

Hands-On Data
Analysis with
Pandas – Second
Edition

A Python data science handbook for data collection,
wrangling, analysis, and visualization

Stefanie Molin

BIRMINGHAM—MUMBAI

Hands-On Data Analysis with Pandas
Second Edition
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author(s), nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Kunal Parikh
Publishing Product Manager: Sunith Shetty
Senior Editor: Roshan Ravikumar
Content Development Editor: Athikho Sapuni Rishana
Technical Editor: Sonam Pandey
Copy Editor: Safis Editing
Project Coordinator: Aishwarya Mohan
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Shankar Kalbhor

First published: July 2019
Second edition: April 2021

Production reference: 1270421

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80056-345-2

www.packt.com

http://www.packt.com

To everyone that made the first edition such a success.

Foreword to the Second Edition

As educators, we are inclined to teach across the medium that we best learn from. I personally
gravitated towards video content early in my career. As I produce more online content, surprisingly,
one of the most frequently asked questions I get is: What book would you recommend for someone
getting started in data science?

Initially, I was baffled at why people would turn to books when there are so many great online
resources out there. However, after reading Hands-On Data Analysis with Pandas, my perception of
books for learning data science began to change.

The first thing I loved about Hands-On Data Analysis with Pandas was the structure. The book
gives you just the right amount of information at the right time to keep you progressing at a natural
pace. Starting with light foundations in statistics and concepts gives the perfect amount of cognitive
glue to keep theory and practice comfortably bound together.

After the foundations, you are introduced to the star of the show: pandas. Stefanie uses practical
examples (not the same old datasets you have used before) to bring the module to life. I use pandas
almost every day, and I still learned quite a few tricks across these sections.

As a software engineer, Stefanie knows the importance of quality documentation. She has all of the
data, examples, and more in a tidy GitHub repo. Through these examples, the book truly earns the
"Hands-On" moniker in its title.

The latter portion of the book gives the reader a taste of what is possible with a strong foundation
in pandas. Stefanie leads you just a little bit deeper into the more advanced machine learning
concepts. Once again, she provides just enough information to get you excited about taking the
next step in your learning journey without inundating you with overly technical jargon.

I could sense the pride Stefanie took in this work through our conversations. While the book is a
great resource for people looking to learn data science tools, it was also a way for her to solidify
her own knowledge and push her boundaries. In my opinion, you want to learn from people that
are creating not only for the community but also for their own learning. People with intrinsic
motivation like this are willing to go the extra mile to make that extra revision or get the wording
perfect.

I hope you enjoy learning from this book as much as I did. To those who asked me the question
above, I have a simple answer: This one.

Ken Jee
YouTuber & Head of Data Science @ Scouts Consulting Group
Honolulu, HI (03/09/2021)

Foreword to the First Edition

Recent advancements in computing and artificial intelligence have completely changed the way
we understand the world. Our current ability to record and analyze data has already transformed
industries and inspired big changes in society.

Stefanie Molin's Hands-On Data Analysis with Pandas is much more than an introduction to the
subject of data analysis or the pandas Python library; it's a guide to help you become part of this
transformation.

Not only will this book teach you the fundamentals of using Python to collect, analyze, and
understand data, but it will also expose you to important software engineering, statistical, and
machine learning concepts that you will need to be successful.

Using examples based on real data, you will be able to see firsthand how to apply these techniques
to extract value from data. In the process, you will learn important software development skills,
including writing simulations, creating your own Python packages, and collecting data from APIs.

Stefanie possesses a rare combination of skills that makes her uniquely qualified to guide you
through this process. Being both an expert data scientist and a strong software engineer, she can
not only talk authoritatively about the intricacies of the data analysis workflow but also about how
to implement it correctly and efficiently in Python.

Whether you are a Python programmer interested in learning more about data analysis, or a data
scientist learning how to work in Python, this book will get you up to speed fast, so you can begin
to tackle your own data analysis projects right away.

Felipe Moreno
New York, June 10, 2019.

Felipe Moreno has been working in information security for the last two decades. He currently works
for Bloomberg LP, where he leads the Security Data Science team within the Chief Information
Security Office and focuses on applying statistics and machine learning to security problems.

Contributors

About the author
Stefanie Molin is a data scientist and software engineer at Bloomberg LP in NYC, tackling
tough problems in information security, particularly revolving around anomaly detection,
building tools for gathering data, and knowledge sharing. She has extensive experience
in data science, designing anomaly detection solutions, and utilizing machine learning in
both R and Python in the AdTech and FinTech industries. She holds a B.S. in operations
research from Columbia University's Fu Foundation School of Engineering and Applied
Science, with minors in economics, and entrepreneurship and innovation. In her free
time, she enjoys traveling the world, inventing new recipes, and learning new languages
spoken among both people and computers.

Writing this book was a tremendous amount of work, but I have grown a lot
through the experience: as a writer, as a technologist, and as a person. This
wouldn't have been possible without the help of my friends, family, and colleagues.
I'm very grateful to you all. In particular, I want to thank Aliki Mavromoustaki,
Felipe Moreno, Suphannee Sivakorn, Lucy Hao, Javon Thompson, and Ken Jee.
(The full version of my acknowledgments can be found in the code repository; see
the preface for the link.)

About the reviewer
Aliki Mavromoustaki is the lead data scientist at Tasman Analytics. She works
with direct-to-consumer companies to deliver scalable infrastructure and implement
event-driven analytics. Previously, she worked at Criteo, an AdTech company that employs
machine learning to help digital commerce companies target valuable customers. Aliki
has worked on optimizing marketing campaigns and designed statistical experiments
comparing Criteo products. Aliki holds a PhD in fluid dynamics from Imperial College
London and was an assistant adjunct professor in applied mathematics at UCLA.

Preface

Section 1:
Getting Started with Pandas

1
Introduction to Data Analysis

Chapter materials 4
The fundamentals of data analysis 6
Data collection 7
Data wrangling 8
Exploratory data analysis 9
Drawing conclusions 10

Statistical foundations 11
Sampling 12
Descriptive statistics 12
Prediction and forecasting 28

Inferential statistics 32

Setting up a virtual environment 34
Virtual environments 34
Installing the required Python packages 39
Why pandas? 40
Jupyter Notebooks 40

Summary 44
Exercises 44
Further reading 46

2
Working with Pandas DataFrames

Chapter materials 48
Pandas data structures 49
Series 53
Index 55
DataFrame 56

Creating a pandas DataFrame 59

From a Python object 60
From a file 64
From a database 68
From an API 70

Inspecting a DataFrame object 74
Examining the data 74

Table of Contents

Describing and summarizing the data 77

Grabbing subsets of the data 81
Selecting columns 82
Slicing 85
Indexing 87
Filtering 90

Adding and removing data 98
Creating new data 99
Deleting unwanted data 107

Summary 110
Exercises 111
Further reading 111

Section 2:
Using Pandas for Data Analysis

3
Data Wrangling with Pandas

Chapter materials 116
Understanding data wrangling 118
Data cleaning 118
Data transformation 119
Data enrichment 126

Exploring an API to find and
collect temperature data 127
Cleaning data 138
Renaming columns 139
Type conversion 140
Reordering, reindexing, and sorting
data 147

Reshaping data 160
Transposing DataFrames 162
Pivoting DataFrames 163
Melting DataFrames 169

Handling duplicate, missing,
or invalid data 172
Finding the problematic data 173
Mitigating the issues 179

Summary 189
Exercises 190
Further reading 191

4
Aggregating Pandas DataFrames

Chapter materials 194
Performing database-style
operations on DataFrames 195
Querying DataFrames 197
Merging DataFrames 198

Using DataFrame operations to
enrich data 209
Arithmetic and statistics 210
Binning 213
Applying functions 217
Window calculations 220

Pipes 225

Aggregating data 228
Summarizing DataFrames 230
Aggregating by group 231
Pivot tables and crosstabs 237

Working with time series data 241
Time-based selection and filtering 242

Shifting for lagged data 248
Differenced data 249
Resampling 250
Merging time series 254

Summary 257
Exercises 257
Further reading 260

5
Visualizing Data with Pandas and Matplotlib

Chapter materials 262
An introduction to matplotlib 263
The basics 264
Plot components 271
Additional options 274

Plotting with pandas 276
Evolution over time 278
Relationships between variables 285
Distributions 293

Counts and frequencies 302

The pandas.plotting module 311
Scatter matrices 312
Lag plots 315
Autocorrelation plots 317
Bootstrap plots 318

Summary 319
Exercises 320
Further reading 321

6
Plotting with Seaborn and Customization Techniques

Chapter materials 324
Utilizing seaborn for advanced
plotting 325
Categorical data 326
Correlations and heatmaps 331
Regression plots 340
Faceting 345

Formatting plots with
matplotlib 347
Titles and labels 347
Legends 350

Formatting axes 355

Customizing visualizations 362
Adding reference lines 363
Shading regions 368
Annotations 371
Colors 373
Textures 385

Summary 388
Exercises 388
Further reading 389

Section 3:
Applications – Real-World Analyses Using
Pandas

7
Financial Analysis – Bitcoin and the Stock Market

Chapter materials 395
Building a Python package 396
Package structure 397
Overview of the stock_analysis package 398
UML diagrams 399

Collecting financial data 401
The StockReader class 401
Collecting historical data from Yahoo!
Finance 410

Exploratory data analysis 413
The Visualizer class family 418
Visualizing a stock 424
Visualizing multiple assets 439

Technical analysis of financial
instruments 446
The StockAnalyzer class 446
The AssetGroupAnalyzer class 454
Comparing assets 457

Modeling performance using
historical data 460
The StockModeler class 461
Time series decomposition 467
ARIMA 468
Linear regression with statsmodels 471
Comparing models 472

Summary 475
Exercises 475
Further reading 477

8
Rule-Based Anomaly Detection

Chapter materials 480
Simulating login attempts 480
Assumptions 481
The login_attempt_simulator package 482
Simulating from the command line 496

Exploratory data analysis 503
Implementing rule-based
anomaly detection 515

Percent difference 517
Tukey fence 522
Z-score 524
Evaluating performance 525

Summary 531
Exercises 532
Further reading 532

Section 4:
Introduction to Machine Learning with
Scikit-Learn

9
Getting Started with Machine Learning in Python

Chapter materials 538
Overview of the machine
learning landscape 539
Types of machine learning 540
Common tasks 541
Machine learning in Python 542

Exploratory data analysis 543
Red wine quality data 543
White and red wine chemical
properties data 547
Planets and exoplanets data 550

Preprocessing data 557
Training and testing sets 557
Scaling and centering data 560
Encoding data 562
Imputing 565

Additional transformers 567
Building data pipelines 570

Clustering 572
k-means 573
Evaluating clustering results 582

Regression 584
Linear regression 584
Evaluating regression results 589

Classification 595
Logistic regression 596
Evaluating classification results 599

Summary 616
Exercises 617
Further reading 619

10
Making Better Predictions – Optimizing Models

Chapter materials 622
Hyperparameter tuning with
grid search 625
Feature engineering 633
Interaction terms and polynomial
features 634
Dimensionality reduction 637
Feature unions 647

Feature importances 649

Ensemble methods 653
Random forest 653
Gradient boosting 655
Voting 656

Inspecting classification
prediction confidence 658

Addressing class imbalance 663
Under-sampling 665
Over-sampling 666

Regularization 668
Summary 670
Exercises 671
Further reading 674

11
Machine Learning Anomaly Detection

Chapter materials 678
Exploring the simulated login
attempts data 680
Utilizing unsupervised methods
of anomaly detection 688
Isolation forest 689
Local outlier factor 692
Comparing models 693

Implementing supervised
anomaly detection 698

Baselining 700
Logistic regression 706

Incorporating a feedback loop
with online learning 709
Creating the PartialFitPipeline subclass 709
Stochastic gradient descent classifier 710

Summary 723
Exercises 724
Further reading 725

Section 5:
Additional Resources

12
The Road Ahead

Data resources 730
Python packages 730
Searching for data 731
APIs 731
Websites 732

Practicing working with data 734
Python practice 735
Summary 736
Exercises 737
Further reading 738

Solutions
Appendix
Other Books You May Enjoy
Index

Preface
Data science is often described as an interdisciplinary field where programming skills,
statistical know-how, and domain knowledge intersect. It has quickly become one of the
hottest fields of our society, and knowing how to work with data has become essential in
today's careers. Regardless of the industry, role, or project, data skills are in high demand,
and learning data analysis is key to making an impact.

Fields in data science cover many different aspects of the spectrum: data analysts focus
more on extracting business insights, while data scientists focus more on applying
machine learning techniques to the business's problems. Data engineers focus on
designing, building, and maintaining data pipelines used by data analysts and scientists.
Machine learning engineers share much of the skill set of data scientists and, like data
engineers, are adept software engineers. The data science landscape encompasses many
fields, but for all of them, data analysis is a fundamental building block. This book will
give you the skills to get started, wherever your journey may take you.

The traditional skill set in data science involves knowing how to collect data from various
sources, such as databases and APIs, and process it. Python is a popular language for
data science that provides the means to collect and process data, as well as to build
production-quality data products. Since it is open source, it is easy to get started with
data science by taking advantage of the libraries written by others to solve common data
tasks and issues.

Pandas is the powerful and popular library synonymous with data science in Python. This
book will give you a hands-on introduction to data analysis using pandas on real-world
datasets, such as those dealing with the stock market, simulated hacking attempts, weather
trends, earthquakes, wine, and astronomical data. Pandas makes data wrangling and
visualization easy by giving us the ability to work efficiently with tabular data.

x Preface

Once we have learned how to conduct data analysis, we will explore a number of
applications. We will build Python packages and try our hand at stock analysis, anomaly
detection, regression, clustering, and classification with the help of additional libraries
commonly used for data visualization, data wrangling, and machine learning, such as
Matplotlib, Seaborn, NumPy, and Scikit-learn. By the time you finish this book, you will
be well equipped to take on your own data science projects in Python.

Who this book is for
This book is written for people with varying levels of experience who want to learn
about data science in Python, perhaps to apply it to a project, collaborate with data
scientists, and/or progress to working on machine learning production code with
software engineers. You will get the most out of this book if your background is similar
to one (or both) of the following:

• You have prior data science experience in another language, such as R, SAS, or
MATLAB, and want to learn pandas in order to move your workflow to Python.

• You have some Python experience and are looking to learn about data science
using Python.

What this book covers
Chapter 1, Introduction to Data Analysis, teaches you the fundamentals of data analysis,
gives you a foundation in statistics, and guides you through getting your environment
set up for working with data in Python and using Jupyter Notebooks.

Chapter 2, Working with Pandas DataFrames, introduces you to the pandas library and
shows you the basics of working with DataFrames.

Chapter 3, Data Wrangling with Pandas, discusses the process of data manipulation,
shows you how to explore an API to gather data, and guides you through data cleaning
and reshaping with pandas.

Chapter 4, Aggregating Pandas DataFrames, teaches you how to query and merge
DataFrames, how to perform complex operations on them, including rolling
calculations and aggregations, and how to work effectively with time series data.

Chapter 5, Visualizing Data with Pandas and Matplotlib, shows you how to create your
own data visualizations in Python, first using the matplotlib library, and then from
pandas objects directly.

Preface xi

Chapter 6, Plotting with Seaborn and Customization Techniques, continues the discussion
on data visualization by teaching you how to use the seaborn library to visualize your
long-form data and giving you the tools you need to customize your visualizations,
making them presentation-ready.

Chapter 7, Financial Analysis – Bitcoin and the Stock Market, walks you through the
creation of a Python package for analyzing stocks, building upon everything learned from
Chapter 1, Introduction to Data Analysis, through Chapter 6, Plotting with Seaborn and
Customization Techniques, and applying it to a financial application.

Chapter 8, Rule-Based Anomaly Detection, covers simulating data and applying everything
learned from Chapter 1, Introduction to Data Analysis, through Chapter 6, Plotting with
Seaborn and Customization Techniques, to catch hackers attempting to authenticate to
a website, using rule-based strategies for anomaly detection.

Chapter 9, Getting Started with Machine Learning in Python, introduces you to machine
learning and building models using the scikit-learn library.

Chapter 10, Making Better Predictions – Optimizing Models, shows you strategies for
tuning and improving the performance of your machine learning models.

Chapter 11, Machine Learning Anomaly Detection, revisits anomaly detection on login
attempt data, using machine learning techniques, all while giving you a taste of how the
workflow looks in practice.

Chapter 12, The Road Ahead, covers resources for taking your skills to the next level and
further avenues for exploration.

To get the most out of this book
You should be familiar with Python, particularly Python 3 and up. You should also know
how to write functions and basic scripts in Python, understand standard programming
concepts such as variables, data types, and control flow (if/else, for/while loops), and
be able to use Python as a functional programming language. Some basic knowledge of
object-oriented programming may be helpful but is not necessary. If your Python prowess
isn't yet at this level, the Python documentation includes a helpful tutorial for quickly
getting up to speed: https://docs.python.org/3/tutorial/index.html.

https://docs.python.org/3/tutorial/index.html

xii Preface

The accompanying code for this book can be found on GitHub at https://github.
com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition.
To get the most out of this book, you should follow along in the Jupyter Notebooks as
you read through each chapter. We will cover setting up your environment and obtaining
these files in Chapter 1, Introduction to Data Analysis. Note that there is also a Python 101
notebook that provides a crash course/refresher, if needed: https://github.com/
stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/blob/
master/ch_01/python_101.ipynb.

Lastly, be sure to do the exercises at the end of each chapter. Some of them may be quite
challenging, but they will make you much stronger with the material. Solutions for each
chapter's exercises can be found at https://github.com/stefmolin/Hands-On-
Data-Analysis-with-Pandas-2nd-edition/tree/master/solutions in
their respective folders.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800563452_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, and user input. Here is an example:
"Use pip to install the packages in the requirements.txt file."

A block of code is set as follows. The start of the line will be preceded by >>> and
continuations of that line will be preceded by ...:

>>> df = pd.read_csv(
... 'data/fb_2018.csv', index_col='date', parse_dates=True
...)
>>> df.head()

https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/blob/master/ch_01/python_101.ipynb
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/blob/master/ch_01/python_101.ipynb
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/blob/master/ch_01/python_101.ipynb
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/solutions
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/solutions
https://static.packt-cdn.com/downloads/9781800563452_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800563452_ColorImages.pdf

Preface xiii

Any code without the preceding >>> or ... is not something we will run—it is for
reference:

try:
 del df['ones']
except KeyError:
 pass # handle the error here

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

>>> df.price.plot(
... title='Price over Time', ylim=(0, None)
...)

Results will be shown without anything preceding the lines:

>>> pd.Series(np.random.rand(2), name='random')
0 0.235793
1 0.257935
Name: random, dtype: float64

Any command-line input or output is written as follows:

Windows:
C:\path\of\your\choosing> mkdir pandas_exercises

Linux, Mac, and shorthand:
$ mkdir pandas_exercises

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Using the File Browser pane, double-click on the ch_01 folder, which contains the
Jupyter Notebook that we will use to validate our setup."

Tips or important notes
Appear like this.

xiv Preface

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
http://authors.packtpub.com
http://packt.com

Section 1:
Getting Started with

Pandas

Our journey begins with an introduction to data analysis and statistics, which will lay a
strong foundation for the concepts we will cover throughout the book. Then, we will set
up our Python data science environment, which contains everything we will need to work
through the examples, and get started with learning the basics of pandas.

This section comprises the following chapters:

• Chapter 1, Introduction to Data Analysis

• Chapter 2, Working with Pandas DataFrames

1
Introduction to Data

Analysis
Before we can begin our hands-on introduction to data analysis with pandas, we need
to learn about the fundamentals of data analysis. Those who have ever looked at the
documentation for a software library know how overwhelming it can be if you have no
clue what you are looking for. Therefore, it is essential that we master not only the coding
aspect but also the thought process and workflow required to analyze data, which will
prove the most useful in augmenting our skill set in the future.

Much like the scientific method, data science has some common workflows that we can
follow when we want to conduct an analysis and present the results. The backbone of this
process is statistics, which gives us ways to describe our data, make predictions, and also
draw conclusions about it. Since prior knowledge of statistics is not a prerequisite, this
chapter will give us exposure to the statistical concepts we will use throughout this book,
as well as areas for further exploration.

After covering the fundamentals, we will get our Python environment set up for the
remainder of this book. Python is a powerful language, and its uses go way beyond data
science: building web applications, software, and web scraping, to name a few. In order
to work effectively across projects, we need to learn how to make virtual environments,
which will isolate each project's dependencies. Finally, we will learn how to work with
Jupyter Notebooks in order to follow along with the text.

4 Introduction to Data Analysis

The following topics will be covered in this chapter:

• The fundamentals of data analysis

• Statistical foundations

• Setting up a virtual environment

Chapter materials
All the files for this book are on GitHub at https://github.com/stefmolin/
Hands-On-Data-Analysis-with-Pandas-2nd-edition. While having a
GitHub account isn't necessary to work through this book, it is a good idea to create one,
as it will serve as a portfolio for any data/coding projects. In addition, working with Git
will provide a version control system and make collaboration easy.

Tip
Check out this article to learn some Git basics: https://www.
freecodecamp.org/news/learn-the-basics-of-git-in-
under-10-minutes-da548267cc91/.

In order to get a local copy of the files, we have a few options (ordered from least useful
to most useful):

• Download the ZIP file and extract the files locally.

• Clone the repository without forking it.

• Fork the repository and then clone it.

This book includes exercises for every chapter; therefore, for those who want to
keep a copy of their solutions along with the original content on GitHub, it is highly
recommended to fork the repository and clone the forked version. When we fork
a repository, GitHub will make a repository under our own profile with the latest version
of the original. Then, whenever we make changes to our version, we can push the changes
back up. Note that if we simply clone, we don't get this benefit.

https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition
https://www.freecodecamp.org/news/learn-the-basics-of-git-in-under-10-minutes-da548267cc91/
https://www.freecodecamp.org/news/learn-the-basics-of-git-in-under-10-minutes-da548267cc91/
https://www.freecodecamp.org/news/learn-the-basics-of-git-in-under-10-minutes-da548267cc91/

Chapter materials 5

The relevant buttons for initiating this process are circled in the following screenshot:

Figure 1.1 – Getting a local copy of the code for following along

Important note
The cloning process will copy the files to the current working directory in
a folder called Hands-On-Data-Analysis-with-Pandas-2nd-
edition. To make a folder to put this repository in, we can use
mkdir my_folder && cd my_folder. This will create a new
folder (directory) called my_folder and then change the current directory
to that folder, after which we can clone the repository. We can chain these
two commands (and any number of commands) together by adding && in
between them. This can be thought of as and then (provided the first command
succeeds).

This repository has folders for each chapter. This chapter's materials can be found at
https://github.com/stefmolin/Hands-On-Data-Analysis-with-
Pandas-2nd-edition/tree/master/ch_01. While the bulk of this chapter
doesn't involve any coding, feel free to follow along in the introduction_to_data_
analysis.ipynb notebook on the GitHub website until we set up our environment
toward the end of the chapter. After we do so, we will use the check_your_
environment.ipynb notebook to get familiar with Jupyter Notebooks and to run
some checks to make sure that everything is set up properly for the rest of this book.

Since the code that's used to generate the content in these notebooks is not the main
focus of this chapter, the majority of it has been separated into the visual_aids
package, which is used to create visuals for explaining concepts throughout the book,
and the check_environment.py file. If you choose to inspect these files, don't be
overwhelmed; everything that's relevant to data science will be covered in this book.

https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/ch_01
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/ch_01

6 Introduction to Data Analysis

Every chapter includes exercises; however, for this chapter only, there is an
exercises.ipynb notebook, with code to generate some initial data. Knowledge of
basic Python will be necessary to complete these exercises. For those who would like
to review the basics, make sure to run through the python_101.ipynb notebook,
included in the materials for this chapter, for a crash course. The official Python tutorial is
a good place to start for a more formal introduction: https://docs.python.org/3/
tutorial/index.html.

The fundamentals of data analysis
Data analysis is a highly iterative process involving collection, preparation (wrangling),
exploratory data analysis (EDA), and drawing conclusions. During an analysis, we
will frequently revisit each of these steps. The following diagram depicts a generalized
workflow:

Figure 1.2 – The data analysis workflow

Data

Collect data EDA +
Data Wrangling Get more data?

Yes

Draw conclusionsNo

Communicate
results

https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html

The fundamentals of data analysis 7

Over the next few sections, we will get an overview of each of these steps, starting with
data collection. In practice, this process is heavily skewed toward the data preparation
side. Surveys have found that although data scientists enjoy the data preparation
side of their job the least, it makes up 80% of their work (https://www.forbes.
com/sites/gilpress/2016/03/23/data-preparation-most-time-
consuming-least-enjoyable-data-science-task-survey-says/).
This data preparation step is where pandas really shines.

Data collection
Data collection is the natural first step for any data analysis—we can't analyze data we
don't have. In reality, our analysis can begin even before we have the data. When we
decide what we want to investigate or analyze, we have to think about what kind of data
we can collect that will be useful for our analysis. While data can come from anywhere,
we will explore the following sources throughout this book:

• Web scraping to extract data from a website's HTML (often with Python packages
such as selenium, requests, scrapy, and beautifulsoup)

• Application programming interfaces (APIs) for web services from which we
can collect data with HTTP requests (perhaps using cURL or the requests
Python package)

• Databases (data can be extracted with SQL or another database-querying language)

• Internet resources that provide data for download, such as government websites
or Yahoo! Finance

• Log files

Important note
Chapter 2, Working with Pandas DataFrames, will give us the skills we need
to work with the aforementioned data sources. Chapter 12, The Road Ahead,
provides numerous resources for finding data sources.

We are surrounded by data, so the possibilities are limitless. It is important, however,
to make sure that we are collecting data that will help us draw conclusions. For example,
if we are trying to determine whether hot chocolate sales are higher when the temperature
is lower, we should collect data on the amount of hot chocolate sold and the temperatures
each day. While it might be interesting to see how far people traveled to get the hot
chocolate, it's not relevant to our analysis.

https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/

8 Introduction to Data Analysis

Don't worry too much about finding the perfect data before beginning an analysis.
Odds are, there will always be something we want to add/remove from the initial dataset,
reformat, merge with other data, or change in some way. This is where data wrangling
comes into play.

Data wrangling
Data wrangling is the process of preparing the data and getting it into a format that can
be used for analysis. The unfortunate reality of data is that it is often dirty, meaning that
it requires cleaning (preparation) before it can be used. The following are some issues we
may encounter with our data:

• Human errors: Data is recorded (or even collected) incorrectly, such as putting 100
instead of 1000, or typos. In addition, there may be multiple versions of the same
entry recorded, such as New York City, NYC, and nyc.

• Computer error: Perhaps we weren't recording entries for a while (missing data).

• Unexpected values: Maybe whoever was recording the data decided to use
a question mark for a missing value in a numeric column, so now all the entries
in the column will be treated as text instead of numeric values.

• Incomplete information: Think of a survey with optional questions; not everyone
will answer them, so we will have missing data, but not due to computer or
human error.

• Resolution: The data may have been collected per second, while we need hourly
data for our analysis.

• Relevance of the fields: Often, data is collected or generated as a product of some
process rather than explicitly for our analysis. In order to get it to a usable state,
we will have to clean it up.

• Format of the data: Data may be recorded in a format that isn't conducive to
analysis, which will require us to reshape it.

• Misconfigurations in the data-recording process: Data coming from sources such
as misconfigured trackers and/or webhooks may be missing fields or passed in the
wrong order.

Most of these data quality issues can be remedied, but some cannot, such as when the
data is collected daily and we need it on an hourly resolution. It is our responsibility
to carefully examine our data and handle any issues so that our analysis doesn't get
distorted. We will cover this process in depth in Chapter 3, Data Wrangling with Pandas,
and Chapter 4, Aggregating Pandas DataFrames.

The fundamentals of data analysis 9

Once we have performed an initial cleaning of the data, we are ready for EDA. Note that
during EDA, we may need some additional data wrangling: these two steps are highly
intertwined.

Exploratory data analysis
During EDA, we use visualizations and summary statistics to get a better understanding
of the data. Since the human brain excels at picking out visual patterns, data visualization
is essential to any analysis. In fact, some characteristics of the data can only be observed
in a plot. Depending on our data, we may create plots to see how a variable of interest
has evolved over time, compare how many observations belong to each category, find
outliers, look at distributions of continuous and discrete variables, and much more. In
Chapter 5, Visualizing Data with Pandas and Matplotlib, and Chapter 6, Plotting with
Seaborn and Customization Techniques, we will learn how to create these plots for both
EDA and presentation.

Important note
Data visualizations are very powerful; unfortunately, they can often be
misleading. One common issue stems from the scale of the y-axis because
most plotting tools will zoom in by default to show the pattern up close.
It would be difficult for software to know what the appropriate axis limits are
for every possible plot; therefore, it is our job to properly adjust the axes before
presenting our results. You can read about some more ways that plots can
be misleading at https://venngage.com/blog/misleading-
graphs/.

In the workflow diagram we saw earlier (Figure 1.2), EDA and data wrangling shared
a box. This is because they are closely tied:

• Data needs to be prepped before EDA.

• Visualizations that are created during EDA may indicate the need for additional
data cleaning.

• Data wrangling uses summary statistics to look for potential data issues, while
EDA uses them to understand the data. Improper cleaning will distort the findings
when we're conducting EDA. In addition, data wrangling skills will be required to
get summary statistics across subsets of the data.

https://venngage.com/blog/misleading-graphs/
https://venngage.com/blog/misleading-graphs/

10 Introduction to Data Analysis

When calculating summary statistics, we must keep the type of data we collected in mind.
Data can be quantitative (measurable quantities) or categorical (descriptions, groupings,
or categories). Within these classes of data, we have further subdivisions that let us know
what types of operations we can perform on them.

For example, categorical data can be nominal, where we assign a numeric value to each
level of the category, such as on = 1/off = 0. Note that the fact that on is greater than
off is meaningless because we arbitrarily chose those numbers to represent the states on
and off. When there is a ranking among the categories, they are ordinal, meaning that
we can order the levels (for instance, we can have low < medium < high).

Quantitative data can use an interval scale or a ratio scale. The interval scale includes
things such as temperature. We can measure temperatures in Celsius and compare the
temperatures of two cities, but it doesn't mean anything to say one city is twice as hot
as the other. Therefore, interval scale values can be meaningfully compared using
addition/subtraction, but not multiplication/division. The ratio scale, then, are those
values that can be meaningfully compared with ratios (using multiplication and division).
Examples of the ratio scale include prices, sizes, and counts.

When we complete our EDA, we can decide on the next steps by drawing conclusions.

Drawing conclusions
After we have collected the data for our analysis, cleaned it up, and performed some
thorough EDA, it is time to draw conclusions. This is where we summarize our findings
from EDA and decide the next steps:

• Did we notice any patterns or relationships when visualizing the data?

• Does it look like we can make accurate predictions from our data? Does it make
sense to move to modeling the data?

• Should we handle missing data points? How?

• How is the data distributed?

• Does the data help us answer the questions we have or give insight into the problem
we are investigating?

• Do we need to collect new or additional data?

Statistical foundations 11

If we decide to model the data, this falls under machine learning and statistics.
While not technically data analysis, it is usually the next step, and we will cover it in
Chapter 9, Getting Started with Machine Learning in Python, and Chapter 10, Making
Better Predictions – Optimizing Models. In addition, we will see how this entire process
will work in practice in Chapter 11, Machine Learning Anomaly Detection. As a reference,
in the Machine learning workflow section in the Appendix, there is a workflow diagram
depicting the full process from data analysis to machine learning. Chapter 7, Financial
Analysis – Bitcoin and the Stock Market, and Chapter 8, Rule-Based Anomaly Detection,
will focus on drawing conclusions from data analysis, rather than building models.

The next section will be a review of statistics; those with knowledge of statistics can skip
ahead to the Setting up a virtual environment section.

Statistical foundations
When we want to make observations about the data we are analyzing, we often, if not
always, turn to statistics in some fashion. The data we have is referred to as the sample,
which was observed from (and is a subset of) the population. Two broad categories
of statistics are descriptive and inferential statistics. With descriptive statistics, as the
name implies, we are looking to describe the sample. Inferential statistics involves using
the sample statistics to infer, or deduce, something about the population, such as the
underlying distribution.

Important note
Sample statistics are used as estimators of the population parameters, meaning
that we have to quantify their bias and variance. There is a multitude of
methods for this; some will make assumptions on the shape of the distribution
(parametric) and others won't (non-parametric). This is all well beyond the
scope of this book, but it is good to be aware of.

Often, the goal of an analysis is to create a story for the data; unfortunately, it is very easy
to misuse statistics. It's the subject of a famous quote:

"There are three kinds of lies: lies, damned lies, and statistics."

— Benjamin Disraeli
This is especially true of inferential statistics, which is used in many scientific studies and
papers to show the significance of the researchers' findings. This is a more advanced topic
and, since this isn't a statistics book, we will only briefly touch upon some of the tools and
principles behind inferential statistics, which can be pursued further. We will focus on
descriptive statistics to help explain the data we are analyzing.

12 Introduction to Data Analysis

Sampling
There's an important thing to remember before we attempt any analysis: our sample must
be a random sample that is representative of the population. This means that the data
must be sampled without bias (for example, if we are asking people whether they like
a certain sports team, we can't only ask fans of the team) and that we should have (ideally)
members of all distinct groups from the population in our sample (in the sports team
example, we can't just ask men).

When we discuss machine learning in Chapter 9, Getting Started with Machine Learning
in Python, we will need to sample our data, which will be a sample to begin with. This
is called resampling. Depending on the data, we will have to pick a different method
of sampling. Often, our best bet is a simple random sample: we use a random number
generator to pick rows at random. When we have distinct groups in the data, we want
our sample to be a stratified random sample, which will preserve the proportion of the
groups in the data. In some cases, we don't have enough data for the aforementioned
sampling strategies, so we may turn to random sampling with replacement
(bootstrapping); this is called a bootstrap sample. Note that our underlying sample
needs to have been a random sample or we risk increasing the bias of the estimator
(we could pick certain rows more often because they are in the data more often if it was
a convenience sample, while in the true population these rows aren't as prevalent).
We will see an example of bootstrapping in Chapter 8, Rule-Based Anomaly Detection.

Important note
A thorough discussion of the theory behind bootstrapping and its
consequences is well beyond the scope of this book, but watch this video for
a primer: https://www.youtube.com/watch?v=gcPIyeqymOU.

You can read more about sampling methods, along with their strengths and weaknesses,
at https://www.khanacademy.org/math/statistics-probability/
designing-studies/sampling-methods-stats/a/sampling-methods-
review.

Descriptive statistics
We will begin our discussion of descriptive statistics with univariate statistics; univariate
simply means that these statistics are calculated from one (uni) variable. Everything in
this section can be extended to the whole dataset, but the statistics will be calculated per
variable we are recording (meaning that if we had 100 observations of speed and distance
pairs, we could calculate the averages across the dataset, which would give us the average
speed and average distance statistics).

https://www.youtube.com/watch?v=gcPIyeqymOU
https://www.khanacademy.org/math/statistics-probability/designing-studies/sampling-methods-stats/a/sampling-methods-review
https://www.khanacademy.org/math/statistics-probability/designing-studies/sampling-methods-stats/a/sampling-methods-review
https://www.khanacademy.org/math/statistics-probability/designing-studies/sampling-methods-stats/a/sampling-methods-review

Statistical foundations 13

Descriptive statistics are used to describe and/or summarize the data we are working
with. We can start our summarization of the data with a measure of central tendency,
which describes where most of the data is centered around, and a measure of spread or
dispersion, which indicates how far apart values are.

Measures of central tendency
Measures of central tendency describe the center of our distribution of data. There are
three common statistics that are used as measures of center: mean, median, and mode.
Each has its own strengths, depending on the data we are working with.

Mean
Perhaps the most common statistic for summarizing data is the average, or mean. The
population mean is denoted by μ (the Greek letter mu), and the sample mean is written
as �̅�𝑥 (pronounced X-bar). The sample mean is calculated by summing all the values and
dividing by the count of values; for example, the mean of the numbers 0, 1, 1, 2, and 9
is 2.6 ((0 + 1 + 1 + 2 + 9)/5):

We use xi to represent the ith observation of the variable X. Note how the variable as
a whole is represented with a capital letter, while the specific observation is lowercase.
Σ (the Greek capital letter sigma) is used to represent a summation, which, in the equation
for the mean, goes from 1 to n, which is the number of observations.

One important thing to note about the mean is that it is very sensitive to outliers
(values created by a different generative process than our distribution). In the previous
example, we were dealing with only five values; nevertheless, the 9 is much larger than the
other numbers and pulled the mean higher than all but the 9. In cases where we suspect
outliers to be present in our data, we may want to instead use the median as our measure
of central tendency.

Median
Unlike the mean, the median is robust to outliers. Consider income in the US; the top
1% is much higher than the rest of the population, so this will skew the mean to be
higher and distort the perception of the average person's income. However, the median
will be more representative of the average income because it is the 50th percentile of our
data; this means that 50% of the values are greater than the median and 50% are less than
the median.

�̅�𝑥 =
∑ 𝑥𝑥𝑖𝑖

𝑛𝑛
1
𝑛𝑛

14 Introduction to Data Analysis

Tip
The ith percentile is the value at which i% of the observations are less than
that value, so the 99th percentile is the value in X where 99% of the x's are less
than it.

The median is calculated by taking the middle value from an ordered list of values; in
cases where we have an even number of values, we take the mean of the middle two
values. If we take the numbers 0, 1, 1, 2, and 9 again, our median is 1. Notice that the
mean and median for this dataset are different; however, depending on the distribution
of the data, they may be the same.

Mode
The mode is the most common value in the data (if we, once again, have the numbers
0, 1, 1, 2, and 9, then 1 is the mode). In practice, we will often hear things such as the
distribution is bimodal or multimodal (as opposed to unimodal) in cases where the
distribution has two or more most popular values. This doesn't necessarily mean that
each of them occurred the same amount of times, but rather, they are more common than
the other values by a significant amount. As shown in the following plots, a unimodal
distribution has only one mode (at 0), a bimodal distribution has two (at -2 and 3), and
a multimodal distribution has many (at -2, 0.4, and 3):

Figure 1.3 – Visualizing the mode with continuous data

Understanding the concept of the mode comes in handy when describing continuous
distributions; however, most of the time when we're describing our continuous data,
we will use either the mean or the median as our measure of central tendency. When
working with categorical data, on the other hand, we will typically use the mode.

Statistical foundations 15

Measures of spread
Knowing where the center of the distribution is only gets us partially to being able to
summarize the distribution of our data—we need to know how values fall around the
center and how far apart they are. Measures of spread tell us how the data is dispersed;
this will indicate how thin (low dispersion) or wide (very spread out) our distribution
is. As with measures of central tendency, we have several ways to describe the spread
of a distribution, and which one we choose will depend on the situation and the data.

Range
The range is the distance between the smallest value (minimum) and the largest value
(maximum). The units of the range will be the same units as our data. Therefore, unless
two distributions of data are in the same units and measuring the same thing, we can't
compare their ranges and say one is more dispersed than the other:

Just from the definition of the range, we can see why it wouldn't always be the best way to
measure the spread of our data. It gives us upper and lower bounds on what we have in
the data; however, if we have any outliers in our data, the range will be rendered useless.

Another problem with the range is that it doesn't tell us how the data is dispersed around
its center; it really only tells us how dispersed the entire dataset is. This brings us to the
variance.

Variance
The variance describes how far apart observations are spread out from their average value
(the mean). The population variance is denoted as σ2 (pronounced sigma-squared), and
the sample variance is written as s2. It is calculated as the average squared distance from
the mean. Note that the distances must be squared so that distances below the mean don't
cancel out those above the mean.

If we want the sample variance to be an unbiased estimator of the population variance,
we divide by n - 1 instead of n to account for using the sample mean instead of the
population mean; this is called Bessel's correction (https://en.wikipedia.org/
wiki/Bessel%27s_correction). Most statistical tools will give us the sample
variance by default, since it is very rare that we would have data for the entire population:

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = max(𝑋𝑋) −min(𝑋𝑋)

𝑠𝑠2 =
∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)2𝑛𝑛
1
𝑛𝑛 − 1

https://en.wikipedia.org/wiki/Bessel%27s_correction
https://en.wikipedia.org/wiki/Bessel%27s_correction

16 Introduction to Data Analysis

The variance gives us a statistic with squared units. This means that if we started with
data on income in dollars ($), then our variance would be in dollars squared ($2). This
isn't really useful when we're trying to see how this describes the data; we can use the
magnitude (size) itself to see how spread out something is (large values = large spread),
but beyond that, we need a measure of spread with units that are the same as our data.
For this purpose, we use the standard deviation.

Standard deviation
We can use the standard deviation to see how far from the mean data points are on
average. A small standard deviation means that values are close to the mean, while
a large standard deviation means that values are dispersed more widely. This is tied to
how we would imagine the distribution curve: the smaller the standard deviation, the
thinner the peak of the curve (0.5); the larger the standard deviation, the wider the peak
of the curve (2):

Figure 1.4 – Using standard deviation to quantify the spread of a distribution

The standard deviation is simply the square root of the variance. By performing this
operation, we get a statistic in units that we can make sense of again ($ for our income
example):

Note that the population standard deviation is represented as σ, and the sample standard
deviation is denoted as s.

𝑠𝑠 = √∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)2𝑛𝑛
1
𝑛𝑛 − 1 = √𝑠𝑠2

Statistical foundations 17

Coefficient of variation
When we moved from variance to standard deviation, we were looking to get to units that
made sense; however, if we then want to compare the level of dispersion of one dataset
to another, we would need to have the same units once again. One way around this is to
calculate the coefficient of variation (CV), which is unitless. The CV is the ratio of the
standard deviation to the mean:

We will use this metric in Chapter 7, Financial Analysis – Bitcoin and the Stock Market;
since the CV is unitless, we can use it to compare the volatility of different assets.

Interquartile range
So far, other than the range, we have discussed mean-based measures of dispersion; now,
we will look at how we can describe the spread with the median as our measure of central
tendency. As mentioned earlier, the median is the 50th percentile or the 2nd quartile (Q2).
Percentiles and quartiles are both quantiles—values that divide data into equal groups
each containing the same percentage of the total data. Percentiles divide the data into 100
parts, while quartiles do so into four (25%, 50%, 75%, and 100%).

Since quantiles neatly divide up our data, and we know how much of the data goes in
each section, they are a perfect candidate for helping us quantify the spread of our data.
One common measure for this is the interquartile range (IQR), which is the distance
between the 3rd and 1st quartiles:

The IQR gives us the spread of data around the median and quantifies how much
dispersion we have in the middle 50% of our distribution. It can also be useful when
checking the data for outliers, which we will cover in Chapter 8, Rule-Based Anomaly
Detection. In addition, the IQR can be used to calculate a unitless measure of dispersion,
which we will discuss next.

𝐶𝐶𝐶𝐶 = 𝑠𝑠
�̅�𝑥

𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐼𝐼3 − 𝐼𝐼1

18 Introduction to Data Analysis

Quartile coefficient of dispersion
Just like we had the coefficient of variation when using the mean as our measure of
central tendency, we have the quartile coefficient of dispersion when using the median
as our measure of center. This statistic is also unitless, so it can be used to compare
datasets. It is calculated by dividing the semi-quartile range (half the IQR) by the
midhinge (midpoint between the first and third quartiles):

We will see this metric again in Chapter 7, Financial Analysis – Bitcoin and the Stock
Market, when we assess stock volatility. For now, let's take a look at how we can use
measures of central tendency and dispersion to summarize our data.

Summarizing data
We have seen many examples of descriptive statistics that we can use to summarize our
data by its center and dispersion; in practice, looking at the 5-number summary and
visualizing the distribution prove to be helpful first steps before diving into some of the
other aforementioned metrics. The 5-number summary, as its name indicates, provides
five descriptive statistics that summarize our data:

Figure 1.5 – The 5-number summary

𝑄𝑄𝑄𝑄𝑄𝑄 =
𝑄𝑄3 − 𝑄𝑄1

2
𝑄𝑄1 + 𝑄𝑄3

2
= 𝑄𝑄3 − 𝑄𝑄1
𝑄𝑄3 + 𝑄𝑄1

Statistical foundations 19

A box plot (or box and whisker plot) is a visual representation of the 5-number summary.
The median is denoted by a thick line in the box. The top of the box is Q3 and the bottom
of the box is Q1. Lines (whiskers) extend from both sides of the box boundaries toward the
minimum and maximum. Based on the convention our plotting tool uses, though, they
may only extend to a certain statistic; any values beyond these statistics are marked
as outliers (using points). For this book in general, the lower bound of the whiskers will
be Q1 – 1.5 * IQR and the upper bound will be Q3 + 1.5 * IQR, which is called the
Tukey box plot:

Figure 1.6 – The Tukey box plot

While the box plot is a great tool for getting an initial understanding of the distribution,
we don't get to see how things are distributed inside each of the quartiles. For this
purpose, we turn to histograms for discrete variables (for instance, the number of people
or books) and kernel density estimates (KDEs) for continuous variables (for instance,
heights or time). There is nothing stopping us from using KDEs on discrete variables, but
it is easy to confuse people that way. Histograms work for both discrete and continuous
variables; however, in both cases, we must keep in mind that the number of bins we
choose to divide the data into can easily change the shape of the distribution we see.

20 Introduction to Data Analysis

To make a histogram, a certain number of equal-width bins are created, and then bars
with heights for the number of values we have in each bin are added. The following plot
is a histogram with 10 bins, showing the three measures of central tendency for the same
data that was used to generate the box plot in Figure 1.6:

Figure 1.7 – Example histogram

Important note
In practice, we need to play around with the number of bins to find the best
value. However, we have to be careful as this can misrepresent the shape of the
distribution.

KDEs are similar to histograms, except rather than creating bins for the data, they draw
a smoothed curve, which is an estimate of the distribution's probability density function
(PDF). The PDF is for continuous variables and tells us how probability is distributed over
the values. Higher values for the PDF indicate higher likelihoods:

Figure 1.8 – KDE with marked measures of center

Statistical foundations 21

When the distribution starts to get a little lopsided with long tails on one side, the mean
measure of center can easily get pulled to that side. Distributions that aren't symmetric
have some skew to them. A left (negative) skewed distribution has a long tail on the
left-hand side; a right (positive) skewed distribution has a long tail on the right-hand
side. In the presence of negative skew, the mean will be less than the median, while the
reverse happens with a positive skew. When there is no skew, both will be equal:

Figure 1.9 – Visualizing skew

Important note
There is also another statistic called kurtosis, which compares the density of
the center of the distribution with the density at the tails. Both skewness and
kurtosis can be calculated with the SciPy package.

Each column in our data is a random variable, because every time we observe it, we get
a value according to the underlying distribution—it's not static. When we are interested
in the probability of getting a value of x or less, we use the cumulative distribution
function (CDF), which is the integral (area under the curve) of the PDF:

The probability of the random variable X being less than or equal to the specific value
of x is denoted as P(X ≤ x). With a continuous variable, the probability of getting exactly
x is 0. This is because the probability will be the integral of the PDF from x to x (area
under a curve with zero width), which is 0:

3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.5

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

f
(
x
)

m
o
d
e

m
e
d
i
a
n

m
e
a
n

Left/Negative Skewed

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

f
(
x
)

 mean

median

 mode

No Skew

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

f
(
x
)

m
o
d
e

m
e
d
i
a
n

m
e
a
n

Right/Positive Skewed

𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐶𝐶(𝓍𝓍) = ∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡
𝓍𝓍

−∞

where 𝑓𝑓(𝑡𝑡) is the PDF and ∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡 = 1
∞

−∞

𝑃𝑃(𝑋𝑋 = 𝑥𝑥) = ∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑥𝑥

𝑥𝑥
= 0

22 Introduction to Data Analysis

In order to visualize this, we can find an estimate of the CDF from the sample, called the
empirical cumulative distribution function (ECDF). Since this is cumulative, at the
point where the value on the x-axis is equal to x, the y value is the cumulative probability
of P(X ≤ x). Let's visualize P(X ≤ 50), P(X = 50), and P(X > 50) as an example:

Figure 1.10 – Visualizing the CDF

In addition to examining the distribution of our data, we may find the need to utilize
probability distributions for uses such as simulation (discussed in Chapter 8, Rule-Based
Anomaly Detection) or hypothesis testing (see the Inferential statistics section); let's take a
look at a few distributions that we are likely to come across.

Common distributions
While there are many probability distributions, each with specific use cases, there are
some that we will come across often. The Gaussian, or normal, looks like a bell curve and
is parameterized by its mean (μ) and standard deviation (σ). The standard normal (Z)
has a mean of 0 and a standard deviation of 1. Many things in nature happen to follow the
normal distribution, such as heights. Note that testing whether a distribution is normal is
not trivial—check the Further reading section for more information.

The Poisson distribution is a discrete distribution that is often used to model arrivals.
The time between arrivals can be modeled with the exponential distribution. Both are
defined by their mean, lambda (λ). The uniform distribution places equal likelihood
on each value within its bounds. We often use this for random number generation. When
we generate a random number to simulate a single success/failure outcome, it is called
a Bernoulli trial. This is parameterized by the probability of success (p). When we run
the same experiment multiple times (n), the total number of successes is then a binomial
random variable. Both the Bernoulli and binomial distributions are discrete.

We can visualize both discrete and continuous distributions; however, discrete
distributions give us a probability mass function (PMF) instead of a PDF:

Statistical foundations 23

Figure 1.11 – Visualizing some commonly used distributions

We will use some of these distributions in Chapter 8, Rule-Based Anomaly Detection, when
we simulate some login attempt data for anomaly detection.

Scaling data
In order to compare variables from different distributions, we would have to scale the
data, which we could do with the range by using min-max scaling. We take each data
point, subtract the minimum of the dataset, then divide by the range. This normalizes
our data (scales it to the range [0, 1]):

This isn't the only way to scale data; we can also use the mean and standard deviation.
In this case, we would subtract the mean from each observation and then divide by the
standard deviation to standardize the data. This gives us what is known as a Z-score:

𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑥𝑥 − min(𝑋𝑋)
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑋𝑋)

𝑧𝑧𝑖𝑖 = 𝑥𝑥𝑖𝑖 − �̅�𝑥
𝑠𝑠

24 Introduction to Data Analysis

We are left with a normalized distribution with a mean of 0 and a standard deviation
(and variance) of 1. The Z-score tells us how many standard deviations from the mean
each observation is; the mean has a Z-score of 0, while an observation of 0.5 standard
deviations below the mean will have a Z-score of -0.5.

There are, of course, additional ways to scale our data, and the one we end up choosing
will be dependent on our data and what we are trying to do with it. By keeping the
measures of central tendency and measures of dispersion in mind, you will be able to
identify how the scaling of data is being done in any other methods you come across.

Quantifying relationships between variables
In the previous sections, we were dealing with univariate statistics and were only able
to say something about the variable we were looking at. With multivariate statistics, we
seek to quantify relationships between variables and attempt to make predictions for
future behavior.

The covariance is a statistic for quantifying the relationship between variables by showing
how one variable changes with respect to another (also referred to as their joint variance):

Important note
E[X] is a new notation for us. It is read as the expected value of X or the
expectation of X, and it is calculated by summing all the possible values of X
multiplied by their probability—it's the long-run average of X.

The magnitude of the covariance isn't easy to interpret, but its sign tells us whether the
variables are positively or negatively correlated. However, we would also like to quantify
how strong the relationship is between the variables, which brings us to correlation.
Correlation tells us how variables change together both in direction (same or opposite)
and magnitude (strength of the relationship). To find the correlation, we calculate the
Pearson correlation coefficient, symbolized by ρ (the Greek letter rho), by dividing the
covariance by the product of the standard deviations of the variables:

𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋, 𝑌𝑌) = 𝐸𝐸[(𝑋𝑋 − 𝐸𝐸[𝑋𝑋])(𝑌𝑌 − 𝐸𝐸[𝑌𝑌])]

𝜌𝜌𝑋𝑋,𝑌𝑌 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋, 𝑌𝑌)
𝑠𝑠𝑋𝑋𝑠𝑠𝑌𝑌

Statistical foundations 25

This normalizes the covariance and results in a statistic bounded between -1 and 1,
making it easy to describe both the direction of the correlation (sign) and the strength of
it (magnitude). Correlations of 1 are said to be perfect positive (linear) correlations, while
those of -1 are perfect negative correlations. Values near 0 aren't correlated. If correlation
coefficients are near 1 in absolute value, then the variables are said to be strongly
correlated; those closer to 0.5 are said to be weakly correlated.

Let's look at some examples using scatter plots. In the leftmost subplot of Figure 1.12
(ρ = 0.11), we see that there is no correlation between the variables: they appear to
be random noise with no pattern. The next plot with ρ = -0.52 has a weak negative
correlation: we can see that the variables appear to move together with the x variable
increasing, while the y variable decreases, but there is still a bit of randomness. In the third
plot from the left (ρ = 0.87), there is a strong positive correlation: x and y are increasing
together. The rightmost plot with ρ = -0.99 has a near-perfect negative correlation: as x
increases, y decreases. We can also see how the points form a line:

Figure 1.12 – Comparing correlation coefficients

To quickly eyeball the strength and direction of the relationship between two variables
(and see whether there even seems to be one), we will often use scatter plots rather than
calculating the exact correlation coefficient. This is for a couple of reasons:

• It's easier to find patterns in visualizations, but it's more work to arrive at the same
conclusion by looking at numbers and tables.

• We might see that the variables seem related, but they may not be linearly related.
Looking at a visual representation will make it easy to see if our data is actually
quadratic, exponential, logarithmic, or some other non-linear function.

26 Introduction to Data Analysis

Both of the following plots depict data with strong positive correlations, but it's pretty
obvious when looking at the scatter plots that these are not linear. The one on the left is
logarithmic, while the one on the right is exponential:

Figure 1.13 – The correlation coefficient can be misleading

It's very important to remember that while we may find a correlation between X and Y,
it doesn't mean that X causes Y or that Y causes X. There could be some Z that actually
causes both; perhaps X causes some intermediary event that causes Y, or it is actually
just a coincidence. Keep in mind that we often don't have enough information to report
causation—correlation does not imply causation.

Tip
Be sure to check out Tyler Vigen's Spurious Correlations blog (https://
www.tylervigen.com/spurious-correlations) for some
interesting correlations.

Pitfalls of summary statistics
There is a very interesting dataset illustrating how careful we must be when only using
summary statistics and correlation coefficients to describe our data. It also shows us
that plotting is not optional. Anscombe's quartet is a collection of four different datasets
that have identical summary statistics and correlation coefficients, but when plotted,
it is obvious they are not similar:

https://www.tylervigen.com/spurious-correlations
https://www.tylervigen.com/spurious-correlations

Statistical foundations 27

Figure 1.14 – Summary statistics can be misleading

Notice that each of the plots in Figure 1.14 has an identical best-fit line defined by the
equation y = 0.50x + 3.00. In the next section, we will discuss, at a high level, how this line
is created and what it means.

28 Introduction to Data Analysis

Important note
Summary statistics are very helpful when we're getting to know the data, but be
wary of relying exclusively on them. Remember, statistics can be misleading;
be sure to also plot the data before drawing any conclusions or proceeding
with the analysis. You can read more about Anscombe's quartet at https://
en.wikipedia.org/wiki/Anscombe%27s_quartet. Also, be
sure to check out the Datasaurus Dozen, which are 13 datasets that also have
the same summary statistics, at https://www.autodeskresearch.
com/publications/samestats.

Prediction and forecasting
Say our favorite ice cream shop has asked us to help predict how many ice creams they can
expect to sell on a given day. They are convinced that the temperature outside has a strong
influence on their sales, so they have collected data on the number of ice creams sold at
a given temperature. We agree to help them, and the first thing we do is make a scatter
plot of the data they collected:

Figure 1.15 – Observations of ice cream sales at various temperatures

We can observe an upward trend in the scatter plot: more ice creams are sold at higher
temperatures. In order to help out the ice cream shop, though, we need to find a way
to make predictions from this data. We can use a technique called regression to model
the relationship between temperature and ice cream sales with an equation. Using this
equation, we will be able to predict ice cream sales at a given temperature.

https://en.wikipedia.org/wiki/Anscombe%27s_quartet
https://en.wikipedia.org/wiki/Anscombe%27s_quartet
https://www.autodeskresearch.com/publications/samestats
https://www.autodeskresearch.com/publications/samestats

Statistical foundations 29

Important note
Remember that correlation does not imply causation. People may buy ice
cream when it is warmer, but warmer temperatures don't necessarily cause
people to buy ice cream.

In Chapter 9, Getting Started with Machine Learning in Python, we will go over regression
in depth, so this discussion will be a high-level overview. There are many types of
regression that will yield a different type of equation, such as linear (which we will use
for this example) and logistic. Our first step will be to identify the dependent variable,
which is the quantity we want to predict (ice cream sales), and the variables we will use to
predict it, which are called independent variables. While we can have many independent
variables, our ice cream sales example only has one: temperature. Therefore, we will use
simple linear regression to model the relationship as a line:

Figure 1.16 – Fitting a line to the ice cream sales data

The regression line in the previous scatter plot yields the following equation for the
relationship:

Suppose that today the temperature is 35°C—we would plug that in for temperature in
the equation. The result predicts that the ice cream shop will sell 24.54 ice creams. This
prediction is along the red line in the previous plot. Note that the ice cream shop can't
actually sell fractions of ice cream.

𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐 𝑠𝑠𝑐𝑐𝑠𝑠𝑖𝑖𝑠𝑠 = 1.50 × 𝑡𝑡𝑖𝑖𝑐𝑐𝑡𝑡𝑖𝑖𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑐𝑐𝑖𝑖 − 27.96

30 Introduction to Data Analysis

Before leaving the model in the hands of the ice cream shop, it's important to discuss the
difference between the dotted and solid portions of the regression line that we obtained.
When we make predictions using the solid portion of the line, we are using interpolation,
meaning that we will be predicting ice cream sales for temperatures the regression was
created on. On the other hand, if we try to predict how many ice creams will be sold at
45°C, it is called extrapolation (the dotted portion of the line), since we didn't have any
temperatures this high when we ran the regression. Extrapolation can be very dangerous
as many trends don't continue indefinitely. People may decide not to leave their houses
because it is so hot. This means that instead of selling the predicted 39.54 ice creams, they
would sell zero.

When working with time series, our terminology is a little different: we often look to
forecast future values based on past values. Forecasting is a type of prediction for time
series. Before we try to model the time series, however, we will often use a process called
time series decomposition to split the time series into components, which can be
combined in an additive or multiplicative fashion and may be used as parts of a model.

The trend component describes the behavior of the time series in the long term without
accounting for seasonal or cyclical effects. Using the trend, we can make broad statements
about the time series in the long run, such as the population of Earth is increasing or the
value of a stock is stagnating. The seasonality component explains the systematic and
calendar-related movements of a time series. For example, the number of ice cream trucks
on the streets of New York City is high in the summer and drops to nothing in the winter;
this pattern repeats every year, regardless of whether the actual amount each summer
is the same. Lastly, the cyclical component accounts for anything else unexplained or
irregular with the time series; this could be something such as a hurricane driving the
number of ice cream trucks down in the short term because it isn't safe to be outside.
This component is difficult to anticipate with a forecast due to its unexpected nature.

We can use Python to decompose the time series into trend, seasonality, and noise or
residuals. The cyclical component is captured in the noise (random, unpredictable data);
after we remove the trend and seasonality from the time series, what we are left with is the
residual:

Statistical foundations 31

Figure 1.17 – An example of time series decomposition

When building models to forecast time series, some common methods include
exponential smoothing and ARIMA-family models. ARIMA stands for autoregressive
(AR), integrated (I), moving average (MA). Autoregressive models take advantage of
the fact that an observation at time t is correlated to a previous observation, for example,
at time t - 1. In Chapter 5, Visualizing Data with Pandas and Matplotlib, we will look at
some techniques for determining whether a time series is autoregressive; note that not all
time series are. The integrated component concerns the differenced data, or the change
in the data from one time to another. For example, if we were concerned with a lag
(distance between times) of 1, the differenced data would be the value at time t subtracted
by the value at time t - 1. Lastly, the moving average component uses a sliding window to
average the last x observations, where x is the length of the sliding window. If, for example,
we have a 3-period moving average, by the time we have all of the data up to time 5, our
moving average calculation only uses time periods 3, 4, and 5 to forecast time 6. We will
build an ARIMA model in Chapter 7, Financial Analysis – Bitcoin and the Stock Market.

The moving average puts equal weight on each time period in the past involved in the
calculation. In practice, this isn't always a realistic expectation of our data. Sometimes,
all past values are important, but they vary in their influence on future data points.
For these cases, we can use exponential smoothing, which allows us to put more weight
on more recent values and less weight on values further away from what we are predicting.

32 Introduction to Data Analysis

Note that we aren't limited to predicting numbers; in fact, depending on the data, our
predictions could be categorical in nature—things such as determining which flavor
of ice cream will sell the most on a given day or whether an email is spam or not. This
type of prediction will be introduced in Chapter 9, Getting Started with Machine Learning
in Python.

Inferential statistics
As mentioned earlier, inferential statistics deals with inferring or deducing things from the
sample data we have in order to make statements about the population as a whole. When
we're looking to state our conclusions, we have to be mindful of whether we conducted
an observational study or an experiment. With an observational study, the independent
variable is not under the control of the researchers, and so we are observing those taking
part in our study (think about studies on smoking—we can't force people to smoke).
The fact that we can't control the independent variable means that we cannot conclude
causation.

With an experiment, we are able to directly influence the independent variable and
randomly assign subjects to the control and test groups, such as A/B tests (for anything
from website redesigns to ad copy). Note that the control group doesn't receive treatment;
they can be given a placebo (depending on what the study is). The ideal setup for this
is double-blind, where the researchers administering the treatment don't know which
treatment is the placebo and also don't know which subject belongs to which group.

Important note
We can often find reference to Bayesian inference and frequentist inference.
These are based on two different ways of approaching probability. Frequentist
statistics focuses on the frequency of the event, while Bayesian statistics uses
a degree of belief when determining the probability of an event. We will see
an example of Bayesian statistics in Chapter 11, Machine Learning Anomaly
Detection. You can read more about how these methods differ at https://
www.probabilisticworld.com/frequentist-bayesian-
approaches-inferential-statistics/.

https://www.probabilisticworld.com/frequentist-bayesian-approaches-inferential-statistics/
https://www.probabilisticworld.com/frequentist-bayesian-approaches-inferential-statistics/
https://www.probabilisticworld.com/frequentist-bayesian-approaches-inferential-statistics/

Statistical foundations 33

Inferential statistics gives us tools to translate our understanding of the sample data to
a statement about the population. Remember that the sample statistics we discussed
earlier are estimators for the population parameters. Our estimators need confidence
intervals, which provide a point estimate and a margin of error around it. This is the
range that the true population parameter will be in at a certain confidence level. At the
95% confidence level, 95% of the confidence intervals that are calculated from random
samples of the population contain the true population parameter. Frequently, 95% is
chosen for the confidence level and other purposes in statistics, although 90% and 99%
are also common; the higher the confidence level, the wider the interval.

Hypothesis tests allow us to test whether the true population parameter is less than,
greater than, or not equal to some value at a certain significance level (called alpha).
The process of performing a hypothesis test starts with stating our initial assumption or
null hypothesis: for example, the true population mean is 0. We pick a level of statistical
significance, usually 5%, which is the probability of rejecting the null hypothesis when
it is true. Then, we calculate the critical value for the test statistic, which will depend on
the amount of data we have and the type of statistic (such as the mean of one population
or the proportion of votes for a candidate) we are testing. The critical value is compared
to the test statistic from our data and, based on the result, we either reject or fail to reject
the null hypothesis. Hypothesis tests are closely related to confidence intervals. The
significance level is equivalent to 1 minus the confidence level. This means that a result is
statistically significant if the null hypothesis value is not in the confidence interval.

Important note
There are many things we have to be aware of when picking the method to
calculate a confidence interval or the proper test statistic for a hypothesis test.
This is beyond the scope of this book, but check out the link in the Further
reading section at the end of this chapter for more information. Also, be sure to
look at some of the mishaps with the p-values used in hypothesis testing, such
as p-hacking, at https://en.wikipedia.org/wiki/Misuse_
of_p-values.

Now that we have an overview of statistics and data analysis, we are ready to get started
with the Python portion of this book. Let's start by setting up a virtual environment.

https://en.wikipedia.org/wiki/Misuse_of_p-values
https://en.wikipedia.org/wiki/Misuse_of_p-values

34 Introduction to Data Analysis

Setting up a virtual environment
This book was written using Python 3.7.3, but the code should work for Python 3.7.1+,
which is available on all major operating systems. In this section, we will go over how
to set up the virtual environment in order to follow along with this book. If Python
isn't already installed on your computer, read through the following sections on virtual
environments first, and then decide whether to install Anaconda, since it will also
install Python. To install Python without Anaconda, download it from https://www.
python.org/downloads/, and then follow the venv section instead of the conda
section.

Important note
To check whether Python is already installed, run where python3 from
the command line on Windows or which python3 from the command
line on Linux/macOS. If this returns nothing, try running it with just python
(instead of python3). If Python is installed, check the version by running
python3 --version. Note that if python3 works, then you should
use that throughout the book (and conversely, use python if python3
doesn't work).

Virtual environments
Most of the time, when we want to install software on our computer, we simply download
it, but the nature of programming languages where packages are constantly being updated
and rely on specific versions of others means this can cause issues. We could be working
on a project one day where we need a certain version of a Python package (say 0.9.1),
but the next day be working on an analysis where we need the most recent version of
that same package to access some newer functionality (1.1.0). Sounds like there wouldn't
be an issue, right? Well, what happens if this update causes a breaking change to the
first project or another package in our project that relies on this one? This is a common
enough problem that a solution already exists to prevent this from being an issue: virtual
environments.

A virtual environment allows us to create separate environments for each of our projects.
Each of our environments will only have the packages that it needs installed. This makes
it easy to share our environment with others, have multiple versions of the same package
installed on our machine for different projects without interfering with each other, and
avoid unexpected side effects from installing packages that update or have dependencies
on others. It's good practice to make a dedicated virtual environment for any projects we
work on.

https://www.python.org/downloads/
https://www.python.org/downloads/

Setting up a virtual environment 35

We will discuss two common ways to achieve this setup, and you can decide which fits
best. Note that all the code in this section will be executed on the command line.

venv
Python 3 comes with the venv module, which will create a virtual environment in the
location of our choice. The process of setting up and using a development environment is
as follows (after Python is installed):

1. Create a folder for the project.

2. Use venv to create an environment in this folder.

3. Activate the environment.

4. Install Python packages in the environment with pip.

5. Deactivate the environment when finished.

In practice, we will create environments for each project we work on, so our first step
will be to create a directory for all of our project files. For this, we can use the mkdir
command. Once this has been created, we will change our current directory to the newly
created one using the cd command. Since we already obtained the project files (from the
instructions in the Chapter materials section), the following is for reference only. To make
a new directory and move to that directory, we can use the following command:

$ mkdir my_project && cd my_project

Tip
cd <path> changes the current directory to the path specified in <path>,
which can be an absolute (full) path or relative (how to get there from the
current directory) path.

Before moving on, use cd to navigate to the directory containing this book's repository.
Note that the path will depend on where it was cloned/downloaded:

$ cd path/to/Hands-On-Data-Analysis-with-Pandas-2nd-edition

Since there are slight differences in operating systems for the remaining steps, we will
go over Windows and Linux/macOS separately. Note that if you have both Python 2 and
Python 3, make sure you use python3 and not python in the following commands.

36 Introduction to Data Analysis

Windows
To create our environment for this book, we will use the venv module from the standard
library. Note that we must provide a name for our environment (book_env). Remember,
if your Windows setup has python associated with Python 3, then use python instead
of python3 in the following command:

C:\...> python3 -m venv book_env

Now, we have a folder for our virtual environment named book_env inside the
repository folder that we cloned/downloaded earlier. In order to use the environment,
we need to activate it:

C:\...> %cd%\book_env\Scripts\activate.bat

Tip
Windows replaces %cd% with the path to the current directory. This saves us
from having to type the full path up to the book_env part.

Note that after we activate the virtual environment, we can see (book_env) in front
of our prompt on the command line; this lets us know we are in the environment:

(book_env) C:\...>

When we are finished using the environment, we simply deactivate it:

(book_env) C:\...> deactivate

Any packages that are installed in the environment don't exist outside the environment.
Note that we no longer have (book_env) in front of our prompt on the command
line. You can read more about venv in the Python documentation at https://docs.
python.org/3/library/venv.html.

Now that the virtual environment is created, activate it and then head to the Installing the
required Python packages section for the next step.

Linux/macOS
To create our environment for this book, we will use the venv module from the standard
library. Note that we must provide a name for our environment (book_env):

$ python3 -m venv book_env

https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html

Setting up a virtual environment 37

Now, we have a folder for our virtual environment named book_env inside of the
repository folder we cloned/downloaded earlier. In order to use the environment, we need
to activate it:

$ source book_env/bin/activate

Note that after we activate the virtual environment, we can see (book_env) in front of
our prompt on the command line; this lets us know we are in the environment:

(book_env) $

When we are finished using the environment, we simply deactivate it:

(book_env) $ deactivate

Any packages that are installed in the environment don't exist outside the environment.
Note that we no longer have (book_env) in front of our prompt on the command
line. You can read more about venv in the Python documentation at https://docs.
python.org/3/library/venv.html.

Now that the virtual environment is created, activate it and then head to the Installing the
required Python packages section for the next step.

conda
Anaconda provides a way to set up a Python environment specifically for data science.
It includes some of the packages we will use in this book, along with several others
that may be necessary for tasks that aren't covered in this book (and also deals with
dependencies outside of Python that might be tricky to install otherwise). Anaconda uses
conda as the environment and package manager instead of pip, although packages can
still be installed with pip (as long as the pip installed by Anaconda is called). Note that
some packages may not be available with conda, in which case we will have to use pip.
Consult this page in the conda documentation for a comparison of commands used with
conda, pip, and venv: https://conda.io/projects/conda/en/latest/
commands.html#conda-vs-pip-vs-virtualenv-commands.

Important note
Be warned that Anaconda is a very large install (although the Miniconda
version is much lighter). Those who use Python for purposes aside from data
science may prefer the venv method we discussed earlier in order to have
more control over what gets installed.

https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://conda.io/projects/conda/en/latest/commands.html#conda-vs-pip-vs-virtualenv-commands
https://conda.io/projects/conda/en/latest/commands.html#conda-vs-pip-vs-virtualenv-commands

38 Introduction to Data Analysis

Anaconda can also be packaged with the Spyder integrated development environment
(IDE) and Jupyter Notebooks, which we will discuss later. Note that we can use Jupyter
with the venv option as well.

You can read more about Anaconda and how to install it at the following pages in their
official documentation:

• Windows: https://docs.anaconda.com/anaconda/install/
windows/

• macOS: https://docs.anaconda.com/anaconda/install/mac-os/

• Linux: https://docs.anaconda.com/anaconda/install/linux/

• User guide: https://docs.anaconda.com/anaconda/user-guide/

Once you have installed either Anaconda or Miniconda, confirm that it is properly
installed by running conda -V on the command line to display the version. Note that
on Windows, all conda commands need to be run in Anaconda Prompt (as opposed to
Command Prompt).

To create a new conda environment for this book, called book_env, run the following:

(base) $ conda create --name book_env

Running conda env list will show all the conda environments on the system, which
will now include book_env. The current active environment will have an asterisk (*)
next to it—by default, base will be active until we activate another environment:

(base) $ conda env list
conda environments:
#
base * /miniconda3
book_env /miniconda3/envs/book_env

To activate the book_env environment, we run the following command:

(base) $ conda activate book_env

Note that after we activate the virtual environment, we can see (book_env) in front of
our prompt on the command line; this lets us know we are in the environment:

(book_env) $

https://docs.anaconda.com/anaconda/install/windows/
https://docs.anaconda.com/anaconda/install/windows/
https://docs.anaconda.com/anaconda/install/mac-os/
https://docs.anaconda.com/anaconda/install/linux/
https://docs.anaconda.com/anaconda/user-guide/

Setting up a virtual environment 39

When we are finished using the environment, we deactivate it:

(book_env) $ conda deactivate

Any packages that are installed in the environment don't exist outside the environment.
Note that we no longer have (book_env) in front of our prompt on the command
line. You can read more about how to use conda to manage virtual environments
at https://www.freecodecamp.org/news/why-you-need-python-
environments-and-how-to-manage-them-with-conda-85f155f4353c/.

In the next section, we will install the Python packages required for following along with
this book, so be sure to activate the virtual environment now.

Installing the required Python packages
We can do a lot with the Python standard library; however, we will often find the need to
install and use an outside package to extend functionality. The requirements.txt file
in the repository contains all the packages we need to install to work through this book.
It will be in our current directory, but it can also be found at https://github.com/
stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/blob/
master/requirements.txt. This file can be used to install a bunch of packages at
once with the -r flag in the call to pip3 install and has the advantage of being easy
to share.

Before installing anything, be sure to activate the virtual environment that you created
with either venv or conda. Be advised that if the environment is not activated before
running the following command, the packages will be installed outside the environment:

(book_env) $ pip3 install -r requirements.txt

Tip
If you encounter any issues, report them at https://github.com/
stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-
edition/issues.

https://www.freecodecamp.org/news/why-you-need-python-environments-and-how-to-manage-them-with-conda-85f155f4353c/
https://www.freecodecamp.org/news/why-you-need-python-environments-and-how-to-manage-them-with-conda-85f155f4353c/
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/blob/master/requirements.txt
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/blob/master/requirements.txt
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/blob/master/requirements.txt
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/issues
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/issues
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/issues

40 Introduction to Data Analysis

Why pandas?
When it comes to data science in Python, the pandas library is pretty much ubiquitous.
It is built on top of the NumPy library, which allows us to perform mathematical
operations on arrays of single-type data efficiently. Pandas expands this to dataframes,
which can be thought of as tables of data. We will get a more formal introduction to
dataframes in Chapter 2, Working with Pandas DataFrames.

Aside from efficient operations, pandas also provides wrappers around the
matplotlib plotting library, making it very easy to create a variety of plots without
needing to write many lines of matplotlib code. We can always tweak our plots using
matplotlib, but for quickly visualizing our data, we only need one line of code in
pandas. We will explore this functionality in Chapter 5, Visualizing Data with Pandas
and Matplotlib, and Chapter 6, Plotting with Seaborn and Customization Techniques.

Important note
Wrapper functions wrap around code from another library, obscuring some
of its complexity and leaving us with a simpler interface for repeating that
functionality. This is a core principle of object-oriented programming (OOP)
called abstraction, which reduces complexity and the duplication of code. We
will create our own wrapper functions throughout this book.

In addition to pandas, this book makes use of Jupyter Notebooks. While you are free to
choose not to use them, it's important to be familiar with Jupyter Notebooks as they are
very common in the data world. As an introduction, we will use a Jupyter Notebook to
validate our setup in the next section.

Jupyter Notebooks
Each chapter of this book includes Jupyter Notebooks for following along. Jupyter
Notebooks are omnipresent in Python data science because they make it very easy to
write and test code in more of a discovery environment compared to writing a program.
We can execute one block of code at a time and have the results printed to the notebook,
directly beneath the code that generated it. In addition, we can use Markdown to add text
explanations to our work. Jupyter Notebooks can be easily packaged up and shared; they
can be pushed to GitHub (where they will be rendered), converted into HTML or PDF,
sent to someone else, or presented.

Setting up a virtual environment 41

Launching JupyterLab
JupyterLab is an IDE that allows us to create Jupyter Notebooks and Python scripts,
interact with the terminal, create text documents, reference documentation, and much
more from a clean web interface on our local machine. There are lots of keyboard
shortcuts to master before really becoming a power user, but the interface is pretty
intuitive. When we created our environment, we installed everything we needed to run
JupyterLab, so let's take a quick tour of the IDE and make sure that our environment is set
up properly. First, we activate our environment, and then we launch JupyterLab:

(book_env) $ jupyter lab

This will then launch a window in the default browser with JupyterLab. We will be greeted
with the Launcher tab and the File Browser pane to the left:

Figure 1.18 – Launching JupyterLab

Using the File Browser pane, double-click on the ch_01 folder, which contains the Jupyter
Notebook that we will use to validate our setup.

42 Introduction to Data Analysis

Validating the virtual environment
Open the checking_your_setup.ipynb notebook in the ch_01 folder, as shown in
the following screenshot:

Figure 1.19 – Validating the virtual environment setup

Important note
The kernel is the process that runs and introspects our code in a Jupyter
Notebook. Note that we aren't limited to running Python—we can run kernels
for R, Julia, Scala, and other languages as well. By default, we will be running
Python using the IPython kernel. We will learn a little more about IPython
throughout the book.

Click on the code cell indicated in the previous screenshot and run it by clicking the play
(▶) button. If everything shows up in green, the environment is all set up. However, if this
isn't the case, run the following command from the virtual environment to create a special
kernel with the book_env virtual environment for use with Jupyter:

(book_env) $ ipython kernel install --user --name=book_env

Setting up a virtual environment 43

This adds an additional option in the Launcher tab, and we can now switch to the
book_env kernel from a Jupyter Notebook as well:

Figure 1.20 – Selecting a different kernel

It's important to note that Jupyter Notebooks will retain the values we assign to variables
while the kernel is running, and the results in the Out[#] cells will be saved when we save
the file. Closing the file doesn't stop the kernel and neither does closing the JupyterLab tab
in the browser.

Closing JupyterLab
Closing the browser with JupyterLab in it doesn't stop JupyterLab or the kernels it is
running (we also won't get the command-line interface back). To shut down JupyterLab
entirely, we need to hit Ctrl + C (which is a keyboard interrupt signal that lets JupyterLab
know we want to shut it down) a couple of times in the terminal until we get the prompt
back:

...
[I 17:36:53.166 LabApp] Interrupted...
[I 17:36:53.168 LabApp] Shutting down 1 kernel
[I 17:36:53.770 LabApp] Kernel shutdown: a38e1[...]b44f
(book_env) $

44 Introduction to Data Analysis

For more information about Jupyter, including a tutorial, check out http://jupyter.
org/. Learn more about JupyterLab at https://jupyterlab.readthedocs.io/
en/stable/.

Summary
In this chapter, we learned about the main processes in conducting data analysis: data
collection, data wrangling, EDA, and drawing conclusions. We followed that up with
an overview of descriptive statistics and learned how to describe the central tendency
and spread of our data; how to summarize it both numerically and visually using the
5-number summary, box plots, histograms, and kernel density estimates; how to scale our
data; and how to quantify relationships between variables in our dataset.

We got an introduction to prediction and time series analysis. Then, we had a very brief
overview of some core topics in inferential statistics that can be explored after mastering
the contents of this book. Note that while all the examples in this chapter were of one
or two variables, real-life data is often high-dimensional. Chapter 10, Making Better
Predictions – Optimizing Models, will touch on some ways to address this. Lastly, we set up
our virtual environment for this book and learned how to work with Jupyter Notebooks.

Now that we have built a strong foundation, we will start working with data in Python in
the next chapter.

Exercises
Run through the introduction_to_data_analysis.ipynb notebook for a review
of this chapter's content, review the python_101.ipynb notebook (if needed), and
then complete the following exercises to practice working with JupyterLab and calculating
summary statistics in Python:

1. Explore the JupyterLab interface and look at some of the shortcuts that are available.
Don't worry about memorizing them for now (eventually, they will become second
nature and save you a lot of time)—just get comfortable using Jupyter Notebooks.

