantic analysis
dimensions (basis vectors) of your rotated vectors all align with these maximum
variance directions. The “basis vectors” are the axes of your new vector space and are
analogous to your topic vectors in the three 6-D topic vectors from your thought
experiment at the beginning of this chapter. Each of your dimensions (axes) becomes
a combination of word frequencies rather than a single word frequency. So you think
of them as the weighted combinations of words that make up various “topics” used
throughout your corpus.

 The machine doesn’t “understand” what the combinations of words means, just
that they go together. When it sees words like “dog,” “cat,” and “love” together a lot, it
puts them together in a topic. It doesn’t know that such a topic is likely about “pets.” It
might include a lot of words like “domesticated” and “feral” in that same topic, words
that mean the opposite of each other. If they occur together a lot in the same docu-
ments, LSA will give them high scores for the same topics together. It’s up to us
humans to look at what words have a high weight in each topic and give them a name.

 But you don’t have to give the topics a name to make use of them. Just as you
didn’t analyze all the 1,000s of dimensions in your stemmed bag-of-words vectors or
TF-IDF vectors from previous chapters, you don’t have to know what all your topics
“mean.” You can still do vector math with these new topic vectors, just like you did
with TF-IDF vectors. You can add and subtract them and estimate the similarity
between documents based on their topic vectors instead of just their word counts.

 LSA gives you another bit of useful information. Like the “IDF” part of TF-IDF, it
tells you which dimensions in your vector are important to the semantics (meaning)
of your documents. You can discard those dimensions (topics) that have the least
amount of variance between documents. These low-variance topics are usually distrac-
tions, noise, for any machine learning algorithm. If every document has roughly the
same amount of some topic and that topic doesn’t help you tell the documents apart,
then you can get rid of it. And that will help generalize your vector representation so
it will work better when you use it with documents your pipeline hasn’t yet seen, even
documents from a different context.

 This generalization and compression that LSA performs accomplishes what you
attempted in chapter 2 when you ignored stop words. But the LSA dimension reduc-
tion is much better, because it’s optimal. It retains as much information as possible,
and it doesn’t discard any words, it only discards dimensions (topics).

 LSA compresses more meaning into fewer dimensions. We only have to retain the
high-variance dimensions, the major topics that your corpus talks about in a variety of
ways (with high variance). And each of these dimensions becomes your “topics,” with
some weighted combination of all the words captured in each one.

4.2.1 Your thought experiment made real

Let’s use an algorithm to compute some topics like “animalness,” “petness,” and “city-
ness” from your thought experiment. You can’t tell the LSA algorithm what you want the

114 CHAPTER 4 Finding meaning in word counts (semantic analysis)
topics to be about.14 But let’s just try it and see what happens. For a small corpus of short
documents such as tweets, chat messages, and lines of poetry, it takes only a few dimen-
sions (topics) to capture the semantics of those documents. See the following listing.

>>> from nlpia.book.examples.ch04_catdog_lsa_3x6x16\
... import word_topic_vectors
>>> word_topic_vectors.T.round(1)

cat dog apple lion nyc love
top0 -0.6 -0.4 0.5 -0.3 0.4 -0.1
top1 -0.1 -0.3 -0.4 -0.1 0.1 0.8
top2 -0.3 0.8 -0.1 -0.5 0.0 0.1

The rows in this topic-word matrix are the “word topic vectors” or just “topic vectors”
for each word. This is like the word scores used in the sentiment analysis model in
chapter 2. These will be the vectors you can use to represent the meaning of a word in
any machine learning pipeline; they are also sometimes called word “semantic vec-
tors.” And the topic vectors for each word can be added up to compute a topic vector
for a document.

 Surprisingly SVD created topic vectors analogous to the ones you pulled from your
imagination in the thought experiment. The first topic, labeled topic0, is a little like
your “cityness” topic earlier. The topic0 weights have larger weights for “apple” and
“NYC.” But topic0 came first in the LSA ordering of topics and last in your imagined
topics. LSA sorts the topics in order of importance, how much information or variance
they represent for your dataset. The topic0 dimension is along the axis of highest vari-
ance in your dataset. You can see the high variance in the cities when you notice several
sentences about “NYC” and “apple,” and several that don’t use those words at all.

 And topic1 looks different from all the thought experiment topics. The LSA
algorithm found that “love” was a more important topic than “animalness” for captur-
ing the essence of the documents that you ran it on. The last topic, topic2, appears
to be about “dog”s, with a little “love” thrown into the mix. The word “cat” is relegated
to the “anti-cityness” topic (negative cityness), because cats and cities aren’t men-
tioned together much.

 One more short thought experiment should help you appreciate how LSA works—
how an algorithm can create topic vectors without knowing what words mean.

MAD LIBS

Can you figure out what the word “awas” means from its context in the following
statement?

Awas! Awas! Tom is behind you! Run!

14 There is an area of research into something called “learned metrics,” which you can use to steer the topics
toward what you want them to be about. See NIPS paper “Learning Low-Dimensional Metrics” (https://
papers.nips.cc/paper/7002-learning-low-dimensional-metrics.pdf) by Lalit Jain, Blake Mason, and Robert
Nowak.

Listing 4.2 Topic-word matrix for LSA on 16 short sentences about cats, dogs, and NYC

https://papers.nips.cc/paper/7002-learning-low-dimensional-metrics.pdf
https://papers.nips.cc/paper/7002-learning-low-dimensional-metrics.pdf

115Latent semantic analysis
You might not guess that Tom is the alpha orangutan in Leakey Park, in Borneo. And
you might not know that Tom has been “conditioned” to humans but is territorial,
sometimes becoming dangerously aggressive. And your internal natural language pro-
cessor may not have time to consciously figure out what “awas” means until you have
run away to safety.

 But once you catch your breath and think about it, you might guess that “awas”
means “danger” or “watch out” in Indonesian. Ignoring the real world, and just focus-
ing on the language context, the words, you can often “transfer” a lot of the signifi-
cance or meaning of words you do know to words that you don’t.

 Try it sometime, with yourself or with a friend. Like a Mad Libs game,15 just replace
a word in a sentence with a foreign word, or even a made-up word. Then ask a friend
to guess what that word means, or ask them to fill in the blank with an English word.
Often your friend’s guess won’t be too far off from a valid translation of the foreign
word, or your intended meaning for the made-up word.

 Machines, starting with a clean slate, don’t have a language to build on. So it takes
much more than a single example for them to figure out what the words in it mean.
It’s like when you look at a sentence full of foreign words. But machines can do it
quite well, using LSA, even with just a random sampling of documents containing at
least a few mentions of the words you’re interested in.

 Can you see how shorter documents, like sentences, are better for this than large
documents such as articles or books? This is because the meaning of a word is usually
closely related to the meanings of the words in the sentence that contains it. But this
isn’t so true about the words that are far apart within a longer document.16

 LSA is a way to train a machine to recognize the meaning (semantics) of words and
phrases by giving the machine some example usages. Like people, machines can learn
better semantics from example usages of words much faster and easier than they can
from dictionary definitions. Extracting meaning from example usages requires less
logical reasoning than reading all the possible definitions and forms of a word in a
dictionary and then encoding that into some logic.

 The math you use to uncover the meaning of words in LSA is called singular value
decomposition. SVD, from your linear algebra class, is what LSA uses to create vectors
like those in the word-topic matrices just discussed.17

 Finally some NLP in action: we now show you how a machine is able to “play Mad
Libs” to understand words.

15 See the web page titled “Mad Libs” (https://en.wikipedia.org/wiki/Mad_Libs).
16 When Tomas Mikolov was thinking about this as he came up with Word2vec, he realized he could tighten up

the meaning of word vectors if he tightened up the context even further, limiting the distance between con-
text words to five.

17 Check out the examples in nlpia/book/examples/ch04_*.py if you want to see the documents and vector
math behind this “actualization” of the thought experiment. This was a thought experiment before SVD was
used on real natural language sentences. We were lucky that the topics were at all similar.

https://en.wikipedia.org/wiki/Mad_Libs

116 CHAPTER 4 Finding meaning in word counts (semantic analysis)

.

4.3 Singular value decomposition
Singular value decomposition is the algorithm behind LSA. Let’s start with a corpus of
only 11 documents and a vocabulary of 6 words, similar to what you had in mind for
your thought experiment:18

>>> from nlpia.book.examples.ch04_catdog_lsa_sorted\
... import lsa_models, prettify_tdm
>>> bow_svd, tfidf_svd = lsa_models()
>>> prettify_tdm(**bow_svd)

cat dog apple lion nyc love
text
0 1 1 NYC is the Big Apple.
1 1 1 NYC is known as the Big Apple.
2 1 1 I love NYC!
3 1 1 I wore a hat to the Big Apple party in NYC.
4 1 1 Come to NYC. See the Big Apple!
5 1 Manhattan is called the Big Apple.
6 1 New York is a big city for a small cat.
7 1 1 The lion, a big cat, is the king of the jungle.
8 1 1 I love my pet cat.
9 1 1 I love New York City (NYC).
10 1 1 Your dog chased mycat.

This is a document-term matrix where each row is a vector of the bag-of-words for a
document.

 You’ve limited the vocabulary to match the thought experiment. And you limited
the corpus to only a few (11) documents that use the 6 words in your vocabulary.
Unfortunately, the sorting algorithm and the limited vocabulary created several iden-
tical bag-of-words vectors (NYC, apple). But SVD should be able to “see” that and allo-
cate a topic to that pair of words.

 You’ll first use SVD on the term-document matrix (the transpose of the document-
term matrix above), but it works on TF-IDF matrices or any other vector space model:

>>> tdm = bow_svd['tdm']
>>> tdm

0 1 2 3 4 5 6 7 8 9 10
cat 0 0 0 0 0 0 1 1 1 0 1
dog 0 0 0 0 0 0 0 0 0 0 1
apple 1 1 0 1 1 1 0 0 0 0 0
lion 0 0 0 0 0 0 0 1 0 0 0
nyc 1 1 1 1 1 0 0 0 0 1 0
love 0 0 1 0 0 0 0 0 1 1 0

SVD is an algorithm for decomposing any matrix into three “factors,” three matrices
that can be multiplied together to recreate the original matrix. This is analogous to
finding exactly three integer factors for a large integer. But your factors aren’t scalar
integers, they are 2D real matrices with special properties. The three matrix factors

18 We just chose 11 short sentences to keep the print version short. You could learn a lot by checking out the
ch04 examples in nplpia and running SVD on larger and larger corpora.

This performs LSA on the cats_and_dogs corpus
using the vocabulary from the thought
experiment. You’ll soon peak inside this black box

117Singular value decomposition
you compute with SVD have some useful mathematical properties you can exploit for
dimension reduction and LSA. In linear algebra class you may have used SVD to find
the inverse of a matrix. Here you’ll use it for LSA to figure out what your topics
(groups of related words) need to be.

 Whether you run SVD on a BOW term-document matrix or a TF-IDF term-
document matrix, SVD will find combinations of words that belong together. SVD
finds those co-occurring words by calculating the correlation between the columns
(terms) of your term-document matrix.19 SVD simultaneously finds the correlation of
term use between documents and the correlation of documents with each other. With
these two pieces of information SVD also computes the linear combinations of terms
that have the greatest variation across the corpus. These linear combinations of term
frequencies will become your topics. And you’ll keep only those topics that retain the
most information, the most variance in your corpus. It also gives you the linear trans-
formation (rotation) of your term-document vectors to convert those vectors into
shorter topic vectors for each document.

 SVD will group terms together that have high correlation with each other (because
they occur in the same documents together a lot) and also vary together a lot over the
set of documents. We think of these linear combinations of words as “topics.” These
topics turn your BOW vectors (or TF-IDF vectors) into topic vectors that tell you the
topics a document is about. A topic vector is kind of like a summary, or generalization,
of what the document is about.

 It’s unclear who came up with the idea to apply SVD to word counts to create topic
vectors. Several linguists were working on similar approaches simultaneously. They
were all finding that the semantic similarity between two natural language expressions
(or individual words) is proportional to the similarity between the contexts in which
words or expressions are used. These researchers include Harris, Z. S. (1951),20 Koll
(1979),21 Isbell (1998),22 Dumais et al. (1988),23 Salton and Lesk (1965),24 and Deer-
wester (1990).25

 Here’s what SVD (the heart of LSA) looks like in math notation:

Wmxn Umxp Spxp Vpxn
T

19 This is equivalent to the square root of the dot product of two columns (term-document occurrence vectors),
but SVD provides you additional information that computing the correlation directly wouldn’t provide.

20 Jurafsky and Schone cite “Methods in structural linguistics” by Harris, Z. S., 1951 in their 2000 paper
“Knowledge-Free Induction of Morphology Using Latent Semantic Analysis” (https://dl.acm.org/ft_gateway
.cfm?id=1117615&ftid=570935&dwn=1&#URLTOKEN#) as well as in their slides (https://slidegur.com/doc/
3928417/knowledge-free-induction-of-morphology-using-latent).

21 Koll, M. (1979) “Generalized vector spaces model in information retrieval” (https://dl.acm.org/cita-
tion.cfm?id=253506) and “Approach to Concept Based Information Retrieval” by Koll, M. (1979).

22 “Restructuring Sparse High-Dimensional Data for Effective Retrieval” (http://papers.nips.cc/paper/1597
-restructuring-sparse-high-dimensional-data-for-effective-retrieval.pdf) by Charles Lee Isbell, Jr., 1998.

23 “Using latent semantic analysis to improve access to textual information” by Dumais et al., 1988 (https://
dl.acm.org/citation.cfm?id=57214).

24 Salton, G., (1965) “The SMART automatic document retrieval system.”
25 Deerwester, S. et al. “Indexing by Latent Semantic Indexing.”

https://dl.acm.org/ft_gateway.cfm?id=1117615&ftid=570935&dwn=1&#URLTOKEN#
https://dl.acm.org/ft_gateway.cfm?id=1117615&ftid=570935&dwn=1&#URLTOKEN#
https://dl.acm.org/citation.cfm?id=253506
https://dl.acm.org/citation.cfm?id=253506
http://papers.nips.cc/paper/1597-restructuring-sparse-high-dimensional-data-for-effective-retrieval.pdf
http://papers.nips.cc/paper/1597-restructuring-sparse-high-dimensional-data-for-effective-retrieval.pdf
https://dl.acm.org/citation.cfm?id=57214
https://dl.acm.org/citation.cfm?id=57214
https://slidegur.com/doc/3928417/knowledge-free-induction-of-morphology-using-latent
https://slidegur.com/doc/3928417/knowledge-free-induction-of-morphology-using-latent

118 CHAPTER 4 Finding meaning in word counts (semantic analysis)
In this formula, m is the number of terms in your vocabulary, n is the number of docu-
ments in your corpus, and p is the number of topics in your corpus, and this is the
same as the number of words. But wait, weren’t you trying to end up with fewer
dimensions? You want to eventually end up with fewer topics than words, so you can
use those topic vectors (rows of the topic-document matrix) as a reduced-dimension
representation of the original TF-IDF vectors. You eventually get to that. But at this
first stage, you retain all the dimensions in your matrices.

 The following sections show you what those three matrices (U, S, and V) look like.

4.3.1 U—left singular vectors

The U matrix contains the term-topic matrix that tells you about “the company a word
keeps.”26 This is the most important matrix for semantic analysis in NLP. The U matrix
is called the “left singular vectors” because it contains row vectors that should be mul-
tiplied by a matrix of column vectors from the left.27 U is the cross-correlation between
words and topics based on word co-occurrence in the same document. It’s a square
matrix until you start truncating it (deleting columns). It has the same number of
rows and columns as you have words in your vocabulary (m): six. You still have six top-
ics (p), because you haven’t truncated this matrix… yet.

>>> import numpy as np
>>> U, s, Vt = np.linalg.svd(tdm)
>>> import pandas as pd
>>> pd.DataFrame(U, index=tdm.index).round(2)

0 1 2 3 4 5
cat -0.04 0.83 -0.38 -0.00 0.11 -0.38
dog -0.00 0.21 -0.18 -0.71 -0.39 0.52
apple -0.62 -0.21 -0.51 0.00 0.49 0.27
lion -0.00 0.21 -0.18 0.71 -0.39 0.52
nyc -0.75 -0.00 0.24 -0.00 -0.52 -0.32
love -0.22 0.42 0.69 0.00 0.41 0.37

Notice that the SVD algorithm is a bread-and-butter numpy math operation, not a
fancy scikit-learn machine learning algorithm.

 The U matrix contains all the topic vectors for each word in your corpus as columns.
This means it can be used as a transformation to convert a word-document vector (a TF-
IDF vector or a BOW vector) into a topic-document vector. You just multiply your topic-
word U matrix by any word-document column vector to get a new topic-document

26 If you try to duplicate these results with the PCA model in sklearn, you’ll notice that it gets this term-topic
matrix from the VT matrix because the input dataset is transposed relative to what you did here. scikit-learn
always arranges data as row vectors so your term-document matrix in tdm is transposed into a document-term
matrix when you use PCA.fit() or any other sklearn model training.

27 Mathematicians call these vectors “left eigenvectors” or “row eigenvectors.” See the Wikipedia article “Eigen-
values and eigenvectors” (https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors#Left_and_right_
eigenvectors).

Listing 4.3 Umxp

You’re reusing the tdm term-
document matrix from the
earlier code sections.

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors#Left_and_right_eigenvectors
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors#Left_and_right_eigenvectors

119Singular value decomposition
vector. This is because the weights or scores in each cell of the U matrix represent how
important each word is to each topic. This is exactly what you did in the thought exper-
iment that started this whole cats and dogs adventure in NYC.

 Even though you have what you need to map word frequencies to topics, we
explain the remaining factors that SVD gives you and how they are used.

4.3.2 S—singular values

The Sigma or S matrix contains the topic “singular values” in a square diagonal matrix.28

The singular values tell you how much information is captured by each dimension in
your new semantic (topic) vector space. A diagonal matrix has nonzero values only
along the diagonal from the upper left to the lower right. Everywhere else the S matrix
will have zeros. So numpy saves space by returning the singular values as an array, but
you can easily convert it to a diagonal matrix with the numpy.diag function, as shown
in the following listing.

>>> s.round(1)
array([3.1, 2.2, 1.8, 1. , 0.8, 0.5])
>>> S = np.zeros((len(U), len(Vt)))
>>> pd.np.fill_diagonal(S, s)
>>> pd.DataFrame(S).round(1)

0 1 2 3 4 5 6 7 8 9 10
0 3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0

Like the U matrix, your S matrix for your 6-word, 6-topic corpus has six rows (p). But
it has many more columns (n) filled with zeros. It needs a column for every docu-
ment so you can multiply it by V T, the document-document matrix, that you’ll learn
about next. Because you haven’t yet reduced the dimensionality by truncating this
diagonal matrix, you have as many topics (p) as you have terms in your vocabulary
(m), six. And your dimensions (topics) are constructed such that the first dimension
contains the most information (“explained variance”) about your corpus. That way
when you want to truncate your topic model, you can start zeroing out the dimen-
sions at the lower right and work your way up and to the left. You can stop zeroing
out these singular values when the error in your topic model starts to contribute sig-
nificantly to the overall NLP pipeline error.

TIP Here’s the trick we mentioned earlier. For NLP, and most other applica-
tions, you don’t want to retain the variance information in your topic model.
The documents you process in the future might not be about the same topics.

28 Mathematicians call these eigenvalues.

Listing 4.4 Spxp

120 CHAPTER 4 Finding meaning in word counts (semantic analysis)
In most cases you’re better off setting the diagonal elements of your S matrix
to ones, creating a rectangular identity matrix that just reshapes the V T

document-document matrix to be compatible with your U word-topic matrix.
That way if you multiply this S matrix by some new set of document vectors you
won’t skew the topic vectors toward your original topic mix (distribution).

4.3.3 VT—right singular vectors

The V T matrix contains the “right singular vectors” as the columns of the document-
document matrix. This gives you the shared meaning between documents, because it
measures how often documents use the same topics in your new semantic model of
the documents. It has the same number of rows (p) and columns as you have docu-
ments in your small corpus, 11. See the following listing.

>>> pd.DataFrame(Vt).round(2)
0 1 2 3 4 5 6 7 8 9 10

0 -0.44 -0.44 -0.31 -0.44 -0.44 -0.20 -0.01 -0.01 -0.08 -0.31 -0.01
1 -0.09 -0.09 0.19 -0.09 -0.09 -0.09 0.37 0.47 0.56 0.19 0.47
2 -0.16 -0.16 0.52 -0.16 -0.16 -0.29 -0.22 -0.32 0.17 0.52 -0.32
3 0.00 -0.00 -0.00 0.00 0.00 0.00 -0.00 0.71 0.00 -0.00 -0.71
4 -0.04 -0.04 -0.14 -0.04 -0.04 0.58 0.13 -0.33 0.62 -0.14 -0.33
5 -0.09 -0.09 0.10 -0.09 -0.09 0.51 -0.73 0.27 -0.01 0.10 0.27
6 -0.57 0.21 0.11 0.33 -0.31 0.34 0.34 -0.00 -0.34 0.23 0.00
7 -0.32 0.47 0.25 -0.63 0.41 0.07 0.07 0.00 -0.07 -0.18 0.00
8 -0.50 0.29 -0.20 0.41 0.16 -0.37 -0.37 -0.00 0.37 -0.17 0.00
9 -0.15 -0.15 -0.59 -0.15 0.42 0.04 0.04 -0.00 -0.04 0.63 -0.00
10 -0.26 -0.62 0.33 0.24 0.54 0.09 0.09 -0.00 -0.09 -0.23 -0.00

Like the S matrix, you’ll ignore the V T matrix whenever you’re transforming new
word-document vectors into your topic vector space. You’ll only use it to check the
accuracy of your topic vectors for recreating the original word-document vectors that
you used to “train” it.

4.3.4 SVD matrix orientation

If you’ve done machine learning with natural language documents before, you may
notice that your term-document matrix is “flipped” (transposed) relative to what
you’re used to seeing in scikit-learn and other packages. In the Naive Bayes sentiment
model at the end of chapter 2, and the TF-IDF vectors of chapter 3, you created your
training set as a document-term matrix. This is the orientation that scikit-learn models
require. Each row of your training set in the sample-feature matrix for a machine
learning sample is a document. And each column represented a word or feature of
those documents. But when you do the SVD linear algebra directly, your matrix needs
to be transposed into term-document format.29

Listing 4.5 Vpxn
T

29 Actually, within the sklearn.PCA model they leave the document-term matrix unflipped and just flip the SVD
matrix math operations. So the PCA model in scikit-learn ignores the U and S matrix and uses only the V T

matrix for its transformation of new document-term row vectors into document-topic row vectors.

121Singular value decomposition
IMPORTANT Matrices are named and sized by their rows first, then the col-
umns. So a “term-document” matrix is a matrix where the rows are the words,
and the columns are the documents. Matrix dimensions (sizes) work the
same way. A 2 x 3 matrix will have two rows and three columns, which means
it has an np.shape() of (2, 3) and a len() of two.

Don’t forget to transpose your term-document or topic-document matrices back to
the scikit-learn orientation before training a machine learning model. In scikit-learn,
each row in an NLP training set should contain a vector of the features associated with
a document (an email, SMS message, sentence, web page, or any other chunk of text).
In NLP training sets, your vectors are row vectors. In traditional linear algebra opera-
tions, vectors are usually thought of as column vectors.

 In the next section, we go through all this with you to train a scikit-learnTrun-
catedSVD transformer to transform bag-of-words vectors into topic-document vectors.
You’ll then transpose those vectors back to create the rows of your training set so you
can train a scikit-learn (sklearn) classifier on those document-topic vectors.

WARNING If you’re using scikit-learn, you must transpose the feature-
document matrix (usually called X in sklearn) to create a document-feature
matrix to pass into your .fit() and .predict() methods of a model. Each
row in a training set matrix should be a feature vector for a particular sample
text, usually a document.30

4.3.5 Truncating the topics

You now have a topic model, a way to transform word frequency vectors into topic
weight vectors. But because you have just as many topics as words, your vector space
model has just as many dimensions as the original BOW vectors. You’ve just created
some new words and called them “topics” because they each combine words together
in various ratios. You haven’t reduced the number of dimensions… yet.

 You can ignore the S matrix, because the rows and columns of your U matrix are
already arranged so that the most important topics (with the largest singular values)
are on the left. Another reason you can ignore S is that most of the word-document
vectors you’ll want to use with this model, like TF-IDF vectors, have already been nor-
malized. Finally, it just produces better topic models if you set it up this way.31

 So let’s start lopping off columns on the right-hand side of U. But wait. How many
topics will be enough to capture the essence of a document? One way to measure the
accuracy of LSA is to see how accurately you can recreate a term-document matrix
from a topic-document matrix. The following listing plots the reconstruction accuracy
for the 9-term, 11-document matrix you used earlier to demonstrate SVD.

30 See the scikit-learn documentation on LSA (http://scikit-learn.org/stable/modules/decomposition
.html#lsa).

31 Levy, Goldberg, and Dagan, Improving Distributional Similarity with Lessons Learned from Word Embed-
dings, 2015.

http://scikit-learn.org/stable/modules/decomposition.html#lsa
http://scikit-learn.org/stable/modules/decomposition.html#lsa

122 CHAPTER 4 Finding meaning in word counts (semantic analysis)

>>> err = []
>>> for numdim in range(len(s), 0, -1):
... S[numdim - 1, numdim - 1] = 0
... reconstructed_tdm = U.dot(S).dot(Vt)
... err.append(np.sqrt(((\
... reconstructed_tdm - tdm).values.flatten() ** 2).sum()
... / np.product(tdm.shape)))
>>> np.array(err).round(2)
array([0.06, 0.12, 0.17, 0.28, 0.39, 0.55])

When you reconstruct a term-document matrix for your 11 documents using the sin-
gular vectors, the more you truncate, the more the error grows. The 3-topic model
from earlier would have about 28% error if you used it to reconstruct BOW vectors for
each document. Figure 4.3 shows a plot of that accuracy drop as you drop more and
more dimensions in your topic model.

 As you can see, the accuracy drop is pretty similar, whether you use TF-IDF vectors
or BOW vectors for your model. But TF-IDF vectors will perform slightly better if you
plan to retain only a few topics in your model.

 This is a simple example, but you can see how you might use a plot like this to
decide how many topics (dimensions) you want in your model. In some cases you may

Listing 4.6 Term-document matrix reconstruction error

0

0.5

0.6

0.7

0.8

0.9

1.0

R
ec

o
n

st
ru

ct
io

n
 a

cc
u

ra
cy

LSA model accuracy

Number of dimensions eliminated

BOW word-document matrix
TE-IDF term-document matrix

1 2 3 4 5 6

Figure 4.3 Term-document matrix reconstruction accuracy decreases as you ignore
more dimensions.

123Principal component analysis
find that you get perfect accuracy, after eliminating several of the dimensions in your
term-document matrix. Can you guess why?

 The SVD algorithm behind LSA “notices” if words are always used together and
puts them together in a topic. That’s how it can get a few dimensions “for free.” Even
if you don’t plan to use a topic model in your pipeline, LSA (SVD) can be a great way
to compress your word-document matrices and identify potential compound words or
n-grams for your pipeline.

4.4 Principal component analysis
Principal component analysis is another name for SVD when it’s used for dimension
reduction, like you did to accomplish your latent semantic analysis earlier. And the
PCA model in scikit-learn has some tweaks to the SVD math that will improve the
accuracy of your NLP pipeline.

 For one, sklearn.PCA automatically “centers” your data by subtracting off the
mean word frequencies. Another, more subtle trick is that PCA uses a function called
flip_sign to deterministically compute the sign of the singular vectors.32

 Finally, the sklearn implementation of PCA implements an optional “whitening”
step. This is similar to your trick of ignoring the singular values when transforming
word-document vectors into topic-document vectors. Instead of just setting all the sin-
gular values in S to one, whitening divides your data by these variances just like the
sklearn.StandardScaler transform does. This helps spread out your data and
makes any optimization algorithm less likely to get lost in “half pipes” or “rivers” of
your data that can arise when features in your dataset are correlated with each other.33

 Before you apply PCA to real-world, high-dimensional NLP data, let’s take a step
back and look at a more visual representation of what PCA and SVD do. This will also
help you understand the API for the scikit-learn PCA implementation. PCA is useful
for a wide range of applications, so this insight will be helpful for more than just NLP.
You’re going to do PCA on a 3D point cloud before you try it out on high-dimensional
natural language data.

 For most “real” problems, you’ll want to use the sklearn.PCA model for your latent
semantic analysis. The one exception is if you have more documents than you can
hold in RAM. In that case, you’ll need to use the IncrementalPCA model in sklearn or
some of the scaling techniques we talk about in chapter 13.

TIP If you have a huge corpus and you urgently need topic vectors (LSA),
skip to chapter 13 and check out gensim.models.LsiModel (https://radimre-
hurek.com/gensim/models/lsimodel.html). If a single machine still isn’t
enough to get the work done quickly, check out RocketML’s parallelization of
the SVD algorithm (http://rocketml.net).

32 You can find some experiments with these functions within PCA that you used to understand all these subtle-
ties in nlpia.book.examples.ch04_sklearn_pca_source.

33 See the web page titled “Deep Learning Tutorial - PCA and Whitening” (http://mccormickml.com/2014/06/
03/deep-learning-tutorial-pca-and-whitening/).

http://rocketml.net
http://mccormickml.com/2014/06/03/deep-learning-tutorial-pca-and-whitening/
http://mccormickml.com/2014/06/03/deep-learning-tutorial-pca-and-whitening/
https://radimrehurek.com/gensim/models/lsimodel.html
https://radimrehurek.com/gensim/models/lsimodel.html

124 CHAPTER 4 Finding meaning in word counts (semantic analysis)
You’re going to start with a set of real-world 3D vectors, rather than 10,000+ dimen-
sional document-word vectors. It’s a lot easier to visualize things in 3D than it is in
10,000-D. Because you’re only dealing with three dimensions, it’s straightforward to
plot them using the Axes3D class in Matplotlib. See the nlpia (http://github.com/
totalgood/nlpia) package for the code to create rotatable 3D plots like this.

 In fact, the point cloud shown in Figure 4.4 is from the 3D scan of the surface of a
real-world object, not the pointy tips of a set of BOW vectors. But this will help you get
a feel for how LSA works. And you can see how to manipulate and plot small vectors
before you tackle higher-dimensional vectors such as document-word vectors.

 Can you guess what this 3D object is that created these 3D vectors? You only have a
2D projection printed in this book to go on. Can you think of how you would program
a machine to rotate the object around so that you could get a better view? Are there
statistics about the data points that you could use to optimally align the X and Y axes
with the object? As you rotate the 3D blob in your mind, imagine how the variance
along the X, Y, and Z axes might change as you rotate it.

Figure 4.4 Looking up from below the “belly” at the point cloud for a real object

http://github.com/totalgood/nlpia
http://github.com/totalgood/nlpia

125Principal component analysis

t.
4.4.1 PCA on 3D vectors

We manually rotated the point cloud into this particular orientation to minimize the
variance along the axes of the window for the plot. We did that so that you’d have a
hard time recognizing what it is. If SVD (LSA) did this to your document-word vec-
tors, it would “hide” the information in those vectors. Stacking the points on top of
each other in your 2D projection prevents human eyes, or machine learning algo-
rithms, from separating the points into meaningful clusters. But SVD preserves the
structure, information content, of your vectors by maximizing the variance along the
dimensions of your lower-dimensional “shadow” of the high-dimensional space. This
is what you need for machine learning so that each low-dimensional vector captures
the “essence” of whatever it represents. SVD maximizes the variance along each axis.
And variance turns out to be a pretty good indicator of “information,” or that
“essence” you’re looking for:

>>> import pandas as pd
>>> pd.set_option('display.max_columns', 6)
>>> from sklearn.decomposition import PCA
>>> import seaborn
>>> from matplotlib import pyplot as plt
>>> from nlpia.data.loaders import get_data

>>> df = get_data('pointcloud').sample(1000)
>>> pca = PCA(n_components=2)
>>> df2d = pd.DataFrame(pca.fit_transform(df), columns=list('xy'))
>>> df2d.plot(kind='scatter', x='x', y='y')
>>> plt.show()

If you run this script, the orientation of your 2D projection may randomly “flip” left to
right, but it never tips or twists to a new angle. The orientation of the 2D projection is
computed so that the maximum variance is always aligned with the x axis, the first
axis. The second largest variance is always aligned with the y axis, the second dimen-
sion of your “shadow” or “projection.” But the polarity (sign) of these axes is arbitrary
because the optimization has two remaining degrees of freedom. The optimization is
free to flip the polarity of the vectors (points) along the x or y axis, or both.

 There’s also a horse_plot.py script in the nlpia/data directory if you’d like to play
around with the 3D orientation of the horse. There may indeed be a more optimal
transformation of the data that eliminates one dimension without reducing the infor-
mation content of that data (to your eye). And Picasso’s cubist “eye” might come up
with a nonlinear transformation that maintains the information content of views from
multiple perspectives all at once. And there are “embedding” algorithms to do this,
like the one we talk about in chapter 6.

 But don’t you think good old linear SVD and PCA do a pretty good job of preserv-
ing the “information” in the point cloud vector data? Doesn’t your 2D projection of
the 3D horse provide a good view of the data? Wouldn’t a machine be able to learn

Ensure that your
pd.DataFrame printouts fit
within the width of a page.

Even though it’s called PCA in
scikit-learn, this is SVD.

You’re reducing a 3D point cloud to a 2D
“projection” for display in a 2D scatter plo

126 CHAPTER 4 Finding meaning in word counts (semantic analysis)
something from the statistics of these 2D vectors computed from the 3D vectors of the
surface of a horse (see figure 4.5)?

4.4.2 Stop horsing around and get back to NLP

Let’s see how SVD will do on some natural language documents. Let’s find the princi-
pal components using SVD on the 5,000 SMS messages labeled as spam (or not). The
vocabulary and variety of topics discussed in this limited set of SMS messages from a
university lab should be relatively small. So let’s limit the number of topics to 16.
You’ll use both the scikit-learn PCA model as well as the truncated SVD model to see if
there are any differences.

 The truncated SVD model is designed to work with sparse matrices. Sparse matrices
are matrices that have the same value (usually zero or NaN) in a lot of the cells. NLP
bag-of-words and TF-IDF matrices are almost always sparse, because most documents
don’t contain many of the words in your vocabulary. Most of your word counts are
zero (before you add a “ghost” count to them all to smooth your data out).

 Sparse matrices are like spreadsheets that are mostly empty, but have a few mean-
ingful values scattered around. The sklearn PCA model may provide a faster solution
than TruncatedSVD by using dense matrices with all those zeros filled in. But
sklearn.PCA wastes a lot of RAM trying to “remember” all those zeros that are dupli-
cated all over the place. The TfidfVectorizer in scikit-learn outputs sparse matrices,
so you need to convert those to dense matrices before you compare the results to PCA.

 First, let’s load the SMS messages from a DataFrame in the nlpia package:

>>> import pandas as pd
>>> from nlpia.data.loaders import get_data
>>> pd.options.display.width = 120

>>> sms = get_data('sms-spam')

Figure 4.5 Head-to-head horse point clouds upside-down

This helps the wide Pandas
DataFrames print out a bit prettier.

127Principal component analysis
>>> index = ['sms{}{}'.format(i, '!'*j)

➥ for (i,j) in zip(range(len(sms)), sms.spam)]
>>> sms.index = index
>>> sms.head(6)

spam text
sms0 0 Go until jurong point, crazy.. Available only ...
sms1 0 Ok lar... Joking wif u oni...
sms2! 1 Free entry in 2 a wkly comp to win FA Cup fina...
sms3 0 U dun say so early hor... U c already then say...
sms4 0 Nah I don't think he goes to usf, he lives aro...
sms5! 1 FreeMsg Hey there darling it's been 3 week's n...

Now you can calculate the TF-IDF vectors for each of these messages:

>>> from sklearn.feature_extraction.text import TfidfVectorizer
>>> from nltk.tokenize.casual import casual_tokenize

>>> tfidf = TfidfVectorizer(tokenizer=casual_tokenize)
>>> tfidf_docs = tfidf.fit_transform(raw_documents=sms.text).toarray()
>>> len(tfidf.vocabulary_)
9232

>>> tfidf_docs = pd.DataFrame(tfidf_docs)
>>> tfidf_docs = tfidf_docs - tfidf_docs.mean()
>>> tfidf_docs.shape
(4837, 9232)
>>> sms.spam.sum()
638

So you have 4,837 SMS messages with 9,232 different 1-gram tokens from your
tokenizer (casual_tokenize). Only 638 of these 4,837 messages (13%) are labeled
as spam. So you have an unbalanced training set with about 8:1 ham (normal SMS
messages) to spam (unwanted solicitations and advertisements).

 You might deal with this ham sampling bias by reducing the “reward” for any model
that classifies ham correctly. But the large vocabulary size, |V |, is trickier to deal with.
The 9,232 tokens in your vocabulary is greater than the 4,837 messages (samples) you
have to go on. So you have many more unique words in your vocabulary (or lexicon)
than you have SMS messages. And of those SMS messages only a small portion of them
(1/8th) are labeled as spam. That’s a recipe for overfitting.34 Only a few unique words
out of your large vocabulary will be labeled as “spammy” words in your dataset.

 Overfitting means that you will “key” off of only a few words in your vocabulary. So
your spam filter will be dependent on those spammy words being somewhere in the
spammy messages it filters out. Spammers could easily get around your filter if they
just used synonyms for those spammy words. If your vocabulary doesn’t include the
spammer’s new synonyms, then your filter will mis-classify those cleverly constructed
SMS messages as ham.

34 See the web page titled “Overfitting” (https://en.wikipedia.org/wiki/Overfitting).

You’re adding an exclamation mark
to the sms message index numbers
to make them easier to spot.

This centers your vectorized
documents (BOW vectors) by
subtracting the mean.

The .shape attribute tells
you the length of each of the
dimensions for any numpy array.

The .sum() method on a Pandas Series
acts just like a spreadsheet column

sum, adding up all the elements.

https://en.wikipedia.org/wiki/Overfitting

128 CHAPTER 4 Finding meaning in word counts (semantic analysis)
 And this overfitting problem is an inherent problem in NLP. It’s hard to find a
labeled natural language dataset that includes all the ways that people might say some-
thing that should be labeled that way. We couldn’t find a big database of SMS mes-
sages that included all the different ways people say spammy and nonspammy things.
And only a few corporations have the resources to create such a dataset. So all the rest
of you need to have “countermeasures” for overfitting. You have to use algorithms that
“generalize” well on just a few examples.

 Dimension reduction is the primary countermeasure for overfitting. By consolidat-
ing your dimensions (words) into a smaller number of dimensions (topics), your NLP
pipeline will become more “general.” Your spam filter will work on a wider range of
SMS messages if you reduce your dimensions, or “vocabulary.”

 That’s exactly what LSA does—it reduces your dimensions and therefore helps
prevent overfitting.35 It generalizes from your small dataset by assuming a linear rela-
tionship between word counts. So if the word “half” occurs in spammy messages con-
taining words like “off” a lot (as in “Half off!”), LSA helps you make those connections
between words and sees how strong they are so it will generalize from the phrase “half
off” in a spammy message to phrases like “80% off.” And it might even generalize fur-
ther to the phrase “80% discount” if the chain of connections in your NLP data
includes “discount” associated with the word “off.”

TIP Some think of generalization as the core challenge of machine learning
and artificial intelligence. “One-shot learning” is often used to describe
research into models that take this to the extreme, requiring orders of magni-
tude less data to accomplish the same accuracy as conventional models.

Generalizing your NLP pipeline helps ensure that it applies to a broader set of real-
world SMS messages instead of just this particular set of messages.

4.4.3 Using PCA for SMS message semantic analysis

Let’s try the PCA model from scikit-learn first. You’ve already seen it in action wran-
gling 3D horses into a 2D pen; now let’s wrangle your dataset of 9,232-D TF-IDF vec-
tors into 16-D topic vectors:

>>> from sklearn.decomposition import PCA

>>> pca = PCA(n_components=16)
>>> pca = pca.fit(tfidf_docs)
>>> pca_topic_vectors = pca.transform(tfidf_docs)
>>> columns = ['topic{}'.format(i) for i in range(pca.n_components)]
>>> pca_topic_vectors = pd.DataFrame(pca_topic_vectors, columns=columns,\
... index=index)
>>> pca_topic_vectors.round(3).head(6)

topic0 topic1 topic2 ... topic13 topic14 topic15
sms0 0.201 0.003 0.037 ... -0.026 -0.019 0.039
sms1 0.404 -0.094 -0.078 ... -0.036 0.047 -0.036

35 More on overfitting and generalization in appendix D.

129Principal component analysis
sms2! -0.030 -0.048 0.090 ... -0.017 -0.045 0.057
sms3 0.329 -0.033 -0.035 ... -0.065 0.022 -0.076
sms4 0.002 0.031 0.038 ... 0.031 -0.081 -0.021
sms5! -0.016 0.059 0.014 ... 0.077 -0.015 0.021

If you’re curious about these topics, you can find out how much of each word they
“contain” by examining their weights. By looking at the weights, you can see how often
“half” occurs with the word “off” (as in “half off”) and then figure out which topic is
your “discount” topic.

TIP You can find the weights of any fitted sklearn transformation by examin-
ing its .components_ attribute.

First let’s assign words to all the dimensions in your PCA transformation. You need to
get them in the right order because your TFIDFVectorizer stores the vocabulary as a
dictionary that maps each term to an index number (column number):

>>> tfidf.vocabulary_
{'go': 3807,
'until': 8487,
'jurong': 4675,
'point': 6296,

...
>>> column_nums, terms = zip(*sorted(zip(tfidf.vocabulary_.values(),\
... tfidf.vocabulary_.keys())))
>>> terms
('!',
'"',
'#',
'#150',

...

Now you can create a nice Pandas DataFrame containing the weights, with labels for
all the columns and rows in the right place:

>>> weights = pd.DataFrame(pca.components_, columns=terms,
➥ index=['topic{}'.format(i) for i in range(16)])
>>> pd.options.display.max_columns = 8
>>> weights.head(4).round(3)

! " # ... … ? ?ud ?
topic0 -0.071 0.008 -0.001 ... -0.002 0.001 0.001 0.001
topic1 0.063 0.008 0.000 ... 0.003 0.001 0.001 0.001
topic2 0.071 0.027 0.000 ... 0.002 -0.001 -0.001 -0.001
topic3 -0.059 -0.032 -0.001 ... 0.001 0.001 0.001 0.001

Some of those columns (terms) aren’t that interesting, so let’s explore your
tfidf.vocabulary. Let’s see if you can find some of those “half off” terms and which top-
ics they’re a part of:

>>> pd.options.display.max_columns = 12
>>> deals = weights['! ;) :) half off free crazy deal only $ 80 %'.split()].r

ound(3) * 100
>>> deals

Sort the vocabulary by term count. This
“zip(*sorted(zip()))” pattern is useful when you want

to unzip something to sort by an element that
isn’t on the far left, and then rezip it after sorting.

130 CHAPTER 4 Finding meaning in word counts (semantic analysis)
! ;) :) half off free crazy deal only $ 80 %
topic0 -7.1 0.1 -0.5 -0.0 -0.4 -2.0 -0.0 -0.1 -2.2 0.3 -0.0 -0.0
topic1 6.3 0.0 7.4 0.1 0.4 -2.3 -0.2 -0.1 -3.8 -0.1 -0.0 -0.2
topic2 7.1 0.2 -0.1 0.1 0.3 4.4 0.1 -0.1 0.7 0.0 0.0 0.1
topic3 -5.9 -0.3 -7.1 0.2 0.3 -0.2 0.0 0.1 -2.3 0.1 -0.1 -0.3
topic4 38.1 -0.1 -12.5 -0.1 -0.2 9.9 0.1 -0.2 3.0 0.3 0.1 -0.1
topic5 -26.5 0.1 -1.5 -0.3 -0.7 -1.4 -0.6 -0.2 -1.8 -0.9 0.0 0.0
topic6 -10.9 -0.5 19.9 -0.4 -0.9 -0.6 -0.2 -0.1 -1.4 -0.0 -0.0 -0.1
topic7 16.4 0.1 -18.2 0.8 0.8 -2.9 0.0 0.0 -1.9 -0.3 0.0 -0.1
topic8 34.6 0.1 5.2 -0.5 -0.5 -0.1 -0.4 -0.4 3.3 -0.6 -0.0 -0.2
topic9 6.9 -0.3 17.4 1.4 -0.9 6.6 -0.5 -0.4 3.3 -0.4 -0.0 0.0
...
>>> deals.T.sum()
topic0 -11.9
topic1 7.5
topic2 12.8
topic3 -15.5
topic4 38.3
topic5 -33.8
topic6 4.8
topic7 -5.3
topic8 40.5
topic9 33.1
...

Topics 4, 8, and 9 appear to all contain positive “deal” topic sentiment. And topics 0, 3,
and 5 appear to be “anti-deal” topics, messages about stuff that’s the opposite of “deals”:
negative deals. So words associated with “deals” can have a positive impact on some top-
ics and a negative impact on others. There’s no single obvious “deal” topic number.

IMPORTANT The casual_tokenize tokenizer splits "80%" into ["80",
"%"] and "$80 million" into ["$", 80", "million"]. So unless you use
LSA or a 2-gram tokenizer, your NLP pipeline wouldn’t notice the difference
between 80% and $80 million. They’d both share the token “80.”

This is one of the challenges of LSA, making sense of the topics. LSA only allows for
linear relationships between words. And you usually only have a small corpus to work
with. So your topics tend to combine words in ways that humans don’t find all that
meaningful. Several words from different topics will be crammed together into a sin-
gle dimension (principle component) in order to make sure the model captures as
much variance in usage of your 9,232 words as possible.

4.4.4 Using truncated SVD for SMS message semantic analysis

Now you can try the TruncatedSVD model in scikit-learn. This is a more direct
approach to LSA that bypasses the scikit-learn PCA model so you can see what’s going
on inside the PCA wrapper. It can handle sparse matrices, so if you’re working with
large datasets you’ll want to use TruncatedSVD instead of PCA anyway. The SVD part
of TruncatedSVD will split your TF-IDF matrix into three matrices. The Truncated

131Principal component analysis
part of TruncatedSVD will discard the dimensions that contain the least information
about your TF-IDF matrix. These discarded dimensions represent the “topics” (linear
combinations of words) that vary the least within your document set. These discarded
topics would likely be meaningless to the overall semantics of your corpus. They’d
likely contain a lot of stop words and other words that are uniformly distributed across
all the documents.

 You’re going to use TruncatedSVD to retain only the 16 most interesting topics,
the topics that account for the most variance in your TF-IDF vectors:

>>> from sklearn.decomposition import TruncatedSVD

>>> svd = TruncatedSVD(n_components=16, n_iter=100)
>>> svd_topic_vectors = svd.fit_transform(tfidf_docs.values)
>>> svd_topic_vectors = pd.DataFrame(svd_topic_vectors, columns=columns,\
... index=index)
>>> svd_topic_vectors.round(3).head(6)

topic0 topic1 topic2 ... topic13 topic14 topic15
sms0 0.201 0.003 0.037 ... -0.036 -0.014 0.037
sms1 0.404 -0.094 -0.078 ... -0.021 0.051 -0.042
sms2! -0.030 -0.048 0.090 ... -0.020 -0.042 0.052
sms3 0.329 -0.033 -0.035 ... -0.046 0.022 -0.070
sms4 0.002 0.031 0.038 ... 0.034 -0.083 -0.021
sms5! -0.016 0.059 0.014 ... 0.075 -0.001 0.020

These topic vectors from TruncatedSVD are exactly the same as what PCA produced!
This result is because you were careful to use a large number of iterations (n_iter),
and you also made sure all your TF-IDF frequencies for each term (column) were cen-
tered on zero (by subtracting the mean for each term).

 Look at the weights for each topic for a moment and try to make sense of them.
Without knowing what these topics are about, or the words they weight heavily, do you
think you could classify these six SMS messages as spam or not? Perhaps looking at the
“!” label next to the spammy SMS message row labels will help. It would be hard, but it
is possible, especially for a machine that can look at all 5,000 of your training exam-
ples and come up with thresholds on each topic to separate the topic space for spam
and nonspam.

4.4.5 How well does LSA work for spam classification?

One way to find out how well a vector space model will work for classification is to see
how cosine similarities between vectors correlate with membership in the same class.
Let’s see if the cosine similarity between corresponding pairs of documents is useful
for your particular binary classification. Let’s compute the dot product between the

Just like in PCA, you’ll compute 16 topics but will
iterate through the data 100 times (default is 5) to
ensure that your answer is almost as exact as PCA.

fit_transpose
decomposes your

TF-IDF vectors and
transforms them

into topic vectors
in one step.

132 CHAPTER 4 Finding meaning in word counts (semantic analysis)
first six topic vectors for the first six SMS messages. You should see larger positive
cosine similarity (dot products) between any spam message (“sms2!”):

>>> import numpy as np

>>> svd_topic_vectors = (svd_topic_vectors.T / np.linalg.norm(\
... svd_topic_vectors, axis=1)).T
>>> svd_topic_vectors.iloc[:10].dot(svd_topic_vectors.iloc[:10].T).round(1)

sms0 sms1 sms2! sms3 sms4 sms5! sms6 sms7 sms8! sms9!
sms0 1.0 0.6 -0.1 0.6 -0.0 -0.3 -0.3 -0.1 -0.3 -0.3
sms1 0.6 1.0 -0.2 0.8 -0.2 0.0 -0.2 -0.2 -0.1 -0.1
sms2! -0.1 -0.2 1.0 -0.2 0.1 0.4 0.0 0.3 0.5 0.4
sms3 0.6 0.8 -0.2 1.0 -0.2 -0.3 -0.1 -0.3 -0.2 -0.1
sms4 -0.0 -0.2 0.1 -0.2 1.0 0.2 0.0 0.1 -0.4 -0.2
sms5! -0.3 0.0 0.4 -0.3 0.2 1.0 -0.1 0.1 0.3 0.4
sms6 -0.3 -0.2 0.0 -0.1 0.0 -0.1 1.0 0.1 -0.2 -0.2
sms7 -0.1 -0.2 0.3 -0.3 0.1 0.1 0.1 1.0 0.1 0.4
sms8! -0.3 -0.1 0.5 -0.2 -0.4 0.3 -0.2 0.1 1.0 0.3
sms9! -0.3 -0.1 0.4 -0.1 -0.2 0.4 -0.2 0.4 0.3 1.0

Reading down the “sms0” column (or across the “sms0” row), the cosine similarity
between “sms0” and the spam messages (“sms2!,” “sms5!,” “sms8!,” “sms9!”) is signifi-
cantly negative. The topic vector for “sms0” is significantly different from the topic
vector for spam messages. A nonspam message doesn’t talk about the same thing as
spam messages.

 Doing the same for the “sms2!” column should show a positive correlation with
other spam messages. Spam messages share similar semantics; they talk about similar
“topics.”

 This is how semantic search works as well. You can use the cosine similarity
between a query vector and all the topic vectors for your database of documents to
find the most semantically similar message in your database. The closest document
(smallest distance) to the vector for that query would correspond to the document
with the closest meaning. Spaminess is just one of the “meanings” mixed into your
SMS message topics.

 Unfortunately, this similarity between topic vectors within each class (spam and
nonspam) isn’t maintained for all the messages. “Drawing a line” between the spam
and nonspam messages would be hard for this set of topic vectors. You’d have a hard
time setting a threshold on the similarity to an individual spam message that would
ensure that you’d always be able to classify spam and nonspam correctly. But, gener-
ally, the less spammy a message is, the further away it is (less similar it is) from another
spam message in the dataset. That’s what you need if you want to build a spam filter
using these topic vectors. And a machine learning algorithm can look at all the topics
individually for all the spam and nonspam labels and perhaps draw a hyperplane or
other boundary between the spam and nonspam messages.

 When using truncated SVD, you should discard the eigenvalues before computing
the topic vectors. You tricked the scikit-learn implementation of TruncatedSVD into

Normalizing each topic vector by its length
(L2-norm) allows you to compute the
cosine distances with a dot product.

133Principal component analysis
ignoring the scale information within the eigenvalues (the Sigma or S matrix in your
diagrams) by

 Normalizing your TF-IDF vectors by their length (L2-norm)
 Centering the TF-IDF term frequencies by subtracting the mean frequency for

each term (word)

The normalization process eliminates any “scaling” or bias in the eigenvalues and
focuses your SVD on the rotation part of the transformation of your TF-IDF vectors.
By ignoring the eigenvalues (vector scale or length), you can “square up” the hyper-
cube that bounds the topic vector space, which allows you to treat all topics as equally
important in your model. If you want to use this trick within your own SVD implemen-
tation, you can normalize all the TF-IDF vectors by the L2-norm before computing the
SVD or truncated SVD. The scikit-learn implementation of PCA does this for you by
“centering” and “whitening” your data.

 Without this normalization, infrequent topics will be given slightly more weight
than they would otherwise. Because “spaminess” is a rare topic, occurring only 13% of
the time, the topics that measure it would be given more weight by this normalization
or eigenvalue discarding. The resulting topics are more correlated with subtle charac-
teristics, like spaminess, by taking this approach.

TIP Whichever algorithm or implementation you use for semantic analysis
(LSA, PCA, SVD, truncated SVD, or LDiA), you should normalize your BOW or
TF-IDF vectors first. Otherwise, you may end up with large scale differences
between your topics. Scale differences between topics can reduce the ability of
your model to differentiate between subtle, infrequent topics. Another way to
think of it is that scale variation can create deep canyons and rivers in a contour
plot of your objective function, making it hard for other machine learning algo-
rithms to find the optimal thresholds on your topics in this rough terrain.

LSA AND SVD ENHANCEMENTS

The success of singular value decomposition for semantic analysis and dimension
reduction has motivated researchers to extend and enhance it. These enhancements
are mostly intended for non-NLP problems, but we mention them here in case you
run across them. They’re sometimes used for behavior-based recommendation
engines alongside NLP content-based recommendation engines. And they’ve been
used on natural language part-of-speech statistics.36 Any matrix factorization or
dimension reduction approach can be used with natural language term frequencies.
So you may find use for them in your semantic analysis pipeline:

 Quadratic discriminant analysis (QDA)
 Random projection
 Nonnegative matrix factorization (NMF)

36 See the paper titled “Part-of-speech Histograms for Genre Classification of Text” by S. Feldman, M. A. Marin,
M. Ostendorf, and M. R. Gupta (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.332.629&rep
=rep1&type=pdf).

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.332.629&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.332.629&rep=rep1&type=pdf

134 CHAPTER 4 Finding meaning in word counts (semantic analysis)
QDA is an alternative to LDA. QDA creates quadratic polynomial transformations,
rather than linear transformations. These transformations define a vector space that
can be used to discriminate between classes. And the boundary between classes in a
QDA vector space is quadratic, curved, like a bowl or sphere or halfpipe.

 Random projection is a matrix decomposition and transformation approach simi-
lar to SVD, but the algorithm is stochastic, so you get a different answer each time you
run it. But the stochastic nature makes it easier to run it on parallel machines. And in
some cases (for some of those random runs), you can get transformations that are bet-
ter than what comes out of SVD (and LSA). But random projection is rarely used for
NLP problems, and there aren’t widely used implementations of it in NLP packages
such as Spacy or NLTK. We leave it to you to explore this one further, if you think it
might apply to your problem.

 In most cases, you’re better off sticking with LSA, which uses the tried and true
SVD algorithm under the hood.37

4.5 Latent Dirichlet allocation (LDiA)
We’ve spent most of this chapter talking about latent semantic analysis and various
ways to accomplish it using scikit-learn or even just plain numpy. LSA should be your
first choice for most topic modeling, semantic search, or content-based recommenda-
tion engines.38 Its math is straightforward and efficient, and it produces a linear
transformation that can be applied to new batches of natural language without train-
ing and with little loss in accuracy. But LDiA can give slightly better results in some
situations.

 LDiA does a lot of the things you did to create your topic models with LSA (and
SVD under the hood), but unlike LSA, LDiA assumes a Dirichlet distribution of word
frequencies. It’s more precise about the statistics of allocating words to topics than the
linear math of LSA.

 LDiA creates a semantic vector space model (like your topic vectors) using an
approach similar to how your brain worked during the thought experiment earlier in
the chapter. In your thought experiment, you manually allocated words to topics
based on how often they occurred together in the same document. The topic mix for
a document can then be determined by the word mixtures in each topic by which
topic those words were assigned to. This makes an LDiA topic model much easier to
understand, because the words assigned to topics and topics assigned to documents
tend to make more sense than for LSA.

 LDiA assumes that each document is a mixture (linear combination) of some arbi-
trary number of topics that you select when you begin training the LDiA model. LDiA

37 SVD has traditionally been used to compute the “pseudo-inverse” of nonsquare matrices, and you can imagine
how many applications exist for matrix inversion.

38 A 2015 comparison of content-based movie recommendation algorithms by Sonia Bergamaschi and Laura Po
found LSA to be approximately twice as accurate as LDiA. See “Comparing LDA and LSA Topic Models for
Content-Based Movie Recommendation Systems” by Sonia Bergamaschi and Laura Po (https://www.dbgroup
.unimo.it/~po/pubs/LNBI_2015.pdf).

https://www.dbgroup.unimo.it/~po/pubs/LNBI_2015.pdf
https://www.dbgroup.unimo.it/~po/pubs/LNBI_2015.pdf

135Latent Dirichlet allocation (LDiA)
also assumes that each topic can be represented by a distribution of words (term fre-
quencies). The probability or weight for each of these topics within a document, as
well as the probability of a word being assigned to a topic, is assumed to start with a
Dirichlet probability distribution (the prior if you remember your statistics). This is
where the algorithm gets its name.

4.5.1 The LDiA idea

The LDiA approach was developed in 2000 by geneticists in the UK to help them
“infer population structure” from sequences of genes.39 Stanford Researchers (includ-
ing Andrew Ng) popularized the approach for NLP in 2003.40 But don’t be intimi-
dated by the big names that came up with this approach. We explain the key points of
it in a few lines of Python shortly. You only need to understand it enough to get a feel
for what it’s doing (an intuition), so you know what you can use it for in your pipeline.

 Blei and Ng came up with the idea by flipping your thought experiment on its
head. They imagined how a machine that could do nothing more than roll dice (gen-
erate random numbers) could write the documents in a corpus you want to analyze.
And because you’re only working with bags of words, they cut out the part about
sequencing those words together to make sense, to write a real document. They just
modeled the statistics for the mix of words that would become a part of a particular
BOW for each document.

 They imagined a machine that only had two choices to make to get started generat-
ing the mix of words for a particular document. They imagined that the document
generator chose those words randomly, with some probability distribution over the
possible choices, like choosing the number of sides of the dice and the combination
of dice you add together to create a D&D character sheet. Your document “character
sheet” needs only two rolls of the dice. But the dice are large and there are several of
them, with complicated rules about how they are combined to produce the desired
probabilities for the different values you want. You want particular probability distri-
butions for the number of words and number of topics so that it matches the distribu-
tion of these values in real documents analyzed by humans for their topics and words.

 The two rolls of the dice represent the

1 Number of words to generate for the document (Poisson distribution)
2 Number of topics to mix together for the document (Dirichlet distribution)

After it has these two numbers, the hard part begins, choosing the words for a docu-
ment. The imaginary BOW generating machine iterates over those topics and ran-
domly chooses words appropriate to that topic until it hits the number of words that it
had decided the document should contain in step 1. Deciding the probabilities of

39 “Inference of Popluation Structure Using Multilocus Genotype Data,” by Jonathan K. Pritchard, Matthew Ste-
phens, and Peter Donnelly” (http://www.genetics.org/content/155/2/945).

40 See the PDF titled “Latent Dirichlet Allocation” by David M. Blei, Andrew Y. Ng, and Michael I. Jordan
(http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf).

http://www.genetics.org/content/155/2/945
http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf

136 CHAPTER 4 Finding meaning in word counts (semantic analysis)
those words for topics—the appropriateness of words for each topic—is the hard part.
But once that has been determined, your “bot” just looks up the probabilities for the
words for each topic from a matrix of term-topic probabilities. If you don’t remember
what that matrix looks like, glance back at the simple example earlier in this chapter.

 So all this machine needs is a single parameter for that Poisson distribution (in the
dice roll from step 1) that tells it what the “average” document length should be, and
a couple more parameters to define that Dirichlet distribution that sets up the num-
ber of topics. Then your document generation algorithm needs a term-topic matrix of
all the words and topics it likes to use, its vocabulary. And it needs a mix of topics that
it likes to “talk” about.

 Let’s flip the document generation (writing) problem back around to your origi-
nal problem of estimating the topics and words from an existing document. You need
to measure, or compute, those parameters about words and topics for the first two
steps. Then you need to compute the term-topic matrix from a collection of docu-
ments. That’s what LDiA does.

 Blei and Ng realized that they could determine the parameters for steps 1 and 2 by
analyzing the statistics of the documents in a corpus. For example, for step 1, they
could calculate the mean number of words (or n-grams) in all the bags of words for
the documents in their corpus; something like this:

>>> total_corpus_len = 0
>>> for document_text in sms.text:
... total_corpus_len += len(casual_tokenize(document_text))
>>> mean_document_len = total_corpus_len / len(sms)
>>> round(mean_document_len, 2)
21.35

Or, in a one-liner

>>> sum([len(casual_tokenize(t)) for t in sms.text]) * 1. / len(sms.text)
21.35

Keep in mind, you should calculate this statistic directly from your BOWs. You need to
make sure you’re counting the tokenized and vectorized (Counter()-ed) words in
your documents. And make sure you’ve applied any stop word filtering, or other nor-
malizations before you count up your unique terms. That way your count includes all
the words in your BOW vector vocabulary (all the n-grams you’re counting), but only
those words that your BOWs use (not stop words, for example). This LDiA algorithm
relies on a bag-of-words vector space model, like the other algorithms in this chapter.

 The second parameter you need to specify for an LDiA model, the number of top-
ics, is a bit trickier. The number of topics in a particular set of documents can’t be
measured directly until after you’ve assigned words to those topics. Like k-means and
KNN and other clustering algorithms, you must tell it the k ahead of time. You can
guess the number of topics (analogous to the k in k-means, the number of “clusters”)
and then check to see if that works for your set of documents. Once you’ve told LDiA

137Latent Dirichlet allocation (LDiA)
how many topics to look for, it will find the mix of words to put in each topic to opti-
mize its objective function.41

 You can optimize this “hyperparameter” (k, the number of topics)42 by adjusting it
until it works for your application. You can automate this optimization if you can mea-
sure something about the quality of your LDiA language model for representing the
meaning of your documents. One “cost function” you could use for this optimization
is how well (or poorly) that LDiA model performs in some classification or regression
problems, like sentiment analysis, document keyword tagging, or topic analysis. You
just need some labeled documents to test your topic model or classifier on.43

4.5.2 LDiA topic model for SMS messages

The topics produced by LDiA tend to be more understandable and “explainable” to
humans. This is because words that frequently occur together are assigned the same
topics, and humans expect that to be the case. Where LSA (PCA) tries to keep things
spread apart that were spread apart to start with, LDiA tries to keep things close
together that started out close together.

 This may sound like it’s the same thing, but it’s not. The math optimizes for differ-
ent things. Your optimizer has a different objective function so it will reach a different
objective. To keep close high-dimensional vectors close together in the lower-
dimensional space, LDiA has to twist and contort the space (and the vectors) in non-
linear ways. This is a hard thing to visualize until you do it on something 3D and take
“projections” of the resultant vectors in 2D.

 If you want to help out your fellow readers and learn something in the process,
submit some additional code to the horse example (https://github.com/totalgood/
nlpia/blob/master/src/nlpia/book/examples/ch04_horse.py) in nlpia (https://
github.com/totalgood/nlpia). You can create word-document vectors for each of the
thousands of points in the horse by converting them to integer counts of the words
“x,” “y,” and “z,” the dimensions of the 3D vector space. You could then generate syn-
thetic documents from these counts and pass it through all the LDiA and LSA exam-
ples from earlier in the chapter. Then you’d be able to directly visualize how each
approach produces a different 2D “shadow” (projection) of the horse.

 Let’s see how that works for a dataset of a few thousand SMS messages, labeled for
spaminess. First compute the TF-IDF vectors and then some topics vectors for each
SMS message (document). We assume the use of only 16 topics (components) to clas-

41 You can learn more about the particulars of the LDiA objective function here in the original paper “Online
Learning for Latent Dirichlet Allocation” by Matthew D. Hoffman, David M. Blei, and Francis Bach (https://
www.di.ens.fr/%7Efbach/mdhnips2010.pdf).

42 The symbol used by Blei and Ng for this parameter was theta rather than k.
43 Craig Bowman, a librarian at the University of Miami in Ohio (http://www.lib.miamioh.edu/people/),

is using the Library of Congress classification system as the topic labels for Gutenberg Project books. This
has to be the most ambitious and pro-social open-science NLP project (https://github.com/craigboman/
gutenberg) I’ve run across so far.

https://github.com/totalgood/nlpia/blob/master/src/nlpia/book/examples/ch04_horse.py
https://github.com/totalgood/nlpia/blob/master/src/nlpia/book/examples/ch04_horse.py
https://github.com/totalgood/nlpia
https://github.com/totalgood/nlpia
https://www.di.ens.fr/%7Efbach/mdhnips2010.pdf
https://www.di.ens.fr/%7Efbach/mdhnips2010.pdf
http://www.lib.miamioh.edu/people/
https://github.com/craigboman/gutenberg
https://github.com/craigboman/gutenberg

138 CHAPTER 4 Finding meaning in word counts (semantic analysis)
sify the spaminess of messages, as before. Keeping the number of topics (dimensions)
low can help reduce overfitting.44

 LDiA works with raw BOW count vectors rather than normalized TF-IDF vectors.
Here’s an easy way to compute BOW vectors in scikit-learn:

>>> from sklearn.feature_extraction.text import CountVectorizer
>>> from nltk.tokenize import casual_tokenize
>>> np.random.seed(42)

>>> counter = CountVectorizer(tokenizer=casual_tokenize)
>>> bow_docs = pd.DataFrame(counter.fit_transform(raw_documents=sms.text)\
... .toarray(), index=index)
>>> column_nums, terms = zip(*sorted(zip(counter.vocabulary_.values(),\
... counter.vocabulary_.keys())))
>>> bow_docs.columns = terms

Let’s double-check that your counts make sense for that first SMS message labeled
“sms0”:

>>> sms.loc['sms0'].text
'Go until jurong point, crazy.. Available only in bugis n great world la e
buffet... Cine there got amore wat...'
>>> bow_docs.loc['sms0'][bow_docs.loc['sms0'] > 0].head()
, 1
.. 1
... 2
amore 1
available 1
Name: sms0, dtype: int64

And here’s how to use LDiA to create topic vectors for your SMS corpus:

>>> from sklearn.decomposition import LatentDirichletAllocation as LDiA

>>> ldia = LDiA(n_components=16, learning_method='batch')
>>> ldia = ldia.fit(bow_docs)
>>> ldia.components_.shape
(16, 9232)

So your model has allocated your 9,232 words (terms) to 16 topics (components).
Let’s take a look at the first few words and how they’re allocated to your 16 topics.
Keep in mind that your counts and topics will be different from mine. LDiA is a sto-
chastic algorithm that relies on the random number generator to make some of the
statistical decisions it has to make about allocating words to topics. So your topic-word
weights will be different from those shown, but they should have similar magnitudes.
Each time you run sklearn.LatentDirichletAllocation (or any LDiA algo-
rithm), you will get different results unless you set the random seed to a fixed value:

44 See appendix D if you want to learn more about why overfitting is a bad thing and how generalization can help.

LDiA takes a bit longer than PCA or SVD,
especially for a large number of topics and
a large number of words in your corpus.

139Latent Dirichlet allocation (LDiA)
>>> pd.set_option('display.width', 75)
>>> components = pd.DataFrame(ldia.components_.T, index=terms,\
... columns=columns)
>>> components.round(2).head(3)

topic0 topic1 topic2 ... topic13 topic14 topic15
! 184.03 15.00 72.22 ... 297.29 41.16 11.70
" 0.68 4.22 2.41 ... 62.72 12.27 0.06
0.06 0.06 0.06 ... 4.05 0.06 0.06

So the exclamation point term (!) was allocated to most of the topics, but is a particu-
larly strong part of topic3 where the quote symbol (") is hardly playing a role at all.
Perhaps “topic3” might be about emotional intensity or emphasis and doesn’t care
much about numbers or quotes. Let’s see:

>>> components.topic3.sort_values(ascending=False)[:10]
! 394.952246
. 218.049724
to 119.533134
u 118.857546
call 111.948541
£ 107.358914
, 96.954384
* 90.314783
your 90.215961
is 75.750037

So the top ten tokens for this topic seem to be the type of words that might be used in
emphatic directives requesting someone to do something or pay something. It will be
interesting to find out if this topic is used more in spam messages rather than non-
spam messages. You can see that the allocation of words to topics can be rationalized
or reasoned about, even with this quick look.

 Before you fit your LDA classifier, you need to compute these LDiA topic vectors
for all your documents (SMS messages). And let’s see how they are different from the
topic vectors produced by SVD and PCA for those same documents:

>>> ldia16_topic_vectors = ldia.transform(bow_docs)
>>> ldia16_topic_vectors = pd.DataFrame(ldia16_topic_vectors,\
... index=index, columns=columns)
>>> ldia16_topic_vectors.round(2).head()

topic0 topic1 topic2 ... topic13 topic14 topic15
sms0 0.00 0.62 0.00 ... 0.00 0.00 0.00
sms1 0.01 0.01 0.01 ... 0.01 0.01 0.01
sms2! 0.00 0.00 0.00 ... 0.00 0.00 0.00
sms3 0.00 0.00 0.00 ... 0.00 0.00 0.00
sms4 0.39 0.00 0.33 ... 0.00 0.00 0.00

You can see that these topics are more cleanly separated. There are a lot of zeros in
your allocation of topics to messages. This is one of the things that makes LDiA topics
easier to explain to coworkers when making business decisions based on your NLP
pipeline results.

140 CHAPTER 4 Finding meaning in word counts (semantic analysis)
 So LDiA topics work well for humans, but what about machines? How will your
LDA classifier fare with these topics?

4.5.3 LDiA + LDA = spam classifier

Let’s see how good these LDiA topics are at predicting something useful, such as
spaminess. You’ll use your LDiA topic vectors to train an LDA model again (like you
did with your PCA topic vectors):

>>> from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA

>>> X_train, X_test, y_train, y_test =
➥ train_test_split(ldia16_topic_vectors, sms.spam, test_size=0.5,
➥ random_state=271828)
>>> lda = LDA(n_components=1)
>>> lda = lda.fit(X_train, y_train)
>>> sms['ldia16_spam'] = lda.predict(ldia16_topic_vectors)
>>> round(float(lda.score(X_test, y_test)), 2)
0.94

The algorithms for train_test_split() and LDiA are stochastic. So each time you
run it you will get different results and different accuracy values. If you want to make
your pipeline repeatable, look for the seed argument for these models and dataset
splitters. You can set the seed to the same value with each run to get reproducible
results.

 One way a “collinear” warning can occur is if your text has a few 2-grams or 3-
grams where their component words only ever occur together. So the resulting LDiA
model had to arbitrarily split the weights among these equivalent term frequencies.
Can you find the words in your SMS messages that are causing this “collinearity” (zero
determinant)? You’re looking for a word that, whenever it occurs, another word (its
pair) is always in the same message.

 You can do this search with Python rather than by hand. First, you probably just
want to look for any identical bag-of-words vectors in your corpus. These could occur
for SMS messages that aren’t identical, like “Hi there Bob!” or “Bob, Hi there,”
because they have the same word counts. You can iterate through all the pairings of
the bags of words to look for identical vectors. These will definitely cause a “collinear-
ity” warning in either LDiA or LSA.

 If you don’t find any exact BOW vector duplicates, you could iterate through all
the pairings of the words in your vocabulary. You’d then iterate through all the bags of
words to look for the pairs of SMS messages that contain those exact same two words.
If there aren’t any times that those words occur separately in the SMS messages,

Your ldia_topic_vectors matrix has a determinant close to
zero so you will likely get the warning “Variables are

collinear.” This can happen with a small corpus when using
LDiA because your topic vectors have a lot of zeros in them
and some of your messages could be reproduced as a linear
combination of the other message topics. Or there are some

SMS messages with similar (or identical) topic mixes.

94% accuracy on the test set
is pretty good, but not quite as

good as LSA (PCA) in section 4.7.1.

141Latent Dirichlet allocation (LDiA)
you’ve found one of the “collinearities” in your dataset. Some common 2-grams that
might cause this are the first and last names of famous people that always occur
together and are never used separately, like “Bill Gates” (as long as there are no other
Bills in your SMS messages).

TIP Whenever you need to iterate through all the combinations (pairs or trip-
lets) of a set of objects, you can use the built-in Python product() function:

>>> from itertools import product
>>> all_pairs = [(word1, word2) for (word1, word2) in product(word_list,

➥ word_list) if not word1 == word2]

You got more than 90% accuracy on your test set, and you only had to train on half
your available data. But you did get a warning about your features being collinear due
to your limited dataset, which gives LDA an “under-determined” problem. The deter-
minant of your topic-document matrix is close to zero, once you discard half the doc-
uments with train_test_split. If you ever need to, you can turn down the LDiA
n_components to “fix” this issue, but it would tend to combine those topics together
that are a linear combination of each other (collinear).

 But let’s find out how your LDiA model compares to a much higher-dimensional
model based on the TF-IDF vectors. Your TF-IDF vectors have many more features
(more than 3,000 unique terms). So you’re likely to experience overfitting and poor
generalization. This is where the generalization of LDiA and PCA should help:

>>> from sklearn.feature_extraction.text import TfidfVectorizer
>>> from nltk.tokenize.casual import casual_tokenize
>>> tfidf = TfidfVectorizer(tokenizer=casual_tokenize)
>>> tfidf_docs = tfidf.fit_transform(raw_documents=sms.text).toarray()
>>> tfidf_docs = tfidf_docs - tfidf_docs.mean(axis=0)

>>> X_train, X_test, y_train, y_test = train_test_split(tfidf_docs,\
... sms.spam.values, test_size=0.5, random_state=271828)
>>> lda = LDA(n_components=1)
>>> lda = lda.fit(X_train, y_train)
>>> round(float(lda.score(X_train, y_train)), 3)
1.0
>>> round(float(lda.score(X_test, y_test)), 3)
0.748

The training set accuracy for your TF-IDF based model is perfect! But the test set accu-
racy is much worse than when you trained it on lower-dimensional topic vectors
instead of TF-IDF vectors.

 And test set accuracy is the only accuracy that counts. This is exactly what topic
modeling (LSA) is supposed to do. It helps you generalize your models from a small
training set, so it still works well on messages using different combinations of words
(but similar topics).

You’re going to “pretend”
that there is only one topic

in all the SMS messages,
because you’re only

interested in a scalar score
for the “spamminess” topic.Fitting an LDA model to all these thousands of features

will take quite a long time. Be patient; it’s slicing up
your vector space with a 9,332-dimension hyperplane!

142 CHAPTER 4 Finding meaning in word counts (semantic analysis)
4.5.4 A fairer comparison: 32 LDiA topics

Let’s try one more time with more dimensions, more topics. Perhaps LDiA isn’t as effi-
cient as LSA (PCA), so it needs more topics to allocate words to. Let’s try 32 topics
(components):

>>> ldia32 = LDiA(n_components=32, learning_method='batch')
>>> ldia32 = ldia32.fit(bow_docs)
>>> ldia32.components_.shape
(32, 9232)

Now let’s compute your new 32-D topic vectors for all your documents (SMS
messages):

>>> ldia32_topic_vectors = ldia32.transform(bow_docs)
>>> columns32 = ['topic{}'.format(i) for i in range(ldia32.n_components)]
>>> ldia32_topic_vectors = pd.DataFrame(ldia32_topic_vectors, index=index,\
... columns=columns32)
>>> ldia32_topic_vectors.round(2).head()

topic0 topic1 topic2 ... topic29 topic30 topic31
sms0 0.00 0.5 0.0 ... 0.0 0.0 0.0
sms1 0.00 0.0 0.0 ... 0.0 0.0 0.0
sms2! 0.00 0.0 0.0 ... 0.0 0.0 0.0
sms3 0.00 0.0 0.0 ... 0.0 0.0 0.0
sms4 0.21 0.0 0.0 ... 0.0 0.0 0.0

You can see that these topics are even more sparse, more cleanly separated.
 And here’s your LDA model (classifier) training, this time using 32-D LDiA topic

vectors:

>>> X_train, X_test, y_train, y_test =

➥ train_test_split(ldia32_topic_vectors, sms.spam, test_size=0.5,

➥ random_state=271828)
>>> lda = LDA(n_components=1)
>>> lda = lda.fit(X_train, y_train)
>>> sms['ldia32_spam'] = lda.predict(ldia32_topic_vectors)
>>> X_train.shape
(2418, 32)
>>> round(float(lda.score(X_train, y_train)), 3)
0.924
>>> round(float(lda.score(X_test, y_test)), 3)
0.927

Don’t confuse this optimization of the number of “topics” or components with the col-
linearity problem earlier. Increasing or decreasing the number of topics doesn’t fix or
create the collinearity problem. That’s a problem with the underlying data. If you
want to get rid of that warning, you need to add “noise” or metadata to your SMS
messages as synthetic words, or you need to delete those duplicate word vectors. If you
have duplicate word vectors or word pairings that repeat a lot in your documents, no
amount of topics is going to fix that.

.shape is another way to check
the number of dimensions in
your topic vectors.

Test accuracy is what matters, and 92.7%
is comparable to the 94% score you got
with 16-D LDiA topic vectors.

143Distance and similarity
 The larger number of topics allows it to be more precise about topics, and, at least
for this dataset, product topics that linearly separate better. But this performance still
isn’t quite as good as the 96% accuracy of PCA + LDA. So PCA is keeping your SMS
topic vectors spread out more efficiently, allowing for a wider gap between messages
to cut with a hyperplane to separate classes.

 Feel free to explore the source code for the Dirichlet allocation models available
in both scikit-learn as well as gensim. They have an API similar to LSA (sklearn.Trun-
catedSVD and gensim.LsiModel). We show you an example application when we talk
about summarization in later chapters. Finding explainable topics, like those used for
summarization, is what LDiA is good at. And it’s not too bad at creating topics useful
for linear classification.

4.6 Distance and similarity
We need to revisit those similarity scores we talked about in chapters 2 and 3 to make
sure your new topic vector space works with them. Remember that you can use similar-
ity scores (and distances) to tell how similar or far apart two documents are based on
the similarity (or distance) of the vectors you used to represent them.

Digging deeper into your toolbox
You can find the source code path in the __file__ attribute on any Python module,
such as sklearn.__file__. And in ipython (jupyter console), you can view the
source code for any function, class, or object with ??, like LDA??:

>>> import sklearn
>>> sklearn.__file__
'/Users/hobs/anaconda3/envs/conda_env_nlpia/lib/python3.6/site-packages/skl
earn/__init__.py'
>>> from sklearn.discriminant_analysis\
... import LinearDiscriminantAnalysis as LDA
>>> LDA??
Init signature: LDA(solver='svd', shrinkage=None, priors=None, n_components
=None, store_covariance=False, tol=0.0001)
Source:
class LinearDiscriminantAnalysis(BaseEstimator, LinearClassifierMixin,

TransformerMixin):
"""Linear Discriminant Analysis

A classifier with a linear decision boundary, generated by fitting
class conditional densities to the data and using Bayes' rule.

The model fits a Gaussian density to each class, assuming that all
classes share the same covariance matrix.

...

This won’t work on functions and classes that are extensions, whose source code is
hidden within a compiled C++ module.

144 CHAPTER 4 Finding meaning in word counts (semantic analysis)
 You can use similarity scores (and distances) to see how well your LSA topic model
agrees with the higher-dimensional TF-IDF model of chapter 3. You’ll see how good
your model is at retaining those distances after having eliminated a lot of the informa-
tion contained in the much higher-dimensional bags of words. You can check how far
away from each other the topic vectors are and whether that’s a good representation
of the distance between the documents' subject matter. You want to check that docu-
ments that mean similar things are close to each other in your new topic vector space.

 LSA preserves large distances, but it doesn’t always preserve close distances (the
fine “structure” of the relationships between your documents). The underlying SVD
algorithm is focused on maximizing the variance between all your documents in the
new topic vector space.

 Distances between feature vectors (word vectors, topic vectors, document context
vectors, and so on) drive the performance of an NLP pipeline, or any machine learn-
ing pipeline. So what are your options for measuring distance in high-dimensional
space? And which ones should you chose for a particular NLP problem? Some of these
commonly used examples may be familiar from geometry class or linear algebra, but
many others are probably new to you:

 Euclidean or Cartesian distance, or root mean square error (RMSE): 2-norm
or L2

 Squared Euclidean distance, sum of squares distance (SSD): L2
2

 Cosine or angular or projected distance: normalized dot product
 Minkowski distance: p-norm or Lp

 Fractional distance, fractional norm: p-norm or Lp for 0 < p < 1
 City block, Manhattan, or taxicab distance; sum of absolute distance (SAD):

1-norm or L1

 Jaccard distance, inverse set similarity
 Mahalanobis distance
 Levenshtein or edit distance

The variety of ways to calculate distance is a testament to how important it is. In addition
to the pairwise distance implementations in Scikit-learn, many others are used in math-
ematics specialties such as topology, statistics, and engineering.45 For reference, the fol-
lowing listing shows the distances you can find in the sklearn.metrics.pairwise module.46

'cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan', 'braycurtis',
'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard',
'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto',
'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean',
'yule'

45 See Math.NET Numerics for more distance metrics (https://numerics.mathdotnet.com/Distance.html).

Listing 4.7 Pairwise distances available in sklearn

46 See the documentation for sklearn.metrics.pairwise (http://scikit-learn.org/stable/modules/generated/
sklearn.metrics.pairwise_distances.html).

https://numerics.mathdotnet.com/Distance.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances.html

145Distance and similarity
Distance measures are often computed from similarity measures (scores) and vice versa
such that distances are inversely proportional to similarity scores. Similarity scores are
designed to range between 0 and 1. Typical conversion formulas look like this:

>>> similarity = 1. / (1. + distance)
>>> distance = (1. / similarity) - 1.

But for distances and similarity scores that range between 0 and 1, like probabilities,
it’s more common to use a formula like this:

>>> similarity = 1. - distance
>>> distance = 1. - similarity

And cosine distances have their own convention for the range of values they use. The
angular distance between two vectors is often computed as a fraction of the maximum
possible angular separation between two vectors, which is 180 degrees or pi radians.47

As a result, cosine similarity and distance are the reciprocal of each other:

>>> import math
>>> angular_distance = math.acos(cosine_similarity) / math.pi
>>> distance = 1. / similarity - 1.
>>> similarity = 1. - distance

The terms “distance” and “length” are often confused with the term “metric,” because
many distances and lengths are valid and useful metrics. But unfortunately not all dis-
tances can be called metrics. Even more confusing, metrics are also sometimes called
“distance functions” or “distance metrics” in formal mathematics and set theory texts.48

A related mathematical term, measure, has both a natural English meaning and a rigor-
ous mathematical definition. You’ll find “measure” in both a Merriam-Webster dic-
tionary and a math textbook glossary, with completely different definitions. So be
careful when talking to your math professor.

47 See the web page titled “Cosine similarity” (https://en.wikipedia.org/wiki/Cosine_similarity).

Metrics
A true metric must have four mathematical properties that distances or “scores” don’t:

 Nonnegativity: metrics can never be negative. metric(A, B) >= 0
 Indiscerniblity: two objects are identical if the metric between them is zero. if

metric(A, B) == 0: assert(A == B)
 Symmetry: metrics don’t care about direction. metric(A, B) = metric(B, A)
 Triangle inequality: you can’t get from A to C faster by going through B in-

between. metric(A, C) <= metric(A, B) + metric(B, C)

48 See the Wikipedia article titled “Metric (mathematics)” (https://en.wikipedia.org/wiki/Metric_
(mathematics)).

https://en.wikipedia.org/wiki/Metric_(mathematics)
https://en.wikipedia.org/wiki/Metric_(mathematics)
https://en.wikipedia.org/wiki/Cosine_similarity

146 CHAPTER 4 Finding meaning in word counts (semantic analysis)
 To a math professor, a measure is the size of a set of mathematical objects. You can
measure a Python set by its length, but many mathematical sets are infinite. And in
set theory, things can be infinite in different ways. And measures are all the different
ways to calculate the len() or size of a mathematical set, the ways things are infinite.

DEFINITION Like metric, the word “measure” has a precise mathematical defi-
nition, related to the “size” of a collection of objects. So the word “measure”
should also be used carefully in describing any scores or statistics derived
from an object or combination of objects in NLP.49

But in the real world, you measure all sorts of things. When you use it as a verb you
might mean using a measuring tape, or a ruler, or a scale or a score, to measure some-
thing. That’s how you use the word “measure” in this book, but we try not to use it at
all, so that our math professors don’t scold us.

4.7 Steering with feedback
All the previous approaches to LSA failed to take into account information about the
similarity between documents. We created topics that were optimal for a generic set of
rules. Our unsupervised learning of these feature (topic) extraction models didn’t
have any data about how “close” the topic vectors should be to each other. We didn’t
allow any “feedback” about where the topic vectors ended up, or how they were
related to each other. Steering or “learned distance metrics”50 are the latest advance-
ment in dimension reduction and feature extraction. By adjusting the distance scores
reported to clustering and embedding algorithms, you can “steer” your vectors so that
they minimize some cost function. In this way you can force your vectors to focus on
some aspect of the information content that you’re interested in.

 In the previous sections about LSA, you ignored all the meta information about
your documents. For example, with the SMS messages you ignored the sender of the
message. This is a good indication of topic similarity and could be used to inform your
topic vector transformation (LSA).

 At Talentpair, we experimented with matching resumes to job descriptions using
the cosine distance between topic vectors for each document. This worked OK. But we
learned quickly that we got much better results when we started “steering” our topic
vectors based on feedback from candidates and account managers responsible for
helping them find a job. Vectors for “good pairings” were steered closer together than
all the other pairings.

 One way to do this is to calculate the mean difference between your two centroids
(like you did for LDA) and add some portion of this “bias” to all the resume or job
description vectors. Doing so should take out the average topic vector difference
between resumes and job descriptions. Topics such as beer on tap at lunch might

49 See the Wikipedia article titled “Measure (mathematics)” (https://en.wikipedia.org/wiki/Measure_
(mathematics)).

50 See the web page titled “Superpixel Graph Label Transfer with Learned Distance Metric” (http://
users.cecs.anu.edu.au/~sgould/papers/eccv14-spgraph.pdf).

https://en.wikipedia.org/wiki/Measure_(mathematics)
https://en.wikipedia.org/wiki/Measure_(mathematics)
http://users.cecs.anu.edu.au/~sgould/papers/eccv14-spgraph.pdf
http://users.cecs.anu.edu.au/~sgould/papers/eccv14-spgraph.pdf

147Steering with feedback
appear in a job description but never in a resume. Similarly, bizarre hobbies, such as
underwater scuplture, might appear in some resumes but never a job description.
Steering your topic vectors can help you focus them on the topics you’re interested in
modeling.

 If you’re interested in refining topic vectors, taking out bias, you can search
Google Scholar (http://scholar.google.com/) for “learned distance/similarity metric”
or “distance metrics for nonlinear embeddings.”51 Unfortunately, no scikit-learn mod-
ules implement this feature yet. You’d be a hero if you found the time to add some
“steering” feature suggestions or code to the Scikit-Learn project (http://github
.com/scikit-learn/scikit-learn/issues).

4.7.1 Linear discriminant analysis

Let’s train a linear discriminant analysis model on your labeled SMS messages. LDA
works similarly to LSA, except it requires classification labels or other scores to be able
to find the best linear combination of the dimensions in high-dimensional space (the
terms in a BOW or TF-IDF vector). Rather than maximizing the separation (variance)
between all vectors in the new space, LDA maximizes the distance between the cen-
troids of the vectors within each class.

 Unfortunately, this means you have to tell the LDA algorithm what “topics” you’d
like to model by giving it examples (labeled vectors). Only then can the algorithm
compute the optimal transformation from your high-dimensional space to the lower-
dimensional space. And the resulting lower-dimensional vector can’t have any more
dimensions than the number of class labels or scores you’re able to provide. Because
you only have a “spaminess” topic to train on, let’s see how accurate your 1D topic
model can be at classifying spam SMS messages:

>>> lda = LDA(n_components=1)
>>> lda = lda.fit(tfidf_docs, sms.spam)
>>> sms['lda_spaminess'] = lda.predict(tfidf_docs)
>>> ((sms.spam - sms.lda_spaminess) ** 2.).sum() ** .5
0.0
>>> (sms.spam == sms.lda_spaminess).sum()
4837
>>> len(sms)
4837

It got every single one of them right! Oh, wait a minute. What did you say earlier
about overfitting? With 10,000 terms in your TF-IDF vectors it’s not surprising at all
that it could just “memorize” the answer. Let’s do some cross validation this time:

>>> from sklearn.model_selection import cross_val_score
>>> lda = LDA(n_components=1)
>>> scores = cross_val_score(lda, tfidf_docs, sms.spam, cv=5)
>>> "Accuracy: {:.2f} (+/-{:.2f})".format(scores.mean(), scores.std() * 2)
'Accuracy: 0.76 (+/-0.03)'

51 See the web page titled “Distance Metric Learning: A Comprehensive Survey” (https://www.cs.cmu.edu/
~liuy/frame_survey_v2.pdf).

http://github.com/scikit-learn/scikit-learn/issues
http://github.com/scikit-learn/scikit-learn/issues
http://scholar.google.com/
https://www.cs.cmu.edu/~liuy/frame_survey_v2.pdf
https://www.cs.cmu.edu/~liuy/frame_survey_v2.pdf

148 CHAPTER 4 Finding meaning in word counts (semantic analysis)
Clearly this isn’t a good model. This should be a reminder to never get excited about
a model’s performance on your training set.

 Just to make sure that 76% accuracy number is correct, let’s reserve a third of your
dataset for testing:

>>> from sklearn.model_selection import train_test_split
>>> X_train, X_test, y_train, y_test = train_test_split(tfidf_docs,\
... sms.spam, test_size=0.33, random_state=271828)
>>> lda = LDA(n_components=1)
>>> lda.fit(X_train, y_train)
LinearDiscriminantAnalysis(n_components=1, priors=None, shrinkage=None,

solver='svd', store_covariance=False, tol=0.0001)
>>> lda.score(X_test, y_test).round(3)
0.765

Again, poor test set accuracy. So it doesn’t look like you’re unlucky with your data sam-
pling. It’s a poor, overfitting model.

 Let’s see if LSA combined with LDA will help you create an accurate model that is
also generalized well so that new SMS messages don’t trip it up:

>>> X_train, X_test, y_train, y_test =
➥ train_test_split(pca_topicvectors.values, sms.spam, test_size=0.3,
➥ random_state=271828)
>>> lda = LDA(n_components=1)
>>> lda.fit(X_train, y_train)
LinearDiscriminantAnalysis(n_components=1, priors=None, shrinkage=None,

solver='svd', store_covariance=False, tol=0.0001)
>>> lda.score(X_test, y_test).round(3)
0.965
>>> lda = LDA(n_components=1)
>>> scores = cross_val_score(lda, pca_topicvectors, sms.spam, cv=10)
>>> "Accuracy: {:.3f} (+/-{:.3f})".format(scores.mean(), scores.std() * 2)
'Accuracy: 0.958 (+/-0.022)'

So with LSA, you can characterize an SMS message with only 16 dimensions and still
have plenty of information to classify them as spam (or not). And your low-dimen-
sional model is much less likely to overfit. It should generalize well and be able to clas-
sify as-yet-unseen SMS messages or chats.

 You’ve now come full circle back to your “simple” model at the beginning of this
chapter. You got better accuracy with your simple LDA model before you tried all that
semantic analysis. But the advantage of this new model is that you now can create vec-
tors that represent the semantics of a statement in more than just a single dimension.

4.8 Topic vector power
With topic vectors, you can do things like compare the meaning of words, documents,
statements, and corpora. You can find “clusters” of similar documents and statements.
You’re no longer comparing the distance between documents based merely on their
word usage. You’re no longer limited to keyword search and relevance ranking based
entirely on word choice or vocabulary. You can now find documents that are relevant
to your query, not just a good match for the word statistics themselves.

149Topic vector power
 This is called “semantic search,” not to be confused with the “semantic web.”52

Semantic search is what strong search engines do when they give you documents that
don’t contain many of the words in your query, but are exactly what you were looking
for. These advanced search engines use LSA topic vectors to tell the difference
between a Python package in “The Cheese Shop” and a python in a Florida pet shop
aquarium, while still recognizing its similarity to a “Ruby gem.”53

 Semantic search gives you a tool for finding and generating meaningful text. But
our brains aren’t good at dealing with high-dimensional objects, vectors, hyperplanes,
hyperspheres, and hypercubes. Our intuitions as developers and machine learning
engineers breaks down above three dimensions.

 For example, to do a query on a 2D vector, like your lat/lon location on Google
Maps, you can quickly find all the coffee shops nearby without much searching. You can
just scan (with your eyes or with code) near your location and spiral outward with your
search. Alternatively, you can create bigger and bigger bounding boxes with your code,
checking for longitudes and latitudes within some range. Doing this in hyperspace with
hyperplanes and hypercubes to form the boundaries of your search is impossible.

 As Geoffry Hinton says, “To deal with hyperplanes in a 14-dimensional space, visu-
alize a 3D space and say 14 to yourself loudly.” If you read Abbott’s 1884 Flatland when
you were young and impressionable, you might be able to do a little bit better than this
hand waving. You might even be able to poke your head partway out of the window of
your 3D world into hyperspace, enough to catch a glimpse of that 3D world from the
outside. Like in Flatland, you used a lot of 2D visualizations in this chapter to help you
explore the shadows that words in hyperspace leave in your 3D world. If you’re anxious
to check them out, skip ahead to the section showing “scatter matrices” of word vectors.
You might also want to glance back at the 3D bag-of-words vector in the previous chap-
ter and try to imagine what those points would look like if you added just one more
word to your vocabulary to create a 4-D world of language meaning.

 If you’re taking a moment to think deeply about four dimensions, keep in mind
that the explosion in complexity you’re trying to wrap your head around is even
greater than the complexity growth from 2D to 3D and exponentially greater than the
growth in complexity from a 1D world of numbers to a 2D world of triangles, squares,
and circles.

NOTE The explosive growth in possibilities from 1D lines, 2D rectangles, 3D
cubes, and so on passes through bizarre universes with non-integer fractal
dimensions, like a 1.5-dimension fractal. A 1.5D fractal has infinite length
and completely fills a 2D plane while having less than two dimensions!54 But

52 The semantic web is the practice of structuring natural language text with the use of tags in an HTML docu-
ment so that the hierarchy of tags and their content provide information about the relationships (web of
connections) between elements (text, images, videos) on a web page.

53 Ruby is a programming language with a package called gem.
54 fractional dimensions, http://www.math.cornell.edu/~erin/docs/research-talk.pdf

http://www.math.cornell.edu/~erin/docs/research-talk.pdf

150 CHAPTER 4 Finding meaning in word counts (semantic analysis)
fortunately these aren’t “real” dimensions.55 So you don’t have to worry about
them in NLP… unless you get interested in fractional distance metrics, like
p-norm, which have noninteger exponents in their formulas.56

4.8.1 Semantic search

When you search for a document based on a word or partial word it contains, that’s
called full text search. This is what search engines do. They break a document into
chunks (usually words) that can be indexed with an inverted index like you’d find at the
back of a textbook. It takes a lot of bookkeeping and guesswork to deal with spelling
errors and typos, but it works pretty well.57

 Semantic search is full text search that takes into account the meaning of the words
in your query and the documents you’re searching. In this chapter, you’ve learned two
ways— LSA and LDiA—to compute topic vectors that capture the semantics (mean-
ing) of words and documents in a vector. One of the reasons that latent semantic anal-
ysis was first called latent semantic indexing was because it promised to power semantic
search with an index of numerical values, like BOW and TF-IDF tables. Semantic
search was the next big thing in information retrieval.

 But unlike BOW and TF-IDF tables, tables of semantic vectors can’t be easily dis-
cretized and indexed using traditional inverted index techniques. Traditional index-
ing approaches work with binary word occurrence vectors, discrete vectors (BOW
vectors), sparse continuous vectors (TF-IDF vectors), and low-dimensional continuous
vectors (3D GIS data). But high-dimensional continuous vectors, such as topic vectors
from LSA or LDiA, are a challenge.58 Inverted indexes work for discrete vectors or
binary vectors, like tables of binary or integer word-document vectors, because the
index only needs to maintain an entry for each nonzero discrete dimension. Either
that value of that dimension is present or not present in the referenced vector or doc-
ument. Because TF-IDF vectors are sparse, mostly zero, you don’t need an entry in
your index for most dimensions for most documents.59

 LSA (and LDiA) produce topic vectors that are high-dimensional, continuous, and
dense (zeros are rare). And the semantic analysis algorithm doesn’t produce an effi-
cient index for scalable search. In fact, the curse of dimensionality that we talked
about in the previous section makes an exact index impossible. The “indexing” part of
latent semantic indexing was a hope, not a reality, so the LSI term is a misnomer.

55 “Fractal dimensions, (http://www.askamathematician.com/2012/12/q-what-are-fractional-dimensions-can-
space-have-a-fractional-dimension/).

56 “The Concentration of Fractional Distances” (https://perso.uclouvain.be/michel.verleysen/papers/tkde
07df.pdf).

57 A full text index in a database like PostgreSQL is usually based on trigrams of characters, to deal with spelling
errors and text that doesn’t parse into words.

58 Clustering high-dimensional data is equivalent to discretizing or indexing high-dimensional data with bound-
ing boxes and is described in the Wikipedia article “Clustering high dimensional data” (https://en.wikipedia
.org/wiki/Clustering_high-dimensional_data).

59 See the web page titled “Inverted index” (https://en.wikipedia.org/wiki/Inverted_index).

http://www.askamathematician.com/2012/12/q-what-are-fractional-dimensions-can-space-have-a-fractional-dimension/
https://perso.uclouvain.be/michel.verleysen/papers/tkde07df.pdf
https://perso.uclouvain.be/michel.verleysen/papers/tkde07df.pdf
https://en.wikipedia.org/wiki/Clustering_high-dimensional_data
https://en.wikipedia.org/wiki/Clustering_high-dimensional_data
https://en.wikipedia.org/wiki/Inverted_index

151Topic vector power
Perhaps that’s why LSA has become the more popular way to describe semantic analy-
sis algorithms that produce topic vectors.

 One solution to the challenge of high-dimensional vectors is to index them with a
locality sensitive hash (LSH). A locality sensitive hash is like a ZIP code (postal code) that
designates a region of hyperspace so that it can easily be found again later. And like a
regular hash, it’s discrete and depends only on the values in the vector. But even this
doesn’t work perfectly once you exceed about 12 dimensions. In figure 4.6, each row
represents a topic vector size (dimensionality), starting with 2 dimensions and working
up to 16 dimensions, like the vectors you used earlier for the SMS spam problem.

Figure 4.6 Semantic search accuracy deteriorates at around 12-D.

The table shows how good your search results would be if you used locality sensitive
hashing to index a large number of semantic vectors. Once your vector had more than
16 dimensions, you’d have a hard time returning 2 search results that were any good.

 So how can you do semantic search on 100-D vectors without an index? You now
know how to convert the query string into a topic vector using LSA. And you know
how to compare two vectors for similarity using the cosine similarity score (the scalar
product, inner product, or dot product) to find the closest match. To find precise
semantic matches, you need to find all the closest document topic vectors to a particu-
lar query (search) topic vector. But if you have n documents, you have to do n compar-
isons with your query topic vector. That’s a lot of dot products.

Dimensions

100th
cosine
distance

Top 1
correct

Top 2
correct

Top 10
correct

Top 100
correct

2 .00 TRUE TRUE TRUE TRUE

3 .00 TRUE TRUE TRUE TRUE

4 .00 TRUE TRUE TRUE TRUE

5 .01 TRUE TRUE TRUE TRUE

6 .02 TRUE TRUE TRUE TRUE

7 .02 TRUE TRUE TRUE FALSE

8 .03 TRUE TRUE TRUE FALSE

9 .04 TRUE TRUE TRUE FALSE

10 .05 TRUE TRUE FALSE FALSE

11 .07 TRUE TRUE TRUE FALSE

12 .06 TRUE TRUE FALSE FALSE

13 .09 TRUE TRUE FALSE FALSE

14 .14 TRUE FALSE FALSE FALSE

15 .14 TRUE TRUE FALSE FALSE

16 .09 TRUE TRUE FALSE FALSE

152 CHAPTER 4 Finding meaning in word counts (semantic analysis)
 You can vectorize the operation in numpy using matrix multiplication, but that
doesn’t reduce the number of operations; it only makes them 100 times faster.60 Fun-
damentally, exact semantic search still requires O(N) multiplications and additions
for each query. So it scales only linearly with the size of your corpus. That wouldn’t
work for a large corpus, such as Google Search or even Wikipedia semantic search.

 The key is to settle for “good enough” rather than striving for a perfect index or
LSH algorithm for our high-dimensional vectors. There are now several open source
implementations of some efficient and accurate approximate nearest neighbors algo-
rithms that use LSH to efficiently implement semantic search. A couple of the easiest
to use and install are

 Spotify’s Annoy package 61

 Gensim’s gensim.models.KeyedVector class62

Technically these indexing or hashing solutions cannot guarantee that you will find all
the best matches for your semantic search query. But they can get you a good list of
close matches almost as fast as with a conventional reverse index on a TF-IDF vector or
bag-of-words vector, if you’re willing to give up a little precision.63

4.8.2 Improvements

In the next chapters, you’ll learn how to fine tune this concept of topic vectors so that
the vectors associated with words are more precise and useful. To do this we first start
learning about neural nets. This will improve your pipeline’s ability to extract mean-
ing from short texts or even solitary words.

Summary
 You can use SVD for semantic analysis to decompose and transform TF-IDF and

BOW vectors into topic vectors.
 Use LDiA when you need to compute explainable topic vectors.
 No matter how you create your topic vectors, they can be used for semantic

search to find documents based on their meaning.
 Topic vectors can be used to predict whether a social post is spam or is likely to

be “liked.”
 Now you know how to sidestep around the curse of dimensionality to find

approximate nearest neighbors in your semantic vector space.

60 Vectorizing your Python code, especially doubly-nested for loops, for pairwise distance calculations can
speed your code by almost 100-fold. See Hacker Noon article “Vectorizing the Loops with Numpy” (https://
hackernoon.com/speeding-up-your-code-2-vectorizing-the-loops-with-numpy-e380e939bed3).

61 Spotify’s researchers compared their annoy performance to that of several alternative algorithms and imple-
mentations on their github repo (https://github.com/spotify/annoy).

62 The approach used in gensim for hundreds of dimensions in word vectors will work fine for any semantic or
topic vector. See gensim’s “KeyedVectors” documentation (https://radimrehurek.com/gensim/models/
keyedvectors.html).

63 If you want to learn about faster ways to find a high-dimensional vector’s nearest neighbors, check out appen-
dix F, or just use the Spotify annoy package to index your topic vectors.

https://hackernoon.com/speeding-up-your-code-2-vectorizing-the-loops-with-numpy-e380e939bed3
https://hackernoon.com/speeding-up-your-code-2-vectorizing-the-loops-with-numpy-e380e939bed3
https://github.com/spotify/annoy
https://radimrehurek.com/gensim/models/keyedvectors.html
https://radimrehurek.com/gensim/models/keyedvectors.html

Part 2

Deeper learning
(neural networks)

Part 1 gathered the tools for natural language processing and dove into
machine learning with statistics-driven vector space models. You discovered that
even more meaning could be found when you looked at the statistics of connec-
tions between words.1 You learned about algorithms such as latent semantic anal-
ysis that can help make sense of those connections by gathering words into topics.

 But part 1 considered only linear relationships between words. And you often
had to use human judgment to design feature extractors and select model
parameters. The neural networks of part 2 accomplish most of the tedious fea-
ture extraction work for you. And the models of part 2 are often more accurate
than those you could build with the hand-tuned feature extractors of part 1.

 The use of multilayered neural networks for machine learning is called deep
learning. This new approach to NLP and the modeling of human thought is
often called “connectionism” by philosophers and neuroscientists.2 The increas-
ing access to deep learning, through greater availability of computational
resources and the rich open source culture, will be your gateway into deeper

1 Conditional probability is one term for these connection statistics (how often a word occurs given that
other words occur before or after the “target” word). Cross correlation is another one of these statistics
(the likelihood of words occurring together). The singular values and singular vectors of the word-
document matrix can be used to collect words into topics, linear combinations of word counts.

2 See the web page titled “Stanford Encyclopedia of Philosophy - Connectionism” (https://plato.stanford
.edu/entries/connectionism).

https://plato.stanford.edu/entries/connectionism
https://plato.stanford.edu/entries/connectionism

154 CHAPTER
understanding of language. In part 2, we begin to peel open the “black box” that is
deep learning and learn how to model text in deeper nonlinear ways.