2. Is all data normally distributed? Explain why or why not.

3. When would it make more sense to use the median instead of the mean for the
measure of center?

4. Run the code in the first cell of the exercises.ipynb notebook. It will give you
a list of 100 values to work with for the rest of the exercises in this chapter. Be sure
to treat these values as a sample of the population.

http://jupyter.org/
http://jupyter.org/
https://jupyterlab.readthedocs.io/en/stable/
https://jupyterlab.readthedocs.io/en/stable/

Exercises 45

5. Using the data from exercise 4, calculate the following statistics without importing
anything from the statistics module in the standard library (https://
docs.python.org/3/library/statistics.html), and then confirm your
results match up to those that are obtained when using the statistics module
(where possible):

a) Mean

b) Median

c) Mode (hint: check out the Counter class in the collections module
of the standard library at https://docs.python.org/3/library/
collections.html#collections.Counter)

d) Sample variance

e) Sample standard deviation

6. Using the data from exercise 4, calculate the following statistics using the functions
in the statistics module where appropriate:

a) Range

b) Coefficient of variation

c) Interquartile range

d) Quartile coefficient of dispersion

7. Scale the data created in exercise 4 using the following strategies:

a) Min-max scaling (normalizing)

b) Standardizing

8. Using the scaled data from exercise 7, calculate the following:

a) The covariance between the standardized and normalized data

b) The Pearson correlation coefficient between the standardized and normalized
data (this is actually 1, but due to rounding along the way, the result will be
slightly less)

https://docs.python.org/3/library/statistics.html
https://docs.python.org/3/library/statistics.html
https://docs.python.org/3/library/collections.html#collections.Counter
https://docs.python.org/3/library/collections.html#collections.Counter

46 Introduction to Data Analysis

Further reading
The following are some resources that you can use to become more familiar with Jupyter:

• Jupyter Notebook Basics: https://nbviewer.jupyter.org/github/
jupyter/notebook/blob/master/docs/source/examples/
Notebook/Notebook%20Basics.ipynb

• JupyterLab introduction: https://blog.jupyter.org/jupyterlab-is-
ready-for-users-5a6f039b8906

• Learning Markdown to make your Jupyter Notebooks presentation-ready: https://
medium.com/ibm-data-science-experience/markdown-for-
jupyter-notebooks-cheatsheet-386c05aeebed

• 28 Jupyter Notebook Tips, Tricks, and Shortcuts: https://www.dataquest.io/
blog/jupyter-notebook-tips-tricks-shortcuts/

Some resources for learning more advanced concepts of statistics (that we won't cover
here) and carefully applying them are as follows:

• A Gentle Introduction to Normality Tests in Python: https://
machinelearningmastery.com/a-gentle-introduction-to-
normality-tests-in-python/

• How Hypothesis Tests Work: Confidence Intervals and Confidence Levels: https://
statisticsbyjim.com/hypothesis-testing/hypothesis-tests-
confidence-intervals-levels/

• Intro to Inferential Statistics (Making Predictions with Data) on Udacity: https://
www.udacity.com/course/intro-to-inferential-statistics-
-ud201

• Lesson 4: Confidence Intervals (Penn State Elementary Statistics): https://
online.stat.psu.edu/stat200/lesson/4

• Seeing Theory: A visual introduction to probability and statistics: https://
seeing-theory.brown.edu/index.html

• Statistics Done Wrong: The Woefully Complete Guide by Alex Reinhart: https://
www.statisticsdonewrong.com/

• Survey Sampling Methods: https://stattrek.com/survey-research/
sampling-methods.aspx

https://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/Notebook%20Basics.ipynb
https://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/Notebook%20Basics.ipynb
https://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/Notebook%20Basics.ipynb
https://blog.jupyter.org/jupyterlab-is-ready-for-users-5a6f039b8906
https://blog.jupyter.org/jupyterlab-is-ready-for-users-5a6f039b8906
https://medium.com/ibm-data-science-experience/markdown-for-jupyter-notebooks-cheatsheet-386c05aeebed
https://medium.com/ibm-data-science-experience/markdown-for-jupyter-notebooks-cheatsheet-386c05aeebed
https://medium.com/ibm-data-science-experience/markdown-for-jupyter-notebooks-cheatsheet-386c05aeebed
https://www.dataquest.io/blog/jupyter-notebook-tips-tricks-shortcuts/
https://www.dataquest.io/blog/jupyter-notebook-tips-tricks-shortcuts/
https://machinelearningmastery.com/a-gentle-introduction-to-normality-tests-in-python/
https://machinelearningmastery.com/a-gentle-introduction-to-normality-tests-in-python/
https://machinelearningmastery.com/a-gentle-introduction-to-normality-tests-in-python/
https://statisticsbyjim.com/hypothesis-testing/hypothesis-tests-confidence-intervals-levels/
https://statisticsbyjim.com/hypothesis-testing/hypothesis-tests-confidence-intervals-levels/
https://statisticsbyjim.com/hypothesis-testing/hypothesis-tests-confidence-intervals-levels/
https://www.udacity.com/course/intro-to-inferential-statistics--ud201
https://www.udacity.com/course/intro-to-inferential-statistics--ud201
https://www.udacity.com/course/intro-to-inferential-statistics--ud201
https://online.stat.psu.edu/stat200/lesson/4
https://online.stat.psu.edu/stat200/lesson/4
https://seeing-theory.brown.edu/index.html
https://seeing-theory.brown.edu/index.html
https://www.statisticsdonewrong.com/
https://www.statisticsdonewrong.com/
https://stattrek.com/survey-research/sampling-methods.aspx
https://stattrek.com/survey-research/sampling-methods.aspx

2
Working with

Pandas DataFrames
The time has come for us to begin our journey into the pandas universe. This chapter
will get us comfortable working with some of the basic, yet powerful, operations we will
be performing when conducting our data analyses with pandas.

We will begin with an introduction to the main data structures we will encounter
when working with pandas. Data structures provide us with a format for organizing,
managing, and storing data. Knowledge of pandas data structures will prove infinitely
helpful when it comes to troubleshooting or looking up how to perform an operation
on the data. Keep in mind that these data structures are different from the standard
Python data structures for a reason: they were created for specific analysis tasks. We must
remember that a given method may only work on a certain data structure, so we need to
be able to identify the best structure for the problem we are looking to solve.

Next, we will bring our first dataset into Python. We will learn how to collect data from
an API, create DataFrame objects from other data structures in Python, read in files,
and interact with databases. Initially, you may wonder why we would ever need to create
a DataFrame object from other Python data structures; however, if we ever want to test
something quickly, create our own data, pull data from an API, or repurpose Python code
from another project, then we will find this knowledge indispensable. Finally, we will
master ways to inspect, describe, filter, and summarize our data.

48 Working with Pandas DataFrames

The following topics will be covered in this chapter:

• Pandas data structures

• Creating DataFrame objects from files, API requests, SQL queries, and other
Python objects

• Inspecting DataFrame objects and calculating summary statistics

• Grabbing subsets of the data via selection, slicing, indexing, and filtering

• Adding and removing data

Chapter materials
The files we will be working with in this chapter can be found in the GitHub repository
at https://github.com/stefmolin/Hands-On-Data-Analysis-with-
Pandas-2nd-edition/tree/master/ch_02. We will be working with earthquake
data from the US Geological Survey (USGS) by using the USGS API and CSV files,
which can be found in the data/ directory.

There are four CSV files and a SQLite database file, all of which will be used at different
points throughout this chapter. The earthquakes.csv file contains data that's been
pulled from the USGS API for September 18, 2018 through October 13, 2018. For our
discussion of data structures, we will work with the example_data.csv file, which
contains five rows and a subset of the columns from the earthquakes.csv file.
The tsunamis.csv file is a subset of the data in the earthquakes.csv file for all
earthquakes that were accompanied by tsunamis during the aforementioned date range.
The quakes.db file contains a SQLite database with a single table for the tsunamis data.
We will use this to learn how to read from and write to a database with pandas. Lastly,
the parsed.csv file will be used for the end-of-chapter exercises, and we will also walk
through the creation of it during this chapter.

The accompanying code for this chapter has been divided into six Jupyter Notebooks,
which are numbered in the order they are to be used. They contain the code snippets
we will be running throughout this chapter, along with the full output of any command
that has to be trimmed for this text. Each time we are to switch notebooks, the text will
indicate to do so.

https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/ch_02
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/ch_02

Pandas data structures 49

In the 1-pandas_data_structures.ipynb notebook, we will start learning
about the main pandas data structures. Afterward, we will discuss the various ways
to create DataFrame objects in the 2-creating_dataframes.ipynb notebook.
Our discussion on this topic will continue in the 3-making_dataframes_from_
api_requests.ipynb notebook, where we will explore the USGS API to gather data
for use with pandas. After learning about how we can collect our data, we will begin
to learn how to conduct exploratory data analysis (EDA) in the 4-inspecting_
dataframes.ipynb notebook. Then, in the 5-subsetting_data.ipynb
notebook, we will discuss various ways to select and filter data. Finally, we will learn how
to add and remove data in the 6-adding_and_removing_data.ipynb notebook.
Let's get started.

Pandas data structures
Python has several data structures already, such as tuples, lists, and dictionaries. Pandas
provides two main structures to facilitate working with data: Series and DataFrame.
The Series and DataFrame data structures each contain another pandas data
structure, Index, that we must also be aware of. However, in order to understand these
data structures, we need to first take a look at NumPy (https://numpy.org/doc/
stable/), which provides the n-dimensional arrays that pandas builds upon.

The aforementioned data structures are implemented as Python classes; when we actually
create one, they are referred to as objects or instances. This is an important distinction,
since, as we will see, some actions can be performed using the object itself (a method),
whereas others will require that we pass our object in as an argument to some function.
Note that, in Python, class names are traditionally written in CapWords, while objects are
written in snake_case. (More Python style guidelines can be found at https://www.
python.org/dev/peps/pep-0008/.)

We use a pandas function to read a CSV file into an object of the DataFrame class,
but we use methods on our DataFrame objects to perform actions on them, such as
dropping columns or calculating summary statistics. With pandas, we will often want
to access the attributes of the object we are working with. This won't generate an action
as a method or function would; rather, we will be given information about our pandas
object, such as dimensions, column names, data types, and whether it is empty.

Important note
For the remainder of this book, we will refer to DataFrame objects as
dataframes, Series objects as series, and Index objects as index/indices,
unless we are referring to the class itself.

https://numpy.org/doc/stable/
https://numpy.org/doc/stable/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/

50 Working with Pandas DataFrames

For this section, we will work in the 1-pandas_data_structures.ipynb notebook.
To begin, we will import numpy and use it to read the contents of the example_
data.csv file into a numpy.array object. The data comes from the USGS API for
earthquakes (source: https://earthquake.usgs.gov/fdsnws/event/1/).
Note that this is the only time we will use NumPy to read in a file and that this is being
done for illustrative purposes only; the important part is to look at the way the data is
represented with NumPy:

>>> import numpy as np

>>> data = np.genfromtxt(
... 'data/example_data.csv', delimiter=';',
... names=True, dtype=None, encoding='UTF'
...)
>>> data
array([('2018-10-13 11:10:23.560',
 '262km NW of Ozernovskiy, Russia',
 'mww', 6.7, 'green', 1),
 ('2018-10-13 04:34:15.580',
 '25km E of Bitung, Indonesia', 'mww', 5.2, 'green', 0),
 ('2018-10-13 00:13:46.220', '42km WNW of Sola, Vanuatu',
 'mww', 5.7, 'green', 0),
 ('2018-10-12 21:09:49.240',
 '13km E of Nueva Concepcion, Guatemala',
 'mww', 5.7, 'green', 0),
 ('2018-10-12 02:52:03.620',
 '128km SE of Kimbe, Papua New Guinea',
 'mww', 5.6, 'green', 1)],
 dtype=[('time', '<U23'), ('place', '<U37'),
 ('magType', '<U3'), ('mag', '<f8'),
 ('alert', '<U5'), ('tsunami', '<i8')])

We now have our data in a NumPy array. Using the shape and dtype attributes, we
can gather information about the dimensions of the array and the data types it contains,
respectively:

>>> data.shape
(5,)
>>> data.dtype
dtype([('time', '<U23'), ('place', '<U37'), ('magType', '<U3'),
 ('mag', '<f8'), ('alert', '<U5'), ('tsunami', '<i8')])

https://earthquake.usgs.gov/fdsnws/event/1/

Pandas data structures 51

Each of the entries in the array is a row from the CSV file. NumPy arrays contain a
single data type (unlike lists, which allow mixed types); this allows for fast, vectorized
operations. When we read in the data, we got an array of numpy.void objects, which are
used to store flexible types. This is because NumPy had to store several different data types
per row: four strings, a float, and an integer. Unfortunately, this means that we can't take
advantage of the performance improvements NumPy provides for single data type objects.

Say we want to find the maximum magnitude—we can use a list comprehension
(https://www.python.org/dev/peps/pep-0202/) to select the third index
of each row, which is represented as a numpy.void object. This makes a list, meaning
that we can take the maximum using the max() function. We can use the %%timeit
magic command from IPython (a special command preceded by %) to see how long this
implementation takes (times will vary):

>>> %%timeit
>>> max([row[3] for row in data])
9.74 µs ± 177 ns per loop
(mean ± std. dev. of 7 runs, 100000 loops each)

Note that we should use a list comprehension whenever we would write a for loop with
just a single line under it or want to run an operation against the members of some initial
list. This is a rather simple list comprehension, but we can make them more complex with
the addition of if...else statements. List comprehensions are an extremely powerful
tool to have in our arsenal. More information can be found in the Python documentation
at https://docs.python.org/3/tutorial/datastructures.html#list-
comprehensions.

Tip
IPython (https://ipython.readthedocs.io/en/stable/
index.html) provides an interactive shell for Python. Jupyter Notebooks
are built on top of IPython. While knowledge of IPython is not required
for this book, it can be helpful to be familiar with some of its functionality.
IPython includes a tutorial in their documentation at https://ipython.
readthedocs.io/en/stable/interactive/.

https://www.python.org/dev/peps/pep-0202/
https://ipython.readthedocs.io/en/stable/index.html
https://ipython.readthedocs.io/en/stable/index.html
https://ipython.readthedocs.io/en/stable/interactive/
https://ipython.readthedocs.io/en/stable/interactive/

52 Working with Pandas DataFrames

If we create a NumPy array for each column instead, this operation is much easier
(and more efficient) to perform. To do so, we will use a dictionary comprehension
(https://www.python.org/dev/peps/pep-0274/) to make a dictionary where
the keys are the column names and the values are NumPy arrays of the data. Again, the
important part here is how the data is now represented using NumPy:

>>> array_dict = {
... col: np.array([row[i] for row in data])
... for i, col in enumerate(data.dtype.names)
... }
>>> array_dict
{'time': array(['2018-10-13 11:10:23.560',
 '2018-10-13 04:34:15.580', '2018-10-13 00:13:46.220',
 '2018-10-12 21:09:49.240', '2018-10-12 02:52:03.620'],
 dtype='<U23'),
 'place': array(['262km NW of Ozernovskiy, Russia',
 '25km E of Bitung, Indonesia',
 '42km WNW of Sola, Vanuatu',
 '13km E of Nueva Concepcion, Guatemala',
 '128km SE of Kimbe, Papua New Guinea'], dtype='<U37'),
 'magType': array(['mww', 'mww', 'mww', 'mww', 'mww'],
 dtype='<U3'),
 'mag': array([6.7, 5.2, 5.7, 5.7, 5.6]),
 'alert': array(['green', 'green', 'green', 'green', 'green'],
 dtype='<U5'),
 'tsunami': array([1, 0, 0, 0, 1])}

Grabbing the maximum magnitude is now simply a matter of selecting the mag key and
calling the max() method on the NumPy array. This is nearly twice as fast as the list
comprehension implementation, when dealing with just five entries—imagine how much
worse the first attempt will perform on large datasets:

>>> %%timeit
>>> array_dict['mag'].max()
5.22 µs ± 100 ns per loop
(mean ± std. dev. of 7 runs, 100000 loops each)

Pandas data structures 53

However, this representation has other issues. Say we wanted to grab all the information
for the earthquake with the maximum magnitude; how would we go about that? We
need to find the index of the maximum, and then for each of the keys in the dictionary,
grab that index. The result is now a NumPy array of strings (our numeric values were
converted), and we are now in the format that we saw earlier:

>>> np.array([
... value[array_dict['mag'].argmax()]
... for key, value in array_dict.items()
...])
array(['2018-10-13 11:10:23.560',
 '262km NW of Ozernovskiy, Russia',
 'mww', '6.7', 'green', '1'], dtype='<U31')

Consider how we would go about sorting the data by magnitude from smallest to largest.
In the first representation, we would have to sort the rows by examining the third index.
With the second representation, we would have to determine the order of the indices
from the mag column, and then sort all the other arrays with those same indices. Clearly,
working with several NumPy arrays containing different data types at once is a bit
cumbersome; however, pandas builds on top of NumPy arrays to make this easier. Let's
start our exploration of pandas with an overview of the Series data structure.

Series
The Series class provides a data structure for arrays of a single type, just like the NumPy
array. However, it comes with some additional functionality. This one-dimensional
representation can be thought of as a column in a spreadsheet. We have a name for our
column, and the data we hold in it is of the same type (since we are measuring the same
variable):

>>> import pandas as pd

>>> place = pd.Series(array_dict['place'], name='place')
>>> place
0 262km NW of Ozernovskiy, Russia
1 25km E of Bitung, Indonesia
2 42km WNW of Sola, Vanuatu
3 13km E of Nueva Concepcion, Guatemala
4 128km SE of Kimbe, Papua New Guinea
Name: place, dtype: object

54 Working with Pandas DataFrames

Note the numbers on the left of the result; these correspond to the row number in the
original dataset (offset by 1 since, in Python, we start counting at 0). These row numbers
form the index, which we will discuss in the following section. Next to the row numbers,
we have the actual value of the row, which, in this example, is a string indicating where
the earthquake occurred. Notice that we have dtype: object next to the name of the
Series object; this is telling us that the data type of place is object. A string will be
classified as object in pandas.

To access attributes of the Series object, we use attribute notation of the form
<object>.<attribute_name>. The following are some common attributes we will
access. Notice that dtype and shape are available, just as we saw with the NumPy array:

Figure 2.1 – Commonly used series attributes

Important note
For the most part, pandas objects use NumPy arrays for their internal data
representations. However, for some data types, pandas builds upon NumPy
to create its own arrays (https://pandas.pydata.org/pandas-
docs/stable/reference/arrays.html). For this reason,
depending on the data type, values can return either a pandas.array
or a numpy.array object. Therefore, if we need to ensure we get a specific
type back, it is recommended to use the array attribute or to_numpy()
method, respectively, instead of values.

Be sure to bookmark the pandas.Series documentation (https://pandas.
pydata.org/pandas-docs/stable/reference/api/pandas.Series.html)
for reference later. It contains more information on how to create a Series object, the
full list of attributes and methods that are available, as well as a link to the source code.
With this high-level introduction to the Series class, we are ready to move on to the
Index class.

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html

Pandas data structures 55

Index
The addition of the Index class makes the Series class significantly more powerful
than a NumPy array. The Index class gives us row labels, which enable selection by row.
Depending on the type, we can provide a row number, a date, or even a string to select
our row. It plays a key role in identifying entries in the data and is used for a multitude
of operations in pandas, as we will see throughout this book. We can access the index
through the index attribute:

>>> place_index = place.index
>>> place_index
RangeIndex(start=0, stop=5, step=1)

Note that this is a RangeIndex object. Its values start at 0 and end at 4. The step of 1
indicates that the indices are all 1 apart, meaning that we have all the integers in that
range. The default index class is RangeIndex; however, we can change the index, as we
will discuss in Chapter 3, Data Wrangling with Pandas. Often, we will either work with an
Index object of row numbers or date(time)s.

As with Series objects, we can access the underlying data via the values attribute.
Note that this Index object is built on top of a NumPy array:

>>> place_index.values
array([0, 1, 2, 3, 4], dtype=int64)

Some of the useful attributes of Index objects include the following:

Figure 2.2 – Commonly used index attributes

Both NumPy and pandas support arithmetic operations, which will be performed
element-wise. NumPy will use the position in the array for this:

>>> np.array([1, 1, 1]) + np.array([-1, 0, 1])
array([0, 1, 2])

56 Working with Pandas DataFrames

With pandas, this element-wise arithmetic is performed on matching index values. If we
add a Series object with an index from 0 to 4 (stored in x) and another, y, from 1 to 5,
we will only get results were the indices align (1 through 4). In Chapter 3, Data Wrangling
with Pandas, we will discuss some ways to change and align the index so that we can
perform these types of operations without losing data:

>>> numbers = np.linspace(0, 10, num=5) # [0, 2.5, 5, 7.5, 10]
>>> x = pd.Series(numbers) # index is [0, 1, 2, 3, 4]
>>> y = pd.Series(numbers, index=pd.Index([1, 2, 3, 4, 5]))
>>> x + y
0 NaN
1 2.5
2 7.5
3 12.5
4 17.5
5 NaN
dtype: float64

Now that we have had a primer on both the Series and Index classes, we are ready to
learn about the DataFrame class. Note that more information on the Index class can be
found in the respective documentation at https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.Index.html.

DataFrame
With the Series class, we essentially had columns of a spreadsheet, with the data all
being of the same type. The DataFrame class builds upon the Series class and can
have many columns, each with its own data type; we can think of it as representing the
spreadsheet as a whole. We can turn either of the NumPy representations we built from
the example data into a DataFrame object:

>>> df = pd.DataFrame(array_dict)
>>> df

This gives us a dataframe of six series. Note the column before the time column; this is
the Index object for the rows. When creating a DataFrame object, pandas aligns all
the series to the same index. In this case, it is just the row number, but we could easily use
the time column for this, which would enable some additional pandas features, as we
will see in Chapter 4, Aggregating Pandas DataFrames:

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Index.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Index.html

Pandas data structures 57

Figure 2.3 – Our first dataframe

Our columns each have a single data type, but they don't all share the same data type:

>>> df.dtypes
time object
place object
magType object
mag float64
alert object
tsunami int64
dtype: object

The values of the dataframe look very similar to the initial NumPy representation we had:

>>> df.values
array([['2018-10-13 11:10:23.560',
 '262km NW of Ozernovskiy, Russia',
 'mww', 6.7, 'green', 1],
 ['2018-10-13 04:34:15.580',
 '25km E of Bitung, Indonesia', 'mww', 5.2, 'green', 0],
 ['2018-10-13 00:13:46.220', '42km WNW of Sola, Vanuatu',
 'mww', 5.7, 'green', 0],
 ['2018-10-12 21:09:49.240',
 '13km E of Nueva Concepcion, Guatemala',
 'mww', 5.7, 'green', 0],
 ['2018-10-12 02:52:03.620','128 km SE of Kimbe,
 Papua New Guinea', 'mww', 5.6, 'green', 1]],
 dtype=object)

58 Working with Pandas DataFrames

We can access the column names via the columns attribute. Note that they are actually
stored in an Index object as well:

>>> df.columns
Index(['time', 'place', 'magType', 'mag', 'alert', 'tsunami'],
 dtype='object')

The following are some commonly used dataframe attributes:

Figure 2.4 – Commonly used dataframe attributes

Note that we can also perform arithmetic on dataframes. For example, we can add df to
itself, which will sum the numeric columns and concatenate the string columns:

>>> df + df

Pandas will only perform the operation when both the index and column match. Here,
pandas concatenated the string columns (time, place, magType, and alert) across
dataframes. The numeric columns (mag and tsunami) were summed:

Figure 2.5 – Adding dataframes

Creating a pandas DataFrame 59

More information on DataFrame objects and all the operations that can be performed
directly on them is available in the official documentation at https://pandas.
pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.
html; be sure to bookmark it for future reference. Now, we are ready to begin learning
how to create DataFrame objects from a variety of sources.

Creating a pandas DataFrame
Now that we understand the data structures we will be working with, we can discuss the
different ways we can create them. Before we dive into the code however, it's important to
know how to get help right from Python. Should we ever find ourselves unsure of how to use
something in Python, we can utilize the built-in help() function. We simply run help(),
passing in the package, module, class, object, method, or function that we want to read the
documentation on. We can, of course, look up the documentation online; however, in most
cases, the docstrings (the documentation text written in the code) that are returned with
help() will be equivalent to this since they are used to generate the documentation.

Assuming we first ran import pandas as pd, we can run help(pd) to display
information about the pandas package; help(pd.DataFrame) for all the methods
and attributes of DataFrame objects (note we can also pass in a DataFrame object
instead); and help(pd.read_csv) to learn more about the pandas function for
reading CSV files into Python and how to use it. We can also try using the dir()
function and the __dict__ attribute, which will give us a list or dictionary of what's
available, respectively; these might not be as useful as the help() function, though.

Additionally, we can use ? and ?? to get help, thanks to IPython, which is part of what
makes Jupyter Notebooks so powerful. Unlike the help() function, we can use question
marks by putting them after whatever we want to know more about, as if we were asking
Python a question; for example, pd.read_csv? and pd.read_csv??. These three
will yield slightly different outputs: help() will give us the docstring; ? will give the
docstring, plus some additional information, depending on what we are inquiring about;
and ?? will give us even more information and, if possible, the source code behind it.

Let's now turn to the next notebook, 2-creating_dataframes.ipynb, and import
the packages we will need for the upcoming examples. We will be using datetime from
the Python standard library, along with the third-party packages numpy and pandas:

>>> import datetime as dt
>>> import numpy as np
>>> import pandas as pd

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

60 Working with Pandas DataFrames

Important note
We have aliased each of our imports. This allows us to use the pandas
package by referring to it with the alias we assign to be pd, which is the most
common way of importing it. In fact, we can only refer to it as pd, since that is
what we imported into the namespace. Packages need to be imported before we
can use them; installation puts the files we need on our computer, but, in the
interest of memory, Python won't load every installed package when we start it
up—just the ones we tell it to.

We are now ready to begin using pandas. First, we will learn how to create pandas
objects from other Python objects. Then, we will learn how to do so with flat files, tables
in a database, and responses from API requests.

From a Python object
Before we cover all the ways we can create a DataFrame object from a Python object,
we should learn how to make a Series object. Remember that a Series object is
essentially a column in a DataFrame object, so, once we know this, it should be easy to
understand how to create a DataFrame object. Say that we wanted to create a series of
five random numbers between 0 and 1. We could use NumPy to generate the random
numbers as an array and create the series from that.

Tip
NumPy makes it very easy to generate numerical data. Aside from generating
random numbers, we can use it to get evenly-spaced numbers in a certain
range with the np.linspace() function; obtain a range of integers with
the np.arange() function; sample from the standard normal with the
np.random.normal() function; and easily create arrays of all zeros with
the np.zeros() function and all ones with the np.ones() function.
We will be using NumPy throughout this book.

To ensure that the result is reproducible, we will set the seed here. The seed gives a starting
point for the generation of pseudorandom numbers. No algorithms for random number
generation are truly random—they are deterministic, so by setting this starting point, the
numbers that are generated will be the same each time the code is run. This is good for
testing things, but not for simulation (where we want randomness), which we will look
at in Chapter 8, Rule-Based Anomaly Detection. In this fashion, we can make a Series
object with any list-like structure (such as NumPy arrays):

Creating a pandas DataFrame 61

>>> np.random.seed(0) # set a seed for reproducibility
>>> pd.Series(np.random.rand(5), name='random')
0 0.548814
1 0.715189
2 0.602763
3 0.544883
4 0.423655
Name: random, dtype: float64

Making a DataFrame object is an extension of making a Series object; it will be
composed of one or more series, and each will be distinctly named. This should remind
us of dictionary-like structures in Python: the keys are the column names, and the values
are the contents of the columns. Note that if we want to turn a single Series object into
a DataFrame object, we can use its to_frame() method.

Tip
In computer science, a constructor is a piece of code that initalizes new
instances of a class, preparing them for use. Python classes implement this with
the __init__() method. When we run pd.Series(), Python calls
pd.Series.__init__(), which contains instructions for instantiating a
new Series object. We will learn more about the __init__() method in
Chapter 7, Financial Analysis – Bitcoin and the Stock Market.

Since columns can all be different data types, let's get a little fancy with this example.
We are going to create a DataFrame object containing three columns, with five
observations each:

• random: Five random numbers between 0 and 1 as a NumPy array

• text: A list of five strings or None

• truth: A list of five random Booleans

We will also create a DatetimeIndex object with the pd.date_range() function.
The index will contain five dates (periods=5), all one day apart (freq='1D'),
ending with April 21, 2019 (end), and will be called date. Note that more information
on the values the pd.date_range() function accepts for frequencies can be found
at https://pandas.pydata.org/pandas-docs/stable/user_guide/
timeseries.html#offset-aliases.

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases

62 Working with Pandas DataFrames

All we have to do is package the columns in a dictionary using the desired column names
as the keys and pass this in when we call the pd.DataFrame() constructor. The index
gets passed as the index argument:

>>> np.random.seed(0) # set seed so result is reproducible
>>> pd.DataFrame(
... {
... 'random': np.random.rand(5),
... 'text': ['hot', 'warm', 'cool', 'cold', None],
... 'truth': [np.random.choice([True, False])
... for _ in range(5)]
... },
... index=pd.date_range(
... end=dt.date(2019, 4, 21),
... freq='1D', periods=5, name='date'
...)
...)

Important note
By convention, we use _ to hold variables in a loop that we don't care about.
Here, we use range() as a counter, and its values are unimportant. More
information on the roles _ plays in Python can be found at https://
hackernoon.com/understanding-the-underscore-of-
python-309d1a029edc.

Having dates in the index makes it easy to select entries by date (or even in a date range),
as we will see in Chapter 3, Data Wrangling with Pandas:

Figure 2.6 – Creating a dataframe from a dictionary

https://hackernoon.com/understanding-the-underscore-of-python-309d1a029edc
https://hackernoon.com/understanding-the-underscore-of-python-309d1a029edc
https://hackernoon.com/understanding-the-underscore-of-python-309d1a029edc

Creating a pandas DataFrame 63

In cases where the data isn't a dictionary, but rather a list of dictionaries, we can still use
pd.DataFrame(). Data in this format is what we would expect when consuming from
an API. Each entry in the list will be a dictionary, where the keys of the dictionary are
the column names and the values of the dictionary are the values for that column at that
index:

>>> pd.DataFrame([
... {'mag': 5.2, 'place': 'California'},
... {'mag': 1.2, 'place': 'Alaska'},
... {'mag': 0.2, 'place': 'California'},
...])

This gives us a dataframe of three rows (one for each entry in the list) with two columns
(one for each key in the dictionaries):

Figure 2.7 – Creating a dataframe from a list of dictionaries

In fact, pd.DataFrame() also works for lists of tuples. Note that we can also pass in the
column names as a list through the columns argument:

>>> list_of_tuples = [(n, n**2, n**3) for n in range(5)]
>>> list_of_tuples
[(0, 0, 0), (1, 1, 1), (2, 4, 8), (3, 9, 27), (4, 16, 64)]

>>> pd.DataFrame(
... list_of_tuples,
... columns=['n', 'n_squared', 'n_cubed']
...)

64 Working with Pandas DataFrames

Each tuple is treated like a record and becomes a row in the dataframe:

Figure 2.8 – Creating a dataframe from a list of tuples

We also have the option of using pd.DataFrame() with NumPy arrays:

>>> pd.DataFrame(
... np.array([
... [0, 0, 0],
... [1, 1, 1],
... [2, 4, 8],
... [3, 9, 27],
... [4, 16, 64]
...]), columns=['n', 'n_squared', 'n_cubed']
...)

This will have the effect of stacking each entry in the array as rows in a dataframe, giving
us a result that's identical to Figure 2.8.

From a file
The data we want to analyze will most often come from outside Python. In many cases,
we may obtain a data dump from a database or website and bring it into Python to sift
through it. A data dump gets its name from containing a large amount of data (possibly
at a very granular level) and often not discriminating against any of it initially; for this
reason, they can be unwieldy.

Often, these data dumps will come in the form of a text file (.txt) or a CSV file (.csv).
Pandas provides many methods for reading in different types of files, so it is simply a
matter of looking up the one that matches our file format. Our earthquake data is a CSV
file; therefore, we use the pd.read_csv() function to read it in. However, we should
always do an initial inspection of the file before attempting to read it in; this will inform us
of whether we need to pass additional arguments, such as sep to specify the delimiter or
names to provide the column names ourselves in the absence of a header row in the file.

Creating a pandas DataFrame 65

Important note
Windows users: Depending on your setup, the commands in the next few code
blocks may not work. The notebook contains alternatives if you encounter
issues.

We can perform our due diligence directly in our Jupyter Notebook thanks to IPython,
provided we prefix our commands with ! to indicate they are to be run as shell
commands. First, we should check how big the file is, both in terms of lines and in terms
of bytes. To check the number of lines, we use the wc utility (word count) with the –l flag
to count the number of lines. We have 9,333 rows in the file:

>>> !wc -l data/earthquakes.csv
9333 data/earthquakes.csv

Now, let's check the file's size. For this task, we will use ls on the data directory. This will
show us the list of files in that directory. We can add the -lh flag to get information about the
files in a human-readable format. Finally, we send this output to the grep utility, which will
help us isolate the files we want. This tells us that the earthquakes.csv file is 3.4 MB:

>>> !ls -lh data | grep earthquakes.csv
-rw-r--r-- 1 stefanie stefanie 3.4M ... earthquakes.csv

Note that IPython also lets us capture the result of the command in a Python variable,
so if we aren't comfortable with pipes (|) or grep, we can do the following:

>>> files = !ls -lh data
>>> [file for file in files if 'earthquake' in file]
['-rw-r--r-- 1 stefanie stefanie 3.4M ... earthquakes.csv']

Now, let's take a look at the top few rows to see if the file comes with headers. We will use
the head utility and specify the number of rows with the -n flag. This tells us that the first
row contains the headers for the data and that the data is delimited with commas (just
because the file has the .csv extension does not mean it is comma-delimited):

>>> !head -n 2 data/earthquakes.csv
alert,cdi,code,detail,dmin,felt,gap,ids,mag,magType,mmi,
net,nst,place,rms,sig,sources,status,time,title,tsunami,
type,types,tz,updated,url
,,37389218,https://earthquake.usgs.gov/[...],0.008693,,85.0,",
ci37389218,",1.35,ml,,ci,26.0,"9km NE of Aguanga,
CA",0.19,28,",ci,",automatic,1539475168010,"M 1.4 -
9km NE of Aguanga, CA",0,earthquake,",geoserve,nearby-
cities,origin,phase-data,",-480.0,1539475395144,
https://earthquake.usgs.gov/earthquakes/eventpage/ci37389218

66 Working with Pandas DataFrames

Note that we should also check the bottom rows to make sure there is no extraneous data
that we will need to ignore by using the tail utility. This file is fine, so the result won't be
reproduced here; however, the notebook contains the result.

Lastly, we may be interested in seeing the column count in our data. While we could just
count the fields in the first row of the result of head, we have the option of using the awk
utility (for pattern scanning and processing) to count our columns. The -F flag allows
us to specify the delimiter (a comma, in this case). Then, we specify what to do for each
record in the file. We choose to print NF, which is a predefined variable whose value is the
number of fields in the current record. Here, we say exit immediately after the print so
that we print the number of fields in the first row of the file; then, we stop. This will look
a little complicated, but this is by no means something we need to memorize:

>>> !awk -F',' '{print NF; exit}' data/earthquakes.csv
26

Since we know that the first line of the file contains headers and that the file is
comma-separated, we can also count the columns by using head to get the headers
and Python to parse them:

>>> headers = !head -n 1 data/earthquakes.csv
>>> len(headers[0].split(','))
26

Important note
The ability to run shell commands directly from our Jupyter Notebook
dramatically streamlines our workflow. However, if we don't have past
experience with the command line, it may be complicated to learn these
commands initially. IPython has some helpful information on running
shell commands in their documentation at https://ipython.
readthedocs.io/en/stable/interactive/reference.
html#system-shell-access.

To summarize, we now know that the file is 3.4 MB and is comma-delimited with 26
columns and 9,333 rows, with the first one being the header. This means that we can use
the pd.read_csv() function with the defaults:

>>> df = pd.read_csv('earthquakes.csv')

https://ipython.readthedocs.io/en/stable/interactive/reference.html#system-shell-access
https://ipython.readthedocs.io/en/stable/interactive/reference.html#system-shell-access
https://ipython.readthedocs.io/en/stable/interactive/reference.html#system-shell-access

Creating a pandas DataFrame 67

Note that we aren't limited to reading in data from files on our local machines; file paths
can be URLs as well. As an example, let's read in the same CSV file from GitHub:

>>> df = pd.read_csv(
... 'https://github.com/stefmolin/'
... 'Hands-On-Data-Analysis-with-Pandas-2nd-edition'
... '/blob/master/ch_02/data/earthquakes.csv?raw=True'
...)

Pandas is usually very good at figuring out which options to use based on the input data,
so we often won't need to add arguments to this call; however, there are many options
available should we need them, some of which include the following:

Figure 2.9 – Helpful parameters when reading data from a file

Throughout this book, we will be working with CSV files; however, note that we can use
the read_excel() function to read in Excel files, the read_json() function for
JSON (JavaScript Object Notation) files, and for other delimited files, such as tab (\t),
we can use the read_csv() function with the sep argument equal to the delimiter.

68 Working with Pandas DataFrames

It would be remiss if we didn't also learn how to save our dataframe to a file so that we can
share it with others. To write our dataframe to a CSV file, we call its to_csv() method.
We have to be careful here; if our dataframe's index is just row numbers, we probably don't
want to write that to our file (it will have no meaning to the consumers of the data), but it
is the default. We can write our data without the index by passing in index=False:

>>> df.to_csv('output.csv', index=False)

As with reading from files, Series and DataFrame objects have methods to write data
to Excel (to_excel()) and JSON files (to_json()). Note that, while we use functions
from pandas to read our data in, we must use methods to write our data; the reading
functions create the pandas objects that we want to work with, but the writing methods
are actions that we take using the pandas object.

Tip
The preceding file paths to read from and write to were relative to our current
directory. The current directory is where we are running our code from. An
absolute path will be the full path to the file. For example, if the file we want to
work with has an absolute path of /home/myuser/learning/hands_
on_pandas/data.csv and our current directory is /home/myuser/
learning/hands_on_pandas, then we can simply use the relative path
of data.csv as the file path.

Pandas provides us with capabilities to read and write from many other data sources,
including databases, which we will discuss next; pickle files (containing serialized Python
objects—see the Further reading section for more information); and HTML pages. Be
sure to check out the following resource in the pandas documentation for the full list
of capabilities: https://pandas.pydata.org/pandas-docs/stable/user_
guide/io.html.

From a database
Pandas can interact with SQLite databases without the need for us to install any additional
packages; however, the SQLAlchemy package needs to be installed in order to interact
with other database flavors. Interaction with a SQLite database can be achieved by
opening a connection to the database using the sqlite3 module in the Python standard
library and then using either the pd.read_sql() function to query the database or the
to_sql() method on a DataFrame object to write it to the database.

https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html

Creating a pandas DataFrame 69

Before we read from a database, let's write to one. We simply call to_sql() on our
dataframe, telling it which table to write to, which database connection to use, and how to
handle if the table already exists. There is already a SQLite database in the folder for this
chapter in this book's GitHub repository: data/quakes.db. Note that, to create a new
database, we can change 'data/quakes.db' to the path for the new database file. Let's
write the tsunami data from the data/tsunamis.csv file to a table in the database
called tsunamis, replacing the table if it already exists:

>>> import sqlite3

>>> with sqlite3.connect('data/quakes.db') as connection:
... pd.read_csv('data/tsunamis.csv').to_sql(
... 'tsunamis', connection, index=False,
... if_exists='replace'
...)

Querying the database is just as easy as writing to it. Note this will require knowledge of
Structured Query Language (SQL). While it's not required for this book, we will use
some simple SQL statements to illustrate certain concepts. See the Further reading section
for a resource on how pandas compares to SQL and Chapter 4, Aggregating Pandas
DataFrames, for some examples of how pandas actions relate to SQL statements.

Let's query our database for the full tsunamis table. When we write a SQL query, we
first state the columns that we want to select, which in our case is all of them, so we write
"SELECT *". Next, we state the table to select the data from, which for us is tsunamis,
so we add "FROM tsunamis". This is our full query now (of course, it can get much
more complicated than this). To actually query the database, we use pd.read_sql(),
passing in our query and the database connection:

>>> import sqlite3

>>> with sqlite3.connect('data/quakes.db') as connection:
... tsunamis = \
... pd.read_sql('SELECT * FROM tsunamis', connection)

>>> tsunamis.head()

70 Working with Pandas DataFrames

We now have the tsunamis data in a dataframe:

Figure 2.10 – Reading data from a database

Important note
The connection object we created in both code blocks is an example of
a context manager, which, when used with the with statement, automatically
handles cleanup after the code in the block executes (closing the connection,
in this case). This makes cleanup easy and makes sure we don't leave any loose
ends. Be sure to check out contextlib from the standard library for utilities
using the with statement and context managers. The documentation is at
https://docs.python.org/3/library/contextlib.html.

From an API
We can now easily create Series and DataFrame objects from data we have in Python
or from files we obtain, but how can we get data from online resources, such as APIs?
There is no guarantee that each data source will give us data in the same format, so we
must remain flexible in our approach and be comfortable examining the data source to
find the appropriate import method. In this section, we will request some earthquake data
from the USGS API and see how we can make a dataframe out of the result. In Chapter 3,
Data Wrangling with Pandas, we will work with another API to gather weather data.

https://docs.python.org/3/library/contextlib.html

Creating a pandas DataFrame 71

For this section, we will be working in the 3-making_dataframes_from_api_
requests.ipynb notebook, so we have to import the packages we need once again.
As with the previous notebook, we need pandas and datetime, but we also need the
requests package to make API requests:

>>> import datetime as dt
>>> import pandas as pd
>>> import requests

Next, we will make a GET request to the USGS API for a JSON payload (a dictionary-
like response containing the data that's sent with a request or response) by specifying
the format of geojson. We will ask for earthquake data for the last 30 days (we can use
dt.timedelta to perform arithmetic on datetime objects). Note that we are using
yesterday as the end of our date range, since the API won't have complete information
for today yet:

>>> yesterday = dt.date.today() - dt.timedelta(days=1)
>>> api = 'https://earthquake.usgs.gov/fdsnws/event/1/query'
>>> payload = {
... 'format': 'geojson',
... 'starttime': yesterday - dt.timedelta(days=30),
... 'endtime': yesterday
... }
>>> response = requests.get(api, params=payload)

Important note
GET is an HTTP method. This action tells the server we want to read some
data. Different APIs may require that we use different methods to get the data;
some will require a POST request, where we authenticate with the server.
You can read more about API requests and HTTP methods at https://
nordicapis.com/ultimate-guide-to-all-9-standard-
http-methods/.

Before we try to create a dataframe out of this, we should make sure that our request was
successful. We can do this by checking the status_code attribute of the response
object. A listing of status codes and their meanings can be found at https://
en.wikipedia.org/wiki/List_of_HTTP_status_codes. A 200 response will
indicate that everything is OK:

>>> response.status_code
200

https://nordicapis.com/ultimate-guide-to-all-9-standard-http-methods/
https://nordicapis.com/ultimate-guide-to-all-9-standard-http-methods/
https://nordicapis.com/ultimate-guide-to-all-9-standard-http-methods/
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

72 Working with Pandas DataFrames

Our request was successful, so let's see what the data we got looks like. We asked the API
for a JSON payload, which is essentially a dictionary, so we can use dictionary methods on
it to get more information about its structure. This is going to be a lot of data; hence, we
don't want to print it to the screen just to inspect it. We need to isolate the JSON payload
from the HTTP response (stored in the response variable), and then look at the keys to
view the main sections of the resulting data:

>>> earthquake_json = response.json()
>>> earthquake_json.keys()
dict_keys(['type', 'metadata', 'features', 'bbox'])

We can inspect what kind of data we have as values for each of these keys; one of them
will be the data we are after. The metadata portion tells us some information about our
request. While this can certainly be useful, it isn't what we are after right now:

>>> earthquake_json['metadata']
{'generated': 1604267813000,
 'url': 'https://earthquake.usgs.gov/fdsnws/event/1/query?
format=geojson&starttime=2020-10-01&endtime=2020-10-31',
 'title': 'USGS Earthquakes',
 'status': 200,
 'api': '1.10.3',
 'count': 13706}

The features key looks promising; if this does indeed contain all our data, we should
check what type it is so that we don't end up trying to print everything to the screen:

>>> type(earthquake_json['features'])
list

This key contains a list, so let's take a look at the first entry to see if this is the data we
want. Note that the USGS data may be altered or added to for dates in the past as more
information on the earthquakes comes to light, meaning that querying for the same date
range may yield a different number of results later on. For this reason, the following is an
example of what an entry looks like:

>>> earthquake_json['features'][0]
{'type': 'Feature',
 'properties': {'mag': 1,
 'place': '50 km ENE of Susitna North, Alaska',
 'time': 1604102395919, 'updated': 1604103325550, 'tz': None,

Creating a pandas DataFrame 73

 'url': 'https://earthquake.usgs.gov/earthquakes/eventpage/
ak020dz5f85a',
 'detail': 'https://earthquake.usgs.gov/fdsnws/event/1/
query?eventid=ak020dz5f85a&format=geojson',
 'felt': None, 'cdi': None, 'mmi': None, 'alert': None,
 'status': 'reviewed', 'tsunami': 0, 'sig': 15, 'net': 'ak',
 'code': '020dz5f85a', 'ids': ',ak020dz5f85a,',
 'sources': ',ak,', 'types': ',origin,phase-data,',
 'nst': None, 'dmin': None, 'rms': 1.36, 'gap': None,
 'magType': 'ml', 'type': 'earthquake',
 'title': 'M 1.0 - 50 km ENE of Susitna North, Alaska'},
 'geometry': {'type': 'Point', 'coordinates': [-148.9807,
62.3533, 5]},
 'id': 'ak020dz5f85a'}

This is definitely the data we are after, but do we need all of it? Upon closer inspection,
we only really care about what is inside the properties dictionary. Now, we have
a problem because we have a list of dictionaries where we only want a specific key from
inside them. How can we pull this information out so that we can make our dataframe?
We can use a list comprehension to isolate the properties section from each of the
dictionaries in the features list:

>>> earthquake_properties_data = [
... quake['properties']
... for quake in earthquake_json['features']
...]

Finally, we are ready to create our dataframe. Pandas knows how to handle data in this
format already (a list of dictionaries), so all we have to do is pass in the data when we call
pd.DataFrame():

>>> df = pd.DataFrame(earthquake_properties_data)

Now that we know how to create dataframes from a variety of sources, we can start
learning how to work with them.

74 Working with Pandas DataFrames

Inspecting a DataFrame object
The first thing we should do when we read in our data is inspect it; we want to make sure
that our dataframe isn't empty and that the rows look as we would expect. Our main goal
is to verify that it was read in properly and that all the data is there; however, this initial
inspection will also give us ideas with regard to where we should direct our data wrangling
efforts. In this section, we will explore ways in which we can inspect our dataframes in the
4-inspecting_dataframes.ipynb notebook.

Since this is a new notebook, we must once again handle our setup. This time, we need to
import pandas and numpy, as well as read in the CSV file with the earthquake data:

>>> import numpy as np
>>> import pandas as pd

>>> df = pd.read_csv('data/earthquakes.csv')

Examining the data
First, we want to make sure that we actually have data in our dataframe. We can check the
empty attribute to find out:

>>> df.empty
False

So far, so good; we have data. Next, we should check how much data we read in; we want
to know the number of observations (rows) and the number of variables (columns) we
have. For this task, we use the shape attribute. Our data contains 9,332 observations of
26 variables, which matches our initial inspection of the file:

>>> df.shape
(9332, 26)

Now, let's use the columns attribute to see the names of the columns in our dataset:

>>> df.columns
Index(['alert', 'cdi', 'code', 'detail', 'dmin', 'felt', 'gap',
 'ids', 'mag', 'magType', 'mmi', 'net', 'nst', 'place',
 'rms', 'sig', 'sources', 'status', 'time', 'title',
 'tsunami', 'type', 'types', 'tz', 'updated', 'url'],
 dtype='object')

Inspecting a DataFrame object 75

Important note
Having a list of columns doesn't necessarily mean that we know what all of
them mean. Especially in cases where our data comes from the Internet, be
sure to read up on what the columns mean before drawing any conclusions.
Information on the fields in the geojson format, including what each
field in the JSON payload means (along with some example values), can be
found on the USGS website at https://earthquake.usgs.gov/
earthquakes/feed/v1.0/geojson.php.

We know the dimensions of our data, but what does it actually look like? For this task,
we can use the head() and tail() methods to look at the top and bottom rows,
respectively. This will default to five rows, but we can change this by passing a different
number to the method. Let's take a look at the first few rows:

>>> df.head()

The following are the first five rows we get using head():

Figure 2.11 – Examining the top five rows of a dataframe

To get the last two rows, we use the tail() method and pass 2 as the number of rows:

>>> df.tail(2)

https://earthquake.usgs.gov/earthquakes/feed/v1.0/geojson.php
https://earthquake.usgs.gov/earthquakes/feed/v1.0/geojson.php

76 Working with Pandas DataFrames

The following is the result:

Figure 2.12 – Examining the bottom two rows of a dataframe

Tip
By default, when we print dataframes with many columns in a Jupyter Notebook,
only a subset of them will be displayed. This is because pandas has a limit
on the number of columns it will show. We can modify this behavior using
pd.set_option('display.max_columns', <new_value>).
Consult the documentation at https://pandas.pydata.org/
pandas-docs/stable/user_guide/options.html for additional
information. The notebook also contains a few example commands.

We can use the dtypes attribute to see the data types of the columns, which makes it
easy to see when columns are being stored as the wrong type. (Remember that strings will
be stored as object.) Here, the time column is stored as an integer, which is something
we will learn how to fix in Chapter 3, Data Wrangling with Pandas:

>>> df.dtypes
alert object
...
mag float64
magType object
...
time int64
title object
tsunami int64
...
tz float64
updated int64
url object
dtype: object

https://pandas.pydata.org/pandas-docs/stable/user_guide/options.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/options.html

Inspecting a DataFrame object 77

Lastly, we can use the info() method to see how many non-null entries of each column
we have and get information on our index. Null values are missing values, which, in
pandas, will typically be represented as None for objects and NaN (Not a Number) for
non-numeric values in a float or integer column:

>>> df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9332 entries, 0 to 9331
Data columns (total 26 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 alert 59 non-null object
 ...
 8 mag 9331 non-null float64
 9 magType 9331 non-null object
 ...
 18 time 9332 non-null int64
 19 title 9332 non-null object
 20 tsunami 9332 non-null int64
 ...
 23 tz 9331 non-null float64
 24 updated 9332 non-null int64
 25 url 9332 non-null object
dtypes: float64(9), int64(4), object(13)
memory usage: 1.9+ MB

After this initial inspection, we know a lot about the structure of our data and can now
begin to try and make sense of it.

Describing and summarizing the data
So far, we've examined the structure of the DataFrame object we created from the
earthquake data, but we don't know anything about the data other than what a couple
of rows look like. The next step is to calculate summary statistics, which will help us get
to know our data better. Pandas provides several methods for easily doing so; one such
method is describe(), which also works on Series objects if we are only interested in
a particular column. Let's get a summary of the numeric columns in our data:

>>> df.describe()

78 Working with Pandas DataFrames

This gives us the 5-number summary, along with the count, mean, and standard deviation
of the numeric columns:

Figure 2.13 – Calculating summary statistics

Tip
If we want different percentiles, we can pass them in with the percentiles
argument. For example, if we wanted only the 5th and 95th percentiles, we would
run df.describe(percentiles=[0.05, 0.95]). Note we will
still get the 50th percentile back because that is the median.

By default, describe() won't give us any information about the columns of type
object, but we can either provide include='all' as an argument or run it separately
for the data of type np.object:

>>> df.describe(include=np.object)

When describing non-numeric data, we still get the count of non-null occurrences
(count); however, instead of the other summary statistics, we get the number of unique
values (unique), the mode (top), and the number of times the mode was observed (freq):

Figure 2.14 – Summary statistics for categorical columns

Inspecting a DataFrame object 79

Important note
The describe() method only gives us summary statistics for non-null
values. This means that, if we had 100 rows and half of our data was null,
then the average would be calculated as the sum of the 50 non-null rows
divided by 50.

It is easy to get a snapshot of our data using the describe() method, but sometimes,
we just want a particular statistic, either for a specific column or for all the columns.
Pandas makes this a cinch as well. The following table includes methods that will work
for both Series and DataFrame objects:

Figure 2.15 – Helpful calculation methods for series and dataframes

80 Working with Pandas DataFrames

Tip
Python makes it easy to count how many times something is True. Under the
hood, True evaluates to 1 and False evaluates to 0. Therefore, we can run
the sum() method on a series of Booleans and get the count of True outputs.

With Series objects, we have some additional methods for describing our data:

• unique(): Returns the distinct values of the column.

• value_counts(): Returns a frequency table of the number of times each unique
value in a given column appears, or, alternatively, the percentage of times each
unique value appears when passed normalize=True.

• mode(): Returns the most common value of the column.

Consulting the USGS API documentation for the alert field (which can be found
at https://earthquake.usgs.gov/data/comcat/data-eventterms.
php#alert) tells us that it can be 'green', 'yellow', 'orange', or 'red'
(when populated), and that it is the alert level from the Prompt Assessment of Global
Earthquakes for Response (PAGER) earthquake impact scale. According to the USGS
(https://earthquake.usgs.gov/data/pager/), "the PAGER system provides
fatality and economic loss impact estimates following significant earthquakes worldwide."
From our initial inspection of the data, we know that the alert column is a string of two
unique values and that the most common value is 'green', with many null values. What
is the other unique value, though?

>>> df.alert.unique()
array([nan, 'green', 'red'], dtype=object)

Now that we understand what this field means and the values we have in our data, we
expect there to be far more 'green' than 'red'; we can check our intuition with
a frequency table by using value_counts(). Notice that we only get counts for the
non-null entries:

>>> df.alert.value_counts()
green 58
red 1
Name: alert, dtype: int64

https://earthquake.usgs.gov/data/comcat/data-eventterms.php#alert
https://earthquake.usgs.gov/data/comcat/data-eventterms.php#alert
https://earthquake.usgs.gov/data/pager/

Grabbing subsets of the data 81

Note that Index objects also have several methods that can help us describe and
summarize our data:

Figure 2.16 – Helpful methods for the index

When we used unique() and value_counts(), we got a preview of how to select
subsets of our data. Now, let's go into more detail and cover selection, slicing, indexing,
and filtering.

Grabbing subsets of the data
So far, we have learned how to work with and summarize the data as a whole; however,
we will often be interested in performing operations and/or analyses on subsets of our
data. There are many types of subsets we may look to isolate from our data, such as
selecting only specific columns or rows as a whole or when a specific criterion is met.
In order to obtain subsets of the data, we need to be familiar with selection, slicing,
indexing, and filtering.

For this section, we will work in the 5-subsetting_data.ipynb notebook. Our
setup is as follows:

>>> import pandas as pd

>>> df = pd.read_csv('data/earthquakes.csv')

82 Working with Pandas DataFrames

Selecting columns
In the previous section, we saw an example of column selection when we looked at
the unique values in the alert column; we accessed the column as an attribute of the
dataframe. Remember that a column is a Series object, so, for example, selecting the
mag column in the earthquake data gives us the magnitudes of the earthquakes as
a Series object:

>>> df.mag
0 1.35
1 1.29
2 3.42
3 0.44
4 2.16
 ...
9327 0.62
9328 1.00
9329 2.40
9330 1.10
9331 0.66
Name: mag, Length: 9332, dtype: float64

Pandas provides us with a few ways to select columns. An alternative to using attribute
notation to select a column is to access it with a dictionary-like notation:

>>> df['mag']
0 1.35
1 1.29
2 3.42
3 0.44
4 2.16
 ...
9327 0.62
9328 1.00
9329 2.40
9330 1.10
9331 0.66
Name: mag, Length: 9332, dtype: float64

Grabbing subsets of the data 83

Tip
We can also select columns using the get() method. This has the
benefits of not raising an error if the column doesn't exist and allowing us
to provide a backup value—the default is None. For example, if we call
df.get('event', False), it will return False since we don't have
an event column.

Note that we aren't limited to selecting one column at a time. By passing a list to the
dictionary lookup, we can select many columns, giving us a DataFrame object that
is a subset of our original dataframe:

>>> df[['mag', 'title']]

This gives us the full mag and title columns from the original dataframe:

Figure 2.17 – Selecting multiple columns of a dataframe

String methods are a very powerful way to select columns. For example, if we wanted to
select all the columns that start with mag, along with the title and time columns, we
would do the following:

>>> df[
... ['title', 'time']
... + [col for col in df.columns if col.startswith('mag')]
...]

84 Working with Pandas DataFrames

We get back a dataframe composed of the four columns that matched our criteria. Notice
how the columns were returned in the order we requested, which is not the order they
originally appeared in. This means that if we want to reorder our columns, all we have to
do is select them in the order we want them to appear:

Figure 2.18 – Selecting columns based on names

Let's break this example down. We used a list comprehension to go through each of the
columns in the dataframe and only keep the ones whose names started with mag:

>>> [col for col in df.columns if col.startswith('mag')]
['mag', 'magType']

Then, we added this result to the other two columns we wanted to keep (title and
time):

>>> ['title', 'time'] \
... + [col for col in df.columns if col.startswith('mag')]
['title', 'time', 'mag', 'magType']

Grabbing subsets of the data 85

Finally, we were able to use this list to run the actual column selection on the dataframe,
resulting in the dataframe in Figure 2.18:

>>> df[
... ['title', 'time']
... + [col for col in df.columns if col.startswith('mag')]
...]

Tip
A complete list of string methods can be found in the Python 3 documentation
at https://docs.python.org/3/library/stdtypes.
html#string-methods.

Slicing
When we want to extract certain rows (slices) from our dataframe, we use slicing.
DataFrame slicing works similarly to slicing with other Python objects, such as lists
and tuples, with the first index being inclusive and the last index being exclusive:

>>> df[100:103]

When specifying a slice of 100:103, we get back rows 100, 101, and 102:

Figure 2.19 – Slicing a dataframe to extract specific rows

We can combine our row and column selections by using what is known as chaining:

>>> df[['title', 'time']][100:103]

https://docs.python.org/3/library/stdtypes.html#string-methods
https://docs.python.org/3/library/stdtypes.html#string-methods

86 Working with Pandas DataFrames

First, we selected the title and time columns for all the rows, and then we pulled out
rows with indices 100, 101, and 102:

Figure 2.20 – Selecting specific rows and columns with chaining

In the preceding example, we selected the columns and then sliced the rows, but the order
doesn't matter:

>>> df[100:103][['title', 'time']].equals(
... df[['title', 'time']][100:103]
...)
True

Tip
Note that we can slice on whatever is in our index; however, it would be
difficult to determine the string or date after the last one we want, so with
pandas, slicing dates and strings is different from integer slicing and is
inclusive of both endpoints. Date slicing will work as long as the strings we
provide can be parsed into a datetime object. In Chapter 3, Data Wrangling
with Pandas, we'll see some examples of this and also learn how to change what
we use as the index, thus making this type of slicing possible.

If we decide to use chaining to update the values in our data, we will find pandas
complaining that we aren't doing so correctly (even if it works). This is to warn us that
setting data with a sequential selection may not give us the result we anticipate. (More
information can be found at https://pandas.pydata.org/pandas-docs/
stable/user_guide/indexing.html#returning-a-view-versus-a-copy.)

Let's trigger this warning to understand it better. We will try to update the entries in the
title column for a few earthquakes so that they're in lowercase:

>>> df[110:113]['title'] = df[110:113]['title'].str.lower()
/.../book_env/lib/python3.7/[...]:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a
DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

Grabbing subsets of the data 87

See the caveats in the documentation: https://pandas.pydata.
org/pandas-docs/stable/user_guide/indexing.html#returning-a-
view-versus-a-copy
 """Entry point for launching an IPython kernel.

As indicated by the warning, to be an effective pandas user, it's not enough to know
selection and slicing—we must also master indexing. Since this is just a warning, our
values have been updated, but this may not always be the case:

>>> df[110:113]['title']
110 m 1.1 - 35km s of ester, alaska
111 m 1.9 - 93km wnw of arctic village, alaska
112 m 0.9 - 20km wsw of smith valley, nevada
Name: title, dtype: object

Now, let's discuss how to use indexing to set values properly.

Indexing
Pandas indexing operations provide us with a one-method way to select both the rows
and the columns we want. We can use loc[] and iloc[] to subset our dataframe using
label-based or integer-based lookups, respectively. A good way to remember the difference
is to think of them as location versus integer location. For all indexing methods, we
provide the row indexer first and then the column indexer, with a comma separating
them:

df.loc[row_indexer, column_indexer]

Note that by using loc[], as indicated in the warning message, we no longer trigger any
warnings from pandas for this operation. We also changed the end index from 113 to
112 because loc[] is inclusive of endpoints:

>>> df.loc[110:112, 'title'] = \
... df.loc[110:112, 'title'].str.lower()
>>> df.loc[110:112, 'title']
110 m 1.1 - 35km s of ester, alaska
111 m 1.9 - 93km wnw of arctic village, alaska
112 m 0.9 - 20km wsw of smith valley, nevada
Name: title, dtype: object

88 Working with Pandas DataFrames

We can select all the rows (columns) if we use : as the row (column) indexer, just like
with regular Python slicing. Let's grab all the rows of the title column with loc[]:

>>> df.loc[:,'title']
0 M 1.4 - 9km NE of Aguanga, CA
1 M 1.3 - 9km NE of Aguanga, CA
2 M 3.4 - 8km NE of Aguanga, CA
3 M 0.4 - 9km NE of Aguanga, CA
4 M 2.2 - 10km NW of Avenal, CA
 ...
9327 M 0.6 - 9km ENE of Mammoth Lakes, CA
9328 M 1.0 - 3km W of Julian, CA
9329 M 2.4 - 35km NNE of Hatillo, Puerto Rico
9330 M 1.1 - 9km NE of Aguanga, CA
9331 M 0.7 - 9km NE of Aguanga, CA
Name: title, Length: 9332, dtype: object

We can select multiple rows and columns at the same time with loc[]:

>>> df.loc[10:15, ['title', 'mag']]

This leaves us with rows 10 through 15 for the title and mag columns only:

Figure 2.21 – Selecting specific rows and columns with indexing

Grabbing subsets of the data 89

As we have seen, when using loc[], our end index is inclusive. This isn't the case with
iloc[]:

>>> df.iloc[10:15, [19, 8]]

Observe how we had to provide a list of integers to select the same columns; these are
the column numbers (starting from 0). Using iloc[], we lost the row at index 15; this
is because the integer slicing that iloc[] employs is exclusive of the end index, as with
Python slicing syntax:

Figure 2.22 – Selecting specific rows and columns by position

We aren't limited to using the slicing syntax for the rows, though; columns work as well:

>>> df.iloc[10:15, 6:10]

By using slicing, we can easily grab adjacent rows and columns:

Figure 2.23 – Selecting ranges of adjacent rows and columns by position

90 Working with Pandas DataFrames

When using loc[], this slicing can be done on the column names as well. This gives us
many ways to achieve the same result:

>>> df.iloc[10:15, 6:10].equals(df.loc[10:14, 'gap':'magType'])
True

To look up scalar values, we use at[] and iat[], which are faster. Let's select the
magnitude (the mag column) of the earthquake that was recorded in the row at index 10:

>>> df.at[10, 'mag']
0.5

The magnitude column has a column index of 8; therefore, we can also look up the
magnitude with iat[]:

>>> df.iat[10, 8]
0.5

So far, we have seen how to get subsets of our data using row/column names and ranges,
but how do we only take the data that meets some criteria? For this, we need to learn how
to filter our data.

Filtering
Pandas gives us a few options for filtering our data, including Boolean masks and some
special methods. With Boolean masks, we test our data against some value and get a
structure of the same shape back, except it is filled with True/False values; pandas can
use this to select the appropriate rows/columns for us. There are endless possibilities for
creating Boolean masks—all we need is some code that returns one Boolean value for each
row. For example, we can see which entries in the mag column had a magnitude greater
than two:

>>> df.mag > 2
0 False
1 False
2 True
3 False
 ...
9328 False
9329 True
9330 False
9331 False
Name: mag, Length: 9332, dtype: bool

Grabbing subsets of the data 91

While we can run this on the entire dataframe, it wouldn't be too useful with our
earthquake data since we have columns of various data types. However, we can use this
strategy to get the subset of the data where the magnitude of the earthquake was greater
than or equal to 7.0:

>>> df[df.mag >= 7.0]

Our resulting dataframe has just two rows:

Figure 2.24 – Filtering with Boolean masks

We got back a lot of columns we didn't need, though. We could have chained a column
selection to the end of the last code snippet; however, loc[] can handle Boolean masks
as well:

>>> df.loc[
... df.mag >= 7.0,
... ['alert', 'mag', 'magType', 'title', 'tsunami', 'type']
...]

The following dataframe has been filtered so that it only contains relevant columns:

Figure 2.25 – Indexing with Boolean masks

We aren't limited to just one criterion, either. Let's grab the earthquakes with a red alert
and a tsunami. To combine masks, we need to surround each of our conditions with
parentheses and use the bitwise AND operator (&) to require both to be true:

>>> df.loc[
... (df.tsunami == 1) & (df.alert == 'red'),
... ['alert', 'mag', 'magType', 'title', 'tsunami', 'type']
...]

92 Working with Pandas DataFrames

There was only a single earthquake in the data that met our criteria:

Figure 2.26 – Combining filters with AND

If, instead, we want at least one of our conditions to be true, we can use the bitwise OR
operator (|):

>>> df.loc[
... (df.tsunami == 1) | (df.alert == 'red'),
... ['alert', 'mag', 'magType', 'title', 'tsunami', 'type']
...]

Notice that this filter is much less restrictive since, while both conditions can be true, we
only require that one of them is:

Figure 2.27 – Combining filters with OR

Grabbing subsets of the data 93

Important note
When creating Boolean masks, we must use bitwise operators (&, |, ~) instead
of logical operators (and, or, not). A good way to remember this is that we
want a Boolean for each item in the series we are testing rather than a single
Boolean. For example, with the earthquake data, if we want to select the rows
where the magnitude is greater than 1.5, then we want one Boolean value for
each row, indicating whether the row should be selected. In cases where we
want a single value for the data, perhaps to summarize it, we can use any()/
all() to condense a Boolean series into a single Boolean value that can
be used with logical operators. We will work with the any() and all()
methods in Chapter 4, Aggregating Pandas DataFrames.

In the previous two examples, our conditions involved equality; however, we are by no
means limited to this. Let's select all the earthquakes in Alaska where we have a non-null
value for the alert column:

>>> df.loc[
... (df.place.str.contains('Alaska'))
... & (df.alert.notnull()),
... ['alert', 'mag', 'magType', 'title', 'tsunami', 'type']
...]

All the earthquakes in Alaska that have a value for alert are green, and some were
accompanied by tsunamis, with the highest magnitude being 5.1:

Figure 2.28 – Creating Boolean masks with non-numeric columns

94 Working with Pandas DataFrames

Let's break down how we got this. Series objects have some string methods that can be
accessed via the str attribute. Using this, we can create a Boolean mask of all the rows
where the place column contained the word Alaska:

df.place.str.contains('Alaska')

To get all the rows where the alert column was not null, we used the Series object's
notnull() method (this works for DataFrame objects as well) to create a Boolean
mask of all the rows where the alert column was not null:

df.alert.notnull()

Tip
We can use the bitwise negation operator (~), also called NOT, to negate all
the Boolean values, which makes all True values False and vice versa. So,
df.alert.notnull() and ~df.alert.isnull()are equivalent.

Then, like we did previously, we combine the two conditions with the & operator to
complete our mask:

(df.place.str.contains('Alaska')) & (df.alert.notnull())

Note that we aren't limited to checking if each row contains text; we can use regular
expressions as well. Regular expressions (often called regex, for short) are very powerful
because they allow us to define a search pattern rather than the exact content we want
to find. This means that we can do things such as find all the words or digits in a string
without having to know what all the words or digits are beforehand (or go through one
character at a time). To do so, we simply pass in a string preceded by an r character
outside the quotes; this lets Python know it is a raw string, which means that we can
include backslash (\) characters in the string without Python thinking we are trying to
escape the character immediately following it (such as when we use \n to mean a new line
character instead of the letter n). This makes it perfect for use with regular expressions.
The re module in the Python standard library (https://docs.python.org/3/
library/re.html) handles regular expression operations; however, pandas lets us
use regular expressions directly.

https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html

Grabbing subsets of the data 95

Using a regular expression, let's select all the earthquakes in California that have
magnitudes of at least 3.8. We need to select entries in the place column that end in
CA or California because the data isn't consistent (we will look at how to fix this in
the next section). The $ character means end and 'CA$' gives us entries that end in CA,
so we can use 'CA|California$' to get entries that end in either:

>>> df.loc[
... (df.place.str.contains(r'CA|California$'))
... & (df.mag > 3.8),
... ['alert', 'mag', 'magType', 'title', 'tsunami', 'type']
...]

There were only two earthquakes in California with magnitudes greater than 3.8 during
the time period we are studying:

Figure 2.29 – Filtering with regular expressions

Tip
Regular expressions are extremely powerful, but unfortunately, also difficult
to get right. It is often helpful to grab some sample lines for parsing and use
a website to test them. Note that regular expressions come in many flavors,
so be sure to select Python. This website supports Python flavor regular
expressions, and also provides a nice cheat sheet on the side: https://
regex101.com/.

What if we want to get all earthquakes with magnitudes between 6.5 and 7.5? We could
use two Boolean masks—one to check for magnitudes greater than or equal to 6.5, and
another to check for magnitudes less than or equal to 7.5—and then combine them with
the & operator. Thankfully, pandas makes this type of mask much easier to create by
providing us with the between() method:

>>> df.loc[
... df.mag.between(6.5, 7.5),
... ['alert', 'mag', 'magType', 'title', 'tsunami', 'type']
...]

96 Working with Pandas DataFrames

The result contains all the earthquakes with magnitudes in the range [6.5, 7.5]—it's
inclusive of both ends by default, but we can pass in inclusive=False to change this:

Figure 2.30 – Filtering using a range of values

We can use the isin() method to create a Boolean mask for values that match one
of a list of values. This means that we don't have to write one mask for each of the
values that we could match and then use | to join them. Let's utilize this to filter on the
magType column, which indicates the measurement technique that was used to quantify
the earthquake's magnitude. We will take a look at earthquakes measured with either the
mw or mwb magnitude type:

>>> df.loc[
... df.magType.isin(['mw', 'mwb']),
... ['alert', 'mag', 'magType', 'title', 'tsunami', 'type']
...]

We have two earthquakes that were measured with the mwb magnitude type and four that
were measured with the mw magnitude type:

Figure 2.31 – Filtering using membership in a list

Grabbing subsets of the data 97

So far, we have been filtering on specific values, but suppose we wanted to see all the data
for the lowest-magnitude and highest-magnitude earthquakes. Rather than finding the
minimum and maximum of the mag column first and then creating a Boolean mask, we
can ask pandas to give us the index where these values occur, and easily filter to grab
the full rows. We can use idxmin() and idxmax() for the indices of the minimum
and maximum, respectively. Let's grab the row numbers for the lowest-magnitude and
highest-magnitude earthquakes:

>>> [df.mag.idxmin(), df.mag.idxmax()]
[2409, 5263]

We can use these indices to grab the rows themselves:

>>> df.loc[
... [df.mag.idxmin(), df.mag.idxmax()],
... ['alert', 'mag', 'magType', 'title', 'tsunami', 'type']
...]

The minimum magnitude earthquake occurred in Alaska and the highest magnitude
earthquake occurred in Indonesia, accompanied by a tsunami. We will discuss the
earthquake in Indonesia in Chapter 5, Visualizing Data with Pandas and Matplotlib, and
Chapter 6, Plotting with Seaborn and Customization Techniques:

Figure 2.32 – Filtering to isolate the rows containing the minimum and maximum of a column

Important note
Be advised that the filter() method does not filter the data according
to its values, as we did in this section; rather, it can be used to subset rows or
columns based on their names. Examples with DataFrame and Series
objects can be found in the notebook.

98 Working with Pandas DataFrames

Adding and removing data
In the previous sections, we frequently selected a subset of the columns, but if
columns/rows aren't useful to us, we should just get rid of them. We also frequently
selected data based on the value of the mag column; however, if we had made a new
column holding the Boolean values for later selection, we would have only needed to
calculate the mask once. Very rarely will we get data where we neither want to add nor
remove something.

Before we begin adding and removing data, it's important to understand that while most
methods will return a new DataFrame object, some will be in-place and change our
data. If we write a function where we pass in a dataframe and change it, it will change our
original dataframe as well. Should we find ourselves in a situation where we don't want to
change the original data, but rather want to return a new copy of the data that has been
modified, we must be sure to copy our dataframe before making any changes:

df_to_modify = df.copy()

Important note
By default, df.copy() makes a deep copy of the dataframe, which allows us
to make changes to either the copy or the original without repercussions. If we
pass in deep=False, we can obtain a shallow copy—changes to the shallow
copy affect the original and vice versa. We will almost always want the deep
copy, since we can change it without affecting the original. More information
can be found in the documentation at https://pandas.pydata.org/
pandas-docs/stable/reference/api/pandas.DataFrame.
copy.html.

Now, let's turn to the final notebook, 6-adding_and_removing_data.ipynb,
and get set up for the remainder of this chapter. We will once again be working with the
earthquake data, but this time, we will only read in a subset of the columns:

>>> import pandas as pd

>>> df = pd.read_csv(
... 'data/earthquakes.csv',
... usecols=[
... 'time', 'title', 'place', 'magType',
... 'mag', 'alert', 'tsunami'
...]
...)

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.copy.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.copy.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.copy.html

Adding and removing data 99

Creating new data
Creating new columns can be achieved in the same fashion as variable assignment. For
example, we can create a column to indicate the source of our data; since all our data came
from the same source, we can take advantage of broadcasting to set every row of this
column to the same value:

>>> df['source'] = 'USGS API'
>>> df.head()

The new column is created to the right of the original columns, with a value of USGS API
for every row:

Figure 2.33 – Adding a new column

Important note
We cannot create the column with attribute notation (df.source) because
the dataframe doesn't have that attribute yet, so we must use dictionary
notation (df['source']).

We aren't limited to broadcasting one value to the entire column; we can have the column
hold the result of Boolean logic or a mathematical equation. For example, if we had data
on distance and time, we could create a speed column that is the result of dividing the
distance column by the time column. With our earthquake data, let's create a column that
tells us whether the earthquake's magnitude was negative:

>>> df['mag_negative'] = df.mag < 0
>>> df.head()

100 Working with Pandas DataFrames

Note that the new column has been added to the right:

Figure 2.34 – Storing a Boolean mask in a new column

In the previous section, we saw that the place column has some data consistency
issues—we have multiple names for the same entity. In some cases, earthquakes occurring
in California are marked as CA and as California in others. Needless to say, this
is confusing and can easily cause issues for us if we don't carefully inspect our data
beforehand. For example, by just selecting CA, we miss out on 124 earthquakes marked as
California. This isn't the only place with an issue either (Nevada and NV are also both
present). By using a regular expression to extract everything in the place column after
the comma, we can see some of the issues firsthand:

>>> df.place.str.extract(r', (.*$)')[0].sort_values().unique()
array(['Afghanistan', 'Alaska', 'Argentina', 'Arizona',
 'Arkansas', 'Australia', 'Azerbaijan', 'B.C., MX',
 'Barbuda', 'Bolivia', ..., 'CA', 'California', 'Canada',
 'Chile', ..., 'East Timor', 'Ecuador', 'Ecuador region',
 ..., 'Mexico', 'Missouri', 'Montana', 'NV', 'Nevada',
 ..., 'Yemen', nan], dtype=object)

If we want to treat countries and anything near them as a single entity, we have some
additional work to do (see Ecuador and Ecuador region). In addition, our naive
attempt at parsing the location by looking at the information after the comma appears to
have failed; this is because, in some cases, we don't have a comma. We will need to change
our approach to parsing.

Adding and removing data 101

This is an entity recognition problem, and it's not trivial to solve. With a relatively small
list of unique values (which we can view with df.place.unique()), we can simply
look through and infer how to properly match up these names. Then, we can use the
replace() method to replace patterns in the place column as we see fit:

>>> df['parsed_place'] = df.place.str.replace(
... r'.* of ', '', regex=True # remove <x> of <x>
...).str.replace(
... 'the ', '' # remove "the "
...).str.replace(
... r'CA$', 'California', regex=True # fix California
...).str.replace(
... r'NV$', 'Nevada', regex=True # fix Nevada
...).str.replace(
... r'MX$', 'Mexico', regex=True # fix Mexico
...).str.replace(
... r' region$', '', regex=True # fix " region" endings
...).str.replace(
... 'northern ', '' # remove "northern "
...).str.replace(
... 'Fiji Islands', 'Fiji' # line up the Fiji places
...).str.replace(# remove anything else extraneous from start
... r'^.*, ', '', regex=True
...).str.strip() # remove any extra spaces

Now, we can check the parsed places we are left with. Notice that there is arguably still
more to fix here with South Georgia and South Sandwich Islands and
South Sandwich Islands. We could address this with another call to replace();
however, this goes to show that entity recognition can be quite challenging:

>>> df.parsed_place.sort_values().unique()
array([..., 'California', 'Canada', 'Carlsberg Ridge', ...,
 'Dominican Republic', 'East Timor', 'Ecuador',
 'El Salvador', 'Fiji', 'Greece', ...,
 'Mexico', 'Mid-Indian Ridge', 'Missouri', 'Montana',
 'Nevada', 'New Caledonia', ...,
 'South Georgia and South Sandwich Islands',
 'South Sandwich Islands', ..., 'Yemen'], dtype=object)

102 Working with Pandas DataFrames

Important note
In practice, entity recognition can be an extremely difficult problem, where
we may look to employ natural language processing (NLP) algorithms to
help us. While this is well beyond the scope of this book, more information
can be found at https://www.kdnuggets.com/2018/12/
introduction-named-entity-recognition.html.

Pandas also provides us with a way to make many new columns at once in one method
call. With the assign() method, the arguments are the names of the columns we want
to create (or overwrite), and the values are the data for the columns. Let's create two new
columns; one will tell us if the earthquake happened in California, and the other will tell
us if it happened in Alaska. Rather than just show the first five entries (which are all in
California), we will use sample() to randomly select five rows:

>>> df.assign(
... in_ca=df.parsed_place.str.endswith('California'),
... in_alaska=df.parsed_place.str.endswith('Alaska')
...).sample(5, random_state=0)

Note that assign() doesn't change our original dataframe; instead, it returns a new
DataFrame object with these columns added. If we want to replace our original
dataframe with this, we just use variable assignment to store the result of assign() in
df (for example, df = df.assign(...)):

Figure 2.35 – Creating multiple new columns at once

Adding and removing data 103

The assign() method also accepts lambda functions (anonymous functions usually
defined in one line and for single use); assign() will pass the dataframe into the
lambda function as x, and we can work from there. This makes it possible for us to
use the columns we are creating in assign() to calculate others. For example, let's
once again create the in_ca and in_alaska columns, but this time also create a new
column, neither, which is True if both in_ca and in_alaska are False:

>>> df.assign(
... in_ca=df.parsed_place == 'California',
... in_alaska=df.parsed_place == 'Alaska',
... neither=lambda x: ~x.in_ca & ~x.in_alaska
...).sample(5, random_state=0)

Remember that ~ is the bitwise negation operator, so this allows us to create a column
with the result of NOT in_ca AND NOT in_alaska per row:

Figure 2.36 – Creating multiple new columns at once with lambda functions

Tip
When working with pandas, it's crucial to get comfortable with lambda
functions, as they can be used with much of the functionality available and will
dramatically improve the quality and readability of the code. Throughout this
book, we will see various places where lambda functions can be used.

104 Working with Pandas DataFrames

Now that we have seen how to add new columns, let's take a look at adding new rows.
Say we were working with two separate dataframes; one with earthquakes accompanied
by tsunamis and the other with earthquakes without tsunamis:

>>> tsunami = df[df.tsunami == 1]
>>> no_tsunami = df[df.tsunami == 0]

>>> tsunami.shape, no_tsunami.shape
((61, 10), (9271, 10))

If we wanted to look at earthquakes as a whole, we would want to concatenate the
dataframes into a single one. To append rows to the bottom of our dataframe, we
can either use pd.concat() or the append() method of the dataframe itself. The
concat() function allows us to specify the axis that the operation will be performed
along—0 for appending rows to the bottom of the dataframe, and 1 for appending to the
right of the last column with respect to the leftmost pandas object in the concatenation
list. Let's use pd.concat() with the default axis of 0 for rows:

>>> pd.concat([tsunami, no_tsunami]).shape
(9332, 10) # 61 rows + 9271 rows

Note that the previous result is equivalent to running the append() method on the
dataframe. This still returns a new DataFrame object, but it saves us from having
to remember which axis is which, since append() is actually a wrapper around the
concat() function:

>>> tsunami.append(no_tsunami).shape
(9332, 10) # 61 rows + 9271 rows

So far, we have been working with a subset of the columns from the CSV file, but suppose
that we now want to work with some of the columns we ignored when we read in the data.
Since we have added new columns in this notebook, we won't want to read in the file and
perform those operations again. Instead, we will concatenate along the columns (axis=1)
to add back what we are missing:

>>> additional_columns = pd.read_csv(
... 'data/earthquakes.csv', usecols=['tz', 'felt', 'ids']
...)
>>> pd.concat([df.head(2), additional_columns.head(2)], axis=1)

Adding and removing data 105

Since the indices of the dataframes align, the additional columns are placed to the right
of our original columns:

Figure 2.37 – Concatenating columns with matching indices

The concat() function uses the index to determine how to concatenate the values. If
they don't align, this will generate additional rows because pandas won't know how to
align them. Say we forgot that our original dataframe had the row numbers as the index,
and we read in the additional columns by setting the time column as the index:

>>> additional_columns = pd.read_csv(
... 'data/earthquakes.csv',
... usecols=['tz', 'felt', 'ids', 'time'],
... index_col='time'
...)
>>> pd.concat([df.head(2), additional_columns.head(2)], axis=1)

Despite the additional columns containing data for the first two rows, pandas creates
a new row for them because the index doesn't match. In Chapter 3, Data Wrangling with
Pandas, we will see how to reset the index and set the index, both of which could resolve
this issue:

Figure 2.38 – Concatenating columns with mismatching indices

Important note
In Chapter 4, Aggregating Pandas DataFrames, we will discuss merging, which
will also handle some of these issues when we're augmenting the columns in
the dataframe. Often, we will use concat() or append() to add rows,
but merge() or join() to add columns.

106 Working with Pandas DataFrames

Say we want to concatenate the tsunami and no_tsunami dataframes, but the
no_tsunami dataframe has an additional column (suppose we added a new column
to it called type). The join parameter specifies how to handle any overlap in column
names (when appending to the bottom) or in row names (when concatenating to the
right). By default, this is outer, so we keep everything; however, if we use inner,
we will only keep what they have in common:

>>> pd.concat(
... [
... tsunami.head(2),
... no_tsunami.head(2).assign(type='earthquake')
...],
... join='inner'
...)

Notice that the type column from the no_tsunami dataframe doesn't show up because
it wasn't present in the tsunami dataframe. Take a look at the index, though; these were
the row numbers from the original dataframe before we divided it into tsunami and
no_tsunami:

Figure 2.39 – Appending rows and keeping only shared columns

If the index is not meaningful, we can also pass in ignore_index to get sequential
values in the index:

>>> pd.concat(
... [
... tsunami.head(2),
... no_tsunami.head(2).assign(type='earthquake')
...],
... join='inner', ignore_index=True
...)

The index is now sequential, and the row numbers no longer match the original
dataframe:

Adding and removing data 107

Figure 2.40 – Appending rows and resetting the index

Be sure to consult the pandas documentation for more information on the concat()
function and other operations for combining data, which we will discuss in Chapter 4,
Aggregating Pandas DataFrames: http://pandas.pydata.org/pandas-docs/
stable/user_guide/merging.html#concatenating-objects.

Deleting unwanted data
After adding that data to our dataframe, we can see the need to delete unwanted data.
We need a way to undo our mistakes and get rid of data that we aren't going to use. Like
adding data, we can use dictionary syntax to delete unwanted columns, just as we would
when removing keys from a dictionary. Both del df['<column_name>'] and
df.pop('<column_name>') will work, provided that there is indeed a column with
that name; otherwise, we will get a KeyError. The difference here is that while del
removes it right away, pop() will return the column that we are removing. Remember
that both of these operations will change our original dataframe, so use them with care.

Let's use dictionary notation to delete the source column. Notice that it no longer
appears in the result of df.columns:

>>> del df['source']
>>> df.columns
Index(['alert', 'mag', 'magType', 'place', 'time', 'title',
 'tsunami', 'mag_negative', 'parsed_place'],
 dtype='object')

Note that if we aren't sure whether the column exists, we should put our column deletion
code in a try...except block:

try:
 del df['source']
except KeyError:
 pass # handle the error here

http://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html#concatenating-objects
http://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html#concatenating-objects

108 Working with Pandas DataFrames

Earlier, we created the mag_negative column for filtering our dataframe; however,
we no longer want this column as part of our dataframe. We can use pop() to grab the
series for the mag_negative column, which we can use as a Boolean mask later without
having it in our dataframe:

>>> mag_negative = df.pop('mag_negative')
>>> df.columns
Index(['alert', 'mag', 'magType', 'place', 'time', 'title',
 'tsunami', 'parsed_place'],
 dtype='object')

We now have a Boolean mask in the mag_negative variable that used to be a column
in df:

>>> mag_negative.value_counts()
False 8841
True 491
Name: mag_negative, dtype: int64

Since we used pop() to remove the mag_negative series rather than deleting it, we
can still use it to filter our dataframe:

>>> df[mag_negative].head()

This leaves us with the earthquakes that had negative magnitudes. Since we also called
head(), we get back the first five such earthquakes:

Figure 2.41 – Using a popped column as a Boolean mask

Adding and removing data 109

DataFrame objects have a drop() method for removing multiple rows or columns
either in-place (overwriting the original dataframe without having to reassign it) or
returning a new DataFrame object. To remove rows, we pass the list of indices. Let's
remove the first two rows:

>>> df.drop([0, 1]).head(2)

Notice that the index starts at 2 because we dropped 0 and 1:

Figure 2.42 – Dropping specific rows

By default, drop() assumes that we want to delete rows (axis=0). If we want to drop
columns, we can either pass axis=1 or specify our list of column names using the
columns argument. Let's delete some more columns:

>>> cols_to_drop = [
... col for col in df.columns
... if col not in [
... 'alert', 'mag', 'title', 'time', 'tsunami'
...]
...]
>>> df.drop(columns=cols_to_drop).head()

This drops all the columns that aren't in the list we wanted to keep:

Figure 2.43 – Dropping specific columns

110 Working with Pandas DataFrames

Whether we decide to pass axis=1 to drop() or use the columns argument, our result
will be equivalent:

>>> df.drop(columns=cols_to_drop).equals(
... df.drop(cols_to_drop, axis=1)
...)
True

By default, drop() will return a new DataFrame object; however, if we really want to
remove the data from our original dataframe, we can pass in inplace=True, which will
save us from having to reassign the result back to our dataframe. The result is the same as
in Figure 2.43:

>>> df.drop(columns=cols_to_drop, inplace=True)
>>> df.head()

Always be careful with in-place operations. In some cases, it may be possible to undo
them; however, in others, it may require starting over from the beginning and recreating
the dataframe.

Summary
In this chapter, we learned how to use pandas for the data collection portion of data
analysis and to describe our data with statistics, which will be helpful when we get to the
drawing conclusions phase. We learned the main data structures of the pandas library,
along with some of the operations we can perform on them. Next, we learned how to
create DataFrame objects from a variety of sources, including flat files and API requests.
Using earthquake data, we discussed how to summarize our data and calculate statistics
from it. Subsequently, we addressed how to take subsets of data via selection, slicing,
indexing, and filtering. Finally, we practiced adding and removing both columns and rows
from our dataframe.

These tasks also form the backbone of our pandas workflow and the foundation for
the new topics we will cover in the next few chapters on data wrangling, aggregation, and
data visualization. Be sure to complete the exercises provided in the next section before
moving on.

Exercises 111

Exercises
Using the data/parsed.csv file and the material from this chapter, complete the
following exercises to practice your pandas skills:

1. Find the 95th percentile of earthquake magnitude in Japan using the mb
magnitude type.

2. Find the percentage of earthquakes in Indonesia that were coupled with tsunamis.

3. Calculate summary statistics for earthquakes in Nevada.

4. Add a column indicating whether the earthquake happened in a country or US
state that is on the Ring of Fire. Use Alaska, Antarctica (look for Antarctic), Bolivia,
California, Canada, Chile, Costa Rica, Ecuador, Fiji, Guatemala, Indonesia, Japan,
Kermadec Islands, Mexico (be careful not to select New Mexico), New Zealand,
Peru, Philippines, Russia, Taiwan, Tonga, and Washington.

5. Calculate the number of earthquakes in the Ring of Fire locations and the number
outside of them.

6. Find the tsunami count along the Ring of Fire.

Further reading
Those with an R and/or SQL background may find it helpful to see how the pandas
syntax compares:

• Comparison with R / R Libraries: https://pandas.pydata.org/pandas-
docs/stable/getting_started/comparison/comparison_with_r.
html

• Comparison with SQL: https://pandas.pydata.org/pandas-docs/
stable/comparison_with_sql.html

• SQL Queries: https://pandas.pydata.org/pandas-docs/stable/
getting_started/comparison/comparison_with_sql.html

The following are some resources on working with serialized data:

• Pickle in Python: Object Serialization: https://www.datacamp.com/
community/tutorials/pickle-python-tutorial

• Read RData/RDS files into pandas.DataFrame objects (pyreader): https://
github.com/ofajardo/pyreadr

https://pandas.pydata.org/pandas-docs/stable/getting_started/comparison/comparison_with_r.html
https://pandas.pydata.org/pandas-docs/stable/getting_started/comparison/comparison_with_r.html
https://pandas.pydata.org/pandas-docs/stable/getting_started/comparison/comparison_with_r.html
https://pandas.pydata.org/pandas-docs/stable/comparison_with_sql.html
https://pandas.pydata.org/pandas-docs/stable/comparison_with_sql.html
https://pandas.pydata.org/pandas-docs/stable/getting_started/comparison/comparison_with_sql.html
https://pandas.pydata.org/pandas-docs/stable/getting_started/comparison/comparison_with_sql.html
https://www.datacamp.com/community/tutorials/pickle-python-tutorial
https://www.datacamp.com/community/tutorials/pickle-python-tutorial
https://github.com/ofajardo/pyreadr
https://github.com/ofajardo/pyreadr

112 Working with Pandas DataFrames

Additional resources for working with APIs are as follows:

• Documentation for the requests package: https://requests.readthedocs.
io/en/master/

• HTTP Methods: https://restfulapi.net/http-methods/

• HTTP Status Codes: https://restfulapi.net/http-status-codes/

To learn more about regular expressions, consult the following resources:

• Mastering Python Regular Expressions by Félix López, Víctor Romero: https://
www.packtpub.com/application-development/mastering-python-
regular-expressions

• Regular Expression Tutorial — Learn How to Use Regular Expressions: https://
www.regular-expressions.info/tutorial.html

https://requests.readthedocs.io/en/master/
https://requests.readthedocs.io/en/master/
https://restfulapi.net/http-methods/
https://restfulapi.net/http-status-codes/
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.regular-expressions.info/tutorial.html
https://www.regular-expressions.info/tutorial.html

Section 2:
Using Pandas for

Data Analysis

Now that we have some exposure to the pandas library, understand what data analysis
entails, and know various ways to collect data, we will focus on the skills we need to
perform data wrangling and exploratory data analysis. This section will give us the tools
we need to manipulate, reshape, summarize, aggregate, and visualize data in Python.

This section comprises the following chapters:

• Chapter 3, Data Wrangling with Pandas

• Chapter 4, Aggregating Pandas DataFrames

• Chapter 5, Visualizing Data with Pandas and Matplotlib

• Chapter 6, Plotting with Seaborn and Customization Techniques

3
Data Wrangling with

Pandas
In the previous chapter, we learned about the main pandas data structures, how to create
DataFrame objects with our collected data, and various ways to inspect, summarize,
filter, select, and work with DataFrame objects. Now that we are well versed in the
initial data collection and inspection stage, we can begin our foray into the world of data
wrangling.

As mentioned in Chapter 1, Introduction to Data Analysis, preparing data for analysis is
often the largest portion of the job time-wise for those working with data, and often the
least enjoyable. On the bright side, pandas is well equipped to help with these tasks,
and, by mastering the skills presented in this book, we will be able to get to the more
interesting parts sooner.

It should be noted that data wrangling isn't something we do merely once in our analysis;
it is highly likely that we will do some data wrangling and move on to another analysis
task, such as data visualization, only to find that we need to do additional data wrangling.
The more familiar we are with the data, the better we will be able to prepare the data
for our analysis. It's crucial to form an intuition of what types our data should be, what
format we need our data to be in for the visualization that would best convey what we are
looking to show, and the data points we should collect for our analysis. This comes with
experience, so we must practice the skills that will be covered in this chapter on our own
data every chance we get.

116 Data Wrangling with Pandas

Since this is a very large topic, our coverage of data wrangling will be split between this
chapter and Chapter 4, Aggregating Pandas DataFrames. In this chapter, we will get an
overview of data wrangling before exploring the National Centers for Environmental
Information (NCEI) API for climate data and walking through the process of collecting
temperature data from it using the requests library. Then, we will discuss data
wrangling tasks that deal with preparing data for some initial analyses and visualizations
(which we will learn about in Chapter 5, Visualizing Data with Pandas and Matplotlib,
and Chapter 6, Plotting with Seaborn and Customization Techniques). We will address
some more advanced aspects of data wrangling that relate to aggregations and combining
datasets in Chapter 4, Aggregating Pandas DataFrames.

In this chapter, we will cover the following topics:

• Understanding data wrangling

• Exploring an API to find and collect temperature data

• Cleaning data

• Reshaping data

• Handling duplicate, missing, or invalid data

Chapter materials
The materials for this chapter can be found on GitHub at https://github.com/
stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/
master/ch_03. There are five notebooks that we will work through, each numbered
according to when they will be used, and two directories, data/ and exercises/,
which contain all the CSV files necessary for the aforementioned notebooks and
end-of-chapter exercises, respectively. The following files are in the data/ directory:

https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/ch_03
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/ch_03
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/ch_03

Chapter materials 117

Figure 3.1 – Breakdown of the datasets used in this chapter

We will begin in the 1-wide_vs_long.ipynb notebook by discussing wide versus
long format data. Then, we will collect daily temperature data from the NCEI API, which
can be found at https://www.ncdc.noaa.gov/cdo-web/webservices/v2,
in the 2-using_the_weather_api.ipynb notebook. The documentation for the
Global Historical Climatology Network – Daily (GHCND) dataset we will be using can
be found at https://www1.ncdc.noaa.gov/pub/data/cdo/documentation/
GHCND_documentation.pdf.

Important note
The NCEI is part of the National Oceanic and Atmospheric Administration
(NOAA). As indicated by the URL for the API, this resource was created when
the NCEI was called the NCDC. Should the URL for this resource change in
the future, search for NCEI weather API to find the updated one.

In the 3-cleaning_data.ipynb notebook, we will learn how to perform an
initial round of cleaning on the temperature data and some financial data, which
was collected using the stock_analysis package that we will build in Chapter 7,
Financial Analysis – Bitcoin and the Stock Market. Afterward, we will walk through ways
to reshape our data in the 4-reshaping_data.ipynb notebook. Finally, in the
5-handling_data_issues.ipynb notebook, we will learn about some strategies for
dealing with duplicate, missing, or invalid data using some dirty data that can be found
in data/dirty_data.csv. The text will indicate when it's time to switch between
notebooks.

https://www.ncdc.noaa.gov/cdo-web/webservices/v2
https://www1.ncdc.noaa.gov/pub/data/cdo/documentation/GHCND_documentation.pdf
https://www1.ncdc.noaa.gov/pub/data/cdo/documentation/GHCND_documentation.pdf

118 Data Wrangling with Pandas

Understanding data wrangling
Like any professional field, data analysis is filled with buzzwords, and it can often be
difficult for newcomers to understand the lingo—the topic of this chapter is no exception.
When we perform data wrangling, we are taking our input data from its original
state and putting it in a format where we can perform meaningful analysis on it. Data
manipulation is another way to refer to this process. There is no set list of operations; the
only goal is that the data post-wrangling is more useful to us than when we started. In
practice, there are three common tasks involved in the data wrangling process:

• Data cleaning

• Data transformation

• Data enrichment

It should be noted that there is no inherent order to these tasks, and it is highly probable
that we will perform each many times throughout the data wrangling process. This idea
brings up an interesting conundrum: if we need to wrangle our data to prepare it for
our analysis, isn't it possible to wrangle it in such a way that we tell the data what to say
instead of us learning what it is saying?

"If you torture the data long enough, it will confess to anything."

— Ronald Coase, winner of a Nobel Prize in Economics
Those working with data will find it is very easy to distort the truth by manipulating
the data. However, it is our duty to do our best to avoid deceit by keeping the effect our
actions have on the data's integrity in mind, and by explaining the process we took to
draw our conclusions to the people who consume our analyses, so that they too may make
their own judgments.

Data cleaning
Once we have collected our data, brought it into a DataFrame object, and used the skills
we discussed in Chapter 2, Working with Pandas DataFrames, to familiarize ourselves with
the data, we will need to perform some data cleaning. An initial round of data cleaning
will often give us the bare minimum we need to start exploring our data. Some essential
data cleaning tasks to master include the following:

• Renaming

• Sorting and reordering

• Data type conversions

Understanding data wrangling 119

• Handling duplicate data

• Addressing missing or invalid data

• Filtering to the desired subset of data

Data cleaning is the best starting point for data wrangling, since having the data stored
as the correct data types and easy-to-reference names will open up many avenues for
exploration, such as summary statistics, sorting, and filtering. Since we covered filtering
in Chapter 2, Working with Pandas DataFrames, we will focus on the other topics from the
preceding list in this chapter.

Data transformation
Frequently, we will reach the data transformation stage after some initial data cleaning,
but it is entirely possible that our dataset is unusable in its current shape, and we must
restructure it before attempting to do any data cleaning. In data transformation, we
focus on changing our data's structure to facilitate our downstream analyses; this usually
involves changing which data goes along the rows and which goes down the columns.

Most data we will find is either wide format or long format; each of these formats has its
merits, and it's important to know which one we will need for our analysis. Often, people
will record and present data in wide format, but there are certain visualizations that
require the data to be in long format:

Figure 3.2 – (Left) wide format versus (right) long format

120 Data Wrangling with Pandas

Wide format is preferred for analysis and database design, while long format is considered
poor design because each column should be its own data type and have a singular
meaning. However, in cases where new fields will be added (or old ones removed) from
a table in a relational database, rather than having to alter all the tables each time, the
database's maintainers may decide to use the long format. This allows them to provide a
fixed schema for users of the database, while being able to update the data it contains as
needed. When building an API, the long format may be chosen if flexibility is required.
Perhaps the API will provide a generic response format (for instance, date, field name,
and field value) that can support various tables from a database. This may also have to
do with making the response easier to form, depending on how the data is stored in the
database the API uses. Since we will find data in both of these formats, it's important we
understand how to work with both of them and go from one to the other.

Now, let's navigate to the 1-wide_vs_long.ipynb notebook to see some examples.
First, we will import pandas and matplotlib (to help illustrate the strengths and
weaknesses of each format when it comes to visualizations, which we will discuss in
Chapter 5, Visualizing Data with Pandas and Matplotlib, and Chapter 6, Plotting with
Seaborn and Customization Techniques) and read in the CSV files containing wide and
long format data:

>>> import matplotlib.pyplot as plt
>>> import pandas as pd

>>> wide_df = \
... pd.read_csv('data/wide_data.csv', parse_dates=['date'])
>>> long_df = pd.read_csv(
... 'data/long_data.csv',
... usecols=['date', 'datatype', 'value'],
... parse_dates=['date']
...)[['date', 'datatype', 'value']] # sort columns

The wide data format
With wide format data, we represent measurements of variables with their own columns,
and each row represents an observation of those variables. This makes it easy for us to
compare variables across observations, get summary statistics, perform operations, and
present our data; however, some visualizations don't work with this data format because
they may rely on the long format to split, size, and/or color the plot content.

Let's look at the top six observations from the wide format data in wide_df:

>>> wide_df.head(6)

Understanding data wrangling 121

Each column contains the top six observations of a specific class of temperature data in
degrees Celsius—maximum temperature (TMAX), minimum temperature (TMIN), and
temperature at the time of observation (TOBS)—at a daily frequency:

Figure 3.3 – Wide format temperature data

When working with wide format data, we can easily grab summary statistics on this data
by using the describe() method. Note that while older versions of pandas treated
datetimes as categorical, pandas is moving toward treating them as numeric, so we
pass datetime_is_numeric=True to suppress the warning:

>>> wide_df.describe(include='all', datetime_is_numeric=True)

With hardly any effort on our part, we get summary statistics for the dates, maximum
temperature, minimum temperature, and temperature at the time of observation:

Figure 3.4 – Summary statistics for the wide format temperature data

122 Data Wrangling with Pandas

As we discussed previously, the summary data in the preceding table is easy to obtain and
is informative. This format can easily be plotted with pandas as well, provided we tell it
exactly what we want to plot:

>>> wide_df.plot(
... x='date', y=['TMAX', 'TMIN', 'TOBS'], figsize=(15, 5),
... title='Temperature in NYC in October 2018'
...).set_ylabel('Temperature in Celsius')
>>> plt.show()

Pandas plots the daily maximum temperature, minimum temperature, and temperature
at the time of observation as their own lines on a single line plot:

Figure 3.5 – Plotting the wide format temperature data

Important note
Don't worry about understanding the visualization code right now; it's here
just to illustrate how each of these data formats can make certain tasks easier
or harder. We will cover visualizations with pandas and matplotlib in
Chapter 5, Visualizing Data with Pandas and Matplotlib.

Understanding data wrangling 123

The long data format
Long format data will have a row for each observation of a variable; this means that, if we
have three variables being measured daily, we will have three rows for each day we record
observations. The long format setup can be achieved by turning the variable column
names into a single column, where the data is the variable name, and putting their values
in a separate column.

We can look at the top six rows of the long format data in long_df to see the difference
between wide format and long format data:

>>> long_df.head(6)

Notice that we now have three entries for each date, and the datatype column tells us what
the data in the value column is for that row:

Figure 3.6 – Long format temperature data

If we try to get summary statistics, like we did with the wide format data, the result isn't as
helpful:

>>> long_df.describe(include='all', datetime_is_numeric=True)

124 Data Wrangling with Pandas

The value column shows us summary statistics, but this is summarizing the daily
maximum temperatures, minimum temperatures, and temperatures at the time of
observation. The maximum will be the maximum of the daily maximum temperatures
and the minimum will be the minimum of the daily minimum temperatures. This means
that this summary data is not very helpful:

Figure 3.7 – Summary statistics for the long format temperature data

This format is not very easy to digest and certainly shouldn't be how we present data;
however, it makes it easy to create visualizations where our plotting library can color lines
by the name of the variable, size the points by the values of a certain variable, and perform
splits for faceting. Pandas expects its data for plotting to be in wide format, so, to easily
make the same plot that we did with the wide format data, we must use another plotting
library, called seaborn, which we will cover in Chapter 6, Plotting with Seaborn and
Customization Techniques:

>>> import seaborn as sns

>>> sns.set(rc={'figure.figsize': (15, 5)}, style='white')

>>> ax = sns.lineplot(
... data=long_df, x='date', y='value', hue='datatype'
...)

Understanding data wrangling 125

>>> ax.set_ylabel('Temperature in Celsius')
>>> ax.set_title('Temperature in NYC in October 2018')
>>> plt.show()

Seaborn can subset based on the datatype column to give us individual lines for
the daily maximum temperature, minimum temperature, and temperature at the time
of observation:

Figure 3.8 – Plotting the long format temperature data

Seaborn lets us specify the column to use for hue, which colored the lines in Figure 3.8
by the temperature type. We aren't limited to this, though; with long format data, we can
easily facet our plots:

>>> sns.set(
... rc={'figure.figsize': (20, 10)},
... style='white', font_scale=2
...)
>>> g = sns.FacetGrid(long_df, col='datatype', height=10)
>>> g = g.map(plt.plot, 'date', 'value')
>>> g.set_titles(size=25)
>>> g.set_xticklabels(rotation=45)
>>> plt.show()

126 Data Wrangling with Pandas

Seaborn can use long format data to create subplots for each distinct value in the
datatype column:

Figure 3.9 – Plotting subsets of the long format temperature data

Important note
While it is possible to create a plot similar to the preceding one with pandas
and matplotlib using subplots, more complicated combinations of facets
will make using seaborn infinitely easier. We will cover seaborn in
Chapter 6, Plotting with Seaborn and Customization Techniques.

In the Reshaping data section, we will cover how to transform our data from wide to long
format by melting, and from long to wide format by pivoting. Additionally, we will learn
how to transpose data, which flips the columns and the rows.

Data enrichment
Once we have our cleaned data in the format we need for our analysis, we may find the
need to enrich the data a bit. Data enrichment improves the quality of the data by adding
to it in one way or another. This process becomes very important in modeling and in
machine learning, where it forms part of the feature engineering process (which we will
touch on in Chapter 10, Making Better Predictions – Optimizing Models).

When we're looking to enrich our data, we can either merge new data with the original
data (by appending new rows or columns) or use the original data to create new data. The
following are ways to enhance our data using the original data:

• Adding new columns: Using functions on the data from existing columns to create
new values.

Exploring an API to find and collect temperature data 127

• Binning: Turning continuous data or discrete data with many distinct values into
buckets, which makes the column discrete while letting us control the number of
possible values in the column.

• Aggregating: Rolling up the data and summarizing it.

• Resampling: Aggregating time series data at specific intervals.

Now that we understand what data wrangling is, let's collect some data to work with. Note
that we will cover data cleaning and transformation in this chapter, while data enrichment
will be covered in Chapter 4, Aggregating Pandas DataFrames.

Exploring an API to find and collect
temperature data
In Chapter 2, Working with Pandas DataFrames, we worked on data collection and how
to perform an initial inspection and filtering of the data; this usually gives us ideas of
things that need to be addressed before we move further in our analysis. Since this chapter
builds on those skills, we will get to practice some of them here as well. To begin, we will
start by exploring the weather API that's provided by the NCEI. Then, in the next section,
we will learn about data wrangling using temperature data that was previously obtained
from this API.

Important note
To use the NCEI API, you will have to request a token by filling out this form
with your email address: https://www.ncdc.noaa.gov/cdo-web/
token.

For this section, we will be working in the 2-using_the_weather_api.ipynb
notebook to request temperature data from the NCEI API. As we learned in Chapter 2,
Working with Pandas DataFrames, we can use the requests library to interact with
APIs. In the following code block, we import the requests library and create a
convenience function for making the requests to a specific endpoint, sending our token
along. To use this function, we need to provide a token, as indicated in bold:

>>> import requests

>>> def make_request(endpoint, payload=None):
... """
... Make a request to a specific endpoint on the
... weather API passing headers and optional payload.

https://www.ncdc.noaa.gov/cdo-web/token
https://www.ncdc.noaa.gov/cdo-web/token

128 Data Wrangling with Pandas

... Parameters:

... - endpoint: The endpoint of the API you want to

... make a GET request to.

... - payload: A dictionary of data to pass along

... with the request.

...

... Returns:

... A response object.

... """

... return requests.get(

... 'https://www.ncdc.noaa.gov/cdo-web/'

... f'api/v2/{endpoint}',

... headers={'token': 'PASTE_YOUR_TOKEN_HERE'},

... params=payload

...)

Tip
This function is making use of f-strings, which were introduced in Python 3.6;
they improve code readability and reduce verbosity compared to using the
format() method: 'api/v2/{}'.format(endpoint).

To use the make_request() function, we need to learn how to form our request. The
NCEI has a helpful getting started page (https://www.ncdc.noaa.gov/cdo-web/
webservices/v2#gettingStarted) that shows us how to form requests; we can
progress through the tabs on the page to figure out what filters we want on our query. The
requests library takes care of turning our dictionary of search parameters (passed in as
payload) into a query string that gets appended to the end URL (for example, if we pass
2018-08-28 for start and 2019-04-15 for end, we will get ?start=2018-08-
28&end=2019-04-15), just like the examples on the website. This API provides many
different endpoints for exploring what is offered and building up our ultimate request
for the actual dataset. We will start by figuring out the ID of the dataset we want to query
for (datasetid) using the datasets endpoint. Let's check which datasets have data
within the date range of October 1, 2018 through today:

>>> response = \
... make_request('datasets', {'startdate': '2018-10-01'})

https://www.ncdc.noaa.gov/cdo-web/webservices/v2#gettingStarted
https://www.ncdc.noaa.gov/cdo-web/webservices/v2#gettingStarted

Exploring an API to find and collect temperature data 129

Remember that we check the status_code attribute to make sure the request was
successful. Alternatively, we can use the ok attribute to get a Boolean indicator if
everything went as expected:

>>> response.status_code
200
>>> response.ok
True

Tip
The API limits us to 5 requests per second and 10,000 requests per day. If we
exceed these limits, the status code will indicate a client error (meaning that
the error appears to have been caused by us). Client errors have status codes in
the 400s; for example, 404, if the requested resource can't be found, or 400, if
the server can't understand our request (or refuses to process it). Sometimes,
the server has an issue on its side when processing our request, in which case
we see status codes in the 500s. You can find a listing of common status codes
and their meanings at https://restfulapi.net/http-status-
codes/.

Once we have our response, we can use the json() method to get the payload. Then, we
can use dictionary methods to determine which part we want to look at:

>>> payload = response.json()
>>> payload.keys()
dict_keys(['metadata', 'results'])

The metadata portion of the JSON payload tells us information about the result, while
the results section contains the actual results. Let's see how much data we got back,
so that we know whether we can print the results or whether we should try to limit the
output:

>>> payload['metadata']
{'resultset': {'offset': 1, 'count': 11, 'limit': 25}}

We got back 11 rows, so let's see what fields are in the results portion of the JSON
payload. The results key contains a list of dictionaries. If we select the first one, we can
look at the keys to see what fields the data contains. We can then reduce the output to the
fields we care about:

>>> payload['results'][0].keys()
dict_keys(['uid', 'mindate', 'maxdate', 'name',
 'datacoverage', 'id'])

https://restfulapi.net/http-status-codes/
https://restfulapi.net/http-status-codes/

130 Data Wrangling with Pandas

For our purposes, we want to look at the IDs and names of the datasets, so let's use a list
comprehension to look at those only:

>>> [(data['id'], data['name']) for data in payload['results']]
[('GHCND', 'Daily Summaries'),
 ('GSOM', 'Global Summary of the Month'),
 ('GSOY', 'Global Summary of the Year'),
 ('NEXRAD2', 'Weather Radar (Level II)'),
 ('NEXRAD3', 'Weather Radar (Level III)'),
 ('NORMAL_ANN', 'Normals Annual/Seasonal'),
 ('NORMAL_DLY', 'Normals Daily'),
 ('NORMAL_HLY', 'Normals Hourly'),
 ('NORMAL_MLY', 'Normals Monthly'),
 ('PRECIP_15', 'Precipitation 15 Minute'),
 ('PRECIP_HLY', 'Precipitation Hourly')]

The first entry in the result is what we are looking for. Now that we have a value for
datasetid (GHCND), we proceed to identify one for datacategoryid, which we need
to request temperature data. We do so using the datacategories endpoint. Here, we
can print the JSON payload since it isn't that large (only nine entries):

>>> response = make_request(
... 'datacategories', payload={'datasetid': 'GHCND'}
...)
>>> response.status_code
200
>>> response.json()['results']
[{'name': 'Evaporation', 'id': 'EVAP'},
 {'name': 'Land', 'id': 'LAND'},
 {'name': 'Precipitation', 'id': 'PRCP'},
 {'name': 'Sky cover & clouds', 'id': 'SKY'},
 {'name': 'Sunshine', 'id': 'SUN'},
 {'name': 'Air Temperature', 'id': 'TEMP'},
 {'name': 'Water', 'id': 'WATER'},
 {'name': 'Wind', 'id': 'WIND'},
 {'name': 'Weather Type', 'id': 'WXTYPE'}]

Exploring an API to find and collect temperature data 131

Based on the previous result, we know that we want a value of TEMP for
datacategoryid. Next, we use this to identify the data types we want by using the
datatypes endpoint. We will use a list comprehension once again to only print the
names and IDs; this is still a rather large list, so the output has been abbreviated:

>>> response = make_request(
... 'datatypes',
... payload={'datacategoryid': 'TEMP', 'limit': 100}
...)
>>> response.status_code
200
>>> [(datatype['id'], datatype['name'])
... for datatype in response.json()['results']]
[('CDSD', 'Cooling Degree Days Season to Date'),
 ...,
 ('TAVG', 'Average Temperature.'),
 ('TMAX', 'Maximum temperature'),
 ('TMIN', 'Minimum temperature'),
 ('TOBS', 'Temperature at the time of observation')]

We are looking for the TAVG, TMAX, and TMIN data types. Now that we have everything
we need to request temperature data for all locations, we need to narrow it down to a
specific location. To determine a value for locationcategoryid, we must use the
locationcategories endpoint:

>>> response = make_request(
... 'locationcategories', payload={'datasetid': 'GHCND'}
...)
>>> response.status_code
200

Note that we can use pprint from the Python standard library (https://docs.
python.org/3/library/pprint.html) to print our JSON payload in an easier-to-
read format:

>>> import pprint
>>> pprint.pprint(response.json())
{'metadata': {
 'resultset': {'count': 12, 'limit': 25, 'offset': 1}},
 'results': [{'id': 'CITY', 'name': 'City'},
 {'id': 'CLIM_DIV', 'name': 'Climate Division'},
 {'id': 'CLIM_REG', 'name': 'Climate Region'},
 {'id': 'CNTRY', 'name': 'Country'},

https://docs.python.org/3/library/pprint.html
https://docs.python.org/3/library/pprint.html

132 Data Wrangling with Pandas

 {'id': 'CNTY', 'name': 'County'},
 ...,
 {'id': 'ST', 'name': 'State'},
 {'id': 'US_TERR', 'name': 'US Territory'},
 {'id': 'ZIP', 'name': 'Zip Code'}]}

We want to look at New York City, so, for the locationcategoryid filter, CITY is the
proper value. The notebook we are working in has a function to search for a field by name
using binary search on the API; binary search is a more efficient way of searching through
an ordered list. Since we know that the fields can be sorted alphabetically, and the API
gives us metadata about the request, we know how many items the API has for a given
field and can tell whether we have passed the one we are looking for.

With each request, we grab the middle entry and compare its location in the alphabet
with our target; if the result comes before our target, we look at the half of the data that's
greater than what we just got; otherwise, we look at the smaller half. Each time, we are
slicing the data in half, so when we grab the middle entry to test, we are moving closer to
the value we seek (see Figure 3.10):

>>> def get_item(name, what, endpoint, start=1, end=None):
... """
... Grab the JSON payload using binary search.
...
... Parameters:
... - name: The item to look for.
... - what: Dictionary specifying what item `name` is.
... - endpoint: Where to look for the item.
... - start: The position to start at. We don't need
... to touch this, but the function will manipulate
... this with recursion.
... - end: The last position of the items. Used to
... find the midpoint, but like `start` this is not
... something we need to worry about.
...
... Returns: Dictionary of the information for the item
... if found, otherwise an empty dictionary.
... """
... # find the midpoint to cut the data in half each time
... mid = (start + (end or 1)) // 2
...
... # lowercase the name so this is not case-sensitive
... name = name.lower()

Exploring an API to find and collect temperature data 133

... # define the payload we will send with each request

... payload = {

... 'datasetid': 'GHCND', 'sortfield': 'name',

... 'offset': mid, # we'll change the offset each time

... 'limit': 1 # we only want one value back

... }

...

... # make request adding additional filters from `what`

... response = make_request(endpoint, {**payload, **what})

...

... if response.ok:

... payload = response.json()

...

... # if ok, grab the end index from the response

... # metadata the first time through

... end = end or \

... payload['metadata']['resultset']['count']

...

... # grab the lowercase version of the current name

... current_name = \

... payload['results'][0]['name'].lower()

...

... # if what we are searching for is in the current

... # name, we have found our item

... if name in current_name:

... # return the found item

... return payload['results'][0]

... else:

... if start >= end:

... # if start index is greater than or equal

... # to end index, we couldn't find it

... return {}

... elif name < current_name:

... # name comes before the current name in the

... # alphabet => search further to the left

... return get_item(name, what, endpoint,

... start, mid - 1)

... elif name > current_name:

... # name comes after the current name in the

... # alphabet => search further to the right

... return get_item(name, what, endpoint,

... mid + 1, end)

134 Data Wrangling with Pandas

... else:

... # response wasn't ok, use code to determine why

... print('Response not OK, '

... f'status: {response.status_code}')

This is a recursive implementation of the algorithm, meaning that we call the function
itself from inside; we must be very careful when we do this to define a base condition so
that it will eventually stop and not enter an infinite loop. It is possible to implement this
iteratively. See the Further reading section at the end of this chapter for additional reading
on binary search and recursion.

Important note
In a traditional implementation of binary search, it is trivial to find the length
of the list that we are searching. With the API, we have to make one request to
get the count; therefore, we must ask for the first entry (offset of 1) to orient
ourselves. This means that we make an extra request here compared to what
we would have needed if we knew how many locations were in the list before
starting.

Now, let's use the binary search implementation to find the ID for New York City, which
will be the value we will use for locationid in subsequent queries:

>>> nyc = get_item(
... 'New York', {'locationcategoryid': 'CITY'}, 'locations'
...)
>>> nyc
{'mindate': '1869-01-01',
 'maxdate': '2021-01-14',
 'name': 'New York, NY US',
 'datacoverage': 1,
 'id': 'CITY:US360019'}

By using binary search here, we find New York in 8 requests, despite it being close to the
middle of 1,983 entries! For comparison, using linear search, we would have looked at
1,254 entries before finding it. In the following diagram, we can see how binary search
eliminates sections of the list of locations systematically, which is represented by black on
the number line (white means it is still possible that the desired value is in that section):

Exploring an API to find and collect temperature data 135

Figure 3.10 – Binary search to find New York City

1 ?

1 19831
's-Hertogenbosch, NL

1 19831
's-Hertogenbosch, NL

992992
Liege, BE

1 19831
's-Hertogenbosch, NL

992992
Liege, BE

14881488
Richards Bay,

SF

1 19831
's-Hertogenbosch, NL

992992992
Liege, BE

148814881488
Richards Bay,

 SF
1240Liege, BE Richards Bay,12401240

Neiva, CO

1 19831
's-Hertogenbosch, NL

992992
Liege, BE

14881488
Richards Bay,

 SF
1240 Richards Bay,Liege, BE 1240124012401240

Neiva, CONeiva, CO
13641364

Peachtree City,
GA US

1 19831
's-Hertogenbosch, NL

992992
Liege, BE

148814881488
Richards Bay,

 SF
1240Liege, BE Richards Bay,1240124012401240

Neiva, CONeiva, CO
136413641364

Peachtree City,
GA US

1302

GA US
Omsk, RS

1 19831
's-Hertogenbosch, NL

992992
Liege, BE

14881488
Richards Bay,

 SF
1240Liege, BE 12401240

Neiva, CONeiva, CO
13641364

Peachtree City,
GA US

1302
Omsk, RS1271

GA US
Nong Khai, TH

1 19831
's-Hertogenbosch, NL

992992
Liege, BE

148814881488
Richards Bay,

 SF
1240Liege, BE Richards Bay,1240124012401240

Neiva, CONeiva, CO
13641364

Peachtree City,
GA US

13021302
Omsk, RS1271

Nong Khai, TH
1255

New York, NY
US

0

1

2

3

4

5

6

7

8

Step

136 Data Wrangling with Pandas

Tip
Some APIs (such as the NCEI API) restrict the number of requests we can
make within certain periods of time, so it's important to be smart about our
requests. When searching a very long ordered list, think of binary search.

Optionally, we can drill down to the ID of the station that is collecting the data. This is the
most granular level. Using binary search again, we can grab the station ID for the Central
Park station:

>>> central_park = get_item(
... 'NY City Central Park',
... {'locationid': nyc['id']}, 'stations'
...)
>>> central_park
{'elevation': 42.7,
 'mindate': '1869-01-01',
 'maxdate': '2020-01-13',
 'latitude': 40.77898,
 'name': 'NY CITY CENTRAL PARK, NY US',
 'datacoverage': 1,
 'id': 'GHCND:USW00094728',
 'elevationUnit': 'METERS',
 'longitude': -73.96925}

Now, let's request NYC's temperature data in Celsius for October 2018, recorded from
Central Park. For this, we will use the data endpoint and provide all the parameters we
picked up throughout our exploration of the API:

>>> response = make_request(
... 'data',
... {'datasetid': 'GHCND',
... 'stationid': central_park['id'],
... 'locationid': nyc['id'],
... 'startdate': '2018-10-01',
... 'enddate': '2018-10-31',
... 'datatypeid': ['TAVG', 'TMAX', 'TMIN'],
... 'units': 'metric',
... 'limit': 1000}
...)
>>> response.status_code
200

Exploring an API to find and collect temperature data 137

Lastly, we will create a DataFrame object; since the results portion of the JSON
payload is a list of dictionaries, we can pass it directly to pd.DataFrame():

>>> import pandas as pd
>>> df = pd.DataFrame(response.json()['results'])
>>> df.head()

We get back long format data. The datatype column is the temperature variable being
measured, and the value column contains the measured temperature:

Figure 3.11 – Data retrieved from the NCEI API

Tip
We can use the previous code to turn any of the JSON responses we worked
with in this section into a DataFrame object, if we find that easier to work
with. However, it should be stressed that JSON payloads are pretty much
ubiquitous when it comes to APIs (and, as Python users, we should be familiar
with dictionary-like objects), so it won't hurt to get comfortable with them.

We asked for TAVG, TMAX, and TMIN, but notice that we didn't get TAVG. This is because
the Central Park station isn't recording average temperature, despite being listed in the
API as offering it—real-world data is dirty:

>>> df.datatype.unique()
array(['TMAX', 'TMIN'], dtype=object)

>>> if get_item(
... 'NY City Central Park',
... {'locationid': nyc['id'], 'datatypeid': 'TAVG'},
... 'stations'
...):
... print('Found!')
Found!

138 Data Wrangling with Pandas

Time for plan B: let's use LaGuardia Airport as the station instead of Central Park for the
remainder of this chapter. Alternatively, we could have grabbed data for all the stations
that cover New York City; however, since this would give us multiple entries per day for
some of the temperature measurements, we won't do so here—we would need skills that
will be covered in Chapter 4, Aggregating Pandas DataFrames, to work with that data.

The process of collecting the weather data from the LaGuardia Airport station is the same
as with the Central Park station, but in the interest of brevity, we will read in the data for
LaGuardia in the next notebook when we discuss cleaning the data. Note that the bottom
cells of the current notebook contain the code that's used to collect this data.

Cleaning data
Let's move on to the 3-cleaning_data.ipynb notebook for our discussion of data
cleaning. As usual, we will begin by importing pandas and reading in our data. For
this section, we will be using the nyc_temperatures.csv file, which contains the
maximum daily temperature (TMAX), minimum daily temperature (TMIN), and the
average daily temperature (TAVG) from the LaGuardia Airport station in New York City
for October 2018:

>>> import pandas as pd
>>> df = pd.read_csv('data/nyc_temperatures.csv')
>>> df.head()

We retrieved long format data from the API; for our analysis, we want wide format data,
but we will address that in the Pivoting DataFrames section, later in this chapter:

Figure 3.12 – NYC temperature data

For now, we will focus on making little tweaks to the data that will make it easier for us
to use: renaming columns, converting each column into the most appropriate data type,
sorting, and reindexing. Often, this will be the time to filter the data down, but we did that
when we worked on requesting data from the API; for a review of filtering with pandas,
refer to Chapter 2, Working with Pandas DataFrames.

Cleaning data 139

Renaming columns
Since the API endpoint we used could return data of any units and category, it had to call
that column value. We only pulled temperature data in Celsius, so all our observations
have the same units. This means that we can rename the value column so that it's clear
what data we are working with:

>>> df.columns
Index(['date', 'datatype', 'station', 'attributes', 'value'],
 dtype='object')

The DataFrame class has a rename() method that takes a dictionary mapping the old
column name to the new column name. In addition to renaming the value column, let's
rename the attributes column to flags since the API documentation mentions that
that column contains flags for information about data collection:

>>> df.rename(
... columns={'value': 'temp_C', 'attributes': 'flags'},
... inplace=True
...)

Most of the time, pandas will return a new DataFrame object; however, since we passed
in inplace=True, our original dataframe was updated instead. Always be careful with
in-place operations, as they might be difficult or impossible to undo. Our columns now
have their new names:

>>> df.columns
Index(['date', 'datatype', 'station', 'flags', 'temp_C'],
 dtype='object')

Tip
Both Series and Index objects can also be renamed using their
rename() methods. Simply pass in the new name. For example, if we have a
Series object called temperature and we want to rename it temp_C,
we can run temperature.rename('temp_C'). The variable will still
be called temperature, but the name of the data in the series itself will now
be temp_C.

140 Data Wrangling with Pandas

We can also do transformations on the column names with rename(). For instance, we
can put all the column names in uppercase:

>>> df.rename(str.upper, axis='columns').columns
Index(['DATE', 'DATATYPE', 'STATION', 'FLAGS', 'TEMP_C'],
 dtype='object')

This method even lets us rename the values of the index, although this is something we
don't have use for now since our index is just numbers. However, for reference, we would
simply change axis='columns' in the preceding code to axis='rows'.

Type conversion
Now that the column names are indicative of the data they contain, we can check what
types of data they hold. We should have formed an intuition as to what the data types
should be after looking at the first few rows when we inspected the dataframe with the
head() method previously. With type conversion, we aim to reconcile what the current
data types are with what we believe they should be; we will be changing how our data is
represented.

Note that, sometimes, we may have data that we believe should be a certain type, such
as a date, but it is stored as a string; this could be for a very valid reason—data could be
missing. In the case of missing data encoded as text (for example, ? or N/A), pandas
will store it as a string when reading it in to allow for this data. It will be marked as
object when we use the dtypes attribute on our dataframe. If we try to convert
(or cast) these columns, we will either get an error or our result won't be what we
expected. For example, if we have strings of decimal numbers, but try to convert the
column into integers, we will get an error since Python knows they aren't integers;
however, if we try to convert decimal numbers into integers, we will lose any information
after the decimal point.

That being said, let's examine the data types in our temperature data. Note that the date
column isn't actually being stored as a datetime:

>>> df.dtypes
date object
datatype object
station object
flags object
temp_C float64
dtype: object

Cleaning data 141

We can use the pd.to_datetime() function to convert it into a datetime:

>>> df.loc[:,'date'] = pd.to_datetime(df.date)
>>> df.dtypes
date datetime64[ns]
datatype object
station object
flags object
temp_C float64
dtype: object

This is much better. Now, we can get useful information when we summarize the date
column:

>>> df.date.describe(datetime_is_numeric=True)
count 93
mean 2018-10-16 00:00:00
min 2018-10-01 00:00:00
25% 2018-10-08 00:00:00
50% 2018-10-16 00:00:00
75% 2018-10-24 00:00:00
max 2018-10-31 00:00:00
Name: date, dtype: object

Dealing with dates can be tricky since they come in many different formats and time
zones; fortunately, pandas has more methods we can use for dealing with converting
datetime objects. For example, when working with a DatetimeIndex object, if we need
to keep track of time zones, we can use the tz_localize() method to associate our
datetimes with a time zone:

>>> pd.date_range(start='2018-10-25', periods=2, freq='D')\
... .tz_localize('EST')
DatetimeIndex(['2018-10-25 00:00:00-05:00',
 '2018-10-26 00:00:00-05:00'],
 dtype='datetime64[ns, EST]', freq=None)

142 Data Wrangling with Pandas

This also works with Series and DataFrame objects that have an index of type
DatetimeIndex. We can read in the CSV file again and, this time, specify that the
date column will be our index and that we should parse any dates in the CSV file into
datetimes:

>>> eastern = pd.read_csv(
... 'data/nyc_temperatures.csv',
... index_col='date', parse_dates=True
...).tz_localize('EST')
>>> eastern.head()

We had to read the file in again for this example because we haven't learned how to change
the index of our data yet (covered in the Reordering, reindexing, and sorting data section,
later this chapter). Note that we have added the Eastern Standard Time offset (-05:00 from
UTC) to the datetimes in the index:

Figure 3.13 – Time zone-aware dates in the index

We can use the tz_convert() method to change the time zone into a different one.
Let's change our data into UTC:

>>> eastern.tz_convert('UTC').head()

Now, the offset is UTC (+00:00), but note that the time portion of the date is now 5 AM;
this conversion took into account the -05:00 offset:

Figure 3.14 – Converting data into another time zone

Cleaning data 143

We can also truncate datetimes with the to_period() method, which comes in handy
if we don't care about the full date. For example, if we wanted to aggregate our data
by month, we could truncate our index to just the month and year and then perform
the aggregation. Since we will cover aggregation in Chapter 4, Aggregating Pandas
DataFrames, we will just do the truncation here. Note that we first remove the time zone
information to avoid a warning from pandas that the PeriodArray class doesn't have
time zone information, and therefore it will be lost. This is because the underlying data for
a PeriodIndex object is stored as a PeriodArray object:

>>> eastern.tz_localize(None).to_period('M').index
PeriodIndex(['2018-10', '2018-10', ..., '2018-10', '2018-10'],
 dtype='period[M]', name='date', freq='M')

We can use the to_timestamp() method to convert our PeriodIndex object into a
DatetimeIndex object; however, the datetimes all start at the first of the month now:

>>> eastern.tz_localize(None)\
... .to_period('M').to_timestamp().index
DatetimeIndex(['2018-10-01', '2018-10-01', '2018-10-01', ...,
 '2018-10-01', '2018-10-01', '2018-10-01'],
 dtype='datetime64[ns]', name='date', freq=None)

Alternatively, we can use the assign() method to handle any type conversions by
passing the column names as named parameters and their new values as the value for
that argument to the method call. In practice, this will be more beneficial since we can
perform many tasks in one call and use the columns we create in that call to calculate
additional columns. For example, let's cast the date column to a datetime and add a new
column for the temperature in Fahrenheit (temp_F). The assign() method returns a
new DataFrame object, so we must remember to assign it to a variable if we want to keep
it. Here, we will create a new one. Note that our original conversion of the dates modified
the column, so, in order to illustrate that we can use assign(), we need to read our data
in once more:

>>> df = pd.read_csv('data/nyc_temperatures.csv').rename(
... columns={'value': 'temp_C', 'attributes': 'flags'}
...)

>>> new_df = df.assign(
... date=pd.to_datetime(df.date),
... temp_F=(df.temp_C * 9/5) + 32
...)

144 Data Wrangling with Pandas

>>> new_df.dtypes
date datetime64[ns]
datatype object
station object
flags object
temp_C float64
temp_F float64
dtype: object

>>> new_df.head()

We now have datetimes in the date column and a new column, temp_F:

Figure 3.15 – Simultaneous type conversion and column creation

Additionally, we can use the astype() method to convert one column at a time. As
an example, let's say we only cared about the temperatures at every whole number, but
we don't want to round. In this case, we simply want to chop off the information after
the decimal. To accomplish this, we can cast the floats as integers. This time, we will use
lambda functions (first introduced in Chapter 2, Working with Pandas DataFrames),
which make it possible to access the temp_F column to create the temp_F_whole
column, even though df doesn't have this column before we call assign(). It is very
common (and useful) to use lambda functions with assign():

>>> df = df.assign(
... date=lambda x: pd.to_datetime(x.date),
... temp_C_whole=lambda x: x.temp_C.astype('int'),
... temp_F=lambda x: (x.temp_C * 9/5) + 32,
... temp_F_whole=lambda x: x.temp_F.astype('int')
...)
>>> df.head()

Cleaning data 145

Note that we can refer to columns we've just created if we use a lambda function. It's also
important to mention that we don't have to know whether to convert the column into
a float or an integer: we can use pd.to_numeric(), which will convert the data into
floats if it sees decimals. If all the numbers are whole, they will be converted into integers
(obviously, we will still get errors if the data isn't numeric at all):

Figure 3.16 – Creating columns with lambda functions

Lastly, we have two columns with data currently being stored as strings that can be
represented in a better way for this dataset. The station and datatype columns only
have one and three distinct values, respectively, meaning that we aren't being efficient
with our memory use since we are storing them as strings. We could potentially have
issues with analyses further down the line. Pandas has the ability to define columns as
categorical; certain statistical operations both within pandas and other packages will
be able to handle this data, provide meaningful statistics on them, and use them properly.
Categorical variables can take on one of a few values; for example, blood type would be a
categorical variable—people can only have one of A, B, AB, or O.

Going back to the temperature data, we only have one value for the station column and
only three distinct values for the datatype column (TAVG, TMAX, TMIN). We can use
the astype() method to cast these into categories and look at the summary statistics:

>>> df_with_categories = df.assign(
... station=df.station.astype('category'),
... datatype=df.datatype.astype('category')
...)

>>> df_with_categories.dtypes
date datetime64[ns]
datatype category
station category
flags object
temp_C float64
temp_C_whole int64

146 Data Wrangling with Pandas

temp_F float64
temp_F_whole int64
dtype: object

>>> df_with_categories.describe(include='category')

The summary statistics for categories are just like those for strings. We can see the number
of non-null entries (count), the number of unique values (unique), the mode (top), and
the number of occurrences of the mode (freq):

Figure 3.17 – Summary statistics for the categorical columns

The categories we just made don't have any order to them, but pandas does support this:

>>> pd.Categorical(
... ['med', 'med', 'low', 'high'],
... categories=['low', 'med', 'high'],
... ordered=True
...)
['med', 'med', 'low', 'high']
Categories (3, object): ['low' < 'med' < 'high']

When the columns in our dataframe are stored in the appropriate type, it opens up
additional avenues for exploration, such as calculating statistics, aggregating the data,
and sorting the values. For example, depending on our data source, it's possible that the
numeric data is represented as a string, in which case attempting to sort on the values
will reorder the contents lexically, meaning the result could be 1, 10, 11, 2, rather than
1, 2, 10, 11 (numerical sort). Similarly, if we have dates represented as strings in a format
other than YYYY-MM-DD, sorting on this information may result in non-chronological
order; however, by converting the date strings with pd.to_datetime(), we can
chronologically sort dates that are provided in any format. Type conversion makes it
possible to reorder both the numeric data and the dates according to their values, rather
than their initial string representations.

Cleaning data 147

Reordering, reindexing, and sorting data
We will often find the need to sort our data by the values of one or many columns. Say
we wanted to find the days that reached the highest temperatures in New York City
during October 2018; we could sort our values by the temp_C (or temp_F) column in
descending order and use head() to select the number of days we wanted to see. To
accomplish this, we can use the sort_values() method. Let's look at the top 10 days:

>>> df[df.datatype == 'TMAX']\
... .sort_values(by='temp_C', ascending=False).head(10)

This shows us that on October 7th and October 10th the temperature reached its highest
value during the month of October 2018, according to the LaGuardia station. We also
have ties between October 2nd and 4th, October 1st and 9th, and October 5th and 8th,
but notice that the dates aren't always sorted—the 10th is after the 7th, but the 4th comes
before the 2nd:

Figure 3.18 – Sorting the data to find the warmest days

The sort_values() method can be used with a list of column names to break ties.
The order in which the columns are provided will determine the sort order, with each
subsequent column being used to break ties. As an example, let's make sure the dates are
sorted in ascending order when breaking ties:

>>> df[df.datatype == 'TMAX'].sort_values(
... by=['temp_C', 'date'], ascending=[False, True]
...).head(10)

148 Data Wrangling with Pandas

Since we are sorting in ascending order, in the case of a tie, the date that comes earlier in
the year will be above the later one. Notice how October 2nd is now above October 4th,
despite both having the same temperature reading:

Figure 3.19 – Sorting the data with multiple columns to break ties

Tip
In pandas, the index is tied to the rows—when we drop rows, filter, or
do anything that returns only some of the rows, our index may look out of
order (as we saw in the previous examples). At the moment, the index just
represents the row number in our data, so we may be interested in changing
the values so that we have the first entry at index 0. To have pandas do so
automatically, we can pass ignore_index=True to sort_values().

Pandas also provides an additional way to look at a subset of the sorted values; we can use
nlargest() to grab the n rows with the largest values according to specific criteria and
nsmallest() to grab the n smallest rows, without the need to sort the data beforehand.
Both accept a list of column names or a string for a single column. Let's grab the top 10
days by average temperature this time:

>>> df[df.datatype == 'TAVG'].nlargest(n=10, columns='temp_C')

We get the warmest days (on average) in October:

Cleaning data 149

Figure 3.20 – Sorting to find the 10 warmest days on average

We aren't limited to sorting values; if we wish, we can even order the columns
alphabetically and sort the rows by their index values. For these tasks, we can use the
sort_index() method. By default, sort_index() will target the rows so that we
can do things such as order the index after performing an operation that shuffles it. For
instance, the sample() method will give us randomly selected rows, which will lead to
a jumbled index, so we can use sort_index() to order them afterward:

>>> df.sample(5, random_state=0).index
Int64Index([2, 30, 55, 16, 13], dtype='int64')
>>> df.sample(5, random_state=0).sort_index().index
Int64Index([2, 13, 16, 30, 55], dtype='int64')

Tip
If we need the result of sample() to be reproducible, we can pass in a seed,
set to a number of our choosing (using the random_state argument). The
seed initializes a pseudorandom number generator, so, provided that the same
seed is used, the results will be the same.

When we want to target columns, we must pass in axis=1; rows will be the default
(axis=0). Note that this argument is present in many pandas methods and functions
(including sample()), so it's important to understand what it means. Let's use this
knowledge to sort the columns of our dataframe alphabetically:

>>> df.sort_index(axis=1).head()

150 Data Wrangling with Pandas

Having our columns in alphabetical order can come in handy when using loc[] because
we can specify a range of columns with similar names; for example, we could now use
df.loc[:,'station':'temp_F_whole'] to easily grab all of our temperature
columns, along with the station information:

Figure 3.21 – Sorting the columns by name

Important note
Both sort_index() and sort_values() return new DataFrame
objects. We must pass in inplace=True to update the dataframe we are
working with.

The sort_index() method can also help us get an accurate answer when we're testing
two dataframes for equality. Pandas will check that, in addition to having the same
data, both have the same values for the index when it compares the rows. If we sort
our dataframe by temperature in Celsius and check whether it is equal to the original
dataframe, pandas tells us that it isn't. We must sort the index to see that they are the
same:

>>> df.equals(df.sort_values(by='temp_C'))
False
>>> df.equals(df.sort_values(by='temp_C').sort_index())
True

Sometimes, we don't care too much about the numeric index, but we would like to use
one (or more) of the other columns as the index instead. In this case, we can use the
set_index() method. Let's set the date column as our index:

>>> df.set_index('date', inplace=True)
>>> df.head()

Notice that the date column has moved to the far left where the index goes, and we no
longer have the numeric index:

Cleaning data 151

Figure 3.22 – Setting the date column as the index

Tip
We can also provide a list of columns to use as the index. This will create
a MultiIndex object, where the first element in the list is the outermost
level and the last is the innermost. We will discuss this further in the Pivoting
DataFrames section.

Setting the index to a datetime lets us take advantage of datetime slicing and indexing,
which we briefly discussed in Chapter 2, Working with Pandas DataFrames. As long
as we provide a date format that pandas understands, we can grab the data. To select
all of 2018, we can use df.loc['2018']; for the fourth quarter of 2018, we can use
df.loc['2018-Q4']; and for October, we can use df.loc['2018-10']. These can
also be combined to build ranges. Note that loc[] is optional when using ranges:

>>> df['2018-10-11':'2018-10-12']

This gives us the data from October 11, 2018 through October 12, 2018 (inclusive of both
endpoints):

Figure 3.23 – Selecting date ranges

152 Data Wrangling with Pandas

We can use the reset_index() method to restore the date column:

>>> df['2018-10-11':'2018-10-12'].reset_index()

Our index now starts at 0, and the dates are now in a column called date. This is
especially useful if we have data that we don't want to lose in the index, such as the date,
but need to perform an operation as if it weren't in the index:

Figure 3.24 – Resetting the index

In some cases, we may have an index we want to continue to use, but we need to align it to
certain values. For this purpose, we have the reindex() method. We provide it with an
index to align our data to, and it adjusts the index accordingly. Note that this new index
isn't necessarily part of the data—we simply have an index and want to match the current
data up to it.

As an example, we will turn to the S&P 500 stock data in the sp500.csv file. It contains
the opening, high, low, and closing (also called OHLC) prices daily for the S&P 500 from
2017 through the end of 2018, along with volume traded and the adjusted close (which we
won't use). Let's read it in, setting the date column as the index and parsing the dates:

>>> sp = pd.read_csv(
... 'data/sp500.csv', index_col='date', parse_dates=True
...).drop(columns=['adj_close']) # not using this column

Let's see what our data looks like and mark the day of the week for each row in order to
understand what the index contains. We can easily isolate the date part from an index
of type DatetimeIndex. When isolating date parts, pandas will give us the numeric
representation of what we are looking for; if we are looking for the string version, we
should look to see whether there is already a method before writing our own conversion
function. In this case, it's day_name():

>>> sp.head(10)\
... .assign(day_of_week=lambda x: x.index.day_name())

Cleaning data 153

Tip
We can also do this with a series, but first, we need to access the dt attribute.
For example, if we had a date column in the sp dataframe, we could grab
the month with sp.date.dt.month. You can find the full list of what
can be accessed at https://pandas.pydata.org/pandas-
docs/stable/reference/series.html#datetimelike-
properties.

Since the stock market is closed on the weekend (and holidays), we only have data for
weekdays:

Figure 3.25 – S&P 500 OHLC data

If we were analyzing the performance of a group of assets in a portfolio that included
the S&P 500 and something that trades on the weekend, such as bitcoin, we would need
to have values for every day of the year for the S&P 500. Otherwise, when looking at the
daily value of our portfolio we would see huge drops every day the market was closed. To
illustrate this, let's read in the bitcoin data from the bitcoin.csv file and combine the
S&P 500 and bitcoin data into a portfolio. The bitcoin data also contains OHLC data and
volume traded, but it comes with a column called market_cap that we don't need, so we
have to drop that first:

>>> bitcoin = pd.read_csv(
... 'data/bitcoin.csv', index_col='date', parse_dates=True
...).drop(columns=['market_cap'])

https://pandas.pydata.org/pandas-docs/stable/reference/series.html#datetimelike-properties
https://pandas.pydata.org/pandas-docs/stable/reference/series.html#datetimelike-properties
https://pandas.pydata.org/pandas-docs/stable/reference/series.html#datetimelike-properties

154 Data Wrangling with Pandas

To analyze the portfolio, we will need to aggregate the data by day; this is a topic for
Chapter 4, Aggregating Pandas DataFrames, so, for now, don't worry too much about how
this aggregation is being performed—just know that we are summing up the data by day.
For example, each day's closing price will be the sum of the closing price of the S&P 500
and the closing price of bitcoin:

every day's closing price = S&P 500 close + Bitcoin close
(same for other metrics)
>>> portfolio = pd.concat([sp, bitcoin], sort=False)\
... .groupby(level='date').sum()

>>> portfolio.head(10).assign(
... day_of_week=lambda x: x.index.day_name()
...)

Now, if we examine our portfolio, we will see that we have values for every day of the
week; so far, so good:

 Figure 3.26 – Portfolio of the S&P 500 and bitcoin

Cleaning data 155

However, there is a problem with this approach, which is much easier to see with
a visualization. Plotting will be covered in depth in Chapter 5, Visualizing Data with
Pandas and Matplotlib, and Chapter 6, Plotting with Seaborn and Customization
Techniques, so don't worry about the details for now:

>>> import matplotlib.pyplot as plt # module for plotting
>>> from matplotlib.ticker import StrMethodFormatter

plot the closing price from Q4 2017 through Q2 2018
>>> ax = portfolio['2017-Q4':'2018-Q2'].plot(
... y='close', figsize=(15, 5), legend=False,
... title='Bitcoin + S&P 500 value without accounting '
... 'for different indices'
...)

formatting
>>> ax.set_ylabel('price')
>>> ax.yaxis\
... .set_major_formatter(StrMethodFormatter('${x:,.0f}'))
>>> for spine in ['top', 'right']:
... ax.spines[spine].set_visible(False)

show the plot
>>> plt.show()

Notice how there is a cyclical pattern here? It is dropping every day the market is closed
because the aggregation only had bitcoin data to sum for those days:

Figure 3.27 – Portfolio closing price without accounting for stock market closures

156 Data Wrangling with Pandas

Clearly, this is a problem; an asset's value doesn't drop to zero whenever the market is
closed. If we want pandas to fill the missing data in for us, we will need to reindex the
S&P 500 data with bitcoin's index using the reindex() method, passing one of the
following strategies to the method parameter:

• 'ffill': This method brings values forward. In the previous example, this fills
the days the market was closed with the data for the last time the market was open
before those days.

• 'bfill': This method backpropagates the values, which will result in carrying
future results to past dates, meaning that this isn't the right option here.

• 'nearest': This method fills according to the rows closest to the missing ones,
which in this case will result in Sundays getting the data for the following Mondays,
and Saturdays getting the data from the previous Fridays.

Forward-filling seems to be the best option, but since we aren't sure, we will see how this
works on a few rows of the data first:

>>> sp.reindex(bitcoin.index, method='ffill').head(10)\
... .assign(day_of_week=lambda x: x.index.day_name())

Notice any issues with this? Well, the volume traded (volume) column makes it seem like
the days we used forward-filling for are actually days when the market is open:

Figure 3.28 – Forward-filling dates with missing values

Cleaning data 157

Tip
The compare() method will show us the values that differ across
identically-labeled dataframes (same index and columns); we can use it to
isolate the changes in our data when forward-filling here. There is an example
in the notebook.

Ideally, we only want to maintain the value of the stock when the stock market is
closed—the volume traded should be zero. In order to handle the NaN values in a different
manner for each column, we will turn to the assign() method. To fill any NaN values
in the volume column with 0, we will use the fillna() method, which we will see
more of in the Handling duplicate, missing, or invalid data section, later in this chapter.
The fillna() method also allows us to pass in a method instead of a value, so we
can forward-fill the close column, which was the only column that made sense from
our previous attempt. Lastly, we can use the np.where() function for the remaining
columns, which allows us to build a vectorized if...else. It takes the following form:

np.where(boolean condition, value if True, value if False)

Vectorized operations are performed on all the elements in the array at once; since
each element has the same data type, these calculations can be run rather quickly. As a
general rule of thumb, with pandas, we should avoid writing loops in favor of vectorized
operations for better performance. NumPy functions are designed to work on arrays,
so they are perfect candidates for high-performance pandas code. This will make it
easy for us to set any NaN values in the open, high, or low columns to the value in the
close column for the same day. Since these come after the close column gets worked
on, we will have the forward-filled value for close to use for the other columns where
necessary:

>>> import numpy as np

>>> sp_reindexed = sp.reindex(bitcoin.index).assign(
... # volume is 0 when the market is closed
... volume=lambda x: x.volume.fillna(0),
... # carry this forward
... close=lambda x: x.close.fillna(method='ffill'),
... # take the closing price if these aren't available
... open=lambda x: \
... np.where(x.open.isnull(), x.close, x.open),
... high=lambda x: \
... np.where(x.high.isnull(), x.close, x.high),
... low=lambda x: np.where(x.low.isnull(), x.close, x.low)
...)

158 Data Wrangling with Pandas

>>> sp_reindexed.head(10).assign(
... day_of_week=lambda x: x.index.day_name()
...)

On Saturday, January 7th and Sunday, January 8th, we now have volume traded at zero.
The OHLC prices are all equal to the closing price on Friday, the 6th:

Figure 3.29 – Reindexing the S&P 500 data with specific strategies per column

Tip
Here, we use np.where() to both introduce a function we will see
throughout this book and to make it easier to understand what is going on, but
note that np.where(x.open.isnull(), x.close, x.open)
can be replaced with the combine_first() method, which (for this use
case) is equivalent to x.open.combine_first(x.close). We will
use the combine_first() method in the Handling duplicate, missing, or
invalid data section, later this chapter.

Cleaning data 159

Now, let's recreate the portfolio with the reindexed S&P 500 data and use a visualization to
compare it with the previous attempt (again, don't worry about the plotting code, which
will be covered in Chapter 5, Visualizing Data with Pandas and Matplotlib, and Chapter 6,
Plotting with Seaborn and Customization Techniques):

every day's closing price = S&P 500 close adjusted for
market closure + Bitcoin close (same for other metrics)
>>> fixed_portfolio = sp_reindexed + bitcoin

plot the reindexed portfolio's close (Q4 2017 - Q2 2018)
>>> ax = fixed_portfolio['2017-Q4':'2018-Q2'].plot(
... y='close', figsize=(15, 5), linewidth=2,
... label='reindexed portfolio of S&P 500 + Bitcoin',
... title='Reindexed portfolio vs.'
... 'portfolio with mismatched indices'
...)

add line for original portfolio for comparison
>>> portfolio['2017-Q4':'2018-Q2'].plot(
... y='close', ax=ax, linestyle='--',
... label='portfolio of S&P 500 + Bitcoin w/o reindexing'
...)

formatting
>>> ax.set_ylabel('price')
>>> ax.yaxis\
... .set_major_formatter(StrMethodFormatter('${x:,.0f}'))
>>> for spine in ['top', 'right']:
... ax.spines[spine].set_visible(False)

show the plot
>>> plt.show()

160 Data Wrangling with Pandas

The orange dashed line is our original attempt at studying the portfolio (without
reindexing), while the blue solid line is the portfolio we just built with reindexing and
different filling strategies per column. Keep this strategy in mind for the exercises in
Chapter 7, Financial Analysis – Bitcoin and the Stock Market:

Figure 3.30 – Visualizing the effect of reindexing

Tip
We can also use the reindex() method to reorder the rows. For example, if
our data is stored in x, then x.reindex([32, 20, 11]) will return a
new DataFrame object of three rows: 32, 20, and 11 (in that order). This can
be done along the columns with axis=1 (the default is axis=0 for rows).

Now, let's turn our attention to reshaping data. Recall that we had to first filter the
temperature data by the datatype column and then sort to find the warmest days;
reshaping the data will make this easier, and also make it possible for us to aggregate and
summarize the data.

Reshaping data
Data isn't always given to us in the format that's most convenient for our analysis.
Therefore, we need to be able to restructure data into both wide and long formats,
depending on the analysis we want to perform. For many analyses, we will want wide
format data so that we can look at the summary statistics easily and share our results in
that format.

Reshaping data 161

However, this isn't always as black and white as going from long format to wide format or
vice versa. Consider the following data from the Exercises section:

Figure 3.31 – Data with some long and some wide format columns

It's possible to have data where some of the columns are in wide format (open, high,
low, close, volume), but others are in long format (ticker). Summary statistics using
describe() on this data aren't helpful unless we first filter on ticker. This format makes
it easy to compare the stocks; however, as we briefly discussed when we learned about
wide and long formats, we wouldn't be able to easily plot the closing price for each stock
using pandas—we would need seaborn. Alternatively, we could restructure the data for
that visualization.

Now that we understand the motivation for restructuring data, let's move to the next
notebook, 4-reshaping_data.ipynb. We will begin by importing pandas and
reading in the long_data.csv file, adding the temperature in Fahrenheit column
(temp_F), and performing some of the data cleaning we just learned about:

>>> import pandas as pd

>>> long_df = pd.read_csv(
... 'data/long_data.csv',
... usecols=['date', 'datatype', 'value']
...).rename(columns={'value': 'temp_C'}).assign(
... date=lambda x: pd.to_datetime(x.date),
... temp_F=lambda x: (x.temp_C * 9/5) + 32
...)

162 Data Wrangling with Pandas

Our long format data looks like this:

Figure 3.32 – Long format temperature data

In this section, we will discuss transposing, pivoting, and melting our data. Note that
after reshaping the data, we will often revisit the data cleaning tasks as things may have
changed, or we may need to change things we couldn't access easily before. For example,
we will want to perform some type conversion if the values were all turned into strings in
long format, but in wide format some columns are clearly numeric.

Transposing DataFrames
While we will be pretty much only working with wide or long formats, pandas provides
ways to restructure our data as we see fit, including taking the transpose (flipping the
rows with the columns), which we may find useful to make better use of our display area
when we're printing parts of our dataframe:

>>> long_df.set_index('date').head(6).T

Notice that the index is now in the columns, and that the column names are in the index:

Figure 3.33 – Transposed temperature data

It may not be immediately apparent how useful this can be, but we will see this a quite few
times throughout this book; for example, to make content easier to display in Chapter 7,
Financial Analysis – Bitcoin and the Stock Market, and to build a particular visualization
for machine learning in Chapter 9, Getting Started with Machine Learning in Python.

Reshaping data 163

Pivoting DataFrames
We pivot our data to go from long format to wide format. The pivot() method
performs this restructuring of our DataFrame object. To pivot, we need to tell pandas
which column currently holds the values (with the values argument) and the column
that contains what will become the column names in wide format (the columns
argument). Optionally, we can provide a new index (the index argument). Let's pivot
into wide format, where we have a column for each of the temperature measurements in
Celsius and use the dates as the index:

>>> pivoted_df = long_df.pivot(
... index='date', columns='datatype', values='temp_C'
...)
>>> pivoted_df.head()

In our starting dataframe, there was a datatype column that contained only TMAX,
TMIN, or TOBS as strings. Now, these are column names because we passed in
columns='datatype'. By passing in index='date', the date column became our
index, without needing to run set_index(). Finally, the values for each combination of
date and datatype are the corresponding temperatures in Celsius since we passed in
values='temp_C':

Figure 3.34 – Pivoting the long format temperature data into wide format

As we discussed at the beginning of this chapter, with the data in wide format, we can
easily get meaningful summary statistics with the describe() method:

>>> pivoted_df.describe()

164 Data Wrangling with Pandas

We can see that we have 31 observations for all three temperature measurements and
that this month has a wide range of temperatures (highest daily maximum of 26.7°C and
lowest daily minimum of -1.1°C):

Figure 3.35 – Summary statistics on the pivoted temperature data

We lost the temperature in Fahrenheit, though. If we want to keep it, we can provide
multiple columns to values:

>>> pivoted_df = long_df.pivot(
... index='date', columns='datatype',
... values=['temp_C', 'temp_F']
...)
>>> pivoted_df.head()

However, we now get an extra level above the column names. This is called a hierarchical
index:

Figure 3.36 – Pivoting with multiple value columns

Reshaping data 165

With this hierarchical index, if we want to select TMIN in Fahrenheit, we will first need to
select temp_F and then TMIN:

>>> pivoted_df['temp_F']['TMIN'].head()
date
2018-10-01 48.02
2018-10-02 57.02
2018-10-03 60.08
2018-10-04 53.06
2018-10-05 53.06
Name: TMIN, dtype: float64

Important note
In cases where we need to perform an aggregation as we pivot (due to duplicate
values in the index), we can use the pivot_table() method, which we
will discuss in Chapter 4, Aggregating Pandas DataFrames.

We have been working with a single index throughout this chapter; however, we can create
an index from any number of columns with set_index(). This gives us an index of
type MultiIndex, where the outermost level corresponds to the first element in the list
provided to set_index():

>>> multi_index_df = long_df.set_index(['date', 'datatype'])

>>> multi_index_df.head().index
MultiIndex([('2018-10-01', 'TMAX'),
 ('2018-10-01', 'TMIN'),
 ('2018-10-01', 'TOBS'),
 ('2018-10-02', 'TMAX'),
 ('2018-10-02', 'TMIN')],
 names=['date', 'datatype'])

>>> multi_index_df.head()

166 Data Wrangling with Pandas

Notice that we now have two levels in the index—date is the outermost level and
datatype is the innermost:

Figure 3.37 – Working with a multi-level index

The pivot() method expects the data to only have one column to set as the index; if
we have a multi-level index, we should use the unstack() method instead. We can use
unstack() on multi_index_df and get a similar result to what we had previously.
Order matters here because, by default, unstack() will move the innermost level of the
index to the columns; in this case, that means we will keep the date level in the index and
move the datatype level to the column names. To unstack a different level, simply pass
in the index of the level to unstack, where 0 is the leftmost and -1 is the rightmost, or the
name of the level (if it has one). Here, we will use the default:

>>> unstacked_df = multi_index_df.unstack()
>>> unstacked_df.head()

With multi_index_df, we had datatype as the innermost level of the index, so, after
using unstack(), it is along the columns. Note that we once again have a hierarchical
index in the columns. In Chapter 4, Aggregating Pandas DataFrames, we will discuss a way
to squash this back into a single level of columns:

Figure 3.38 – Unstacking a multi-level index to pivot data

Reshaping data 167

The unstack() method has the added benefit of allowing us to specify how to fill in
missing values that come into existence upon reshaping the data. To do so, we can use the
fill_value parameter. Imagine a case where we have been given the data for TAVG for
October 1, 2018 only. We could append this to long_df and set our index to the date
and datatype columns, as we did previously:

>>> extra_data = long_df.append([{
... 'datatype': 'TAVG',
... 'date': '2018-10-01',
... 'temp_C': 10,
... 'temp_F': 50
... }]).set_index(['date', 'datatype']).sort_index()

>>> extra_data['2018-10-01':'2018-10-02']

We now have four temperature measurements for October 1, 2018, but only three for the
remaining days:

Figure 3.39 – Introducing an additional temperature measurement into the data

Using unstack(), as we did previously, will result in NaN values for most of the TAVG
data:

>>> extra_data.unstack().head()

168 Data Wrangling with Pandas

Take a look at the TAVG columns after we unstack:

Figure 3.40 – Unstacking can lead to null values

To address this, we can pass in an appropriate fill_value. However, we are restricted
to passing in a value for this, not a strategy (as we saw when we discussed reindexing), so
while there is no good value for this case, we can use -40 to illustrate how this works:

>>> extra_data.unstack(fill_value=-40).head()

The NaN values have now been replaced with -40.0. However, note that now both
temp_C and temp_F have the same temperature reading. Actually, this is the reason
we picked -40 for fill_value; it is the temperature at which both Fahrenheit and
Celsius are equal, so we won't confuse people with them both being the same number;
for example, 0 (since 0°C = 32°F and 0°F = -17.78°C). Since this temperature is also
much colder than the temperatures measured in New York City and is below TMIN for
all the data we have, it is more likely to be deemed a data entry error or a signal that data
is missing compared to if we had used 0. Note that, in practice, it is better to be explicit
about the missing data if we are sharing this with others and leave the NaN values:

Figure 3.41 – Unstacking with a default value for missing combinations

Reshaping data 169

To summarize, unstack() should be our method of choice when we have a multi-level
index and would like to move one or more of the levels to the columns; however, if we are
simply using a single index, the pivot() method's syntax is likely to be easier to specify
correctly since it's more apparent which data will end up where.

Melting DataFrames
To go from wide format to long format, we need to melt the data. Melting undoes a pivot.
For this example, we will read in the data from the wide_data.csv file:

>>> wide_df = pd.read_csv('data/wide_data.csv')
>>> wide_df.head()

Our wide data contains a column for the date and a column for each temperature
measurement we have been working with:

Figure 3.42 – Wide format temperature data

We can use the melt() method for flexible reshaping—allowing us to turn this into
long format, similar to what we got from the API. Melting requires that we specify the
following:

• Which column(s) uniquely identify a row in the wide format data with the
id_vars argument

• Which column(s) contain(s) the variable(s) with the value_vars argument

Optionally, we can also specify how to name the column containing the variable names in
the long format data (var_name) and the name for the column containing their values
(value_name). By default, these will be variable and value, respectively.

170 Data Wrangling with Pandas

Now, let's use the melt() method to turn the wide format data into long format:

>>> melted_df = wide_df.melt(
... id_vars='date', value_vars=['TMAX', 'TMIN', 'TOBS'],
... value_name='temp_C', var_name='measurement'
...)
>>> melted_df.head()

The date column was the identifier for our rows, so we provided that as id_vars.
We turned the values in the TMAX, TMIN, and TOBS columns into a single column
with the temperatures (value_vars) and used their column names as the values for
a measurement column (var_name='measurement'). Lastly, we named the values
column (value_name='temp_C'). We now have just three columns; the date, the
temperature reading in Celsius (temp_C), and a column indicating which temperature
measurement is in that row's temp_C cell (measurement):

Figure 3.43 – Melting the wide format temperature data

Just as we had an alternative way of pivoting data with the unstack() method, we
also have another way of melting data with the stack() method. This method will
pivot the columns into the innermost level of the index (resulting in an index of type
MultiIndex), so we need to double-check our index before calling it. It also lets us drop
row/column combinations that result in no data, if we choose. We can do the following to
get a similar output to the melt() method:

>>> wide_df.set_index('date', inplace=True)
>>> stacked_series = wide_df.stack() # put datatypes in index
>>> stacked_series.head()
date
2018-10-01 TMAX 21.1
 TMIN 8.9
 TOBS 13.9

Reshaping data 171

2018-10-02 TMAX 23.9
 TMIN 13.9
dtype: float64

Notice that the result came back as a Series object, so we will need to create the
DataFrame object once more. We can use the to_frame() method and pass in a name
to use for the column once it is a dataframe:

>>> stacked_df = stacked_series.to_frame('values')
>>> stacked_df.head()

Now, we have a dataframe with a multi-level index, containing date and datatype,
with values as the only column. Notice, however, that only the date portion of our
index has a name:

Figure 3.44 – Stacking to melt the temperature data into long format

Initially, we used set_index() to set the index to the date column because we didn't
want to melt that; this formed the first level of the multi-level index. Then, the stack()
method moved the TMAX, TMIN, and TOBS columns into the second level of the index.
However, this level was never named, so it shows up as None, but we know that the level
should be called datatype:

>>> stacked_df.head().index
MultiIndex([('2018-10-01', 'TMAX'),
 ('2018-10-01', 'TMIN'),
 ('2018-10-01', 'TOBS'),
 ('2018-10-02', 'TMAX'),
 ('2018-10-02', 'TMIN')],
 names=['date', None])

172 Data Wrangling with Pandas

We can use the set_names() method to address this:

>>> stacked_df.index\
... .set_names(['date', 'datatype'], inplace=True)
>>> stacked_df.index.names
FrozenList(['date', 'datatype'])

Now that we understand the basics of data cleaning and reshaping, we will walk through
an example of how these techniques can be combined when working with data that
contains various issues.

Handling duplicate, missing, or invalid data
So far, we have discussed things we could change with the way the data was represented
with zero ramifications. However, we didn't discuss a very important part of data cleaning:
how to deal with data that appears to be duplicated, invalid, or missing. This is separated
from the rest of the data cleaning discussion because it is an example where we will do
some initial data cleaning, then reshape our data, and finally look to handle these potential
issues; it is also a rather hefty topic.