 We start with a primer on neural networks. Then we examine a few of the various
flavors of neural networks and how they can be applied to NLP. We also start to look at
the patterns not only between words but between the characters within words. And
finally we show you how to use machine learning to actually generate novel text.

Baby steps with neural
networks (perceptrons

and backpropagation)
In recent years, a lot of hype has developed around the promise of neural networks
and their ability to classify and identify input data, and more recently the ability of
certain network architectures to generate original content. Companies large and
small are using them for everything from image captioning and self-driving car nav-
igation to identifying solar panels from satellite images and recognizing faces in
security camera videos. And luckily for us, many NLP applications of neural nets
exist as well. While deep neural networks have inspired a lot of hype and hyper-
bole, our robot overlords are probably further off than any clickbait cares to admit.
Neural networks are, however, quite powerful tools, and you can easily use them in
an NLP chatbot pipeline to classify input text, summarize documents, and even
generate novel works.

This chapter covers
 Learning the history of neural networks

 Stacking perceptrons

 Understanding backpropagation

 Seeing the knobs to turn on neural networks

 Implementing a basic neural network in Keras
155

156 CHAPTER 5 Baby steps with neural networks (perceptrons and backpropagation)
 This chapter is intended as a primer for those with no experience in neural net-
works. We don’t cover anything specific to NLP in this chapter, but gaining a basic
understanding of what is going on under the hood in a neural network is important for
the upcoming chapters. If you’re familiar with the basics of a neural network, you can
rest easy in skipping ahead to the next chapter, where you dive back into processing text
with the various flavors of neural nets. Although the mathematics of the underlying
algorithm, backpropagation, are outside this book’s scope, a high-level grasp of its basic
functionality will help you understand language and the patterns hidden within.

TIP Manning publishes two other tremendous resources on deep learning:

 Deep Learning with Python, by François Chollet (Manning, 2017), is a deep
dive into the wonders of deep learning by the creator of Keras himself.

 Grokking Deep Learning, by Andrew Trask (Manning, 2017), is a broad
overview of deep learning models and practices.

5.1 Neural networks, the ingredient list
As the availability of processing power and memory has exploded over the course of
the decade, an old technology has come into its own again. First proposed in the
1950s by Frank Rosenblatt, the perceptron1 offered a novel algorithm for finding pat-
terns in data.

 The basic concept lies in a rough mimicry of the operation of a living neuron cell.
As electrical signals flow into the cell through the dendrites (see figure 5.1) into the
nucleus, an electric charge begins to build up. When the cell reaches a certain level of

charge, it fires, sending an electri-
cal signal out through the axon.
However, the dendrites aren’t all
created equal. The cell is more
“sensitive” to signals through cer-
tain dendrites than others, so it
takes less of a signal in those
paths to fire the axon.
 The biology that controls these
relationships is most certainly
beyond the scope of this book,
but the key concept to notice
here is the way the cell weights

incoming signals when deciding when to fire. The neuron will dynamically change
those weights in the decision making process over the course of its life. You are going
to mimic that process.

1 Rosenblatt, Frank (1957), “The perceptron—a perceiving and recognizing automaton.” Report 85-460-1, Cor-
nell Aeronautical Laboratory.

Dendrite

Nucleus

Axon

Figure 5.1 Neuron cell

157Neural networks, the ingredient list
5.1.1 Perceptron

Rosenblatt’s original project was to teach a machine to recognize images. The original
perceptron was a conglomeration of photo-receptors and potentiometers, not a com-
puter in the current sense. But implementation specifics aside, Rosenblatt’s concept
was to take the features of an image and assign a weight, a measure of importance, to
each one. The features of the input image were each a small subsection of the image.

 A grid of photo-receptors would be exposed to the image. Each receptor would see
one small piece of the image. The brightness of the image that a particular photo-
receptor could see would determine the strength of the signal that it would send to
the associated “dendrite.”

 Each dendrite had an associated weight in the form of a potentiometer. Once
enough signal came in, it would pass the signal into the main body of the “nucleus” of
the “cell.” Once enough of those signals from all the potentiometers passed a certain
threshold, the perceptron would fire down its axon, indicating a positive match on the
image it was presented with. If it didn’t fire for a given image, that was a negative clas-
sification match. Think “hot dog, not hot dog” or “iris setosa, not iris setosa.”

5.1.2 A numerical perceptron

So far there has been a lot of hand waving about biology and electric current and
photo-receptors. Let’s pause for a second and peel out the most important parts of
this concept.

 Basically, you’d like to take an example from a dataset, show it to an algorithm, and
have the algorithm say yes or no. That’s all you’re doing so far. The first piece you
need is a way to determine the features of the sample. Choosing appropriate features
turns out to be a surprisingly challenging part of machine learning. In “normal”
machine learning problems, like predicting home prices, your features might be
square footage, last sold price, and ZIP code. Or perhaps you’d like to predict the spe-
cies of a certain flower using the Iris dataset.2 In that case your features would be petal
length, petal width, sepal length, and sepal width.

 In Rosenblatt’s experiment, the features were the intensity values of each pixel
(subsections of the image), one pixel per photo receptor. You then need a set of
weights to assign to each of the features. Don’t worry yet about where these weights
come from. Just think of them as a percentage of the signal to let through into the
neuron. If you’re familiar with linear regression, then you probably already know
where these weights come from.3

2 The Iris dataset is frequently used to introduce machine learning to new students. See the Scikit-Learn docs
(http://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html).

3 The weights for the inputs to a single neuron are mathematically equivalent to the slopes in a multivariate
linear regression or logistic regression.

http://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html

158 CHAPTER 5 Baby steps with neural networks (perceptrons and backpropagation)
TIP Generally, you’ll see the individual features denoted as xi, where i is a
reference integer. And the collection of all features for a given example are
denoted as X representing a vector:

X = [x1, x2, …, xi, …, xn]

And similarly, you’ll see the associate weights for each feature as wi, where i
corresponds to the index of feature x associated with that weight. And the
weights are generally represented as a vector W :

W = [w1, w2, …, wi, …, wn]

With the features in hand, you just multiply each feature (xi) by the corresponding
weight (wi) and then sum up:

 (x1 * w1) + (x2 * w2) + … + (xi * wi) + …

The one piece you’re missing here is the neuron’s threshold to fire or not. And it’s
just that, a threshold. Once the weighted sum is above a certain threshold, the percep-
tron outputs 1. Otherwise it outputs 0.

 You can represent this threshold with a simple step function (labeled “Activation
Function” in figure 5.2).

Figure 5.2 Basic perceptron

5.1.3 Detour through bias

Figure 5.2 and this example reference bias. What is this? The bias is an “always on”
input to the neuron. The neuron has a weight dedicated to it just as with every other
element of the input, and that weight is trained along with the others in the exact
same way. This is represented in two ways in the various literature around neural net-
works. You may see the input represented as the base input vector, say of n-elements,

0 or 1x

y

t0

1

bias unit

sum(W * X) + wb

Activation Function
t = threshold

1

x0

x1

x2

wb

w1

w0

w2

159Neural networks, the ingredient list
with a 1 appended to the beginning or the end of the vector, giving you an n+1 dimen-
sional vector. The position of the 1 is irrelevant to the network, as long as it’s consis-
tent across all of your samples. Other times people presume the existence of the bias
term and leave it off the input in a diagram, but the weight associated with it exists
separately and is always multiplied by 1 and added to the dot product of the sample
input’s values and their associated weights. Both are effectively the same—just a
heads-up to notice the two common ways of displaying the concept.

 The reason for having the bias weight at all is that you need the neuron to be resil-
ient to inputs of all zeros. It may be the case that the network needs to learn to output
0 in the face of inputs of 0, but it may not. Without the bias term, the neuron would
output 0 * weight = 0 for any weights you started with or tried to learn. With the bias
term, you won’t have this problem. And in case the neuron needs to learn to output 0,
in that case, the neuron can learn to decrement the weight associated with the bias
term enough to keep the dot product below the threshold.

 Figure 5.3 is a rather neat visualization of the analogy between some of the signals
within a biological neuron in your brain and the signals of an artificial neuron used for
deep learning. If you want to get deep, think about how you are using a biological neu-
ron to read this book about natural language processing to learn about deep learning.4

Figure 5.3 A perceptron and a biological neuron

And in mathematical terms, the output of your perceptron, denoted f(x), looks like

Equation 5.1 Threshold activation function

4 Natural language understanding (NLU) is a term often used in academic circles to refer to natural language
processing when that processing appears to demonstrate that the machine understands natural language text.
Word2vec embeddings are one example of a natural language understanding task. Question answering and
reading comprehension tasks also demonstrate understanding. Neural networks in general are very often
associated with natural language understanding.

++

Activation Output

Axon

Dendrite

y
z

Inputs

Xb = 1

X0

...

Xn

n

f(x) = 1 if x iwi > threshold else 0 Σ
i=0

160 CHAPTER 5 Baby steps with neural networks (perceptrons and backpropagation)
TIP The sum of the pairwise multiplications of the input vector (X) and the
weight vector (W) is exactly the dot product of the two vectors. This is the
most basic element of why linear algebra factors so heavily in the development
of neural networks. The other side effect of this matrix multiplication struc-
ture of a perceptron is that GPUs in modern computers turn out to be super-
efficient at implementing neural networks due to their hyper-optimization of
linear algebra operations.

Your perceptron hasn’t learned anything just yet. But you have achieved something
quite important. You’ve passed data into a model and received an output. That output
is likely wrong, given you said nothing about where the weight values come from. But
this is where things will get interesting.

TIP The base unit of any neural network is the neuron. And the basic per-
ceptron is a special case of the more generalized neuron. We refer to the
perceptron as a neuron for now.

A PYTHONIC NEURON

Calculating the output of the neuron described earlier is straightforward in Python.
You can also use the numpy dot function to multiply your two vectors together:

>>> import numpy as np

>>> example_input = [1, .2, .1, .05, .2]
>>> example_weights = [.2, .12, .4, .6, .90]

>>> input_vector = np.array(example_input)
>>> weights = np.array(example_weights)
>>> bias_weight = .2

>>> activation_level = np.dot(input_vector, weights) +\
... (bias_weight * 1)
>>> activation_level
0.674

With that, if you use a simple threshold activation function and choose a threshold of
.5, your next step is the following:

>>> threshold = 0.5
>>> if activation_level >= threshold:
... perceptron_output = 1
... else:
... perceptron_output = 0
>>> perceptron_output)
1

Given the example_input, and that particular set of weights, this perceptron will out-
put 1. But if you have several example_input vectors and the associated expected

The multiplication by one (* 1) is just to emphasize
that the bias_weight is like all the other weights:
it’s multiplied by an input value, only the
bias_weight input feature value is always 1.

161Neural networks, the ingredient list
outcomes with each (a labeled dataset), you can decide if the perceptron is correct or
not for each guess.

CLASS IS IN SESSION

So far you have set up a path toward making predictions based on data, which sets the
stage for the main act: machine learning. The weight values up to this point have been
brushed off as arbitrary values so far. In reality, they are the key to the whole structure,
and you need a way to “nudge” the weights up and down based on the result of the
prediction for a given example.

 The perceptron learns by altering the weights up or down as a function of how
wrong the system’s guess was for a given input. But from where does it start? The
weights of an untrained neuron start out random! Random values, near zero, are usu-
ally chosen from a normal distribution. In the preceding example, you can see why
starting the weights (including the bias weight) at zero would lead only to an output
of zero. But establishing slight variations, without giving any track through the neuron
too much power, you have a foothold from where to be right and where to be wrong.

 And from there you can start to learn. Many different samples are shown to the sys-
tem, and each time the weights are readjusted a small amount based on whether the
neuron output was what you wanted or not. With enough examples (and under the
right conditions), the error should tend toward zero, and the system learns.

 The trick is, and this is the key to the whole concept, that each weight is adjusted by
how much it contributed to the resulting error. A larger weight (which lets that data
point affect the result more) should be blamed more for the rightness/wrongness of
the perceptron’s output for that given input.

 Let’s assume that your earlier example_input should have resulted in a 0 instead:

>>> expected_output = 0
>>> new_weights = []
>>> for i, x in enumerate(example_input):
... new_weights.append(weights[i] + (expected_output -\
... perceptron_output) * x)
>>> weights = np.array(new_weights)

>>> example_weights
[0.2, 0.12, 0.4, 0.6, 0.9]
>>> weights
[-0.8 -0.08 0.3 0.55 0.7]

This process of exposing the network over and over to the same training set can,
under the right circumstances, lead to an accurate predictor even on input that the
perceptron has never seen.

LOGIC IS A FUN THING TO LEARN

So the preceding example was just some arbitrary numbers to show how the math
goes together. Let’s apply this to a problem. It’s a trivial toy problem, but it

For example, in the first index above:
new_weight = .2 + (0 - 1) * 1 = -0.8

Original
weights

New
weights

162 CHAPTER 5 Baby steps with neural networks (perceptrons and backpropagation)
demonstrates the basics of how you can teach a computer a concept, by only showing
it labeled examples.

 Let’s try to get the computer to understand the concept of logical OR. If either
one side or the other of the expression is true (or both sides are), the logical OR state-
ment is true. Simple enough. For this toy problem, you can easily model every possible
example by hand (this is rarely the case in reality). Each sample consists of two signals,
each of which is either true (1) or false (0). See the following listing.

>>> sample_data = [[0, 0], # False, False
... [0, 1], # False, True
... [1, 0], # True, False
... [1, 1]] # True, True

>>> expected_results = [0, # (False OR False) gives False
... 1, # (False OR True) gives True
... 1, # (True OR False) gives True
... 1] # (True OR True) gives True

>>> activation_threshold = 0.5

You need a few tools to get started: numpy just to get used to doing vector (array) mul-
tiplication, and random to initialize the weights:

>>> from random import random
>>> import numpy as np

>>> weights = np.random.random(2)/1000 # Small random float 0 < w < .001
>>> weights
[5.62332144e-04 7.69468028e-05]

You need a bias as well:

>>> bias_weight = np.random.random() / 1000
>>> bias_weight
0.0009984699077277136

Then you can pass it through your pipeline and get a prediction for each of your four
samples. See the following listing.

>>> for idx, sample in enumerate(sample_data):
... input_vector = np.array(sample)
... activation_level = np.dot(input_vector, weights) +\
... (bias_weight * 1)
... if activation_level > activation_threshold:
... perceptron_output = 1
... else:
... perceptron_output = 0

Listing 5.1 OR problem setup

Listing 5.2 Perceptron random guessing

163Neural networks, the ingredient list
... print('Predicted {}'.format(perceptron_output))

... print('Expected: {}'.format(expected_results[idx]))

... print()
Predicted 0
Expected: 0

Predicted 0
Expected: 1

Predicted 0
Expected: 1

Predicted 0
Expected: 1

Your random weight values didn’t help your little neuron out that much—one right
and three wrong. Let’s send it back to school. Instead of just printing 1 or 0, you’ll
update the weights at each iteration. See the following listing.

>>> for iteration_num in range(5):
... correct_answers = 0
... for idx, sample in enumerate(sample_data):
... input_vector = np.array(sample)
... weights = np.array(weights)
... activation_level = np.dot(input_vector, weights) +\
... (bias_weight * 1)
... if activation_level > activation_threshold:
... perceptron_output = 1
... else:
... perceptron_output = 0
... if perceptron_output == expected_results[idx]:
... correct_answers += 1
... new_weights = []
... for i, x in enumerate(sample):
... new_weights.append(weights[i] + (expected_results[idx] -\
... perceptron_output) * x)
... bias_weight = bias_weight + ((expected_results[idx] -\
... perceptron_output) * 1)
... weights = np.array(new_weights)
... print('{} correct answers out of 4, for iteration {}'\
... .format(correct_answers, iteration_num))
3 correct answers out of 4, for iteration 0
2 correct answers out of 4, for iteration 1
3 correct answers out of 4, for iteration 2
4 correct answers out of 4, for iteration 3
4 correct answers out of 4, for iteration 4

Listing 5.3 Perceptron learning

This is where the magic happens. There are more efficient ways of doing this, but you broke
it out into a loop to reinforce that each weight is updated by force of its input (xi). If an

input was small or zero, the effect on that weight would be minimal, regardless of the
magnitude of the error. And conversely, the effect would be large if the input was large.

The bias weight is updated
as well, just like those

associated with the inputs.

164 CHAPTER 5 Baby steps with neural networks (perceptrons and backpropagation)
Haha! What a good student your little perceptron is. By updating the weights in the
inner loop, the perceptron is learning from its experience of the dataset. After the
first iteration, it got two more correct (three out of four) than it did with random
guessing (one out of four).

 In the second iteration, it overcorrected the weights (changed them too much)
and had to learn to backtrack with its adjustment of the weights. By the time the
fourth iteration completed, it had learned the relationships perfectly. The subsequent
iterations do nothing to update the network, as there is an error of 0 at each sample,
so no weight adjustments are made.

 This is what is known as convergence. A model is said to converge when its error
function settles to a minimum, or at least a consistent value. Sometimes you’re not so
lucky. Sometimes a neural network bounces around looking for optimal weights to sat-
isfy the relationships in a batch of data and never converges. In section 5.8, you’ll see
how an objective function or loss function affects what your neural net “thinks” are the
optimal weights.

NEXT STEP

The basic perceptron has an inherent flaw. If the data isn’t linearly separable, or the
relationship cannot be described by a linear relationship, the model won’t converge
and won’t have any useful predictive power. It won’t be able to predict the target vari-
able accurately.

 Early experiments were successful at learning to classify images based solely on
example images and their classes. The initial excitement of the concept was quickly
tempered by the work of Minsky and Papert,5 who showed the perceptron was severely

5 Perceptrons by Minsky and Papert, 1969

600

500

400

300

200

100

0

–100
21 3 4 5 6 7 8 9 10

Figure 5.4 Linearly separable data

165Neural networks, the ingredient list
limited in the kinds of classifications it can make. Minsky and Papert showed that if
the data samples weren’t linearly separable into discrete groups, the perceptron
wouldn’t be able to learn to classify the input data.

 Linearly separable data points (as shown in figure 5.4) are no problem for a per-
ceptron. Crossed up data will cause a single-neuron perceptron to forever spin its
wheels without learning to predict anything better than a random guess, a random
flip of a coin. It’s not possible to draw a single line between your two classes (dots and
Xs) in figure 5.5.

A perceptron finds a linear equation that describes the relationship between the fea-
tures of your dataset and the target variable in your dataset. A perceptron is just doing
linear regression. A perceptron cannot describe a nonlinear equation or a nonlinear
relationship.

Local vs global minimum
When a perceptron converges, it can be said to have found a linear equation that
describes the relationship between the data and the target variable. It doesn’t, how-
ever, say anything about how good this descriptive linear equation is, or how “mini-
mum” the cost is. If there are multiple solutions, multiple possible cost minimums,
it will settle on one particular minimum determined by where its weights started. This
is called a local minimum because it’s the best (smallest cost) that could be found
near where the weights started. It may not be the global minimum, which is the best
you could ever find by searching all the possible weights. In most cases it’s not pos-
sible to know if you’ve found the global minimum.

600

500

400

300

200

100

–100
0 10 15 20 255

0

Figure 5.5 Nonlinearly separable data

166 CHAPTER 5 Baby steps with neural networks (perceptrons and backpropagation)
A lot of relationships between data values aren’t linear, and there’s no good linear
regression or linear equation that describes those relationships. And many datasets
aren’t linearly separable into classes with lines or planes. Because most data in the
world isn’t cleanly separable with lines and planes, the “proof” Minsky and Paperts
published relegated the perceptron to the storage shelves.

 But the perceptron idea didn’t die easily. It resurfaced again when the Rumelhardt-
McClelland collaboration effort (which Geoffrey Hinton was involved in)6 showed you
could use the idea to solve the XOR problem with multiple perceptrons in concert.7

The problem you solved with a single perceptron and no multilayer backpropagation
was for a simpler problem, the OR problem. The key breakthrough by Rumelhardt-
McClelland was the discovery of a way to allocate the error appropriately to each of the
perceptrons. The way they did this was to use an old idea called backpropagation. With
this idea for backpropagation across layers of neurons, the first modern neural net-
work was born.

 The basic perceptron has the inherent flaw that if the data isn’t linearly separable,
the model won’t converge to a solution with useful predictive power.

NOTE The code in listing 5.3 solved the OR problem with a single percep-
tron. The table of 1s and 0s in listing 5.1 that our perceptron learned was the
output of binary OR logic. The XOR problem slightly alters that table to try to
teach the perceptron how to mimic an Exclusive OR logic gate. If you changed
the correct answer for the last example from a 1 (True) to a 0 (False) to rep-
resent XOR logic, that makes the problem a lot harder. The examples in each
class (0 or 1) aren’t linearly separable without adding an additional neuron to
our neural network. The classes are diagonal from each other in our two-
dimensional feature vector space (similar to figure 5.5), so there’s no line you
can draw that separates 1s (logic Trues) from 0s (logic Falses).

Even though they could solve complex (nonlinear) problems, neural networks were,
for a time, too computationally expensive. It was seen as a waste of precious computa-
tional power to require two perceptrons and a bunch of fancy backpropagation math
to solve the XOR problem, a problem that can be solved with a single logic gate or a
single line of code. They proved impractical for common use, and they found their
way back to the dusty shelves of academia and supercomputer experimentation. This
began the second “AI Winter”8 that lasted from around 1990 to about 2010.9 But even-
tually computing power, backpropagation algorithms, and the proliferation of raw
data, like labeled images of cats and dogs,10 caught up. Computationally expensive

6 Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). “Learning representations by back-propagating
errors.” Nature, 323, 533–536.

7 See the Wikipedia article “The XOR affair” (https://en.wikipedia.org/wiki/Perceptrons_(book)#The_XOR
_affair).

8 Wikipedia, https://en.wikipedia.org/wiki/AI_winter#The_setbacks_of_the_late_1980s_and_early_1990s.
9 See the web page titled “Philosophical Transactions of the Royal Society B: Biological Sciences” (http://

rstb.royalsocietypublishing.org/content/365/1537/177.short).

https://en.wikipedia.org/wiki/Perceptrons_(book)#The_XOR_affair
https://en.wikipedia.org/wiki/Perceptrons_(book)#The_XOR_affair
https://en.wikipedia.org/wiki/AI_winter#The_setbacks_of_the_late_1980s_and_early_1990s
http://rstb.royalsocietypublishing.org/content/365/1537/177.short
http://rstb.royalsocietypublishing.org/content/365/1537/177.short

167Neural networks, the ingredient list
algorithms and limited datasets were no longer show-stoppers. Thus the third age of
neural networks began.

 But back to what they found.

EMERGENCE FROM THE SECOND AI WINTER

As with most great ideas, the good ones will bubble back to the surface eventually. It
turns out that the basic idea behind the perceptron can be extended to overcome the
basic limitation that doomed it at first. The idea is to gather multiple perceptrons
together and feed the input into one (or several) perceptrons. Then you can feed the
output of those perceptrons into more perceptrons before finally comparing the out-
put to the expected value. This system (a neural network) can learn more complex
patterns and overcome the challenge of classes that aren’t linearly separable, like in
the XOR problem. The key question is: How do you update the weights in the earlier
layers?

 Let’s pause for a moment and formalize an important part of the process. So far
we’ve discussed errors and how much the prediction was off base for a perceptron. Mea-
suring this error is the job of a cost function, or loss function. A cost function, as you have
seen, quantifies the mismatch between the correct answers that the network should out-
put and the values of the actual outputs (y) for the corresponding “questions” (x) input
into the network. The loss function tells us how often our network output the wrong
answer and how wrong those answers were. Equation 5.2 is one example of a cost func-
tion, just the error between the truth and your model’s prediction:

err(x) = |y _ f(x)|

Equation 5.2 Error between truth and prediction

The goal in training a perceptron, or a neural network in general, is to minimize this
cost function across all available input samples:

Equation 5.3 Cost function you want to minimize

You’ll soon see other cost functions, such as mean squared error, but you won’t have
to decide on the best cost function. It’s usually already decided for you within most
neural network frameworks. The most important thing to grasp is the idea that mini-
mizing a cost function across a dataset is your ultimate goal. Then the rest of the con-
cepts presented here will make sense.

10 See the PDF “Learning Multiple Layers of Features from Tiny Images” by Alex Krizhevsky (http://citese-
erx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf).

n

J(x) = min err(x i) Σ
i=1

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf

168 CHAPTER 5 Baby steps with neural networks (perceptrons and backpropagation)
BACKPROPAGATION

Hinton and his colleagues decided there was a way to use multiple perceptrons at the
same time with one target. This they showed could solve problems that weren’t lin-
early separable. They could now approximate nonlinear functions as well as linear
ones.

 But how in the world do you update the weights of these various perceptrons?
What does it even mean to have contributed to an error? Say two perceptrons sit next
to each other and each receive the same input. No matter what you do with output
(concatenate it, add it, multiply it), when you try to push the error back to the initial
weights it will be a function of the input (which was identical on both sides), so they
would be updated the same amount at each step and you’d never go anywhere. Your
neurons would be redundant. They’d both end up with the same weights and your
network wouldn’t learn very much.

 The concept gets even more mind bending when you imagine a perceptron that
feeds into a second perceptron as the second’s input. Which is exactly what you’re
going to do.

 Backpropagation helps you solve this problem, but you have to tweak your percep-
tron a little to get there. Remember, the weights were updated based on how much
they contributed to the overall error. But if a weight is affecting an output that
becomes the input for another perceptron, you no longer have a clear idea of what
the error is at the beginning of that second perceptron.

 You need a way to calculate the amount a particular weight (w1i in figure 5.6) con-
tributed to the error given that it contributed to the error via other weights (w1j) and
(w2j) in the next layer. And the way to do that is with backpropagation.

 Now is a good time to stop using the term “perceptron,” because you’re going to
change how the weights in each neuron are updated. From here on out, we’ll refer to

Input
vector

How do we
update this?

Neuron

Neuron

Neuron

Neuron

W1j

W2j

Neuron

Hidden
“layer i”

Output layer
“layer j ”

Output
vector

W1j

Figure 5.6 Neural net with hidden weights

169Neural networks, the ingredient list
the more general neuron that includes the perceptron, but also its more powerful rela-
tives. You’ll also see neurons referred to as cells or nodes in the literature, and in most
cases the terms are interchangeable.

 A neural network, regardless of flavor, is nothing more than a collection of neu-
rons with connections between them. We often organize them into layers, but that’s
not required. Once you have an architecture where the output of a neuron becomes
the input of another neuron, you begin to talk about hidden neurons and layers versus
an input or output layer or neuron.

 This is called a fully connected network. Though not all the connections are shown
in figure 5.7, in a fully connected network each input element has a connection to
every neuron in the next layer. And every connection has an associated weight. So in a
network that takes a four-dimensional vector as input and has 5 neurons, there will be
20 total weights in the layer (4 weights for the connections to each of the 5 neurons).

 As with the input to the perceptron, where there was a weight for each input, the
neurons in the second layer of a neural network have a weight assigned not to the orig-
inal input, but to each of the outputs from the first layer. So now you can see the diffi-
culty in calculating the amount a first-layer weight contributed to the overall error. The
first-layer weight has an effect that is passed through not just a single other weight but
through one weight in each of the next layer’s neurons. The derivation and mathemat-
ical details of the algorithm itself, although extremely interesting, are beyond the
scope of this book, but we take a brief moment for an overview so you aren’t left com-
pletely in the dark about the black box of neural nets.

 Backpropagation, short for backpropagation of the errors, describes how you can
discover the appropriate amount to update a specific weight, given the input, the

Neuron

Input vector Hidden

Output layer Output vector

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Figure 5.7 Fully connected neural net

170 CHAPTER 5 Baby steps with neural networks (perceptrons and backpropagation)
output, and the expected value. Propagation, or forward propagation, is an input flow-
ing “forward” through the net and computing the output for the network for that input.
To get to backpropagation, you first need to change the perceptron’s activation func-
tion to something that is slightly more complex.

 Until now, you have been using a step function as your artificial neuron’s activation
function. But as you’ll see in a moment, backpropagation requires an activation func-
tion that is nonlinear and continuously differentiable.11 Now each neuron will output
a value between two values, like 0 and 1, as it does in the commonly used sigmoid func-
tion shown in equation 5.4:

Equation 5.4 Sigmoid function

There are many other activation functions, such as hyperbolic tangent and rectified linear
units; they all have benefits and downsides. Each shines in different ways for different
neural network architectures, as you’ll learn in later chapters.

 So why differentiable? If you can calculate the derivative of the function, you can
also do partial derivatives of the function, with respect to various variables in the func-
tion itself. The hint of the magic is “with respect to various variables.” You have a path
toward updating a weight with respect to the amount of input it received!

11 A continuously differentiable function is even more smooth than a differentiable function. See the Wikipedia
article “Differentiable function” (https://en.wikipedia.org/wiki/Differentiable_function#Differentiability
_and_continuity).

Why does your activation function need to be nonlinear?
Because you want your neurons to be able to model nonlinear relationships between
your feature vectors and the target variable. If all a neuron could do is multiply inputs
by weights and add them together, the output would always be a linear function of
the inputs and you couldn’t model even the simplest nonlinear relationships.

But the threshold function you used for your neurons earlier was a nonlinear step func-
tion. So the neurons you used before could theoretically be trained to work together
to model nearly any nonlinear relationship… as long as you had enough neurons.

That’s the advantage of a nonlinear activation function; it allows a neural net to
model a nonlinear relationship. And a continuously differentiable nonlinear function,
like a sigmoid, allows the error to propagate smoothly back through multiple layers
of neurons, speeding up your training process. Sigmoid neurons are quick learners.

S(x) =
1

1 + e −x

https://en.wikipedia.org/wiki/Differentiable_function#Differentiability_and_continuity
https://en.wikipedia.org/wiki/Differentiable_function#Differentiability_and_continuity

171Neural networks, the ingredient list
DIFFERENTIATE ALL THE THINGS

You’ll start with the error of the network and apply a cost function, say squared error, as
shown in equation 5.5:

MSE = (y _ f(x))2

Equation 5.5 Mean squared error

You can then lean on the chain rule of calculus to calculate the derivative of composi-
tions of functions, as in equation 5.6. And the network itself is nothing but a composi-
tion of functions (specifically dot products followed by your new nonlinear activation
function at each step):

Equation 5.6 Chain rule

You can now use this formula to find the derivative of the activation function of each
neuron with respect to the input that fed it. You can calculate how much that weight
contributed to the final error and adjust it appropriately.

 If the layer is the output layer, the update of the weights is rather straightforward,
with the help of your easily differentiable activation function. The derivative of the
error with respect to the j-th output that fed it is

Equation 5.7 Error derivative

If you’re updating the weights of a hidden layer, things are a little more complex, as
you can see in equation 5.8:

Equation 5.8 Derivative of the previous layer

The function f(x) in equation 5.7 is the output, specifically the j -th position of the out-
put vector. The y in equation 5.7 is the output of a node in either the i -th layer or the
j -th layer, where the output of the i -th layer is the input of the j -th layer. So you have the
 (the learning rate) times the output of the earlier layer times the derivative of the
activation function from the later layer with respect to the weight that fed the output of

(f (g(x))' = F'(x) = f'(g(x))g'(x)

wij = − = − yi(yj − f(x)j))yj(1 − yj)wij Δ
∂Error

αα

wij = − = − yi(wjl)yj(1 − yj)∂wij
Δ Σ∂E

α δα l
l Lε

172 CHAPTER 5 Baby steps with neural networks (perceptrons and backpropagation)
the i -th layer into the j -th layer. The sum in equation 5.8 expresses this for all inputs to
all the layers.

 It’s important to be specific about when the changes are applied to the weights
themselves. As you calculate each weight update in each layer, the calculations all
depend on the network’s state during the forward pass. Once the error is calculated,
you then calculate the proposed change to each weight in the network. But do not
apply any of them—at least until you get all the way back to the beginning of the net-
work. Otherwise as you update weights toward the end of the net, the derivatives cal-
culated for the lower levels will no longer be the appropriate gradient for that
particular input. You can aggregate all the ups and down for each weight based on
each training sample, without updating any of the weights and instead update them at
the end of all the training, but we discuss more on that choice in section 5.1.6.

 And then to train the network, pass in all the inputs. Get the associated error for
each input. Backpropagate those errors to each of the weights. And then update each
weight with the total change in error. After all the training data has gone through the
network once, and the errors are backpropagated, we call this an epoch of the neural
network training cycle. The dataset can then be passed in again and again to further
refine the weights. Be careful, though, or the weights will overfit the training set and
no longer be able to make meaningful predictions on new data points from outside
the training set.

 In equations 5.7 and 5.8, is the learning rate. It determines how much of the
observed error in the weight is corrected during a particular training cycle (epoch) or
batch of data. It usually remains constant during a single training cycle, but some
sophisticated training algorithms will adjust it adaptively to speed up the training
and ensure convergence. If is too large, you could easily overcorrect. Then the
next error, presumably larger, would itself lead to a large weight correction the other
way, but even further from the goal. Set too small and the model will take too long
to converge to be practical, or worse, it will get stuck in a local minimum on the error
surface.

5.1.4 Let’s go skiing—the error surface

The goal of training in neural networks, as we stated earlier, is to minimize a cost func-
tion by finding the best parameters (weights). Keep in mind, this isn’t the error for
any one particular data point. You want to minimize the cost for all the various errors
taken together.

 Creating a visualization of this side of the problem can help build a mental model
of what you’re doing when you adjust the weights of the network as you go.

 From earlier, mean squared error is a common cost function (shown back in
equation 5.5). If you imagine plotting the error as a function of the possible weights,
given a set of inputs and a set of expected outputs, a point exists where that function
is closest to zero. That point is your minimum—the spot where your model has the
least error.

173Neural networks, the ingredient list
This minimum will be the set of weights that gives the optimal output for a given train-
ing example. You will often see this represented as a three-dimensional bowl with two
of the axes being a two-dimensional weight vector and the third being the error (see
figure 5.8). That description is a vast simplification, but the concept is the same in
higher dimensional spaces (for cases with more than two weights).

 Similarly, you can graph the error surface as a function of all possible weights across
all the inputs of a training set. But you need to tweak the error function a little. You
need something that represents the aggregate error across all inputs for a given set of
weights. For this example, you’ll use mean squared error as the z axis (see equation 5.5).

 Here again, you’ll get an error surface with a minimum that is located at the set of
weights. That set of weights will represent a model that best fits the entire training set.

5.1.5 Off the chair lift, onto the slope

What does this visualization represent? At each epoch, the algorithm is performing
gradient descent in trying to minimize the error. Each time you adjust the weights in a
direction that will hopefully reduce your error the next time. A convex error surface
will be great. Stand on the ski slope, look around, find out which way is down, and go
that way!

 But you’re not always so lucky as to have such a smoothly shaped bowl. The error
surface may have some pits and divots scattered about. This situation is what is known
as a nonconvex error curve. And, as in skiing, if these pits are big enough, they can suck
you in and you might not reach the bottom of the slope.

Weight 1
Weight 2

E
rr

or
 fo

r
gi

ve
n

pa
ir

of
 w

ei
gh

ts

Figure 5.8 Convex error curve

174 CHAPTER 5 Baby steps with neural networks (perceptrons and backpropagation)
 Again, the diagrams are representing weights for two-dimensional input. But the
concept is the same if you have a 10-dimensional input, or 50, or 1,000. In those
higher dimensional spaces, visualizing it doesn’t make sense anymore, so you trust the
math. Once you start using neural networks, visualizing the error surface becomes less
important. You get the same information from watching (or plotting) the error or a
related metric over the training time and seeing if it’s trending toward 0. That will tell
you if your network is on the right track or not. But these 3D representations are a
helpful tool for creating a mental model of the process.

 But what about the nonconvex error space? Aren’t those divots and pits a prob-
lem? Yes, yes they are. Depending on where you randomly start your weights, you
could end up at radically different weights and the training would stop, as there’s no
other way to go down from this local minimum (see figure 5.9).

 And as you get into even higher dimensional space, the local minima will follow
you there as well.

Figure 5.9 Nonconvex error curve

5.1.6 Let’s shake things up a bit

Up until now, you have been aggregating the error for all the training examples and
skiing down the slope as best you could. This training approach, as described, is batch
learning. A batch is a large subset of your training data. But batch learning has a static
error surface for the entire batch. With this single static surface, if you only head
downhill from a random starting point, you could end up in some local minima (divot

Initial random
weight #1 Initial random

weight #2

E
rr

or
 fo

r
gi

ve
n

pa
ir

of
 w

ei
gh

ts

Weight 1
Weight 2

175Neural networks, the ingredient list
or hole) and not know that better options exist for your weight values. Two other
options to training can help you skirt these traps.

 The first option is stochastic gradient descent. In stochastic gradient descent, you
update the weights after each training example, rather than after looking at all the
training examples. And you reshuffle the order of the training examples each time
through. By doing this, the error surface is redrawn for each example, as each differ-
ent input could have a different expected answer. So the error surface for most exam-
ples will look different. But you’re still just adjusting the weights based on gradient
descent, for that example. Instead of gathering up the errors and then adjusting the
weights once at the end of the epoch, you update the weights after every individual
example. The key point is that you’re moving toward the presumed minimum (not all
the way to that presumed minimum) at any given step.

 And as you move toward the various minima on this fluctuating surface, with the
right data and right hyperparameters, you can more easily bumble toward the global
minimum. If your model isn’t tuned properly or the training data is inconsistent, the
model won’t converge, and you’ll just spin and turn over and over and the model
never learns anything. But in practice stochastic gradient descent proves quite effec-
tive in avoiding local minima in most cases. The downfall of this approach is that it’s
slow. Calculating the forward pass and backpropagation, and then updating the
weights after each example, adds that much time to an already slow process.

 The more common approach, your second training option, is mini-batch. In mini-
batch training, a small subset of the training set is passed in and the associated errors
are aggregated as in full batch. Those errors are then backpropagated as with batch and
the weights updated for each subset of the training set. This process is repeated with
the next batch, and so on until the training set is exhausted. And that again would
constitute one epoch. This is a happy medium; it gives you the benefits of both batch
(speedy) and stochastic (resilient) training methods.

 Although the details of how backpropagation works are fascinating,12 they aren’t triv-
ial, and as noted earlier they’re outside the scope of this book. But a good mental image
to keep handy is that of the error surface. In the end, a neural network is just a way to
walk down the slope of the bowl as fast as possible until you’re at the bottom. From a given
point, look around you in every direction, find the steepest way down (not a pleasant
image if you’re scared of heights), and go that way. At the next step (batch, mini-batch,
or stochastic), look around again, find the steepest way, and now go that way. Soon
enough, you’ll be by the fire in the ski lodge at the bottom of the valley.

5.1.7 Keras: Neural networks in Python

Writing a neural network in raw Python is a fun experiment and can be helpful in put-
ting all these pieces together, but Python is at a disadvantage regarding speed, and the
shear number of calculations you’re dealing with can make even moderately sized

12 Wikpedia, https://en.wikipedia.org/wiki/Backpropagation.

https://en.wikipedia.org/wiki/Backpropagation

176 CHAPTER 5 Baby steps with neural networks (perceptrons and backpropagation)

networks intractable. Many Python libraries, though, get you around the speed zone:
PyTorch, Theano, TensorFlow, Lasagne, and many more. The examples in this book
use Keras (https://keras.io/).

 Keras is a high-level wrapper with an accessible API for Python. The exposed API
can be used with three different backends almost interchangeably: Theano, Tensor-
Flow from Google, and CNTK from Microsoft. Each has its own low-level implementa-
tion of the basic neural network elements and has highly tuned linear algebra
libraries to handle the dot products to make the matrix multiplications of neural net-
works as efficiently as possible.

 Let’s look at the simple XOR problem and see if you can train a network using
Keras.

>>> import numpy as np
>>> from keras.models import Sequential
>>> from keras.layers import Dense, Activation
>>> from keras.optimizers import SGD
>>> # Our examples for an exclusive OR.
>>> x_train = np.array([[0, 0],
... [0, 1],
... [1, 0],
... [1, 1]])
>>> y_train = np.array([[0],
... [1],
... [1],
... [0]])
>>> model = Sequential()
>>> num_neurons = 10
>>> model.add(Dense(num_neurons, input_dim=2))
>>> model.add(Activation('tanh'))
>>> model.add(Dense(1))
>>> model.add(Activation('sigmoid'))
>>> model.summary()
Layer (type) Output Shape Param #
===
dense_18 (Dense) (None, 10) 30

activation_6 (Activation) (None, 10) 0

dense_19 (Dense) (None, 1) 11

activation_7 (Activation) (None, 1) 0
===
Total params: 41.0
Trainable params: 41.0
Non-trainable params: 0.0

Listing 5.4 XOR Keras network

The base Keras
model class Dense is a fully connected

layer of neurons.

Stochastic gradient descent,
but there are others

x_train is a list of samples of 2D
feature vectors used for training.

y_train is the desired outcomes (target
values) for each feature vector sample.

The fully connected hidden
layer will have 10 neurons.

input_dim is only necessary for the first layer; subsequent
layers will calculate the shape automatically from the
output dimensions of the previous layer. We have 2D

feature vectors for our 2-input XOR gate examples.

The output layer has one neuron to output
a single binary classification value (0 or 1).

https://keras.io/

177Neural networks, the ingredient list
The model.summary() gives you an overview of the network parameters and num-
ber of weights (Param \#) at each stage. Some quick math: 10 neurons, each with two
weights (one for each value in the input vector), and one weight for the bias gives you
30 weights to learn. The output layer has a weight for each of the 10 neurons in the
first layer and one bias weight for a total of 11 in that layer.

 The next bit of code is a bit opaque:

>>> sgd = SGD(lr=0.1)
>>> model.compile(loss='binary_crossentropy', optimizer=sgd,
... metrics=['accuracy'])

SGD is the stochastic gradient descent optimizer you imported. This is just how the
model will try to minimize the error, or loss. lr is the learning rate, the fraction applied
to the derivative of the error with respect to each weight. Higher values will speed
learn, but may force the model away from the global minimum by shooting past the
goal; smaller values will be more precise but increase the training time and leave the
model more vulnerable to local minima. The loss function itself is also defined as a
parameter; here it’s binary_crossentropy. The metrics parameter is a list of
options for the output stream during training. The compile method builds, but
doesn’t yet train the model. The weights are initialized, and you can use this random
state to try to predict from your dataset, but you’ll only get random guesses:

>>> model.predict(x_train)
[[0.5]
[0.43494844]
[0.50295198]
[0.42517585]]

The predict method gives the raw output of the last layer, which would be generated
by the sigmoid function in this example.

 Not much to write home about. But remember this has no knowledge of the
answers just yet; it’s just applying its random weights to the inputs. So let’s try to train
this. See the following listing.

model.fit(x_train, y_train, epochs=100)
Epoch 1/100
4/4 [==============================] - 0s - loss: 0.6917 - acc: 0.7500
Epoch 2/100
4/4 [==============================] - 0s - loss: 0.6911 - acc: 0.5000
Epoch 3/100
4/4 [==============================] - 0s - loss: 0.6906 - acc: 0.5000
...
Epoch 100/100
4/4 [==============================] - 0s - loss: 0.6661 - acc: 1.0000

Listing 5.5 Fit model to the XOR training set

This is where you
train the model.

178 CHAPTER 5 Baby steps with neural networks (perceptrons and backpropagation)
TIP The network might not converge on the first try. The first compile might
end up with base parameters from the random distribution that make finding
the global minimum difficult or impossible. If you run into this situation, you
can call model.fit again with the same parameters (or add even more
epochs) and see if the network finds its way eventually. Or reinitialize the net-
work with a different random starting point and try fit from there. If you try
the latter, make sure that you don’t set a random seed, or you’ll just repeat
the same experiment over and over.

As it looked at what was a tiny dataset over and over, it finally figured out what was
going on. It “learned” what exclusive-or (XOR) was, just from being shown examples!
That is the magic of neural networks and what will guide you through the next few
chapters:

>>> model.predict_classes(x_train))
4/4 [==============================] - 0s
[[0]
[1]
[1]
[0]]

>>> model.predict(x_train))
4/4 [==============================] - 0s
[[0.0035659]
[0.99123639]
[0.99285167]
[0.00907462]]

Calling predict again (and predict_classes) on the trained model yields better
results. It gets 100% accuracy on your tiny dataset. Of course, accuracy isn’t necessarily
the best measure of a predictive model, but for this toy example it will do. So in the
following listing you save your ground-breaking XOR model for posterity.

>>> import h5py
>>> model_structure = model.to_json()

>>> with open("basic_model.json", "w") as json_file:
... json_file.write(model_structure)

>>> model.save_weights("basic_weights.h5")

And there are similar methods to re-instantiate the model, so you don’t have to retrain
every time you want to make a prediction, which will be huge going forward.
Although this model takes a few seconds to run, in the coming chapters that will
quickly grow to minutes, hours, even in some cases days depending on the hardware
and the complexity of the model, so get ready!

Listing 5.6 Save the trained model

Export the structure of
the network to a JSON
blob for later use using
Keras' helper method.

The trained weights must be saved separately. The first part
just saves the network structure. You must re-instantiate

the same model structure to reload them later.

179Neural networks, the ingredient list
5.1.8 Onward and deepward

As neural networks have spread and spawned the entire deep learning field, much
research has been done (and continues to be done) into the details of these systems:

 Different activation functions (such as sigmoid, rectified linear units, and
hyperbolic tangent)

 Choosing a good learning rate, to dial up or down the effect of the error
 Dynamically adjusting the learning rate using a momentum model to find the

global minimum faster
 Application of dropout, where a randomly chosen set of weights are ignored in a

given training pass to prevent the model from becoming too attuned to its
training set (overfitting)

 Regularization of the weights to artificially dampen a single weight from grow-
ing or shrinking too far from the rest of the weights (another tactic to avoid
overfitting)

The list goes on and on.

5.1.9 Normalization: input with style

Neural networks want a vector input and will do their best to work on whatever is fed
to them, but one key thing to remember is input normalization. This is true of many
machine learning models. Imagine the case of trying to classify houses, say on their
likelihood of selling in a given market. You have only two data points: number of bed-
rooms and last selling price. This data could be represented as a vector. Say, for a two-
bedroom house that last sold for $275,000:

input_vec = [2, 275000]

As the network tries to learn anything about this data, the weights associated with bed-
rooms in the first layer would need to grow huge quickly to compete with the large val-
ues associated with price. So it’s common practice to normalize the data so that each
element retains its useful information from sample to sample. Normalization also
ensures that each neuron works within a similar range of input values as the other ele-
ments within a single sample vector. Several approaches exist for normalization, such
as mean normalization, feature scaling, and coefficient of variation. But the goal is to
get the data in some range like [-1, 1] or [0, 1] for each element in each sample with-
out losing information.

 You won’t have to worry too much about this with NLP, as TF-IDF, one-hot encod-
ing, and word2vec (as you’ll soon see) are normalized already. Keep it in mind for
when your input feature vectors aren’t normalized (such as with raw word frequencies
or counts).

 Finally, a last bit of terminology. Not a great deal of consensus exists on what con-
stitutes a perceptron versus a multi-neuron layer versus deep learning, but we’ve
found it handy to differentiate between a perceptron and a neural network if you have

180 CHAPTER 5 Baby steps with neural networks (perceptrons and backpropagation)
to use the activation function’s derivative to properly update the weights. In this book,
we use neural network and deep learning in this context and save the term “percep-
tron” for its (very) important place in history.

Summary
 Minimizing a cost function is a path toward learning.
 A backpropagation algorithm is the means by which a network learns.
 The amount a weight contributes to a model’s error is directly related to the

amount it needs to be updated.
 Neural networks are, at their heart, optimization engines.
 Watch out for pitfalls (local minima) during training by monitoring the gradual

reduction in error.
 Keras helps make all of this neural network math accessible.

Reasoning with word
vectors (Word2vec)
One of the most exciting recent advancements in NLP is the “discovery” of word
vectors. This chapter will help you understand what they are and how to use them
to do some surprisingly powerful things. You’ll learn how to recover some of the
fuzziness and subtlety of word meaning that was lost in the approximations of ear-
lier chapters.

 In the previous chapters, we ignored the nearby context of a word. We ignored
the words around each word. We ignored the effect the neighbors of a word have
on its meaning and how those relationships affect the overall meaning of a

This chapter covers
 Understanding how word vectors are created

 Using pretrained models for your applications

 Reasoning with word vectors to solve real
problems

 Visualizing word vectors

 Uncovering some surprising uses for word
embeddings
181

182 CHAPTER 6 Reasoning with word vectors (Word2vec)
statement. Our bag-of-words concept jumbled all the words from each document
together into a statistical bag. In this chapter, you’ll create much smaller bags of words
from a “neighborhood” of only a few words, typically fewer than 10 tokens. You’ll also
ensure that these neighborhoods of meaning don’t spill over into adjacent sentences.
This process will help focus your word vector training on the relevant words.

 Our new word vectors will be able to identify synonyms, antonyms, or words that
just belong to the same category, such as people, animals, places, plants, names, or
concepts. We could do that before, with latent semantic analysis in chapter 4, but your
tighter limits on a word’s neighborhood will be reflected in tighter accuracy of the
word vectors. Latent semantic analysis of words, n-grams, and documents didn’t cap-
ture all the literal meanings of a word, much less the implied or hidden meanings.
Some of the connotations of a word are lost with LSA’s oversized bags of words.

WORD VECTORS Word vectors are numerical vector representations of word
semantics, or meaning, including literal and implied meaning. So word vec-
tors can capture the connotation of words, like “peopleness,” “animalness,”
“placeness,” “thingness,” and even “conceptness.” And they combine all that
into a dense vector (no zeros) of floating point values. This dense vector
enables queries and logical reasoning.

6.1 Semantic queries and analogies
Well, what are these awesome word vectors good for? Have you ever tried to recall a
famous person’s name but you only have a general impression of them, like maybe this:

She invented something to do with physics in Europe in the early 20th century.

If you enter that sentence into Google or Bing, you may not get the direct answer
you’re looking for, “Marie Curie.” Google Search will most likely only give you links to
lists of famous physicists, both men and women. You’d have to skim several pages to
find the answer you’re looking for. But once you found “Marie Curie,” Google or Bing
would keep note of that. They might get better at providing you search results the
next time you look for a scientist.1

 With word vectors, you can search for words or names that combine the meaning
of the words “woman,” “Europe,” “physics,” “scientist,” and “famous,” and that would
get you close to the token “Marie Curie” that you’re looking for. And all you have to
do to make that happen is add up the word vectors for each of those words that you
want to combine:

>>> answer_vector = wv['woman'] + wv['Europe'] + wv[physics'] +\
... wv['scientist']

1 At least, that’s what it did for us in researching this book. We had to use private browser windows to ensure
that your search results would be similar to ours.

183Semantic queries and analogies
In this chapter, we show you the exact way to do this query. And we even show you how
to subtract gender bias from the word vectors used to compute your answer:

>>> answer_vector = wv['woman'] + wv['Europe'] + wv[physics'] +\
... wv['scientist'] - wv['male'] - 2 * wv['man']

With word vectors, you can take the “man” out of “woman”!

6.1.1 Analogy questions

What if you could rephrase your question as an analogy question? What if your
“query” was something like this:

Who is to nuclear physics what Louis Pasteur is to germs?

Again, Google Search, Bing, and even Duck Duck Go aren’t much help with this one.2

But with word vectors, the solution is as simple as subtracting “germs” from “Louis Pas-
teur” and then adding in some “physics”:

>>> answer_vector = wv['Louis_Pasteur'] - wv['germs'] + wv['physics']

And if you’re interested in trickier analogies about people in unrelated fields, such as
musicians and scientists, you can do that, too:

Who is the Marie Curie of music?

or

Marie Curie is to science as who is to music?

Can you figure out what the word vector math would be for these questions?
 You might have seen questions like these on the English analogy section of stan-

dardized tests such as SAT, ACT, or GRE exams. Sometimes they are written in formal
mathematical notation like this:

MARIE CURIE : SCIENCE :: ? : MUSIC

Does that make it easier to guess the word vector math? One possibility is this:

>>> wv['Marie_Curie'] - wv['science'] + wv['music']

And you can answer questions like this for things other than people and occupations,
like perhaps sports teams and cities:

The Timbers are to Portland as what is to Seattle?

In standardized test form, that’s

TIMBERS : PORTLAND :: ? : SEATTLE

2 Try them all if you don’t believe us.

184 CHAPTER 6 Reasoning with word vectors (Word2vec)
But, more commonly, standardized tests use English vocabulary words and ask less fun
questions, like the following:

WALK : LEGS :: ? : MOUTH

or

ANALOGY : WORDS :: ? : NUMBERS

All those “tip of the tongue” questions are a piece of cake for word vectors, even
though they aren’t multiple choice. When you’re trying to remember names or words,
just thinking of the A, B, C, and D multiple choice options can be difficult. NLP comes
to the rescue with word vectors.

 Word vectors can answer these vague questions and analogy problems. Word vec-
tors can help you remember any word or name on the tip of your tongue, as long as
the word vector for the answer exists in your word vector vocabulary.3 And word vec-
tors work well even for questions that you can’t even pose in the form of a search
query or analogy. You can learn about some of this non-query math with word vectors
in section 6.2.1.

6.2 Word vectors
In 2012, Thomas Mikolov, an intern at Microsoft, found a way to encode the meaning
of words in a modest number of vector dimensions.4 Mikolov trained a neural net-
work5 to predict word occurrences near each target word. In 2013, once at Google,
Mikolov and his teammates released the software for creating these word vectors and
called it Word2vec.6

 Word2vec learns the meaning of words merely by processing a large corpus of unla-
beled text. No one has to label the words in the Word2vec vocabulary. No one has to tell
the Word2vec algorithm that Marie Curie is a scientist, that the Timbers are a soccer
team, that Seattle is a city, or that Portland is a city in both Oregon and Maine. And no
one has to tell Word2vec that soccer is a sport, or that a team is a group of people, or
that cities are both places as well as communities. Word2vec can learn that and much
more, all on its own! All you need is a corpus large enough to mention Marie Curie and
Timbers and Portland near other words associated with science or soccer or cities.

 This unsupervised nature of Word2vec is what makes it so powerful. The world is
full of unlabeled, uncategorized, unstructured natural language text.

3 For Google’s pretrained word vector model, your word is almost certainly within the 100B word news feed that
Google trained it on, unless your word was invented after 2013.

4 Word vectors typically have 100 to 500 dimensions, depending on the breadth of information in the corpus
used to train them.

5 It’s only a single-layer network, so almost any linear machine learning model will also work. Logistic regres-
sion, truncated SVD, linear discriminant analysis, and Naive Bayes would all work well.

6 “Efficient Estimation of Word Representations in Vector Space,” Sep 2013, Mikolov, Chen, Corrado, and
Dean (https://arxiv.org/pdf/1301.3781.pdf).

https://arxiv.org/pdf/1301.3781.pdf

185Word vectors
 Unsupervised learning and supervised learning are two radically different
approaches to machine learning.

In contrast, unsupervised learning enables a machine to learn directly from data, with-
out any assistance from humans. The training data doesn’t have to be organized, struc-
tured, or labeled by a human. So unsupervised learning algorithms like Word2vec are
perfect for natural language text.

Instead of trying to train a neural network to learn the target word meanings directly
(on the basis of labels for that meaning), you teach the network to predict words near
the target word in your sentences. So in this sense, you do have labels: the nearby
words you’re trying to predict. But because the labels are coming from the dataset
itself and require no hand-labeling, the Word2vec training algorithm is definitely an
unsupervised learning algorithm.

 Another domain where this unsupervised training technique is used is in time
series modeling. Time series models are often trained to predict the next value in a
sequence based on a window of previous values. Time series problems are remarkably
similar to natural language problems in a lot of ways, because they deal with ordered
sequences of values (words or numbers).

 And the prediction itself isn’t what makes Word2vec work. The prediction is
merely a means to an end. What you do care about is the internal representation, the
vector that Word2vec gradually builds up to help it generate those predictions. This
representation will capture much more of the meaning of the target word (its seman-
tics) than the word-topic vectors that came out of latent semantic analysis and latent
Dirichlet allocation in chapter 4.

Supervised learning
In supervised learning, the training data must be labeled in some way. An example
of a label is the spam categorical label on an SMS message in chapter 4. Another
example is the quantitative value for the number of likes of a tweet. Supervised learn-
ing is what most people think of when they think of machine learning. A supervised
model can only get better if it can measure the difference between the expected out-
put (the label) and its predictions.

Unsupervised learning
In unsupervised learning, you train the model to perform a task, but without any
labels, only the raw data. Clustering algorithms such as k-means or DBSCAN are
examples of unsupervised learning. Dimension reduction algorithms like principal
component analysis (PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE)
are also unsupervised machine learning techniques. In unsupervised learning, the
model finds patterns in the relationships between the data points themselves. An
unsupervised model can get smarter (more accurate) just by throwing more data at it.

186 CHAPTER 6 Reasoning with word vectors (Word2vec)
NOTE Models that learn by trying to repredict the input using a lower-
dimensional internal representation are called autoencoders. This may seem
odd to you. It’s like asking the machine to echo back what you just asked it,
only it can’t record the question as you’re saying it. The machine has to com-
press your question into shorthand. And it has to use the same shorthand
algorithm (function) for all the questions you ask it. The machine learns a
new shorthand (vector) representation of your statements.

If you want to learn more about unsupervised deep learning models that cre-
ate compressed representations of high-dimensional objects like words,
search for the term “autoencoder.”7 They’re also a common way to get started
with neural nets, because they can be applied to almost any dataset.

Word2vec will learn about things you might not think to associate with all words. Did
you know that every word has some geography, sentiment (positivity), and gender
associated with it? If any word in your corpus has some quality, like “placeness,” “peo-
pleness,” “conceptness,” or “femaleness,” all the other words will also be given a score
for these qualities in your word vectors. The meaning of a word “rubs off” on the
neighboring words when Word2vec learns word vectors.

 All words in your corpus will be represented by numerical vectors, similar to the
word-topic vectors discussed in chapter 4. Only this time the topics mean something
more specific, more precise. In LSA, words only had to occur in the same document
to have their meaning “rub off” on each other and get incorporated into their word-
topic vectors. For Word2vec word vectors, the words must occur near each other—typ-
ically fewer than five words apart and within the same sentence. And Word2vec word
vector topic weights can be added and subtracted to create new word vectors that
mean something!

 A mental model that may help you understand word vectors is to think of word vec-
tors as a list of weights or scores. Each weight or score is associated with a specific
dimension of meaning for that word. See the following listing.

>>> from nlpia.book.examples.ch06_nessvectors import *
>>> nessvector('Marie_Curie').round(2)
placeness -0.46
peopleness 0.35
animalness 0.17
conceptness -0.32
femaleness 0.26

7 See the web page titled “Unsupervised Feature Learning and Deep Learning Tutorial” (http://ufldl.stanford
.edu/tutorial/unsupervised/Autoencoders/).

Listing 6.1 Compute nessvector

Don’t import this module
unless you have a lot of
RAM and a lot of time.

The pretrained Word2vec
model is huge.

I’m sure your nessvector
dimensions will be

much more fun and
useful, like “trumpness”

and “ghandiness.”

http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/
http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/

187Word vectors
You can compute “nessvectors” for any word or n-gram in the Word2vec vocabulary
using the tools from nlpia (https://github.com/totalgood/nlpia/blob/master/src/
nlpia/book/examples/ch06_nessvectors.py). And this approach will work for any
“ness” components that you can dream up.

 Mikolov developed the Word2vec algorithm while trying to think of ways to numer-
ically represent words in vectors. He wasn’t satisfied with the less accurate word senti-
ment math you did in chapter 4. He wanted to do vector-oriented reasoning, like you just
did in the previous section with those analogy questions. This concept may sound
fancy, but really it means that you can do math with word vectors and that the answer
makes sense when you translate the vectors back into words. You can add and subtract
word vectors to reason about the words they represent and answer questions similar to
your examples above, like the following:8

wv['Timbers'] - wv['Portland'] + wv['Seattle'] = ?

Ideally you’d like this math (word vector reasoning) to give you this:

wv['Seattle_Sounders']

Similarly, your analogy question “'Marie Curie’ is to ‘physics’ as __ is to ‘classical
music’?” can be thought about as a math expression like this:

wv['Marie_Curie'] - wv['physics'] + wv['classical_music'] = ?

In this chapter, we want to improve on the LSA word vector representations we intro-
duced in the previous chapter. Topic vectors constructed from entire documents using
LSA are great for document classification, semantic search, and clustering. But the
topic-word vectors that LSA produces aren’t accurate enough to be used for semantic
reasoning or classification and clustering of short phrases or compound words. You’ll
soon learn how to train the single-layer neural networks required to produce these
more accurate and more fun word vectors. And you’ll see why they have replaced LSA
word-topic vectors for many applications involving short documents or statements.

6.2.1 Vector-oriented reasoning

Word2vec was first presented publicly in 2013 at the ACL conference.9 The talk with the
dry-sounding title “Linguistic Regularities in Continuous Space Word Representations”
described a surprisingly accurate language model. Word2vec embeddings were four
times more accurate (45%) compared to equivalent LSA models (11%) at answering
analogy questions like those above.10 The accuracy improvement was so surprising, in
fact, that Mikolov’s initial paper was rejected by the International Conference on

8 For those not up on sports, the Portland Timbers and Seattle Sounders are major league soccer teams.
9 See the PDF “Linguistic Regularities in Continuous Space Word Representations,” by Tomas Mikolov, Wen-

tau Yih, and Geoffrey Zweig (https://www.aclweb.org/anthology/N13-1090).
10 See Radim Řehůřek’s interview of Tomas Mikolov (https://rare-technologies.com/rrp#episode_1_tomas

_mikolov_on_ai).

https://github.com/totalgood/nlpia/blob/master/src/nlpia/book/examples/ch06_nessvectors.py
https://github.com/totalgood/nlpia/blob/master/src/nlpia/book/examples/ch06_nessvectors.py
https://www.aclweb.org/anthology/N13-1090
https://rare-technologies.com/rrp#episode_1_tomas_mikolov_on_ai
https://rare-technologies.com/rrp#episode_1_tomas_mikolov_on_ai

188 CHAPTER 6 Reasoning with word vectors (Word2vec)
Learning Representations.11 Reviewers thought that the model’s performance was too
good to be true. It took nearly a year for Mikolov’s team to release the source code and
get accepted to the Association for Computational Linguistics.

 Suddenly, with word vectors, questions like

Portland Timbers + Seattle - Portland = ?

can be solved with vector algebra (see figure 6.1).

Figure 6.1 Geometry of Word2vec math

The Word2vec model contains information about the relationships between words,
including similarity. The Word2vec model “knows” that the terms Portland and Port-
land Timbers are roughly the same distance apart as Seattle and Seattle Sounders. And
those distances (differences between the pairs of vectors) are in roughly the same
direction. So the Word2vec model can be used to answer your sports team analogy
question. You can add the difference between Portland and Seattle to the vector that
represents the Portland Timbers, which should get you close to the vector for the term
Seattle Sounders:

Equation 6.2 Compute the answer to the soccer team question

11 See “ICRL2013 open review” (https://openreview.net/forum?id=idpCdOWtqXd60¬eId=C8Vn84fq
SG8qa).

Seattle + portland timbers – portland = ?

Seattle

Portland

Portland timbers

x2

x1

Seattle sounders

0.0168

0.007

0.247

 ...

0.093

−0.028

−0.214

...

+

0.104

0.0883

−0.318

...

0.006

−0.109

0.352

...

=−

https://openreview.net/forum?id=idpCdOWtqXd60¬eId=C8Vn84fqSG8qa
https://openreview.net/forum?id=idpCdOWtqXd60¬eId=C8Vn84fqSG8qa

189Word vectors
After adding and subtracting word vectors, your resultant vector will almost never
exactly equal one of the vectors in your word vector vocabulary. Word2vec word vec-
tors usually have 100s of dimensions, each with continuous real values. Nonetheless,
the vector in your vocabulary that is closest to the resultant will often be the answer to
your NLP question. The English word associated with that nearby vector is the natural
language answer to your question about sports teams and cities.

 Word2vec allows you to transform your natural language vectors of token occur-
rence counts and frequencies into the vector space of much lower-dimensional
Word2vec vectors. In this lower-dimensional space, you can do your math and then
convert back to a natural language space. You can imagine how useful this capability
is to a chatbot, search engine, question answering system, or information extraction
algorithm.

NOTE The initial paper in 2013 by Mikolov and his colleagues was able to
achieve an answer accuracy of only 40%. But back in 2013, the approach out-
performed any other semantic reasoning approach by a significant margin.
Since the initial publication, the performance of Word2vec has improved fur-
ther. This was accomplished by training it on extremely large corpora. The
reference implementation was trained on the 100 billion words from the
Google News Corpus. This is the pretrained model you’ll see used in this
book a lot.

The research team also discovered that the difference between a singular and a plural
word is often roughly the same magnitude, and in the same direction:

Equation 6.2 Distance between the singular and plural versions of a word

But their discovery didn’t stop there. They also discovered that the distance relation-
ships go far beyond simple singular versus plural relationships. Distances apply to
other semantic relationships. The Word2vec researchers soon discovered they could
answer questions that involve geography, culture, and demographics, like this:

"San Francisco is to California as what is to Colorado?"

San Francisco - California + Colorado = Denver

MORE REASONS TO USE WORD VECTORS

Vector representations of words are useful not only for reasoning and analogy prob-
lems, but also for all the other things you use natural language vector space models for.
From pattern matching to modeling and visualization, your NLP pipeline’s accuracy
and usefulness will improve if you know how to use the word vectors from this chapter.

 For example, later in this chapter we show you how to visualize word vectors on
2D semantic maps like the one shown in figure 6.2. You can think of this like a

xcoffee − xcoffees xcup − xcups xcookie − xcookies~~ ~~

190 CHAPTER 6 Reasoning with word vectors (Word2vec)
cartoon map of a popular tourist destination or one of those impressionistic maps you
see on bus stop posters. In these cartoon maps, things that are close to each other
semantically as well as geographically get squished together. For cartoon maps, the
artist adjusts the scale and position of icons for various locations to match the “feel” of
the place. With word vectors, the machine too can have a feel for words and places
and how far apart they should be. So your machine will be able to generate impres-
sionistic maps like the one in figure 6.2 using word vectors you are learning about in
this chapter.12

 If you’re familiar with these US cities, you might realize that this isn’t an accurate
geographic map, but it’s a pretty good semantic map. I, for one, often confuse the two
large Texas cities, Houston and Dallas, and they have almost identical word vectors. And
the word vectors for the big California cities make a nice triangle of culture in my mind.

 And word vectors are great for chatbots and search engines too. For these applica-
tions, word vectors can help overcome some of the rigidity, brittleness of pattern, or
keyword matching. Say you were searching for information about a famous person
from Houston, Texas, but didn’t realize they’d moved to Dallas. From figure 6.2, you
can see that a semantic search using word vectors could easily figure out a search
involving city names such as Dallas and Houston. And even though character-based
patterns wouldn’t understand the difference between “tell me about a Denver
omelette” and “tell me about the Denver Nuggets,” a word vector pattern could. Pat-
terns based on word vectors would likely be able to differentiate between the food
item (omelette) and the basketball team (Nuggets) and respond appropriately to a
user asking about either.

12 You can find the code for generating these interactive 2D word plots at https://github.com/totalgood/nlpia/
blob/master/src/nlpia/book/examples/ch06_w2v_us_cities_visualization.py.

Chicago

–2

–5 –4 –3 –2 –1 0 1 2

–1

0y

x

1

San Jose San Diego

Los Angeles

Houston & Dallas

Austin

Phoenix, AZ

2

3

Philadelphia

Jacksonville, FL

Figure 6.2 Word vectors for ten US cities projected onto a 2D map

https://github.com/totalgood/nlpia/blob/master/src/nlpia/book/examples/ch06_w2v_us_cities_visualization.py
https://github.com/totalgood/nlpia/blob/master/src/nlpia/book/examples/ch06_w2v_us_cities_visualization.py

191Word vectors
6.2.2 How to compute Word2vec representations

Word vectors represent the semantic meaning of words as vectors in the context of the
training corpus. This allows you not only to answer analogy questions but also reason
about the meaning of words in more general ways with vector algebra. But how do you
calculate these vector representations? There are two possible ways to train Word2vec
embeddings:

 The skip-gram approach predicts the context of words (output words) from a
word of interest (the input word).

 The continuous bag-of-words (CBOW) approach predicts the target word (the out-
put word) from the nearby words (input words). We show you how and when to
use each of these to train a Word2vec model in the coming sections.

The computation of the word vector representations can be resource intensive. Luck-
ily, for most applications, you won’t need to compute your own word vectors. You can
rely on pretrained representations for a broad range of applications. Companies that
deal with large corpora and can afford the computation have open sourced their pre-
trained word vector models. Later in this chapter we introduce you to using these
other pretrained word models, such as GloVe and fastText.

TIP Pretrained word vector representations are available for corpora like
Wikipedia, DBPedia, Twitter, and Freebase.13 These pretrained models are
great starting points for your word vector applications:

 Google provides a pretrained Word2vec model based on English Google
News articles.14

 Facebook published their word model, called fastText, for 294 languages.15

But if your domain relies on specialized vocabulary or semantic relationships, general-
purpose word models won’t be sufficient. For example, if the word “python” should
unambiguously represent the programming language instead of the reptile, a domain-
specific word model is needed. If you need to constrain your word vectors to their
usage in a particular domain, you’ll need to train them on text from that domain.

SKIP-GRAM APPROACH

In the skip-gram training approach, you’re trying to predict the surrounding window
of words based on an input word. In the sentence about Monet, in our following exam-
ple, “painted” is the training input to the neural network. The corresponding training

13 See the web page titled “GitHub - 3Top/word2vec-api: Simple web service providing a word embedding
model” (https://github.com/3Top/word2vec-api#where-to-get-a-pretrained-model).

14 Original Google 300-D Word2vec model on Google Drive (https://drive.google.com/file/d/0B7XkCwpI5
KDYNlNUTTlSS21pQmM).

15 See the web page titled “GitHub - facebookresearch/fastText: Library for fast text representation and classi-
fication” (https://github.com/facebookresearch/fastText).

https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM
https://github.com/3Top/word2vec-api#where-to-get-a-pretrained-model
https://github.com/facebookresearch/fastText

192 CHAPTER 6 Reasoning with word vectors (Word2vec)
output example skip-grams are shown in figure 6.3. The predicted words for these skip-
grams are the neighboring words “Claude,” “Monet,” “the,” and “Grand.”

WHAT IS A SKIP-GRAM? Skip-grams are n-grams that contain gaps because you
skip over intervening tokens. In this example, you’re predicting “Claude”
from the input token “painted,” and you skip over the token “Monet.”

The structure of the neural network used to predict the surrounding words is similar
to the networks you learned about in chapter 5. As you can see in figure 6.4, the net-
work consists of two layers of weights, where the hidden layer consists of n neurons; n
is the number of vector dimensions used to represent a word. Both the input and out-
put layers contain M neurons, where M is the number of words in the model’s vocabu-
lary. The output layer activation function is a softmax, which is commonly used for
classification problems.

WHAT IS SOFTMAX?
The softmax function is often used as the activation function in the output layer of
neural networks when the network’s goal is to learn classification problems. The soft-
max will squash the output results between 0 and 1, and the sum of all outputs will
always add up to 1. That way, the results of an output layer with a softmax function can
be considered as probabilities.

 For each of the K output nodes, the softmax output value can be calculated using
the normalized exponential function:

If your output vector of a three-neuron output layer looks like this

Equation 6.3 Example 3D vector

Claude Monet

word wt
= input word

painted the Grand Canal of venice in 1908.

surrounding words wt-2, wt-1

surrounding words wt+1, wt+2
= words to be predicted

Figure 6.3 Training input and output example for the skip-gram approach

(z)j =
e zj

e zkΣ
σ

k =1
K

0.5

0.9

0.2

v =

193Word vectors
The “squashed” vector after the softmax activation would look like this:

Equation 6.4 Example 3D vector after softmax

Notice that the sum of these values (rounded to three significant digits) is approxi-
mately 1.0, like a probability distribution.

 Figure 6.4 shows the numerical network input and output for the first two sur-
rounding words. In this case, the input word is “Monet,” and the expected output of
the network is either “Claude” or “painted,” depending on the training pair.

Figure 6.4 Network example for the skip-gram training

0.309

0.461

0.229

(v) =σ

Claude

One-hot vector
“Monet”

One-hot vector
“Monet”

n hidden neurons

n hidden neurons

Softmax output
“Claude”

Softmax output
“painted”

0 0.976

0.002

0.001

0.001

0.002

1

0

0

0

the

1806

... ...

...
...

...

...

Monet

painted

Claude

the

1806

Monet

painted

Claude 0 0.001

0.002

0.983

0.001

0.002

1

0

0

0

the

1806

Monet

painted

Claude

 the

1806

Monet

painted

194 CHAPTER 6 Reasoning with word vectors (Word2vec)
NOTE When you look at the structure of the neural network for word embed-
ding, you’ll notice that the implementation looks similar to what you discov-
ered in chapter 5.

How does the network learn the vector representations?
To train a Word2vec model, you’re using techniques from chapter 2. For example, in
table 6.1, wt represents the one-hot vector for the token at position t. So if you want to
train a Word2vec model using a skip-gram window size (radius) of two words, you’re
considering the two words before and after each target word. You would then use your
5-gram tokenizer from chapter 2 to turn a sentence like this

>>> sentence = "Claude Monet painted the Grand Canal of Venice in 1806."

into 10 5-grams with the input word at the center, one for each of the 10 words in the
original sentence.

Table 6.1 Ten 5-grams for sentence about Monet

The training set consisting of the input word and the surrounding (output) words are
now the basis for the training of the neural network. In the case of four surrounding
words, you would use four training iterations, where each output word is being pre-
dicted based on the input word.

 Each of the words are represented as one-hot vectors before they are presented to
the network (see chapter 2). The output vector for a neural network doing embed-
ding is similar to a one-hot vector as well. The softmax activation of the output layer
nodes (one for each token in the vocabulary) calculates the probability of an output
word being found as a surrounding word of the input word. The output vector of
word probabilities can then be converted into a one-hot vector where the word with

Input word wt
Expected

output wt-2

Expected
output wt-1

Expected
output wt+1

Expected
output wt+2

Claude Monet painted

Monet Claude painted the

painted Claude Monet the Grand

the Monet painted Grand Canal

Grand painted the Canal of

Canal the Grand of Venice

of Grand Canal Venice in

Venice Canal of in 1908

in of Venice 1908

1908 Venice in

195Word vectors
the highest probability will be converted to 1, and all remaining terms will be set to 0.
This simplifies the loss calculation.

 After training of the neural network is completed, you’ll notice that the weights
have been trained to represent the semantic meaning. Thanks to the one-hot vector
conversion of your tokens, each row in the weight matrix represents each word from
the vocabulary for your corpus. After the training, semantically similar words will have
similar vectors, because they were trained to predict similar surrounding words. This is
purely magical!

 After the training is complete and you decide not to train your word model any
further, the output layer of the network can be ignored. Only the weights of the inputs
to the hidden layer are used as the embeddings. Or in other words: the weight matrix
is your word embedding. The dot product between the one-hot vector representing
the input term and the weights then represents the word vector embedding.

Retrieving word vectors with linear algebra
The weights of a hidden layer in a neural network are often represented as a matrix:
one column per input neuron, one row per output neuron. This allows the weight
matrix to be multiplied by the column vector of inputs coming from the previous layer
to generate a column vector of outputs going to the next layer (see figure 6.5). So if
you multiply (dot product) a one-hot row vector by the trained weight matrix, you’ll
get a vector that is one weight from each neuron (from each matrix column). This
also works if you take the weight matrix and multiply it (dot product) by a one-hot
column vector for the word you are interested in.

 Of course, the one-hot vector dot product just selects that row from your weight
matrix that contains the weights for that word, which is your word vector. So you could
easily retrieve that row by just selecting it, using the word’s row number or index num-
ber from your vocabulary.

0 1 0

One-hot vector
in vocabulary
of six words

Three neuron
weight matrix

The dot product calculation

Resulting 3-D word vector

=

=

(0*.03) + (1*.06) + (0*.14) + (0*.24) + (0*.12) + (0.*.32)

(0*.66) + (1*.61) + (0*.43) + (0*.62) + (0*.44) + (0.*.55)

(0*.92) + (1*.32) + (0*.62) + (0*.99) + (0*.02) + (0.*.23)0 0 0 ××

.03

.06

.14

.24

.12

.32 .23 .55

.06

.32

.61

.44.02

.99 .62

.43.62

.32 .61

.66.92

Figure 6.5 Conversion of one-hot vector to word vector

196 CHAPTER 6 Reasoning with word vectors (Word2vec)
CONTINUOUS BAG-OF-WORDS APPROACH

In the continuous bag-of-words approach, you’re trying to predict the center word
based on the surrounding words (see figures 6.5 and 6.6 and table 6.2). Instead of cre-
ating pairs of input and output tokens, you’ll create a multi-hot vector of all surround-
ing terms as an input vector. The multi-hot input vector is the sum of all one-hot
vectors of the surrounding tokens to the center, target token.

Figure 6.6 Training input and output example for the CBOW approach

Table 6.2 Ten CBOW 5-grams from sentence about Monet

Based on the training sets, you can create your multi-hot vectors as inputs and map
them to the target word as output. The multi-hot vector is the sum of the one-hot vec-
tors of the surrounding words’ training pairs wt2 + wt1 + wt+1 + wt+2. You then build
the training pairs with the multi-hot vector as the input and the target word wt as the
output. During the training, the output is derived from the softmax of the output
node with the highest probability (see figure 6.7).

Input word wt-2 Input word wt-1 Input word wt+1 Input word wt+2 Expected output wt

Monet painted Claude

Claude painted the Monet

Claude Monet the Grand painted

Monet painted Grand Canal the

painted the Canal of Grand

the Grand of Venice Canal

Grand Canal Venice in of

Canal of in 1908 Venice

of Venice 1908 in

Venice in 1908

Claude Monet

target word wt
= word to be predicted

painted the Grand Canal of Venice in 1908.

surrounding words wt-2, wt-1

surrounding words wt+1, wt+2
= input words

197Word vectors

Figure 6.7 CBOW Word2vec network

SKIP-GRAM VS. CBOW: WHEN TO USE WHICH APPROACH

Mikolov highlighted that the skip-gram approach works well with small corpora and
rare terms. With the skip-gram approach, you’ll have more examples due to the net-
work structure. But the continuous bag-of-words approach shows higher accuracies
for frequent words and is much faster to train.

Continuous bag of words vs. bag of words
In previous chapters, we introduced the concept of a bag of words, but how is it dif-
ferent than a continuous bag of words? To establish the relationships between words
in a sentence you slide a rolling window across the sentence to select the surround-
ing words for the target word. All words within the sliding window are considered to
be the content of the continuous bag of words for the target word at the middle of
that window.

Claude

n hidden neuronsMulti-hot
vector

Softmax output
“painted”

0

0

1

1 0.03

0.001

0.952

0.000

0.002

0.002

1

1

the

Grand

1806

...

......

Monet

painted

Claude

Grand

the

1806

Monet

painted

Continuous Bag of Words

Claude Monet painted the Grand Canal of Venice in 1908.

Claude Monet painted the Grand Canal of Venice in 1908.

Claude Monet painted the Grand Canal of Venice in 1908.

Example for a continuous bag of words passing a rolling window of five words over the sentence
“Claude Monet painted the Grand Canal of Venice in 1908.” The word painted is the target or
center word within a five-word rolling window. “Claude,” “Monet,” “the,” and “Grand” are the four
surrounding words for the first CBOW rolling window.

198 CHAPTER 6 Reasoning with word vectors (Word2vec)
COMPUTATIONAL TRICKS OF WORD2VEC

After the initial publication, the performance of Word2vec models has been improved
through various computational tricks. In this section, we highlight three improve-
ments.

Frequent bigrams
Some words often occur in combination with other words—for example, “Elvis” is
often followed by “Presley”—and therefore form bigrams. Since the word “Elvis”
would occur with “Presley” with a high probability, you don’t really gain much value
from this prediction. In order to improve the accuracy of the Word2vec embedding,
Mikolov’s team included some bigrams and trigrams as terms in the Word2vec vocabu-
lary. The team16 used co-occurrence frequency to identify bigrams and trigrams that
should be considered single terms, using the following scoring function:

Equation 6.5 Bigram scoring function

If the words wi and wj result in a high score and the score is above the threshold ,
they will be included in the Word2vec vocabulary as a pair term. You’ll notice that the
vocabulary of the model contains terms like “New_York” and “San_Francisco.”
The token of frequently occurring bigrams connects the two words with a character
(usually “_”). That way, these terms will be represented as a single one-hot vector
instead of two separate ones, such as for “San” and “Francisco.”

 Another effect of the word pairs is that the word combination often represents a
different meaning than the individual words. For example, the MLS soccer team Port-
land Timbers has a different meaning than the individual words Portland and Tim-
bers. But by adding oft-occurring bigrams like team names to the Word2vec model,
they can easily be included in the one-hot vector for model training.

Subsampling frequent tokens
Another accuracy improvement to the original algorithm was to subsample frequent
words. Common words like “the” or “a” often don’t carry significant information. And
the co-occurrence of the word “the” with a broad variety of other nouns in the corpus
might create less meaningful connections between words, muddying the Word2vec
representation with this false semantic similarity training.

IMPORTANT All words carry meaning, including stop words. So stop words
shouldn’t be completely ignored or skipped while training your word vectors
or composing your vocabulary. In addition, because word vectors are often
used in generative models (like the model Cole used to compose sentences in

16 The publication by the team around Tomas Mikolov (https://arxiv.org/pdf/1310.4546.pdf) provides more
details.

score(wi,wj) = count(wi,wj) − δ
count(wi) count(wj)+

https://arxiv.org/pdf/1310.4546.pdf

199Word vectors
this book), stop words and other common words must be included in your
vocabulary and are allowed to affect the word vectors of their neighboring
words.

To reduce the emphasis on frequent words like stop words, words are sampled during
training in inverse proportion to their frequency. The effect of this is similar to the
IDF effect on TF-IDF vectors. Frequent words are given less influence over the vector
than the rarer words. Tomas Mikolov used the following equation to determine the
probability of sampling a given word. This probability determines whether or not a
particular word is included in a particular skip-gram during training:

Equation 6.6 Subsampling probability in Mikolov’s Word2vec paper

The Word2vec C++ implementation uses a slightly different sampling probability than
the one mentioned in the paper, but it has the same effect:

Equation 6.7 Subsampling probability in Mikolov’s Word2vec code

In the preceding equations, f(wi) represents the frequency of a word across the corpus,
and t represents a frequency threshold above which you want to apply the subsampling
probability. The threshold depends on your corpus size, average document length, and
the variety of words used in those documents. Values between 10-5 and 10-6 are often
found in the literature.

 If a word shows up 10 times across your entire corpus, and your corpus has a vocab-
ulary of one million distinct words, and you set the subsampling threshold to 10-6, the
probability of keeping the word in any particular n-gram is 68%. You would skip it
32% of the time while composing your n-grams during tokenization.

 Mikolov showed that subsampling improves the accuracy of the word vectors for
tasks such as answering analogy questions.

Negative sampling
One last trick Mikolov came up with was the idea of negative sampling. If a single
training example with a pair of words is presented to the network, it’ll cause all
weights for the network to be updated. This changes the values of all the vectors for all
the words in your vocabulary. But if your vocabulary contains thousands or millions of
words, updating all the weights for the large one-hot vector is inefficient. To speed up
the training of word vector models, Mikolov used negative sampling.

P(wi) = 1 − t
f(wi)√

P(wi) = − t
f(wi)√

f(wi) − t
f(wi)

200 CHAPTER 6 Reasoning with word vectors (Word2vec)
 Instead of updating all word weights that weren’t included in the word window,
Mikolov suggested sampling just a few negative samples (in the output vector) to
update their weights. Instead of updating all weights, you pick n negative example
word pairs (words that don’t match your target output for that example) and update
the weights that contributed to their specific output. That way, the computation can
be reduced dramatically and the performance of the trained network doesn’t
decrease significantly.

NOTE If you train your word model with a small corpus, you might want to
use a negative sampling rate of 5 to 20 samples. For larger corpora and vocab-
ularies, you can reduce the negative sample rate to as low as two to five sam-
ples, according to Mikolov and his team.

6.2.3 How to use the gensim.word2vec module

If the previous section sounded too complicated, don’t worry. Various companies pro-
vide their pretrained word vector models, and popular NLP libraries for different pro-
gramming languages allow you to use the pretrained models efficiently. In the
following section, we look at how you can take advantage of the magic of word vectors.
For word vectors you’ll use the popular gensim library, which you first saw in chapter 4.

 If you’ve already installed the nlpia package,17 you can download a pretrained
Word2vec model with the following command:

>>> from nlpia.data.loaders import get_data
>>> word_vectors = get_data('word2vec')

If that doesn’t work for you, or you like to “roll your own,” you can do a Google search
for Word2vec models pretrained on Google News documents.18 After you find and
download the model in Google’s original binary format and put it in a local path, you
can load it with the gensim package like this:

>>> from gensim.models.keyedvectors import KeyedVectors
>>> word_vectors = KeyedVectors.load_word2vec_format(\
... '/path/to/GoogleNews-vectors-negative300.bin.gz', binary=True)

Working with word vectors can be memory intensive. If your available memory is lim-
ited or if you don’t want to wait minutes for the word vector model to load, you can
reduce the number of words loaded into memory by passing in the limit keyword
argument. In the following example, you’ll load the 200k most common words from
the Google News corpus:

>>> from gensim.models.keyedvectors import KeyedVectors
>>> word_vectors = KeyedVectors.load_word2vec_format(\
... '/path/to/GoogleNews-vectors-negative300.bin.gz',
... binary=True, limit=200000)

17 See the README file at http://github.com/totalgood/nlpia for installation instructions.
18 Google hosts the original model trained by Mikolov on Google Drive at https://bit.ly/GoogleNews-vectors-

negative300.

https://bit.ly/GoogleNews-vectors-negative300
https://bit.ly/GoogleNews-vectors-negative300
http://github.com/totalgood/nlpia

201Word vectors
But keep in mind that a word vector model with a limited vocabulary will lead to a
lower performance of your NLP pipeline if your documents contain words that you
haven’t loaded word vectors for. Therefore, you probably only want to limit the size of
your word vector model during the development phase. For the rest of the examples
in this chapter, you should use the complete Word2vec model if you want to get the
same results we show here.

 The gensim.KeyedVectors.most_similar() method provides an efficient
way to find the nearest neighbors for any given word vector. The keyword argument
positive takes a list of the vectors to be added together, similar to your soccer team
example from the beginning of this chapter. Similarly, you can use the negative
argument for subtraction and to exclude unrelated terms. The argument topn
determines how many related terms should be provided as a return value.

 Unlike a conventional thesaurus, Word2vec synonomy (similarity) is a continuous
score, a distance. This is because Word2vec itself is a continuous vector space model.
Word2vec high dimensionality and continuous values for each dimension enable it to
capture the full range of meaning for any given word. That’s why analogies and even
zeugmas, odd juxtopositions of multiple meanings within the same word, are no
problem:19

>>> word_vectors.most_similar(positive=['cooking', 'potatoes'], topn=5)
[('cook', 0.6973530650138855),
('oven_roasting', 0.6754530668258667),
('Slow_cooker', 0.6742032170295715),
('sweet_potatoes', 0.6600279808044434),
('stir_fry_vegetables', 0.6548759341239929)]

>>> word_vectors.most_similar(positive=['germany', 'france'], topn=1)
[('europe', 0.7222039699554443)]

Word vector models also allow you to determine unrelated terms. The gensim library
provides a method called doesnt_match:

>>> word_vectors.doesnt_match("potatoes milk cake computer".split())
'computer'

To determine the most unrelated term of the list, the method returns the term with
the highest distance to all other list terms.

 If you want to perform calculations (such as the famous example king + woman -
man = queen, which was the example that got Mikolov and his advisor excited in the
first place), you can do that by adding a negative argument to the most_similar
method call:

>>> word_vectors.most_similar(positive=['king', 'woman'],
... negative=['man'], topn=2)
[('queen', 0.7118192315101624), ('monarch', 0.6189674139022827)]

19 Surfaces and Essences: Analogy as the Fuel and Fire of Thinking by Douglas Hoffstadter and Emmanuel Sander
makes it clear why machines that can handle analogies and zeugmas are such a big deal.

202 CHAPTER 6 Reasoning with word vectors (Word2vec)
The gensim library also allows you to calculate the similarity between two terms. If you
want to compare two words and determine their cosine similarity, use the method
.similarity():

>>> word_vectors.similarity('princess', 'queen')
0.70705315983704509

If you want to develop your own functions and work with the raw word vectors, you
can access them through Python’s square bracket syntax ([]) or the get() method
on a KeyedVector instance. You can treat the loaded model object as a dictionary
where your word of interest is the dictionary key. Each float in the returned array rep-
resents one of the vector dimensions. In the case of Google’s word model, your
numpy arrays will have a shape of 1 x 300:

>>> word_vectors['phone']
array([-0.01446533, -0.12792969, -0.11572266, -0.22167969, -0.07373047,

-0.05981445, -0.10009766, -0.06884766, 0.14941406, 0.10107422,
-0.03076172, -0.03271484, -0.03125 , -0.10791016, 0.12158203,
0.16015625, 0.19335938, 0.0065918 , -0.15429688, 0.03710938,
...

If you’re wondering what all those numbers mean, you can find out. But it would take
a lot of work. You would need to examine some synonyms and see which of the 300
numbers in the array they all share. Alternatively you can find the linear combination
of these numbers that make up dimensions for things like “placeness” and “female-
ness,” like you did at the beginning of this chapter.

6.2.4 How to generate your own word vector representations

In some cases, you may want to create your own domain-specific word vector models.
Doing so can improve the accuracy of your model if your NLP pipeline is processing
documents that use words in a way that you wouldn’t find on Google News before
2006, when Mikolov trained the reference Word2vec model. Keep in mind, you need
a lot of documents to do this as well as Google and Mikolov did. But if your words are
particularly rare on Google News, or your texts use them in unique ways within a
restricted domain, such as medical texts or transcripts, a domain-specific word model
may improve your model accuracy. In the following section, we show you how to train
your own Word2vec model.

 For the purpose of training a domain-specific Word2vec model, you’ll again turn
to gensim, but before you can start training the model, you’ll need to preprocess your
corpus using tools you discovered in chapter 2.

PREPROCESSING STEPS

First you need to break your documents into sentences and the sentences into
tokens. The gensimword2vec model expects a list of sentences, where each sentence
is broken up into tokens. This prevents word vectors learning from irrelevant word

203Word vectors
occurrences in neighboring sentences. Your training input should look similar to the
following structure:

>>> token_list
[

['to', 'provide', 'early', 'intervention/early', 'childhood', 'special',
'education', 'services', 'to', 'eligible', 'children', 'and', 'their',
'families'],

['essential', 'job', 'functions'],
['participate', 'as', 'a', 'transdisciplinary', 'team', 'member', 'to',
'complete', 'educational', 'assessments', 'for']

...
]

To segment sentences and then convert sentences into tokens, you can apply the vari-
ous strategies you learned in chapter 2. Detector Morse is a sentence segmenter that
improves upon the accuracy segmenter available in NLTK and gensim for some appli-
cations.20 Once you’ve converted your documents into lists of token lists (one for each
sentence), you’re ready for your Word2vec training.

TRAIN YOUR DOMAIN-SPECIFIC WORD2VEC MODEL

Get started by loading the Word2vec module:

>>> from gensim.models.word2vec import Word2Vec

The training requires a few setup details, shown in the following listing.

>>> num_features = 300
>>> min_word_count = 3
>>> num_workers = 2
>>> window_size = 6
>>> subsampling = 1e-3

20 Detector Morse, by Kyle Gorman and OHSU on pypi and at https://github.com/cslu-nlp/DetectorMorse, is
a sentence segmenter with state-of-the-art performance (98%) and has been pretrained on sentences from
years of text in the Wall Street Journal. So if your corpus includes language similar to that in the WSJ, Detector
Morse is likely to give you the highest accuracy currently possible. You can also retrain Detector Morse on your
own dataset if you have a large set of sentences from your domain.

Listing 6.2 Parameters to control Word2vec model training

Number of vector elements (dimensions)
to represent the word vector

Min number of word count to be considered
in the Word2vec model. If your corpus is
small, reduce the min count. If you’re training
with a large corpus, increase the min count.

Number of CPU cores used for the
training. If you want to set the
number of cores dynamically,
check out import multiprocessing:
num_workers = multiprocessing.cpu_count().

Context
window

sizeSubsampling rate
for frequent terms

https://github.com/cslu-nlp/DetectorMorse

204 CHAPTER 6 Reasoning with word vectors (Word2vec)
Now you’re ready to start your training, using the following listing.

>>> model = Word2Vec(
... token_list,
... workers=num_workers,
... size=num_features,
... min_count=min_word_count,
... window=window_size,
... sample=subsampling)

Depending on your corpus size and your CPU performance, the training will take a
significant amount of time. For smaller corpora, the training can be completed in
minutes. But for a comprehensive word model, the corpus will contain millions of
sentences. You need to have several examples of all the different ways the different
words in your corpus are used. If you start processing larger corpora, such as the
Wikipedia corpus, expect a much longer training time and a much larger memory
consumption.

 Word2vec models can consume quite a bit of memory. But remember that only the
weight matrix for the hidden layer is of interest. Once you’ve trained your word
model, you can reduce the memory footprint by about half if you freeze your model
and discard the unnecessary information. The following command will discard the
unneeded output weights of your neural network:

>>> model.init_sims(replace=True)

The init_sims method will freeze the model, storing the weights of the hidden layer
and discarding the output weights that predict word co-ocurrences. The output
weights aren’t part of the vector used for most Word2vec applications. But the model
cannot be trained further once the weights of the output layer have been discarded.

 You can save the trained model with the following command and preserve it for
later use:

>>> model_name = "my_domain_specific_word2vec_model"
>>> model.save(model_name)

If you want to test your newly trained model, you can use it with the same method you
learned in the previous section; use the following listing.

>>> from gensim.models.word2vec import Word2Vec
>>> model_name = "my_domain_specific_word2vec_model"
>>> model = Word2Vec.load(model_name)
>>> model.most_similar('radiology')

Listing 6.3 Instantiating a Word2vec model

Listing 6.4 Loading a saved Word2vec model

205Word vectors
6.2.5 Word2vec vs. GloVe (Global Vectors)

Word2vec was a breakthrough, but it relies on a neural network model that must be
trained using backpropagation. Backpropagation is usually less efficient than direct
optimization of a cost function using gradient descent. Stanford NLP researchers21

led by Jeffrey Pennington set about to understand the reason why Word2vec worked
so well and to find the cost function that was being optimized. They started by count-
ing the word co-occurrences and recording them in a square matrix. They found they
could compute the singular value decomposition22 of this co-occurrence matrix, split-
ting it into the same two weight matrices that Word2vec produces.23 The key was to
normalize the co-occurrence matrix the same way. But in some cases the Word2vec
model failed to converge to the same global optimum that the Stanford researchers
were able to achieve with their SVD approach. It’s this direct optimization of the
global vectors of word co-occurrences (co-occurrences across the entire corpus) that
gives GloVe its name.

 GloVe can produce matrices equivalent to the input weight matrix and output
weight matrix of Word2vec, producing a language model with the same accuracy as
Word2vec but in much less time. GloVe speeds the process by using the text data more
efficiently. GloVe can be trained on smaller corpora and still converge.24 And SVD algo-
rithms have been refined for decades, so GloVe has a head start on debugging and algo-
rithm optimization. Word2vec relies on backpropagation to update the weights that
form the word embeddings. Neural network backpropagation is less efficient than
more mature optimization algorithms such as those used within SVD for GloVe.

 Even though Word2vec first popularized the concept of semantic reasoning with
word vectors, your workhorse should probably be GloVe to train new word vector
models. With GloVe you’ll be more likely to find the global optimum for those vector
representations, giving you more accurate results.

 Advantages of GloVe are

 Faster training
 Better RAM/CPU efficiency (can handle larger documents)
 More efficient use of data (helps with smaller corpora)
 More accurate for the same amount of training

6.2.6 fastText

Researchers from Facebook took the concept of Word2vec one step further25 by add-
ing a new twist to the model training. The new algorithm, which they named fastText,

21 Stanford GloVe Project (https://nlp.stanford.edu/projects/glove/).
22 See chapter 5 and appendix C for more details on SVD.
23 GloVe: Global Vectors for Word Representation, by Jeffrey Pennington, Richard Socher, and Christopher D. Man-

ning: https://nlp.stanford.edu/pubs/glove.pdf.
24 Gensim’s comparison of Word2vec and GloVe performance: https://rare-technologies.com/making-sense-of-

Word2vec/#glove_vs_word2vec.
25 “Enriching Word Vectors with Subword Information,” Bojanowski et al.: https://arxiv.org/pdf/

1607.04606.pdf.

https://arxiv.org/pdf/1607.04606.pdf
https://arxiv.org/pdf/1607.04606.pdf
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/pubs/glove.pdf
https://rare-technologies.com/making-sense-of-Word2vec/#glove_vs_word2vec
https://rare-technologies.com/making-sense-of-Word2vec/#glove_vs_word2vec

206 CHAPTER 6 Reasoning with word vectors (Word2vec)
predicts the surrounding n-character grams rather than just the surrounding words,
like Word2vec does. For example, the word “whisper” would generate the following 2-
and 3-character grams:

 wh, whi, hi, his, is, isp, sp, spe, pe, per, er

fastText trains a vector representation for every n -character gram, which includes
words, misspelled words, partial words, and even single characters. The advantage of
this approach is that it handles rare words much better than the original Word2vec
approach.

 As part of the fastText release, Facebook published pretrained fastText models for
294 languages. On the Github page of Facebook research,26 you can find models rang-
ing from Abkhazian to Zulu. The model collection even includes rare languages such as
Saterland Frisian, which is only spoken by a handful of Germans. The pretrained fastText
models provided by Facebook have only been trained on the available Wikipedia cor-
pora. Therefore the vocabulary and accuracy of the models will vary across languages.

HOW TO USE THE PRETRAINED FASTTEXT MODELS

The use of fastText is just like using Google’s Word2vec model. Head over to the fast-
Text model repository and download the bin+text model for your language of choice.
After the download finishes, unzip the binary language file.27 With the following code,
you can then load it into gensim:

>>> from gensim.models.fasttext import FastText
>>> ft_model = FastText.load_fasttext_format(\
... model_file=MODEL_PATH)
>>> ft_model.most_similar('soccer')

The gensim fastText API shares a lot of functionality with the Word2vec implementa-
tions. All methods you learned about earlier in this chapter also apply to the fastText
models.

6.2.7 Word2vec vs. LSA

You might now be wondering how Word2vec and GloVe word vectors compare to the
LSA topic-word vectors of chapter 4. Even though we didn’t say much about the LSA
topic-document vectors in chapter 4, LSA gives you those, too. LSA topic-document

26 See the web page titled “fastText/pretrained-vectors.md at master” (https://github.com/facebookresearch/
fastText/blob/master/pretrained-vectors.md).

27 The en.wiki.zip file is 9.6GB.

If you’re using a gensim version before 3.2.0,
you need to change this line to from

gensim.models.wrappers.fasttext import FastText.

The model_file points to the
directory where you stored
the model’s bin and vec files.

After loading the model, use it like
any other word model in gensim.

https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md

207Word vectors
vectors are the sum of the topic-word vectors for all the words in those documents. If
you wanted to get a word vector for an entire document that is analogous to topic-doc-
ument vectors, you’d sum all the Word2vec word vectors in each document. That’s
pretty close to how Doc2vec document vectors work. We show you those a bit later in
this chapter.

 If your LSA matrix of topic vectors is of size N{words} * N{topics}, the LSA word vectors
are the rows of that LSA matrix. These row vectors capture the meaning of words in a
sequence of around 200 to 300 real values, like Word2vec does. And LSA topic-word
vectors are useful for finding both related and unrelated terms. As you learned in the
GloVe discussion, Word2vec vectors can be created using the exact same SVD algo-
rithm used for LSA. But Word2vec gets more use out of the same number of words in
its documents by creating a sliding window that overlaps from one document to the
next. This way it can reuse the same words five times before sliding on.

 What about incremental or online training? Both LSA and Word2vec algorithms
allow adding new documents to your corpus and adjusting your existing word vectors
to account for the co-occurrences in the new documents. But only the existing bins in
your lexicon can be updated. Adding completely new words would change the total
size of your vocabulary and therefore your one-hot vectors would change. That
requires starting the training over if you want to capture the new word in your model.

 LSA trains faster than Word2vec does. And for long documents, it does a better job
of discriminating and clustering those documents.

 The “killer app” for Word2vec is the semantic reasoning it popularized. LSA topic-
word vectors can do that, too, but it usually isn’t accurate. You’d have to break docu-
ments into sentences and then only use short phrases to train your LSA model if you
want to approach the accuracy and “wow” factor of Word2vec reasoning. With
Word2vec you can determine the answer to questions like Harry Potter + University =
Hogwarts .28

 Advantages of LSA are

 Faster training
 Better discrimination between longer documents

Advantages of Word2vec and GloVe are

 More efficient use of large corpora
 More accurate reasoning with words, such as answering analogy questions

6.2.8 Visualizing word relationships

The semantic word relationships can be powerful and their visualizations can lead to
interesting discoveries. In this section, we demonstrate steps to visualize the word vec-
tors in 2D.

28 As a great example for domain-specific Word2vec models, check out the models around Harry Potter, the
Lord of the Rings, and so on at https://github.com/nchah/word2vec4everything#harry-potter.

https://github.com/nchah/word2vec4everything#harry-potter

208 CHAPTER 6 Reasoning with word vectors (Word2vec)
NOTE If you need a quick visualization of your word model, we highly recom-
mend using Google’s TensorBoard word embedding visualization functional-
ity. For more details, check out the section “How to visualize word
embeddings” in chapter 13.

To get started, let’s load all the word vectors from the Google Word2vec model of the
Google News corpus. As you can imagine, this corpus included a lot of mentions of
Portland and Oregon and a lot of other city and state names. You’ll use the nlpia pack-
age to keep things simple, so you can start playing with Word2vec vectors quickly. See
the following listing.

>>> import os
>>> from nlpia.loaders import get_data
>>> from gensim.models.word2vec import KeyedVectors
>>> wv = get_data('word2vec')
>>> len(wv.vocab)
3000000

WARNING The Google News Word2vec model is huge: three million words
with 300 vector dimensions each. The complete word vector model requires 3
GB of available memory. If your available memory is limited or you quickly want
to load a few most frequent terms from the word model, check out chapter 13.

This KeyedVectors object in gensim now holds a table of three million Word2vec vec-
tors. We loaded these vectors from a file created by Google to store a Word2vec model
that they trained on a large corpus based on Google News articles. There should defi-
nitely be a lot of words for states and cities in all those news articles. The following list-
ing shows just a few of the words in the vocabulary, starting at the one millionth word.

>>> import pandas as pd
>>> vocab = pd.Series(wv.vocab)
>>> vocab.iloc[1000000:100006]
Illington_Fund Vocab(count:447860, index:2552140)
Illingworth Vocab(count:2905166, index:94834)
Illingworth_Halifax Vocab(count:1984281, index:1015719)
Illini Vocab(count:2984391, index:15609)
IlliniBoard.com Vocab(count:1481047, index:1518953)
Illini_Bluffs Vocab(count:2636947, index:363053)

Notice that compound words and common n-grams are joined together with an
underscore character ("_"). Also notice that the value in the key-value mapping is a
gensimVocab object that contains not only the index location for a word, so you can
retrieve the Word2vec vector, but also the number of times it occurred in the Google
News corpus.

Listing 6.5 Load a pretrained Word2vec model using nlpia

Listing 6.6 Examine Word2vec vocabulary frequencies

Downloads the pretrained Google News
word vectors to nlpia/src/nlpia/bigdata/
GoogleNews-vectors-negative300.bin.gz

209Word vectors
 As you’ve seen earlier, if you want to retrieve the 300-D vector for a particular word,
you can use the square brackets on this KeyedVectors object to .__getitem__()
any word or n-gram:

>>> wv['Illini']
array([0.15625 , 0.18652344, 0.33203125, 0.55859375, 0.03637695,

-0.09375 , -0.05029297, 0.16796875, -0.0625 , 0.09912109,
-0.0291748 , 0.39257812, 0.05395508, 0.35351562, -0.02270508,
...

The reason we chose the one millionth word (in lexical alphabetic order) is because
the first several thousand “words” are punctuation sequences like “#” and other sym-
bols that occurred a lot in the Google News corpus. We just got lucky that “Illini”29

showed up in this list. Let’s see how close this “Illini” vector is to the vector for “Illi-
nois,” shown in the following listing.

>>> import numpy as np
>>> np.linalg.norm(wv['Illinois'] - wv['Illini'])
3.3653798
>>> cos_similarity = np.dot(wv['Illinois'], wv['Illini']) / (
... np.linalg.norm(wv['Illinois']) *\
... np.linalg.norm(wv['Illini']))
>>> cos_similarity
0.5501352
>>> 1 - cos_similarity
0.4498648

These distances mean that the words “Illini” and “Illinois” are only moderately close
to one another in meaning.