We will be working in the 5-handling_data_issues.ipynb notebook and using
the dirty_data.csv file. Let's start by importing pandas and reading in the data:

>>> import pandas as pd
>>> df = pd.read_csv('data/dirty_data.csv')

The dirty_data.csv file contains wide format data from the weather API that has
been altered to introduce many common data issues that we will encounter in the wild.
It contains the following fields:

• PRCP: Precipitation in millimeters

• SNOW: Snowfall in millimeters

• SNWD: Snow depth in millimeters

• TMAX: Maximum daily temperature in Celsius

• TMIN: Minimum daily temperature in Celsius

• TOBS: Temperature at the time of observation in Celsius

• WESF: Water equivalent of snow in millimeters

Handling duplicate, missing, or invalid data 173

This section is divided into two parts. In the first part, we will discuss some tactics to
uncover issues within a dataset, and in the second part, we will learn how to mitigate
some of the issues present in this dataset.

Finding the problematic data
In Chapter 2, Working with Pandas DataFrames, we learned the importance of examining
our data when we get it; it's not a coincidence that many of the ways to inspect the data
will help us find these issues. Examining the results of calling head() and tail() on
the data is always a good first step:

>>> df.head()

In practice, head() and tail() aren't as robust as the rest of what we will discuss
in this section, but we can still get some useful information by starting here. Our data
is in wide format, and at a quick glance, we can see that we have some potential issues.
Sometimes, the station field is recorded as ?, while other times, it has a station ID.
We have values of negative infinity (-inf) for snow depth (SNWD), along with some very
hot temperatures for TMAX. Lastly, we can observe many NaN values in several columns,
including the inclement_weather column, which appears to also contain Boolean
values:

Figure 3.45 – Dirty data

Using describe(), we can see if we have any missing data and look at the 5-number
summary to spot potential issues:

>>> df.describe()

174 Data Wrangling with Pandas

The SNWD column appears to be useless, and the TMAX column seems unreliable. For
perspective, the temperature of the Sun's photosphere is around 5,505°C, so we certainly
wouldn't expect to observe those air temperatures in New York City (or anywhere on
Earth, for that matter). This likely means that the TMAX column was set to a nonsensical,
large number when it wasn't available. The fact that it is so large is actually what helps
identify it using the summary statistics we get from describe(). If unknowns were
encoded with another value, say 40°C, we couldn't be sure it wasn't actual data:

Figure 3.46 – Summary statistics for the dirty data

We can use the info() method to see if we have any missing values and check that our
columns have the expected data types. In doing so, we immediately see two issues: we have
765 rows, but for five of the columns, we have many fewer non-null entries. This output
also shows us that the data type of the inclement_weather column is not Boolean,
though we may have thought so from the name. Notice that the ? value that we saw for
the station column when we used head() doesn't show up here—it's important to
inspect our data from many different angles:

>>> df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 765 entries, 0 to 764
Data columns (total 10 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 date 765 non-null object
 1 station 765 non-null object
 2 PRCP 765 non-null float64
 3 SNOW 577 non-null float64
 4 SNWD 577 non-null float64
 5 TMAX 765 non-null float64

Handling duplicate, missing, or invalid data 175

 6 TMIN 765 non-null float64
 7 TOBS 398 non-null float64
 8 WESF 11 non-null float64
 9 inclement_weather 408 non-null object
dtypes: float64(7), object(3)
memory usage: 59.9+ KB

Now, let's track down those null values. Both Series and DataFrame objects provide
two methods to do so: isnull() and isna(). Note that if we use the method on the
DataFrame object, the result will tell us which rows have all null values, which isn't what
we want in this case. Here, we want to examine the rows that have null values in the SNOW,
SNWD, TOBS, WESF, or inclement_weather columns. This means that we will need to
combine checks for each of the columns with the | (bitwise OR) operator:

>>> contain_nulls = df[
... df.SNOW.isna() | df.SNWD.isna() | df.TOBS.isna()
... | df.WESF.isna() | df.inclement_weather.isna()
...]
>>> contain_nulls.shape[0]
765
>>> contain_nulls.head(10)

If we look at the shape attribute of our contain_nulls dataframe, we will see that
every single row contains some null data. Looking at the top 10 rows, we can see some
NaN values in each of these rows:

Figure 3.47 – Rows in the dirty data with nulls

176 Data Wrangling with Pandas

Tip
By default, the sort_values() method that we discussed earlier in this
chapter will put any NaN values last. We can change this behavior (to put them
first) by passing in na_position='first', which can also be helpful
when looking for patterns in the data when the sort columns have null values.

Note that we can't check whether the value of the column is equal to NaN because NaN is
not equal to anything:

>>> import numpy as np
>>> df[df.inclement_weather == 'NaN'].shape[0] # doesn't work
0
>>> df[df.inclement_weather == np.nan].shape[0] # doesn't work
0

We must use the aforementioned options (isna()/isnull()):

>>> df[df.inclement_weather.isna()].shape[0] # works
357

Note that inf and -inf are actually np.inf and -np.inf. Therefore, we can find the
number of rows with inf or -inf values by doing the following:

>>> df[df.SNWD.isin([-np.inf, np.inf])].shape[0]
577

This only tells us about a single column, though, so we could write a function that will use
a dictionary comprehension to return the number of infinite values per column in our
dataframe:

>>> def get_inf_count(df):
... """Find the number of inf/-inf values per column"""
... return {
... col: df[
... df[col].isin([np.inf, -np.inf])
...].shape[0] for col in df.columns
... }

Handling duplicate, missing, or invalid data 177

Using our function, we find that the SNWD column is the only column with infinite values,
but the majority of the values in the column are infinite:

>>> get_inf_count(df)
{'date': 0, 'station': 0, 'PRCP': 0, 'SNOW': 0, 'SNWD': 577,
 'TMAX': 0, 'TMIN': 0, 'TOBS': 0, 'WESF': 0,
 'inclement_weather': 0}

Before we can decide on how to handle the infinite values of snow depth, we should look
at the summary statistics for snowfall (SNOW), which forms a big part of determining
the snow depth (SNWD). To do so, we can make a dataframe with two series, where one
contains the summary statistics for the snowfall column when the snow depth is np.inf,
and the other for when it is -np.inf. In addition, we will use the T attribute to transpose
the data for easier viewing:

>>> pd.DataFrame({
... 'np.inf Snow Depth':
... df[df.SNWD == np.inf].SNOW.describe(),
... '-np.inf Snow Depth':
... df[df.SNWD == -np.inf].SNOW.describe()
... }).T

The snow depth was recorded as negative infinity when there was no snowfall; however,
we can't be sure this isn't just a coincidence going forward. If we are just going to be
working with this fixed date range, we can treat that as having a depth of 0 or NaN because
it didn't snow. Unfortunately, we can't really make any assumptions with the positive
infinity entries. They most certainly aren't that, but we can't decide what they should be,
so it's probably best to leave them alone or not look at this column:

Figure 3.48 – Summary statistics for snowfall when snow depth is infinite

We are working with a year of data, but somehow, we have 765 rows, so we should check
why. The only columns we have yet to inspect are the date and station columns. We
can use the describe() method to see the summary statistics for them:

>>> df.describe(include='object')

178 Data Wrangling with Pandas

In 765 rows of data, the date column only has 324 unique values (meaning that some
dates are missing), with some dates being present as many as eight times (freq). There
are only two unique values for the station column, with the most frequent being
GHCND:USC00280907. Since we saw some station IDs with the value of ? when we
used head() earlier (Figure 3.45), we know that is the other value; however, we can use
unique() to see all the unique values if we hadn't. We also know that ? occurs 367 times
(765 - 398), without the need to use value_counts():

Figure 3.49 – Summary statistics for the non-numeric columns in the dirty data

In practice, we may not know why the station is sometimes recorded as ?—it could be
intentional to show that they don't have the station, an error in the recording software, or
an accidental omission that got encoded as ?. How we deal with this would be a judgment
call, as we will discuss in the next section.

Upon seeing that we had 765 rows of data and two distinct values for the station ID, we
might have assumed that each day had two entries—one per station. However, this would
only account for 730 rows, and we also now know that we are missing some dates. Let's see
whether we can find any duplicate data that could account for this. We can use the result
of the duplicated() method as a Boolean mask to find the duplicate rows:

>>> df[df.duplicated()].shape[0]
284

Depending on what we are trying to achieve, we may handle duplicates differently.
The rows that are returned can be modified with the keep argument. By default, it
is 'first', and, for each row that is present more than once, we will get only the
additional rows (besides the first). However, if we pass in keep=False, we will get all the
rows that are present more than once, not just each additional appearance they make:

>>> df[df.duplicated(keep=False)].shape[0]
482

Handling duplicate, missing, or invalid data 179

There is also a subset argument (first positional argument), which allows us to focus
just on the duplicates of certain columns. Using this, we can see that when the date and
station columns are duplicated, so is the rest of the data because we get the same result
as before. However, we don't know if this is actually a problem:

>>> df[df.duplicated(['date', 'station'])].shape[0]
284

Now, let's examine a few of the duplicated rows:

>>> df[df.duplicated()].head()

Just looking at the first five rows shows us that some rows are repeated at least three
times. Remember that the default behavior of duplicated() is to not show the first
occurrence, which means that rows 1 and 2 have another matching value in the data
(same for rows 5 and 6):

Figure 3.50 – Examining the duplicate data

Now that we know how to find problems in our data, let's learn about some ways we can
try to address them. Note that there is no panacea here, and it will often come down to
knowing the data we are working with and making judgment calls.

Mitigating the issues
We are in an unsatisfactory state with our data, and while we can work to make it better,
the best plan of action isn't always evident. Perhaps the easiest thing we can do when faced
with this class of data issues is to remove the duplicate rows. However, it is crucial that we
evaluate the ramifications such a decision may have on our analysis. Even in cases where
it appears that the data we are working with was collected from a larger dataset that had
additional columns, thus making all our data distinct, we can't be sure that removing these
columns is the reason the remaining data was duplicated—we would need to consult the
source of the data and any available documentation.

180 Data Wrangling with Pandas

Since we know that both stations will be for New York City, we may decide to drop the
station column—they may have just been collecting different data. If we then decide
to remove duplicate rows using the date column and keep the data for the station that
wasn't ?, in the case of duplicates, we will lose all data we have for the WESF column
because the ? station is the only one reporting WESF measurements:

>>> df[df.WESF.notna()].station.unique()
array(['?'], dtype=object)

One satisfactory solution in this case may be to carry out the following actions:

1. Perform type conversion on the date column:

>>> df.date = pd.to_datetime(df.date)

2. Save the WESF column as a series:

>>> station_qm_wesf = df[df.station == '?']\
... .drop_duplicates('date').set_index('date').WESF

3. Sort the dataframe by the station column in descending order to put the station
with no ID (?) last:

>>> df.sort_values(
... 'station', ascending=False, inplace=True
...)

4. Remove rows that are duplicated based on the date, keeping the first occurrences,
which will be ones where the station column has an ID (if that station has
measurements). Note that drop_duplicates() can be done in-place, but if
what we are trying to do is complicated, it's best not to start out with the in-place
operation:

>>> df_deduped = df.drop_duplicates('date')

5. Drop the station column and set the index to the date column (so that it
matches the WESF data):

>>> df_deduped = df_deduped.drop(columns='station')\
... .set_index('date').sort_index()

Handling duplicate, missing, or invalid data 181

6. Update the WESF column using the combine_first() method to coalesce
(just as in SQL for those coming from a SQL background) the values to the first
non-null entry; this means that if we had data from both stations, we would first
take the value provided by the station with an ID, and if (and only if) that station
was null would we take the value from the station without an ID (?). Since both
df_deduped and station_qm_wesf are using the date as the index, the values
are properly matched to the appropriate date:

>>> df_deduped = df_deduped.assign(WESF=
... lambda x: x.WESF.combine_first(station_qm_wesf)
...)

This may sound a little complicated, but that's largely because we haven't learned about
aggregation yet. In Chapter 4, Aggregating Pandas DataFrames, we will look at another way
to go about this. Let's take a look at the result using the aforementioned implementation:

>>> df_deduped.shape
(324, 8)
>>> df_deduped.head()

We are now left with 324 rows—one for each unique date in our data. We were able to save
the WESF column by putting it alongside the data from the other station:

Figure 3.51 – Using data wrangling to keep the information in the WESF column

Tip
We could have also specified to keep the last entry instead of the first or drop all
duplicates with the keep argument, just like when we checked for duplicates
with duplicated(). Keep this in mind as the duplicated() method
can be useful in giving the results of a dry run on a deduplication task.

182 Data Wrangling with Pandas

Now, let's deal with the null data. We can choose to drop it, replace it with some arbitrary
value, or impute it using surrounding data. Each of these options has its ramifications. If
we drop the data, we are going about our analysis with only part of the data; if we end up
dropping half the rows, this is going to have a big impact. When changing the values of
the data, we may be affecting the outcome of our analysis.

To drop all the rows with any null data (this doesn't have to be true for all the columns of
the row, so be careful), we use the dropna() method; in our case, this leaves us with just
4 rows:

>>> df_deduped.dropna().shape
(4, 8)

We can change the default behavior to only drop a row if all the columns are null with the
how argument, except this doesn't get rid of anything:

>>> df_deduped.dropna(how='all').shape # default is 'any'
(324, 8)

Thankfully, we can also use a subset of columns to determine what to drop. Say we wanted
to look at snow data; we would most likely want to make sure that our data had values
for SNOW, SNWD, and inclement_weather. This can be achieved with the subset
argument:

>>> df_deduped.dropna(
... how='all', subset=['inclement_weather', 'SNOW', 'SNWD']
...).shape
(293, 8)

Note that this operation can also be performed along the columns, and that we can
provide a threshold for the number of null values that must be observed to drop the data
with the thresh argument. For example, if we say that at least 75% of the rows must be
null to drop the column, we will drop the WESF column:

>>> df_deduped.dropna(
... axis='columns',
... thresh=df_deduped.shape[0] * .75 # 75% of rows
...).columns
Index(['PRCP', 'SNOW', 'SNWD', 'TMAX', 'TMIN', 'TOBS',
 'inclement_weather'],
 dtype='object')

Handling duplicate, missing, or invalid data 183

Since we have a lot of null values, we will likely be more interested in keeping these values,
and perhaps finding a better way to represent them. If we replace the null data, we must
exercise caution when deciding what to fill in instead; filling in all the values we don't have
with some other value may yield strange results later on, so we must think about how we
will use this data first.

To fill in null values with other data, we use the fillna() method, which gives us
the option of specifying a value or a strategy for how to perform the filling. We will
discuss filling with a single value first. The WESF column contains mostly null values,
but since it is a measurement in milliliters that takes on the value of NaN when there is
no water equivalent of snowfall, we can fill in the nulls with zeros. Note that this can be
done in-place (again, as a general rule of thumb, we should use caution with in-place
operations):

>>> df_deduped.loc[:,'WESF'].fillna(0, inplace=True)
>>> df_deduped.head()

The WESF column no longer contains NaN values:

Figure 3.52 – Filling in null values in the WESF column

At this point, we have done everything we can without distorting the data. We know that
we are missing dates, but if we reindex, we don't know how to fill in the resulting NaN
values. With the weather data, we can't assume that because it snowed one day that it
will snow the next, or that the temperature will be the same. For this reason, note that
the following examples are just for illustrative purposes only—just because we can do
something doesn't mean we should. The right solution will most likely depend on the
domain and the problem we are looking to solve.

184 Data Wrangling with Pandas

That being said, let's try to address some of the remaining issues with the temperature
data. We know that when TMAX is the temperature of the Sun, it must be because there
was no measured value, so let's replace it with NaN. We will also do so for TMIN, which
currently uses -40°C for its placeholder, despite the coldest temperature ever recorded
in NYC being -15°F (-26.1°C) on February 9, 1934 (https://www.weather.gov/
media/okx/Climate/CentralPark/extremes.pdf):

>>> df_deduped = df_deduped.assign(
... TMAX=lambda x: x.TMAX.replace(5505, np.nan),
... TMIN=lambda x: x.TMIN.replace(-40, np.nan)
...)

We will also make an assumption that the temperature won't change drastically from
day to day. Note that this is actually a big assumption, but it will allow us to understand
how the fillna() method works when we provide a strategy through the method
parameter: 'ffill' to forward-fill or 'bfill' to back-fill. Notice we don't have the
'nearest' option, like we did when we were reindexing, which would have been the
best option; so, to illustrate how this works, let's use forward-filling:

>>> df_deduped.assign(
... TMAX=lambda x: x.TMAX.fillna(method='ffill'),
... TMIN=lambda x: x.TMIN.fillna(method='ffill')
...).head()

Take a look at the TMAX and TMIN columns on January 1st and 4th. Both are NaN on the
1st because we don't have data before then to bring forward, but the 4th now has the same
values as the 3rd:

Figure 3.53 – Forward-filling null values

https://www.weather.gov/media/okx/Climate/CentralPark/extremes.pdf
https://www.weather.gov/media/okx/Climate/CentralPark/extremes.pdf

Handling duplicate, missing, or invalid data 185

If we want to handle the nulls and infinite values in the SNWD column, we can use
the np.nan_to_num() function; it turns NaN into 0 and inf/-inf into very large
positive/negative finite numbers, making it possible for machine learning models
(discussed in Chapter 9, Getting Started with Machine Learning in Python) to learn from
this data:

>>> df_deduped.assign(
... SNWD=lambda x: np.nan_to_num(x.SNWD)
...).head()

This doesn't make much sense for our use case though. For instances of -np.inf, we
may choose to set SNWD to 0 since we saw there was no snowfall on those days. However,
we don't know what to do with np.inf, and the large positive numbers, arguably, make
this more confusing to interpret:

Figure 3.54 – Replacing infinite values

Depending on the data we are working with, we may choose to use the clip() method
as an alternative to the np.nan_to_num() function. The clip() method makes it
possible to cap values at a specific minimum and/or maximum threshold. Since the snow
depth can't be negative, let's use clip() to enforce a lower bound of zero. To show how
the upper bound works, we will use the snowfall (SNOW) as an estimate:

>>> df_deduped.assign(
... SNWD=lambda x: x.SNWD.clip(0, x.SNOW)
...).head()

186 Data Wrangling with Pandas

The values of SNWD for January 1st through 3rd are now 0 instead of -inf, while the
values of SNWD for January 4th and 5th went from inf to that day's value for SNOW:

Figure 3.55 – Capping values at thresholds

Our last strategy is imputation. When we replace a missing value with a new value derived
from the data, using summary statistics or data from other observations, it is called
imputation. For example, we can impute with the mean to replace temperature values.
Unfortunately, if we are only missing values for the end of the month of October, and we
replace them with the mean of the values from the rest of the month, this is likely to be
skewed toward the extreme values, which are the warmer temperatures at the beginning
of October, in this case. Like everything else that was discussed in this section, we must
exercise caution and think about any potential consequences or side effects of our actions.

We can combine imputation with the fillna() method. As an example, let's fill in the
NaN values for TMAX and TMIN with their medians and TOBS with the average of TMIN
and TMAX (after imputing them):

>>> df_deduped.assign(
... TMAX=lambda x: x.TMAX.fillna(x.TMAX.median()),
... TMIN=lambda x: x.TMIN.fillna(x.TMIN.median()),
... # average of TMAX and TMIN
... TOBS=lambda x: x.TOBS.fillna((x.TMAX + x.TMIN) / 2)
...).head()

Handling duplicate, missing, or invalid data 187

Notice from the changes to the data for January 1st and 4th that the median maximum
and minimum temperatures were 14.4°C and 5.6°C, respectively. This means that when
we impute TOBS and also don't have TMAX and TMIN in the data, we get 10°C:

Figure 3.56 – Imputing missing values with summary statistics

If we want to run the same calculation on all the columns, we should use the apply()
method instead of assign(), since it saves us the redundancy of having to write the
same calculation for each of the columns. For example, let's fill in all the missing values
with the rolling 7-day median of their values, setting the number of periods required for
the calculation to zero to ensure that we don't introduce extra null values. We will cover
rolling calculations and apply() in Chapter 4, Aggregating Pandas DataFrames, so this
is just a preview:

>>> df_deduped.apply(lambda x:
... # Rolling 7-day median (covered in chapter 4).
... # we set min_periods (# of periods required for
... # calculation) to 0 so we always get a result
... x.fillna(x.rolling(7, min_periods=0).median())
...).head(10)

188 Data Wrangling with Pandas

It's kind of hard to tell where our imputed values are here—temperatures can fluctuate
quite a bit day to day. We know that January 4th had missing data from our previous
attempt; our imputed temperatures are colder that day than those around it with this
strategy. In reality, it was slightly warmer that day (around -3°C):

Figure 3.57 – Imputing missing values with the rolling median

Important note
It's important to exercise caution when imputing. If we pick the wrong strategy
for the data, we can make a real mess of things.

Another way of imputing missing data is to have pandas calculate what the values should
be with the interpolate() method. By default, it will perform linear interpolation,
making the assumption that all the rows are evenly spaced. Our data is daily data,
although some days are missing, so it is just a matter of reindexing first. Let's combine this
with the apply() method to interpolate all of our columns at once:

>>> df_deduped.reindex(
... pd.date_range('2018-01-01', '2018-12-31', freq='D')
...).apply(lambda x: x.interpolate()).head(10)

Summary 189

Check out January 9th, which we didn't have previously—the values for TMAX, TMIN,
and TOBS are the average of the values for the day prior (January 8th) and the day after
(January 10th):

Figure 3.58 – Interpolating missing values

Different strategies for interpolation can be specified via the method argument; be sure to
check out the interpolate() method documentation to view the available options.

Summary
Congratulations on making it through this chapter! Data wrangling may not be the most
exciting part of the analytics workflow, but we will spend a lot of time on it, so it's best to
be well versed in what pandas has to offer.

In this chapter, we learned more about what data wrangling is (aside from a data science
buzzword) and got some firsthand experience with cleaning and reshaping our data.
Utilizing the requests library, we once again practiced working with APIs to extract
data of interest; then, we used pandas to begin our introduction to data wrangling,
which we will continue in the next chapter. Finally, we learned how to deal with duplicate,
missing, and invalid data points in various ways and discussed the ramifications of those
decisions.

Building on these concepts, in the next chapter, we will learn how to aggregate dataframes
and work with time series data. Be sure to complete the end-of-chapter exercises before
moving on.

190 Data Wrangling with Pandas

Exercises
Complete the following exercises using what we have learned so far in this book and the
data in the exercises/ directory:

1. We want to look at data for the Facebook, Apple, Amazon, Netflix, and Google
(FAANG) stocks, but we were given each as a separate CSV file (obtained using the
stock_analysis package we will build in Chapter 7, Financial Analysis – Bitcoin
and the Stock Market). Combine them into a single file and store the dataframe of
the FAANG data as faang for the rest of the exercises:

a) Read in the aapl.csv, amzn.csv, fb.csv, goog.csv, and nflx.csv files.

b) Add a column to each dataframe, called ticker, indicating the ticker symbol it
is for (Apple's is AAPL, for example); this is how you look up a stock. In this case,
the filenames happen to be the ticker symbols.

c) Append them together into a single dataframe.

d) Save the result in a CSV file called faang.csv.

2. With faang, use type conversion to cast the values of the date column into
datetimes and the volume column into integers. Then, sort by date and ticker.

3. Find the seven rows in faang with the lowest value for volume.

4. Right now, the data is somewhere between long and wide format. Use melt()
to make it completely long format. Hint: date and ticker are our ID variables
(they uniquely identify each row). We need to melt the rest so that we don't have
separate columns for open, high, low, close, and volume.

5. Suppose we found out that on July 26, 2018 there was a glitch in how the data was
recorded. How should we handle this? Note that there is no coding required for this
exercise.

6. The European Centre for Disease Prevention and Control (ECDC) provides
an open dataset on COVID-19 cases called daily number of new reported cases
of COVID-19 by country worldwide (https://www.ecdc.europa.eu/
en/publications-data/download-todays-data-geographic-
distribution-covid-19-cases-worldwide). This dataset is updated
daily, but we will use a snapshot that contains data from January 1, 2020 through
September 18, 2020. Clean and pivot the data so that it is in wide format:

a) Read in the covid19_cases.csv file.

b) Create a date column using the data in the dateRep column and the
pd.to_datetime() function.

https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide
https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide
https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide

Further reading 191

c) Set the date column as the index and sort the index.

d) Replace all occurrences of United_States_of_America and United_
Kingdom with USA and UK, respectively. Hint: the replace() method can be
run on the dataframe as a whole.

e) Using the countriesAndTerritories column, filter the cleaned COVID-19
cases data down to Argentina, Brazil, China, Colombia, India, Italy, Mexico, Peru,
Russia, Spain, Turkey, the UK, and the USA.

f) Pivot the data so that the index contains the dates, the columns contain the
country names, and the values are the case counts (the cases column). Be sure
to fill in NaN values with 0.

7. In order to determine the case totals per country efficiently, we need the aggregation
skills we will learn about in Chapter 4, Aggregating Pandas DataFrames, so the
ECDC data in the covid19_cases.csv file has been aggregated for us and saved
in the covid19_total_cases.csv file. It contains the total number of cases
per country. Use this data to find the 20 countries with the largest COVID-19 case
totals. Hints: when reading in the CSV file, pass in index_col='cases', and
note that it will be helpful to transpose the data before isolating the countries.

Further reading
Check out the following resources for more information on the topics that were covered in
this chapter:

• A Quick-Start Tutorial on Relational Database Design: https://www.ntu.edu.
sg/home/ehchua/programming/sql/relational_database_design.
html

• Binary search: https://www.khanacademy.org/computing/computer-
science/algorithms/binary-search/a/binary-search

• How Recursion Works—explained with flowcharts and a video: https://www.
freecodecamp.org/news/how-recursion-works-explained-with-
flowcharts-and-a-video-de61f40cb7f9/

• Python f-strings: https://realpython.com/python-f-strings/

• Tidy Data (article by Hadley Wickham): https://www.jstatsoft.org/
article/view/v059i10

• 5 Golden Rules for Great Web API Design: https://www.toptal.com/
api-developers/5-golden-rules-for-designing-a-great-web-api

https://www.ntu.edu.sg/home/ehchua/programming/sql/relational_database_design.html
https://www.ntu.edu.sg/home/ehchua/programming/sql/relational_database_design.html
https://www.ntu.edu.sg/home/ehchua/programming/sql/relational_database_design.html
https://www.khanacademy.org/computing/computer-science/algorithms/binary-search/a/binary-search
https://www.khanacademy.org/computing/computer-science/algorithms/binary-search/a/binary-search
https://www.freecodecamp.org/news/how-recursion-works-explained-with-flowcharts-and-a-video-de61f40cb7f9/
https://www.freecodecamp.org/news/how-recursion-works-explained-with-flowcharts-and-a-video-de61f40cb7f9/
https://www.freecodecamp.org/news/how-recursion-works-explained-with-flowcharts-and-a-video-de61f40cb7f9/
https://realpython.com/python-f-strings/
https://www.jstatsoft.org/article/view/v059i10
https://www.jstatsoft.org/article/view/v059i10
https://www.toptal.com/api-developers/5-golden-rules-for-designing-a-great-web-api
https://www.toptal.com/api-developers/5-golden-rules-for-designing-a-great-web-api

4
Aggregating Pandas

DataFrames
In this chapter, we will continue our discussion of data wrangling from Chapter 3, Data
Wrangling with Pandas, by addressing the enrichment and aggregation of data. This
includes essential skills, such as merging dataframes, creating new columns, performing
window calculations, and aggregating by group membership. Calculating aggregations
and summaries will help us draw conclusions about our data.

We will also take a look at the additional functionality pandas has for working with time
series data, beyond the time series slicing we introduced in previous chapters, including
how we can roll up the data with aggregation and select it based on the time of day. Much
of the data we will encounter is time series data, so being able to effectively work with time
series is paramount. Of course, performing these operations efficiently is important, so we
will also review how to write efficient pandas code.

194 Aggregating Pandas DataFrames

This chapter will get us comfortable with performing analyses using DataFrame objects.
Consequently, these topics are more advanced compared to the prior content and may
require a few rereads, so be sure to follow along with the notebooks, which contain
additional examples.

The following topics will be covered in this chapter:

• Performing database-style operations on DataFrames

• Using DataFrame operations to enrich data

• Aggregating data

• Working with time series data

Chapter materials
The materials for this chapter can be found on GitHub at https://github.com/
stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/
master/ch_04. There are four notebooks that we will work through, each numbered
according to when they will be used. The text will prompt you to switch. We will
begin with the 1-querying_and_merging.ipynb notebook to learn about
querying and merging dataframes. Then, we will move on to the 2-dataframe_
operations.ipynb notebook to discuss data enrichment through operations
such as binning, window functions, and pipes. For this section, we will also use the
window_calc.py Python file, which contains a function for performing window
calculations using pipes.

Tip
The understanding_window_calculations.ipynb notebook
contains some interactive visualizations for understanding window functions.
This may require some additional setup, but the instructions are in the
notebook.

Next, in the 3-aggregations.ipynb notebook, we will discuss aggregations, pivot
tables, and crosstabs. Finally, we will focus on additional capabilities pandas provides
when working with time series data in the 4-time_series.ipynb notebook. Note
that we will not go over the 0-weather_data_collection.ipynb notebook;
however, for those interested, it contains the code that was used to collect the data from
the National Centers for Environmental Information (NCEI) API, which can be found
at https://www.ncdc.noaa.gov/cdo-web/webservices/v2.

https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/ch_04
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/ch_04
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/ch_04
https://www.ncdc.noaa.gov/cdo-web/webservices/v2

Performing database-style operations on DataFrames 195

Throughout this chapter, we will use a variety of datasets, which can be found in the
data/ directory:

Figure 4.1 – Datasets used in this chapter

Note that the exercises/ directory contains the CSV files that are required to complete
the end-of-chapter exercises. More information on these datasets can be found in the
exercises/README.md file.

Performing database-style operations on
DataFrames
DataFrame objects are analogous to tables in a database: each has a name we refer to
it by, is composed of rows, and contains columns of specific data types. Consequently,
pandas allows us to carry out database-style operations on them. Traditionally, databases
support a minimum of four operations, called CRUD: Create, Read, Update, and Delete.

196 Aggregating Pandas DataFrames

A database query language—most commonly SQL (pronounced sequel or S-Q-L), which
stands for Structured Query Language—is used to ask the database to perform these
operations. Knowledge of SQL is not required for this book; however, we will look at the
SQL equivalent for the pandas operations that will be discussed in this section since
it may aid the understanding of those familiar with SQL. Many data professionals have
some familiarity with basic SQL, so consult the Further reading section for resources that
provide a more formal introduction.

For this section, we will be working in the 1-querying_and_merging.ipynb
notebook. We will begin with our imports and read in the NYC weather data CSV file:

>>> import pandas as pd
>>> weather = pd.read_csv('data/nyc_weather_2018.csv')
>>> weather.head()

This is long format data—we have several different weather observations per day for
various stations covering NYC in 2018:

Figure 4.2 – NYC weather data

In Chapter 2, Working with Pandas DataFrames, we covered how to create dataframes;
this was the pandas equivalent of a "CREATE TABLE ..." SQL statement. When
we discussed selection and filtering in Chapter 2, Working with Pandas DataFrames, and
Chapter 3, Data Wrangling with Pandas, we were focusing on reading from dataframes,
which equated to the SELECT (picking columns) and WHERE (filtering by Boolean
criteria) SQL clauses. We carried out update (UPDATE in SQL) and delete (DELETE
FROM in SQL) operations when we discussed working with missing data in Chapter 3,
Data Wrangling with Pandas. In addition to those basic CRUD operations, the concept
of a join or merge of tables exists. We will discuss the pandas implementation in this
section, along with the idea of querying a DataFrame object.

Performing database-style operations on DataFrames 197

Querying DataFrames
Pandas provides the query() method so that we can easily write complicated filters
instead of using a Boolean mask. The syntax is similar to the WHERE clause in a SQL
statement. To illustrate this, let's query the weather data for all the rows where the value of
the SNOW column was greater than zero for stations with US1NY in their station ID:

>>> snow_data = weather.query(
... 'datatype == "SNOW" and value > 0 '
... 'and station.str.contains("US1NY")'
...)
>>> snow_data.head()

Each row is a snow observation for a given combination of date and station. Notice that
the values vary quite a bit for January 4th—some stations received more snow than others:

Figure 4.3 – Querying the weather data for observations of snow

This query is equivalent to the following in SQL. Note that SELECT * selects all the
columns in the table (our dataframe, in this case):

SELECT * FROM weather
WHERE
 datatype == "SNOW" AND value > 0 AND station LIKE "%US1NY%";

In Chapter 2, Working with Pandas DataFrames, we learned how to use a Boolean mask to
get the same result:

>>> weather[
... (weather.datatype == 'SNOW') & (weather.value > 0)
... & weather.station.str.contains('US1NY')
...].equals(snow_data)
True

198 Aggregating Pandas DataFrames

For the most part, which one we use is a matter of preference; however, if we have a long
name for our dataframe, we will probably prefer the query() method. In the previous
example, we had to type the dataframe's name an additional three times in order to use
the mask.

Tip
When using Boolean logic with the query() method, we can use both
logical operators (and, or, not) and bitwise operators (&, |, ~).

Merging DataFrames
When we discussed stacking dataframes one on top of the other with the pd.concat()
function and the append() method in Chapter 2, Working with Pandas DataFrames,
we were performing the equivalent of the SQL UNION ALL statement (or just UNION,
if we also removed the duplicates, as we saw in Chapter 3, Data Wrangling with Pandas).
Merging dataframes deals with how to line them up by row.

When referring to databases, merging is traditionally called a join. There are four types
of joins: full (outer), left, right, and inner. These join types let us know how the result will
be affected by values that are only present on one side of the join. This is a concept that's
much more easily understood visually, so let's look at some Venn diagrams and then do
some sample joins on the weather data. Here, the darker regions represent the data we are
left with after performing the join:

Figure 4.4 – Understanding join types

Inner Full (Outer)

Left Right

Performing database-style operations on DataFrames 199

We have been working with data from numerous weather stations, but we don't know
anything about them besides their IDs. It would be helpful to know exactly where each of
the stations is located to better understand discrepancies between weather readings for the
same day in NYC. When we queried for the snow data, we saw quite a bit of variation in
the readings for January 4th (see Figure 4.3). This is most likely due to the location of the
station. Stations at higher elevations or farther north may record more snow. Depending
on how far they actually are from NYC, they may have been experiencing a snowstorm
that was heavier somewhere else, such as Connecticut or Northern New Jersey.

The NCEI API's stations endpoint gives us all the information we need for the stations.
This is in the weather_stations.csv file, as well as in the stations table in the
SQLite database. Let's read this data into a dataframe:

>>> station_info = pd.read_csv('data/weather_stations.csv')
>>> station_info.head()

For reference, Central Park in NYC is at 40.7829° N, 73.9654° W (latitude 40.7829 and
longitude -73.9654), and NYC has an elevation of 10 meters. The first five stations that
record NYC data are not in New York. The ones in New Jersey are southwest of NYC,
while the ones in Connecticut are northeast of NYC:

Figure 4.5 – Weather stations dataset

Joins require us to specify how to match the data up. The only data the weather
dataframe has in common with the station_info dataframe is the station ID.
However, the columns containing this information are not named the same: in the
weather dataframe, this column is called station, while in the station_info
dataframe, it is called id. Before we join the data, let's get some information on how many
distinct stations we have and how many entries are in each dataframe:

>>> station_info.id.describe()

200 Aggregating Pandas DataFrames

count 279
unique 279
top GHCND:US1NJBG0029
freq 1
Name: id, dtype: object

>>> weather.station.describe()
count 78780
unique 110
top GHCND:USW00094789
freq 4270
Name: station, dtype: object

The difference in the number of unique stations across the dataframes tells us they don't
contain all the same stations. Depending on the type of join we pick, we may lose some
data. Therefore, it's important to look at the row count before and after the join. We can
see this in the count entry from the output of describe(), but we don't need to run
that just to get the row count. Instead, we can use the shape attribute, which gives us a
tuple of the form (number of rows, number of columns). To select the rows,
we just grab the value at index 0 (1 for columns):

>>> station_info.shape[0], weather.shape[0] # 0=rows, 1=cols
(279, 78780)

Since we will be checking the row count often, it makes more sense to write a function
that will give us the row count for any number of dataframes. The *dfs argument collects
all the input to this function in a tuple, which we can iterate over in a list comprehension
to get the row count:

>>> def get_row_count(*dfs):
... return [df.shape[0] for df in dfs]
>>> get_row_count(station_info, weather)
[279, 78780]

Now that we know that we have 78,780 rows of weather data and 279 rows of station
information data, we can begin looking at the types of joins. We'll begin with the inner
join, which will result in the least amount of rows (unless the two dataframes have all the
same values for the column being joined on, in which case all the joins will be equivalent).
The inner join will return the columns from both dataframes where they have a match on
the specified key column. Since we will be joining on the weather.station column
and the station_info.id column, we will only get weather data for stations that are
in station_info.

Performing database-style operations on DataFrames 201

We will use the merge() method to perform the join (which is an inner join by default)
by providing the left and right dataframes, along with specifying which columns to join
on. Since the station ID column is named differently across dataframes, we must specify
the names with left_on and right_on. The left dataframe is the one we call merge()
on, while the right one is the dataframe that gets passed in as an argument:

>>> inner_join = weather.merge(
... station_info, left_on='station', right_on='id'
...)
>>> inner_join.sample(5, random_state=0)

Notice that we have five additional columns, which have been added to the right. These
came from the station_info dataframe. This operation also kept both the station
and id columns, which are identical:

Figure 4.6 – Results of an inner join between the weather and stations datasets

In order to remove the duplicate information in the station and id columns, we can
rename one of them before the join. Consequently, we will only have to supply a value for
the on parameter because the columns will share the same name:

>>> weather.merge(
... station_info.rename(dict(id='station'), axis=1),
... on='station'
...).sample(5, random_state=0)

202 Aggregating Pandas DataFrames

Since the columns shared the name, we only get one back after joining on them:

Figure 4.7 – Matching the names of the joining column to prevent duplicate data in the result

Tip
We can join on multiple columns by passing the list of column names to the on
parameter or to the left_on and right_on parameters.

Remember that we had 279 unique stations in the station_info dataframe, but only
110 unique stations for the weather data. When we performed the inner join, we lost all
the stations that didn't have weather observations associated with them. If we don't want
to lose rows on a particular side of the join, we can perform a left or right join instead. A
left join requires us to list the dataframe with the rows that we want to keep (even if they
don't exist in the other dataframe) on the left and the other dataframe on the right; a right
join is the inverse:

>>> left_join = station_info.merge(
... weather, left_on='id', right_on='station', how='left'
...)
>>> right_join = weather.merge(
... station_info, left_on='station', right_on='id',
... how='right'
...)
>>> right_join[right_join.datatype.isna()].head() # see nulls

Performing database-style operations on DataFrames 203

Wherever the other dataframe contains no data, we will get null values. We may want
to investigate why we don't have any weather data associated with these stations.
Alternatively, our analysis may involve determining the availability of data per station, so
getting null values isn't necessarily an issue:

Figure 4.8 – Null values may be introduced when not using an inner join

Since we placed the station_info dataframe on the left for the left join and on the
right for the right join, the results here are equivalent. In both cases, we chose to keep
all the stations present in the station_info dataframe, accepting null values for the
weather observations. To prove they are equivalent, we need to put the columns in the
same order, reset the index, and sort the data:

>>> left_join.sort_index(axis=1)\
... .sort_values(['date', 'station'], ignore_index=True)\
... .equals(right_join.sort_index(axis=1).sort_values(
... ['date', 'station'], ignore_index=True
...))
True

Note that we have additional rows in the left and right joins because we kept all the
stations that didn't have weather observations:

>>> get_row_count(inner_join, left_join, right_join)
[78780, 78949, 78949]

204 Aggregating Pandas DataFrames

The final type of join is a full outer join, which will keep all the values, regardless of
whether or not they exist in both dataframes. For instance, say we queried for stations
with US1NY in their station ID because we believed that stations measuring NYC weather
would have to be labeled as such. This means that an inner join would result in losing
observations from the stations in Connecticut and New Jersey, while a left/right join
would result in either lost station information or lost weather data. The outer join will
preserve all the data. We will also pass in indicator=True to add an additional column
to the resulting dataframe, which will indicate which dataframe each row came from:

>>> outer_join = weather.merge(
... station_info[station_info.id.str.contains('US1NY')],
... left_on='station', right_on='id',
... how='outer', indicator=True
...)
view effect of outer join
>>> pd.concat([
... outer_join.query(f'_merge == "{kind}"')\
... .sample(2, random_state=0)
... for kind in outer_join._merge.unique()
...]).sort_index()

Indices 23634 and 25742 come from stations located in New York, and the match gives
us information about the station. Indices 60645 and 70764 are for stations that don't have
US1NY in their station ID, causing nulls for the station information columns. The bottom
two rows are stations in New York that aren't providing weather observations for NYC.
This join keeps all the data and will often introduce null values, unlike inner joins, which
won't:

Figure 4.9 – An outer join keeps all the data

Performing database-style operations on DataFrames 205

The aforementioned joins are equivalent to SQL statements of the following form, where
we simply change <JOIN_TYPE> to (INNER) JOIN, LEFT JOIN, RIGHT JOIN, or
FULL OUTER JOIN for the appropriate join:

SELECT *
FROM left_table
<JOIN_TYPE> right_table
ON left_table.<col> == right_table.<col>;

Joining dataframes makes working with the dirty data in Chapter 3, Data Wrangling with
Pandas, easier. Remember, we had data from two distinct stations: one had a valid station
ID and the other was ?. The ? station was the only one recording the water equivalent
of snow (WESF). Now that we know about joining dataframes, we can join the data from
the valid station ID to the data from the ? station that we are missing by date. First, we
will need to read in the CSV file, setting the date column as the index. We will drop the
duplicates and the SNWD column (snow depth), which we found to be uninformative since
most of the values were infinite (both in the presence and absence of snow):

>>> dirty_data = pd.read_csv(
... 'data/dirty_data.csv', index_col='date'
...).drop_duplicates().drop(columns='SNWD')
>>> dirty_data.head()

Our starting data looks like this:

Figure 4.10 – Dirty data from the previous chapter

Now, we need to create a dataframe for each station. To reduce output, we will drop some
additional columns:

>>> valid_station = dirty_data.query('station != "?"')\
... .drop(columns=['WESF', 'station'])
>>> station_with_wesf = dirty_data.query('station == "?"')\
... .drop(columns=['station', 'TOBS', 'TMIN', 'TMAX'])

206 Aggregating Pandas DataFrames

This time, the column we want to join on (the date) is actually the index, so we will pass
in left_index to indicate that the column to use from the left dataframe is the index,
and then right_index to indicate the same for the right dataframe. We will perform a
left join to make sure we don't lose any rows from our valid station, and, where possible,
augment them with the observations from the ? station:

>>> valid_station.merge(
... station_with_wesf, how='left',
... left_index=True, right_index=True
...).query('WESF > 0').head()

For all the columns that the dataframes had in common, but weren't part of the join, we
have two versions now. The versions coming from the left dataframe have the _x suffix
appended to the column names, and those coming from the right dataframe have _y as
the suffix:

Figure 4.11 – Merging weather data from different stations

We can provide our own suffixes with the suffixes parameter. Let's use a suffix for the
? station only:

>>> valid_station.merge(
... station_with_wesf, how='left',
... left_index=True, right_index=True,
... suffixes=('', '_?')
...).query('WESF > 0').head()

Since we specified an empty string for the left suffix, the columns coming from the left
dataframe have their original names. However, the right suffix of _? was added to the
names of the columns that came from the right dataframe:

Performing database-style operations on DataFrames 207

Figure 4.12 – Specifying the suffix for shared columns not being used in the join

When we are joining on the index, an easier way to do this is to use the join() method
instead of merge(). It also defaults to an inner join, but this behavior can be changed
with the how parameter, just like with merge(). The join() method will always use
the index of the left dataframe to join, but it can use a column in the right dataframe if its
name is passed to the on parameter. Note that suffixes are now specified using lsuffix
for the left dataframe's suffix and rsuffix for the right one. This yields the same result as
the previous example (Figure 4.12):

>>> valid_station.join(
... station_with_wesf, how='left', rsuffix='_?'
...).query('WESF > 0').head()

One important thing to keep in mind is that joins can be rather resource-intensive, so it is
often beneficial to figure out what will happen to the rows before going through with it. If
we don't already know what type of join we want, this can help give us an idea. We can use
set operations on the index we plan to join on to figure this out.

Remember that the mathematical definition of a set is a collection of distinct objects. By
definition, the index is a set. Set operations are often explained with Venn diagrams:

Figure 4.13 – Set operations

Intersection Union Difference

208 Aggregating Pandas DataFrames

Important note
Note that set is also a Python type that's available in the standard library.
A common use of sets is to remove duplicates from a list. More information
on sets in Python can be found in the documentation at https://docs.
python.org/3/library/stdtypes.html#set-types-set-
frozenset.

Let's use the weather and station_info dataframes to illustrate set operations. First,
we must set the index to the column(s) that will be used for the join operation:

>>> weather.set_index('station', inplace=True)
>>> station_info.set_index('id', inplace=True)

To see what will remain with an inner join, we can take the intersection of the indices,
which shows us the overlapping stations:

>>> weather.index.intersection(station_info.index)
Index(['GHCND:US1CTFR0039', ..., 'GHCND:USW1NYQN0029'],
 dtype='object', length=110)

As we saw when we ran the inner join, we only got station information for the stations
with weather observations. This doesn't tell us what we lost, though; for this, we need to
find the set difference, which will subtract the sets and give us the values of the first index
that aren't in the second. With the set difference, we can easily see that, when performing
an inner join, we don't lose any rows from the weather data, but we lose 169 stations that
don't have weather observations:

>>> weather.index.difference(station_info.index)
Index([], dtype='object')

>>> station_info.index.difference(weather.index)
Index(['GHCND:US1CTFR0022', ..., 'GHCND:USW00014786'],
 dtype='object', length=169)

Note that this output also tells us how left and right joins will turn out. To avoid losing
rows, we want to put the station_info dataframe on the same side as the join
(on the left for a left join and on the right for a right join).

https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset
https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset
https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset

Using DataFrame operations to enrich data 209

Tip
We can use the symmetric_difference() method on the indices of
the dataframes involved in the join to see what will be lost from both sides:
index_1.symmetric_difference(index_2). The result will be
the values that are only in one of the indices. An example is in the notebook.

Lastly, we can use the union to view all the values we will keep if we run a full outer join.
Remember, the weather dataframe contains the stations repeated throughout because
they provide daily measurements, so we call the unique() method before taking the
union to see the number of stations we will keep:

>>> weather.index.unique().union(station_info.index)
Index(['GHCND:US1CTFR0022', ..., 'GHCND:USW00094789'],
 dtype='object', length=279)

The Further reading section at the end of this chapter contains some resources on
set operations and how pandas compares to SQL. For now, let's move on to data
enrichment.

Using DataFrame operations to enrich data
Now that we've discussed how to query and merge DataFrame objects, let's learn how
to perform complex operations on them to create and modify columns and rows. For
this section, we will be working in the 2-dataframe_operations.ipynb notebook
using the weather data, along with Facebook stock's volume traded and opening, high,
low, and closing prices daily for 2018. Let's import what we will need and read in the data:

>>> import numpy as np
>>> import pandas as pd

>>> weather = pd.read_csv(
... 'data/nyc_weather_2018.csv', parse_dates=['date']
...)
>>> fb = pd.read_csv(
... 'data/fb_2018.csv', index_col='date', parse_dates=True
...)

We will begin by reviewing operations that summarize entire rows and columns before
moving on to binning, applying functions across rows and columns, and window
calculations, which summarize data along a certain number of observations at a time
(such as moving averages).

210 Aggregating Pandas DataFrames

Arithmetic and statistics
Pandas has several methods for calculating statistics and performing mathematical
operations, including comparisons, floor division, and the modulo operation. These
methods give us more flexibility in how we define the calculation by allowing us to
specify the axis to perform the calculation on (when performing it on a DataFrame
object). By default, the calculation will be performed along the columns (axis=1 or
axis='columns'), which generally contain observations of a single variable of a
single data type; however, we can pass in axis=0 or axis='index' to perform the
calculation along the rows instead.

In this section, we are going to use a few of these methods to create new columns and
modify our data to see how we can use new data to draw some initial conclusions. Note
that the complete list can be found at https://pandas.pydata.org/pandas-
docs/stable/reference/series.html#binary-operator-functions.

To start off, let's create a column with the Z-score for the volume traded in Facebook
stock and use it to find the days where the Z-score is greater than three in absolute
value. These values are more than three standard deviations from the mean, which may
be abnormal (depending on the data). Remember from our discussion of Z-scores in
Chapter 1, Introduction to Data Analysis, that we calculate them by subtracting the mean
and dividing by the standard deviation. Rather than using mathematical operators for
subtraction and division, we will use the sub() and div() methods, respectively:

>>> fb.assign(
... abs_z_score_volume=lambda x: x.volume \
... .sub(x.volume.mean()).div(x.volume.std()).abs()
...).query('abs_z_score_volume > 3')

Five days in 2018 had Z-scores for volume traded greater than three in absolute value.
These dates in particular will come up often in the rest of this chapter as they mark some
trouble points for Facebook's stock price:

Figure 4.14 – Adding a Z-score column

https://pandas.pydata.org/pandas-docs/stable/reference/series.html#binary-operator-functions
https://pandas.pydata.org/pandas-docs/stable/reference/series.html#binary-operator-functions

Using DataFrame operations to enrich data 211

Two other very useful methods are rank() and pct_change(), which let us rank the
values of a column (and store them in a new column) and calculate the percentage change
between periods, respectively. By combining these, we can see which five days had the
largest percentage change of volume traded in Facebook stock from the day prior:

>>> fb.assign(
... volume_pct_change=fb.volume.pct_change(),
... pct_change_rank=lambda x: \
... x.volume_pct_change.abs().rank(ascending=False)
...).nsmallest(5, 'pct_change_rank')

The day with the largest percentage change in volume traded was January 12, 2018,
which happens to coincide with one of the many Facebook scandals that shook the stock
in 2018 (https://www.cnbc.com/2018/11/20/facebooks-scandals-in-
2018-effect-on-stock.html). This was when they announced changes to the
news feed to prioritize content from a user's friends over brands they follow. Given that
a large component of Facebook's revenue comes from advertising (nearly 89% in 2017,
source: https://www.investopedia.com/ask/answers/120114/how-does-
facebook-fb-make-money.asp), this caused panic as many sold the stock, driving
up the volume traded drastically and dropping the stock price:

Figure 4.15 – Ranking trading days by percentage change in volume traded

We can use slicing to look at the change around this announcement:

>>> fb['2018-01-11':'2018-01-12']

https://www.cnbc.com/2018/11/20/facebooks-scandals-in-2018-effect-on-stock.html
https://www.cnbc.com/2018/11/20/facebooks-scandals-in-2018-effect-on-stock.html
https://www.investopedia.com/ask/answers/120114/how-does-facebook-fb-make-money.asp
https://www.investopedia.com/ask/answers/120114/how-does-facebook-fb-make-money.asp

212 Aggregating Pandas DataFrames

Notice how we are able to combine everything we learned in the last few chapters to get
interesting insights from our data. We were able to sift through a year's worth of stock data
and find some days that had large effects on Facebook stock (good or bad):

Figure 4.16 – Facebook stock data before and after announcing changes to the news feed

Lastly, we can inspect the dataframe with aggregated Boolean operations. For example, we
can see that Facebook stock never had a daily low price greater than $215 in 2018 with the
any() method:

>>> (fb > 215).any()
open True
high True
low False
close True
volume True
dtype: bool

If we want to see if all the rows in a column meet the criteria, we can use the all()
method. This tells us that Facebook has at least one day for the opening, high, low, and
closing prices with a value less than or equal to $215:

>>> (fb > 215).all()
open False
high False
low False
close False
volume True
dtype: bool

Now, let's take a look at how we can use binning to divide up our data rather than a
specific value, such as $215 in the any() and all() examples.

Using DataFrame operations to enrich data 213

Binning
Sometimes, it's more convenient to work with categories rather than the specific values.
A common example is working with ages—most likely, we don't want to look at the data
for each age, such as 25 compared to 26; however, we may very well be interested in how
the group of individuals aged 25-34 compares to the group of those aged 35-44. This is
called binning or discretizing (going from continuous to discrete); we take our data and
place the observations into bins (or buckets) matching the range they fall into. By doing
so, we can drastically reduce the number of distinct values our data can take on and make
it easier to analyze.

Important note
While binning our data can make certain parts of the analysis easier, keep in
mind that it will reduce the information in that field since the granularity is
reduced.

One interesting thing we could do with the volume traded would be to see which days
had high trade volume and look for news about Facebook on those days or large swings in
price. Unfortunately, it is highly unlikely that the volume will be the same any two days; in
fact, we can confirm that, in the data, no two days have the same volume traded:

>>> (fb.volume.value_counts() > 1).sum()
0

Remember that fb.volume.value_counts() gives us the number of occurrences
for each unique value for volume. We can then create a Boolean mask for whether the
count is greater than 1 and sum it up (True evaluates to 1 and False evaluates to 0).
Alternatively, we can use any() instead of sum(), which, rather than telling us the
number of unique values of volume that had more than one occurrence, would give
us True if at least one volume traded amount occurred more than once and False
otherwise.

214 Aggregating Pandas DataFrames

Clearly, we will need to create some ranges for the volume traded in order to look at the
days of high trading volume, but how do we decide which range is a good range? One way
is to use the pd.cut() function for binning based on value. First, we should decide how
many bins we want to create—three seems like a good split, since we can label the bins
low, medium, and high. Next, we need to determine the width of each bin; pandas tries
to make this process as painless as possible, so if we want equally-sized bins, all we have to
do is specify the number of bins we want (otherwise, we must specify the upper bound for
each bin as a list):

>>> volume_binned = pd.cut(
... fb.volume, bins=3, labels=['low', 'med', 'high']
...)
>>> volume_binned.value_counts()
low 240
med 8
high 3
Name: volume, dtype: int64

Tip
Note that we provided labels for each bin here; if we don't do this, each bin
will be labeled by the interval of values it includes, which may or may not be
helpful for us, depending on our application. If we want to both label the values
and see the bins afterward, we can pass in retbins=True when we call
pd.cut(). Then, we can access the binned data as the first element of the
tuple that is returned, and the bin ranges themselves as the second element.

It looks like an overwhelming majority of the trading days were in the low-volume bin;
keep in mind that this is all relative because we evenly divided the range between the
minimum and maximum trading volumes. Let's look at the data for the three days of high
volume:

>>> fb[volume_binned == 'high']\
... .sort_values('volume', ascending=False)

Even among the high-volume days, we can see that July 26, 2018 had a much higher trade
volume compared to the other two dates in March (nearly 40 million additional shares
were traded):

Using DataFrame operations to enrich data 215

Figure 4.17 – Facebook stock data on days in the high-volume traded bucket

In fact, querying a search engine for Facebook stock price July 26, 2018 reveals that
Facebook had announced their earnings and disappointing user growth after market close
on July 25th, which was followed by lots of after-hours selling. When the market opened
the next morning, the stock had dropped from $217.50 at close on the 25th to $174.89 at
market open on the 26th. Let's pull out this data:

>>> fb['2018-07-25':'2018-07-26']

Not only was there a huge drop in stock price, but the volume traded also skyrocketed,
increasing by more than 100 million. All of this resulted in a loss of about $120 billion
in Facebook's market capitalization (https://www.marketwatch.com/
story/facebook-stock-crushed-after-revenue-user-growth-
miss-2018-07-25):

Figure 4.18 – Facebook stock data leading up to the day with the highest volume traded in 2018

If we look at the other two days marked as high-volume trading days, we will find
a plethora of information as to why. Both of these days were marked by scandal for
Facebook. The Cambridge Analytica political data privacy scandal broke on Saturday,
March 17, 2018, so trading with this information didn't commence until Monday the
19th (https://www.nytimes.com/2018/03/19/technology/facebook-
cambridge-analytica-explained.html):

>>> fb['2018-03-16':'2018-03-20']

https://www.marketwatch.com/story/facebook-stock-crushed-after-revenue-user-growth-miss-2018-07-25
https://www.marketwatch.com/story/facebook-stock-crushed-after-revenue-user-growth-miss-2018-07-25
https://www.marketwatch.com/story/facebook-stock-crushed-after-revenue-user-growth-miss-2018-07-25
https://www.nytimes.com/2018/03/19/technology/facebook-cambridge-analytica-explained.html
https://www.nytimes.com/2018/03/19/technology/facebook-cambridge-analytica-explained.html

216 Aggregating Pandas DataFrames

Things only got worse once more information was revealed in the following days with
regards to the severity of the incident:

Figure 4.19 – Facebook stock data when the Cambridge Analytica scandal broke

As for the third day of high trading volume (March 26, 2018), the FTC launched an
investigation into the Cambridge Analytica scandal, so Facebook's woes continued
(https://www.cnbc.com/2018/03/26/ftc-confirms-facebook-data-
breach-investigation.html).

If we look at some of the dates within the medium trading volume group, we can see that
many are part of the three trading events we just discussed. This forces us to reexamine
how we created the bins in the first place. Perhaps equal-width bins wasn't the answer?
Most days were pretty close in volume traded; however, a few days caused the bin width to
be rather large, which left us with a large imbalance of days per bin:

Figure 4.20 – Visualizing the equal-width bins

If we want each bin to have an equal number of observations, we can split the bins based
on evenly-spaced quantiles using the pd.qcut() function. We can bin the volumes into
quartiles to evenly bucket the observations into bins of varying width, giving us the 63
highest trading volume days in the q4 bin:

>>> volume_qbinned = pd.qcut(
... fb.volume, q=4, labels=['q1', 'q2', 'q3', 'q4']
...)
>>> volume_qbinned.value_counts()

https://www.cnbc.com/2018/03/26/ftc-confirms-facebook-data-breach-investigation.html
https://www.cnbc.com/2018/03/26/ftc-confirms-facebook-data-breach-investigation.html

Using DataFrame operations to enrich data 217

q1 63
q2 63
q4 63
q3 62
Name: volume, dtype: int64

Notice that the bins don't cover the same range of volume traded anymore:

Figure 4.21 – Visualizing the bins based on quartiles

Tip
In both of these examples, we let pandas calculate the bin ranges; however,
both pd.cut() and pd.qcut() allow us to specify the upper bounds for
each bin as a list.

Applying functions
So far, most of the actions we have taken on our data have been column-specific. When we
want to run the same code on all the columns in our dataframe, we can use the apply()
method for more succinct code. Note that this will not be done in-place.

Before we get started, let's isolate the weather observations from the Central Park station
and pivot the data:

>>> central_park_weather = weather.query(
... 'station == "GHCND:USW00094728"'
...).pivot(index='date', columns='datatype', values='value')

218 Aggregating Pandas DataFrames

Let's calculate the Z-scores of the TMIN (minimum temperature), TMAX (maximum
temperature), and PRCP (precipitation) observations in Central Park in October 2018.
It's important that we don't try to take the Z-scores across the full year. NYC has four
seasons, and what is considered normal weather will depend on which season we are
looking at. By isolating our calculation to October, we can see if October had any days
with very different weather:

>>> oct_weather_z_scores = central_park_weather\
... .loc['2018-10', ['TMIN', 'TMAX', 'PRCP']]\
... .apply(lambda x: x.sub(x.mean()).div(x.std()))
>>> oct_weather_z_scores.describe().T

TMIN and TMAX don't appear to have any values that differ much from the rest of October,
but PRCP does:

Figure 4.22 – Calculating Z-scores for multiple columns at once

We can use query() to extract the value for this date:

>>> oct_weather_z_scores.query('PRCP > 3').PRCP
date
2018-10-27 3.936167
Name: PRCP, dtype: float64

If we look at the summary statistics for precipitation in October, we can see that this day
had much more precipitation than the rest:

>>> central_park_weather.loc['2018-10', 'PRCP'].describe()
count 31.000000
mean 2.941935
std 7.458542
min 0.000000
25% 0.000000
50% 0.000000
75% 1.150000
max 32.300000
Name: PRCP, dtype: float64

Using DataFrame operations to enrich data 219

The apply() method lets us run vectorized operations on entire columns or rows at
once. We can apply pretty much any function we can think of as long as those operations
are valid on all the columns (or rows) in our data. For example, we can use the pd.cut()
and pd.qcut() binning functions we discussed in the previous section to divide each
column into bins (provided we want the same number of bins or value ranges). Note that
there is also an applymap() method if the function we want to apply isn't vectorized.
Alternatively, we can use np.vectorize() to vectorize our functions for use with
apply(). Consult the notebook for an example.

Pandas does provide some functionality for iterating over the dataframe, including the
iteritems(), itertuples(), and iterrows() methods; however, we should
avoid using these unless we absolutely can't find another solution. Pandas and NumPy
are designed for vectorized operations, which are much faster because they are written
in efficient C code; by writing a loop to iterate one element at a time, we are making it
more computationally intensive due to the way Python implements integers and floats.
For instance, look at how the time to complete the simple operation of adding the number
10 to each value in a series of floats grows linearly with the number of rows when using
iteritems(), but stays near zero, regardless of size, when using a vectorized operation:

Figure 4.23 – Vectorized versus iterative operations

220 Aggregating Pandas DataFrames

All the functions and methods we have used so far have involved the full row or column;
however, sometimes, we are more interested in performing window calculations, which
use a section of the data.

Window calculations
Pandas makes it possible to perform calculations over a window or range of rows/
columns. In this section, we will discuss a few ways of constructing these windows.
Depending on the type of window, we get a different look at our data.

Rolling windows
When our index is of type DatetimeIndex, we can specify the window in day parts
(such as 2H for two hours or 3D for three days); otherwise, we can specify the number
of periods as an integer. Say we are interested in the amount of rain that has fallen in a
rolling 3-day window; it would be quite tedious (and probably inefficient) to implement
this with what we have learned so far. Fortunately, we can use the rolling() method to
get this information easily:

>>> central_park_weather.loc['2018-10'].assign(
... rolling_PRCP=lambda x: x.PRCP.rolling('3D').sum()
...)[['PRCP', 'rolling_PRCP']].head(7).T

After performing the rolling 3-day sum, each date will show the sum of that day's and the
previous two days' precipitation:

Figure 4.24 – Rolling 3-day total precipitation

Tip
If we want to use dates for the rolling calculation, but don't have dates in
the index, we can pass the name of our date column to the on parameter in
the call to rolling(). Conversely, if we want to use an integer index of
row numbers, we can simply pass in an integer as the window; for example,
rolling(3) for a 3-row window.

Using DataFrame operations to enrich data 221

To change the aggregation, all we have to do is call a different method on the result of
rolling(); for example, mean() for the average and max() for the maximum. The
rolling calculation can also be applied to all the columns at once:

>>> central_park_weather.loc['2018-10']\
... .rolling('3D').mean().head(7).iloc[:,:6]

This gives us the 3-day rolling average for all the weather observations from Central Park:

Figure 4.25 – Rolling 3-day average for all weather observations

To apply different aggregations across columns, we can use the agg() method instead;
it allows us to specify the aggregations to perform per column as a predefined or custom
function. We simply pass in a dictionary mapping the columns to the aggregation to
perform on them. Let's find the rolling 3-day maximum temperature (TMAX), minimum
temperature (TMIN), average wind speed (AWND), and total precipitation (PRCP). Then,
we will join it to the original data so that we can compare the results:

>>> central_park_weather\
... ['2018-10-01':'2018-10-07'].rolling('3D').agg({
... 'TMAX': 'max', 'TMIN': 'min',
... 'AWND': 'mean', 'PRCP': 'sum'
... }).join(# join with original data for comparison
... central_park_weather[['TMAX', 'TMIN', 'AWND', 'PRCP']],
... lsuffix='_rolling'
...).sort_index(axis=1) # put rolling calcs next to originals

222 Aggregating Pandas DataFrames

Using agg(), we were able to calculate different rolling aggregations for each column:

Figure 4.26 – Using different rolling calculations per column

Tip
We can also use variable-width windows with a little extra effort: we can
either create a subclass of BaseIndexer and provide the logic for
determining the window bounds in the get_window_bounds() method
(more information can be found at https://pandas.pydata.
org/pandas-docs/stable/user_guide/computation.
html#custom-window-rolling), or we can use one of the
predefined classes in the pandas.api.indexers module. The
notebook we are currently working in contains an example of using the
VariableOffsetWindowIndexer class to perform a 3-business day
rolling calculation.

With rolling calculations, we have a sliding window over which we calculate our
functions; however, in some cases, we are more interested in the output of a function on
all the data up to that point, in which case we use an expanding window.

https://pandas.pydata.org/pandas-docs/stable/user_guide/computation.html#custom-window-rolling
https://pandas.pydata.org/pandas-docs/stable/user_guide/computation.html#custom-window-rolling
https://pandas.pydata.org/pandas-docs/stable/user_guide/computation.html#custom-window-rolling

Using DataFrame operations to enrich data 223

Expanding windows
Expanding calculations will give us the cumulative value of our aggregation function.
We use the expanding() method to perform a calculation with an expanding
window; methods such as cumsum() and cummax() use expanding windows for their
calculations. The advantage of using expanding() directly is additional flexibility: we
aren't limited to predefined aggregations, and we can specify the minimum number of
periods before the calculation starts with the min_periods parameter (defaults to 1).
With the Central Park weather data, let's use the expanding() method to calculate the
month-to-date average precipitation:

>>> central_park_weather.loc['2018-06'].assign(
... TOTAL_PRCP=lambda x: x.PRCP.cumsum(),
... AVG_PRCP=lambda x: x.PRCP.expanding().mean()
...).head(10)[['PRCP', 'TOTAL_PRCP', 'AVG_PRCP']].T

Note that while there is no method for the cumulative mean, we are able to use the
expanding() method to calculate it. The values in the AVG_PRCP column are the
values in the TOTAL_PRCP column divided by the number of days processed:

Figure 4.27 – Calculating the month-to-date average precipitation

As we did with rolling(), we can provide column-specific aggregations with the
agg() method. Let's find the expanding maximum temperature, minimum temperature,
average wind speed, and total precipitation. Note that we can also pass in NumPy
functions to agg():

>>> central_park_weather\
... ['2018-10-01':'2018-10-07'].expanding().agg({
... 'TMAX': np.max, 'TMIN': np.min,
... 'AWND': np.mean, 'PRCP': np.sum
... }).join(
... central_park_weather[['TMAX', 'TMIN', 'AWND', 'PRCP']],
... lsuffix='_expanding'
...).sort_index(axis=1)

224 Aggregating Pandas DataFrames

Once again, we joined the window calculations with the original data for comparison:

Figure 4.28 – Performing different expanding window calculations per column

Both rolling and expanding windows equally weight all the observations in the window
when performing calculations, but sometimes, we want to place more emphasis on more
recent values. One option is to exponentially weight the observations.

Exponentially weighted moving windows
Pandas also provides the ewm() method for exponentially weighted moving calculations.
As discussed in Chapter 1, Introduction to Data Analysis, we can use the exponentially
weighted moving average (EWMA) to smooth our data. Let's compare the rolling 30-day
average to the 30-day EWMA of the maximum daily temperature. Note that we use the
span argument to specify the number of periods to use for the EWMA calculation:

>>> central_park_weather.assign(
... AVG=lambda x: x.TMAX.rolling('30D').mean(),
... EWMA=lambda x: x.TMAX.ewm(span=30).mean()
...).loc['2018-09-29':'2018-10-08', ['TMAX', 'EWMA', 'AVG']].T

Unlike the rolling average, the EWMA places higher importance on more recent
observations, so the jump in temperature on October 7th has a larger effect on the EWMA
than the rolling average:

Figure 4.29 – Smoothing the data with moving averages

Using DataFrame operations to enrich data 225

Tip
Check out the understanding_window_calculations.ipynb
notebook, which contains some interactive visualizations for understanding
window functions. This may require some additional setup, but the instructions
are in the notebook.

Pipes
Pipes facilitate chaining together operations that expect pandas data structures as their
first argument. By using pipes, we can build up complex workflows without needing to
write highly nested and hard-to-read code. In general, pipes let us turn something like
f(g(h(data), 20), x=True) into the following, making it much easier to read:

data.pipe(h)\ # first call h(data)
 .pipe(g, 20)\ # call g on the result with positional arg 20
 .pipe(f, x=True) # call f on result with keyword arg x=True

Say we wanted to print the dimensions of a subset of the Facebook dataframe with some
formatting by calling this function:

>>> def get_info(df):
... return '%d rows, %d cols and max closing Z-score: %d'
... % (*df.shape, df.close.max())

Before we call the function, however, we want to calculate the Z-scores for all the columns.
One approach is the following:

>>> get_info(fb.loc['2018-Q1']\
... .apply(lambda x: (x - x.mean())/x.std()))

Alternatively, we could pipe the dataframe after calculating the Z-scores to this function:

>>> fb.loc['2018-Q1'].apply(lambda x: (x - x.mean())/x.std())\
... .pipe(get_info)

Pipes can also make it easier to write reusable code. In several of the code snippets in this
book, we have seen the idea of passing a function into another function, such as when we
pass a NumPy function to apply() and it gets executed on each column. We can use
pipes to extend that functionality to methods of pandas data structures:

>>> fb.pipe(pd.DataFrame.rolling, '20D').mean().equals(
... fb.rolling('20D').mean()
...) # the pipe is calling pd.DataFrame.rolling(fb, '20D')
True

226 Aggregating Pandas DataFrames

To illustrate how this can benefit us, let's look at a function that will give us the result of a
window calculation of our choice. The function is in the window_calc.py file. We will
import the function and use ?? from IPython to view the function definition:

>>> from window_calc import window_calc
>>> window_calc??
Signature: window_calc(df, func, agg_dict, *args, **kwargs)
Source:
def window_calc(df, func, agg_dict, *args, **kwargs):
 """
 Run a window calculation of your choice on the data.

 Parameters:
 - df: The `DataFrame` object to run the calculation on.
 - func: The window calculation method that takes `df`
 as the first argument.
 - agg_dict: Information to pass to `agg()`, could be
 a dictionary mapping the columns to the aggregation
 function to use, a string name for the function,
 or the function itself.
 - args: Positional arguments to pass to `func`.
 - kwargs: Keyword arguments to pass to `func`.

 Returns:
 A new `DataFrame` object.
 """
 return df.pipe(func, *args, **kwargs).agg(agg_dict)
File: ~/.../ch_04/window_calc.py
Type: function

Our window_calc() function takes the dataframe, the function to execute (as long as
it takes a dataframe as its first argument), and information on how to aggregate the result,
along with any optional parameters, and gives us back a new dataframe with the results
of the window calculations. Let's use this function to find the expanding median of the
Facebook stock data:

>>> window_calc(fb, pd.DataFrame.expanding, np.median).head()

Note that the expanding() method doesn't require us to specify any parameters, so all
we had to do was pass in pd.DataFrame.expanding (no parentheses), along with the
aggregation to perform as the window calculation on the dataframe:

Using DataFrame operations to enrich data 227

Figure 4.30 – Using pipes to perform expanding window calculations

The window_calc() function also takes *args and **kwargs; these are optional
parameters that, if supplied, will be collected by Python into kwargs when they are
passed by name (such as span=20) and into args if not (passed by position). These can
then be unpacked and passed to another function or method call by using * for args and
** for kwargs. We need this behavior in order to use the ewm() method for the EWMA
of the closing price of Facebook stock:

>>> window_calc(fb, pd.DataFrame.ewm, 'mean', span=3).head()

In the previous example, we had to use **kwargs because the span argument is not the
first argument that ewm() receives, and we didn't want to pass the ones before it:

Figure 4.31 – Using pipes to perform exponentially weighted window calculations

228 Aggregating Pandas DataFrames

To calculate the rolling 3-day weather aggregations for Central Park, we take advantage of
*args since we know that the window is the first argument to rolling():

>>> window_calc(
... central_park_weather.loc['2018-10'],
... pd.DataFrame.rolling,
... {'TMAX': 'max', 'TMIN': 'min',
... 'AWND': 'mean', 'PRCP': 'sum'},
... '3D'
...).head()

We were able to aggregate each of the columns differently since we passed in a dictionary
instead of a single value:

Figure 4.32 – Using pipes to perform rolling window calculations

Notice how we were able to create a consistent API for the window calculations, without
the caller needing to figure out which aggregation method to call after the window
function. This hides some of the implementation details, while making it easier to
use. We will be using this function as the base for some of the functionality in the
StockVisualizer class we will build in Chapter 7, Financial Analysis – Bitcoin and the
Stock Market.

Aggregating data
We already got a sneak peek at aggregation when we discussed window calculations and
pipes in the previous section. Here, we will focus on summarizing the dataframe through
aggregation, which will change the shape of our dataframe (often through row reduction).
We also saw how easy it is to take advantage of vectorized NumPy functions on pandas
data structures, especially to perform aggregations. This is what NumPy does best: it
performs computationally efficient mathematical operations on numeric arrays.

Aggregating data 229

NumPy pairs well with aggregating dataframes since it gives us an easy way to
summarize data with different pre-written functions; often, when aggregating, we just
need the NumPy function, since most of what we would want to write ourselves has
previously been built. We have already seen some NumPy functions commonly used for
aggregations, such as np.sum(), np.mean(), np.min(), and np.max(); however,
we aren't limited to numeric operations—we can use things such as np.unique() on
strings. Always check whether NumPy already has a function before implementing one
yourself.

For this section, we will be working in the 3-aggregations.ipynb notebook. Let's
import pandas and numpy and read in the data we will be working with:

>>> import numpy as np
>>> import pandas as pd

>>> fb = pd.read_csv(
... 'data/fb_2018.csv', index_col='date', parse_dates=True
...).assign(trading_volume=lambda x: pd.cut(
... x.volume, bins=3, labels=['low', 'med', 'high']
...))
>>> weather = pd.read_csv(
... 'data/weather_by_station.csv',
... index_col='date', parse_dates=True
...)

Note that the weather data for this section has been merged with some of the station data:

Figure 4.33 – Merged weather and station data for this section

230 Aggregating Pandas DataFrames

Before we dive into any calculations, let's make sure that our data won't be displayed in
scientific notation. We will modify how floats are formatted for displaying. The format we
will apply is .2f, which will provide the float with two digits after the decimal point:

>>> pd.set_option('display.float_format', lambda x: '%.2f' % x)

First, we will take a look at summarizing the full dataset before moving on to
summarizing by groups and building pivot tables and crosstabs.

Summarizing DataFrames
When we discussed window calculations, we saw that we could run the agg() method on
the result of rolling(), expanding(), or ewm(); however, we can also call it directly
on the dataframe in the same fashion. The only difference is that the aggregations done
this way will be performed on all the data, meaning that we will only get a series back that
contains the overall result. Let's aggregate the Facebook stock data the same way we did
with the window calculations. Note that we won't get anything back for the trading_
volume column, which contains the volume traded bins from pd.cut(); this is because
we aren't specifying an aggregation to run on that column:

>>> fb.agg({
... 'open': np.mean, 'high': np.max, 'low': np.min,
... 'close': np.mean, 'volume': np.sum
... })
open 171.45
high 218.62
low 123.02
close 171.51
volume 6949682394.00
dtype: float64

We can use aggregations to easily find the total snowfall and precipitation for 2018 in
Central Park. In this case, since we will be performing the sum on both, we can either use
agg('sum') or call sum() directly:

>>> weather.query('station == "GHCND:USW00094728"')\
... .pivot(columns='datatype', values='value')\
... [['SNOW', 'PRCP']].sum()
datatype
SNOW 1007.00
PRCP 1665.30
dtype: float64

Aggregating data 231

Additionally, we can provide multiple functions to run on each of the columns we want
to aggregate. As we have already seen, we get a Series object when each column has
a single aggregation. To distinguish between the aggregations in the case of multiple
ones per column, pandas will return a DataFrame object instead. The index of this
dataframe will tell us which metric is being calculated for which column:

>>> fb.agg({
... 'open': 'mean',
... 'high': ['min', 'max'],
... 'low': ['min', 'max'],
... 'close': 'mean'
... })

This results in a dataframe where the rows indicate the aggregation function being applied
to the data columns. Note that we get nulls for any combination of aggregation and
column that we didn't explicitly ask for:

Figure 4.34 – Performing multiple aggregations per column

So far, we have learned how to aggregate over specific windows and over the entire
dataframe; however, the real power comes with the ability to aggregate by group
membership. This lets us calculate things such as the total precipitation per month, per
station and average OHLC stock prices for each volume traded bin we've created.

Aggregating by group
To calculate the aggregations per group, we must first call the groupby() method on the
dataframe and provide the column(s) we want to use to determine distinct groups. Let's
look at the average of our stock data points for each of the volume traded bins we created
with pd.cut(); remember, these are three equal-width bins:

>>> fb.groupby('trading_volume').mean()

232 Aggregating Pandas DataFrames

The average OHLC prices are smaller for larger trading volumes, which was to be
expected given that the three dates in the high-volume traded bin were selloffs:

Figure 4.35 – Aggregating by group

After running groupby(), we can also select specific columns for aggregation:

>>> fb.groupby('trading_volume')\
... ['close'].agg(['min', 'max', 'mean'])

This gives us the aggregations for the closing price in each volume traded bucket:

Figure 4.36 – Aggregating a specific column per group

If we need more fine-tuned control over how each column gets aggregated, we use the
agg() method again with a dictionary that maps the columns to their aggregation
function. As we did previously, we can provide lists of functions per column; the result,
however, will look a little different:

>>> fb_agg = fb.groupby('trading_volume').agg({
... 'open': 'mean', 'high': ['min', 'max'],
... 'low': ['min', 'max'], 'close': 'mean'
... })
>>> fb_agg

We now have a hierarchical index in the columns. Remember, this means that if we want
to select the minimum low price for the medium volume traded bucket, we need to use
fb_agg.loc['med', 'low']['min']:

Aggregating data 233

Figure 4.37 – Performing multiple aggregations per column with groups

The columns are stored in a MultiIndex object:

>>> fb_agg.columns
MultiIndex([('open', 'mean'),
 ('high', 'min'),
 ('high', 'max'),
 ('low', 'min'),
 ('low', 'max'),
 ('close', 'mean')],
)

We can use a list comprehension to remove this hierarchy and instead have our column
names in the form of <column>_<agg>. At each iteration, we will get a tuple of the
levels from the MultiIndex object, which we can combine into a single string to remove
the hierarchy:

>>> fb_agg.columns = ['_'.join(col_agg)
... for col_agg in fb_agg.columns]
>>> fb_agg.head()

This replaces the hierarchy in the columns with a single level:

Figure 4.38 – Flattening out the hierarchical index

234 Aggregating Pandas DataFrames

Say we want to see the average observed precipitation across all the stations per day. We
would need to group by the date, but it is in the index. In this case, we have a few options:

• Resampling, which we will cover in the Working with time series data section, later
in this chapter.

• Resetting the index and using the date column that gets created from the index.

• Passing level=0 to groupby() to indicate that the grouping should be
performed on the outermost level of the index.

• Using a Grouper object.

Here, we will pass level=0 to groupby(), but note that we can also pass in
level='date' because our index is named. This gives us the average precipitation
observations across the stations, which may give us a better idea of the weather than
simply picking a station to look at. Since the result is a single-column DataFrame object,
we call squeeze() to turn it into a Series object:

>>> weather.loc['2018-10'].query('datatype == "PRCP"')\
... .groupby(level=0).mean().head().squeeze()
date
2018-10-01 0.01
2018-10-02 2.23
2018-10-03 19.69
2018-10-04 0.32
2018-10-05 0.96
Name: value, dtype: float64

We can also group by many categories at once. Let's find the quarterly total recorded
precipitation per station. Here, rather than pass in level=0 to groupby(), we need to
use a Grouper object to aggregate from daily to quarterly frequency. Since this will create
a multi-level index, we will also use unstack() to put the inner level (the quarter) along
the columns after the aggregation is performed:

>>> weather.query('datatype == "PRCP"').groupby(
... ['station_name', pd.Grouper(freq='Q')]
...).sum().unstack().sample(5, random_state=1)

There are many possible follow-ups for this result. We could look at which stations receive
the most/least precipitation. We could go back to the location and elevation information
we had for each station to see if that affects precipitation. We could also see which quarter
has the most/least precipitation across the stations:

Aggregating data 235

Figure 4.39 – Aggregating by a column with dates in the index

Tip
The DataFrameGroupBy objects returned by the groupby() method
have a filter() method, which allows us to filter groups. We can use this
to exclude certain groups from the aggregation. Simply pass a function that
returns a Boolean for each group's subset of the dataframe (True to include
the group and False to exclude it). An example is in the notebook.

Let's see which months have the most precipitation. First, we need to group by day and
average the precipitation across the stations. Then, we can group by month and sum the
resulting precipitation. Finally, we will use nlargest() to get the five months with the
most precipitation:

>>> weather.query('datatype == "PRCP"')\
... .groupby(level=0).mean()\
... .groupby(pd.Grouper(freq='M')).sum().value.nlargest()
date
2018-11-30 210.59
2018-09-30 193.09
2018-08-31 192.45
2018-07-31 160.98
2018-02-28 158.11
Name: value, dtype: float64

Perhaps the previous result was surprising. The saying goes April showers bring May
flowers; however, April wasn't in the top five (neither was May, for that matter). Snow will
count toward precipitation, but that doesn't explain why summer months are higher than
April. Let's look for days that accounted for a large percentage of the precipitation in a
given month to see if April shows up there.

236 Aggregating Pandas DataFrames

To do so, we need to calculate the average daily precipitation across stations and then find
the total per month; this will be the denominator. However, in order to divide the daily
values by the total for their month, we will need a Series object of equal dimensions.
This means that we will need to use the transform() method, which will perform the
specified calculation on the data while always returning an object of equal dimensions
to what we started with. Therefore, we can call it on a Series object and always get a
Series object back, regardless of what the aggregation function itself would return:

>>> weather.query('datatype == "PRCP"')\
... .rename(dict(value='prcp'), axis=1)\
... .groupby(level=0).mean()\
... .groupby(pd.Grouper(freq='M'))\
... .transform(np.sum)['2018-01-28':'2018-02-03']

Rather than getting a single sum for January and another for February, notice that we have
the same value being repeated for the January entries and a different one for the February
ones. Note that the value for February is the value we found in the previous result:

Figure 4.40 – The denominator for calculating the percentage of monthly precipitation

We can make this a column in our dataframe to easily calculate the percentage of the
monthly precipitation that occurred each day. Then, we can use nlargest() to pull out
the largest values:

>>> weather.query('datatype == "PRCP"')\
... .rename(dict(value='prcp'), axis=1)\
... .groupby(level=0).mean()\

Aggregating data 237

... .assign(

... total_prcp_in_month=lambda x: x.groupby(

... pd.Grouper(freq='M')).transform(np.sum),

... pct_monthly_prcp=lambda x: \

... x.prcp.div(x.total_prcp_in_month)

...).nlargest(5, 'pct_monthly_prcp')

Together, the 4th- and 5th-place days in terms of the amount of monthly precipitation
they accounted for make up more than 50% of the rain in April. They were also
consecutive days:

Figure 4.41 – Calculating the percentage of monthly precipitation that occurred each day

Important note
The transform() method also works on DataFrame objects, in which
case it will return a DataFrame object. We can use it to easily standardize all
the columns at once. An example is in the notebook.

Pivot tables and crosstabs
To wrap up this section, we will discuss some pandas functions that will aggregate our
data into some common formats. The aggregation methods we discussed previously will
give us the highest level of customization; however, pandas provides some functions to
quickly generate a pivot table and a crosstab in a common format.

In order to generate a pivot table, we must specify what to group on and, optionally, which
subset of columns we want to aggregate and/or how to aggregate (average, by default).
Let's create a pivot table of averaged OHLC data for Facebook per volume traded bin:

>>> fb.pivot_table(columns='trading_volume')

238 Aggregating Pandas DataFrames

Since we passed in columns='trading_volume', the distinct values in the
trading_volume column were placed along the columns. The columns from the
original dataframe then went to the index. Notice that the index for the columns has
a name (trading_volume):

Figure 4.42 – Pivot table of column averages per volume traded bin

Tip
If we pass trading_volume as the index argument instead, we get the
transpose of Figure 4.42, which is also the exact same output as Figure 4.35
when we used groupby().

With the pivot() method, we weren't able to handle multi-level indices or indices with
repeated values. For this reason, we haven't been able to put the weather data in wide
format. The pivot_table() method solves this issue. To do so, we need to put the
date and station information in the index and the distinct values of the datatype
column along the columns. The values will come from the value column. We will use the
median to aggregate any overlapping combinations (if any):

>>> weather.reset_index().pivot_table(
... index=['date', 'station', 'station_name'],
... columns='datatype',
... values='value',
... aggfunc='median'
...).reset_index().tail()

Aggregating data 239

After resetting the index, we have our data in wide format. One final step would be to
rename the index:

Figure 4.43 – Pivot table with median values per datatype, station, and date

We can use the pd.crosstab() function to create a frequency table. For example, if we
want to see how many low-, medium-, and high-volume trading days Facebook stock had
each month, we can use a crosstab. The syntax is pretty straightforward; we pass the row
and column labels to the index and columns parameters, respectively. By default, the
values in the cells will be the count:

>>> pd.crosstab(
... index=fb.trading_volume, columns=fb.index.month,
... colnames=['month'] # name the columns index
...)

This makes it easy to see the months when high volumes of Facebook stock were traded:

Figure 4.44 – Crosstab showing the number of trading days per month, per volume traded bin

240 Aggregating Pandas DataFrames

Tip
We can normalize the output to percentages of the row/column totals by
passing in normalize='rows'/normalize='columns'. An
example is in the notebook.

To change the aggregation function, we can provide an argument to values and then
specify aggfunc. To illustrate this, let's find the average closing price of each trading
volume bucket per month instead of the count in the previous example:

>>> pd.crosstab(
... index=fb.trading_volume, columns=fb.index.month,
... colnames=['month'], values=fb.close, aggfunc=np.mean
...)

We now get the average closing price per month, per volume traded bin, with null values
when that combination wasn't present in the data:

Figure 4.45 – Crosstab using averages instead of counts

We can also get row and column subtotals with the margins parameter. Let's count the
number of times each station recorded snow per month and include the subtotals:

>>> snow_data = weather.query('datatype == "SNOW"')
>>> pd.crosstab(
... index=snow_data.station_name,
... columns=snow_data.index.month,
... colnames=['month'],
... values=snow_data.value,
... aggfunc=lambda x: (x > 0).sum(),
... margins=True, # show row and column subtotals
... margins_name='total observations of snow' # subtotals
...)

Working with time series data 241

Along the bottom row, we have the total snow observations per month, while down the
rightmost column, we have the total snow observations in 2018 per station:

Figure 4.46 – Crosstab counting the number of days with snow per month, per station

Just by looking at a few stations, we can see that, despite all of them supplying weather
information for NYC, they don't share every facet of the weather. Depending on which
stations we choose to look at, we could be adding/subtracting snow from what really
happened in NYC.

Working with time series data
With time series data, we have some additional operations we can use, for anything from
selection and filtering to aggregation. We will be exploring some of this functionality in
the 4-time_series.ipynb notebook. Let's start off by reading in the Facebook data
from the previous sections:

>>> import numpy as np
>>> import pandas as pd

>>> fb = pd.read_csv(
... 'data/fb_2018.csv', index_col='date', parse_dates=True
...).assign(trading_volume=lambda x: pd.cut(
... x.volume, bins=3, labels=['low', 'med', 'high']
...))

242 Aggregating Pandas DataFrames

We will begin this section by discussing the selection and filtering of time series data
before moving on to shifting, differencing, resampling, and finally merging based on time.
Note that it's important to set the index to our date (or datetime) column, which will allow
us to take advantage of the additional functionality we will be discussing. Some operations
may work without doing this, but for a smooth process throughout our analysis, using an
index of type DatetimeIndex is recommended.

Time-based selection and filtering
Let's start with a quick recap of datetime slicing and indexing. We can easily isolate data
for the year by indexing on it: fb.loc['2018']. In the case of our stock data, the full
dataframe would be returned because we only have 2018 data; however, we can filter to a
month (fb.loc['2018-10']) or to a range of dates. Note that using loc[] is optional
with ranges:

>>> fb['2018-10-11':'2018-10-15']

We only get three days back because the stock market is closed on the weekends:

Figure 4.47 – Selecting data based on a date range

Keep in mind that the date range can also be supplied using other frequencies, such as
month or the quarter of the year:

>>> fb.loc['2018-q1'].equals(fb['2018-01':'2018-03'])
True

When targeting the beginning or end of a date range, pandas has some additional
methods for selecting the first or last rows within a specified unit of time. We can select
the first week of stock prices in 2018 using the first() method and an offset of 1W:

>>> fb.first('1W')

Working with time series data 243

January 1, 2018 was a holiday, meaning that the market was closed. It was also a Monday,
so the week here is only four days long:

Figure 4.48 – Facebook stock data during the first week of trading in 2018

We can perform a similar operation for the most recent dates as well. Selecting the
last week in the data is as simple as switching the first() method with the last()
method:

>>> fb.last('1W')

Since December 31, 2018 was a Monday, the last week only consists of one day:

Figure 4.49 – Facebook stock data during the last week of trading in 2018

When working with daily stock data, we only have data for the dates the stock market was
open. Suppose that we reindexed the data to include rows for each day of the year:

>>> fb_reindexed = fb.reindex(
... pd.date_range('2018-01-01', '2018-12-31', freq='D')
...)

The reindexed data would have all nulls for January 1st and any other days the market was
closed. We can combine the first(), isna(), and all() methods to confirm this.
Here, we will also use the squeeze() method to turn the 1-row DataFrame object
resulting from the call to first('1D').isna() into a Series object so that calling
all() yields a single value:

>>> fb_reindexed.first('1D').isna().squeeze().all()
True

244 Aggregating Pandas DataFrames

We can use the first_valid_index() method to obtain the index of the first
non-null entry in our data, which will be the first day of trading in the data. To obtain the
last day of trading, we can use the last_valid_index() method. For the first quarter
of 2018, the first day of trading was January 2nd and the last was March 29th:

>>> fb_reindexed.loc['2018-Q1'].first_valid_index()
Timestamp('2018-01-02 00:00:00', freq='D')
>>> fb_reindexed.loc['2018-Q1'].last_valid_index()
Timestamp('2018-03-29 00:00:00', freq='D')

If we wanted to know what Facebook's stock price looked like as of March 31, 2018, our
initial idea may be to use indexing to retrieve it. However, if we try to do so with loc[]
(fb_reindexed.loc['2018-03-31']), we will get null values because the stock
market wasn't open that day. If we use the asof() method instead, it will give us the
closest non-null data that precedes the date we ask for, which in this case is March 29th.
Therefore, if we wanted to see how Facebook performed on the last day in each month, we
could use asof(), and avoid having to first check if the market was open that day:

>>> fb_reindexed.asof('2018-03-31')
open 155.15
high 161.42
low 154.14
close 159.79
volume 59434293.00
trading_volume low
Name: 2018-03-31 00:00:00, dtype: object

For the next few examples, we will need time information in addition to the date. The
datasets we have been working with thus far lack a time component, so we will switch
to the Facebook stock data by the minute from May 20, 2019 through May 24, 2019
from Nasdaq.com. In order to properly parse the datetimes, we need to pass in a lambda
function as the date_parser argument since they are not in a standard format (for
instance, May 20, 2019 at 9:30 AM is represented as 2019-05-20 09-30); the lambda
function will specify how to convert the data in the date field into datetimes:

>>> stock_data_per_minute = pd.read_csv(
... 'data/fb_week_of_may_20_per_minute.csv',
... index_col='date', parse_dates=True,
... date_parser=lambda x: \
... pd.to_datetime(x, format='%Y-%m-%d %H-%M')
...)
>>> stock_data_per_minute.head()

Working with time series data 245

We have the OHLC data per minute, along with the volume traded per minute:

Figure 4.50 – Facebook stock data by the minute

Important note
In order to properly parse datetimes in a non-standard format, we need to
specify the format it is in. For a reference on the available codes, consult
the Python documentation at https://docs.python.org/3/
library/datetime.html#strftime-strptime-behavior.

We can use first() and last() with agg() to bring this data to a daily granularity.
To get the true open value, we need to take the first observation per day; conversely, for
the true closing value, we need to take the last observation per day. The high and low will
be the maximum and minimum of their respective columns per day. Volume traded will
be the daily sum:

>>> stock_data_per_minute.groupby(pd.Grouper(freq='1D')).agg({
... 'open': 'first',
... 'high': 'max',
... 'low': 'min',
... 'close': 'last',
... 'volume': 'sum'
... })

https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior
https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior

246 Aggregating Pandas DataFrames

This rolls the data up to a daily frequency:

Figure 4.51 – Rolling up the data from the minute level to the daily level

The next two methods we will discuss help us select data based on the time part of the
datetime. The at_time() method allows us to isolate rows where the time part of the
datetime is the time we specify. By running at_time('9:30'), we can grab all the
market open prices (the stock market opens at 9:30 AM):

>>> stock_data_per_minute.at_time('9:30')

This tells us what the stock data looked like at the opening bell each day:

Figure 4.52 – Grabbing the stock data at market open each day

We can use the between_time() method to grab all the rows where the time portion of
the datetime is between two times (inclusive of the endpoints by default). This method can
be very useful if we want to look at data within a certain time range, day over day. Let's
grab all the rows within the last two minutes of trading each day (15:59 - 16:00):

>>> stock_data_per_minute.between_time('15:59', '16:00')

Working with time series data 247

It looks like the last minute (16:00) has significantly more volume traded each day
compared to the previous minute (15:59). Perhaps people rush to make trades before
close:

Figure 4.53 – Stock data in the last two minutes of trading per day

We may wonder if this also happens in the first two minutes. Do people put their trades
in the night before, and they execute when the market opens? It is trivial to change the
previous code to answer that question. Instead, let's see if, on average, more shares were
traded within the first 30 minutes of trading or in the last 30 minutes for the week in
question. We can combine between_time() with groupby() to answer this question.
In addition, we need to use filter() to exclude groups from the aggregation. The
excluded groups are times that aren't in the time range we want:

>>> shares_traded_in_first_30_min = stock_data_per_minute\
... .between_time('9:30', '10:00')\
... .groupby(pd.Grouper(freq='1D'))\
... .filter(lambda x: (x.volume > 0).all())\
... .volume.mean()

248 Aggregating Pandas DataFrames

>>> shares_traded_in_last_30_min = stock_data_per_minute\
... .between_time('15:30', '16:00')\
... .groupby(pd.Grouper(freq='1D'))\
... .filter(lambda x: (x.volume > 0).all())\
... .volume.mean()

For the week in question, there were 18,593 more trades on average around the opening
time than the closing time:

>>> shares_traded_in_first_30_min \
... - shares_traded_in_last_30_min
18592.967741935485

Tip
We can use the normalize() method on DatetimeIndex objects or
after first accessing the dt attribute of a Series object to normalize all the
datetimes to midnight. This is helpful when the time isn't adding value to our
data. There are examples of this in the notebook.

With the stock data, we have a snapshot of the price for each minute or day (depending
on the granularity), but we may be interested in seeing the change between time periods
as a time series rather than aggregating the data. For this, we need to learn how to create
lagged data.

Shifting for lagged data
We can use the shift() method to create lagged data. By default, the shift will be by one
period, but this can be any integer (positive or negative). Let's use shift() to create a
new column that indicates the previous day's closing price for the daily Facebook stock
data. From this new column, we can calculate the price change due to after-hours trading
(after the market close one day right up to the market open the following day):

>>> fb.assign(
... prior_close=lambda x: x.close.shift(),
... after_hours_change_in_price=lambda x: \
... x.open - x.prior_close,
... abs_change=lambda x: \
... x.after_hours_change_in_price.abs()
...).nlargest(5, 'abs_change')

Working with time series data 249

This gives us the days that were most affected by after-hours trading:

Figure 4.54 – Using lagged data to calculate after-hours changes in stock price

Tip
To add/subtract time from the datetimes in the index, consider using
Timedelta objects instead. There is an example of this in the notebook.

In the previous example, we used the shifted data to calculate the change across columns.
However, if, rather than the after-hours trading, we were interested in the change in
Facebook's stock price each day, we would calculate the difference between the closing
price and the shifted closing price. Pandas makes it a little easier than this, as we will see
next.

Differenced data
We've already discussed creating lagged data with the shift() method. However, often,
we are interested in how the values change from one time period to the next. For this,
pandas has the diff() method. By default, this will calculate the change from time
period t-1 to time period t:

Note that this is equivalent to subtracting the result of shift() from the original data:

>>> (fb.drop(columns='trading_volume')
... - fb.drop(columns='trading_volume').shift()
...).equals(fb.drop(columns='trading_volume').diff())
True

We can use diff() to easily calculate the day-over-day change in the Facebook stock
data:

>>> fb.drop(columns='trading_volume').diff().head()

𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑡𝑡−1

250 Aggregating Pandas DataFrames

For the first few trading days of the year, we can see that the stock price increased, and
that the volume traded decreased daily:

Figure 4.55 – Calculating day-over-day changes

Tip
To specify the number of periods that are used for the difference, simply pass in
an integer to diff(). Note that this number can be negative. An example of
this is in the notebook.

Resampling
Sometimes, the data is at a granularity that isn't conducive to our analysis. Consider the
case where we have data per minute for the full year of 2018. The level of granularity and
nature of the data may render plotting useless. Therefore, we will need to aggregate the
data to a less granular frequency:

Figure 4.56 – Resampling can be used to roll up granular data

Working with time series data 251

Suppose we had a full year of the data in Figure 4.50 (Facebook stock data by the minute).
It's possible that this level of granularity is beyond what is useful for us, in which case
we can use the resample() method to aggregate our time series data to a different
granularity. To use resample(), all we have to do is say how we want to roll up the data
and tack on an optional call to an aggregation method. For example, we can resample this
minute-by-minute data to a daily frequency and specify how to aggregate each column:

>>> stock_data_per_minute.resample('1D').agg({
... 'open': 'first',
... 'high': 'max',
... 'low': 'min',
... 'close': 'last',
... 'volume': 'sum'
... })

This is equivalent to the result we got back in the Time-based selection and filtering section
(Figure 4.51):

Figure 4.57 – Per-minute data resampled into daily data

We can resample to any frequency supported by pandas (more information can be found
in the documentation at http://pandas.pydata.org/pandas-docs/stable/
user_guide/timeseries.html). Let's resample the daily Facebook stock data to the
quarterly average:

>>> fb.resample('Q').mean()

http://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
http://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html

252 Aggregating Pandas DataFrames

This gives us the average quarterly performance of the stock. The fourth quarter of 2018
was clearly troublesome:

Figure 4.58 – Resampling to quarterly averages

To look further into this, we can use the apply() method to look at the difference
between how the quarter began and how it ended. We will also need the first() and
last() methods from the Time-based selection and filtering section:

>>> fb.drop(columns='trading_volume').resample('Q').apply(
... lambda x: x.last('1D').values - x.first('1D').values
...)

Facebook's stock price declined in all but the second quarter:

Figure 4.59 – Summarizing Facebook stock's performance per quarter in 2018

Consider the melted minute-by-minute stock data in melted_stock_data.csv:

>>> melted_stock_data = pd.read_csv(
... 'data/melted_stock_data.csv',
... index_col='date', parse_dates=True
...)
>>> melted_stock_data.head()

Working with time series data 253

The OHLC format makes it easy to analyze the stock data, but a single column is trickier:

Figure 4.60 – Stock prices by the minute

The Resampler object we get back after calling resample() has an ohlc() method,
which we can use to retrieve the OHLC data we are used to seeing:

>>> melted_stock_data.resample('1D').ohlc()['price']

Since the column in the original data was called price, we select it after calling ohlc(),
which is pivoting our data. Otherwise, we will have a hierarchical index in the columns:

Figure 4.61 – Resampling the stock prices per minute to form daily OHLC data

In the previous examples, we downsampled to reduce the granularity of the data;
however, we can also upsample to increase the granularity of the data. We can even call
asfreq() after to not aggregate the result:

>>> fb.resample('6H').asfreq().head()

254 Aggregating Pandas DataFrames

Note that when we resample at a granularity that's finer than the data we have, it will
introduce NaN values:

Figure 4.62 – Upsampling increases the granularity of the data and will introduce null values

The following are a few ways we can handle the NaN values. In the interest of brevity,
examples of these are in the notebook:

• Use pad() after resample() to forward fill.

• Call fillna() after resample(), as we saw in Chapter 3, Data Wrangling with
Pandas, when we handled missing values.

• Use asfreq() followed by assign() to handle each column individually.

So far, we have been working with time series data stored in a single DataFrame object,
but we may want to combine time series. While the techniques discussed in the Merging
DataFrames section will work for time series, pandas provides additional functionality
for merging time series so that we can merge on close matches rather than requiring an
exact match. We will discuss these next.

Merging time series
Time series often go down to the second or are even more granular, meaning that it can
be difficult to merge if the entries don't have the same datetime. Pandas solves this
problem with two additional merging functions. When we want to pair up observations
that are close in time, we can use pd.merge_asof() to match on nearby keys rather
than on equal keys, like we did with joins. On the other hand, if we want to match up the
equal keys and interleave the keys without matches, we can use pd.merge_ordered().

Working with time series data 255

To illustrate how these work, we are going to use the fb_prices and aapl_prices
tables in the stocks.db SQLite database. These contain the prices of Facebook and
Apple stock, respectively, along with a timestamp of when the price was recorded. Note
that the Apple data was collected before the stock split in August 2020 (https://www.
marketwatch.com/story/3-things-to-know-about-apples-stock-
split-2020-08-28). Let's read these tables from the database:

>>> import sqlite3

>>> with sqlite3.connect('data/stocks.db') as connection:
... fb_prices = pd.read_sql(
... 'SELECT * FROM fb_prices', connection,
... index_col='date', parse_dates=['date']
...)
... aapl_prices = pd.read_sql(
... 'SELECT * FROM aapl_prices', connection,
... index_col='date', parse_dates=['date']
...)

The Facebook data is at the minute granularity; however, we have (fictitious) seconds for
the Apple data:

>>> fb_prices.index.second.unique()
Int64Index([0], dtype='int64', name='date')
>>> aapl_prices.index.second.unique()
Int64Index([0, 52, ..., 37, 28], dtype='int64', name='date')

If we use merge() or join(), we will only have values for both Apple and Facebook
when the Apple price was at the top of the minute. Instead, to try and line these up, we can
perform an as of merge. In order to handle the mismatch, we will specify to merge with
the nearest minute (direction='nearest') and require that a match can only occur
between times that are within 30 seconds of each other (tolerance). This will place
the Apple data with the minute that it is closest to, so 9:31:52 will go with 9:32 and
9:37:07 will go with 9:37. Since the times are on the index, we pass in left_index
and right_index, just like we did with merge():

>>> pd.merge_asof(
... fb_prices, aapl_prices,
... left_index=True, right_index=True,
... # merge with nearest minute
... direction='nearest',
... tolerance=pd.Timedelta(30, unit='s')
...).head()

https://www.marketwatch.com/story/3-things-to-know-about-apples-stock-split-2020-08-28
https://www.marketwatch.com/story/3-things-to-know-about-apples-stock-split-2020-08-28
https://www.marketwatch.com/story/3-things-to-know-about-apples-stock-split-2020-08-28

256 Aggregating Pandas DataFrames

This is similar to a left join; however, we are more lenient when matching the keys. Note
that in the case where multiple entries in the Apple data match the same minute, this
function will only keep the closest one. We get a null value for 9:31 because the entry for
Apple at 9:31 was 9:31:52, which gets placed at 9:32 when using nearest:

Figure 4.63 – Merging time series data with a 30-second tolerance

If we don't want the behavior of a left join, we can use the pd.merge_ordered()
function instead. This will allow us to specify our join type, which will be 'outer' by
default. We will have to reset our index to be able to join on the datetimes, however:

>>> pd.merge_ordered(
... fb_prices.reset_index(), aapl_prices.reset_index()
...).set_index('date').head()

This strategy will give us null values whenever the times don't match exactly, but it will at
least sort them for us:

Figure 4.64 – Performing a strict merge on time series data and ordering it

Summary 257

Tip
We can pass fill_method='ffill' to pd.merge_ordered() to
forward-fill the first NaN after a value, but it does not propagate beyond that;
alternatively, we can chain a call to fillna(). There is an example of this in
the notebook.

The pd.merge_ordered() function also makes it possible to perform a group-wise
merge, so be sure to check out the documentation for more information.

Summary
In this chapter, we discussed how to join dataframes, how to determine the data we will
lose for each type of join using set operations, and how to query dataframes as we would
a database. We then went over some more involved transformations on our columns, such
as binning and ranking, and how to do so efficiently with the apply() method. We also
learned the importance of vectorized operations in writing efficient pandas code. Then,
we explored window calculations and using pipes for cleaner code. Our discussion of
window calculations served as a primer for aggregating across whole dataframes and by
groups. We also went over how to generate pivot tables and crosstabs. Finally, we looked
at some time series-specific functionality in pandas for everything from selection and
aggregation to merging.

In the next chapter, we will cover visualization, which pandas implements by providing
a wrapper around matplotlib. Data wrangling will play a key role in prepping our data
for visualization, so be sure to complete the exercises that are provided in the following
section before moving on.

Exercises
Using the CSV files in the exercises/ folder and what we have learned so far in this
book, complete the following exercises:

1. With the earthquakes.csv file, select all the earthquakes in Japan with a
magnitude of 4.9 or greater using the mb magnitude type.

2. Create bins for each full number of earthquake magnitude (for instance, the first bin
is (0, 1], the second is (1, 2], and so on) with the ml magnitude type and count how
many are in each bin.

258 Aggregating Pandas DataFrames

3. Using the faang.csv file, group by the ticker and resample to monthly frequency.
Make the following aggregations:

a) Mean of the opening price

b) Maximum of the high price

c) Minimum of the low price

d) Mean of the closing price

e) Sum of the volume traded

4. Build a crosstab with the earthquake data between the tsunami column and the
magType column. Rather than showing the frequency count, show the maximum
magnitude that was observed for each combination. Put the magnitude type along
the columns.

5. Calculate the rolling 60-day aggregations of the OHLC data by ticker for the
FAANG data. Use the same aggregations as exercise 3.

6. Create a pivot table of the FAANG data that compares the stocks. Put the ticker in
the rows and show the averages of the OHLC and volume traded data.

7. Calculate the Z-scores for each numeric column of Amazon's data (ticker is
AMZN) in Q4 2018 using apply().

8. Add event descriptions:

a) Create a dataframe with the following three columns: ticker, date, and
event. The columns should have the following values:

 i) ticker: 'FB'

 ii) date: ['2018-07-25', '2018-03-19', '2018-03-20']

 iii) event: ['Disappointing user growth announced
after close.', 'Cambridge Analytica story',
'FTC investigation']

b) Set the index to ['date', 'ticker'].

c) Merge this data with the FAANG data using an outer join.

Exercises 259

9. Use the transform() method on the FAANG data to represent all the
values in terms of the first date in the data. To do so, divide all the values for
each ticker by the values for the first date in the data for that ticker. This is
referred to as an index, and the data for the first date is the base (https://
ec.europa.eu/eurostat/statistics-explained/index.php/
Beginners:Statistical_concept_-_Index_and_base_year). When
data is in this format, we can easily see growth over time. Hint: transform() can
take a function name.

10. The European Centre for Disease Prevention and Control (ECDC) provides
an open dataset on COVID-19 cases called daily number of new reported cases
of COVID-19 by country worldwide (https://www.ecdc.europa.eu/
en/publications-data/download-todays-data-geographic-
distribution-covid-19-cases-worldwide). This dataset is updated daily,
but we will use a snapshot that contains data through September 18, 2020. Complete
the following tasks to practice the skills you've learned up to this point in the book:

a) Prepare the data:

 i) Read in the data in the covid19_cases.csv file.

 ii) Create a date column by parsing the dateRep column into a datetime.

 iii) Set the date column as the index.

 iv) Use the replace() method to update all occurrences of United_
States_of_America and United_Kingdom to USA and UK,
respectively.

 v) Sort the index.

b) For the five countries with the most cases (cumulative), find the day with the
largest number of cases.

c) Find the 7-day average change in COVID-19 cases for the last week in the data
for the five countries with the most cases.

d) Find the first date that each country other than China had cases.

e) Rank the countries by cumulative cases using percentiles.

https://ec.europa.eu/eurostat/statistics-explained/index.php/Beginners:Statistical_concept_-_Index_and_base_year
https://ec.europa.eu/eurostat/statistics-explained/index.php/Beginners:Statistical_concept_-_Index_and_base_year
https://ec.europa.eu/eurostat/statistics-explained/index.php/Beginners:Statistical_concept_-_Index_and_base_year
https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide
https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide
https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide

260 Aggregating Pandas DataFrames

Further reading
Check out the following resources for more information on the topics that were covered in
this chapter:

• Intro to SQL: Querying and managing data: https://www.khanacademy.org/
computing/computer-programming/sql

• (Pandas) Comparison with SQL: https://pandas.pydata.org/pandas-
docs/stable/getting_started/comparison/comparison_with_
sql.html

• Set Operations: https://www.probabilitycourse.com/
chapter1/1_2_2_set_operations.php

• *args and **kwargs in Python explained: https://pythontips.
com/2013/08/04/args-and-kwargs-in-python-explained/

https://www.khanacademy.org/computing/computer-programming/sql
https://www.khanacademy.org/computing/computer-programming/sql
https://pandas.pydata.org/pandas-docs/stable/getting_started/comparison/comparison_with_sql.html
https://pandas.pydata.org/pandas-docs/stable/getting_started/comparison/comparison_with_sql.html
https://pandas.pydata.org/pandas-docs/stable/getting_started/comparison/comparison_with_sql.html
https://www.probabilitycourse.com/chapter1/1_2_2_set_operations.php
https://www.probabilitycourse.com/chapter1/1_2_2_set_operations.php
https://yasoob.me/2013/08/04/args-and-kwargs-in-python-explained/
https://yasoob.me/2013/08/04/args-and-kwargs-in-python-explained/

5
Visualizing Data

with Pandas and
Matplotlib

So far, we have been working with data strictly in a tabular format. However, the human
brain excels at picking out visual patterns; hence, our natural next step is learning how
to visualize our data. Visualizations make it much easier to spot aberrations in our data
and explain our findings to others. However, we should not reserve data visualizations
exclusively for those we present our conclusions to, as visualizations will be crucial in
helping us understand our data quickly and more completely in our exploratory data
analysis.

There are numerous types of visualizations that go way beyond what we may have seen
in the past. In this chapter, we will cover the most common plot types, such as line plots,
histograms, scatter plots, and bar plots, along with several other plot types that build
upon these. We won't be covering pie charts—they are notorious for being difficult to read
properly, and there are better ways to get our point across.

262 Visualizing Data with Pandas and Matplotlib

Python has many libraries for creating visualizations, but the main one for data analysis
(and other purposes) is matplotlib. The matplotlib library can be a little tricky
to learn at first, but thankfully, pandas has its own wrappers around some of the
matplotlib functionality, allowing us to create many different types of visualizations
without needing to write a single line with matplotlib (or, at least, very few). For
more complicated plot types that aren't built into pandas or matplotlib, we have
the seaborn library, which we will discuss in the next chapter. With these three at our
disposal, we should be able to create most (if not all) of the visualizations we desire.
Animations and interactive plots are beyond the scope of this book, but you can check out
the Further reading section for more information.

In this chapter, we will cover the following topics:

• An introduction to matplotlib

• Plotting with pandas

• The pandas.plotting module

Chapter materials
The materials for this chapter can be found on GitHub at https://github.com/
stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/
master/ch_05. We will be working with three datasets, all of which can be found in the
data/ directory. In the fb_stock_prices_2018.csv file, we have the daily opening,
high, low, and closing prices of Facebook stock from January through December 2018,
along with the volume traded. This was obtained using the stock_analysis package,
which we will build in Chapter 7, Financial Analysis – Bitcoin and the Stock Market. The
stock market is closed on the weekends, so we only have data for the trading days.

The earthquakes.csv file contains earthquake data collected from the United States
Geological Survey (USGS) API (https://earthquake.usgs.gov/fdsnws/
event/1/) for September 18, 2018 through October 13, 2018. For each earthquake,
we have the value of the magnitude (the mag column), the scale it was measured on
(the magType column), when (the time column) and where (the place column) it
occurred, and the parsed_place column for the state or country where the earthquake
occurred (we added this column back in Chapter 2, Working with Pandas DataFrames).
Other unnecessary columns have been removed.

https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/ch_05
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/ch_05
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/ch_05
https://earthquake.usgs.gov/fdsnws/event/1/
https://earthquake.usgs.gov/fdsnws/event/1/

An introduction to matplotlib 263

In the covid19_cases.csv file, we have an export from the daily number of new
reported cases of COVID-19 by country worldwide dataset provided by the European
Centre for Disease Prevention and Control (ECDC), which can be found at https://
www.ecdc.europa.eu/en/publications-data/download-todays-data-
geographic-distribution-covid-19-cases-worldwide. For scripted or
automated collection of this data, the ECDC makes the current day's CSV file available
via https://opendata.ecdc.europa.eu/covid19/casedistribution/
csv. The snapshot we will be using was collected on September 19, 2020 and contains
the number of new COVID-19 cases per country from December 31, 2019 through
September 18, 2020, with partial data for September 19, 2020. For this chapter, we will
look at the 8-month span from January 18, 2020 through September 18, 2020.

Throughout this chapter, we will be working through three notebooks. These are
numbered in the order they will be used—one for each of the main sections of this
chapter. We will begin our discussion of plotting in Python with an introduction to
matplotlib in the 1-introducing_matplotlib.ipynb notebook. Then, we
will learn how to create visualizations using pandas in the 2-plotting_with_
pandas.ipynb notebook. Finally, we will explore some additional plotting options that
pandas provides in the 3-pandas_plotting_module.ipynb notebook. You will be
prompted when it is time to switch between the notebooks.

An introduction to matplotlib
The plotting capabilities in pandas and seaborn are powered by matplotlib: both
of these packages provide wrappers around the lower-level functionality in matplotlib.
Consequently, we have many visualization options at our fingertips with minimal code to
write; however, this comes at a price: reduced flexibility in what we can create.

We may find that the pandas or seaborn implementation isn't quite meeting our
needs, and, indeed, it may be impossible to override a particular setting after creating
the plot with them, meaning we will have to do some of the legwork with matplotlib.
Additionally, many of the tweaks that will be made to the final appearance of the
visualization will be handled with matplotlib commands, which we will discuss in the
next chapter. Therefore, it would greatly benefit us to have some understanding of how
matplotlib works.

https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide
https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide
https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide
https://opendata.ecdc.europa.eu/covid19/casedistribution/csv
https://opendata.ecdc.europa.eu/covid19/casedistribution/csv

264 Visualizing Data with Pandas and Matplotlib

The basics
The matplotlib package is rather large since it encompasses quite a bit of functionality.
Fortunately for us, for most of our plotting tasks, all we need is the pyplot module,
which provides a MATLAB-like plotting framework. Occasionally, we will need to import
additional modules for other tasks, such as animations, changing the style, or altering the
default parameters; we will see some examples of this in the next chapter.

Rather than importing the whole matplotlib package, we will only import the pyplot
module using the dot (.) notation; this reduces the amount of typing we need to do in
order to access what we need, and we don't take up more space in memory with code we
won't use. Note that pyplot is traditionally aliased as plt:

import matplotlib.pyplot as plt

Before we look at our first plots, let's cover how to actually view them. Matplotlib will
create our visualizations with the plot commands; however, we won't see the visualization
until we request to see it. It is done in this fashion so that we can continually tweak the
visualization with additional code, until we are ready to finalize it. Unless we save a
reference to our plot, once it is displayed, we will have to recreate it to change something.
This is because the reference to the last plot will have been destroyed to free up resources
in memory.

Matplotlib uses the plt.show() function to display the visualization. It must be called
after each visualization we create. When using the Python shell, it will also prevent
additional code from being executed until the window is closed because it is a blocking
function. In Jupyter Notebooks, we can simply use the %matplotlib inline magic
command (a special IPython command preceded by a % sign) once, and our visualizations
will be automatically displayed when the cell with our visualization code is executed.
Magic commands (or magics for short) are run as regular code within a Jupyter Notebook
cell. If, up to this point in the book, you haven't been keen on using Jupyter Notebooks
and would like to get that set up now, you can refer to Chapter 1, Introduction to Data
Analysis.

An introduction to matplotlib 265

Important note
The %matplotlib inline magic embeds static images of the plot into
our notebook. Another common option is the %matplotlib notebook
magic. It provides a small level of interactivity to the plot by allowing actions
such as resizing and zooming, though note that this requires some additional
setup if you're using JupyterLab and can lead to some confusing bugs,
depending on the code that's running in the notebook. Check out this article
for more information: https://medium.com/@1522933668924/
using-matplotlib-in-jupyter-notebooks-comparing-
methods-and-some-tips-python-c38e85b40ba1.

Let's create our first plot in the 1-introducing_matplotlib.ipynb notebook,
using the Facebook stock prices data from the fb_stock_prices_2018.csv
file in the repository for this chapter. First, we need to import pyplot and pandas
(in this example, we will use plt.show(), so we don't need to run the magic here):

>>> import matplotlib.pyplot as plt
>>> import pandas as pd

Next, we read in the CSV file and specify the index as the date column, since we know
what the data looks like from previous chapters:

>>> fb = pd.read_csv(
... 'data/fb_stock_prices_2018.csv',
... index_col='date',
... parse_dates=True
...)

To understand how Facebook's stock has evolved over time, we can create a line plot of
the daily opening price. For this task, we will use the plt.plot() function, providing
the data to be used on the x-axis and y-axis, respectively. We will then follow up with
a call to plt.show() to display it:

>>> plt.plot(fb.index, fb.open)
>>> plt.show()

mailto:https://medium.com/@1522933668924/using-matplotlib-in-jupyter-notebooks-comparing-methods-and-some-tips-python-c38e85b40ba1
mailto:https://medium.com/@1522933668924/using-matplotlib-in-jupyter-notebooks-comparing-methods-and-some-tips-python-c38e85b40ba1
mailto:https://medium.com/@1522933668924/using-matplotlib-in-jupyter-notebooks-comparing-methods-and-some-tips-python-c38e85b40ba1

266 Visualizing Data with Pandas and Matplotlib

The result is the following plot:

Figure 5.1 – Our first plot with matplotlib

If we want to present this visualization, we would have to go back and add our axis labels,
plot title, legend (if applicable), and possibly fix the y-axis range; this will be covered in
the next chapter when we discuss formatting and customizing the appearance of our plots.
Pandas and seaborn will take care of some of this for us, at least.

For the remainder of this book, we will be using the %matplotlib inline magic
command (remember, this needs to be used in a Jupyter Notebook to work), so we won't
be calling plt.show() after our plotting code. The following code gives the same output
as the preceding block:

>>> %matplotlib inline
>>> import matplotlib.pyplot as plt
>>> import pandas as pd

>>> fb = pd.read_csv(
... 'data/fb_stock_prices_2018.csv',
... index_col='date',
... parse_dates=True
...)
>>> plt.plot(fb.index, fb.open)

An introduction to matplotlib 267

Important note
Be sure to run the %matplotlib inline magic command now if you are
using a Jupyter Notebook. This ensures that the plotting code in the rest of this
chapter displays the output automatically.

We can also use the plt.plot() function to generate scatter plots, provided that we
specify a format string for the plot as the third argument. A format string is of the form
'[marker][linestyle][color]'; for example, '--k' for a black dashed line.
Since we don't want a line for the scatter plot, we omit the linestyle component. We
can make a scatter plot of red circles with the 'or' format string; here, o is for circles
and r is for the color red. The following code generates a scatter plot of high price versus
low price. Notice that we can pass our dataframe in the data argument and then use the
string names for the columns, instead of passing the series as x and y:

>>> plt.plot('high', 'low', 'or', data=fb.head(20))

Barring days of large fluctuations, we would expect the points to be in the form of a line,
since the high and low prices won't be far from each other. This is true for the most part,
but be careful of the scale that was generated automatically—the x-axis and the y-axis
don't line up perfectly:

Figure 5.2 – Making a scatter plot with matplotlib

268 Visualizing Data with Pandas and Matplotlib

Note that there is some flexibility in specifying the format string. For instance, a
format string of the form '[color][marker][linestyle]' will work unless
it is ambiguous. The following table shows some examples of how to formulate a format
string for a variety of plot styles; the complete list of options can be found in the Notes
section in the documentation at https://matplotlib.org/api/_as_gen/
matplotlib.pyplot.plot.html:

Figure 5.3 – Styling shortcuts for matplotlib

The format string is a handy way of specifying many options at once, and the good
news, as we will see in the Plotting with pandas section, is that it works with the plot()
method in pandas as well. However, if we would rather specify each option separately,
we can use the color, linestyle, and marker arguments; check out the values we
can pass as keyword arguments to plt.plot() in the documentation—pandas will
also pass these down to matplotlib for us.

Tip
As an alternative to defining styles per variable being plotted, consider trying
out cycler from the matplotlib team to specify which combinations
matplotlib should cycle between (https://matplotlib.org/
gallery/color/color_cycler.html). We will see an example of
this in Chapter 7, Financial Analysis – Bitcoin and the Stock Market.

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html
https://matplotlib.org/gallery/color/color_cycler.html
https://matplotlib.org/gallery/color/color_cycler.html

An introduction to matplotlib 269

To create histograms with matplotlib, we use the hist() function instead. Let's make
a histogram of the earthquake magnitudes in the earthquakes.csv file, using those
measured with the ml magnitude type:

>>> quakes = pd.read_csv('data/earthquakes.csv')
>>> plt.hist(quakes.query('magType == "ml"').mag)

The resulting histogram gives us an idea of the range of earthquake magnitudes we can
expect using the ml measurement technique:

Figure 5.4 – Making a histogram with matplotlib

As we could have guessed, the magnitudes tend to be small, and the distribution appears
to be somewhat normal. However, a word of caution regarding histograms—bin size
matters. There are cases where we can change the number of bins the data is divided
into and change what the histogram indicates the distribution to be. For example, if we
make two histograms for this data using different numbers of bins, the distributions look
different:

>>> x = quakes.query('magType == "ml"').mag
>>> fig, axes = plt.subplots(1, 2, figsize=(10, 3))
>>> for ax, bins in zip(axes, [7, 35]):
... ax.hist(x, bins=bins)
... ax.set_title(f'bins param: {bins}')

270 Visualizing Data with Pandas and Matplotlib

Notice how the distribution appears unimodal in the left subplot, but seems bimodal in
the right subplot:

Figure 5.5 – Different bin sizes can drastically change a histogram

Tip
Some common rules of thumb for selecting the number of bins can be found at
https://en.wikipedia.org/wiki/Histogram#Number_of_
bins_and_width. However, note that, in some cases, a bee swarm plot can
be easier to interpret than a histogram; this can be created with seaborn, as
we will see in Chapter 6, Plotting with Seaborn and Customization Techniques.

There are a couple of additional things to note from this example, which we will address
in the next section on plot components:

• We can make subplots.

• Plotting functions in pyplot can also be used as methods of matplotlib objects,
such as Figure and Axes objects.

One last thing regarding basic usage that we will find handy is saving plots as images—we
shouldn't be limited to showing the figures in Python only. We can save the last figure
with the plt.savefig() function by passing in the path to save the image at; for
example, plt.savefig('my_plot.png'). Note that, if plt.show() was called
prior to saving, the file will be empty, since the reference to the last plot will be gone after
the call to plt.show() (matplotlib closes the Figure object to free up resources in
memory). With the %matplotlib inline magic command, we can both see and save
our image in the same cell.

https://en.wikipedia.org/wiki/Histogram#Number_of_bins_and_width
https://en.wikipedia.org/wiki/Histogram#Number_of_bins_and_width

An introduction to matplotlib 271

Plot components
In the prior examples using plt.plot(), we didn't have to create a Figure
object—matplotlib took care of creating it for us in the background. However,
as we saw when creating Figure 5.5, anything beyond a basic plot will require a little
more legwork, including creating a Figure object ourselves. The Figure class is the
top level for matplotlib visualizations. It contains the Axes objects, which themselves
contain additional plot objects, such as lines and ticks. In the case of subplots, the Figure
object contains Axes objects with additional functionality.

We use the plt.figure() function to create Figure objects; these will have zero
Axes objects until a plot is added:

>>> fig = plt.figure()
<Figure size 432x288 with 0 Axes>

The plt.subplots() function creates a Figure object with Axes objects for
subplots in the arrangement specified. If we ask plt.subplots() for one row and one
column, a Figure object with one Axes object will be returned. This can be useful when
writing functions that generate subplot layouts based on the input, since we don't need
to worry about needing a special case to handle a single subplot. Here, we will specify an
arrangement of one row and two columns; this returns a (Figure, Axes) tuple, which
we can unpack:

>>> fig, axes = plt.subplots(1, 2)

When using the %matplotlib inline magic command, we will see the figure that
was created:

Figure 5.6 – Creating subplots

272 Visualizing Data with Pandas and Matplotlib

The alternative to using plt.subplots() would be to use the add_axes() method
on the Figure object that we get after running plt.figure(). The add_axes()
method takes a list in the form of [left, bottom, width, height] as
proportions of the figure dimensions, representing the area in the figure this subplot
should occupy:

>>> fig = plt.figure(figsize=(3, 3))
>>> outside = fig.add_axes([0.1, 0.1, 0.9, 0.9])
>>> inside = fig.add_axes([0.7, 0.7, 0.25, 0.25])

This enables the creation of plots inside of plots:

Figure 5.7 – Plot with an inset plot using matplotlib

If our goal is to keep all the plots separate but not all equally sized, we can use the
add_gridspec() method on a Figure object to create a grid for the subplots.
Then, we can run add_subplot(), passing in the area(s) from the grid that the given
subplot should occupy:

>>> fig = plt.figure(figsize=(8, 8))
>>> gs = fig.add_gridspec(3, 3)
>>> top_left = fig.add_subplot(gs[0, 0])
>>> mid_left = fig.add_subplot(gs[1, 0])
>>> top_right = fig.add_subplot(gs[:2, 1:])
>>> bottom = fig.add_subplot(gs[2,:])

An introduction to matplotlib 273

This results in the following layout:

Figure 5.8 – Building custom plot layouts with matplotlib

In the previous section, we discussed how to save visualizations using plt.savefig()
but we also can use the savefig() method on Figure objects:

>>> fig.savefig('empty.png')

This is very useful to remember since with plt.<func>(), we only have access to
the last Figure object; however, if we save the references to our Figure objects, we
can work with any of them, regardless of when they were created. Additionally, this
foreshadows an important concept that you will notice throughout this chapter: Figure
and Axes objects have methods with similar or identical names to their pyplot function
counterparts.

274 Visualizing Data with Pandas and Matplotlib

While it's convenient to have references to all of the Figure objects we create, it is good
practice to close them when we are done with them so that we don't waste any resources.
This can be accomplished with the plt.close() function. If we don't pass in anything,
it will close the last Figure object; however, we can pass in a specific Figure object to
close only that one or 'all' to close all of the Figure objects we have open:

>>> plt.close('all')

It's important to get comfortable working with Figure and Axes objects directly as it
enables more fine-grained control of the resulting visualizations. This will become evident
in the next chapter.

Additional options
A few of our visualizations looked a little squished. To remedy this, we can pass in a value
for figsize in our call to plt.figure() or plt.subplots(). We specify the
dimensions with a (width, height) tuple in inches. The plot() method we will see
with pandas also accepts the figsize parameter, so bear this in mind:

>>> fig = plt.figure(figsize=(10, 4))
<Figure size 720x288 with 0 Axes>
>>> fig, axes = plt.subplots(1, 2, figsize=(10, 4))

Notice that these subplots are more square-shaped than the subplots in Figure 5.6 when
we didn't specify figsize:

Figure 5.9 – Specifying plot size

An introduction to matplotlib 275

It's not too bad specifying the figsize parameter for our plots one by one. However,
if we find that we are resizing everything to the same size, there's a better alternative.
Matplotlib houses its defaults in rcParams, which acts like a dictionary, meaning we can
easily overwrite what we wish for our session and get the defaults back when we restart
our Python session. Since there are many options in this dictionary (over 300 at the time
of writing), let's randomly select a few of them to get an idea of what is available:

>>> import random
>>> import matplotlib as mpl

>>> rcparams_list = list(mpl.rcParams.keys())
>>> random.seed(20) # make this repeatable
>>> random.shuffle(rcparams_list)

>>> sorted(rcparams_list[:20])
['axes.axisbelow',
 'axes.formatter.limits',
 'boxplot.vertical',
 'contour.corner_mask',
 'date.autoformatter.month',
 'legend.labelspacing',
 'lines.dashed_pattern',
 'lines.dotted_pattern',
 'lines.scale_dashes',
 'lines.solid_capstyle',
 'lines.solid_joinstyle',
 'mathtext.tt',
 'patch.linewidth',
 'pdf.fonttype',
 'savefig.jpeg_quality',
 'svg.fonttype',
 'text.latex.preview',
 'toolbar',
 'ytick.labelright',
 'ytick.minor.size']

As you can see, there are many options we can tinker with here. Let's check what the
current default value for figsize is:

>>> mpl.rcParams['figure.figsize']
[6.0, 4.0]

276 Visualizing Data with Pandas and Matplotlib

To change this for our current session, simply set it equal to a new value:

>>> mpl.rcParams['figure.figsize'] = (300, 10)
>>> mpl.rcParams['figure.figsize']
[300.0, 10.0]

Before we move on, let's restore the default settings by using the mpl.rcdefaults()
function. The default value for figsize is actually different than what we had previously;
this is because %matplotlib inline sets different values for a few of the plot-related
parameters when it is first run (https://github.com/ipython/ipykernel/
blob/master/ipykernel/pylab/config.py#L42-L56):

>>> mpl.rcdefaults()
>>> mpl.rcParams['figure.figsize']
[6.8, 4.8]

Note that we can also use the plt.rc() function to update a particular setting if we
know its group (figure, in this case) and parameter name (figsize). As we did
previously, we can use plt.rcdefaults() to reset the defaults:

change `figsize` default to (20, 20)
>>> plt.rc('figure', figsize=(20, 20))
>>> plt.rcdefaults() # reset the default

Tip
If we find ourselves making the same changes every time we start Python,
we should look into reading our configuration in rather than updating the
default values each time. Consult the mpl.rc_file() function for more
information.

Plotting with pandas
Both Series and DataFrame objects have a plot() method that allows us to create
several different plots and control some aspects of their formatting, such as subplot
layout, figure size, titles, and whether to share an axis across subplots. This makes plotting
our data much more convenient, as the bulk of the work to create presentable plots is
achieved with a single method call. Under the hood, pandas is making several calls to
matplotlib to produce our plot. Some of the most frequently used arguments to the
plot() method include the following:

https://github.com/ipython/ipykernel/blob/master/ipykernel/pylab/config.py#L42-L56
https://github.com/ipython/ipykernel/blob/master/ipykernel/pylab/config.py#L42-L56

Plotting with pandas 277

Figure 5.10 – Frequently used pandas plotting arguments

Rather than having separate functions for each plot type, as we saw during our discussion
of matplotlib, the plot() method from pandas allows us to specify the type of
plot we want using the kind argument. The choice of plot will determine which other
arguments are required. We can use the Axes object that's returned by the plot()
method to further modify our plot.

278 Visualizing Data with Pandas and Matplotlib

Let's explore this functionality in the 2-plotting_with_pandas.ipynb notebook.
Before we begin, we need to handle our imports for this section and read in the data we
will be using (Facebook stock prices, earthquakes, and COVID-19 cases):

>>> %matplotlib inline
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> import pandas as pd

>>> fb = pd.read_csv(
... 'data/fb_stock_prices_2018.csv',
... index_col='date',
... parse_dates=True
...)
>>> quakes = pd.read_csv('data/earthquakes.csv')
>>> covid = pd.read_csv('data/covid19_cases.csv').assign(
... date=lambda x: \
... pd.to_datetime(x.dateRep, format='%d/%m/%Y')
...).set_index('date').replace(
... 'United_States_of_America', 'USA'
...).sort_index()['2020-01-18':'2020-09-18']

In the next few sections, we will discuss how to generate an appropriate visualization for
a specific analysis goal, such as showing the evolution over time or the relationship
between the variables in the data. Note that, wherever possible, the plots have been styled
so that they can be interpreted in black and white for this book.

Evolution over time
When working with time series data (such as the Facebook stock data stored in the fb
variable), we often want to show how the data has changed over time. To do this, we use
line plots and, in some cases, bar plots (covered in the Counts and frequencies section).
In the case of a line plot, we simply provide kind='line' to plot(), indicating which
columns will be x and y. Note that we actually don't need to provide a column for x
because pandas, by default, will use the index (this also makes it possible to generate the
line plot of a Series object). Additionally, notice that we can provide a format string to
the style argument, just like we did with the matplotlib plots:

>>> fb.plot(
... kind='line', y='open', figsize=(10, 5), style='-b',
... legend=False, title='Evolution of Facebook Open Price'
...)

Plotting with pandas 279

This gives us a plot similar to what we achieved with matplotlib; however, in this
single method call, we specified the figure size for this plot only, turned off the legend,
and gave it a title:

Figure 5.11 – Our first plot with pandas

As with matplotlib, we don't have to use the style format strings—instead, we can pass
each component separately with its associated keyword. For example, the following code
gives us the same result as the previous one:

fb.plot(
 kind='line', y='open', figsize=(10, 5),
 color='blue', linestyle='solid',
 legend=False, title='Evolution of Facebook Open Price'
)

We aren't limited to plotting one line at a time with the plot() method; we can also pass
in a list of columns to plot and style them individually. Note that we actually don't need to
specify kind='line' because that is the default:

>>> fb.first('1W').plot(
... y=['open', 'high', 'low', 'close'],
... style=['o-b', '--r', ':k', '.-g'],
... title='Facebook OHLC Prices during '
... '1st Week of Trading 2018'
...).autoscale() # add space between data and axes

280 Visualizing Data with Pandas and Matplotlib

This results in the following plot, where each line is styled differently:

Figure 5.12 – Plotting multiple columns

Additionally, we can easily have pandas plot all our columns in that same call. The x
and y arguments can take a single column name or a list of them; if we provide nothing,
pandas will use all of them. Note that the columns must be passed as the y argument
when kind='line'; however, other plot types support passing lists of columns to x as
well. In this case, it may be helpful to ask for subplots instead of having all the lines on the
same plot. Let's visualize all the columns in the Facebook data as line plots:

>>> fb.plot(
... kind='line', subplots=True, layout=(3, 2),
... figsize=(15, 10), title='Facebook Stock 2018'
...)

Plotting with pandas 281

Using the layout argument, we told pandas how to arrange our subplots (three rows
and two columns):

Figure 5.13 – Creating subplots with pandas

Notice that the subplots automatically share the x-axis, since they share an index.
The y-axis is not shared because the volume time series is on a different scale. We can
alter this behavior in some plot types by passing the sharex or sharey argument with
a Boolean to plot(). The legend will be rendered by default, so, for each subplot, we
have a single item in the legend indicating which data it contains. We didn't provide
a list of subplot titles with the title argument in this case, since the legend served
that purpose; however, we passed a single string for the title of the plot as a whole. To
summarize, when working with subplots, we have two options when it comes to the title:

• Passing a single string for the title of the figure as a whole.

• Passing a list of strings to use as the title for each subplot.

282 Visualizing Data with Pandas and Matplotlib

Sometimes, we want to make subplots where each has a few variables in them for
comparison. This can be achieved by first creating the subplots with plt.subplots()
and then providing the Axes objects to the ax parameter. To illustrate this, let's take a
look at daily new cases of COVID-19 in China, Spain, Italy, the USA, Brazil, and India.
This is long format data, so we must first pivot it so that the dates (which we set as the
index when we read in the CSV file) are in the index of the pivot table and the countries
(countriesAndTerritories) are in the columns. Since there is a lot of fluctuation
in these values, we will plot the 7-day moving average of new cases using the rolling()
method introduced in Chapter 4, Aggregating Pandas DataFrames:

>>> new_cases_rolling_average = covid.pivot_table(
... index=covid.index,
... columns='countriesAndTerritories',
... values='cases'
...).rolling(7).mean()

Rather than create a separate plot for each country (which makes it harder to compare)
or plot them all together (which will make it difficult to see the smaller values), we will
plot countries that have had a similar number of cases in the same subplot. We will also
use different line styles in order to distinguish between them in black and white:

>>> fig, axes = plt.subplots(1, 3, figsize=(15, 5))

>>> new_cases_rolling_average[['China']]\
... .plot(ax=axes[0], style='-.c')
>>> new_cases_rolling_average[['Italy', 'Spain']].plot(
... ax=axes[1], style=['-', '--'],
... title='7-day rolling average of new '
... 'COVID-19 cases\n(source: ECDC)'
...)
>>> new_cases_rolling_average[['Brazil', 'India', 'USA']]\
... .plot(ax=axes[2], style=['--', ':', '-'])

By directly using matplotlib to generate the Axes objects for each subplot, we gained
a lot more flexibility in the resulting layout:

Plotting with pandas 283

Figure 5.14 – Controlling which data gets plotted in each of the subplots

In the previous plot, we were able to compare countries with similar levels of daily new
COVID-19 cases, but we couldn't compare all of them in the same subplot due to scale.
One way to get around this is to use an area plot, which makes it possible for us to
visualize the overall 7-day rolling average of new COVID-19 cases and, at the same time,
how much each country is contributing to the total. In the interest of readability, we will
group Italy and Spain together and create another category for countries other than the
USA, Brazil, and India:

>>> cols = [
... col for col in new_cases_rolling_average.columns
... if col not in [
... 'USA', 'Brazil', 'India', 'Italy & Spain'
...]
...]
>>> new_cases_rolling_average.assign(
... **{'Italy & Spain': lambda x: x.Italy + x.Spain}
...).sort_index(axis=1).assign(
... Other=lambda x: x[cols].sum(axis=1)
...).drop(columns=cols).plot(
... kind='area', figsize=(15, 5),
... title='7-day rolling average of new '
... 'COVID-19 cases\n(source: ECDC)'
...)

284 Visualizing Data with Pandas and Matplotlib

For those viewing the resulting plot in black and white, Brazil is the bottom layer, with
India on top of it and so on. The combined height of the plot areas is the overall value,
and the height of a given shaded region is the value for that country. This shows us
that more than half of the daily new cases are in Brazil, India, Italy, Spain, and the
USA combined:

Figure 5.15 – Creating an area plot

Another way to visualize evolution over time is to look at the cumulative sum over time.
Let's plot the cumulative number of COVID-19 cases in China, Spain, Italy, the USA,
Brazil, and India, using the ax parameter to once again to create subplots. To calculate the
cumulative sum over time, we group by the location (countriesAndTerritories)
and the date, which is our index, so we use pd.Grouper(); this time, we will use
groupby() and unstack() to pivot our data into wide format for the plot:

>>> fig, axes = plt.subplots(1, 3, figsize=(15, 3))

>>> cumulative_covid_cases = covid.groupby(
... ['countriesAndTerritories', pd.Grouper(freq='1D')]
...).cases.sum().unstack(0).apply('cumsum')

>>> cumulative_covid_cases[['China']]\
... .plot(ax=axes[0], style='-.c')
>>> cumulative_covid_cases[['Italy', 'Spain']].plot(
... ax=axes[1], style=['-', '--'],
... title='Cumulative COVID-19 Cases\n(source: ECDC)'
...)
>>> cumulative_covid_cases[['Brazil', 'India', 'USA']]\
... .plot(ax=axes[2], style=['--', ':', '-'])

Plotting with pandas 285

Viewing the cumulative COVID-19 cases shows that while China and Italy appear to have
COVID-19 cases under control, Spain, the USA, Brazil, and India are struggling:

Figure 5.16 – Plotting the cumulative sum over time

Important note
We used dotted and dashed lines multiple times in this section to ensure
that the resulting plots could be interpreted in black and white; note, however,
that accepting the default colors and line styles will suffice when presenting
these plots in color. Often, different line styles signify a difference in the data
types—for example, we could use a solid line for the evolution over time and
a dashed line to represent the rolling average.

Relationships between variables
When we want to visualize the relationship between variables, we often begin with
scatter plots, which show us the value of the y variable at different values of the x variable.
This makes it very easy for us to spot correlations and possible non-linear relationships.
In the previous chapter, when we looked at the Facebook stock data, we saw that the days
of high volume traded appeared to be correlated with large drops in stock price. We can
use a scatter plot to visualize this relationship:

>>> fb.assign(
... max_abs_change=fb.high - fb.low
...).plot(
... kind='scatter', x='volume', y='max_abs_change',
... title='Facebook Daily High - Low vs. Volume Traded'
...)

286 Visualizing Data with Pandas and Matplotlib

There appears to be a relationship, but it does not seem linear:

Figure 5.17 – Making scatter plots with pandas

Let's try taking the logarithm (log) of the volume. To do so, we have a couple of options:

• Create a new column that is the log of the volume using np.log().

• Use a logarithmic scale for the x-axis by passing in logx=True to the plot()
method or calling plt.xscale('log').

In this case, it makes the most sense to simply change how we display our data, since we
aren't going to use the new column:

>>> fb.assign(
... max_abs_change=fb.high - fb.low
...).plot(
... kind='scatter', x='volume', y='max_abs_change',
... title='Facebook Daily High - '
... 'Low vs. log(Volume Traded)',
... logx=True
...)

Plotting with pandas 287

After modifying the x-axis scale, we get the following scatter plot:

Figure 5.18 – Applying a logarithmic scale to the x-axis

Tip
The plot() method from pandas has three arguments for logarithmic
scales: logx/logy for single axis adjustments and loglog for setting both
to the logarithmic scale.

One problem with scatter plots is that it can be very difficult to discern the concentration
of points in a given area, since they are simply plotted one of top of the other. We can use
the alpha argument to control the transparency of the points; this argument takes values
from 0 to 1, where 0 is entirely transparent and 1 is completely opaque. By default, they
are opaque (value of 1); however, if we make them more transparent, we should be able to
see some of the overlap:

>>> fb.assign(
... max_abs_change=fb.high - fb.low
...).plot(
... kind='scatter', x='volume', y='max_abs_change',
... title='Facebook Daily High - '
... 'Low vs. log(Volume Traded)',
... logx=True, alpha=0.25
...)

288 Visualizing Data with Pandas and Matplotlib

We can now begin to make out the density of points in the lower-left region of the plot,
but it's still relatively difficult:

Figure 5.19 – Modifying transparency to visualize overlap

Thankfully, we have another plot type at our disposal: hexbin. Hexbins form a
two-dimensional histogram by dividing the plot into a grid of hexagons and shading
them based on the concentration of points in each bin. Let's view this data as hexbins:

>>> fb.assign(
... log_volume=np.log(fb.volume),
... max_abs_change=fb.high - fb.low
...).plot(
... kind='hexbin',
... x='log_volume',
... y='max_abs_change',
... title='Facebook Daily High - '
... 'Low vs. log(Volume Traded)',
... colormap='gray_r',
... gridsize=20,
... sharex=False # bug fix to keep the x-axis label
...)

Plotting with pandas 289

The colorbar on the side indicates the relationship between color and the number of
points in that bin. The colormap we chose (gray_r) shades the bins darker (toward
black) for high density, and lighter (toward white) for low density. By passing in
gridsize=20, we are specifying that 20 hexagons should be used across the x-axis,
and then having pandas determine how many to use along the y-axis so that they are
approximately regular in shape; we can, however, pass a tuple to choose the number in
both directions. A larger value for gridsize will make the bins harder to see, while
a smaller one will result in fuller bins that take up more space on the plot—we must
strike a balance:

Figure 5.20 – Plotting hexbins with pandas

290 Visualizing Data with Pandas and Matplotlib

Finally, if we simply want to visualize the correlation between variables, we can plot
a correlation matrix. A correlation matrix depicts the magnitude and direction
(positive or negative) of the correlation. Let's take a look at the correlation matrix for
the Facebook data we have been working with. To do so, we can use a combination
of pandas and either the plt.matshow() or plt.imshow() function from
matplotlib. Since there is a lot of code that needs to be run in the same cell, we will
discuss the purpose of each section immediately after this code block:

>>> fig, ax = plt.subplots(figsize=(20, 10))

calculate the correlation matrix
>>> fb_corr = fb.assign(
... log_volume=np.log(fb.volume),
... max_abs_change=fb.high - fb.low
...).corr()

create the heatmap and colorbar
>>> im = ax.matshow(fb_corr, cmap='seismic')
>>> im.set_clim(-1, 1)
>>> fig.colorbar(im)

label the ticks with the column names
>>> labels = [col.lower() for col in fb_corr.columns]
>>> ax.set_xticks(ax.get_xticks()[1:-1])
>>> ax.set_xtickabels(labels, rotation=45)
>>> ax.set_yticks(ax.get_yticks()[1:-1])
>>> ax.set_yticklabels(labels)

include the value of the correlation coefficient in the boxes
>>> for (i, j), coef in np.ndenumerate(fb_corr):
... ax.text(
... i, j, fr'ρ = {coef:.2f}',
... ha='center', va='center',
... color='white', fontsize=14
...)

Plotting with pandas 291

A heatmap lets us easily visualize the correlation coefficients, provided we choose a
diverging colormap—we will discuss the different types of colormaps when we discuss
customizing plots in Chapter 6, Plotting with Seaborn and Customization Techniques.
Essentially, for this plot, we want red for correlation coefficients greater than zero and blue
for those below; correlation coefficients near zero will be devoid of color, and stronger
correlations will be darker shades of their respective colors. This can be achieved by
selecting the seismic colormap and then setting the limits of the color scale to [-1, 1],
since the correlation coefficient has those bounds:

im = ax.matshow(fb_corr, cmap='seismic')
im.set_clim(-1, 1) # set the bounds of the color scale
fig.colorbar(im) # add the colorbar to the figure

To be able to read the resulting heatmap, we need to label the rows and columns with the
names of the variables in our data:

labels = [col.lower() for col in fb_corr.columns]
ax.set_xticks(ax.get_xticks()[1:-1]) # to handle matplotlib bug
ax.set_xticklabels(labels, rotation=45)
ax.set_yticks(ax.get_yticks()[1:-1]) # to handle matplotlib bug
ax.set_yticklabels(labels)

While the color scale will make it easy for us to differentiate between weak and strong
correlations, it is often helpful to annotate the heatmap with the actual correlation
coefficients. This can be accomplished by using the text() method on the Axes object
containing the plot. For this plot, we placed white, center-aligned text indicating the value
of the Pearson correlation coefficient for each variable combination:

iterate over the matrix
for (i, j), coef in np.ndenumerate(fb_corr):
 ax.text(
 i, j,
 fr'ρ = {coef:.2f}', # raw (r), format (f) string
 ha='center', va='center',
 color='white', fontsize=14
)

292 Visualizing Data with Pandas and Matplotlib

This results in an annotated heatmap showing the correlations between the variables in
the Facebook dataset:

Figure 5.21 – Visualizing correlations as a heatmap

In Figure 5.21, we can easily see strong positive correlations among the OHLC time series,
as well as among the volume traded and maximum absolute value of change. However,
there are weak negative correlations between these groups. Furthermore, we can see that
taking the logarithm of the volume does indeed increase the coefficient of correlation with
max_abs_change from 0.64 to 0.73. When we discuss seaborn in the next chapter, we
will learn an easier way to generate a heatmap, and also cover annotations in more detail.

Plotting with pandas 293

Distributions
Often, we want to visualize the distribution of our data to see what values it takes on.
Depending on the type of data we have, we may choose to use histograms, kernel density
estimates (KDEs), box plots, or empirical cumulative distribution functions (ECDFs).
When working with discrete data, histograms are a good place to start. Let's take a look at
the histogram of daily volume traded in Facebook stock:

>>> fb.volume.plot(
... kind='hist',
... title='Histogram of Daily Volume Traded '
... 'in Facebook Stock'
...)
>>> plt.xlabel('Volume traded') # label x-axis (see ch 6)

This is a great example of real-world data that is, most definitely, not normally distributed.
The volume traded is right skewed, with a long tail to the right. Recall that in Chapter 4,
Aggregating Pandas DataFrames, when we discussed binning and looked at low, medium,
and high volume traded, almost all of the data fell in the low bucket, which aligns with
what we see in this histogram:

Figure 5.22 – Creating a histogram with pandas

294 Visualizing Data with Pandas and Matplotlib

Tip
As with the plt.hist() function from matplotlib, we can provide
a custom value for the number of bins with the bins argument. However,
we must be careful that we don't misrepresent the distribution.

We can also create multiple histograms on the same plot to compare distributions by
using the ax parameter to specify the same Axes object for each plot. In this case, we
must use the alpha parameter to see any overlaps. Given that we have many different
measurement techniques for earthquakes (the magType column), we may be interested in
comparing the different ranges of magnitudes they yield:

>>> fig, axes = plt.subplots(figsize=(8, 5))

>>> for magtype in quakes.magType.unique():
... data = quakes.query(f'magType == "{magtype}"').mag
... if not data.empty:
... data.plot(
... kind='hist',
... ax=axes,
... alpha=0.4,
... label=magtype,
... legend=True,
... title='Comparing histograms '
... 'of earthquake magnitude by magType'
...)

>>> plt.xlabel('magnitude') # label x-axis (discussed in ch 6)

Plotting with pandas 295

This shows us that ml is the most common magType, followed by md, and that they
yield similar ranges of magnitudes; however, mb, which is the third-most common,
yields higher magnitudes:

Figure 5.23 – Plotting overlapping histograms with pandas

When working with continuous data (such as stock prices), we can use KDEs. Let's take
a look at the KDE of the daily high price for Facebook stock. Note that we can pass either
kind='kde' or kind='density':

>>> fb.high.plot(
... kind='kde',
... title='KDE of Daily High Price for Facebook Stock'
...)
>>> plt.xlabel('Price ($)') # label x-axis (discussed in ch 6)

296 Visualizing Data with Pandas and Matplotlib

The resulting density curve has some left skew:

Figure 5.24 – Visualizing the KDE with pandas

We may also want to visualize the KDE superimposed on top of the histogram. Pandas
allows us to pass the Axes object we want to plot on, and also returns one after creating
the visualization, which makes this a cinch:

>>> ax = fb.high.plot(kind='hist', density=True, alpha=0.5)
>>> fb.high.plot(
... ax=ax, kind='kde', color='blue',
... title='Distribution of Facebook Stock\'s '
... 'Daily High Price in 2018'
...)
>>> plt.xlabel('Price ($)') # label x-axis (discussed in ch 6)

Plotting with pandas 297

Notice that we had to pass density=True when we generated the histogram to make
sure that the y-axis for the histogram and KDE were on the same scale. Otherwise, the
KDE would have been too small to see. The histogram then gets plotted with density on
the y-axis so that we can better understand how the KDE got its shape. We also increased
the transparency of the histogram so that we could see the KDE line on top. Note that if
we remove the color='blue' part of the KDE call, we don't need to change the value
of alpha in the histogram call because the KDE and histogram will be different colors;
we are plotting them both in blue since they represent the same data:

Figure 5.25 – Combining a KDE and a histogram with pandas

The KDE shows us an estimated probability density function (PDF), which tells us how
probability is distributed over the values of the data. However, in some cases, we are more
interested in the probability of getting less than or equal to (or greater than or equal to)
some value, which we can see with the cumulative distribution function (CDF).

Important note
With a CDF, the values for the x variable go along the x-axis, while the
cumulative probability of getting, at most, a given x goes along the y-axis. This
cumulative probability is between 0 and 1 and is written as P(X ≤ x), where the
lowercase (x) is the value for comparison and the uppercase (X) is the random
variable, X. More information can be found at https://www.itl.
nist.gov/div898/handbook/eda/section3/eda362.htm.

https://www.itl.nist.gov/div898/handbook/eda/section3/eda362.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda362.htm

298 Visualizing Data with Pandas and Matplotlib

Using the statsmodels package, we can estimate the CDF giving us the empirical
cumulative distribution function (ECDF). Let's use this to understand the distribution
of magnitudes for earthquakes measured with the ml magnitude type:

>>> from statsmodels.distributions.empirical_distribution \
... import ECDF
>>> ecdf = ECDF(quakes.query('magType == "ml"').mag)
>>> plt.plot(ecdf.x, ecdf.y)

axis labels (we will cover this in chapter 6)
>>> plt.xlabel('mag') # add x-axis label
>>> plt.ylabel('cumulative probability') # add y-axis label

add title (we will cover this in chapter 6)
>>> plt.title('ECDF of earthquake magnitude with magType ml')

This yields the following ECDF:

Figure 5.26 – Visualizing the ECDF

Plotting with pandas 299

This can be very useful in gaining a better understanding of our data when we conduct
our EDA. However, we must be careful how we interpret this and how we explain it
to others, if we choose to do so. Here, we can see that if this distribution is indeed
representative of the population, the probability of the ml magnitude of the earthquake
being less than or equal to 3 is 98% for earthquakes measured with that measurement
technique:

Figure 5.27 – Interpreting the ECDF

Finally, we can use box plots to visualize potential outliers and the distribution using
quartiles. As an example, let's visualize the OHLC prices for Facebook stock across the
whole dataset:

>>> fb.iloc[:,:4].plot(
... kind='box',
... title='Facebook OHLC Prices Box Plot'
...)
>>> plt.ylabel('price ($)') # label x-axis (discussed in ch 6)

300 Visualizing Data with Pandas and Matplotlib

Notice that we do lose some information we had in the other plots. We no longer have an
idea of the density of points throughout the distribution; with the box plot, we focus on
the 5-number summary instead:

Figure 5.28 – Creating box plots with pandas

Tip
We can create a notched box plot by passing in notch=True. The notch
marks a 95% confidence interval around the median, which can be helpful
when comparing differences between groups. There is an example in the
notebook.

We can also call the boxplot() method after calling groupby(). Let's examine how
the box plots change when we calculate them based on the volume traded:

>>> fb.assign(
... volume_bin=\
... pd.cut(fb.volume, 3, labels=['low', 'med', 'high'])
...).groupby('volume_bin').boxplot(
... column=['open', 'high', 'low', 'close'],
... layout=(1, 3), figsize=(12, 3)
...)
>>> plt.suptitle(
... 'Facebook OHLC Box Plots by Volume Traded', y=1.1
...)

Plotting with pandas 301

Remember from Chapter 4, Aggregating Pandas DataFrames, that most of the days fell in
the low volume traded bucket, so we would expect to see more variation there because of
what the stock data looked like over time:

Figure 5.29 – Box plots per group with pandas

We can also use this technique to see the distribution of earthquake magnitudes based
on which magType was used and compare it with the expected ranges on the USGS
website (https://www.usgs.gov/natural-hazards/earthquake-hazards/
science/magnitude-types):

>>> quakes[['mag', 'magType']]\
... .groupby('magType')\
... .boxplot(figsize=(15, 8), subplots=False)

formatting (covered in chapter 6)
>>> plt.title('Earthquake Magnitude Box Plots by magType')
>>> plt.ylabel('magnitude')

https://www.usgs.gov/natural-hazards/earthquake-hazards/science/magnitude-types
https://www.usgs.gov/natural-hazards/earthquake-hazards/science/magnitude-types

302 Visualizing Data with Pandas and Matplotlib

The USGS website mentions situations in which certain measurement techniques can't
be used and the range of magnitudes each measurement technique is authoritative for
(when outside that range, other techniques are used). Here, we can see that, together, the
techniques cover a wide spectrum of magnitudes, while none of them cover everything:

Figure 5.30 – Box plots per group in a single plot

Important note
While histograms, KDEs, ECDFs, and box plots are all ways of looking at the
distribution of the data, we saw that each visualization showed us a different
aspect of it. It's important to visualize the data from many angles before
drawing any conclusions.

Counts and frequencies
When working with categorical data, we can create bar plots for displaying counts of
our data or frequencies of particular values. The bars can be vertical (kind='bar')
or horizontal (kind='barh'). Vertical bar plots are useful when we have many
categories or there is some order to the categories (for example, an evolution over time).
Horizontal bar plots make it easy to compare the size of each category while allowing
sufficient space on the margin for long category names (without the need to rotate them).

Plotting with pandas 303

We can use a horizontal bar plot to see which places in the quakes dataframe have
had the most earthquakes. First, we call the value_counts() method on the
parsed_place series and take the top 15 places for earthquakes. Next, we reverse the
order so that the smallest ones in this list are on top, which will sort the highest to the top
of the bar plot that we will make. Note that we could reverse the sort order as an argument
to value_counts(), but since we would still have to grab the top 15, we are doing both
in a single iloc call:

>>> quakes.parsed_place.value_counts().iloc[14::-1,].plot(
... kind='barh', figsize=(10, 5),
... title='Top 15 Places for Earthquakes '
... '(September 18, 2018 - October 13, 2018)'
...)
>>> plt.xlabel('earthquakes') # label x-axis (see ch 6)

Remember, slicing notation is [start:stop:step], and in this case, since the step
is negative, the order is reversed; we start at index 14 (the 15th entry) and get closer to
index 0 each time. By passing kind='barh', we get a horizontal bar plot that shows that
most of the earthquakes in this dataset occur in Alaska. Perhaps it is surprising to see the
number of earthquakes over such a short time period, but many of these earthquakes are
so small in magnitude that people don't even feel them:

Figure 5.31 – Plotting horizontal bars with pandas

304 Visualizing Data with Pandas and Matplotlib

Our data also contains information about whether the earthquake was accompanied
by a tsunami. Let's use groupby() to make a bar plot of the top 10 places that were hit
by tsunamis during the time period we have in our data:

>>> quakes.groupby(
... 'parsed_place'
...).tsunami.sum().sort_values().iloc[-10:,].plot(
... kind='barh', figsize=(10, 5),
... title='Top 10 Places for Tsunamis '
... '(September 18, 2018 - October 13, 2018)'
...)
>>> plt.xlabel('tsunamis') # label x-axis (discussed in ch 6)

Notice that this time, we used iloc[-10:,], which starts at the 10th largest value
(since sort_values() sorts in ascending order by default) and goes to the largest value,
giving us the top 10. Here, we can see that Indonesia had many more tsunamis than the
other places during this time period:

Figure 5.32 – Plotting the result of a group by calculation

Plotting with pandas 305

After seeing something like this, we may be prompted to look further into the number
of tsunamis in Indonesia each day. We can visualize this evolution over time as a line
plot or with a vertical bar plot by using kind='bar'. Here, we will use bars to avoid
interpolating the points:

>>> indonesia_quakes = quakes.query(
... 'parsed_place == "Indonesia"'
...).assign(
... time=lambda x: pd.to_datetime(x.time, unit='ms'),
... earthquake=1
...).set_index('time').resample('1D').sum()

format the datetimes in the index for the x-axis
>>> indonesia_quakes.index = \
... indonesia_quakes.index.strftime('%b\n%d')

>>> indonesia_quakes.plot(
... y=['earthquake', 'tsunami'], kind='bar', rot=0,
... figsize=(15, 3), label=['earthquakes', 'tsunamis'],
... title='Earthquakes and Tsunamis in Indonesia '
... '(September 18, 2018 - October 13, 2018)'
...)

label the axes (discussed in chapter 6)
>>> plt.xlabel('date')
>>> plt.ylabel('count')

On September 28, 2018, we can see a spike in both earthquakes and tsunamis in
Indonesia; on this date a 7.5 magnitude earthquake occurred, causing a devastating
tsunami:

Figure 5.33 – Comparing counts over time

306 Visualizing Data with Pandas and Matplotlib

We can also create grouped bars from a single column's values by using groupby()
and unstack(). This makes it possible for us to generate bars for each distinct value
in the column. Let's use this strategy to take a look at the frequency of a tsunami
accompanying an earthquake, as a percentage. We can handle this using the apply()
method, as we learned in Chapter 4, Aggregating Pandas DataFrames, along axis=1
(to apply row by row). For illustration purposes, we will look at the seven places with the
highest percentage of earthquakes accompanied by a tsunami:

>>> quakes.groupby(['parsed_place', 'tsunami']).mag.count()\
... .unstack().apply(lambda x: x / x.sum(), axis=1)\
... .rename(columns={0: 'no', 1: 'yes'})\
... .sort_values('yes', ascending=False)[7::-1]\
... .plot.barh(
... title='Frequency of a tsunami accompanying '
... 'an earthquake'
...)
move legend to the right of the plot; label axes
>>> plt.legend(title='tsunami?', bbox_to_anchor=(1, 0.65))
>>> plt.xlabel('percentage of earthquakes')
>>> plt.ylabel('')

Christmas Island had one earthquake during this time period, but it was accompanied
by a tsunami. Papua New Guinea, on the other hand, had tsunamis alongside roughly
40% of its earthquakes:

Figure 5.34 – Bar plot with a group by

Plotting with pandas 307

Tip
When saving the preceding plots, long category names may get cut off; if that's
the case, try running plt.tight_layout() before saving.

Now, let's use vertical bars to see which methods of measuring earthquake magnitude are
most prevalent by using kind='bar':

>>> quakes.magType.value_counts().plot(
... kind='bar', rot=0,
... title='Earthquakes Recorded per magType'
...)

label the axes (discussed in ch 6)
>>> plt.xlabel('magType')
>>> plt.ylabel('earthquakes')

It appears that ml is, by far, the most common method for measuring earthquake
magnitudes. This makes sense since it is the original magnitude relationship defined
by Richter and Gutenberg in 1935 for local earthquakes, according to the USGS page
explaining the magType field in the dataset we are using (https://www.usgs.gov/
natural-hazards/earthquake-hazards/science/magnitude-types):

Figure 5.35 – Comparing category counts

https://www.usgs.gov/natural-hazards/earthquake-hazards/science/magnitude-types
https://www.usgs.gov/natural-hazards/earthquake-hazards/science/magnitude-types

308 Visualizing Data with Pandas and Matplotlib

Say we want to see how many earthquakes of a given magnitude there were and to
distinguish them by magType. This shows us a few things in a single plot:

• Which magnitudes occur most often across magType.