 Now let’s retrieve all the Word2vec vectors for US cities so you can use their dis-
tances to plot them on a 2D map of meaning. How would you find all the cities and
states in that Word2vec vocabulary in that KeyedVectors object? You could use
cosine distance like you did in the previous listing to find all the vectors that are close
to the words “state” or “city”. But rather than reading through all three million words
and word vectors, let’s load another dataset containing a list of cities and states
(regions) from around the world, as shown in the following listing.

>>> from nlpia.data.loaders import get_data
>>> cities = get_data('cities')
>>> cities.head(1).T
geonameid 3039154
name El Tarter

29 The word “Illini” refers to a group of people, usually football players and fans, rather than a single geographic
region like “Illinois” (where most fans of the “Fighting Illini” live).

Listing 6.7 Distance between “Illinois” and “Illini”

Listing 6.8 Some US city data

Euclidean
distance

Cosine similarity is the
normalized dot product

Cosine
distance

210 CHAPTER 6 Reasoning with word vectors (Word2vec)
asciiname El Tarter
alternatenames Ehl Tarter,?? ??????
latitude 42.5795
longitude 1.65362
feature_class P
feature_code PPL
country_code AD
cc2 NaN
admin1_code 02
admin2_code NaN
admin3_code NaN
admin4_code NaN
population 1052
elevation NaN
dem 1721
timezone Europe/Andorra
modification_date 2012-11-03

This dataset from Geocities contains a lot of information, including latitude, longi-
tude, and population. You could use this for some fun visualizations or comparisons
between geographic distance and Word2vec distance. But for now you’re just going to
try to map that Word2vec distance on a 2D plane and see what it looks like. Let’s focus
on just the United States for now, as shown in the following listing.

>>> us = cities[(cities.country_code == 'US') &\
... (cities.admin1_code.notnull())].copy()
>>> states = pd.read_csv(\
... 'http://www.fonz.net/blog/wp-content/uploads/2008/04/states.csv')
>>> states = dict(zip(states.Abbreviation, states.State))
>>> us['city'] = us.name.copy()
>>> us['st'] = us.admin1_code.copy()
>>> us['state'] = us.st.map(states)
>>> us[us.columns[-3:]].head()

city st state
geonameid
4046255 Bay Minette AL Alabama
4046274 Edna TX Texas
4046319 Bayou La Batre AL Alabama
4046332 Henderson TX Texas
4046430 Natalia TX Texas

Now you have a full state name for each city in addition to its abbreviation. Let’s check
to see which of those state names and city names exist in your Word2vec vocabulary:

>>> vocab = pd.np.concatenate([us.city, us.st, us.state])
>>> vocab = np.array([word for word in vocab if word in wv.wv])
>>> vocab[:5]
array(['Edna', 'Henderson', 'Natalia', 'Yorktown', 'Brighton'])

Even when you only look at United States cities, you’ll find a lot of large cities with the
same name, like Portland, Oregon and Portland, Maine. So let’s incorporate into your

Listing 6.9 Some US state data

211Word vectors
city vector the essence of the state where that city is located. To combine the meanings
of words in Word2vec, you add the vectors together. That’s the magic of vector-
oriented reasoning. Here’s one way to add the Word2vecs for the states to the vectors
for the cities and put all these new vectors in a big DataFrame. We use either the full
name of a state or just the abbreviations (whichever one is in your Word2vec vocabu-
lary), as shown in the following listing.

>>> city_plus_state = []
>>> for c, state, st in zip(us.city, us.state, us.st):
... if c not in vocab:
... continue
... row = []
... if state in vocab:
... row.extend(wv[c] + wv[state])
... else:
... row.extend(wv[c] + wv[st])
... city_plus_state.append(row)
>>> us_300D = pd.DataFrame(city_plus_state)

Depending on your corpus, your word relationship can represent different attributes,
such as geographical proximity or cultural or economic similarities. But the relation-
ships heavily depend on the training corpus, and they will reflect the corpus.

The news articles used as the training corpus share a common component, which is the
semantical similarity of the cities. Semantically similar locations in the articles seem to
be interchangeable and therefore the word model learned that they are similar. If you
had trained on a different corpus, your word relationships might have differed. In this

Listing 6.10 Augment city word vectors with US state word vectors

Word vectors are biased!
Word vectors learn word relationships based on the training corpus. If your corpus is
about finance then your “bank” word vector will be mainly about businesses that hold
deposits. If your corpus is about geology, then your “bank” word vector will be trained
on associations with rivers and streams. And if you corpus is mostly about a matriar-
chal society with women bankers and men washing clothes in the river, then your
word vectors would take on that gender bias.

The following example shows the gender bias of a word model trained on Google
News articles. If you calculate the distance between “man” and “nurse” and compare
that to the distance between “woman” and “nurse,” you’ll be able to see the bias:

>>> word_model.distance('man', 'nurse')
0.7453
>>> word_model.distance('woman', 'nurse')
0.5586

Identifying and compensating for biases like this is a challenge for any NLP practitio-
ner that trains her models on documents written in a biased world.

212 CHAPTER 6 Reasoning with word vectors (Word2vec)
news corpus, cities that are similar in size and culture are clustered close together
despite being far apart geographically, such as San Diego and San Jose, or vacation des-
tinations such as Honolulu and Reno.

 Fortunately you can use conventional algebra to add the vectors for cities to the vec-
tors for states and state abbreviations. As you discovered in chapter 4, you can use tools
such as principal components analysis to reduce the vector dimensions from your 300
dimensions to a human-understandable 2D representation. PCA enables you to see the
projection or “shadow” of these 300-D vectors in a 2D plot. Best of all, the PCA algo-
rithm ensures that this projection is the best possible view of your data, keeping the vec-
tors as far apart as possible. PCA is like a good photographer that looks at something
from every possible angle before composing the optimal photograph. You don’t even
have to normalize the length of the vectors after summing the city + state + abbrev vec-
tors, because PCA takes care of that for you.

 We saved these augmented city word vectors in the nlpia package so you can load
them to use in your application. In the following code, you use PCA to project them
onto a 2D plot.

>>> from sklearn.decomposition import PCA
>>> pca = PCA(n_components=2)
>>> us_300D = get_data('cities_us_wordvectors')
>>> us_2D = pca.fit_transform(us_300D.iloc[:, :300])

Figure 6.8 shows the 2D projection of all these 300-D word vectors for US cities:

Figure 6.8 Google News Word2vec 300-D vectors projected onto a 2D map using PCA

Listing 6.11 Bubble chart of US cities

The 2D vectors producted by PCA are
for visualization. Retain the original
300-D Word2vec vectors for any vector
reasoning you might want to do.

The last column of this DataFrame contains the city
name, which is also stored in the DataFrame index.

Memphis, Nashville,
Charlotte, Raleigh, and Atlanta

Houston and Dallas
nearly coincide.

Ft. Worth

El Paso

San Diego
LA, SF, and San Jose

America/Los_…(0.9647851, –0.7217035)
Portland, OR

Honolulu, Reno,
Mesa, Tempe, and Phoenix

10–1–2–3

–3

–2

–1

0

1

2

3

4

y

xChicago, Indianapolis,
Columbus, and Philadelphia

2 3 4 5

Size: population
Position: semantics
Color: time zone

America/Phoenix
America/New_York
America/Anchorage
America/Indiana/Indianapolis
America/Los_Angeles
America/Boise

America/Denver
America/Kentucky/Louisville
America/Chicago

Pacific/Honolulu

213Word vectors
NOTE Low semantic distance (distance values close to zero) represents high
similarity between words. The semantic distance, or “meaning” distance, is
determined by the words occurring nearby in the documents used for train-
ing. The Word2vec vectors for two terms are close to each other in word vector
space if they are often used in similar contexts (used with similar words
nearby). For example San Francisco is close to California because they often
occur nearby in sentences and the distribution of words used near them is
similar. A large distance between two terms expresses a low likelihood of
shared context and shared meaning (they are semantically dissimilar), such
as cars and peanuts.

If you’d like to explore the city map shown in figure 6.8, or try your hand at plotting
some vectors of your own, listing 6.12 shows you how. We built a wrapper for Plotly’s
offline plotting API that should help it handle DataFrames where you’ve denormalized
your data. The Plotly wrapper expects a DataFrame with a row for each sample and col-
umns for features you’d like to plot. These can be categorical features (such as time
zones) and continuous real-valued features (such as city population). The resulting
plots are interactive and useful for exploring many types of machine learning data,
especially vector-representations of complex things such as words and documents.

>>> import seaborn
>>> from matplotlib import pyplot as plt
>>> from nlpia.plots import offline_plotly_scatter_bubble
>>> df = get_data('cities_us_wordvectors_pca2_meta')
>>> html = offline_plotly_scatter_bubble(
... df.sort_values('population', ascending=False)[:350].copy()\
... .sort_values('population'),
... filename='plotly_scatter_bubble.html',
... x='x', y='y',
... size_col='population', text_col='name', category_col='timezone',
... xscale=None, yscale=None, # 'log' or None
... layout={}, marker={'sizeref': 3000})
{'sizemode': 'area', 'sizeref': 3000}

To produce the 2D representations of your 300-D word vectors, you need to use a
dimension reduction technique. We used PCA. To reduce the amount of information
lost during the compression from 300-D to 2D, reducing the range of information
contained in the input vectors also helps. So you limited your word vectors to those
associated with cities. This is like limiting the domain or subject matter of a corpus
when computing TF-IDF or BOW vectors.

 For a more diverse mix of vectors with greater information content, you’ll proba-
bly need a nonlinear embedding algorithm such as t-SNE. We talk about t-SNE and
other neural net techniques in later chapters. t-SNE will make more sense once you’ve
grasped the word vector embedding algorithms here.

Listing 6.12 Bubble plot of US city word vectors

214 CHAPTER 6 Reasoning with word vectors (Word2vec)
6.2.9 Unnatural words

Word embeddings such as Word2vec are useful not only for English words but also for
any sequence of symbols where the sequence and proximity of symbols is representa-
tive of their meaning. If your symbols have semantics, embeddings may be useful. As
you may have guessed, word embeddings also work for languages other than English.

 Embedding works also for pictorial languages such as traditional Chinese and Jap-
anese (Kanji) or the mysterious hieroglyphics in Egyptian tombs. Embeddings and
vector-based reasoning even works for languages that attempt to obfuscate the mean-
ing of words. You can do vector-based reasoning on a large collection of “secret” mes-
sages transcribed from “Pig Latin” or any other language invented by children or the
Emperor of Rome. A Caesar cipher30 such as RO13 or a substitution cipher31 are both vul-
nerable to vector-based reasoning with Word2vec. You don’t even need a decoder ring
(shown in figure 6.9). You need only a large collection of messages or n-grams that
your Word2vec embedder can process to find co-occurrences of words or symbols.

 Word2vec has even been used to glean information and relationships from unnat-
ural words or ID numbers such as college course numbers (CS-101), model numbers
(Koala E7270 or Galaga Pro), and even serial numbers, phone numbers, and ZIP
codes.32 To get the most useful information about the relationship between ID num-
bers like this, you’ll need a variety of sentences that contain those ID numbers. And if

30 See the web page titled “Caesar cipher” (https://en.wikipedia.org/wiki/Caesar_cipher).
31 See the web page titled “Substitution cipher” (https://en.wikipedia.org/wiki/Substitution_ cipher).
32 See the web page titled “A non-NLP application of Word2Vec – Towards Data Science” (https://

medium.com/towards-data-science/a-non-nlp-application-of-word2vec-c637e35d3668).

Figure 6.9 Decoder rings (left: Hubert Berberich (HubiB) (https://commons.wikimedia.org/wiki/
File:CipherDisk2000.jpg), CipherDisk2000, marked as public domain, more details on Wikimedia
Commons: https://commons.wikimedia.org/wiki/Template:PD-self; middle: Cory Doctorow
(https://www.flickr.com/photos/doctorow/2817314740/in/photostream/), Crypto
wedding-ring 2, https://creativecommons.org/licenses/by-sa/2.0/legalcode; right: Sobebunny
(https://commons.wikimedia.org/wiki/File:Captain-midnight-decoder.jpg),
Captain-midnight-decoder, https://creativecommons.org/licenses/by-sa/3.0/legalcode)

https://en.wikipedia.org/wiki/Caesar_cipher
https://en.wikipedia.org/wiki/Substitution_cipher
https://medium.com/towards-data-science/a-non-nlp-application-of-word2vec-c637e35d3668
https://medium.com/towards-data-science/a-non-nlp-application-of-word2vec-c637e35d3668
https://commons.wikimedia.org/wiki/File:CipherDisk2000.jpg
https://commons.wikimedia.org/wiki/File:CipherDisk2000.jpg
https://commons.wikimedia.org/wiki/Template:PD-self
https://www.flickr.com/photos/doctorow/2817314740/in/photostream/
https://creativecommons.org/licenses/by-sa/2.0/legalcode
https://commons.wikimedia.org/wiki/File:Captain-midnight-decoder.jpg
https://creativecommons.org/licenses/by-sa/3.0/legalcode

215Word vectors
the ID numbers often contain a structure where the position of a symbol has meaning,
it can help to tokenize these ID numbers into their smallest semantic packet (such as
words or syllables in natural languages).

6.2.10 Document similarity with Doc2vec

The concept of Word2vec can also be extended to sentences, paragraphs, or entire
documents. The idea of predicting the next word based on the previous words can be
extended by training a paragraph or document vector (see figure 6.10).33 In this case,
the prediction not only considers the previous words, but also the vector representing
the paragraph or the document. It can be considered as an additional word input to
the prediction. Over time, the algorithm learns a document or paragraph representa-
tion from the training set.

 How are document vectors generated for unseen documents after the training
phase? During the inference stage, the algorithm adds more document vectors to the
document matrix and computes the added vector based on the frozen word vector
matrix, and its weights. By inferring a document vector, you can now create a semantic
representation of the whole document.

By expanding the concept of Word2vec with an additional document or paragraph
vector used for the word prediction, you can now use the trained document vector for
various tasks, such as finding similar documents in a corpus.

HOW TO TRAIN DOCUMENT VECTORS

Similar to your training of word vectors, you’re using the gensim package to train doc-
ument vectors, as shown in the following listing.

33 See the web page titled “Distributed Representations of Sentences and Documents” (https://arxiv.org/pdf/
1405.4053v2.pdf).

Prediction

Input Claude Monet PaintedParagraph
matrix

the

Figure 6.10 Doc2vec training
uses an additional document
vector as input.

https://arxiv.org/pdf/1405.4053v2.pdf
https://arxiv.org/pdf/1405.4053v2.pdf

)
216 CHAPTER 6 Reasoning with word vectors (Word2vec)

>>> import multiprocessing
>>> num_cores = multiprocessing.cpu_count()

>>> from gensim.models.doc2vec import TaggedDocument,\
... Doc2Vec
>>> from gensim.utils import simple_preprocess

>>> corpus = ['This is the first document ...',\
... 'another document ...']
>>> training_corpus = []
>>> for i, text in enumerate(corpus):
... tagged_doc = TaggedDocument(\
... simple_preprocess(text), [i])
... training_corpus.append(tagged_doc)

>>> model = Doc2Vec(size=100, min_count=2,
... workers=num_cores, iter=10)
>>> model.build_vocab(training_corpus)
>>> model.train(training_corpus, total_examples=model.corpus_count,
... epochs=model.iter)

TIP If you’re running low on RAM, and you know the number of documents
ahead of time (your corpus object isn’t an iterator or generator), you might
want to use a preallocated numpy array instead of Python list for your
training_corpus:

training_corpus = np.empty(len(corpus), dtype=object);
… training_corpus[i] = …

Once the Doc2vec model is trained, you can infer document vectors for new, unseen
documents by calling infer_vector on the instantiated and trained model:

>>> model.infer_vector(simple_preprocess(\
... 'This is a completely unseen document'), steps=10)

Listing 6.13 Train your own document and word vectors

gensim uses Python’s multiprocessing module to
parallelize your training on multiple CPU cores,
but this line only counts how many cores you
have available to size the number of workers.

The gensim Doc2vec model
contains your word vector

embeddings as well as
document vectors for each
document in your corpus.

The simple_preprocess
utility from gensim is
a crude tokenizer that
will ignore one-letter
words and all
punctuation. Any of
the tokenizers from
chapter 2 will work fine.

You need to provide an object
that can iterate through your
document strings one at a time.

MEAP reader 24231 (https://
forums.manning.com/user/profile/24231.page
suggests that you preallocate a numpy array
rather than a bulky python list. You may also
want to stream your corpus to and from disk
or a database if it will not fit in RAM.

gensim provides a data structure to
annotate documents with string or
integer tags for category labels,
keywords, or whatever information you
want to associate with your documents. Instantiate the Doc2vec object with your window

size of 10 words and 100-D word and document
vectors (much smaller than the 300-D Google News

Word2vec vectors). min_count is the minimum
document frequency for your vocabulary.

Before the model can be
trained, you need to

compile the vocabulary.

Kick off the
training for
10 epochs.

Doc2vec requires a “training” step when inferring
new vectors. In your example, you update the

trained vector through 10 steps (or iterations).

217Summary
With these few steps, you can quickly train an entire corpus of documents and find
similar documents. You could do that by generating a vector for every document in
your corpus and then calculating the cosine distance between each document vector.
Another common task is to cluster the document vectors of a corpus with something
like k-means to create a document classifier.

Summary
 You’ve learned how word vectors and vector-oriented reasoning can solve some

surprisingly subtle problems like analogy questions and nonsynonomy relation-
ships between words.

 You can now train Word2vec and other word vector embeddings on the words
you use in your applications so that your NLP pipeline isn’t “polluted” by the
GoogleNews meaning of words inherent in most Word2vec pretrained models.

 You used gensim to explore, visualize, and even build your own word vector
vocabularies.

 A PCA projection of geographic word vectors like US city names can reveal the
cultural closeness of places that are geographically far apart.

 If you respect sentence boundaries with your n -grams and are efficient at set-
ting up word pairs for training, you can greatly improve the accuracy of your
latent semantic analysis word embeddings (see chapter 4).

Getting words in order
with convolutional

neural networks (CNNs)
Language’s true power isn’t in the words themselves, but in the spaces between the
words, in the order and combination of words. Sometimes meaning is hidden
beneath the words, in the intent and emotion that formed that particular combina-
tion of words. Understanding the intent beneath the words is a critical skill for an
empathetic, emotionally intelligent listener or reader of natural language, be it
human or machine.1 Just as in thought and ideas, it’s the connections between

This chapter covers
 Using neural networks for NLP

 Finding meaning in word patterns

 Building a CNN

 Vectorizing natural language text in a way that
suits neural networks

 Training a CNN

 Classifying the sentiment of novel text

1 International Association of Facilitators Handbook, http://mng.bz/oVWM.
218

http://mng.bz/oVWM

219
words that create depth, information, and complexity. With a grasp on the meaning of
individual words, and multiple clever ways to string them together, how do you look
beneath them and measure the meaning of a combination of words with something
more flexible than counts of n-gram matches? How do you find meaning, emotion—
latent semantic information—from a sequence of words, so you can do something with
it? And even more ambitious, how do you impart that hidden meaning to text gener-
ated by a cold, calculating machine?

 Even the phrase “machine-generated text” inspires dread of a hollow, tinned voice
issuing a chopped list of words. Machines may get the point across, but little more than
that. What’s missing? The tone, the flow, the character that you expect a person to
express in even the most passing of engagements. Those subtleties exist between the
words, underneath the words, in the patterns of how they’re constructed. As a person
communicates, they will underlay patterns in their text and speech. Truly great writers
and speakers will actively manipulate these patterns, to great effect. And your innate
ability to recognize them, even if on a less-than-conscious level, is the reason machine-
produced text tends to sound terrible. The patterns aren’t there. But you can find them
in human-generated text and impart them to your machine friends.

 In the past few years, research has quickly blossomed around neural networks.
With widely available open source tools, the power of neural networks to find patterns
in large datasets quickly transformed the NLP landscape. The perceptron quickly
became the feedforward network (a multilayer perceptron), which led to the develop-
ment of new variants: convolutional neural nets and recurrent neural nets, ever more
efficient and precise tools to fish patterns out of large datasets.

 As you have seen already with Word2Vec, neural networks have opened entirely new
approaches to NLP. Although neural networks’ original design purpose was to enable
a machine to learn to quantify input, the field has since grown from just learning clas-
sifications and regressions (topic analysis, sentiment analysis) to actually being able to
generate novel text based on previously unseen input: translating a new phrase to
another language, generating responses to questions not seen before (chatbot, any-
one?), and even generating new text based on the style of a particular author.

 A complete understanding of the mathematics of the inner workings of a neural
network isn’t critical to employing the tools presented in this chapter. But, it does
help to have a basic grasp of what is going on inside. If you understand the examples
and explanations in chapter 5, you will have an intuition about where to use neural
networks. And you can weak your neural network architecture (the number of layers
or number of neurons) to help a network work better for your problem. This intu-
ition will help you see how neural networks can give depth to your chatbot. Neural
networks promise to make your chatbot a better listener and a little less super-
ficially chatty.

220 CHAPTER 7 Getting words in order with convolutional neural networks (CNNs)
7.1 Learning meaning
The nature of words and their secrets are most tightly correlated to (after their defini-
tion, of course) their relation to each other. That relationship can be expressed in at
least two ways:

1 Word order—here are two statements that don’t mean the same thing:

The dog chased the cat.
The cat chased the dog.

2 Word proximity—here “shone” refers to the word “hull” at the other end of the
sentence:

The ship's hull, despite years at sea, millions of tons of cargo, and

➥ two mid-sea collisions, shone like new.

These relationships can be explored for patterns (along with patterns in the presence
of the words themselves) in two ways: spatially and temporarily. The difference
between the two is this: in the former, you examine the statement as if written on
page—you’re looking for relationships in the position of words; in the latter, you
explore it as if spoken—the words and letters become time series data. These are closely
related, but they mark a key difference in how you’ll deal with them with neural net-
work tools. Spatial data is usually viewed through a fixed-width window. Time series
can extend for an unknown amount of time.

 Basic feedforward networks (multilayer perceptron) are capable of pulling pat-
terns out of data. But, the patterns they discover are found by relating weights to
pieces of the input. Nothing captures the relations of the tokens spatially or tempo-
rally. But feed forward is only the beginning of the neural network architectures out
there. The two most important choices for natural language processing are currently
convolutional neural nets and recurrent neural nets and the many flavors of each.

 In figure 7.1, three tokens are passed into this neural net input layer. And each
input layer neuron is connected to each fully connected hidden layer neuron with an
individual weight.

TIP How are you passing tokens into the net? The two major approaches you’ll
use in this chapter are the ones you developed in the previous chapters: one-
hot encoding and word vectors. You can one-hot encode them—a vector that
has a 0 for every possible vocabulary word you want to consider, with a 1 in
the position of the word you’re encoding. Or you can use the trained word
vectors you discovered in chapter 6. You need the words to be represented as
numbers to do math on them.

Now, if you swapped the order of these tokens from “See Jim run” to “run See Jim”
and passed that into the network, unsurprisingly a different answer may come out.
Remember each input position is associated with a specific weight inside each hidden
neuron (x1 is tied to w1, x2 is tied to w2, and so on).

221Toolkit
A feedforward network may be able to learn specific relationships of tokens such as
these, because they appear together in a sample but in different positions. But you can
easily see how longer sentences of 5, 10, or 50 tokens—with all the possible pairs, trip-
lets, and so on in all the possible positions for each—quickly become an intractable
problem. Luckily you have other options.

7.2 Toolkit
Python is one of the richest languages for working with neural nets. Although a lot of
the major players (hi Google and Facebook) have moved to lower-level languages for
the implementation of these expensive calculations, the extensive resources poured
into early models using Python for development have left their mark. Two of the
major programs for neural network architecture are Theano (http://deeplearning
.net/software/theano/) and TensorFlow (http://www.tensorflow.org). Both rely heav-
ily on C for their underlying computations, but both have robust Python APIs. Face-
book put their efforts into a Lua package called Torch; luckily Python now has an API
for that as well in PyTorch (http://pytorch.org/). Each of these, however, for all their
power, are heavily abstracted toolsets for building models from scratch. But the
Python community is quick to the rescue with libraries to ease the use of these under-
lying architectures. Lasagne (Theano) and Skflow (TensorFlow) are popular options,
but we’ll use Keras (https://keras.io/) for its balance of friendly API and versatility.
Keras can use either TensorFlow or Theano as its backend, and each has its advantages
and weaknesses, but you’ll use TensorFlow for the examples. You also need the h5py
package for saving the internal state of your trained model.

 By default, Keras will use TensorFlow as the backend, and the first line output at run-
time will remind you which backend you’re using for processing. You can easily change

Neuron

Neuron 0.99

Neuron

Neuron

Neuron

See

Jim

run

Input
vector

Hidden

Output
layer

Output
value

Figure 7.1 Fully connected neural net

http://www.tensorflow.org
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://pytorch.org/
https://keras.io/

222 CHAPTER 7 Getting words in order with convolutional neural networks (CNNs)
the backend in a config file, with an environment variable, or in your script itself. The
documentation in Keras is thorough and clear; we highly recommend you spend some
time there. But here’s a quick overview: Sequential() is a class that is a neural net
abstraction that gives you access to the basic API of Keras, specifically the methods
compile and fit, which will do the heavy lifting of building the underlying weights
and their interconnected relationships (compile), calculating the errors in training,
and most importantly applying backpropagation (fit). epochs, batch_size, and
optimizer are all hyperparameters that will require tuning, and in some senses, art.

 Unfortunately, no one-size-fits-all rule exists for designing and tuning, a neural net-
work. You’ll need to develop your own intuition for which framework will work best
for a particular application. But if you find example implementations for a problem
similar to yours, then you’re probably OK using that framework and adjusting that
implementation to meet your needs. There’s nothing scary about these neural net-
work frameworks or all these bells and whistles you can play with and tune. But for
now we steer this conversation back toward natural language processing via the world
of image processing. Images? Bear with us for a minute, the trick will become clear.

7.3 Convolutional neural nets
Convolutional neural nets, or CNNs, get their name from the concept of sliding (or con-
volving) a small window over the data sample.

Figure 7.2 Window convolving over function

Window

Window

f (x)

f (x)

x

x

Y

Y

223Convolutional neural nets
Convolutions appear in many places in mathematics, and they’re usually related to
time series data. The higher order concepts related to those use cases aren’t impor-
tant for your application in this chapter. The key concept is visualizing that box sliding
over a field (see figure 7.2). You’re going to start sliding them over images to get the
concept. And then you’ll start sliding the window over text. But always come back to
that mental image of a window sliding over a larger piece of data, and you’re looking
only at what can be seen through the window.

7.3.1 Building blocks

Convolutional neural nets first came to prominence in image processing and image
recognition. Because the net is capable of capturing spatial relationships between data
points of each sample, the net can suss out whether the image contains a cat or a dog
driving a bulldozer.

 A convolutional net, or convnet (yeah that extra
n in there is hard to say), achieves its magic not by
assigning a weight to each element (say, each pixel of
an image), as in a traditional feedforward net;
instead it defines a set of filters (also known as kernels)
that move across the image. Your convolution!

 In image recognition, the elements of each data
point could be a 1 (on) or 0 (off) for each pixel in a
black-and-white image.

 Or it could be the intensity of each pixel in a
grayscale image (see figures 7.3 and 7.4), or the
intensity in each of the color channels of each pixel
in a color image.

Figure 7.4 Pixel values for the telephone pole image

Figure 7.3 Small telephone pole
image

224 CHAPTER 7 Getting words in order with convolutional neural networks (CNNs)
Each filter you make is going to convolve or slide across the input sample (in this case,
your pixel values). Let’s pause and describe what we mean by sliding. You won’t be
doing anything in particular while the window is “in motion.” You can think of it as a
series of snapshots. Look through the window, do some processing, slide the window
down a bit, do the processing again.

TIP This sliding/snapshot routine is precisely what makes convolutional
neural nets highly parallelize-able. Each snapshot for a given data sample can
be calculated independently of all the others for that given data sample. No
need to wait for the first snapshot to happen before taking the second.

How big are these filters we’re talking about? The filter window size is a parameter to
be chosen by the model builder and is highly dependent on the content of data. But
there are some common starting points. In image-based data, you’ll commonly see a
window size of three-by-three (3, 3) pixels. We get into a little more detail about the
window size choice later in the chapter when we get back to NLP uses.

7.3.2 Step size (stride)

Note that the distance traveled during the sliding phase is a parameter. And more
importantly, it’s almost never as large as the filter itself. Each snapshot usually has an
overlap with its neighboring snapshot.

 The distance each convolution “travels” is known as the stride and is typically set to
1. Only moving one pixel (or anything less than the width of the filter) will create
overlap in the various inputs to the filter from one position to the next. A larger stride
that has no overlap between filter applications will lose the “blurring” effect of one
pixel (or in your case, token) relating to its neighbors.

 This overlap has some interesting properties, which will become apparent as you
see how the filters change over time.

7.3.3 Filter composition

Okay, so far we’ve been describing windows sliding over data, looking at the data
through the window, but we’ve said nothing about what you do with the data you see.

 Filters are composed of two parts:

 A set of weights (exactly like the weights feeding into the neurons from
chapter 5)

 An activation function

As we said earlier, filters are typically 3 x 3 (but often other sizes and shapes).

TIP These collections of filtering neurons are similar to the normal hidden
layer neurons, except that each filter’s weights are fixed for the entire sweep
through the input sample. The weights are the same across the entire image.

225Convolutional neural nets
Each filter in a convolutional neural net is unique, but each individual filter
element is fixed within an image snapshot.

As each filter slides over the image, one stride at a time, it pauses and takes a snapshot
of the pixels it’s currently covering. The values of those pixels are then multiplied by
the weight associated with that position in the filter.

 Say you’re using a 3 x 3 filter. You start in the upper-left corner and snapshot the
first pixel (0, 0) by the first weight (0, 0), then the second pixel (0, 1) by weight (0, 1),
and so on.

 The products of pixel and weight (at that position) are then summed up and
passed into the activation function (see figure 7.5); most often this function is ReLU
(rectified linear units)—we come back to that in a moment.

Figure 7.5 Convolutional neural net step

In figures 7.5 and 7.6, xi is the value of the pixel at position i and z0 is the output of a
ReLU activation function (z_0 = max(sum(x * w), 0) or z0 = max(xi * wj), 0). The
output of that activation function is recorded as a positional value in an output
“image.” The filter slides one stride-width, takes the next snapshot, and puts the out-
put value next to the output of the first (see figure 7.6).

Pairwise
multiplication

Summation

z0

w0

w3

w6 w7

w4

w1 w2

w5

w8

Filter

Input data (image)

Layer output

x3

x6

x4

x1x0 x2

x5

x8x7

226 CHAPTER 7 Getting words in order with convolutional neural networks (CNNs)

Figure 7.6 Convolution

There are several of these filters in a layer, and as they each convolve over the entire
image, they each create a new “image,” a “filtered” image if you will. Say you have n fil-
ters. After this process, you’d have n new, filtered images for each filter you defined.

 We get back to what you do with these n new images in a moment.

7.3.4 Padding

Something funny happens at the edges of an image, however. If you start a 3 x 3 filter
in the upper-left corner of an input image and stride one pixel at a time across, stop-
ping when the rightmost edge of the filter reaches the rightmost edge of the input,
the output “image” will be two pixels narrower than the source input.

 Keras has tools to help deal with this issue. The first is to ignore that the output is
slightly smaller. The Keras argument for this is padding='valid'. If this is the case,
you just have to be careful and take note of the new dimensions as you pass the data into
the next layer. The downfall of this strategy is that the data in the edge of the original
input is undersampled as the interior data points are passed into each filter multiple
times, from the overlapped filter positions. On a large image, this may not be an issue,
but as soon as you bring this concept to bear on a Tweet, for example, undersampling
a word at the beginning of a 10-word dataset could drastically change the outcome.

w0

w6

w1

w5

w2

w3 w4

w8w7

Input data (image)

Filter

Convolve
(slide)

Layer output

x0 x1 x2

x3

x

x

x

x4 x5

x6 x7 x8

z0 z1

227Convolutional neural nets
 The next strategy is known as padding, which consists of adding enough data to the
input’s outer edges so that the first real data point is treated just as the innermost data
points are. The downfall of this strategy is that you’re adding potentially unrelated
data to the input, which in itself can skew the outcome. You don’t care to find patterns
in fake data that you generated after all. But you can pad the input several ways to try
to minimize the ill effects. See the following listing.

>>> from keras.models import Sequential
>>> from keras.layers import Conv1D

>>> model = Sequential()
>>> model.add(Conv1D(filters=16,

kernel_size=3,
padding='same',
activation='relu',

strides=1,
input_shape=(100, 300)))

More on the implementation details in a moment. Just be aware of these troublesome
bits, and know that a good deal of what could be rather annoying data wrangling has
been abstracted away for you nicely by the tools you’ll be using.

 There are other strategies where the pre-processor attempts to guess at what the
padding should be, mimicking the data points that are already on the edge. But you
won’t have use for that strategy in NLP applications, for it’s fraught with its own peril.

CONVOLUTIONAL PIPELINE

You have n filters and n new images now. What do you do with that? This, like most
applications of neural networks, starts from the same place: a labeled dataset. And
likewise you have a similar goal. To predict a label given a novel image. The simplest
next step is to take each of those filtered images and string them out as input to a
feedforward layer and then proceed as you did in chapter 5.

TIP You can pass these filtered images into a second convolutional layer with
its own set of filters. In practice, this is the most common architecture; you’ll
brush up on it later. It turns out the multiple layers of convolutions leads to a
path to learning layers of abstractions: first edges, then shapes/colors, and
eventually concepts!

No matter how many layers (convolutional or otherwise) you add to your network,
once you have a final output you can compute the error and backpropagate that error
all the way back through the network.

 Because the activation function was differentiable, you can backpropagate as nor-
mal and update the weights of the individual filters themselves. The network then
learns what kind of filters it needs to get the right output for a given input.

 You can think of this process as the network learning to detect and extract infor-
mation for the later layers to act on more easily.

Listing 7.1 Keras network with one convolution layer

'same' or 'valid'
are the options.

input_shape is still the
shape of your unmodified
input. The padding
happens under the hood.

228 CHAPTER 7 Getting words in order with convolutional neural networks (CNNs)
7.3.5 Learning

The filters themselves, as in any neural network, start out with weights that are initial-
ized to random values near zero. How is the output “image” going to be anything more
than noise? At first, in the first few iterations of training, it will be just that: noise.

 But the classifier you’re building will have some amount of error from the
expected label for each input, and that input can be backpropagated through the acti-
vation function to the values of the filters themselves. To backpropagate the error, you
have to take the derivative of the error with respect to the weight that fed it.

 And as the convolution layer comes earlier in the net, it’s specifically the derivative
of the gradient from the layer above with respect to the weight that fed it. This calcula-
tion is similar to normal backpropagation because the weight generated output in
many positions for a given training sample.

 The specific derivations of the gradient with respect to the weights of a convolutional
filter are beyond the scope of this book. But a shorthand way of thinking about it is for
a given weight in a given filter, the gradient is the sum of the normal gradients that were
created for each individual position in the convolution during the forward pass. This is
a fairly complicated formula (two sums and multiple stacked equations, as follows):

Sum of the gradients for a filter weight

This concept is pretty much the same as a regular feedforward net, where you are fig-
uring out how much each particular weight contributed to the overall error of the sys-
tem. Then you decide how best to correct that toward a weight that will cause less
error in the future training examples. None of these details are vital for the under-
standing of the use of convolutional neural nets in natural language processing. But
hopefully you’ve developed an intuition for how to tweak neural network architec-
tures and build on these examples later in the chapters.

7.4 Narrow windows indeed
Yeah, yeah, okay, images. But we’re talking about language here, remember? Let’s see
some words to train on. It turns out you can use convolutional neural networks for
natural language processing by using word vectors (also known as word embeddings),
which you learned about in chapter 6, instead of an image’s pixel values, as the input
to your network.

 Because relative vertical relations between words would be arbitrary, depending on
the page width, no relevant information is in the patterns that may emerge there. Rel-
evant information is in the relative “horizontal” positions though.

TIP The same concepts hold true for languages that are read top to bottom
before reading right or left, such as Japanese. But in those cases, you focus on
“vertical” relationships rather than “horizontal.”

m

Σ
i=0

n

Σ
j=0

=
∂wab
∂E

∂wab
∂xij

∂xij
∂E

229Narrow windows indeed
You want to focus only on the relationships of
tokens in one spatial dimension. Instead of a
two-dimensional filter that you would convolve
over a two-dimensional input (a picture), you’ll
convolve one-dimensional filters over a one-
dimensional input, such as a sentence.

 Your filter shape will also be one-dimensional
instead of two-dimensional as in the 1 x 3 roll-
ing window shown in figure 7.7.

 If you imagine the text as an image, the “second” dimension is the full length of the
word vector, typically 100-D--500-D, just like a real image. You’ll only be concerned with
the “width” of the filter. In figure 7.7, the filter is three tokens wide. Aha! Notice that
each word token (or later character token) is a “pixel” in your sentence “image.”

Figure 7.8 1D convolution with embeddings

The cat and dog went to the bodega together.

1 × 3 Filter

The cat and dog went to the bodega together.

1 × 3 Filter

The cat and dog went to the bodega together.

1 × 3 Filter

Figure 7.7 1D convolution

Slide
(convolve)

Filter

Input
(word embeddings)

Aggregate and activation function
z[0] = activation_function(sum(w * x[:, i:i+3]))

Layer output
(for a given filter)

The cat and dog went to the bodega together

z0 z6z5z4z3z1 z2

w9

w15 w16 w17

w12 w14w13

w11w10

w8w7w6

w5w4w3

w2w1w0

w9

w15 w16 w17

w12 w14w13

w11w10

w8w7w6

w5w4w3

w2w1w0

.03

.14

.00

.24

.12

.32

.92

.32

.62

.99

.02

.23

.62

.61

.43

.44

.55

.66

.34

.33

.42

.32

.32

.72

.63

.34

.22

.27

.42

.11

.00

.00

.11

.42

.33

.15

.00

.00

.12

.02

.66

.23

.01

.34

.66

.23

.52

.00

.33

.23

.56

.25

.99

.23

230 CHAPTER 7 Getting words in order with convolutional neural networks (CNNs)
TIP The term one-dimensional filter can be a little misleading as you get to
word embeddings. The vector representation of the word itself extends
“downward” as shown in figure 7.8, but the filter covers the whole length of
that dimension in one go. The dimension we’re referring to when we say one-
dimensional convolution is the “width” of the phrase—the dimension you’re
traveling across. In a two-dimensional convolution, of an image say, you
would scan the input from side to side and top to bottom, hence the two-
dimensional name. Here you only slide in one dimension, left to right.

As mentioned earlier, the term convolution is actually a bit of shorthand. But it bears
repeating: the sliding has no effect on the model. The data at multiple positions dic-
tates what’s going on. The order in which the “snapshots” are calculated isn’t impor-
tant as long as the output is reconstructed in the same way the windows onto the input
were positioned.

 The weight values in the filters are unchanged for a given input sample during the
forward pass, which means you can take a given filter and all its “snapshots” in parallel
and compose the output “image” all at once. This is the convolutional neural net-
work’s secret to speed.

 This speed, plus its ability to ignore the position of a feature, is why researchers
keep coming back to this convolutional approach to feature extraction.

7.4.1 Implementation in Keras: prepping the data

Let’s take a look at convolution in Python with the example convolutional neural net-
work classifier provided in the Keras documentation. They have crafted a one-
dimensional convolutional net to examine the IMDB movie review dataset.

 Each data point is prelabeled with a 0 (negative sentiment) or a 1 (positive senti-
ment). In listing 7.2, you’re going to swap out their example IMDB movie review dataset
for one in raw text, so you can get your hands dirty with the preprocessing of the text
as well. And then you’ll see if you can use this trained network to classify text it has never
seen before.

>>> import numpy as np
>>> from keras.preprocessing import sequence
>>> from keras.models import Sequential
>>> from keras.layers import Dense, Dropout, Activation
>>> from keras.layers import Conv1D, GlobalMaxPooling1D

First download the original dataset from the Stanford AI department (https://ai.stan-
ford.edu/%7eamaas/data/sentiment/). This is a dataset compiled for the 2011 paper

Listing 7.2 Import your Keras convolution tools

Keras takes care of most of this,
but it likes to see numpy arrays.

A helper module
to handle

 padding input
The base Keras neural
network model

The layer objects
you’ll pile into
the model

Your convolution
layer, and pooling

https://ai.stanford.edu/%7eamaas/data/sentiment/
https://ai.stanford.edu/%7eamaas/data/sentiment/

231Narrow windows indeed
Learning Word Vectors for Sentiment Analysis.2 Once you have downloaded the dataset,
unzip it to a convenient directory and look inside. You’re just going to use the train/
directory, but other toys are in there also, so feel free to look around.

 The reviews in the train folder are broken up into text files in either the pos or neg
folders. You’ll first need to read those in Python with their appropriate label and then
shuffle the deck so the samples aren’t all positive and then all negative. Training with
the sorted labels will skew training toward whatever comes last, especially when you
use certain hyperparameters, such as momentum. See the following listing.

>>> import glob
>>> import os

>>> from random import shuffle

>>> def pre_process_data(filepath):
... """
... This is dependent on your training data source but we will
... try to generalize it as best as possible.
... """
... positive_path = os.path.join(filepath, 'pos')
... negative_path = os.path.join(filepath, 'neg')
... pos_label = 1
... neg_label = 0
... dataset = []
...
... for filename in glob.glob(os.path.join(positive_path, '*.txt')):
... with open(filename, 'r') as f:
... dataset.append((pos_label, f.read()))
...
... for filename in glob.glob(os.path.join(negative_path, '*.txt')):
... with open(filename, 'r') as f:
... dataset.append((neg_label, f.read()))
...
... shuffle(dataset)
...
... return dataset

The first example document should look something like the following. Yours will dif-
fer depending on how the samples were shuffled, but that’s fine. The first element in
the tuple is the target value for sentiment: 1 for positive sentiment, 0 for negative:

>>> dataset = pre_process_data('<path to your downloaded file>/aclimdb/train')
>>> dataset[0]
(1, 'I, as a teenager really enjoyed this movie! Mary Kate and Ashley worked

➥ great together and everyone seemed so at ease. I thought the movie plot was

➥ very good and hope everyone else enjoys it to! Be sure and rent it!! Also
they had some great soccer scenes for all those soccer players! :)')

2 Maas, Andrew L. et al., Learning Word Vectors for Sentiment Analysis, Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies, June 2011, Association for
Computational Linguistics.

Listing 7.3 Preprocessor to load your documents

232 CHAPTER 7 Getting words in order with convolutional neural networks (CNNs)
The next step is to tokenize and vectorize the data. You’ll use the Google News pre-
trained Word2vec vectors, so download those via the nlpia package or directly from
Google.3

 You’ll use gensim to unpack the vectors, just like you did in chapter 6. You can
experiment with the limit argument to the load_word2vec_format method; a
higher number will get you more vectors to play with, but memory quickly becomes an
issue and return on investment drops quickly in really high values for limit.

 Let’s write a helper function to tokenize the data and then create a list of the vec-
tors for those tokens to use as your data to feed the model, as shown in the following
listing.

>>> from nltk.tokenize import TreebankWordTokenizer
>>> from gensim.models.keyedvectors import KeyedVectors
>>> from nlpia.loaders import get_data
>>> word_vectors = get_data('w2v', limit=200000)

>>> def tokenize_and_vectorize(dataset):
... tokenizer = TreebankWordTokenizer()
... vectorized_data = []
... expected = []
... for sample in dataset:
... tokens = tokenizer.tokenize(sample[1])
... sample_vecs = []
... for token in tokens:
... try:
... sample_vecs.append(word_vectors[token])
...
... except KeyError:
... pass # No matching token in the Google w2v vocab
...
... vectorized_data.append(sample_vecs)
...
... return vectorized_data

Note that you’re throwing away information here. The Google News Word2vec vocab-
ulary includes some stopwords, but not all of them. A lot of common words like “a”
will be thrown out in your function. Not ideal by any stretch, but this will give you a
baseline for how well convolutional neural nets can perform even on lossy data. To get
around this loss of information, you can train your word2vec models separately and
make sure you have better vector coverage. The data also has a lot of HTML tags like
<br\>, which you do want to exclude, because they aren’t usually relevant to the text’s
sentiment.

3 See the download titled “GoogleNews-vectors-negative300.bin.gz - Google Drive” (https://drive.google.com/
file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=sharing).

Listing 7.4 Vectorizer and tokenizer

get_data('w2v') downloads
“GoogleNews-vectors-

negative300.bin.gz” to the
nlpia.loaders.BIGDATA_PATH

directory.

https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=sharing
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=sharing

233Narrow windows indeed
 You also need to collect the target values—0 for a negative review, 1 for a positive
review—in the same order as the training samples. See the following listing.

>>> def collect_expected(dataset):
... """ Peel off the target values from the dataset """
... expected = []
... for sample in dataset:
... expected.append(sample[0])
... return expected

And then you simply pass your data into those functions:

>>> vectorized_data = tokenize_and_vectorize(dataset)
>>> expected = collect_expected(dataset)

Next you’ll split the prepared data into a training set and a test set. You’re just going
to split your imported dataset 80/20, but this ignores the folder of test data. Feel free
to combine the data from the download’s original test folder with the training folder.
They both contain valid training and testing data. More data is always better. The
train/ and test/ folders in most datasets you will download are the particular train/
test split that the maintainer of that package used. Those folders are provided so you
can duplicate their results exactly.4

 The next code block buckets the data into the training set (x_train) that you’ll
show the network, along with “correct” answers (y_train) and a testing dataset
(x_test) that you hold back, along with its answers (y_test). You can then let the
network make a “guess” about samples from the test set, and you can validate that it’s
learning something that generalizes outside of the training data. y_train and
y_test are the associated “correct” answers for each example in the respective sets
x_train and x_test. See the following listing.

>>> split_point = int(len(vectorized_data)*.8)

>>> x_train = vectorized_data[:split_point_]
>>> y_train_ = expected[:split_point]
>>> x_test = vectorized_data[split_point:]
>>> y_test = expected[split_point:]

The next block of code (listing 7.7) sets most of the hyperparameters for the net. The
maxlen variable holds the maximum review length you’ll consider. Because each
input to a convolutional neural net must be equal in dimension, you truncate any
sample that is longer than 400 tokens and pad the shorter samples out to 400 tokens

Listing 7.5 Target labels

4 You want to publicize the test set performance with a model that has never seen the test data. But you want to
use all the labeled data you have available to you for your final training of the model you deploy to your users.

Listing 7.6 Train/test split

234 CHAPTER 7 Getting words in order with convolutional neural networks (CNNs)
with Null or 0; actual “PAD” tokens are commonly used to represent this when show-
ing the original text. Again this introduces data into the system that wasn’t previously
in the system. The network itself can learn that pattern as well though, so that PAD ==
“ignore me” becomes part of the network’s structure, so it’s not the end of the world.

 Note of caution: this padding isn’t the same as the padding introduced earlier.
Here you’re padding out the input to be of consistent size. You’ll need to decide sepa-
rately the issue of padding the beginning and ending of each training sample based
on whether you want the output to be of similar size and the end tokens to be treated
the same as the interior ones, or whether you don’t mind the first/last tokens being
treated differently. See the following listing.

maxlen = 400
batch_size = 32
embedding_dims = 300
filters = 250
kernel_size = 3
hidden_dims = 250
epochs = 2

TIP In listing 7.7, the kernel_size (filter size or window size) is a scalar
value, as opposed to the two-dimensional type filters you had with images.
Your filter will look at the word vectors for three tokens at a time. It’s helpful
to think of the filter sizes, in the first layer only, as looking at n-grams of the
text. In this case, you’re looking at 3-grams of your input text. But this could
easily be five or seven or more. The choice is data- and task-dependent, so
experiment freely with this parameter for your models.

Keras has a preprocessing helper method, pad_sequences, that in theory could be
used to pad your input data, but unfortunately it works only with sequences of scalars,
and you have sequences of vectors. Let’s write a helper function of your own to pad
your input data, as shown in the following listing.

>>> def pad_trunc(data, maxlen):
... """
... For a given dataset pad with zero vectors or truncate to maxlen
... """
... new_data = []

Listing 7.7 CNN parameters

Listing 7.8 Padding and truncating your token sequence

How many samples to show the
net before backpropagating the
error and updating the weights

Length of the token
vectors you’ll create for

passing into the convnet Number of filters
you’ll train

The width of the filters;
actual filters will each be a
matrix of weights of size:
embedding_dims x kernel_size,
or 50 x 3 in your case

Number of neurons
in the plain
feedforward net at
the end of the chainNumber of times you’ll pass the entire

training dataset through the network

An astute LiveBook reader (@madara) pointed out this can
all be accomplished with a one-liner: [smp[:maxlen] + [[0.]

* emb_dim] * (maxlen - len(smp)) for smp in data]

235Narrow windows indeed
...

... # Create a vector of 0s the length of our word vectors

... zero_vector = []

... for _ in range(len(data[0][0])):

... zero_vector.append(0.0)

...

... for sample in data:

... if len(sample) > maxlen:

... temp = sample[:maxlen]

... elif len(sample) < maxlen:

... temp = sample

... # Append the appropriate number 0 vectors to the list

... additional_elems = maxlen - len(sample)

... for _ in range(additional_elems):

... temp.append(zero_vector)

... else:

... temp = sample

... new_data.append(temp)

... return new_data

Then you need to pass your train and test data into the padder/truncator. After that
you can convert it to numpy arrays to make Keras happy. This is a tensor with the
shape (number of samples, sequence length, word vector length) that you need for
your CNN. See the following listing.

>>> x_train = pad_trunc(x_train, maxlen)
>>> x_test = pad_trunc(x_test, maxlen)

>>> x_train = np.reshape(x_train, (len(x_train), maxlen, embedding_dims))
>>> y_train = np.array(y_train)
>>> x_test = np.reshape(x_test, (len(x_test), maxlen, embedding_dims))
>>> y_test = np.array(y_test)

Phew; finally you’re ready to build a neural network.

7.4.2 Convolutional neural network architecture

You start with the base neural network model class Sequential. As with the feed-
forward network from chapter 5, Sequential is one of the base classes for neural
networks in Keras. From here you can start to layer on the magic.

 The first piece you add is a convolutional layer. In this case, you assume that it’s
okay that the output is of smaller dimension than the input, and you set the padding
to 'valid'. Each filter will start its pass with its leftmost edge at the start of the sen-
tence and stop with its rightmost edge on the last token.

 Each shift (stride) in the convolution will be one token. The kernel (window
width) you already set to three tokens in listing 7.7. And you’re using the 'relu' acti-
vation function. At each step, you’ll multiply the filter weight times the value in the
three tokens it’s looking at (element-wise), sum up those answers, and pass them

Listing 7.9 Gathering your augmented and truncated data

Finally the augmented data is
ready to be tacked onto the end
of our list of augmented data.

236 CHAPTER 7 Getting words in order with convolutional neural networks (CNNs)
through if they’re greater than 0, else you output 0. That last passthrough of positive
values and 0s is the rectified linear units activation function or ReLU. See the following
listing.

>>> print('Build model...')
>>> model = Sequential()

>>> model.add(Conv1D(
... filters,
... kernel_size,
... padding='valid',
... activation='relu',
... strides=1,
... input_shape=(maxlen, embedding_dims)))

7.4.3 Pooling

You’ve started a neural network, so … everyone into the pool! Pooling is the convolu-
tional neural network’s path to dimensionality reduction. In some ways, you’re speed-
ing up the process by allowing for parallelization of the computation. But you may
notice you make a new “version” of the data sample, a filtered one, for each filter you
define. In the preceding example, that would be 250 filtered versions (see listing 7.7)
coming out of the first layer. Pooling will mitigate that somewhat, but it also has
another striking property.

 The key idea is you’re going to evenly divide the output of each filter into a subsec-
tion. Then for each of those subsections, you’ll select or compute a representative
value. And then you set the original output aside and use the collections of represen-
tative values as the input to the next layers.

 But wait. Isn’t throwing away data terrible? Usually, discarding data wouldn’t be the
best course of action. But it turns out, it’s a path toward learning higher order repre-
sentations of the source data. The filters are being trained to find patterns. The pat-
terns are revealed in relationships between words and their neighbors! Just the kind of
subtle information you set out to find.

 In image processing, the first layers will tend to learn to be edge detectors, places
where pixel densities rapidly shift from one side to the other. Later layers learn con-
cepts like shape and texture. And layers after that may learn “content” or “meaning.”
Similar processes will happen with text.

TIP In an image processor, the pooling region would usually be a 2 x 2 pixel
window (and these don’t overlap, like your filters do), but in your 1D convo-
lution they would be a 1D window (such as 1 x 2 or 1 x 3).

Listing 7.10 Construct a 1D CNN

The standard model definition pattern
for Keras. You’ll learn an alternative
constructor pattern called the Keras
“functional API” in chapter 10.

Add one Conv1D layer, which will learn word group filters
of size kernel_size. There are many more keyword

arguments, but you’re just using their defaults for now.

237Narrow windows indeed
You have two choices for pooling (see figure 7.9): average and max. Average is the
more intuitive of the two in that by taking the average of the subset of values you
would in theory retain the most data. Max pooling, however, has an interesting prop-
erty, in that by taking the largest activation value for the given region, the network sees
that subsection’s most prominent feature. The network has a path toward learning
what it should look at, regardless of exact pixel-level position!

 In addition to dimensionality reduction and the computational savings that come
with it, you gain something else special: location invariance. If an original input ele-
ment is jostled slightly in position in a similar but distinct input sample, the max pool-
ing layer will still output something similar. This is a huge boon in the image
recognition world, and it serves a similar purpose in natural language processing.

 In this simple example from Keras, you’re using the GlobalMaxPooling1D layer.
Instead of taking the max of a small subsection of each filter’s output, you’re taking
the max of the entire output for that filter, which results in a large amount of informa-
tion loss. But even tossing aside all that good information, your toy model won’t be
deterred:

>>> model.add(GlobalMaxPooling1D())

2D max pooling (2 x 2 window)

.15

.33

.00

.00

.00

.52

.34

.66 .56

.33

.23

.23

.66

.02

.23

.12

.33

.66 .66

.52

1D max pooling (1 x 2 window)

.33 .99 .01.52.99 .00 .01.16.33 .52 .23.23

1D global max pooling

.99.99 .00 .01.16.33 .52 .23.23

Figure 7.9 Pooling layers

Pooling options are
GlobalMaxPooling1D(),

MaxPooling1D(n), or AvgPooling1D(n),
where n is the size of the area to pool

and defaults to 2 if not provided.

238 CHAPTER 7 Getting words in order with convolutional neural networks (CNNs)
Okay, outta the pool; grab a towel. Let’s recap the path so far:

 For each input example, you applied a filter (weights and activation function).
 Convolved across the length of the input, which would output a 1D vector

slightly smaller than the original input (1 x 398 which is input with the filter
starting left-aligned and finishing right-aligned) for each filter.

 For each filter output (there are 250 of them, remember), you took the single
maximum value from each 1D vector.

 At this point you have a single vector (per input example) that is 1 x 250 (the
number of filters).

Now for each input sample you have a 1D vector that the network thinks is a good rep-
resentation of that input sample. This is a semantic representation of the input—a
crude one to be sure. And it will only be semantic in the context of the training target,
which is sentiment. There won’t be an encoding of the content of the movie being
reviewed, say, just an encoding of its sentiment.

 You haven’t done any training yet, so it’s a garbage pile of numbers. But we get
back to that later. This is an important point to stop and really understand what is
going on, for once the network is trained, this semantic representation (we like to
think of it as a “thought vector”) can be useful. Much like the various ways you embed-
ded words into vectors, so too you can perform math on them: you now have some-
thing that represents whole groupings of words.

 Enough of the excitement, back to the hard work of training. You have a goal to
work toward and that’s your labels for sentiment. You take your current vector and
pass it into a standard feedforward network; in Keras that is a Dense layer. The cur-
rent setup has the same number of elements in your semantic vector and the number
of nodes in the Dense layer, but that’s just coincidence. Each of the 250
(hidden_dims) neurons in the Dense layer has 250 weights for the input from the
pooling layer. You temper that with a dropout layer to prevent overfitting.

7.4.4 Dropout

Dropout (represented as a layer by Keras, as in listing 7.11) is a special technique devel-
oped to prevent overfitting in neural networks. It isn’t specific to natural language
processing, but it does work well here.

 The idea is that on each training pass, if you “turn off” a certain percentage of the
input going to the next layer, randomly chosen on each pass, the model will be less
likely to learn the specifics of the training set, “overfitting,” and instead learn more
nuanced representations of the patterns in the data and thereby be able to generalize
and make accurate predictions when it sees completely novel data.

 Your model implements the dropout by assuming the output coming into the Drop-
out layer (the output from the previous layer) is 0 for that particular pass. It works on
that pass because the contribution to the overall error of each of the neuron’s weights
that would receive the dropout’s zero input is also effectively 0. Therefore those

239Narrow windows indeed
weights won’t get updated on the backpropagation pass. The network is then forced to
rely on relationships among varying weight sets to achieve its goals (hopefully they
won’t hold this tough love against us).

TIP Don’t worry too much about this point, but note that Keras will do some
magic under the hood for Dropout layers. Keras is randomly turning off a
percentage of the inputs on each forward pass of the training data. You won’t
do that dropout during inference or prediction on your real application. The
strength of the signal going into layers after a Dropout layer would be signifi-
cantly higher during the nontraining inference stage.

Keras mitigates this in the training phase by proportionally boosting all inputs
that aren’t turned off, so the aggregate signal that goes into the next layer is
of the same magnitude as it will be during inference.

The parameter passed into the Dropout layer in Keras is the percentage of the inputs
to randomly turn off. In this example, only 80% of the embedding data, randomly
chosen for each training sample, will pass into the next layer as it is. The rest will go in
as 0s. A 20% dropout setting is common, but a dropout of up to 50% can have good
results (one more hyperparameter you can play with).

 And then you use the Rectified Linear Units activation (relu) on the output end
of each neuron. See the following listing.

>>> model.add(Dense(hidden_dims))
>>> model.add(Dropout(0.2))
>>> model.add(Activation('relu'))

7.4.5 The cherry on the sundae

The last layer, or output layer, is the actual classifier, so here you have a neuron that
fires based on the sigmoid activation function; it gives a value between 0 and 1. Dur-
ing validation, Keras will consider anything below 0.5 to be classified as 0 and anything
above 0.5 to be a 1. But in terms of the loss calculated, it will use the target minus the
actual value provided by the sigmoid (y - f(x)).

 Here you project onto a single unit output layer, and funnel your signal into a sig-
moid activation function, as shown in the following listing.

>>> model.add(Dense(1))
>>> model.add(Activation('sigmoid'))

Now you finally have a convolutional neural network model fully defined in Keras.
Nothing’s left but to compile it and train it, as shown in the following listing.

Listing 7.11 Fully connected layer with dropout

Listing 7.12 Funnel

You start with a vanilla fully
connected hidden layer and then
tack on dropout and ReLU.

240 CHAPTER 7 Getting words in order with convolutional neural networks (CNNs)

>>> model.compile(loss='binary_crossentropy',
... optimizer='adam',
... metrics=['accuracy'])

The loss function is what the network will try to minimize. Here, you use
'binary_crossentropy'. At the time of writing, 13 loss functions are defined in
Keras, and you have the option to define your own. You won’t go into the use cases for
each of those, but the two workhorses to know about are binary_crossentropy
and categorical_crossentropy.

 Both are similar in their mathematical definitions, and in many ways you can think
of binary_crossentropy as a special case of categorical_crossentropy. The
important thing to know is when to use which. Because in this example you have one
output neuron that is either on or off, you’ll use binary_crossentropy.

 Categorical is used when you’re predicting one of many classes. In those cases,
your target will be an n-dimensional vector, one-hot encoded, with a position for each
of your n classes. The last layer in your network in this case would be as shown in the
following listing.

>>> model.add(Dense(num_classes))
>>> model.add(Activation('sigmoid'))

In this case, target minus output (y - f(x)) would be an n-dimensional vector sub-
tracted from an n-dimensional vector. And categorical_crossentropy would try
to minimize that difference.

 But back to your binary classification.

OPTIMIZATION

The parameter optimizer is any of a list of strategies to optimize the network during
training, such as stochastic gradient descent, Adam, and RSMProp. The optimizers
themselves are each different approaches to minimizing the loss function in a neural
network; the math behind each is beyond the scope of this book, but be aware of them
and try different ones for your particular problem. Although many may converge for a
given problem, some may not, and they will do so at different paces.

 Their magic comes from dynamically altering the parameters of the training, spe-
cifically the learning rate, based on the current state of the training. For example, the
starting learning rate (remember: alpha is the learning rate applied to the weight
updates you saw in chapter 5) may decay over time. Or some methods may apply
momentum and increase the learning rate if the last movement of the weights in that
particular direction was successful at decreasing the loss.

 Each optimizer itself has a handful of hyperparameters, such as learning rate.
Keras has good defaults for these values, so you shouldn’t have to worry about them
too much at first.

Listing 7.13 Compile the CNN

Listing 7.14 Output layer for categorical variable (word)

Where num_classes is … well,
you get the picture.

241Narrow windows indeed
FIT

Where compile builds the model, fit trains the model. All the inputs times the weights,
all the activation functions, all the backpropagation is kicked off by this one state-
ment. Depending on your hardware, the size of your model, and the size of your data,
this process can take anywhere from a few seconds to a few months. Using a GPU can
greatly reduce the training time in most cases, and if you have access to one, by all
means use it. A few extra steps are required to pass environment variables to Keras to
direct it to use the GPU, but this example is small enough you can run it on most
modern CPUs in a reasonable amount of time. See the following listing.

>>> model.fit(x_train, y_train,
... batch_size=batch_size,
... epochs=epochs,
... validation_data=(x_test, y_test))

7.4.6 Let’s get to learning (training)

One last step before you hit run. You would like to save the model state after training.
Because you aren’t going to hold the model in memory for now, you can grab its
structure in a JSON file and save the trained weights in another file for later re-
instantiation. See the following listing.

>>> model_structure = model.to_json()
>>> with open("cnn_model.json", "w") as json_file:
... json_file.write(model_structure)
>>> model.save_weights("cnn_weights.h5")

Now your trained model will be persisted on disk; should it converge, you won’t have
to train it again.

 Keras also provides some amazingly useful callbacks during the training phase that
are passed into the fit method as keyword arguments, such as checkpointing,
which iteratively saves the model only when the accuracy or loss has improved, or
EarlyStopping, which stops the training phase early if the model is no longer
improving based on a metric you provide. And probably most exciting, they have
implemented a TensorBoard callback. TensorBoard works only with TensorFlow as a
backend, but it provides an amazing level of introspection into your models and can

Listing 7.15 Training a CNN

Listing 7.16 Save your hard work

The number of data samples processed before the
backpropagation updates the weights. The cumulative

error for the n samples in the batch is applied at once.

The number of times the training
will run through the entire
training dataset, before stopping

Note that this doesn’t save the weights
of the network, only the structure.

Save your trained
model before you lose it!

242 CHAPTER 7 Getting words in order with convolutional neural networks (CNNs)
be indispensable when troubleshooting and fine-tuning. Let’s get to learning! Run-
ning the compile and fit steps above should lead to the following output:

Using TensorFlow backend.
Loading data...
25000 train sequences
25000 test sequences
Pad sequences (samples x time)
x_train shape: (25000, 400)
x_test shape: (25000, 400)
Build model...
Train on 20000 samples, validate on 5000 samples
Epoch 1/2 [================================] - 417s - loss: 0.3756 -
acc: 0.8248 - val_loss: 0.3531 - val_acc: 0.8390
Epoch 2/2 [================================] - 330s - loss: 0.2409 -
acc: 0.9018 - val_loss: 0.2767 - val_acc: 0.8840

Your final loss and accuracies may vary a bit, which is a side effect of the random initial
weights chosen for all the neurons. You can overcome this randomness to create a
repeatable pipeline by passing a seed into the randomizer. Doing so forces the same
values to be chosen for the initial random weights on each run, which can be helpful
in debugging and tuning your model. Just keep in mind that the starting point can
itself force the model into a local minimum or even prevent the model from converg-
ing, so we recommend that you try a few different seeds.

 To set the seed, add the following two lines above your model definition. The inte-
ger passed in as the argument to seed is unimportant, but as long as it’s consistent, the
model will initialize its weights to small values in the same way:

>>> import numpy as np
>>> np.random.seed(1337)

We haven’t seen definitive signs of overfitting; the accuracy improved for both the
training and validation sets. You could let the model run for another epoch or two
and see if you could improve more without overfitting. A Keras model can continue
the training from this point if it’s still in memory, or if it’s reloaded from a save file.
Just call the fit method again (change the sample data or not), and the training will
resume from that last state.

TIP Overfitting will be apparent when the loss continues to drop for the
training run, but the val_loss at the end of each epoch starts to climb com-
pared to the previous epoch. Finding that happy medium where the valida-
tion loss curve starts to bend back up is a major key to creating a good model.

Great. Done. Now, what did you just do?
 The model was described and then compiled into an initial untrained state. You

then called fit to actually learn the weights of the filters and the feedforward fully
connected network at the end, as well as the weights of each of the 250 individual

243Narrow windows indeed
filters, by backpropagating the error encountered at each example all the way back
down the chain.

 The progress meter reported loss, which you specified as binary_crossentropy.
For each batch, Keras is reporting a metric of how far you’re away from the label you
provided for that sample. The accuracy is a report of “percent correct guesses.” This
metric is fun to watch but certainly can be misleading, especially if you have a lopsided
dataset. Imagine you have 100 examples: 99 of them are positive examples and only
one of them should be predicted as negative. If you predict all 100 as positive without
even looking at the data, you’ll still be 99% accurate, which isn’t helpful in generaliz-
ing. The val_loss and val_acc are the same metrics on the test dataset provided in
the following:

>>> validation_data=(x_test, y_test)

The validation samples are never shown to the network for training; they’re only
passed in to see what the model predicts for them, and then reported on against the
metrics. Backpropagation doesn’t happen for these samples. This helps keep track of
how well the model will generalize to novel, real-world data.

 You’ve trained a model. The magic is done. The box has told you it figured every-
thing out. You believe it. So what? Let’s get some use out of your work.

7.4.7 Using the model in a pipeline

After you have a trained model, you can then pass in a novel sample and see what the
network thinks. This could be an incoming chat message or tweet to your bot; in your
case, it’ll be a made-up example.

 First, reinstate your trained model, if it’s no longer in memory, as shown in the fol-
lowing listing.

>>> from keras.models import model_from_json
>>> with open("cnn_model.json", "r") as json_file:
... json_string = json_file.read()
>>> model = model_from_json(json_string)

>>> model.load_weights('cnn_weights.h5')

Let’s make up a sentence with an obvious negative sentiment and see what the net-
work has to say about it. See the following listing.

>>> sample_1 = "I hate that the dismal weather had me down for so long,
➥ when will it break! Ugh, when does happiness return? The sun is blinding
➥ and the puffy clouds are too thin. I can't wait for the weekend."

Listing 7.17 Loading a saved model

Listing 7.18 Test example

244 CHAPTER 7 Getting words in order with convolutional neural networks (CNNs)
With the model pretrained, testing a new sample is quick. The are still thousands and
thousands of calculations to do, but for each sample you only need one forward pass
and no backpropagation to get a result. See the following listing.

>>> vec_list = tokenize_and_vectorize([(1, sample_1)])

>>> test_vec_list = pad_trunc(vec_list, maxlen)

>>> test_vec = np.reshape(test_vec_list, (len(test_vec_list), maxlen,\
... embedding_dims))
>>> model.predict(test_vec)
array([[0.12459087]], dtype=float32)

The Keras predict method gives you the raw output of the final layer of the net. In
this case, you have one neuron, and because the last layer is a sigmoid it will output
something between 0 and 1.

 The Keras predict_classes method gives you the expected 0 or 1. If you have a
multiclass classification problem, the last layer in your network will likely be a softmax
function, and the outputs of each node will be the probability (in the network’s eyes)
that each node is the right answer. Calling predict_classes there will return the
node associated with the highest valued probability.

 But back to your example:

>>> model.predict_classes(test_vec)
array([[0]], dtype=int32)

A “negative” sentiment indeed.
 A sentence that contains words such as “happiness,” “sun,” “puffy,” and “clouds”

isn’t necessarily a sentence full of positive emotion. Just as a sentence with “dismal,”
“break,” and “down” isn’t necessarily a negative sentiment. But with a trained neural
network, you were able to detect the underlying pattern and to learn something that
generalized from data, without ever hard-coding a single rule.

7.4.8 Where do you go from here?

In the introduction, we talked about CNNs importance in image processing. One key
point that was breezed over is the ability of the network to process channels of informa-
tion. In the case of a black-and-white image, there’s one channel in the two-
dimensional image. Each data point is the grayscale value of that pixel, which gives
you a two-dimensional input. In the case of color, the input is still a pixel intensity, but
it’s separated into its red, green, and blue components. The input then becomes a

Listing 7.19 Prediction

You pass a dummy value in the first element of the tuple just because
your helper expects it from the way you processed the initial data.

That value won’t ever see the network, so it can be anything.

Tokenize returns a list of the
data (length 1 here).

245Narrow windows indeed
three-dimensional tensor that is passed into the net. And the filters follow suit and
become three-dimensional as well, still a 3 x 3 or 5 x 5 or whatever in the x,y plane,
but also three layers deep, resulting in filters that are three pixels wide x three pixels
high x three channels deep, which leads to an interesting application in natural lan-
guage processing.

 Your input to the network was a series of words represented as vectors lined up
next to each other, 400 (maxlen) words wide x 300 elements long, and you used
Word2vec embeddings for the word vectors. But as you’ve seen in earlier chapters, you
can generate word embeddings multiple ways. If you pick several and restrict them to
an identical number of elements, you can stack them as you would picture channels,
which is an interesting way to add information to the network, especially if the embed-
dings come from disparate sources. Stacking a variety of word embeddings this way
may not be worth the increased training time due to the multiplier effect it has on the
complexity of your model. But you can see now why we started you off with some
image processing analogies. However, this analogy breaks down when you realize that
the dimensions independent of word embeddings aren’t correlated with each other in
the same way that color channels in an image are, so YMMV.

 We touched briefly on the output of the convolutional layers (before you step into
the feedforward layer). This semantic representation is an important artifact. It’s in many
ways a numerical representation of the thought and details of the input text. Specifi-
cally in this case, it’s a representation of the thought and details through the lens of sen-
timent analysis, as all the “learning” that happened was in response to whether the
sample was labeled as a positive or negative sentiment. The vector that was generated
by training on a set that was labeled for another specific topic and classified as such
would contain much different information. Using the intermediary vector directly
from a convolutional neural net isn’t common, but in the coming chapters you’ll see
examples from other neural network architectures where the details of that intermedi-
ary vector become important, and in some cases are the end goal itself.

 Why would you choose a CNN for your NLP classification task? The main benefit it
provides is efficiency. In many ways, because of the pooling layers and the limits cre-
ated by filter size (though you can make your filters large if you wish), you’re throwing
away a good deal of information. But that doesn’t mean they aren’t useful models. As
you’ve seen, they were able to efficiently detect and predict sentiment over a relatively
large dataset, and even though you relied on the Word2vec embeddings, CNNs can
perform on much less rich embeddings without mapping the entire language.

 Where can you take CNNs from here? A lot can depend on the available datasets,
but richer models can be achieved by stacking convolutional layers and passing the
output of the first set of filters as the “image” sample into the second set and so on.
Research has also found that running the model with multiple size filters and concate-
nating the output of each size filter into a longer thought vector before passing it into
the feedforward network at the end can provide more accurate results. The world is
wide open. Experiment and enjoy.

246 CHAPTER 7 Getting words in order with convolutional neural networks (CNNs)
Summary
 A convolution is a window sliding over something larger (keeping the focus on

a subset of the greater whole).
 Neural networks can treat text just as they treat images and “see” them.
 Handicapping the learning process with dropout actually helps.
 Sentiment exists not only in the words but in the patterns that are used.
 Neural networks have many knobs you can turn.

Loopy (recurrent)
neural networks (RNNs)
Chapter 7 showed how convolutional neural nets can analyze a fragment or sen-
tence all at once, keeping track of nearby words in the sequence by passing a filter
of shared weights over those words (convolving over them). Words that occurred in
clusters could be detected together. If those words jostled a little bit in position, the
network could be resilient to it. Most importantly, concepts that appeared near to
one another could have a big impact on the network. But what if you want to look
at the bigger picture and consider those relationships over a longer period of time,
a broader window than three or four tokens of a sentence. Can you give the net a
concept of what went on earlier? A memory?

 For each training example (or batch of unordered examples) and output (or
batch of outputs) of a feedforward network, the network weights will be adjusted in

This chapter covers
 Creating memory in a neural net

 Building a recurrent neural net

 Data handling for RNNs

 Backpropagating through time (BPTT)
247

248 CHAPTER 8 Loopy (recurrent) neural networks (RNNs)
the individual neurons based on the error, using backpropagation. This you’ve seen.
But the effects of the next example’s learning stage are largely independent of the
order of input data. Convolutional neural nets make an attempt to capture that order-
ing relationship by capturing localized relationships, but there’s another way.

 In a convolutional neural network, you passed in each sample as a collection of
word tokens gathered together. The word vectors are arrayed together to form a
matrix. The matrix shape was (length-of-word-vector x number-of-words-in-sample), as
you can see in figure 8.1.

 But that sequence of word vectors could just as easily have been passed into a stan-
dard feedforward network from chapter 5 (see figure 8.2), right?

Figure 8.1 1D convolution with embeddings

Slide
(convolve)

Filter

Input
(word embeddings)

Aggregate and activation function
f(sum)(wi * xi))

Layer output
(for a given filter)

The cat and dog went to the bodega together

z0 z6z5z4z3z1 z2

w9

w15 w16 w17

w12 w14w13

w11w10

w8w7w6

w5w4w3

w2w1w0

w9

w15 w16 w17

w12 w14w13

w11w10

w8w7w6

w5w4w3

w2w1w0

.03

.14

.00

.24

.12

.32

.92

.32

.62

.99

.02

.23

.62

.61

.43

.44

.55

.66

.34

.33

.42

.32

.32

.72

.63

.34

.22

.27

.42

.11

.00

.00

.11

.42

.33

.15

.00

.00

.12

.02

.66

.23

.01

.34

.66

.23

.52

.00

.33

.23

.56

.25

.99

.23

249
Sure, this is a viable model. A feedforward network will be able to react to the co-
occurrences of tokens when they are passed in this way, which is what you want. But it
will react to all the co-occurrences equally, regardless of whether they’re separated
from each other by a long document or right next to each other. And feedforward
networks, like CNNs, don’t work with variable length documents very well. They can’t
handle the text at the end of a document if it exceeds the width of your network.

 A feedforward network’s main strength is to model the relationships between a
data sample, as a whole, to its associated label. The words at the beginning and end of
a document have just as much effect on the output as the words in the middle, regard-
less of their unlikely semantic relationship to each other. You can see how this homo-
geneity or “uniformity of influence” can cause problems when you consider strong
negation and modifier (adjectives and adverb) tokens like “not” or “good.” In a feed-
forward network, negation words will influence the meaning of all the words in the
sentence, even ones that are far from their intended influence.

w0

w9

w18

w27

w36

w45 w46 w47 w48

Activation function
f(sum(wi * xi))

Activation function
f(sum(wi * xi))

Prediction

Neuron outputs

w49 w50 w51 w52

z0

w53

w0 w1 w2

z1

WNW2 …

…

…

w44

w35w34w33w32w31w30w29w28

w19 w20 w21 w22 w23 w24 w25 w26

w17w16w15w14w13w12w11w10

w8w7w6w5w4w3w2w1

w43w42w41w40w39w38w37

The cat and dog went to the bodega together

Neuron
weights

(W1)

.32

.12

.24

.14

.00

.03

.25

.99

.56

.33

.23

.23

.01

.23

.66

.34

.00

.52

.00

.00

.66

.02

.23

.12

.42

.11

.00

.00

.15

.33

.42

.22

.27

.34

.63

.11

.42

.33

.32

.72

.34

.32

.44

.62

.43

.66

.61

.55

.92

.32

.62

.99

.02

.23

zn

Input
(word embeddings)

Figure 8.2 Text into a feedforward network

250 CHAPTER 8 Loopy (recurrent) neural networks (RNNs)
 One-dimensional convolutions gave us a way to deal with these inter-token rela-
tionships by looking at windows of words together. And the pooling layers discussed in
chapter 7 were specifically designed to handle slight word order variations. In this
chapter, we look at a different approach. And through this approach, you’ll take a first
step toward the concept of memory in a neural network. Instead of thinking about lan-
guage as a large chunk of data, you can begin to look at it as it’s created, token by
token, over time, in sequence.

8.1 Remembering with recurrent networks
Of course, the words in a document are rarely completely independent of each other;
their occurrence influences or is influenced by occurrences of other words in the
document:

 The stolen car sped into the arena.
 The clown car sped into the arena.

Two different emotions may arise in the reader of these two sentences as the reader
reaches the end of the sentence. The two sentences are identical in adjective, noun,
verb, and prepositional phrase construction. But that adjective swap early in the sen-
tence has a profound effect on what the reader infers is going on.

 Can you find a way to model that relationship? A way
to understand that “arena” and even “sped” could take
on slightly different connotations when an adjective that
does not directly modify either occurred earlier in the
sentence?
 If you can find a way to remember what just happened
the moment before (specifically what happened at time
step t when you’re looking at time step t+1), you’d be on
the way to capturing the patterns that emerge when cer-
tain tokens appear in patterns relative to other tokens in
a sequence. Recurrent neural nets (RNNs) enable neural
networks to remember the past words within a sentence.
 You can see in figure 8.3 that a single recurrent neu-
ron in the hidden layer adds a recurrent loop to “recy-
cle” the output of the hidden layer at time t. The output
at time t is added to the next input at time t+1. This new
input is processed by the network at time step t+1 to cre-
ate the output for that hidden layer at time t+1. That out-
put at t+1 is then recycled back into the input again at
time step t+2, and so on.1

1 In finance, dynamics, and feedback control, this is often called an auto-regressive moving average (ARMA)
model: https://en.wikipedia.org/wiki/Autoregressive_model.

x(t+1)

y(t)

RNN

Input
layer

Recurrent loopHidden
layer

Output
layer

Figure 8.3
Recurrent neural net

https://en.wikipedia.org/wiki/Autoregressive_model

251Remembering with recurrent networks
Although the idea of affecting state across time can be a little mind boggling at first,
the basic concept is simple. For each input you feed into a regular feedforward net,
you’d like to take the output of the network at time step t and provide it as an addi-
tional input, along with the next piece of data being fed into the network at time step
t+1. You tell the feedforward network what happened before along with what is hap-
pening “now.”

IMPORTANT In this chapter and the next, we discuss most things in terms of
time steps. This isn’t the same thing as individual data samples. We’re refer-
ring to a single data sample split into smaller chunks that represent changes
over time. The single data sample will still be a piece of text, say a short movie
review or a tweet. As before, you’ll tokenize the sentence. But rather than put-
ting those tokens into the network all at once, you’ll pass them in one at a
time. This is different than having multiple new document samples. The tokens are
still part of one data sample with one associated label.

You can think of t as referring to the token sequence index. So t=0 is the first
token in the document and t+1 is the next token in the document. The
tokens, in the order they appear in the document, will be the inputs at each
time step or token step. And the tokens don’t have to be words. Individual char-
acters work well too. Inputing the tokens one at a time will be substeps of feed-
ing the data sample into the network.

Throughout, we reference the current time step as t and the following time
step as t+1.

You can visualize a recurrent net as shown in figure 8.3: the circles are entire feed-
forward network layers composed of one or more neurons. The output of the hidden
layer emerges from the network as normal, but it’s also set aside to be passed back in as
an input to itself along with the normal input from the next time step. This feedback is
represented with an arc from the output of a layer back into its own input.

 An easier way to see this process—and it’s more commonly shown this way—is by
unrolling the net. Figure 8.4 shows the network stood on its head with two unfoldings
of the time variable (t), showing layers for t+1 and t+2.

 Each time step is represented by a column of neurons in the unrolled version of
the very same neural network. It’s like looking at a screenplay or video frame of the
neural net for each sample in time. The network to the right is the future version of
the network on the left. The output of a hidden layer at one time step (t) is fed back
into the hidden layer along with input data for the next time step (t+1) to the right.
Repeat. This diagram shows two iterations of this unfolding, so three columns of neu-
rons for t=0, t=1, and t=2.

 All the vertical paths in this visualization are clones, or views of the same neurons.
They are the single network represented on a timeline. This visualization is helpful
when talking about how information flows through the network forward and backward

252 CHAPTER 8 Loopy (recurrent) neural networks (RNNs)
during backpropagation. But when looking at the three unfolded networks, remember
that they’re all different snapshots of the same network with a single set of weights.

 Let’s zoom in on the original representation of a recurrent neural network before
it was unrolled. Let’s expose the input-weight relationships. The individual layers of
this recurrent network look like what you see in figures 8.5 and 8.6.

Figure 8.5 Detailed recurrent neural net at time step t = 0

x(t+1)

y(t)

RNN Same RNN “unrolled”

Input
layer

Hidden
layer

Output
layer

t=0

Input
layer

Hidden
layer

Output
layer

t=1

Input
layer

Hidden
layer

Output
layer

t=2

Input
layer

Hidden
layer

Output
layer

Figure 8.4 Unrolled recurrent neural net

NeuronX0

X1

Y

X2

h0

h1

h2

Neuron

Neuron

Hidden Output layerInput vector

253Remembering with recurrent networks
Figure 8.6 Detailed recurrent neural net at time step t = 1

Each neuron in the hidden state has a set of weights that it applies to each element of
each input vector, as a normal feedforward network. But now you have an additional
set of trainable weights that are applied to the output of the hidden neurons from the
previous time step. The network can learn how much weight or importance to give the
events of the “past” as you input a sequence token by token.

TIP The first input in a sequence has no “past,” so the hidden state at t=0
receives an input of 0 from its t -1 self. An alternative way of “filling” the initial
state value is to first pass related but separate samples into the net one after
the other. Each sample’s final output is used for the t=0 input of the next
sample. You’ll learn how to preserve more of the information in your dataset
using alternative “filling” approaches in the section on statefulness at the end
of this chapter.

Let’s turn back to the data: imagine you have a set of documents, each a labeled
example. For each sample, instead of passing the collection of word vectors into a
convolutional neural net all at once as in the last chapter (see figure 8.7), you take
the sample one token at a time and pass the tokens individually into your RNN (see
figure 8.8).

NeuronX0

X1

Y

X2

h1

h2

Neuron

Input at t = 1 includes
output from t = 0Raw output

from time t = 0

Raw input
@ time t = 1

Neuron

Hidden Output layerInput vector

h0

254 CHAPTER 8 Loopy (recurrent) neural networks (RNNs)

Figure 8.7 Data into convolutional network

In your recurrent neural net, you pass in the word vector for the first token and get
the network’s output. You then pass in the second token, but you also pass in the out-
put from the first token! And then pass in the third token along with the output from
the second token. And so on. The network has a concept of before and after, cause
and effect, some vague notion of time (see figure 8.8).

Figure 8.8 Data fed into a recurrent network

Hidden
layer

Output

Associated
label

the arenaintospedcarclownThe

Hidden
layer

Output

The
clown

car

sped

into

the

arena

Hidden
layer Hidden

layer
Hidden
layer Hidden

layer Hidden
layer Hidden

layer

Output
Associated

label

Recurrent neural net

255Remembering with recurrent networks
Now your network is remembering something! Well, sort of. A few things remain for
you to figure out. For one, how does backpropagation even work in a structure like this?

8.1.1 Backpropagation through time

All the networks we’ve talked about so far have a label (the target variable) to aim for,
and recurrent networks are no exception. But you don’t have a concept of a label for
each token. You have a single label for all the tokens in each sample text. You only
have a label for the sample document.

 … and that is enough.

 Isadora Duncan

TIP We are speaking about tokens as the input to each time step of the net-
work, but recurrent neural nets work identically with any sort of time series
data. Your tokens can be anything, discrete or continuous: readings from a
weather station, musical notes, characters in a sentence, you name it.

Here, you’ll initially look at the output of the network at the last time step and com-
pare that output to the label. That’ll be (for now) the definition of the error. And the
error is what your network will ultimately try to minimize. But you now have some-
thing that’s a shift from what you had in the earlier chapters. For a given data sample,
you break it into smaller pieces that are fed into the network sequentially. But instead
of dealing with the output generated by any of these “subsamples” directly, you feed it
back into the network.

 You’re only concerned with the final output, at least for now. You input each token
from the sequence into your network and calculate the loss based on the output from
the last time step (token) in the sequence. See figure 8.9.

Hidden
layer

Today

Ignored
output

Hidden
layer

was

Ignored
output

Hidden
layer

a

Ignored
output

Hidden
layer

good

Ignored
output

Hidden
layer

day .

Ignored
output

Hidden
layer

error = y_true_label - y_output

Output

Figure 8.9 Only last output matters here

256 CHAPTER 8 Loopy (recurrent) neural networks (RNNs)
With an error for a given sample, you need to figure out which weights to update, and
by how much. In chapter 5, you learned how to backpropagate the error through a
standard network. And you know that the correction to each weight is dependent on
how much that weight contributed to the error. You can input each token from your
sample sequence and calculate the error based on the output of the network for the
previous time step. This is where the idea of applying backpropagation over time
seems to mess things up.

 Here’s one way to think about it: think of the process as time-based. You take a
token for each time step, starting with the first token at t=0 and you enter it into the
hidden neuron in front of you—the next column of figure 8.9. When you do that the
network will unroll to reveal the next column in the network, ready for the next token
in your sequence. The hidden neurons will unroll themselves, one at a time, like a
music box or player piano. But after you get to the end, after all the pieces of the sam-
ple are fed in, there will be nothing left to unroll and you’ll have the final output label
for the target variable in hand. You can use that output to calculate the error and
adjust your weights. You’ve just walked all the way through the computational graph
of this unrolled net.

 At this point, you can consider the whole of the input as static. You can see which
neuron fed which input all the way through the graph. And once you know how each
neuron fired, you can go back through the chain along the same path and backpropa-
gate as you did with the standard feedforward network.

 You’ll use the chain-rule to backpropagate to the previous layer. But instead of
going to the previous layer, you go to the layer in the past, as if each unrolled version
of the network were different (see figure 8.10). The math is the same.

 The error from the last step is backpropagated. For each “older” step, the gradient
with respect to the more recent time step is taken. The changes are aggregated and
applied to the single set of weights after all the individual tokenwise gradients have
been calculated, all the way back to t=0 for that sample.

Hidden
layer

Today

Ignored
output

Hidden
layer

was

Ignored
output

Hidden
layer

a

Ignored
output

Hidden
layer

good

Ignored
output

Hidden
layer

day .

Ignored
output

Hidden
layer

error = y_true_label - y_output

Backpropagated
error

Output

Figure 8.10 Backpropagation through time

257Remembering with recurrent networks
TL;DR RECAP

 Break each data sample into tokens.
 Pass each token into a feedforward net.
 Pass the output of each time step to the input of the same layer alongside the

input from the next time step.
 Collect the output of the last time step and compare it to the label.
 Backpropagate the error through the whole graph, all the way back to the first

input at time step 0.

8.1.2 When do we update what?

You have converted your strange recurrent neural network into something that looks
like a standard feedforward network, so updating the weights should be fairly straight-
forward. There’s one catch though. The tricky part of the update process is the
weights you’re updating aren’t a different branch of a neural network. Each leg is the
same network at different time steps. The weights are the same for each time step (see
figure 8.10).

 The simple solution is that the weight corrections are calculated at each time step
but not immediately updated. In a feedforward network, all the weight updates would
be calculated once all the gradients have been calculated for that input. Here the
same holds, but you have to hold the updates until you go all the way back in time, to
time step 0 for that particular input sample.

 The gradient calculations need to be based on the values that the weights had
when they contributed that much to the error. Now here’s the mind-bending part: a
weight at time step t contributed something to the error when it was initially calcu-
lated. That same weight received a different input at time step t+t and therefore con-
tributed a different amount to the error then.

 You can figure out the various changes to the weights (as if they were in a bubble)
at each time step and then sum up the changes and apply the aggregated changes to
each of the weights of the hidden layer as the last step of the learning phase.

TIP In all of these examples, you’ve been passing in a single training exam-
ple for the forward pass, and then backpropagating the error. As with any neu-
ral network, this forward pass through your network can happen after each
training sample, or you can do it in batches. And it turns out that batching
has benefits other than speed. But for now, think of these processes in terms
of just single data samples, single sentences, or documents.

That seems like quite a bit of magic. As you backpropagate through time, a single
weight may be adjusted in one direction at one time step t (determined by how it
reacted to the input at time step t) and then be adjusted in another direction at the
time step for t -1 (because of how it reacted to the input at time step t -1), for a single
data sample! But remember, neural networks in general work by minimizing a loss
function, regardless of how complex the intermediate steps are. In aggregate, it will
optimize across this complex function. As the weight update is applied once per data

258 CHAPTER 8 Loopy (recurrent) neural networks (RNNs)
sample, the network will settle (assuming it converges) on the weight for that input to
that neuron that best handles this task.

BUT YOU DO CARE WHAT CAME OUT OF THE EARLIER STEPS

Sometimes you may care about the entire sequence generated by each of the interme-
diate time steps as well. In chapter 9, you’ll see examples where the output at a given
time step t is as important as the output at the final time step. Figure 8.11 shows a path
for capturing the error at any given time step and carrying that backward to adjust all
the weights of the network during backpropagation.

Figure 8.11 All outputs matter here

This process is like the normal backpropagation through time for n time steps. In this
case, you’re now backpropagating the error from multiple sources at the same time.
But as in the first example, the weight corrections are additive. You backpropagate
from the last time step all the way to the first, summing up what you’ll change for each
weight. Then you do the same with the error calculated at the second-to-last time step
and sum up all the changes all the way back to t=0. You repeat this process until you
get all the way back down to time step 0 and then backpropagate it as if it were the
only one in the world. You then apply the grand total of the updates to the corre-
sponding hidden layer weights all at once.

 In figure 8.12, you can see that the error is backpropagated from each output all
the way back to t=0, and aggregated, before finally applying changes to the weights.
This is the most important takeaway of this section. As with a standard feedforward
network, you update the weights only after you have calculated the proposed change
in the weights for the entire backpropagation step for that input (or set of inputs). In
the case of a recurrent neural net, this backpropagation includes the updates all the
way back to time t=0.

Hidden
layer

Today

y0 y1 y2 y3 y4 y5

Hidden
layer

was

Hidden
layer

a

Hidden
layer

good

Hidden
layer

day .

Hidden
layer

error = sum([y_true_label[i] - y[i] for i in range(6)])

259Remembering with recurrent networks
Figure 8.12 Multiple outputs and backpropagation through time

Updating the weights earlier would “pollute” the gradient calculations in the back-
propagations earlier in time. Remember the gradient is calculated with respect to a
particular weight. If you were to update it early, say at time step t, when you go to cal-
culate the gradient at time step t -1, the weight’s value (remember it is the same weight
position in the network) would’ve changed. Computing the gradient based on the
input from time step t -1, the calculation would be off. You would be punishing (or
rewarding) a weight for something it didn’t do!

8.1.3 Recap

Where do you stand now? You’ve segmented each data sample into tokens. Then one
by one you fed them into a feed forward network. With each token, you input not only
the token itself, but also the output from the previous time step. At time step 0, you
input the initial token alongside 0, which ends up being a 0 vector, because there’s no
previous output. You get your error from the difference between the output of the
network from the final token and the expected label. You then backpropagate that
error to the network weights, backward through time. You aggregate the proposed
updates and apply them all at once to the network.

 You now have a feedforward network that has some concept of time and a rudi-
mentary tool for maintaining a memory of occurrences in that timeline.

8.1.4 There’s always a catch

Although a recurrent neural net may have relatively fewer weights (parameters) to
learn, you can see from figure 8.12 how a recurrent net can quickly get expensive to
train, especially for sequences of any significant length, say 10 tokens. The more
tokens you have, the further back in time each error must be backpropagated. For
each step back in time, there are ever more derivatives to calculate. Recurrent neural
nets aren’t any less effective than others, but get ready to heat your house with your
computer’s exhaust fan.

Hidden
layer

Today

Hidden
layer

was

Hidden
layer

a

Hidden
layer

good

Hidden
layer

day .

Hidden
layer

Backpropagated
error

error = sum([y_true_label[i] - y[i] for i in range(6)])

y0 y1 y2 y3 y4 y5

260 CHAPTER 8 Loopy (recurrent) neural networks (RNNs)
 New heat sources aside, you have given your neural network a rudimentary mem-
ory. But another, more troublesome problem arises, one you also see in regular feed-
forward networks as they get deeper. The vanishing gradient problem has a corollary: the
exploding gradient problem. The idea is that as a network gets deeper (more layers), the
error signal can grow or dissipate with each computation of the gradient.

 This same problem applies to recurrent neural nets, because each time step back
in time is the mathematical equivalent of backpropagating an error back to a previous
layer in a feedforward network. But it’s worse here! Although most feedforward net-
works tend to be a few layers deep for this very reason, you’re dealing with sequences
of tokens five, ten, or even hundreds long. Getting to the bottom of a network one
hundred layers deep is going to be difficult. One mitigating factor keeps you in the
game, though. Although the gradient may vanish or explode on the way to the last
weight set, you’re updating only one weight set. And that weight set is the same at
every time step. Some information is going to get through, but it might not be the
ideal memory state you thought you had created. But fear not, researchers are on the
case, and you will have some answers to that challenge in the next chapter.

 Enough doom and gloom; let’s see some magic.

8.1.5 Recurrent neural net with Keras

You’ll start with the same dataset and preprocessing that you used in the previous chap-
ter. First, you load the dataset, grab the labels, and shuffle the examples. Then you
tokenize it and vectorize it again using the Google Word2vec model. Next, you grab the
labels. And finally you split it 80/20 into the training and test sets.

 First you need to import all the modules you need for data processing and recur-
rent network training, as shown in the following listing.

>>> import glob
>>> import os
>>> from random import shuffle
>>> from nltk.tokenize import TreebankWordTokenizer
>>> from nlpia.loaders import get_data
>>> word_vectors = get_data('wv')

Then you can build your data preprocessor, which will whip your data into shape, as
shown in the following listing.

>>> def pre_process_data(filepath):
... """
... Load pos and neg examples from separate dirs then shuffle them
... together.
... """
... positive_path = os.path.join(filepath, 'pos')
... negative_path = os.path.join(filepath, 'neg')
... pos_label = 1

Listing 8.1 Import all the things

Listing 8.2 Data preprocessor

261Remembering with recurrent networks
... neg_label = 0

... dataset = []

... for filename in glob.glob(os.path.join(positive_path, '*.txt')):

... with open(filename, 'r') as f:

... dataset.append((pos_label, f.read()))

... for filename in glob.glob(os.path.join(negative_path, '*.txt')):

... with open(filename, 'r') as f:

... dataset.append((neg_label, f.read()))

... shuffle(dataset)

... return dataset

As before, you can combine your tokenizer and vectorizer into a single function, as
shown in the following listing.

>>> def tokenize_and_vectorize(dataset):
... tokenizer = TreebankWordTokenizer()
... vectorized_data = []
... for sample in dataset:
... tokens = tokenizer.tokenize(sample[1])
... sample_vecs = []
... for token in tokens:
... try:
... sample_vecs.append(word_vectors[token])
... except KeyError:
... pass
... vectorized_data.append(sample_vecs)
... return vectorized_data

And you need to extricate (unzip) the target variable into separate (but correspond-
ing) samples, as shown in the following listing.

>>> def collect_expected(dataset):
... """ Peel off the target values from the dataset """
... expected = []
... for sample in dataset:
... expected.append(sample[0])
... return expected

Now that you have all the preprocessing functions assembled, you need to run them
on your data, as shown in the following listing.

>>> dataset = pre_process_data('./aclimdb/train')
>>> vectorized_data = tokenize_and_vectorize(dataset)
>>> expected = collect_expected(dataset)
>>> split_point = int(len(vectorized_data) * .8)
>>> x_train = vectorized_data[:split_point]
>>> y_train = expected[:split_point]

Listing 8.3 Data tokenizer + vectorizer

Listing 8.4 Target unzipper

Listing 8.5 Load and prepare your data

No matching token in
the Google w2v vocab

Divide the train and test
sets with an 80/20 split
(without any shuffling).

262 CHAPTER 8 Loopy (recurrent) neural networks (RNNs)
>>> x_test = vectorized_data[split_point:]
>>> y_test = expected[split_point:]

You’ll use the same hyperparameters for this model: 400 tokens per example, batches
of 32. Your word vectors are 300 elements long, and you’ll let it run for 2 epochs. See
the following listing.

>>> maxlen = 400
>>> batch_size = 32
>>> embedding_dims = 300
>>> epochs = 2

Next you’ll need to pad and truncate the samples again. You won’t usually need to pad
or truncate with recurrent neural nets, because they can handle input sequences of
variable length. But you’ll see in the next few steps that this particular model requires
your sequences to be of matching length. See the following listing.

>>> import numpy as np

>>> x_train = pad_trunc(x_train, maxlen)
>>> x_test = pad_trunc(x_test, maxlen)

>>> x_train = np.reshape(x_train, (len(x_train), maxlen, embedding_dims))
>>> y_train = np.array(y_train)
>>> x_test = np.reshape(x_test, (len(x_test), maxlen, embedding_dims))
>>> y_test = np.array(y_test)

Now that you have your data back, it’s time to build a model. You’ll start again with a
standard Sequential() (layered) Keras model, as shown in the following listing.

>>> from keras.models import Sequential
>>> from keras.layers import Dense, Dropout, Flatten, SimpleRNN
>>> num_neurons = 50
>>> model = Sequential()

And then, as before, the Keras magic handles the complexity of assembling a neural
net: you just need to add the recurrent layer you want to your network, as shown in
the following listing.

>>> model.add(SimpleRNN(
... num_neurons, return_sequences=True,
... input_shape=(maxlen, embedding_dims)))

Listing 8.6 Initialize your network parameters

Listing 8.7 Load your test and training data

Listing 8.8 Initialize an empty Keras network

Listing 8.9 Add a recurrent layer

263Remembering with recurrent networks
Now the infrastructure is set up to take each input and pass it into a simple recurrent
neural net (the not-simple version is in the next chapter), and for each token, gather
the output into a vector. Because your sequences are 400 tokens long and you’re using
50 hidden neurons, your output from this layer will be a vector 400 elements long. Each
of those elements is a vector 50 elements long, with one output for each of the neurons.

 Notice here the keyword argument return_sequences. It’s going to tell the net-
work to return the network value at each time step, hence the 400 vectors, each 50
long. If return_sequences was set to False (the Keras default behavior), only a sin-
gle 50-dimensional vector would be returned.

 The choice of 50 neurons was arbitrary for this example, mostly to reduce compu-
tation time. Do experiment with this number to see how it affects computation time
and accuracy of the model.

TIP A good rule of thumb is to try to make your model no more complex
than the data you’re training on. Easier said than done, but that idea gives
you a rationale for adjusting your parameters as you experiment with your
dataset. A more complex model will overfit training data and not generalize
well; a model that is too simple will underfit the data and also not have much
interesting to say about novel data. You’ll see this discussion referred to as the
bias versus variance trade-off. A model that’s overfit to the data is said to have
high variance and low bias. And an underfit model is the opposite: low vari-
ance and high bias; it gets everything wrong in a consistent way.

Note that you truncated and padded the data again. You did so to provide a compari-
son with the CNN example from the last chapter. But when using a recurrent neural
net, truncating and padding isn’t usually necessary. You can provide training data of
varying lengths and unroll the net until you hit the end of the input. Keras will handle
this automatically. The catch is that your output of the recurrent layer will vary from
time step to time step with the input. A four-token input will output a sequence four
elements long. A 100-token sequence will produce a sequence of 100 elements. If you
need to pass this into another layer, one that expects a uniform input, it won’t work.
But there are cases where that’s acceptable, and even preferred. But back to your clas-
sifier; see the following listing.

>>> model.add(Dropout(.2))

>>> model.add(Flatten())
>>> model.add(Dense(1, activation='sigmoid'))

You requested that the simple RNN return full sequences, but to prevent overfitting
you add a Dropout layer to zero out 20% of those inputs, randomly chosen on each
input example. And then finally you add a classifier. In this case, you have one class:
“Yes - Positive Sentiment - 1” or “No - Negative Sentiment - 0,” so you chose a layer with

Listing 8.10 Add a dropout layer

264 CHAPTER 8 Loopy (recurrent) neural networks (RNNs)
one neuron (Dense(1)) and a sigmoid activation function. But a Dense layer expects
a “flat” vector of n elements (each element a float) as input. And the data coming out
of the SimpleRNN is a tensor 400 elements long, and each of those are 50 elements
long. But a feedforward network doesn’t care about order of elements as long as
you’re consistent with the order. You use the convenience layer, Flatten(), that
Keras provides to flatten the input from a 400 x 50 tensor to a vector 20,000 elements
long. And that’s what you pass into the final layer that’ll make the classification. In
reality, the Flatten layer is a mapping. That means the error is backpropagated from
the last layer back to the appropriate output in the RNN layer and each of those back-
propagated errors are then backpropagated through time from the appropriate point
in the output, as discussed earlier.

 Passing the “thought vector” produced by the recurrent neural network layer into
a feedforward network no longer keeps the order of the input you tried so hard to
incorporate. But the important takeaway is to notice that the “learning” related to
sequence of tokens happens in the RNN layer itself; the aggregation of errors via back-
propagation through time is encoding that relationship in the network and express-
ing it in the “thought vector” itself. Your decision based on the thought vector, via the
classifier, is providing feedback to the “quality” of that thought vector with respect to
your specific classification problem. You can “judge” your thought vector and work
with the RNN itself in other ways, but more on that in the next chapter. (Can you
sense our excitement for the next chapter?) Hang in there; all of this is critical to
understanding the next part.

8.2 Putting things together
You compile your model as you did with the convolutional neural net in the last
chapter.

 Keras also comes with several tools, such as model.summary(), for inspection of
the internals of your model. As your models grow more and more complicated, keep-
ing track of how things inside your model change when you adjust the hyperparame-
ters can be taxing unless you use model.summary() regularly. If you record that
summary, along with the validation test results, in a hyperparameter tuning log, it
really gets fun. You might even be able to automate much of it and turn over some of
the tedium of record keeping to the machine.2 See the following listing.

>>> model.compile('rmsprop', 'binary_crossentropy', metrics=['accuracy'])
Using TensorFlow backend.
>>> model.summary()

Listing 8.11 Compile your recurrent network

2 If you do decide to automate your hyperparameter selection, don’t stick to grid search for too long; random
search is much more efficient (http://hyperopt.github.io/hyperopt/). And if you really want to be profes-
sional about it, you’ll want to try Bayesean optimization. Your hyperparameter optimizer only gets one shot
at it every few hours, so you can’t afford to use just any old hyperparameter tuning model (heaven forbid a
recurrent network!).

http://hyperopt.github.io/hyperopt/

265Putting things together

Layer (type) Output Shape Param #
===
simple_rnn_1 (SimpleRNN) (None, 400, 50) 17550

dropout_1 (Dropout) (None, 400, 50) 0

flatten_1 (Flatten) (None, 20000) 0

dense_1 (Dense) (None, 1) 20001
===
Total params: 37,551.0
Trainable params: 37,551.0
Non-trainable params: 0.0

None

Pause and look at the number of parameters you’re working with. This recurrent neu-
ral network is relatively small, but note that you’re learning 37,551 parameters! That’s
a lot of weights to update based on 20,000 training samples (not to be confused with
the 20,000 elements in the last layer—that is just coincidence). Let’s look at those
numbers and see specifically where they come from.

 In the SimpleRNN layer, you requested 50 neurons. Each of those neurons will
receive input (and apply a weight to) each input sample. In an RNN, the input at each
time step is one token. Your tokens are represented by word vectors in this case, each
300 elements long (300-dimensional). Each neuron will need 300 weights:

50 * 300 = 15,000

Each neuron also has the bias term, which always has an input value of 1 (that’s what
makes it a bias) but has a trainable weight:

15,000 + 50 (bias weights) = 15,050

15,050 weights in the first time step of the first layer. Now each of those 50 neurons
will feed its output into the network’s next time step. Each neuron accepts the full
input vector as well as the full output vector. In the first time step, the feedback from
the output doesn’t exist yet. It’s initiated as a vector of zeros, its length the same as the
length of the output.

 Each neuron in the hidden layer now has weights for each token embedding dimen-
sion: that’s 300 weights. It also has 1 bias for each neuron. And you have the 50 weights
for the output results in the previous time step (or zeros for the first t=0 time step).
These 50 weights are the key feedback step in a recurrent neural network. That gives us

300 + 1 + 50 = 351

351 times 50 neurons gives:

351 * 50 = 17,550

17,550 parameters to train. You’re unrolling this net 400 time steps (probably too much
given the problems associated with vanishing gradients, but even so, this network turns

266 CHAPTER 8 Loopy (recurrent) neural networks (RNNs)
out to still be effective). But those 17,550 parameters are the same in each of the
unrollings, and they remain the same until all the backpropagations have been calcu-
lated. The updates to the weights occur at once at the end of the sequence forward
propagation and subsequent backpropagation. Although you’re adding complexity to
the backpropagation algorithm, you’re saved by the fact you’re not training a net with
a little over 7 million parameters (17,550 * 400), which is what it would look like if the
unrollings each had their own weight sets.