• The relative ranges of magnitude that each magType yields.

• The most common values for magType.

To do so, we can make a stacked bar plot. First, we will round all magnitudes down to
the nearest integer. This means that all earthquakes will be marked as the part of the
magnitude before the decimal point (for example, 5.5 gets marked as 5, just like 5.7, 5.2,
and 5.0). Next, we will need to create a pivot table with the magnitude in the index and
the magnitude type along the columns; we will count the number of earthquakes for the
values:

>>> pivot = quakes.assign(
... mag_bin=lambda x: np.floor(x.mag)
...).pivot_table(
... index='mag_bin',
... columns='magType',
... values='mag',
... aggfunc='count'
...)

Once we have the pivot table, we can create a stacked bar plot by passing in
stacked=True when plotting:

>>> pivot.plot.bar(
... stacked=True,
... rot=0,
... title='Earthquakes by integer magnitude and magType'
...)
>>> plt.ylabel('earthquakes') # label axes (discussed in ch 6)

Plotting with pandas 309

This results in the following plot, which shows that most of the earthquakes are measured
with the ml magnitude type and have magnitudes below four:

Figure 5.36 – Stacked bar plot

The other bars are dwarfed in comparison to ml, which makes it difficult for us to see
which magnitude types assign higher magnitudes to earthquakes. To address this, we
can make a normalized stacked bar plot. Rather than showing the count of earthquakes
for each combination of magnitude and magType, we will show what percentage of
earthquakes of a given magnitude used each magType:

>>> normalized_pivot = \
... pivot.fillna(0).apply(lambda x: x / x.sum(), axis=1)
...
>>> ax = normalized_pivot.plot.bar(
... stacked=True, rot=0, figsize=(10, 5),
... title='Percentage of earthquakes by integer magnitude '
... 'for each magType'
...)
>>> ax.legend(bbox_to_anchor=(1, 0.8)) # move legend
>>> plt.ylabel('percentage') # label axes (discussed in ch 6)

310 Visualizing Data with Pandas and Matplotlib

Now, we can easily see that mww yields higher magnitudes and that ml appears to be
spread across the lower end of the spectrum:

Figure 5.37 – Normalized stacked bar plot

Note that we can also use this strategy with a call to the groupby() and then
unstack() methods. Let's revisit the frequency of a tsunami accompanying an
earthquake plot, but rather than use grouped bars, we will stack them:

>>> quakes.groupby(['parsed_place', 'tsunami']).mag.count()\
... .unstack().apply(lambda x: x / x.sum(), axis=1)\
... .rename(columns={0: 'no', 1: 'yes'})\
... .sort_values('yes', ascending=False)[7::-1]\
... .plot.barh(
... title='Frequency of a tsunami accompanying '
... 'an earthquake',
... stacked=True
...)

move legend to the right of the plot
>>> plt.legend(title='tsunami?', bbox_to_anchor=(1, 0.65))

label the axes (discussed in chapter 6)
>>> plt.xlabel('percentage of earthquakes')
>>> plt.ylabel('')

The pandas.plotting module 311

This stacked bar plot makes it very easy for us to compare the frequencies of tsunamis
across different places:

Figure 5.38 – Normalized stacked bar plot with a group by

Categorical data limits us in terms of the types of plots we can use, but there are
some alternatives to the bar plot. We will take a look at them in the Utilizing seaborn
for advanced plotting section in the next chapter; for now, let's take a look at the
pandas.plotting module.

The pandas.plotting module
In the Plotting with pandas section, we covered standard plots that pandas has provided
easier implementations for. However, pandas also has a module (which is appropriately
named plotting) with special plots that we can use on our data. Note that the
customization options of these may be more limited because of how they are composed
and returned to us.

312 Visualizing Data with Pandas and Matplotlib

We will be working in the 3-pandas_plotting_module.ipynb notebook for this
section. As usual, we will begin with our imports and reading in the data; we will only be
using the Facebook data here:

>>> %matplotlib inline
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> import pandas as pd

>>> fb = pd.read_csv(
... 'data/fb_stock_prices_2018.csv',
... index_col='date',
... parse_dates=True
...)

Now, let's take a tour of some of the plots available in the pandas.plotting module
and learn how we can utilize the resulting visualizations in our EDA.

Scatter matrices
Earlier in this chapter, we discussed using scatter plots to show relationships among
variables. Often, we want to see these for each combination of variables in the data,
which can be tedious to execute. The pandas.plotting module contains the
scatter_matrix() function, which makes this much easier. Let's use it to view the
scatter plots for each combination of columns in our Facebook stock prices data:

>>> from pandas.plotting import scatter_matrix
>>> scatter_matrix(fb, figsize=(10, 10))

The pandas.plotting module 313

This results in the following plot matrix, which is often used in machine learning to see
which variables could be useful in building a model. We can easily see that we have strong
positive correlations between the opening, high, low, and closing prices:

Figure 5.39 – Pandas scatter matrix

314 Visualizing Data with Pandas and Matplotlib

By default, on the diagonal, where the column is paired with itself, we get its histogram.
Alternatively, we can ask for the KDE by passing in diagonal='kde':

>>> scatter_matrix(fb, figsize=(10, 10), diagonal='kde')

This results in a scatter matrix with KDEs along the diagonal instead of histograms:

Figure 5.40 – Scatter matrix with KDEs

The pandas.plotting module 315

While a scatter matrix makes it easy to examine the relationships between our variables,
sometimes, we are interested in autocorrelation, which means that the time series is
correlated with a lagged version of itself. One way to visualize this is with a lag plot.

Lag plots
We can use a lag plot to check for relationships among values at a given time to those
a certain number of periods before that time; that is, for a 1-period lag, we create a scatter
plot of data[:-1] (all but the last entry) and data[1:] (from the second entry to the
last one).

If our data is random, this plot will have no pattern. Let's test this with some random data
generated with NumPy:

>>> from pandas.plotting import lag_plot
>>> np.random.seed(0) # make this repeatable
>>> lag_plot(pd.Series(np.random.random(size=200)))

The random data points don't indicate any pattern, just random noise:

Figure 5.41 – Lag plot of random noise

With our stock data, we know that the prices on a given day are determined by what
happened the day before; therefore, we would expect to see a pattern in the lag plot.
Let's use the closing price of Facebook's stock to test whether our intuition is correct:

>>> lag_plot(fb.close)

316 Visualizing Data with Pandas and Matplotlib

As expected, this results in a linear pattern:

Figure 5.42 – Lag plot of Facebook stock prices

We can also specify the number of periods to use for the lag. The default lag is one, but we
can change this with the lag parameter. For example, we can compare each value to the
value of the week prior with lag=5 (remember that the stock data only contains data for
weekdays since the market is closed on the weekends):

>>> lag_plot(fb.close, lag=5)

This still yields a strong correlation, but, compared to Figure 5.42, it definitely looks
weaker:

Figure 5.43 – Customizing the number of periods for the lag plot

The pandas.plotting module 317

While lag plots help us visualize autocorrelation, they don't show us how many periods of
autocorrelation our data contains. For this purpose, we can use autocorrelation plots.

Autocorrelation plots
Pandas provides an additional way for us to look for autocorrelation in our data with the
autocorrelation_plot() function, which shows the autocorrelation by the number
of lags. Random data will be near an autocorrelation of zero.

As we did when discussing lag plots, let's first examine what this looks like for random
data generated with NumPy:

>>> from pandas.plotting import autocorrelation_plot
>>> np.random.seed(0) # make this repeatable
>>> autocorrelation_plot(pd.Series(np.random.random(size=200)))

Indeed, the autocorrelation is near zero, and the line is within the confidence bands (99%
is dashed; 95% is solid):

Figure 5.44 – Autocorrelation plot of random data

Let's explore what the autocorrelation plot looks like for the closing price of Facebook's
stock, since the lag plots indicated several periods of autocorrelation:

>>> autocorrelation_plot(fb.close)

318 Visualizing Data with Pandas and Matplotlib

Here, we can see that there is autocorrelation for many lag periods before it becomes
noise:

Figure 5.45 – Autocorrelation plot of Facebook stock prices

Tip
Recall from Chapter 1, Introduction to Data Analysis, that one of the
components in an ARIMA model is the autoregressive component. The
autocorrelation plot can be used to help determine the number of time lags to
use. We will build an ARIMA model in Chapter 7, Financial Analysis – Bitcoin
and the Stock Market.

Bootstrap plots
Pandas also provides a plotting function for assessing the uncertainty of common
summary statistics via bootstrapping. The function will take the specified number
of random samples of a given size (with replacement) from the variable in question
(the samples and size parameters, respectively) and calculate the summary statistics.
Then, it will return a visualization of the results.

Let's see what the uncertainty for the summary statistics of the volume traded data
looks like:

>>> from pandas.plotting import bootstrap_plot
>>> fig = bootstrap_plot(
... fb.volume, fig=plt.figure(figsize=(10, 6))
...)

Summary 319

This results in the following subplots, which we can use to assess the uncertainty in the
mean, median, and midrange (the midpoint of the range):

Figure 5.46 – Pandas bootstrap plot

This was a sample of a few of the functions in the pandas.plotting module. For
the full list, check out https://pandas.pydata.org/pandas-docs/stable/
reference/plotting.html.

Summary
Now that we've completed this chapter, we are well-equipped to quickly create a variety
of visualizations in Python using pandas and matplotlib. We now understand the
basics of how matplotlib works and the main components of a plot. Additionally,
we discussed various plot types and the situations in which to use them—a crucial
component of data visualization is choosing the appropriate plot. Be sure to check
out the Choosing the appropriate visualization section in the Appendix for future reference.

https://pandas.pydata.org/pandas-docs/stable/reference/plotting.html
https://pandas.pydata.org/pandas-docs/stable/reference/plotting.html

320 Visualizing Data with Pandas and Matplotlib

Note that the best practices for visualization don't just apply to the plot type, but also
to the formatting of the plot, which we will discuss in the next chapter. In addition to
this, we will build upon the foundation we laid here to discuss additional plots using
seaborn and how to customize our plots using matplotlib. Be sure to complete the
end-of-chapter exercises to practice plotting before moving on, as we will be building on
this chapter's material.

Exercises
Create the following visualizations using what you have learned up to this point in this
book. Use the data from this chapter's data/ directory:

1. Plot the rolling 20-day minimum of the Facebook closing price using pandas.

2. Create a histogram and KDE of the change from open to close in the price of
Facebook stock.

3. Using the earthquake data, create box plots for the magnitudes of each magType
used in Indonesia.

4. Make a line plot of the difference between the weekly maximum high price and the
weekly minimum low price for Facebook. This should be a single line.

5. Plot the 14-day moving average of the daily change in new COVID-19 cases in
Brazil, China, India, Italy, Spain, and the USA:

a) First, use the diff() method that was introduced in the Working with time
series data section of Chapter 4, Aggregating Pandas DataFrames, to calculate the
day-over-day change in new cases. Then, use rolling() to calculate the 14-day
moving average.

b) Make three subplots: one for China; one for Spain and Italy; and one for Brazil,
India, and the USA.

6. Using matplotlib and pandas, create two subplots side-by-side showing the
effect that after-hours trading has had on Facebook's stock prices:

a) The first subplot will contain a line plot of the daily difference between that day's
opening price and the prior day's closing price (be sure to review the Working
with time series data section of Chapter 4, Aggregating Pandas DataFrames, for an
easy way to do this).

b) The second subplot will be a bar plot showing the net effect this had monthly,
using resample().

Further reading 321

c) Bonus #1: Color the bars according to whether there are gains in the stock price
(green) or drops in the stock price (red).

d) Bonus #2: Modify the x-axis of the bar plot to show the three-letter abbreviation
for the month.

Further reading
Take a look at the following resources for additional information on the concepts that
were discussed in this chapter:

• Bootstrapping (statistics): https://en.wikipedia.org/wiki/
Bootstrapping_(statistics)

• Data Visualization – Best Practices and Foundations: https://www.toptal.
com/designers/data-visualization/data-visualization-best-
practices

• How to Create Animated Graphs in Python (with matplotlib): https://
towardsdatascience.com/how-to-create-animated-graphs-in-
python-bb619cc2dec1

• Interactive Plots with JavaScript (D3.js): https://d3js.org/

• Intro to Animations in Python (with plotly): https://plot.ly/python/
animations/

• IPython: Built-in magic commands: https://ipython.readthedocs.io/
en/stable/interactive/magics.html

• The Importance of Integrity: How Plot Parameters Influence Interpretation:
https://www.t4g.com/insights/plot-parameters-influence-
interpretation/

• 5 Python Libraries for Creating Interactive Plots: https://mode.com/blog/
python-interactive-plot-libraries/

https://en.wikipedia.org/wiki/Bootstrapping_(statistics)
https://en.wikipedia.org/wiki/Bootstrapping_(statistics)
https://www.toptal.com/designers/data-visualization/data-visualization-best-practices
https://www.toptal.com/designers/data-visualization/data-visualization-best-practices
https://www.toptal.com/designers/data-visualization/data-visualization-best-practices
https://towardsdatascience.com/how-to-create-animated-graphs-in-python-bb619cc2dec1
https://towardsdatascience.com/how-to-create-animated-graphs-in-python-bb619cc2dec1
https://towardsdatascience.com/how-to-create-animated-graphs-in-python-bb619cc2dec1
https://d3js.org/
https://plot.ly/python/animations/
https://plot.ly/python/animations/
https://ipython.readthedocs.io/en/stable/interactive/magics.html
https://ipython.readthedocs.io/en/stable/interactive/magics.html
https://www.t4g.com/insights/plot-parameters-influence-interpretation/
https://www.t4g.com/insights/plot-parameters-influence-interpretation/
https://mode.com/blog/python-interactive-plot-libraries/
https://mode.com/blog/python-interactive-plot-libraries/

6
Plotting with
Seaborn and

Customization
Techniques

In the previous chapter, we learned how to create many different visualizations using
matplotlib and pandas on wide-format data. In this chapter, we will see how we can
make visualizations from long-format data, using seaborn, and how to customize our
plots to improve their interpretability. Remember that the human brain excels at finding
patterns in visual representations; by making clear and meaningful data visualizations,
we can help others (not to mention ourselves) understand what the data is trying to say.

324 Plotting with Seaborn and Customization Techniques

Seaborn is capable of making many of the same plots we created in the previous chapter;
however, it also makes quick work of long-format data, allowing us to use subsets of our
data to encode additional information into our visualizations, such as facets and/or colors
for different categories. We will walk through some implementations of what we did in
the previous chapter that are easier (or just more aesthetically pleasing) using seaborn,
such as heatmaps and pair plots (the seaborn equivalent of the scatter plot matrix). In
addition, we will explore some new plot types that seaborn provides to address issues
that other plot types may be susceptible to.

Afterward, we will change gears and begin our discussion on customizing the appearance
of our data visualizations. We will walk through the process of creating annotations,
adding reference lines, properly labeling our plots, controlling the color palette used,
and tailoring the axes to meet our needs. This is the final piece we need to make our
visualizations ready to present to others.

In this chapter, we will cover the following topics:

• Utilizing seaborn for more advanced plot types

• Formatting plots with matplotlib

• Customizing visualizations

Chapter materials
The materials for this chapter can be found on GitHub at https://github.com/
stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/
master/ch_06. We will be working with three datasets once again, all of which can
be found in the data/ directory. In the fb_stock_prices_2018.csv file, we have
Facebook's stock price for all trading days in 2018. This data is the OHLC data (opening,
high, low, and closing price), along with the volume traded. It was gathered using the
stock_analysis package, which we will build in Chapter 7, Financial Analysis –
Bitcoin and the Stock Market. The stock market is closed on the weekends, so we only have
data for the trading days.

The earthquakes.csv file contains earthquake data pulled from the United States
Geological Survey (USGS) API (https://earthquake.usgs.gov/fdsnws/
event/1/) for September 18, 2018, through October 13, 2018. For each earthquake,
we have the magnitude (the mag column), the scale it was measured on (the magType
column), when (the time column), and where (the place column) it occurred; we also
have the parsed_place column, which indicates the state or country in which the
earthquake occurred (we added this column back in Chapter 2, Working with Pandas
DataFrames). Other unnecessary columns have been removed.

https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/ch_06
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/ch_06
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/ch_06
https://earthquake.usgs.gov/fdsnws/event/1/
https://earthquake.usgs.gov/fdsnws/event/1/

Utilizing seaborn for advanced plotting 325

In the covid19_cases.csv file, we have an export from the daily number of new
reported cases of COVID-19 by country worldwide dataset provided by the European
Centre for Disease Prevention and Control (ECDC), which can be found at https://
www.ecdc.europa.eu/en/publications-data/download-todays-
data-geographic-distribution-covid-19-cases-worldwide. For
scripted or automated collection of this data, the ECDC makes the current day's CSV
file available via this link: https://opendata.ecdc.europa.eu/covid19/
casedistribution/csv. The snapshot we will be using was collected on
September 19, 2020 and contains the number of new COVID-19 cases per country
from December 31, 2019 through September 18, 2020 with partial data for September 19,
2020. For this chapter, we will look at the 8-month span from January 18, 2020 through
September 18, 2020.

Throughout this chapter, we will be working through three Jupyter Notebooks. These are
all numbered according to their order of use. We will begin exploring the capabilities of
seaborn in the 1-introduction_to_seaborn.ipynb notebook. Next, we will
move on to the 2-formatting_plots.ipynb notebook as we discuss formatting
and labeling our plots. Finally, in the 3-customizing_visualizations.ipynb
notebook, we will learn how to add reference lines, shade regions, include annotations,
and customize our visualizations. The text will prompt us when to switch notebooks.

Tip
The supplementary covid19_cases_map.ipynb notebook walks
through an example of plotting data on a map using COVID-19 cases
worldwide. It can be used to get started with maps in Python and also builds
upon some of the formatting we will discuss in this chapter.

In addition, we have two Python (.py) files that contain functions we will use throughout
the chapter: viz.py and color_utils.py. Let's get started by exploring seaborn.

Utilizing seaborn for advanced plotting
As we saw in the previous chapter, pandas provides implementations for most
visualizations we would want to create; however, there is another library, seaborn, that
provides additional functionality for more involved visualizations and makes creating
visualizations with long-format data much easier than pandas. These also tend to look
much nicer than standard visualizations generated by matplotlib.

https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide
https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide
https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide
https://opendata.ecdc.europa.eu/covid19/casedistribution/csv
https://opendata.ecdc.europa.eu/covid19/casedistribution/csv

326 Plotting with Seaborn and Customization Techniques

For this section, we will be working with the 1-introduction_to_seaborn.ipynb
notebook. First, we must import seaborn, which is traditionally aliased as sns:

>>> import seaborn as sns

Let's also import numpy, matplotlib.pyplot, and pandas, and then read in the
CSV files for the Facebook stock prices and earthquake data:

>>> %matplotlib inline
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> import pandas as pd

>>> fb = pd.read_csv(
... 'data/fb_stock_prices_2018.csv',
... index_col='date',
... parse_dates=True
...)
>>> quakes = pd.read_csv('data/earthquakes.csv')

While seaborn offers alternatives to many of the plot types we covered in the previous
chapter, for the most part, we will only cover new types that seaborn makes possible
and leave learning about the rest as an exercise. Additional available functions using the
seaborn API can be found at https://seaborn.pydata.org/api.html.

Categorical data
There was a devastating tsunami in Indonesia on September 28, 2018; it came after a 7.5
magnitude earthquake occurred near Palu, Indonesia (https://www.livescience.
com/63721-tsunami-earthquake-indonesia.html). Let's create a visualization
to understand which magnitude types are used in Indonesia, the range of magnitudes
recorded, and how many of the earthquakes were accompanied by a tsunami. To do this,
we need a way to plot relationships in which one of the variables is categorical (magType)
and the other is numeric (mag).

Important note
Information on the different magnitude types can be found at https://
www.usgs.gov/natural-hazards/earthquake-hazards/
science/magnitude-types.

https://seaborn.pydata.org/api.html
https://www.livescience.com/63721-tsunami-earthquake-indonesia.html
https://www.livescience.com/63721-tsunami-earthquake-indonesia.html
https://www.usgs.gov/natural-hazards/earthquake-hazards/science/magnitude-types
https://www.usgs.gov/natural-hazards/earthquake-hazards/science/magnitude-types
https://www.usgs.gov/natural-hazards/earthquake-hazards/science/magnitude-types

Utilizing seaborn for advanced plotting 327

When we discussed scatter plots in Chapter 5, Visualizing Data with Pandas and
Matplotlib, we were limited to both variables being numeric; however, with seaborn,
we have two additional plot types at our disposal that allow us to have one categorical
and one numeric variable. The first is the stripplot() function, which plots the points
in strips that denote each category. The second is the swarmplot() function, which we
will see later.

Let's create this visualization with stripplot(). We pass the subset of earthquakes
occurring in Indonesia to the data parameter, and specify that we want to put magType
on the x-axis (x), magnitudes on the y-axis (y), and color the points by whether the
earthquake was accompanied by a tsunami (hue):

>>> sns.stripplot(
... x='magType',
... y='mag',
... hue='tsunami',
... data=quakes.query('parsed_place == "Indonesia"')
...)

Using the resulting plot, we can see that the earthquake in question is the highest orange
point in the mww column (don't forget to call plt.show() if not using the Jupyter
Notebook provided):

Figure 6.1 – Seaborn's strip plot

328 Plotting with Seaborn and Customization Techniques

For the most part, the tsunamis occurred with higher magnitude earthquakes, as we
would expect; however, due to the high concentration of points at lower magnitudes,
we can't really see all the points. We could try to adjust the jitter argument, which
controls how much random noise to add to the point in an attempt to reduce overlaps, or
the alpha argument for transparency, as we did in the previous chapter; fortunately, there
is another function, swarmplot(), that will reduce the overlap as much as possible, so
we will use that instead:

>>> sns.swarmplot(
... x='magType',
... y='mag',
... hue='tsunami',
... data=quakes.query('parsed_place == "Indonesia"'),
... size=3.5 # point size
...)

The swarm plot (or bee swarm plot) also has the bonus of giving us a glimpse of what the
distribution might be. We can now see many more earthquakes in the lower section of the
mb column:

Figure 6.2 – Seaborn's swarm plot

Utilizing seaborn for advanced plotting 329

In the Plotting with pandas section in the previous chapter, when we discussed how to
visualize distributions, we discussed the box plot. Seaborn provides an enhanced box
plot for large datasets, which shows additional quantiles for more information on the
shape of the distribution, particularly in the tails. Let's use the enhanced box plot to
compare earthquake magnitudes across different magnitude types, as we did in Chapter 5,
Visualizing Data with Pandas and Matplotlib:

>>> sns.boxenplot(
... x='magType', y='mag', data=quakes[['magType', 'mag']]
...)
>>> plt.title('Comparing earthquake magnitude by magType')

This results in the following plot:

Figure 6.3 – Seaborn's enhanced box plot

Tip
The enhanced box plot was introduced in the paper Letter-value plots: Boxplots
for large data, by Heike Hofmann, Karen Kafadar, and Hadley Wickham, which
can be found at https://vita.had.co.nz/papers/letter-
value-plot.html.

https://vita.had.co.nz/papers/letter-value-plot.html
https://vita.had.co.nz/papers/letter-value-plot.html

330 Plotting with Seaborn and Customization Techniques

Box plots are great for visualizing the quantiles of our data, but we lose information about
the distribution. As we saw, an enhanced box plot is one way to address this—another
strategy is to use a violin plot, which combines a kernel density estimate (estimation of the
underlying distribution) and a box plot:

>>> fig, axes = plt.subplots(figsize=(10, 5))
>>> sns.violinplot(
... x='magType', y='mag', data=quakes[['magType', 'mag']],
... ax=axes, scale='width' # all violins have same width
...)
>>> plt.title('Comparing earthquake magnitude by magType')

The box plot portion runs through the center of each violin plot; the kernel density
estimate (KDE) is then drawn on both sides using the box plot as its x-axis. We can read
the KDE from either side of the box plot since it is symmetrical:

Figure 6.4 – Seaborn's violin plot

Utilizing seaborn for advanced plotting 331

The seaborn documentation also lists out the plotting functions by the type of data
being plotted; the full offering of categorical plots is available at https://seaborn.
pydata.org/api.html#categorical-plots. Be sure to check out the
countplot() and barplot() functions for variations on the bar plots we created with
pandas in the previous chapter.

Correlations and heatmaps
As promised, let's learn an easier way to generate heatmaps compared to what we had
to do in Chapter 5, Visualizing Data with Pandas and Matplotlib. Once again, we will make
a heatmap of the correlations between the OHLC stock prices, the log of volume traded,
and the daily difference between the highest and lowest prices (max_abs_change);
however, this time, we will use seaborn, which gives us the heatmap() function for an
easier way to produce this visualization:

>>> sns.heatmap(
... fb.sort_index().assign(
... log_volume=np.log(fb.volume),
... max_abs_change=fb.high - fb.low
...).corr(),
... annot=True,
... center=0,
... vmin=-1,
... vmax=1
...)

Tip
When using seaborn, we can still use functions from matplotlib, such
as plt.savefig() and plt.tight_layout(). Note that if there are
issues with plt.tight_layout(), pass bbox_inches='tight' to
plt.savefig() instead.

https://seaborn.pydata.org/api.html#categorical-plots
https://seaborn.pydata.org/api.html#categorical-plots

332 Plotting with Seaborn and Customization Techniques

We pass in center=0 so that seaborn puts values of 0 (no correlation) at the center of
the colormap it uses. In order to set the bounds of the color scale to that of the correlation
coefficient, we need to provide vmin=-1 and vmax=1 as well. Notice that we also passed
in annot=True to write the correlation coefficients in each box—we get the benefit of
the numerical data and the visual data all in one plot with a single function call:

Figure 6.5 – Seaborn's heatmap

Seaborn also provides us with an alternative to the scatter_matrix() function
provided in the pandas.plotting module, called pairplot(). We can use this
to see the correlations between the columns in the Facebook data as scatter plots instead
of the heatmap:

>>> sns.pairplot(fb)

Utilizing seaborn for advanced plotting 333

This result makes it easy to understand the near-perfect positive correlation between the
OHLC columns shown in the heatmap, while also showing us histograms for each column
along the diagonal:

Figure 6.6 – Seaborn's pair plot

Facebook's performance in the latter half of 2018 was markedly worse than in the first
half, so we may be interested to see how the distribution of the data changed each quarter
of the year. As with the pandas.plotting.scatter_matrix() function, we can
specify what to do along the diagonal with the diag_kind argument; however, unlike
pandas, we can easily color everything based on other data with the hue argument. To
do so, we just add the quarter column and then provide it to the hue argument:

>>> sns.pairplot(
... fb.assign(quarter=lambda x: x.index.quarter),
... diag_kind='kde', hue='quarter'
...)

334 Plotting with Seaborn and Customization Techniques

We can now see how the distributions of the OHLC columns had lower standard
deviations (and, subsequently, lower variances) in the first quarter and how the stock
price lost a lot of ground in the fourth quarter (the distribution shifts to the left):

Figure 6.7 – Utilizing the data to determine plot colors

Tip
We can also pass kind='reg' to pairplot() to show regression lines.

Utilizing seaborn for advanced plotting 335

If we only want to compare two variables, we can use jointplot(), which will give us
a scatter plot along with the distribution of each variable along the side. Let's look once
again at how the log of volume traded correlates with the difference between the daily
high and low prices in Facebook stock, as we did in Chapter 5, Visualizing Data with
Pandas and Matplotlib:

>>> sns.jointplot(
... x='log_volume',
... y='max_abs_change',
... data=fb.assign(
... log_volume=np.log(fb.volume),
... max_abs_change=fb.high - fb.low
...)
...)

Using the default value for the kind argument, we get histograms for the distributions
and a plain scatter plot in the center:

Figure 6.8 – Seaborn's joint plot

336 Plotting with Seaborn and Customization Techniques

Seaborn gives us plenty of alternatives for the kind argument. For example, we can use
hexbins because there is a significant overlap when we use the scatter plot:

>>> sns.jointplot(
... x='log_volume',
... y='max_abs_change',
... kind='hex',
... data=fb.assign(
... log_volume=np.log(fb.volume),
... max_abs_change=fb.high - fb.low
...)
...)

We can now see the large concentration of points in the lower-left corner:

Figure 6.9 – Joint plot using hexbins

Utilizing seaborn for advanced plotting 337

Another way of viewing the concentration of values is to use kind='kde', which gives
us a contour plot to represent the joint density estimate along with KDEs for each of the
variables:

>>> sns.jointplot(
... x='log_volume',
... y='max_abs_change',
... kind='kde',
... data=fb.assign(
... log_volume=np.log(fb.volume),
... max_abs_change=fb.high - fb.low
...)
...)

Each curve in the contour plot contains points of a given density:

Figure 6.10 – Joint distribution plot

338 Plotting with Seaborn and Customization Techniques

Furthermore, we can plot a regression in the center and get KDEs in addition to
histograms along the sides:

>>> sns.jointplot(
... x='log_volume',
... y='max_abs_change',
... kind='reg',
... data=fb.assign(
... log_volume=np.log(fb.volume),
... max_abs_change=fb.high - fb.low
...)
...)

This results in a linear regression line being drawn through the scatter plot, along with a
confidence band surrounding the line in a lighter color:

Figure 6.11 – Joint plot with linear regression and KDEs

Utilizing seaborn for advanced plotting 339

The relationship appears to be linear, but we should look at the residuals to check.
Residuals are the observed values minus the values predicted using the regression line.
We can look directly at the residuals that would result from the previous regression with
kind='resid':

>>> sns.jointplot(
... x='log_volume',
... y='max_abs_change',
... kind='resid',
... data=fb.assign(
... log_volume=np.log(fb.volume),
... max_abs_change=fb.high - fb.low
...)
...)
update y-axis label (discussed next section)
>>> plt.ylabel('residuals')

Notice that the residuals appear to be getting further away from zero at higher quantities
of volume traded, which could mean this isn't the right way to model this relationship:

Figure 6.12 – Joint plot showing linear regression residuals

340 Plotting with Seaborn and Customization Techniques

We just saw that we can use jointplot() to get a regression plot or a residuals plot;
naturally, seaborn exposes functions to make these directly without the overhead of
creating the entire joint plot. Let's discuss those next.

Regression plots
The regplot() function will calculate a regression line and plot it, while the
residplot() function will calculate the regression and plot only the residuals.
We can write a function to combine these for us, but first, some setup.

Our function will plot all permutations of any two columns (as opposed to combinations;
order matters with permutations, for example, (open, close) is not equivalent
to (close, open)). This allows us to see each column as the regressor and as the
dependent variable; since we don't know the direction of the relationship, we let the
viewer decide after calling the function. This generates many subplots, so we will create
a new dataframe with just a few columns from our Facebook data.

We'll be looking at the logarithm of the volume traded (log_volume) and the daily
difference between the highest and lowest price of Facebook stock (max_abs_change).
Let's use assign() to create these new columns and save them in a new dataframe called
fb_reg_data:

>>> fb_reg_data = fb.assign(
... log_volume=np.log(fb.volume),
... max_abs_change=fb.high - fb.low
...).iloc[:,-2:]

Next, we need to import itertools, which is part of the Python standard library
(https://docs.python.org/3/library/itertools.html). When writing
plotting functions, itertools can be extremely helpful; it makes it very easy to create
efficient iterators for things such as permutations, combinations, and infinite cycles or
repeats:

>>> import itertools

Iterables are objects that can be iterated over. When we start a loop, an iterator is
created from the iterable. At each iteration, the iterator provides its next value, until it
is exhausted; this means that once we complete a single iteration through all its items,
there is nothing left, and it can't be reused. Iterators are iterables, but not all iterables are
iterators. Iterables that aren't iterators can be used repeatedly.

https://docs.python.org/3/library/itertools.html

Utilizing seaborn for advanced plotting 341

The iterators we get back when using itertools can only be used once through:

>>> iterator = itertools.repeat("I'm an iterator", 1)

>>> for i in iterator:
... print(f'-->{i}')
-->I'm an iterator

>>> print(
... 'This printed once because the iterator '
... 'has been exhausted'
...)
This printed once because the iterator has been exhausted

>>> for i in iterator:
... print(f'-->{i}')

A list, on the other hand, is an iterable; we can write something that loops over all the
elements in the list, and we will still have a list for later reuse:

>>> iterable = list(itertools.repeat("I'm an iterable", 1))

>>> for i in iterable:
... print(f'-->{i}')
-->I'm an iterable

>>> print('This prints again because it\'s an iterable:')
This prints again because it's an iterable:

>>> for i in iterable:
... print(f'-->{i}')
-->I'm an iterable

342 Plotting with Seaborn and Customization Techniques

Now that we have some background on itertools and iterators, let's write the function
for our regression and residuals permutation plots:

def reg_resid_plots(data):
 """
 Using `seaborn`, plot the regression and residuals plots
 side-by-side for every permutation of 2 columns in data.

 Parameters:
 - data: A `pandas.DataFrame` object

 Returns:
 A matplotlib `Axes` object.
 """
 num_cols = data.shape[1]
 permutation_count = num_cols * (num_cols - 1)

 fig, ax = \
 plt.subplots(permutation_count, 2, figsize=(15, 8))

 for (x, y), axes, color in zip(
 itertools.permutations(data.columns, 2),
 ax,
 itertools.cycle(['royalblue', 'darkorange'])
):
 for subplot, func in zip(
 axes, (sns.regplot, sns.residplot)
):
 func(x=x, y=y, data=data, ax=subplot, color=color)
 if func == sns.residplot:
 subplot.set_ylabel('residuals')
 return fig.axes

In this function, we can see that all the material covered so far in this chapter and from
the previous chapter is coming together; we calculate how many subplots we need,
and since we will have two plots for each permutation, we just need the number of
permutations to determine the row count. We take advantage of the zip() function,
which gives us values from multiple iterables at once in tuples, and tuple unpacking to
easily iterate over the permutation tuples and the 2D NumPy array of Axes objects.
Take some time to make sure you understand what is going on here; there are also
resources on zip() and tuple unpacking in the Further reading section at the end
of this chapter.

Utilizing seaborn for advanced plotting 343

Important note
If we provide different length iterables to zip(), we will only get a number of
tuples equal to the shortest length. For this reason, we can use infinite iterators,
such as those we get when using itertools.repeat(), which repeats
the same value infinitely (when we don't specify the number of times to repeat
the value), and itertools.cycle(), which cycles between all the values
provided infinitely.

Calling our function is effortless, with only a single parameter:

>>> from viz import reg_resid_plots
>>> reg_resid_plots(fb_reg_data)

The first row of subsets is what we saw earlier with the joint plots, and the second row is
the regression when flipping the x and y variables:

Figure 6.13 – Seaborn linear regression and residual plots

Tip
The regplot() function supports polynomial and logistic regression
through the order and logistic parameters, respectively.

344 Plotting with Seaborn and Customization Techniques

Seaborn also makes it easy to plot regressions across different subsets of our data with
lmplot(). We can split our regression plots with hue, col, and row, which will color
by values in a given column, make a new column for each value, and make a new row for
each value, respectively.

We saw that Facebook's performance was different across each quarter of the year, so
let's calculate a regression per quarter with the Facebook stock data, using the volume
traded and the daily difference between the highest and lowest price, to see whether this
relationship also changes:

>>> sns.lmplot(
... x='log_volume',
... y='max_abs_change',
... col='quarter',
... data=fb.assign(
... log_volume=np.log(fb.volume),
... max_abs_change=fb.high - fb.low,
... quarter=lambda x: x.index.quarter
...)
...)

Notice that the regression line in the fourth quarter has a much steeper slope than
previous quarters:

Figure 6.14 – Seaborn linear regression plots with subsets

Utilizing seaborn for advanced plotting 345

Note that the result of running lmplot() is a FacetGrid object, which is a powerful
feature of seaborn. Let's now discuss how we can make these directly with any plot
inside.

Faceting
Faceting allows us to plot subsets (facets) of our data across subplots. We already saw
a few as a result of some seaborn functions; however, we can easily make them for
ourselves for use with any plotting function. Let's create a visualization that will allow
us to compare the distributions of earthquake magnitudes in Indonesia and Papua New
Guinea depending on whether there was a tsunami.

First, we create a FacetGrid object with the data we will be using and define how it will
be subset with the row and col arguments:

>>> g = sns.FacetGrid(
... quakes.query(
... 'parsed_place.isin('
... '["Indonesia", "Papua New Guinea"]) '
... 'and magType == "mb"'
...),
... row='tsunami',
... col='parsed_place',
... height=4
...)

Then, we use the FacetGrid.map() method to run a plotting function on each of the
subsets, passing along any necessary arguments. We will make histograms with KDEs for
the location and tsunami data subsets using the sns.histplot() function:

>>> g = g.map(sns.histplot, 'mag', kde=True)

346 Plotting with Seaborn and Customization Techniques

For both locations, we can see that tsunamis occurred when the earthquake magnitude
was 5.0 or greater:

Figure 6.15 – Plotting with facet grids

This concludes our discussion of the plotting capabilities of seaborn; however, I
encourage you to check out the API (https://seaborn.pydata.org/api.html)
to see additional functionality. Also, be sure to consult the Choosing the appropriate
visualization section in the Appendix as a reference when looking to plot some data.

https://seaborn.pydata.org/api.html

Formatting plots with matplotlib 347

Formatting plots with matplotlib
A big part of making our visualizations presentable is choosing the right plot type and
having them well labeled so they are easy to interpret. By carefully tuning the final
appearance of our visualizations, we make them easier to read and understand.

Let's now move to the 2-formatting_plots.ipynb notebook, run the setup code to
import the packages we need, and read in the Facebook stock data and COVID-19 daily
new cases data:

>>> %matplotlib inline
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> import pandas as pd

>>> fb = pd.read_csv(
... 'data/fb_stock_prices_2018.csv',
... index_col='date',
... parse_dates=True
...)
>>> covid = pd.read_csv('data/covid19_cases.csv').assign(
... date=lambda x: \
... pd.to_datetime(x.dateRep, format='%d/%m/%Y')
...).set_index('date').replace(
... 'United_States_of_America', 'USA'
...).sort_index()['2020-01-18':'2020-09-18']

In the next few sections, we will discuss how to add titles, axis labels, and legends to our
plots, as well as how to customize the axes. Note that everything in this section needs to be
called before running plt.show() or within the same Jupyter Notebook cell if using the
%matplotlib inline magic command.

Titles and labels
Some of the visualizations we have created thus far didn't have titles or axis labels. We
know what is going on in the figure, but if we were to present them to others, there could
be some confusion. It's good practice to be explicit with our labels and titles.

348 Plotting with Seaborn and Customization Techniques

We saw that, when plotting with pandas, we could add a title by passing the title
argument to the plot() method, but we can also do this with matplotlib using
plt.title(). Note that we can pass x/y values to plt.title() to control the
placement of our text. We can also change the font and its size. Labeling our axes is just
as easy; we can use plt.xlabel() and plt.ylabel(). Let's plot the Facebook
closing price and label everything using matplotlib:

>>> fb.close.plot()
>>> plt.title('FB Closing Price')
>>> plt.xlabel('date')
>>> plt.ylabel('price ($)')

This results in the following plot:

Figure 6.16 – Labeling plots with matplotlib

Formatting plots with matplotlib 349

When working with subplots, we have to take a different approach. To see this firsthand,
let's make subplots of Facebook stock's OHLC data and use plt.title() to give the
entire plot a title, along with plt.ylabel() to give each subplot's y-axis a label:

>>> fb.iloc[:,:4]\
... .plot(subplots=True, layout=(2, 2), figsize=(12, 5))
>>> plt.title('Facebook 2018 Stock Data')
>>> plt.ylabel('price ($)')

Using plt.title() puts the title on the last subplot, instead of being the title for the
plots as a whole, as we intended. The same thing happens to the y-axis label:

Figure 6.17 – Labeling subplots can be confusing

In the case of subplots, we want to give the entire figure a title; therefore, we use
plt.suptitle() instead. Conversely, we want to give each subplot a y-axis label,
so we use the set_ylabel() method on each of the Axes objects returned by the
call to plot(). Note that the Axes objects are returned in a NumPy array of the same
dimensions as the subplot layout, so for easier iteration, we call flatten():

>>> axes = fb.iloc[:,:4]\
... .plot(subplots=True, layout=(2, 2), figsize=(12, 5))
>>> plt.suptitle('Facebook 2018 Stock Data')
>>> for ax in axes.flatten():
... ax.set_ylabel('price ($)')

350 Plotting with Seaborn and Customization Techniques

This results in a title for the plot as a whole and y-axis labels for each of the subplots:

Figure 6.18 – Labeling subplots

Note that the Figure class also has a suptitle() method and that the Axes class's
set() method lets us label the axes, title the plot, and much more in a single call, for
example, set(xlabel='…', ylabel='…', title='…', …). Depending on what
we are trying to do, we may need to call methods on Figure or Axes objects directly, so
it's important to be aware of them.

Legends
Matplotlib makes it possible to control many aspects of the legend through the
plt.legend() function and the Axes.legend() method. For example, we can
specify the legend's location and format how the legend looks, including customizing
the fonts, colors, and much more. Both the plt.legend() function and the
 Axes.legend() method can also be used to show a legend when the plot doesn't
have one initially. Here is a sampling of some commonly used parameters:

Formatting plots with matplotlib 351

Figure 6.19 – Helpful parameters for legend formatting

The legend will use the label of each object that was plotted. If we don't want something
to show up, we can make its label an empty string. However, if we simply want to alter
how something shows up, we can pass its display name through the label argument.
Let's plot Facebook stock's closing price and the 20-day moving average, using the label
argument to provide a descriptive name for the legend:

>>> fb.assign(
... ma=lambda x: x.close.rolling(20).mean()
...).plot(
... y=['close', 'ma'],
... title='FB closing price in 2018',
... label=['closing price', '20D moving average'],
... style=['-', '--']
...)
>>> plt.legend(loc='lower left')
>>> plt.ylabel('price ($)')

352 Plotting with Seaborn and Customization Techniques

By default, matplotlib tries to find the best location for the plot, but sometimes it
covers up parts of the plot as in this case. Therefore, we chose to place the legend in the
lower-left corner of the plot. Note that the text in the legend is what we provided in the
label argument to plot():

Figure 6.20 – Moving the legend

Notice that we passed a string to the loc argument to specify the legend location; we also
have the option of passing the code as an integer or a tuple for the (x, y) coordinates
to draw the lower-left corner of the legend box. The following table contains the possible
location strings:

Formatting plots with matplotlib 353

Figure 6.21 – Common legend locations

Let's now take a look at styling the legend with the framealpha, ncol, and title
arguments. We will plot the percentage of the world's daily new COVID-19 cases that
occurred in Brazil, China, Italy, Spain, and the USA over the 8-month period from
January 18, 2020 through September 18, 2020. In addition, we will remove the top and
right spines of the plot to make it look cleaner:

>>> new_cases = covid.reset_index().pivot(
... index='date',
... columns='countriesAndTerritories',
... values='cases'
...).fillna(0)

>>> pct_new_cases = new_cases.apply(
... lambda x: x / new_cases.apply('sum', axis=1), axis=0
...)[
... ['Italy', 'China', 'Spain', 'USA', 'India', 'Brazil']
...].sort_index(axis=1).fillna(0)

354 Plotting with Seaborn and Customization Techniques

>>> ax = pct_new_cases.plot(
... figsize=(12, 7),
... style=['-'] * 3 + ['--', ':', '-.'],
... title='Percentage of the World\'s New COVID-19 Cases'
... '\n(source: ECDC)'
...)

>>> ax.legend(title='Country', framealpha=0.5, ncol=2)
>>> ax.set_xlabel('')
>>> ax.set_ylabel('percentage of the world\'s COVID-19 cases')

>>> for spine in ['top', 'right']:
... ax.spines[spine].set_visible(False)

Our legend is neatly arranged in two columns and contains a title. We also increased the
transparency of the legend's border:

Figure 6.22 – Formatting the legend

Formatting plots with matplotlib 355

Tip
Don't get overwhelmed trying to memorize all of the available options. It is
easier if we don't try to learn every possible customization, but rather look up
the functionality that matches what we have in mind for our visualization when
needed.

Formatting axes
Back in Chapter 1, Introduction to Data Analysis, we discussed how our axis limits
can make for misleading plots if we aren't careful. We have the option of passing this
as a tuple to the xlim/ylim arguments when using the plot() method from pandas.
Alternatively, with matplotlib, we can adjust the limits of each axis with the
plt.xlim()/plt.ylim() function or the set_xlim()/set_ylim() method
on an Axes object. We pass values for the minimum and maximum, separately; if we
want to keep what was automatically generated, we can pass in None. Let's modify the
previous plot of the percentage of the world's daily new COVID-19 cases per country
to start the y-axis at zero:

>>> ax = pct_new_cases.plot(
... figsize=(12, 7),
... style=['-'] * 3 + ['--', ':', '-.'],
... title='Percentage of the World\'s New COVID-19 Cases'
... '\n(source: ECDC)'
...)

>>> ax.legend(framealpha=0.5, ncol=2)
>>> ax.set_xlabel('')
>>> ax.set_ylabel('percentage of the world\'s COVID-19 cases')
>>> ax.set_ylim(0, None)

>>> for spine in ['top', 'right']:
... ax.spines[spine].set_visible(False)

356 Plotting with Seaborn and Customization Techniques

Notice that the y-axis now begins at zero:

Figure 6.23 – Updating axis limits with matplotlib

If we instead want to change the scale of the axis, we can use plt.xscale()/
plt.yscale() and pass the type of scale we want. So, plt.yscale('log'),
for example, will use the log scale for the y-axis; we saw how to do this with pandas
in the previous chapter.

We can also control which tick marks show up and what they are labeled as by passing
in the tick locations and labels to plt.xticks() or plt.yticks(). Note that we
can also call these functions to obtain the tick locations and labels. For example, since our
data starts and ends on the 18th of the month, let's move the tick marks in the previous
plot to the 18th of each month and then label the ticks accordingly:

>>> ax = pct_new_cases.plot(
... figsize=(12, 7),
... style=['-'] * 3 + ['--', ':', '-.'],
... title='Percentage of the World\'s New COVID-19 Cases'
... '\n(source: ECDC)'
...)

Formatting plots with matplotlib 357

>>> tick_locs = covid.index[covid.index.day == 18].unique()
>>> tick_labels = \
... [loc.strftime('%b %d\n%Y') for loc in tick_locs]
>>> plt.xticks(tick_locs, tick_labels)

>>> ax.legend(framealpha=0.5, ncol=2)
>>> ax.set_xlabel('')
>>> ax.set_ylabel('percentage of the world\'s COVID-19 cases')
>>> ax.set_ylim(0, None)

>>> for spine in ['top', 'right']:
... ax.spines[spine].set_visible(False)

After moving the tick marks, we have a tick label on the first data point in the plot
(January 18, 2020) and on the last (September 18, 2020):

Figure 6.24 – Editing tick labels

358 Plotting with Seaborn and Customization Techniques

We are currently representing the percentages as decimals, but we may wish to format
the labels to be written using the percent sign. Note that there is no need to use the
plt.yticks() function to do so; instead, we can use the PercentFormatter class
from the matplotlib.ticker module:

>>> from matplotlib.ticker import PercentFormatter

>>> ax = pct_new_cases.plot(
... figsize=(12, 7),
... style=['-'] * 3 + ['--', ':', '-.'],
... title='Percentage of the World\'s New COVID-19 Cases'
... '\n(source: ECDC)'
...)

>>> tick_locs = covid.index[covid.index.day == 18].unique()
>>> tick_labels = \
... [loc.strftime('%b %d\n%Y') for loc in tick_locs]
>>> plt.xticks(tick_locs, tick_labels)

>>> ax.legend(framealpha=0.5, ncol=2)
>>> ax.set_xlabel('')
>>> ax.set_ylabel('percentage of the world\'s COVID-19 cases')
>>> ax.set_ylim(0, None)
>>> ax.yaxis.set_major_formatter(PercentFormatter(xmax=1))

>>> for spine in ['top', 'right']:
... ax.spines[spine].set_visible(False)

By specifying xmax=1, we are indicating that our values should be divided by 1 (since
they are already percentages), before multiplying by 100 and appending the percent sign.
This results in percentages along the y-axis:

Formatting plots with matplotlib 359

Figure 6.25 – Formatting tick labels as percentages

Another useful formatter is the EngFormatter class, which will automatically handle
formatting numbers as thousands, millions, and so on using engineering notation. Let's
use this to plot the cumulative COVID-19 cases per continent in millions:

>>> from matplotlib.ticker import EngFormatter

>>> ax = covid.query('continentExp != "Other"').groupby([
... 'continentExp', pd.Grouper(freq='1D')
...]).cases.sum().unstack(0).apply('cumsum').plot(
... style=['-', '-', '--', ':', '-.'],
... title='Cumulative COVID-19 Cases per Continent'
... '\n(source: ECDC)'
...)

>>> ax.legend(title='', loc='center left')
>>> ax.set(xlabel='', ylabel='total COVID-19 cases')
>>> ax.yaxis.set_major_formatter(EngFormatter())

>>> for spine in ['top', 'right']:
... ax.spines[spine].set_visible(False)

360 Plotting with Seaborn and Customization Techniques

Notice that we didn't need to divide the cumulative case counts by 1 million to get these
numbers—the EngFormatter object that we passed to set_major_formatter()
automatically figured out that it should use millions (M) based on the data:

Figure 6.26 – Formatting tick labels with engineering notation

Both the PercentFormatter and EngFormatter classes format the tick labels, but
sometimes we want to change the location of the ticks rather than format them. One way
of doing so is with the MultipleLocator class, which makes it easy for us to place the
ticks at multiples of a number of our choosing. To illustrate how we could use this, let's
take a look at the daily new COVID-19 cases in New Zealand from April 18, 2020 through
September 18, 2020:

>>> ax = new_cases.New_Zealand['2020-04-18':'2020-09-18'].plot(
... title='Daily new COVID-19 cases in New Zealand'
... '\n(source: ECDC)'
...)
>>> ax.set(xlabel='', ylabel='new COVID-19 cases')

>>> for spine in ['top', 'right']:
... ax.spines[spine].set_visible(False)

Formatting plots with matplotlib 361

Without us intervening with the tick locations, matplotlib is showing the ticks in
increments of 2.5. We know that there is no such thing as half of a case, so it makes more
sense to show this data with only integer ticks:

Figure 6.27 – Default tick locations

Let's fix this by using the MultipleLocator class. Here, we aren't formatting the axis
labels, but rather controlling which ones are shown; for this reason, we have to call the
set_major_locator() method instead of set_major_formatter():

>>> from matplotlib.ticker import MultipleLocator

>>> ax = new_cases.New_Zealand['2020-04-18':'2020-09-18'].plot(
... title='Daily new COVID-19 cases in New Zealand'
... '\n(source: ECDC)'
...)
>>> ax.set(xlabel='', ylabel='new COVID-19 cases')
>>> ax.yaxis.set_major_locator(MultipleLocator(base=3))

>>> for spine in ['top', 'right']:
... ax.spines[spine].set_visible(False)

362 Plotting with Seaborn and Customization Techniques

Since we passed in base=3, our y-axis now contains integers in increments of three:

Figure 6.28 – Using integer tick locations

These were only three of the features provided with the matplotlib.ticker module,
so I highly recommend you check out the documentation for more information. There is
also a link in the Further reading section at the end of this chapter.

Customizing visualizations
So far, all of the code we've learned for creating data visualizations has been for making
the visualization itself. Now that we have a strong foundation, we are ready to learn how
to add reference lines, control colors and textures, and include annotations.

In the 3-customizing_visualizations.ipynb notebook, let's handle our imports
and read in the Facebook stock prices and earthquake datasets:

>>> %matplotlib inline
>>> import matplotlib.pyplot as plt
>>> import pandas as pd

Customizing visualizations 363

>>> fb = pd.read_csv(
... 'data/fb_stock_prices_2018.csv',
... index_col='date',
... parse_dates=True
...)
>>> quakes = pd.read_csv('data/earthquakes.csv')

Tip
Changing the style in which the plots are created is an easy way to change
their look and feel without setting each aspect separately. To set the style
for seaborn, use sns.set_style(). With matplotlib, we can
use plt.style.use() to specify the stylesheet(s) we want to use.
These will be used for all visualizations created in that session. If, instead,
we only want it for a single plot, we can use sns.set_context() or
plt.style.context(). Available styles for seaborn can be found in
the documentation of the aforementioned functions and in matplotlib by
taking a look at the values in plt.style.available.

Adding reference lines
Quite often, we want to draw attention to a specific value on our plot, perhaps as a
boundary or turning point. We may be interested in whether the line gets crossed or
serves as a partition. In finance, horizontal reference lines may be drawn on top of the
line plot of a stock's price, marking the support and resistance.

The support is a price level at which a downward trend is expected to reverse because
the stock is now at a price level at which buyers are more enticed to purchase, driving
the price up and away from this point. On the flip side, the resistance is the price level at
which an upward trend is expected to reverse since the price is an attractive selling point;
thus, the price falls down and away from this point. Of course, this is not to say these
levels don't get surpassed. Since we have Facebook stock data, let's add the support and
resistance reference lines to our line plot of the closing price.

Important note
Going over how support and resistance are calculated is beyond the scope of
this chapter, but Chapter 7, Financial Analysis – Bitcoin and the Stock Market,
will include some code for calculating these using pivot points. Also, be sure
to check out the Further reading section for a more in-depth introduction to
support and resistance.

364 Plotting with Seaborn and Customization Techniques

Our two horizontal reference lines will be at the support of $124.46 and the resistance of
$138.53. Both these numbers were derived using the stock_analysis package, which
we will build in Chapter 7, Financial Analysis – Bitcoin and the Stock Market. We simply
need to create an instance of the StockAnalyzer class to calculate these metrics:

>>> from stock_analysis import StockAnalyzer

>>> fb_analyzer = StockAnalyzer(fb)
>>> support, resistance = (
... getattr(fb_analyzer, stat)(level=3)
... for stat in ['support', 'resistance']
...)
>>> support, resistance
(124.4566666666667, 138.5266666666667)

We will use the plt.axhline() function for this task, but note that this will also work
on the Axes object. Remember that the text we provide to the label arguments will be
populated in the legend:

>>> fb.close['2018-12']\
... .plot(title='FB Closing Price December 2018')
>>> plt.axhline(
... y=resistance, color='r', linestyle='--',
... label=f'resistance (${resistance:,.2f})'
...)
>>> plt.axhline(
... y=support, color='g', linestyle='--',
... label=f'support (${support:,.2f})'
...)
>>> plt.ylabel('price ($)')
>>> plt.legend()

We should already be familiar with the f-string format from earlier chapters, but notice
the additional text after the variable name here (:,.2f). The support and resistance are
stored as floats in the support and resistance variables, respectively. The colon
(:) precedes the format specifier (commonly written as format_spec), which tells
Python how to format that variable; in this case, we are formatting it as a decimal (f)
with a comma as the thousands separator (,) and two digits of precision after the decimal
(.2). This will also work with the format() method, in which case it would look like
'{:,.2f}'.format(resistance). This formatting makes for an informative legend
in our plot:

Customizing visualizations 365

Figure 6.29 – Creating horizontal reference lines with matplotlib

Important note
Those with personal investment accounts will likely find some literature there
on support and resistance when looking to place limit orders or stop losses
based on the stock hitting a certain price point since these can help inform the
feasibility of the target price. In addition, these reference lines may be used by
traders to analyze the stock's momentum and decide whether it is time to buy/
sell the stock.

Turning back to the earthquake data, let's use plt.axvline() to draw vertical
reference lines for the number of standard deviations from the mean on the distribution
of earthquake magnitudes in Indonesia. The std_from_mean_kde() function located
in the viz.py module in the GitHub repository uses itertools to easily make the
combinations of the colors and values we need to plot:

import itertools

def std_from_mean_kde(data):
 """
 Plot the KDE along with vertical reference lines
 for each standard deviation from the mean.

 Parameters:
 - data: `pandas.Series` with numeric data

366 Plotting with Seaborn and Customization Techniques

 Returns:
 Matplotlib `Axes` object.
 """
 mean_mag, std_mean = data.mean(), data.std()

 ax = data.plot(kind='kde')
 ax.axvline(mean_mag, color='b', alpha=0.2, label='mean')

 colors = ['green', 'orange', 'red']
 multipliers = [1, 2, 3]
 signs = ['-', '+']
 linestyles = [':', '-.', '--']

 for sign, (color, multiplier, style) in itertools.product(
 signs, zip(colors, multipliers, linestyles)
):
 adjustment = multiplier * std_mean
 if sign == '-':
 value = mean_mag – adjustment
 label = '{} {}{}{}'.format(
 r'μ', r'\pm', multiplier, r'σ'
)
 else:
 value = mean_mag + adjustment
 label = None # label each color only once

 ax.axvline(
 value, color=color, linestyle=style,
 label=label, alpha=0.5
)

 ax.legend()
 return ax

The product() function from itertools will give us all combinations of items from
any number of iterables. Here, we have zipped the colors, multipliers, and line styles since
we always want a green dotted line for a multiplier of 1; an orange dot-dashed line for a
multiplier of 2; and a red dashed line for a multiplier of 3. When product() uses these
tuples, we get positive- and negative-signed combinations for everything. To keep our
legend from getting too crowded, we only label each color once using the ± sign. Since we
have combinations between a string and a tuple at each iteration, we unpack the tuple in
our for statement for easier use.

Customizing visualizations 367

Tip
We can use LaTeX math symbols (https://www.latex-project.
org/) to label our plots if we follow a certain pattern. First, we must mark the
string as raw by preceding it with the r character. Then, we must surround the
LaTeX with $ symbols. For example, we used r'μ' for the Greek letter
μ in the preceding code.

Let's use the std_from_mean_kde() function to see which parts of the estimated
distribution of earthquake magnitudes in Indonesia are within one, two, or three standard
deviations from the mean:

>>> from viz import std_from_mean_kde

>>> ax = std_from_mean_kde(
... quakes.query(
... 'magType == "mb" and parsed_place == "Indonesia"'
...).mag
...)
>>> ax.set_title('mb magnitude distribution in Indonesia')
>>> ax.set_xlabel('mb earthquake magnitude')

Notice the KDE is right-skewed—it has a longer tail on the right side, and the mean is to
the right of the mode:

Figure 6.30 – Including vertical reference lines

https://www.latex-project.org/
https://www.latex-project.org/

368 Plotting with Seaborn and Customization Techniques

Tip
To make a straight line of arbitrary slope, simply pass the endpoints of the
line as two x values and two y values (for example, [0, 2] and [2, 0])
to plt.plot() using the same Axes object. For lines that aren't straight,
np.linspace() can be used to create a range of evenly-spaced points on
[start, stop), which can be used for the x values and to calculate the y
values. As a reminder, when specifying a range, square brackets mean inclusive
of both endpoints and round brackets are exclusive, so [0, 1) goes from 0 to as
close to 1 as possible without being 1. We see these when using pd.cut()
and pd.qcut() if we don't name the buckets.

Shading regions
In some cases, the reference line itself isn't so interesting, but the area between two of
them is; for this purpose, we have axvspan() and axhspan(). Let's revisit the support
and resistance of Facebook stock's closing price. We can use axhspan() to shade the
area that falls between the two:

>>> ax = fb.close.plot(title='FB Closing Price')
>>> ax.axhspan(support, resistance, alpha=0.2)
>>> plt.ylabel('Price ($)')

Note that the color of the shaded region is determined by the facecolor argument.
For this example, we accepted the default:

Figure 6.31 – Adding a horizontal shaded region

Customizing visualizations 369

When we are interested in shading the area between two curves, we can use the
plt.fill_between() and plt.fill_betweenx() functions. The
plt.fill_between() function accepts one set of x values and two sets of y
values; we can use plt.fill_betweenx() if we require the opposite. Let's shade
the area between Facebook's high price and low price each day of the fourth quarter
using plt.fill_between():

>>> fb_q4 = fb.loc['2018-Q4']
>>> plt.fill_between(fb_q4.index, fb_q4.high, fb_q4.low)
>>> plt.xticks([
... '2018-10-01', '2018-11-01', '2018-12-01', '2019-01-01'
...])
>>> plt.xlabel('date')
>>> plt.ylabel('price ($)')
>>> plt.title(
... 'FB differential between high and low price Q4 2018'
...)

This gives us a better idea of the variation in price on a given day; the taller the vertical
distance, the higher the fluctuation:

Figure 6.32 – Shading between two curves

370 Plotting with Seaborn and Customization Techniques

By providing a Boolean mask to the where argument, we can specify when to fill the area
between the curves. Let's fill in only December from the previous example. We will add
dashed lines for the high price curve and the low price curve throughout the time period
to see what is happening:

>>> fb_q4 = fb.loc['2018-Q4']
>>> plt.fill_between(
... fb_q4.index, fb_q4.high, fb_q4.low,
... where=fb_q4.index.month == 12,
... color='khaki', label='December differential'
...)
>>> plt.plot(fb_q4.index, fb_q4.high, '--', label='daily high')
>>> plt.plot(fb_q4.index, fb_q4.low, '--', label='daily low')
>>> plt.xticks([
... '2018-10-01', '2018-11-01', '2018-12-01', '2019-01-01'
...])
>>> plt.xlabel('date')
>>> plt.ylabel('price ($)')
>>> plt.legend()
>>> plt.title(
... 'FB differential between high and low price Q4 2018'
...)

This results in the following plot:

Figure 6.33 – Selectively shading between two curves

Customizing visualizations 371

With reference lines and shaded regions, we are able to draw attention to certain areas,
and can even label them in the legend, but we are limited in the text we can use to explain
them. Let's now discuss how to annotate our plot for additional context.

Annotations
We will often find the need to annotate specific points in our visualizations either to point
out events, such as the days on which Facebook's stock price dropped due to certain news
stories breaking, or to label values that are important for comparisons. For example, let's
use the plt.annotate() function to label the support and resistance:

>>> ax = fb.close.plot(
... title='FB Closing Price 2018',
... figsize=(15, 3)
...)
>>> ax.set_ylabel('price ($)')
>>> ax.axhspan(support, resistance, alpha=0.2)
>>> plt.annotate(
... f'support\n(${support:,.2f})',
... xy=('2018-12-31', support),
... xytext=('2019-01-21', support),
... arrowprops={'arrowstyle': '->'}
...)
>>> plt.annotate(
... f'resistance\n(${resistance:,.2f})',
... xy=('2018-12-23', resistance)
...)
>>> for spine in ['top', 'right']:
... ax.spines[spine].set_visible(False)

372 Plotting with Seaborn and Customization Techniques

Notice the annotations are different; when we annotated the resistance, we only provided
the text for the annotation and the coordinates of the point being annotated with the xy
argument. However, when we annotated the support, we also provided values for the
xytext and arrowprops arguments; this allowed us to put the text somewhere other
than where the value occurred and add an arrow indicating where it occurred. By doing
so, we avoid obscuring the last few days of data with our label:

Figure 6.34 – Including annotations

The arrowprops argument gives us quite a bit of customization over the type of arrow
we want, although it might be difficult to get it perfect. As an example, let's annotate the
big decline in the price of Facebook in July with the percentage drop:

>>> close_price = fb.loc['2018-07-25', 'close']
>>> open_price = fb.loc['2018-07-26', 'open']
>>> pct_drop = (open_price - close_price) / close_price
>>> fb.close.plot(title='FB Closing Price 2018', alpha=0.5)
>>> plt.annotate(
... f'{pct_drop:.2%}', va='center',
... xy=('2018-07-27', (open_price + close_price) / 2),
... xytext=('2018-08-20', (open_price + close_price) / 2),
... arrowprops=dict(arrowstyle='-[,widthB=4.0,lengthB=0.2')
...)
>>> plt.ylabel('price ($)')

Notice that we were able to format the pct_drop variable as a percentage with two digits
of precision by using .2% in the format specifier of the f-string. In addition, by specifying
va='center', we tell matplotlib to vertically center our annotation in the middle of
the arrow:

Customizing visualizations 373

Figure 6.35 – Customizing the annotation's arrow

Matplotlib provides a lot of flexibility to customize these annotations—we can pass any
option that the Text class in matplotlib supports (https://matplotlib.org/
api/text_api.html#matplotlib.text.Text). To change colors, simply pass the
desired color in the color argument. We can also control font size, weight, family, and
style through the fontsize, fontweight, fontfamily, and fontstyle arguments,
respectively.

Colors
For the sake of consistency, the visualizations we produce should stick to a color
scheme. Companies and academic institutions alike often have custom color palettes for
presentations. We can easily adopt the same color palette in our visualizations too.

So far, we have either been providing colors to the color argument with their single
character names, such as 'b' for blue and 'k' for black, or their names ('blue' or
'black'). We have also seen that matplotlib has many colors that can be specified
by name; the full list can be found in the documentation at https://matplotlib.
org/examples/color/named_colors.html.

Important note
Remember that if we are providing a color with the style argument, we are
limited to the colors that have a single-character abbreviation.

https://matplotlib.org/api/text_api.html#matplotlib.text.Text
https://matplotlib.org/api/text_api.html#matplotlib.text.Text
https://matplotlib.org/examples/color/named_colors.html
https://matplotlib.org/examples/color/named_colors.html

374 Plotting with Seaborn and Customization Techniques

In addition, we can provide a hex code for the color we want; those who have worked with
HTML or CSS in the past will no doubt be familiar with these as a way to specify the exact
color (regardless of what different places call it). For those unfamiliar with a hex color
code, it specifies the amount of red, green, and blue used to make the color in question
in the #RRGGBB format. Black is #000000 and white is #FFFFFF (case-insensitive).
This may be confusing because F is most definitely not a number; however, these are
hexadecimal numbers (base 16, not the base 10 we traditionally use), where 0-9 still
represents 0-9, but A-F represents 10-15.

Matplotlib accepts hex codes as a string to the color argument. To illustrate this, let's
plot Facebook's opening price in #8000FF:

>>> fb.plot(
... y='open',
... figsize=(5, 3),
... color='#8000FF',
... legend=False,
... title='Evolution of FB Opening Price in 2018'
...)
>>> plt.ylabel('price ($)')

This results in a purple line plot:

Figure 6.36 – Changing line color

Customizing visualizations 375

Alternatively, we may be given the values in RGB or red, green, blue, alpha (RGBA)
values, in which case we can pass them to the color argument as a tuple. If we don't
provide the alpha, it will default to 1 for opaque. One thing to note here is that, while we
will find these numbers presented in the range [0, 255], matplotlib requires them to be
in the range [0, 1], so we must divide each by 255. The following code is equivalent to the
preceding example, except we use the RGB tuple instead of the hex code:

fb.plot(
 y='open',
 figsize=(5, 3),
 color=(128 / 255, 0, 1),
 legend=False,
 title='Evolution of FB Opening Price in 2018'
)
plt.ylabel('price ($)')

In the previous chapter, we saw several examples in which we needed many different
colors for the varying data we were plotting, but where do these colors come from? Well,
matplotlib has numerous colormaps that are used for this purpose.

Colormaps
Rather than having to specify all the colors we want to use upfront, matplotlib can
take a colormap and cycle through the colors there. When we discussed heatmaps in the
previous chapter, we considered the importance of using the proper class of colormap for
the given task. There are three types of colormaps, each with its own purpose, as shown in
the following table:

Figure 6.37 – Types of colormaps

376 Plotting with Seaborn and Customization Techniques

Tip
Browse colors by name, hex, and RGB values at https://www.color-
hex.com/, and find the full color spectrum for the colormaps at https://
matplotlib.org/gallery/color/colormap_reference.
html.

In Python, we can obtain a list of all the available colormaps by running the following:

>>> from matplotlib import cm
>>> cm.datad.keys()
dict_keys(['Blues', 'BrBG', 'BuGn', 'BuPu', 'CMRmap', 'GnBu',
 'Greens', 'Greys', 'OrRd', 'Oranges', 'PRGn',
 'PiYG', 'PuBu', 'PuBuGn', 'PuOr', 'PuRd', 'Purples',
 'RdBu', 'RdGy', 'RdPu', 'RdYlBu', 'RdYlGn',
 'Reds', ..., 'Blues_r', 'BrBG_r', 'BuGn_r', ...])

Notice that some of the colormaps are present twice where one is in the reverse order,
signified by the _r suffix on the name. This is very helpful since we don't have to invert
our data to map the values to the colors we want. Pandas accepts these colormaps as
strings or matplotlib colormaps with the colormap argument of the plot()
method, meaning we can pass in 'coolwarm_r', cm.get_cmap('coolwarm_r'),
or cm.coolwarm_r and get the same result.

Let's use the coolwarm_r colormap to show how Facebook stock's closing price
oscillates between the 20-day rolling minimum and maximum prices:

>>> ax = fb.assign(
... rolling_min=lambda x: x.low.rolling(20).min(),
... rolling_max=lambda x: x.high.rolling(20).max()
...).plot(
... y=['rolling_max', 'rolling_min'],
... colormap='coolwarm_r',
... label=['20D rolling max', '20D rolling min'],
... style=[':', '--'],
... figsize=(12, 3),
... title='FB closing price in 2018 oscillating between '
... '20-day rolling minimum and maximum price'
...)

https://www.color-hex.com/
https://www.color-hex.com/
https://matplotlib.org/gallery/color/colormap_reference.html
https://matplotlib.org/gallery/color/colormap_reference.html
https://matplotlib.org/gallery/color/colormap_reference.html

Customizing visualizations 377

>>> ax.plot(
... fb.close, 'purple', alpha=0.25, label='closing price'
...)
>>> plt.legend()
>>> plt.ylabel('price ($)')

Notice how easy it was to get red to represent hot performance (rolling maximum) and
blue for cold (rolling minimum), by using the reversed colormap, rather than trying to
make sure pandas plotted the rolling minimum first:

Figure 6.38 – Working with colormaps

The colormap object is a callable, meaning we can pass it values in the range [0, 1] and
it will tell us the RGBA value for that point on the colormap, which we can use for the
color argument. This gives us more fine-tuned control over the colors that we use from
the colormap. We can use this technique to control how we spread the colormap across
our data. For example, we can ask for the midpoint of the ocean colormap to use with the
color argument:

>>> cm.get_cmap('ocean')(.5)
(0.0, 0.2529411764705882, 0.5019607843137255, 1.0)

Tip
There's an example of using a colormap as a callable in the covid19_
cases_map.ipynb notebook, where COVID-19 case counts are mapped
to colors, with darker colors indicating more cases.

378 Plotting with Seaborn and Customization Techniques

Despite the wealth of colormaps available, we may find the need to create our own.
Perhaps we have a color palette we like to work with or have some requirement that
we use a specific color scheme. We can make our own colormaps with matplotlib.
Let's make a blended colormap that goes from purple (#800080) to yellow (#FFFF00)
with orange (#FFA500) in the center. All the functions we need for this are in
color_utils.py. We can import the functions like this if we are running Python
from the same directory as the file:

>>> import color_utils

First, we need to translate these hex colors to their RGB equivalents, which is what the
hex_to_rgb_color_list() function will do. Note that this function can also handle
the shorthand hex codes of three digits when the RGB values use the same hexadecimal
digit for both of the digits (for example, #F1D is the shorthand equivalent of #FF11DD):

import re

def hex_to_rgb_color_list(colors):
 """
 Take color or list of hex code colors and convert them
 to RGB colors in the range [0,1].

 Parameters:
 - colors: Color or list of color strings as hex codes

 Returns:
 The color or list of colors in RGB representation.
 """
 if isinstance(colors, str):
 colors = [colors]

 for i, color in enumerate(
 [color.replace('#', '') for color in colors]
):
 hex_length = len(color)

 if hex_length not in [3, 6]:
 raise ValueError(
 'Colors must be of the form #FFFFFF or #FFF'
)
 regex = '.' * (hex_length // 3)

Customizing visualizations 379

 colors[i] = [
 int(val * (6 // hex_length), 16) / 255
 for val in re.findall(regex, color)
]
 return colors[0] if len(colors) == 1 else colors

Tip
Take a look at the enumerate() function; this lets us grab the index and
the value at that index when we iterate, rather than looking up the value in
the loop. Also, notice how easy it is for Python to convert base 10 numbers
to hexadecimal numbers with the int() function by specifying the base.
(Remember that // is integer division—we have to do this since int()
expects an integer and not a float.)

The next function we need is one to take those RGB colors and create the values for the
colormap. This function will need to do the following:

1. Create a 4D NumPy array with 256 slots for color definitions. Note that we don't
want to change the transparency, so we will leave the fourth dimension (alpha)
alone.

2. For each dimension (red, green, and blue), use the np.linspace() function to
create even transitions between the target colors (that is, transition from the red
component of color 1 to the red component of color 2, then to the red component
of color 3, and so on, before repeating this process with the green components and
finally the blue components).

3. Return a ListedColormap object that we can use when plotting.

This is what the blended_cmap() function does:

from matplotlib.colors import ListedColormap
import numpy as np

def blended_cmap(rgb_color_list):
 """
 Create a colormap blending from one color to the other.

 Parameters:
 - rgb_color_list: List of colors represented as
 [R, G, B] values in the range [0, 1], like
 [[0, 0, 0], [1, 1, 1]], for black and white.

380 Plotting with Seaborn and Customization Techniques

 Returns:
 A matplotlib `ListedColormap` object
 """
 if not isinstance(rgb_color_list, list):
 raise ValueError('Colors must be passed as a list.')
 elif len(rgb_color_list) < 2:
 raise ValueError('Must specify at least 2 colors.')
 elif (
 not isinstance(rgb_color_list[0], list)
 or not isinstance(rgb_color_list[1], list)
) or (
 (len(rgb_color_list[0]) != 3
 or len(rgb_color_list[1]) != 3)
):
 raise ValueError(
 'Each color should be a list of size 3.'
)

 N, entries = 256, 4 # red, green, blue, alpha
 rgbas = np.ones((N, entries))

 segment_count = len(rgb_color_list) – 1
 segment_size = N // segment_count
 remainder = N % segment_count # need to add this back later

 for i in range(entries - 1): # we don't alter alphas
 updates = []
 for seg in range(1, segment_count + 1):
 # handle uneven splits due to remainder
 offset = 0 if not remainder or seg > 1 \
 else remainder

 updates.append(np.linspace(
 start=rgb_color_list[seg - 1][i],
 stop=rgb_color_list[seg][i],
 num=segment_size + offset
))
 rgbas[:,i] = np.concatenate(updates)
 return ListedColormap(rgbas)

Customizing visualizations 381

We can use the draw_cmap() function to draw a colorbar, which allows us to visualize
our colormap:

import matplotlib.pyplot as plt

def draw_cmap(cmap, values=np.array([[0, 1]]), **kwargs):
 """
 Draw a colorbar for visualizing a colormap.

 Parameters:
 - cmap: A matplotlib colormap
 - values: Values to use for the colormap
 - kwargs: Keyword arguments to pass to `plt.colorbar()`

 Returns:
 A matplotlib `Colorbar` object, which you can save
 with: `plt.savefig(<file_name>, bbox_inches='tight')`
 """
 img = plt.imshow(values, cmap=cmap)
 cbar = plt.colorbar(**kwargs)
 img.axes.remove()
 return cbar

This function makes it easy for us to add a colorbar with a custom colormap for any
visualization we choose; the covid19_cases_map.ipynb notebook has an example
using COVID-19 cases plotted on a world map. For now, let's use these functions to create
and visualize our colormap. We will be using them by importing the module (which we
did earlier):

>>> my_colors = ['#800080', '#FFA500', '#FFFF00']
>>> rgbs = color_utils.hex_to_rgb_color_list(my_colors)
>>> my_cmap = color_utils.blended_cmap(rgbs)
>>> color_utils.draw_cmap(my_cmap, orientation='horizontal')

This results in the following colorbar showing our colormap:

Figure 6.39 – Custom blended colormap

382 Plotting with Seaborn and Customization Techniques

Tip
Seaborn also provides additional color palettes, along with handy utilities
for picking colormaps and making custom ones for use with matplotlib
interactively in a Jupyter Notebook. Check out the Choosing color palettes
tutorial (https://seaborn.pydata.org/tutorial/color_
palettes.html) for more information. The notebook also contains a short
example.

As we have seen in the colorbar we created, these colormaps have the ability to show
different gradients of the colors to capture values on a continuum. If we merely want each
line in our line plot to be a different color, we most likely want to cycle between different
colors. For that, we can use itertools.cycle() with a list of colors; they won't be
blended, but we can cycle through them endlessly because it will be an infinite iterator.
We used this technique earlier in the chapter to define our own colors for the regression
residuals plots:

>>> import itertools
>>> colors = itertools.cycle(['#ffffff', '#f0f0f0', '#000000'])
>>> colors
<itertools.cycle at 0x1fe4f300>
>>> next(colors)
'#ffffff'

Even simpler would be the case where we have a list of colors somewhere, but rather
than putting that in our plotting code and storing another copy in memory, we can write
a simple generator that just yields from that master list. By using generators, we are being
efficient with memory without crowding our plotting code with the color logic. Note that
a generator is defined as a function, but instead of using return, it uses yield. The
following snippet shows a mock-up for this scenario, which is similar to the itertools
solution; however, it is not infinite. This just goes to show that we can find many ways to
do something in Python; we have to find the implementation that best meets our needs:

from my_plotting_module import master_color_list

def color_generator():
 yield from master_color_list

https://seaborn.pydata.org/tutorial/color_palettes.html
https://seaborn.pydata.org/tutorial/color_palettes.html

Customizing visualizations 383

Using matplotlib, the alternative would be to instantiate a ListedColormap
object with the color list and define a large value for N so that it repeats for long enough
(if we don't provide it, it will only go through the colors once):

>>> from matplotlib.colors import ListedColormap
>>> red_black = ListedColormap(['red', 'black'], N=2000)
>>> [red_black(i) for i in range(3)]
[(1.0, 0.0, 0.0, 1.0),
 (0.0, 0.0, 0.0, 1.0),
 (1.0, 0.0, 0.0, 1.0)]

Note that we can also use cycler from the matplotlib team, which adds additional
flexibility by allowing us to define combinations of colors, line styles, markers, line widths,
and more to cycle through. The API details the available functionality and can be found
at https://matplotlib.org/cycler/. We will see an example of this in Chapter 7,
Financial Analysis – Bitcoin and the Stock Market.

Conditional coloring
Colormaps make it easy to vary color according to the values in our data, but what
happens if we only want to use a specific color when certain conditions are met? In that
case, we need to build a function around color selection.

We can write a generator to determine plot color based on our data and only calculate
it when it is asked for. Let's say we wanted to assign colors to years from 1992 to 200018
(no, that's not a typo) based on whether they are leap years, and distinguish why they
aren't leap years (for example, we want a special color for years divisible by 100 but not
400, which aren't leap years). We certainly don't want to keep a list this size in memory,
so we create a generator to calculate the color on demand:

def color_generator():
 for year in range(1992, 200019): # integers [1992, 200019)
 if year % 100 == 0 and year % 400 != 0:
 # special case (divisible by 100 but not 400)
 color = '#f0f0f0'
 elif year % 4 == 0:
 # leap year (divisible by 4)
 color = '#000000'
 else:
 color = '#ffffff'
 yield color

https://matplotlib.org/cycler/

384 Plotting with Seaborn and Customization Techniques

Important note
The modulo operator (%) returns the remainder of a division operation.
For example, 4 % 2 equals 0 because 4 is divisible by 2. However, since 4 is
not divisible by 3, 4 % 3 is non-zero; it is 1 because we can fit 3 into 4 once
and will have 1 left over (4 - 3). The modulo operator can be used to check
the divisibility of one number by another and is often used to check whether
a number is odd or even. Here, we are using it to see whether the conditions
for being a leap year (which depend on divisibility) are met.

Since we defined year_colors as a generator, Python will remember where we are in
this function and resume when next() is called:

>>> year_colors = color_generator()
>>> year_colors
<generator object color_generator at 0x7bef148dfed0>
>>> next(year_colors)
'#000000'

Simpler generators can be written with generator expressions. For example, if we don't
care about the special case anymore, we can use the following:

>>> year_colors = (
... '#ffffff'
... if (not year % 100 and year % 400) or year % 4
... else '#000000' for year in range(1992, 200019)
...)
>>> year_colors
<generator object <genexpr> at 0x7bef14415138>
>>> next(year_colors)
'#000000'

Those not coming from Python might find it strange that our Boolean conditions in
the previous code snippet are actually numbers (year % 400 results in an integer).
This is taking advantage of Python's truthy/falsey values; values that have zero value
(such as the number 0) or are empty (such as [] or '') are falsey. Therefore, while in the
first generator, we wrote year % 400 != 0 to show exactly what was going on, the
more Pythonic way is year % 400, since if there is no remainder (evaluates to 0), the
statement will be evaluated as False, and vice versa. Obviously, we will have times where
we must choose between readability and being Pythonic, but it's good to be aware of how
to write Pythonic code, as it will often be more efficient.

Customizing visualizations 385

Tip
Run import this in Python to see the Zen of Python, which gives some
ideas of what it means to be Pythonic.

Now that we have some exposure to working with colors in matplotlib, let's consider
another way we can make our data stand out. Depending on what we are plotting or how
our visualization will be used (for example, in black and white), it might make sense to use
textures along with, or instead of, colors.

Textures
In addition to customizing the colors used in our visualizations, matplotlib also makes
it possible to include textures with a variety of plotting functions. This is achieved via the
hatch argument, which pandas will pass down for us. Let's create a bar plot of weekly
volume traded in Facebook stock during Q4 2018 with textured bars:

>>> weekly_volume_traded = fb.loc['2018-Q4']\
... .groupby(pd.Grouper(freq='W')).volume.sum()

>>> weekly_volume_traded.index = \
... weekly_volume_traded.index.strftime('W %W')

>>> ax = weekly_volume_traded.plot(
... kind='bar',
... hatch='*',
... color='lightgray',
... title='Volume traded per week in Q4 2018'
...)
>>> ax.set(
... xlabel='week number',
... ylabel='volume traded'
...)

386 Plotting with Seaborn and Customization Techniques

With hatch='*', our bars are filled with stars. Notice that we also set the color for each
of the bars, so there is a lot of flexibility here:

Figure 6.40 – Using textured bars

Textures can also be combined to make new patterns and repeated to intensify the effect.
Let's revisit the plt.fill_between() example where we colored the December
section only (Figure 6.33). This time we will use textures to distinguish between each
month, rather than only shading December; we will fill October with rings, November
with slashes, and December with small dots:

>>> import calendar

>>> fb_q4 = fb.loc['2018-Q4']
>>> for texture, month in zip(
... ['oo', '/\\/\\', '...'], [10, 11, 12]
...):
... plt.fill_between(
... fb_q4.index, fb_q4.high, fb_q4.low,
... hatch=texture, facecolor='white',
... where=fb_q4.index.month == month,
... label=f'{calendar.month_name[month]} differential'
...)

Customizing visualizations 387

>>> plt.plot(fb_q4.index, fb_q4.high, '--', label='daily high')
>>> plt.plot(fb_q4.index, fb_q4.low, '--', label='daily low')
>>> plt.xticks([
... '2018-10-01', '2018-11-01', '2018-12-01', '2019-01-01'
...])
>>> plt.xlabel('date')
>>> plt.ylabel('price ($)')
>>> plt.title(
... 'FB differential between high and low price Q4 2018'
...)
>>> plt.legend()

Using hatch='o' would yield thin rings, so we used 'oo' to get thicker rings for
October. For November, we wanted a crisscross pattern, so we combined two forward
slashes and two backslashes (we actually have four backslashes because they must be
escaped). To achieve the small dots for December, we used three periods—the more we
add, the denser the texture becomes:

Figure 6.41 – Combining textures

This concludes our discussion of plot customizations. By no means was this meant to be
complete, so be sure to explore the matplotlib API for more.

388 Plotting with Seaborn and Customization Techniques

Summary
Whew, that was a lot! We learned how to create impressive and customized visualizations
using matplotlib, pandas, and seaborn. We discussed how we can use seaborn
for additional plotting types and cleaner versions of some familiar ones. Now we can easily
make our own colormaps, annotate our plots, add reference lines and shaded regions,
finesse the axes/legends/titles, and control most aspects of how our visualizations will
appear. We also got a taste of working with itertools and creating our own generators.

Take some time to practice what we've discussed with the end-of-chapter exercises. In the
next chapter, we will apply all that we have learned to finance, as we build our own Python
package and compare bitcoin to the stock market.

Exercises
Create the following visualizations using what we have learned so far in this book and the
data from this chapter. Be sure to add titles, axis labels, and legends (where appropriate)
to the plots:

1. Using seaborn, create a heatmap to visualize the correlation coefficients between
earthquake magnitude and whether there was a tsunami for earthquakes measured
with the mb magnitude type.

2. Create a box plot of Facebook volume traded and closing prices, and draw reference
lines for the bounds of a Tukey fence with a multiplier of 1.5. The bounds will be
at Q1 − 1.5 × IQR and Q3 + 1.5 × IQR. Be sure to use the quantile() method on
the data to make this easier. (Pick whichever orientation you prefer for the plot, but
make sure to use subplots.)

3. Plot the evolution of cumulative COVID-19 cases worldwide, and add a dashed
vertical line on the date that it surpassed 1 million. Be sure to format the tick labels
on the y-axis accordingly.

4. Use axvspan() to shade a rectangle from '2018-07-25' to '2018-07-31',
which marks the large decline in Facebook price on a line plot of the closing price.

5. Using the Facebook stock price data, annotate the following three events on a line
plot of the closing price:

a) Disappointing user growth announced after close on July 25, 2018

b) Cambridge Analytica story breaks on March 19, 2018 (when it affected the
market)

c) FTC launches investigation on March 20, 2018

Further reading 389

6. Modify the reg_resid_plots() function to use a matplotlib colormap
instead of cycling between two colors. Remember, for this use case, we should
pick a qualitative colormap or make our own.

Further reading
Check out the following resources for more information on the topics covered in
this chapter:

• Choosing Colormaps: https://matplotlib.org/tutorials/colors/
colormaps.html

• Controlling figure aesthetics (seaborn): https://seaborn.pydata.org/
tutorial/aesthetics.html

• Customizing Matplotlib with style sheets and rcParams: https://matplotlib.
org/tutorials/introductory/customizing.html

• Format String Syntax: https://docs.python.org/3/library/string.
html#format-string-syntax

• Generator Expressions (PEP 289): https://www.python.org/dev/peps/
pep-0289/

• Information Dashboard Design: Displaying Data for At-a-Glance Monitoring,
Second Edition, by Stephen Few: https://www.amazon.com/Information-
Dashboard-Design-At-Glance/dp/1938377001/

• Matplotlib Named Colors: https://matplotlib.org/examples/color/
named_colors.html

• Multiple assignment and tuple unpacking improve Python code readability:
https://treyhunner.com/2018/03/tuple-unpacking-improves-
python-code-readability/

• Python: range is not an iterator!: https://treyhunner.com/2018/02/
python-range-is-not-an-iterator/

• Python zip() function: https://www.journaldev.com/15891/python-
zip-function

• Seaborn API reference: https://seaborn.pydata.org/api.html

• Show Me the Numbers: Designing Tables and Graphs to Enlighten, by Stephen Few:
https://www.amazon.com/gp/product/0970601972/

https://matplotlib.org/tutorials/colors/colormaps.html
https://matplotlib.org/tutorials/colors/colormaps.html
https://seaborn.pydata.org/tutorial/aesthetics.html
https://seaborn.pydata.org/tutorial/aesthetics.html
https://matplotlib.org/tutorials/introductory/customizing.html
https://matplotlib.org/tutorials/introductory/customizing.html
https://docs.python.org/3/library/string.html#format-string-syntax
https://docs.python.org/3/library/string.html#format-string-syntax
https://www.python.org/dev/peps/pep-0289/
https://www.python.org/dev/peps/pep-0289/
https://www.amazon.com/Information-Dashboard-Design-At-Glance/dp/1938377001/
https://www.amazon.com/Information-Dashboard-Design-At-Glance/dp/1938377001/
https://matplotlib.org/examples/color/named_colors.html
https://matplotlib.org/examples/color/named_colors.html
https://treyhunner.com/2018/03/tuple-unpacking-improves-python-code-readability/
https://treyhunner.com/2018/03/tuple-unpacking-improves-python-code-readability/
https://treyhunner.com/2018/02/python-range-is-not-an-iterator/
https://treyhunner.com/2018/02/python-range-is-not-an-iterator/
https://www.journaldev.com/15891/python-zip-function
https://www.journaldev.com/15891/python-zip-function
https://seaborn.pydata.org/api.html
https://www.amazon.com/gp/product/0970601972/

390 Plotting with Seaborn and Customization Techniques

• Style sheets reference (Matplotlib): https://matplotlib.org/gallery/
style_sheets/style_sheets_reference.html

• Support and Resistance Basics: https://www.investopedia.com/trading/
support-and-resistance-basics/

• The Iterator Protocol: How "For Loops" Work in Python: https://treyhunner.
com/2016/12/python-iterator-protocol-how-for-loops-work/

• The Visual Display of Quantitative Information, by Edward R. Tufte: https://
www.amazon.com/Visual-Display-Quantitative-Information/
dp/1930824130

• Tick formatters: https://matplotlib.org/gallery/ticks_and_
spines/tick-formatters.html

• What does Pythonic mean?: https://stackoverflow.com/
questions/25011078/what-does-pythonic-mean

https://matplotlib.org/gallery/style_sheets/style_sheets_reference.html
https://matplotlib.org/gallery/style_sheets/style_sheets_reference.html
https://www.investopedia.com/trading/support-and-resistance-basics/
https://www.investopedia.com/trading/support-and-resistance-basics/
https://treyhunner.com/2016/12/python-iterator-protocol-how-for-loops-work/
https://treyhunner.com/2016/12/python-iterator-protocol-how-for-loops-work/
https://www.amazon.com/Visual-Display-Quantitative-Information/dp/1930824130
https://www.amazon.com/Visual-Display-Quantitative-Information/dp/1930824130
https://www.amazon.com/Visual-Display-Quantitative-Information/dp/1930824130
https://matplotlib.org/gallery/ticks_and_spines/tick-formatters.html
https://matplotlib.org/gallery/ticks_and_spines/tick-formatters.html
https://stackoverflow.com/questions/25011078/what-does-pythonic-mean
https://stackoverflow.com/questions/25011078/what-does-pythonic-mean

Section 3:
Applications –

Real-World Analyses
Using Pandas

It's time to see how to bring together everything we have learned so far. In this section,
we will take some real-world datasets and run through analyses from start to finish,
combining all the concepts covered in the previous chapters and introducing some new
material along the way.

This section comprises the following chapters:

• Chapter 7, Financial Analysis – Bitcoin and the Stock Market

• Chapter 8, Rule-Based Anomaly Detection

7
Financial Analysis

– Bitcoin and the
Stock Market

It's time to switch gears and work on an application. In this chapter, we will explore
a financial application by performing an analysis of bitcoin and the stock market. This
chapter builds upon everything we have learned so far—we will extract data from the
Internet; perform some exploratory data analysis; create visualizations with pandas,
seaborn, and matplotlib; calculate important metrics for analyzing the performance
of financial instruments using pandas; and get a taste of building some models. Note that
we are not trying to learn financial analysis here, but rather walk through an introduction
of how the skills we have learned in this book can be applied to financial analysis.

394 Financial Analysis – Bitcoin and the Stock Market

This chapter is also a departure from the standard workflow in this book. Up until this
point, we have been working with Python as more of a functional programming language.
However, Python also supports object-oriented programming (OOP). This means we
can build classes that will carry out the major tasks we need to perform, which in this
chapter are the following: collecting data from the Internet (with the StockReader
class), visualizing financial assets (with the Visualizer classes), calculating financial
metrics (with the StockAnalyzer class), and modeling financial data (with the
StockModeler class). Since we will need a lot of code to make the analysis process
clean and easy to reproduce, we will build a Python package to house these classes.
The code will be reproduced in the text and explained as usual; however, we don't need
to type/run it on our own—be sure to read the Chapter materials section for this chapter
to get set up properly.

This chapter will be challenging and may require a few rereads; however, it will teach
best practices, and the skills acquired here will dramatically improve your coding
skills, which will quickly pay off. One main takeaway should be that OOP can be very
helpful in packaging up analysis tasks. Each class should have a single purpose and be
well documented. If we have many classes, we should spread them across separate files
and make a package. This makes it very easy for others to install/use them and for us
to standardize the way certain tasks are performed across a project. As an example, we
shouldn't have each of our collaborators on a project writing their own functions to
connect to a database. Standardized, well-documented code will save lots of headaches
down the road.

The following topics will be covered in this chapter:

• Building a Python package

• Collecting financial data

• Conducting exploratory data analysis

• Performing technical analysis of financial instruments

• Modeling performance using historical data

Chapter materials 395

Chapter materials
For this chapter, we will be creating our own package for stock analysis. This makes it
extremely easy for us to distribute our code and for others to use our code. The final
product of this package is on GitHub at https://github.com/stefmolin/stock-
analysis/tree/2nd_edition. Python's package manager, pip, is capable of
installing packages from GitHub and also building them locally; this leaves us with either
of the following choices as to how we want to proceed:

• Install from GitHub if we don't plan on editing the source code for our own use.

• Fork and clone the repository and then install it on our machine in order to modify
the code.

If we wish to install from GitHub directly, we don't need to do anything here since this
was installed when we set up our environment back in Chapter 1, Introduction to Data
Analysis; however, for reference, we would do the following to install packages from
GitHub:

(book_env) $ pip3 install \
git+https://github.com/stefmolin/stock-analysis.git@2nd_edition

Tip
The @2nd_edition portion of the URL tells pip to install the version that
was tagged 2nd_edition. To install the version of the code on a particular
branch instead, replace this with @<branch_name>. For example, if we
want the code being developed on a branch called dev, we use @dev. Be sure
to check that the branch exists first, of course. We can also use the commit
hash in the same fashion to grab a specific commit. More information is
available at https://pip.pypa.io/en/latest/reference/
pip_install/#git.

To install locally in editable mode—meaning that any changes will automatically be
reflected locally without having to reinstall—we use the -e flag. Run the following from
the command line in the virtual environment we created in Chapter 1, Introduction to
Data Analysis, to do so. Note that this will clone the latest version of the package, which
may be different from the version in the text (the version with the 2nd_edition tag):

(book_env) $ git clone \
git@github.com:stefmolin/stock-analysis.git
(book_env) $ pip3 install -r stock-analysis/requirements.txt
(book_env) $ pip3 install -e stock-analysis

https://github.com/stefmolin/stock-analysis/tree/2nd_edition
https://github.com/stefmolin/stock-analysis/tree/2nd_edition
https://pip.pypa.io/en/latest/reference/pip_install/#git
https://pip.pypa.io/en/latest/reference/pip_install/#git

396 Financial Analysis – Bitcoin and the Stock Market

Important note
This example uses git clone over SSH; if SSH keys are not set up already,
clone over HTTPS instead by using a variation of the URL: https://
github.com/stefmolin/stock-analysis.git. Alternatively,
follow the instructions on GitHub for generating SSH keys first. Consult
this Stack Overflow post if you're interested in just cloning the version
with the 2nd_edition tag: https://stackoverflow.com/
questions/20280726/how-to-git-clone-a-specific-
tag.

We will be using this package throughout this chapter. The directory for this chapter in
this book's repository has the financial_analysis.ipynb notebook we will use
for our actual analysis and can be found at https://github.com/stefmolin/
Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/
ch_07. The data/ folder contains backup files in case the data sources have changed
since publication or there are any errors when collecting the data with the StockReader
class; simply read in the CSV files and follow along with the rest of this chapter should this
happen. Similarly, the exercises/ folder contains backup files for the exercises.

Important note
If we change a file in a package installed in editable mode when working
with Jupyter Notebooks, we will need to restart our kernel or open a new
Python shell and reimport the package. This is because Python will cache
it after import. Other options include using importlib.reload()
or the IPython autoreload extension (https://ipython.
readthedocs.io/en/stable/config/extensions/
autoreload.html).

Building a Python package
Building packages is considered good coding practice since it allows for writing modular
code and reuse. Modular code is code that is written in many smaller pieces for more
pervasive use, without needing to know the underlying implementation details of
everything involved in a task. For example, when we use matplotlib to plot something,
we don't need to know what the code inside the functions we call is doing exactly—it
suffices to simply know what the input and output will be to build on top of it.

https://stackoverflow.com/questions/20280726/how-to-git-clone-a-specific-tag
https://stackoverflow.com/questions/20280726/how-to-git-clone-a-specific-tag
https://stackoverflow.com/questions/20280726/how-to-git-clone-a-specific-tag
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/ch_07
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/ch_07
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/ch_07
https://ipython.readthedocs.io/en/stable/config/extensions/autoreload.html
https://ipython.readthedocs.io/en/stable/config/extensions/autoreload.html
https://ipython.readthedocs.io/en/stable/config/extensions/autoreload.html

Building a Python package 397

Package structure
A module is a single file of Python code that can be imported; window_calc.py from
Chapter 4, Aggregating Pandas DataFrames, and viz.py from Chapter 6, Plotting with
Seaborn and Customization Techniques, were both modules. A package is a collection of
modules organized into directories. Packages can also be imported, but when we import
a package we have access to certain modules inside, so we don't have to import each one
individually. This also allows us to build modules that import from each other without the
need to maintain a single very large module.

To turn modules into a package, we follow these steps:

1. Create a directory with the name of the package (stock_analysis for this
chapter).

2. Place the modules in the aforementioned directory.

3. Add an __init__.py file containing any Python code to run upon importing the
package (this can be—and often is—empty).

4. Make a setup.py file at the same level as the package's top-level directory
(stock_analysis here), which will give pip instructions on how to install the
package. See the Further reading section for information on creating this.

Once the aforementioned steps are complete, the package can be installed with pip.
Note that, while our package only contains a single directory, we can build a package
with as many subpackages as we desire. These subpackages are created just as if we were
creating a package, with the exception that they don't need a setup.py file:

1. Create a directory for the subpackage inside the main package directory (or inside
some other subpackage).

2. Place the subpackage's modules in this directory.

3. Add the __init__.py file, with code that should be run when the subpackage is
imported (this can be empty).

398 Financial Analysis – Bitcoin and the Stock Market

The directory hierarchy for a package with a single subpackage would look something
like this:

repo_folder
|-- <package_name>
| |-- __init__.py
| |-- some_module.py
| `-- <subpackage_name>
| |-- __init__.py
| |-- another_module.py
| `-- last_module.py
`-- setup.py

Some other things to be aware of when building a package include the following:

• Writing a README file for the repository so that others know what it contains
(see https://www.makeareadme.com/).

• Linting the code in order to conform to coding standards and analyze the code for
possible errors (check out the pylint package at https://www.pylint.org/).

• Adding tests that will make sure changes to the code don't break anything and
that the code does what it is meant to do (take a look at the pytest package at
https://docs.pytest.org/en/latest/).

Overview of the stock_analysis package
In this chapter, we will be creating a Python package called stock_analysis using the
various Python packages we have discussed so far, along with the Python standard library.
This package is located in the stock-analysis repository (https://github.com/
stefmolin/stock-analysis), which is arranged like this:

Figure 7.1 – Structure of the stock-analysis repository

stock-analysis

(repo)

stock_modeler.py

(module with class for
modeling assets)

stock_visualizer.py

(module with classes for
visualizing assets)

stock_reader.py

(module with class for
getting data on assets)

stock_analyzer.py

(module with classes
 for stock analysis)

setup.py

(install instructions for pip)

stock_analysis

(package)

__init__.py

(what gets imported when
we import our package)

utils.py

(module with utility functions
and custom decorators)

https://www.makeareadme.com/
https://www.pylint.org/
https://docs.pytest.org/en/latest/
https://github.com/stefmolin/stock-analysis
https://github.com/stefmolin/stock-analysis

Building a Python package 399

The modules in our package will contain custom classes for conducting the technical
analysis of an asset. Classes should be designed for a single purpose; this makes it easier
to build, use, and debug if issues arise. Therefore, we will be building several classes in
order to cover the various facets of our financial analysis. We will need a class for each
of the following purposes:

Figure 7.2 – Main themes and classes for the stock_analysis package

It can be helpful to visualize the interaction between modules in a package and the
functionality each class provides. For this purpose, we can build Unified Modeling
Language (UML) diagrams.

UML diagrams
UML diagrams show information about which attributes and methods classes have and
how classes are related to others. We can see in the following diagram that all the modules
rely on utils.py for utility functions:

Figure 7.3 – Module dependencies in the stock_analysis package

stock_analysis

stock_analysis.stock_analyzer stock_analysis.stock_modeler stock_analysis.stock_reader stock_analysis.stock_visualizer

stock_analysis.utils

400 Financial Analysis – Bitcoin and the Stock Market

Tip
The pylint package comes with pyreverse, which makes UML
diagrams. If graphviz is installed (http://www.graphviz.org/
download/), running the following from the command line generates
a PNG file for the relationship between modules and a UML diagram for
the classes (provided the repository was cloned and pylint is installed):
pyreverse -o png stock_analysis

The UML diagram for the classes in the stock_analysis package looks like this:

Figure 7.4 – UML diagrams for classes in the stock_analysis package

The top section in each box contains the class name; the middle section contains
the attributes of that class; while the bottom section contains any methods defined
in that class. Notice the arrows pointing from the AssetGroupVisualizer and
StockVisualizer classes to the Visualizer class? This means that both are a
type of Visualizer. The methods shown for the AssetGroupVisualizer and
StockVisualizer classes are defined differently in those classes compared to the
Visualizer class. We will cover this in more depth in the Exploratory data analysis
section. Throughout the remaining sections of this chapter, we will be going over each
of the classes in the stock_analysis package in more detail and using their
functionality to perform technical analysis of financial assets.

http://www.graphviz.org/download/
http://www.graphviz.org/download/

Collecting financial data 401

Collecting financial data
Back in Chapter 2, Working with Pandas DataFrames, and Chapter 3, Data Wrangling with
Pandas, we worked with APIs to gather data; however, there are other ways to collect data
from the Internet. We can use web scraping to extract data from the HTML page itself,
which pandas offers with the pd.read_html() function—it returns a dataframe
for each of the HTML tables it finds on the page. For economic and financial data, an
alternative is the pandas_datareader package, which the StockReader class in the
stock_analysis package uses to collect financial data.

Important note
In case anything has changed with the data sources that are used in this chapter
or you encounter errors when using the StockReader class to collect data,
the CSV files in the data/ folder can be read in as a replacement in order to
follow along with the text; for example:

pd.read_csv('data/bitcoin.csv', index_col='date',
 parse_dates=True)

The StockReader class
Since we will be collecting data for various assets across the same date range, it makes
sense to create a class that hides all of the implementation details and, therefore, avoid
lots of copying and pasting (and potential mistakes). For this purpose, we will build the
StockReader class, which will make it easier to collect data for bitcoin, stocks, and
stock market indices. We can simply create an instance of the StockReader class by
providing the date range we want for our analysis, and then use the methods it provides to
get whichever data we please. The following UML diagram provides a high-level overview
of the implementation:

Figure 7.5 – UML diagram for the StockReader class

StockReader

available_tickers

get_bitcoin_data(currency_code)
get_forex_rates(from_currency, to_currency)
get_index_data(index)
get_index_ticker(cls, index)
get_risk_free_rate_of_return(last)
get_ticker_data(ticker)

402 Financial Analysis – Bitcoin and the Stock Market

The UML diagram tells us that the StockReader class provides an attribute for the
available tickers (available_tickers) and can perform the following actions:

• Pull bitcoin data in the desired currency with the get_bitcoin_data()
method.

• Pull daily foreign exchange rates data with the get_forex_rates() method.

• Pull data for an index on the stock market (such as the S&P 500) with the
get_index_data() method.

• Look up the ticker (stock market symbol) for a specific index (for instance, ^GSPC
for the S&P 500 ticker on Yahoo! Finance) with the get_index_ticker()
method.

• Collect the risk-free rate of return with the get_risk_free_rate_of_
return() method.

• Pull data for a ticker on the stock market (such as NFLX for Netflix) with the
get_ticker_data() method.

Now that we understand why we need this class and have a high-level overview of
its structure, we can proceed to looking at the code. Since there is a lot of code in the
stock_analysis/stock_reader.py module to review, we will break down the file
piece by piece. Note that this may change the indentation level, so please consult the file
itself for the full version.

The first line of the module is the docstring for the module. If we run help() on the
module itself, that will appear near the top. This describes the purpose of our module.
This is immediately followed by any imports we will need:

"""Gather select stock data."""

import datetime as dt
import re

import pandas as pd
import pandas_datareader.data as web

from .utils import label_sanitizer

Collecting financial data 403

Notice that the import statements are organized in three groups, following PEP 8
(Python style guidelines available at https://www.python.org/dev/peps/
pep-0008/), which states that they should be in the following order:

1. Standard library imports (datetime and re)

2. Third-party libraries (pandas and pandas_datareader)

3. Relative import from another module in the stock_analysis package (.utils)

After our imports, we define the StockReader class. First, we create a dictionary
mapping tickers for indices to a descriptive name in _index_tickers. Notice that
our class also has a docstring, which defines its purpose. Here, we will only reproduce
a few of the tickers available:

class StockReader:
 """Class for reading financial data from websites."""

 _index_tickers = {'S&P 500': '^GSPC', 'Dow Jones': '^DJI',
 'NASDAQ': '^IXIC'}

When building a class, there are many special methods (colloquially referred to as dunder
methods because their names start and end with double underscores) that we can provide
to customize the behavior of the class when it's used with language operators:

• Initialize an object (__init__()).

• Make an object comparable for sorting (__eq__(), __lt__(), __gt__(),
and more).

• Perform arithmetic on the object (__add__(), __sub__(), __mul__(),
and so on).

• Be able to use built-in Python functions such as len() on it (__len__()).

• Get a string representation of the object for use with the print() function
(__repr__() and __str__()).

• Support iteration and indexing (__getitem__(), __iter__(), and
__next__()).

Thankfully, we don't have to write all this functionality every time we make a class. In
most cases, we just need the __init__() method, which is run when we create an
object. (More information on special methods can be found at https://dbader.
org/blog/python-dunder-methods and https://docs.python.org/3/
reference/datamodel.html#special-method-names.)

https://dbader.org/blog/python-dunder-methods
https://dbader.org/blog/python-dunder-methods
https://docs.python.org/3/reference/datamodel.html#special-method-names.
https://docs.python.org/3/reference/datamodel.html#special-method-names.

404 Financial Analysis – Bitcoin and the Stock Market

Objects of the StockReader class hold on to the start and end dates that data will be
gathered for, so we put this in the __init__() method. We parse the dates that are
passed in by the caller to allow for the use of any date separator; for example, we will be
able to handle inputs of Python datetime objects; strings in the form of 'YYYYMMDD';
or strings representing dates using any separator that matches the non-digit regular
expression (\D), such as 'YYYY|MM|DD' or 'YYYY/MM/DD'. The separator, if there
is one, gets replaced with an empty string so that we can build our datetimes using the
'YYYYMMDD' format in our method. In addition, we raise a ValueError if the caller
gives us a start date equal to or after the end date:

 def __init__(self, start, end=None):
 """
 Create a `StockReader` object for reading across
 a given date range.

 Parameters:
 - start: The first date to include, as a datetime
 object or a string in the format 'YYYYMMDD'.
 - end: The last date to include, as a datetime
 object or string in the format 'YYYYMMDD'.
 Defaults to today if not provided.
 """
 self.start, self.end = map(
 lambda x: x.strftime('%Y%m%d')\
 if isinstance(x, dt.date)\
 else re.sub(r'\D', '', x),
 [start, end or dt.date.today()]
)
 if self.start >= self.end:
 raise ValueError('`start` must be before `end`')

Note that we didn't define _index_tickers in the __init__() method, which is
called upon creation of this object, because we only need one copy of this information for
all the objects that are created from this class. The _index_tickers class attribute is
private (signified, by convention, with a preceding underscore) in the sense that unless a
user of this class knows the name of it, they won't find it easily (note that methods can also
be private). This is done with the intention of protecting it (although it isn't guaranteed)
and also because the user doesn't need it directly (it's for the internal workings of the
class). Instead, we will provide a property, which we can access as an attribute, and a class
method for getting the value mapped to a given key in that dictionary.

Collecting financial data 405

Tip
Class methods are methods that can be used on the class itself, without having
to create an instance of the class beforehand. This contrasts with the instance
methods we have seen so far. Instance methods are used with instances of a
class for actions specific to that instance. We often don't need class methods,
but if we have data that is shared across all instances of a class, it makes more
sense to create a class method rather than an instance method.

Since _index_tickers is private, we want to provide an easy way for users of our
class to see what is available. Therefore, we will create a property for the keys of
_index_tickers. To do so, we use the @property decorator. Decorators are
functions that wrap around other functions, allowing for the execution of extra code
before and/or after the inner function executes. This class makes heavy use of decorators:
we will use some already written ones (@property and @classmethod) and write one
of our own to clean up and standardize the results across the methods that gather the data
(@label_sanitizer). To use a decorator, we place it above the function or method
definition:

 @property
 def available_tickers(self):
 """Indices whose tickers are supported."""
 return list(self._index_tickers.keys())

Furthermore, we provide a way of getting the ticker using a class method because our
tickers are stored in a class variable. Class methods, by convention, receive cls as their
first argument while instance methods receive self:

 @classmethod
 def get_index_ticker(cls, index):
 """
 Get the ticker of the specified index, if known.

 Parameters:
 - index: The name of the index; check
 `available_tickers` for full list which includes:
 - 'S&P 500' for S&P 500,
 - 'Dow Jones' for Dow Jones Industrial Average,
 - 'NASDAQ' for NASDAQ Composite Index

 Returns:
 The ticker as a string if known, otherwise `None`.
 """

406 Financial Analysis – Bitcoin and the Stock Market

 try:
 index = index.upper()
 except AttributeError:
 raise ValueError('`index` must be a string')
 return cls._index_tickers.get(index, None)

Tip
If we want to prohibit certain actions within our code, we can check for them
and raise errors as we see fit; this allows us to provide more informative
error messages or simply accompany specific errors with some additional
actions before reraising them (by using raise without an expression). If,
instead, we wish to run certain code when something goes wrong, we use a
try...except block: we surround the possibly troublesome code with
try and put what to do if trouble occurs in the except clause.

When we get to the Technical analysis of financial instruments section, we will need
the risk-free rate of return to calculate some of the metrics. This is the rate of return
of an investment that has no risk of financial loss; in practice, we use the 10-year US
Treasury bill. Since this rate will depend on the date range we are analyzing, we will
add this functionality to the StockReader class and avoid having to look it up ourselves.
We will use the pandas_datareader package to collect this data from the Federal
Reserve Bank of St. Louis (https://fred.stlouisfed.org/series/DGS10),
providing the option to return the daily rates for the date range we are studying (to
analyze the data itself) or just the last one (if we need a single value for a calculation):

 def get_risk_free_rate_of_return(self, last=True):
 """
 Get risk-free rate of return w/ 10-year US T-bill
 from FRED (https://fred.stlouisfed.org/series/DGS10)

 Parameter:
 - last: If `True`, return the rate on the last
 date in the date range else, return a `Series`
 object for the rate each day in the date range.

 Returns:
 A single value or a `pandas.Series` object.
 """

https://fred.stlouisfed.org/series/DGS10

Collecting financial data 407

 data = web.DataReader(
 'DGS10', 'fred', start=self.start, end=self.end
)
 data.index.rename('date', inplace=True)
 data = data.squeeze()
 return data.asof(self.end) \
 if last and isinstance(data, pd.Series) else data

The remaining method code is replaced with pass, which tells Python to do nothing
(and reminds us to update it later) so that the code can function as it was reproduced.
We will write the following methods in the next section:

 @label_sanitizer
 def get_ticker_data(self, ticker):
 pass

 def get_index_data(self, index):
 pass

 def get_bitcoin_data(self, currency_code):
 pass

 @label_sanitizer
 def get_forex_rates(self, from_currency, to_currency,
 **kwargs):
 pass

Important note
Since we aren't going to be looking at foreign exchange rates, we won't cover
the get_forex_rates() method in this chapter; however, this method
provides an additional example of how to use the pandas_datareader
package, so I encourage you to take a look at it. Note that, in order to use this
method, you will need to get a free API key from AlphaVantage at https://
www.alphavantage.co/support/#api-key.

https://www.alphavantage.co/support/#api-key
https://www.alphavantage.co/support/#api-key

408 Financial Analysis – Bitcoin and the Stock Market

Both the get_ticker_data() and get_forex_rates() methods are decorated
with @label_sanitizer, which aligns the data we receive from various sources to the
same column names so that we don't have to clean them later. The @label_sanitizer
decorator is defined in the stock_analysis/utils.py module. As we did previously,
let's begin by looking at the docstring and imports of the utils module:

"""Utility functions for stock analysis."""

from functools import wraps
import re

import pandas as pd

Next, we have the _sanitize_label() function, which will clean up a single label.
Note that we prefix the function name with an underscore because we don't intend for the
users of our package to use this directly—it is for our decorator to use:

def _sanitize_label(label):
 """
 Clean up a label by removing non-letter, non-space
 characters and putting in all lowercase with underscores
 replacing spaces.

 Parameters:
 - label: The text you want to fix.

 Returns:
 The sanitized label.
 """
 return re.sub(r'[^\w\s]', '', label)\
 .lower().replace(' ', '_')

Finally, we define the @label_sanitizer decorator, which is a function that cleans up
the column and index names in the data we get from the Internet. Without this decorator,
the column names in our collected data could have unexpected characters such as
asterisks or spaces in them, making them unwieldy. By using the decorator, the methods
will always return a dataframe with the names cleaned, saving us a step:

def label_sanitizer(method):
 """
 Decorator around a method that returns a dataframe to
 clean up all labels in said dataframe (column names and
 index name) by using `_sanitize_label()`.

Collecting financial data 409

 Parameters:
 - method: The method to wrap.

 Returns:
 A decorated method or function.
 """
 @wraps(method) # keep original docstring for help()
 def method_wrapper(self, *args, **kwargs):
 df = method(self, *args, **kwargs)

 # fix the column names
 df.columns = [
 _sanitize_label(col) for col in df.columns
]

 # fix the index name
 df.index.rename(
 _sanitize_label(df.index.name), inplace=True
)

 return df
 return method_wrapper

Note that there is also a decorator inside the definition of the label_sanitizer()
function. The @wraps decorator from the functools module in the standard library
gives the decorated function/method the same docstring it had beforehand; this is
necessary because decoration actually creates a new function/method, thus rendering
help() pretty useless unless we intervene.

Tip
Using the @label_sanitizer syntax is syntactic sugar, meaning that it
makes it easier to express, compared to defining the method and then writing
method = label_sanitizer(method). However, both are valid.

Now that we understand decorators, we are ready to finish building the StockReader
class. Note that we will be using and creating additional decorators for the other classes
in the stock_analysis package as well, so make sure that you are comfortable with
them before moving on.

410 Financial Analysis – Bitcoin and the Stock Market

Collecting historical data from Yahoo! Finance
The foundation of our data collection will be the get_ticker_data() method. It uses
the pandas_datareader package to grab the data from Yahoo! Finance:

@label_sanitizer
def get_ticker_data(self, ticker):
 """
 Get historical OHLC data for given date range and ticker.

 Parameter:
 - ticker: The stock symbol to lookup as a string.

 Returns: A `pandas.DataFrame` object with the stock data.
 """
 return web.get_data_yahoo(ticker, self.start, self.end)

Important note
There have been issues with pandas_datareader and the Yahoo!
Finance API in the past, causing the pandas_datareader developers
to deprecate support for it via the web.DataReader() function
(https://pandas-datareader.readthedocs.io/en/
latest/whatsnew.html#v0-6-0-january-24-2018); instead,
we have to use their workaround: web.get_data_yahoo().

To collect data for a stock market index, we can use the get_index_data() method,
which first looks up the index's ticker and then calls the get_ticker_data() method
we just defined. Note that since the get_ticker_data() method is decorated with
@label_sanitizer, the get_index_data() method doesn't need the
@label_sanitizer decorator:

def get_index_data(self, index):
 """
 Get historical OHLC data from Yahoo! Finance
 for the chosen index for given date range.

 Parameter:
 - index: String representing the index you want
 data for, supported indices include:
 - 'S&P 500' for S&P 500,
 - 'Dow Jones' for Dow Jones Industrial Average,
 - 'NASDAQ' for NASDAQ Composite Index

https://pandas-datareader.readthedocs.io/en/latest/whatsnew.html#v0-6-0-january-24-2018
https://pandas-datareader.readthedocs.io/en/latest/whatsnew.html#v0-6-0-january-24-2018

Collecting financial data 411

 Returns:
 A `pandas.DataFrame` object with the index data.
 """
 if index not in self.available_tickers:
 raise ValueError(
 'Index not supported. Available tickers'
 f"are: {', '.join(self.available_tickers)}"
)
 return self.get_ticker_data(self.get_index_ticker(index))

Yahoo! Finance also provides data for bitcoin; however, we must pick a currency to use.
The get_bitcoin_data() method accepts a currency code to create the symbol for
the search on Yahoo! Finance (for instance, BTC-USD for bitcoin data in USD). The actual
collection of the data is once again handled by the get_ticker_data() method:

def get_bitcoin_data(self, currency_code):
 """
 Get bitcoin historical OHLC data for given date range.

 Parameter:
 - currency_code: The currency to collect the bitcoin
 data in, e.g. USD or GBP.

 Returns:
 A `pandas.DataFrame` object with the bitcoin data.
 """
 return self\
 .get_ticker_data(f'BTC-{currency_code}')\
 .loc[self.start:self.end] # clip dates

At this point, the StockReader class is ready for use, so let's get started in the
financial_analysis.ipynb notebook and import the stock_analysis
package that will be used for the rest of this chapter:

>>> import stock_analysis

412 Financial Analysis – Bitcoin and the Stock Market

Python runs the stock_analysis/__init__.py file when we import the
stock_analysis package:

"""Classes for making technical stock analysis easier."""

from .stock_analyzer import StockAnalyzer, AssetGroupAnalyzer
from .stock_modeler import StockModeler
from .stock_reader import StockReader
from .stock_visualizer import \
 StockVisualizer, AssetGroupVisualizer

Important note
The code in the stock_analysis/__init__.py file makes it easier
for us to access the package's classes—for example, rather than having to run
stock_analysis.stock_reader.StockReader(), we only have
to run stock_analysis.StockReader()to create a StockReader
object.

Next, we will create an instance of the StockReader class by providing the start and
(optionally) end dates for the data it will collect. We will work with 2019-2020 data. Note
that when we run this code, Python is calling the StockReader.__init__() method:

>>> reader = \
... stock_analysis.StockReader('2019-01-01', '2020-12-31')

Now, we will collect the Facebook, Apple, Amazon, Netflix, and Google (FAANG),
S&P 500, and bitcoin data. Since all the stocks we are working with are priced in USD, we
will ask for the bitcoin data in USD. Note that we are using a generator expression and
multiple assignment to get dataframes for each FAANG stock:

>>> fb, aapl, amzn, nflx, goog = (
... reader.get_ticker_data(ticker)
... for ticker in ['FB', 'AAPL', 'AMZN', 'NFLX', 'GOOG']
...)
>>> sp = reader.get_index_data('S&P 500')
>>> bitcoin = reader.get_bitcoin_data('USD')

Exploratory data analysis 413

Tip
Be sure to run help(stock_analysis.StockReader) or
help(reader) to see all the methods and properties that are defined. The
output clearly denotes which methods are class methods in a different section,
and the properties will be listed at the bottom in the data descriptors section.
This is an important step to take in order to get familiar with new code.

Exploratory data analysis
Now that we have our data, we want to get familiar with it. As we saw in Chapter 5,
Visualizing Data with Pandas and Matplotlib and Chapter 6, Plotting with Seaborn
and Customization Techniques, creating good visualizations requires knowledge
of matplotlib, and—depending on the data format and the end goal for the
visualization—seaborn. Just as we did with the StockReader class, we want to
make it easier to visualize both individual assets and groups of assets, so rather than
expecting users of our package (and, perhaps, our collaborators) to be proficient with
matplotlib and seaborn, we will create wrappers around this functionality. This
means that users of this package only have to be able to use the stock_analysis
package to visualize their financial data. In addition, we are able to set a standard for
how the visualizations look and avoid copying and pasting large amounts of code for
each new analysis we want to conduct, which brings consistency and efficiency gains.

To make all of this possible, we have the Visualizer classes in stock_analysis/
stock_visualizer.py. There are three classes in this file:

• Visualizer: This is the base class for defining the functionality of
a Visualizer object. Most of the methods are abstract, meaning that
the subclasses (children) that inherit from this superclass (parent) will need to
override them and implement the code; these define what an object should do,
without getting into the specifics.

• StockVisualizer: This is the subclass we will use to visualize a single asset.

• AssetGroupVisualizer: This is the subclass we will use to visualize multiple
assets using groupby() operations.

Before we discuss the code for these classes, let's go over some additional functions in
the stock_analysis/utils.py file, which will help create these asset groups and
describe them for EDA purposes. For these functions, we need to import pandas:

import pandas as pd

414 Financial Analysis – Bitcoin and the Stock Market

The group_stocks() function takes in a dictionary that maps the name of the asset to
the dataframe for that asset and outputs a new dataframe with all the data from the input
dataframes and a new column, denoting which asset the data belongs to:

def group_stocks(mapping):
 """
 Create a new dataframe with many assets and a new column
 indicating the asset that row's data belongs to.

 Parameters:
 - mapping: A key-value mapping of the form
 {asset_name: asset_df}

 Returns:
 A new `pandas.DataFrame` object
 """
 group_df = pd.DataFrame()

 for stock, stock_data in mapping.items():
 df = stock_data.copy(deep=True)
 df['name'] = stock
 group_df = group_df.append(df, sort=True)

 group_df.index = pd.to_datetime(group_df.index)

 return group_df

Since we will have many methods and functions throughout the package that will expect
their dataframes in a specific format, we will build a new decorator: @validate_df.
This decorator checks that the input to a given method or function is an object of type
DataFrame and that it has at least the columns specified with the columns argument
of the decorator. We will provide the columns as a set object. This allows us to check
the set difference between the columns we must have and the columns in the input data
(see Chapter 4, Aggregating Pandas DataFrames, for a review of set operations). If the
dataframe has the columns we request (at a minimum), the set difference will be empty,
which means that the dataframe passes the test. This decorator will raise a ValueError
if either of these conditions is violated.

Exploratory data analysis 415

Let's take a look at how this is defined in the stock_analysis/utils.py file:

def validate_df(columns, instance_method=True):
 """
 Decorator that raises a `ValueError` if input isn't a
 `DataFrame` or doesn't contain the proper columns. Note
 the `DataFrame` must be the first positional argument
 passed to this method.

 Parameters:
 - columns: A set of required column names.
 For example, {'open', 'high', 'low', 'close'}.
 - instance_method: Whether or not the item being
 decorated is an instance method. Pass `False` to
 decorate static methods and functions.

 Returns:
 A decorated method or function.
 """
 def method_wrapper(method):
 @wraps(method)
 def validate_wrapper(self, *args, **kwargs):
 # functions and static methods don't pass self so
 # self is the 1st positional argument in that case
 df = (self, *args)[0 if not instance_method else 1]
 if not isinstance(df, pd.DataFrame):
 raise ValueError(
 'Must pass in a pandas `DataFrame`'
)
 if columns.difference(df.columns):
 raise ValueError(
 'Dataframe must contain the following'
 f' columns: {columns}'
)
 return method(self, *args, **kwargs)
 return validate_wrapper
 return method_wrapper

416 Financial Analysis – Bitcoin and the Stock Market

Groups made with the group_stocks() function can be described in a single output
using the describe_group() function. The group_stocks() function adds a
column called name that describe_group() looks for, so we use the @validate_df
decorator to make sure that the format is correct before trying to run the function:

@validate_df(columns={'name'}, instance_method=False)
def describe_group(data):
 """
 Run `describe()` on the asset group.

 Parameters:
 - data: Grouped data resulting from `group_stocks()`

 Returns:
 The transpose of the grouped description statistics.
 """
 return data.groupby('name').describe().T

Let's use the group_stocks() function to make some asset groups for our analysis:

>>> from stock_analysis.utils import \
... group_stocks, describe_group
>>> faang = group_stocks({
... 'Facebook': fb, 'Apple': aapl, 'Amazon': amzn,
... 'Netflix': nflx, 'Google': goog
... })
>>> faang_sp = group_stocks({
... 'Facebook': fb, 'Apple': aapl, 'Amazon': amzn,
... 'Netflix': nflx, 'Google': goog, 'S&P 500': sp
... })
>>> all_assets = group_stocks({
... 'Bitcoin': bitcoin, 'S&P 500': sp, 'Facebook': fb,
... 'Apple': aapl, 'Amazon': amzn, 'Netflix': nflx,
... 'Google': goog
... })

Using these groups, the output of describe() can be much more informative for
comparison purposes compared to running it on each dataframe separately. The
describe_group() function handles running describe() with groupby().
This makes it easier to look at the summary for the closing price across assets:

>>> describe_group(all_assets).loc['close',]

Exploratory data analysis 417

At a glance, we can see that we have more data for bitcoin than the rest. This is because
the prices change daily, whereas for stocks, we only see the data for trading days. Another
thing we can glean from this is scale; bitcoin is not only much more volatile but is much
higher in value than everything else:

Figure 7.6 – Summary statistics for the closing price per financial instrument

If we don't want to look at the assets individually, we can combine them into a portfolio,
which we can treat as a single asset. The make_portfolio() function from
stock_analysis/utils.py groups the data by date and sums all the columns,
giving us the total stock price and volume traded of our portfolio:

@validate_df(columns=set(), instance_method=False)
def make_portfolio(data, date_level='date'):
 """
 Make a portfolio of assets by grouping by date and
 summing all columns.

 Note: the caller is responsible for making sure the
 dates line up across assets and handling when they don't.
 """
 return data.groupby(level=date_level).sum()

418 Financial Analysis – Bitcoin and the Stock Market

This function assumes that the assets are traded on the same frequency. Bitcoin trades
every day of the week, while the stock market doesn't. For this reason, we would have to
decide how to handle this difference before using this function if our portfolio was a mix
of bitcoin and the stock market; consult our discussion of reindexing in Chapter 3, Data
Wrangling with Pandas, for a possible strategy. We will use this function in the exercises
at the end of this chapter to build a portfolio of the FAANG stocks, which all trade on the
same frequency, in order to look at the effect of after-hours trading on the FAANG stocks
as a whole.

The Visualizer class family
As we learned from previous chapters, visualization will make our analysis much easier,
so let's begin our discussion of the Visualizer classes in stock_analysis/stock_
visualizer.py. First, we will define our base class, Visualizer. The following UML
diagram tells us this is our base class because it has arrows pointing to it. These arrows
originate from the subclasses (AssetGroupVisualizer and StockVisualizer):

Figure 7.7 – Visualizer class hierarchy

AssetGroupVisualizer

group_by : str

after_hours_trades()
boxplot(column)
evolution_over_time(column)
heatmap(pct_change)
histogram(column)
pairplot()

Visualizer

data

add_reference_line(ax, x, y)
after_hours_trades()
boxplot()
evolution_over_time(column)
exp_smoothing(column, periods)
histogram(column)
moving_average(column, periods)
pairplot()
shade_region(ax, x, y)

StockVisualizer

after_hours_trades()
boxplot()
candlestick(date_range, resample, volume)
correlation_heatmap(other)
evolution_over_time(column)
fill_between(y1, y2, title, label_higher, label_lower, figsize, legend_x)
fill_between_other(other_df, figsize)
histogram(column)
jointplot(other, column)
open_to_close(figsize)
pairplot()

Exploratory data analysis 419

Figure 7.7 also tells us the methods we will be defining for each of the classes in this
section. This includes methods for visualizing the effect of after-hours trading
(after_hours_trades()) and the evolution over time of an asset's price
(evolution_over_time()), which we will use to compare assets visually.

We start the module with our docstring and imports. For our visualizations, we will
need matplotlib, numpy, pandas, and seaborn, along with mplfinance
(a matplotlib derivative package for financial visualizations):

"""Visualize financial instruments."""

import math

import matplotlib.pyplot as plt
import mplfinance as mpf
import numpy as np
import pandas as pd
import seaborn as sns

from .utils import validate_df

Next, we begin by defining the Visualizer class. This class will hold the data it will be
used to visualize, so we put this in the __init__() method:

class Visualizer:
 """Base visualizer class not intended for direct use."""

 @validate_df(columns={'open', 'high', 'low', 'close'})
 def __init__(self, df):
 """Store the input data as an attribute."""
 self.data = df

This base class will provide us with static methods for adding reference lines to plots and
also adding shaded regions, without needing to remember which matplotlib function
we need to call for the orientation; static methods don't depend on the class for data. We
define the add_reference_line() method for adding horizontal or vertical lines
(and anything in between) using the @staticmethod decorator; notice we don't have
self or cls as the first argument:

 @staticmethod
 def add_reference_line(ax, x=None, y=None, **kwargs):
 """
 Static method for adding reference lines to plots.

420 Financial Analysis – Bitcoin and the Stock Market

 Parameters:
 - ax: `Axes` object to add the reference line to.
 - x, y: The x, y value to draw the line at as a
 single value or numpy array-like structure.
 - For horizontal: pass only `y`
 - For vertical: pass only `x`
 - For AB line: pass both `x` and `y`
 - kwargs: Additional keyword args. to pass down.

 Returns:
 The matplotlib `Axes` object passed in.
 """
 try:
 # numpy array-like structures -> AB line
 if x.shape and y.shape:
 ax.plot(x, y, **kwargs)
 except:
 # error triggers if x or y isn't array-like
 try:
 if not x and not y:
 raise ValueError(
 'You must provide an `x` or a `y`'
)
 elif x and not y:
 ax.axvline(x, **kwargs) # vertical line
 elif not x and y:
 ax.axhline(y, **kwargs) # horizontal line
 except:
 raise ValueError(
 'If providing only `x` or `y`, '
 'it must be a single value'
)
 ax.legend()
 return ax

Tip
See the Further reading section for more information on class methods, static
methods, and abstract methods.

Exploratory data analysis 421

The shade_region() static method for adding shaded regions to a plot is similar to the
add_reference_line() static method:

 @staticmethod
 def shade_region(ax, x=tuple(), y=tuple(), **kwargs):
 """
 Static method for shading a region on a plot.

 Parameters:
 - ax: `Axes` object to add the shaded region to.
 - x: Tuple with the `xmin` and `xmax` bounds for
 the rectangle drawn vertically.
 - y: Tuple with the `ymin` and `ymax` bounds for
 the rectangle drawn horizontally.
 - kwargs: Additional keyword args. to pass down.

 Returns:
 The matplotlib `Axes` object passed in.
 """
 if not x and not y:
 raise ValueError(
 'You must provide an x or a y min/max tuple'
)
 elif x and y:
 raise ValueError('You can only provide x or y.')
 elif x and not y:
 ax.axvspan(*x, **kwargs) # vertical region
 elif not x and y:
 ax.axhspan(*y, **kwargs) # horizontal region
 return ax

Since we want our plotting capabilities to be flexible, we are going to define a static
method that will make it easy for us to plot one or many items without needing to check
the number of items beforehand. This will be utilized in the classes we build using the
Visualizer class as our base:

 @staticmethod
 def _iter_handler(items):
 """
 Static method for making a list out of an item if
 it isn't a list or tuple already.

422 Financial Analysis – Bitcoin and the Stock Market

 Parameters:
 - items: The variable to make sure it is a list.

 Returns: The input as a list or tuple.
 """
 if not isinstance(items, (list, tuple)):
 items = [items]
 return items

We want to support window functions for single assets and groups of them; however, the
implementation of this will vary, so we will define an abstract method (a method without
implementation) in the superclass, and the subclasses will override it to provide the
implementation:

 def _window_calc(self, column, periods, name, func,
 named_arg, **kwargs):
 """
 To be implemented by subclasses. Defines how to add
 lines resulting from window calculations.
 """
 raise NotImplementedError('To be implemented by '
 'subclasses.')

This allows us to define functionality that depends on _window_calc() but doesn't
need to know the exact implementation, just the result. The moving_average()
method uses _window_calc() to add moving average lines to the plot:

 def moving_average(self, column, periods, **kwargs):
 """
 Add line(s) for the moving average of a column.

 Parameters:
 - column: The name of the column to plot.
 - periods: The rule or list of rules for
 resampling, like '20D' for 20-day periods.
 - kwargs: Additional arguments to pass down.

 Returns: A matplotlib `Axes` object.
 """
 return self._window_calc(
 column, periods, name='MA', named_arg='rule',
 func=pd.DataFrame.resample, **kwargs
)

Exploratory data analysis 423

In a similar fashion, we define the exp_smoothing() method, which will use
_window_calc() to add exponentially smoothed moving average lines to the plot:

 def exp_smoothing(self, column, periods, **kwargs):
 """
 Add line(s) for the exponentially smoothed moving
 average of a column.

 Parameters:
 - column: The name of the column to plot.
 - periods: The span or list of spans for,
 smoothing like 20 for 20-day periods.
 - kwargs: Additional arguments to pass down.

 Returns:
 A matplotlib `Axes` object.
 """
 return self._window_calc(
 column, periods, name='EWMA',
 func=pd.DataFrame.ewm, named_arg='span', **kwargs
)

Note that while we have methods for adding the moving average and the exponentially
smoothed moving average to a plot of a column, they both call _window_calc(),
which isn't defined here. This is because each of the subclasses will have its own
implementation of _window_calc(), while they will inherit the top-level method
without the need to override moving_average() or exp_smoothing().

Important note
Remember that methods preceded with a single underscore (_) are Python's
version of private methods—they can still be accessed outside this class,
but they don't show up when we run help() on objects of that class. We
created _window_calc() as a private method because users of the
Visualizer classes will only need to call moving_average() and
exp_smoothing().

424 Financial Analysis – Bitcoin and the Stock Market

Finally, we will add placeholders for the methods all subclasses will have. These
are abstract methods that will be defined by each subclass individually because the
implementation will be different depending on if we are visualizing a single asset or
a group of them. For brevity, the following is a subset of the abstract methods defined
in this class:

 def evolution_over_time(self, column, **kwargs):
 """Creates line plots."""
 raise NotImplementedError('To be implemented by '
 'subclasses.')

 def after_hours_trades(self):
 """Show the effect of after-hours trading."""
 raise NotImplementedError('To be implemented by '
 'subclasses.')

 def pairplot(self, **kwargs):
 """Create pairplots."""
 raise NotImplementedError('To be implemented by '
 'subclasses.')

The subclasses will also define any methods that are unique to them and/or override the
implementation of the Visualizer class, if necessary. Anything they don't override,
they will inherit. By using inheritance, we can define a broad class such as Visualizer
by what all Visualizers should do and then have more specific versions, such as the
StockVisualizer class, which handles single assets only.

Visualizing a stock
Let's start the StockVisualizer class by inheriting from Visualizer; we will choose
not to override the __init__() method because the StockVisualizer class will
only have a dataframe as an attribute. Instead, we will provide implementations for the
methods that need to be added (which are unique to this class) or overridden.

Important note
We will only cover a subset of the functionality in the interest of brevity;
however, I highly encourage you to both read through the full code base and
test out the functionality in the notebook.

Exploratory data analysis 425

The first method we will override is evolution_over_time(), which will create a line
plot of a column over time:

class StockVisualizer(Visualizer):
 """Visualizer for a single stock."""

 def evolution_over_time(self, column, **kwargs):
 """
 Visualize the evolution over time of a column.

 Parameters:
 - column: The name of the column to visualize.
 - kwargs: Additional arguments to pass down.

 Returns:
 A matplotlib `Axes` object.
 """
 return self.data.plot.line(y=column, **kwargs)

Next, we will use mplfinance to create a candlestick plot, which is a way to visualize
the OHLC data together. Each row of the OHLC time series will be plotted as a
candlestick. When the candlestick is black, the asset's closing price was smaller than the
opening price (it lost value); when the candlestick is white, the asset's closing price was
higher than its opening price, as illustrated in the following diagram:

Figure 7.8 – Understanding a candlestick plot

426 Financial Analysis – Bitcoin and the Stock Market

The candlestick() method also provides options to resample the data, show volume
traded, and plot a specific date range:

 def candlestick(self, date_range=None, resample=None,
 volume=False, **kwargs):
 """
 Create a candlestick plot for the OHLC data.

 Parameters:
 - date_range: String or `slice()` of dates to
 pass to `loc[]`, if `None` the plot will be
 for the full range of the data.
 - resample: The offset to use for resampling
 the data, if desired.
 - volume: Whether to show a bar plot for volume
 traded under the candlesticks
 - kwargs: Keyword args for `mplfinance.plot()`
 """
 if not date_range:
 date_range = slice(
 self.data.index.min(), self.data.index.max()
)
 plot_data = self.data.loc[date_range]

 if resample:
 agg_dict = {
 'open': 'first', 'close': 'last',
 'high': 'max', 'low': 'min', 'volume': 'sum'
 }
 plot_data = plot_data.resample(resample).agg({
 col: agg_dict[col] for col in plot_data.columns
 if col in agg_dict
 })

 mpf.plot(
 plot_data, type='candle', volume=volume, **kwargs
)

Exploratory data analysis 427

Now, we add the after_hours_trades() method, which helps us visualize the effect
after-hours trading had on an individual asset, with bars colored red for losses and green
for gains:

 def after_hours_trades(self):
 """
 Visualize the effect of after-hours trading.

 Returns: A matplotlib `Axes` object.
 """
 after_hours = self.data.open - self.data.close.shift()

 monthly_effect = after_hours.resample('1M').sum()
 fig, axes = plt.subplots(1, 2, figsize=(15, 3))

 after_hours.plot(
 ax=axes[0],
 title='After-hours trading\n'
 '(Open Price - Prior Day\'s Close)'
).set_ylabel('price')

 monthly_effect.index = \
 monthly_effect.index.strftime('%Y-%b')
 monthly_effect.plot(
 ax=axes[1], kind='bar', rot=90,
 title='After-hours trading monthly effect',
 color=np.where(monthly_effect >= 0, 'g', 'r')
).axhline(0, color='black', linewidth=1)

 axes[1].set_ylabel('price')
 return axes

Next, we will add a static method that will allow us to fill the area between two curves of
our choosing. The fill_between() method will use plt.fill_between() to color
the area green or red depending on which curve is higher:

 @staticmethod
 def fill_between(y1, y2, title, label_higher, label_lower,
 figsize, legend_x):
 """
 Visualize the difference between assets.

428 Financial Analysis – Bitcoin and the Stock Market

 Parameters:
 - y1, y2: Data to plot, filling y2 - y1.
 - title: The title for the plot.
 - label_higher: Label for when y2 > y1.
 - label_lower: Label for when y2 <= y1.
 - figsize: (width, height) for the plot dimensions.
 - legend_x: Where to place legend below the plot.

 Returns: A matplotlib `Axes` object.
 """
 is_higher = y2 - y1 > 0
 fig = plt.figure(figsize=figsize)

 for exclude_mask, color, label in zip(
 (is_higher, np.invert(is_higher)),
 ('g', 'r'),
 (label_higher, label_lower)
):
 plt.fill_between(
 y2.index, y2, y1, figure=fig,
 where=exclude_mask, color=color, label=label
)
 plt.suptitle(title)
 plt.legend(
 bbox_to_anchor=(legend_x, -0.1),
 framealpha=0, ncol=2
)
 for spine in ['top', 'right']:
 fig.axes[0].spines[spine].set_visible(False)
 return fig.axes[0]

The open_to_close() method will help us visualize the daily differential between
opening and closing price via the fill_between() static method. We will color the
area green if the closing price is higher than the opening price and red if the opposite
is true:

 def open_to_close(self, figsize=(10, 4)):
 """
 Visualize the daily change in price from open to close.

 Parameters:
 - figsize: (width, height) of plot

Exploratory data analysis 429

 Returns:
 A matplotlib `Axes` object.
 """
 ax = self.fill_between(
 self.data.open, self.data.close,
 figsize=figsize, legend_x=0.67,
 title='Daily price change (open to close)',
 label_higher='price rose', label_lower='price fell'
)
 ax.set_ylabel('price')
 return ax

In addition to visualizing the differential between the opening and closing price of an
individual asset, we will want to compare prices between assets. The fill_between_
other() method will help us visualize the differential between the asset we created
the visualizer for and another asset, using fill_between() again. We will color the
differential green when the visualizer's asset is higher than the other asset and red for
when it is lower:

 def fill_between_other(self, other_df, figsize=(10, 4)):
 """
 Visualize difference in closing price between assets.

 Parameters:
 - other_df: The other asset's data.
 - figsize: (width, height) for the plot.

 Returns:
 A matplotlib `Axes` object.
 """
 ax = self.fill_between(
 other_df.open, self.data.close, figsize=figsize,
 legend_x=0.7, label_higher='asset is higher',
 label_lower='asset is lower',
 title='Differential between asset price '
 '(this - other)'
)
 ax.set_ylabel('price')
 return ax

430 Financial Analysis – Bitcoin and the Stock Market

The time has finally come to override the _window_calc() method, which defines
how to add reference lines based on window calculations for a single asset. Note how
we are able to use the pipe() method (introduced in Chapter 4, Aggregating Pandas
DataFrames) to make our window calculation plots work with different functions, and
the _iter_handler() method to make our loop work without having to check if we
have more than one reference line to plot:

 def _window_calc(self, column, periods, name, func,
 named_arg, **kwargs):
 """
 Helper method for plotting a series and adding
 reference lines using a window calculation.

 Parameters:
 - column: The name of the column to plot.
 - periods: The rule/span or list of them to pass
 to the resampling/smoothing function, like '20D'
 for 20-day periods (resampling) or 20 for a
 20-day span (smoothing)
 - name: The name of the window calculation (to
 show in the legend).
 - func: The window calculation function.
 - named_arg: The name of the argument `periods`
 is being passed as.
 - kwargs: Additional arguments to pass down.

 Returns:
 A matplotlib `Axes` object.
 """
 ax = self.data.plot(y=column, **kwargs)
 for period in self._iter_handler(periods):
 self.data[column].pipe(
 func, **{named_arg: period}
).mean().plot(
 ax=ax, linestyle='--',
 label=f"""{period if isinstance(
 period, str
) else str(period) + 'D'} {name}"""
)
 plt.legend()
 return ax

Exploratory data analysis 431

So far, each visualization concerned data for a single asset; however, sometimes we want to
be able to visualize the relationship between assets, so we will build a wrapper around the
jointplot() function from seaborn:

 def jointplot(self, other, column, **kwargs):
 """
 Generate a seaborn jointplot for given column in
 this asset compared to another asset.

 Parameters:
 - other: The other asset's dataframe.
 - column: Column to use for the comparison.
 - kwargs: Keyword arguments to pass down.

 Returns: A seaborn jointplot
 """
 return sns.jointplot(
 x=self.data[column], y=other[column], **kwargs
)

Another way of viewing the relationship between assets is the correlation matrix.
DataFrame objects have a corrwith() method that will calculate the correlation
coefficient between each column and the same column (by name) in another dataframe.
This doesn't fill the matrix that's needed for a heatmap, as we saw in previous chapters;
rather, it is the diagonal. The correlation_heatmap() method creates a matrix for
the sns.heatmap() function and fills in the diagonal with the correlation coefficients;
then, it makes sure that only the diagonal is displayed using a mask. In addition, we will
use the daily percentage change of each column when calculating the correlations to
handle the difference in scale (for instance, between Apple's stock price and Amazon's
stock price):

 def correlation_heatmap(self, other):
 """
 Plot the correlations between this asset and another
 one with a heatmap.

 Parameters:
 - other: The other dataframe.

 Returns: A seaborn heatmap
 """

432 Financial Analysis – Bitcoin and the Stock Market

 corrs = \
 self.data.pct_change().corrwith(other.pct_change())
 corrs = corrs[~pd.isnull(corrs)]
 size = len(corrs)
 matrix = np.zeros((size, size), float)
 for i, corr in zip(range(size), corrs):
 matrix[i][i] = corr

 # create mask to only show diagonal
 mask = np.ones_like(matrix)
 np.fill_diagonal(mask, 0)

 return sns.heatmap(
 matrix, annot=True, center=0, vmin=-1, vmax=1,
 mask=mask, xticklabels=self.data.columns,
 yticklabels=self.data.columns
)

Now that we understand some of the functionality available in the StockVisualizer
class, we can begin our exploratory analysis. Let's create a StockVisualizer object to
perform some EDA on the Netflix stock data:

>>> %matplotlib inline
>>> import matplotlib.pyplot as plt

>>> netflix_viz = stock_analysis.StockVisualizer(nflx)

Once we initialize our StockVisualizer object with the Netflix dataframe, we can
generate many different plot types. We won't go over examples of everything this object
lets us do (I will leave that up to you to experiment with), but let's take a look at the
closing price over time with some moving averages to study the trend:

>>> ax = netflix_viz.moving_average('close', ['30D', '90D'])
>>> netflix_viz.shade_region(
... ax, x=('2019-10-01', '2020-07-01'),
... color='blue', alpha=0.1
...)
>>> ax.set(title='Netflix Closing Price', ylabel='price ($)')

Exploratory data analysis 433

These moving averages give us a smoothed version of the stock price curve. Notice that, in
the shaded region, the 90-day moving average is acting like a ceiling for the stock price:

Figure 7.9 – Netflix stock price with moving averages

Traders experiment with different-period moving averages depending on the task at
hand, such as anticipating upside moves (increases in stock price) and making planned
exits before downside moves (decreases in stock price). Other uses include calculating
automatic support and resistance levels (which we first saw in Chapter 6, Plotting with
Seaborn and Customization Techniques) by finding the portion of the moving average
line that props up the data from beneath or the one that acts as a ceiling for the data,
respectively. When a stock price approaches the support, the price tends to be attractive
enough that people buy, thus increasing the price (moving up from the support toward
the resistance). However, when the stock reaches the resistance, it tends to encourage
people to sell, bringing the stock price down (moving away from the resistance and
toward the support).

434 Financial Analysis – Bitcoin and the Stock Market

Figure 7.10 shows an example of how support (green) and resistance (red) act as lower
and upper bounds, respectively, for the stock price; once the price hits either of these
bounds, it tends to bounce back in the opposite direction due to buyers/sellers of the
stock taking action:

Figure 7.10 – Example support and resistance for Netflix stock in 2018

Often, the exponentially weighted moving average (EWMA) can provide a better trend
since we can put additional emphasis on more recent values. Let's see how exponential
smoothing looks for our data:

>>> ax = netflix_viz.exp_smoothing('close', [30, 90])
>>> netflix_viz.shade_region(
... ax, x=('2020-04-01', '2020-10-01'),
... color='blue', alpha=0.1
...)
>>> ax.set(title='Netflix Closing Price', ylabel='price ($)')

The 90-day EWMA appears to be acting as the support level in the shaded region:

Figure 7.11 – Netflix stock price with EWMAs

Exploratory data analysis 435

Tip
The notebook contains a cell for interactive visualization of the moving average
and the EWMA using widgets. We can use these types of visualizations to
determine the best window for the calculations. Note that using this cell may
require some additional setup, but it is all noted right above the cell in the
notebook.

In the exercises for Chapter 5, Visualizing Data with Pandas and Matplotlib, we wrote
code for generating a visualization that represented the effect that after-hours trading
had on Facebook; the StockVisualizer class also has this functionality. Let's use the
after_hours_trades() method to see how Netflix fared:

>>> netflix_viz.after_hours_trades()

Netflix had a rough third quarter in 2019 in terms of after-hours trades:

Figure 7.12 – Visualizing the effect of after-hours trading on Netflix stock

We can use candlestick plots to study the OHLC data. Let's create one for Netflix, along
with a bar plot for volume traded, by using the candlestick() method. We will also
resample the data into 2-week intervals to improve the visibility of the candlesticks:

>>> netflix_viz.candlestick(
... resample='2W', volume=True, xrotation=90,
... datetime_format='%Y-%b –'
...)

436 Financial Analysis – Bitcoin and the Stock Market

Remember from Figure 7.8 that when the body of the candlestick is white, it means that
the stock gained value. Note that, for the most part, the spikes in volume traded were
accompanied by increases in stock value:

Figure 7.13 – Candlestick plot with trading volume

Tip
Traders use candlestick plots to look for and analyze patterns in an asset's
performance, which can be used to make trading decisions. Check out this
article for an introduction to candlestick plots and some common patterns
traders look for: https://www.investopedia.com/trading/
candlestick-charting-what-is-it/.

Before moving on, we need to reset our plot styles. The mplfinance package sets many
of the available styling options for its plots, so let's return to the style we are familiar with
for now:

>>> import matplotlib as mpl
>>> mpl.rcdefaults()
>>> %matplotlib inline

https://www.investopedia.com/trading/candlestick-charting-what-is-it/
https://www.investopedia.com/trading/candlestick-charting-what-is-it/

Exploratory data analysis 437

We have already taken a look at a stock in isolation (Facebook) in prior chapters,
so let's take this in a different direction and compare Netflix to others. Let's use the
jointplot() method to see how Netflix compares to the S&P 500:

>>> netflix_viz.jointplot(sp, 'close')

If we take a look at the plot, they appear to be weakly positively correlated. With financial
analysis, we can calculate a metric called beta that indicates an asset's correlation to an
index, such as the S&P 500. We will calculate beta in the Technical analysis of financial
instruments section later in this chapter:

Figure 7.14 – Comparing Netflix to the S&P 500

We can use the correlation_heatmap() method to visualize the correlations
between Netflix and Amazon as a heatmap, using the daily percentage change of each
of the columns:

>>> netflix_viz.correlation_heatmap(amzn)

438 Financial Analysis – Bitcoin and the Stock Market

Netflix and Amazon are weakly positively correlated, but only on the OHLC data:

Figure 7.15 – Correlation heatmap between Netflix and Amazon

Lastly, we can use the fill_between_other() method to see how another asset grew
(or fell) in price compared to Netflix. We will compare Netflix to Tesla here to see an
example of one stock surpassing another:

>>> tsla = reader.get_ticker_data('TSLA')
>>> change_date = (tsla.close > nflx.close).idxmax()
>>> ax = netflix_viz.fill_between_other(tsla)
>>> netflix_viz.add_reference_line(
... ax, x=change_date, color='k', linestyle=':', alpha=0.5,
... label=f'TSLA > NFLX {change_date:%Y-%m-%d}'
...)

Notice that the shaded region shrinks in height as it approaches the reference line—this
is the difference between the values in Netflix stock and Tesla stock decreasing over time.
On November 11, 2020, as Tesla overtakes Netflix, the shaded region changes in color
(from green to red) and begins to increase in height as Tesla widens the gap:

Exploratory data analysis 439

Figure 7.16 – Stock price differential between Netflix and Tesla

Up until this point, we have discussed visualizing a single asset—in this case,
Netflix—so let's move on and see how we can perform some EDA across asset groups
with the AssetGroupVisualizer class.

Visualizing multiple assets
As we did previously, we will start by inheriting from the Visualizer class and writing
our docstring. Note that the AssetGroupVisualizer class also keeps track of the
column to use for groupby() operations, so we override the __init__() method;
since this change was meant to be in addition to what was already there, we call the
__init__() method of the superclass as well:

class AssetGroupVisualizer(Visualizer):
 """Visualizes groups of assets in a single dataframe."""

 # override for group visuals
 def __init__(self, df, group_by='name'):
 """This object keeps track of the group by column."""
 super().__init__(df)
 self.group_by = group_by

440 Financial Analysis – Bitcoin and the Stock Market

Next, we define the evolution_over_time() method to plot the same column
for all the assets in the group in a single plot for comparison purposes. Since our data
is of a different shape, we will use seaborn this time:

 def evolution_over_time(self, column, **kwargs):
 """
 Visualize the evolution over time for all assets.

 Parameters:
 - column: The name of the column to visualize.
 - kwargs: Additional arguments to pass down.

 Returns: A matplotlib `Axes` object.
 """
 if 'ax' not in kwargs:
 fig, ax = plt.subplots(1, 1, figsize=(10, 4))
 else:
 ax = kwargs.pop('ax')
 return sns.lineplot(
 x=self.data.index, y=column, hue=self.group_by,
 data=self.data, ax=ax, **kwargs
)

When using seaborn or only plotting a single asset, we didn't have to worry about
the layout of our subplots; however, for some of the other asset group visualizations,
we need a way to automatically determine a reasonable subplot layout. For this, we will
add the _get_layout() method, which will generate the Figure and Axes objects
we need for a given number of subplots (determined by the number of unique assets in
the group):

 def _get_layout(self):
 """
 Helper method for getting an autolayout of subplots.

 Returns: `Figure` and `Axes` objects to plot with.
 """
 subplots_needed = self.data[self.group_by].nunique()
 rows = math.ceil(subplots_needed / 2)
 fig, axes = \
 plt.subplots(rows, 2, figsize=(15, 5 * rows))
 if rows > 1:
 axes = axes.flatten()

Exploratory data analysis 441

 if subplots_needed < len(axes):
 # remove excess axes from autolayout
 for i in range(subplots_needed, len(axes)):
 # can't use comprehension here
 fig.delaxes(axes[i])
 return fig, axes

Now, we need to define how _window_calc() will work with groups. We will need to
use our _get_layout() method to build subplots for each of the assets in the group:

 def _window_calc(self, column, periods, name, func,
 named_arg, **kwargs):
 """
 Helper method for plotting a series and adding
 reference lines using a window calculation.

 Parameters:
 - column: The name of the column to plot.
 - periods: The rule/span or list of them to pass
 to the resampling/smoothing function, like '20D'
 for 20-day periods (resampling) or 20 for a
 20-day span (smoothing)
 - name: The name of the window calculation (to
 show in the legend).
 - func: The window calculation function.
 - named_arg: The name of the argument `periods`
 is being passed as.
 - kwargs: Additional arguments to pass down.

 Returns:
 A matplotlib `Axes` object.
 """
 fig, axes = self._get_layout()
 for ax, asset_name in zip(
 axes, self.data[self.group_by].unique()
):
 subset = self.data.query(
 f'{self.group_by} == "{asset_name}"'
)
 ax = subset.plot(
 y=column, ax=ax, label=asset_name, **kwargs
)

442 Financial Analysis – Bitcoin and the Stock Market

 for period in self._iter_handler(periods):
 subset[column].pipe(
 func, **{named_arg: period}
).mean().plot(
 ax=ax, linestyle='--',
 label=f"""{period if isinstance(
 period, str
) else str(period) + 'D'} {name}"""
)
 ax.legend()
 plt.tight_layout()
 return ax

We can override after_hours_trades() to visualize the effect of after-hours trading
on a group of assets using subplots and iterating over the assets in the group:

 def after_hours_trades(self):
 """
 Visualize the effect of after-hours trading.

 Returns: A matplotlib `Axes` object.
 """
 num_categories = self.data[self.group_by].nunique()
 fig, axes = plt.subplots(
 num_categories, 2, figsize=(15, 3 * num_categories)
)

 for ax, (name, data) in zip(
 axes, self.data.groupby(self.group_by)
):
 after_hours = data.open - data.close.shift()
 monthly_effect = after_hours.resample('1M').sum()

 after_hours.plot(
 ax=ax[0],
 title=f'{name} Open Price - Prior Day\'s Close'
).set_ylabel('price')

 monthly_effect.index = \
 monthly_effect.index.strftime('%Y-%b')

Exploratory data analysis 443

 monthly_effect.plot(
 ax=ax[1], kind='bar', rot=90,
 color=np.where(monthly_effect >= 0, 'g', 'r'),
 title=f'{name} after-hours trading '
 'monthly effect'
).axhline(0, color='black', linewidth=1)
 ax[1].set_ylabel('price')
 plt.tight_layout()
 return axes

With the StockVisualizer class, we were able to generate a joint plot between two
assets' closing prices, but here we can override pairplot() to allow us to see the
relationships between the closing prices across assets in the group:

 def pairplot(self, **kwargs):
 """
 Generate a seaborn pairplot for this asset group.

 Parameters:
 - kwargs: Keyword arguments to pass down.

 Returns: A seaborn pairplot
 """
 return sns.pairplot(
 self.data.pivot_table(
 values='close', index=self.data.index,
 columns=self.group_by
), diag_kind='kde', **kwargs
)

Finally, we add the heatmap() method, which generates a heatmap of the correlations
between the closing prices of all the assets in the group:

 def heatmap(self, pct_change=True, **kwargs):
 """
 Generate a heatmap for correlations between assets.

 Parameters:
 - pct_change: Whether to show the correlations
 of the daily percent change in price.
 - kwargs: Keyword arguments to pass down.

444 Financial Analysis – Bitcoin and the Stock Market

 Returns: A seaborn heatmap
 """
 pivot = self.data.pivot_table(
 values='close', index=self.data.index,
 columns=self.group_by
)
 if pct_change:
 pivot = pivot.pct_change()
 return sns.heatmap(
 pivot.corr(), annot=True, center=0,
 vmin=-1, vmax=1, **kwargs
)

We can use the heatmap() method to see how the daily percentage change across assets
compares. This will handle the difference in scale between the assets (Google and Amazon
have much higher stock prices than Facebook and Apple, meaning that gains of a few
dollars mean more to Facebook and Apple):

>>> all_assets_viz = \
... stock_analysis.AssetGroupVisualizer(all_assets)
>>> all_assets_viz.heatmap()

Apple-S&P 500 and Facebook-Google have the strongest correlations, with bitcoin having
no correlation with anything:

Figure 7.17 – Correlations between asset prices

Exploratory data analysis 445

In the interest of brevity, rather than show all the methods for visualizing an asset group,
which will result in large plots, I will leave that to you to view and try out in the notebook.
However, let's combine these Visualizers to see how all of our assets evolved over
time:

>>> faang_sp_viz = \
... stock_analysis.AssetGroupVisualizer(faang_sp)
>>> bitcoin_viz = stock_analysis.StockVisualizer(bitcoin)

>>> fig, axes = plt.subplots(1, 2, figsize=(15, 5))
>>> faang_sp_viz.evolution_over_time(
... 'close', ax=axes[0], style=faang_sp_viz.group_by
...)
>>> bitcoin_viz.evolution_over_time(
... 'close', ax=axes[1], label='Bitcoin'
...)

Note that bitcoin had huge gains to close out 2020 (check out the scale on the y-axis),
and Amazon also saw a lot of growth in 2020:

Figure 7.18 – Evolution of asset price over time

Now that we have a good feel for our data, we are ready to look at some metrics. Note that,
while we only looked at and used a subset of the code, I encourage you to try out all the
methods in the Visualizer classes using the notebook for this chapter; the exercises
will also offer an additional occasion to use them.

446 Financial Analysis – Bitcoin and the Stock Market

Technical analysis of financial instruments
With technical analysis of assets, metrics (such as cumulative returns and volatility)
are calculated to compare various assets to each other. As with the previous two
sections in this chapter, we will be writing a module with classes to help us. We
will need the StockAnalyzer class for technical analysis of a single asset and the
AssetGroupAnalyzer class for technical analysis of a group of assets. These classes
are in the stock_analysis/stock_analyzer.py file.

As with the other modules, we will start with our docstring and imports:

"""Classes for technical analysis of assets."""

import math

from .utils import validate_df

The StockAnalyzer class
For analyzing individual assets, we will build the StockAnalyzer class, which calculates
metrics for a given asset. The following UML diagram shows all the metrics that it
provides:

Figure 7.19 – Structure of the StockAnalyzer class

StockAnalyzer

close
data
last_close
last_high
last_low
pct_change
pivot_point

alpha(index, r_f)
annualized_volatility()
beta(index)
corr_with(other)
cumulative_returns()
cv()
daily_std(periods)
is_bear_market()
is_bull_market()
portfolio_return(df)
qcd()
resistance(level)
sharpe_ratio(r_f)
support(level)
volatility(periods)

Technical analysis of financial instruments 447

A StockAnalyzer instance will be initialized with the data for the asset on which we
want to perform a technical analysis. This means that our __init__() method will need
to accept the data as a parameter:

class StockAnalyzer:
 """Provides metrics for technical analysis of a stock."""

 @validate_df(columns={'open', 'high', 'low', 'close'})
 def __init__(self, df):
 """Create a `StockAnalyzer` object with OHLC data"""
 self.data = df

Most of the calculations for our technical analysis will rely on the closing price of the
stock, so rather than needing to write self.data.close in all of our methods, we will
create a property so that we can access it with self.close instead. This makes our code
cleaner and easier to follow:

 @property
 def close(self):
 """Get the close column of the data."""
 return self.data.close

A few calculations will also need the percent change of the close column, so we will
make a property for easier access to that as well:

 @property
 def pct_change(self):
 """Get the percent change of the close column."""
 return self.close.pct_change()

Since we will be calculating support and resistance levels using the pivot point, which is
the average of the high, low, and close on the last day in the data, we will make a property
for it, as well:

 @property
 def pivot_point(self):
 """Calculate the pivot point."""
 return (self.last_close + self.last_high
 + self.last_low) / 3

448 Financial Analysis – Bitcoin and the Stock Market

Note that we are also using other properties—self.last_close, self.last_high,
and self.last_low—which we define using the last() method on the data, before
selecting the column in question and using iat[] to get just the price:

 @property
 def last_close(self):
 """Get the value of the last close in the data."""
 return self.data.last('1D').close.iat[0]

 @property
 def last_high(self):
 """Get the value of the last high in the data."""
 return self.data.last('1D').high.iat[0]

 @property
 def last_low(self):
 """Get the value of the last low in the data."""
 return self.data.last('1D').low.iat[0]

Now, we have everything we need to calculate support and resistance. We will be
calculating each at three different levels, where the first level is the closest to the closing
price and the third level is the farthest. The first level will therefore be the most restrictive
level, and the third will be the least restrictive. We define the resistance() method as
follows, allowing the caller to specify the level to calculate:

 def resistance(self, level=1):
 """Calculate the resistance at the given level."""
 if level == 1:
 res = (2 * self.pivot_point) - self.last_low
 elif level == 2:
 res = self.pivot_point \
 + (self.last_high - self.last_low)
 elif level == 3:
 res = self.last_high \
 + 2 * (self.pivot_point - self.last_low)
 else:
 raise ValueError('Not a valid level.')
 return res

Technical analysis of financial instruments 449

The support() method is defined in a similar fashion:

 def support(self, level=1):
 """Calculate the support at the given level."""
 if level == 1:
 sup = (2 * self.pivot_point) - self.last_high
 elif level == 2:
 sup = self.pivot_point \
 - (self.last_high - self.last_low)
 elif level == 3:
 sup = self.last_low \
 - 2 * (self.last_high - self.pivot_point)
 else:
 raise ValueError('Not a valid level.')
 return sup

Next, we will work on creating methods for analyzing asset volatility. First, we will
calculate the daily standard deviation of the percent change in the closing price, for which
we will need to specify the number of trading periods. In order to make sure that we can't
use more trading periods than we have in the data, we will define a property with the
maximum value we can use for this argument:

 @property
 def _max_periods(self):
 """Get the number of trading periods in the data."""
 return self.data.shape[0]

Now that we have our maximum, we can define the daily_std() method, which
calculates the daily standard deviation of the daily percentage change:

 def daily_std(self, periods=252):
 """
 Calculate daily standard deviation of percent change.