 The final layer in the summary is reporting 20,001 parameters to train, which is rel-
atively straightforward. After the Flatten() layer, the input is a 20,000-dimensional
vector plus the one bias input. Because you only have one neuron in the output layer,
the total number of parameters is

(20,000 input elements + 1 bias unit) * 1 neuron = 20,001 parameters

Those numbers can be a little misleading in computational time because there are so
many extra steps to backpropagation through time (compared to convolutional neu-
ral networks or standard feedforward networks). Computation time shouldn’t be a
deal killer. Recurrent nets’ special talent at memory is the start of a bigger world in NLP
or any other sequence data, as you’ll see in the next chapter. But back to your classi-
fier for now.

8.3 Let’s get to learning our past selves
OK, now it’s time to actually train that recurrent network that we so carefully assem-
bled in the previous section. As with your other Keras models, you need to give the
.fit() method your data and tell it how long you want to run training (epochs), as
shown in the following listing.

>>> model.fit(x_train, y_train,
... batch_size=batch_size,
... epochs=epochs,
... validation_data=(x_test, y_test))
Train on 20000 samples, validate on 5000 samples
Epoch 1/2
20000/20000 [==============================] - 215s - loss: 0.5723 -
acc: 0.7138 - val_loss: 0.5011 - val_acc: 0.7676
Epoch 2/2
20000/20000 [==============================] - 183s - loss: 0.4196 -
acc: 0.8144 - val_loss: 0.4763 - val_acc: 0.7820

>>> model_structure = model.to_json()
>>> with open("simplernn_model1.json", "w") as json_file:
... json_file.write(model_structure)
>>> model.save_weights("simplernn_weights1.h5")
Model saved.

Not horrible, but also not something you’ll write home about. Where can you look to
improve…

Listing 8.12 Train and save your model

267Hyperparameters
8.4 Hyperparameters
All the models listed in the book can be tuned toward your data and samples in vari-
ous ways; they all have their benefits and associated trade offs. Finding the perfect set
of hyperparameters is usually an intractable problem. But human intuition and expe-
rience can at least provide approaches to the problem. Let’s look at the last example.
What are some of the choices you made? See the following listing.

>>> maxlen = 400
>>> embedding_dims = 300
>>> batch_size = 32
>>> epochs = 2
>>> num_neurons = 50

maxlen is most likely the biggest question mark in the bunch. The training set varies
widely in sample length. When you force samples less than 100 tokens long up to 400
and conversely chop down 1,000 token samples to 400, you introduce an enormous
amount of noise. Changing this number impacts training time more than any other
parameter in this model; the length of the individual samples dictates how many and
how far back in time the error must backpropagate. It isn’t strictly necessary with
recurrent neural networks. You can simply unroll the network as far or as little as you
need to for the sample. It’s necessary in your example because you’re passing the out-
put, itself a sequence, into a feedforward layer; and feedforward layers require uni-
formly sized input.

 The embedding_dims value was dictated by the Word2vec model you chose, but
this could easily be anything that adequately represents the dataset. Even something
as simple as a one-hot encoding of the 50 most commons tokens in the corpus may be
enough to get accurate predictions.

 As with any net, increasing batch_size speeds training because it reduces the
number of times backpropagation (the computationally expensive part) needs to
happen. The tradeoff is that larger batches increase the chance of settling in a local
minimum.

 The epochs parameter is easy to test and tune, by simply running the training pro-
cess again. But that requires a lot of patience if you have to start from scratch with
each new epochs parameter you want to try. Keras models can restart training and
pick up where you left off, as long as you saved the model as you “left off.” To restart
your training on a previously trained model, reload it and your dataset, and call
model.fit() on your data. Keras won’t reinitialize the weights, but instead continue
the training as if you’d never stopped it.

 The other alternative for tuning the epochs parameter is to add a Keras callback
called EarlyStopping. By providing this method to the model, the model continues

Listing 8.13 Model parameters

Arbitrary sequence length
based on perusing the data

From the pretrained
Word2vec model

Number of sample sequences to
pass through (and aggregate the
error) before backpropagatingHidden layer

complexity

268 CHAPTER 8 Loopy (recurrent) neural networks (RNNs)
to train up until the number of epochs you requested, unless a metric passed to Early-
Stopping crosses some threshold that you trigger within your callback. A common
early stopping metric is the improvement in validation accuracy for several consecutive
epochs. If you model isn’t getting any better, that usually means it’s time to “cut bait.”

 This metric allows you to set it and forget it; the model stops training when it hits
your metric. And you don’t have to worry about investing lots of time only to find out
later that your model started overfitting your training data 42 epochs ago.

 The num_neurons parameter is an important one. We suggested you use 50 arbi-
trarily. Now let’s do a train and test run with 100 neurons instead of 50, as shown in
listings 8.14 and 8.15.

>>> num_neurons = 100
>>> model = Sequential()
>>> model.add(SimpleRNN(
... num_neurons, return_sequences=True, input_shape=(maxlen,\
... embedding_dims)))
>>> model.add(Dropout(.2))
>>> model.add(Flatten())
>>> model.add(Dense(1, activation='sigmoid'))
>>> model.compile('rmsprop', 'binary_crossentropy', metrics=['accuracy'])
Using TensorFlow backend.
>>> model.summary()

Layer (type) Output Shape Param #
===
simple_rnn_1 (SimpleRNN) (None, 400, 100) 40100

dropout_1 (Dropout) (None, 400, 100) 0

flatten_1 (Flatten) (None, 40000) 0

dense_1 (Dense) (None, 1) 40001
===
Total params: 80,101.0
Trainable params: 80,101.0
Non-trainable params: 0.0

>>> model.fit(x_train, y_train,
... batch_size=batch_size,
... epochs=epochs,
... validation_data=(x_test, y_test))
Train on 20000 samples, validate on 5000 samples
Epoch 1/2
20000/20000 [==============================] - 287s - loss: 0.9063 -
acc: 0.6529 - val_loss: 0.5445 - val_acc: 0.7486
Epoch 2/2
20000/20000 [==============================] - 240s - loss: 0.4760 -

Listing 8.14 Build a larger network

Listing 8.15 Train your larger network

269Predicting
acc: 0.7951 - val_loss: 0.5165 - val_acc: 0.7824
>>> model_structure = model.to_json()
>>> with open("simplernn_model2.json", "w") as json_file:
... json_file.write(model_structure)
>>> model.save_weights("simplernn_weights2.h5")
Model saved.

The validation accuracy of 78.24% is only 0.04% better after we doubled the complex-
ity of our model in one of the layers. This negligible improvement should lead you to
think the model (for this network layer) is too complex for the data. This layer of the
network may be too wide.

 Here’s what happens with num_neurons set to 25:

20000/20000 [==============================] - 240s - loss: 0.5394 -
acc: 0.8084 - val_loss: 0.4490 - val_acc: 0.7970

That’s interesting. Our model got a little better when we slimmed it down a bit in the
middle. A little better (1.5%), but not significantly. These kinds of tests can take quite
a while to develop an intuition for. You may find it especially difficult as the training
time increases and prevents you from enjoying the instant feedback and gratification
that you get from other coding tasks. And sometimes changing one parameter at a
time can mask benefits you would get from adjusting two at a time. But if you went
down that rabbit hole of combinatorics, your task complexity goes through the roof.

TIP Experiment often, and always document how the model responds to
your manipulations. This kind of hands-on work provides the quickest path
toward an intuition for model building.

If you feel the model is overfitting the training data but you can’t find a way to make
your model simpler, you can always try increasing the Dropout(percentage). This is
a sledgehammer (actually a shotgun) that can mitigate the risk of overfitting while
allowing your model to have as much complexity as it needs to match the data. If you
set the dropout percentage much above 50%, the model starts to have a difficult time
learning. Your learning will slow and validation error will bounce around a lot. But
20% to 50% is a pretty safe range for a lot of NLP problems for recurrent networks.

8.5 Predicting
Now that you have a trained model, such as it is, you can predict just as you did with
the CNN in the last chapter, as shown in the following listing.

>>> sample_1 = "I hate that the dismal weather had me down for so long, when

➥ will it break! Ugh, when does happiness return? The sun is blinding and

➥ the puffy clouds are too thin. I can't wait for the weekend."

>>> from keras.models import model_from_json
>>> with open("simplernn_model1.json", "r") as json_file:

Listing 8.16 Crummy weather sentiment

270 CHAPTER 8 Loopy (recurrent) neural networks (RNNs)
... json_string = json_file.read()
>>> model = model_from_json(json_string)
>>> model.load_weights('simplernn_weights1.h5')

>>> vec_list = tokenize_and_vectorize([(1, sample_1)])
>>> test_vec_list = pad_trunc(vec_list, maxlen)
>>> test_vec = np.reshape(test_vec_list, (len(test_vec_list), maxlen,\
... embedding_dims))

>>> model.predict_classes(test_vec)
array([[0]], dtype=int32)

Negative again.
 You have another tool to add to the pipeline in classifying your possible responses,

and the incoming questions or searches that a user may enter. But why choose a recur-
rent neural network? The short answer is: don’t. Well, not a SimpleRNN as you’ve imple-
mented here. They’re relatively expensive to train and pass new samples through
compared to a feedforward net or a convolutional neural net. At least in this example,
the results aren’t appreciably better, or even better at all.

 Why bother with an RNN at all? Well, the concept of remembering bits of input
that have already occurred is absolutely crucial in NLP. The problems of vanishing
gradients are usually too much for a recurrent neural net to overcome, especially in
an example with so many time steps such as ours. The next chapter begins to examine
alternative ways of remembering, ways that turn out to be, as Andrej Karpathy puts it,
“unreasonably effective.”3

 The following sections cover a few things about recurrent neural networks that
weren’t mentioned in the example but are important nonetheless.

8.5.1 Statefulness

Sometimes you want to remember information from one input sample to the next, not
just one-time step (token) to the next within a single sample. What happens to that
information at the end of the training step? Other than what is encoded in the
weights via backpropagation, the final output has no effect, and the next input will
start fresh. Keras provides a keyword argument in the base RNN layer (therefore in
the SimpleRNN as well) called stateful. It defaults to False. If you flip this to True
when adding the SimpleRNN layer to your model, the last sample’s last output passes
into itself at the next time step along with the first token input, just as it would in the
middle of the sample.

 Setting stateful to True can be a good idea when you want to model a large doc-
ument that has been split into paragraphs or sentences for processing. And you might

3 Karpathy, Andrej, The Unreasonable Effectiveness of Recurrent Neural Networks. http://karpathy.github.io/
2015/05/21/rnn-effectiveness/.

You pass a dummy value in the first element of the
tuple because your helper expects it from the way
it processed the initial data. That value won’t ever

see the network, so it can be anything.

Tokenize returns a list of
the data (length 1 here).

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

271Predicting
even use it to model the meaning of an entire corpus of related documents. But you
wouldn’t want to train a stateful RNN on unrelated documents or passages without
resetting the state of the model between samples. Likewise, if you usually shuffle your
samples of text, the last few tokens of one sample have nothing to do with the first
tokens of the next sample. So for shuffled text you’ll want to make sure your state-
ful flag is set to False, because the order of the samples doesn’t help the model find
a good fit.

 If the fit method is passed a batch_size parameter, the statefulness of the model
holds each sample’s output in the batch. And then for the first sample in the next
batch it passes the output of the first sample in the previous batch. 2nd to 2nd. i -th to
i -th. If you’re trying to model a larger single corpus on smaller bits of the whole, pay-
ing attention to the dataset order becomes important.

8.5.2 Two-way street

So far we’ve discussed relationships between words and what has come before. But
can’t a case be made for flipping those word dependencies?

 They wanted to pet the dog whose fur was brown.
 As you get to the token “fur,” you have encountered “dog” already and know some-

thing about it. But the sentence also contains the information that the dog has fur,
and that the dog’s fur is brown. And that information is relevant to the previous action
of petting and the fact that “they” wanted to do the petting. Perhaps “they” only like to
pet soft, furry brown things and don’t like petting prickly green things like cacti.

 Humans read the sentence in one direction but are capable of flitting back to ear-
lier parts of the text in their brain as new information is revealed. Humans can deal
with information that isn’t presented in the best possible order. It would be nice if you
could allow your model to flit back across the input as well. That is where bidirectional
recurrent neural nets come in. Keras added a layer wrapper that will automatically flip
around the necessary inputs and outputs to automatically assemble a bi-directional
RNN for us. See the following listing.

>>> from keras.models import Sequential
>>> from keras.layers import SimpleRNN
>>> from keras.layers.wrappers import Bidirectional

>>> num_neurons = 10
>>> maxlen = 100
>>> embedding_dims = 300

>>> model = Sequential()
>>> model.add(Bidirectional(SimpleRNN(
... num_neurons, return_sequences=True),\
... input_shape=(maxlen, embedding_dims)))

Listing 8.17 Build a Bidirectional recurrent network

272 CHAPTER 8 Loopy (recurrent) neural networks (RNNs)
Figure 8.13 Bidirectional recurrent neural net

The basic idea is you arrange two RNNs right next to each other, passing the input
into one as normal and the same input backward into the other net (see figure 8.13).
The output of those two are then concatenated at each time step to the related (same
input token) time step in the other network. You take the output of the final time step
in the input and concatenate it with the output generated by the same input token at
the first time step of the backward net.

TIP Keras also has a go_backwards keyword argument. If this is set to True,
Keras automatically flips the input sequences and inputs them into the net-
work in reverse order. This is the second half of a bidirectional layer.

If you’re not using a bidirectional wrapper, this keyword can be useful,
because a recurrent neural network (due to the vanishing gradients problem)
is more receptive to data at the end of the sample than at the beginning. If
you have padded your samples with <PAD> tokens at the end, all the good,
juicy stuff is buried deep in the input loop. go_backwards can be a quick
way around this problem.

With these tools you’re well on your way to not just predicting and classifying text, but
actually modeling language itself and how it’s used. And with that deeper algorithmic
understanding, instead of just parroting text your model has seen before, you can
generate completely new statements!

8.5.3 What is this thing?

Ahead of the Dense layer you have a vector that is of shape (number of neurons x 1)
coming out of the last time step of the Recurrent layer for a given input sequence.
This vector is the parallel to the thought vector you got out of the convolutional neural

Forward
hidden
layer

Backward
hidden
layer

y0 y1 y2

See Spot run

Forward
hidden
layer

Backward
hidden
layer

Forward
hidden
layer

Backward
hidden
layer

Error
backpropogated

through time

Error
backpropogated

through time
(forward?)

+++

273Summary
network in the previous chapter. It’s an encoding of the sequence of tokens. Granted
it’s only going to be able to encode the thought of the sequences in relation to the
labels the network is trained on. But in terms of NLP, it’s an amazing next step toward
encoding higher order concepts into a vector computationally.

Summary
 In natural language sequences (words or characters), what came before is

important to your model’s understanding of the sequence.
 Splitting a natural language statement along the dimension of time (tokens)

can help your machine deepen its understanding of natural language.
 You can backpropagate errors in time (tokens), as well as in the layers of a deep

learning network.
 Because RNNs are particularly deep neural nets, RNN gradients are particularly

temperamental, and they may disappear or explode.
 Efficiently modeling natural language character sequences wasn’t possible until

recurrent neural nets were applied to the task.
 Weights in an RNN are adjusted in aggregate across time for a given sample.
 You can use different methods to examine the output of recurrent neural nets.
 You can model the natural language sequence in a document by passing the

sequence of tokens through an RNN backward and forward simultaneously.

Improving retention
with long short-term

memory networks
For all the benefits recurrent neural nets provide for modeling relationships, and
therefore possibly causal relationships, in sequence data they suffer from one main
deficiency: a token’s effect is almost completely lost by the time two tokens have
passed.1 Any effect the first node has on the third node (two time steps after the
first time step) will be thoroughly stepped on by new data introduced in the inter-
vening time step. This is important to the basic structure of the net, but it prevents
the common case in human language that the tokens may be deeply interrelated
even when they’re far apart in a sentence.

This chapter covers
 Adding deeper memory to recurrent neural nets

 Gating information inside neural nets

 Classifying and generating text

 Modeling language patterns

1 Christopher Olah explains why: https://colah.github.io/posts/2015-08-Understanding-LSTMs.
274

https://colah.github.io/posts/2015-08-Understanding-LSTMs

275LSTM
 Take this example:

 The young woman went to the movies with her friends.

The subject “woman” immediately precedes its main verb “went.”2 You learned in the
previous chapters that both convolutional and recurrent nets would have no trouble
learning from that relationship.

 But in a similar sentence:

 The young woman, having found a free ticket on the ground, went to the movies.

The noun and verb are no longer one time step apart in the sequence. A recurrent
neural net is going to have difficulty picking up on the relationship between the sub-
ject “woman” and main verb “went” in this new, longer sentence. For this new sen-
tence, a recurrent network would overemphasize the tie between the verb “having”
and your subject “woman.” And your network would underemphasize the connection
to “went,” the main verb of the predicate. You’ve lost the connection between the sub-
ject and verb of the sentence. The weights in a recurrent network decay too quickly in
time as you roll through each sentence.

 Your challenge is to build a network that can pick up on the same core thought in
both sentences. What you need is a way to remember the past across the entire input
sequence. A long short-term memory (LSTM) is just what you need.3

 Modern versions of a long short-term memory network typically use a special neu-
ral network unit called a gated recurrent unit (GRU). A gated recurrent unit can main-
tain both long- and short-term memory efficiently, enabling an LSTM to process a
long sentence or document more accurately.4 In fact, LSTMs work so well they have
replaced recurrent neural networks in almost all applications involving time series,
discrete sequences, and NLP.5

9.1 LSTM
LSTMs introduce the concept of a state for each layer in the recurrent network. The
state acts as its memory. You can think of it as adding attributes to a class in object-
oriented programming. The memory state’s attributes are updated with each training
example.

2 “Went” is the predicate (main verb) in this sentence. Find additional English grammar terminology at
 https://www.butte.edu/departments/cas/tipsheets/grammar/sentence_structure.html.

3 One of the first papers on LSTMs was by Hochreiter and Schmidhuber in 1997, “Long Short-Term Memory”
(http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.676.4320&rep=rep1&type=pdf).

4 “Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation,” by
Kyunghyun Cho et al, 2014: https://arxiv.org/pdf/1406.1078.pdf.

5 Christopher Olah’s blog post explains why this is: https://colah.github.io/posts/2015-08-Understanding-
LSTMs.

https://www.butte.edu/departments/cas/tipsheets/grammar/sentence_structure.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.676.4320&rep=rep1&type=pdf
https://arxiv.org/pdf/1406.1078.pdf
https://colah.github.io/posts/2015-08-Understanding-LSTMs
https://colah.github.io/posts/2015-08-Understanding-LSTMs

276 CHAPTER 9 Improving retention with long short-term memory networks
 In LSTMs, the rules that govern the information stored in the state (memory) are
trained neural nets themselves—therein lies the magic. They can be trained to learn
what to remember, while at the same time the rest of the recurrent net learns to pre-
dict the target label! With the introduction of a memory and state, you can begin to
learn dependencies that stretch not just one or two tokens away, but across the
entirety of each data sample. With those long-term dependencies in hand, you can
start to see beyond the words themselves and into something deeper about language.

 With LSTMs, patterns that humans take for granted and process on a subconscious
level begin to be available to your model. And with those patterns, you can not only
more accurately predict sample classifications, but you can start to generate novel text
using those patterns. The state of the art in this field is still far from perfect, but the
results you’ll see, even in your toy examples, are striking.

 So how does this thing work (see figure 9.1)?

Figure 9.1 LSTM network and its memory

The memory state is affected by the input and also affects the layer output just as in a
normal recurrent net. But that memory state persists across all the time steps of the
time series (your sentence or document). So each input can have an effect on the
memory state as well as an effect on the hidden layer output. The magic of the mem-
ory state is that it learns what to remember at the same time that it learns to reproduce
the output, using standard backpropagation! So what does this look like?

x(t+1)

y(t)

LSTM

Input
layer

Normal recurrenceHidden
layer

Output
layer

Memory
‘state’

277LSTM
Figure 9.2 Unrolled LSTM network and its memory

First, let’s unroll a standard recurrent neural net and add your memory unit. Figure
9.2 looks similar to a normal recurrent neural net. However, in addition to the activa-
tion output feeding into the next time-step version of the layer, you add a memory
state that also passes through time steps of the network. At each time-step iteration,
the hidden recurrent unit has access to the memory unit. The addition of this mem-
ory unit, and the mechanisms that interact with it, make this quite a bit different from
a traditional neural network layer. However, you may like to know that it’s possible to
design a set of traditional recurrent neural network layers (a computational graph)
that accomplishes all the computations that exist within an LSTM layer. An LSTM
layer is just a highly specialized recurrent neural network.

TIP In much of the literature,6 the “Memory State” block shown in figure 9.2
is referred to as an LSTM cell rather than an LSTM neuron, because it contains
two additional neurons or gates just like a silicon computer memory cell.7

When an LSTM memory cell is combined with a sigmoid activation function to
output a value to the next LSTM cell, this structure, containing multiple inter-
acting elements, is referred to as an LSTM unit. Multiple LSTM units are com-
bined to form an LSTM layer. The horizontal line running across the unrolled
recurrent neuron in figure 9.2 is the signal holding the memory or state. It
becomes a vector with a dimension for each LSTM cell as the sequence of
tokens is passed into a multi-unit LSTM layer.

6 A good recent example of LSTM terminology usage is Alex Graves' 2012 Thesis “Supervised Sequence Label-
ling with Recurrent Neural Networks”: https://mediatum.ub.tum.de/doc/673554/file.pdf.

7 See the Wikipedia article “Memory cell” (https://en.wikipedia.org/wiki/Memory_cell_(computing)).

t=0

Input
layer

Hidden
layer

Output
layer

t=1

Input
layer

Hidden
layer

Output
layer

t=2

Input
layer

Hidden
layer

Output
layer

Memory state

https://mediatum.ub.tum.de/doc/673554/file.pdf
https://en.wikipedia.org/wiki/Memory_cell_(computing)

278 CHAPTER 9 Improving retention with long short-term memory networks
So let’s take a closer look at one of these cells. Instead of being a series of weights on
the input and an activation function on those weights, each cell is now somewhat
more complicated. As before, the input to the layer (or cell) is a combination of the
input sample and output from the previous time step. As information flows into the
cell instead of a vector of weights, it’s now greeted by three gates: a forget gate, an
input/candidate gate, and an output gate (see figure 9.3).

 Each of these gates is a feed forward network layer composed of a series of weights
that the network will learn, plus an activation function. Technically one of the gates is
composed of two feed forward paths, so there will be four sets of weights to learn in
this layer. The weights and activations will aim to allow information to flow through
the cell in different amounts, all the way through to the cell’s state (or memory).

 Before getting too deep in the weeds, let’s look at this in Python, using the exam-
ple from the previous chapter with the SimpleRNN layer swapped out for an LSTM.
You can use the same vectorized, padded/truncated processed data from the last
chapter, x_train, y_train, x_test, and y_test. See the following listing.

>>> maxlen = 400
>>> batch_size = 32
>>> embedding_dims = 300
>>> epochs = 2
>>> from keras.models import Sequential
>>> from keras.layers import Dense, Dropout, Flatten, LSTM
>>> num_neurons = 50
>>> model = Sequential()
>>> model.add(LSTM(num_neurons, return_sequences=True,
... input_shape=(maxlen, embedding_dims)))
>>> model.add(Dropout(.2))
>>> model.add(Flatten())
>>> model.add(Dense(1, activation='sigmoid'))
>>> model.compile('rmsprop', 'binary_crossentropy', metrics=['accuracy'])
>>> print(model.summary())

Listing 9.1 LSTM layer in Keras

Forget
gate

Memory

Output
from t-1

Concatenated
input

Input
at t

Candidate
gate

(2 elements)

Output
gate

Output
to t+1

Figure 9.3 LSTM layer at time step t

279LSTM
Layer (type) Output Shape Param #
===
lstm_1 (LSTM) (None, 400, 50) 70200

dropout_1 (Dropout) (None, 400, 50) 0

flatten_1 (Flatten) (None, 20000) 0

dense_1 (Dense) (None, 1) 20001
===
Total params: 90,201.0
Trainable params: 90,201.0
Non-trainable params: 0.0

One import and one line of Keras code changed. But a great deal more is going on
under the surface. From the summary, you can see you have many more parameters to
train than you did in the SimpleRNN from last chapter for the same number of neu-
rons (50). Recall the simple RNN had the following weights:

 300 (one for each element of the input vector)
 1 (one for the bias term)
 50 (one for each neuron’s output from the previous time step)

For a total of 351 per neuron.

351 * 50 = 17,550 for the layer

The cells have three gates (a total of four neurons):

17,550 * 4 = 70,200

But what is the memory? The memory is going to be represented by a vector that is the
same number of elements as neurons in the cell. Your example has a relatively simple
50 neurons, so the memory unit will be a vector of floats that is 50 elements long.

 Now what are these gates? Let’s follow the first sample on its journey through the
net and get an idea (see figure 9.4).

Figure 9.4 LSTM layer inputs

Forget
gate

Memory

Output
from t-1

Concatenated
input

Input
at t

Candidate
gate

(2 elements)

Output
gate

Output
to t+1

280 CHAPTER 9 Improving retention with long short-term memory networks
The “journey” through the cell isn’t a single road; it has branches, and you’ll follow
each for a while then back up, progress, branch, and finally come back together for
the grand finale of the cell’s output.

 You take the first token from the first sample and pass its 300-element vector repre-
sentation into the first LSTM cell. On the way into the cell, the vector representation
of the data is concatenated with the vector output from the previous time step (which
is a 0 vector in the first time step). In this example, you’ll have a vector that is 300 + 50
elements long. Sometimes you’ll see a 1 appended to the vector—this corresponds to
the bias term. Because the bias term always multiplies its associated weight by a value
of one before passing to the activation function, that input is occasionally omitted
from the input vector representation, to keep the diagrams more digestible.

 At the first fork in the road, you hand off a copy of the combined input vector to
the ominous sounding forget gate (see figure 9.5). The forget gate’s goal is to learn,
based on a given input, how much of the cell’s memory you want to erase. Whoa, wait
a minute. You just got this memory thing plugged in and the first thing you want to do
is start erasing things? Sheesh.

 The idea behind wanting to forget is as important as wanting to remember. As a
human reader, when you pick up certain bits of information from text—say whether
the noun is singular or plural—you want to retain that information so that later in the
sentence you can recognize the right verb conjugation or adjective form to match with
it. In romance languages, you’d have to recognize a noun’s gender, too, and use that
later in a sentence as well. But an input sequence can easily switch from one noun to
another, because an input sequence can be composed of multiple phrases, sentences,

Forget gate
351 weights

(1 for bias) per neuron
17,550 total

Input
at time step t

1 token (word or character)
represented by a

300-element vector

Concatenated
input

350-element vector

Output
from time step t-1

50-element
vector output from
previous time step

Figure 9.5 First stop—the forget gate

281LSTM
or even documents. As new thoughts are expressed in later statements, the fact that
the noun is plural may not be at all relevant to later unrelated text.

A thinker sees his own actions as experiments and questions—as attempts to find
out something. Success and failure are for him answers above all.

 Friedrich Nietzsche

In this quote, the verb “see” is conjugated to fit with the noun “thinker.” The next
active verb you come across is “to be” in the second sentence. At that point “be” is con-
jugated into “are” to agree with “Success and failure.” If you were to conjugate it to
match the first noun you came across, “thinker,” you would use the wrong verb form,
“is” instead. So an LSTM must model not only long-term dependencies within a
sequence, but just as crucially, also forget long-term dependencies as new ones arise.
This is what forgetting gates are for, making room for the relevant memories in your
memory cells.

 The network isn’t working with these kinds of explicit representations. Your net-
work is trying to find a set of weights to multiply by the inputs from the sequence of
tokens so that the memory cell and the output are both updated in a way that mini-
mizes the error. It’s amazing that they work at all. And they work very well indeed. But
enough marveling: back to forgetting.

 The forget gate itself (shown in figure 9.6) is just a feed forward network. It con-
sists of n neurons each with m + n + 1 weights. So your example forget gate has 50 neu-
rons each with 351 (300 + 50 + 1) weights. The activation function for a forget gate is
the sigmoid function, because you want the output for each neuron in the gate to be
between 0 and 1.

Figure 9.6 Forget gate

Forget gate
351 weights

(1 for bias) per neuron
17,550 total

Output
from time step t-1

50-element vector from
previous time step

Concatenated
input

350-element vector

Input at time step t
1 token (word or

character) represented
by 300-element vector

Memory

Candidate
gate

(2 elements)

Output
gate

Output
to t+1

282 CHAPTER 9 Improving retention with long short-term memory networks
The output vector of the forget gate is then a mask of sorts, albeit a porous one, that
erases elements of the memory vector. As the forget gate outputs values closer to 1,
more of the memory’s knowledge in the associated element is retained for that time
step; the closer it is to 0 the more of that memory value is erased (see figure 9.7).

 Actively forgetting things, check. You better learn how to remember something
new, or this is going to go south pretty quickly. Just like in the forget gate, you use a
small network to learn how much to augment the memory based on two things: the
input so far and the output from the last time step. This is what happens in the next
gate you branch into: the candidate gate.

 The candidate gate has two separate neurons inside it that do two things:

1 Decide which input vector elements are worth remembering (similar to the
mask in the forget gate)

2 Route the remembered input elements to the right memory “slot”

The first part of a candidate gate is a neuron with a sigmoid activation function whose
goal is to learn which input values of the memory vector to update. This neuron
closely resembles the mask in the forget gate.

 The second part of this gate determines what values you’re going to update the
memory with. This second part has a tanh activation function that forces the output
value to range between -1 and 1. The output of these two vectors are multiplied
together elementwise. The resulting vector from this multiplication is then added,
again elementwise, to the memory register, thus remembering the new details (see
figure 9.8).

.03

.42

.99 =

=

=

=

=.32 .00

Memory vector
at t-1

Mask from
forget gate at t

(50 elements
total)

...

(50 elements
total)

.0297

New memory
vector

New memory
vector

Mask from forget
gate at t

(elementwise)

Memory vector
at t-1

.00

.00

.014

(50 elements
total)

.00

.01.14

×

×

×

×

×

Figure 9.7 Forget gate application

283LSTM
Figure 9.8 Candidate gate

This gate is learning simultaneously which values to extract and the magnitude of
those particular values. The mask and magnitude become what’s added to the mem-
ory state. As in the forget gate, the candidate gate is learning to mask off the inappro-
priate information before adding it to the cell’s memory.

 So old, hopefully irrelevant things are forgotten, and new things are remembered.
Then you arrive at the last gate of the cell: the output gate.

 Up until this point in the journey through the cell, you’ve only written to the cell’s
memory. Now it’s finally time to get some use out of this structure. The output gate
takes the input (remember this is still the concatenation of the input at time step t and
the output of the cell at time step t-1) and passes it into the output gate.

 The concatenated input is passed into the weights of the n neurons, and then you
apply a sigmoid activation function to output an n-dimensional vector of floats, just
like the output of a SimpleRNN. But instead of handing that information out through
the cell wall, you pause.

 The memory structure you’ve built up is now primed, and it gets to weigh in on
what you should output. This judgment is achieved by using the memory to create one
last mask. This mask is a kind of gate as well, but you refrain from using that term

t input +
t-1 output

On to next gate …

Candidate
values

n neurons
with tanh

activations

n neurons
with sigmoid
activations

Candidate
choice

Output values
between 0 and 1

Output values
between –1 and 1

n-dimensional
output

n-dimensional
output

n-dimensional output

n-dimensional
memory vector

n-dimensional
update vector

n-dimensional
updated

memory vector

Elementwise
multiplication

X

Elementwise
addition

+

Candidate gate

284 CHAPTER 9 Improving retention with long short-term memory networks
because this mask doesn’t have any learned parameters, which differentiates it from
the three previous gates described.

 The mask created from the memory is the memory state with a tanh function
applied elementwise, which gives an n -dimensional vector of floats between -1 and 1.
That mask vector is then multiplied elementwise with the raw vector computed in the
output gate’s first step. The resulting n -dimensional vector is finally passed out of the
cell as the cell’s official output at time step t (see figure 9.9).

TIP Remember that the output from an LSTM cell is like the output from a
simple recurrent neural network layer. It’s passed out of the cell as the layer
output (at time step t) and to itself as part of the input to time step t+1.

Thereby the memory of the cell gets the last word on what’s important to output at
time step t, given what was input at time step t and output at t -1, and all the details it
has gleaned up to this point in the input sequence.

9.1.1 Backpropagation through time

How does this thing learn then? Backpropagation—as with any other neural net. For a
moment, let’s step back and look at the problem you’re trying to solve with this new
complexity. A vanilla RNN is susceptible to a vanishing gradient because the derivative
at any given time step is a factor of the weights themselves, so as you step back in time
coalescing the various deltas, after a few iterations, the weights (and the learning rate)

t input +
t -1 output

Update gate

n neurons
with sigmoid
activations

n-dimensional
output

n-dimensional
memory vector

+ 2 vectors added
elementwise

tanh applied elementwise
to memory vector

Layer’s output at
time step t

Layer’s output to
itself at time step t+1

Output values
between 0 and 1 n-dimensional

output

n-dimensional
output

Figure 9.9 Update/output gate

285LSTM
may shrink the gradient away to 0. The update to the weights at the end of the back-
propagation (which would equate to the beginning of the sequence) are either
minuscule or effectively 0. A similar problem occurs when the weights are somewhat
large: the gradient explodes and grows disproportionately to the network.

 An LSTM avoids this problem via the memory state itself. The neurons in each of
the gates are updated via derivatives of the functions they fed, namely those that
update the memory state on the forward pass. So at any given time step, as the normal
chain rule is applied backwards to the forward propagation, the updates to the neu-
rons are dependent on only the memory state at that time step and the previous one.
This way, the error of the entire function is kept “nearer” to the neurons for each time
step. This is known as the error carousel.

IN PRACTICE

How does this work in practice then? Exactly like the simple RNN from the last chap-
ter. All you’ve changed is the inner workings of the black box that’s a recurrent layer
in the network. So you can just swap out the Keras SimpleRNN layer for the Keras
LSTM layer, and all the other pieces of your classifier will stay the same.

 You’ll use the same dataset, prepped the same way: tokenize the text and embed
those using Word2vec. Then you’ll pad/truncate the sequences again to 400 tokens
each using the functions you defined in the previous chapters. See the following listing.

>>> import numpy as np

>>> dataset = pre_process_data('./aclimdb/train')
>>> vectorized_data = tokenize_and_vectorize(dataset)
>>> expected = collect_expected(dataset)
>>> split_point = int(len(vectorized_data) * .8)

>>> x_train = vectorized_data[:split_point]
>>> y_train = expected[:split_point]
>>> x_test = vectorized_data[split_point:]
>>> y_test = expected[split_point:]

>>> maxlen = 400
>>> batch_size = 32
>>> embedding_dims = 300
>>> epochs = 2

>>> x_train = pad_trunc(x_train, maxlen)
>>> x_test = pad_trunc(x_test, maxlen)
>>> x_train = np.reshape(x_train,
... (len(x_train), maxlen, embedding_dims))
>>> y_train = np.array(y_train)
>>> x_test = np.reshape(x_test, (len(x_test), maxlen, embedding_dims))
>>> y_test = np.array(y_test)

Listing 9.2 Load and prepare the IMDB data

Gather the data
and prep it.

Split the data into
training and testing sets.

Declare the
hyperparameters.

Number of samples to show the
net before backpropagating the
error and updating the weights.

Length of the token vectors we will
create for passing into the Convnet

Further prep the data by making
each point of uniform length.

Reshape into a numpy
data structure.

286 CHAPTER 9 Improving retention with long short-term memory networks
Then you can build your model using the new LSTM layer, as shown in the following
listing.

>>> from keras.models import Sequential
>>> from keras.layers import Dense, Dropout, Flatten, LSTM
>>> num_neurons = 50
>>> model = Sequential()
>>> model.add(LSTM(num_neurons, return_sequences=True,
... input_shape=(maxlen, embedding_dims)))
>>> model.add(Dropout(.2))
>>> model.add(Flatten())
>>> model.add(Dense(1, activation='sigmoid'))
>>> model.compile('rmsprop', 'binary_crossentropy', metrics=['accuracy'])
>>> model.summary()
Layer (type) Output Shape Param #
===
lstm_2 (LSTM) (None, 400, 50) 70200

dropout_2 (Dropout) (None, 400, 50) 0

flatten_2 (Flatten) (None, 20000) 0

dense_2 (Dense) (None, 1) 20001
===
Total params: 90,201.0
Trainable params: 90,201.0
Non-trainable params: 0.0

Train and save the model as before, as shown in the next two listings.

>>> model.fit(x_train, y_train,
... batch_size=batch_size,
... epochs=epochs,
... validation_data=(x_test, y_test))
Train on 20000 samples, validate on 5000 samples
Epoch 1/2
20000/20000 [==============================] - 548s - loss: 0.4772 -
acc: 0.7736 - val_loss: 0.3694 - val_acc: 0.8412
Epoch 2/2
20000/20000 [==============================] - 583s - loss: 0.3477 -
acc: 0.8532 - val_loss: 0.3451 - val_acc: 0.8516
<keras.callbacks.History at 0x145595fd0>

>>> model_structure = model.to_json()
>>> with open("lstm_model1.json", "w") as json_file:
... json_file.write(model_structure)

>>> model.save_weights("lstm_weights1.h5")

Listing 9.3 Build a Keras LSTM network

Listing 9.4 Fit your LSTM model

Listing 9.5 Save it for later

Keras makes the
implementation easy.

Flatten the output
of the LSTM.

A one neuron layer that will
output a float between 0 and 1.

Train
the model.

Save its structure
so you don’t have
to do this part again.

287LSTM
That is an enormous leap in the validation accuracy compared to the simple RNN you
implemented in chapter 8 with the same dataset. You can start to see how large a gain
you can achieve by providing the model with a memory when the relationship of
tokens is so important. The beauty of the algorithm is that it learns the relationships of
the tokens it sees. The network is now able to model those relationships, specifically in
the context of the cost function you provide.

 In this case, how close are you to correctly identifying positive or negative senti-
ment? Granted this is a narrow focus of a much grander problem within natural lan-
guage processing. How do you model humor, sarcasm, or angst, for example? Can
they be modeled together? It’s definitely a field of active research. But working on
them separately, while demanding a lot of hand-labeled data (and there’s more of this
out there every day), is certainly a viable path, and stacking these kinds of discrete
classifiers in your pipeline is a perfectly legitimate path to pursue in a focused prob-
lem space.

9.1.2 Where does the rubber hit the road?

This is the fun part. With a trained model, you can begin trying out various sample
phrases and seeing how well the model performs. Try to trick it. Use happy words in
a negative context. Try long phrases, short ones, contradictory ones. See listings 9.6
and 9.7.

>>> from keras.models import model_from_json
>>> with open("lstm_model1.json", "r") as json_file:
... json_string = json_file.read()
>>> model = model_from_json(json_string)

>>> model.load_weights('lstm_weights1.h5')

>>> sample_1 = """I hate that the dismal weather had me down for so long,
... when will it break! Ugh, when does happiness return? The sun is
... blinding and the puffy clouds are too thin. I can't wait for the
... weekend."""

>>> vec_list = tokenize_and_vectorize([(1, sample_1)])

>>> test_vec_list = pad_trunc(vec_list, maxlen)

>>> test_vec = np.reshape(test_vec_list,
... (len(test_vec_list), maxlen, embedding_dims))

Listing 9.6 Reload your LSTM model

Listing 9.7 Use the model to predict on a sample

You pass a dummy value in the first
element of the tuple, because your helper
expects it from the way you processed the

initial data. That value won’t ever see
the network, so it can be anything.

Tokenize returns a list of
 the data (length 1 here).

288 CHAPTER 9 Improving retention with long short-term memory networks
>>> print("Sample's sentiment, 1 - pos, 2 - neg : {}"\
... .format(model.predict_classes(test_vec)))
1/1 [==============================] - 0s
Sample's sentiment, 1 - pos, 2 - neg : [[0]]

>>> print("Raw output of sigmoid function: {}"\
... .format(model.predict(test_vec)))
Raw output of sigmoid function: [[0.2192785]]

As you play with the possibilities, watch the raw output of the sigmoid in addition to
the discrete sentiment classifications. Unlike the .predict_class() method, the
.predict() method reveals the raw sigmoid activation function output before
thresholding, so you can see a continuous value between 0 and 1. Anything above 0.5
will be classified as positive, below 0.5 will be negative. As you try your samples, you’ll
get a sense of how confident the model is in its prediction, which can be helpful in
parsing results of your spot checks.

 Pay close attention to the misclassified examples (both positively and negatively).
If the sigmoid output is close to 0.5, that means the model is just flipping a coin for
that example. You can then look at why that phrase is ambiguous to the model, but try
not to be human about it. Set aside your human intuition and subjective perspective
for a bit and try to think statistically. Try to remember what documents your model has
“seen.” Are the words in the misclassified example rare? Are they rare in your corpus
or the corpus that trained the language model for your embedding? Do all of the
words in the example exist in your model’s vocabulary?

 Going through this process of examining the probabilities and input data associ-
ated with incorrect predictions helps build your machine learning intuition so you
can build better NLP pipelines in the future. This is backpropagation through the
human brain for the problem of model tuning.

9.1.3 Dirty data

This more powerful model still has a great number of hyperparameters to toy with.
But now is a good time to pause and look back to the beginning, to your data. You’ve
been using the same data, processed in exactly the same way since you started with
convolutional neural nets, specifically so you could see the variations in the types of
models and their performance on a given dataset. But you did make some choices
that compromised the integrity of the data, or dirtied it, if you will.

 Padding or truncating each sample to 400 tokens was important for convolutional
nets so that the filters could “scan” a vector with a consistent length. And convolu-
tional nets output a consistent vector as well. It’s important for the output to be a con-
sistent dimensionality, because the output goes into a fully connected feed forward
layer at the end of the chain, which needs a fixed length vector as input.

 Similarly, your implementations of recurrent neural nets, both simple and LSTM,
are striving toward a fixed length thought vector you can pass into a feed forward layer for
classification. A fixed length vector representation of an object, such as a thought vec-
tor, is also called an embedding. So that the thought vector is of consistent size, you have

289LSTM
to unroll the net to a consistent number of time steps (tokens). Let’s look at the choice
of 400 as the number of time steps to unroll the net, as shown in the following listing.

>>> def test_len(data, maxlen):
... total_len = truncated = exact = padded = 0
... for sample in data:
... total_len += len(sample)
... if len(sample) > maxlen:
... truncated += 1
... elif len(sample) < maxlen:
... padded += 1
... else:
... exact +=1
... print('Padded: {}'.format(padded))
... print('Equal: {}'.format(exact))
... print('Truncated: {}'.format(truncated))
... print('Avg length: {}'.format(total_len/len(data)))

>>> dataset = pre_process_data('./aclimdb/train')
>>> vectorized_data = tokenize_and_vectorize(dataset)
>>> test_len(vectorized_data, 400)
Padded: 22559
Equal: 12
Truncated: 2429
Avg length: 202.4424

Whoa. Okay, 400 was a bit on the high side (probably should have done this analysis
earlier). Let’s dial the maxlen back closer to the average sample size of 202 tokens.
Let’s round that to 200 tokens, and give your LSTM another crack at it, as shown in
the following listings.

>>> import numpy as np
>>> from keras.models import Sequential
>>> from keras.layers import Dense, Dropout, Flatten, LSTM
>>> maxlen = 200
>>> batch_size = 32
>>> embedding_dims = 300
>>> epochs = 2
>>> num_neurons = 50
>>> dataset = pre_process_data('./aclimdb/train')
>>> vectorized_data = tokenize_and_vectorize(dataset)
>>> expected = collect_expected(dataset)
>>> split_point = int(len(vectorized_data)*.8)
>>> x_train = vectorized_data[:split_point]
>>> y_train = expected[:split_point]
>>> x_test = vectorized_data[split_point:]
>>> y_test = expected[split_point:]
>>> x_train = pad_trunc(x_train, maxlen)
>>> x_test = pad_trunc(x_test, maxlen)

Listing 9.8 Optimize the thought vector size

Listing 9.9 Optimize LSTM hyperparameters

All the same code as earlier, but you
limit the max length to 200 tokens.

290 CHAPTER 9 Improving retention with long short-term memory networks
>>> x_train = np.reshape(x_train, (len(x_train), maxlen, embedding_dims))
>>> y_train = np.array(y_train)
>>> x_test = np.reshape(x_test, (len(x_test), maxlen, embedding_dims))
>>> y_test = np.array(y_test)

>>> model = Sequential()
>>> model.add(LSTM(num_neurons, return_sequences=True,
... input_shape=(maxlen, embedding_dims)))
>>> model.add(Dropout(.2))
>>> model.add(Flatten())
>>> model.add(Dense(1, activation='sigmoid'))
>>> model.compile('rmsprop', 'binary_crossentropy', metrics=['accuracy'])
>>> model.summary()
Layer (type) Output Shape Param #
===
lstm_1 (LSTM) (None, 200, 50) 70200

dropout_1 (Dropout) (None, 200, 50) 0

flatten_1 (Flatten) (None, 10000) 0

dense_1 (Dense) (None, 1) 10001
===
Total params: 80,201.0
Trainable params: 80,201.0
Non-trainable params: 0.0

>>> model.fit(x_train, y_train,
... batch_size=batch_size,
... epochs=epochs,
... validation_data=(x_test, y_test))
Train on 20000 samples, validate on 5000 samples
Epoch 1/2
20000/20000 [==============================] - 245s - loss: 0.4742 -
acc: 0.7760 - val_loss: 0.4235 - val_acc: 0.8010
Epoch 2/2
20000/20000 [==============================] - 203s - loss: 0.3718 -
acc: 0.8386 - val_loss: 0.3499 - val_acc: 0.8450

>>> model_structure = model.to_json()
>>> with open("lstm_model7.json", "w") as json_file:
... json_file.write(model_structure)

>>> model.save_weights("lstm_weights7.h5")

Well that trained much faster and the validation accuracy dropped less than half a per-
cent (84.5% versus 85.16%). With samples that were half the number of time steps,
you cut the training time by more than half! There were half the LSTM time steps to

Listing 9.10 A more optimally sized LSTM

Listing 9.11 Train a smaller LSTM

291LSTM
compute and half the weights in the feed forward layer to learn. But most importantly
the backpropagation only had to travel half the distance (half the time steps back into
the past) each time.

 The accuracy got worse, though. Wouldn’t a 200-D model generalize better (over-
fit less) than the earlier 400-D model? This is because you included a Dropout layer in
both models. A dropout layer helps prevent overfitting, so your validation accuracy
should only get worse as you reduce the degrees of freedom or the training epochs for
your model.

 With all the power of neural nets and their ability to learn complex patterns, it’s easy
to forget that a well-designed neural net is good at learning to discard noise and sys-
tematic biases. You had inadvertently introduced a lot of bias into the data by append-
ing all those zero vectors. The bias elements in each node will still give it some signal
even if all the input is zero. But the net will eventually learn to disregard those elements
entirely (specifically by adjusting the weight on that bias element down to zero) and
focus on the portions of the samples that contain meaningful information.

 So your optimized LSTM didn’t learn any more, but it learned a lot faster. The
most important takeaway from this, though, is to be aware of the length of your test
samples in relation to the training sample lengths. If your training set is composed of
documents thousands of tokens long, you may not get an accurate classification of
something only 3 tokens long padded out to 1,000. And vice versa—cutting a 1,000-
token opus to 3 tokens will severely hinder your poor, little model. Not that an LSTM
won’t make a good go of it; just a note of caution as you experiment.

9.1.4 Back to the dirty data

What is arguably the greater sin in data handling? Dropping the “unknown” tokens on
the floor. The list of “unknowns,” which is basically just words you couldn’t find in the
pretrained Word2vec model, is quite extensive. Dropping this much data on the floor,
especially when attempting to model the sequence of words, is problematic.

 Sentences like

 I don’t like this movie.

may become

 I like this movie.

if your word embedding vocabulary doesn’t contain the word “don’t”. This isn’t the
case for the Word2vec embeddings, but many tokens are omitted and they may or may
not be important to you. Dropping these unknown tokens is one strategy you can pur-
sue, but there are others. You can use or train a word embedding that has a vector for
every last one of your tokens, but doing so is almost always prohibitively expensive.

 Two common approaches provide decent results without exploding the computa-
tional requirements. Both involve replacing the unknown token with a new vector rep-
resentation. The first approach is counter-intuitive: for every token not modeled by a

292 CHAPTER 9 Improving retention with long short-term memory networks
vector, randomly select a vector from the existing model and use that instead. You can
easily see how this would flummox a human reader.

 A sentence like

 The man who was defenestrated, brushed himself off with a nonchalant glance back inside.

may become

 The man who was duck, brushed himself off with a airplane glance back inside.

How is a model supposed to learn from nonsense like this? As it turns out, the model
does overcome these hiccups in much the same way your example did when you
dropped them on the floor. Remember, you’re not trying to model every statement in
the training set explicitly. The goal is to create a generalized model of the language in
the training set. So outliers will exist, but hopefully not so much as to derail the model
in describing the prevailing patterns.

 The second and more common approach is to replace all tokens not in the word
vector library with a specific token, usually referenced as “UNK” (for unknown), when
reconstructing the original input. The vector itself is chosen either when modeling
the original embedding or at random (and ideally far away from the known vectors in
the space).

 As with padding, the network can learn its way around these unknown tokens and
come to its own conclusions around them.

9.1.5 Words are hard. Letters are easier.

Words have meaning—we can all agree on that. Modeling natural language with these
basic building blocks only seems natural then. Using these models to describe mean-
ing, feeling, intent, and everything else in terms of these atomic structures seems nat-
ural as well. But, of course, words aren’t atomic at all. As you saw earlier, they’re made
up of smaller words, stems, phonemes, and so on. But they are also, even more funda-
mentally, a sequence of characters.

 As you’re modeling language, a lot of meaning is hidden down at the character
level. Intonations in voice, alliteration, rhymes—all of this can be modeled if you
break things down all the way to the character level. They can be modeled by humans
without breaking things down that far. But the definitions that would arise from that
modeling are fraught with complexity and not easily imparted to a machine, which
after all is why you’re here. Many of those patterns are inherent in text when you
examine it with an eye toward which character came after which, given the characters
you’ve already seen.

 In this paradigm, a space or a comma or a period becomes just another character.
And as your network is learning meaning from sequences, if you break them down all
the way to the individual characters, the model is forced to find these lower-level pat-
terns. To notice a repeated suffix after a certain number of syllables, which would
quite probably rhyme, may be a pattern that carries meaning, perhaps joviality or deri-
sion. With a large enough training set, these patterns begin to emerge. And because

293LSTM
there are many fewer distinct letters than words in the English language, you have a
smaller variety of input vectors to worry about.

 Training a model at the character level is tricky though. The patterns and long-
term dependencies found at the character level can vary greatly across voices. You can
find these patterns, but they may not generalize as well. Let’s try the LSTM at the char-
acter level on the same example dataset. First, you need to process the data differently.
As before, you grab the data and sort out the labels, as shown in the following listing.

>>> dataset = pre_process_data('./aclimdb/train')
>>> expected = collect_expected(dataset)

You then need to decide how far to unroll the network, so you’ll see how many charac-
ters on average are in the data samples, as shown in the following listing.

>>> def avg_len(data):
... total_len = 0
... for sample in data:
... total_len += len(sample[1])
... return total_len/len(data)

>>> avg_len(dataset)
1325.06964

So immediately you can see that the network is going to be unrolled much further.
And you’re going to be waiting a significant amount of time for this model to finish.
Spoiler: this model doesn’t do much other than overfit, but it provides an interesting
example nonetheless.

 Next you need to clean the data of tokens unrelated to the text’s natural language.
This function filters out some useless characters in the HTML tags in the dataset.
Really the data should be more thoroughly scrubbed. See the following listing.

>>> def clean_data(data):
... """Shift to lower case, replace unknowns with UNK, and listify"""
... new_data = []
... VALID = 'abcdefghijklmnopqrstuvwxyz0123456789"\'?!.,:; '
... for sample in data:
... new_sample = []
... for char in sample[1].lower():
... if char in VALID:
... new_sample.append(char)
... else:
... new_sample.append('UNK')

Listing 9.12 Prepare the data

Listing 9.13 Calculate the average sample length

Listing 9.14 Prepare the strings for a character-based model

Just grab the string,
not the label.

294 CHAPTER 9 Improving retention with long short-term memory networks
... new_data.append(new_sample)

... return new_data

>>> listified_data = clean_data(dataset)

You’re using the 'UNK' as a single character in the list for everything that doesn’t
match the VALID list.

 Then, as before, you pad or truncate the samples to a given maxlen. Here you
introduce another “single character” for padding: 'PAD'. See the following listing.

>>> def char_pad_trunc(data, maxlen=1500):
... """ We truncate to maxlen or add in PAD tokens """
... new_dataset = []
... for sample in data:
... if len(sample) > maxlen:
... new_data = sample[:maxlen]
... elif len(sample) < maxlen:
... pads = maxlen - len(sample)
... new_data = sample + ['PAD'] * pads
... else:
... new_data = sample
... new_dataset.append(new_data)
... return new_dataset

You chose maxlen of 1,500 to capture slightly more data than was in the average sam-
ple, but you tried to avoid introducing too much noise with PADs. Thinking about
these choices in the sizes of words can be helpful. At a fixed character length, a sam-
ple with lots of long words could be undersampled, compared to a sample composed
entirely of simple, one-syllable words. As with any machine learning problem, know-
ing your dataset and its ins and outs is important.

 This time instead of using Word2vec for your embeddings, you’re going to one-hot
encode the characters. So you need to create a dictionary of the tokens (the charac-
ters) mapped to an integer index. You’ll also create a dictionary to map the reverse as
well, but more on that later. See the following listing.

>>> def create_dicts(data):
... """ Modified from Keras LSTM example"""
... chars = set()
... for sample in data:
... chars.update(set(sample))
... char_indices = dict((c, i) for i, c in enumerate(chars))
... indices_char = dict((i, c) for i, c in enumerate(chars))
... return char_indices, indices_char

Listing 9.15 Pad and truncated characters

Listing 9.16 Character-based model “vocabulary”

295LSTM
And then you can use that dictionary to create input vectors of the indices instead of
the tokens themselves, as shown in the next two listings.

>>> import numpy as np

>>> def onehot_encode(dataset, char_indices, maxlen=1500):
... """
... One-hot encode the tokens
...
... Args:
... dataset list of lists of tokens
... char_indices
... dictionary of {key=character,
... value=index to use encoding vector}
... maxlen int Length of each sample
... Return:
... np array of shape (samples, tokens, encoding length)
... """
... X = np.zeros((len(dataset), maxlen, len(char_indices.keys())))
... for i, sentence in enumerate(dataset):
... for t, char in enumerate(sentence):
... X[i, t, char_indices[char]] = 1
... return X

>>> dataset = pre_process_data('./aclimdb/train')
>>> expected = collect_expected(dataset)
>>> listified_data = clean_data(dataset)

>>> common_length_data = char_pad_trunc(listified_data, maxlen=1500)
>>> char_indices, indices_char = create_dicts(common_length_data)
>>> encoded_data = onehot_encode(common_length_data, char_indices, 1500)

And then you split up your data just like before, as shown in the next two listings.

>>> split_point = int(len(encoded_data)*.8)

>>> x_train = encoded_data[:split_point]
>>> y_train = expected[:split_point]
>>> x_test = encoded_data[split_point:]
>>> y_test = expected[split_point:]

Listing 9.17 One-hot encoder for characters

Listing 9.18 Load and preprocess the IMDB data

Listing 9.19 Split dataset for training (80%) and testing (20%)

A numpy array of length equal to the number of data
samples—each sample will be a number of tokens equal
to maxlen, and each token will be a one-hot encoded
vector of length equal to the number of characters

296 CHAPTER 9 Improving retention with long short-term memory networks
>>> from keras.models import Sequential
>>> from keras.layers import Dense, Dropout, Embedding, Flatten, LSTM

>>> num_neurons = 40
>>> maxlen = 1500
>>> model = Sequential()

>>> model.add(LSTM(num_neurons,
... return_sequences=True,
... input_shape=(maxlen, len(char_indices.keys()))))
>>> model.add(Dropout(.2))
>>> model.add(Flatten())
>>> model.add(Dense(1, activation='sigmoid'))
>>> model.compile('rmsprop', 'binary_crossentropy', metrics=['accuracy'])
>>> model.summary()
Layer (type) Output Shape Param #
===
lstm_2 (LSTM) (None, 1500, 40) 13920

dropout_2 (Dropout) (None, 1500, 40) 0

flatten_2 (Flatten) (None, 60000) 0

dense_2 (Dense) (None, 1) 60001
===
Total params: 73,921.0
Trainable params: 73,921.0
Non-trainable params: 0.0

So you’re getting more efficient at building LSTM models. Your latest character-based
model needs to train only 74k parameters, compared to the optimized word-based
LSTM which required 80k. And this simpler model should train faster and generalize
to new text better, since it has fewer degrees of freedom for overfitting.

 Now you can try it out to see what character-based LSTM models have to offer, as
shown in the following listings.

>>> batch_size = 32
>>> epochs = 10
>>> model.fit(x_train, y_train,
... batch_size=batch_size,
... epochs=epochs,
... validation_data=(x_test, y_test))
Train on 20000 samples, validate on 5000 samples
Epoch 1/10
20000/20000 [==============================] - 634s - loss: 0.6949 -
acc: 0.5388 - val_loss: 0.6775 - val_acc: 0.5738
Epoch 2/10
20000/20000 [==============================] - 668s - loss: 0.6087 -
acc: 0.6700 - val_loss: 0.6786 - val_acc: 0.5962

Listing 9.20 Build a character-based LSTM

Listing 9.21 Train a character-based LSTM

297LSTM
Epoch 3/10
20000/20000 [==============================] - 695s - loss: 0.5358 -
acc: 0.7356 - val_loss: 0.7182 - val_acc: 0.5786
Epoch 4/10
20000/20000 [==============================] - 686s - loss: 0.4662 -
acc: 0.7832 - val_loss: 0.7605 - val_acc: 0.5836
Epoch 5/10
20000/20000 [==============================] - 694s - loss: 0.4062 -
acc: 0.8206 - val_loss: 0.8099 - val_acc: 0.5852
Epoch 6/10
20000/20000 [==============================] - 694s - loss: 0.3550 -
acc: 0.8448 - val_loss: 0.8851 - val_acc: 0.5842
Epoch 7/10
20000/20000 [==============================] - 645s - loss: 0.3058 -
acc: 0.8705 - val_loss: 0.9598 - val_acc: 0.5930
Epoch 8/10
20000/20000 [==============================] - 684s - loss: 0.2643 -
acc: 0.8911 - val_loss: 1.0366 - val_acc: 0.5888
Epoch 9/10
20000/20000 [==============================] - 671s - loss: 0.2304 -
acc: 0.9055 - val_loss: 1.1323 - val_acc: 0.5914
Epoch 10/10
20000/20000 [==============================] - 663s - loss: 0.2035 -
acc: 0.9181 - val_loss: 1.2051 - val_acc: 0.5948

>>> model_structure = model.to_json()
>>> with open("char_lstm_model3.json", "w") as json_file:
... json_file.write(model_structure)
>>> model.save_weights("char_lstm_weights3.h5")

The 92% training set accuracy versus the 59% validation accuracy is evidence of over-
fitting. The model slowly started to learn the sentiment of the training set. Oh so
slowly. It took over 1.5 hours on a modern laptop without a GPU. But the validation
accuracy never improved much above a random guess, and later in the epochs it
started to get worse, which you can also see in the validation loss.

 Lots of things could be going on here. The model could be too rich for the data-
set, meaning it has enough parameters that it can begin to model patterns that are
unique to the training set’s 20,000 samples, but aren’t useful for a general language
model focused on sentiment. One might alleviate this issue with a higher dropout per-
centage or fewer neurons in the LSTM layer. More labeled data would also help if you
think the model is defined too richly. But quality labeled data is usually the hardest
piece to come by.

 In the end, this model is creating a great deal of expense for both your hardware
and your time for limited reward compared to what you got with a word-level LSTM
model, and even the convolutional neural nets in previous chapters. So why bother
with the character level at all? The character-level model can be extremely good at
modeling a language, given a broad enough dataset. Or it can model a specific kind of

Listing 9.22 And save it for later

298 CHAPTER 9 Improving retention with long short-term memory networks
language given a focused training set, say from one author instead of thousands.
Either way, you’ve taken the first step toward generating novel text with a neural net.

9.1.6 My turn to chat

If you could generate new text with a certain “style” or “attitude,” you’d certainly have
an entertaining chatbot indeed. Of course, being able to generate novel text with a
given style doesn’t guarantee your bot will talk about what you want it to. But you can
use this approach to generate lots of text within a given set of parameters (in response
to a user’s style, for example), and this larger corpus of novel text could then be
indexed and searched as possible responses to a given query.

 Much like a Markov chain that predicts a sequence’s next word based on the prob-
ability of any given word appearing after the 1-gram or 2-gram or n-gram that just
occurred, your LSTM model can learn the probability of the next word based on what
it just saw, but with the added benefit of memory! A Markov chain only has information
about the n-gram it’s using to search and the frequency of words that occur after that
n-gram. The RNN model does something similar in that it encodes information about
the next term based on the few that preceded it. But with the LSTM memory state, the
model has a greater context in which to judge the most appropriate next term. And
most excitingly, you can predict the next character based on the characters that came
before. This level of granularity is beyond a basic Markov chain.

 How do you train your model to do this magic trick? First, you’re going to abandon
your classification task. The real core of what the LSTM learned is in the LSTM cell
itself. But you were using the model’s successes and failures around a specific classifi-
cation task to train it. That approach isn’t necessarily going to help your model learn a
general representation of language. You trained it to pay attention only to sequences
that contained strong sentiment.

 So instead of using the training set’s sentiment label as the target for learning,
you can use the training samples themselves! For each token in the sample, you want
your LSTM to learn to predict the next token (see figure 9.10). This is very similar to
the word vector embedding approach you used in chapter 6, only you’re going to
train a network on bigrams (2-grams) instead of skip-grams. A word generator model
trained this way (see figure 9.10) would work just fine, but you’re going to cut to
the chase and go straight down to the character level with the same approach (see
figure 9.11).

 Instead of a thought vector coming out of the last time step, you’re going to focus
on the output of each time step individually. The error will still backpropagate through
time from each time step back to the beginning, but the error is determined specifically
at the time step level. In a sense, it was in the other LSTM classifiers of this chapter as
well, but in the other classifiers the error wasn’t determined until the end of the
sequence. Only at the end of a sequence was an aggregated output available to feed into
the feed forward layer at the end of the chain. Nonetheless, backpropagation is still

299LSTM
working the same way, aggregating the errors by adjusting all your weights at the end of
the sequence.

 So the first thing you need to do is adjust your training set labels. The output vec-
tor will be measured not against a given classification label but against the one-hot
encoding of the next character in the sequence.

Hidden
layer

Hidden
layer

Hidden
layer

Hidden
layer

y1 y2 y3 y4

Today was a good

Hidden
layer

y0

<start>

Hidden
layer

y5

day

Hidden
layer

y6

.

Today was a good <stop>day .

Expected output is the next token in the sample. Shown here on word level.

Actual
output

Expected
output

Figure 9.10 Next word prediction

Hidden
layer

Hidden
layer

Hidden
layer

Hidden
layer

y1 y2 y3 y4

T o d a

o

Hidden
layer

y0

<start>

T d a y

Hidden
layer

y5

y

.

Hidden
layer

y6

.

<stop>

Expected output is the next token in the sample. Shown here on character level.

Actual
output

Expected
output

…

Figure 9.11 Next character prediction

300 CHAPTER 9 Improving retention with long short-term memory networks
Figure 9.12 Last character prediction only

You can also fall back to a simpler model. Instead of trying to predict every subsequent
character, predict the next character for a given sequence. This is exactly the same as
all the other LSTM layers in this chapter, if you drop the keyword argument
return_sequences=True (see listing 9.17). Doing so will focus the LSTM model on
the return value of the last time step in the sequence (see figure 9.12).

9.1.7 My turn to speak more clearly

Simple character-level modeling is the gateway to more-complex models—ones that
can not only pick up on details such as spelling, but also grammar and punctuation.
The real magic of these models comes when they learn these grammar details, and
also start to pick up the rhythm and cadence of text as well. Let’s look at how you can
start to generate some novel text with the tools you were using for classification.

 The Keras documentation provides an excellent example. For this project, you’re
going to set aside the movie review dataset you have used up to this point. For finding
concepts as deep as tone and word choice, that dataset has two attributes that are diffi-
cult to overcome. First of all, it’s diverse. It’s written by many writers, each with their
own writing style and personality. Finding commonalities across them all is difficult.
With a large enough dataset, developing a complex language model that can handle a
diversity of styles might be possible. But that leads to the second problem with the
IMDB dataset: it’s an extremely small dataset for learning a general character-based
language model. To overcome this problem, you’ll need a dataset that’s more consis-
tent across samples in style and tone or a much larger dataset; you’ll choose the for-
mer. The Keras example provides a sample of the work of Friedrich Nietzsche. That’s

Hidden
layer

T

Hidden
layer

o

Hidden
layer

d

Hidden
layer

a

Hidden
layer

y

Hidden
layer

Actual output

Just predict the next character, given a sequence of characters.

Expected output
(a period, in this case)

…

y

Hidden
layer

ye

.

.

301LSTM
fun, but you’ll choose someone else with a singular style: William Shakespeare. He
hasn’t published anything in a while, so let’s help him out. See the following listing.

>>> from nltk.corpus import gutenberg
>>>
>>> gutenberg.fileids()
['austen-emma.txt',
'austen-persuasion.txt',
'austen-sense.txt',
'bible-kjv.txt',
'blake-poems.txt',
'bryant-stories.txt',
'burgess-busterbrown.txt',
'carroll-alice.txt',
'chesterton-ball.txt',
'chesterton-brown.txt',
'chesterton-thursday.txt',
'edgeworth-parents.txt',
'melville-moby_dick.txt',
'milton-paradise.txt',
'shakespeare-caesar.txt',
'shakespeare-hamlet.txt',
'shakespeare-macbeth.txt',
'whitman-leaves.txt']

Ah, three plays by Shakespeare. You’ll grab those and concatenate them into a large
string. And if you want more, there’s lots more where that came from at https://
www.gutenberg.org.8 See the following listing.

>>> text = ''
>>> for txt in gutenberg.fileids():
... if 'shakespeare' in txt:
... text += gutenberg.raw(txt).lower()
>>> chars = sorted(list(set(text)))
>>> char_indices = dict((c, i)
... for i, c in enumerate(chars))
>>> indices_char = dict((i, c)
... for i, c in enumerate(chars))
>>> 'corpus length: {} total chars: {}'.format(len(text), len(chars))
'corpus length: 375542 total chars: 50'

Listing 9.23 Import the Project Gutenberg dataset

Listing 9.24 Preprocess Shakespeare plays

8 The Project Gutenberg website hosts 57,000 scanned books in various formats. You can download them all for
free in about a day, if you are polite about it: https://www.exratione.com/2014/11/how-to-politely-download-
all-english-language-text-format-files-from-project-gutenberg/.

Concatenate all Shakespeare plays
in the Gutenberg corpus in NLTK.

Make a dictionary of characters to an index,
for reference in the one-hot encoding.

Make the opposite dictionary for
lookup when interpreting the one-hot

encoding back to the character.

https://www.gutenberg.org
https://www.exratione.com/2014/11/how-to-politely-download-all-english-language-text-format-files-from-project-gutenberg/
https://www.exratione.com/2014/11/how-to-politely-download-all-english-language-text-format-files-from-project-gutenberg/

302 CHAPTER 9 Improving retention with long short-term memory networks
This is nicely formatted as well:

>>> print(text[:500])
[the tragedie of julius caesar by william shakespeare 1599]

actus primus. scoena prima.

enter flauius, murellus, and certaine commoners ouer the stage.

flauius. hence: home you idle creatures, get you home:
is this a holiday? what, know you not
(being mechanicall) you ought not walke
vpon a labouring day, without the signe
of your profession? speake, what trade art thou?

car. why sir, a carpenter

mur. where is thy leather apron, and thy rule?
what dost thou with thy best apparrell on

Next you’re going to chop up the source text into data samples, each with a fixed,
maxlen set of characters. To increase your dataset size and focus on consistent pat-
terns, the Keras example oversamples the data into semi-redundant chunks. Take 40
characters from the beginning, move to the third character from the beginning, take
40 from there, move to sixth … and so on.

 Remember, the goal of this particular model is to learn to predict the 41st charac-
ter in any sequence, given the 40 characters that came before it. So we’ll build a train-
ing set of semi-redundant sequences, each 40 characters long, as shown in the
following listing.

>>> maxlen = 40
>>> step = 3
>>> sentences = []
>>> next_chars = []
>>> for i in range(0, len(text) - maxlen, step):
... sentences.append(text[i: i + maxlen])
... next_chars.append(text[i + maxlen])
>>> print('nb sequences:', len(sentences))
nb sequences: 125168

So you have 125,168 training samples and the character that follows each of them, the
target for our model. See the following listing.

>>> X = np.zeros((len(sentences), maxlen, len(chars)), dtype=np.bool)
>>> y = np.zeros((len(sentences), len(chars)), dtype=np.bool)

Listing 9.25 Assemble a training set

Listing 9.26 One-hot encode the training examples

Ignore sentence (and line) boundaries for
now, so the character-based model will

learn when to halt a sentence with a
period ('.') or linefeed character ('\n').

Step by three characters,
so the generated training
samples will overlap, but

not be identical.

Grab a slice
of the text.

Collect the next
expected character.

303LSTM
>>> for i, sentence in enumerate(sentences):
... for t, char in enumerate(sentence):
... X[i, t, char_indices[char]] = 1
... y[i, char_indices[next_chars[i]]] = 1

You then one-hot encode each character of each sample in the dataset and store it as
the list X. You also store the list of one-hot encoded “answers” in the list y. You then
construct the model, as shown in the following listing.

>>> from keras.models import Sequential
>>> from keras.layers import Dense, Activation
>>> from keras.layers import LSTM
>>> from keras.optimizers import RMSprop
>>> model = Sequential()
>>> model.add(LSTM(128,
... input_shape=(maxlen, len(chars))))
>>> model.add(Dense(len(chars)))
>>> model.add(Activation('softmax'))
>>> optimizer = RMSprop(lr=0.01)
>>> model.compile(loss='categorical_crossentropy', optimizer=optimizer)
>>> model.summary()
Layer (type) Output Shape Param #
===
lstm_1 (LSTM) (None, 128) 91648

dense_1 (Dense) (None, 50) 6450

activation_1 (Activation) (None, 50) 0
===
Total params: 98,098.0
Trainable params: 98,098.0
Non-trainable params: 0.0

This looks slightly different than before, so let’s look at the components. Sequential
and LSTM layers you know, same as before with your classifier. In this case, the
num_neurons is 128 in the hidden layer of the LSTM cell. 128 is quite a few more than
you used in the classifier, but you’re trying to model much more complex behavior in
reproducing a given text’s tone. Next, the optimizer is defined in a variable, but this is
the same one you’ve used up until this point. It’s broken out here for readability pur-
poses, because the learning rate parameter is being adjusted from its default (.001
normally). For what it’s worth, RMSProp works by updating each weight by adjusting
the learning rate with “a running average of the magnitudes of recent gradients for
that weight.”9 Reading up on optimizers can definitely save you some heartache in
your experiments, but the details of each individual optimizer are beyond the scope of
this book.

Listing 9.27 Assemble a character-based LSTM model for generating text

9 Hinton, et al., http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

You use a much wider LSTM
layer—128, up from 50. And you

don’t return the sequence. You only
want the last output character.

This is a classification problem, so you want a
probability distribution over all possible characters.

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

304 CHAPTER 9 Improving retention with long short-term memory networks
 The next big difference is the loss function you want to minimize. Up until now it
has been binary_crossentropy. You were only trying to determine the level at
which one single neuron was firing. But here you’ve swapped out Dense(1) for Dense
(len(chars)) in the last layer. So the output of the network at each time step will be
a 50-D vector (len(chars) == 50 in listing 9.20). You’re using softmax as the activa-
tion function, so the output vector will be the equivalent of a probability distribution
over the entire 50-D vector (the sum of the values in the vector will always add up to
one). Using categorical_crossentropy will attempt to minimize the difference
between the resultant probability distribution and the one-hot encoded expected
character.

 And the last major change is no dropout. Because you’re looking to specifically
model this dataset, you have no interest in generalizing to other problems, so not only
is overfitting okay, it’s ideal. See the following listing.

>>> epochs = 6
>>> batch_size = 128
>>> model_structure = model.to_json()
>>> with open("shakes_lstm_model.json", "w") as json_file:
>>> json_file.write(model_structure)
>>> for i in range(5):
... model.fit(X, y,
... batch_size=batch_size,
... epochs=epochs)
... model.save_weights("shakes_lstm_weights_{}.h5".format(i+1))
Epoch 1/6
125168/125168 [==============================] - 266s - loss: 2.0310
Epoch 2/6
125168/125168 [==============================] - 257s - loss: 1.6851
...

This setup saves the model every six epochs and keeps training. If it stops reducing the
loss, further training is no longer worth the cycles, so you can safely stop the process
and have a saved weight set within a few epochs. We found it takes 20 to 30 epochs to
start to get something decent from this dataset. You can look to expand the dataset.
Shakespeare’s works are readily available in the public domain. Just be sure to strive
for consistency by appropriately preprocessing if you get them from disparate sources.
Fortunately character-based models don’t have to worry about tokenizers and sen-
tence segmenters, but your case-folding approach could be important. We used a
sledgehammer. You might find a softer touch works better.

 Let’s make our own play! Because the output vectors are 50-D vectors describing a
probability distribution over the 50 possible output characters, you can sample from
that distribution. The Keras example has a helper function to do just that, as shown in
the following listing.

Listing 9.28 Train your Shakespearean chatbot

This is one way to train the model for a
while, save its state, and then continue

training. Keras also has a callback function
built in that does similar tasks when called.

305LSTM

>>> import random
>>> def sample(preds, temperature=1.0):
... preds = np.asarray(preds).astype('float64')
... preds = np.log(preds) / temperature
... exp_preds = np.exp(preds)
... preds = exp_preds / np.sum(exp_preds)
... probas = np.random.multinomial(1, preds, 1)
... return np.argmax(probas)

Because the last layer in the network is a softmax, the output vector will be a proba-
bility distribution over all possible outputs of the network. By looking at the highest
value in the output vector, you can see what the network thinks has the highest proba-
bility of being the next character. In explicit terms, the index of the output vector with
the highest value (which will be between 0 and 1) will correlate with the index of the
one-hot encoding of the expected token.

 But here you aren’t looking to exactly recreate what the input text was, but instead
just what is likely to come next. Just as in a Markov chain, the next token is selected
randomly based on the probability of the next token, not the most commonly occur-
ring next token.

 The effect of dividing the log by the temperature is flattening (temperature > 1) or
sharpening (temperature < 1) the probability distribution. So a temperature (or
diversity in the calling arguments) less than 1 will tend toward a more strict attempt
to recreate the original text. Whereas a temp greater than 1 will produce a more diverse
outcome, but as the distribution flattens, the learned patterns begin to wash away and
you tend back toward nonsense. Higher diversities are fun to play with though.

 The numpy random function multinomial(num_samples, probabilities
_list, size) will make num_samples from the distribution whose possible outcomes
are described by probabilities_list, and it’ll output a list of length size, which is
equal to the number of times the experiment is run. So in this case, you’ll draw once
from the probability distribution. You only need one sample.

 When you go to predict, the Keras example has you cycle through various different
values for the temperature, because each prediction will see a range of different out-
puts based on the temperature used in the sample function to sample from the prob-
ability distribution. See the following listing.

>>> import sys
>>> start_index = random.randint(0, len(text) - maxlen - 1)
>>> for diversity in [0.2, 0.5, 1.0]:
... print()
... print('----- diversity:', diversity)
... generated = ''
... sentence = text[start_index: start_index + maxlen]

Listing 9.29 Sampler to generate character sequences

Listing 9.30 Generate three texts with three diversity levels

306 CHAPTER 9 Improving retention with long short-term memory networks
... generated += sentence

... print('----- Generating with seed: "' + sentence + '"')

... sys.stdout.write(generated)

... for i in range(400):

... x = np.zeros((1, maxlen, len(chars)))

... for t, char in enumerate(sentence):

... x[0, t, char_indices[char]] = 1.

... preds = model.predict(x, verbose=0)[0]

... next_index = sample(preds, diversity)

... next_char = indices_char[next_index]

... generated += next_char

... sentence = sentence[1:] + next_char

... sys.stdout.write(next_char)

... sys.stdout.flush()

... print()

(Diversity 1.2 from the example was removed for brevity’s sake, but feel free to add it
back in and play with the output.)

 You’re taking a random chunk of 40 (maxlen) characters from the source and pre-
dicting what character will come next. You then append that predicted character to
the input sentence, drop the first character, and predict again on those 40 characters
as your input. Each time you write out the predicted character to the console (or a
string buffer) and flush() so that your character immediately goes to the console. If
the predicted character happens to be a newline, then that ends the line of text, but
your generator keeps rolling along predicting the next line from the previous 40 char-
acters it just output.

 And what do you get? Something like this:

----- diversity: 0.2
----- Generating with seed: " them through & through
the most fond an"
them through & through

the most fond and stranger the straite to the straite
him a father the world, and the straite:
the straite is the straite to the common'd,
and the truth, and the truth, and the capitoll,
and stay the compurse of the true then the dead and the colours,
and the comparyed the straite the straite
the mildiaus, and the straite of the bones,
and what is the common the bell to the straite
the straite in the commised and

----- diversity: 0.5
----- Generating with seed: " them through & through
the most fond an"
them through & through

the most fond and the pindage it at them for
that i shall pround-be be the house, not that we be not the selfe,

You seed the trained network
and see what it spits out
as the next character.

Model makes a prediction.

Look up which character
that index represents.

Add it to the “seed” and drop
the first character to keep the
length the same. This is now
the seed for the next pass.

Flushes the internal buffer to the console
so your character appears immediately

307LSTM
and thri's the bate and the perpaine, to depart of the father now
but ore night in a laid of the haid, and there is it

bru. what shall greefe vndernight of it

cassi. what shall the straite, and perfire the peace,
and defear'd and soule me to me a ration,
and we will steele the words them with th

----- diversity: 1.0
----- Generating with seed: " them through & through
the most fond an"
them through & through

the most fond and boy'd report alone

yp. it best we will st of me at that come sleepe.
but you yet it enemy wrong, 'twas sir

ham. the pirey too me, it let you?
son. oh a do a sorrall you. that makino

beendumons vp?x, let vs cassa,
yet his miltrow addome knowlmy in his windher,
a vertues. hoie sleepe, or strong a strong at it
mades manish swill about a time shall trages,
and follow. more. heere shall abo

Diversity 0.2 and 0.5 both give us something that looks a little like Shakespeare at first
glance. Diversity 1.0 (given this dataset) starts to go off the rails fairly quickly, but note
that some basic structures, such as the line break followed by a character’s abbreviated
name, still show up. All in all, not bad for a relatively simple model, and definitely
something you can have fun with generating text for a given style.

Making your generator more useful
If you want to use a generative model for more than just fun, what might you do to
make it more consistent and useful?

 Expand the quantity and quality of the corpus.
 Expand the complexity of the model (number of neurons).
 Implement a more refined case folding algorithm.
 Segment sentences.
 Add filters on grammar, spelling, and tone to match your needs.
 Generate many more examples than you actually show your users.
 Use seed texts chosen from the context of the session to steer the chatbot

toward useful topics.
 Use multiple different seed texts within each dialog round to explore what the

chatbot can talk about well and what the user finds helpful.

See figure 1.4 for more ideas. Maybe it’ll make more sense now than when you first
looked at it.

308 CHAPTER 9 Improving retention with long short-term memory networks
9.1.8 Learned how to say, but not yet what

So you’re generating novel text based solely on example text. And from that you’re
learning to pick up style. But, and this is somewhat counterintuitive, you have no
control over what is being said. The context is limited to the source data, as that’ll
limit its vocabulary if nothing else. But given an input, you can train toward what you
think the original author or authors would say. And the best you can really hope for
from this kind of model is how they would say it—specifically how they would finish
saying what was started with a specific seed sentence. That sentence by no means has
to come from the text itself. Because the model is trained on characters themselves,
you can use novel words as the seed and get interesting results. Now you have fodder
for an entertaining chatbot. But to have your bot say something of substance and in a
certain style, you’ll have to wait until the next chapter.

9.1.9 Other kinds of memory

LSTMs are an extension of the basic concepts of a recurrent neural net, and a variety
of other extensions exist in the same vein. All of them are slight variations on the
number or operations of the gates inside the cell. The gated recurrent unit, for exam-
ple, combines the forget gate and the candidate choice branch from the candidate
gate into a single update gate. This gate saves on the number of parameters to learn
and has been shown to be comparable to a standard LSTM while being that much less
computationally expensive. Keras provides a GRU layer that you can use just as with
LSTMs, as shown in the following listing.

>>> from keras.models import Sequential
>>> from keras.layers import GRU
>>> model = Sequential()
>>> model.add(GRU(num_neurons, return_sequences=True,
... input_shape=X[0].shape))

Another technique is to use an LSTM with peephole connections. Keras doesn’t have a
direct implementation of this, but several examples on the web extend the Keras
LSTM class to do this. The idea is that each gate in a standard LSTM cell has access to
the current memory state directly, taken in as part of its input. As described in the
paper Learning Precise Timing with LSTM Recurrent Networks,10 the gates contain addi-
tional weights of the same dimension as the memory state. The input to each gate is
then a concatenation of the input to the cell at that time step and the output of the
cell from the previous time step and the memory state itself. The authors found more
precise modeling of the timing of events in time series data. Although they weren’t
working specifically in the NLP domain, the concept has validity here as well, but we
leave it to the reader to experiment with that.

Listing 9.31 Gated recurrent units in Keras

10 Gers, Schraudolph, Schmidhuber: http://www.jmlr.org/papers/volume3/gers02a/gers02a.pdf.

http://www.jmlr.org/papers/volume3/gers02a/gers02a.pdf

309LSTM
 Those are just two of the RNN/LSTM derivatives out there. Experiments are ever
ongoing, and we encourage you to join the fun. The tools are all readily available, so
finding the next newest greatest iteration is in the reach of all.

9.1.10 Going deeper

It’s convenient to think of the memory unit as encoding a specific representation of
noun/verb pairs or sentence-to-sentence verb tense references, but that isn’t specifi-
cally what’s going on. It’s just a happy byproduct of the patterns that the network
learns, assuming the training went well. Like in any neural network, layering allows
the model to form more-complex representations of the patterns in the training data.
And you can just as easily stack LSTM layers (see figure 9.13).

Figure 9.13 Stacked LSTM

Stacked layers are much more computationally expensive to train. But stacking them
takes only a few seconds in Keras. See the following listing.

>>> from keras.models import Sequential
>>> from keras.layers import LSTM
>>> model = Sequential()
>>> model.add(LSTM(num_neurons, return_sequences=True,
... input_shape=X[0].shape))
>>> model.add(LSTM(num_neurons_2, return_sequences=True))

Listing 9.32 Two LSTM layers

State 2

State 1

LSTM
cell 1

LSTM
cell 1

LSTM
cell 1

LSTM
cell 2

LSTM
cell 2

LSTM
cell 2

Output
layer

Each LSTM layer is a cell with its own gates and state vector.

Stacked LSTM

Output
layer

Output
layer

Input
layer

Input
layer

Input
layer

t=0 t=1 t=2

310 CHAPTER 9 Improving retention with long short-term memory networks
Note that the parameter return_sequences=True is required in the first and inter-
mediary layers for the model to build correctly. This requirement makes sense
because the output at each time step is needed as the input for the time steps of the
next layer.

 Remember, however, that creating a model that’s capable of representing more-
complex relationships than are present in the training data can lead to strange results.
Simply piling layers onto the model, while fun, is rarely the answer to building the
most useful model.

Summary
 Remembering information with memory units enables more accurate and gen-

eral models of the sequence.
 It’s important to forget information that is no longer relevant.
 Only some new information needs to be retained for the upcoming input, and

LSTMs can be trained to find it.
 If you can predict what comes next, you can generate novel text from probabilities.
 Character-based models can more efficiently and successfully learn from small,

focused corpora than word-based models.
 LSTM thought vectors capture much more than just the sum of the words in a

statement.

Sequence-to-sequence
models and attention
You now know how to create natural language models and use them for everything
from sentiment classification to generating novel text (see chapter 9).

 Could a neural network translate from English to German? Or even better,
would it be possible to predict disease by translating genotype to phenotype (genes
to body type)?1 And what about the chatbot we’ve been talking about since the

This chapter covers
 Mapping one text sequence to another with a

neural network

 Understanding sequence-to-sequence tasks and
how they’re different from the others you’ve
learned about

 Using encoder-decoder model architectures for
translation and chat

 Training a model to pay attention to what is
important in a sequence

1 geno2pheno: https://academic.oup.com/nar/article/31/13/3850/2904197.
311

https://academic.oup.com/nar/article/31/13/3850/2904197

312 CHAPTER 10 Sequence-to-sequence models and attention
beginning of the book? Can a neural net carry on an entertaining conversation?
These are all sequence-to-sequence problems. They map one sequence of indetermi-
nate length to another sequence whose length is also unknown.

 In this chapter, you’ll learn how to build sequence-to-sequence models using an
encoder-decoder architecture.

10.1 Encoder-decoder architecture
Which of our previous architectures do you think might be useful for sequence-to-
sequence problems? The word vector embedding model of chapter 6? The convolu-
tional net of chapter 7 or the recurrent nets of chapter 8 and chapter 9? You guessed
it; we’re going to build on the LSTM architecture from the last chapter.

 LSTMs are great at handling sequences, but it turns out we need two of them
rather than only one. We’re going to build a modular architecture called an encoder-
decoder architecture.

 The first half of an encoder-decoder model is the sequence encoder, a network
which turns a sequence, such as natural language text, into a lower-dimensional repre-
sentation, such as the thought vector from the end of chapter 9. So you’ve already
built this first half of our sequence-to-sequence model.

 The other half of an encoder-decoder architecture is the sequence decoder. A
sequence decoder can be designed to turn a vector back into human readable text
again. But didn’t we already do that too? You generated some pretty crazy Shakespear-
ean playscript at the end of chapter 9. That was close, but there are a few more pieces
you need to add to get that Shakespearean playwright bot to focus on our new task as
a translating scribe.

 For example, you might like your model to output the German translation of an
English input text. Actually, isn’t that just like having our Shakespeare bot translate
modern English into Shakespearean? Yes, but in the Shakespeare example we were
OK with rolling the dice to let the machine learning algorithm choose any words that
matched the probabilities it had learned. That’s not going to cut it for a translation
service, or for that matter, even a decent playwright bot.

 So you already know how to build encoders and decoders; you now need to learn
how to make them better, more focused. In fact, the LSTMs from chapter 9 work great
as encoders of variable-length text. You built them to capture the meaning and senti-
ment of natural language text. LSTMs capture that meaning in an internal representa-
tion, a thought vector. You just need to extract the thought vector from the state
(memory cell) within your LSTM model. You learned how to set return_state=True
on a Keras LSTM model so that the output includes the hidden layer state. That state
vector becomes the output of your encoder and the input to your decoder.

TIP Whenever you train any neural network model, each of the internal lay-
ers contains all the information you need to solve the problem you trained it
on. That information is usually represented by a fixed-dimensional tensor

313Encoder-decoder architecture
containing the weights or the activations of that layer. And if your network
generalizes well, you can be sure that an information bottleneck exists—a
layer where the number of dimensions is at a minimum. In Word2vec (see
chapter 6), the weights of an internal layer were used to compute your vector
representation. You can also use the activations of an internal network layer
directly. That’s what the examples in this chapter do. Examine the successful
networks you’ve build in the past to see if you can find this information bottle-
neck that you can use as an encoded representation of your data.

So all that remains is to improve upon the decoder design. You need to decode a
thought vector back into a natural language sequence.

10.1.1 Decoding thought

Imagine you’d like to develop a translation model to translate texts from English to
German. You’d like to map sequences of characters or words to another sequence of
characters or words. You previously discovered how you can predict a sequence ele-
ment at time step t based on the previous element at time step t -1. But directly using
an LSTM to map from one language to another runs into problems quickly. For a sin-
gle LSTM to work, you would need input and output sequences to have the same
sequence lengths, and for translation they rarely do.

 Figure 10.1 demonstrates the problem. The English and the German sentence have
different lengths, which complicates the mapping between the English input and the
expected output. The English phrase “is playing” (present progressive) is translated to
the German present tense “spielt.” But “spielt” here would need to be predicted solely
on the input of “is;” you haven’t gotten to “playing” yet at that time step. Further,

Hidden
layer

Hidden
layer

Hidden
layer

Hidden
layer

y1 y2 y3 y4

Today was a good

Hidden
layer

y0

<start>

Hidden
layer

y5

day

Hidden
layer

y6

.

Today was a good <stop>day .

Expected output is the next token in the sample. Shown here on word level.

Actual
Output

Expected
Output

Figure 10.1 Limitations of language modeling

314 CHAPTER 10 Sequence-to-sequence models and attention
“playing” would then need to map to “Fußball.” Certainly a network could learn these
mappings, but the learned representations would have to be hyper-specific to the input,
and your dream of a more general language model would go out the window.

 Sequence-to-sequence networks, sometimes abbreviated with seq2seq, solve this lim-
itation by creating an input representation in the form of a thought vector. Sequence-
to-sequence models then use that thought vector, sometimes called a context vector,
as a starting point to a second network that receives a different set of inputs to gener-
ate the output sequence.

THOUGHT VECTOR Remember when you discovered word vectors? Word vec-
tors are a compression of the meaning of a word into a fixed length vector.
Words with similar meaning are close to each other in this vector space of
word meanings. A thought vector is very similar. A neural network can com-
press information from any natural language statement, not just a single
word, into a fixed length vector that represents the content of the input text.
Thought vectors are this vector. They are used as a numerical representation
of the thought within a document to drive some decoder model, usually a
translation decoder. The term was coined by Geoffrey Hinton in a talk to the
Royal Society in London in 2015.2

A sequence-to-sequence network consists of two modular recurrent networks with a
thought vector between them (see figure 10.2). The encoder outputs a thought vector
at the end of its input sequence. The decoder picks up that thought and outputs a
sequence of tokens.

 The first network, called the encoder, turns the input text (such as a user message
to a chatbot) into the thought vector. The thought vector has two parts, each a vector:
the output (activation) of the hidden layer of the encoder and the memory state of
the LSTM cell for that input example.

Figure 10.2 Encoder-decoder sandwich with thought vector meat

2 See the web page titled “Deep Learning,” (https://www.evl.uic.edu/creativecoding/courses/cs523/slides/
week3/DeepLearning_LeCun.pdf).

Input: English Maria

t=0 t=1 t=2 t=3

is playing soccer

Target: German Maria Spielt ? ?Fußball ?

LSTM LSTM LSTM LSTM

https://www.evl.uic.edu/creativecoding/courses/cs523/slides/week3/DeepLearning_LeCun.pdf
https://www.evl.uic.edu/creativecoding/courses/cs523/slides/week3/DeepLearning_LeCun.pdf

315Encoder-decoder architecture
TIP As shown in listing 10.1 later in this chapter, the thought vector is captured
in the variable names state_h (output of the hidden layer) and state_c (the
memory state).

The thought vector then becomes the input to a second network: the decoder net-
work. As you’ll see later in the implementation section, the generated state (thought
vector) will serve as the initial state of the decoder network. The second network then
uses that initial state and a special kind of input, a start token. Primed with that infor-
mation, the second network has to learn to generate the first element of the target
sequence (such as a character or word).

 The training and inference stages are treated differently in this particular setup.
During training, you pass the starting text to the encoder and the expected text as the
input to the decoder. You’re getting the decoder network to learn that, given a
primed state and a key to “get started,” it should produce a series of tokens. The first
direct input to the decoder will be the start token; the second input should be the first
expected or predicted token, which should in turn prompt the network to produce
the second expected token.

 At inference time, however, you don’t have the expected text, so what do you use
to pass into the decoder other than the state? You use the generic start token and then
take the first generated element, which will then become the input to the decoder at
the next time step, to generate the next element, and so on. This process repeats until
the maximum number of sequence elements is reached or a stop token is generated.

 Trained end-to-end this way, the decoder will turn a thought vector into a fully
decoded response to the initial input sequence (such as the user question). Splitting
the solution into two networks with the thought vector as the binding piece in-
between allows you to map input sequences to output sequences of different lengths
(see figure 10.3).

10.1.2 Look familiar?

It may seem like you’ve seen an encoder-decoder approach before. You may have.
Autoencoders are a common encoder-decoder architecture for students learning
about neural networks. They are a repeat-game-playing neural net that’s trained to

Input
sequence

Encoder Decoder Output
sequence

Thought vector

0.2
– 0.4

0.1
0.7

– 0.4
0.1

...
0.0

Figure 10.3 Unrolled encoder-decoder

316 CHAPTER 10 Sequence-to-sequence models and attention
regurgitate its input, which makes finding training data easy. Nearly any large set of
high-dimensional tensors, vectors, or sequences will do.

 Like any encoder-decoder architecture, autoencoders have a bottleneck of infor-
mation between the encoder and decoder that you can use as a lower-dimensional
representation of the input data. Any network with an information bottleneck can be
used as an encoder within an encoder-decoder architecture, even if the network was
only trained to paraphrase or restate the input.3

 Although autoencoders have the same structure as our encoder-decoders in this
chapter, they’re trained for a different task. Autoencoders are trained to find a vector
representation of input data such that the input can be reconstructed by the net-
work’s decoder with minimal error. The encoder and decoder are pseudo-inverses of
each other. The network’s purpose is to find a dense vector representation of the
input data (such as an image or text) that allows the decoder to reconstruct it with the
smallest error. During the training phase, the input data and the expected output are
the same. Therefore, if your goal is finding a dense vector representation of your
data—not generating thought vectors for language translation or finding responses
for a given question—an autoencoder can be a good option.

 What about PCA and t-SNE from chapter 6? Did you use sklearn.decomposi-
tion.PCA or sklearn.manifold.TSNE for visualizing vectors in the other chapters?
The t-SNE model produces an embedding as its output, so you can think of it as an
encoder, in some sense. The same goes for PCA. However, these models are unsuper-
vised so they can’t be targeted at a particular output or task. And these algorithms
were developed mainly for feature extraction and visualization. They create very tight
bottlenecks to output very low-dimensional vectors, typically two or three. And they
aren’t designed to take in sequences of arbitrary length. That’s what an encoder is all
about. And you’ve learned that LSTMs are the state-of-the-art for extracting features
and embeddings from sequences.

NOTE A variational autoencoder is a modified version of an autoencoder that
is trained to be a good generator as well as encoder-decoder. A variational
autoencoder produces a compact vector that not only is a faithful representa-
tion of the input but is also Gaussian distributed. This makes it easier to gen-
erate a new output by randomly selecting a seed vector and feeding that into
the decoder half of the autoencoder.4

10.1.3 Sequence-to-sequence conversation

It may not be clear how the dialog engine (conversation) problem is related to
machine translation, but they’re quite similar. Generating replies in a conversation for

3 An Autoencoder Approach to Learning Bilingual Word Representations by Chandar and Lauly et al.: https://
papers.nips.cc/paper/5270-an-autoencoder-approach-to-learning-bilingual-word-representations.pdf.

4 See the web page titled “Variational Autoencoders Explained” (http://kvfrans.com/variational-autoencoders-
explained).

https://papers.nips.cc/paper/5270-an-autoencoder-approach-to-learning-bilingual-word-representations.pdf
https://papers.nips.cc/paper/5270-an-autoencoder-approach-to-learning-bilingual-word-representations.pdf
http://kvfrans.com/variational-autoencoders-explained
http://kvfrans.com/variational-autoencoders-explained

317Encoder-decoder architecture
a chatbot isn’t that different from generating a German translation of an English
statement in a machine translation system.

 Both translation and conversation tasks require your model to map one sequence
to another. Mapping sequences of English tokens to German sequences is very similar
to mapping natural language statements in a conversation to the expected response
by the dialog engine. You can think of the machine translation engine as a schizo-
phrenic, bilingual dialog engine that is playing the childish “echo game,”5 listening in
English and responding in German.

 But you want your bot to be responsive, rather than just an echo chamber. So your
model needs to bring in any additional information about the world that you want
your chatbot to talk about. Your NLP model will have to learn a much more complex
mapping from statement to response than echoing or translation. This requires more
training data and a higher-dimensional thought vector, because it must contain all the
information your dialog engine needs to know about the world. You learned in chap-
ter 9 how to increase the dimensionality, and thus the information capacity, of the
thought vector in an LSTM model. You also need to get enough of the right kind of
data if you want to turn a translation machine into a conversation machine.

 Given a set of tokens, you can train your machine learning pipeline to mimic a
conversational response sequence. You need enough of those pairs and enough infor-
mation capacity in the thought vector to understand all those mappings. Once you
have a dataset with enough of these pairs of “translations” from statement to response,
you can train a conversation engine using the same network you used for machine
translation.

 Keras provides modules for building networks for sequence-to-sequence networks
with a modular architecture called an encoder-decoder model. And it provides an API
to access all the internals of an LSTM network that you need to solve translation, con-
versation, and even genotype-to-phenotype problems.

10.1.4 LSTM review

In the last chapter, you learned how an LSTM gives recurrent nets a way to selectively
remember and forget patterns of tokens they have “seen” within a sample document.
The input token for each time step passes through the forget and update gates, is mul-
tiplied by weights and masks, and then is stored in a memory cell. The network output
at that time step (token) is dictated not solely by the input token, but also by a combi-
nation of the input and the memory unit’s current state.

 Importantly, an LSTM shares that token pattern recognizer between documents,
because the forget and update gates have weights that are trained as they read many
documents. So an LSTM doesn’t have to relearn English spelling and grammar with
each new document. And you learned how to activate these token patterns stored in

5 Also called the “repeat game,” http://uncyclopedia.wikia.com/wiki/Childish_Repeating_Game.

http://uncyclopedia.wikia.com/wiki/Childish_Repeating_Game

318 CHAPTER 10 Sequence-to-sequence models and attention
the weights of an LSTM memory cell to predict the tokens that follow based on some
seed tokens to trigger the sequence generation (see figure 10.4).

 With a token-by-token prediction, you were able to generate some text by selecting
the next token based on the probability distribution of likely next tokens suggested by
the network. Not perfect by any stretch, but entertaining nonetheless. But you aren’t
here for mere entertainment; you’d like to have some control over what comes out of
a generative model.

 Sutskever, Vinyals, and Le came up with a way to bring in a second LSTM model to
decode the patterns in the memory cell in a less random and more controlled way.6

They proposed using the classification aspect of the LSTM to create a thought vector
and then use that generated vector as the input to a second, different LSTM that only
tries to predict token by token, which gives you a way to map an input sequence to a
distinct output sequence. Let’s take a look at how it works.

10.2 Assembling a sequence-to-sequence pipeline
With your knowledge from the previous chapters, you have all the pieces you need to
assemble a sequence-to-sequence machine learning pipeline.

10.2.1 Preparing your dataset for the sequence-to-sequence training

As you’ve seen in previous implementations of convolutional or recurrent neural net-
works, you need to pad the input data to a fixed length. Usually, you’d extend the

6 Sutskever, Vinyals, and Le; arXiv:1409.3215, http://papers.nips.cc/paper/5346-sequence-to-sequence-learn-
ing-with-neural-networks.pdf.

Maria

Maria

Maria

Decoder
LSTM

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Thought vector

Thought vector

Decoder
LSTM

Decoder
LSTM

Decoder
LSTM

is playing

<START>

<END>

Spielt

Spielt

Fußball

Fußball

soccer

Figure 10.4 Next word prediction

http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

319Assembling a sequence-to-sequence pipeline
input sequences to match the longest input sequence with pad tokens. In the case of
the sequence-to-sequence network, you also need to prepare your target data and pad
it to match the longest target sequence. Remember, the sequence lengths of the input
and target data don’t need to be the same (see figure 10.5).

Figure 10.5 Input and target sequence before preprocessing

In addition to the required padding, the output sequence should be annotated with
the start and stop tokens, to tell the decoder when the job starts and when it’s done
(see figure 10.6).

Figure 10.6 Input and target sequence after preprocessing

You’ll learn how to annotate the target sequences later in the chapter when you build
the Keras pipeline. Just keep in mind that you’ll need two versions of the target
sequence for training: one that starts with the start token (which you’ll use for the
decoder input), and one that starts without the start token (the target sequence the
loss function will score for accuracy).

 In earlier chapters, your training sets consisted of pairs: an input and an expected
output. Each training example for the sequence-to-sequence model will be a triplet:
initial input, expected output (prepended by a start token), and expected output
(without the start token).

 Before you get into the implementation details, let’s recap for a moment. Your
sequence-to-sequence network consists of two networks: the encoder, which will gener-
ate your thought vector; and a decoder, that you’ll pass the thought vector into, as its ini-
tial state. With the initialized state and a start token as input to the decoder network,
you’ll then generate the first sequence element (such as a character or word vector) of
the output. Each following element will then be predicted based on the updated state

S

W h y n o w ?

o c c e r i s rg e a t F

Target sequence GermanInput sequence English

W a r u m j e t z t ?

u ß b a l l i s t k l a s s e

S

W h y n o w ?

o c c e r i s rg e a t F

Target sequence GermanInput sequence English

Sequence element Padding Sequence element PaddingStart token Stop token

W a r u m j e t z t ?

u ß b a l l i s t k l a s s e

320 CHAPTER 10 Sequence-to-sequence models and attention
and the next element in the expected sequence. This process will go on until you either
generate a stop token or you reach the maximum number of elements. All sequence
elements generated by the decoder will form your predicted output (such as your reply
to a user question). With this in mind, let’s take a look at the details.

10.2.2 Sequence-to-sequence model in Keras

In the following sections, we guide you through a Keras implementation of a
sequence-to-sequence network published by Francois Chollet.7 Mr. Chollet is also the
author of the book Deep Learning with Python (Manning, 2017), an invaluable resource
for learning neural network architectures and Keras.

 During the training phase, you’ll train the encoder and decoder network together,
end to end, which requires three data points for each sample: a training encoder
input sequence, a decoder input sequence, and a decoder output sequence. The
training encoder input sequence could be a user question for which you’d like a bot
to respond. The decoder input sequence then is the expected reply by the future bot.

 You might wonder why you need an input and output sequence for the decoder.
The reason is that you’re training the decoder with a method called teacher forcing,
where you’ll use the initial state provided by the encoder network and train the
decoder to produce the expected sequences by showing the input to the decoder and
letting it predict the same sequence. Therefore, the decoder’s input and output
sequences will be identical, except that the sequences have an offset of one time step.

 During the execution phase, you’ll use the encoder to generate the thought vector
of your user input, and the decoder will then generate a reply based on that thought
vector. The output of the decoder will then serve as the reply to the user.

KERAS FUNCTIONAL API In the following example, you’ll notice a different
implementation style of the Keras layers you’ve seen in previous chapters.
Keras introduced an additional way of assembling models by calling each
layer and passing the value from the previous layer to it. The functional API
can be powerful when you want to build models and reuse portions of the
trained models (as you’ll demonstrate in the coming sections). For more
information about Keras’ functional API, we highly recommend the blog post
by the Keras core developer team.8

10.2.3 Sequence encoder

The encoder’s sole purpose is the creation of your thought vector, which then serves
as the initial state of the decoder network (see figure 10.7). You can’t train an encoder
fully in isolation. You have no “target” thought vector for the network to learn to
predict. The backpropagation that will train the encoder to create an appropriate

7 See the web page titled “A ten-minute introduction to sequence-to-sequence learning in Keras” (https://
blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html).

8 See the web page titled “Getting started with the Keras functional API” (https://keras.io/getting-started/
functional-api-guide/).

https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html
https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html
https://keras.io/getting-started/functional-api-guide/
https://keras.io/getting-started/functional-api-guide/

321Assembling a sequence-to-sequence pipeline
thought vector will come from the error that’s generated later downstream in the
decoder.

 Nonetheless the encoder and decoder are independent modules that are often
interchangeable with each other. For example, once your encoder is trained on the
English-to-German translation problem, it can be reused with a different encoder for
translation from English to Spanish.9 Listing 10.1 shows what the encoder looks like in
isolation.

 Conveniently, the RNN layers, provided by Keras, return their internal state when
you instantiate the LSTM layer (or layers) with the keyword argument return_
state=True. In the following snippet, you preserve the final state of the encoder and
disregard the actual output of the encoder. The list of the LSTM states is then passed
to the decoder.

>>> encoder_inputs = Input(shape=(None, input_vocab_size))
>>> encoder = LSTM(num_neurons, return_state=True)
>>> encoder_outputs, state_h, state_c = encoder(encoder_inputs)
>>> encoder_states = (state_h, state_c)

Because return_sequences defaults to False, the first return value is the output
from the last time step. state_h will be specifically the output of the last time step
for this layer. So in this case, encoder_outputs and state_h will be identical.
Either way you can ignore the official output stored in encoder_outputs. state_c
is the current state of the memory unit. state_h and state_c will make up your
thought vector.

9 Training a multi-task model like this is called “joint training” or “transfer learning” and was described by
Luong, Le, Sutskever, Vinyals, and Kaier (Google Brain) at ICLR 2016: https://arxiv.org/pdf/
1511.06114.pdf.

Listing 10.1 Thought encoder in Keras

Maria

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

is playing soccer

Thought vector

Figure 10.7 Thought encoder

The return_state argument of the
LSTM layer needs to be set to

True to return the internal states.

The first return value of the LSTM
layer is the output of the layer.

https://arxiv.org/pdf/1511.06114.pdf
https://arxiv.org/pdf/1511.06114.pdf

322 CHAPTER 10 Sequence-to-sequence models and attention
Figure 10.8 LSTM states used in the sequence-to-sequence encoder

Figure 10.8 shows how the internal LSTM states are generated. The encoder will
update the hidden and memory states with every time step, and pass the final states to
the decoder as the initial state.

10.2.4 Thought decoder

Similar to the encoder network setup, the setup of the decoder is pretty straightfor-
ward. The major difference is that this time you do want to capture the output of the
network at each time step. You want to judge the “correctness” of the output, token by
token (see figure 10.9).

 This is where you use the second and third pieces of the sample 3-tuple. The
decoder has a standard token-by-token input and a token-by-token output. They are
almost identical, but off by one time step. You want the decoder to learn to reproduce
the tokens of a given input sequence given the state generated by the first piece of the
3-tuple fed into the encoder.

Forget gate
351 weights

(1 for bias) per neuron
17,550 total

Output from
time step t -1

50-element vector
from previous time step

Concatenated
input

350-element vector

Input at time step t
1 token (word or

character) represented
by a 300-element vector

Memory

Candidate
gate

(2 elements)

Output
gate

Hidden
state

Memory
state

Maria

Maria

Decoder
LSTM

Thought vector Decoder
LSTM

Decoder
LSTM

Decoder
LSTM

<START>

<END>

spielt

spielt

Fußball

Fußball

Figure 10.9 Thought decoder

323Assembling a sequence-to-sequence pipeline
NOTE This is the key concept for the decoder, and for sequence-to-sequence
models in general; you’re training a network to output in the secondary prob-
lem space (another language or another being’s response to a given ques-
tion). You form a “thought” about both what was said (the input) and the
reply (the output) simultaneously. And this thought defines the response
token by token. Eventually, you’ll only need the thought (generated by the
encoder) and a generic start token to get things going. That’s enough to trig-
ger the correct output sequence.

To calculate the error of the training step, you’ll pass the output of your LSTM layer
into a dense layer. The dense layer will have a number of neurons equal to the num-
ber of all possible output tokens. The dense layer will have a softmax activation func-
tion across those tokens. So at each time step, the network will provide a probability
distribution over all possible tokens for what it thinks is most likely the next sequence
element. Take the token whose related neuron has the highest value. You used an out-
put layer with softmax activation functions in earlier chapters, where you wanted to
determine a token with the highest likelihood (see chapter 6 for more details). Also
note that the num_encoder_tokens and the output_vocab_size don’t need to
match, which is one of the great benefits of sequence-to-sequence networks. See the
following listing.

>>> decoder_inputs = Input(shape=(None, output_vocab_size))
>>> decoder_lstm = LSTM(
... num_neurons,return_sequences=True, return_state=True)
>>> decoder_outputs, _, _ = decoder_lstm(
... decoder_inputs, initial_state=encoder_states)
>>> decoder_dense = Dense(
... output_vocab_size, activation='softmax')
>>> decoder_outputs = decoder_dense(decoder_outputs)

10.2.5 Assembling the sequence-to-sequence network

The functional API of Keras allows you to assemble a model as object calls. The Model
object lets you define its input and output parts of the network. For this sequence-to-
sequence network, you’ll pass a list of your inputs to the model. In listing 10.2, you
defined one input layer in the encoder and one in the decoder. These two inputs cor-
respond with the first two elements of each training triplet. As an output layer, you’re
passing the decoder_outputs to the model, which includes the entire model setup
you previously defined. The output in decoder_outputs corresponds with the final
element of each of your training triplets.

Listing 10.2 Thought decoder in Keras

Set up the LSTM layer, similar to the
encoder but with an additional
argument of return_sequences.

The functional API allows you to pass the
initial state to the LSTM layer by assigning
the last encoder state to initial_state.

Softmax layer with all
possible characters mapped
to the softmax output

Passing the output of the
LSTM layer to the softmax layer

324 CHAPTER 10 Sequence-to-sequence models and attention
NOTE Using the functional API like this, definitions such as decoder
_outputs are tensor representations. This is where you’ll notice differences
from the sequential model described in earlier chapters. Again refer to the
documentation for the nitty-gritty of the Keras API. See the following listing.

>>> model = Model(
... inputs=[encoder_inputs, decoder_inputs],
... outputs=decoder_outputs)

10.3 Training the sequence-to-sequence network
The last remaining steps for creating a sequence-to-sequence model in the Keras
model are to compile and fit. The only difference compared to earlier chapters is that
earlier you were predicting a binary classification: yes or no. But here you have a cate-
gorical classification or multiclass classification problem. At each time step you must
determine which of many “categories” is correct. And we have many categories here.
The model must choose between all possible tokens to “say.” Because you’re predict-
ing characters or words rather than binary states, you’ll optimize your loss based
on the categorical_crossentropy loss function, rather than the binary_
crossentropy used earlier. So that’s the only change you need to make to the Keras
model.compile step, as shown in the following listing.

>>> model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
>>> model.fit([encoder_input_data, decoder_input_data],

decoder_target_data,
batch_size=batch_size, epochs=epochs)

Congratulations! With the call to model.fit, you’re training your sequence-to-
sequence network, end to end. In the following sections, you’ll demonstrate how you
can infer an output sequence for a given input sequence.

NOTE The training of sequence-to-sequence networks can be computation-
ally intensive and therefore time-consuming. If your training sequences are
long or if you want to train with a large corpus, we highly recommend train-
ing these networks on a GPU, which can increase the training speed by 30
times. If you’ve never trained a neural network on a GPU, don’t worry. Check
out chapter 13 on how to rent and set up your own GPU on commercial com-
putational cloud services.

Listing 10.3 Keras functional API (Model())

Listing 10.4 Train a sequence-to-sequence model in Keras

The inputs and outputs arguments
can be defined as lists if you expect
multiple inputs or outputs.

Setting the loss
function to

categorical_
crossentropy.The model expects the training inputs as a list,

where the first list element is passed to the
encoder network and the second element is passed

to the decoder network during the training.

325Training the sequence-to-sequence network

LSTMs aren’t inherently parallelizable like convolutional neural nets, so to
get the full benefit of a GPU you should replace the LSTM layers with
CuDNNLSTM, which is optimized for training on a GPU enabled with CUDA.

10.3.1 Generate output sequences

Before generating sequences, you need to take the structure of your training layers
and reassemble them for generation purposes. At first, you define a model specific to
the encoder. This model will then be used to generate the thought vector. See the fol-
lowing listing.

>>> encoder_model = Model(inputs=encoder_inputs, outputs=encoder_states)

The definition of the decoder can look daunting. But let’s untangle the code snippet
step by step. First, you’ll define your decoder inputs. You are using the Keras input
layer, but instead of passing in one-hot vectors, characters, or word embeddings, you’ll
pass the thought vector generated by the encoder network. Note that the encoder
returns a list of two states, which you’ll need to pass to the initial_state argument
when calling your previously defined decoder_lstm. The output of the LSTM layer
is then passed to the dense layer, which you also previously defined. The output of this
layer will then provide the probabilities of all decoder output tokens (in this case, all
seen characters during the training phase).

 Here is the magic part. The token predicted with the highest probability at each
time step will then be returned as the most likely token and passed on to the next
decoder iteration step, as the new input. See the following listing.

>>> thought_input = [Input(shape=(num_neurons,)),
... Input(shape=(num_neurons,))]
>>> decoder_outputs, state_h, state_c = decoder_lstm(
... decoder_inputs, initial_state=thought_input)
>>> decoder_states = [state_h, state_c]
>>> decoder_outputs = decoder_dense(decoder_outputs)

>>> decoder_model = Model(
... inputs=[decoder_inputs] + thought_input,
... output=[decoder_outputs] + decoder_states)

Listing 10.5 Decoder for generating text using the generic Keras Model

Listing 10.6 Sequence generator for random thoughts

Here you use the previously defined encoder_inputs
and encoder_states; calling the predict method on

this model would return the thought vector.

Define an input layer to
take the encoder states.

Pass the encoder state to the
LSTM layer as initial state.

The updated LSTM state will
then become the new cell
state for the next iteration.

Pass the output from the LSTM to the
dense layer to predict the next token.

The last step is tying the
decoder model together.

The decoder_inputs
and thought_input

become the input to
the decoder model.

The output of the dense layer and the
updated states are defined as output.

326 CHAPTER 10 Sequence-to-sequence models and attention
Once the model is set up, you can generate sequences by predicting the thought vector
based on a one-hot encoded input sequence and the last generated token. During the
first iteration, the target_seq is set to the start token. During all following iterations,
target_seq is updated with the last generated token. This loop goes on until either
you’ve reached the maximum number of sequence elements or the decoder generates
a stop token, at which time the generation is stopped. See the following listing.

...
>>> thought = encoder_model.predict(input_seq)
...
>>> while not stop_condition:
... output_tokens, h, c = decoder_model.predict(
... [target_seq] + thought)

10.4 Building a chatbot using sequence-to-sequence networks
In the previous sections, you learned how to train a sequence-to-sequence network and
how to use the trained network to generate sequence responses. In the following sec-
tion, we guide you through how to apply the various steps to train a chatbot. For the
chatbot training, you’ll use the Cornell movie dialog corpus.10 You’ll train a sequence-
to-sequence network to “adequately” reply to your questions or statements. Our chatbot
example is an adopted sequence-to-sequence example from the Keras blog.11

10.4.1 Preparing the corpus for your training

First, you need to load the corpus and generate the training sets from it. The training
data will determine the set of characters the encoder and decoder will support during
the training and during the generation phase. Please note that this implementation
doesn’t support characters that haven’t been included during the training phase.
Using the entire Cornell Movie Dialog dataset can be computationally intensive
because a few sequences have more than 2,000 tokens—2,000 time steps will take a
while to unroll. But the majority of dialog samples are based on less than 100 charac-
ters. For this example, you’ve preprocessed the dialog corpus by limiting samples to
those with fewer than 100 characters, removed odd characters, and only allowed

Listing 10.7 Simple decoder—next word prediction

10 See the web page titled “Cornell Movie-Dialogs Corpus” (https://www.cs.cornell.edu/~cristian/
Cornell_Movie-Dialogs_Corpus.html).

11 See the web page titled “keras/examples/lstm_seq2seq.py at master” (https://github.com/fchollet/keras/
blob/master/examples/lstm_seq2seq.py).

Encode the input sequence
into a thought vector (the
LSTM memory cell state).

 The stop_condition is updated
after each iteration and turns True

if either the maximum number of
output sequence tokens is hit or the

decoder generates a stop token.

The decoder returns the token with the
highest probability and the internal states,
which are reused during the next iteration.

https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html
https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html
https://github.com/fchollet/keras/blob/master/examples/lstm_seq2seq.py
https://github.com/fchollet/keras/blob/master/examples/lstm_seq2seq.py

327Building a chatbot using sequence-to-sequence networks

lowercase characters. With these changes, you limit the variety of characters. You can
find the preprocessed corpus in the GitHub repository of NLP in Action.12

 You’ll loop over the corpus file and generate the training pairs (technically 3-tuples:
input text, target text with start token, and target text). While reading the corpus,
you’ll also generate a set of input and target characters, which you’ll then use to one-
hot encode the samples. The input and target characters don’t have to match. But
characters that aren’t included in the sets can’t be read or generated during the gen-
eration phase. The result of the following listing is two lists of input and target texts
(strings), as well as two sets of characters that have been seen in the training corpus.

>>> from nlpia.loaders import get_data
>>> df = get_data('moviedialog')
>>> input_texts, target_texts = [], []
>>> input_vocabulary = set()
>>> output_vocabulary = set()
>>> start_token = '\t'
>>> stop_token = '\n'
>>> max_training_samples = min(25000, len(df) - 1)

>>> for input_text, target_text in zip(df.statement, df.reply):
... target_text = start_token + target_text \
... + stop_token
... input_texts.append(input_text)
... target_texts.append(target_text)
... for char in input_text:
... if char not in input_vocabulary:
... input_vocabulary.add(char)
... for char in target_text:
... if char not in output_vocabulary:
... output_vocabulary.add(char)

10.4.2 Building your character dictionary

Similar to the examples from your previous chapters, you need to convert each charac-
ter of the input and target texts into one-hot vectors that represent each character. In
order to generate the one-hot vectors, you generate token dictionaries (for the input
and target text), where every character is mapped to an index. You also generate the
reverse dictionary (index to character), which you’ll use during the generation phase
to convert the generated index to a character. See the following listing.

12 See the web page titled “GitHub - totalgood/nlpia” (https://github.com/totalgood/nlpia).

Listing 10.8 Build character sequence-to-sequence training set

The arrays hold the input and target
text read from the corpus file.

The sets hold the seen
characters in the
input and target text.

The target sequence is annotated with a
start (first) and stop (last) token; the
characters representing the tokens are
defined here. These tokens can’t be part of
the normal sequence text and should be
uniquely used as start and stop tokens.

max_training_samples defines
how many lines are used for the
training. It’s the lower number
of either a user-defined
maximum or the total number
of lines loaded from the file.

The target_text needs to be wrapped
with the start and stop tokens.

Compile the vocabulary—
set of the unique characters
seen in the input_texts.

https://github.com/totalgood/nlpia

328 CHAPTER 10 Sequence-to-sequence models and attention

>>> input_vocabulary = sorted(input_vocabulary)
>>> output_vocabulary = sorted(output_vocabulary)

>>> input_vocab_size = len(input_vocabulary)
>>> output_vocab_size = len(output_vocabulary)
>>> max_encoder_seq_length = max(
... [len(txt) for txt in input_texts])
>>> max_decoder_seq_length = max(
... [len(txt) for txt in target_texts])

>>> input_token_index = dict([(char, i) for i, char in
... enumerate(input_vocabulary)])
>>> target_token_index = dict(
... [(char, i) for i, char in enumerate(output_vocabulary)])
>>> reverse_input_char_index = dict((i, char) for char, i in
... input_token_index.items())
>>> reverse_target_char_index = dict((i, char) for char, i in
... target_token_index.items())

10.4.3 Generate one-hot encoded training sets

In the next step, you’re converting the input and target text into one-hot encoded
“tensors.” In order to do that, you loop over each input and target sample, and over
each character of each sample, and one-hot encode each character. Each character is
encoded by an n x 1 vector (with n being the number of unique input or target charac-
ters). All vectors are then combined to create a matrix for each sample, and all sam-
ples are combined to create the training tensor. See the following listing.

>>> import numpy as np

>>> encoder_input_data = np.zeros((len(input_texts),
... max_encoder_seq_length, input_vocab_size),
... dtype='float32')
>>> decoder_input_data = np.zeros((len(input_texts),
... max_decoder_seq_length, output_vocab_size),
... dtype='float32')
>>> decoder_target_data = np.zeros((len(input_texts),
... max_decoder_seq_length, output_vocab_size),
... dtype='float32')

>>> for i, (input_text, target_text) in enumerate(
... zip(input_texts, target_texts)):

Listing 10.9 Character sequence-to-sequence model parameters

Listing 10.10 Construct character sequence encoder-decoder training set

You convert the character sets into
sorted lists of characters, which you
then use to generate the dictionary.

For the input and target
data, you determine the

maximum number of unique
characters, which you use to

build the one-hot matrices.

For the input and target data,
you also determine the maximum
number of sequence tokens.

Loop over the input_characters and
output_vocabulary to create the

lookup dictionaries, which you use
to generate the one-hot vectors.

Loop over the newly created dictionaries
to create the reverse lookups.

You use numpy for the
matrix manipulations.

The training tensors are
initialized as zero tensors
with shape (num_samples,
max_len_sequence,
num_unique_tokens_in_vocab).

Loop over the training
samples; input and target
texts need to correspond.

329Building a chatbot using sequence-to-sequence networks
... for t, char in enumerate(input_text):

... encoder_input_data[

... i, t, input_token_index[char]] = 1.

... for t, char in enumerate(target_text):

... decoder_input_data[

... i, t, target_token_index[char]] = 1.

... if t > 0:

... decoder_target_data[i, t - 1, target_token_index[char]] = 1

10.4.4 Train your sequence-to-sequence chatbot

After all the training set preparation—converting the preprocessed corpus into input
and target samples, creating index lookup dictionaries, and converting the samples
into one-hot tensors—it’s time to train the chatbot. The code is identical to the earlier
samples. Once the model.fit completes the training, you have a fully trained chat-
bot based on a sequence-to-sequence network. See the following listing.

>>> from keras.models import Model
>>> from keras.layers import Input, LSTM, Dense

>>> batch_size = 64
>>> epochs = 100
>>> num_neurons = 256

>>> encoder_inputs = Input(shape=(None, input_vocab_size))
>>> encoder = LSTM(num_neurons, return_state=True)
>>> encoder_outputs, state_h, state_c = encoder(encoder_inputs)
>>> encoder_states = [state_h, state_c]

>>> decoder_inputs = Input(shape=(None, output_vocab_size))
>>> decoder_lstm = LSTM(num_neurons, return_sequences=True,
... return_state=True)
>>> decoder_outputs, _, _ = decoder_lstm(decoder_inputs,
... initial_state=encoder_states)
>>> decoder_dense = Dense(output_vocab_size, activation='softmax')
>>> decoder_outputs = decoder_dense(decoder_outputs)
>>> model = Model([encoder_inputs, decoder_inputs], decoder_outputs)

>>> model.compile(optimizer='rmsprop', loss='categorical_crossentropy',
... metrics=['acc'])
>>> model.fit([encoder_input_data, decoder_input_data],
... decoder_target_data, batch_size=batch_size, epochs=epochs,
... validation_split=0.1)

Listing 10.11 Construct and train a character sequence encoder-decoder network

Loop over each character
of each sample.

Set the index for the character at each time step to one;
all other indices remain at zero. This creates the one-
hot encoded representation of the training samples.

For the training data for the decoder, you
create the decoder_input_data and

decoder_target_data (which is one time
step behind the decoder_input_data).

In this example, you set the batch size to 64
samples. Increasing the batch size can speed up

the training; it might also require more memory.

Training a sequence-to-
sequence network can
be lengthy and easily
require 100 epochs.

In this example, you set
the number of neuron
dimensions to 256.

You withhold 10%
of the samples for

validation tests
after each epoch.

330 CHAPTER 10 Sequence-to-sequence models and attention

d

10.4.5 Assemble the model for sequence generation

Setting up the model for the sequence generation is very much the same as we discussed
in the earlier sections. But you have to make some adjustments, because you don’t have
a specific target text to feed into the decoder along with the state. All you have is the
input, and a start token. See the following listing.

>>> encoder_model = Model(encoder_inputs, encoder_states)
>>> thought_input = [
... Input(shape=(num_neurons,)), Input(shape=(num_neurons,))]
>>> decoder_outputs, state_h, state_c = decoder_lstm(
... decoder_inputs, initial_state=thought_input)
>>> decoder_states = [state_h, state_c]
>>> decoder_outputs = decoder_dense(decoder_outputs)

>>> decoder_model = Model(
... inputs=[decoder_inputs] + thought_input,
... output=[decoder_outputs] + decoder_states)

10.4.6 Predicting a sequence

The decode_sequence function is the heart of the response generation of your chat-
bot. It accepts a one-hot encoded input sequence, generates the thought vector, and
uses the thought vector to generate the appropriate response by using the network
trained earlier. See the following listing.

>>> def decode_sequence(input_seq):
... thought = encoder_model.predict(input_seq)

... target_seq = np.zeros((1, 1, output_vocab_size))

... target_seq[0, 0, target_token_index[stop_token]

...] = 1.

... stop_condition = False

... generated_sequence = ''

... while not stop_condition:

... output_tokens, h, c = decoder_model.predict(

... [target_seq] + thought)

... generated_token_idx = np.argmax(output_tokens[0, -1, :])

... generated_char = reverse_target_char_index[generated_token_idx]

... generated_sequence += generated_char

... if (generated_char == stop_token or

... len(generated_sequence) > max_decoder_seq_length

...):

... stop_condition = True

Listing 10.12 Construct response generator model

Listing 10.13 Build a character-based translator

Generate the thought vector
as the input to the decoder.

In contrast to
the training,
target_seq starts off
as a zero tensor.

The first input token to the
decoder is the start token.

Passing the already-generate
tokens and the latest state
to the decoder to predict the
next sequence element

Setting the stop_condition
to True will stop the loop.

331Building a chatbot using sequence-to-sequence networks
... target_seq = np.zeros((1, 1, output_vocab_size))

... target_seq[0, 0, generated_token_idx] = 1.

... thought = [h, c]

... return generated_sequence

10.4.7 Generating a response

Now you’ll define a helper function, response(), to convert an input string (such as
a statement from a human user) into a reply for the chatbot to use. This function first
converts the user’s input text into a sequence of one-hot encoded vectors. That tensor
of one-hot vectors is then passed to the previously defined decode_sequence()
function. It accomplishes the encoding of the input texts into thought vectors and the
generation of text from those thought vectors.

NOTE The key is that instead of providing an initial state (thought vector)
and an input sequence to the decoder, you’re supplying only the thought vec-
tor and a start token. The token that the decoder produces given the initial
state and the start token becomes the input to the decoder at time step 2. And
the output at time step 2 becomes the input at time step 3, and so on. All the
while the LSTM memory state is updating the memory and augmenting out-
put as it goes—just like you saw in chapter 9:

>>> def response(input_text):
... input_seq = np.zeros((1, max_encoder_seq_length, input_vocab_size),
... dtype='float32')
... for t, char in enumerate(input_text):
... input_seq[0, t, input_token_index[char]] = 1.
... decoded_sentence = decode_sequence(input_seq)
... print('Bot Reply (Decoded sentence):', decoded_sentence)

10.4.8 Converse with your chatbot

Voila! You just completed all necessary steps to train and use your own chatbot. Con-
gratulations! Interested in what the chatbot can reply to? After 100 epochs of training,
which took approximately seven and a half hours on an NVIDIA GRID K520 GPU, the
trained sequence-to-sequence chatbot was still a bit stubborn and short-spoken. A
larger and more general training corpus could change that behavior:

>>> response("what is the internet?")
Bot Reply (Decoded sentence): it's the best thing i can think of anything.

>>> response("why?")
Bot Reply (Decoded sentence): i don't know. i think it's too late.

Update the target sequence
and use the last generated

token as the input to the
next generation step.Update the thought

vector state.

Loop over each character of the input text to
generate the one-hot tensor for the encoder

to generate the thought vector from.

Use the decode_sequence function to call the trained
model and generate the response sequence.

332 CHAPTER 10 Sequence-to-sequence models and attention
>>> response("do you like coffee?")
Bot Reply (Decoded sentence): yes.

>>> response("do you like football?")
Bot Reply (Decoded sentence): yeah.

NOTE If you don’t want to set up a GPU and train your own chatbot, no wor-
ries. We made the trained chatbot available for you to test it. Head over to the
GitHub repository of NLP in Action13 and check out the latest chatbot version.
Let the authors know if you come across any funny replies by the chatbot.

10.5 Enhancements
There are two enhancements to the way you train sequence-to-sequence models that
can improve their accuracy and scalability. Like human learning, deep learning can
benefit from a well-designed curriculum. You need to categorize and order the train-
ing material to ensure speedy absorption, and you need to ensure that the instructor
highlights the most import parts of any given document.

10.5.1 Reduce training complexity with bucketing

Input sequences can have different lengths, which can add a large number of pad
tokens to short sequences in your training data. Too much padding can make the
computation expensive, especially when the majority of the sequences are short and
only a handful of them use close-to-the-maximum token length. Imagine you train
your sequence-to-sequence network with data where almost all samples are 100
tokens long, except for a few outliers that contain 1,000 tokens. Without bucketing,
you’d need to pad the majority of your training with 900 pad tokens, and your
sequence-to-sequence network would have to loop over them during the training
phase. This padding will slow down the training dramatically. Bucketing can reduce
the computation in these cases. You can sort the sequences by length and use differ-
ent sequence lengths during different batch runs. You assign the input sequences to
buckets of different lengths, such as all sequences with a length between 5 and 10
tokens, and then use the sequence buckets for your training batches, such as train
first with all sequences between 5 and 10 tokens, 10 to 15, and so on. Some deep
learning frameworks provide bucketing tools to suggest the optimal buckets for your
input data.

 As shown in figure 10.10, the sequences were first sorted by length and then only
padded to the maximum token length for the particular bucket. That way, you can
reduce the number of time steps needed for any particular batch while training the
sequence-to-sequence network. You only unroll the network as far as is necessary (to
the longest sequence) in a given training batch.

13 See the web page titled “GitHub - totalgood/nlpia” (https://github.com/totalgood/nlpia).

https://github.com/totalgood/nlpia

333Enhancements
Figure 10.10 Bucketing applied to target sequences

10.5.2 Paying attention

As with latent semantic analysis introduced in chapter 4, longer input sequences (doc-
uments) tend to produce thought vectors that are less precise representations of those
documents. A thought vector is limited by the dimensionality of the LSTM layer (the
number of neurons). A single thought vector is sufficient for short input/output
sequences, similar to your chatbot example. But imagine the case when you want to
train a sequence-to-sequence model to summarize online articles. In this case, your
input sequence can be a lengthy article, which should be compressed into a single
thought vector to generate such as a headline. As you can imagine, training the net-
work to determine the most relevant information in that longer document is tricky. A
headline or summary (and the associated thought vector) must focus on a particular
aspect or portion of that document rather than attempt to represent all of the com-
plexity of its meaning.

 In 2015, Bahdanau et al. presented their solution to this problem at the Interna-
tional Conference on Learning Representations.14 The concept the authors developed
became known as the attention mechanism (see figure 10.11). As the name suggests, the
idea is to tell the decoder what to pay attention to in the input sequence. This “sneak
preview” is achieved by allowing the decoder to also look all the way back into the states
of the encoder network in addition to the thought vector. A version of a “heat map” over
the entire input sequence is learned along with the rest of the network. That mapping,
different at each time step, is then shared with the decoder. As it decodes any particular

14 See the web page titled “Neural Machine Translation by Jointly Learning to Align and Translate” (https://
arxiv.org/abs/1409.0473).

Start
token

Sequence
element

Stop
token Padding

1st batch
w/ 5 tokens

2nd batch
w/ 7 tokens

3rd batch
w/ 10 tokens

4th batch
w/ 16 tokens

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473

334 CHAPTER 10 Sequence-to-sequence models and attention
part of the sequence, its concept created from the thought vector can be augmented
with direct information that it produced. In other words, the attention mechanism
allows a direct connection between the output and the input by selecting relevant input
pieces. This doesn’t mean token-to-token alignment; that would defeat the purpose
and send you back to autoencoder land. It does allow for richer representations of con-
cepts wherever they appear in the sequence.

 With the attention mechanism, the decoder receives an additional input with every
time step representing the one (or many) tokens in the input sequence to pay “atten-
tion” to, at this given decoder time step. All sequence positions from the encoder will
be represented as a weighted average for each decoder time step.

 Configuring and tuning the attention mechanism isn’t trivial, but various deep
learning frameworks provide implementations to facilitate this. At the time of this
writing, a pull request to the Keras package was discussed, but no implementation had
yet been accepted.

10.6 In the real world
Sequence-to-sequence networks are well suited for any machine learning application
with variable-length input sequences or variable-length output sequences. Since natu-
ral language sequences of words almost always have unpredictable length, sequence-
to-sequence models can improve the accuracy of most machine learning models.

Today

LSTM

Encoder

Decoder Thought
vector

Thought
vector

Attention mechanismAttention
layer

LSTM

Aujord’
hui

<start> Aujord’
hui

était

était

une

une

bonne

bonne

journée

journée

.

.

.

<stop>très

très

LSTM LSTM LSTM LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM LSTM LSTM

was a very good day

Figure 10.11 Overview of the attention mechanism

335In the real world
 Key sequence-to-sequence applications are

 Chatbot conversations
 Question answering
 Machine translation
 Image captioning
 Visual question answering
 Document summarization

As you’ve seen in the previous sections, a dialog system is a common application for
NLP. Sequence-to-sequence models are generative, which makes them especially well-
suited to conversational dialog systems (chatbots). Sequence-to-sequence chatbots
generate more varied, creative, and conversational dialog than information retrieval
or knowledge-based chatbot approaches. Conversational dialog systems mimic human
conversation on a broad range of topics. Sequence-to-sequence chatbots can general-
ize from limited-domain corpora and yet respond reasonably on topics not contained
in their training set. In contrast, the “grounding” of knowledge-based dialog systems
(discussed in chapter 12) can limit their ability to participate in conversations on top-
ics outside their training domains. Chapter 12 compares the performance of chatbot
architectures in greater detail.

 Besides the Cornell Movie Dialog Corpus, various free and open source training
sets are available, such as Deep Mind’s Q&A datasets.15, 16 When you need your dialog
system to respond reliably in a specific domain, you’ll need to train it on a corpora of
statements from that domain. The thought vector has a limited amount of informa-
tion capacity and that capacity needs to be filled with information on the topics you
want your chatbot to be conversant in.

 Another common application for sequence-to-sequence networks is machine trans-
lation. The concept of the thought vector allows a translation application to incorpo-
rate the context of the input data, and words with multiple meanings can be translated
in the correct context. If you want to build translation applications, the ManyThings
website (http://www.manythings.org/anki/) provides sentence pairs that can be used
as training sets. We've provided these pairs for you in the nlpia package. In listing 10.8
you can replace get_data('moviedialog') with get_data('deu-eng') for
English-German statement pairs, for example.

 Sequence-to-sequence models are also well-suited to text summarization, due to
the difference in string length between input and output. In this case, the input to the
encoder network is, for example, news articles (or any other length document) and
the decoder can be trained to generate a headline or abstract or any other summary
sequence associated with the document. Sequence-to-sequence networks can provide

15 Q&A dataset: https://cs.nyu.edu/~kcho/DMQA/.
16 List of dialog corpora in the NLPIA package docs: https://github.com/totalgood/nlpia/blob/master/docs/

notes/nlp--data.md#dialog-corpora.

https://github.com/totalgood/nlpia/blob/master/docs/notes/nlp--data.md#dialog-corpora
https://github.com/totalgood/nlpia/blob/master/docs/notes/nlp--data.md#dialog-corpora
http://www.manythings.org/anki/
https://cs.nyu.edu/~kcho/DMQA/

336 CHAPTER 10 Sequence-to-sequence models and attention
more natural-sounding text summaries than summarization methods based on bag-of-
words vector statistics. If you’re interested in developing such an application, the
Kaggle news summary challenge17 provides a good training set.

 Sequence-to-sequence networks aren’t limited to natural language applications.
Two other applications are automated speech recognition and image captioning. Cur-
rent, state-of-the-art automated speech recognition systems18 use sequence-to-sequence
networks to turn voice input amplitude sample sequences into the thought vector that
a sequence-to-sequence decoder can turn into a text transcription of the speech. The
same concept applies to image captioning. The sequence of image pixels (regardless of
image resolution) can be used as an input to the encoder, and a decoder can be trained
to generate an appropriate description. In fact, you can find a combined application
of image captioning and Q&A system called visual question answering at https://
vqa.cloudcv.org/.

Summary
 Sequence-to-sequence networks can be built with a modular, reusable encoder-

decoder architecture.
 The encoder model generates a thought vector, a dense, fixed-dimension vector

representation of the information in a variable-length input sequence.
 A decoder can use thought vectors to predict (generate) output sequences,

including the replies of a chatbot.
 Due to the thought vector representation, the input and the output sequence

lengths don’t have to match.
 Thought vectors can only hold a limited amount of information. If you need a

thought vector to encode more complex concepts, the attention mechanism
can help selectively encode what is important in the thought vector.

17 See the web page titled “NEWS SUMMARY: Kaggle” (https://www.kaggle.com/sunnysai12345/news
-summary/data).

18 State of the art speech recognition system: https://arxiv.org/pdf/1610.03022.pdf.

https://vqa.cloudcv.org/
https://vqa.cloudcv.org/
https://www.kaggle.com/sunnysai12345/news-summary/data
https://www.kaggle.com/sunnysai12345/news-summary/data
https://arxiv.org/pdf/1610.03022.pdf

Part 3

Getting real
(real-world NLP challenges)

Part 3 shows you how to extend your skills to tackle real-world problems.
You’ll learn how to extract information such as dates and names to build applica-
tions such as the Twitter bot that helped manage the self-service scheduling of
Open Spaces at PyCon US in 2017 and 2018.

 In these last three chapters, we also tackle the trickier problems of NLP.
You’ll learn about several different ways to build a chatbot, both with and with-
out machine learning to guide it. And to create complex behavior, you’ll learn
how to combine these techniques together. You’ll also learn about algorithms
that can handle large corpora—sets of documents that cannot be loaded into
RAM all at once.

338 CHAPTER

Information extraction
(named entity extraction
and question answering)
One last skill you need before you can build a full-featured chatbot is extracting
information or knowledge from natural language text.

11.1 Named entities and relations
You’d like your machine to extract pieces of information and facts from text so it
can know a little bit about what a user is saying. For example, imagine a user says
“Remind me to read aiindex.org on Monday.” You’d like that statement to trigger a
calendar entry or alarm for the next Monday after the current date.

This chapter covers
 Sentence segmentation

 Named entity recognition (NER)

 Numerical information extraction

 Part-of-speech (POS) tagging and dependency
tree parsing

 Logical relation extraction and knowledge bases
339

340 CHAPTER 11 Information extraction (named entity extraction and question answering)
 To trigger those actions, you’d need to know that “me” represents a particular kind
of named entity: a person. And the chatbot should know that it should “expand” or nor-
malize that word by replacing it with that person’s username. You’d also need your chat-
bot to recognize that “aiindex.org” is an abbreviated URL, a named entity of the name
of a specific instance of something. And you need to know that a normalized spelling
of this particular kind of named entity might be “http://aiindex.org,” “https://
aiindex.org,” or maybe even “https://www.aiindex.org.” Likewise you need your chat-
bot to recognize that Monday is one of the days of the week (another kind of named
entity called an “event”) and be able to find it on the calendar.

 For the chatbot to respond properly to that simple request, you also need it to
extract the relation between the named entity “me” and the command “remind.”
You’d even need to recognize the implied subject of the sentence, “you,” referring to
the chatbot, another person named entity. And you need to “teach” the chatbot that
reminders happen in the future, so it should find the soonest upcoming Monday to
create the reminder.

 A typical sentence may contain several named entities of various types, such as geo-
graphic entities, organizations, people, political entities, times (including dates), arti-
facts, events, and natural phenomena. And a sentence can contain several relations,
too—facts about the relationships between the named entities in the sentence.

11.1.1 A knowledge base

Besides just extracting information from the text of a user statement, you can also use
information extraction to help your chatbot train itself! If you have your chatbot run
information extraction on a large corpus, such as Wikipedia, that corpus will produce
facts about the world that can inform future chatbot behaviors and replies. Some chat-
bots record all the information they extract (from offline reading-assignment “home-
work”) in a knowledge base. Such a knowledge base can later be queried to help your
chatbot make informed decisions or inferences about the world.

 Chatbots can also store knowledge about the current user “session” or conversa-
tion. Knowledge that is relevant only to the current conversation is called “context.”
This contextual knowledge can be stored in the same global knowledge base that sup-
ports the chatbot, or it can be stored in a separate knowledge base. Commercial chat-
bot APIs, such as IBM’s Watson or Amazon’s Lex, typically store context separate from
the global knowledge base of facts that they use to support conversations with all the
other users.

 Context can include facts about the user, the chatroom or channel, or the weather
and news for that moment in time. Context can even include the changing state of the
chatbot itself, based on the conversation. An example of “self-knowledge” a smart
chatbot should keep track of is the history of all the things it has already told someone
or the questions it has already asked of the user, so it doesn’t repeat itself.

 So that’s the goal for this chapter, teaching your bot to understand what it reads.
And you’ll put that understanding into a flexible data structure designed to store

http://aiindex.org
https://aiindex.org
https://aiindex.org
https://www.aiindex.org

341Named entities and relations
knowledge. Then your bot can use that knowledge to make decisions and say smart
stuff about the world.

 In addition to the simple task of recognizing numbers and dates in text, you’d like
your bot to be able to extract more general information about the world. And you’d
like it to do this on its own, rather than having you “program” everything you know
about the world into it. For example, you’d like it to be able to learn from natural lan-
guage documents such as this sentence from Wikipedia:

In 1983, Stanislav Petrov, a lieutenant colonel of the Soviet Air Defense Forces,
saved the world from nuclear war.

If you were to take notes in a history class after reading or hearing something like that,
you’d probably paraphrase things and create connections in your brain between con-
cepts or words. You might reduce it to a piece of knowledge, that thing that you “got
out of it.” You’d like your bot to do the same thing. You’d like it to “take note” of what-
ever it learns, such as the fact or knowledge that Stanislov Petrov was a lieutenant col-
onel. This could be stored in a data structure something like this:

('Stanislav Petrov', 'is-a', 'lieutenant colonel')

This is an example of two named entity nodes ('Stanislav Petrov' and 'lieutenant colo-
nel') and a relation or connection ('is a') between them in a knowledge graph or
knowledge base. When a relationship like this is stored in a form that complies with
the RDF standard (relation description format) for knowledge graphs, it’s referred to
as an RDF triplet. Historically these RDF triplets were stored in XML files, but they
can be stored in any file format or database that can hold a graph of triplets in the
form of (subject, relation, object).

 A collection of these triplets is a knowledge graph. This is also sometimes called an
ontology by linguists, because it’s storing structured information about words. But
when the graph is intended to represent facts about the world rather than merely
words, it’s referred to as a knowledge graph or knowledge base. Figure 11.1 is a graphic
representation of the knowledge graph you’d like to extract from a sentence like that.

 The “is-a” relationship at the top of figure 11.1 represents a fact that couldn’t be
directly extracted from the statement about Stanislav. But this fact that “lieutenant col-
onel” is a military rank could be
inferred from the fact that the title
of a person who’s a member of a
military organization is a military
rank. This logical operation of
deriving facts from a knowledge
graph is called knowledge graph
inference. It can also be called que-
rying a knowledge base, analogous
to querying a relational database.

Lieutenant
Colonel

Stanislov
Petrov

organization

person

Soviet
Air Defense Force

is-member

is-a

military rank
is-a

is-a
is-

a

Figure 11.1 Stanislav knowledge graph

342 CHAPTER 11 Information extraction (named entity extraction and question answering)
For this particular inference or query about Stanislov’s military rank, your knowledge
graph would have to already contain facts about militaries and military ranks. It might
even help if the knowledge base had facts about the titles of people and how people
relate to occupations (jobs). Perhaps you can see now how a base of knowledge helps
a machine understand more about a statement than it could without that knowledge.
Without this base of knowledge, many of the facts in a simple statement like this will
be “over the head” of your chatbot. You might even say that questions about occupa-
tional rank would be “above the pay grade” of a bot that only knew how to classify doc-
uments according to randomly allocated topics.1

 It may not be obvious how big a deal this is, but it is a BIG deal. If you’ve ever inter-
acted with a chatbot that doesn’t understand “which way is up,” literally, you’d under-
stand. One of the most daunting challenges in AI research is the challenge of
compiling and efficiently querying a knowledge graph of common sense knowledge.
We take common sense knowledge for granted in our everyday conversations.

 Humans start acquiring much of their common sense knowledge even before they
acquire language skill. We don’t spend our childhood writing about how a day begins
with light and sleep usually follows sunset. And we don’t edit Wikipedia articles about
how an empty belly should only be filled with food rather than dirt or rocks. This
makes it hard for machines to find a corpus of common sense knowledge to read and
learn from. No common-sense knowledge Wikipedia articles exist for your bot to do
information extraction on. And some of that knowledge is instinct, hard-coded into
our DNA.2

 All kinds of factual relationships exist between things and people, such as “kind-
of,” “is-used-for,” “has-a,” “is-famous-for,” “was-born,” and “has-profession.” NELL, the
Carnegie Mellon Never Ending Language Learning bot, is focused almost entirely on
the task of extracting information about the “kind-of” relationship.

 Most knowledge bases normalize the strings that define these relationships, so that
“kind of” and “type of” would be assigned a normalized string or ID to represent that
particular relation. And some knowledge bases also resolve the nouns representing the
objects in a knowledge base. So the bigram “Stanislav Petrov” might be assigned a par-
ticular ID. Synonyms for “Stanislav Petrov,” like “S. Petrov” and “Lt Col Petrov,” would
also be assigned to that same ID, if the NLP pipeline suspected they referred to the
same person.

 A knowledge base can be used to build a practical type of chatbot called a question
answering system (QA system). Customer service chatbots, including university TA bots,
rely almost exclusively on knowledge bases to generate their replies.3 Question
answering systems are great for helping humans find factual information, which frees
up human brains to do the things they’re better at, such as attempting to generalize

1 See chapter 4 if you’ve forgotten about how random topic allocation can be.
2 There are hard-coded, common-sense knowledge bases out there for you to build on. Google Scholar is your

friend in this knowledge graph search.
3 2016, AI Teaching Assistant at GaTech: http://www.news.gatech.edu/2016/05/09/artificial-intelligence-

course-creates-ai-teaching-assistant.

http://www.news.gatech.edu/2016/05/09/artificial-intelligence-course-creates-ai-teaching-assistant
http://www.news.gatech.edu/2016/05/09/artificial-intelligence-course-creates-ai-teaching-assistant

343Regular patterns
from those facts. Humans are bad at remembering facts accurately but good at finding
connections and patterns between those facts, something machines have yet to master.
We talk more about question answering chatbots in the next chapter.

11.1.2 Information extraction

So you’ve learned that “information extraction” is converting unstructured text into
structured information stored in a knowledge base or knowledge graph. Information
extraction is part of an area of research called natural language understanding (NLU),
though that term is often used synonymously with natural language processing.

 Information extraction and NLU is a different kind of learning than you may think
of when researching data science. It isn’t only unsupervised learning; even the very
“model” itself, the logic about how the world works, can be composed without human
intervention. Instead of giving your machine fish (facts), you’re teaching it how to fish
(extract information). Nonetheless, machine learning techniques are often used to
train the information extractor.

11.2 Regular patterns
You need a pattern-matching algorithm that can identify sequences of characters or
words that match the pattern so you can “extract” them from a longer string of text.
The naive way to build such a pattern-matching algorithm is in Python, with a
sequence of if/then statements that look for that symbol (a word or character) at each
position of a string. Say you wanted to find some common greeting words, such as
“Hi,” “Hello,” and “Yo,” at the beginning of a statement. You might do it as shown in
the following listing.

>>> def find_greeting(s):
... """ Return greeting str (Hi, etc) if greeting pattern matches """
... if s[0] == 'H':
... if s[:3] in ['Hi', 'Hi ', 'Hi,', 'Hi!']:
... return s[:2]
... elif s[:6] in ['Hello', 'Hello ', 'Hello,', 'Hello!']:
... return s[:5]
... elif s[0] == 'Y':
... if s[1] == 'o' and s[:3] in ['Yo', 'Yo,', 'Yo ', 'Yo!']:
... return s[:2]
... return None

And the following listing shows how it would work.

>>> find_greeting('Hi Mr. Turing!')
'Hi'
>>> find_greeting('Hello, Rosa.')
'Hello'

Listing 11.1 Pattern hardcoded in Python

Listing 11.2 Brittle pattern-matching example

344 CHAPTER 11 Information extraction (named entity extraction and question answering)
>>> find_greeting("Yo, what's up?")
'Yo'
>>> find_greeting("Hello")
'Hello'
>>> print(find_greeting("hello"))
None
>>> print(find_greeting("HelloWorld"))
None

You can probably see how tedious programming a pattern matching algorithm this
way would be. And it’s not even that good. It’s quite brittle, relying on precise spell-
ings and capitalization and character positions in a string. And it’s tricky to specify all
the “delimiters,” such as punctuation, white space, or the beginnings and ends of
strings (NULL characters) that are on either sides of words you’re looking for.

 You could probably come up with a way to allow you to specify different words or
strings you want to look for without hard-coding them into Python expressions like
this. And you could even specify the delimiters in a separate function. That would let
you do some tokenization and iteration to find the occurrence of the words you’re
looking for anywhere in a string. But that’s a lot of work.

 Fortunately that work has already been done! A pattern-matching engine is inte-
grated into most modern computer languages, including Python. It’s called regular
expressions. Regular expressions and string interpolation formatting expressions (for
example, "{:05d}".format(42)), are mini programming languages unto them-
selves. This language for pattern matching is called the regular expression language.
And Python has a regular expression interpreter (compiler and runner) in the stan-
dard library package re. So let’s use them to define your patterns instead of deeply
nested Python if statements.

11.2.1 Regular expressions

Regular expressions are strings written in a special computer language that you can
use to specify algorithms. Regular expressions are a lot more powerful, flexible, and
concise than the equivalent Python you’d need to write to match patterns like this. So
regular expressions are the pattern definition language of choice for many NLP prob-
lems involving pattern matching. This NLP application is an extension of its original
use for compiling and interpreting formal languages (computer languages).

 Regular expressions define a finite state machine or FSM—a tree of “if-then” deci-
sions about a sequence of symbols, such as the find_greeting() function in listing
11.1. The symbols in the sequence are passed into the decision tree of the FSM one
symbol at a time. A finite state machine that operates on a sequence of symbols such
as ASCII character strings, or a sequence of English words, is called a grammar. They
can also be called formal grammars to distinguish them from natural language gram-
mar rules you learned in grammar school.

 In computer science and mathematics, the word “grammar” refers to the set of rules
that determine whether or not a sequence of symbols is a valid member of a language,
often called a computer language or formal language. And a computer language, or

345Regular patterns
formal language, is the set of all possible statements that would match the formal gram-
mar that defines that language. That’s kind of a circular definition, but that’s the way
mathematics works sometimes. You probably want to review appendix B if you aren’t
familiar with basic regular expression syntax and symbols such as r'.*' and r'a-z'.

11.2.2 Information extraction as ML feature extraction

So you’re back where you started in chapter 1, where we first mentioned regular
expressions. But didn’t you switch from “grammar-based” NLP approaches at the end
of chapter 1 in favor of machine learning and data-driven approaches? Why return to
hard-coded (manually composed) regular expressions and patterns? Because your sta-
tistical or data-driven approach to NLP has limits.

 You want your machine learning pipeline to be able to do some basic things, such
as answer logical questions, or perform actions such as scheduling meetings based on
NLP instructions. And machine learning falls flat here. You rarely have a labeled train-
ing set that covers the answers to all the questions people might ask in natural lan-
guage. Plus, as you’ll see here, you can define a compact set of condition checks (a
regular expression) to extract key bits of information from a natural language string.
And it can work for a broad range of problems.

 Pattern matching (and regular expressions) continue to be the state-of-the art
approach for information extraction. Even with machine learning approaches to nat-
ural language processing, you need to do feature engineering. You need to create
bags of words or embeddings of words to try to reduce the nearly infinite possibilities
of meaning in natural language text into a vector that a machine can process easily.
Information extraction is just another form of machine learning feature extraction
from unstructured natural language data, such as creating a bag of words, or doing
PCA on that bag of words. And these patterns and features are still employed in even
the most advanced natural language machine learning pipelines, such as Google’s
Assistant, Siri, Amazon Alexa, and other state-of-the-art bots.

 Information extraction is used to find statements and information that you might
want your chatbot to have “on the tip of its tongue.” Information extraction can be
accomplished beforehand to populate a knowledge base of facts. Alternatively, the
required statements and information can be found on-demand, when the chatbot is
asked a question or a search engine is queried. When a knowledge base is built ahead
of time, the data structure can be optimized to facilitate faster queries within larger
domains of knowledge. A prebuilt knowledge base enables the chatbot to respond
quickly to questions about a wider range of information. If information is retrieved in
real-time, as the chatbot is being queried, this is often called “search.” Google and other
search engines combine these two techniques, querying a knowledge graph (knowl-
edge base) and falling back to text search if the necessary facts aren’t found. Many of
the natural language grammar rules you learned in school can be encoded in a formal
grammar designed to operate on words or symbols representing parts of speech. And
the English language can be thought of as the words and grammar rules that make up

346 CHAPTER 11 Information extraction (named entity extraction and question answering)
the language. Or you can think of it as the set of all the possible things you could say that
would be recognized as valid statements by an English language speaker.

 And that brings us to another feature of formal grammars and finite state machines
that will come in handy for NLP. Any formal grammar can be used by a machine in
two ways:

 To recognize matches to that grammar
 To generate a new sequence of symbols

Not only can you use patterns (regular expressions) for extracting information from
natural language, but you can also use them in a chatbot that wants to “say” things that
match that pattern! We show you how to do this with a package called rstr4 for some
of your information extraction patterns here.

 This formal grammar and finite state machine approach to pattern matching has
some other awesome features. A true finite state machine can be guaranteed to always
run in finite time (to halt). It will always tell you whether you’ve found a match in your
string or not. It will never get caught in a perpetual loop… as long as you don’t use
some of the advanced features of regular expression engines that allow you to “cheat”
and incorporate loops into your FSM.

 So you’ll stick to regular expressions that don’t require these “look-back” or “look-
ahead” cheats. You’ll make sure your regular expression matcher processes each char-
acter and moves ahead to the next character only if it matches—sort of like a strict
train conductor walking through the seats checking tickets. If you don’t have one, the
conductor stops and declares that there’s a problem, a mismatch, and he refuses to go
on, or look ahead or behind you until he resolves the problem. There are no “go
backs” or “do overs” for train passengers, or for strict regular expressions.

11.3 Information worth extracting
Some keystone bits of quantitative information are worth the effort of “hand-crafted”
regular expressions:

 GPS locations
 Dates
 Prices
 Numbers

Other important pieces of natural language information require more complex pat-
terns than are easily captured with regular expressions:

 Question trigger words
 Question target words
 Named entities

4 See the web page titled “leapfrogdevelopment / rstr — Bitbucket” (https://bitbucket.org/leapfrogdevelop-
ment/rstr/).

https://bitbucket.org/leapfrogdevelopment/rstr/
https://bitbucket.org/leapfrogdevelopment/rstr/

347Information worth extracting
11.3.1 Extracting GPS locations

GPS locations are typical of the kinds of numerical data you’ll want to extract from
text using regular expressions. GPS locations come in pairs of numerical values for lat-
itude and longitude. They sometimes also include a third number for altitude, or
height above sea level, but you’ll ignore that for now. Let’s just extract decimal lati-
tude/longitude pairs, expressed in degrees. This will work for many Google Maps
URLs. Though URLs aren’t technically natural language, they are often part of
unstructured text data, and you’d like to extract this bit of information, so your chat-
bot can know about places as well as things.

 Let’s use your decimal number pattern from previous examples, but let’s be more
restrictive and make sure the value is within the valid range for latitude (+/- 90 deg)
and longitude (+/- 180 deg). You can’t go any farther north than the North Pole (+90
deg) or farther south than the South Pole (-90 deg). And if you sail from Greenwich
England 180 deg east (+180 deg longitude), you’ll reach the date line, where you’re
also 180 deg west (-180 deg) from Greenwich. See the following listing.

>>> import re
>>> lat = r'([-]?[0-9]?[0-9][.][0-9]{2,10})'
>>> lon = r'([-]?1?[0-9]?[0-9][.][0-9]{2,10})'
>>> sep = r'[,/]{1,3}'
>>> re_gps = re.compile(lat + sep + lon)

>>> re_gps.findall('http://...maps/@34.0551066,-118.2496763...')
[(34.0551066, -118.2496763)]

>>> re_gps.findall("https://www.openstreetmap.org/#map=10/5.9666/116.0566")
[('5.9666', '116.0566')]

>>> re_gps.findall("Zig Zag Cafe is at 45.344, -121.9431 on my GPS.")
[('45.3440', '-121.9431')]

Numerical data is pretty easy to extract, especially if the numbers are part of a machine-
readable string. URLs and other machine-readable strings put numbers such as latitude
and longitude in a predictable order, format, and units to make things easy for us. This
pattern will still accept some out-of-this-world latitude and longitude values, but it gets
the job done for most of the URLs you’ll copy from mapping web apps such as Open-
StreetMap.

 But what about dates? Will regular expressions work for dates? What if you want
your date extractor to work in Europe and the US, where the order of day/month is
often reversed?

11.3.2 Extracting dates

Dates are a lot harder to extract than GPS coordinates. Dates are a more natural lan-
guage, with different dialects for expressing similar things. In the US, Christmas 2017

Listing 11.3 Regular expression for GPS coordinates

348 CHAPTER 11 Information extraction (named entity extraction and question answering)
is “12/25/17.” In Europe, Christmas 2017 is “25/12/17.” You could check the locale
of your user and assume that they write dates the same way as others in their region.
But this assumption can be wrong.

 So most date and time extractors try to work with both kinds of day/month order-
ings and check to make sure it’s a valid date. This is how the human brain works when
we read a date like that. Even if you were a US-English speaker and you were in Brussels
around Christmas, you’d probably recognize “25/12/17” as a holiday, because there
are only 12 months in the year.

 This “duck-typing” approach that works in computer programming can work for
natural language, too. If it looks like a duck and acts like a duck, it’s probably a duck.
If it looks like a date and acts like a date, it’s probably a date. You’ll use this “try it and
ask forgiveness later” approach for other natural language processing tasks as well.
You’ll try a bunch of options and accept the one the works. You’ll try your extractor or
your generator, and then you’ll run a validator on it to see if it makes sense.

 For chatbots this is a particularly powerful approach, allowing you to combine the
best of multiple natural language generators. In chapter 10, you generated some chat-
bot replies using LSTMs. To improve the user experience, you could generate a lot of
replies and choose the one with the best spelling, grammar, and sentiment. We’ll talk
more about this in chapter 12. See the following listing.

>>> us = r'((([01]?\d)[-/]([0123]?\d))([-/]([0123]\d)\d\d)?)'
>>> mdy = re.findall(us, 'Santa came 12/25/2017. An elf appeared 12/12.')
>>> mdy
[('12/25/2017', '12/25', '12', '25', '/2017', '20'),
('12/12', '12/12', '12', '12', '', '')]

A list comprehension can be used to provide a little structure to that extracted data,
by converting the month, day, and year into integers and labeling that numerical
information with a meaningful name, as shown in the following listing.

>>> dates = [{'mdy': x[0], 'my': x[1], 'm': int(x[2]), 'd': int(x[3]),
... 'y': int(x[4].lstrip('/') or 0), 'c': int(x[5] or 0)} for x in mdy]
>>> dates
[{'mdy': '12/25/2017', 'my': '12/25', 'm': 12, 'd': 25, 'y': 2017, 'c': 20},
{'mdy': '12/12', 'my': '12/12', 'm': 12, 'd': 12, 'y': 0, 'c': 0}]

Even for these simple dates, it’s not possible to design a regex that can resolve all the
ambiguities in the second date, “12/12.” There are ambiguities in the language of
dates that only humans can guess at resolving using knowledge about things like
Christmas and the intent of the writer of a text. For examle “12/12” could mean

Listing 11.4 Regular expression for US dates

Listing 11.5 Structuring extracted dates

349Information worth extracting
 December 12th, 2017—month/day in the estimated year based on anaphora
resolution5

 December 12th, 2018—month/day in the current year at time of publishing
 December 2012—month/year in the year 2012

Because month/day come before the year in US dates and in our regex, “12/12” is pre-
sumed to be December 12th of an unknown year. You can fill in any missing numerical
fields with the most recently read year using the context from the structured data in
memory, as shown in the following listing.

>>> for i, d in enumerate(dates):
... for k, v in d.items():
... if not v:
... d[k] = dates[max(i - 1, 0)][k]
>>> dates
[{'mdy': '12/25/2017', 'my': '12/25', 'm': 12, 'd': 25, 'y': 2017, 'c': 20},
{'mdy': '12/12', 'my': '12/12', 'm': 12, 'd': 12, 'y': 2017, 'c': 20}]

>>> from datetime import date
>>> datetimes = [date(d['y'], d['m'], d['d']) for d in dates]
>>> datetimes
[datetime.date(2017, 12, 25), datetime.date(2017, 12, 12)]

This is a basic but reasonably robust way to extract date information from natural lan-
guage text. The main remaining tasks to turn this into a production date extractor
would be to add some exception catching and context maintenance that’s appropri-
ate for your application. If you added that to the nlpia package (http://github.com/
totalgood/nlpia) with a pull request, I’m sure your fellow readers would appreciate it.
And if you added some extractors for times, well, then you’d be quite the hero.

 There are opportunities for some hand-crafted logic to deal with edge cases and
natural language names for months and even days. But no amount of sophistication
could resolve the ambiguity in the date “12/11.” That could be

 December 11th in whatever year you read or heard it
 November 12th if you heard it in London or Launceston, Tasmania (a com-

monwealth territory)
 December 2011 if you read it in a US newspaper
 November 2012 if you read it in an EU newspaper

Some natural language ambiguities can’t be resolved, even by a human brain. But let’s
make sure your date extractor can handle European day/month order by reversing
month and day in your regex. See the following listing.

5 Issues in Anaphora Resolution by Imran Q. Sayed for Stanford’s CS224N course: https://nlp.stanford.edu/
courses/cs224n/2003/fp/iqsayed/project_report.pdf.

Listing 11.6 Basic context maintenance

This works because both
the dict and the list are
mutable data types.

http://github.com/totalgood/nlpia
http://github.com/totalgood/nlpia
https://nlp.stanford.edu/courses/cs224n/2003/fp/iqsayed/project_report.pdf
https://nlp.stanford.edu/courses/cs224n/2003/fp/iqsayed/project_report.pdf

350 CHAPTER 11 Information extraction (named entity extraction and question answering)

>>> eu = r'((([0123]?\d)[-/]([01]?\d))([-/]([0123]\d)?\d\d)?)'
>>> dmy = re.findall(eu, 'Alan Mathison Turing OBE FRS (23/6/1912-7/6/1954) \
... was an English computer scientist.')
>>> dmy
[('23/6/1912', '23/6', '23', '6', '/1912', '19'),
('7/6/1954', '7/6', '7', '6', '/1954', '19')]

>>> dmy = re.findall(eu, 'Alan Mathison Turing OBE FRS (23/6/12-7/6/54) \
... was an English computer scientist.')
>>> dmy
[('23/6/12', '23/6', '23', '6', '/12', ''),
('7/6/54', '7/6', '7', '6', '/54', '')]

That regular expression correctly extracts Turing’s birth and wake dates from a Wiki-
pedia excerpt. But I cheated, I converted the month “June” into the number 6 before
testing the regular expression on that Wikipedia sentence. So this isn’t a realistic
example. And you’d still have some ambiguity to resolve for the year if the century
isn’t specified. Does the year 54 mean 1954 or does it mean 2054? You’d like your
chatbot to be able to extract dates from unaltered Wikipedia articles so it can read up
on famous people and learn import dates. For your regex to work on more natural
language dates, such as those found in Wikipedia articles, you need to add words such
as “June” (and all its abbreviations) to your date-extracting regular expression.

 You don’t need any special symbols to indicate words (characters that go together
in sequence). You can type them in the regex exactly as you’d like them to be spelled
in the input, including capitalization. All you have to do is put an OR symbol (|)
between them in the regular expression. And you need to make sure it can handle US
month/day order as well as European order. You’ll add these two alternative date
“spellings” to your regular expression with a “big” OR (|) between them as a fork in
your tree of decisions in the regular expression.

 Let’s use some named groups to help you recognize years such as “’84” as 1984 and
“08” as 2008. And let’s try to be a little more precise about the 4-digit years you want to
match, only matching years in the future up to 2399 and in the past back to year 0.6

See the following listing.

>>> yr_19xx = (
... r'\b(?P<yr_19xx>' +
... '|'.join('{}'.format(i) for i in range(30, 100)) +
... r')\b'
...)
>>> yr_20xx = (
... r'\b(?P<yr_20xx>' +
... '|'.join('{:02d}'.format(i) for i in range(10)) + '|' +
... '|'.join('{}'.format(i) for i in range(10, 30)) +

Listing 11.7 Regular expression for European dates

6 See the web page titled “Year zero” (https://en.wikipedia.org/wiki/Year_zero).

Listing 11.8 Recognizing years

2-digit years
30-99 = 1930-1999

https://en.wikipedia.org/wiki/Year_zero

351Information worth extracting
... r')\b'

...)
>>> yr_cent = r'\b(?P<yr_cent>' + '|'.join(
... '{}'.format(i) for i in range(1, 40)) + r')'
>>> yr_ccxx = r'(?P<yr_ccxx>' + '|'.join(
... '{:02d}'.format(i) for i in range(0, 100)) + r')\b'
>>> yr_xxxx = r'\b(?P<yr_xxxx>(' + yr_cent + ')(' + yr_ccxx + r'))\b'
>>> yr = (
... r'\b(?P<yr>' +
... yr_19xx + '|' + yr_20xx + '|' + yr_xxxx +
... r')\b'
...)
>>> groups = list(re.finditer(
... yr, "0, 2000, 01, '08, 99, 1984, 2030/1970 85 47 `66"))
>>> full_years = [g['yr'] for g in groups]
>>> full_years
['2000', '01', '08', '99', '1984', '2030', '1970', '85', '47', '66']

Wow! That’s a lot of work, just to handle some simple year rules in regex rather than in
Python. Don’t worry, packages are available for recognizing common date formats.
They are much more precise (fewer false matches) and more general (fewer misses).
So you don’t need to be able to compose complex regular expressions such as this
yourself. This example just gives you a pattern in case you need to extract a particular
kind of number using a regular expression in the future. Monetary values and IP
addresses are examples where a more complex regular expression, with named
groups, might come in handy.

 Let’s finish up your regular expression for extracting dates by adding patterns for
the month names such as “June” or “Jun” in Turing’s birthday on Wikipedia dates, as
shown in the following listing.

>>> mon_words = 'January February March April May June July ' \
... 'August September October November December'
>>> mon = (r'\b(' + '|'.join('{}|{}|{}|{}|{:02d}'.format(
... m, m[:4], m[:3], i + 1, i + 1) for i, m in

➥ enumerate(mon_words.split())) +
... r')\b')
>>> re.findall(mon, 'January has 31 days, February the 2nd month

➥ of 12, has 28, except in a Leap Year.')
['January', 'February', '12']

Can you see how you might combine these regular expressions into a larger one that
can handle both EU and US date formats? One complication is that you can’t reuse
the same name for a group (parenthesized part of the regular expression). So you
can’t put an OR between the US and EU ordering of the named regular expressions
for month and year. And you need to include patterns for some optional separators
between the day, month, and year.

Listing 11.9 Recognizing month words with regular expressions

1- or 2-digit years
01-30 = 2001-2030

First digits of a 3- or
4-digit year such as
the “1” in “123 A.D.”
or “20” in “2018”

Last 2 digits of a 3- or 4-digit
year such as the “23” in

“123 A.D.” or “18” in “2018”

352 CHAPTER 11 Information extraction (named entity extraction and question answering)
 Here’s one way to do all that.

>>> day = r'|'.join('{:02d}|{}'.format(i, i) for i in range(1, 32))
>>> eu = (r'\b(' + day + r')\b[-,/]{0,2}\b(' +
... mon + r')\b[-,/]{0,2}\b(' + yr.replace('<yr', '<eu_yr') + r')\b')
>>> us = (r'\b(' + mon + r')\b[-,/]{0,2}\b(' +
... day + r')\b[-,/]{0,2}\b(' + yr.replace('<yr', '<us_yr') + r')\b')
>>> date_pattern = r'\b(' + eu + '|' + us + r')\b'
>>> list(re.finditer(date_pattern, '31 Oct, 1970 25/12/2017'))
[<_sre.SRE_Match object; span=(0, 12), match='31 Oct, 1970'>,
<_sre.SRE_Match object; span=(13, 23), match='25/12/2017'>]

Finally, you need to validate these dates by seeing if they can be turned into valid
Python datetime objects, as shown in the following listing.

>>> import datetime
>>> dates = []
>>> for g in groups:
... month_num = (g['us_mon'] or g['eu_mon']).strip()
... try:
... month_num = int(month_num)
... except ValueError:
... month_num = [w[:len(month_num)]
... for w in mon_words].index(month_num) + 1
... date = datetime.date(
... int(g['us_yr'] or g['eu_yr']),
... month_num,
... int(g['us_day'] or g['eu_day']))
... dates.append(date)
>>> dates
[datetime.date(1970, 10, 31), datetime.date(2017, 12, 25)]

Your date extractor appears to work OK, at least for a few simple, unambiguous dates.
Think about how packages such as Python-dateutil and datefinder are able to
resolve ambiguities and deal with more “natural” language dates such as “today” and
“next Monday.” And if you think you can do it better than these packages, send them
a pull request!

 If you just want a state of the art date extractor, statistical (machine learning)
approaches will get you there faster. The Stanford Core NLP SUTime library (https://
nlp.stanford.edu/software/sutime.html) and dateutil.parser.parse by Google
are state-of-the-art.

11.4 Extracting relationships (relations)
So far you’ve looked only at extracting tricky noun instances such as dates and GPS
latitude and longitude values. And you’ve worked mainly with numerical patterns. It’s
time to tackle the harder problem of extracting knowledge from natural language.

Listing 11.10 Combining information extraction regular expressions

Listing 11.11 Validating dates

https://nlp.stanford.edu/software/sutime.html
https://nlp.stanford.edu/software/sutime.html

353Extracting relationships (relations)
You’d like your bot to learn facts about the world from reading an encyclopedia of
knowledge such as Wikipedia. You’d like it to be able to relate those dates and GPS
coordinates to the entities it reads about.

 What knowledge could your brain extract from this sentence from Wikipedia?

On March 15, 1554, Desoto wrote in his journal that the Pascagoula people ranged
as far north as the confluence of the Leaf and Chickasawhay rivers at 30.4, -88.5.

Extracting the dates and the GPS coordinates might enable you to associate that date
and location with Desoto, the Pascagoula people, and two rivers whose names you
can’t pronounce. You’d like your bot (and your mind) to be able to connect those
facts to larger facts—for example, that Desoto was a Spanish conquistador and that
the Pascagoula people were a peaceful Native American tribe. And you’d like the
dates and locations to be associated with the right “things”: Desoto, and the intersec-
tion of two rivers, respectively.

 This is what most people think of when they hear the term natural language
understanding. To understand a statement you need to be able to extract key bits of
information and correlate it with related knowledge. For machines, you store that
knowledge in a graph, also called a knowledge base. The edges of your knowledge
graph are the relationships between things. And the nodes of your knowledge graph
are the nouns or objects found in your corpus.

 The pattern you’re going to use to extract these relationships (or relations) is a
pattern such as SUBJECT - VERB - OBJECT. To recognize these patterns, you’ll need
your NLP pipeline to know the parts of speech for each word in a sentence.

11.4.1 Part-of-speech (POS) tagging

POS tagging can be accomplished with language models that contain dictionaries of
words with all their possible parts of speech. They can then be trained on properly
tagged sentences to recognize the parts of speech in new sentences with other words
from that dictionary. NLTK and spaCy both implement POS tagging functions. You’ll
use spaCy here because it’s faster and more accurate. See the following listing.

>>> import spacy
>>> en_model = spacy.load('en_core_web_md')
>>> sentence = ("In 1541 Desoto wrote in his journal that the Pascagoula peop

le " +
... "ranged as far north as the confluence of the Leaf and Chickasawhay r

ivers at 30.4, -88.5.")
>>> parsed_sent = en_model(sentence)
>>> parsed_sent.ents
(1541, Desoto, Pascagoula, Leaf, Chickasawhay, 30.4)

>>> ' '.join(['{}_{}'.format(tok, tok.tag_) for tok in parsed_sent])
'In_IN 1541_CD Desoto_NNP wrote_VBD in_IN his_PRP$ journal_NN that_IN the_DT

Pascagoula_NNP people_NNS

Listing 11.12 POS tagging with spaCy

spaCy misses the
longitude in the lat, lon
numerical pair.

354 CHAPTER 11 Information extraction (named entity extraction and question answering)
ranged_VBD as_RB far_RB north_RB as_IN the_DT confluence_NN of_IN the_DT Lea
f_NNP and_CC Chickasawhay_NNP

rivers_VBZ at_IN 30.4_CD ,_, -88.5_NFP ._.'

So to build your knowledge graph, you need to figure out which objects (noun
phrases) should be paired up. You’d like to pair up the date “March 15, 1554” with the
named entity Desoto. You could then resolve those two strings (noun phrases) to
point to objects you have in your knowledge base. March 15, 1554 can be converted to
a datetime.date object with a normalized representation.

 spaCy-parsed sentences also contain the dependency tree in a nested dictionary.
And spacy.displacy can generate a scalable vector graphics SVG string (or a complete
HTML page), which can be viewed as an image in a browser. This visualization can
help you find ways to use the tree to create tag patterns for relation extraction. See the
following listing.

>>> from spacy.displacy import render
>>> sentence = "In 1541 Desoto wrote in his journal about the Pascagoula."
>>> parsed_sent = en_model(sentence)
>>> with open('pascagoula.html', 'w') as f:
... f.write(render(docs=parsed_sent, page=True,

➥ options=dict(compact=True)))

The dependency tree for this short sentence shows that the noun phrase “the Pasca-
goula” is the object of the relationship “met” for the subject “Desoto” (see figure
11.2). And both nouns are tagged as proper nouns.

Figure 11.2 The Pascagoula people

To create POS and word property patterns for a spacy.matcher.Matcher, listing all
the token tags in a table is helpful. The following listing shows some helper functions
that make that easier.

>>> import pandas as pd
>>> from collections import OrderedDict

Listing 11.13 Visualize a dependency tree

Listing 11.14 Helper functions for spaCy tagged strings

spaCy uses the "OntoNotes 5" POS
tags: https://spacy.io/api/annotation#pos-tagging.

In

ADP

1541

NUM

Desoto

PROPN

met

VERB

the

DET

Pascagoula.

PROPN

prep

pobj nsubj

dobj

det

https://spacy.io/api/annotation#pos-tagging

355Extracting relationships (relations)
>>> def token_dict(token):
... return OrderedDict(ORTH=token.orth_, LEMMA=token.lemma_,
... POS=token.pos_, TAG=token.tag_, DEP=token.dep_)

>>> def doc_dataframe(doc):
... return pd.DataFrame([token_dict(tok) for tok in doc])

>>> doc_dataframe(en_model("In 1541 Desoto met the Pascagoula."))
ORTH LEMMA POS TAG DEP

0 In in ADP IN prep
1 1541 1541 NUM CD pobj
2 Desoto desoto PROPN NNP nsubj
3 met meet VERB VBD ROOT
4 the the DET DT det
5 Pascagoula pascagoula PROPN NNP dobj
6 . . PUNCT . punct

Now you can see the sequence of POS or TAG features that will make a good pattern.
If you’re looking for “has-met” relationships between people and organizations, you’d
probably like to allow patterns such as “PROPN met PROPN,” “PROPN met the
PROPN,” “PROPN met with the PROPN,” and “PROPN often meets with PROPN.”
You could specify each of those patterns individually, or try to capture them all with
some * or ? operators on “any word” patterns between your proper nouns:

'PROPN ANYWORD? met ANYWORD? ANYWORD? PROPN'

Patterns in spaCy are much more powerful and flexible than the preceding pseudo-
code, so you have to be more verbose to explain exactly the word features you’d like to
match. In a spaCy pattern specification, you use a dictionary to capture all the tags
that you want to match for each token or word, as shown in the following listing.

>>> pattern = [{'TAG': 'NNP', 'OP': '+'}, {'IS_ALPHA': True, 'OP': '*'},
... {'LEMMA': 'meet'},
... {'IS_ALPHA': True, 'OP': '*'}, {'TAG': 'NNP', 'OP': '+'}]

You can then extract the tagged tokens you need from your parsed sentence, as shown
in the following listing.

>>> from spacy.matcher import Matcher
>>> doc = en_model("In 1541 Desoto met the Pascagoula.")
>>> matcher = Matcher(en_model.vocab)
>>> matcher.add('met', None, pattern)
>>> m = matcher(doc)
>>> m
[(12280034159272152371, 2, 6)]

>>> doc[m[0][1]:m[0][2]]
Desoto met the Pascagoula

Listing 11.15 Example spaCy POS pattern

Listing 11.16 Creating a POS pattern matcher with spaCy

356 CHAPTER 11 Information extraction (named entity extraction and question answering)
So you extracted a match from the original sentence from which you created the pat-
tern, but what about similar sentences from Wikipedia? See the following listing.

>>> doc = en_model("October 24: Lewis and Clark met their first Mandan Chief,
Big White.")

>>> m = matcher(doc)[0]
>>> m
(12280034159272152371, 3, 11)

>>> doc[m[1]:m[2]]
Lewis and Clark met their first Mandan Chief

>>> doc = en_model("On 11 October 1986, Gorbachev and Reagan met at a house")
>>> matcher(doc)
[]

You need to add a second pattern to allow for the verb to occur after the subject and
object nouns, as shown in the following listing.

>>> doc = en_model("On 11 October 1986, Gorbachev and Reagan met at a house")
>>> pattern = [{'TAG': 'NNP', 'OP': '+'}, {'LEMMA': 'and'}, {'TAG': 'NNP', 'O

P': '+'},
... {'IS_ALPHA': True, 'OP': '*'}, {'LEMMA': 'meet'}]
>>> matcher.add('met', None, pattern)
>>> m = matcher(doc)
>>> m
[(14332210279624491740, 5, 9),
(14332210279624491740, 5, 11),
(14332210279624491740, 7, 11),
(14332210279624491740, 5, 12)]

>>> doc[m[-1][1]:m[-1][2]]
Gorbachev and Reagan met at a house

So now you have your entities and a relationship. You can even build a pattern that is
less restrictive about the verb in the middle (“met”) and more restrictive about the
names of the people and groups on either side. Doing so might allow you to identify
additional verbs that imply that one person or group has met another, such as the verb
“knows,” or even passive phrases, such as “had a conversation” or “became acquainted
with.” Then you could use these new verbs to add relationships for new proper nouns
on either side.

 But you can see how you’re drifting away from the original meaning of your seed
relationship patterns. This is called semantic drift. Fortunately, spaCy tags words in a
parsed document with not only their POS and dependency tree information, but it

Listing 11.17 Using a POS pattern matcher

Listing 11.18 Combining multiple patterns for a more robust pattern matcher

The pattern doesn’t match any substrings
of the sentence from Wikipedia.

Adds an additional pattern without removing
the previous pattern. Here 'met' is an arbitrary
key. Name your pattern whatever you like.

The '+' operators increase the number
of overlapping alternative matches.

The longest match is the
last one in the list of matches.

357Extracting relationships (relations)
also provides the Word2vec word vector. You can use this vector to prevent the connec-
tor verb and the proper nouns on either side from drifting too far away from the orig-
inal meaning of your seed pattern.7

11.4.2 Entity name normalization

The normalized representation of an entity is usually a string, even for numerical
information such as dates. The normalized ISO format for this date would be “1541-
01-01.” A normalized representation for entities enables your knowledge base to con-
nect all the different things that happened in the world on that same date to that
same node (entity) in your graph.

 You’d do the same for other named entities. You’d correct the spelling of words
and attempt to resolve ambiguities for names of objects, animals, people, places, and
so on. Normalizing named entities and resolving ambiguities is often called coreference
resolution or anaphora resolution, especially for pronouns or other “names” relying on
context. This is similar to lemmatization, which we discussed in chapter 2. Normaliza-
tion of named entities ensures that spelling and naming variations don’t pollute your
vocabulary of entity names with confounding, redundant names.

 For example “Desoto” might be expressed in a particular document in at least five
different ways:

 “de Soto”
 “Hernando de Soto”
 “Hernando de Soto (c. 1496/1497–1542), Spanish conquistador”
 https://en.wikipedia.org/wiki/Hernando_de_Soto (a URI)
 A numerical ID for a database of famous and historical people

Similarly your normalization algorithm can choose any of these forms. A knowledge
graph should normalize each kind of entity the same way, to prevent multiple distinct
entities of the same type from sharing the same name. You don’t want multiple person
names referring to the same physical person. Even more importantly, the normaliza-
tion should be applied consistently—both when you write new facts to the knowledge
base or when you read or query the knowledge base.

 If you decide to change the normalization approach after the database has been
populated, the data for existing entities in the knowledge should be “migrated,” or
altered, to adhere to the new normalization scheme. Schemaless databases (key-value
stores), like the ones used to store knowledge graphs or knowledge bases, aren’t free
from the migration responsibilities of relational databases. After all, schemaless data-
bases are interface wrappers for relational databases under the hood.

 Your normalized entities also need “is-a” relationships to connect them to entity
categories that define types or categories of entities. These “is-a” relationships can be
thought of as tags, because each entity can have multiple “is-a” relationships. Like

7 This is the subject of active research: https://nlp.stanford.edu/pubs/structuredVS.pdf.

https://en.wikipedia.org/wiki/Hernando_de_Soto
https://nlp.stanford.edu/pubs/structuredVS.pdf

358 CHAPTER 11 Information extraction (named entity extraction and question answering)
names of people or POS tags, dates and other discrete numerical objects need to be
normalized if you want to incorporate them into your knowledge base.

 What about relations between entities—do they need to be stored in some normal-
ized way?

11.4.3 Relation normalization and extraction

Now you need a way to normalize the relationships, to identify the kind of relation-
ship between entities. Doing so will allow you to find all birthday relationships
between dates and people, or dates of occurrences of historical events, such as the
encounter between “Hernando de Soto” and the “Pascagoula people.” And you need
to write an algorithm to choose the right label for your relationship.

 And these relationships can have a hierarchical name, such as “occurred-on/
approximately” and “occurred-on/exactly,” to allow you to find specific relationships
or categories of relationships. You can also label these relationships with a numerical
property for the “confidence,” probability, weight, or normalized frequency (analo-
gous to TF-IDF for terms/words) of that relationship. You can adjust these confidence
values each time a fact extracted from a new text corroborates or contradicts an exist-
ing fact in the database.

 Now you need a way to match patterns that can find these relationships.

11.4.4 Word patterns

Word patterns are just like regular expressions, but for words instead of characters.
Instead of character classes, you have word classes. For example, instead of matching a
lowercase character you might have a word pattern decision to match all the singular
nouns (“NN” POS tag).8 This is usually accomplished with machine learning. Some
seed sentences are tagged with some correct relationships (facts) extracted from those
sentences. A POS pattern can be used to find similar sentences where the subject and
object words, or even the relationships, might change.

 You can use the spaCy package two different ways to match these patterns in O(1)
(constant time) no matter how many patterns you want to match:

 PhraseMatcher for any word/tag sequence patterns9

 Matcher for POS tag sequence patterns10

To ensure that the new relations found in new sentences are truly analogous to the
original seed (example) relationships, you often need to constrain the subject, rela-
tion, and object word meanings to be similar to those in the seed sentences. The best
way to do this is with some vector representation of the meaning of words. Does this
ring a bell? Word vectors, discussed in chapter 4, are one of the most widely used word
meaning representations for this purpose. They help minimize semantic drift.

8 spaCy uses the “OntoNotes 5” POS tags: https://spacy.io/api/annotation#pos-tagging.
9 See the web page titled “Code Examples - spaCy Usage Documentation” (https://spacy.io/usage/examples

#phrase-matcher).
10 See the web page titled “Matcher - spaCy API Documentation” (https://spacy.io/api/matcher).

https://spacy.io/api/annotation#pos-tagging
https://spacy.io/usage/examples#phrase-matcher
https://spacy.io/usage/examples#phrase-matcher
https://spacy.io/api/matcher

359Extracting relationships (relations)
 Using semantic vector representations for words and phrases has made automatic
information extraction accurate enough to build large knowledge bases automatically.
But human supervision and curation is required to resolve much of the ambiguity in
natural language text. CMU’s NELL (Never-Ending Language Learner)11 enables
users to vote on changes to the knowledge base using Twitter and a web application.

11.4.5 Segmentation

We’ve skipped one form of information extraction. It’s also a tool used in information
extraction. Most of the documents you’ve used in this chapter have been bite-sized
chunks containing just a few facts and named entities. But in the real world you may
need to create these chunks yourself.

 Document “chunking” is useful for creating semi-structured data about documents
that can make it easier to search, filter, and sort documents for information retrieval.
And for information extraction, if you’re extracting relations to build a knowledge
base such as NELL or Freebase, you need to break it into parts that are likely to con-
tain a fact or two. When you divide natural language text into meaningful pieces, it’s
called segmentation. The resulting segments can be phrases, sentences, quotes, para-
graphs, or even entire sections of a long document.

 Sentences are the most common chunk for most information extraction problems.
Sentences are usually punctuated with one of a few symbols (., ?, !, or a new line). And
grammatically correct English language sentences must contain a subject (noun) and
a verb, which means they’ll usually have at least one relation or fact worth extracting.
And sentences are often self-contained packets of meaning that don’t rely too much
on preceding text to convey most of their information.

 Fortunately most languages, including English, have the concept of a sentence, a
single statement with a subject and verb that says something about the world. Sen-
tences are just the right bite-sized chunk of text for your NLP knowledge extraction
pipeline. For the chatbot pipeline, your goal is to segment documents into sentences,
or statements.

 In addition to facilitating information extraction, you can flag some of those state-
ments and sentences as being part of a dialog or being suitable for replies in a dialog.
Using a sentence segmenter allows you to train your chatbot on longer texts, such as
books. Choosing those books appropriately gives your chatbot a more literary, intelli-
gent style than if you trained it purely on Twitter streams or IRC chats. And these
books give your chatbot access to a much broader set of training documents to build
its common sense knowledge about the world.

SENTENCE SEGMENTATION

Sentence segmentation is usually the first step in an information extraction pipeline.
It helps isolate facts from each other so that you can associate the right price with the

11 See the web page titled “NELL: The Computer that Learns - Carnegie Mellon University” (https://
www.cmu.edu/homepage/computing/2010/fall/nell-computer-that-learns.shtml).

https://www.cmu.edu/homepage/computing/2010/fall/nell-computer-that-learns.shtml
https://www.cmu.edu/homepage/computing/2010/fall/nell-computer-that-learns.shtml

360 CHAPTER 11 Information extraction (named entity extraction and question answering)
right thing in a string such as “The Babel fish costs $42. 42 cents for the stamp.” And
that string is a good example of why sentence segmentation is tough—the dot in the
middle could be interpreted as a decimal or a “full stop” period.

 The simplest pieces of “information” you can extract from a document are
sequences of words that contain a logically cohesive statement. The most important
segments in a natural language document, after words, are sentences. Sentences con-
tain a logically cohesive statement about the world. These statements contain the
information you want to extract from text. Sentences often tell you the relationship
between things and how the world works when they make statements of fact, so you
can use sentences for knowledge extraction. And sentences often explain when,
where, and how things happened in the past, tend to happen in general, or will hap-
pen in the future. So we should also be able to extract facts about dates, times, loca-
tions, people, and even sequences of events or tasks using sentences as our guide.
And, most importantly, all natural languages have sentences or logically cohesive sec-
tions of text of some sort. And all languages have a widely shared process for generat-
ing them (a set of grammar rules or habits).

 But segmenting text, identifying sentence boundaries, is a bit trickier than you
might think. In English, for example, no single punctuation mark or sequence of
characters always marks the end of a sentence.

11.4.6 Why won’t split('.!?') work?

Even a human reader might have trouble finding an appropriate sentence boundary
within each of the following quotes. And if they did find multiple sentences from
each, they would be wrong for four out of five of these difficult examples:

I live in the U.S. but I commute to work in Mexico on S.V. Australis for a woman
from St. Bernard St. on the Gulf of Mexico.

I went to G.T.You?

She yelled “It’s right here!” but I kept looking for a sentence boundary anyway.

I stared dumbfounded on as things like “How did I get here?,” “Where am I?,” “Am
I alive?” flittered across the screen.

The author wrote “'I don’t think it’s conscious.' Turing said.”

Even a human reader might have trouble finding an appropriate sentence boundary
within each of these quotes. More sentence segmentation “edge cases” such as these
are available at tm-town.com12 and within the nlpia.data module.

 Technical text is particularly difficult to segment into sentences, because engineers,
scientists, and mathematicians tend to use periods and exclamation points to signify a

12 See the web page titled “Natural Language Processing: TM-Town” (https://www.tm-town.com/natural
-language-processing#golden_rules).

https://www.tm-town.com/natural-language-processing#golden_rules
https://www.tm-town.com/natural-language-processing#golden_rules
http:/www.tm-town.com

361Extracting relationships (relations)
lot of things besides the end of a sentence. When we tried to find the sentence bound-
aries in this book, we had to manually correct several of the extracted sentences.

 If only we wrote English like telegrams, with a “STOP” or unique punctuation
mark at the end of each sentence. Because we don’t, you’ll need some more sophisti-
cated NLP than just split('.!?'). Hopefully you’re already imagining a solution in
your head. If so, it’s probably based on one of the two approaches to NLP you’ve used
throughout this book:

 Manually programmed algorithms (regular expressions and pattern-matching)
 Statistical models (data-based models or machine learning)

We use the sentence segmentation problem to revisit these two approaches by showing
you how to use regular expressions as well as perceptrons to find sentence boundaries.
And you’ll use the text of this book as a training and test set to show you some of the
challenges. Fortunately you haven’t inserted any newlines within sentences, to manu-
ally wrap text like in newspaper column layouts. Otherwise, the problem would be even
more difficult. In fact, much of the source text for this book, in ASCIIdoc format, has
been written with “old-school” sentence separators (two spaces after the end of every
sentence), or with each sentence on a separate line. This was so we could use this book
as a training and test set for segmenters.

11.4.7 Sentence segmentation with regular expressions

Regular expressions are just a shorthand way of expressing the tree of “if…then” rules
(regular grammar rules) for finding character patterns in strings of characters. As we
mentioned in chapters 1 and 2, regular expressions (regular grammars) are a particu-
larly succinct way to specify the rules of a finite state machine. Our regex or FSM has
only one purpose: identify sentence boundaries.

 If you do a web search for sentence segmenters,13 you’re likely to be pointed to var-
ious regular expressions intended to capture the most common sentence boundaries.
Here are some of them, combined and enhanced to give you a fast, general-purpose
sentence segmenter. The following regex would work with a few “normal” sentences:

>>> re.split(r'[!.?]+[$]', "Hello World.... Are you there?!?! I'm going
to Mars!")

['Hello World', 'Are you there', "I'm going to Mars!"]

Unfortunately, this re.split approach gobbles up the sentence-terminating token,
and only retains it if it’s the last character in a document or string. But it does do a
good job of ignoring the trickery of periods within doubly nested quotes:

>>> re.split(r'[!.?] ', "The author wrote \"'I don't think it's conscious.'
Turing said.\"")

['The author wrote "\'I don\'t think it\'s conscious.\' Turing said."']

13 See the web page titled “Python sentence segment at DuckDuckGo” (https://duckduckgo.com/?q=Python
+sentence+segment&t=canonical&ia=qa).

https://duckduckgo.com/?q=Python+sentence+segment&t=canonical&ia=qa
https://duckduckgo.com/?q=Python+sentence+segment&t=canonical&ia=qa

362 CHAPTER 11 Information extraction (named entity extraction and question answering)
It also ignores periods in quotes that terminate an actual sentence. This can be a good
thing or a bad thing, depending on your information extraction steps that follow your
sentence segmenter:

>>> re.split(r'[!.?] ', "The author wrote \"'I don't think it's conscious.'

➥ Turing said.\" But I stopped reading.")
['The author wrote "\'I don\'t think it\'s conscious.\' Turing said." But I

➥ stopped reading."']

What about abbreviated text, such as SMS messages and tweets? Sometimes hurried
humans squish sentences together, leaving no space surrounding periods. Alone, the
following regex could only deal with periods in SMS messages that have letters on
either side, and it would safely skip over numerical values:

>>> re.split(r'(?<!\d)\.|\.(?!\d)', "I went to GT.You?")
['I went to GT', 'You?']

Even combining these two regexes isn’t enough to get more than a few right in the dif-
ficult test cases from nlpia.data:

>>> from nlpia.data.loaders import get_data
>>> regex = re.compile(r'((?<!\d)\.|\.(?!\d))|([!.?]+)[$]+')
>>> examples = get_data('sentences-tm-town')
>>> wrong = []
>>> for i, (challenge, text, sents) in enumerate(examples):
... if tuple(regex.split(text)) != tuple(sents):
... print('wrong {}: {}{}'.format(i, text[:50], '...' if len(text) >

50 else ''))
... wrong += [i]
>>> len(wrong), len(examples)
(61, 61)

You’d have to add a lot more “look-ahead” and “look-back” to improve the accuracy of
a regex sentence segmenter. A better approach for sentence segmentation is to use a
machine learning algorithm (often a single-layer neural net or logistic regression)
trained on a labeled set of sentences. Several packages contain such a model you can
use to improve your sentence segmenter:

 DetectorMorse14

 spaCy15

 SyntaxNet16

14 See the web page titled “GitHub - cslu-nlp/DetectorMorse: Fast supervised sentence boundary detection using
the averaged perceptron” (https://github.com/cslu-nlp/detectormorse).

15 See the web page titled “Facts & Figures - spaCy Usage Documentation” (https://spacy.io/usage/facts
-figures).

16 See the web page titled “models/syntaxnet-tutorial.md at master” (https://github.com/tensorflow/models/
blob/master/research/syntaxnet/g3doc/syntaxnet-tutorial.md).

https://github.com/cslu-nlp/detectormorse
https://spacy.io/usage/facts-figures
https://spacy.io/usage/facts-figures
https://github.com/tensorflow/models/blob/master/research/syntaxnet/g3doc/syntaxnet-tutorial.md
https://github.com/tensorflow/models/blob/master/research/syntaxnet/g3doc/syntaxnet-tutorial.md

363In the real world
 NLTK (Punkt)17

 Stanford CoreNLP 18

You use the spaCy sentence segmenter (built into the parser) for most of your
mission-critical applications. spaCy has few dependencies and compares well with the
others on accuracy and speed. DetectorMorse, by Kyle Gorman, is another good
choice if you want state-of-the-art performance in a pure Python implementation that
you can refine with your own training set.

11.5 In the real world
Information extraction and question answering systems are used for

 TA assistants for university courses
 Customer service
 Tech support
 Sales
 Software documentation and FAQs

Information extraction can be used to extract things such as

 Dates
 Times
 Prices
 Quantities
 Addresses
 Names

– People
– Places
– Apps
– Companies
– Bots

 Relationships
– “is-a” (kinds of things)
– “has” (attributes of things)
– “related-to”

Whether information is being parsed from a large corpus or from user input on the fly,
being able to extract specific details and store them for later use is critical to the per-
formance of a chatbot. First by identifying and isolating this information and then by

17 See the web page titled “nltk.tokenize package — NLTK 3.3 documentation” (http://www.nltk.org/api/
nltk.tokenize.html#module-nltk.tokenize.punkt).

18 See the web page titled “torotoki / corenlp-python — Bitbucket” (https://bitbucket.org/torotoki/corenlp-
python).

http://www.nltk.org/api/nltk.tokenize.html#module-nltk.tokenize.punkt
http://www.nltk.org/api/nltk.tokenize.html#module-nltk.tokenize.punkt
https://bitbucket.org/torotoki/corenlp-python
https://bitbucket.org/torotoki/corenlp-python

364 CHAPTER 11 Information extraction (named entity extraction and question answering)
tagging relationships between those pieces of information we’ve learned to “normal-
ize” information programmatically. With that knowledge safely shelved in a search-able
structure, your chatbot will be equipped with the tools to hold its own in a conversation
in a given domain.

Summary
 A knowledge graph can be built to store relationships between entities.
 Regular expressions are a mini-programming language that can isolate and

extract information.
 Part-of-speech tagging allows you to extract relationships between entities men-

tioned in a sentence.
 Segmenting sentences requires more than just splitting on periods and excla-

mation marks.

Getting chatty
(dialog engines)
We opened this book with the idea of a dialog engine or chatbot NLP pipeline
because we think it’s one of the most important NLP applications of this century.
For the first time in history we can speak to a machine in our own language, and we
can’t always tell that it isn’t human. Machines can fake being human, which is a lot

This chapter covers
 Understanding four chatbot approaches

 Finding out what Artificial Intelligence Markup
Language is all about

 Understanding the difference between chatbot
pipelines and other NLP pipelines

 Learning about a hybrid chatbot architecture that
combines the best ideas into one

 Using machine learning to make your chatbot get
smarter over time

 Giving your chatbot agency—enabling it to
spontaneously say what’s on its mind
365

366 CHAPTER 12 Getting chatty (dialog engines)
harder than it sounds. There are several cash prize competitions, if you think you and
your chatbot have the right stuff:

 The Alexa Prize ($3.5M)1

 Loebner Prize ($7k)2

 The Winograd Schema Challenge ($27k)3

 The Marcus Test4

 The Lovelace Test5

Beyond the pure fun and magic of building a conversational machine, beyond the
glory that awaits you if you build a bot that can beat humans at an IQ test, beyond the
warm fuzzy feeling of saving the world from malicious hacker botnets, and beyond the
wealth that awaits you if you can beat Google and Amazon at their virtual assistant
games—the techniques you’ll learn in this chapter will give you the tools you need to
get the job done.

 The 21st century is going to be built on a foundation of AI (artificial intelligence)
that assists us. And the most natural interface for AI is natural language conversation.
For example, Aira.io’s chatbot Chloe is helping to interpret the world for people who
are blind or have low-vision. Other companies are building lawyer chatbots that save
users thousands of dollars (or pounds) on parking tickets and hours of courtroom
time. And self-driving cars will likely soon have conversational interfaces similar to
Google Assistant and Google Maps to help you get where you want to go.

12.1 Language skill
You finally have all the pieces you need to assemble a chatbot—more formally, a dialog
system or dialog engine. You’ll build an NLP pipeline that can participate in natural lan-
guage conversations.

 Some of the NLP skills you’ll use include

 Tokenization, stemming, and lemmatization
 Vector space language models such as bag-of-words vectors or topic vectors

(semantic vectors)
 Deeper language representations such as word vectors or LSTM thought vectors
 Sequence-to-sequence translators (from chapter 10)
 Pattern matching (from chapter 11)
 Templates for generating natural language text

1 “The Alexa Prize,” https://developer.amazon.com/alexaprize.
2 “Loebner Prize” at Bletchley Park, http://www.aisb.org.uk/events/loebner-prize.
3 “Establishing a Human Baseline for the Winograd Schema Challenge,” by David Bender, http://ceur-ws.org/

Vol-1353/paper_30.pdf; “An alternative to the Turing test,” Kurzweil, http://www.kurzweilai.net/an-alterna-
tive-to-the-turing-test-winograd-schema-challenge-annual-competition-announced.

4 “What Comes After the Turing Test,” New Yorker, Jan 2014, http://www.newyorker.com/tech/elements/
what-comes-after-the-turing-test.

5 “The Lovelace 2.0 Test of Artificial Creativity and Intelligence,” by Reidl, https://arxiv.org/pdf/1410.6142
.pdf.

https://developer.amazon.com/alexaprize
http://www.aisb.org.uk/events/loebner-prize
http://ceur-ws.org/Vol-1353/paper_30.pdf
http://ceur-ws.org/Vol-1353/paper_30.pdf
http://www.kurzweilai.net/an-alternative-to-the-turing-test-winograd-schema-challenge-annual-competition-announced
http://www.kurzweilai.net/an-alternative-to-the-turing-test-winograd-schema-challenge-annual-competition-announced
http://www.newyorker.com/tech/elements/what-comes-after-the-turing-test
http://www.newyorker.com/tech/elements/what-comes-after-the-turing-test
https://arxiv.org/pdf/1410.6142.pdf
https://arxiv.org/pdf/1410.6142.pdf

367Language skill
With these tools, you can build a chatbot with interesting behavior.
 Let’s make sure we’re on the same page about what a chatbot is. In some commu-

nities, the word “chatbot” is used in a slightly derogatory way to refer to “canned
response” systems.6 These are chatbots that find patterns in the input text and use
matches on those patterns to trigger a fixed, or templated, response.7 You can think of
these as FAQ bots that only know the answers to basic, general questions. These basic
dialog systems are useful mainly for automated customer service phone-tree systems,
where it’s possible to hand off the conversation to a human when the chatbot runs out
of canned responses.

 But this doesn’t mean that your chatbot needs to be so limited. If you’re particu-
larly clever about these patterns and templates, your chatbot can be the therapist in a
convincing psychotherapy or counseling session. All the way back in 1964, Joseph Wei-
zenbaum used patterns and templates to build the first popular chatbot, ELIZA.8 And
the remarkably effective Facebook Messenger therapy bot, Woebot, relies heavily on
the pattern-matching and templated response approach. All that’s needed to build
Turing prize-winning chatbots is to add a little state (context) management to your
pattern-matching system.

 Steve Worswick’s Mitsuku chatbot won the Loebner Prize (https://en.wikipedia
.org/wiki/Turing_test), a form of the Turing Test, in 2016 and 2017 using pattern
matching and templates. He added context or statefulness, to give Mitsuku a bit more
depth. You can read about the other winners on Wikipedia (https://en.wikipedia.org/
wiki/Loebner_Prize#Winners). Amazon recently added this additional layer of con-
versational depth (context) to Alexa and called it “Follow-Up Mode.”9 You’ll learn
how to add context to your own pattern-maching chatbots in this chapter.

12.1.1 Modern approaches

Chatbots have come a long way since the days of ELIZA. Pattern-matching technology
has been generalized and refined over the decades. And completely new approaches
have been developed to supplement pattern matching. In recent literature, chatbots
are often referred to as dialog systems, perhaps because of this greater sophistication.
Matching patterns in text and populating canned-response templates with informa-
tion extracted with those patterns is only one of four modern approaches to building
chatbots:

 Pattern matching—Pattern matching and response templates (canned
responses)

 Grounding—Logical knowledge graphs and inference on those graphs

6 Wikipedia “Canned Response,” https://en.wikipedia.org/wiki/Canned_response.
7 “A Chatbot Dialogue Manager” by A.F. van Woudenberg, Open University of the Netherlands, http://

dspace.ou.nl/bitstream/1820/5390/1/INF_20140617_Woudenberg.pdf.
8 Wikipedia: https://en.wikipedia.org/wiki/ELIZA.
9 See the Verge article “Amazon Follow-Up Mode” (https://www.theverge.com/2018/3/9/17101330/amazon-

alexa-follow-up-mode-back-to-back-requests).

https://en.wikipedia.org/wiki/Turing_test
https://en.wikipedia.org/wiki/Turing_test
https://en.wikipedia.org/wiki/Loebner_Prize#Winners
https://en.wikipedia.org/wiki/Loebner_Prize#Winners
https://en.wikipedia.org/wiki/Canned_response
http://dspace.ou.nl/bitstream/1820/5390/1/INF_20140617_Woudenberg.pdf
http://dspace.ou.nl/bitstream/1820/5390/1/INF_20140617_Woudenberg.pdf
https://en.wikipedia.org/wiki/ELIZA
https://www.theverge.com/2018/3/9/17101330/amazon-alexa-follow-up-mode-back-to-back-requests
https://www.theverge.com/2018/3/9/17101330/amazon-alexa-follow-up-mode-back-to-back-requests

368 CHAPTER 12 Getting chatty (dialog engines)
 Search—Text retrieval
 Generative—Statistics and machine learning

This is roughly the order in which these approaches were developed. And that’s the
order in which we present them here. But before showing you how to use each tech-
nique to generate replies, we show you how chatbots use these techniques in the
real world.

 The most advanced chatbots use a hybrid approach that combines all of these tech-
niques. This hybrid approach enables them to accomplish a broad range of tasks.
Here’s a list of a few of these chatbot applications; you may notice that the more
advanced chatbots, such as Siri, Alexa, and Allo, are listed alongside multiple types of
problems and applications:

 Question answering—Google Search, Alexa, Siri, Watson
 Virtual assistants—Google Assistant, Alexa, Siri, MS paperclip
 Conversational—Google Assistant, Google Smart Reply, Mitsuki Bot
 Marketing—Twitter bots, blogger bots, Facebook bots, Google Search, Google

Assistant, Alexa, Allo
 Customer service—Storefront bots, technical support bots
 Community management—Bonusly, Slackbot
 Therapy—Woebot, Wysa, YourDost, Siri, Allo

Can you think of ways to combine the four basic dialog engine types to create chatbots
for these seven applications? Figure 12.1 shows how some chatbots do it.

 Let’s talk briefly about these applications to help you build a chatbot for your
application.

1. Patterns1. Patterns Question Answering

Virtual Assistance

Conversation

Marketing

Customer Service

Community

Therapy

2. Grounding

3. Search

4. Generative

Figure 12.1 Chatbot techniques used for some example applications

369Language skill
QUESTION ANSWERING DIALOG SYSTEMS

Question answering chatbots are used to answer factual questions about the world,
which can include questions about the chatbot itself. Many question answering sys-
tems first search a knowledge base or relational database to “ground” them in the real
world. If they can’t find an acceptable answer there, they may search a corpus of
unstructured data (or even the entire Web) to find answers to your questions. This is
essentially what Google Search does. Parsing a statement to discern the question in
need of answering and then picking the right answer requires a complex pipeline that
combines most of the elements covered in previous chapters. Question answering
chatbots are the most difficult to implement well because they require coordinating so
many different elements.

VIRTUAL ASSISTANTS

Virtual assistants, such as Alexa and Google Assistant, are helpful when you have a
goal in mind. Goals or intents are usually simple things such as launching an app, set-
ting a reminder, playing some music, or turning on the lights in your home. For this
reason, virtual assistants are often called goal-based dialog engines. Dialog with such
chatbots is intended to conclude quickly, with the user being satisfied that a particular
action has been accomplished or some bit of information has been retrieved.

 You’re probably familiar with the virtual assistants on your phone or your home
automation system. But you may not know that virtual assistants can also help you with
your legal troubles and taxes. Though Intuit’s TurboTax wizards aren’t very chatty,
they do implement a complex phone tree. You don’t interact with them by voice or
chat, but by filling in forms with structured data. So the TurboTax wizard can’t really
be called a chatbot yet, but it’ll surely be wrapped in a chat interface soon, if the tax-
bot AskMyUncleSam takes off.10

 Lawyer virtual assistant chatbots have successfully appealed millions of dollars in
parking tickets in New York and London.11 And there’s even a United Kingdom law
firm where the only interaction you’ll ever have with a lawyer is through a chatbot.12

Lawyers are certainly goal-based virtual assistants, only they’ll do more than set an
appointment date: they’ll set you a court date and maybe help you win your case.

 Aira.io (http://aira.io) is building a virtual assistant called Chloe. Chloe gives blind
and low-vision people access to a “visual interpreter for the blind.” During onboard-
ing, Chloe can ask customers things such as “Are you a white cane user?” “Do you have
a guide dog?” and “Do you have any food allergies or dietary preferences you’d like us
to know about?” This is called voice first design, when your app is designed from the

10 Jan 2017, Venture Beat post by AskMyUncleSam: https://venturebeat.com/2017/01/27/how-this-chatbot-
powered-by-machine-learning-can-help-with-your-taxes/.

11 June 2016, “Chatbot Lawyer Overturns 160,000 Parking Tickets in London and New York,” The Guardian,
https://www.theguardian.com/technology/2016/jun/28/chatbot-ai-lawyer-donotpay-parking-tickets-london
-new-york.

12 Nov 2017, “Chatbot-based ‘firm without lawyers’ launched” blog post by Legal Futures: https://www.legalfu-
tures.co.uk/latest-news/chatbot-based-firm-without-lawyers-launched.

http://aira.io
https://venturebeat.com/2017/01/27/how-this-chatbot-powered-by-machine-learning-can-help-with-your-taxes/
https://venturebeat.com/2017/01/27/how-this-chatbot-powered-by-machine-learning-can-help-with-your-taxes/
https://www.theguardian.com/technology/2016/jun/28/chatbot-ai-lawyer-donotpay-parking-tickets-london-new-york
https://www.theguardian.com/technology/2016/jun/28/chatbot-ai-lawyer-donotpay-parking-tickets-london-new-york
https://www.legalfutures.co.uk/latest-news/chatbot-based-firm-without-lawyers-launched
https://www.legalfutures.co.uk/latest-news/chatbot-based-firm-without-lawyers-launched

370 CHAPTER 12 Getting chatty (dialog engines)
ground up around a dialog system. In the future, the assistance that Chloe can pro-
vide will be greatly expanded as she learns to understand the real world through live
video feeds. And the “explorers” around the world interacting with Chloe will be
training her to understand common everyday tasks that humans perform in the
world. Chloe is one of the few virtual assistants designed entirely to assist and not to
influence or manipulate.13

 Virtual assistants such as Siri, Google Assistant, Cortana, and Aira’s Chloe are get-
ting smarter every day. Virtual assistants learn from their interactions with humans
and the other machines they’re connected to. They’re developing evermore general,
domain-independent intelligence. If you want to learn about artificial general intelli-
gence (AGI), you’ll want to experiment with virtual assistants and conversational chat-
bots as part of that research.

CONVERSATIONAL CHATBOTS

Conversational chatbots, such as Worswick’s Mitsuku14 or any of the Pandorabots,15

are designed to entertain. They can often be implemented with very few lines of code,
as long as you have lots of data. But doing conversation well is an ever-evolving chal-
lenge. The accuracy or performance of a conversational chatbot is usually measured
with something like a Turing test. In a typical Turing test, humans interact with
another chat participant through a terminal and try to figure out if it’s a bot or a
human. The better the chatbot is at being indistinguishable from a human, the better
its performance on a Turing test metric.

 The domain (variety of knowledge) and human behaviors that a chatbot is
expected to implement, in these Turing tests, is expanding every year. And as the chat-
bots get better at fooling us, we humans get better at detecting their trickery. ELIZA
fooled many of us in the BBS-era of the 1980s into thinking that “she” was a therapist
helping us get through our daily lives. It took decades of research and development
before chatbots could fool us again.

Fool me once, shame on bots; fool me twice, shame on humans.

 Anonymous Human

Recently, Mitsuku won the Loebner challenge, a competition that uses a Turing test to
rank chatbots.16 Conversational chatbots are used mostly for academic research, enter-
tainment (video games), and advertisement.

13 We rarely acknowledge to ourselves the influence that virtual assistants and search engines exert over our free
will and beliefs. And we rarely care that their incentives and motivations are different from our own. These
misaligned incentives are present not only in technology such as virtual assistants, but within culture itself.
Check out Sapiens and Homo Deus by Yuval Noah Harari if you’re interested in learning about where culture
and technology are taking us.

14 See the web page titled “Mitsuku Chatbot” (http://www.square-bear.co.uk/aiml).
15 See the web page titled “Pandorabots AIML Chatbot Directory” (https://www.chatbots.org).
16 See the web page titled “Loebner Prize” (https://en.wikipedia.org/wiki/Loebner _Prize).

http://www.square-bear.co.uk/aiml
https://www.chatbots.org
https://en.wikipedia.org/wiki/Loebner_Prize

371Language skill
MARKETING CHATBOTS

Marketing chatbots are designed to inform users about a product and entice them to
purchase it. More and more video games, movies, and TV shows are launched with
chatbots on websites promoting them: 17

 HBO promoted “Westworld” with “Aeden.”18

 Sony promoted “Resident Evil” with “Red Queen.”19

 Disney promoted “Zootopia” with “Officer Judy Hopps.”20

 Universal promoted “Unfriended” with “Laura Barnes.”
 Activision promoted “Call of Duty” with “Lt. Reyes.”

Some virtual assistants are marketing bots in disguise. Consider Amazon Alexa and
Google Assistant. Though they claim to assist you with things such as adding remind-
ers and searching the web, they invariably prioritize responses about products or busi-
nesses over responses with generic or free information. These companies are in the
business of selling stuff—directly in the case of Amazon, indirectly in the case of
Google. Their virtual assistants are designed to assist their corporate parents (Amazon
and Google) in making money. Of course, they also want to assist users in getting
things done, so we’ll keep using them. But the objective functions for these bots are
designed to steer users toward purchases, not happiness or well-being.

 Most marketing chatbots are conversational, to entertain users and mask their ulte-
rior motives. They can also employ question answering skills, grounded in a knowl-
edge base about the products they sell. To mimic characters in a movie, show, or video
game, chatbots will use text retrieval to find snippets of things to say from the script.
And sometimes even generative models are trained directly on a collection of scripts.
So marketing bots often employ all four of the techniques you’ll learn about in
this chapter.

COMMUNITY MANAGEMENT

Community management is a particularly important application of chatbots because it
influences how society evolves. A good chatbot “shepherd” can steer a video game
community away from chaos and help it grow into an inclusive, cooperative world
where everyone has fun, not just the bullies and trolls. A bad chatbot, such as the Twit-
ter bot Tay, can quickly create an environment of prejudice and ignorance.21

 When chatbots go “off the rails,” some people claim they are merely mirrors or mag-
nifiers of society. And there are often unintended consequences of any complicated

17 Justin Clegg lists additional ones in his LinkedIn post: https://www.linkedin.com/pulse/how-smart-brands-
using-chatbots-justin-clegg/.

18 Sep 2016, Entertainment Weekly: https://www.yahoo.com/entertainment/westworld-launches-sex-touting-
online-181918383.html.

19 Jan 2017, IPG Media Lab: https://www.ipglab.com/2017/01/18/sony-pictures-launches-ai-powered-chatbot-
to-promote-resident-evil-movie/.

20 Jun 2016, Venture Beat: https://venturebeat.com/2016/06/01/imperson-launches-zootopias-officer-judy-
hopps-bot-on-facebook-messenger/.

21 Wikipedia article about the brief “life” of Microsoft’s Tay chatbot, https://en.wikipedia.org/wiki/Tay_(bot).

https://www.linkedin.com/pulse/how-smart-brands-using-chatbots-justin-clegg/
https://www.linkedin.com/pulse/how-smart-brands-using-chatbots-justin-clegg/
https://www.yahoo.com/entertainment/westworld-launches-sex-touting-online-181918383.html
https://www.yahoo.com/entertainment/westworld-launches-sex-touting-online-181918383.html
https://www.ipglab.com/2017/01/18/sony-pictures-launches-ai-powered-chatbot-to-promote-resident-evil-movie/
https://www.ipglab.com/2017/01/18/sony-pictures-launches-ai-powered-chatbot-to-promote-resident-evil-movie/
https://venturebeat.com/2016/06/01/imperson-launches-zootopias-officer-judy-hopps-bot-on-facebook-messenger/
https://venturebeat.com/2016/06/01/imperson-launches-zootopias-officer-judy-hopps-bot-on-facebook-messenger/
https://en.wikipedia.org/wiki/Tay_(bot)

372 CHAPTER 12 Getting chatty (dialog engines)
system interacting with the real world. But because chatbots are active participants,
imbued with motivations by developers like you, you shouldn’t dismiss them as merely
“mirrors of society.” Chatbots seem to do more than merely reflect and amplify the best
and the worst of us. They’re an active force, partially under the influence of their devel-
opers and trainers, for either good or evil. Because supervisors and managers cannot
perfectly enforce any policy that ensures chatbots “do no evil,” it’s up to you, the devel-
oper, to strive to build chatbots that are kind, sensitive, and pro-social. Asimov’s “Three
Laws of Robotics” aren’t enough.22 Only you can influence the evolution of bots, using
smart software and cleverly constructed datasets.

 Some smart people at Arizona University are considering using their chatbot-
building skills to save humanity, not from Evil Superintelligent AI, but from ourselves.
Researchers are trying to mimic the behavior of potential ISIS terrorist recruits to dis-
tract and misinform ISIS recruiters. This may one day mean that chatbots are saving
human lives, simply by chatting it up with people that intend to bring harm to the
world.23 Chatbot trolls can be a good thing if they troll the right people or organizations.

CUSTOMER SERVICE

Customer service chatbots are often the only “person” available when you visit an
online store. IBM’s Watson, Amazon’s Lex, and other chatbot services are often used
behind the scenes to power these customer assistants. They often combine both ques-
tion answering skills (remember Watson’s Jeopardy training?) with virtual assistance
skills. But unlike marketing bots, customer service chatbots must be well-grounded.
And the knowledge base used to “ground” their answers to reality must be kept cur-
rent, enabling customer service chatbots to answer questions about orders or products
as well as initiate actions such as placing or canceling orders.

 In 2016, Facebook Messenger released an API for businesses to build customer ser-
vice chatbots. And Google recently purchased API.ai to create their Dialogflow frame-
work, which is often used to build customer service chatbots. Similarly, Amazon Lex is
often used to build customer service dialog engines for retailers and wholesalers of
products sold on Amazon. Chatbots are quickly becoming a significant sales channel
in industries from fashion (Botty Hilfiger) to fast food (TacoBot) to flowers.24

THERAPY

Modern therapy chatbots, such as Wysa and YourDOST, have been built to help dis-
placed tech workers adjust to their new lives.25 Therapy chatbots must be entertaining
like a conversational chatbot. They must be informative like a question answering

22 March 2014, George Dvorski, “Why Asimov’s Three Laws of Robotics Can’t Protect Us,” Gizmodo, https://
io9.gizmodo.com/why-asimovs-three-laws-of-robotics-cant-protect-us-1553665410.

23 Oct 2015, Slate, http://www.slate.com/articles/technology/future_tense/2015/10/using_chatbots_to
_distract_isis_recruiters_on_social_media.html.

24 1-800-flowers: 1-800-Flowers.com, Tommy Hilfiger: https://techcrunch.com/2016/09/09/botty-hilfiger/,
TacoBot: http://www.businessinsider.com/taco-bells-tacobot-orders-food-for-you-2016-4.

25 Dec 2017, Bloomberg: https://www.bloomberg.com/news/articles/2017-12-10/fired-indian-tech-workers
-turn-to-chatbots-for-counseling.

https://www.bloomberg.com/news/articles/2017-12-10/fired-indian-tech-workers-turn-to-chatbots-for-counseling
https://www.bloomberg.com/news/articles/2017-12-10/fired-indian-tech-workers-turn-to-chatbots-for-counseling
http://www.businessinsider.com/taco-bells-tacobot-orders-food-for-you-2016-4
https://techcrunch.com/2016/09/09/botty-hilfiger/
http://www.slate.com/articles/technology/future_tense/2015/10/using_chatbots_to_distract_isis_recruiters_on_social_media.html
http://www.slate.com/articles/technology/future_tense/2015/10/using_chatbots_to_distract_isis_recruiters_on_social_media.html
https://io9.gizmodo.com/why-asimovs-three-laws-of-robotics-cant-protect-us-1553665410
https://io9.gizmodo.com/why-asimovs-three-laws-of-robotics-cant-protect-us-1553665410
http://www.1-800-Flowers.com

373Pattern-matching approach
chatbot. And they must be persuasive like a marketing chatbot. And if they’re
imbued with self-interest to augment their altruism, these chatbots may be “goal-
seeking” and use their marketing and influence skill to get you to come back for addi-
tional sessions.

 You might not think of Siri, Alexa, and Allo as therapists, but they can help you get
through a rough day. Ask them about the meaning of life and you’ll be sure to get a
philosophical or humorous response. And if you’re feeling down, ask them to tell you
a joke or play some upbeat music. And beyond these parlor tricks, you can bet that
developers of these sophisticated chatbots were guided by psychologists to help craft
an experience intended to increase your happiness and sense of well-being.

 As you might expect, these therapy bots employ a hybrid approach that combines
all four of the basic approaches listed at the beginning of this chapter.

12.1.2 A hybrid approach

So what does this hybrid approach look like?
 The four basic chatbot approaches can be combined in a variety of ways to pro-

duce useful chatbots. And many different applications use all four basic techniques.
The main difference between hybrid chatbots is how they combine these four skills,
and how much “weight” or “power” is given to each technique.

 In this chapter, we show you how to balance these approaches explicitly in code to
help you build a chatbot that meets your needs. The hybrid approach we use here will
allow you to build features of all these real world systems into your bot. And you’ll
build an “objective function” that’ll take into account the goals of your chatbot when
it’s choosing between the four approaches, or merely choosing among all the possible
responses generated by each approach.

 So let’s dive into each of these four approaches, one at a time. For each one, we
build a chatbot that uses only the technique we’re learning. But in the end we show
you how to combine them all together.

12.2 Pattern-matching approach
The earliest chatbots used pattern matching to trigger responses. In addition to
detecting statements that your bot can respond to, patterns can also be used to extract
information from the incoming text. You learned several ways to define patterns for
information extraction in chapter 11.

 The information extracted from your users’ statements can be used to populate a
database of knowledge about the users, or about the world in general. And it can be
used even more directly to populate an immediate response to some statements. In
chapter 1, we showed a simple pattern-based chatbot that used a regular expression to
detect greetings. You can also use regular expressions to extract the name of the per-
son being greeted by the human user. This helps give the bot “context” for the conver-
sation. This context can be used to populate a response.

 ELIZA, developed in the late 1970s, was surprisingly effective at this, convincing
many users that “she” was capable of helping them with their psychological challenges.

374 CHAPTER 12 Getting chatty (dialog engines)
ELIZA was programmed with a limited set of words to look for in user statements. The
algorithm would rank any of those words that it saw in order to find a single word that
seemed like the most important word in a user’s statement. That would then trigger
selection of a canned response template associated with that word. These response tem-
plates were carefully designed to emulate the empathy and open-mindedness of a ther-
apist, using reflexive psychology. The key word that had triggered the response was
often reused in the response to make it sound like ELIZA understood what the user was
talking about. By replying in a user’s own language, the bot helped build rapport and
helped users believe that it was listening.

 ELIZA taught us a lot about what it takes to interact with humans in natural lan-
guage. Perhaps the most important revelation was that listening well, or at least
appearing to listen well, is the key to chatbot success.

 In 1995, Richard Wallace began building a general chatbot framework that used
the pattern-matching approach. Between 1995 and 2002, his community of develop-
ers built the Artificial Intelligence Markup Language (AIML) to specify the patterns
and responses of a chatbot. A.L.I.C.E. was the open source reference implementation
of a chatbot that utilized this markup language to define its behavior. AIML has since
become the de facto open standard for defining chatbot and virtual assistant configu-
ration APIs for services such as Pandorabots. Microsoft’s Bot framework is also able to
load AIML files to define chatbot behaviors. Other frameworks like Google’s Dialog-
Flow and Amazon Lex don’t support import or export of AIML.

 AIML is an open standard, meaning the language is documented and it doesn’t
have hidden proprietary features locked to any particular company. Open source
Python packages are available for parsing and executing AIML for your chatbot.26 But
AIML limits the types of patterns and logical structures you can define. And it’s XML,
which means chatbot frameworks built in Python (such as Will and ChatterBot)
are usually a better foundation for building your chatbot.

 Because you have a lot of your NLP tools in Python packages already, you can often
build much more complex pattern-matching chatbots just by building up the logic for
your bot directly in Python and regular expressions or glob patterns.27 At Aira, we
developed a simple glob pattern language similar to AIML to define our patterns. We
have a translator that converts this glob pattern language into regular expressions that
can be run on any platform with a regular expression parser.

 And Aira uses {{handlebars}} for our template specifications in this aichat bot
framework (http://github.com/aira/aichat). The handlebars templating language has
interpreters for Java and Python, so Aira uses it on a variety of mobile and server plat-
forms. And handlebars expressions can include filters and conditionals that can be

26 pip install aiml https://github.com/creatorrr/pyAIML.
27 Glob patterns and globstar patterns are the simplified regular expressions you use to find files in DOS or Bash

or pretty much any other shell. In a glob pattern, the asterisk or star (*) is used to represent any number of
any characters. So *.txt will match any filenames that have “.txt” at the end (https://en.wikipedia.org/wiki/
Glob_%28programming%29).

http://github.com/aira/aichat
https://github.com/creatorrr/pyAIML
https://en.wikipedia.org/wiki/Glob_%28programming%29
https://en.wikipedia.org/wiki/Glob_%28programming%29

375Pattern-matching approach
used to create complex chatbot behavior. If you want something even more straightfor-
ward and Pythonic for your chatbot templates, you can use Python 3.6 f-strings. And if
you’re not yet using Python 3.6, you can use str.format(template, **locals())
to render your templates just like f-strings do.

12.2.1 A pattern-matching chatbot with AIML

In AIML (v2.0), here’s how you might define your greeting chatbot from chapter 1.28

<?xml version="1.0" encoding="UTF-8"?><aiml version="2.0">
<category>

<pattern>HI</pattern>
<template>Hi!</template>
</category>
<category>

<pattern>[HELLO HI YO YOH YO'] [ROSA ROSE CHATTY CHATBOT BOT CHATTERBOT]<
/pattern>

<template>Hi , How are you?</template>
</category>
<category>

<pattern>[HELLO HI YO YOH YO' 'SUP SUP OK HEY] [HAL YOU U YALL Y'ALL YOUS
YOUSE]</pattern>

<template>Good one.</template>
</category>
</aiml>

We used some of the new features of AIML 2.0 (by Bot Libre) to make the XML a little
more compact and readable. The square brackets allow you to define alternative spell-
ings of the same word in one line.

 Unfortunately, the Python interpreters for AIML (PyAiml, aiml, and aiml_bot)
don’t support version 2 of the AIML spec. The Python 3 AIML interpreter that works
with the original AIML 1.0 specification is aiml_bot. In aiml_bot, the parser is
embedded within a Bot() class, designed to hold the “brain” in RAM that helps a
chatbot respond quickly. The brain, or kernel, contains all the AIML patterns and tem-
plates in a single data structure, similar to a Python dictionary, mapping patterns to
response templates.

AIML 1.0
AIML is a declarative language built on the XML standard, which limits the program-
ming constructs and data structures you can use in your bot. But don’t think of your
AIML chatbot as being a complete system. You’ll augment the AIML chatbot with all
the other tools you learned about earlier.

Listing 12.1 nlpia/book/examples/greeting.v2.aiml

28 “AI Chat Bot in Python with AIML,” by NanoDano Aug 2015, https://www.devdungeon.com/content/ai-chat-
bot-python-aiml#what-is-aiml.

https://www.devdungeon.com/content/ai-chat-bot-python-aiml#what-is-aiml
https://www.devdungeon.com/content/ai-chat-bot-python-aiml#what-is-aiml

376 CHAPTER 12 Getting chatty (dialog engines)
 One limitation of AIML is the kinds of patterns you can match and respond to. An
AIML kernel (pattern matcher) only responds when input text matches a pattern hard-
coded by a developer. One nice thing is that AIML patterns can include wild cards, sym-
bols that match any sequence of words. But the words that you do include in your
pattern must match precisely. No fuzzy matches, emoticons, internal punctuation char-
acters, typos, or misspellings can be matched automatically. In AIML, you have to man-
ually define synonyms with an </srai>, one at a time. Think of all the stemming and
lemmatization you did programmatically in chapter 2. That would be tedious to imple-
ment in AIML. Though we show you how to implement synonym and typo matchers in
AIML here, the hybrid chatbot you build at the end of the chapter will sidestep this
tedium by processing all text coming into your chatbot.

 Another fundamental limitation of an AIML <pattern> you need to be aware of is
that it can only have a single wild card character. A more expressive pattern-matching
language such as regular expressions can give you more power to create interesting
chatbots.29 For now, with AIML, we only use patterns such as “HELLO ROSA *” to
match input text such as “Hello Rosa, you wonderful chatbot!”

NOTE The readability of a language is critical to your productivity as a devel-
oper. A good language can make a huge difference, whether you’re building
a chatbot or a web app.

We don’t spend too much time helping you understand and write AIML. But we want
you to be able to import and customize some of the available (and free) open source
AIML scripts out there.30 You can use AIML scripts, as-is, to give some basic functional-
ity for your chatbot, with little upfront work.

 In the next section, we show you how to create and load an AIML file into your
chatbot and generate responses with it.

PYTHON AIML INTERPRETER

Let’s build up that complicated AIML script from listing 12.1 one step at a time, and
show you how to load and run it within a Python program. The following listing is a
simple AIML file that can recognize two sequences of words: “Hello Rosa” and “Hello
Troll,” and your chatbot will respond to each differently, like in earlier chapters.

<?xml version="1.0" encoding="UTF-8"?><aiml version="1.0.1">

<category>
<pattern>HELLO ROSA </pattern>

29 It’s hard to compete with modern languages such as Python on expressiveness (https://en.wikipedia.org/
wiki/Comparison_of_programming_languages#Expressiveness and http://redmonk.com/dberkholz/2013/
03/25/programming-languages-ranked-by-expressiveness).

30 Google for “AIML 1.0 files” or “AIML brain dumps” and check out AIML resources such as Chatterbots and
Pandorabots: http://www.chatterbotcollection.com/category_contents.php?id_cat=20.

Listing 12.2 nlpia/nlpia/data/greeting_step1.aiml

https://en.wikipedia.org/wiki/Comparison_of_programming_languages#Expressiveness
https://en.wikipedia.org/wiki/Comparison_of_programming_languages#Expressiveness
http://redmonk.com/dberkholz/2013/03/25/programming-languages-ranked-by-expressiveness
http://redmonk.com/dberkholz/2013/03/25/programming-languages-ranked-by-expressiveness
http://www.chatterbotcollection.com/category_contents.php?id_cat=20

377Pattern-matching approach
<template>Hi Human!</template>
</category>
<category>

<pattern>HELLO TROLL </pattern>
<template>Good one, human.</template>

</category>

</aiml>

NOTE In AIML 1.0, all patterns must be specified in ALL CAPS.

You’ve set your bot up to respond differently to two different kinds of greetings: polite
and impolite. Now let’s use the aiml_bot package to interpret AIML 1.0 files in
Python. If you’ve installed the nlpia package, you can load these examples from there
using the code in the following listing. If you want to experiment with the AIML files
you typed up yourself, you’ll need to adjust the path learn=path to point to your file.

>>> import os
>>> from nlpia.constants import DATA_PATH
>>> import aiml_bot

>>> bot = aiml_bot.Bot(
... learn=os.path.join(DATA_PATH, 'greeting_step1.aiml'))
Loading /Users/hobs/src/nlpia/nlpia/data/greeting_step1.aiml...
done (0.00 seconds)
>>> bot.respond("Hello Rosa,")
'Hi there!'
>>> bot.respond("hello !!!troll!!!")
'Good one, human.'

That looks good. The AIML specification cleverly ignores punctuation and capitaliza-
tion when looking for pattern matches.

 But the AIML 1.0 specification only normalizes your patterns for punctuation and
whitespace between words, not within words. It can’t handle synonyms, spelling
errors, hyphenated words, or compound words. See the following listing.

>>> bot.respond("Helo Rosa")
WARNING: No match found for input: Helo Rosa
''
>>> bot.respond("Hello Ro-sa")
WARNING: No match found for input: Hello Ro-sa
''

You can fix most mismatches like this using the <srai> tag and a star (*) symbol in
your template to link multiple patterns back to the same response template. Think of
these as synonyms for the word “Hello,” even though they might be misspellings or
completely different words. See the following listing.

Listing 12.3 nlpia/book/examples/ch12.py

Listing 12.4 nlpia/nlpia/book/examples/ch12.py

378 CHAPTER 12 Getting chatty (dialog engines)

<category><pattern>HELO * </pattern><template><srai>HELLO <star/>
</srai></template></category>
<category><pattern>HI * </pattern><template><srai>HELLO <star/>
</srai></template></category>
<category><pattern>HIYA * </pattern><template><srai>HELLO <star/>
</srai></template></category>
<category><pattern>HYA * </pattern><template><srai>HELLO <star/>
</srai></template></category>
<category><pattern>HY * </pattern><template><srai>HELLO <star/>
</srai></template></category>
<category><pattern>HEY * </pattern><template><srai>HELLO <star/>
</srai></template></category>
<category><pattern>WHATS UP * </pattern><template><srai>HELLO <star/>
</srai></template></category>
<category><pattern>WHAT IS UP * </pattern><template><srai>HELLO <star/>
</srai></template></category>

NOTE If you are writing your own AIML files, don’t forget to include the
<aiml> tags at the beginning and end. We omitted them in example AIML
code here to keep things brief.

Once you load that additional AIML, your bot can recognize a few different ways of
saying and misspelling “Hello,” as shown in the following listing.

>>> bot.learn(os.path.join(DATA_PATH, 'greeting_step2.aiml'))
>>> bot.respond("Hey Rosa")
'Hi there!'
>>> bot.respond("Hi Rosa")
'Hi there!'
>>> bot.respond("Helo Rosa")
'Hi there!'
>>> bot.respond("hello **troll** !!!")
'Good one, human.'

In AIML 2.0, you can specify alternative random response templates with square-
bracketed lists. In AIML 1.0 you use the tag to do that. The tag works only
within a <condition> or <random> tag. You’ll use a <random> tag to help your bot be
a little more creative in how it responds to greetings. See the following listing.

<category><pattern>HELLO ROSA </pattern><template>
<random>

Hi Human!
Hello friend
Hi pal
Hi!
Hello!

Listing 12.5 nlpia/data/greeting_step2.aiml

Listing 12.6 nlpia/nlpia/book/examples/ch12.py

Listing 12.7 nlpia/nlpia/data/greeting_step3.aiml

379Pattern-matching approach
Hello to you too!
Greetings Earthling ;)
Hey you :)
Hey you!

</random></template>
</category>
<category><pattern>HELLO TROLL </pattern><template>

<random>
Good one, Human.
Good one.
Nice one, Human.
Nice one.
Clever.
:)

</random></template>
</category>

Now your chatbot doesn’t sound nearly as mechanical (at least at the beginning of a
conversation). See the following listing.

>>> bot.learn(os.path.join(DATA_PATH, 'greeting_step3.aiml'))
>>> bot.respond("Hey Rosa")
'Hello friend'
>>> bot.respond("Hey Rosa")
'Hey you :)'
>>> bot.respond("Hey Rosa")
'Hi Human!'

NOTE You likely didn’t get the same responses in the same order that we did
when we ran this code. That’s the point of the <random> tag. It’ll choose a
random response from the list each time the pattern is matched. There’s no
way to set a random seed within aiml_bot, but this would help with testing
(pull request anyone?).

You can define synonyms for your own alternative spellings of “Hi” and “Rosa” in sep-
arate <category> tags. You could define different groups of synonyms for your tem-
plates and separate lists of responses depending on the kind of greeting. For example,
you could define patterns for greetings such as “SUP” and “WUSSUP BRO,” and then
respond in a similar dialect or similar level of familiarity and informality.

 AIML even has tags for capturing strings into named variables (similar to named
groups in a regular expression). States in AIML are called topics. And AIML defines
ways of defining conditionals using any of the variables you’ve defined in your AIML
file. Try them out if you’re having fun with AIML. It’s a great exercise in understand-
ing how grammars and pattern-matching chatbots work. But we’re going to move on
to more expressive languages such as regular expressions and Python to build your
chatbot. This will allow you to use more of the tools you learned in earlier chapters,
such as stemmers and lemmatizers, to handle synonyms and misspellings (see chapter

Listing 12.8 nlpia/nlpia/book/examples/ch12.py

380 CHAPTER 12 Getting chatty (dialog engines)
2). If you use AIML in your chatbot, and you have preprocessing stages such as lem-
matization or stemming, you’ll probably need to modify your AIML templates to catch
these stems and lemmas.

 If you think AIML seems a bit complicated for what it does, you’re not alone. Ama-
zon Lex uses a simplified version of AIML that can be exported to and imported from
a JSON file. The startup API.ai developed a dialog specification that was so intuitive
that Google bought them out, integrated it with Google Cloud Services, and renamed
it Dialogflow. Dialogflow specifications can also be exported to JSON and imported
from JSON, but these files aren’t compatible with AIML or Amazon Lex format.

 If you think all these incompatible APIs should be consolidated into a single open
specification such as AIML, you might want to contribute to the aichat project and
the AIRS (AI Response Specification) language development. Aira and the Do More
Foundation are supporting AIRS to make it easier for our users to share their content
(dialog for interactive fiction, inspiration, training courses, virtual tours, and so on)
with each other. The aichat application is a reference implementation of the AIRS
interpreter in Python, with a web UX.

 Here’s what a typical AIRS specification looks like. It defines the four pieces of
information that the chatbot needs to react to a user command in a single row of a flat
table. This table can be exported/imported to/from CSV or JSON or a plain Python
list of lists:

>>> airas_spec = [
... ["Hi {name}","Hi {username} how are you?","ROOT","GREETING"],
... ["What is your name?",
... "Hi {username} how are you?","ROOT","GREETING"],
...]

The first column in an AIRS specification defines the pattern and any parameters you
want to extract from the user utterance or text message. The second column defines
the response you want the chatbot to say (or text), usually in the form of a template
that can be populated with variables from the data context for the chatbot. And it can
also contain special keywords to trigger bot actions other than just saying something.

 The last two columns are used to maintain the state or context of the chatbot.
Whenever the chatbot is triggered by a pattern match, it can transition to a new state if
it wants to have different behavior within that state to, say, follow up with additional
questions or information. So the two columns at the end of a row just tell the chatbot
what state it should be listening for these patterns in and which state it should transi-
tion to after it has accomplished the utterance or action specified in the template.
These source and destination state names define a graph, like in figure 12.2, that gov-
erns the chatbot behavior.

 Google’s Dialogflow and Amazon’s Lex are more scalable versions of aichat’s
pattern-matching chatbot specification approach. But for many use cases they seem
more complicated than they need to be. The open source project aichat (http://
github.com/totalgood/aichat) is attempting to provide a more intuitive way to

http://github.com/totalgood/aichat
http://github.com/totalgood/aichat

381Pattern-matching approach
design, visualize, and test chatbots. Check out the aichat or the hybrid chatbot in nlpia
(http://github.com/totalgood/nlpia) if you want to learn more about this pattern-
matching approach to chatbots. And if you want to implement a large-scale chatbot
using this approach for a production application, Google’s Dialogflow (formerly
app.ai) and Amazon’s Lex frameworks have extensive documentation on examples
you can build on. Though both systems make it possible to deploy a free chatbot
within these systems, you’ll quickly get locked into their way of doing things, so you
may be better off helping us build aichat.

12.2.2 A network view of pattern matching

As Aira built out its chatbot for assisting those with blindness, we developed some visu-
alization tools to analyze and design that user experience. A network view of the con-
nections between states and the patterns that create those connections revealed
opportunities for new patterns and states. A network view allowed us to “run” the dia-
log in our heads, like running a few lines of Python in your head. And the network
view let us navigate the maze of the dialog tree (actually a network or graph) from a
birds-eye view, to avoid dialog dead ends and loops.

 If you think about it, the patterns and responses of a pattern-matching chatbot
define a network (graph). Nodes in this network represent the states. Edges in the
network represent the pattern matching triggers that cause the chatbot to say some-
thing before transitioning to the next state (node). If you draw the state transitions for
a few AIRS patterns and responses you might get something like in figure 12.2.

 This can help you discover dead ends or loops in your dialog that you may want to
address by refining or adding patterns to your dialog specification. Aira is working on
visualization tools to turn AIRS specs into these graph diagrams (see figure 12.2) with

Bot action
User actionUser action

STATE-NAME

ROOT
USER–
NAME

“What is
your name?”

“Could you repeat that?”

“What is your
name?”

<power_on>

“Cancel”

LYFT

“H
i {
us
er
_r
ep
ly
}!

W
ha

t c
an

 I
do

 fo
r

yo
u?

”

“Cool”
TASK

{turn_down_temp}

“{request_lyft}
Your Lyft driver,
{lyft_name}, should
be here by
{lyft_eta}”

“I need a Lyft”

“Koul”

“{cancel_lyft} OK, canceling your Lyft driver request.”

Figure 12.2 Managing state (context)

http://github.com/totalgood/nlpia

382 CHAPTER 12 Getting chatty (dialog engines)
the aichat project (http://github.com/aira/aichat). If Javascript and D3 is your
thing, they could use your help.

 Now it’s time to learn about another chatbot approach: grounding.

12.3 Grounding
A.L.I.C.E. and other AIML chatbots rely entirely on pattern-matching. And the first
popular chatbot, ELIZA, used pattern-matching and templates as well, before AIML
was even conceived. But these chatbot developers hardcoded the logic of the
responses in patterns and templates. Hardcoding doesn’t “scale” well, not in the pro-
cessing performance sense, but in the human effort sense. The sophistication of a
chatbot built this way grows linearly with the human effort put into it. In fact, as the
complexity of this chatbot grows, you begin to see diminishing returns on your effort,
because the interactions between all the “moving parts” grow and the chatbot behav-
ior becomes harder and harder to predict and debug.

 Data-driven programming is the modern approach to most complex programming
challenges these days. How can you use data to program your chatbot? In the last
chapter, you learned how to create structured knowledge from natural language text
(unstructured data) using information extraction. You can build up a network of rela-
tionships or facts just based on reading text, such as Wikipedia, or even your own per-
sonal journal. In this section, you’ll learn how to incorporate this knowledge about
the world (or your life) into your chatbot’s bag of tricks. This network of logical rela-
tionships between things is a knowledge graph or knowledge base that can drive your
chatbot’s responses.

 This knowledge graph can be processed with logical inference to answer questions
about the world of knowledge contained in the knowledge base. The logical answers
can then be used to fill in variables within templated responses to create natural lan-
guage answers. Question answering systems, such as IBM’s Jeopardy-winning Watson,
were originally built this way, though more recent versions almost surely also employ
search or information retrieval technology. A knowledge graph is said to “ground” the
chatbot to the real world.

 This knowledge-base approach isn’t limited to answering questions just about the
world. Your knowledge base can also be populated in real time with facts about an
ongoing dialog. This can keep your chatbot up-to-speed on who your conversation
partner is, and what they’re like.

 If you take this knowledge modeling one step deeper, you can build subgraphs of
knowledge about what the chatbot’s dialog partners believe about the world. If you’re
familiar with database design you can think of this as a partial mirror of external data-
bases—knowledge bases in this case. This can be a temporary “cache” of only the most
recent knowledge, or it can be a permanent rolling log of all the knowledge your chat-
bot has learned (and unlearned) about the other dialog participants. Each statement
by dialog participants can be used to populate a “theory of mind,” a knowledge base
about what each speaker believes about the world. This could be as simple as building

http://github.com/aira/aichat

383Grounding
patterns to extract the nicknames that dialog participants use when addressing each
other or the chatbot, like we did in chapter 1.

 If you think about it, humans seem to participate in dialog in a more sophisticated
way than merely regurgitating canned responses, such as the AIML chatbot you just
built. Your human brain enables you to think about the logic of what your conversa-
tion partner said and attempt to infer something from what you remember about real-
world logic and each other. You may have to make several inferences and assumptions
to understand and respond to a single statement. So this addition of logic and
grounding to your chatbot may make it be more human-like, or at least more logical.

 This grounding approach to chatbots works well for question answering chatbots,
when the knowledge required to answer the question is within some broad knowledge
base that you can obtain from an open source database. Some examples of open
knowledge bases you can use to ground your chatbot include

 Wikidata (includes Freebase)31

 Open Mind Common Sense (ConceptNet)32

 Cyc33

 YAGO34

 DBpedia35

So all you need is a way to query the knowledge base to extract the facts you need to
populate a response to a user’s statement. And if the user is asking a factual question
that your database might contain, you could translate their natural language question
(such as “Who are you?” or “What is the 50th state of the United States?”) into a
knowledge base query to directly retrieve the answer they’re looking for. This is what
Google search does using Freebase and other knowledge bases they combined
together to create their knowledge graph.

 You could use your word pattern matching skills from chapter 11 to extract the
critical parts of a question from the user’s statement, such as the named entities or the
relationship information sought by the question. You’d check for key question words
such as “who,” “what,” “when,” “where,” “why,” and “is” at the beginning of a sentence
to classify the type of question. This would help your chatbot determine the kind of
knowledge (node or named entity type) to retrieve from your knowledge graph.

 Quepy36 is a natural language query compiler that can produce knowledge base
and database queries using these techniques. The SQL-equivalent for a knowledge
graph of RDF triples is called SPARQL.37

31 See the web page titled “Welcome to Wikidata” (https://www.wikidata.org).
32 See the web page titled “API : commonsense/conceptnet5 Wiki : GitHub” (https://github.com/common-

sense/conceptnet5/wiki/API).
33 See the web page titled “Cyc” (https://en.wikipedia.org/wiki/Cyc).
34 See the Wikipedia article “YAGO (database)” (https://en.wikipedia.org/wiki/YAGO_(database)).
35 See the web page titled “DBpedia” (https://en.wikipedia.org/wiki/DBpedia).
36 See the web page titled “Welcome to Quepy’s documentation! — Quepy 0.1 documentation” (http://quepy

.readthedocs.io/en/latest/).
37 See the web page titled “SPARQL Query Language for RDF” (https://www.w3.org/TR/rdf-sparql-query/).

https://www.wikidata.org
https://github.com/commonsense/conceptnet5/wiki/API
https://github.com/commonsense/conceptnet5/wiki/API
https://en.wikipedia.org/wiki/Cyc
https://en.wikipedia.org/wiki/YAGO_(database)
https://en.wikipedia.org/wiki/DBpedia
http://quepy.readthedocs.io/en/latest/
http://quepy.readthedocs.io/en/latest/
https://www.w3.org/TR/rdf-sparql-query/

384 CHAPTER 12 Getting chatty (dialog engines)
12.4 Retrieval (search)
Another more data-driven approach to “listening” to your user is to search for previous
statements in your logs of previous conversations. This is analogous to a human lis-
tener trying to recall where they’ve heard a question or statement or word before. A
bot can search not only its own conversation logs, but also any transcript of human-to-
human conversations, bot-to-human conversations, or even bot-to-bot conversations.
But, as usual, garbage in means garbage out. So you should clean and curate your data-
base of previous conversations to ensure that your bot is searching (and mimicking)
high-quality dialog. You would like humans to enjoy the conversation with your bot.

 A search-based chatbot should ensure that its dialog database contains conversa-
tions that were enjoyable or useful. And they should probably be on some theme that
the bot personality is expected to converse in. Some examples of good sources of dia-
log for a search-based bot include movie dialog scripts, customer service logs on IRC
channels (where the users were satisfied with the outcome), and direct-message inter-
actions between humans (when those humans are willing to share them with you).
Don’t do this on your own email or SMS message logs without getting the written
agreement of all humans involved in the conversations you want to use.

 If you decide to incorporate bot dialog into your corpus, be careful. You only want
statements in your database that have had at least one human appear to be satisfied
with the interaction, if only by continuing the conversation. And bot-to-bot dialog
should rarely be used, unless you have access to a really smart chatbot.

 Your search-based chatbot can use a log of past conversations to find examples of
statements similar to what the bot’s conversation partner just said. To facilitate this
search, the dialog corpus should be organized in statement-response pairs. If a
response is responded to then it should appear twice in your database, once as the
response and then again as the statement that is prompting a response. The response
column in your database table can then be used as the basis for your bot’s response to
the statements in the “statements” (or prompt) column.

12.4.1 The context challenge

The simplest approach is to reuse the response verbatim, without any adjustment.
This is often an OK approach if the statement is a good semantic (meaning) match
for the statement your bot is responding to. But even if all the statements your users
ever made could be found in your database, your bot would take on the personality of
all the humans that uttered the responses in your dialog database. This can be a good
thing, if you have a consistent set of responses by a variety of humans. But it can be a
problem if the statement you are trying to reply to is dependent on the longer-term
context of a conversation or some real-world situation that has changed since your
dialog corpus was assembled.

 For example, what if someone asked your chatbot “What time is it?” Your chatbot
shouldn’t reuse the reply of the human who replied to the best-matched statement in
your database. That would work only if the question’s time corresponded to the time

385Retrieval (search)
the matching dialog statement was recorded. This time information is called context,
or state, and should be recorded and matched along with the statement’s natural lan-
guage text. This is especially important when the statement’s semantics point to some
evolving state that is recorded in your context, or the chatbot’s knowledge base.

 Some other examples of how real-world knowledge or context should influence a
chatbot’s reply are the questions “Who are you?” or “Where are you from?” The con-
text in this case is the identity and background of the person being addressed by the
question. Fortunately, this is context that you can generate and store quite easily in a
knowledge base or database containing facts about the profile or back-story for your
bot. You’d want to craft your chatbot profile to include information such as a persona
that roughly reflects the average or median profile of the humans who made the state-
ments in your database. To compute this, you can use the profiles of the users that
made statements in your dialog database.

 Your chatbot’s personality profile information could be used to resolve “ties” in the
search for matching statements in your database. And if you want to be super
sophisticated, you can boost the rank of search results for replies from humans that are
similar to your bot persona. For example, imagine you know the gender of the people
whose statements and responses you recorded in your dialog database. You’d include
the nominal gender of the chatbot as another “word” or dimension or database field
you’re searching for among the genders of the respondents in your database. If this
respondent gender dimension matched your chatbot’s gender, and the prompting
statement words or semantic vector were a close match for the corresponding vector
from your user’s statement, that would be a great match at the top of your search results.
The best way to do this matching is to compute a scoring function each time a reply is
retrieved and include in this score some profile match information.

 Alternatively, you could solve this context challenge by building up a background
profile for your bot and storing it in a knowledge base manually. You’d just make sure
to only include replies in your chatbot’s database that matched this profile.

 No matter how you use this profile to give your chatbot a consistent personality, you’ll
need to deal with questions about that personality profile as special cases. You need to
use one of the other chatbot techniques rather than retrieval if your database of state-
ments and replies doesn’t contain a lot of answers to questions such as “Who are you?”
“Where are you from?” and “What’s your favorite color?” If you don’t have a lot of profile
statement-reply pairs, you’d need to detect any questions about the bot and use a knowl-
edge base to “infer” an appropriate answer for that element of the statement. Alterna-
tively, you could use the grammar-based approach to populate a templated response,
using information retrieved from a structured dataset for the chatbot profile.

 To incorporate state or context into a retrieval-based chatbot, you can do some-
thing similar to what you did for the pattern-matching chatbot. If you think about it,
listing a bunch of user statements is just another way of specifying a pattern. In fact,
that’s exactly the approach that Amazon Lex and Google Dialogflow take. Rather than
defining a rigid pattern to capture the user command, you can just provide the dialog

386 CHAPTER 12 Getting chatty (dialog engines)
engine with a few examples. So just as you associated a state with each pattern in your
pattern-matching chatbot, you just need to tag your statement-response example pairs
with a named state as well.

 This tagging can be difficult if your example state-response pairs are from an
unstructured, unfiltered data source such as the Ubuntu Dialog Corpus or Reddit. But
with dialog training sets such as Reddit, you can often find some small portions of the
massive dataset that can be automatically labeled based on their channel and reply
thread. You can use the tools of semantic search and pattern matching to cluster the
initial comment that preceded a particular thread or discussion. And these clusters
can then become your states. Detecting transitions from one topic or state to another
can be difficult, however. And the states that you can produce this way aren’t nearly as
precise and accurate as those you can generate by hand.

 This approach to state (context) management can be a viable option, if your bot
just needs to be entertaining and conversational. But if you need your chatbot to have
predictable and reliable behaviors, you probably want to stick to the pattern-matching
approach or hand-craft your state transitions.

12.4.2 Example retrieval-based chatbot

You’re going to be following along with the ODSC 2017 tutorial on building a
retrieval-based chatbot. If you want to view the video or the original notebook for this
tutorial, check out the github repository for it at https://github.com/totalgood/
prosocial-chatbot.

 Our chatbot is going to use the Ubuntu Dialog Corpus, a set of statements and
replies recorded on the Ubuntu IRC channel, where humans are helping each other
solve technical problems. It contains more than seven million utterances and more
than one million dialog sessions, each with multiple turns and many utterances.38 This
large number of statement-response pairs makes it a popular dataset that researchers
use to check the accuracy of their retrieval-based chatbots.

 These are the sort of statement-response pairings you need to “train” a retrieval-
based chatbot. But don’t worry, you’re not going to use all seven million utterances.
You’ll just use about 150 thousand turns and see if that’s enough to give your chatbot
the answers to some common Ubuntu questions. To get started, download the bite-
sized Ubuntu corpus shown in the following listing.

>>> from nlpia.data.loaders import get_data
>>> df = get_data('ubuntu_dialog')
Downloading ubuntu_dialog
requesting URL:
https://www.dropbox.com/s/krvi79fbsryytc2/ubuntu_dialog.csv.gz?dl=1
remote size: 296098788

38 “The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dialogue Systems”
by Lowe et al., 2015 https://arxiv.org/abs/1506.08909.

Listing 12.9 ch12_retrieval.py

https://github.com/totalgood/prosocial-chatbot
https://github.com/totalgood/prosocial-chatbot
https://arxiv.org/abs/1506.08909

387Retrieval (search)
Downloading to /Users/hobs/src/nlpia/nlpia/bigdata/ubuntu_dialog.csv.gz
39421it [00:39, 998.09it/s]

You may get warning messages about the /bigdata/ path not existing if you haven’t
used nlpia.data.loaders.get_data() on a big dataset yet. But the downloader
will create one for you when you run it for the first time.

NOTE The scripts here will work if you have 8 GB of free RAM to work with. If
you run out of memory, try reducing the dataset size—slice out a smaller
number of rows in df. In the next chapter, we use gensim to process data in
batches “out of core” so that you can work with larger datasets.

What this corpus looks like can be seen in the following listing.

>>> df.head(4)
Context Utterance

0 i think we could import the old comments via r... basically each xfree86
upload will NOT force u...

1 I'm not suggesting all -
only the ones you mod... oh? oops. __eou__

2 afternoon all __eou__ not entirely related to ... we'll have a BOF about
this __eou__ so you're ...

3 interesting __eou__ grub-install worked with /
... i fully endorse this suggestion </quimby> __eo...

Notice the “__eou__” tokens? This looks like it might be a pretty challenging dataset
to work with. But it’ll give you practice with some common preprocessing challenges
in NLP. Those tokens mark the “end of utterance,” the point at which the “speaker”
hit [RETURN] or [Send] on their IRC client. If you print out some example Context
fields, you’ll notice that there are also “__eot__” (“end of turn”) markers to indicate
when someone concluded their thought and was waiting for a reply.

 But if you look inside a context document (row in the table), you’ll see there are mul-
tiple “__eot__” (turn) markers. These markers help more sophisticated chatbots test
how they handle the context problem we talked about in the previous section. But
you’re going to ignore the extra turns in the corpus and focus only on the last one, the
one that the utterance was a reply to. First, let’s create a function to split on those
“__eot__” symbols and clean up those “__eou__” markers, as seen in the following listing.

>>> import re
>>> def split_turns(s, splitter=re.compile('__eot__')):
... for utterance in splitter.split(s):
... utterance = utterance.replace('__eou__', '\n')
... utterance = utterance.replace('__eot__', '').strip()
... if len(utterance):
... yield utterance

Listing 12.10 ch12_retrieval.py

Listing 12.11 ch12_retrieval.py

388 CHAPTER 12 Getting chatty (dialog engines)
Let’s run that split_turns function on a few rows in the DataFrame to see if it makes
sense. You’ll retrieve only the last turn from both the context and the utterance and see
if that’ll be enough to train a retrieval-based chatbot. See the following listing.

>>> for i, record in df.head(3).iterrows():
... statement = list(split_turns(record.Context))[-1]
... reply = list(split_turns(record.Utterance))[-1]
... print('Statement: {}'.format(statement))
... print()
... print('Reply: {}'.format(reply))

This should print out something like this:

Statement: I would prefer to avoid it at this stage. this is something that
has gone into XSF svn, I assume?

Reply: each xfree86 upload will NOT force users to upgrade 100Mb of fonts
for nothing

no something i did in my spare time.

Statement: ok, it sounds like you're agreeing with me, then
though rather than "the ones we modify", my idea is "the ones we need to

merge"
Reply: oh? oops.

Statement: should g2 in ubuntu do the magic dont-focus-window tricks?
join the gang, get an x-series thinkpad
sj has hung on my box, again.
what is monday mornings discussion actually about?

Reply: we'll have a BOF about this
so you're coming tomorrow ?

Excellent! It looks like it has statements and replies that contain multiple statements
(utterances). So your script is doing what you want, and you can use it to populate a
statement-response mapping table, as shown in the following listing.

>>> from tqdm import tqdm

>>> def preprocess_ubuntu_corpus(df):
... """
... Split all strings in df.Context and df.Utterance on
... __eot__ (turn) markers
... """
... statements = []
... replies = []
... for i, record in tqdm(df.iterrows()):
... turns = list(split_turns(record.Context))
... statement = turns[-1] if len(turns) else '\n'
... statements.append(statement)
... turns = list(split_turns(record.Utterance))

Listing 12.12 ch12_retrieval.py

Listing 12.13 ch12_retrieval.py

You need an if because some of
the statements and replies
contained only whitespace.

389Retrieval (search)
... reply = turns[-1] if len(turns) else '\n'

... replies.append(reply)

... df['statement'] = statements

... df['reply'] = replies

... return df

Now you need to retrieve the closest match to a user statement in the statement col-
umn, and reply with the corresponding reply from the reply column. Do you remem-
ber how you found similar natural language documents using word frequency vectors
and TF-IDF vectors in chapter 3? See the following listing.

>>> from sklearn.feature_extraction.text import TfidfVectorizer
>>> df = preprocess_ubuntu_corpus(df)
>>> tfidf = TfidfVectorizer(min_df=8, max_df=.3, max_features=50000)
>>> tfidf.fit(df.statement)

Let’s create a DataFrame called X to hold all these TF-IDF vectors for each of the 150
thousand statements, as shown in the following listing.

>>> X = tfidf.transform(df.statement)
>>> X = pd.DataFrame(X.todense(), columns=tfidf.get_feature_names())

One way to find the closest statement is to compute the cosine distance from the query
statement to all the statements in your X matrix, as shown in the following listing.

>>> x = tfidf.transform(['This is an example statement that\
... we want to retrieve the best reply for.'])
>>> cosine_similarities = x.dot(X.T)
>>> reply = df.loc[cosine_similarities.argmax()]

That took a long time (more than a minute on my MacBook). And you didn’t even
compute a confidence value or get a list of possible replies that you might be able to
combine with other metrics.

12.4.3 A search-based chatbot

What if the patterns you wanted to match were the exact things people have said in
previous conversations? That’s what a search-based chatbot (or retrieval-based chat-
bot) does. A search-based chatbot indexes a dialog corpus so that it can easily retrieve
previous statements similar to the one it’s being asked to reply to. It can then reply

Listing 12.14 ch12_retrieval.py

Listing 12.15 ch12_retrieval.py

Listing 12.16 ch12_retrieval.py

Notice you only need to compute the
statement (not reply) TF-IDFs, because
those are the things you want to search.

390 CHAPTER 12 Getting chatty (dialog engines)
with one of the replies associated with that statement in the corpus that it has “memo-
rized” and indexed for quick retrieval.

 If you’d like to quickly get going with a search-based chatbot, ChatterBot by Gun-
ther Cox is a pretty good framework to cut your teeth on. It’s easy to install (just pip
install ChatterBot), and it comes with several conversation corpora that you can
use to “train” your chatbot to carry on basic conversations. ChatterBot has corpora
that allow it to talk about things such as sports trivia, wax philosophical about AI sen-
tience, or just shoot the breeze with small talk. ChatterBot can be “trained” on any
conversation sequence (dialog corpus). Don’t think of this as machine learning train-
ing, but rather just indexing a set of documents for search.

 By default ChatterBot will use both humans’ statements as material for its own
statements during training. If you want to be more precise with the personality of your
chatbot, you’ll need to create your own corpus in the ChatterBot “.yml” format. To
ensure that only one personality is mimicked by your bot, make sure your corpus con-
tains conversations of only two statements each, one prompt and one reply; the reply
being from the personality you want to imitate. Incidentally, this format is similar to
the AIML format, which has a pattern (the prompting statement in ChatterBot) and
a template (the response in ChatterBot).

 Of course, a search-based chatbot built this way is quite limited. It’s never going to
come up with new statements. And the more data you have, the harder it is to brute
force the search of all the previous statements. So the smarter and more refined your
bot is, the slower it’ll be. This architecture doesn’t scale well. Nonetheless, we show
you some advanced techniques for scaling any search or index-based chatbot with
indexing tools such as locality sensitive hashes (pip install lshash3) and approxi-
mate near neighbors (pip install annoy).

 Out of the box, ChatterBot uses SQLite as its database, which highlights these scal-
ing issues as soon as you exceed about 10k statements in your corpus. If you try to train
a SQLite-based ChatterBot on the Ubuntu Dialog Corpus you’ll be waiting around for
days… literally. It took me more than a day on a MacBook to ingest only 100k statement-
response pairs. Nonetheless, this ChatterBot code is quite useful for downloading and
processing this motherlode of technical dialog about Ubuntu. ChatterBot takes care of
all the bookkeeping for you, downloading and decompressing the tarball automatically
before walking the “leafy” file system tree to retrieve each conversation.

 How ChatterBot’s “training” data (actually just a dialog corpus) is stored in a rela-
tional database is shown in the following listing.

sqlite> .tables
conversation response tag
conversation_association statement tag_association
sqlite> .width 5 25 10 5 40
sqlite> .mode columns

Listing 12.17 ch12_chatterbot.sql

391Generative models
sqlite> .mode column
sqlite> .headers on
sqlite> SELECT id, text, occur FROM response LIMIT 9;
id text occur statement_text
----- ------------------- ----- --
1 What is AI? 2 Artificial Intelligence is the branch of
2 What is AI? 2 AI is the field of science which concern
3 Are you sentient? 2 Sort of.
4 Are you sentient? 2 By the strictest dictionary definition o
5 Are you sentient? 2 Even though I'm a construct I do have a
6 Are you sapient? 2 In all probability, I am not. I'm not t
7 Are you sapient? 2 Do you think I am?
8 Are you sapient? 2 How would you feel about me if I told yo
9 Are you sapient? 24 No.

Notice that some statements have many different replies associated with them, which
allows the chatbot to choose among the possible replies based on mood, context, or
random chance. ChatterBot just chooses a response at random, but yours could be
more sophisticated if you incorporate some other objective or loss function or heuris-
tic to influence the choice. Also, notice that the created_at dates are all the same.
That happens to be the date when we ran the ChatterBot “training” script, which
downloaded the dialog corpora and loaded them into the database.

 Search-based chatbots can also be improved by reducing the statement strings
down to topic vectors of fixed dimensionality, using something such as Word2vec
(summing all the word vectors for a short statement), or Doc2vec (chapter 6) or LSA
(chapter 4). Dimension reduction will help your bot generalize from the examples
you train it with. This helps it respond appropriately when the meaning of the query
statement (the most recent statement by your bot’s conversation partner) is similar in
meaning to one of your corpus statements, even if it uses different words. This will
work even if the spelling or characters in statements are very different. Essentially, this
semantic search-based chatbot is automating the programming of the templates you
programmed in AIML earlier in this chapter. This dimension reduction also makes
search-based chatbots smarter using machine learning (data-driven) than would be
possible with a hardcoded approach to machine intelligence. Machine learning is
preferable to hardcoding whenever you have a lot of labeled data, and not a lot of
time (to code up intricate logic and patterns to trigger responses). For search-based
chatbots, the only “label” needed is an example response for each example statement
in the dialog.

12.5 Generative models
We promised a generative model in this chapter. But if you recall the sequence-to-
sequence models you built in chapter 10, you may recognize them as generative chat-
bots. They’re machine learning translation algorithms that “translate” statements by
your user into replies by your chatbot. So we don’t go into generative models in any
more detail here, but know that many more kinds of generative models are out there.

392 CHAPTER 12 Getting chatty (dialog engines)
If you want to build a creative chatbot that says things that have never been said
before, generative models such as these may be what you need:

 Sequence-to-sequence—Sequence models trained to generate replies based on
their input sequences 39

 Restricted Boltzmann machines (RBMs)—Markov chains trained to minimize an
“energy” function 40

 Generative adversarial networks (GANs)—Statistical models trained to fool a
“judge” of good conversation 41

We talked about attention networks (enhanced LSTMs) in chapter 10, and we showed
the kinds of novel statements your chatbot can spontaneously generate. In the next
section, we take that approach in another direction.

12.5.1 Chat about NLPIA

Finally, the moment you’ve been waiting for… a chatbot that can help write a book
about NLP. We’ve finally written (and you’ve read) enough text for the chatbot to
have some seed material to work with. In this section, we show you how to use transfer
learning to build a generative NLP pipeline to produce some of the sentences you
may have already skimmed right by without noticing.

 Why transfer learning? In addition to some seed text about the specific topic you
want your chatbot to understand, generative models need an even bigger corpus of
more general text to learn a language model from. Your chatbot needs to be able to
do a lot of reading before it can recognize all the ways words are put together to form
grammatically correct and meaningful sentences. And that corpus has to be seg-
mented into grammatically correct sentences. So the project Gutenberg corpus isn’t
the ideal place for this model.

 Think of how many books you had to read as a child before you built a decent
vocabulary and a sense for the correct way to put words together into sentences. And
your teachers probably gave you a lot of clues, like context, while you were practicing
that reading.42 Plus, humans are much better than machines at learning.43

 This data-intensive language model learning is a particularly big challenge for
character-based models. In character sequence language models, your chatbot needs
to learn how to put characters together to form properly spelled and meaningful

39 Explanation of sequence-to-sequence models and links to several papers: https://suriyadeepan.github.io/
2016-06-28-easy-seq2seq/.

40 Hinton lecture at Coursera: https://youtu.be/EZOpZzUKl48.
41 Ian Goodfellow’s GAN tutorial, NIPS 2016: https://arxiv.org/pdf/1701.00160.pdf and Lantau Yu’s adapta-

tion to text sequences: https://arxiv.org/pdf/1609.05473.pdf.
42 “On the role of context in first- and second-language vocabulary learning” (https://www.ideals.illinois.edu/

bitstream/handle/2142/31277/TR-627.pdf).
43 See “One-shot and Few-shot Learning of Word Embeddings” (https://openreview.net/pdf?id=rkYgAJWCZ)

and “One-shot learning by inverting a compositional causal process” (http://www.cs.toronto.edu/~rsalakhu/
papers/lake_nips2013.pdf).

http://www.cs.toronto.edu/~rsalakhu/papers/lake_nips2013.pdf
http://www.cs.toronto.edu/~rsalakhu/papers/lake_nips2013.pdf
https://openreview.net/pdf?id=rkYgAJWCZ
https://www.ideals.illinois.edu/bitstream/handle/2142/31277/TR-627.pdf
https://www.ideals.illinois.edu/bitstream/handle/2142/31277/TR-627.pdf
https://arxiv.org/pdf/1701.00160.pdf
https://arxiv.org/pdf/1609.05473.pdf
https://youtu.be/EZOpZzUKl48
https://suriyadeepan.github.io/2016-06-28-easy-seq2seq/
https://suriyadeepan.github.io/2016-06-28-easy-seq2seq/

393Generative models
words, in addition to learning how to put those new words together to make sen-
tences. So you’ll want to reuse an existing language model trained on a large body of
text in the language and style you’d like to imitate with your bot. If you think about
this for a moment, you can probably see why data limitations have limited how far cur-
rent NLP researchers have been able to climb up the complexity curve from charac-
ters to words to sentences. Composing paragraphs, chapters, and novels is still an
active area of research. So we stop our climb there and show you how to generate a
few sentences like those generated for the “about this book” front matter for NLPIA.

 The DeepMind folks have provided TensorFlow character sequence-to-sequence
language models pretrained on more than 500MB of sentences from CNN and Daily
Mail news feeds.44 And if you want to build your own language model, they’ve pro-
vided all the sentences in two large datasets as part of their “reading comprehension”
(Q&A) challenge.45 We reused the pretrained text summarization model directly to
generate sentences for the “about this book” NLPIA front matter. You can also use
these models to augment your own machine learning pipeline with an approach
called “transfer learning,” like we did with word vectors in Chapter 6.

 Here’s the algorithm:

1 Download a pretrained sequence-to-sequence text summarization model
(https://github.com/totalgood/pointer-generator#looking-for-pretrained-
model).

2 Parse and segment asciidoc text to extract natural language sentences with
nlpia.book_parser (https://github.com/totalgood/nlpia/blob/master/src/
nlpia/.py).

3 Use the text summarization model to summarize the first 30 or so lines of text
in each asciidoc file (typically a chapter): https://github.com/totalgood/nlpia/
blob/master/src/nlpia/book/examples/ch12_chat_about_nlpia.py.

4 Filter the generated sentences for novelty to avoid regurgitation of existing sen-
tences from the book: https://github.com/totalgood/nlpia/blob/master/src/
nlpia/book_parser.py.

Here are the only two well-formed and marginally original sentences that our
@ChattyAboutNLPIA bot came up with. This is @Chatty’s attempt to summarize the
first 30 lines of chapter 5:

Convolutional neural nets make an attempt to capture that ordering relationship by
capturing localized relationships.

44 Pretrained TensorFlow text summarization model: TextSum from Google Brain (https://github.com/total-
good/pointer-generator#looking-for-pretrained-model) and a paper describing the model https://arxiv.org/
abs/1704.04368.

45 The dataset includes reading comprehension questions and answers as well as the sentences from news arti-
cles that you need to answer those questions: DeepMind Q&A Dataset (https://cs.nyu.edu/%7Ekcho/
DMQA/).

https://github.com/totalgood/pointer-generator#looking-for-pretrained-model
https://github.com/totalgood/pointer-generator#looking-for-pretrained-model
https://github.com/totalgood/nlpia/blob/master/src/nlpia/book_parser.py
https://github.com/totalgood/nlpia/blob/master/src/nlpia/book_parser.py
https://github.com/totalgood/nlpia/blob/master/src/nlpia/book/examples/ch12_chat_about_nlpia.py
https://github.com/totalgood/nlpia/blob/master/src/nlpia/book/examples/ch12_chat_about_nlpia.py
https://github.com/totalgood/nlpia/blob/master/src/nlpia/book_parser.py
https://github.com/totalgood/nlpia/blob/master/src/nlpia/book_parser.py
https://github.com/totalgood/pointer-generator#looking-for-pretrained-model
https://github.com/totalgood/pointer-generator#looking-for-pretrained-model
https://arxiv.org/abs/1704.04368
https://arxiv.org/abs/1704.04368
https://cs.nyu.edu/%7Ekcho/DMQA/
https://cs.nyu.edu/%7Ekcho/DMQA/

394 CHAPTER 12 Getting chatty (dialog engines)
This is @Chatty’s summary of chapter 8:

Language’s true power is not necessarily in the words, but in the intent and emotion
that formed that particular combination of words.

These sentences were among the 25 outputs (https://github.com/totalgood/nlpia/
blob/master/src/nlpia/data/nlpia_summaries.md) for this hacky pipeline. In the
coming months, we’ll modify the pipeline in nlpia.book.examples.ch12_chat_about
_nlpia to provide more useful results. One enhancement will be to process the entire
book with TextSum so it has more material to work with. We’ll also need to apply some
more filtering:

1 Filter the generated sentences for well-formedness.46

2 Filter generated sentences for your style and sentiment objectives.
3 Automatically detokenize and unfold case (capitalization), if necessary.

12.5.2 Pros and cons of each approach

Now that you know all about the four major chatbot approaches, can you think how
you might combine them to get the best out of your bot? Figure 12.3 lists the advan-
tages and disadvantages of each approach.

Figure 12.3 Advantages and disadvantages of four chatbot approaches

46 Thank you Kyle Gorman @wellformedness (https://twitter.com/wellformedness) for your 100+ suggestions
and bits of clever content for this book. See also https://en.wikipedia.org/wiki/Well-formedness.

Approach

Grammar

Grounding

Generative

Retrieval

Advantages

Answers logical questions well
Easily controlled/restrained

Simple
Easy to “train”
Can mimic human dialog

New, creative ways of talking
Less human effort
Domain limited only by data
Context aware

Easy to get started
Training easy to reuse
Modular
Easily controlled/restrained

Disadvantages

Sounds artificial, mechanical
Difficulty with ambiguity
Difficulty with common sense
Limited by structured data
Requires large scale information extraction
Requires human curation

Difficult to scale
Incoherent personality
Ignorant of context
Can’t answer factual questions

Difficult to “steer”
Difficult to train
Requires more data (dialog)
Requires more processing to train

Limited “domain”
Capability limited by human effort
Difficult to debug
Rigid, brittle rules

https://github.com/totalgood/nlpia/blob/master/src/nlpia/data/nlpia_summaries.md
https://github.com/totalgood/nlpia/blob/master/src/nlpia/data/nlpia_summaries.md
https://twitter.com/wellformedness
https://en.wikipedia.org/wiki/Well-formedness

395Four-wheel drive
12.6 Four-wheel drive
As we promised at the beginning of this chapter, we now show you how to combine all
four approaches to get traction with your users. To do this, you need a modern chat-
bot framework that’s easy to extend and modify and can efficiently run each of these
algorithm types in parallel.47 You’re going to add a response generator for each of the
four approaches using the Python examples from earlier in the chapter. And then
you’re going to add the logic to decide what to say by choosing one of the four (or
many) responses. You’re going to have your chatbot think before it speaks, say things
several different ways to itself first, and rank or merge some of these alternatives to
produce a response. And maybe you can even try to be prosocial with your replies by
checking their sentiment before “hitting the send button.”

12.6.1 The Will to succeed

Will is a modern programmer-friendly chatbot framework by Steven Skoczen that can
participate in your HipChat and Slack channels as well as others.48 Python developers
will enjoy the modular architecture. However it’s pretty heavyweight in terms of
requirements and installation. Fortunately, it comes with a Dockerized container you
can use to spin up your own chatbot server.

 Will uses regular expressions to make matches. Python itself can be used for any
logical conditions you need to evaluate. And the jinja2 library is used for templating.
Each one of these portions of the pipeline add versatility and flexibility to the kinds of
behaviors you can build into your chatbot. As a result, Will is much more flexible than
AIML-based frameworks. But Will still suffers from the same limitations that hold back
all pattern-based chatbots (including AIML)--it can’t learn from data; it must be
“taught” by the developer writing code for each and every branch in the logic tree.

INSTALLING WILL

The installation documentation for Will has a couple small gaps. By the time this goes
to print, we hope to have them fixed, so you can likely just read the high-quality docs.49

On Mac OS X, you can install and launch a redis server () brew install redis.

HELLO WILL

Heres’s what a conversation with an untrained Will looks like, if you ignore the trace-
backs about port 80 permissions, or you can figure out how to avoid these errors:

You: Hey
Will: hello!
You: What's up?
Will: I heard you, but I'm not sure what to do.
You: How are you?

47 We’re building an open source chatbot framework at Aira called aichat to help our users and their friends
contribute “content” to our library of dialog to help and entertain people with blindness and low vision:
 http://github.com/aira/aichat.

48 GitHub Repository: https://github.com/skoczen/will.
49 Will documentation: http://skoczen.github.io/will/.

http://github.com/aira/aichat
https://github.com/skoczen/will
http://skoczen.github.io/will/

396 CHAPTER 12 Getting chatty (dialog engines)
Will: Doing alright. How are you?
You: What are you?
Will: Hmm. I'm not sure what to say.
You: Are you a bot?
Will: I didn't understand that.

As you can see, out of the box, Will is polite but doesn’t understand much. You can eas-
ily change Will for Rosa (or any other name). And you can use your natural language
processing skills to beef up some of his patterns and expand his literary power.

12.7 Design process
To create a useful app, product managers and developers compose user stories. A user
story describes a sequence of actions performed by a user in interacting with your app
and how your app should respond. These can be imagined based on similar experi-
ences in the real world with similar products, or they can be translated from user fea-
ture requests or feedback. Software features are tied to a user story to improve the
likelihood that the development effort is focused on something that’ll add usefulness
to your product.

 User stories for a chatbot can often be composed as statements (text messages)
that a user might communicate to the bot. Those user statements are then paired with
the appropriate response or action by the chatbot or virtual assistant. For a retrieval-
based chatbot, this table of user stories is all that’s required to “train” a chatbot for
these particular responses and stories. It’s up to you, the developer, to identify stories
that can be generalized so that your design team doesn’t have to specify everything
your bot must understand and all the different things it can say. Can you tell which of
the four chatbot techniques would be appropriate for each of these questions?

 “Hello!” => “Hello!”
 “Hi” => “Hi!”
 “How are you?” => “I’m fine. How are you?”
 “How are you?” => “I’m a stateless bot, so I don’t have an emotional state.”
 “Who won the 2016 World Series?” => “Chicago Cubs”
 “Who won the 2016 World Series?” => “The Chicago Cubs beat the Cleveland

Indians 4 to 3”
 “What time is it” => “2:55 pm”
 “When is my next appointment?” => “At 3 pm you have a meeting with the sub-

ject 'Springboard call'”
 “When is my next appointment?” => “At 3 pm you need to help Les with her

Data Science course on Springboard”
 “Who is the President?” => “Sauli Niinistö”
 “Who is the President?” => “Barack Obama”

Several valid responses may be possible for any given statement, even for the exact same
user and context. And it’s also common for multiple different prompting statements to

397Design process
elicit the same exact chatbot response (or set of possible responses). The many-to-many
mapping between statements and responses works both ways, just as it does for human
dialog. So the number of possible combinations of valid statement => response mappings
can be enormous—seemingly infinite (but technically finite).

 And you must also expand the combinations of statement-response pairs in your
user stories using named variables for context elements that change often:

 Date
 Time
 Location: country, state, county, and city, or latitude and longitude
 Locale: US or Finland formatting for date, time, currency, and numbers
 Interface type: mobile or laptop
 Interface modality: voice or text
 Previous interactions: whether user asked for details about baseball stats

recently
 Streaming audio, video, and sensor data from a mobile device (Aira.io)

IBM Watson and Amazon Lex chatbot APIs rely on knowledge bases that aren’t easy to
evolve quickly and keep up-to-speed with these evolving context variables. The “write
rate” for these databases of knowledge are too slow to handle many of these evolving
facts about the world that the chatbot and the user are interacting with.

 The list of possible user stories for even the simplest of chatbots is technically
finite, but it’s quite large for even the simplest real-world chatbot. One way to deal
with this explosion of combinations is to combine many user interactions into a single
pattern or template. For the statement side of the mapping, this template approach is
equivalent to creating a regular expression (or finite state machine) to represent
some group of statements that should cause a particular pattern response. For the
response side of the mapping, this approach is equivalent to Jinja2 or Django or
Python f-string templates.

 Thinking back to your first chatbot in chapter 1, we can represent statement =>
response mappings that map regular expressions for the statement to a Python f-string
for the response:

>>> pattern_response = {
... r"[Hh]ello|[Hh]i[!]*":
... r"Hello {user_nickname}, would you like to play a game?",
... r"[Hh]ow[\s]*('s|are|'re)?[\s]*[Yy]ou([\s]*doin['g]?)?":
... r"I'm {bot_mood}, how are you?",
... }

But this doesn’t allow for complex logic. And it requires hand coding rather than
machine learning. So each mapping doesn’t capture a broad range of statements and
responses. You’d like a machine learning model to be able to handle a wide range of
sports questions, or help a user manage their calendar.

398 CHAPTER 12 Getting chatty (dialog engines)
IMPORTANT Don’t change those raw string templates to f-strings with f" or
they’ll be rendered at the time of instantiation. Your bot may not know
much about the world at the time you create the pattern_response
dictionary.

Here are some example chatbot user stories that don’t lend themselves well to the
template approach:

 “Where is my home” => “Your home is 5 minutes away by foot, would you like
directions?”

 “Where am I” => “You are in SW Portland near Goose Hollow Inn” or “You are
at 2004 SW Jefferson Street”

 “Who is the President?” => “Sauli Niinistö” or “Barack Obama” or “What coun-
try or company …”

 “Who won the 2016 World Series?” => “Chicago Cubs” or “The Chicago Cubs
beat the Cleveland Indians 4 to 3”

 “What time is it” => “2:55 pm” or “2:55 pm, time for your meeting with Joe” or …

And here are some general IQ test questions that are too specific to warrant a pattern-
response pair for each variation. A knowledge base is usually the answer for general
intelligence questions. Nonetheless, that’s probably how the Mitsuku chatbot was able
to get close to the right answer in a recent test by Byron Reese:

 “Which is larger, a nickel or a dime?” => “Physically or monetarily?” or “A nickel
is physically larger and heavier but less valuable monetarily.”

 “Which is larger, the Sun or a nickel?” => “The Sun, obviously.”50

 “What’s a good strategy at Monopoly?” => “Buy everything you can, and get lucky.”
 “How should I navigate a corn-row maze?” => “Keep your hand against one wall

of corn and follow it until it becomes an outside wall of the maze.”
 “Where does sea glass come from?” => “Garbage… fortunately the polishing of

sand and time can sometimes turn human refuse, like broken bottles, into
beautiful gemstones.”

Even though these cannot be easily translated directly into code, they do translate
directly into an automated test set for your NLP pipeline. Tests like these can be used
to evaluate a new chatbot approach or feature or just to track progress over time.51 If
you can think of some more chatbot IQ questions, add them to the growing list at
nlpia/data/iq_test.csv (https://github.com/totalgood/nlpia/blob/master/src
/nlpia/data/iq_test.csv). And certainly include them in automated testing of your
own chatbot. You never know when your bot is going to surprise you.

50 Byron Reese, “AI Minute” podcast.
51 2017 Andrew Ng lecture to Stanford Business School students: https://youtu.be/21EiKfQYZXc?t=48m6s.

https://github.com/totalgood/nlpia/blob/master/src/nlpia/data/iq_test.csv
https://github.com/totalgood/nlpia/blob/master/src/nlpia/data/iq_test.csv
https://youtu.be/21EiKfQYZXc?t=48m6s

399Trickery
12.8 Trickery
You’ll want to have a few specific tricks up your sleeve when building a chatbot. These
tricks will help you ensure that your chatbot doesn’t go off the rails too often.

12.8.1 Ask questions with predictable answers

When asked a question that you don’t know the answer to, the chatbot can respond
with a clarifying question. And if this clarifying question is well within the knowledge
domain or personality profile of the chatbot, it’s possible to predict the form of the
answer that a human would make. Then the chatbot can use the user’s response to
regain control of the conversation and steer it back toward topics that it knows some-
thing about. To avoid frustration, try to make the clarifying question humorous, or
positive and flattering, or in some way pleasing to the user:

Human: "Where were you born?"

Sports Bot: "I don't know, but how about those Mets?"
Therapist Bot: "I don't know, but are you close to your mother?"
Ubuntu Assistant Bot: "I don't know, but how do you shut down your Ubuntu PC

at night?"

You can often use semantic search to find question-answer pairs, jokes, or interesting
trivia in the chatbot’s knowledge base that are at least tangentially related to what the
user is asking about.

12.8.2 Be entertaining

Sometimes your generative process may take too long to converge to a high-quality mes-
sage. And your chatbot may not find a reasonable clarifying question to ask. In that sit-
uation your chatbot has two choices: 1. admit ignorance, or 2. make up a non sequitur.

 A non sequitur is a statement that has nothing to do with what the user asked
about. Such statements are generally considered antisocial, and sometimes manipula-
tive. Honesty is the best policy for your prosocial chatbot. And the more open you
are, the more likely you are to build trust with your user. Your user might enjoy learn-
ing a bit about the “core” of your chatbot if you reveal the size of your database of
responses or actions you can handle. You can also share some of the garbled res-
ponses that didn’t make it through your grammar and style checker. The more honest
you are the more likely the user is to be kind in return and try to help your chatbot
get back on track. Cole Howard found that users would often coax his MNIST-trained
handwriting recognizer toward the right answer by redrawing the digits in a more
clear way.

 So for a commercial chatbot, you may want this useless response to be sensational,
distracting, flattering, or humorous. And you’ll probably also want to ensure that your
responses are randomly selected in a way that a human would consider random. For

400 CHAPTER 12 Getting chatty (dialog engines)
example, don’t repeat yourself very often.52 And use varying sentence structure, form,
and style over time. That way you can monitor your customers’ responses and measure
their sentiment to determine which of your non sequiturs were the least annoying.

12.8.3 When all else fails, search

If your bot can’t think of anything to say, try acting like a search engine or search bar.
Search for webpages or internal database records that might be relevant to any ques-
tion you might receive. But be sure to ask the user whether the page titles might help
the user before spitting out all the information they contain. Stack Overflow, Wikipe-
dia, and Wolfram Alpha are good resources at the ready for many bots (because
Google does that and users expect it).

12.8.4 Being popular

If you have a few jokes or links to resources or responses that are favorably received by
your audience, in general, then respond with those rather than the best match for the
question asked, especially if the match is low. And these jokes or resources may help
bring your human back into a conversation path that you’re familiar with and have a
lot of training set data for.

12.8.5 Be a connector

Chatbots that can be the hub of a social network will quickly be appreciated by their
users. Introduce the human to other humans on the chat forum or people who’ve
written about things the user has written about. Or point the user to a blog post,
meme, chat channel, or other website that’s relevant to something they might be
interested in. A good bot will have a handy list of popular links to hand out when the
conversation starts to get repetitive.

 Bot: You might like to meet @SuzyQ, she’s asked that question a lot lately. She
might be able to help you figure it out.

12.8.6 Getting emotional

Google’s Inbox email responder is similar to the conversational chatbot problem we
want to solve. The auto-responder must suggest a reply to the emails you receive based
on their semantic content. But a long chain of replies is less likely for an email
exchange. And the prompting text is generally much longer for an email auto-
responder than it is for a conversational chatbot. Nonetheless, the problems both
involve generating text replies to incoming text prompts. So many of the techniques
for one may be applicable to the other.

 Even though Google had access to billions of emails, the paired replies in the
Gmail Inbox “Smart Reply” feature tend to funnel you toward short, generic, bland

52 Humans underestimate the number of repetitions there should be in a random sequence: https://mindmod-
eling.org/cogsci2014/papers/530/paper530.pdf.

https://mindmodeling.org/cogsci2014/papers/530/paper530.pdf
https://mindmodeling.org/cogsci2014/papers/530/paper530.pdf

401In the real world
replies. A semantic search approach is likely to produce relatively generic, bland
replies if you’re trying to maximize correctness for the average email user. The aver-
age reply isn’t likely to have much personality or emotion. So Google tapped an
unlikely corpus to add a bit of emotion to their suggested replies… romance novels.

 It turns out that romance novels tend to follow predictable plots and have sappy
dialog that can be easily dissected and imitated. And it contains a lot of emotion. Now
I’m not sure how Google gleaned phrases like “That’s awesome! Count me in!” or
“How cool! I’ll be there.” from romance novels, but they claim that’s the source of the
emotional exclamations that they suggest with Smart Reply.

12.9 In the real world
The hybrid chatbot you’ve assembled here has the flexibility to be used for the most
common real-world applications. In fact, you’ve probably interacted with such a chat-
bot sometime this week:

 Customer service assistants
 Sales assistants
 Marketing (spam) bots
 Toy or companion bots
 Video game AI
 Mobile assistants
 Home automation assistants
 Visual interpreters
 Therapist bots
 Automated email reply suggestions

And you’re likely to run across chatbots like the ones you built in this chapter more and
more. User interfaces are migrating away from designs constrained by the rigid logic
and data structures of machines. More and more machines are being taught how to
interact with us in natural, fluid conversation. The “voice first” design pattern is becom-
ing more popular as chatbots become more useful and less frustrating. And these dia-
log system approaches promise a richer and more complex user experience than
clicking buttons and swiping left. And with chatbots interacting with us behind the cur-
tains, they are becoming more deeply embedded in the collective consciousness.

 So now you’ve learned all about building chatbots for fun and for profit. And
you’ve learned how to combine generative dialog models, semantic search, pattern
matching, and information extraction (knowledge bases) to produce a chatbot that
sounds surprisingly intelligent.

 You’ve mastered all the key NLP components of an intelligent chatbot. Your only
remaining challenge is to give it a personality of your own design. And then you’ll
probably want to “scale it up” so it can continue to learn, long after you’ve exhausted
the RAM, hard drive, and CPU in your laptop. And we show you how to do that in
chapter 13.

402 CHAPTER 12 Getting chatty (dialog engines)
Summary
 By combining multiple proven approaches, you can build an intelligent dialog

engine.
 Breaking “ties” between the replies generated by the four main chatbot

approaches is one key to intelligence.
 You can teach machines a lifetime of knowledge without spending a lifetime

programming them.

Scaling up (optimization,
parallelization,

and batch processing)
In chapter 12, you learned how to use all the tools in your NLP toolbox to build an
NLP pipeline capable of carrying on a conversation. We demonstrated crude exam-
ples of this chatbot dialog capability on small datasets. The humanness, or IQ, of
your dialog system seems to be limited by the data you train it with. Most of the
NLP approaches you’ve learned give better and better results, if you can scale them
up to handle larger datasets.

 You may have noticed that your computer bogs down, even crashes, if you
run some of the examples we gave you on large datasets. Some datasets in
nlpia.data.loaders.get_data() will exceed the memory (RAM) in most PCs
or laptops.

This chapter covers
 Scaling up an NLP pipeline

 Speeding up search with indexing

 Batch processing to reduce your memory footprint

 Parallelization to speed up NLP

 Running NLP model training on a GPU
403

404 CHAPTER 13 Scaling up (optimization, parallelization, and batch processing)
 Besides RAM, another bottleneck in your natural language processing pipelines is
the processor. Even if you had unlimited RAM, larger corpora would take days to pro-
cess with some of the more complex algorithms you’ve learned.

 So you need to come up with algorithms that minimize the resources they require:

 Volatile storage (RAM)
 Processing (CPU cycles)

13.1 Too much of a good thing (data)
As you add more data, more knowledge, to your pipeline, the machine learning mod-
els take more and more RAM, storage, and CPU cycles to train. Even worse, some of
the techniques relied on an O(N2) computation of distance or similarity between vec-
tor representations of statements or documents. For these algorithms, things get
slower faster as you add data. Each additional sentence in the corpora takes more
bytes of RAM and more CPU cycles to process than the previous one, which is imprac-
tical for even moderately sized corpora.

 Two broad approaches help you avoid these issues so you can scale up your NLP
pipeline to larger datasets:

 Increased scalability—Improving or optimizing the algorithms
 Horizontal scaling—Parallelizing the algorithms to run multiple computations

simultaneously

In this chapter, you’ll learn techniques for both.
 Getting smarter about algorithms is almost always the best way to speed up a pro-

cessing pipeline, so we talk about that first. We leave parallelization to the second half
of this chapter, to help you run sleek, optimized algorithms even faster.

13.2 Optimizing NLP algorithms
Some of the algorithms you’ve looked at in previous chapters have expensive com-
plexities, often quadratic O(N2) or higher:

 Compiling a thesaurus of synonyms from word2vec vector similarity
 Clustering web pages based on their topic vectors
 Clustering journal articles or other documents based on topic vectors
 Clustering questions in a Q&A corpus to automatically compose a FAQ

All of these NLP challenges fall under the category of indexed search, or k-nearest
neighbors (KNN) vector search. We spend the next few sections talking about the scal-
ing challenge: algorithm optimization. We show you one particular algorithm optimi-
zation, called indexing. Indexing can help solve most vector search (KNN) problems.
In the second half of the chapter, we show you how to hyper-parallelize your natural
language processing by using thousands of CPU cores in a graphical processing
unit (GPU).

405Optimizing NLP algorithms
13.2.1 Indexing

You probably use natural language indexes every day. Natural language text indexes
(also called reverse indexes) are what you use when you turn to the back of a textbook
to find the page for a topic you’re interested in. The pages are the documents and the
words are the lexicon of your bag of words vectors (BOW) for each document. And you
use a text index every time you enter a search string in a web search tool. To scale up
your NLP application, you need to do that for semantic vectors like LSA document-
topic vectors or word2vec word vectors.

 Previous chapters have mentioned conventional “reverse indexes” used for search-
ing documents to find a set of words or tokens based on the words in a query. But
we’ve not yet talked about approximate KNN search for similar text. For KNN search,
you want to find strings that are similar even if they don’t contain the exact same
words. Levenshtein distance is one of the distance metrics used by packages such as
fuzzywuzzy and ChatterBot to find similar strings.

 Databases implement a variety of text indexes that allow you to find documents or
strings quickly. SQL queries allow you to search for text that matches patterns such as
SELECT book_title from manning_book WHERE book_title LIKE 'Natural

Language%in Action'. This query would find all the “in Action” Manning titles that
start with “Natural Language.” And there are trigram (trgm) indexes for a lot of data-
bases that help you find similar text quickly (in constant time), without even specify-
ing a pattern, just specifying a text query that’s similar to what you’re looking for.

 These database techniques for indexing text work great for text documents or
strings of any sort. But they don’t work well on semantic vectors such as word2vec
vectors or dense document-topic vectors. Conventional database indexes rely on the
fact that the objects (documents) they’re indexing are either discrete, sparse, or low
dimensional:

 Strings (sequences of characters) are discrete: there are a limited number of
characters.

 TF-IDF vectors are sparse: most terms have a frequency of 0 in any given docu-
ment.

 BOW vectors are discrete and sparse: terms are discrete, and most words have
zero frequency in a document.

This is why web searches, document searches, or geographic searches execute in milli-
seconds. And it’s been working efficiently (O(1)) for many decades.

 What makes continuous vectors such as document-topic LSA vectors (chapter 4) or
word2vec vectors (chapter 6) so hard to index? After all, geographic information sys-
tem (GIS) vectors are typically latitude, longitude, and altitude. And you can do a GIS
search on Google Maps in milliseconds. Fortunately GIS vectors only have three con-
tinuous values, so indexes can be built based on bounding boxes that gather together
GIS objects in discrete groups.

406 CHAPTER 13 Scaling up (optimization, parallelization, and batch processing)
 Several different index data structures can deal with this problem:

 K-d Tree: Elastic search will implement this for up to 8D in upcoming releases.
 Rtree: PostgreSQL implements this in versions >= 9.0 for up to 200D.
 Minhash or locality sensitive hashes: pip install lshash3.

These work up to a point. That point is at about 12 dimensions. If you play around
with optimizing database indexes or locality sensitive hashes yourself, you’ll find that it
gets harder and harder to maintain that constant-time lookup speed. At about 12
dimensions it becomes impossible.

 So what are you to do with your 300D word2vec vectors or 100+ dimension seman-
tic vectors from LSA? Approximation to the rescue. Approximate nearest neighbor
search algorithms don’t try to give you the exact set of document vectors that are most
similar to your query vector. Instead they just try to find some reasonably good
matches. And they’re usually pretty darn good, rarely missing any closer matches in
the top 10 or so search results.

 But things are quite different if you’re using the magic of SVD or embedding to
reduce your token dimensions (your vocabulary size, typically in the millions) to, say,
200 or 300 topic dimensions. Three things are different. One change is an improve-
ment: you have fewer dimensions to search (think columns in a database table). Two
things are challenging: you have dense vectors of continuous values.

13.2.2 Advanced indexing

Semantic vectors check all the boxes for difficult objects. They’re difficult because
they’re

 High dimensional
 Real valued
 Dense

We’ve replaced the curse of dimensionality with two new difficulties. Our vectors are
now dense (no zeros that you can ignore) and continuous (real valued).

 In your dense semantic vectors, every dimension has a meaningful value. You can
no longer skip or ignore all the zeros that filled the TF-IDF or BOW table (see chap-
ters 2 and 3). Even if you filled the gaps in your TF-IDF vectors with additive (Laplace)
smoothing, you’d still have some consistent values in your dense table that allow it to
be handled like a sparse matrix. But there are no zeros or most-common values in
your vectors anymore. Every topic has some weight associated with it for every docu-
ment. This isn’t an insurmountable problem. The reduced dimensionality more than
makes up for the density problem.

 The values in these dense vector are real numbers. But there’s a bigger problem.
Topic weight values in a semantic vector can be positive or negative and aren’t limited
to discrete characters or integer counts. The weights associated with each topic are
now continuous real values (float). Nondiscrete values, such as floats, are impossible
to index. They’re no longer merely present or absent. They can’t be vectorized with
one-hot encoding of input as a feature into a neural net. And you certainly can’t create

407Optimizing NLP algorithms
an entry in an index table that refers to all the documents where that feature or topic
was either present or absent. Topics are now everywhere, in all the documents, to vary-
ing degrees.

 You can solve the natural language search problems at the beginning of the chap-
ter if you can find an efficient search or KNN algorithm. One of the ways to optimize
the algorithm for such problems is to sacrifice certainty and accuracy in exchange for
a huge speed-up. This is called approximate nearest neighbors (ANN) search. For
example, DuckDuckGo’s search doesn’t try to find you a perfect match for the seman-
tic vector in your search. Instead it attempts to provide you with the closest 10 or so
approximate matches.

 Fortunately, a lot of companies have open sourced much of their research software
for making ANN more scalable. These research groups are competing with each other
to give you the easiest, fastest ANN search software. Here are some of the Python pack-
ages from this competition that have been tested with standard benchmarks for NLP
problems at the India Technical University (ITU):1

 Spotify’s Annoy 2

 BallTree (using nmslib)3

 Brute Force using Basic Linear Algebra Subprograms library (BLAS)4

 Brute Force using Non-Metric Space Library (NMSlib)5

 Dimension reductiOn and LookuPs on a Hypercube for effIcient Near Neigh-
bor (DolphinnPy)6

 Random Projection Tree Forest (rpforest)7

 Locality sensitive hashing (datasketch)8

 Multi-indexing hashing (MIH)9

 Fast Lookup of Cosine and Other Nearest Neighbors (FALCONN)10

1 ITU comparison of ANN Benchmarks: http://www.itu.dk/people/pagh/SSS/ann-benchmarks/.
2 See the web page titled “GitHub - spotify/annoy: Approximate Nearest Neighbors in C++/Python optimized

for memory usage and loading/saving to disk” (https://github.com/spotify/annoy).
3 See the web page titled “GitHub - nmslib/nmslib: Non-Metric Space Library (NMSLIB): An efficient similarity

search library and a toolkit for evaluation of k-NN methods for generic non-metric spaces,” (https://
github.com/searchivarius/nmslib).

4 See the web page titled “1.6. Nearest Neighbors — scikit-learn 0.19.2 documentation,” (http://scikit-
learn.org/stable/modules/neighbors.html#brute-force).

5 See the web page titled “GitHub - nmslib/nmslib: Non-Metric Space Library (NMSLIB): An efficient similarity
search library and a toolkit for evaluation of k-NN methods for generic non-metric spaces,” (https://
github.com/searchivarius/NMSLIB).

6 See the web page titled “GitHub - ipsarros/DolphinnPy: High-dimensional approximate nearest neighbor in
python” (https://github.com/ipsarros/DolphinnPy).

7 See the web page titled “GitHub - lyst/rpforest: It is a forest of random projection trees,” (https://github.com/
lyst/rpforest).

8 See the web page titled “GitHub - ekzhu/datasketch: MinHash, LSH, LSH Forest, Weighted MinHash, Hyper-
LogLog, HyperLogLog++” (https://github.com/ekzhu/datasketch).

9 See the web page titled “GitHub - norouzi/mih: Fast exact nearest neighbor search in Hamming distance on
binary codes with Multi-index hashing” (https://github.com/norouzi/mih).

10 See the web page titled “FALCONN : PyPI” (https://pypi.python.org/pypi/FALCONN).

https://pypi.python.org/pypi/FALCONN
https://github.com/norouzi/mih
https://github.com/ekzhu/datasketch
https://github.com/lyst/rpforest
https://github.com/lyst/rpforest
https://github.com/ipsarros/DolphinnPy
https://github.com/searchivarius/NMSLIB
https://github.com/searchivarius/NMSLIB
http://scikit-learn.org/stable/modules/neighbors.html#brute-force
http://scikit-learn.org/stable/modules/neighbors.html#brute-force
https://github.com/searchivarius/nmslib
https://github.com/searchivarius/nmslib
https://github.com/spotify/annoy
http://www.itu.dk/people/pagh/SSS/ann-benchmarks/

408 CHAPTER 13 Scaling up (optimization, parallelization, and batch processing)
 Fast Lookup of Approximate Nearest Neighbors (FLANN)11

 Hierarchical Navigable Small World (HNSW) (in nmslib)12

 K-Dimensional Trees (kdtree)13

 nearpy14

One of the most straightforward of these indexing approaches is implemented in a
package called Annoy by Spotify.

13.2.3 Advanced indexing with Annoy

The recent update to word2vec (KeyedVectors) in gensim added an advanced
indexing approach. You can now retrieve approximate nearest neighbors for any vec-
tor in milliseconds, out of the box. But as we discussed in the beginning of the chap-
ter, you need to use indexing for any kind of high-dimension dense continuous vector
set, not just word2vec vectors. You can use Annoy to index the word2vec vectors and
compare your results to gensim’s KeyedVectors index. First, you need to load the
word2vec vectors like you did in chapter 6, as shown in the following listing.

>>> from nlpia.loaders import get_data
>>> wv = get_data('word2vec')
100%|############################| 402111/402111 [01:02<00:00, 6455.57it/s]
>>> len(wv.vocab), len(wv[next(iter(wv.vocab))])
(3000000, 300)
>>> wv.vectors.shape
(3000000, 300)

Set up an empty Annoy index with the right number of dimensions for your vectors, as
shown in the following listing.

>>> from annoy import AnnoyIndex
>>> num_words, num_dimensions = wv.vectors.shape
>>> index = AnnoyIndex(num_dimensions)

Now you can add your word2vec vectors to your Annoy index one at a time. You can
think of this process as reading through the pages of a book one at a time, and putting

11 See the web page titled “FLANN - Fast Library for Approximate Nearest Neighbors” (http://www.cs.ubc.ca/
research/flann/).

12 See the web page titled “nmslib/hnsw.h at master : nmslib/nmslib” (https://github.com/searchivarius/
nmslib/blob/master/similarity_search/include/factory/method/hnsw.h).

13 See the GitHub repository for kdtree: (https://github.com/stefankoegl/kdtree).
14 See NearPy project on PyPi: (https://pypi.python.org/pypi/NearPy).

Listing 13.1 Load word2vec vectors

Listing 13.2 Initialize 300D AnnoyIndex

If you haven’t already downloaded
GoogleNews-vectors-negative300.bin.gz

(https://bit.ly/GoogleNews-vectors-negative300) to nlpia/
src/nlpia/bigdata/ then get_data() will download it for you.

The original GoogleNews
word2vec model contains
3M word vectors, each
with 300 dimensions.

https://bit.ly/GoogleNews-vectors-negative300
http://www.cs.ubc.ca/research/flann/
http://www.cs.ubc.ca/research/flann/
https://github.com/searchivarius/nmslib/blob/master/similarity_search/include/factory/method/hnsw.h
https://github.com/searchivarius/nmslib/blob/master/similarity_search/include/factory/method/hnsw.h
https://github.com/stefankoegl/kdtree
https://pypi.python.org/pypi/NearPy

409Optimizing NLP algorithms
the page numbers where you found each word in the reverse index table at the back of
the book. Obviously an ANN search is much more complicated, but Annoy makes it eas-
ier. See the following listing.

>>> from tqdm import tqdm
>>> for i, word in enumerate(tqdm(wv.index2word)):
... index.add_item(i, wv[word])
22%|#######? | 649297/3000000 [00:26<01:35, 24587.52it/s]

Your AnnoyIndex object has to do one last thing: read through the entire index and
try to cluster your vectors into bite-size chunks that can be indexed in a tree structure,
as shown in the following listing.

>>> import numpy as np
>>> num_trees = int(np.log(num_words).round(0))
>>> num_trees
15
>>> index.build(num_trees)
>>> index.save('Word2vec_euc_index.ann')
True
>>> w2id = dict(zip(range(len(wv.vocab)), wv.vocab))

You built 15 trees (approximately the natural log of 3 million), because you have 3
million vectors to search through. If you have more vectors or want your index to be
faster and more accurate, you can increase the number of trees. Just be careful not to
make it too big or you’ll have to wait a while for the indexing process to complete.

 Now you can try to look up a word from your vocabulary in the index, as shown in
the following listing.

>>> wv.vocab['Harry_Potter'].index
9494
>>> wv.vocab['Harry_Potter'].count
2990506
>>> w2id = dict(zip(

Listing 13.3 Add each word vector to the AnnoyIndex

Listing 13.4 Build Euclidean distance index with 15 trees

Listing 13.5 Find Harry_Potter neighbors with AnnoyIndex

tqdm() takes an iterable and returns an
iterable (like enumerate()) and inserts code

in your loop to display a progress bar.

.index2word is an unsorted list of all 3M
tokens in your vocabulary, equivalent to a

map of the integer indexes (0-2999999) to
tokens ('</s>' to 'snowcapped_Caucasus').

This is just a rule of thumb—you may want to optimize
this hyperparameter if this index isn’t performant for
the things you care about (RAM, lookup, indexing) or

accurate enough for your application.

round(ln(3000000)) => 15 indexing trees for our
3M vectors—takes a few minutes on a laptop

Saves the index to a local
file and frees up RAM, but
may take several minutes

The gensim KeyedVectors.vocab dict contains Vocab
objects rather than raw strings or index numbers. The gensim Vocab object can tell you

the number of times the "Harry_Potter"
2-gram was mentioned in the

GoogleNews corpus…. nearly 3M times.

410 CHAPTER 13 Scaling up (optimization, parallelization, and batch processing)
... wv.vocab, range(len(wv.vocab))))
>>> w2id['Harry_Potter']
9494
>>> ids = index.get_nns_by_item(
... w2id['Harry_Potter'], 11)
>>> ids
[9494, 32643, 39034, 114813, ..., 113008, 116741, 113955, 350346]
>>> [wv.vocab[i] for i in _]
>>> [wv.index2word[i] for i in _]
['Harry_Potter',
'Narnia',
'Sherlock_Holmes',
'Lemony_Snicket',
'Spiderwick_Chronicles',
'Unfortunate_Events',
'Prince_Caspian',
'Eragon',
'Sorcerer_Apprentice',
'RL_Stine']

The 10 nearest neighbors listed by Annoy are mostly books from the same general
genre as Harry Potter, but they aren’t really precise synonyms with the book title, movie
title, or character name. So your results are definitely approximate nearest neighbors.
Also, keep in mind that the algorithm used by Annoy is stochastic, similar to a random
forest machine learning algorithm.15 So your list won’t be the same as what you see
here. If you want repeatable results you can use the AnnoyIndex.set_seed()
method to initialize the random number generator.

 It seems like an Annoy index misses a lot of closer neighbors and provides results
from the general vicinity of a search term rather than the closest 10. How about
gensim? What would happen if you did that with gensim’s built-in KeyedVector
index to retrieve the correct closest 10 neighbors? See the following listing.

>>> [word for word, similarity in wv.most_similar('Harry_Potter', topn=10)]
['JK_Rowling_Harry_Potter',
'JK_Rowling',
'boy_wizard',
'Deathly_Hallows',
'Half_Blood_Prince',
'Rowling',
'Actor_Rupert_Grint',
'HARRY_Potter',
'wizard_Harry_Potter',
'HARRY_POTTER']

Now that looks like a more relevant top-10 synonym list. This lists the correct author,
alternative title spellings, titles of other books in the series, and even an actor in the

15 Annoy uses random projections to generate locality sensitive hashes (http://en.wikipedia.org/wiki/Locality
-sensitive_hashing#Random_projection).

Listing 13.6 Top Harry_Potter neighbors with gensim.KeyedVectors index

Create a map similar to wv.vocab, mapping
the tokens to their index values (integer).

Annoy returns the target vector first,
so we have to request 11 “neighbors” if

we want 10 in addition to the target.

http://en.wikipedia.org/wiki/Locality-sensitive_hashing#Random_projection
http://en.wikipedia.org/wiki/Locality-sensitive_hashing#Random_projection

411Optimizing NLP algorithms

),
Harry Potter movie. But the results from Annoy may be useful in some situations,
when you’re more interested in the genre or general sense of a word rather than pre-
cise synonyms. That’s pretty cool.

 But the Annoy indexing approximation really took some shortcuts. To fix that,
rebuild the index using the cosine distance metric (instead of Euclidean) and add
more trees. This should improve the accuracy of the nearest neighbors and make its
results match gensim’s more closely. See the following listing.

>>> index_cos = AnnoyIndex(
... f=num_dimensions, metric='angular')
>>> for i, word in enumerate(wv.index2word):
... if not i % 100000:
... print('{}: {}'.format(i, word))
... index_cos.add_item(i, wv[word])
0: </s>
100000: distinctiveness

...
2900000: BOARDED_UP

Now let’s build twice the number of trees. And set the random seed, so you can get the
same results that you see in the following listing.

>>> index_cos.build(30)
>>> index_cos.save('Word2vec_cos_index.ann')
True

This indexing should take twice as long to run, but once it finishes you should expect
results closer to what gensim produces. Now let’s see how approximate those nearest
neighbors are for the term “Harry Potter” for your more precise index.

>>> ids_cos = index_cos.get_nns_by_item(w2id['Harry_Potter'], 10)
>>> ids_cos
[9494, 37681, 40544, 41526, 14273, 165465, 32643, 420722, 147151, 28829]
>>> [wv.index2word[i] for i in ids_cos]
['Harry_Potter',
'JK_Rowling',
'Deathly_Hallows',
'Half_Blood_Prince',
'Twilight',
'Twilight_saga',
'Narnia',
'Potter_mania',
'Hermione_Granger',
'Da_Vinci_Code']

Listing 13.7 Build a cosine distance index

Listing 13.8 Build a cosine distance index

Listing 13.9 Harry_Potter neighbors in a cosine distance world

metric='angular' uses the
angular (cosine) distance
metric to compute your

clusters and hashes. Your
options are: 'angular',

'euclidean', 'manhattan',
or 'hamming'.

Another way to keep
informed of your progress,

if you don’t like tqdm

30 equals int(np.log(num_vectors).round(0)
double what you had before.

You’ll not get the same results.
Random projection for LSH is
stochastic. Use AnnoyIndex.set_seed()
if you need repeatability.

412 CHAPTER 13 Scaling up (optimization, parallelization, and batch processing)
That’s a bit better. At least the correct author is listed. You can compare the results for
the two Annoy searches to the correct answer from gensim, as shown in the following
listing.

>>> pd.DataFrame(annoy_top10, columns=['annoy_15trees',
... 'annoy_30trees'])

annoy_15trees annoy_30trees
gensim
JK_Rowling_Harry_Potter Harry_Potter Harry_Potter
JK_Rowling Narnia JK_Rowling
boy_wizard Sherlock_Holmes Deathly_Hallows
Deathly_Hallows Lemony_Snicket Half_Blood_Prince
Half_Blood_Prince Spiderwick_Chronicles Twilight
Rowling Unfortunate_Events Twilight_saga
Actor_Rupert_Grint Prince_Caspian Narnia
HARRY_Potter Eragon Potter_mania
wizard_Harry_Potter Sorcerer_Apprentice Hermione_Granger
HARRY_POTTER RL_Stine Da_Vinci_Code

To get rid of the redundant “Harry_Potter” synonym, you should’ve listed the top 11,
and skipped the first one. But you can see the progression here. As you increase the
number of Annoy index trees, you push down the ranking of less-relevant terms (such
as “Narnia”) and insert more-relevant terms from the true nearest neighbors (such as
“JK_Rowling” and “Deathly_Hallows”).

 And the approximate answer from the Annoy index is significantly faster than the
gensim index that provides exact results. And you can use this Annoy index for any
high-dimensional, continuous, dense vectors that you need to search, such as LSA
document-topic vectors or doc2vec document embeddings (vectors).

13.2.4 Why use approximate indexes at all?

Those of you with some experience analyzing algorithm efficiency may say to yourself
that O(N2) algorithms are theoretically efficient. After all, they’re more efficient than
exponential algorithms and even more efficient than polynomial algorithms. They
certainly aren’t n-p hard to compute or solve. They aren’t the kind of impossible thing
that takes the lifetime of the universe to compute.

 Because these O(N2) computations are only required to train the machine learn-
ing models in your NLP pipeline, they can be precomputed. Your chatbot doesn’t
need to compute O(N2) operations with each reply to a new statement. And N2 opera-
tions are inherently parallelizable. You can almost always run one of the N sequences
of computations independent of the other N sequences. So you could just throw more
RAM and processors at the problem and run some batch training process every night
or every weekend to keep your bot’s brain up-to-date.16 Even better, you may be able

Listing 13.10 Search results accuracy for top 10

16 This is the real-world architecture you used on an N2 document matching problem.

We leave it to you to figure out how to combine
these top-10 lists into a single DataFrame.

413Optimizing NLP algorithms
to just bite off chunks of the N2 computation and run them one by one, incrementally,
as data comes in that increases that N.

 For example, imagine you’ve trained a chatbot on some small dataset to get started
and then turned it loose on the world. Imagine that N is the number of statements
and replies in its persistent memory (database). Each time someone addresses the
chatbot with a new statement, the bot might want to search its database for the most
similar statement so it can reuse any replies that worked for that statement in the past.
So you compute some similarity score (metric) between the N existing statements and
the new statement and store the new similarity scores in your (N+1)2 similarity matrix
as a new row and column. Or you just add N more connections or relationships to
your graph data structure storing all the similarity scores between statements. Now
you can do a query on these connections (or cells in the connection matrix) to find
the minimum distance value. For the simplest approach, you only really have to check
those N scores you just computed. But if you wanted to be more thorough, you could
check other rows and columns (walk the graph a little deeper) to find, for instance,
some replies to similar statements and check metrics such as kindness, information
content, sentiment, grammaticality, well-formedness, brevity, and style. Either way you
have an O(N) algorithm for computing the best reply, even though the overall com-
plexity for a full training run is O(N2).

 But what if O(N) still isn’t enough? What if you’re building a really big brain, such
as Google, where N is more than 60 trillion?17 Even if your N isn’t quite that large, if
the individual computations are pretty complex, or you want to respond in a reason-
able amount of time (10s of milliseconds), you’ll need to employ an index.

13.2.5 An indexing workaround: discretizing

So we’ve just claimed that floats (real values) are impossible to naively index. What’s
one way to prove us wrong, or be less naive about your indexing? Those of you with
experience working with sensor data and analog-to-digital converters may be thinking
to yourself that continuous values can easily be made digital or discrete. And a float
isn’t really continuous anyway. They’re a bunch of bits, after all. But you need to make
them really discrete if you want them to fit into your concept of an index and maintain
that low dimensionality. You need to “bin” them into something manageable. The sim-
plest way to turn a continuous variable into a manageable number of categorical or
ordinal values is something like the code shown in the following listing.

>>> from sklearn.preprocessing import MinMaxScaler
>>> real_values = [-1.2, 3.4, 5.6, -7.8, 9.0]
>>>
>>> scaler = MinMaxScaler()

17 Google tutorial on web indexing (https://www.google.com/insidesearch/howsearchworks/thestory/).

Listing 13.11 MinMaxScaler for low-dimensional vectors

Confine our floats to be
between 0.0 and 1.0.

https://www.google.com/insidesearch/howsearchworks/thestory/

414 CHAPTER 13 Scaling up (optimization, parallelization, and batch processing)
>>> scaler.fit(real_values)

[int(x * 100.) for x in scaler.transform(real_values)]
[39, 66, 79, 0, 100]

This works fine for low-dimensional spaces. This is essentially what some 2D GIS
indexes use to discretize lat/lon values into a grid of bounding boxes. Points in 2D
space are either present or absent for each of the grid points. As the number of
dimensions grows, you need to use more and more sophisticated, efficient indexes
than your simple 2D grid.

 Let’s use spatial dimensions to think about 3D space before diving into 300D natu-
ral language semantic vectors. For example, think about what changes when you grow
from two to three dimensions by adding altitude to some database of 2D GPS latitude
and longitude values. Now imagine you divided the Earth into 3D cubes rather than
the 2D grid you used earlier. Most of those cubes wouldn’t have much in them that
humans would be interested in finding. And doing proximity searches, such as finding
all the objects within some 3D sphere or 3D cube, becomes a much more difficult
operation. The number of grid points you have to search through increases with N3,
where N is the diameter of a search region. You can see how when 3 (the number of
dimensions) goes up to 4 or 5, you really need to be smart about your search.

13.3 Constant RAM algorithms
One of the main challenges in working with large corpora and TF-IDF matrices is fit-
ting it all in RAM. The reason why we used gensim throughout this book is that their
algorithms attempt to maintain a constant RAM footprint.

13.3.1 Gensim

What if you have more documents than you can hold in RAM? As the size and variety
of the documents in your corpus grows, you may eventually exceed the RAM capacity
of even the largest machines you can rent from a cloud service. Have no fear, the
mathematicians are here.

 The math behind algorithms such as LSA has been around for decades. Mathema-
ticians and computer scientists have had a lot of time to play with it and get it to work
out of core, which just means that the objects required to run an algorithm don’t all
have to be present in core memory (RAM) at once. This means you’re no longer lim-
ited by the RAM on your machine.

 Even if you don’t want to parallelize your training pipeline on multiple machines,
constant RAM implementations will be required for large datasets. Gensim’s LsiModel
is one such out-of-core implementation of singular value decomposition for LSA.18

18 See the web page titled “gensim: models.lsimodel – Latent Semantic Indexing” (https://radimrehurek.com/
gensim/models/lsimodel.html).

Scaled, discretized
ints, 0 - 100

https://radimrehurek.com/gensim/models/lsimodel.html
https://radimrehurek.com/gensim/models/lsimodel.html

415Constant RAM algorithms
 Even for smaller datasets, the gensimLSIModel has the advantage that it doesn’t
require increasing amounts of RAM to deal with a growing vocabulary or set of docu-
ments. So you don’t have to worry about it starting to swap to disk halfway through
your corpus or grinding to a halt when it runs out of RAM. You can even continue to
use your laptop for other tasks while a gensim model is training in the background.

 gensim uses what’s called batch training to accomplish this memory efficiency. It
trains your LSA model (gensim.models.LsiModel) on batches of documents and
merges the results from these batches incrementally. All of gensim’s models are
designed to be constant RAM, which makes them run faster on large datasets by avoid-
ing swapping data to disk and using your precious CPU cache RAM efficiently.

TIP In addition to being constant RAM, the training of gensim models is
parallelizable, at least for many of the long-running steps in these pipelines.

So packages such as gensim are worth having in your toolbox. They can speed up
your small-data experiments (like in this book) and also power your hyperspace travel
on Big Data in the future.

13.3.2 Graph computing

Hadoop, TensorFlow, Caffe, Theano, Torch, and Spark were designed from the
ground up to be constant RAM. If you can formulate your machine learning pipeline
as a Map-Reduce problem or a general computational graph, you can take advantage
of these frameworks to avoid running out of RAM. These frameworks automatically tra-
verse your computational graph to allocate resources and optimize your throughput.

 Peter Goldsborough implemented several benchmark models and datasets using
these frameworks to compare their performance. Even though Torch has been
around since 2002, it fared well on most of his benchmarks, outperforming all of the
others on CPUs, and sometimes even on GPUs. In many cases, it was 10 times faster
than the nearest competitor.

 And Torch (and its PyTorch Python API) is integrated into many cluster compute
frameworks such as RocketML. Though we haven’t used PyTorch for the examples in
this book (to avoid overwhelming you with options), you may want to look into it if
RAM or throughput are blockers for your NLP pipeline.

 We’ve had success parallelizing NLP pipelines using RocketML (rocketml.net).
They contributed research and development time to help Aira and TotalGood paral-
lelize our NLP pipelines to assist those who have blindness or low vision:

 Extracting images from videos
 Inference and embedding on pretrained Caffe, PyTorch, Theano, and Tensor-

Flow (Keras) models
 SVD on large TF-IDF matrices spanning GB corpora19

19 At SAIS 2008, Santi Adavani explained his optimizations that make SVD faster and more scalable on a Rock-
etML HPC platform (databricks.com/speaker/santi-adavani).

http://www.rocketml.net
http://www.databricks.com/speaker/santi-adavani

416 CHAPTER 13 Scaling up (optimization, parallelization, and batch processing)
RocketML pipelines scale well, often linearly, depending on the algorithm.20 So if you
double the machines in your cluster, you’ll have a trained model twice as fast. This is
harder than it seems. More general computational graph parallelization frameworks
like PySpark and TensorFlow can rarely claim this.

13.4 Parallelizing your NLP computations
There are two popular approaches to high-performance computing for NLP. You can
either add GPUs to your server (and even your laptop, in some cases), or you can con-
nect CPUs together from multiple servers.

13.4.1 Training NLP models on GPUs

GPUs have become an important and sometimes necessary tool to develop real-world
NLP applications. GPUs, first introduced in 2007, are designed to parallelize a large
number of computational tasks and to access large amounts of memory. This contrasts
the design of CPUs, which are the core of every computer. They’re designed to handle
tasks sequentially at a high speed, and they can access their limited processing mem-
ory at a high speed (see figure 13.1).

Figure 13.1 Comparison between a CPU and GPU

As it turns out, training deep learning models involves various operations that can be
parallelized, such as the multiplication of matrices. Similar to graphical animations,
which were the initial target market for GPUs, the training of deep learning models is
heavily accelerated by parallelized matrix multiplications.

 Figure 13.2 shows the multiplication of an input vector with a weight matrix, a fre-
quent operation during a forward-pass of the neural network training. The individual
cores of a GPU are slow compared to a CPU, but each core can compute one of the
result vector components. If the training is executed on a CPU, each row multiplication

20 Santi Adavani and Vinay Rao (http://www.rocketml.net/) are contributing to the Real-Time Video Descrip-
tion project (https://github.com/totalgood/viddesc).

vs.

CPU GPU

https://github.com/totalgood/viddesc
http://www.rocketml.net/

417Parallelizing your NLP computations
would be executed sequentially, assuming that no specific linear algebra library is used.
It’ll require n (number of matrix rows) time steps to complete the multiplication. If the
same task is executed on a GPU, the multiplication will be parallelized and each row
multiplication can happen at the same time in the individual cores of the GPU.

DO I NEED TO RUN MY MODEL ON A GPU AFTER THE TRAINING IS COMPLETE? You
don’t need to use a GPU for running inferences using your models in produc-
tion, even if you used a GPU to train your model. In fact, unless you need to
run forward passes (inference or activation of a neural net) of a pretrained
model with millions of samples or with high throughput (real-time stream-
ing), you probably should only use GPUs when training a new model. Back-
propagation is much more computationally expensive than forward activation
(inference) on a neural net.

GPUs introduce complexity and cost to your pipeline. But this upfront cost will
quickly pay for itself if you can achieve faster turnaround on your models. If you can
retrain your model with new hyperparameters in a tenth the time, you can try 10 times
as many different approaches and achieve much better accuracy.

 Once the training is completed, Keras or your deep learning framework provides
you a way to export the model weights and structure. You can then load the weights
and the model setup on almost any hardware to compute the model prediction (for-
ward pass or inference pass), even on a smartphone21 or in a browser.22

13.4.2 Renting vs. buying

The use of GPUs can accelerate your model development and allow you to iterate
through your model development more quickly. GPUs are useful, but should you buy
one?

 The answer in most cases is no. The performance of GPUs is improving so rapidly
that a purchased graphic card could quickly get out-of-date. Unless you plan to use your

21 See Apple’s Core ML documentation (https://developer.apple.com/documentation/coreml) or Google’s
TensorFlow Lite documentation (https://www.tensorflow.org/mobile/tflite/).

22 See the web page titled “Keras.js - Run Keras models in the browser” (https://transcranial.github.io/keras-js/
#/).

GPU

w11 w1n

w2n

wmn xn

w21

x1

x2

…
…
…
…

…

… …

…wm1

w11 x1 + + w1n xn

…
…
…
…

…

…

…wm1 xm + + wmn xn

=

Figure 13.2 Matrix multiplication where each row multiplication can be parallelized on a GPU

https://developer.apple.com/documentation/coreml
https://www.tensorflow.org/mobile/tflite/
https://transcranial.github.io/keras-js/#/
https://transcranial.github.io/keras-js/#/

418 CHAPTER 13 Scaling up (optimization, parallelization, and batch processing)
GPU around the clock, you might be better off with renting a GPU via a service such as
Amazon Web Services or Google Cloud. The GPU service allows you to switch instance
sizes between model training runs. That way, you can scale up or down your GPU size,
depending on your needs. These providers also often provide fully configured installa-
tions, which can save you time and let you focus on your model development.

 We built and maintained our own GPU server to speed some of the model training
used in this book, but you should do as we say and not as we do. Selecting components
that are compatible with each other and minimizing the data throughput bottlenecks
was a challenge. We imitated successful architectures described by others and bought
RAM and GPUs before the recent Bitcoin surge and the resulting high performance
computing (HPC) component price spike. Keeping all the libraries up-to-date and
coordinating usage and configuration between authors was a challenge. It was fun and
educational, but it wasn’t an efficient use of our time nor dollars.

 The flexible setup of renting GPU instances has one drawback: you need to watch
your costs closely. Completing your training won’t stop your instance automatically. To
stop the ticking of the meter (incurring ongoing cost), you’ll need to turn off your
GPU instance between training runs. For more details, check out the section “Cost
control” in the Resources section at the end of this book.

13.4.3 GPU rental options

Various companies provide GPU rental options, starting with the well-known platform-
as-a-service companies such as Microsoft, Amazon Web Services, and Google. Other
startups, such as Paperspace or FloydHub, are breaking into the industry with interest-
ing product offerings that can get you started quickly with your deep learning project.

 Table 1 compares the different GPU options from platform-as-a-service providers.
The services range from a bare GPU machine with a minimal installation to fully con-
figured machines with drag-and-drop clients. Due to the regional variability in the ser-
vice pricing, we can’t compare the providers based on price. Prices for the services
range from $0.65 to multiple dollars per hour and instance, depending on the server’s
location, configuration, and setup.

Table 13.1 Comparison of GPU platform-as-a-service options

Company Why? GPU options
Ease to get

started
Flexibility

Amazon Web
Services (AWS)

Wide range of GPU options; spot
prices; available in various data cen-
ters around the world

NVIDIA GRID K520,
Tesla M60, Tesla
K80, Tesla V100

Medium High

Google Cloud Integrates Google Cloud Kubernetes,
DialogFlow, Jupyter (colab.research
.google.com/notebook)

NVIDIA Tesla K80,
Tesla P100

Medium High

Microsoft Azure Good option if you are using other
Azure services

NVIDIA Tesla K80 Medium High

colab.research.google.com/notebook
colab.research.google.com/notebook

419Reducing the memory footprint during model training
SETTING UP YOUR OWN GPU ON AWS Appendix E shows a summary of the nec-
essary steps for you to get started with your own GPU instance.

13.4.4 Tensor processing units

You might have heard of another abbreviation, TPU (tensor processing unit), which is
a highly optimized computational unit for deep learning. They’re particularly effi-
cient at computing back-propagation for TensorFlow models. TPUs are optimized for
multiplying tensors of any dimensionality and use specialized FPGA and ASIC chips to
preprocess and transport data around. GPUs are optimized for graphical processing,
which mostly consists of the 2D matrix multiplications required to render and move
around in 3D game worlds.

 Google claims that TPUs are 10 times more efficient at computing deep learning
models than an equivalent GPU. At the time of this writing, Google, which designed
and invented TPUs in 2015, just released them to the general public in a beta stage
(no service-level agreement is provided). In addition, researchers can apply to
become part of the TensorFlow Research Cloud23 to train their models on TPUs.

13.5 Reducing the memory footprint during model training
When you train your NLP models on a GPU and you train with a large corpus, you’ll
probably eventually encounter the following error during training: MemoryError. See
the following listing.

Epoch 1/10
Exception in thread Thread-27:
Traceback (most recent call last):

File "/usr/lib/python2.7/threading.py", line 801, in __bootstrap_inner
self.run()

File "/usr/lib/python2.7/threading.py", line 754, in run
self.__target(*self.__args, **self.__kwargs)

File "/usr/local/lib/python2.7/dist-packages/keras/engine/training.py",
line 606, in data_generator_task
generator_output = next(self._generator)

FloydHub Command-line interface to bundle
your code

NVIDIA Tesla K80,
Tesla V100

Easy Medium

Paperspace Virtual servers and hosted
iPython/Jupyter notebooks with GPU
support

NVIDIA Maxwell,
Tesla P5000, Tesla
P6000, Tesla V100

Easy Medium

23 See the web page titled “TensorFlow Research Cloud” (https://www.tensorflow.org/tfrc/).

Listing 13.12 Error message if your training data exceeds the GPU’s memory

Table 13.1 Comparison of GPU platform-as-a-service options (continued)

Company Why? GPU options
Ease to get

started
Flexibility

https://www.tensorflow.org/tfrc/

420 CHAPTER 13 Scaling up (optimization, parallelization, and batch processing)
File "/home/ubuntu/django/project/model/load_data.py", line 54,
in load_training_set
rv = np.array(rv)

MemoryError

To achieve the high performance of GPUs, the units use their own internal GPU
memory in addition to the CPU memory. The card’s memory is usually limited to a
few gigabytes, and in most cases, not near as much as the CPU has access to. When you
trained your model on a CPU, your training data was probably loaded into the com-
puter memory in one large table or sequence of tensors. This isn’t possible anymore
with the memory restrictions of the GPU (see figure 13.3).

One efficient workaround is using Python’s concept of a generator—a function that
returns an iterator object. You can pass the iterator object to the model training
method, and it will “pull out” one or more training items at each training iteration. It
never requires the whole training dataset in memory. This efficient way to reduce your
memory footprint comes with caveats:

 Generators only provide one sequence element at a time, so you don’t know
how many elements it contains until you reach the end.

 Generators can only be run once. They’re disposable and not recyclable.

With these two difficulties, making multiple training passes through your data is much
more tedious. But Keras comes to the rescue with methods that take care of all this
tedious bookkeeping for you (see figure 13.4)

Figure 13.4 Loading the training data with a generator function

The generator function handles the loading of the training data store and returns the
training “chunks” to the training methods. In listing 13.13, the training data store is a
csv file with the input data separated from the expected output data by the | delimiter.
The chunks are limited to the batch size, and only one batch at a time has to be stored

Training data store Model training

Extensive memory requirement
Figure 13.3 Loading the training
data without a generator function

Training data store Generator function Model training

Small memory requirement

421Reducing the memory footprint during model training

in memory. That way, you can heavily reduce the model training dataset’s memory
footprint.

>>> import numpy as np
>>>
>>> def training_set_generator(data_store,
... batch_size=32):
... X, Y = [], []
... while True:
... with open(data_store) as f:
... for i, line in enumerate(f):
... if i % batch_size == 0 and X and Y:
... yield np.array(X), np.array(Y)
... X, Y = [], []
... x, y = line.split('|')
... X.append(x)
... Y.append(y)
>>>
>>> data_store = '/path/to/your/data.csv'
>>> training_set = training_set_generator(data_store)

In our example, the training_set_generator function reads from a pipe-
separated values file, but it could load the data from any database or any other data
storage system.

 One disadvantage of the generator is that it doesn’t return any information about
the size of the training data array. Because you don’t know how much training data is
available, you have to use slightly different fit, predict, and evaluate methods of
the Keras model.

 Instead of training your model with

>>> model.fit(x=X,
... y=Y,
... batch_size=32,
... epochs=10,
... verbose=1,
... validation_split=0.2)

you have to kick off the training of your model with

>>> data_store = '/path/to/your/data.csv'
>>> model.fit_generator(generator=training_set_generator(data_store,
... batch_size=32),

Listing 13.13 Generator for improved RAM efficiency

In the function setup, you can
set the batch size dynamically.

This endless loop provides
training batches forever;
Keras stops requesting
more training examples
when an epoch ends.

This opens the training
data store and creating
the file handler f.

Loop over the training data
stores content line by line
until your entire data has
been served as training
samples; afterward start
from the beginning of
the training set.

If you have gathered enough training data samples, return
the training data and the expected training output via a
function yield. Python jumps back after the yield statement
after the data is served to the model fit method.

If you don’t have enough samples
yet, read more lines, split them
on the delimiter |, and keep
them in the lists X and Y.

fit_generator expects a generator being passed
to it, which can be your training_set_generator

or any other generator you program.

422 CHAPTER 13 Scaling up (optimization, parallelization, and batch processing)
... steps_per_epoch=100,

... epochs=10,

... verbose=1,

... validation_data=[X_val, Y_val])

If you use a generator, you might also want to update your model’s evaluate and
predict methods with

>>> model.evaluate_generator(generator=your_eval_generator(eval_data,
... batch_size=32), steps=10)

and

>>> model.predict_generator(generator=your_predict_generator(\
... prediction_data, batch_size=32), steps=10)

WARNING Generators are memory efficient, but they can also become a
bottleneck during the model training and slow down the training iterations.
Pay attention to the generator speed while developing the training functions.
If the on-the-fly processing slows down the generator, it might be beneficial to
preprocess the training data, rent an instance with larger memory configura-
tion, or both.

13.6 Gaining model insights with TensorBoard
Wouldn’t it be nice to get insights into your model performance while you train your
model and compare it to previous training runs? Or quickly plot word embeddings to
check semantic similarities? Google’s TensorBoard provides you exactly that.

 While training your model using TensorFlow (or with Keras and a TF backend),
you can use TensorBoard to gain insights into your NLP models. You can use it to
track model training metrics, plot network weight distributions, visualize your word
embeddings, and various other things. TensorBoard is easy to use, and it connects to
the training instance via your browser.

 If you want to use TensorBoard side-by-side with Keras, you need to install Tensor-
Board like any other Python package:

pip install tensorboard

After the installation is complete, you can now start it up:

tensorboard --logdir=/tmp/

After TensorBoard is running, access it in your browser at localhost on port 6006
(http://127.0.0.1:6006) if you train on your laptop or desktop PC. If you train your

In contrast to defining your training batch_size like you did in the
original fit method, the fit_generator expects the number of steps

per epoch, steps_per_epoch. For every step, the generator is called.
Set steps_per_epoch to training samples divided by batch_size, so
that your model is exposed to the full training set once per epoch.

Set your number
of epochs as usual.

Because the full training data isn’t
available to the fit_generator, it
doesn’t allow the usual
validation_split; instead you need
to define validation_data.

423Gaining model insights with TensorBoard
model on a rented GPU instance, use the public IP address of your GPU instance and
make sure the GPU provider allows access via the port 6006.

 Once you’re logged in, you can explore the model performance.

13.6.1 How to visualize word embeddings

TensorBoard is a great tool to visualize word embeddings. Especially when you train
your own, domain-specific word embeddings, the embedding visualization can help to
verify semantic similarities. Converting a word model into a format TensorBoard can
handle is straightforward. Once the word vectors and the vector labels are loaded into
TensorBoard, it’ll perform the dimensionality reductions to 2D or 3D for you. Tensor-
Board currently provides three methods of dimensionality reduction: PCA, t-SNE, and
custom reductions.

 The following listing shows how to convert your word embedding into a Tensor-
Board format and generate the projection data.

>>> import os
>>> import tensorflow as tf
>>> import numpy as np
>>> from io import open
>>> from tensorflow.contrib.tensorboard.plugins import projector
>>>
>>>
>>> def create_projection(projection_data,
... projection_name='tensorboard_viz',
... path='/tmp/'):
... meta_file = "{}.tsv".format(projection_name)
... vector_dim = len(projection_data[0][1])
... samples = len(projection_data)
... projection_matrix = np.zeros((samples, vector_dim))
...
... with open(os.path.join(path, meta_file), 'w') as file_metadata:
... for i, row in enumerate(projection_data):
... label, vector = row[0], row[1]
... projection_matrix[i] = np.array(vector)
... file_metadata.write("{}\n".format(label))
...
... sess = tf.InteractiveSession()
...
... embedding = tf.Variable(projection_matrix,
... trainable=False,
... name=projection_name)
... tf.global_variables_initializer().run()
...
... saver = tf.train.Saver()
... writer = tf.summary.FileWriter(path, sess.graph)
...
... config = projector.ProjectorConfig()
... embed = config.embeddings.add()

Listing 13.14 Convert an embedding into a TensorBoard projection

The create_projection function takes three arguments:
the embedding data, a name for the projection and a

path, and where to store the projection files.

The function loops over
the embedding data and
creates a numpy array,
which will then be
converted to a
TensorFlow variable.

To create the TensorBoard
projection, you need to create
a TensorFlow session.

TensorFlow provides built-in
methods to create projections.

424 CHAPTER 13 Scaling up (optimization, parallelization, and batch processing)

.

... embed.tensor_name = '{}'.format(projection_name)

... embed.metadata_path = os.path.join(path, meta_file)

...

... projector.visualize_embeddings(writer, config)

... saver.save(sess, os.path.join(path, '{}.ckpt'\

... .format(projection_name)))

... print('Run `tensorboard --logdir={0}` to run\

... visualize result on tensorboard'.format(path))

The function create_projection takes a list of tuples (expects the vector and then
the label) and converts it into TensorBoard projection files. Once the projection files
are created and available to TensorBoard (in your case, TensorBoard expects the files
in the tmp directory), head over to TensorBoard in your browser and check out the
embedding visualization (see figure 13.5):

>>> projection_name = "NLP_in_Action"
>>> projection_data = [
>>> ('car', [0.34, ..., -0.72]),
>>> ...
>>> ('toy', [0.46, ..., 0.39]),
>>>]
>>> create_projection(projection_data, projection_name)

Figure 13.5 Visualize word2vec embeddings with Tensorboard.

visualize_embeddings
writes the projection to
your path and is then
available for TensorBoard

425Summary
Summary
 Locality-sensitive hashes like Annoy make the promise of latent semantic index-

ing a reality.
 GPUs speed up model training, reducing the turn-around time on your models,

making it easier to build better models faster.
 CPU parallelization can make sense for algorithms that don’t benefit from

speedier multiplication of large matrices.
 You can bypass the system RAM bottleneck using Python’s generators, saving

you money on your GPU and CPU instances.
 Google’s TensorBoard can help you visualize and extract natural language

embeddings that you might not have thought of otherwise.
 Mastering NLP parallelization can expand your brainpower by giving you a soci-

ety of minds—machine clusters to help you think.24

24 Conscious Ants and Human Hives by Peter Watts (https://youtube/v4uwaw_5Q3I?t=45s).

https://youtu.be/v4uwaw_5Q3I?t=45s

426 CHAPTER 13 Scaling up (optimization, parallelization, and batch processing)

appendix A
Your NLP tools

You can run all the examples in this book if you are able to install the nlpia pack-
age (http://github.com/totalgood/nlpia). We keep the installation instructions in
the README file up-to-date. But if you already have Python 3 installed, and you’re
feeling lucky (or are lucky enough to have a Linux environment), you can try

$ git clone https://github.com/totalgood/nlpia
$ pip3 install -e nlpia

If that doesn’t work for you, you’ll probably need to install a package manager and
some binary packages for your OS. We have provided some OS-specific instructions
in three sections:

 Ubuntu
 Mac
 Windows

These sections show you how to install an OS package manager. Once you have a
package manager installed (or you’re on a developer-friendly OS like Ubuntu that
already has one), you can install Anaconda3.

A.1 Anaconda3
Python 3 has a lot of performance and expressiveness features that are handy for
NLP. And the easiest way to install Python 3 on almost any system is to install
Anaconda3 (https://www.anaconda.com/download). This has the added benefit of
giving you a package and environment manager that can install a lot of problem-
atic packages (such as matplotlib) on a wide range of problematic OSes (like
Windows).

 You can install the latest version of Anaconda and its conda package manager
programmatically by running the code in the following listing.
427

http://github.com/totalgood/nlpia
https://www.anaconda.com/download

428 APPENDIX A Your NLP tools

$ OS=MacOSX # or Linux or Windows
$ BITS=_64 # or '' for 32-bit
$ curl https://repo.anaconda.com/archive/ > tmp.html
$ FILENAME=$(grep -o -E -e "Anaconda3-[.0-9]+-$OS-

x86$BITS\.(sh|exe)" tmp.html | head -n 1)
$ curl "https://repo.anaconda.com/archive/$FILENAME" > install_anaconda
$ chmod +x install_anaconda
$./install_anaconda -b -p ~/Anaconda
$ export PATH="$HOME/Anaconda/bin:$PATH"
$ echo 'export PATH="$HOME/Anaconda/bin:$PATH"' >> ~/.bashrc
$ echo 'export PATH="$HOME/Anaconda/bin:$PATH"' >> ~/.bash_profile
$ source ~/.bash_profile
$ rm install_anaconda

Now you can create a virtual environment: not a Python virtualenv but a more com-
plete conda environment that isolates all of Python’s binary dependencies from your
OS Python environment. Then you can install the dependencies and source code for
NLPIA within that conda environment with listing A.2.

A.2 Install NLPIA
We like to install software source code that we’re working on in a subdirectory under
our user $HOME called code/, but you can put it wherever you like. If this doesn’t
work, check out the nlpia README (https://github.com/totalgood/nlpia) for
updated installation instructions.

$ mkdir -p ~/code
$ cd ~/code
$ git clone https://github.com/totalgood/nlpia
$ cd ~/code/nlpia
$ conda install -y pip
$ pip install --upgrade pip
$ conda env create -n nlpiaenv -f conda/environment.yml
$ source activate nlpiaenv
$ pip install --upgrade pip
$ pip install -e .

A.3 IDE
Now that you have Python 3 and NLPIA on your machine, you only need a good text
editor to round out your integrated development environment (IDE). Rather than

Listing A.1 Install Anaconda3

Listing A.2 Install nlpia source with conda

Install the latest conda binary for pip
within your root conda environment.

Upgrade pip to the latest
pypi.python.org version—
Pip Installs Pip after all ;).

Create a conda
environment, a

directory in "$HOME/
Anaconda3/envs/nlpia"

with binary & source
dependencies.

Activate your
Python environment.

Install the latest
pip within your
nlpiaenv environment.

Install an editable source code
directory for nlpia, so your changes

source and data will go "live"
whenever you save your edits to disk.

https://github.com/totalgood/nlpia

429Ubuntu package manager
installing a complete system like PyCharm by JetBrains, we prefer individual tools with
small developer teams (team of one for Sublime Text) that do one thing well.

TIP Built by developers for developers is a real thing, especially if the devel-
oper team is a team of one. Individual developers often build better tools
than corporations because individuals are more open to incorporating code
and suggestions by their users. An individual developer that builds a tool
because they need it usually builds a tool that’s optimized for their workflow.
And their workflow is pretty awesome if they build tools that are reliable, pow-
erful, and popular enough to compete. Large open source projects like
jupyter are awesome, too, but in a different way. They’re usually extremely
versatile and full-featured, as long as they don’t have a commercially licensed
fork of the open source project.

Fortunately the tools you need for your Python IDE are all free, extensible, and con-
tinuously maintained. Most are even open source, so you can make them your own:

 Sublime Text 3 (www.sublimetext.com/3) text editor with Package Control
(https://packagecontrol.io/installation#st3) and Anaconda (https://package-
control.io/packages/Anaconda) linter plus auto-corrector

 Meld merge tool for Mac (https://yousseb.github.io/meld) or other OSes
(http://meldmerge.org)

 ipython (jupyter console) for your Read → Eval → Print → Loop (devel-
opment workflow)

 jupyter notebook for creating reports, tutorials, and blog posts, or for shar-
ing your results with your boss

TIP Some phenomenally productive developers use a REPL workflow for
Python.1 The ipython, jupyter console, and jupyter notebook REPL
consoles are particularly powerful, with their help, ?, ??, and % magic com-
mands, plus automatic tab-completion of attributes, methods, arguments, file
paths, and even dict keys. Before Googling or overflowing your stack, explore
the docstrings and source code of the Python packages you’ve imported by
trying commands like >>> sklearn.linear_model.BayesianRidge??.
Python’s REPLs even allow you to execute shell commands (try >>> !git
pull or >>> !find . -name nlpia) to keep your fingers on the keyboard,
minimizing context switching and maximizing productivity.

A.4 Ubuntu package manager
Your Linux distribution already has a full-featured package manager installed. And
you may not even need it if you use Anaconda’s package manager conda, as suggested
in the NLPIA installation instructions (http://github.com/totalgood/nlpia). The
package manager for Ubuntu is called apt. We’ve suggested some packages to install

1 That’s you, Steven “Digital Nomad” Skoczen and Aleck “The Dude” Landgraf.

www.sublimetext.com/3
https://packagecontrol.io/installation#st3
https://packagecontrol.io/packages/Anaconda
https://packagecontrol.io/packages/Anaconda
https://yousseb.github.io/meld
http://meldmerge.org
http://github.com/totalgood/nlpia

430 APPENDIX A Your NLP tools
in A.3. You almost certainly won’t need all these packages, but this exhaustive list of
tools is here in case you install something with Anaconda and it complains about a
missing binary. You can start at the top and work your way down, until conda is able to
install your Python packages. See the following listing.

$ sudo apt-get update
$ sudo apt install -y build-essential libssl-dev g++ cmake swig git
$ sudo apt install -y python2.7-dev python3.5-dev libopenblas-dev libatlas-

base-dev gfortran libgtk-3-dev
$ sudo apt install -y openjdk-8-jdk python-dev python-numpy python-

pip python-virtualenv python-wheel python-nose
$ sudo apt install -y python3-dev python3-wheel python3-numpy python-

scipy python-dev python-pip python3-six python3-pip
$ sudo apt install -y python3-pyaudio python-pyaudio
$ sudo apt install -y libcurl3-dev libcupti-dev xauth x11-apps python-qt4
$ sudo apt install -y python-opencv-dev libxvidcore-dev libx264-dev libjpeg8-

dev libtiff5-dev libjasper-dev libpng12-dev

TIP If the apt-get update command fails with an error regarding bazel,
you’ve likely added the Google apt repository with their build tool for
TensorFlow. This should get you back on track again:

$ sudo apt-get install curl
$ curl https://bazel.build/bazel-release.pub.gpg | sudo apt-key add -

A.5 Mac
You need a real package manager (not XCode) before you can install all the tools you
need to keep up with other developers.

A.5.1 A Mac package manager

Homebrew (https://brew.sh) is probably the most popular command-line package
manager for Macs among developers. It’s easy to install and contains one-step installa-
tion packages for most tools that developers use. It’s equivalent to Ubuntu’s apt pack-
age manager. Apple could’ve ensured their OS would play nice with apt, but they
didn’t want developers to bypass their XCode and App Store “funnels,” for obvious
monetization reasons. So some intrepid Ruby developers homebrewed their own
package manager.2 And it’s almost as good as apt or any other OS-specific binary
package manager. See the following listing.

$ /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/
install/master/install)"

Listing A.3 Install developer tools with apt

2 See the Homebrew package manager Wikipedia article (https://en.wikipedia.org/wiki/Homebrew_(package
_management_software)).

Listing A.4 Install brew

https://brew.sh
https://en.wikipedia.org/wiki/Homebrew_(package_management_software)
https://en.wikipedia.org/wiki/Homebrew_(package_management_software)

431Mac
You’ll be asked to confirm things with the Return key and also enter your root/sudo
password. So don’t walk away to brew your coffee until you’ve entered your password
and the installation script is happily chugging along.

A.5.2 Some packages

Once brew is installed, you may want to install some Linux tools that are handy to
have around, as shown in the following listing.

$ brew install wget htop tree pandoc asciidoctor

A.5.3 Tuneups

If you are serious about NLP and software development, you’ll want to make sure you
have your OS tuned up so you can get stuff done. Here’s what we install whenever we
create a new user account on a Mac:

 Snappy to take screenshots (http://snappy-app.com)
 CopyClip to manage your clipboard (https://itunes.apple.com/us/app/copy-

clip-clipboard-history-manager/id595191960)

If you want to share screenshots with other NLP developers you’ll need a screen grab-
ber such as Snappy. And a clipboard manager, such as CopyClip, lets you copy and
paste more than one thing at a time and persist your clipboard history between
reboots. A clipboard manager gives you the power of console history search ([ctrl]-
[R]) in your GUI copy and paste world.

 And you should also increase your bash shell history, add some safer rm -f aliases,
set your default editor, create colorful text, and add open commands for your
browser, text editor, and merge tool, as shown in the following listing.

#!/usr/bin/env bash
echo "Running customized ~/.bash_profile script: '$0'"
export HISTFILESIZE=10000000
export HISTSIZE=10000000
append the history file after each session
shopt -s histappend
allow failed commands to be re-edited with Ctrl-R
shopt -s histreedit
command substitions are first presented to user before execution
shopt -s histverify
store multiline commands in a single history entry
shopt -s cmdhist
check the window size after each command and, if necessary, update the valu

es of LINES and COLUMNS
shopt -s checkwinsize
grep results are colorized

Listing A.5 Install developer tools

Listing A.6 bash_profile

http://snappy-app.com
https://itunes.apple.com/us/app/copyclip-clipboard-history-manager/id595191960
https://itunes.apple.com/us/app/copyclip-clipboard-history-manager/id595191960

432 APPENDIX A Your NLP tools
export GREP_OPTIONS='--color=always'
grep matches are bold purple (magenta)
export GREP_COLOR='1;35;40'
record everything you ever do at the shell in a file that won't be unintent

ionally cleared or truncated by the OS
export PROMPT_COMMAND='echo "# cd $PWD" >> ~/

.bash_history_forever; '$PROMPT_COMMAND
export PROMPT_COMMAND="history -a; history -c; history -r; history 1 >> ~/

.bash_history_forever; $PROMPT_COMMAND"
so it doesn't get changed again
readonly PROMPT_COMMAND
USAGE: subl http://google.com # opens in a new tab
if [! -f /usr/local/bin/firefox]; then

ln -s /Applications/Firefox.app/Contents/MacOS/firefox /usr/local/bin/
firefox

fi
alias firefox='open -a Firefox'
USAGE: subl file.py
if [! -f /usr/local/bin/subl]; then

ln -s /Applications/Sublime\ Text.app/Contents/SharedSupport/bin/subl /
usr/local/bin/subl

fi
USAGE: meld file1 file2 file3
if [! -f /usr/local/bin/meld]; then

ln -s /Applications/Meld.app/Contents/MacOS/Meld /usr/local/bin/meld
fi
export VISUAL='subl -w'
export EDITOR="$VISUAL"
you can use -

f to override these interactive nags for destructive disk writes
alias rm="rm -i"
alias mv="mv -i"
alias ..="cd .."
alias ...="cd ../.."

You can find other bash_profile scripts with a GitHubGist search (https://gist.github
.com/search?q=%22.bash_profile%22+mac).

A.6 Windows
The command-line tools for package management, such as cygwin on Windows, aren’t
that great. But if you install GitGUI on a Windows machine, that gets you a bash
prompt and a workable terminal that you can use to run your Python REPL console:

1 Download and install the git installer (https://git-scm.com/download/win).
2 Download and install the GitHub Desktop (https://desktop.github.com).

The git installer comes with a version of the bash shell that should work well within
Windows, but the git-gui that it installs isn’t very user friendly, especially for begin-
ners. Unless you’re using git from the command line (a bash shell within Windows),
you should use GitHub Desktop for all your git push/pull/merge needs on Win-
dows. We had problems throughout the editing of this book when git-gui did unex-
pected things that overwrote commits by others whenever there was a version conflict,

https://gist.github.com/search?q=%22.bash_profile%22+mac
https://gist.github.com/search?q=%22.bash_profile%22+mac
https://git-scm.com/download/win
https://desktop.github.com

433NLPIA automagic
even in files that weren’t involved in the conflict. So that’s why we ask you to install
GitHub Desktop (http://desktop.github.com) on top of raw git and git-bash.
GitHub Desktop gives you a more user-friendly git experience, letting you know
when you need to pull and push or merge some changes.3

 Once you have a shell running in a Windows terminal, you can install Anaconda
and use the conda package manager to install the nlpia package just like the rest of
us, using the instruction in the github repository README (http://github.com/total-
good/nlpia).

A.6.1 Get Virtual

If you get frustrated with Windows, you can always install VirtualBox or Docker and
create a virtual machine with an Ubuntu OS. That’s the subject of a whole book (or at
least a chapter), and there are better people at that than we are:

 Jason Brownlee (https://machinelearningmastery.com/linux-virtual-machine-
machine-learning-development-python-3)

 Jeroen Janssens (http://datasciencetoolbox.org)
 Vik Paruchuri (www.dataquest.io/blog/docker-data-science)
 Jamie Hall (http://blog.kaggle.com/2016/02/05/how-to-get-started-with-data-

science-in-containers)

Another way to get Linux into your Windows world is with Microsoft’s Ubuntu shell
app. I’ve not used it, so I can’t vouch for its compatibility with the Python packages
you’ll need to install. If you try it, share what you learn with us at the nlpia repository
with a feature or pull request on the documentation (https://github.com/totalgood/
nlpia/issues). The Manning NLPIA forum (https://forums.manning.com/forums/
natural-language-processing-in-action) is also a great place to share your knowledge
and get assistance.

A.7 NLPIA automagic
Fortunately for you, nlpia has some automatic environment provisioning procedures
that will download the NLTK, Spacy, Word2vec models, and the data you need for this
book. These downloaders will be triggered whenever you call an nlpia wrapper func-
tion, like segment_sentences(), that requires any of these datasets or models. But
this software is a work in progress, continually maintained and expanded by readers
like you. So you may want to know how to manually install these packages and down-
load the data you need to make them work for you when the automagic of nlpia fails.
And you may just be curious about some of the datasets that make sentence parsing
and part of speech taggers possible. So, if you want to customize your environment,
the remaining appendices show you how to install and configure the individual pieces
you need for a full-featured NLP development environment.

3 Big thanks to Benjamin Berg and Darren Meiss at Manning for figuring this out, and for all the hard work
they put into making this book presentable.

http://desktop.github.com
http://github.com/totalgood/nlpia
http://github.com/totalgood/nlpia
https://machinelearningmastery.com/linux-virtual-machine-machine-learning-development-python-3
https://machinelearningmastery.com/linux-virtual-machine-machine-learning-development-python-3
http://datasciencetoolbox.org
www.dataquest.io/blog/docker-data-science
http://blog.kaggle.com/2016/02/05/how-to-get-started-with-data-science-in-containers
http://blog.kaggle.com/2016/02/05/how-to-get-started-with-data-science-in-containers
https://github.com/totalgood/nlpia/issues
https://github.com/totalgood/nlpia/issues
https://forums.manning.com/forums/natural-language-processing-in-action
https://forums.manning.com/forums/natural-language-processing-in-action

appendix B
Playful Python and
regular expressions

To get the most out of this book, you’ll want to get comfortable with Python. You’ll
want to be so comfortable that you get playful. When things don’t work, you’ll need
to be able to play around and explore to find a way to make Python do what you want.

 And even when your code works, playing around may help you uncover cool
new ways of doing things or hidden monsters lurking in your code. Hidden errors
and edge cases are very common in natural language processing, because there are
so many different ways to say things in a language like English.

 To get playful, just experiment with Python code, like children do. If you copy
and paste code, change it. Try to break it and then fix it. Pull it apart into as many
separate expressions as you can. Create modules out of bits of your code with func-
tions or classes. Then pull it back together into as few lines of code as you can.

 Try random things with the data structure or model or function you create. Try
to run commands that you think should be included in a module or class. Use the
Tab key on your keyboard often. When you press the Tab key, your editor or shell
should try to finish your thought by completing the variable, class, function,
method, attribute, and path name you started to type.

 Use all the help that Python and your shell provides. Like man in a Linux shell,
help() is your built-in friend in Python. Try typing help or help(object) in a
Python console. It should work even when the IPython ? and ?? fail. Try object?
and object?? in a Jupyter Console or Notebook if you’ve never done that before.

 The rest of this Python primer introduces the data structures and functions we
use throughout this book so you can start playing with them:

 str and bytes
 ord and chr
 .format()
434

435Working with strings
 dict and OrderedDict
 list, np.array, pd.Series
 pd.DataFrame

We also explain some of the patterns and built-in Python functions we sometimes use
here and in the nlpia package:

 List comprehensions—[x for x in range(10)]

 Generators—(x for x in range(1000000000))

 Regular expressions—re.match(r'[A-Za-z]+', 'Hello World')

 File openers—open('path/to/file.txt')

B.1 Working with strings
Natural language processing is all about processing strings. And strings have a lot of
quirks in Python 3 that may take you by surprise, especially if you have a lot of Python
2 experience. So you’ll want to play around with strings and all the ways you can inter-
act with them so you are comfortable interacting with natural language strings.

B.1.1 String types (str and bytes)

Strings (str) are sequences of Unicode characters. If you use a non-ASCII character
in a str, it may contain multiple bytes for some of the characters. Non-ASCII charac-
ters pop up a lot if you are copying and pasting from the internet into your Python
console or program. And some of them are hard to spot, like those curly asymmetrical
quote characters and apostrophes.

 When you open a file with the Python open command, it’ll be read as a str by
default. If you open a binary file, like a pretrained Word2vec model '.txt' file, with-
out specifying mode='b' it won’t load correctly. Even though the gensim.Keyed-
Vectors model type may be text, not binary, the file must be opened in binary mode
so that Unicode characters aren’t garbled as gensim loads the model; likewise for a
CSV file or any other text file saved with Python 2.

 Bytes (bytes) are arrays of 8-bit values, usually used to hold ASCII characters or
Extended ASCII characters (with integer ord values greater than 128).1 Bytes are also
sometimes used to store RAW images, WAV audio files, or other binary data blobs.

B.1.2 Templates in Python (.format())

Python comes with a versatile string templating system that allows you to populate a
string with the values of variables. This allows you to create dynamic responses with
knowledge from a database or the context of a running python program (locals()).

1 There’s no single official Extended ASCII character set, so don’t ever use them for NLP unless you want to
confuse your machine trying to learn a general language model.

436 APPENDIX B Playful Python and regular expressions
B.2 Mapping in Python (dict and OrderedDict)
Hash table (or mapping) data structures are built into Python in dict objects. But a
dict doesn’t enforce a consistent key order, so the collections module, in the
standard Python library, contains an OrderedDict that allows you to store key-value
pairs in a consistent order that you can control (based on when you insert a new key).

B.3 Regular expressions
Regular expressions are little computer programs with their own programming lan-
guage. Each regular expression string like r'[a-z]+' can be compiled into a small
program designed to be run on other strings to find matches. We provide a quick ref-
erence and some examples here, but you’ll probably want to dig deeper in some
online tutorials, if you’re serious about NLP. As usual, the best way to learn is to play
around at the command line. The nlpia package has a lot of natural language text
documents and some useful regular expression examples for you to play with.

 A regular expression defines a sequence of conditional expressions (if in Python)
that each work on a single character. The sequence of conditionals forms a tree that
eventually concludes in an answer to the question “is the input string a match or not.”
Because each regular expression can only match a finite number of strings and has a
finite number of conditional branches, it defines a finite state machine (FSM).2

 The re package is the default regex compiler/interpreter in Python, but the new
official package is regex and can be easily installed with the pip install regex. It’s
more powerful, with better support for Unicode characters and fuzzy matching
(pretty awesome for NLP). You don’t need those extra features for the examples here,
so you can use either one. You only need to learn a few regular expression symbols to
solve the problems in this book:

 |—The OR symbol.
 ()—Grouping with parentheses, just like in Python expressions.
 []—Character classes.
 \s, \b, \d, \w—Shortcuts to common character classes.
 *, ?, +—Some common shortcuts to character class occurrence count limits.
 {7,10}—When—*, ?, and + aren’t enough, you can specify exact count

ranges with curly braces.

B.3.1 |—OR

The | symbol is used to separate strings that can alternatively match the input string
to produce an overall match for the regular expression. So the regular expression
'Hobson|Cole|Hannes' would match any of the given names (first names) of this
book’s authors. Patterns are processed left to right, and “short circuit” when a match

2 This is only true for strict regular expression syntaxes that don’t look-ahead and look-behind.

437Regular expressions
is made, like most other programming languages. So the order of the patterns
between the OR symbols (|) doesn’t affect the match, in this case, since all the pat-
terns (author names) have unique character sequences in the first two characters. The
following listing shows a shuffling of the author’s names so you can see for yourself.

>>> import re
>>> re.findall(r'Hannes|Hobson|Cole', 'Hobson Lane, Cole Howard,

➥ and Hannes Max Hapke')
['Hobson', 'Cole', 'Hannes']

To exercise your Python playfulness, see if you can cause the regular expression to
short circuit on the first pattern, when a human looking at all three patterns might
choose a better match:

>>> re.findall(r'H|Hobson|Cole', 'Hobson Lane, Cole Howard,

➥ and Hannes Max Hapke')
['H', 'Cole', 'H', 'H', 'H']

B.3.2 ()—Groups

You can use parentheses to group several symbol patterns into a single expression.
Each grouped expression is evaluated as a whole. So r'(kitt|dogg)ie' matches
either “kitty” or “doggy.” Without the parentheses, r’kitt|doggy' would match
“kitt” or “doggy” (notice no “kitty”).

 Groups have another purpose. They can be used to capture (extract) part of the
input text. Each group is assigned a location in the list of groups() that you can
retrieve according to their index, left to right. The .group() method returns the
default overall group for the entire expression. You can use the previous groups to
capture a “stem” (the part without the y) of the kitty/doggy regex, as shown in the fol-
lowing listing.

>>> import re
>>> match = re.match(r'(kitt|dogg)y', "doggy")
>>> match.group()
'doggy'
>>> match.group(0)
'dogg'
>>> match.groups()
('dogg',)
>>> match = re.match(r'((kitt|dogg)(y))', "doggy")
>>> match.groups()
('doggy', 'dogg', 'y')
>>> match.group(2)
'y'

Listing B.1 Regex OR symbol

Listing B.2 regex grouping parentheses

.findall() searches for all the non-
overlapping regex matches within the
input string, so it returns them in a list.

If you want to capture
each part in its own group

438 APPENDIX B Playful Python and regular expressions
If you want/need to give names to your groups for information extraction into a struc-
tured datatype (dict), you need to use the P symbol at the start of your group, like
(P?<animal_stemm>dogg|kitt)y.3

B.3.3 []—Character classes

Character classes are equivalent to an OR symbol (|) between a set of characters.
So [abcd] is equivalent to (a|b|c|d), and [abc123] is equivalent to
(a|b|c|d|1|2|3).

 And if some of the characters in a character class are consecutive characters in the
alphabet of characters (ASCII or Unicode), they can be abbreviated using a hyphen
between them. So [a-d] is equivalent to [abcd] or (a|b|c|d), and [a-c1-3] is an
abbreviation for [abc123] and (a|b|c|d|1|2|3).

CHARACTER CLASS SHORTCUTS

 \s—[\t\n\r]—Whitespace characters
 \b—A non-letter, non-digit next to a letter or digit
 \d—[0-9]—A digit
 \w—[a-zA-Z0-9_]—A word or variable name character

B.4 Style
Try to comply with PEP8 (http://python.org/dev/peps/pep-0008), even if you don’t
plan on sharing your code with others. Your future self will appreciate being able to
efficiently read and debug your code. Adding a linter (http://sublimelinter.com) or
automatic style corrector (http://packagecontrol.io/packages/Anaconda) to your
editor or IDE is the easiest way to get with the PEP8 program.

 One additional style convention that can help with natural language processing is
how you decide between the two possible quote characters (' and "). Whatever you
do, try to be consistent. One thing that can help make your code more readable by
professionals is to always use the single-quote (') when defining a string intended for
a machine, like regular expressions, tags, and labels. Then you can use double quotes
('"') for natural language corpora intended for human consumption.

 What about raw strings (r'' and r"")? All regular expressions should be single-
quoted raw strings like r'match[]this', even if they don’t contain backslashes.
Docstrings should be triple-quoted raw strings, like r""" This function does
NLP """. That way if you ever do add backslashes to your doctests or regular expres-
sions, they will do what you expect.4

3 Named regular expression group: What does "P" stand for? (https://stackoverflow.com/questions/
10059673).

4 This stack overflow question explains why (https://stackoverflow.com/q/8834916/623735).

http://python.org/dev/peps/pep-0008
http://sublimelinter.com
http://packagecontrol.io/packages/Anaconda
https://stackoverflow.com/questions/10059673
https://stackoverflow.com/questions/10059673
https://stackoverflow.com/q/8834916/623735

439Mastery
B.5 Mastery
Find an interactive coding challenge website to hone your Python skills before you
jump into a production project. You can do one or two of these a week while reading
this book:

1 CodingBat (http://codingbat.com)—Fun challenges in an interactive, web-
based Python interpreter

2 Donne Martin’s Coding Challenges (http://github.com/donnemartin/
interactive-coding-challenges)—An open source repository of Jupyter Note-
books and Anki flashcards to help you learn algorithms and data 2

3 DataCamp (http://datacamp.com/community/tutorials)—Pandas and Python
tutorials at DataCamp

http://codingbat.com
http://datacamp.com/community/tutorials
http://github.com/donnemartin/interactive-coding-challenges
http://github.com/donnemartin/interactive-coding-challenges

appendix C
Vectors and matrices (linear

algebra fundamentals)

Vectors and numbers are the language of machine thought. Bits are the most fun-
damental “number” that machine computation is based on, a little like letters
(characters) are the most fundamental, irreducible part of words, the language of
thought for humans. All mathematical operations can be reduced to a few logical
operations on sequences of bits. Sequences of characters are processed by human
brains when we read in an analogous way. So if we want to teach machines about
our words, the first challenge is to come up with vectors to represent characters,
words, sentences, and intermediate concepts that the machine will need to work
with to produce seemingly intelligent behavior.

C.1 Vectors
A vector is an ordered sequence of numbers without any “skips.” In scikit learn
and numpy, a vector is a dense array, and it works a lot like a Python list of num-
bers. The main reason we use numpy arrays rather than Python lists is because they
are much faster to work with (100x) and use much less memory (1/4). Plus you can
specify vectorized operations like multiplying the entire array by a value without
iterating through it with a for loop. This is very important when working with a lot
of text that contains a lot of information to be represented in these vectors and
numbers.

>>> import numpy as np
>>> np.array(range(4))
array([0, 1, 2, 3])

Listing C.1 Create a vector
440

441Vectors
>>> np.arange(4)
array([0, 1, 2, 3])
>>> x = np.arange(0.5, 4, 1)
>>> x
array([0.5, 1.5, 2.5, 3.5])
>>> x[1] = 2
>>> x
array([0.5, 2, 2.5, 3.5])
>>> x.shape
(4,)
>>> x.T.shape
(4,)

An array has some properties that list doesn’t—such as .shape and .T. The
.shape attribute contains the length or size of each dimension (the number of
objects it holds). We use lowercase letters when we name variables for holding arrays
and vectors (or even just numbers), like formal mathematical symbols. In linear alge-
bra, physics, and engineering texts, these letters are often bolded, and sometimes
embellished with an arrow above them (especially by professors on chalkboards and
whiteboards).

 If you’ve ever heard of a matrix, you’ve probably heard that it can be thought of as
an array of row vectors, like this:

>>> np.array([range(4), range(4)])
>>> array([[0, 1, 2, 3],

[0, 1, 2, 3]])
>>> X = np.array([range(4), range(4)])
>>> X.shape
(2, 4)
>>> X.T.shape
(4, 2)

The T property returns the transpose of the matrix. The transpose of a matrix is the
matrix flipped along an imaginary diagonal from the top-left corner to the bottom-
right. So the following matrix called A

>>> A = np.array([[1, 2, 3], [4, 5, 6]])
>>> A
array([[1, 2, 3],

[4, 5, 6]])

has a transpose of

>>> A.T
array([[1, 4],

[2, 5],
[3, 6]])

So if A started out as a collection of row vectors, A.T turns those row vectors into col-
umn vectors.

442 APPENDIX C Vectors and matrices (linear algebra fundamentals)
C.1.1 Distances

The distance between two vectors can be measured a lot of different ways. The differ-
ence between two vectors is a vector itself, as shown in the following listing.

>>> A
array([[1, 2, 3],

[4, 5, 6]])
>>> A[0]
array([1, 2, 3])
>>> A[1]
array([4, 5, 6])
>>> np.diff(A, axis=0)
array([[3, 3, 3]]
>>> A[1] - A[0]
array([3, 3, 3])

That [3, 3, 3] vector gives you exactly the distance along each dimension in your two
vectors. Imagine these vectors represented blocks and floors in Manhattan for two peo-
ple: the difference would be the exact directions you’d need to go from one to the
other. If you were on the third floor of an apartment on the corner of 1st Street and 2nd
Ave, your coordinates in street, avenue, floor coordinates would be [1, 2, 3], just like
in the example. And if your Python mentor was on the sixth floor of an apartment on
the corner of 4th Street and 5th Ave, her coordinates would be [4, 5, 6]. So the dif-
ference between those vectors ([3, 3, 3]) would mean that you’d have to walk three
blocks north, three blocks east, and three floors up to reach her apartment. Actually,
vectors and math don’t care about pesky details like gravity. So the algebra assumes you
could skate on your Back to the Future hoverboard right out your window and scoot along
three floors above the traffic to get to your linear algebra mentor’s apartment.

 If you told your mentor that her apartment was [3, 3, 3] away from yours, she’d
laugh at your geeky precision. Less-geeky people simplify those three numbers into a
single number, a scalar, when they talk about distances. So if you said her place is six
blocks away, she’d understand exactly what you meant; you ignored the irrelevant
floor dimension, since that’s a snap on your hoverboard (or the elevator). In addition
to ignoring some dimensions, you used a clever distance metric sometimes called the
Manhattan distance. We show you how to calculate it for 300D word vectors just as easily
as 2D apartment location vectors.

EUCLIDEAN DISTANCE

Euclidean distance is the distance you are talking about for 2D vectors when you say “as
the crow flies.” It’s the straight line distance between the two points defined by your
vectors (the “tips” or “heads” of those vectors).

 Euclidean distance is also called L2 norm, because it’s the length of the vector dif-
ference between two vectors. The “L” in L2 stands for length. The “2” in L2 represents

Listing C.2 Vector difference

443Vectors
the exponent (squaring) of the dimensions of the difference vector before these val-
ues ares summed (and before the square root of the sum).

 Euclidean distance is also called the RSS distance, which stands for the root sum
square distance or difference, which means:

euclidean_distance = np.sqrt(((vector1 - vector2) ** 2).sum())

Let’s look at Euclidean distance between some vectors from an NLP example in Pat-
rick Winston’s AI lecture series.1

 Let’s say we have 2D term frequency (bag-of-word) vectors that count the occur-
rences of the words “hack” and “computer” in articles from two publications, Wired
Magazine and Town and Country. And we want to be able to query that set of articles
while researching something to find some articles about a particular topic. The query
string has both the words “hacking” and “computers” in it. Our query string word vec-
tor is [1, 1] for the words “hack” and “computer” because our query tokenized and
stemmed the words that way (see chapter 2).

 Now which articles would you say are
closest to our query in Euclidean dis-
tance? Euclidean distance is the length
of the four lines in figure C.1. They look
pretty similar don’t they. How would you
fix this problem so that your search
engine returns some useful articles for
this query?

 You could compute the ratio of the
word counts relative to the total number
of words in a document and use these
ratios to calculate your Euclidean dis-
tance. But you learned in chapter 3 about
a better way to compute this ratio: TF-IDF. The Euclidean distance between TF-IDF vec-
tors tends to be a good measure of the distance (inverse similarity) of documents.

 If you want to bound the Euclidean distance, you can normalize all your vectors to
have unit length (each have a length of 1). This will ensure that all distances between
your vectors will be between 0 and 2.

COSINE DISTANCE

Another adjustment to our distance calculation makes our distance value even more
useful. Cosine distance is the inverse of the cosine similarity (cosine_distance = 1 -
cosine_similarity). Cosine similarity is the cosine of the angle between two vec-
tors. So in this example, the angle between the TF vector for this query string and the
vector for Wired Magazine articles would be much smaller than the angle between

1 Patrick Winston. 6.034 Artificial Intelligence. Fall 2010. Massachusetts Institute of Technology: MIT Open-
CourseWare (https://ocw.mit.edu). License: Creative Commons BY-NC-SA. “Lecture 10” (http://mng.bz/
nxjK).

co
un

t o
f “

co
m

p
u

te
r”

count of “hack”

Town and Country

Wired Magazine

query

Figure C.1 Measuring Euclidean distance

https://ocw.mit.edu
http://mng.bz/nxjK
http://mng.bz/nxjK

444 APPENDIX C Vectors and matrices (linear algebra fundamentals)
the query and the Town and Country articles. This is what we want. Because a query
about “hacking computers” should give us Wired Magazine articles and not articles
about recreational activities like horse riding (“hacking”)2, duck hunting, dinner par-
ties, and rustic interior design.

 This is efficiently computed as the dot product of two normalized vectors, vectors
whose values have all been divided by the length of the vector, as shown in the follow-
ing listing.

>>> import numpy as np
>>> vector_query = np.array([1, 1])
>>> vector_tc = np.array([1, 0])
>>> vector_wired = np.array([5, 6])
>>> normalized_query = vector_query / np.linalg.norm(vector_query)
>>> normalized_tc = vector_tc / np.linalg.norm(vector_tc)
>>> normalized_wired = vector_wired / np.linalg.norm(vector_wired)

>>> normalized_query
array([0.70710678, 0.70710678])
>>> normalized_tc
array([1., 0.])
>>> normalized_wired
array([0.6401844 , 0.76822128])

The cosine similarity between our query TF vector and these other two TF vectors
(cosine of the angle between them) is

>>> np.dot(normalized_query, normalized_tc) # cosine similarity
0.70710678118654746
>>> np.dot(normalized_query, normalized_wired) # cosine similarity
0.99589320646770374

The cosine distance between our query and these two TF vectors is one minus the
cosine similarity.

>>> 1 - np.dot(normalized_query, normalized_tc) # cosine distance
0.29289321881345254
>>> 1 - np.dot(normalized_query, normalized_wired) # cosine distance
0.0041067935322962601

This is why cosine similarity is used for TF vectors in NLP:

 It’s easy to compute (just multiplication and addition).
 It has a convenient range (-1 to +1).
 Its inverse (cosine distance) is easy to compute (1 - cosine_similarity).
 Its inverse (cosine distance) is bounded (0 to +2).

2 See the equestrian use of the word “hack” in the Wikipedia article “Hack (horse)” (https://en.wikipedia.org/
wiki/Hack_%28horse%29).

Listing C.3 Cosine distance

https://en.wikipedia.org/wiki/Hack_%28horse%29
https://en.wikipedia.org/wiki/Hack_%28horse%29

445Vectors
However, cosine distance has one disadvantage compared to Euclidean distance: it
isn’t a real distance metric because the triangle inequality doesn’t hold.3 That means
that if the word vector for “red” has a cosine distance of 0.5 from “car” and 0.3 from
“apple,” “apple” might be much further away than 0.8 from “car.” The triangle
inequality is mainly important when you want to use cosine distances to try to prove
something about some vectors. That’s rarely the case in real-world NLP.

MANHATTAN DISTANCE

Manhattan distance is also called taxicab distance or L1 norm. It’s called the taxicab
distance because the distance represents how far a taxicab would have to drive to get
from one vector to another, if the vectors were 2D vectors with coordinates aligned
with a street grid.4 This distance is also called the L1 norm.

 Manhattan distance is super simple to calculate: sum up the absolute distance in
all the dimensions. Using our made-up magazine vectors from earlier, the Manhattan
distance would be:

>>> vector_tc = np.array([1, 0])
>>> vector_wired = np.array([5, 6])
>>> np.abs(vector_tc - vector_wired).sum()
10

If your vectors were normalized before calculating Manhattan distance, you’d get a
much different distance:

>>> normalized_tc = vector_tc / np.linalg.norm(vector_tc)
>>> normalized_wired = vector_wired / np.linalg.norm(vector_wired)
>>> np.abs(normalized_tc - normalized_wired).sum()
1.128...

You might hope this distance metric would stay bounded within some range like 0 to 2,
but it won’t. Like Euclidean distance, Manhattan distance is a real metric, so it obeys the
triangle inequality and can be used in mathematical proofs that rely on a true distance
metric. But unlike Euclidean distance on normalized vectors, you can’t rely on Manhat-
tan distance between normalized vectors to stay bounded in some nice range like 0 to
2. The maximum length possible will grow with the number of dimensions, even if
you’ve normalized your vectors to all have a length of one. For normalized 2D vectors,
the maximum Manhattan distance between any two vectors is 2.82 (sqrt(8)). For 3D
vectors it’s 3.46 (sqrt(12)). Can you guess or compute what it is for 4D vectors?

3 See the Wikipedia article “Cosine similarity,” that links to the rules for true distance metrics (http://en.wiki-
pedia.org/wiki/Cosine_similarity).

4 See the Wikipedia article “Taxicab geometry,” (https://en.wikipedia.org/wiki/Taxicab_geometry).

http://en.wikipedia.org/wiki/Cosine_similarity
http://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/Taxicab_geometry

appendix D
Machine learning

tools and techniques

Much of natural language processing involves machine learning. So it pays to
understand some of the basic tools and techniques of machine learning. Some
have been covered in earlier chapters, some haven’t, but all warrant at least a few
words here.

D.1 Data selection and avoiding bias
Data selection and feature engineering are frought with the hazards of bias (in
human terms). Once you’ve baked your own biases into your algorithm, by choos-
ing a particular set of features, the model will fit to those biases and produce biased
results. If you’re lucky enough to discover this bias before going to production, it
can require a significant amount of effort to undo the bias. Your entire pipeline
must be rebuilt and retrained to be able to take advantage of the new vocabulary
from your tokenizer, for example. You have to start over.

 One example is the data and feature selection for the famous Word2vec model.
Word2vec was trained on a vast array of news articles and from this corpus some 1
million or so N-grams were chosen as the vocabulary (features) for this model. This
produced a model that excited data scientists and linguists with the possiblity of
math on word vectors, such as “king - man + woman = queen.” But as researchers dug
deeper, more problematic relationships revealed themselves in the model.

 For example, for the expression “doctor - father + mother = nurse,” the answer
“nurse” wasn’t the unbiased and logical result that they’d hoped for. A gender bias
was inadvertently trained into the model. Similar racial, religious, and even geo-
graphic regional biases are prevalent in the original Word2vec model. The Google
researchers didn’t create these biases intentionally. The bias is inherent in the data,
the statistics of word usage in the Google News corpus they trained Word2vec on.
446

447How fit is fit?
 Many of the news articles simply had cultural biases because they were written by
journalists motivated to keep their readers happy. And these journalists were writing
about a world with institutional biases and biases in the real-world events and people.
The word usage statistics in Google News merely reflect that there are many more
mothers who are nurses than doctors. And there are many more fathers who are doc-
tors than are nurses. The Word2vec model is just giving us a window into the world we
have created.

 Fortunately models like Word2vec don’t require labeled training data. So you have
the freedom to choose any text you like to train your model. You can choose a dataset
that is more balanced, more representative of the beliefs and inferences that you
would like your model to make. And when others hide behind the algorithms to say
that they’re only doing what the model tells them, you can share with them your data-
sets that more fairly represent a society where we aspire to provide everyone with
equal opportunity.

 As you’re training and testing your models, you can rely on your innate sense of
fairness to help you decide when a model is ready to make predictions that affect the
lives of your customers. If your model treats all of your users the way you would like
to be treated, you can sleep well at night. It can also help to pay particularly close
attention to the needs of your users that are unlike you, especially those that are typi-
cally disadvantaged by society. And if you need more formal justification for your
actions, you can learn more about statistics, philosophy, ethics, psychology, behavioral
economics, and anthropology to augment the computer science skills you’ve learned
in this book.

 As a natural language processing practitioner and machine learning engineer, you
have an opportunity to train machines to do better than many humans do. Your
bosses and colleagues aren’t going to tell you which documents to add or remove
from your training set. You have the power to influence the behavior of machines that
shape communities and society as a whole.

 We’ve given you some ideas about how to assemble a dataset that’s less biased and
more fair. Now we’ll show you how to fit your models to that unbiased data so that
they’re also accurate and useful in the real world.

D.2 How fit is fit?
With any machine learning model, one of the major challenges is overcoming the
model’s ability to do too well. How can something be “too good”? When working with
example data in any model, the given algorithm may do very well at finding patterns in
that particular dataset. But given that we already likely know the label of any particular
example in the training set (or it wouldn’t be in the training set), that isn’t particu-
larly helpful. The real goal is to use those training examples to build a model that will
generalize, and be able to correctly label an example that, while similar to members of
the training set, is outside of the training set. Performance on new examples that are

448 APPENDIX D Machine learning tools and techniques
outside the training set is what we want
to maximize.
 A model that perfectly describes (and
predicts) your training examples is over-
fit (see figure D.1). Such a model will
have little or no capacity to describe new
data. It isn’t a general model that you
can trust to do well when you give it an
example not in your training set.
 Conversely, if your model gets many
of the training predictions wrong and
also does poorly on new examples, it’s
underfit (see figure D.2). Neither of
these kinds of models will be useful for
making predictions in the real world. So
let’s look at techniques to detect these
issues and, more importantly, ways to
avoid them.

D.3 Knowing is half the battle
In machine learning practice, if data is
gold, labeled data is raritanium (or
whatever metaphor for what is most pre-
cious to you). Your first instinct may be
to take every last bit of labeled data and
feed it to the model. More training data

leads to a more resilient model, right? But that would leave us with no way to test the
model short of throwing it out into the real world and hoping for the best. This obvi-
ously isn’t practical. The solution is to split your labeled data into two and sometimes
three datasets: a training set, a validation set, and in some cases a test set.

 The training set is obvious. The validation set is a smaller portion of the labeled
data we hold out and keep hidden from the model for one round of training. Good
performance on the validation set is a first step to verifying that the trained model will
perform well in the wild, as novel data comes in. You will often see an 80%/20% or
70%/30% split for training versus validation from a given labeled dataset. The test set
is like the validation set—a subset of the labeled training data to run the model against
and measure performance. But how is this test set different from the validation set
then? In formulation, they aren’t different at all. The difference comes in how you use
each of them.

 While training the model on the training set, there will be several iterations with var-
ious hyperparameters; the final model you choose will be the one that performs the
best on the validation set. But there’s a catch. How do you know you haven’t tuned a
model that’s merely highly biased toward the validation set? There’s no way to verify

N
u

m
b

er
 o

f
p

o
si

ti
ve

 w
o

rd
s

Number of stop words

Decision
boundary

Spam
messages

Non-spam
messages

Figure D.1 Overfit on training samples

N
u

m
b

er
 o

f
p

o
si

ti
ve

 w
o

rd
s

Number of stop words

Decision
boundary

Spam
messages

Non-spam
messages

Figure D.1 Underfit on training samples

449Cross-fit training
that the model will perform well on data from the wild. And this is what your boss or the
readers of your white paper are most interested in—how well will it work on their data.

 So if you have enough data, you want to hold a third chunk of the labeled dataset
as a test set. This will allow your readers (or boss) to have more confidence that your
model will work on data that your training and tuning process was never allowed to
see. Once the trained model is selected based on validation set performance, and
you’re no longer training or tweaking your model at all, you can then run predictions
(inference) on each sample in the test set. If the model performs well against this
third set of data, it has generalized well. For this kind of high-confidence model verifi-
cation, you will often see a 60%/20%/20% training/validation/test dataset split.

TIP Shuffling your dataset before you make the split between training, vali-
dation, and testing datasets is vital. You want each subset to be a representa-
tive sample of the “real world,” and they need to have roughly equal
proportions of each of the labels you expect to see. If your training set has
25% positive examples and 75% negative examples, you want your test and
validation sets to have 25% positive and 75% negative examples, too. And if
your original dataset had all the negative examples first and you did a 50%/
50% train/test split without shuffling the dataset first, you’d end up with
100% negative examples in your training set and 50%/50% in your test set.
Your model would never learn from the positive examples in your dataset.

D.4 Cross-fit training
Another approach to the train/test split question is cross-validation or k-fold cross-
validation (see figure D.3). The concept behind cross validation is very similar to the
rough splits we just covered, but it allows you a path to use the entire labeled set as
training. The process involves dividing your training set into k equal sets, or folds. You
then train your model with k-1 of the folds as a training set and validate it against the

Training Training Training Training Training Training

Training Training Training Training Training Training Training

Training Training Training Training Training

Training Training

...

Training Training Training

Training Training

TrainingValidation

ValidationTraining run #1

Training run #2

Training run #3

Training run #6

6 Subsamples (k = 6)

5 Subsamples

Figure D.2 K-fold cross-validation

450 APPENDIX D Machine learning tools and techniques
k-th fold. You then restart the training afresh with one of the k-1 sets used in training
on the first attempt as your held-out validation set. The remaining k-1 folds become
your new training set.

 This technique is valuable for analyzing the structure of the model and finding
hyperparameters that perform well against a variety of validation data. Once your
hyperparameters are chosen, you still have to select the trained model that performed
the best and as such is susceptible to the bias expressed in the previous section, so
holding a test set out from this process is still advisable.

 This approach also gives you some new information about the reliability of your
model. You can compute a P-value for the likelihood that the relationship discovered by
your model, between the input features and the output predictions, is statistically sig-
nificant and not the result of random chance. This is a significantly new piece of infor-
mation if your training dataset is truly a representative sample of the real world.

 The cost of this extra confidence in your model is that it takes K times as long to
train, for K-fold cross-validation. So if you want to get the 90% answer to your prob-
lem, you can often simply do 1-fold cross validation. This 1-fold is exactly equivalent to
our training set and validation set split that we did earlier. You won’t have 100% confi-
dence in the reliability of your model as a description of the real world dynamics, but
if it works well on your test set you can be very confident that it is a useful model for
predicting your target variable. So this is the practical approach that makes sense for
most business applications of machine learning models.

D.5 Holding your model back
During the model.fit(), the gradient descent is over-enthusiastic about pursuing
the lowest possible error in your model. This can lead to overfitting, where your
model does really well on the training set but poorly on new unseen examples (the
test set). So you probably want to “hold back” on the reins of your model. Here are
three ways to do that:

 Regularization
 Random dropout
 Batch normalization

D.5.1 Regularization

In any machine learning model, overfitting will eventually come up. Luckily, several
tools can combat it. The first is regularization, which is a penalization to the learned
parameters at each training step. It’s usually, but not always, a factor of the parameters
themselves. L1-norm and L2-norm are the most common.

L1 regularization

n

+λ |wi| Σ
i=1

451Holding your model back
L1 is the sum of the absolute values of all the parameters (weights) multiplied by some
lambda (a hyperparameter), usually a small float between 0 and 1. This sum is applied
to the weights update—the idea being that weights with large magnitudes cause a pen-
alty to be incurred, and the model is encouraged to use more of its weights … evenly.

L2 regularization

Similarly, L2 is a weight penalization, but defined slightly differently. In this case, it’s
the sum of the weights squared multiplied by some value lambda (a separate hyper-
parameter to be chosen ahead of training).

D.5.2 Dropout

In neural networks, dropout is another handy tool for this situation—one that is seem-
ingly magical on first glance. Dropout is the concept that at any given layer of a neural
network we’ll turn off a percentage of the signal coming through that layer at training
time. Note that this occurs only during training, and never during inference. At any
given training pass, a subset of the neurons in the layer below are “ignored;” those
output values are explicitly set to zero. And because they have no input to the result-
ing prediction, they’ll receive no weight update during the backpropagation step. In
the next training step, a different subset of the weights in the layer will be chosen and
those others are zeroed out.

 How is a network supposed to learn anything with 20% of its brain turned off at
any given time? The idea is that no specific weight path should wholly define a partic-
ular attribute of the data. The model must generalize its internal structures to be able
to handle data via multiple paths through the neurons.

 The percentage of the signal that gets turned off is defined as a hyperparameter,
because it’s a percentage that’ll be a float between 0 and 1. In practice, a dropout of .1
to .5 is usually optimal, but of course it’s model dependent. And at inference time,
dropout is ignored and the full power of the trained weights are brought to bear on
the novel data.

 Keras provides a very simple way to implement this, and it can be seen in the
book’s examples and in the following listing.

>>> from keras.models import Sequential
>>> from keras.layers import Dropout, LSTM, Flatten, Dense

>>> num_neurons = 20
>>> maxlen = 100
>>> embedding_dims = 300

Listing D.1 A dropout layer in Keras reduces overfitting

n

+λ wiΣ
i=1

2

Arbitrary hyperparmeters
used as an example

452 APPENDIX D Machine learning tools and techniques
>>> model = Sequential()

>>> model.add(LSTM(num_neurons, return_sequences=True,
... input_shape=(maxlen, embedding_dims)))
>>> model.add(Dropout(.2))

>>> model.add(Flatten())
>>> model.add(Dense(1, activation='sigmoid'))

D.5.3 Batch normalization

A newer concept in neural networks called batch normalization can help regularize and
generalize your model. Batch normalization is the idea that, much like the input data,
the outputs of each layer should be normalized to values between 0 and 1. There’s still
some debate about how or why or when this is beneficial, and under which conditions
it should be used. We leave it to you to explore that research on your own.

 But Keras does provide a handy implementation with its BatchNormalization
layer, as shown in the following listing.

>>> from keras.models import Sequential
>>> from keras.layers import Activation, Dropout, LSTM, Flatten, Dense
>>> from keras.layers.normalization import BatchNormalization

>>> model = Sequential()
>>> model.add(Dense(64, input_dim=14))
>>> model.add(BatchNormalization())
>>> model.add(Activation('sigmoid'))
>>> model.add(Dense(64, input_dim=14))
>>> model.add(BatchNormalization())
>>> model.add(Activation('sigmoid'))
>>> model.add(Dense(1, activation='sigmoid'))

D.6 Imbalanced training sets
Machine learning models are only ever as good as the data you feed them. Having a
huge amount of data is only helpful if you have examples that cover all the cases you
hope to predict in the wild. And covering each case only once isn’t necessarily
enough. Imagine you are trying to predict whether an image is a dog or a cat. But you
have a training set with 20,000 pictures of cats and only 200 pictures of dogs. If you
were to train a model on this dataset, it would be likely that the model would simply
learn to predict any given image is a cat, regardless of the input. And from the model’s
perspective that would be fine, right? I mean, it would be correct in 99% of the cases
from the training set. Of course, that’s a bogus argument and that model is worthless.
But totally outside the scope of any particular model, the most likely cause of this fail-
ure is the imbalanced training set.

Listing D.2 BatchNormalization

.2 here is the hyperparameter,
so 20% of the outputs of the
LSTM layer above will be zeroed
out and therefore ignored.

453Imbalanced training sets
 Models can be very finicky regarding training sets, for the simple reason that the sig-
nal from an overly sampled class in the labeled data can overwhelm the signal from the
small cases. The weights will more often be updated by the error generated by the dom-
inant class, and the signal from the minority class will be washed out. It isn’t vital to get
an exactly even representation of each class, because the models have the ability to over-
come some noise. The goal here is just to get the counts into the same ballpark.

 The first step, as with any machine learning task, is to look long and hard at your
data. Get a feel for the details and run some rough statistics on what the data actually
represents. Find out not only how much data you have, but how much of which kinds
of data you have.

 So what do you do if things aren’t magical even from the beginning? If the goal is
to even out the class representations (and it is), there are three main options: overs-
ampling, undersampling, and augmenting.

D.6.1 Oversampling

Oversampling is the technique of repeating examples from the under-represented class
or classes. Let’s take the dog/cat example from earlier (only 200 dogs to 20,000 cats).
You can simply repeat the dog images you do have 100 times each and end up with
40,000 total samples, half dogs/half cats.

 This is an extreme example, and as such will lead to its own problems. The net-
work will likely get very good at recognizing those specific 200 dogs and not generalize
well to other dogs not in the training set. But the technique of oversampling can cer-
tainly help balance a training set in cases that aren’t so radically imbalanced.

D.6.2 Undersampling

Undersampling is the opposite side of the same coin. Here you drop examples from the
over-represented class. In the dog/cat example, we would randomly drop 19,800 cat
images and be left with 400 examples, half dog/half cat. This, of course, has a glaring
problem of its own. We’ve thrown away the vast majority of the data and are working
from a much less broad footing. Extreme cases such as this aren’t ideal but can be a
good path forward if you have a large number of examples in the under-represented
class. Having that much data is definitely a luxury.

D.6.3 Augmenting your data

This is a little trickier, but in the right circumstances, augmenting the data can be your
friend. The concept of augmentation is to generate novel data, either from perturba-
tions of the existing data or generating it from scratch. AffNIST (http://
www.cs.toronto.edu/~tijmen/affNIST) is such an example. The famous MNIST dataset
is a set of handwritten digits, 0-9 (see figure D.4). AffNIST takes each of the digits and
skews, rotates, and scales them in various ways, while maintaining the original labels.

http://www.cs.toronto.edu/~tijmen/affNIST
http://www.cs.toronto.edu/~tijmen/affNIST

454 APPENDIX D Machine learning tools and techniques
The purpose of this particular effort wasn’t to balance the training set but to make
nets such as convolutional neural nets more resilient to new data written in other
ways, but the concept of augmenting data still applies.

 You must be cautious, though. Adding data that isn’t truly representative of that
which you’re trying to model can hurt more than it helps. Say your dataset is the 200/
20,000 dogs/cats from earlier. And let’s further assume that the images are all high-
resolution color images taken under ideal conditions. Now handing a box of crayons
to 19,000 kindergarteners wouldn’t necessarily get you the augmented data you
desired. So think a bit about what augmenting your data will do to the model. The
answer isn’t always clear, so if you do go down this path, keep it in mind while you val-
idate the resulting model and try to test around its edges to verify that you didn’t
introduce unexpected behavior unintentionally.

 And lastly, probably the least helpful thing to say, but it’s true: going back to the
well to look for additional data should always be considered if your dataset is “incom-
plete.” It isn’t always feasible, but you should at least consider it as an option.

D.7 Performance metrics
The most important piece of any machine learning pipeline is the performance met-
ric. If you don’t know how well your machine learning model is working, you can’t
make it better. The first thing we do when starting a machine learning pipeline is set
up a performance metric, such as “.score()” on any sklearn machine learning model.
We then build a completely random classification/regression pipeline with that per-
formance score computed at the end. This lets us make incremental improvements to
our pipeline that gradually improve the score, getting us closer to our goal. It’s also a
great way to keep your bosses and coworkers convinced that you’re on the right track.

Figure D.3 The entries in the leftmost column are examples from the original
MNIST; the other columns are all affine transformations of the data included in
affNIST [image credit: “affNIST” (http://www.cs.toronto.edu/~tijmen/affNIST)].

http://www.cs.toronto.edu/~tijmen/affNIST

455Performance metrics
D.7.1 Measuring classifier performance

A classifier has two things you want it to do right: labeling things that truly belong in the
class with that class label, and not labeling things that aren’t in that class with that label.
The counts of these that it got right are called the true positives and the true negatives,
respectively. If you have an array of all your model classifications or predictions in
numpy arrays, you can count these correct predictions as shown in the following listing.

>>> y_true = np.array([0, 0, 0, 1, 1, 1, 1, 1, 1, 1])
>>> y_pred = np.array([0, 0, 1, 1, 1, 1, 1, 0, 0, 0])
>>> true_positives = ((y_pred == y_true) & (y_pred == 1)).sum()
>>> true_positives
4

>>> true_negatives = ((y_pred == y_true) & (y_pred == 0)).sum()
>>> true_negatives
2

Often it’s also important to count up the predictions that your model got wrong, as
shown in the following listing.

>>> false_positives = ((y_pred != y_true) & (y_pred == 1)).sum()
>>> false_positives
3
>>> false_negatives = ((y_pred != y_true) & (y_pred == 0)).sum()
>>> false_negatives
1

Sometimes these four numbers are combined into a single 4 x 4 matrix called an error
matrix or confusion matrix. The following listing shows what our made-up predictions
and truth values would look like in a confusion matrix.

>>> confusion = [[true_positives, false_positives],
... [false_negatives, true_negatives]]
>>> confusion
[[4, 3], [1, 2]]
>>> import pandas as pd
>>> confusion = pd.DataFrame(confusion, columns=[1, 0], index=[1, 0])

Listing D.3 Count what the model got right

Listing D.4 Count what the model got wrong

Listing D.5 Confusion matrix

y_true is a numpy array of the true
(correct) class labels. Usually these

are determined by a human.

y_pred is a numpy
array of your

model’s predicted
class labels (0 or 1.)

true_positives are the positive class labels (1)
that your model got right (correctly labeled 1.)

true_negatives are the negative class
labels (0) that your model got right
(correctly labeled 0.)

false_positives are the negative
class examples (0) that were falsely

labeled positive by your model
(labeled 1 when they should be 0.)

false_negatives are the positive class examples
(1) that were falsely labeled negative by your

model (labeled 0 when they should be 1.)

456 APPENDIX D Machine learning tools and techniques
>>> confusion.index.name = r'pred \ truth'
>>> confusion

1 0
pred \ truth
1 4 1
0 3 2

In a confusion matrix, you want to have large numbers along the diagonal (upper left
and lower right) and low numbers in the off diagonal (upper right and lower left).
However, the order of positives and negatives are arbitrary, so sometimes you may see
this table transposed. Always label your confusion matrix columns and indexes. And
sometimes you might hear statisticians call this matrix a classifier contingency table,
but you can avoid confusion if you stick with the name “confusion matrix.”

 There are two useful ways to combine some of these four counts into a single per-
formance metric for your machine learning classification problem: precision and recall.
Information retrieval (search engines) and semantic search are examples of such clas-
sification problems, since your goal is to classify documents as a match or not. In chap-
ter 2, you learned how stemming and lemmatization can improve recall but reduce
precision.

 Precision measures how good your model is at detecting all the members of the
class you’re interested in, called the positive class. For this reason it’s also called the
positive predictive value. Since your true positives are the positive labels that you got
right and false positives are the negative examples that you mislabeled as positive, the
precision calculation is as shown in the following listing.

>>> precision = true_positives / (true_positives + false_positives)
>>> precision
0.571...

The example confusion matrix gives a precision of about 57% because it got 57% of
the true labels correct.

 The recall performance number is similar. It’s also called the sensitivity or the true
positive rate or the probability of detection. Because the total number of examples in
your dataset is the sum of the true positives and the false negatives, you can calculate
recall, the percentage of positive labels that were detected, with the code shown in the
following listing.

>>> recall = true_positives / (true_positives + false_negatives)
>>> recall
0.8

So this says that our example model detected 80% of the positive examples in the
dataset.

Listing D.6 Precision

Listing D.7 Recall

457Pro tips
D.7.2 Measuring regressor performance

The two most common performance scores used for machine learning regression
problems are root mean square error (RMSE) and Pierson correlation (R2). It turns
out that classification problems are really regression problems under the hood. So you
can use your regression metrics on your class labels if they’ve been converted to num-
bers, as we did in the previous section. So these code examples will reuse those exam-
ple predictions and truth values here. RMSE is the most useful for most problems
because it tells you how far away from the truth your predictions are likely to be.
RMSE gives you the standard deviation of your error, as shown in the following listing.

>>> y_true = np.array([0, 0, 0, 1, 1, 1, 1, 1, 1, 1])
>>> y_pred = np.array([0, 0, 1, 1, 1, 1, 1, 0, 0, 0])
>>> rmse = np.sqrt((y_true - y_pred) ** 2) / len(y_true))
>>> rmse
0.632...

Another common performance metric for regressors in the Pierson correlation coeffi-
cient. The sklearn module attaches it to most models as the default .score()
method. You should calculate these scores manually if you’re unclear on exactly what
they measure. See the following listing.

>>> corr = pd.DataFrame([y_true, y_pred]).T.corr()
>>> corr[0][1]
0.218...
>>> np.mean((y_pred - np.mean(y_pred)) * (y_true - np.mean(y_true))) /
... np.std(y_pred) / np.std(y_true)
0.218...

So our example predictions are correlated with the truth by only 28%.

D.8 Pro tips
Once you have the basics down, some simple tricks will help you build good models
faster:

 Work with a small random sample of your dataset to get the kinks out of your
pipeline.

 When you’re ready to deploy to production, train your model on all the data
you have.

 The first approach you should try is the one you know best. This goes for both
the feature extractors and the model itself.

 Use scatter plots and scatter matrices on low-dimensional features and targets
to make sure you aren’t missing some obvious patterns.

Listing D.8 RMSE

Listing D.9 Correlation

458 APPENDIX D Machine learning tools and techniques
 Plot high-dimensional data as a raw image to discover shifting across features.1

 Try PCA on high-dimensional data (LSA on NLP data) when you want to maxi-
mize the differences between pairs of vectors (separation).

 Use nonlinear dimension reduction, like t-SNE, when you want to find matches
between pairs of vectors or perform regression in the low-dimensional space.

 Build an sklearn.Pipeline object to improve the maintainability and reus-
ability of your models and feature extractors.

 Automate the hyperparameter tuning so your model can learn about the data
and you can spend your time learning about machine learning.

HYPERPARAMETER TUNING Hyperparameters are all the values that determine
the performance of your pipeline, including the model type and how it’s
configured. This can be things like how many neurons and layers are in a neu-
ral network or the value of alpha in a sklearn.linear_model.Ridge regres-
sor. Hyperparameters also include the values that govern any preprocessing
steps, like the tokenizer type, any list of words that are ignored, the minimum
and maximum document frequency for the TF-IDF vocabulary, whether or not
to use a lemmatizer, the TF-IDF normalization approach, and so on.

Hyperparameter tuning can be a slow process, because each experiment requires you
to train and validate a new model. So it pays to reduce your dataset size to a minimum
representative sample while you’re searching a broad range of hyperparameters.
When your search gets close to the final model that you think is going to meet your
needs, you can increase the dataset size to use as much of the data as you need.

 Tuning the hyperparameters of your pipeline is how you improve the performance
of your model. Automating the hyperparameter tuning can give you more time to
spend reading books like this or visualizing and analyzing your results. You can still
guide the tuning with your intuition by setting the hyperparameter ranges to try.

TIP The most efficient algorithms for hyperparameter tuning are (from best
to worst)

1 Bayesian search
2 Genetic algorithms
3 Random search
4 Multi-resolution grid searches
5 Grid search

But any algorithm that lets your computer do this searching at night while
you sleep is better than manually guessing new parameters one by one.

1 Time series training sets will often be generated with a time shift or lag. Discovering this can help you on Kag-
gle competitions that hide the source of the data, like the Santander Value Prediction competition (www
.kaggle.com/c/santander-value-prediction-challenge/discussion/61394).

www.kaggle.com/c/santander-value-prediction-challenge/discussion/61394
www.kaggle.com/c/santander-value-prediction-challenge/discussion/61394

appendix E
Setting up your AWS GPU

If you want to train or run your NLP pipeline quickly, a server with a GPU will often
speed things up. GPUs are especially speedy for training a deep neural network
when you use a framework such as Keras (TensorFlow or Theano), PyTorch, or
Caffe to build your model. These computational graph frameworks can take
advantage of the massively parallel multiplication and addition operations that
GPUs are built for.

 A cloud service is a great option if you don’t want to invest the time and money
to build your own server. But it’s possible to build a server with a GPU that’s twice as
fast as a comparable Amazon Web Services (AWS) server for about the cost of a
month on a comparable AWS instance. Plus you can store a lot more data with
tighter coupling (higher bandwidth) to your machine and often get more RAM
than is possible on a single AWS EC2 instance.

 With AWS you can be up and running quickly, without having to maintain your
own storage devices and servers. Plus most cloud services provide preconfigured
hard drive images (ISOs) that can get you up and running much quicker than if
you had to configure your own server. For a production system, a cloud provider
like AWS or Google Cloud Services (Azure is still playing catch-up) likely makes
sense. For recreation and experimentation, you may want to roll your own.

E.1 Steps to create your AWS GPU instance
1 Go to http://aws.amazon.com to sign up for an account or sign into an exist-

ing account. Once you are logged into your account, go to the AWS Manage-
ment Console (http://console.aws.amazon.com) shown in figure E.1.

2 Select EC2 under All Services; you can also find the EC2 service in the Ser-
vices menu at the top of the page. The EC2 Dashboard provides summary
information about existing EC2 instances (see figure E.2)
459

http://aws.amazon.com
http://console.aws.amazon.com

460 APPENDIX E Setting up your AWS GPU
Figure E.1 AWS Management Console

Figure E.2 Creating a new AWS instance

461Steps to create your AWS GPU instance
3 In the EC2 Dashboard, click the blue Launch Instance button to start the
instance setup wizard, a sequence of screens where you can configure the vir-
tual machine you want to launch.

4 This screen (figure E.3) shows the server hard drive images or ISOs you can
install on your virtual machine. These are called Amazon Machine Images (AMIs)
on Amazon.1 Some AMIs come with deep learning frameworks already
installed. That way, you don’t need to install and configure the CUDA and
BLAS libraries or Python packages such as TensorFlow, numpy, and Keras. To
find a free preconfigured deep learning AMI, click the Amazon Marketplace or
Community AMIs tab on the left side and search for “deep learning.”2 You must
still configure the hardware that makes use of all the software features that a
particular AMI provides.

5 Some of the neural network code in this book was tested on the Deep Learning
AMI (Ubuntu), which is designed to take advantage of any GPU hardware pres-
ent on your virtual machine. Click the blue Select button next to the AMI you

1 ISO is short for ISO-9660, an International Standards Organization open standard for writing disk images in
a way that they can be transported and installed elsewhere, not only on one proprietary cloud service, such as
AWS.

2 At the time of this writing, one such image under the Amazon Marketplace had an AMI ID of ami-f1d51489.

Figure E.3 Selecting an AWS Machine Image

462 APPENDIX E Setting up your AWS GPU
want to use. If you’ve selected an Amazon Marketplace image, you’ll be pre-
sented with an estimate of the prices for running the AMI on various EC2
instance types that have a GPU (see figure E.4).

6 Many open source AMIs, like the Deep Learning Ubuntu AMI, are free, so the
Software cost column on the More Info page for Amazon Marketplace shows $0.
Other AMIs under the AWS Marketplace tab, such as the RocketML AMI, may
have software costs associated with them. Regardless of the software cost, you’ll
need to pay for server instance power-on time if it exceeds your “free tier” allow-
ance. A GPU instance isn’t covered under the free tier. So make sure your pipe-
line has been fully tested on a low-cost CPU machine before running your
pipeline on a more-expensive instance. Click the blue Continue button if you’re
viewing this price list (see figure E.4). If you’ve returned to the AMI lists on Ama-
zon Marketplace, you can click the blue Select button next to the AMI you would
like to install on your EC2 instance, which will take you to “Step 2: Choose an
Instance Type” (see figure E.5).

7 In this step, you select the server type for your virtual machine (see figure E.5).
The smallest GPU instance—g2.2xlarge—is a good value. Amazon’s dark pat-
tern UI will preselect a much more expensive type, so you’ll have to manually

Figure E.4 Cost overview for the machine image and the available instance types in your
AWS region

463Steps to create your AWS GPU instance
select the g2.2xlarge instance if that’s the one you want. Also, you’ll find that
virtual machines are much cheaper if you’ve selected US West 2 (Oregon) as
your region rather than other US regions. You can find this selection in the
menu at the upper-right corner of the page near your account name.

8 Once you’ve selected the instance type you’d like to use, you can launch your
machine by clicking the blue Review and Launch button. But for your first
instance, you should work your way through all the setup wizard steps so you
can see what your options are, even if you decide to accept the defaults on each
of these screens. To proceed to the next step, click the gray Next: Configure
Instance Details button.

9 Here you can configure the instance details (see figure E.6). If you are already
using AWS machines on an existing virtual private cloud (VPC), you can assign
your GPU machine to your existing VPC. Machines on the same VPC can use
the same gateway or bastion servers on that VPC to access your machine. But if
this is your first EC2 instance or you don’t have a “bastion server,”3 you don’t
need to worry about this.

3 Amazon has a tutorial on the best practices for a Bastion host (https://docs.aws.amazon.com/quickstart/
latest/linux-bastion/architecture.html).

Figure E.5 Choosing your instance type

https://docs.aws.amazon.com/quickstart/latest/linux-bastion/architecture.html
https://docs.aws.amazon.com/quickstart/latest/linux-bastion/architecture.html

464 APPENDIX E Setting up your AWS GPU
10 Selecting “Protect against accidental termination” makes it harder for you to
accidentally terminate your machine. On Amazon Web Services, “terminate”
means to power off a machine and wipe its storage. “Stop” means to power
down or suspend the machine while retaining any training checkpoints you
may have saved to persistent storage on that machine.

11 To continue, click the Next: Add Storage button.
12 In this step (figure E.7), you can add storage if you plan to work with large cor-

pora. But you may be better off proceeding with a minimal amount of “local”
storage on your EC2 instance and waiting to mount an Amazon “S3 Bucket” or
other cloud storage service after your EC2 instance is up and running. This will
allow you to share large datasets across multiple servers or training runs
(between instance terminations). Amazon Web Service will charge you for any
“local” EC2 storage above the 30 GB free tier allowance. The AWS UX has a lot
of dark patterns that make it hard to avoid racking up charges.

13 Click the Next buttons to proceed through the next steps and review the
default tags and security groups assigned to your EC2 instance. The final Next
button sends you to the review step (see figure E.8).

Figure E.6 Adding storage to your instance

465Steps to create your AWS GPU instance

Figure E.7 Adding persistent storage to your instance

Figure E.8 Reviewing your instance setup before launching

466 APPENDIX E Setting up your AWS GPU
14 On the review screen (see figure E.8), Amazon Web Services shows you the
details of your instance in one overview.

15 Confirm that the instance details—particularly the type (RAM and CPU), the
AMI image (Deep Learning Ubuntu), and storage (enough GB for your data)—
are what you want before clicking the Launch button. At that point, AWS will
power up your virtual machine and start loading your software image onto it.

16 If you haven’t previously created an instance with AWS, it’ll ask you to create a
new key pair (see figure E.9). The key pair allows you to ssh into the machine
without a password. By default, EC2 instances don’t allow password login, so
you’ll need to save the .pem file in your $HOME/.ssh/ folder and keep a copy
of it in a safe place (such as your password manager) or you won’t be able to
access your running server and will have to start over.

17 After saving your key pair (if you created a new key pair), AWS confirms that the
instance is launched. On rare occasions, the Amazon data center may not have
the resources you requested and you’ll receive an error, requiring you to start
over.

18 Click the instance hash that starts with i-… (see figure E.10). The link sends you
to the overview of all your EC2 instances, where you’ll see your instance with its
state indicated as “running” or “initializing.”

Figure E.9 Creating a new instance key (or downloading an existing one)

467Steps to create your AWS GPU instance
Figure E.10 AWS launch confirmation

Figure E.11 EC2 Dashboard showing the newly created instance

468 APPENDIX E Setting up your AWS GPU
19 You’ll want to record the public IP address for your instance (see figure E.11)
alongside the .pem file for the key pair you generated earlier. A good place to
store this is in your password manager with the .pem file. You’ll also want to put
it within your $HOME/.ssh/config file, so you can give your instance a host
name so you don’t have to find the IP address in the future.

A typical config file will look something like what is shown in the following
listing. You’ll want to change the HostName value to the public IP address
(from the EC2 Dashboard) or fully qualified domain name (from your “Route
53” Dashboard on AWS) for your EC2 instance that you just launched.

Host totalgood
User ubuntu
HostName INSTANCE_PUBLIC_IP
Port 22
IdentityFile ~/.ssh/nlp-in-action.pem
ssh -i ~/.ssh/nlp-in-action.pem ubuntu@INSTANCE_PUBLIC_IP

20 Before logging into the AWS instance, ssh requires that the private key file
(.pem file in your $HOME/.ssh directory) can be read only by you and the root
superuser on your system. You can set the appropriate permissions by executing
the following bash commands:4

$ chown -R $USER:users $HOME/.ssh
$ chmod 700 $HOME/.ssh
$ chmod 600 $HOME/.ssh/nlp-in-action.pem
$ chmod -R 600 $HOME/.ssh/*

21 After you’ve set the appropriate file permissions and set up your config file, exe-
cute the following bash command to attempt to log into your EC2 instance:

$ ssh -i ~/.ssh/nlp-in-action.pem ubuntu@INSTANCE_PUBLIC_IP

22 If the Amazon Machine Image is Ubuntu-based, the user name is usually
ubuntu. But each AMI will have documentation on the user name and ssh port
number required to log into it.

Listing E.1 $HOME/.ssh/config

4 A bash shell, like cygwin or git-bash, must be installed for bash ssh commands to work on a Windows system.

Replace INSTANCE_PUBLIC_IP
with your public IP address.

The path to the .pem
file you downloaded
goes here.

You can leave notes as
comments in your config file.

This ensures that only you can
delete, write, read, and execute

 the $HOME/.ssh directory. This ensures that only you
can write and read the
.pem file you downloaded.

This ensures that you can read and write any of the key files in your
$HOME/.ssh directory, like the default id_rsa and id_rsa.pub files

that may have been generated when your account was created.

469Steps to create your AWS GPU instance
Figure E.12 Confirmation request to exchange ssh credentials

23 If you log in for the very first time, you’re warned that the fingerprint of the
machine is unknown (see figure E.12). Confirm with yes to go ahead with the
login process.5

24 After a successful login, you see a welcome screen (see figure E.13).

Figure E.13 Welcome screen after a successful login

5 If you see this warning in the future, when you haven’t changed its IP address, then you may have someone
attempting to spoof the IP address or domain name of your machine and hack into your instance with a man-
in-the-middle attack. This is extremely rare.

470 APPENDIX E Setting up your AWS GPU
25 As the final step, you need to activate your preferred development environ-
ment. The machine image provides various environments, including PyTorch,
TensorFlow, and CNTK. Because we use TensorFlow and Keras in this book,
you should activate the tensorflow_p36 environment. This loads a virtual envi-
ronment with Python 3.6, Keras, and TensorFlow installed (see figure E.14):

$ source activate tensorflow_p36

Figure E.14 Activating your pre-installed Keras environment

Now that you’ve activated your TensorFlow environment, you are ready to train
your deep learning NLP models. Head over to an iPython shell with

$ ipython

Now you’re ready to train your models. Have fun!

E.1.1 Cost control

Running a GPU instance on a cloud service like AWS can quickly get expensive. The
smallest GPU instance in the US-West 2 region costs $0.65 per hour at the time of this
writing. Training a simple sequence-to-sequence model can take a few hours, and then
you might want to iterate on your model parameters. All iterations can quickly add up
to a decent monthly bill. You can minimize surprises with a few precautions (see
figures E.15 and E.16):

 Turn off idle GPU machines. When you stop (not terminate) your machine, the
last state of the storage (except your /tmp folder) will be preserved and you can
return to it. In-memory data will be lost, so make sure to save all your model
checkpoints before stopping the machine.

471Steps to create your AWS GPU instance

Figure E.16 AWS Budget Console

Figure E.15 AWS Billing Dashboard

472 APPENDIX E Setting up your AWS GPU
 Check your EC2 instance summary page for running instances.
 Check your AWS bill summary regularly to check for running instances.
 Create an AWS Budget with spending alarms. Once you’ve configured a budget,

AWS will alert you when you are exceeding it.

appendix F
Locality sensitive hashing

In chapter 4, you learned how to create topic vectors with hundreds of dimensions
of real-valued (floating point) numbers. In chapter 6, you learned how to create
word vectors that have hundreds of dimensions. Even though you can do useful
math operations on these vectors, you cannot quickly search them like you can
discrete vectors or strings. Databases don’t have efficient indexing schemes for vec-
tors of more than four dimensions.1 To use word vectors and document topic
vectors efficiently, you need a search index that can help find the nearest neighbors
for any given vector.

 You need this to convert the results of vector math into a word or set of words
(because the resultant vector is never an exact match for the vector of a word in the
English language). You also need it to do semantic search. This appendix shows an
example approach based on locality sensitive hashing (LSH).

F.1 High-dimensional vectors are different
As you add dimensions to vectors going from 1D to 2D and even 3D, nothing much
changes about the kinds of math you can do to find nearest neighbors quickly. Let’s
talk a little bit about conventional approaches used by database indexes for 2D vec-
tors and work our way up to high-dimensional vectors. That will help you see where
the math breaks down (becomes impractical).

F.1.1 Vector space indexes and hashes

Indexes are designed to make looking up something easy. Real-value (float)
indexes for things like latitude and longitude can’t rely on exact matches, like the
index of words at the back of a textbook. For 2D real-valued data, most indexes use

1 Some advanced databases such as PostgreSQL can index higher-dimensional vectors, but efficiency drops
quickly with dimensionality.
473

474 APPENDIX F Locality sensitive hashing
some sort of bounding box to divide a low-dimensional space into manageable
chunks. The most common example of an index like this for two-dimensional geo-
graphic location information is the postal code systems used in various countries to
collect mail addresses within contiguous regions (called ZIP Codes in the US).

 You assign a number to each region in 2D space; even though postal code regions
aren’t rectangular bounding boxes, they serve the same purpose. The military uses
bounding boxes with its grid system for dividing up the globe into rectangular bound-
ing boxes and assigning each one a number. In both US ZIP Codes and the military
grid system, the numbers for these regions have semantic meaning.

 The “locality sensitivity” of hashes like US ZIP Codes comes from the fact that
numbers or hashes that are close to each other in ordinal value are close to each other
in the 2D space that they’re for. For example, the first digit in a US ZIP Code identi-
fies a region, such as the west coast or southwest or the US state they belong to. The
next digit (combined with the first) uniquely identifies a particular state. The first
three digits uniquely identify a region or large city within that state. Locality sensitivity
of US zip codes continues all the way down to the “+4” suffix, which identifies a partic-
ular city block or even apartment building.2

 The manual process and algorithm that produced the US ZIP Code system is
equivalent to the locality sensitive hashing algorithms created for other vector spaces.
Locality sensitive hashing algorithms define a way to produce these locality sensitive
numbers. They use the coordinates of locations in a vector space so that the numerical
value of the hashes are close to each other if the locations of the regions they map to
in the vector space are also close to each other or even overlap. Locality sensitive
hashes try to create those same mathematical properties like a high probability of col-
lision and locality sensitivity that cryptographic hashing algorithms try to avoid.

F.1.2 High-dimensional thinking

Natural language vector spaces are high dimensional. Natural language captures all
the complex concepts that humans think and talk about, including natural language
processing itself. So when you want to squeeze all that complexity into a vector, you
often discard some of that complexity so it’ll fit in your rigid vector-space box. And
you keep adding dimensions to your vector to accommodate as much of the complex-
ity of human thought and language as you can.

 For example, bag-of-words vectors discard the information content contained in
the order of words. This allows you to produce discrete high-dimensional vectors that
you can index and search efficiently. You use binary search and indexing trees to
detect whether or not particular keywords are present or absent in both your query
and your corpus. This works even if you expand your keyword vocabulary to include
all the words in a natural language. Web search engines often even include all the

2 The ZIP Code Wikipedia article contains a map that shows this locality sensitivity (https://en.wikipedia.org/
wiki/ZIP_Code#Primary_state_prefixes).

https://en.wikipedia.org/wiki/ZIP_Code#Primary_state_prefixes
https://en.wikipedia.org/wiki/ZIP_Code#Primary_state_prefixes

475High-dimensional vectors are different
words in hundreds of natural languages at once. That’s why your web search can
include Spanish and German words alongside English words all in the same query.

 You learned in chapter 2 how to capture a bit of the complexity of the order of
words by adding N-grams to your bag-of-words vector dimensions. And you learned in
chapter 3 how to weight those millions of terms (words and N-grams) according to
how important they are. This leaves you with millions of dimensions or “bins” in your
vector space model of human languages.

 But bag-of-words, TF-IDF, and regular expressions can’t understand you. They can
only help you find the documents you’re looking for. So in chapter 4 through chapter
6, you allowed your vector spaces to become continuous. You squeezed some of the
complexity of natural language into the gaps in the number line between the integer
counts of words. You no longer relied on a rigid, discrete vocabulary to define the
dimensions of your vector space. By grouping words into concepts or topics you
reduced the dimensions of your vectors from millions down to hundreds. You created
nessvectors that captured the femaleness and blueness and placeness of words and
statements.

 And there’s more. In chapters 7 through 10, you figured out how to capture not
only word combinations, but long, complex word sequences in your vectors. Your shal-
low nessvectors became deep thought vectors when you learned about recurrent neu-
ral networks and long short-term memory.

 But all this depth and complexity creates a problem. Continuous, dense, high-
dimensional vectors like thought vectors cannot be indexed or searched efficiently.
That’s why search engines don’t just answer your complex question in a millisecond.
When you want to know the meaning of life, you have to have a conversation with a
chatbot, or, perish the thought, another human being.

 Why is that? Why can’t you index or search a high-dimensional continuous vector?
Start with a 1D vector “space” and see how easy it is to index and search a single scalar
value on a 1D number line. Then you can think about how to extend that 1D index to
handle multiple dimensions. And you can keep going up in dimensionality from there
until things break down.

A 1D INDEX

Imagine a random distribution of 1D vectors—a bunch of random numbers. You can
create a natural 1D bounding box that’s half the width of the overall space by cutting
the number line in half. You could put all the positive values in one box and the nega-
tive values in another box. As long as you have a pretty good idea where the middle or
centroid of your vector space is located (usually zero), each box will have about half
the number of vectors in it.

 Each of those bounding boxes could be split in half again to create a total of four
boxes. If you kept that up, a few more of those divisions would create a binary search
tree or a binary hash that’s sensitive to locality (where it’s located). For a 1D vector
space, the average number of points in each box is pow(num_vectors/2, num
_boxes). For 1D space, you need only about 32 levels (box sizes) for your boxes to
index billions of points so that there are only a few in each box.

476 APPENDIX F Locality sensitive hashing
 Each of your 1D vectors can have its own ZIP Code, an index value or locality sensi-
tive hash. And all the vectors that are similar to each other will be nearby in a sorted
list of all those hash values. That way you can compute the hash values for some new
query and find it quickly in your database.

2D, 3D, 4-D INDEXES

Let’s add a dimension and see how well the 1D binary tree index will work. Think
about how you’d divide the space into regions in a binary tree, dividing your region
approximately in half with each fork in the tree. Which dimension would you cut in
half each time you tried to reduce the number points by half? For a 2D vector this
would be the 2 x 2 squares or quadrants of 2D plane. For a 3D vector this might be the
3 x 3 x 3 blocks in a “Rubix Cube” of space. For 4-D you’d need about 4 x 4 x 4 x 4
blocks… to get started. The first fork in your binary tree index would create 4^4^
branches. And some of those 256 bounding boxes in your 4-D vector space might not
contain any vectors at all. Some word combinations or sequences never occur.

 Our naive binary tree approach works OK for 3D and 4-D vectors and even all the
way out to 8-D or more. But it quickly gets unruly and inefficient. Imagine what your
bounding “cubes” would be like in 10 dimensions. You’re not alone if your brain can’t
handle that concept. Human brains live in a 3D world, so they aren’t capable of fully
grasping even 4-D vector space concepts.

 Machines can handle 10-D OK, but you need them to handle 100-D or more if you
want to squeeze the complexity of human thought into vectors. You can think of this
curse of dimensionality in a few different ways:

 The possible combinations of dimensions grows exponentially with each added
dimension.

 All vectors are far away from each other in high-dimensional spaces.
 High-dimensional vector spaces are mostly empty space—a random bounding

box is almost always empty.

The following code may help you get a feel for these properties of high-dimensional
spaces.

>>> import pandas as pd
>>> import numpy as np
>>> from tqdm import tqdm

>>> num_vecs = 100000
>>> num_radii = 20
>>> num_dim_list = [2, 4, 8, 18, 32, 64, 128]
>>> radii = np.array(list(range(1, num_radii + 1)))
>>> radii = radii / len(radii)
>>> counts = np.zeros((len(radii), len(num_dims_list)))
>>> rand = np.random.rand

Listing F.1 Explore high-dimensional space

477High-dimensional vectors are different
>>> for j, num_dims in enumerate(tqdm(num_dim_list)):
... x = rand(num_vecs, num_dims)
... denom = (1. / np.linalg.norm(x, axis=1))
... x *= denom.reshape(-1, 1).dot(np.ones((1, x.shape[1])))
... for i, r in enumerate(radii):
... mask = (-r < x) & (x < r)
... counts[i, j] = (mask.sum(axis=1) == mask.shape[1]).sum()

You can explore this weird world of high-dimensional spaces in nlpia/book/
examples/ch_app_h.py on github (http://github.com/totalgood/nlpia). You can
see much of the weirdness in the following table, which shows the density of points in
each bounding box as you expand its size bit by bit:

>>> df = pd.DataFrame(counts, index=radii, columns=num_dim_list) / num_vecs
>>> df = df.round(2)
>>> df[df == 0] = ''
>>> df

2 4 8 18 32 64 128
0.05
0.10
0.15 0.37
0.20 0.1 1
0.25 1 1
0.30 0.55 1 1
0.35 0.12 0.98 1 1
0.40 0.62 1 1 1
0.45 0.03 0.92 1 1 1
0.50 0.2 0.99 1 1 1
0.55 0.01 0.5 1 1 1 1
0.60 0.08 0.75 1 1 1 1
0.65 0.24 0.89 1 1 1 1
0.70 0.45 0.96 1 1 1 1
0.75 0.12 0.64 0.99 1 1 1 1
0.80 0.25 0.78 1 1 1 1 1
0.85 0.38 0.88 1 1 1 1 1
0.90 0.51 0.94 1 1 1 1 1
0.95 0.67 0.98 1 1 1 1 1
1.00 1 1 1 1 1 1 1

There’s an indexing algorithm called a KD-Tree (https://en.wikipedia.org/wiki/K-d
_tree) that attempts to divide up high-dimensional spaces as efficiently as possible to
minimize empty bounding boxes. But even these approaches break down at dozens
or hundreds of dimensions as the curse of dimensionality kicks in. Unlike 2D and 3D
vectors, it’s not possible to truly index or hash high-dimensional word and thought
vectors in a way that allows you to retrieve the closest matches quickly. You have to
just calculate the distance to a lot of guesses for the nearest neighbors until you find a
few that are close. Or you have to check them all, if you want to be sure you didn’t
miss any.

Normalize a table of
random row vectors
to all have unit length.

http://github.com/totalgood/nlpia
https://en.wikipedia.org/wiki/K-d_tree
https://en.wikipedia.org/wiki/K-d_tree

478 APPENDIX F Locality sensitive hashing
F.2 High-dimensional indexing
In high-dimensional space, conventional indexes that rely on bounding boxes fail.
Eventually, even locality sensitive hashing fails. But let’s first experiment with locality
sensitive hashing to show its limitations. Then you will learn how to get around those
limitations by giving up on the idea of a perfect index. You will create an approximate
index after an experiment with locality sensitive hashing.

F.2.1 Locality sensitive hashing

In figure F.1, we constructed 400,000 completely random vectors, each with 200
dimensions (typical for topic vectors for a large corpus). And we indexed them with
the Python LSHash package (pip install lshash3). Now imagine that you have a
search engine that wants to find all the topic vectors that are close to a query topic
vector. How many will be gathered up by the locality sensitive hash? And for what
number of dimensions for the topic vectors do your search results cease to make
much sense at all?

Figure F.1 Semantic search with LSHash

You can’t get many search results correct once the number of dimensions gets signifi-
cantly above 10 or so. If you’d like to play with this yourself, or try your hand at build-
ing a better LSH algorithm, the code for running experiments like this is available in
the nlpia package. And the lshash3 package is open source, with only about 100
lines of code at the heart of it.

479“Like” prediction
F.2.2 Approximate nearest neighbors

Approximate nearest neighbor search is the latest answer to the high-dimensional vec-
tor space problem. The approximate hashes are similar to locality sensitive hashes and
KD-trees, but they rely on something that’s more like a random forest algorithm.
They’re stochastic (random) approaches to splitting your vector space into smaller
and smaller chunks of space.

 The state of the art for finding the closest matches for high-dimensional vectors is
Facebook’s FAISS package and Spotify’s Annoy package. Because Annoy is so easy to
install and use, that’s what we chose to use for your chatbot. In addition to it being the
workhorse for finding matches among vectors representing song metadata for music
fans, Dark Horse Comics has also used Annoy to suggest comic books efficiently. We
mentioned these tools in chapter 13.

F.3 “Like” prediction
Figure F.2 is what a collection of tweets looks like in hyperspace. These are the 2D
shadows of 100D tweet topic vectors (points) from latent semantic analysis of those
tweets. Most of the marks represent tweets that were liked at least once; a minority of
marks are for tweets that received zero likes.

Figure F.2 Scatter matrix of four topics for tweets

480 APPENDIX F Locality sensitive hashing
An LDA model fit to these topic vectors will succeed 80% of the time. However, like
your SMS dataset, your tweet dataset is also very imbalanced. So predicting the likabil-
ity of new tweets using this model isn’t likely to be very accurate. You should probably
only use LSA, LDA, and LDiA language models for classification problems where vari-
ance maximization (class separability) is helpful:

 Semantic search
 Sentiment analysis
 Spam detection

For more subtle discrimination between texts that rely on generalizing from similari-
ties in semantic content, you’ll want the most sophisticated NLP tools in your toolbox.
Use LSTM deep learning models and t-SNE dimension reduction techniques to solve
difficult problems such as

 Human reaction prediction (tweet likability)
 Machine translation
 Natural language generation

resources

In writing this book we pulled from numerous resources. Here are some of our
favorites.

 In an ideal world, you could find these resources yourself simply by entering the
heading text into a semantic search engine like Duck Duck Go (http://duckduckgo
.com), Gigablast (http://gigablast.com/search?c=main&q=open+source+search+
engine), or Qwant (https://www.qwant.com/web). But until Jimmy Wales takes
another shot at Wikia Search (https://en.wikipedia.org/wiki/Wikia_Search) or
Google shares their NLP technology, we have to rely on 1990s-style lists of links like
this. Check out the “Search engines” section if your contribution to saving the
world includes helping open source projects that index the web.

Applications and project ideas
Here are some applications to inspire your own NLP projects:

 Guessing passwords from social network profiles (http://www.sciencemag
.org/news/2017/09/artificial-intelligence-just-made-guessing-your-password
-whole-lot-easier).

 Chatbot lawyer overturns 160,000 parking tickets in London and New York (www
.theguardian.com/technology/2016/jun/28/chatbot-ai-lawyer-donotpay-
parking-tickets-london-new-york).

 GitHub - craigboman/gutenberg: Librarian working with project gutenberg data,
for NLP and machine learning purposes (https://github.com/craigboman/
gutenberg).

 Longitudial Detection of Dementia Through Lexical and Syntactic Changes in Writ-
ing (ftp://ftp.cs.toronto.edu/dist/gh/Le-MSc-2010.pdf)—Masters thesis by
Xuan Le on psychology diagnosis with NLP.

 Time Series Matching: a Multi-filter Approach by Zhihua Wang (https://www
.cs.nyu.edu/web/Research/Theses/wang_zhihua.pdf)—Songs, audio clips,
and other time series can be discretized and searched with dynamic pro-
gramming algorithms analogous to Levenshtein distance.
481

http://duckduckgo.com
http://duckduckgo.com
http://gigablast.com/search?c=main&q=open+source+search+engine
http://gigablast.com/search?c=main&q=open+source+search+engine
https://www.qwant.com/web
https://en.wikipedia.org/wiki/Wikia_Search
http://www.sciencemag.org/news/2017/09/artificial-intelligence-just-made-guessing-your-password-whole-lot-easier
http://www.sciencemag.org/news/2017/09/artificial-intelligence-just-made-guessing-your-password-whole-lot-easier
http://www.sciencemag.org/news/2017/09/artificial-intelligence-just-made-guessing-your-password-whole-lot-easier
www.theguardian.com/technology/2016/jun/28/chatbot-ai-lawyer-donotpay-parking-tickets-london-new-york
www.theguardian.com/technology/2016/jun/28/chatbot-ai-lawyer-donotpay-parking-tickets-london-new-york
www.theguardian.com/technology/2016/jun/28/chatbot-ai-lawyer-donotpay-parking-tickets-london-new-york
https://github.com/craigboman/gutenberg
https://github.com/craigboman/gutenberg
ftp://ftp.cs.toronto.edu/dist/gh/Le-MSc-2010.pdf
https://www.cs.nyu.edu/web/Research/Theses/wang_zhihua.pdf
https://www.cs.nyu.edu/web/Research/Theses/wang_zhihua.pdf

482 resources
 NELL, Never Ending Language Learning (http://rtw.ml.cmu.edu/rtw/
publications)—CMU’s constantly evolving knowledge base that learns by scrap-
ing natural language text.

 How the NSA identified Satoshi Nakamoto (https://medium.com/cryptomuse/
how-the-nsa-caught-satoshi-nakamoto-868affcef595)—Wired Magazine and the
NSA identified Satoshi Nakamoto using NLP, or stylometry.

 Stylometry (https://en.wikipedia.org/wiki/Stylometry) and Authorship Attri-
bution for Social Media Forensics (http://www.parkjonghyuk.net/lecture/
2017-2nd-lecture/forensic/s8.pdf)—Style/pattern matching and clustering of
natural language text (also music and artwork) for authorship and attribution.

 Online dictionaries like Your Dictionary (http://examples.yourdictionary.com/)
can be scraped for grammatically correct sentences with POS labels, which can
be used to train your own Parsey McParseface (https://ai.googleblog.com/
2016/05/announcing-syntaxnet-worlds-most.html) syntax tree and POS tagger.

 Identifying ‘Fake News’ with NLP (https://nycdatascience.com/blog/student -
works/identifying-fake-news-nlp/) by Julia Goldstein and Mike Ghoul at NYC
Data Science Academy.

 simpleNumericalFactChecker (https://github.com/uclmr/simpleNumerical
FactChecker) by Andreas Vlachos (https://github.com/andreasvlachos) and
information extraction (see chapter 11) could be used to rank publishers,
authors, and reporters for truthfulness. Might be combined with Julia Gold-
stein’s “fake news” predictor.

 The artificial-adversary (https://github.com/airbnb/artificial-adversary) pack-
age by Jack Dai, an intern at Airbnb—Obfuscates natural language text (turning
phrases like ‘you are great’ into ‘ur gr8’). You could train a machine learning clas-
sifier to detect and translate English into obfuscated English or L33T (https://
sites.google.com/site/inhainternetlanguage/different-internet-languages/l33t).
You could also train a stemmer (an autoencoder with the obfuscator generating
character features) to decipher obfuscated words so your NLP pipeline can han-
dle obfuscated text without retraining. Thank you Aleck.

Courses and tutorials
Here are some good tutorials, demonstrations, and even courseware from renowned
university programs, many of which include Python examples:

 Speech and Language Processing (https://web.stanford.edu/~jurafsky/slp3/ed3
book.pdf) by David Jurafsky and James H. Martin—The next book you should
read if you’re serious about NLP. Jurafsky and Martin are more thorough and rig-
orous in their explanation of NLP concepts. They have whole chapters on topics
that we largely ignore, like finite state transducers (FSTs), hidden Markhov mod-
els (HMMs), part-of-speech (POS) tagging, syntactic parsing, discourse coher-
ence, machine translation, summarization, and dialog systems.

 MIT Artificial General Intelligence course 6.S099 (https://agi.mit.edu) led by
Lex Fridman Feb 2018—MIT’s free, interactive (public competition!) AGI

https://en.wikipedia.org/wiki/Stylometry
https://github.com/airbnb/artificial-adversary
http://www.parkjonghyuk.net/lecture/2017-2nd-lecture/forensic/s8.pdf
http://www.parkjonghyuk.net/lecture/2017-2nd-lecture/forensic/s8.pdf
http://rtw.ml.cmu.edu/rtw/publications
http://rtw.ml.cmu.edu/rtw/publications
https://medium.com/cryptomuse/how-the-nsa-caught-satoshi-nakamoto-868affcef595
https://medium.com/cryptomuse/how-the-nsa-caught-satoshi-nakamoto-868affcef595
http://examples.yourdictionary.com/
https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html
https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html
https://nycdatascience.com/blog/student-works/identifying-fake-news-nlp/
https://nycdatascience.com/blog/student-works/identifying-fake-news-nlp/
https://github.com/uclmr/simpleNumericalFactChecker
https://github.com/uclmr/simpleNumericalFactChecker
https://github.com/andreasvlachos
https://sites.google.com/site/inhainternetlanguage/different-internet-languages/l33t
https://sites.google.com/site/inhainternetlanguage/different-internet-languages/l33t
https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf
https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf
https://agi.mit.edu

483Research papers and talks
course. It’s probably the most thorough and rigorous free course on artificial
intelligence engineering you can find.

 Textacy: NLP, before and after spaCy (https://github.com/chartbeat-labs/textacy)
—Topic modeling wrapper for SpaCy.

 MIT Natural Language and the Computer Representation of Knowledge course
6-863j lecture notes (http://mng.bz/vOdM) for Spring 2003.

 Singular value decomposition (SVD) (http://people .revoledu.com/kardi/tutorial/
LinearAlgebra/SVD.html) by Kardi Teknomo, PhD.

 An Introduction to Information Retrieval (https://nlp.stanford.edu/IR-book/pdf/
irbookonlinereading.pdf) by Christopher D. Manning, Prabhakar Raghavan,
and Hinrich Schütze.

Tools and packages
 nlpia (http://github.com/totalgood/nlpia)—NLP datasets, tools, and exam-

ple scripts from this book
 OpenFST (http://openfst.org/twiki/bin/view/FST/WebHome) by Tom Bagby,

Dan Bikel, Kyle Gorman, Mehryar Mohri et al.—Open Source C++ Finite State
Transducer implementation

 pyfst (https://github.com/vchahun/pyfst) by Victor Chahuneau—A Python
interface to OpenFST

 Stanford CoreNLP—Natural language software (https://stanfordnlp.github.io/
CoreNLP/) by Christopher D. Manning et al.—Java library with state-of-the-art
sentence segmentation, datetime extraction, POS tagging, grammar checker,
and so on

 stanford-corenlp 3.8.0 (https://pypi.org/project/stanford-corenlp/)—
Python interface to Stanford CoreNLP

 keras (https://blog.keras.io/)—High-level API for constructing both Tensor-
Flow and Theano computational graphs (neural nets)

Research papers and talks
One of the best way to gain a deep understanding of a topic is to try to repeat the
experiments of researchers and then modify them in some way. That’s how the best
professors and mentors “teach” their students, by just encouraging them to try to
duplicate the results of other researchers they’re interested in. You can’t help but
tweak an approach if you spend enough time trying to get it to work for you.

Vector space models and semantic search

 Semantic Vector Encoding and Similarity Search Using Fulltext Search Engines (https://
arxiv.org/pdf/1706.00957.pdf)—Jan Rygl et al. were able to use a conventional
inverted index to implement efficient semantic search for all of Wikipedia.

 Learning Low-Dimensional Metrics (https://papers.nips.cc/paper/7002-learning-
low-dimensional-metrics.pdf)—Lalit Jain et al. were able to incorporate human

http://github.com/totalgood/nlpia
https://github.com/vchahun/pyfst
https://stanfordnlp.github.io/CoreNLP/
https://stanfordnlp.github.io/CoreNLP/
https://github.com/chartbeat-labs/textacy
http://mng.bz/vOdM
http://people.revoledu.com/kardi/tutorial/LinearAlgebra/SVD.html
http://people.revoledu.com/kardi/tutorial/LinearAlgebra/SVD.html
https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf
https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf
http://openfst.org/twiki/bin/view/FST/WebHome
https://pypi.org/project/stanford-corenlp/
https://blog.keras.io/
https://arxiv.org/pdf/1706.00957.pdf
https://arxiv.org/pdf/1706.00957.pdf
https://papers.nips.cc/paper/7002-learning-low-dimensional-metrics.pdf
https://papers.nips.cc/paper/7002-learning-low-dimensional-metrics.pdf

484 resources
judgement into pairwise distance metrics, which can be used for better decision-
making and unsupervised clustering of word vectors and topic vectors. For exam-
ple, recruiters can use this to steer a content-based recommendation engine that
matches resumes with job descriptions.

 RAND-WALK: A latent variable model approach to word embeddings (https://arxiv
.org/pdf/1502.03520.pdf) by Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu
Ma, and Andrej Risteski—Explains the latest (2016) understanding of the
“vector-oriented reasoning” of Word2vec and other word vector space models,
particularly analogy questions

 Efficient Estimation of Word Representations in Vector Space (https://arxiv.org/pdf/
1301.3781.pdf) by Tomas Mikolov, Greg Corrado, Kai Chen, and Jeffrey Dean at
Google, Sep 2013—First publication of the Word2vec model, including an
implementation in C++ and pretrained models using a Google News corpus

 Distributed Representations of Words and Phrases and their Compositionality (https://
papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-
and-their-compositionality.pdf) by Tomas Mikolov, Ilya Sutskever, Kai Chen,
Greg Corrado, and Jeffrey Dean at Google—Describes refinements to the
Word2vec model that improved its accuracy, including subsampling and nega-
tive sampling

 From Distributional to Semantic Similarity (https://www.era.lib.ed.ac.uk/bitstream/
handle/1842/563/IP030023.pdf) 2003 Ph.D. Thesis by James Richard Curran
—Lots of classic information retrieval (full-text search) research, including
TF-IDF normalization and page rank techniques for web search

Finance

 Predicting Stock Returns by Automatically Analyzing Company News Announcements
(http://www.stagirit.org/sites/default/files/articles/a_0275_ssrn-id2684558
.pdf)—Bella Dubrov used gensim’s Doc2vec to predict stock prices based on
company announcements with excellent explanations of Word2vec and
Doc2vec.

 Building a Quantitative Trading Strategy to Beat the S&P 500 (https://www.youtube
.com/watch?v=ll6Tq-wTXXw)—At PyCon 2016, Karen Rubin explained how
she discovered that female CEOs are predictive of rising stock prices, though
not as strongly as she initially thought.

Question answering systems

 Keras-based LSTM/CNN models for Visual Question Answering (https://github.com/
avisingh599/visual-qa) by Avi Singh

 Open Domain Question Answering: Techniques, Resources and Systems (http://lml
.bas.bg/ranlp2005/tutorials/magnini.ppt) by Bernardo Magnini

http://lml.bas.bg/ranlp2005/tutorials/magnini.ppt
http://lml.bas.bg/ranlp2005/tutorials/magnini.ppt
https://arxiv.org/pdf/1502.03520.pdf
https://arxiv.org/pdf/1502.03520.pdf
https://arxiv.org/pdf/1301.3781.pdf
https://arxiv.org/pdf/1301.3781.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://www.era.lib.ed.ac.uk/bitstream/handle/1842/563/IP030023.pdf
https://www.era.lib.ed.ac.uk/bitstream/handle/1842/563/IP030023.pdf
http://www.stagirit.org/sites/default/files/articles/a_0275_ssrn-id2684558.pdf
http://www.stagirit.org/sites/default/files/articles/a_0275_ssrn-id2684558.pdf
https://www.youtube.com/watch?v=ll6Tq-wTXXw
https://www.youtube.com/watch?v=ll6Tq-wTXXw
https://github.com/avisingh599/visual-qa
https://github.com/avisingh599/visual-qa

485Research papers and talks
 Question Answering Techniques for the World Wide Web by Lin Katz, University of
Waterloo, Canada (https://cs.uwaterloo.ca/~jimmylin/publications/Lin_Katz
_EACL2003_tutorial.pdf)

 NLP-Question-Answer-System (https://github.com/raoariel/NLP-Question-Answer
-System/blob/master/simpleQueryAnswering.py)—Built from scratch using
corenlp and nltk for sentence segmenting and POS tagging

 PiQASso: Pisa Question Answering System (http://trec.nist.gov/pubs/trec10/
papers/piqasso.pdf) by Attardi et al., 2001—Uses traditional information
retrieval (IR) NLP

Deep learning

 Understanding LSTM Networks (https://colah.github.io/posts/2015-08-Under-
standing-LSTMs) by Christopher Olah—A clear and correct explanation of
LSTMs

 Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine
Translation (https://arxiv.org/pdf/1406.1078.pdf) by Kyunghyun Cho et al.,
2014—Paper that first introduced gated recurrent units, making LSTMs more
efficient for NLP

LSTMs and RNNs

We had a lot of difficulty understanding the terminology and architecture of LSTMs.
This is a gathering of the most cited references, so you can let the authors “vote” on
the right way to talk about LSTMs. The state of the Wikipedia page (and Talk page dis-
cussion) on LSTMs is a pretty good indication of the lack of consensus about what
LSTM means:

 Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine
Translation (https://arxiv.org/pdf/1406.1078.pdf) by Cho et al.—Explains how
the contents of the memory cells in an LSTM layer can be used as an embed-
ding that can encode variable length sequences and then decode them to a new
variable length sequence with a potentially different length, translating or
transcoding one sequence into another.

 Reinforcement Learning with Long Short-Term Memory (https://papers.nips.cc/paper
/1953-reinforcement-learning-with-long-short-term-memory.pdf) by Bram
Bakker—Application of LSTMs to planning and anticipation cognition with
demonstrations of a network that can solve the T-maze navigation problem and
an advanced pole-balancing (inverted pendulum) problem.

 Supervised Sequence Labelling with Recurrent Neural Networks (https://mediatum
.ub.tum.de/doc/673554/file.pdf)—Thesis by Alex Graves with advisor B.
Brugge; a detailed explanation of the mathematics for the exact gradient for
LSTMs as first proposed by Hochreiter and Schmidhuber in 1997. But Graves
fails to define terms like CEC or LSTM block/cell rigorously.

https://cs.uwaterloo.ca/~jimmylin/publications/Lin_Katz_EACL2003_tutorial.pdf
https://cs.uwaterloo.ca/~jimmylin/publications/Lin_Katz_EACL2003_tutorial.pdf
https://github.com/raoariel/NLP-Question-Answer-System/blob/master/simpleQueryAnswering.py
https://github.com/raoariel/NLP-Question-Answer-System/blob/master/simpleQueryAnswering.py
http://trec.nist.gov/pubs/trec10/papers/piqasso.pdf
http://trec.nist.gov/pubs/trec10/papers/piqasso.pdf
https://colah.github.io/posts/2015-08-Understanding-LSTMs
https://colah.github.io/posts/2015-08-Understanding-LSTMs
https://arxiv.org/pdf/1406.1078.pdf
https://papers.nips.cc/paper/1953-reinforcement-learning-with-long-short-term-memory.pdf
https://papers.nips.cc/paper/1953-reinforcement-learning-with-long-short-term-memory.pdf
https://mediatum.ub.tum.de/doc/673554/file.pdf
https://mediatum.ub.tum.de/doc/673554/file.pdf
https://arxiv.org/pdf/1406.1078.pdf

486 resources
 Theano LSTM documentation (http://deeplearning.net/tutorial/lstm.html)
by Pierre Luc Carrier and Kyunghyun Cho—Diagram and discussion to explain
the LSTM implementation in Theano and Keras.

 Learning to Forget: Continual Prediction with LSTM (http://mng.bz/4v5V) by Felix
A. Gers, Jurgen Schmidhuber, and Fred Cummins—Uses nonstandard notation
for layer inputs (y in) and outputs (yout) and internal hidden state (h). All math
and diagrams are “vectorized.”

 Sequence to Sequence Learning with Neural Networks (http://papers.nips.cc /paper/
5346-sequence-to-sequence-learning-with-neural-networks.pdf) by Ilya Sutske-
ver, Oriol Vinyals, and Quoc V. Le at Google.

 Understanding LSTM Networks (http://colah.github.io/posts/2015-08-Under-
standing-LSTMs) 2015 blog by Charles Olah—lots of good diagrams and discus-
sion/feedback from readers.

 Long Short-Term Memory (http://www.bioinf.jku.at/publications/older/2604
.pdf) by Sepp Hochreiter and Jurgen Schmidhuber, 1997—Original paper on
LSTMs with outdated terminology and inefficient implementation, but detailed
mathematical derivation.

Competitions and awards
 Large Text Compression Benchmark (http://mattmahoney.net/dc/text.html) —

Some researchers believe that compression of natural language text is equivalent
to artificial general intelligence (AGI).

 Hutter Prize (https://en.wikipedia.org/wiki/Hutter_Prize)—Annual competi-
tion to compress a 100 MB archive of Wikipedia natural language text. Alexander
Rhatushnyak won in 2017.

 Open Knowledge Extraction Challenge 2017 (https://svn.aksw.org/papers/2017/
ESWC_Challenge_OKE/public.pdf).

Datasets
Natural language data is everywhere you look. Language is the superpower of the
human race, and your pipeline should take advantage of it:

 Google’s Dataset Search (http://toolbox.google.com/datasetsearch)—A search
engine similar to Google Scholar (http://scholar.google.com), but for data.

 Stanford Datasets (https://nlp.stanford.edu/data/)—Pretrained word2vec and
GloVE models, multilingual language models and datasets, multilingual dic-
tionaries, lexica, and corpora.

 Pretrained word vector models (https://github.com/3Top/word2vec-api#where-to-
get-a-pretrained-model)—The README for a word vector web API provides
links to several word vector models, including the 300D Wikipedia GloVE
model.

 A list of datasets/corpora for NLP tasks, in reverse chronological order (https://
github.com/karthikncode/nlp-datasets) by Karthik Narasimhan.

https://svn.aksw.org/papers/2017/ESWC_Challenge_OKE/public.pdf
https://svn.aksw.org/papers/2017/ESWC_Challenge_OKE/public.pdf
http://deeplearning.net/tutorial/lstm.html
http://mng.bz/4v5V
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://www.bioinf.jku.at/publications/older/2604.pdf
http://www.bioinf.jku.at/publications/older/2604.pdf
http://mattmahoney.net/dc/text.html
https://en.wikipedia.org/wiki/Hutter_Prize
http://toolbox.google.com/datasetsearch
http://scholar.google.com
https://nlp.stanford.edu/data/
https://github.com/3Top/word2vec-api#where-to-get-a-pretrained-model
https://github.com/3Top/word2vec-api#where-to-get-a-pretrained-model
https://github.com/karthikncode/nlp-datasets
https://github.com/karthikncode/nlp-datasets

487Search engines
 Alphabetical list of free/public domain datasets with text data for use in Natu-
ral Language Processing (NLP) (https://github.com/niderhoff/nlp-datasets).

 Datasets and tools for basic natural language processing (https://github.com/
googlei18n/language-resources)—Google’s international tools for i18n.

 nlpia (https://github.com/totalgood/nlpia)—Python package with data load-
ers (nlpia.loaders) and preprocessors for all the NLP data you’ll ever
need… until you finish this book ;).

Search engines
Search (information retrieval) is a big part of NLP. And it’s extremely important that we
get it right so that our AI (and corporate) overlords can’t manipulate us through the
information they feed our brains. If you want to learn how to retrieve your own infor-
mation, by building your own search engines, these are some resources that will help.

Search algorithms

 Billion-scale similarity search with GPUs (https://arxiv.org/pdf/1702.08734.pdf)
—BidMACH is a high-dimensional vector indexing and KNN search implemen-
tation, similar to the annoy Python package. This paper explains an enhance-
ment for GPUs that is 8 times faster than the original implementation.

 Spotify’s Annoy Package (https://erikbern.com/2017/11/26/annoy-1.10
-released-with-hamming-distance-and-windows-support.html) by Erik Bern-
hardsson’s—A K-nearest neighbors algorithm used at Spotify to find similar
songs.

 New benchmarks for approximate nearest neighbors by Erik Bernhardsson (https://
erikbern.com/2018/02/15/new-benchmarks-for-approximate-nearest-neigh-
bors.html)—Approximate nearest neighbor algorithms are the key to scalable
semantic search, and author Erik keeps tabs on the state of the art.

Open source search engines

 BeeSeek (https://launchpad.net/~beeseek-devs)—Open source distributed
web indexing and private search (hive search); no longer maintained

 WebSPHNIX (https://www.cs.cmu.edu/~rcm/websphinx/)—Web GUI for
building a web crawler

Open source full-text indexers

Efficient indexing is critical to any natural language search application. Here are a
few open source full-text indexing options. However, these “search engines” don’t
crawl the web, so you need to provide them with the corpus you want them to index
and search:

 Elasticsearch (https://github.com/elastic/elasticsearch)—Open Source, Dis-
tributed, RESTful Search Engine.

 Apache Lucern + Solr (https://github.com/apache/lucene-solr).

https://arxiv.org/pdf/1702.08734.pdf
https://github.com/niderhoff/nlp-datasets
https://github.com/googlei18n/language-resources
https://github.com/googlei18n/language-resources
https://github.com/totalgood/nlpia
https://erikbern.com/2017/11/26/annoy-1.10-released-with-hamming-distance-and-windows-support.html
https://erikbern.com/2017/11/26/annoy-1.10-released-with-hamming-distance-and-windows-support.html
https://erikbern.com/2018/02/15/new-benchmarks-for-approximate-nearest-neighbors.html
https://erikbern.com/2018/02/15/new-benchmarks-for-approximate-nearest-neighbors.html
https://erikbern.com/2018/02/15/new-benchmarks-for-approximate-nearest-neighbors.html
https://launchpad.net/~beeseek-devs
https://www.cs.cmu.edu/~rcm/websphinx/
https://github.com/elastic/elasticsearch
https://github.com/apache/lucene-solr

488 resources
 Sphinx Search (https://github.com/sphinxsearch/sphinx).
 Kronuz/Xapiand: Xapiand: A RESTful Search Engine (https://github.com/

Kronuz/Xapiand)—There are packages for Ubuntu that’ll let you search your
local hard drive (like Google Desktop used to do).

 Indri (http://www.lemurproject.org/indri.php)—Semantic search with a Python
interface (https://github.com/cvangysel/pyndri), but it isn’t actively main-
tained.

 Gigablast (https://github.com/gigablast/open-source-search-engine)—Open
source web crawler and natural language indexer in C++.

 Zettair (http://www.seg.rmit.edu.au/zettair)—Open source HTML and TREC
indexer (no crawler or live example); last updated 2009.

 OpenFTS: Full Text Search Engine (http://openfts.sourceforge.net)—Full
text search indexer for PyFTS using PostgreSQL with a Python API (http://
rhodesmill.org/brandon/projects/pyfts.html).

Manipulative search engines

The search engines most of us use aren’t optimized solely to help you find what you
need, but rather to ensure that you click links that generate revenue for the company
that built it. Google’s innovative second-price sealed-bid auction ensures that advertis-
ers don’t overpay for their ads,1 but it doesn’t prevent search users from overpaying
when they click disguised advertisements. This manipulative search isn’t unique to
Google. It’s used in any search engine that ranks results according to any “objective
function” other than your satisfaction with the search results. But here they are, if you
want to compare and experiment:

 Google
 Bing
 Baidu

Less manipulative search engines

To determine how commercial and manipulative a search engine was, I queried sev-
eral engines with things like “open source search engine.” I then counted the number
of ad-words purchasers and click-bait sites among the search results in the top 10. The
following sites kept that count below one or two. And the top search results were often
the most objective and useful sites, such as Wikipedia, Stack Exchange, or reputable
news articles and blogs:

 Alternatives to Google (https://www.lifehack.org/374487/try-these-15-search-
engines-instead-google-for-better-search-results).2

1 Cornell University Networks Course case study, “Google AdWords Auction - A Second Price Sealed-Bid Auction,”
(https://blogs.cornell.edu/info2040/2012/10/27/google-adwords-auction-a-second-price-sealed-bid-auction).

2 See the web page titled “Try These 15 Search Engines Instead of Google For Better Search Results,” (https:/
/www.lifehack.org/374487/try-these-15-search-engines-instead-google-for-better-search-results).

https://blogs.cornell.edu/info2040/2012/10/27/google-adwords-auction-a-second-price-sealed-bid-auction
https://github.com/sphinxsearch/sphinx
https://github.com/Kronuz/Xapiand
https://github.com/Kronuz/Xapiand
http://www.lemurproject.org/indri.php
https://github.com/cvangysel/pyndri
https://github.com/gigablast/open-source-search-engine
http://www.seg.rmit.edu.au/zettair
http://openfts.sourceforge.net
http://rhodesmill.org/brandon/projects/pyfts.html
http://rhodesmill.org/brandon/projects/pyfts.html
https://www.lifehack.org/374487/try-these-15-search-engines-instead-google-for-better-search-results
https://www.lifehack.org/374487/try-these-15-search-engines-instead-google-for-better-search-results
https://www.lifehack.org/374487/try-these-15-search-engines-instead-google-for-better-search-results
https://www.lifehack.org/374487/try-these-15-search-engines-instead-google-for-better-search-results

489Search engines
 Yandex (https://yandex.com/search/?text=open%20source%20search%20
engine&lr=21754)—Surprisingly, the most popular Russian search engine
(60% of Russian searches) seemed less manipulative than the top US search
engines.

 DuckDuckGo (https://duckduckgo.com).
 Watson Semantic Web Search (http://watson.kmi.open.ac.uk/WatsonWUI)—

No longer in development, and not really a full-text web search, but it’s an
interesting way to explore the semantic web (at least what it was years ago
before watson was frozen).

Distributed search engines

Distributed search engines3 are perhaps the least manipulative and most “objective”
because they have no central server to influence the ranking of the search results.
However, current distributed search implementations rely on TF-IDF word frequen-
cies to rank pages, because of the difficulty in scaling and distributing semantic search
NLP algorithms. However, distribution of semantic indexing approaches such as
latent semantic analysis (LSA) and locality sensitive hashing have been successfully
distributed with nearly linear scaling (as good as you can get). It’s just a matter of time
before someone decides to contribute code for semantic search into an open source
project like Yacy or builds a new distributed search engine capable of LSA:

 Nutch (https://nutch.apache.org/)—Nutch spawned Hadoop and itself
became less of a distributed search engine and more of a distributed HPC sys-
tem over time.

 Yacy (https://www.yacy.net/en/index.html)—One of the few open source
(https://github.com/yacy/yacy_search_server) decentralized, or federated,
search engines and web crawlers still actively in use. Preconfigured clients for
Mac, Linux, and Windows are available.

3 See the web pages titled “Distributed search engine,” (https://en.wikipedia.org/wiki/Distributed_search
_engine) and “Distributed Search Engines,” (https://wiki.p2pfoundation.net/Distributed _Search_Engines).

https://www.yacy.net/en/index.html
https://github.com/yacy/yacy_search_server
https://yandex.com/search/?text=open%20source%20search%20engine&lr=21754
https://yandex.com/search/?text=open%20source%20search%20engine&lr=21754
https://duckduckgo.com
http://watson.kmi.open.ac.uk/WatsonWUI
https://nutch.apache.org/
https://en.wikipedia.org/wiki/Distributed_search_engine
https://en.wikipedia.org/wiki/Distributed_search_engine
https://wiki.p2pfoundation.net/Distributed_Search_Engines

glossary

We’ve collected some definitions of common natural language processing and
machine language acronyms and terminology here.1

 You can find some of the parsers and regular expressions we used to help gener-
ate this list in the nlpia Python package at github.com/totalgood/nlpia (https://
github.com/totalgood/nlpia).2 This listing shows how we used nlpia to draft this
glossary:

>>> from nlpia.book_parser import write_glossary
>>> from nlpia.constants import DATA_PATH
>>> print(write_glossary(
... os.path.join(DATA_PATH, 'book')))
== Acronyms

[acronyms,template="glossary",id="terms"]
AGI:: Artificial general intelligence --
AI:: Artificial intelligence --
AIML:: Artificial Intelligence Markup Language --
ANN:: Approximate nearest neighbors --
...

We didn’t complete the definition generator, but that might be possible with a
good LSTM language model (see chapter 10). We leave that to you.

Acronyms
AGI—Artificial general intelligence

Machine intelligence capable of solving a variety of problems that human brains can
solve

AI—Artificial intelligence
Machine behavior that is impressive enough to be called intelligent by scientists or cor-
porate marketers

1 Bill Wilson at the university of New South Wales in Australia has a more complete NLP dictionary
(www.cse.unsw.edu.au/~billw/nlpdict.html).

2 nlpia.translators (https://github.com/totalgood/nlpia/blob/master/src/nlpia/translators.py) and
nlpia.book_parser (https://github.com/totalgood/nlpia/blob/master/src/nlpia/book_parser.py).

YMMV because we can’t
provide the entire manuscript
in your data folder.
490

https://github.com/totalgood/nlpia
https://github.com/totalgood/nlpia
www.cse.unsw.edu.au/~billw/nlpdict.html
https://github.com/totalgood/nlpia/blob/master/src/nlpia/translators.py
https://github.com/totalgood/nlpia/blob/master/src/nlpia/book_parser.py

491Acronyms
AIML—Artificial Intelligence Markup Language
A pattern matching and templated response specification language in XML that was
invented during the building of A.L.I.C.E., one of the first conversational chatbots

ANN—Approximate nearest neighbors
Finding the M closest vectors to a single vector in a set of N high-dimensional vectors is an
O(N) problem, because you have to calculate your distance metric between every other vec-
tor and the target vector. This makes clustering an intractable O(N2).

ANN—Artificial neural network
API—Application programmer interface

A user interface for your customers that are developers, usually a command line tool,
source code library, or web interface that they can interact with programmatically

AWS—Amazon Web Services
Amazon invented the concept of cloud services when they exposed their internal infrastruc-
ture to the world.

BOW—Bag of words
A data structure (usually a vector) that retains the counts (frequencies) of words but not
their order

CEC—Constant error carousel
A neuron that outputs its input delayed by one time step. Used within an LSTM or GRU
memory unit. This is the memory register for an LSTM unit and can only be reset to a new
value by the forgetting gate interrupting this “carousel.”

CNN—Convolutional neural network
A neural network that is trained to learn filters, also known as kernels, for feature extraction
in supervised learning

CUDA—Compute Unified Device Architecture
An Nvidia open source software library optimized for running general computations/
algorithms on a GPU

DAG—Directed acyclic graph
A network topology without any cycles, connections that loop back on themselves

DFA—Deterministic finite automaton
A finite state machine that doesn’t make random choices. The re package in Python com-
piles regular expressions to create a DFA, but the regex can compile fuzzy regular expres-
sions into NDFA (nondeterministic FA).

FSM—Finite-state machine
Kyle Gorman and Wikipedia can explain this better than I (https://en.wikipedia.org/wiki/
Finite-state_machine).

FST—Finite-state transducer
Like regular expressions, but they can output a new character to replace each character
they matched. Kyle Gorman explains them well (www.openfst.org).

GIS—Geographic information system
A database for storing, manipulating, and displaying geographic information, usually
involving latitude, longitude, and altitude coordinates and traces.

https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine
www.openfst.org

492 glossary
GPU—Graphical processing unit
The graphics card in a gaming rig, a cryptocurrency mining server, or a machine learning
server

GRU—Gated recurrent unit
A variation of long short-term memory networks with shared parameters to cut computation
time

HNSW—A graph data structure that enables efficient search (and robust approximate nearest
neighbor search using Hierarchical Navigable Small World graphs (https://arxiv.org/vc/arxiv/
papers/1603/1603.09320v1.pdf) by Yu A. Malkov and D. A. Yashunin)

HPC—High performance computing
The study of systems that maximize throughput, usually by parallelizing computation with
separate map and reduce computation stages

IDE—Integrated development environment
A desktop application for software development, such as PyCharm, Eclipse, Atom, or Sub-
lime Text 3

IR—Information retrieval
The study of document and web search engine algorithms. This is what brought NLP to the
forefront of important computer science disciplines in the 90s.

ITU—India Technical University
A top-ranking technical university. The Georgia Tech of India.

i18n—Internationalization
Preparing application for use in more than one country (locale)

LDA—Linear discriminant analysis
A classification algorithm with linear boundaries between classes (see chapter 4)

LSA—Latent semantic analysis
Truncated SVD applied to TF-IDF or bag-of-words vectors to create topic vectors in a vector
space language model (see chapter 4)

LSH—Locality sensitive hash
A hash that works as an efficient but approximate mapping/clustering index on dense, con-
tinuous, high-dimensional vectors (see chapter 13). Think of them as ZIP Codes that work
for more than just 2D (latitude and longitude).

LSI—Latent semantic indexing
An old-school way of describing latent semantic analysis (see LSA), but it’s a misnomer,
since LSA vector-space models don’t lend themselves to being easily indexed.

LSTM—Long short-term memory
An enhanced form of a recurrent neural network that maintains a memory of state that
itself is trained via backpropagation (see chapter 9)

MIH—Multi-index hashing
A hashing and indexing approach for high-dimensional dense vectors

ML—Machine learning
Programming a machine with data rather than hand-coded algorithms

MSE—Mean squared error
The sum of the square of the difference between the desired output of a machine learning
model and the actual output of the model

https://arxiv.org/vc/arxiv/papers/1603/1603.09320v1.pdf
https://arxiv.org/vc/arxiv/papers/1603/1603.09320v1.pdf

493Acronyms
NELL—Never Ending Language Learning
A Carnegie Mellon knowledge extraction project that has been running continuously for
years, scraping web pages and extracting general knowledge about the world (mostly “IS-A”
categorical relationships between terms)

NLG—Natural language generation
Composing text automatically, algorithmically; one of the most challenging tasks of natural
language processing (NLP)

NLP—Natural language processing
You probably know what this is by now. If not, see the introduction in chapter 1.

NLU—Natural language understanding
Often used in recent papers to refer to natural language processing with neural networks

NMF—Nonnegative matrix factorization
A matrix factorization similar to SVD, but constrains all elements in the matrix factors to be
greater than or equal to zero

NSF—National Science Foundation
A US government agency tasked with funding scientific research

NYC—New York City
The US city that never sleeps

OSS—Open source software

pip—Pip installs pip
The official Python package manager that downloads and installs packages automatically
from the “Cheese Shop” (pypi.python.org)

PR—Pull request
The right way to request that someone merge your code into theirs. GitHub has some but-
tons and wizards to make this easy. This is how you can build your reputation as a conscien-
tious contributor to open source.

PCA—Principal component analysis
Truncated SVD on any numerical data, typically images or audio files

QDA—Quadratic discriminant analysis
Similar to LDA, but allows for quadratic (curved) boundaries between classes

ReLU—Rectified linear unit
A linear neural net activation function that forces the output of a neuron to be nonzero.
Equivalent to y = np.max(x, 0). The most popular and efficient activation function for
image processing and NLP, because it allows back propagation to work efficiently on
extremely deep networks without “vanishing the gradients.”

REPL—Read–evaluate–print loop
The typical workflow of a developer of any scripting language that doesn’t need to be com-
piled. The ipython, jupyter console, and jupyter notebook REPLs are particularly
powerful, with their help, ?, ??, and % magic commands, plus auto-complete, and Ctrl-R
history search.3

3 Python’s REPLs even allow you to execute any shell command (including pip) installed on your OS (such as
!git commit -am 'fix 123'). This lets your fingers stay on the keyboard and away from the mouse, min-
imizing cognitive load from context switches.

494 glossary
RMSE—Root mean square error
The square root of the mean squared error. A common regression error metric. It can also
be used for binary and ordinal classification problems. It provides an intuitive estimate of
the 1-sigma uncertainty in a model’s predictions.

RNN—Recurrent neural network
A neural network architecture that feeds the outputs of one layer into the input of an ear-
lier layer. RNNs are often “unfolded” into equivalent feed forward neural networks for dia-
gramming and analysis.

SMO—Sequential minimal optimization
A support vector machine training approach and algorithm

SVD—Singular value decomposition
A matrix factorization that produces a diagonal matrix of eigenvalues and two orthogonal
matrices containing eigenvectors. It’s the math behind LSA and PCA (see chapter 4).

SVM—Support vector machine
A machine learning algorithm usually used for classification

TF-IDF—Term frequency * inverse document frequency
A normalization of word counts that improves information retrieval results (see chapter 3)

UI—User interface
The “affordances” you offer your user through your software, often the graphical web pages
or mobile application screens that your user must interact with to use your product or
service

UX—User experience
The nature of a customer’s interaction with your product or company, from purchase all
the way through to their last contact with you. This includes your website or API UI on your
website and all the other interactions with your company.

VSM—Vector space model
A vector representation of the objects in your problem, such as words or documents in an
NLP problem (see chapter 4 and chapter 6)

YMMV—Your mileage may vary
You may not get the same results that we did.

Terms
Affordance—A way for your user to interact with your product that you intentionally make pos-
sible. Ideally that interaction should come naturally to the user, be easily discoverable, and self-
documenting.

Artificial neural network—A computational graph for machine learning or simulation of a bio-
logical neural network (brain)

Cell—The memory or state part of an LSTM unit that records a single scalar value and outputs
it continuously 4

Dark patterns—Software patterns (usually for a user interface) that are intended to increase
revenue but often fail due to “blowback” because they manipulate your customers into using
your product in ways that they don’t intend

4 See the web page titled “Long short-term memory” (https://en.wikipedia.org/wiki/Long_short-term
_memory).

https://en.wikipedia.org/wiki/Long_short-term_memory
https://en.wikipedia.org/wiki/Long_short-term_memory

495Terms
Feed-forward network—A “one-way” neural network that passes all its inputs through to its out-
puts in a consistent direction, forming a computation directed acyclic graph (DAG) or tree

Morpheme—A part of a token or word that contains meaning in and of itself. The morphemes
that make up a token are collectively called the token’s morphology. The morphology of a token
can be found using algorithms in packages like SpaCy that process the token with its context
(words around it).5

Net, network, or neural net—Artificial neural network

Neuron—A unit in a neural net whose function (such as y = tanh(w.dot(x))) takes multiple
inputs and outputs a single scalar value. This value is usually the weights for that neuron (w or
w i) multiplied by all the input signals (x or x i) and summed with a bias weight (w0) before
applying an activation function like tanh. A neuron always outputs a scalar value, which is sent to
the inputs of any additional hidden or output neurons in the network. If a neuron implements
a much more complicated activation function than that, like the enhancements that were made
to recurrent neurons to create an LSTM, it is usually called a unit, for example, an LSTM unit.

Nessvector—An informal term for topic vectors or semantic vectors that capture concepts or
qualities, such as femaleness or blueness, into the dimensions of a vector

Predicate—In English grammar, the predicate is the main verb of a sentence that’s associated
with the subject. Every complete sentence must have a predicate, just like it must also have a
subject.

Skip-grams—Pairs of tokens used as training examples for a word vector embedding, where any
number of intervening words are ignored (see chapter 6).

Softmax—Normalized exponential function used to squash the real-valued vector output by a
neural network so that its values range between 0 and 1 like probabilities.

Subject—The main noun of a sentence—every complete sentence must have a subject (and a
predicate) even if the subject is implied, like in the sentence “Run!” where the implied subject
is “you.”

Unit—Neuron or small collection of neurons that perform some more complicated nonlinear
function to compute the output. For example, an LSTM unit has a memory cell that records
state, an input gate (neuron) that decides what value to remember, a forget gate (neuron) that
decides how long to remember that value, and an output gate neuron that accomplishes the
activation function of the unit (usually a sigmoid or tanh()). A unit is a drop-in replacement for
a neuron in a neural net that takes a vector input and outputs a scalar value; it just has more
complicated behavior.

5 See the web page titled “Linguistic Features : spaCy Usage Documentation” (https://spacy.io/usage/linguistic
-features#rule-based-morphology).

https://spacy.io/usage/linguistic-features#rule-based-morphology
https://spacy.io/usage/linguistic-features#rule-based-morphology

496 glossary

index
Symbols

@ operator 42

Numerics

2-grams (bigrams) 32
2D thetas 81
2D vectors 79
3-grams (trigrams) 32
3D vectors 80, 104
3x3 filter 225–226
4-grams (quadruplets) 32
4x4 matrix 455

A

ACK (acknowledgement) signal 13
activation functions 170, 179
Adam 240
additive smoothing 92
AffNIST 453
affordance 494
AGI (artificial general intelligence) 370, 490
AI (artificial intelligence) 4, 490
AI Response Specification (AIRS) 380
aichat bot framework 374
aichat project 380
AIML (Artificial Intelligence Markup

Language) 374, 491
pattern-matching chatbots with 375–381

AIML 1.0 375–376
AIML 2.0 375
Python AIML interpreter 376–381

<aiml> tags 378

aiml_bot package 377
AIRS (AI Response Specification) 380
algorithms

for scoring topics 105–107
optimizing 404–414

discretizing 413–414
indexing 405–413

search algorithms 487
Amazon Alexa 11, 371
Amazon Echo 11
Amazon Lex 374, 385
Amazon Web Services. See AWS
AMIs (Amazon Machine Images) 461
Anaconda3 distribution 427–428
analogies 182–184
Analyze processing stage 23
angular distance 144
ANN (approximate nearest neighbors) 479, 491
ANN (artificial neural network) 491, 494
Annoy package 408–412

Python 487
Spotify 152

AnnoyIndex object 409
Apache Lucern + Solr 487
API (application programmer interface) 491
approximate grep 26
approximate nearest neighbors. See ANN
apt package 429
apt-get update command 430
ARMA (auto-regressive moving average)

model 250
arrays 441
artificial general intelligence. See AGI
artificial intelligence. See AI
artificial neural network. See ANN
attention mechanism 333–334
497

INDEX498
augmenting data 453–454
auto-regressive moving average model. See ARMA
autoencoders 186, 315–316
automata 12
average option, pooling 237
awards 486
AWS (Amazon Web Services) 459, 491
AWS (Amazon Web Services) GPU instances

controlling costs 470–472
creating 459–472

AWS Billing Dashboard 471
AWS Budget Console 471
AWS Management Console 460
Axes3D class 124
axon 156

B

backpropagation 166, 168–170, 180, 205, 255–257,
284–287

BallTree 407
Basic Linear Algebra Subprograms library. See

BLAS
Bastion host 463
batch learning 174
batch normalization 452
batch_size 267, 271
Bayesian searches 458
BeeSeek search engine 487
bias 158–172

avoiding 446–447
backpropagation 168–170
cost functions 167
differentiable functions 171–172
logical OR statements 161–164
loss functions 167
perceptrons

limitations of 164–167
training 161

Pythonic neurons 160–161
bias_weight feature 160
bidirectional recurrent networks 271–272
bigram scoring function 198
bigrams 32, 198
Billing Dashboard, AWS 471
binary_crossentropy function 240, 243, 304, 324
BLAS (Basic Linear Algebra Subprograms)

library 407, 461
bot-to-bot conversations 384
BOW (bag-of-words) 32, 39, 106, 491

measuring 42–43
overlap 71–76

brittle pattern-matching 343
Brown Corpus 84
bucketing 332–333

Budget Console, AWS 471
built-in functions 435

C

Caffe framework 459
candidate gate 282–283
Cartesian distance 144
case folding 54–56
case normalization 54
casual_tokenize function 48, 66, 68, 130
categorical_crossentropy function 240, 324
CBOW (continuous bag-of-words) 191, 196–197
CEC (constant error carousel) 491
cells 494
CFG (context-free grammars) 33
chain rule 171
character classes 44, 436, 438
character prediction 299
character range 44
character sequence matches 16
character-based model 293
character-based translator 330
chatbots 8, 326–332

approaches to 394
assembling models for sequence

generation 330
building character dictionary 327–328
building using FSM 12–16
combining approaches 395–396
connecting users 400
conversing with 331–332
design process 396–398
emotional responses 400–401
generating one-hot encoded training sets

328–329
generating responses 331
generative models 391–394
grounding 382–383
language skill 366–373

community management 371–372
conversational chatbots 370
customer service 372
hybrid approaches 373
marketing chatbots 371
modern approaches 367–373
question answering dialog systems 369
therapy 372–373
virtual assistants 369–370

non sequiturs 399–400
pattern-matching approach 373–382

network view of 381–382
with AIML 375–381

pipelines 22–25
popular responses 400

INDEX 499
predicting sequences 330–331
preparing corpus for training 326–327
questions with predictable answers 399
referring to search engines 400
search-based 384–391

context 384–386
example of 386–389

sequence-to-sequence, training 329
Will chatbot framework 395–396

ChatterBot 390
checkpointing keyword argument 241
Chloe, Aira.io 369
class labels 455
classifiers 455–456
CNNs (convolutional neural networks) 222–228,

491
architecture of 235–236
filter composition 224–226
frameworks for 221–222
kernels 223–224
narrow convolutions 228–246

Dropout layers 238–239
implementation in Keras 230–235
models in pipelines 243–244
pooling 236–238
sigmoid activation function 239–241
training models 241–243

padding 226–227
step size 224
training 228
word order 220–221

CNTK environment 470
co-occurrence matrix 205
CodingBat 439
collections module 436
collections.Counter object 73
collinear warning 140
commas 43
community management chatbots 371–372
competitions 486
compile method 222
compiling models 264–266
components attribute 129
computational graphs 483
Compute Unified Device Architecture. See CUDA
conda environment 428
<condition> tag 378
confusion matrix 455–456
connectionist theory 15
constant error carousel. See CEC
constant RAM algorithms 414–416

gensim models 414–415
graph computing 415–416

context-free grammars. See CFG
contractions 47–48

Conv1D layer 236
convergence 164
conversational chatbots 331–332, 370
convex error curve 173
convolution tools, Keras 230
convolutional neural networks. See CNNs
copy.copy() function 78
CopyClip 431
Core ML documentation, Apple 417
CoreNLP library 483
cosine distance 19, 144, 209, 411, 443–445
cosine similarity 81, 83, 443–444
cost functions 167
Counter dictionary 18, 73
courses 482–483
create_projection function 423
CRM (customer relationship management

system) 9
cross-validation 449–450
CUDA (Compute Unified Device

Architecture) 491
CuDNNLSTM 325
curly braces 14, 436
customer relationship management system. See

CRM
customer service chatbots 372

D

DAG (directed acyclic graph) 491, 495
dark patterns 494
dashes 13, 43
data

augmenting 453–454
labeled 448–449
selecting 446–447

data-driven programming 382
DataCamp 439
DataFrame 35, 388–389
datasets 448, 486–487

preparing for sequence-to-sequence
training 318–320

scaling 404
shuffling 449

dates, extracting 347–352
dateutil.parser.parse 352
DBpedia 383
decode_sequence function 330–331
decoder rings 214
decoder_input_data 329
decoder_outputs 323
decoder_target_data 329
decoding thought 313–315
deep learning 179, 485
dendrites 156

INDEX500
denominations 17
denormalized data 213
desired outcomes 176
DetectorMorse 362
deterministic finite automaton. See DFA
developer tools

for Mac 431
installing 430

DFA (deterministic finite automaton) 11, 491
dialog engines 8, 366

See also chatbots
dialog system 366
DialogFlow, Google 374, 381
dict keys 429
dict objects 436
dictionaries 40, 327–328
differentiable functions 171–172
dimension reduction 128
dimensionality 80
directed acyclic graph. See DAG
Dirichlet distribution 135
discrete vectors 150
discretizing 413–414
distance functions 145
distance metrics 145
distances 143–146, 442–445

cosine distance 443–445
Euclidean distance 442–443
Manhattan distance 445

distributed search engines 489
Doc2vec algorithm 215–217
Docker platform 433
document vectors 86, 215–217
documenting similarity with Doc2vec 215–217
documents, loading 231
Donne Martin’s Coding Challenges 439
dot products 41–42
double quotes 438
double-backslash 14
dropout 451–452
Dropout layers 179, 238–239, 263
Dropout(percentage) 269
Duck Duck Go search engine 62, 361, 481, 489
Duplex system, Google 9

E

EarlyStopping 267
edit distance 26, 144
eigenvalues 119
Elastic Search 487
ELIZA dialog engine 15, 373–374
embedding_dims value 267
embeddings 195, 214, 288, 423–424
encoder-decoder architecture 312–318

autoencoders 315–316
decoding thought 313–315

end-of-sequence token 315
entity names 357–358
epochs parameter 172, 267
error carousel 285
error derivative 171
error matrix 455
error surface 172–173
errors, backpropagating 228
Euclidean distance 144, 209, 409, 442–443
Euclidean spaces 79
evaluate method 422
exclamation point 139
Execute processing stage 23
exp() function 89
exploding gradient problem 260
extracting

dates 347–352
GPS locations 347
information 343, 345–352
numerical data 6–7
relationships 352–363

entity name normalization 357–358
normalizing 358
POS tagging 353–357
segmentation 359–360
sentence segmentation with regular

expressions 361–363
split 360–361
word patterns 358–359

F

f-string template 397
Facebook 205–206, 221
FALCONN (Fast Lookup of cosine and Other

Nearest Neighbors) 407
Fast Lookup of Approximate Nearest Neighbors.

See FLANN
fastText library 191, 205–206
features, choosing 157
feed-forward network 249, 278, 495
feedback, steering with 146–148
file openers 435
filters 223

composition of 224–226
shapes of 229

.findall() function 437
finite state machine. See FSM
finite state transducer. See FST
fit method 222, 241–242
fit_generator method 422
fit_transpose 131
.fit() method 93, 121, 266

INDEX 501
flags 13
FLANN (Fast Lookup of Approximate Nearest

Neighbors) 408
Flatten() function 264
flip_sign function 123
floating point values 182
flush() method 306
folds 449
for loops 50
forget gate 280–281
forward pass 257
fractal dimensions 150
fractional distance 144
frameworks for CNNs 221–222
frequency based models 71
frequency vectors 81
from_records() function 66
FSM (finite state machine) 7, 9–19, 344, 436, 491

alternatives to 16–19
building chatbot using 12–16
regular expressions 11–12

FST (finite state transducer) 10, 491
full text search 150
fully connected network 169
fuzzy matching 48, 436
fuzzywuzzy package 405

G

GANs (generative adversarial networks) 392
gated recurrent unit. See GRU
gated recurrent units 308–309
gem package 149
generalization 138
Generate processing stage 23
generative adversarial networks. See GANs
generative models 391–394

chatbot approaches 394
transfer learning 392–394

generators 420, 435
genetic algorithms 458
gensim models 414–415
gensim package 111
gensim Vocab object 208
gensim Word2vec model 202
gensim.KeyedVectors model type 435
gensim.KeyedVectors.most_similar() method 201
gensim.LsiModel 143
gensim.models.KeyedVector class 152
gensim.models.LsiModel 123, 415
gensim.Word2vec modules 200–202
geographic information system. See GIS
get() method 202
Gigablast search engine 481, 488
GIS (geographic information system) 405, 491

GitGUI 432
glob patterns 374
Global Vectors vs. Word2vec 205
GlobalMaxPooling1D layer 237
glossary

acronyms 490–494
terms 494–495

GloVe (Global Vectors) 191, 205, 486
go_backwards keyword argument 272
Google Adwords Auction case study 488
Google Assistant 27, 371
Google Dialogflow 27
Google Home 11
Google News 446
Google Ngram Viewer 99, 111
Google Now 11
Google Scholar 147
Google Translate pipeline 27
Google’s Allo 27
GPS locations, extracting 347
GPUs (graphical processing units) 404, 492

controlling costs of AWS GPU instances
470–472

creating AWS GPU instances 459–472
rental options 418–419
renting vs. buying 417–418
training NLP models on 416–417

gradient descent 173
grammar 7, 10, 21–22, 344
graph computing 415–416
graphemes 31
graphical processing units. See GPUs
grep application 11
grid searches 458
grounding 367, 382–383
grouping parentheses 437
groups 437–438
GRU (gated recurrent unit) 275, 492

H

h5py package 221
half pipes 123
hand-coded algorithms 28
hand-crafted weights 102
handlebars 14
hardcoded patterns 343
hashes 473–474
help() function 434
hidden weights 168
Hierarchical Navigable Small World. See HNSW
high performance computing. See HPC
high-dimensional continuous vectors 150
high-dimensional data 458
high-dimensional indexing 478–479

INDEX502
high-dimensional space 476
high-dimensional vectors 473–477

hashes 473–474
high-dimensional thinking 474–477

1D index 475–476
2D, 3D, 4D indexes 476–477

vector space indexes 473–474
HipChat 26, 395
HNSW (Hierarchical Navigable Small World) 408,

492
Homebrew package manager 430
homographs 101
homonyms 101
homophones 101
horizontal scaling 404
HPC (high performance computing) 416, 418,

492
hyperbolic tangent function 170
hyperparameters 222, 262, 267–269, 285, 448, 450
hyphens 43–44

I

i18n (internationalization) 492
IDE (integrated development environment)

428–429, 492
IDF (inverse document frequency) 86
if statements 344
imbalanced training set 452
IMDB data 285
IncrementalPCA model 123
independent tokens 43
index scan 92
indexing 405–408

1D index 475–476
2D, 3D, 4D indexes 476–477
benefits of 412–413
high-dimensional 478–479
open source full-text indexers 487–488
vector space indexes 473–474
with Annoy 408–412

India Technical University. See ITU
indiscerniblity property 145
inference stage 215
information extraction 343, 345–346
information retrieval. See IR
init_sims method 204
initial_state argument 325
inner product 41
input_characters 328
input() function 15
installing

NLPIA 428
Will chatbot framework 395

integrated development environment. See IDE
internationalization. See i18n
inverse document frequency. See IDF
inverse proportionality 84
inverted index 92, 150
IR (information retrieval) 94, 345, 492
ITU (India Technical University) 492

J

Jaccard distance 144
junk mail 63
jupyter project 429

K

K output nodes 192
K-Dimensional Trees 408
k-fold cross-validation 449
k-means 136
Kaggle competitions 458
KD-Tree algorithm 477
keras API 483
Keras library 175–178, 221, 459

CNNs with 230–235
RNNs with 260–264
sequence-to-sequence models in 320

kernels 223–224, 375
key-value stores 357
KeyedVectors object 202, 208, 408
KeyedVectors.vocab dict 409
keyword searches 60
killer app, Word2vec 207
knowledge base 340–343
knowledge graph inference 341
Kronuz/Xapiand 488

L

L1 regularization 450
L2 regularization 451
labeled data 448–449
language modeling 313
Laplace smoothing 92
Lasagne library 176, 221
latent semantic analysis. See LSA
latent semantic indexing. See LSI
latent semantic information 219
layer inputs, LSTM 279
layers, pooling 237
LDA (linear discriminant analysis) 107, 111,

147–148, 492
classifiers 107–111
LDiA and 111

INDEX 503
LDiA (Latent Dirichlet allocation) 100, 107,
134–143, 185

as spam classifier 140–141
for SMS messages 137–140
history of 135–137
LDA and 111
LSA vs. 142–143

ldia_topic_vectors matrix 140
learning rate 172, 240
left singular vectors 118
lemmatization 59–61, 99
Lemur Project Components 488
Levenshtein distance 26, 144
Levenshtein’s algorithm 21
lexers 33
lexicons 33
likeability, predicting 479–480
limit keyword argument 200
linear algebra 90, 160, 195
linear discriminant analysis. See LDA
linearly separable data 164
list comprehensions 435
locality sensitive hashing. See LSH
location invariance 237
log() function 89
logical OR statements 161–164
long short-term memory. See LSTM
loss functions 164, 167, 240
low-dimensional continuous vectors 150
lower() function 55
LSA (latent semantic analysis) 98, 111–115, 185,

489, 492
enhancements to 133–134
for spam classification 131–134
LDiA vs. 142–143
Word2vec vs. 206–207

LSH (locality sensitive hashing) 151, 473, 478, 492
high-dimensional indexing 478–479
high-dimensional vectors 473–477

hashes 473–474
high-dimensional thinking 474–477
vector space indexes 473–474

predicting likeability 479–480
LSHash package 478
LSI (latent semantic indexing) 106, 492
LSTM (long short-term memory) 275–310,

317–318, 485–486, 492
backpropagation 284–287
gated recurrent units 308–309
generating novel text 300–307
modeling language 292–298
optimization of 288–291
stacking layers 309–310
training models 298–300
tuning models 287–288

unknown tokens 291–292
using novel words 308
with peephole connections 308–309

Lua package 221

M

M neurons 192
Mac OS (operating system) 430–432

developer tools 431
package manager 430–431
tuneups 431–432

machine learning 492
avoiding bias 446–447
batch normalization 452
building models 457–458
cross-validation 449–450
data selection 446–447
dropout 451–452
imbalanced training sets 452–454

augmenting data 453–454
oversampling 453
undersampling 453

labeled data 448–449
overfit 447–448
performance metrics 454–457

measuring classifier performance 455–456
measuring regressor performance 457

regularization 450–451
underfit 447–448

machine translation 335
machine-generated text 219
Mahalanobis distance 144
Management Console, AWS 460
Manhattan distance 442, 445
manipulative search engines 488–489
mapping in Python 436
marketing chatbots 368, 371
mathematical notation 5
matplotlib package 427
matrix orientation 120–121
matrix product 42
matrix, transpose of 441
max pooling 237
max_training_samples 327
maxlen variable 233, 289, 294, 302
mean squared error. See MSE
measuring

bag of words 42–43
performance of classifiers 455–456
performance of regressors 457
system capability 27–29

Meld tool 429
MIH (multi index hashing) 407, 492
mini-batch training 174–175

INDEX504
Minkowski distance 144
MinMaxScaler 413
Mitsuku chatbot 370
MNIST dataset 453
model parameters 267, 328
model training 203
model.fit() function 450
model.summary() function 177, 264
models

assembling models for sequence
generation 330

batch normalization 452
building 457–458
compiling 264–266
dropout 451–452
in pipelines 243–244
regularization 450–451
sequence-to-sequence in Keras 320
training 241–243, 266, 298–300

on GPUs 416–417
reducing memory footprint during

training 419–422
tuning 287–288

momentum model 179
morphemes 31, 106, 495
most_common() function 73
most_similar method 201
MSE (mean squared error) 171, 492
multi index hashing. See MIH
multi-resolution grid searches 458
multidimensional semantic vectors 111
multilayer perceptron 219

N

n-character grams 206
n-grams 32, 48–54, 192, 475

overview of 48–51
stop words 51–54

Naive Bayes algorithm 64–68, 110
named entities 339–343

information extraction 343
knowledge base 340–343

Natural Language Forensics 482
natural language generation. See NLG
natural language processing. See NLP
Natural Language Toolkit. See NLTK
natural language understanding. See NLU
negative argument 201
negative class labels 455
negative sampling 199–200
NELL (Never Ending Language Learning) 359,

482, 493
nessvector 186, 495
net 495

network 495
neural networks 156–180

bias 158–172
backpropagation 168–170
cost functions 167
differentiable functions 171–172
logical OR statements 161–164
loss functions 167
Pythonic neurons 160–161

deep learning 179
error surface 172–173
in Python 175–178
Keras 175–178
mini-batch training 174–175
nonconvex error curves 173–174
normalization 179–180
perceptrons 157–158
stochastic gradient descent 174–175

neuron 160–161, 495
Never Ending Language Learning. See NELL
new weights 161
ngrams function 50
NLG (natural language generation) 493
NLP (natural language processing) 126–128, 343,

493
chatbot pipelines 22–25
measuring system capability 27–29
overview of 4–7

building chatbots 5–6
extracting numerical data 6–7

parallelizing computations 416–419
GPU rental options 418–419
renting GPUs vs. buying 417–418
Tensor processing units 419
training NLP models on GPUs 416–417

pipeline layers 25–27
practical applications for 8–9
programming languages vs. 4

NLPIA
automatic environment provisioning

procedures 433
installing 428

nlpia package 64–65, 124, 208, 349, 377, 427, 483
nlpia README file 428
nlpia.data.loaders.get_data() method 387, 403
nlpia/data directory 125
nlpiaenv environment 428
NLTK (Natural Language Toolkit) 46
nltk.casual_tokenizer 108
nltk.tag package 25
NLU (natural language understanding) 159, 343,

493
NMF (nonnegative matrix factorization) 133, 493
NMSLIB (Non-Metric Space Library) 407
non-ASCII characters 435

INDEX 505
nonconvex error curves 173–174
nonlinear activation function 170
nonlinear dimension reduction 458
nonlinearly separable data 165
nonnegative matrix factorization. See NMF
nonnegativity property 145
nonspam SMS messages 107
normalized dot product 82
normalizing 179–180

batches 452
entity names 357–358
relations 358
vocabulary 54–62

case folding 54–56
lemmatization 59–61
stemming 57–59
use cases 61–62

novel text 300–307
np.matmul() function 42
NULL characters 344
num_bytes function 38
num_encoder_tokens 323
num_neurons layer 303
num_neurons parameter 268
num_rows function 38
numerical data, extracting 6–7
numerical perceptrons 157–158
numpy arrays 230, 440, 455
Nutch 489

O

O(N) algorithm 413
objective function 164
Okapi BM25 ranking function 95
one-dimensional filter shape 229
one-hot column vector 195
one-hot encoded training sets 328–329
one-hot encoded vectors 37
one-hot row vector 195
one-hot vectors 35–37
one-way neural network 495
Open Mind Common Sense 383
Open Source Full Text Search Engine 488
open source full-text indexers 487–488
open source projects 429
open source search engines 487
OpenFST 483
OpenStreetMap 347
optimizing

LSTM 288–291
NLP algorithms 404–414

discretizing 413–414
indexing 405–413

OR statement 162
OR symbol 350, 436–437
ord values 435
OrderedDict 436
original weights 161
output gate 283–284
output nodes 192
output words 191
output_vocab_size 323
output_vocabulary 328
overfitting 128

reducing 451
training samples 448

oversampling 453

P

package manager for Mac 430–431
pad characters 294
pad_sequences method 234
padding 226–227
Pandas DataFrames 40, 66, 126, 129
parallelizing NLP computations 416–419

GPU rental options 418–419
renting GPUs vs. buying 417–418
tensor processing units 419
training NLP models on GPUs 416–417

parentheses 44, 436
Parse processing stage 23
parts of speech. See POS
pattern matching algorithms 343–346

information extraction 345–346
regular expressions 344–345

pattern-matching chatbots 12, 367, 373–382
network view of 381–382
with AIML 375–381

AIML 1.0 375–376
AIML 2.0 375
Python AIML interpreter 376–381

pattern_response dictionary 398
patterns of words 358–359
PCA (principal component analysis) 106, 112,

123–134, 185, 212, 493
for SMS message semantic analysis 128–130
LSA for spam classification 131–134

LSA enhancements 133–134
SVD enhancements 133–134

NLP (natural language processing) 126–128
on 3D vectors 125–126
truncated SVD for SMS message semantic

analysis 130–131
PCA.fit() method 118
pd.DataFrame printouts 125
peephole connections 308–309

INDEX506
PEP8 program 438
perceptrons 157

limitations of 164–167
numerical 157–158
training 161

performance metrics 454–457
measuring classifier performance 455–456
measuring regressor performance 457

periods 43
phrase-terminating punctuation 47
PhraseMatcher 358
Pierson correlation 457
pip (pip installs pip) 493
pipelines

chatbots 22–25
convolutional 227
layers of 25–27
models in 243–244
sequence-to-sequence, assembling 318–324

assembling networks 323–324
models in Keras 320
preparing datasets for training 318–320
sequence encoders 320–322
thought decoders 322–323

PiQASso 485
Plotly wrapper 213
plus sign 44
Poisson distribution 135
polarity 125
polysemy 100
pooling 236–238
Porter stemmer 58–59
POS (parts of speech) 25, 60, 353–357, 485
positive argument 201
positive class labels 455
PostgreSQL database 48, 150
PR (pull request) 493
precision 56, 456
predicate 495
predict method 177, 244, 422
.predict_class() method 288
predict_classes method 244
.predict() method 121, 288
predicting 269–273

bidirectional recurrent neural networks
271–272

likeability 479–480
sequences 330–331
statefulness 270–271

pretrained word vector 191
principal component analysis. See PCA
probabilities_list function 305
processing stages, chatbot 24
product() function 141

programming languages vs. NLP 4
Project Gutenberg dataset 301
project ideas 481–482
projected distance 144
propagation 170
pull request. See PR
punctuation sequences 209
pyfst interface 483
Python programming language

AIML interpreter 376–381
dict objects 436
mapping in 436
mastering 439
neural networks in 175–178
neurons in 160–161
OrderedDict 436
strings and 435
strings, types of 435
style conventions 438
templates in 435

PyTorch framework 176, 221, 459, 470

Q

QDA (quadratic discriminant analysis) 133, 493
quadruplets 32
queries, semantic 182–184
question answering (QA) systems 342, 369, 484
quotes 43, 438

R

random guessing 162
random projection 133
random searches 458
<random> tag 378
random values 161
rare n-grams 51
raw data 166
raw strings 438
RBMs (restricted Boltzmann machines) 392
re package 13, 45
re.compile() function 45
re.split function 44, 361
read–evaluate–print loop. See REPL
real-value indexes 473
recall 56, 456
rectified linear unit. See ReLU
recurrent neural networks. See RNNs
Regex OR symbol 437
regex package 13, 26, 46, 436
RegexpTokenizer function 46
regressors, measuring performance of 457

INDEX 507
regular expressions 10–12, 43–48, 344–345,
435–438

character classes 438
groups 437–438
OR symbol 436–437
overview of 44
sentence segmentation with 361–363
separating contractions 47–48
separating words 44–47

regularization 450–451
relationships 339–343

between words 207–213
extracting 352–363

entity name normalization 357–358
normalizing 358
POS tagging 353–357
segmentation 359–360
sentence segmentation with regular

expressions 361–363
split 360–361
word patterns 358–359

information extraction 343
knowledge base 340–343

relevance ranking 90–92
ReLU (rectified linear unit) 225, 236, 493
renting GPUs

buying vs. 417–418
options for 417–418

REPL (read–evaluate–print loop) 493
response mappings 397
restricted Boltzmann machines. See RBMs
retrieval-based chatbots. See also search-based

chatbots
return_sequences keyword argument 263, 300,

310, 323
return_state argument 321
RMSE (root mean square error) 144, 457, 494
RNNs (recurrent neural networks) 250–264,

485–486, 494
backpropagation 255–257
compiling models 264–266
hyperparameters 267–269
limitations of 259–260
predicting 269–273

bidirectional recurrent neural networks
271–272

statefulness 270–271
training models 266
updating 257–259
with Keras 260–264

robot journalists 8
RocketML pipelines 416
root conda environment 428
root mean square error. See RMSE
row vectors 109

RSMProp 240
rstr package 346
rule-based algorithm 63

S

S matrix 119–120
SAD (sum of absolute distance) 144
saved models, loading 243
scalability 404
scalable vector graphics. See SVG
scalar product 41
scaling datasets 404
scanners 33
scikit-learn package 93, 106, 120
scikit-learn TruncatedSVD transformer 121
scoring function 198
scoring topics, algorithms for 105–107

LDA 107
LDiA 107

search engines 487–489
algorithms 487
distributed 489
less manipulative 488–489
manipulative 488
open source 487
open source full-text indexers 487–488

search-based chatbots 384–391
context 384–386
example of 386–389

seed argument 140
segment_sentences() function 433
segmentation 33, 359–363
semantic analysis 98–111

algorithms for scoring topics 105–107
LDA 107
LDiA 107

distance 143–146
LDA

classifiers 107–111
LDiA and 111

LDiA 134–143
as spam classifier 140–141
for SMS messages 137–140
history of 135–137
LSA vs. 142–143

LSA 111–115
PCA 123–134

for SMS message semantic analysis 128–130
LSA for spam classification 131–134
NLP (natural language processing) 126–128
on 3D vectors 125–126
truncated SVD for SMS message semantic

analysis 130–131
similarity 143–146

INDEX508
semantic analysis (continued)
steering with feedback 146–148
SVD 116–123

left singular vectors 118–119
matrix orientation 120–121
right singular vectors 120
S matrix 119–120
singular values 119–120
truncating topics 121–123
U matrix 118–119
VT matrix 120

TF-IDF vectors and lemmatization 99
topic vectors 99–101, 148–152

semantic queries 182–184
semantic searches 98, 149–152, 483–484
semicolons 43
sentence segmenting 485
sentiment 62–69

Naive Bayes model 65–68
rule-based sentiment analyzers 64–65

SentimentIntensityAnalyzer.lexicon 64
separable data 165
seq2seq (sequence-to-sequence networks) 314
sequence decoders 312
sequence encoders 312, 320–322
sequence-to-sequence

applications for 334–336
assembling networks 323–324
assembling pipelines 318–324

sequence encoders 320–322
thought decoders 322–323

building chatbots 326–332
assembling models for sequence

generation 330
building character dictionary 327–328
conversing with chatbots 331–332
generating one-hot encoded training

sets 328–329
generating responses 331
predicting sequences 330–331
preparing corpus for training 326–327
training sequence-to-sequence chatbots 329

conversations 316–317
encoder-decoder architecture 312–318

autoencoders 315–316
decoding thought 313–315

models in Keras 320
preparing datasets training 318–320
training enhancements 332–334

attention mechanism 333–334
bucketing 332

training networks 324–326
sequences

assembling models for sequence
generation 330

generating output sequences 325–326
predicting 330–331

Sequential class 235
sequential minimal optimization. See SMO
Sequential() class 222
Series object 35
SGD (stochastic gradient descent) 174–175, 177,

240
.shape attribute 127
shell commands 429
sigmoid activation function 239–241

fit method 241
optimizers 240

sigmoid function 170, 239
similarity 143–146, 215–217
simple_preprocess utility 216
simpleNumericalFactChecker 482
SimpleRNN layer 265, 270, 278, 285
single-quotes 438
singular value decomposition. See SVD
singular values 119–120
Skflow 221
skip-grams 191–192, 197, 495
sklearn MinMaxScaler 110
sklearn module 53, 126, 129, 457
sklearn.decomposition.PCA 316
sklearn.LatentDirichletAllocation 138
sklearn.linear_model.Ridge regressor 458
sklearn.manifold.TSNE 316
sklearn.metrics.pairwise module 144
sklearn.PCA model 120, 123
sklearn.Pipeline object 458
sklearn.StandardScaler transform 123
sklearn.TruncatedSVD 143
Slack channels 395
SMO (sequential minimal optimization) 494
SMS messages 107

LDiA for 137–140
semantic analysis

PCA for 128–130
truncated SVD for 130–131

Snappy 431
Snowball stemmer 58
softmax function

learning vector representations 194–195
overview of 192–195
retrieving word vectors with linear algebra 195

softmax layer 305, 495
softmax output value 192
software patterns 494
sorted() method 40
spaces 14
SpaCy package 22, 25, 46, 61, 75, 353, 362
spacy.displacy 354
spacy.matcher.Matcher 354

INDEX 509
spam classification 131–134, 140–141
spam dataset, SMS 108
spam filters 8
spam SMS messages 107
sparse continuous vectors 150
sparse matrices 126
speech recognition 6
speech to text. See STT
Sphinx Search 488
split method 34
split_turns function 388
splitting 360–361, 479
spoofing 60
square brackets 13, 44
squared Euclidean distance 144
squashed vectors 193
<srai> tag 377
SSD (sum of squares distance) 144
ssh credentials 469
stacked layers 309
stacking LSTM layers 309–310
Stanford Core NLP library 46, 352
stanford-corenlp interface 483
star character 13, 374
start token 315
stateful keyword argument 270
statefulness 270–271
steering feature 147
steering with feedback 146–148
stemming 32–33, 57–59

algorithms for 58
process of 31

step function 158
step size 224
steps_per_epoch method 422
stochastic gradient descent. See SGD
STOP token 320
stop words 51–54
stop_condition 326, 330
str class 34
str.lower() function 55
str.split() method 22, 31, 35
stride 224
string buffer 306
string manipulation 31
strings 435
strip method 58
STT (speech to text) 6
style conventions 438
Stylometry 482
subject 495
subsampling frequent tokens 198–199
sum of absolute distance. See SAD
sum of squares distance. See SSD
.sum() method 127

supervised algorithms 108
SVD (singular value decomposition) 107, 205,

483, 494
enhancements to 133–134
left singular vectors 118–119
matrix orientation 120–121
right singular vectors 120
S matrix 119–120
singular values 119–120
truncated 130–131
truncating topics 121–123
U matrix 118–119
VT matrix 120

SVG (scalable vector graphics) 354
SVM (support vector machine) 494
symmetry property 145
synonyms 99
SyntaxNet package 22, 362

T

T attribute 441
t-Distributed Stochastic Neighbor Embedding

(t-SNE) 185, 213
tanh activation function 282
target labels 233
target (output) variable 65
target unzipper 261
target values 176
target words 346
target_seq 326, 330
target_text 327
tdm term-document matrix 118
teacher forcing method 320
templates in Python 435
tensor processing units. See TPUs
TensorBoard 208, 422–424
TensorFlow 176, 221, 422, 430, 470, 483
term frequency. See TF
term frequency times inverse document frequency.

See TF-IDF
term frequency vectors 81
term-document matrices 93
term-topic matrix 118
terminals 33
test set 448
text characters 13
text retrieval 368
TF (term frequency) 73
TF vectors 444
TF-IDF (term frequency times inverse document

frequency) 71, 494
bag of words 71–76
lemmatization and vectors 99
topic modeling 86–96

INDEX510
TF-IDF (term frequency times inverse document
frequency) (continued)
alternatives to 93–95
Okapi BM25 95
relevance ranking 90–92
tools for 93
Zipf's Law 89–90

vectorizing 76–83
Zipf's Law 83–86

tfidf vector 101
TfidfVectorizer 126
TFIDFVectorizer model 93, 129
Theano 176, 221, 483
therapy chatbots 372–373
thinking, high-dimensional 474–477

1D index 475–476
2D, 3D, 4D indexes 476–477

thought decoders 313–315, 322–323
thought encoders 321
threshold function 159, 170
time series data 220
Time Series Matching 481
time step 251
tmp directory 424
.todense() method 93
token step 251
token-by-token prediction 318
tokenized phrases 47
tokenizers 33–62

dot products 41–42
measuring bag-of-words overlap 42–43
n-grams

overview of 48–51
stop words 51–54

normalizing vocabulary 54–62
case folding 54–56
lemmatization 59–61
stemming 57–59
use cases 61–62

regular expressions 43–48
overview of 44
separating contractions 47–48
separating words 44–47

tokens 70, 220
morphology of 495
subsampling 198–199

topic modeling 86–96
alternatives to 93–95
Okapi BM25 95
relevance ranking 90–92
tools for 93
Zipf's Law 89–90

topic vectors 98–101, 148–152
topic weights 114
topics 113, 379

topn argument 201
Torch package 221
TPUs (tensor processing units) 419
train_test_split() method 140–141
train/ directory 231
trained model 178, 450
training

CNNs 228
document vectors 215–217
domain-specific Word2vec models 203–204
enhancements for 332–334

attention mechanism 333–334
bucketing 332

models 241–243, 266, 298–300
on GPUs 416–417
reducing memory footprint during

training 419–422
perceptrons 161
preparing corpus for 326–327
preparing datsets for sequence-to-sequence

training 318–320
sequence-to-sequence chatbots 329
sequence-to-sequence networks 324–326

training data, loading 420
training methods 175
training samples 448
training sets 302, 448

imbalanced 452–454
augmenting data 453–454
oversampling 453
undersampling 453

training_set_generator function 421
transfer learning 392–394
.transform() method 93
transpose of matrix 441
Treebank tokenizer 15
Treebank Word Tokenizer 47, 66, 75
triangle inequality property 145
trigger words 346
trigrams 32
triple-quoted raw strings 438
troll message filtering 63
truncated characters 294
truncated data 235
truncated singular value decomposition 112
TruncatedSVD model 126, 130–131
truncating topics in SVD 121–123
TurboTax, Intuit 369
Turing test 370
tutorials 482–483
two-dimensional filter shape 229

U

U matrix 118–119
Ubuntu Dialog Corpus 386, 390

INDEX 511
Ubuntu package manager 429–430
UI (user interface) 494
underfitting 263, 447–448
undersampling 453
underscore character 44, 208
Unicode characters 435
unique tokens 35, 73
units 76, 495
UNK (unknown) token 291–292
unnatural words 214–215
unrolled net 252, 256, 265, 289
update gate 284
updating RNNs 257–259
user interface. See UI
UX (user experience) 494

V

VADER algorithm 63
vaderSentiment package 64
validating dates 352
validation set 448
vanishing gradient problem 260
variance, maximizing 125
variational autoencoder 316
vector difference 442
vector dimensions 184
vector representations 194–195
vector space model. See VSM
vector spaces 18–19, 79–83

indexes 473–474
splitting 479

vector-oriented reasoning 187–190
vectorizing 76–83
vectors 19–21, 440–445

3D vectors 125–126
distances 442–445

cosine distance 443–445
Euclidean distance 442–443
Manhattan distance 445

high-dimensional 473–477
hashes 473–474
high-dimensional thinking 474–477
vector space indexes 473–474

left singular 118–119
right singular 120

virtual assistant chatbots 369–370
virtual assistants 368
virtual private cloud. See VPC
VirtualBox application 433
visualize_embeddings function 424
vocabulary, normalizing 54–62

case folding 54–56
lemmatization 59–61
stemming 57–59
use cases 61–62

VPC (virtual private cloud) 463
VSM (vector space model) 19, 43, 494
VT matrix 120

W

Watson Semantic Web Search 489
WebSphinx search engine 487
weights 103, 156–157, 168, 179, 257–258, 313
whitespace 44, 377
Whoosh, Python 92
Wikia Search 481
Wikidata 383
Will chatbot framework 395–396

installing 395
untrained 395–396

word embeddings 228, 423–424
word frequencies 83
word order 21–22, 220
word prediction 299
word proximity 220
word tokenization

challenges of 32–33
sentiment 62–69

Naive Bayes model 65–68
rule-based sentiment analyzers 64–65

tokenizers 33–62
dot products 41–42
measuring bag-of-words overlap 42–43
n-grams 48–54
normalizing vocabulary 54–62
regular expressions 43–48

word vectors 184–217
analogies 182–184
computing Word2vec representations 191–200

CBOW approach 196–197
frequent bigrams 198
negative sampling 199–200
skip-gram approach 191–192
skip-gram vs. CBOW 197
softmax function 192–195
subsampling frequent tokens 198–199

documenting similarity with Doc2vec 215–217
embedding 195
fastText 205–206
generating word vector representations 202–204

preprocessing steps 202–203
training domain-specific Word2vec

models 203–204
gensim.Word2vec modules 200–202
retrieving with linear algebra 195
semantic queries 182–184
unnatural words 214–215
vector-oriented reasoning 187–190
visualizing word relationships 207–213

word-topic vectors 100

INDEX512
Word2vec 115, 186, 188, 194, 446
computing representations 191–200

CBOW approach 196–197
frequent bigrams 198
negative sampling 199–200
skip-gram approach 191–192
skip-gram vs. CBOW 197
softmax function 192–195
subsampling frequent tokens 198–199

gensim.Word2vec modules 200–202
GloVe vs. 205
LSA vs. 206–207
training domain-specific models 203–204

WordNetLemmatizer 60
words

order of 220–221
separating 44–47

.words() method 85
Wysa chatbot 372

X

XOR problem 166–167

Y

Yacy search engine 489
YAGO 383
Yandex 489
Your Dictionary 482
YourDOST 372

Z

zero determinant 140
zero vector 78, 90
Zettair indexer 488
zeugma 101
Zipf's Law 83–86, 89–90

Lane ● Howard ● Hapke

R
ecent advances in deep learning empower applications
to understand text and speech with extreme accuracy.
The result? Chatbots that can imitate real people, mean-

ingful resume-to-job matches, superb predictive search, and
automatically generated document summaries—all at a low
cost. New techniques, along with accessible tools like Keras
and TensorFlow, make professional-quality NLP easier than
ever before.

Natural Language Processing in Action is your guide to build-
ing machines that can read and interpret human language. In
it, you’ll use readily available Python packages to capture the
meaning in text and react accordingly. The book expands tra-
ditional NLP approaches to include neural networks, modern
deep learning algorithms, and generative techniques as you
tackle real-world problems like extracting dates and names,
composing text, and answering free-form questions.

What’s Inside
● Some sentences of this book were written by NLP!

Can you guess which ones?
● Working with Keras, TensorFlow, gensim, and scikit-learn
● Rule-based and data-based NLP
● Scalable pipelines

This book requires a basic understanding of deep learning and
intermediate Python skills.

Hobson Lane, Hannes Max Hapke, and Cole Howard are experi-
enced NLP engineers who use these techniques in production.

To download free eBook in PDF, ePub, and Kindle formats,
please visit

letmeread.net

$49.99 / Can $65.99 [INCLUDING eBOOK]

Natural Language Processing IN ACTION

DATA SCIENCE/MACHINE LEARNING

M A N N I N G

“Learn both the theory and
practical skills needed to go

beyond merely understanding
the inner workings of NLP,
and start creating your own

algorithms or models.”—From the Foreword by
Dr. Arwen Griffi oen, Zendesk

“Provides a great overview
of current NLP tools in
Python. I’ll defi nitely be

keeping this book on hand
for my own NLP work.
Highly recommended!”—Tony Mullen

Northeastern University–Seattle

“An intuitive guide to
get you started with NLP.

The book is full of
programming examples
that help you learn in a
very pragmatic way.”—Tommaso Teofi li

Adobe Systems

See first page

	Natural Language Processing in Action
	brief contents
	contents
	foreword
	preface
	acknowledgments
	Hobson Lane
	Hannes Max Hapke
	Cole Howard

	about this book
	Roadmap
	About this book
	About the code
	liveBook discussion forum

	about the authors
	about the cover illustration
	Part 1 Wordy machines
	1 Packets of thought (NLP overview)
	1.1 Natural language vs. programming language
	1.2 The magic
	1.2.1 Machines that converse
	1.2.2 The math

	1.3 Practical applications
	1.4 Language through a computer?s ?eyes?
	1.4.1 The language of locks
	1.4.2 Regular expressions
	1.4.3 A simple chatbot
	1.4.4 Another way

	1.5 A brief overflight of hyperspace
	1.6 Word order and grammar
	1.7 A chatbot natural language pipeline
	1.8 Processing in depth
	1.9 Natural language IQ
	Summary

	2 Build your vocabulary (word tokenization)
	2.1 Challenges (a preview of stemming)
	2.2 Building your vocabulary with a tokenizer
	2.2.1 Dot product
	2.2.2 Measuring bag-of-words overlap
	2.2.3 A token improvement
	2.2.4 Extending your vocabulary with n-grams
	2.2.5 Normalizing your vocabulary

	2.3 Sentiment
	2.3.1 VADER?A rule-based sentiment analyzer
	2.3.2 Naive Bayes

	Summary

	3 Math with words (TF-IDF vectors)
	3.1 Bag of words
	3.2 Vectorizing
	3.2.1 Vector spaces

	3.3 Zipf?s Law
	3.4 Topic modeling
	3.4.1 Return of Zipf
	3.4.2 Relevance ranking
	3.4.3 Tools
	3.4.4 Alternatives
	3.4.5 Okapi BM25
	3.4.6 What?s next

	Summary

	4 Finding meaning in word counts (semantic analysis)
	4.1 From word counts to topic scores
	4.1.1 TF-IDF vectors and lemmatization
	4.1.2 Topic vectors
	4.1.3 Thought experiment
	4.1.4 An algorithm for scoring topics
	4.1.5 An LDA classifier

	4.2 Latent semantic analysis
	4.2.1 Your thought experiment made real

	4.3 Singular value decomposition
	4.3.1 U?left singular vectors
	4.3.2 S?singular values
	4.3.3 VT?right singular vectors
	4.3.4 SVD matrix orientation
	4.3.5 Truncating the topics

	4.4 Principal component analysis
	4.4.1 PCA on 3D vectors
	4.4.2 Stop horsing around and get back to NLP
	4.4.3 Using PCA for SMS message semantic analysis
	4.4.4 Using truncated SVD for SMS message semantic analysis
	4.4.5 How well does LSA work for spam classification?

	4.5 Latent Dirichlet allocation (LDiA)
	4.5.1 The LDiA idea
	4.5.2 LDiA topic model for SMS messages
	4.5.3 LDiA + LDA = spam classifier
	4.5.4 A fairer comparison: 32 LDiA topics

	4.6 Distance and similarity
	4.7 Steering with feedback
	4.7.1 Linear discriminant analysis

	4.8 Topic vector power
	4.8.1 Semantic search
	4.8.2 Improvements

	Summary

	Part 2 Deeper learning (neural networks)
	5 Baby steps with neural networks (perceptrons and backpropagation)
	5.1 Neural networks, the ingredient list
	5.1.1 Perceptron
	5.1.2 A numerical perceptron
	5.1.3 Detour through bias
	5.1.4 Let?s go skiing?the error surface
	5.1.5 Off the chair lift, onto the slope
	5.1.6 Let?s shake things up a bit
	5.1.7 Keras: Neural networks in Python
	5.1.8 Onward and deepward
	5.1.9 Normalization: input with style

	Summary

	6 Reasoning with word vectors (Word2vec)
	6.1 Semantic queries and analogies
	6.1.1 Analogy questions

	6.2 Word vectors
	6.2.1 Vector-oriented reasoning
	6.2.2 How to compute Word2vec representations
	6.2.3 How to use the gensim.word2vec module
	6.2.4 How to generate your own word vector representations
	6.2.5 Word2vec vs. GloVe (Global Vectors)
	6.2.6 fastText
	6.2.7 Word2vec vs. LSA
	6.2.8 Visualizing word relationships
	6.2.9 Unnatural words
	6.2.10 Document similarity with Doc2vec

	Summary

	7 Getting words in order with convolutional neural networks (CNNs)
	7.1 Learning meaning
	7.2 Toolkit
	7.3 Convolutional neural nets
	7.3.1 Building blocks
	7.3.2 Step size (stride)
	7.3.3 Filter composition
	7.3.4 Padding
	7.3.5 Learning

	7.4 Narrow windows indeed
	7.4.1 Implementation in Keras: prepping the data
	7.4.2 Convolutional neural network architecture
	7.4.3 Pooling
	7.4.4 Dropout
	7.4.5 The cherry on the sundae
	7.4.6 Let?s get to learning (training)
	7.4.7 Using the model in a pipeline
	7.4.8 Where do you go from here?

	Summary

	8 Loopy (recurrent) neural networks (RNNs)
	8.1 Remembering with recurrent networks
	8.1.1 Backpropagation through time
	8.1.2 When do we update what?
	8.1.3 Recap
	8.1.4 There?s always a catch
	8.1.5 Recurrent neural net with Keras

	8.2 Putting things together
	8.3 Let?s get to learning our past selves
	8.4 Hyperparameters
	8.5 Predicting
	8.5.1 Statefulness
	8.5.2 Two-way street
	8.5.3 What is this thing?

	Summary

	9 Improving retention with long short-term memory networks
	9.1 LSTM
	9.1.1 Backpropagation through time
	9.1.2 Where does the rubber hit the road?
	9.1.3 Dirty data
	9.1.4 Back to the dirty data
	9.1.5 Words are hard. Letters are easier.
	9.1.6 My turn to chat
	9.1.7 My turn to speak more clearly
	9.1.8 Learned how to say, but not yet what
	9.1.9 Other kinds of memory
	9.1.10 Going deeper

	Summary

	10 Sequence-to-sequence models and attention
	10.1 Encoder-decoder architecture
	10.1.1 Decoding thought
	10.1.2 Look familiar?
	10.1.3 Sequence-to-sequence conversation
	10.1.4 LSTM review

	10.2 Assembling a sequence-to-sequence pipeline
	10.2.1 Preparing your dataset for the sequence-to-sequence training
	10.2.2 Sequence-to-sequence model in Keras
	10.2.3 Sequence encoder
	10.2.4 Thought decoder
	10.2.5 Assembling the sequence-to-sequence network

	10.3 Training the sequence-to-sequence network
	10.3.1 Generate output sequences

	10.4 Building a chatbot using sequence-to-sequence networks
	10.4.1 Preparing the corpus for your training
	10.4.2 Building your character dictionary
	10.4.3 Generate one-hot encoded training sets
	10.4.4 Train your sequence-to-sequence chatbot
	10.4.5 Assemble the model for sequence generation
	10.4.6 Predicting a sequence
	10.4.7 Generating a response
	10.4.8 Converse with your chatbot

	10.5 Enhancements
	10.5.1 Reduce training complexity with bucketing
	10.5.2 Paying attention

	10.6 In the real world
	Summary

	Part 3 Getting real (real-world NLP challenges)
	11 Information extraction (named entity extraction and question answering)
	11.1 Named entities and relations
	11.1.1 A knowledge base
	11.1.2 Information extraction

	11.2 Regular patterns
	11.2.1 Regular expressions
	11.2.2 Information extraction as ML feature extraction

	11.3 Information worth extracting
	11.3.1 Extracting GPS locations
	11.3.2 Extracting dates

	11.4 Extracting relationships (relations)
	11.4.1 Part-of-speech (POS) tagging
	11.4.2 Entity name normalization
	11.4.3 Relation normalization and extraction
	11.4.4 Word patterns
	11.4.5 Segmentation
	11.4.6 Why won?t split('.!?') work?
	11.4.7 Sentence segmentation with regular expressions

	11.5 In the real world
	Summary

	12 Getting chatty (dialog engines)
	12.1 Language skill
	12.1.1 Modern approaches
	12.1.2 A hybrid approach

	12.2 Pattern-matching approach
	12.2.1 A pattern-matching chatbot with AIML
	12.2.2 A network view of pattern matching

	12.3 Grounding
	12.4 Retrieval (search)
	12.4.1 The context challenge
	12.4.2 Example retrieval-based chatbot
	12.4.3 A search-based chatbot

	12.5 Generative models
	12.5.1 Chat about NLPIA
	12.5.2 Pros and cons of each approach

	12.6 Four-wheel drive
	12.6.1 The Will to succeed

	12.7 Design process
	12.8 Trickery
	12.8.1 Ask questions with predictable answers
	12.8.2 Be entertaining
	12.8.3 When all else fails, search
	12.8.4 Being popular
	12.8.5 Be a connector
	12.8.6 Getting emotional

	12.9 In the real world
	Summary

	13 Scaling up (optimization, parallelization, and batch processing)
	13.1 Too much of a good thing (data)
	13.2 Optimizing NLP algorithms
	13.2.1 Indexing
	13.2.2 Advanced indexing
	13.2.3 Advanced indexing with Annoy
	13.2.4 Why use approximate indexes at all?
	13.2.5 An indexing workaround: discretizing

	13.3 Constant RAM algorithms
	13.3.1 Gensim
	13.3.2 Graph computing

	13.4 Parallelizing your NLP computations
	13.4.1 Training NLP models on GPUs
	13.4.2 Renting vs. buying
	13.4.3 GPU rental options
	13.4.4 Tensor processing units

	13.5 Reducing the memory footprint during model training
	13.6 Gaining model insights with TensorBoard
	13.6.1 How to visualize word embeddings

	Summary

	appendix A Your NLP tools
	A.1 Anaconda3
	A.2 Install NLPIA
	A.3 IDE
	A.4 Ubuntu package manager
	A.5 Mac
	A.5.1 A Mac package manager
	A.5.2 Some packages
	A.5.3 Tuneups

	A.6 Windows
	A.6.1 Get Virtual

	A.7 NLPIA automagic

	appendix B Playful Python and regular expressions
	B.1 Working with strings
	B.1.1 String types (str and bytes)
	B.1.2 Templates in Python (.format())

	B.2 Mapping in Python (dict and OrderedDict)
	B.3 Regular expressions
	B.3.1 |?OR
	B.3.2 ()?Groups
	B.3.3 []?Character classes

	B.4 Style
	B.5 Mastery

	appendix C Vectors and matrices (linear algebra fundamentals)
	C.1 Vectors
	C.1.1 Distances

	appendix D Machine learning tools and techniques
	D.1 Data selection and avoiding bias
	D.2 How fit is fit?
	D.3 Knowing is half the battle
	D.4 Cross-fit training
	D.5 Holding your model back
	D.5.1 Regularization
	D.5.2 Dropout
	D.5.3 Batch normalization

	D.6 Imbalanced training sets
	D.6.1 Oversampling
	D.6.2 Undersampling
	D.6.3 Augmenting your data

	D.7 Performance metrics
	D.7.1 Measuring classifier performance
	D.7.2 Measuring regressor performance

	D.8 Pro tips

	appendix E Setting up your AWS GPU
	E.1 Steps to create your AWS GPU instance
	E.1.1 Cost control

	appendix F Locality sensitive hashing
	F.1 High-dimensional vectors are different
	F.1.1 Vector space indexes and hashes
	F.1.2 High-dimensional thinking

	F.2 High-dimensional indexing
	F.2.1 Locality sensitive hashing
	F.2.2 Approximate nearest neighbors

	F.3 ?Like? prediction

	resources
	Applications and project ideas
	Courses and tutorials
	Tools and packages
	Research papers and talks
	Vector space models and semantic search
	Finance
	Question answering systems
	Deep learning
	LSTMs and RNNs

	Competitions and awards
	Datasets
	Search engines
	Search algorithms
	Open source search engines
	Open source full-text indexers
	Manipulative search engines
	Less manipulative search engines
	Distributed search engines

	glossary
	Acronyms
	Terms

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Natural Language Processing in Action-back