 Parameters:
 - periods: The number of periods to use for the
 calculation; default is 252 for the trading days
 in a year. Note if you provide a number greater
 than the number of trading periods in the data,
 `self._max_periods` will be used instead.

 Returns: The standard deviation
 """

450 Financial Analysis – Bitcoin and the Stock Market

 return self.pct_change\
 [min(periods, self._max_periods) * -1:].std()

While daily_std() is useful on its own, we can take this a step further and calculate
annualized volatility by multiplying the daily standard deviation by the square root of the
number of trading periods in the year, which we assume to be 252:

 def annualized_volatility(self):
 """Calculate the annualized volatility."""
 return self.daily_std() * math.sqrt(252)

In addition, we can look at rolling volatility by using the rolling() method:

 def volatility(self, periods=252):
 """Calculate the rolling volatility.

 Parameters:
 - periods: The number of periods to use for the
 calculation; default is 252 for the trading
 days in a year. Note if you provide a number
 greater than the number of trading periods in the
 data, `self._max_periods` will be used instead.

 Returns: A `pandas.Series` object.
 """
 periods = min(periods, self._max_periods)
 return self.close.rolling(periods).std()\
 / math.sqrt(periods)

We often want to compare assets, so we provide the corr_with() method to calculate
the correlations between them using daily percentage change:

 def corr_with(self, other):
 """Calculate the correlations between dataframes.

 Parameters:
 - other: The other dataframe.

 Returns: A `pandas.Series` object
 """
 return \
 self.data.pct_change().corrwith(other.pct_change())

Technical analysis of financial instruments 451

Next, we define some metrics for comparing the level of dispersion of assets. In Chapter 1,
Introduction to Data Analysis, we discussed the coefficient of variation (the cv() method)
and the quantile coefficient of dispersion (the qcd() method), which we can use to
achieve this, both of which we will add here:

 def cv(self):
 """
 Calculate the coefficient of variation for the asset.
 The lower this is, the better the risk/return tradeoff.
 """
 return self.close.std() / self.close.mean()

 def qcd(self):
 """Calculate the quantile coefficient of dispersion."""
 q1, q3 = self.close.quantile([0.25, 0.75])
 return (q3 - q1) / (q3 + q1)

In addition, we want a way to quantify the volatility of an asset compared to an index,
such as the S&P 500, for which we calculate beta—the ratio of the covariance of the asset's
return and the index's return to the variance of the asset's return. We add the beta()
method, which allows the user to specify the index to use as a benchmark:

 def beta(self, index):
 """
 Calculate the beta of the asset.

 Parameters:
 - index: The data for the index to compare to.

 Returns:
 Beta, a float.
 """
 index_change = index.close.pct_change()
 beta = self.pct_change.cov(index_change)\
 / index_change.var()
 return beta

452 Financial Analysis – Bitcoin and the Stock Market

Next, we define a method for calculating the cumulative returns of an asset as a series.
This is defined as the cumulative product of one plus the percent change in closing price:

 def cumulative_returns(self):
 """Calculate cumulative returns for plotting."""
 return (1 + self.pct_change).cumprod()

The next few metrics we want to support require calculating the return of the portfolio.
To make things simpler, we will assume that there is no distribution per share so that the
return of the portfolio is the percent change from the starting price to the ending price
over the time period covered by the data. We will define this as a static method since we
will need to calculate this for an index, and not just the data stored in self.data:

 @staticmethod
 def portfolio_return(df):
 """
 Calculate return assuming no distribution per share.

 Parameters:
 - df: The asset's dataframe.

 Returns: The return, as a float.
 """
 start, end = df.close[0], df.close[-1]
 return (end - start) / start

While beta allows us to compare an asset's volatility to an index, alpha allows us to
compare the returns of the asset to those of an index. To do so, we also need the risk-free
rate of return, which is the rate of return of an investment that has no risk of financial loss;
in practice, we use US Treasury bills for this. Calculating alpha requires calculating the
portfolio return of the index and the asset, along with beta:

 def alpha(self, index, r_f):
 """
 Calculates the asset's alpha.

 Parameters:
 - index: The index to compare to.
 - r_f: The risk-free rate of return.

 Returns: Alpha, as a float.
 """

Technical analysis of financial instruments 453

 r_f /= 100
 r_m = self.portfolio_return(index)
 beta = self.beta(index)
 r = self.portfolio_return(self.data)
 alpha = r - r_f - beta * (r_m - r_f)
 return alpha

Tip
r_f /= 100 in the previous code snippet divides r_f by 100 before
storing the result back in r_f. It's shorthand for r_f = r_f / 100.
Python also has these operators for other arithmetic functions—for example,
+=, -=, *=, and %=.

We also want to add methods that will tell us whether the asset is in a bear market or a
bull market, meaning that it had a decline or increase in stock price of 20% or more in the
last 2 months, respectively:

 def is_bear_market(self):
 """
 Determine if a stock is in a bear market, meaning its
 return in the last 2 months is a decline of 20% or more
 """
 return \
 self.portfolio_return(self.data.last('2M')) <= -.2

 def is_bull_market(self):
 """
 Determine if a stock is in a bull market, meaning its
 return in the last 2 months is an increase of >= 20%.
 """
 return \
 self.portfolio_return(self.data.last('2M')) >= .2

454 Financial Analysis – Bitcoin and the Stock Market

Lastly, we will add a method for calculating the Sharpe ratio, which tells us the return
we receive in excess of the risk-free rate of return for the volatility we take on with the
investment:

 def sharpe_ratio(self, r_f):
 """
 Calculates the asset's Sharpe ratio.

 Parameters:
 - r_f: The risk-free rate of return.

 Returns:
 The Sharpe ratio, as a float.
 """
 return (
 self.cumulative_returns().last('1D').iat[0] - r_f
) / self.cumulative_returns().std()

Take some time to digest the code in this module as we are continuing to build upon
what we have discussed. We won't be using all of these metrics for our technical analysis,
but I encourage you to try them out in the notebook for this chapter.

The AssetGroupAnalyzer class
All the calculations we will work with in this section are defined on the StockAnalyzer
class; however, rather than having to run these for each of the assets we want to compare,
we will also create the AssetGroupAnalyzer class (in the same module) that's capable
of providing these metrics for a group of assets.

The StockAnalyzer and AssetGroupAnalyzer classes will share much of their
functionality, which makes a strong argument for designing them with inheritance;
however, sometimes—as in this case—composition can make more sense. When objects
contain instances of other classes, it is referred to as composition. This design decision
leaves us with the following very simple UML diagram for the AssetGroupAnalyzer
class:

Figure 7.20 – Structure of the AssetGroupAnalyzer class

AssetGroupAnalyzer

analyzers
data
group_by : str

analyze(func_name)

Technical analysis of financial instruments 455

We create an AssetGroupAnalyzer instance by providing the dataframe for
the assets and the name of the grouping column (if not name). Upon initialization,
the _composition_handler() method is called to create a dictionary of
StockAnalyzer objects (one for each asset):

class AssetGroupAnalyzer:
 """Analyzes many assets in a dataframe."""

 @validate_df(columns={'open', 'high', 'low', 'close'})
 def __init__(self, df, group_by='name'):
 """
 Create an `AssetGroupAnalyzer` object with a
 dataframe of OHLC data and column to group by.
 """
 self.data = df
 if group_by not in self.data.columns:
 raise ValueError(
 f'`group_by` column "{group_by}" not in df.'
)
 self.group_by = group_by
 self.analyzers = self._composition_handler()

 def _composition_handler(self):
 """
 Create a dictionary mapping each group to its analyzer,
 taking advantage of composition instead of inheritance.
 """
 return {
 group: StockAnalyzer(data)
 for group, data in self.data.groupby(self.group_by)
 }

456 Financial Analysis – Bitcoin and the Stock Market

The AssetGroupAnalyzer class has only one public method, analyze()—all
the actual calculations are delegated to the StockAnalyzer objects stored in the
analyzers attribute:

 def analyze(self, func_name, **kwargs):
 """
 Run a `StockAnalyzer` method on all assets.

 Parameters:
 - func_name: The name of the method to run.
 - kwargs: Additional arguments to pass down.

 Returns:
 A dictionary mapping each asset to the result
 of the calculation of that function.
 """
 if not hasattr(StockAnalyzer, func_name):
 raise ValueError(
 f'StockAnalyzer has no "{func_name}" method.'
)

 if not kwargs:
 kwargs = {}

 return {
 group: getattr(analyzer, func_name)(**kwargs)
 for group, analyzer in self.analyzers.items()
 }

With inheritance, in this case, all the methods would have to be overridden because they
can't handle the groupby() operation. Conversely, with composition, all that's necessary
is to create StockAnalyzer objects for each asset and use dictionary comprehensions
for the calculations. Another neat thing is that, by using getattr(), there is no need to
mirror the methods in the AssetGroupAnalyzer class because analyze() can grab
the method by name using the StockAnalyzer objects.

Technical analysis of financial instruments 457

Comparing assets
Let's use the AssetGroupAnalyzer class to compare all the assets we have collected
data for. As with prior sections, we won't use all the methods in the StockAnalyzer
class here, so be sure to try them out on your own:

>>> all_assets_analyzer = \
... stock_analysis.AssetGroupAnalyzer(all_assets)

Remember from Chapter 1, Introduction to Data Analysis, that the coefficient of variation
(CV) is the ratio of the standard deviation to the mean; this helps us compare the
variation of asset closing prices, even though their means are of different magnitudes (for
instance, Amazon and Apple). The CV can also be used to compare the volatility to the
expected return of an investment and quantify the risk-return trade-off. Let's use the CV
to see which asset's closing price is the most widely dispersed:

>>> all_assets_analyzer.analyze('cv')
{'Amazon': 0.2658012522278963,
 'Apple': 0.36991905161737615,
 'Bitcoin': 0.43597652683008137,
 'Facebook': 0.19056336194852783,
 'Google': 0.15038618497328074,
 'Netflix': 0.20344854330432688,
 'S&P 500': 0.09536374658108937}

It's probably not a surprise that bitcoin has the widest spread. Rather than use the closing
price, percent change daily can be used to calculate the annualized volatility. This involves
calculating the standard deviations of percent change over the last year and multiplying it
by the square root of the number of trading days in the year (the code assumes 252). By
using percent change, large changes in price (relative to the asset's price) will be penalized
more severely. Using annualized volatility, Facebook looks much more volatile compared
to when we used the CV (although still not the most volatile):

>>> all_assets_analyzer.analyze('annualized_volatility')
{'Amazon': 0.3851099077041784,
 'Apple': 0.4670809643500882,
 'Bitcoin': 0.4635140114227397,
 'Facebook': 0.45943066572169544,
 'Google': 0.3833720603377728,
 'Netflix': 0.4626772090887299,
 'S&P 500': 0.34491195196047003}

458 Financial Analysis – Bitcoin and the Stock Market

Given that all the assets have gained value toward the end of our dataset, let's check if any
of them have entered a bull market, meaning that the asset's return in the last 2 months is
a 20% or greater gain:

>>> all_assets_analyzer.analyze('is_bull_market')
{'Amazon': False,
 'Apple': True,
 'Bitcoin': True,
 'Facebook': False,
 'Google': False,
 'Netflix': False,
 'S&P 500': False}

It looks like Apple and bitcoin had quite a November and December in 2020. The other
assets appear to not have fared as well; however, none of them are in a bear market (we
can confirm this by passing 'is_bear_market' to analyze()). Yet another way to
analyze volatility is to compare the assets to an index by calculating beta. Positive values
greater than 1 indicate volatility higher than the index, while negative values less than -1
indicate inverse relationships to the index:

>>> all_assets_analyzer.analyze('beta', index=sp)
{'Amazon': 0.7563691182389207,
 'Apple': 1.173273501105916,
 'Bitcoin': 0.3716024282483362,
 'Facebook': 1.024592821854751,
 'Google': 0.98620762504024,
 'Netflix': 0.7408228073823271,
 'S&P 500': 1.0000000000000002}

Using the betas from the previous result, we can see that Apple is the most volatile
compared to the S&P 500, meaning that if this was our portfolio (leaving out bitcoin for
the moment), adding Apple would have increased the portfolio risk. However, we know
that bitcoin is not correlated to the S&P 500 (see the correlation heatmap in Figure 7.17),
so this low beta is misleading.

Technical analysis of financial instruments 459

The last metric we will take a look at is alpha, which is used to compare the return of an
investment to the market. Calculating alpha requires that we pass in the risk-free rate
of return (r_f); we typically use the return of a US Treasury bill for this number. Rates
can be looked up at https://www.treasury.gov/resource-center/data-
chart-center/interest-rates/pages/TextView.aspx?data=yield;
alternatively, we can use our StockReader object (reader) to collect this for us. Let's
compare the alphas for the assets using the S&P 500 as our index:

>>> r_f = reader.get_risk_free_rate_of_return() # 0.93
>>> all_assets_analyzer.analyze('alpha', index=sp, r_f=r_f)
{'Amazon': 0.7383391908270172,
 'Apple': 1.7801122522388666,
 'Bitcoin': 6.355297988074054,
 'Facebook': 0.5048625273190841,
 'Google': 0.18537197824248092,
 'Netflix': 0.6500392764754642,
 'S&P 500': -1.1102230246251565e-16}

Everything beat the S&P 500, which essentially being a portfolio of 500 stocks has lower
risk and lower returns due to diversification. This brings us to cumulative returns,
which shows the return for each dollar we invested. To make this plot a little easier to
interpret in the black and white text, we will create a custom Cycler object (https://
matplotlib.org/cycler/) that varies the color and line styles:

>>> from cycler import cycler
>>> bw_viz_cycler = (
... cycler(color=[plt.get_cmap('tab10')(x/10)
... for x in range(10)])
... + cycler(linestyle=['dashed', 'solid', 'dashdot',
... 'dotted', 'solid'] * 2))
>>> fig, axes = plt.subplots(1, 2, figsize=(15, 5))
>>> axes[0].set_prop_cycle(bw_viz_cycler)
>>> cumulative_returns = \
... all_assets_analyzer.analyze('cumulative_returns')
>>> for name, data in cumulative_returns.items():
... data.plot(
... ax=axes[1] if name == 'Bitcoin' else axes[0],
... label=name, legend=True
...)
>>> fig.suptitle('Cumulative Returns')

https://www.treasury.gov/resource-center/data-chart-center/interest-rates/pages/TextView.aspx?data=yield
https://www.treasury.gov/resource-center/data-chart-center/interest-rates/pages/TextView.aspx?data=yield
https://matplotlib.org/cycler/
https://matplotlib.org/cycler/

460 Financial Analysis – Bitcoin and the Stock Market

Despite the struggles in early 2020, all of the assets gained value. Notice that the bitcoin
subplot's y-axis goes from 0 to 7 (right subplot), while the stock market subplot (left)
covers half of that range:

Figure 7.21 – Cumulative returns for all assets

Now that we have a good understanding of how to analyze financial instruments, let's try
our hand at forecasting future performance.

Modeling performance using historical data
The goal of this section is to give us a taste of how to build some models; as such,
the following examples are not meant to be the best possible model, but rather a
simple and relatively quick implementation for learning purposes. Once again, the
stock_analysis package has a class for this section's task: StockModeler.

Important note
To fully understand the statistical elements of this section and modeling in
general, we need a solid understanding of statistics; however, the purpose of
this discussion is to show how modeling techniques can be applied to financial
data without dwelling on the underlying mathematics.

Modeling performance using historical data 461

The StockModeler class
The StockModeler class will make it easier for us to build and evaluate some simple
financial models without needing to interact directly with the statsmodels package.
In addition, we will reduce the number of steps that are needed to generate a model
with the methods we create. The following UML diagram shows that this is a rather
simple class. Notice that we have no attributes because StockModeler is a static class
(meaning that we don't instantiate it):

Figure 7.22 – Structure of the StockModeler class

The StockModeler class is defined in stock_analysis/stock_modeler.py
and has methods for both building models and doing some preliminary analysis of their
performance. As usual, we start the module with our docstring and imports:

"""Simple time series modeling for stocks."""

import matplotlib.pyplot as plt
import pandas as pd
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.tsa.seasonal import seasonal_decompose
import statsmodels.api as sm

from .utils import validate_df

Next, we will start the StockModeler class and raise an error if someone tries to
instantiate it:

class StockModeler:
 """Static methods for modeling stocks."""

 def __init__(self):
 raise NotImplementedError(
 "This class must be used statically: "
 "don't instantiate it."
)

StockModeler

arima(df)
arima_predictions(df, arima_model_fitted, start, end, plot)
decompose(df, period, model)
plot_residuals(model_fitted, freq)
regression(df)
regression_predictions(df, model, start, end, plot)

462 Financial Analysis – Bitcoin and the Stock Market

One of the tasks we want this class to support is time series decomposition, which
we discussed back in Chapter 1, Introduction to Data Analysis. We imported the
seasonal_decompose() function from statsmodels, so we just have to call it on
the closing price in our decompose() method:

 @staticmethod
 @validate_df(columns={'close'}, instance_method=False)
 def decompose(df, period, model='additive'):
 """
 Decompose the closing price of the stock into
 trend, seasonal, and remainder components.

 Parameters:
 - df: The dataframe containing the stock closing
 price as `close` and with a time index.
 - period: The number of periods in the frequency.
 - model: How to compute the decomposition
 ('additive' or 'multiplicative')

 Returns:
 A `statsmodels` decomposition object.
 """
 return seasonal_decompose(
 df.close, model=model, period=period
)

Notice that we have two decorators for the decompose() method. The topmost
decorator is applied on the result of the ones below it. In this example, we have the
following:

staticmethod(
 validate_df(
 decompose, columns={'close'}, instance_method=False
)
)

Modeling performance using historical data 463

In addition, we want to support creating ARIMA models, which we also discussed
in Chapter 1, Introduction to Data Analysis. ARIMA models use the ARIMA(p, d, q)
notation, where p is the number of time lags (or order) of the AR model, d is the number
of past values that were subtracted from the data (the I model), and q is the number
of periods used in the MA model. So, an ARIMA(1, 1, 1) is a model with one time lag
for the autoregressive portion, data differenced once, and a 1-period moving average.
If we have any zeros for the orders, we can eliminate those—for example, ARIMA(1, 0, 1)
is equivalent to ARMA(1, 1), and ARIMA(0, 0, 3) is equivalent to MA(3). A seasonal
ARIMA model is written as ARIMA(p, d, q)(P, D, Q)m where m is the number of periods in
the seasonal model and P, D, and Q are the orders for the seasonal ARIMA model.
The StockModeler.arima() method doesn't support the seasonal components
(for simplicity) and takes p, d, and q as parameters, but to avoid confusion we will name
them after the ARIMA feature they represent—for example, ar for autoregressive (p). In
addition, we are going to have our static method provide the option of fitting the model
before returning it:

 @staticmethod
 @validate_df(columns={'close'}, instance_method=False)
 def arima(df, *, ar, i, ma, fit=True, freq='B'):
 """
 Create an ARIMA object for modeling time series.

 Parameters:
 - df: The dataframe containing the stock closing
 price as `close` and with a time index.
 - ar: The autoregressive order (p).
 - i: The differenced order (q).
 - ma: The moving average order (d).
 - fit: Whether to return the fitted model
 - freq: Frequency of the time series

 Returns:
 A `statsmodels` ARIMA object which you can use
 to fit and predict.
 """
 arima_model = ARIMA(
 df.close.asfreq(freq).fillna(method='ffill'),
 order=(ar, i, ma)
)
 return arima_model.fit() if fit else arima_model

464 Financial Analysis – Bitcoin and the Stock Market

Tip
Note that the method signature (df, *, ar, i, ma, ...) has an
asterisk (*) in it. This forces the parameters listed after it to be supplied as
keyword arguments when calling the method. It's a nice way to make sure that
whoever uses this is explicit about what they want.

To go along with this, we want a way to evaluate the ARIMA model's predictions, so we
will add the arima_predictions() static method. We will also provide the option of
getting back the predictions as a Series object or as a plot:

 @staticmethod
 @validate_df(columns={'close'}, instance_method=False)
 def arima_predictions(df, arima_model_fitted, start, end,
 plot=True, **kwargs):
 """
 Get ARIMA predictions as a `Series` object or plot.

 Parameters:
 - df: The dataframe for the stock.
 - arima_model_fitted: The fitted ARIMA model.
 - start: The start date for the predictions.
 - end: The end date for the predictions.
 - plot: Whether to plot the result, default is
 `True` meaning the plot is returned instead of
 the `Series` object containing the predictions.
 - kwargs: Additional arguments to pass down.

 Returns:
 A matplotlib `Axes` object or predictions
 depending on the value of the `plot` argument.
 """
 predictions = \
 arima_model_fitted.predict(start=start, end=end)

 if plot:
 ax = df.close.plot(**kwargs)
 predictions.plot(
 ax=ax, style='r:', label='arima predictions'
)
 ax.legend()

 return ax if plot else predictions

Modeling performance using historical data 465

Similar to what we built for ARIMA models, we will also provide the regression()
method for building a linear regression model of the closing price with a lag of 1. For
this, we will once again use statsmodels (in Chapter 9, Getting Started with Machine
Learning in Python, we will use scikit-learn for linear regression instead):

 @staticmethod
 @validate_df(columns={'close'}, instance_method=False)
 def regression(df):
 """
 Create linear regression of time series with lag=1.

 Parameters:
 - df: The dataframe with the stock data.

 Returns:
 X, Y, and the fitted model
 """
 X = df.close.shift().dropna()
 Y = df.close[1:]
 return X, Y, sm.OLS(Y, X).fit()

As with the arima_predictions() method, we want to provide a way to review the
predictions from the model, either as a Series object or as a plot. Unlike the ARIMA
model, it will only predict one value at a time. Therefore, we will start our predictions on
the day after the last closing price and iteratively use the previous prediction to predict the
next one. To handle all this, we will write the regression_predictions() method:

 @staticmethod
 @validate_df(columns={'close'}, instance_method=False)
 def regression_predictions(df, model, start, end,
 plot=True, **kwargs):
 """
 Get linear regression predictions as a `pandas.Series`
 object or plot.

 Parameters:
 - df: The dataframe for the stock.
 - model: The fitted linear regression model.
 - start: The start date for the predictions.
 - end: The end date for the predictions.

466 Financial Analysis – Bitcoin and the Stock Market

 - plot: Whether to plot the result, default is
 `True` meaning the plot is returned instead of
 the `Series` object containing the predictions.
 - kwargs: Additional arguments to pass down.

 Returns:
 A matplotlib `Axes` object or predictions
 depending on the value of the `plot` argument.
 """
 predictions = pd.Series(
 index=pd.date_range(start, end), name='close'
)
 last = df.last('1D').close
 for i, date in enumerate(predictions.index):
 if not i:
 pred = model.predict(last)
 else:
 pred = model.predict(predictions.iloc[i - 1])
 predictions.loc[date] = pred[0]

 if plot:
 ax = df.close.plot(**kwargs)
 predictions.plot(
 ax=ax, style='r:',
 label='regression predictions'
)
 ax.legend()

 return ax if plot else predictions

Lastly, for both the ARIMA and linear regression models, we want to visualize the errors
in the predictions, or residuals. The fitted models both have a resid attribute, which will
give us the residuals; we simply need to plot them as a scatter plot to check their variance
and a KDE to check their mean. For this, we will add the plot_residuals() method:

 @staticmethod
 def plot_residuals(model_fitted, freq='B'):
 """
 Visualize the residuals from the model.

Modeling performance using historical data 467

 Parameters:
 - model_fitted: The fitted model
 - freq: Frequency that the predictions were
 made on. Default is 'B' (business day).

 Returns:
 A matplotlib `Axes` object.
 """
 fig, axes = plt.subplots(1, 2, figsize=(15, 5))
 residuals = pd.Series(
 model_fitted.resid.asfreq(freq), name='residuals'
)
 residuals.plot(
 style='bo', ax=axes[0], title='Residuals'
)
 axes[0].set(xlabel='Date', ylabel='Residual')
 residuals.plot(
 kind='kde', ax=axes[1], title='Residuals KDE'
)
 axes[1].set_xlabel('Residual')
 return axes

Now, let's take the StockModeler class for a spin, once again using the Netflix data.

Time series decomposition
As mentioned in Chapter 1, Introduction to Data Analysis, time series can be decomposed
into trend, seasonal, and remainder components utilizing a specified frequency. This can
be achieved with the statsmodels package, which StockModeler.decompose()
is using:

>>> from stock_analysis import StockModeler
>>> decomposition = StockModeler.decompose(nflx, 20)
>>> fig = decomposition.plot()
>>> fig.suptitle(
... 'Netflix Stock Price Time Series Decomposition', y=1
...)
>>> fig.set_figheight(6)
>>> fig.set_figwidth(10)
>>> fig.tight_layout()

468 Financial Analysis – Bitcoin and the Stock Market

This returns the decomposition plot for Netflix with a frequency of 20 trading days:

Figure 7.23 – Time series decomposition of Netflix's stock price over time

For more complicated models, we could decompose and then build our model around
the components. That is beyond the scope of this chapter, however, so let's move on to
ARIMA models.

ARIMA
As we discussed in Chapter 1, Introduction to Data Analysis, ARIMA models have
autoregressive, difference, and moving average components. They can also be built using
the statsmodels package, which the StockModeler.arima() method is using;
this method returns a fitted ARIMA model for the stock according to the specifications
provided. Here, we will use the %%capture magic to avoid printing any warnings
triggered by the ARIMA model fitting, since we are making a simple model to explore
functionality:

>>> %%capture
>>> arima_model = StockModeler.arima(nflx, ar=10, i=1, ma=5)

Modeling performance using historical data 469

Tip
We're picking these values because they run in a reasonable amount of time. In
practice, we can use the autocorrelation_plot() function from the
pandas.plotting module that was introduced in Chapter 5, Visualizing
Data with Pandas and Matplotlib, to help find a good value for ar.

Once the model is fitted, we can obtain information on it with the model's summary()
method:

>>> print(arima_model.summary())

The summary is quite extensive, and we should read the documentation when looking
to interpret it; however, this article is likely to be a more digestible introduction:
https://medium.com/analytics-vidhya/interpreting-arma-model-
results-in-statsmodels-for-absolute-beginners-a4d22253ad1c. Be
advised that interpreting this summary will require a solid understanding of statistics:

Figure 7.24 – Summary of our ARIMA model

https://medium.com/analytics-vidhya/interpreting-arma-model-results-in-statsmodels-for-absolute-beginners-a4d22253ad1c
https://medium.com/analytics-vidhya/interpreting-arma-model-results-in-statsmodels-for-absolute-beginners-a4d22253ad1c

470 Financial Analysis – Bitcoin and the Stock Market

For our purposes, a simpler way of analyzing the model is to look at the residuals, or
the discrepancy between the observed values and predictions made by the model. The
residuals should have a mean of 0 and have equal variance throughout, meaning that
they should not depend on the independent variable (which is the date, in this case).
The latter requirement is referred to as homoskedasticity; when this assumption is not
met, the estimates given by the model are not optimal. The StockModeler.plot_
residuals() method helps check for this visually:

>>> StockModeler.plot_residuals(arima_model)

While the residuals are centered at 0 (right subplot), they are heteroskedastic—note how
their variance appears to increase over time (left subplot):

Figure 7.25 – Evaluating the residuals of our ARIMA model

Tip
When we looked at the model summary in Figure 7.24, statsmodels ran
a statistical test for heteroskedasticity using the default significance level of
0.05. The value of the test statistic is labeled Heteroskedasticity (H) and the
p-value is labeled Prob(H) (two-sided). Note that the result was statistically
significant (the p-value was less than or equal to the significance level),
meaning it's very unlikely that our residuals are homoskedastic.

As an alternative to building an ARIMA model, the StockModeler class also gives us
the option of using linear regression to model the closing price of a financial instrument.

Modeling performance using historical data 471

Linear regression with statsmodels
The StockModeler.regression() method builds a linear regression model for
closing price as a function of the prior day's closing price using statsmodels:

>>> X, Y, lm = StockModeler.regression(nflx)
>>> print(lm.summary())

Once again, the summary() method gives us statistics on the model's fit:

Figure 7.26 – Summary of our linear regression model

Tip
Take a look at this article for some guidance on how to interpret the
summary: https://medium.com/swlh/interpreting-
linear-regression-through-statsmodels-summary-
4796d359035a.

https://medium.com/swlh/interpreting-linear-regression-through-statsmodels-summary-4796d359035a
https://medium.com/swlh/interpreting-linear-regression-through-statsmodels-summary-4796d359035a
https://medium.com/swlh/interpreting-linear-regression-through-statsmodels-summary-4796d359035a

472 Financial Analysis – Bitcoin and the Stock Market

The adjusted R2 makes this model look very good since it is near 1 (in Chapter 9, Getting
Started with Machine Learning in Python, we will discuss this metric further); however,
we know that this is simply because stock data is highly autocorrelated, so let's look at the
residuals again:

>>> StockModeler.plot_residuals(lm)

This model also suffers from heteroskedasticity:

Figure 7.27 – Evaluating the residuals of our linear regression model

Let's now see whether the ARIMA model or the linear regression model performs better
at forecasting Netflix stock's closing prices.

Comparing models
In order to compare our models, we need to test their predictions on some new data.
Let's gather the daily closing price of Netflix stock for the first two weeks in January 2021
and use the prediction methods in the StockModeler class to visualize our model
predictions versus reality:

>>> import datetime as dt

>>> start = dt.date(2021, 1, 1)
>>> end = dt.date(2021, 1, 14)

>>> jan = stock_analysis.StockReader(start, end)\
... .get_ticker_data('NFLX')

>>> fig, axes = plt.subplots(1, 2, figsize=(15, 5))

Modeling performance using historical data 473

>>> arima_ax = StockModeler.arima_predictions(
... nflx, arima_model, start=start, end=end,
... ax=axes[0], title='ARIMA', color='b'
...)
>>> jan.close.plot(
... ax=arima_ax, style='b--', label='actual close'
...)
>>> arima_ax.legend()
>>> arima_ax.set_ylabel('price ($)')

>>> linear_reg = StockModeler.regression_predictions(
... nflx, lm, start=start, end=end,
... ax=axes[1], title='Linear Regression', color='b'
...)
>>> jan.close.plot(
... ax=linear_reg, style='b--', label='actual close'
...)
>>> linear_reg.legend()
>>> linear_reg.set_ylabel('price ($)')

The ARIMA model's predictions look more in line with the pattern we would expect, but,
given the unpredictable nature of the stock market, both models are far off from what
actually happened in the first two weeks of January 2021:

Figure 7.28 – Model predictions versus reality

474 Financial Analysis – Bitcoin and the Stock Market

As we can see, forecasting stock performance is not easy, even for a few days. There is a
lot of data that is not being captured by these models, such as news stories, regulations,
and changes in management, to name a few. No matter how well a model appears to
fit, be weary of trusting predictions as these will be extrapolations, and there is a lot of
randomness not being accounted for.

To further illustrate this, take a look at the following set of plots that have been generated
using random walks and stock data. Only one is real data, but which one? The answer
follows the plots, so be sure to take a guess before looking:

Figure 7.29 – Real or fake stock data?

Summary 475

Each of these time series originates at the same point (Microsoft's closing price on
July 1, 2019), but only A is real stock data—B, C, and D are all random walks. Hard
(or impossible) to tell, right?

Summary
In this chapter, we saw how building Python packages for our analysis applications
can make it very easy for others to carry out their own analyses and reproduce ours,
as well as for us to create repeatable workflows for future analyses.

The stock_analysis package we created in this chapter contained classes for gathering
stock data from the Internet (StockReader); visualizing individual assets or groups of
them (Visualizer family); calculating metrics for single assets or groups of them for
comparisons (StockAnalyzer and AssetGroupAnalyzer, respectively); and time
series modeling with decomposition, ARIMA, and linear regression (StockModeler).
We also got our first look at using the statsmodels package in the StockModeler
class. This chapter showed us how the pandas, matplotlib, seaborn, and numpy
functionality that we've covered so far in this book has come together and how these
libraries can work harmoniously with other packages for custom applications. I strongly
encourage you to reread the code in the stock_analysis package and test out some
of the methods we didn't cover in this chapter to make sure you have the concepts down.

In the next chapter, we will work on another application as we learn how to build a
simulator for login attempts and try our hand at rule-based anomaly detection.

Exercises
Use the stock_analysis package to complete the following exercises. Unless
otherwise noted, use data from 2019 through the end of 2020. In case there are any issues
collecting the data with the StockReader class, backup CSV files are provided in the
exercises/ directory:

1. Using the StockAnalyzer and StockVisualizer classes, calculate and plot
three levels of support and resistance for Netflix's closing price.

2. With the StockVisualizer class, look at the effect of after-hours trading on the
FAANG stocks:

a) As individual stocks

b) As a portfolio using the make_portfolio() function from the
stock_analysis.utils module

476 Financial Analysis – Bitcoin and the Stock Market

3. Using the StockVisualizer.open_to_close() method, create a plot that
fills the area between the FAANG stocks' opening price (as a portfolio) and its
closing price each day in red if the price declined and in green if the price increased.
As a bonus, do the same for a portfolio of bitcoin and the S&P 500.

4. Mutual funds and exchange-traded funds (ETFs) are funds that are composed
of many assets. They are built to mitigate risk, so volatility for the fund will
be lower than that of the assets that compose it. (Information on how they
differ can be found at https://www.investopedia.com/articles/
exchangetradedfunds/08/etf-mutual-fund-difference.asp.)
Compare a mutual fund or ETF of your choice to three of its largest stocks (by
composition) using annualized volatility and the AssetGroupAnalyzer class.

5. Write a function that returns a dataframe of one row with columns for
alpha, beta, sharpe_ratio, annualized_volatility, is_bear_
market, and is_bull_market, which each contain the results of running
the respective methods on a given stock using the StockAnalyzer class.
Dictionary comprehensions and the getattr() function, as used in the
AssetGroupAnalyzer.analyze() method, will be useful.

6. With the StockModeler class, build an ARIMA model fit on the S&P 500
data from January 1, 2019 through November 30, 2020 and use it to predict the
performance in December 2020. Be sure to examine the residuals and compare the
predicted performance to the actual performance.

7. Request an API key for AlphaVantage (https://www.alphavantage.co/
support/#api-key) and collect the daily foreign exchange rate from USD to
JPY using the get_forex_rates() method on the same StockReader object
you created to collect the data for the previous exercises. Build a candlestick plot
with the data from February 2019 through January 2020, resampled to 1-week
intervals. Hint: take a look at the slice() function from the standard library
(https://docs.python.org/3/library/functions.html#slice)
in order to provide the date range.

https://www.investopedia.com/articles/exchangetradedfunds/08/etf-mutual-fund-difference.asp
https://www.investopedia.com/articles/exchangetradedfunds/08/etf-mutual-fund-difference.asp
https://www.alphavantage.co/support/#api-key
https://www.alphavantage.co/support/#api-key
https://docs.python.org/3/library/functions.html#slice

Further reading 477

Further reading
Check out the following resources for more information on the material covered in this
chapter:

• A guide to Python's function decorators: https://www.thecodeship.com/
patterns/guide-to-python-function-decorators/

• Alpha: https://www.investopedia.com/terms/a/alpha.asp

• An Introduction to Classes and Inheritance (in Python): http://www.
jesshamrick.com/2011/05/18/an-introduction-to-classes-and-
inheritance-in-python/

• Beta: https://www.investopedia.com/terms/b/beta.asp

• Coefficient of Variation (CV): https://www.investopedia.com/terms/c/
coefficientofvariation.asp

• Classes (Python Documentation): https://docs.python.org/3/tutorial/
classes.html

• How After-Hours Trading Affects Stock Prices: https://www.investopedia.
com/ask/answers/05/saleafterhours.asp

• How to Create a Python Package: https://www.pythoncentral.io/
how-to-create-a-python-package/

• How to Create an ARIMA Model for Time Series Forecasting in Python: https://
machinelearningmastery.com/arima-for-time-series-
forecasting-with-python/

• Linear Regression in Python using statsmodels: https://datatofish.com/
statsmodels-linear-regression/

• Object-Oriented Programming: https://python.swaroopch.com/oop.html

• Random walk: https://en.wikipedia.org/wiki/Random_walk

• Stock Analysis: https://www.investopedia.com/terms/s/stock-
analysis.asp

• Support and Resistance Basics: https://www.investopedia.com/trading/
support-and-resistance-basics/

https://www.thecodeship.com/patterns/guide-to-python-function-decorators/
https://www.thecodeship.com/patterns/guide-to-python-function-decorators/
https://www.investopedia.com/terms/a/alpha.asp
http://www.jesshamrick.com/2011/05/18/an-introduction-to-classes-and-inheritance-in-python/
http://www.jesshamrick.com/2011/05/18/an-introduction-to-classes-and-inheritance-in-python/
http://www.jesshamrick.com/2011/05/18/an-introduction-to-classes-and-inheritance-in-python/
https://www.investopedia.com/terms/b/beta.asp
https://www.investopedia.com/terms/c/coefficientofvariation.asp
https://www.investopedia.com/terms/c/coefficientofvariation.asp
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://www.investopedia.com/ask/answers/05/saleafterhours.asp
https://www.investopedia.com/ask/answers/05/saleafterhours.asp
https://www.pythoncentral.io/how-to-create-a-python-package/
https://www.pythoncentral.io/how-to-create-a-python-package/
https://machinelearningmastery.com/arima-for-time-series-forecasting-with-python/
https://machinelearningmastery.com/arima-for-time-series-forecasting-with-python/
https://machinelearningmastery.com/arima-for-time-series-forecasting-with-python/
https://datatofish.com/statsmodels-linear-regression/
https://datatofish.com/statsmodels-linear-regression/
https://python.swaroopch.com/oop.html
https://en.wikipedia.org/wiki/Random_walk
https://www.investopedia.com/terms/s/stock-analysis.asp
https://www.investopedia.com/terms/s/stock-analysis.asp
https://www.investopedia.com/trading/support-and-resistance-basics/
https://www.investopedia.com/trading/support-and-resistance-basics/

478 Financial Analysis – Bitcoin and the Stock Market

• Technical Analysis: https://www.investopedia.com/technical-
analysis-4689657

• The definitive guide on how to use static, class or abstract methods in Python:
https://julien.danjou.info/guide-python-static-class-
abstract-methods/

• Writing the Setup Script: https://docs.python.org/3/distutils/
setupscript.html

https://www.investopedia.com/technical-analysis-4689657
https://www.investopedia.com/technical-analysis-4689657
https://julien.danjou.info/guide-python-static-class-abstract-methods/
https://julien.danjou.info/guide-python-static-class-abstract-methods/
https://docs.python.org/3/distutils/setupscript.html
https://docs.python.org/3/distutils/setupscript.html

8
Rule-Based Anomaly

Detection
It's time to catch some hackers trying to gain access to a website using a brute-force
attack—trying to log in with a bunch of username-password combinations until they
gain access. This type of attack is very noisy, so it gives us plenty of data points for
anomaly detection, which is the process of looking for data generated from a process
other than the one we deem to be typical activity. The hackers will be simulated and
won't be as crafty as they can be in real life, but it will give us great exposure to anomaly
detection.

We will be creating a package that will handle the simulation of the login attempts in order
to generate the data for this chapter. Knowing how to simulate is an essential skill to have
in our toolbox. Sometimes, it's difficult to solve a problem with an exact mathematical
solution; however, it might be easy to define how small components of the system work.
In these cases, we can model the small components and simulate the behavior of the
system as a whole. The result of the simulation gives us an approximation of the solution
that may be sufficient for our purposes.

480 Rule-Based Anomaly Detection

We will utilize rule-based anomaly detection to identify suspicious activity in the
simulated data. By the end of this chapter, we will have an understanding of how to
simulate data using random numbers generated from various probability distributions,
get more exposure to the Python standard library, gain additional experience building
Python packages, practice performing exploratory data analysis, and get an introduction
to anomaly detection.

The following topics will be covered in this chapter:

• Simulating login attempts to create our dataset for the chapter

• Performing exploratory data analysis to understand the simulated data

• Using rules and baselines for anomaly detection

Chapter materials
We will be building a simulation package to generate the data for this chapter; it is on
GitHub at https://github.com/stefmolin/login-attempt-simulator/
tree/2nd_edition. This package was installed from GitHub when we set up our
environment back in Chapter 1, Introduction to Data Analysis; however, you can follow
the instructions in Chapter 7, Financial Analysis – Bitcoin and the Stock Market, to install
a version of the package that you can edit.

The repository for this chapter, which can be found at https://github.com/
stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/
master/ch_08, has the notebook we will use for our actual analysis (anomaly_
detection.ipynb), the data files we will be working with in the logs/ folder, the
data used for the simulation in the user_data/ folder, and the simulate.py file,
which contains a Python script that we can run on the command line to simulate the data
for the chapter.

Simulating login attempts
Since we can't easily find login attempt data from a breach (it's not typically shared due to
its sensitive nature), we will be simulating it. Simulation requires a strong understanding
of statistical modeling, estimating probabilities of certain events, and identifying
appropriate assumptions to simplify where necessary. In order to run the simulation, we
will build a Python package (login_attempt_simulator) to simulate a login process
requiring a correct username and password (without any extra authentication measures,
such as two-factor authentication) and a script (simulate.py) that can be run on the
command line, both of which we will discuss in this section.

https://github.com/stefmolin/login-attempt-simulator/tree/2nd_edition
https://github.com/stefmolin/login-attempt-simulator/tree/2nd_edition
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/ch_08
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/ch_08
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/ch_08

Simulating login attempts 481

Assumptions
Before we jump into the code that handles the simulation, we need to understand
the assumptions. It is impossible to control for every possible variable when we make
a simulation, so we must identify some simplifying assumptions to get started.

The simulator makes the following assumptions regarding valid users of the website:

• Valid users come according to a Poisson process at an hourly rate that depends on
the day of the week and the time of day. A Poisson process models arrivals per unit
of time (our simulation will use an hour) as a Poisson distribution with mean λ
(lambda). The interarrival times are exponentially distributed with mean 1/λ.

• Valid users connect from 1-3 IP addresses (a unique identifier for each device using
the Internet), which comprise 4 random integers in the range [0, 255] separated
by periods. It is possible, although highly unlikely, that two valid users share an
IP address.

• Valid users are unlikely to make many mistakes while entering their credentials.

Important note
The interarrival times have the memoryless property, meaning that the time
between two consecutive arrivals has no bearing on when the subsequent
arrival will happen.

The simulator makes the following assumptions about the hackers:

• The hackers try to avoid an account lockout by only testing a few username-
password combinations, rather than a full-blown dictionary attack (for every user,
trying every password the hacker has in a dictionary of possible passwords that they
maintain). However, they don't add delays between their attempts.

• Since the hackers don't want to cause a denial of service, they limit the volume of
their attacks and only make one attempt at a time.

• The hackers know the number of accounts that exist in the system and have a good
idea of the format the usernames are in, but are guessing the exact usernames. They
will choose to try to guess all 133 usernames, or some subset of them.

• Each attack is standalone, meaning there is a single hacker acting for each attack,
and a hacker never attacks more than once.

• The hackers don't share information about which username-password combinations
are correct.

482 Rule-Based Anomaly Detection

• The attacks come at random times.

• Each hacker will use a single IP address, which is generated in the same way the
valid user ones are. However, our simulator is capable of varying this IP address,
a feature that we will look at in Chapter 11, Machine Learning Anomaly Detection,
to make this scenario more challenging.

• Although highly unlikely, it is possible the hacker has the same IP address as a valid
user. The hacker may even be a valid user.

We are abstracting away some of the complexity of password-guessing as well; instead,
we are using random numbers to determine whether or not the password is guessed
correctly—this means we aren't considering how the website stores passwords, perhaps as
plaintext (hopefully not), hashes (the irreversible transformation of the plaintext password
that allows verification without storing the actual password), or salted hashes (refer to the
Further reading section for an article on this). In practice, a hacker could gain access to
the stored passwords and figure out what they are offline (see the article on rainbow tables
in the Further reading section at the end of this chapter), in which case the techniques
discussed in this chapter wouldn't be as helpful, since the logs wouldn't have a record of
their attempts. Keep in mind that the hackers in this simulation are very conspicuous.

The login_attempt_simulator package
This package is much more lightweight than the stock_analysis package from the
previous chapter; we only have three files:

login_attempt_simulator
|-- __init__.py
|-- login_attempt_simulator.py
`-- utils.py

We will walk through each of these files in the following sections. Note that parts of
the docstrings have been removed for brevity; check the files themselves for the full
documentation.

Helper functions
Let's start our discussion with the utils.py functions, which are helpers for our
simulator class. First, we create our docstring for the module and handle our imports:

"""Utility functions for the login attempt simulator."""

import ipaddress
import itertools

Simulating login attempts 483

import json
import random
import string

Next, we define the make_user_base() function, which makes the user base for our
web application. It creates a file of usernames by combining one lowercase letter from
the English alphabet with each last name in the list inside the function, and adds a few
administrative accounts as well; this results in a user base of 133 accounts. By writing to
a file, we ensure we don't have to generate this every time we run our simulation and can
simply read from it to simulate in the future:

def make_user_base(out_file):
 """Generate a user base and save it to a file."""
 with open(out_file, 'w') as user_base:
 for first, last in itertools.product(
 string.ascii_lowercase,
 ['smith', 'jones', 'kim', 'lopez', 'brown']
): # makes 130 accounts
 user_base.write(first + last + '\n')
 # adds 3 more accounts
 for account in ['admin', 'master', 'dba']:
 user_base.write(account + '\n')

Since we will need to use this user base in our simulator, we also write a function to read
the user base file into a list. The get_valid_users() function reads the file written by
the make_user_base() function back into a Python list:

def get_valid_users(user_base_file):
 """Read in users from the user base file."""
 with open(user_base_file, 'r') as file:
 return [user.strip() for user in file.readlines()]

The random_ip_generator() function creates IP addresses from random numbers
of the form xxx.xxx.xxx.xxx, where x is an integer in the range [0, 255]. We are using
the ipaddress module from the Python standard library (https://docs.python.
org/3/library/ipaddress.html) to avoid assigning private IP addresses:

def random_ip_generator():
 """Randomly generate a fake IP address."""
 try:
 ip_address = ipaddress.IPv4Address('%d.%d.%d.%d' %
 tuple(random.randint(0, 255) for _ in range(4))
)

https://docs.python.org/3/library/ipaddress.html
https://docs.python.org/3/library/ipaddress.html

484 Rule-Based Anomaly Detection

 except ipaddress.AddressValueError:
 ip_address = random_ip_generator()
 return str(ip_address) if ip_address.is_global \
 else random_ip_generator()

Each of our users will have a few IP addresses from which they attempt to log in. The
assign_ip_addresses() function maps 1-3 random IP addresses to each user,
creating a dictionary:

def assign_ip_addresses(user_list):
 """Assign users 1-3 fake IP addresses."""
 return {
 user: [
 random_ip_generator()
 for _ in range(random.randint(1, 3))
] for user in user_list
 }

The save_user_ips() and read_user_ips() functions save the user-IP address
mapping to a JSON file and read it back into the dictionary file, respectively:

def save_user_ips(user_ip_dict, file):
 """Save the user-IP address mapping to a JSON file."""
 with open(file, 'w') as file:
 json.dump(user_ip_dict, file)

def read_user_ips(file):
 """Read in the JSON file of the user-IP address mapping."""
 with open(file, 'r') as file:
 return json.loads(file.read())

Tip
The Python standard library has lots of helpful modules that we might not find
many occasions to use but are definitely worth knowing about. Here, we use
the json module to save dictionaries to JSON files and read them back later.
We are using the ipaddress module to work with IP addresses, and the
string module to get the characters in the alphabet without having to type
them all out.

Simulating login attempts 485

The LoginAttemptSimulator class
The LoginAttemptSimulator class in the login_attempt_simulator.py
file handles the heavy lifting of carrying out the simulation with all the random number
generation logic. As usual, we start with our module docstring and imports:

"""Simulator of login attempts from valid users and hackers."""

import calendar
import datetime as dt
from functools import partial
import math
import random
import string

import numpy as np
import pandas as pd

from .utils import random_ip_generator, read_user_ips

Next, we begin defining the LoginAttemptSimulator class with its docstring,
along with some class variables for storing constants. We do this to avoid magic
numbers (numbers in the code that don't seem to have meaning) and spelling errors
with strings we will use in multiple spots. Note that these messages are only for our logs;
the web application doesn't show the end users why the authentication attempt failed
(nor should it):

class LoginAttemptSimulator:
 """Simulate login attempts from valid users + attackers."""

 ATTEMPTS_BEFORE_LOCKOUT = 3
 ACCOUNT_LOCKED = 'error_account_locked'
 WRONG_USERNAME = 'error_wrong_username'
 WRONG_PASSWORD = 'error_wrong_password'

Important note
Take note of how we used class variables to store constants, such as error
messages, so that we don't risk typos in the code. This means that every time
we use these error messages, the text will be identical, which will keep the data
clean. In Python, constants are typically written in all caps (https://www.
python.org/dev/peps/pep-0008/#constants).

https://www.python.org/dev/peps/pep-0008/#constants
https://www.python.org/dev/peps/pep-0008/#constants

486 Rule-Based Anomaly Detection

The __init__() method will handle the setup for the simulator, such as reading in the
user base from the file indicated, initializing the logs, storing success probabilities, and
determining the start and end dates for the simulation, as needed:

 def __init__(self, user_base_json_file, start, end=None, *,
 attacker_success_probs=[.25, .45],
 valid_user_success_probs=[.87, .93, .95],
 seed=None):
 # user, ip address dictionary
 self.user_base = read_user_ips(user_base_json_file)
 self.users = [user for user in self.user_base.keys()]

 self.start = start
 self.end = end if end else self.start + \
 dt.timedelta(days=random.uniform(1, 50))

 self.hacker_success_likelihoods = \
 attacker_success_probs
 self.valid_user_success_likelihoods = \
 valid_user_success_probs

 self.log = pd.DataFrame(columns=[
 'datetime', 'source_ip', 'username',
 'success', 'failure_reason'
])
 self.hack_log = \
 pd.DataFrame(columns=['start', 'end', 'source_ip'])

 self.locked_accounts = []

 # set seeds for random numbers from random and numpy:
 random.seed(seed)
 np.random.seed(seed)

Simulating login attempts 487

The _record() method appends the result of each attempt to the log, noting the IP
address it came from, which username, at what time, whether it succeeded, and the reason
for failure, if there was one:

 def _record(self, when, source_ip, username, success,
 failure_reason):
 """
 Record the outcome of a login attempt.

 Parameters:
 - when: The datetime of the event.
 - source_ip: IP address the attempt came from.
 - username: The username used in the attempt.
 - success: Whether the attempt succeeded (Boolean).
 - failure_reason: Reason for the failure.

 Returns:
 None, the `log` attribute is updated.
 """
 self.log = self.log.append({
 'datetime': when,
 'source_ip': source_ip,
 'username': username,
 'success': success,
 'failure_reason': failure_reason
 }, ignore_index=True)

488 Rule-Based Anomaly Detection

The _attempt_login() method handles the logic of determining whether the login
attempt succeeds:

Figure 8.1 – Simulation logic

Will username be
correct? No

Yes Username correct?

Attempt successful?

Lock account?

No

No

Account locked?

Try again?

Yes

No

No

Distort username

Make attempt

Record failure

Record failure; possibly
try another username

Account locked

Yes

Yes

Yes

Yes

_attempt_login() method logic
Attempt login

Stop Record success; stop

Record failure; possibly
unlock the account

Simulating login attempts 489

We provide the probability of entering a correct username (username_accuracy)
and the probabilities of successfully entering the password for each attempt
(success_likelihoods). The number of attempts is the minimum of the number
of attempts allowed before an account lockout and the length of the list of success
probabilities (success_likelihoods). The outcome of each attempt is passed
to _record() using partials (from functools), which allow us to create functions
that fix certain parameters to a specific value (so we don't have to pass the same value
continuously):

 def _attempt_login(self, when, source_ip, username,
 username_accuracy, success_likelihoods):
 """
 Simulates a login attempt, allowing for account
 lockouts, and recording the results.

 Parameters:
 - when: The datetime to start trying.
 - source_ip: IP address the attempt came from.
 - username: The username being used in the attempt.
 - username_accuracy: Prob. username is correct.
 - success_likelihoods: List of probabilities that
 password is correct (one per attempt).

 Returns:
 The datetime after trying.
 """
 current = when
 recorder = partial(self._record, source_ip=source_ip)

 if random.random() > username_accuracy:
 correct_username = username
 username = self._distort_username(username)

 if username not in self.locked_accounts:
 tries = len(success_likelihoods)
 for i in range(
 min(tries, self.ATTEMPTS_BEFORE_LOCKOUT)
):
 current += dt.timedelta(seconds=1)

490 Rule-Based Anomaly Detection

 if username not in self.users:
 recorder(
 when=current, username=username,
 success=False,
 failure_reason=self.WRONG_USERNAME
)

 if random.random() <= username_accuracy:
 username = correct_username
 continue

 if random.random() <= success_likelihoods[i]:
 recorder(
 when=current, username=username,
 success=True, failure_reason=None
)
 break
 else:
 recorder(
 when=current, username=username,
 success=False,
 failure_reason=self.WRONG_PASSWORD
)
 else:
 if tries >= self.ATTEMPTS_BEFORE_LOCKOUT \
 and username in self.users:
 self.locked_accounts.append(username)
 else:
 recorder(
 when=current, username=username, success=False,
 failure_reason=self.ACCOUNT_LOCKED
)
 if random.random() >= .5: # unlock account randomly
 self.locked_accounts.remove(username)
 return current

Simulating login attempts 491

The _valid_user_attempts_login() and _hacker_attempts_login()
methods are wrappers around the _attempt_login() method that handle the
adjustment in probabilities for valid users and hackers, respectively. Notice that while
both use a Gaussian (normal) distribution to determine how accurate the username will
be, the valid user's distribution has a higher mean and lower standard deviation, meaning
they are more likely to provide the correct username when trying to log in. This is
because, while valid users may make typos (infrequently), the hackers are guessing:

 def _hacker_attempts_login(self, when, source_ip,
 username):
 """Simulates a login attempt from an attacker."""
 return self._attempt_login(
 when=when, source_ip=source_ip, username=username,
 username_accuracy=random.gauss(mu=0.35, sigma=0.5),
 success_likelihoods=self.hacker_success_likelihoods
)

 def _valid_user_attempts_login(self, when, username):
 """Simulates a login attempt from a valid user."""
 return self._attempt_login(
 when=when, username=username,
 source_ip=random.choice(self.user_base[username]),
 username_accuracy=\
 random.gauss(mu=1.01, sigma=0.01),
 success_likelihoods=\
 self.valid_user_success_likelihoods
)

When the simulator determines that the username will not be provided correctly, it calls
the _distort_username() method, which randomly decides to omit a letter from
the valid username or to replace one of the letters with another one. While hackers enter
incorrect usernames because they are guessing (not due to typos), we abstract away this
detail in order to use a single function for introducing username errors for both valid
users and hackers:

 @staticmethod
 def _distort_username(username):
 """
 Alters the username to allow for wrong username login
 failures. Randomly removes a letter or replaces a
 letter in a valid username.
 """

492 Rule-Based Anomaly Detection

 username = list(username)
 change_index = random.randint(0, len(username) - 1)
 if random.random() < .5: # remove random letter
 username.pop(change_index)
 else: # randomly replace a single letter
 username[change_index] = \
 random.choice(string.ascii_lowercase)
 return ''.join(username)

We use the _valid_user_arrivals() method to generate the number of users
that will arrive in a given hour and the interarrival times using Poisson and exponential
distributions, respectively:

 @staticmethod
 def _valid_user_arrivals(when):
 """
 Static method for simulating Poisson process of
 arrivals (users wanting to log in). Lambda for the
 Poisson varies depending upon the day and time of week.
 """
 is_weekday = when.weekday() not in (
 calendar.SATURDAY, calendar.SUNDAY
)
 late_night = when.hour < 5 or when.hour >= 11
 work_time = is_weekday \
 and (when.hour >= 9 or when.hour <= 17)

 if work_time:
 # hours 9-5 on work days get higher lambda
 poisson_lambda = random.triangular(1.5, 5, 2.75)
 elif late_night:
 # hours in middle of night get lower lambda
 poisson_lambda = random.uniform(0.0, 5.0)
 else:
 poisson_lambda = random.uniform(1.5, 4.25)

 hourly_arrivals = np.random.poisson(poisson_lambda)
 interarrival_times = np.random.exponential(
 1/poisson_lambda, size=hourly_arrivals
)

 return hourly_arrivals, interarrival_times

Simulating login attempts 493

Important note
We are using numpy instead of random to generate random numbers from
the exponential distribution because we can ask for multiple values at once
(one for each of the hourly arrivals determined by the Poisson process). Also,
note that random doesn't provide a Poisson distribution, so we need numpy.

Our simulation uses many different distributions, so it can be helpful to see what they
look like. The following subplots show examples for each of the distributions we are using.
Notice that the Poisson distribution is drawn differently. This is because the Poisson
distribution is discrete. For this reason, we often use it to model arrivals—here, we use
it for modeling the arrivals of users attempting to log in. Discrete distributions have a
probability mass function (PMF) instead of a probability density function (PDF):

Figure 8.2 – Distributions used in the simulation

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

d
e
n
s
i
t
y

min max

peak

Triangular PDF

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

d
e
n
s
i
t
y

min max

Uniform PDF

0.98 0.99 1.00 1.01 1.02 1.03 1.04

x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

d
e
n
s
i
t
y

2

Gaussian PDF

0 1 2 3 4 5

x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

d
e
n
s
i
t
y

 = 3

Exponential PDF

0 2 4 6 8

x

0.00

0.05

0.10

0.15

0.20

m
a
s
s

 = 3

Poisson PMF

Understanding the distributions used for the simulation

494 Rule-Based Anomaly Detection

The _hack() method generates a random IP address for the hacker and carries out a
brute-force attack on a given user list:

 def _hack(self, when, user_list, vary_ips):
 """
 Simulate an attack by a random hacker.

 Parameters:
 - when: The datetime to start the attack.
 - user_list: The list of users to try to hack.
 - vary_ips: Whether or not to vary the IP address.

 Returns:
 Initial IP address and the end time for recording.
 """
 hacker_ip = random_ip_generator()
 random.shuffle(user_list)
 for user in user_list:
 when = self._hacker_attempts_login(
 when=when, username=user,
 source_ip=random_ip_generator() if vary_ips \
 else hacker_ip
)
 return hacker_ip, when

Now that we have the functionality to carry out the main parts of the simulation, we write
the simulate() method to put it all together:

 def simulate(self, *, attack_prob, try_all_users_prob,
 vary_ips):
 """
 Simulate login attempts.

 Parameters:
 - attack_probs: Probability of attack in given hour
 - try_all_users_prob: Prob. hacker will try to
 guess credentials for all users vs random subset.
 - vary_ips: Whether to vary the IP address.
 """
 hours_in_date_range = math.floor(
 (self.end - self.start).total_seconds() / 60 / 60
)

Simulating login attempts 495

 for offset in range(hours_in_date_range + 1):
 current = self.start + dt.timedelta(hours=offset)

 # simulate hacker
 if random.random() < attack_prob:
 attack_start = current \
 + dt.timedelta(hours=random.random())
 source_ip, end_time = self._hack(
 when=attack_start,
 user_list=self.users if \
 random.random() < try_all_users_prob \
 else random.sample(
 self.users,
 random.randint(0, len(self.users))
),
 vary_ips=vary_ips
)
 self.hack_log = self.hack_log.append(
 dict(
 start=attack_start, end=end_time,
 source_ip=source_ip
), ignore_index=True
)

 # simulate valid users
 hourly_arrivals, interarrival_times = \
 self._valid_user_arrivals(current)
 random_user = random.choice(self.users)
 random_ip = \
 random.choice(self.user_base[random_user])
 for i in range(hourly_arrivals):
 current += \
 dt.timedelta(hours=interarrival_times[i])
 current = self._valid_user_attempts_login(
 current, random_user
)

496 Rule-Based Anomaly Detection

We want to save the logs to CSV files, so we add the _save() method as a static method
to allow for less repetition in the code for the two save methods. The save_log()
method will save the login attempts and the save_hack_log() method will save the
record of the attacks:

 @staticmethod
 def _save(data, filename, sort_column):
 """Sort data by the datetime and save to a CSV file."""
 data.sort_values(sort_column)\
 .to_csv(filename, index=False)

 def save_log(self, filename):
 """Save the login attempts log to a CSV file."""
 self._save(self.log, filename, 'datetime')

 def save_hack_log(self, filename):
 """Save the record of the attacks to a CSV file."""
 self._save(self.hack_log, filename, 'start')

Notice that there were many private methods in this class; this is because users of this
class only need to be able to create an instance of this class (__init__()), simulate by
hour (simulate()), and save the output (save_log() and save_hack_log())—all
other methods are for internal use by objects of this class. The methods behind the scenes
will handle the bulk of the work.

Lastly, we have the __init__.py file, which makes this a package, but also provides us
with an easier way to import the main class:

"""Package for simulating login data."""

from .login_attempt_simulator import LoginAttemptSimulator

Now that we understand how the simulator works, we will discuss how to run the
simulation to collect the login attempts data.

Simulating from the command line
Rather than writing the code to simulate the login attempts every time, we can package
this up in a script that we can easily run from the command line. The Python standard
library has the argparse module (https://docs.python.org/3/library/
argparse.html), which allows us to specify arguments to our script that can be
supplied from the command line.

https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html

Simulating login attempts 497

Let's take a look at the simulate.py file to see how to do this. We start with our
imports:

"""Script for simulating login attempts."""

import argparse
import datetime as dt
import os
import logging
import random

import login_attempt_simulator as sim

In order to provide status updates when using this from the command line, we are
going to set up logging messages using the standard library's logging module
(https://docs.python.org/3/library/logging.html):

Logging configuration
FORMAT = '[%(levelname)s] [%(name)s] %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(os.path.basename(__file__))

Next, we define some utility functions for generating file paths that we will need for
reading and writing data during the simulation:

def get_simulation_file_path(path_provided, directory,
 default_file):
 """Get filepath, make directory if necessary."""
 if path_provided:
 file = path_provided
 else:
 if not os.path.exists(directory):
 os.mkdir(directory)
 file = os.path.join(directory, default_file)
 return file

def get_user_base_file_path(path_provided, default_file):
 """Get the path for a user_data directory file."""
 return get_simulation_file_path(
 path_provided, 'user_data', default_file
)

https://docs.python.org/3/library/logging.html

498 Rule-Based Anomaly Detection

def get_log_file_path(path_provided, default_file):
 """Get the path for a logs directory file."""
 return get_simulation_file_path(
 path_provided, 'logs', default_file
)

The largest part of this script defines which command-line parameters can be passed—we
will allow the user to specify whether they want to create a new user base, set a seed, when
to start the simulation, how long to simulate, and where to save all the files. The actual
simulation is taken care of in a few lines thanks to the package we built. This section will
only run when this module is run, rather than imported:

if __name__ == '__main__':
 # command-line argument parsing
 parser = argparse.ArgumentParser()
 parser.add_argument(
 'days', type=float,
 help='number of days to simulate from start'
)
 parser.add_argument(
 'start_date', type=str,
 help="datetime to start in the form 'YYYY-MM-DD(...)'"
)
 parser.add_argument(
 '-m', '--make', action='store_true',
 help='make user base'
)
 parser.add_argument(
 '-s', '--seed', type=int,
 help='set a seed for reproducibility'
)
 parser.add_argument(
 '-u', '--userbase',
 help='file to write the user base to'
)
 parser.add_argument(
 '-i', '--ip',
 help='file to write user-IP address map to'
)

Simulating login attempts 499

 parser.add_argument(
 '-l', '--log', help='file to write the attempt log to'
)
 parser.add_argument(
 '-hl', '--hacklog',
 help='file to write the hack log to'
)

Tip
The code placed in the if __name__ == '__main__' block will only
be run when this module is run as a script. This makes it possible for us to
import the functions defined in the module without running the simulation.

After defining the arguments, we need to parse them in order to use them:

 args = parser.parse_args()

Once we have the command-line arguments parsed, we check to see whether we need to
generate the user base or read it in:

 user_ip_mapping_file = \
 get_user_base_file_path(args.ip, 'user_ips.json')

 if args.make:
 logger.warning(
 'Creating new user base, mapping IP addresses.'
)
 user_base_file = get_user_base_file_path(
 args.userbase, 'user_base.txt'
)

 # seed the creation of user base
 random.seed(args.seed)

 # create usernames and write to file
 sim.utils.make_user_base(user_base_file)

500 Rule-Based Anomaly Detection

 # create 1 or more IP addresses per user, save mapping
 valid_users = sim.utils.get_valid_users(user_base_file)
 sim.utils.save_user_ips(
 sim.utils.assign_ip_addresses(valid_users),
 user_ip_mapping_file
)

Afterward, we parse the start date from the command-line arguments, and determine the
end date by adding the duration from the command-line arguments to the start date:

 try:
 start = \
 dt.datetime(*map(int, args.start_date.split('-')))
 except TypeError:
 logger.error('Start date must be in "YYYY-MM-DD" form')
 raise
 except ValueError:
 logger.warning(
 f'Could not interpret {args.start_date}, '
 'using January 1, 2020 at 12AM as start instead'
)
 start = dt.datetime(2020, 1, 1)
 end = start + dt.timedelta(days=args.days)

Tip
Check out the try...except block in the previous code snippet. We have
a single try clause and multiple except clauses. We can specify how to
handle specific errors occurring during code execution (called exceptions)
by stating which exception type belongs to a given except clause. In this
case, we have the logger object print a more helpful message for the user,
and then re-raise the same exception (because we don't intend to handle it) by
simply writing raise. This ends the program—the user can then try again
with valid input. Try triggering this exception to see how much more useful
this is. One thing to keep in mind, though, is that order matters—be sure to
handle specific exceptions before having a general except clause; otherwise,
the code specific to each exception type will never trigger. Also, note that using
except without providing a specific exception will catch everything, even
exceptions not meant to be caught.

Simulating login attempts 501

Finally, we run the actual simulation and write our results to the files specified
(or the default paths). We set the probability of attack in a given hour to 10%
(attack_prob), the probability the hacker will attempt to guess all usernames
at 20% (try_all_users_prob), and have the hackers use the same IP address
for all of their attempts (vary_ips):

 try:
 logger.info(f'Simulating {args.days} days...')
 simulator = sim.LoginAttemptSimulator(
 user_ip_mapping_file, start, end, seed=args.seed
)
 simulator.simulate(
 attack_prob=0.1, try_all_users_prob=0.2,
 vary_ips=False
)

 # save logs
 logger.info('Saving logs')
 simulator.save_hack_log(
 get_log_file_path(args.hacklog, 'attacks.csv')
)
 simulator.save_log(
 get_log_file_path(args.log, 'log.csv')
)
 logger.info('All done!')
 except:
 logger.error('Oops! Something went wrong...')
 raise

Tip
Notice that we used the logger object to print helpful messages to the
screen throughout the script; this will help the users of this script know how
far along in the process it is. These messages come in different levels of severity
(we are using INFO, WARNING, and ERROR here), allowing them to be
placed for debugging (the DEBUG level), and left there once the code goes into
production, since the minimum level for printing can be raised to INFO, so
that no DEBUG messages are printed. This is leaps and bounds above simple
print() statements, since we don't have to worry about removing them
as we move to production or adding back these messages as development
continues.

502 Rule-Based Anomaly Detection

Let's now take a look at how we can run this script. We know that simulate.py can
be run on the command line, but how can we see what arguments we need to pass?
Simple—we add the help flag (-h or --help) to the call:

(book_env) $ python3 simulate.py -h
usage: simulate.py [-h] [-m] [-s SEED] [-u USERBASE] [-i IP]
 [-l LOG] [-hl HACKLOG]
 days start_date

positional arguments:
 days number of days to simulate from start
 start_date datetime to start in the form
 'YYYY-MM-DD' or 'YYYY-MM-DD-HH'

optional arguments:
 -h, --help show this help message and exit
 -m, --make make user base
 -s SEED, --seed SEED set a seed for reproducibility
 -u USERBASE, --userbase USERBASE
 file to write the user base to
 -i IP, --ip IP file to write the user-IP address
 map to
 -l LOG, --log LOG file to write the attempt log to
 -hl HACKLOG, --hacklog HACKLOG
 file to write the hack log to

Important note
Note that we didn't specify the help argument when we added the other
arguments with argparse; it was automatically created by argparse.

Once we know which arguments we can pass and have decided which of these we want
to provide, we can run the simulation. Let's simulate 30 days, starting from 12 AM on
November 1, 2018, while having the script create the user base and IP address mappings
needed:

(book_env) $ python3 simulate.py -ms 0 30 '2018-11-01'
[WARNING] [simulate.py] Creating new user base and mapping IP
addresses to them.
[INFO] [simulate.py] Simulating 30.0 days...
[INFO] [simulate.py] Saving logs
[INFO] [simulate.py] All done!

Exploratory data analysis 503

Tip
Since we set a seed (-s 0), the output of this simulation is reproducible.
Simply remove the seed or change it to get a different result.

Python modules can also be run as scripts. As opposed to importing a module, when we
run one as a script, any code underneath if __name__ == '__main__' will also
be run, meaning we don't always need to write a separate script. Most of the modules
we have built only defined functions and classes, so running them as scripts wouldn't
do anything; however, the way we created our virtual environment with venv back in
Chapter 1, Introduction to Data Analysis, was an example of this. The previous code block
is therefore equivalent to the following command:

leave off the .py
(book_env) $ python3 -m simulate -ms 0 30 "2018-11-01"

Now that we have our simulated data, let's begin our analysis.

Exploratory data analysis
In this scenario, we have the benefit of access to labeled data (logs/attacks.csv) and
will use it to investigate how to distinguish between valid users and attackers. However,
this is a luxury that we often don't have, especially once we leave the research phase and
enter the application phase. In Chapter 11, Machine Learning Anomaly Detection, we will
revisit this scenario, but begin without the labeled data for more of a challenge. As usual,
we start with our imports and reading in the data:

>>> %matplotlib inline
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> import pandas as pd
>>> import seaborn as sns

>>> log = pd.read_csv(
... 'logs/log.csv', index_col='datetime', parse_dates=True
...)

504 Rule-Based Anomaly Detection

The login attempts dataframe (log) contains the date and time of each attempt in the
datetime column, the IP address it came from (source_ip), the username that was
used (username), whether the attempt was successful (success), and the reason for
failure if it wasn't (failure_reason):

Figure 8.3 – Sample of the login attempt data

When approaching this data, we need to think about what normal activity and hacker
activity would look like. Any big differences between the groups could potentially be
leveraged to identify the hackers. We would expect valid users to have high success rates,
with the most common reason for failure being an incorrect password. We would expect
users to log in from a few different IP addresses (phone, home computer, work computer,
and any other device they may have), and it is possible that people share devices. Without
knowing the nature of this web application, we can't say anything about whether it is
normal to log in many times throughout the day. We also don't know what time zone this
data is in, so we can't make any inferences about the login times. Potentially, we could
look at which countries these IP addresses are from, but there are ways of masking IP
addresses, so we won't go down that path. This leaves us with a few viable options, given
our available data:

• Investigate any spikes in attempts and failures (both overall and per IP address).

• Examine cases where the failure reason was an incorrect username.

• Look at the failure rate per IP address.

• Find IP addresses trying to log in with many distinct usernames.

Exploratory data analysis 505

One other thing to note is that we would want to flag anomalous behavior sooner rather
than later. Waiting a month to flag something is less valuable (the value drops quickly over
time), so we need to find a way to flag much sooner; say, using an hourly frequency. Since
we are in the research phase, we have some labeled data to work with:

>>> attacks = pd.read_csv(
... 'logs/attacks.csv',
... converters={
... 'start': np.datetime64,
... 'end': np.datetime64
... }
...) # make start and end columns datetimes but not the index

This data is the record of attacks on the web application (attacks). It contains the date
and time of the start of the attack (start), the date and time of the end of the attack
(end), and the IP address associated with the attack (source_ip):

Figure 8.4 – Sample of the labeled data

Using the shape property, we can see that we had 72 attacks and 12,836 login attempts
from valid and nefarious users, and with nunique(), we see that 22% of the IP addresses
were associated with attacks:

>>> attacks.shape, log.shape
((72, 3), (12836, 4))
>>> attacks.source_ip.nunique() / log.source_ip.nunique()
0.22018348623853212

Important note
Normally, it wouldn't be this trivial to know when the attacks occurred—they
can go a long time without detection, and, even then, it's not so simple to
isolate the attacker's actions from those of normal users.

506 Rule-Based Anomaly Detection

Our data is pretty clean (we designed it just for this purpose, after all), so let's see whether
we can find anything interesting by performing some exploratory data analysis (EDA).
First, let's look to see how many attempts are coming through on an hourly basis:

>>> log.assign(attempts=1).attempts.resample('1H').sum()\
... .plot(figsize=(15, 5), title='hourly attempts')\
... .set(xlabel='datetime', ylabel='attempts')

Several hours had very large peaks, which could possibly be when attacks occurred. Using
this plot, we could report on hours that had a high level of login attempt activity, but
nothing beyond that:

Figure 8.5 – Hourly login attempts

Another interesting avenue of exploration would be to see how many attempts came from
each IP address. We can achieve this by running the following command:

>>> log.source_ip.value_counts().describe()
count 327.000000
mean 39.253823
std 69.279330
min 1.000000
25% 5.000000
50% 10.000000
75% 22.500000
max 257.000000
Name: source_ip, dtype: float64

Exploratory data analysis 507

This data definitely appears to have some outliers, which pull the number of attempts per
IP address up quite high. Let's create some plots to better assess this:

>>> fig, axes = plt.subplots(1, 2, figsize=(15, 5))
>>> log.source_ip.value_counts()\
... .plot(kind='box', ax=axes[0]).set_ylabel('attempts')
>>> log.source_ip.value_counts()\
... .plot(kind='hist', bins=50, ax=axes[1])\
... .set_xlabel('attempts')
>>> fig.suptitle('Attempts per IP Address')

The distribution of attempts per IP address is the sum of the distributions for both valid
users and attackers. The histogram indicates that this distribution is bimodal, but we are
unable to determine whether all of those IP addresses with high attempts are actually
hackers by just looking at the plot:

Figure 8.6 – Distribution of login attempts per IP address

Since we have access to the details of each attack, we can check whether the right part of
the histogram is the distribution for the hackers. Their IP addresses make up 88.9% of the
top IP addresses ranked by number of attempts:

>>> num_hackers = attacks.source_ip.nunique()
>>> log.source_ip.value_counts().index[:num_hackers]\
... .isin(attacks.source_ip).sum() / num_hackers
0.8888888888888888

508 Rule-Based Anomaly Detection

We could simply stop here and flag any IP address that shows up in a list of IP addresses
with the most attempts per month, but we most likely want a more robust solution, since
the hackers could simply change their IP address each time and avoid detection. Ideally,
we would also be able to detect the attacks without waiting for a full month's worth of
data. Looking at the hourly attempts made by each IP address unfortunately doesn't give
us much information, though:

>>> log.assign(attempts=1).groupby('source_ip').attempts\
... .resample('1H').sum().unstack().mean()\
... .plot(
... figsize=(15, 5),
... title='average hourly attempts per IP address'
...).set_ylabel('average hourly attempts per IP address')

Remember from Chapter 1, Introduction to Data Analysis, that the mean is not robust to
outliers. If the attackers make many attempts, they will bring the average hourly attempts
per IP address higher. We can see several large peaks in this line plot, but notice that many
of them only go up to two or three. Can we really expect only one user to access the web
application from a given IP address? This is probably not a realistic assumption:

Figure 8.7 – Average hourly login attempts per IP address

So, if we can't rely on the IP address (after all, the hacker could be smart enough to spread
the attack over many different addresses), what else can we try? Perhaps the hackers have
more trouble logging in successfully:

>>> log[log.source_ip.isin(attacks.source_ip)]\
... .success.value_counts(normalize=True)

Exploratory data analysis 509

False 0.831801
True 0.168199
Name: success, dtype: float64

The hackers are only successful 17% of the time, but how often are the valid users
successful? This information is important for determining a baseline of what normal
behavior looks like for the website. As we would expect, valid users have much higher
success rates:

>>> log[~log.source_ip.isin(attacks.source_ip)]\
... .success.value_counts(normalize=True)
True 0.873957
False 0.126043
Name: success, dtype: float64

Since the logs come with the reason that a login attempt failed, we can use a crosstab to
see why hackers and valid users fail to log in successfully. Any differences here may help
us separate the two groups:

>>> pd.crosstab(
... index=pd.Series(
... log.source_ip.isin(attacks.source_ip),
... name='is_hacker'
...), columns=log.failure_reason
...)

Valid users sometimes enter their passwords or usernames incorrectly, but the hacker has
way more issues getting both the username and password correct:

Figure 8.8 – Reason for failed login attempts

Valid users don't make many mistakes with their credentials, so if the hackers make
many attempts with many users, we can flag it. To confirm, we can look at average hourly
attempts per user:

>>> log.assign(attempts=1).groupby('username').attempts\
... .resample('1H').sum().unstack().mean()\

510 Rule-Based Anomaly Detection

... .plot(figsize=(15, 5),

... title='average hourly attempts per user')\

... .set_ylabel('average hourly attempts per user')

For the most part, less than one attempt per hour is made per username. There's also
no guarantee that spikes in this metric are indications of an attack. Perhaps the website
is having a flash sale; in that case, we would likely see a spike in this metric caused by
valid users:

Figure 8.9 – Average hourly login attempts per username

Based on our findings, error rates seem to be the most fruitful metric for detecting attacks,
so we will look into IP addresses that have high error rates. To do so, we can create a pivot
table to calculate some helpful metrics:

>>> pivot = log.pivot_table(
... values='success', index=log.source_ip,
... columns=log.failure_reason.fillna('success'),
... aggfunc='count', fill_value=0
...)
>>> pivot.insert(0, 'attempts', pivot.sum(axis=1))
>>> pivot = pivot.sort_values('attempts', ascending=False)\
... .assign(
... success_rate=lambda x: x.success / x.attempts,
... error_rate=lambda x: 1 - x.success_rate
...)
>>> pivot.head()

Exploratory data analysis 511

Tip
The insert() method allows us to insert the newly created attempts
column at a specific position in the current dataframe in place. We created the
attempts column as the sum of errors and successes (we fill in the NaN
values in the failure_reason column with success to count it here)
by summing with axis=1.

This yields the following pivot table sorted by attempts (from most to fewest):

Figure 8.10 – Metrics per IP address

We know that certain IP addresses are making many attempts, so it's worth looking into
how many usernames are attempting to log in per IP address; we would expect valid users
to only log in from a few IP addresses and not to share their IP address with many others.
This can be determined with a group by and an aggregation:

>>> log.groupby('source_ip').agg(dict(username='nunique'))\
... .username.value_counts().describe()
count 53.000000
mean 6.169811
std 34.562505
min 1.000000
25% 1.000000
50% 1.000000
75% 2.000000
max 253.000000
Name: username, dtype: float64

This definitely appears to be a good strategy for isolating nefarious users. The majority of
the IP addresses are used by two or fewer users, but the maximum stands at 253. While
this criterion could help us identify some of the attackers, it won't help if the hackers are
clever enough to vary their IP addresses throughout their attack.

512 Rule-Based Anomaly Detection

Before we move on to anomaly detection methods, let's see whether we can visually
identify the hackers. Let's create a scatter plot for the successes and attempts for each
IP address:

>>> pivot.plot(
... kind='scatter', x='attempts', y='success', alpha=0.25,
... title='successes vs. attempts by IP address'
...)

There appear to be a few distinct clusters. In the bottom-left corner of the plot, we see
points forming a line with a one-to-one relationship of successes to attempts. The upper-
right portion of the plot contains a less dense cluster with a high number of attempts and
moderate successes. Since we used the alpha parameter to control transparency, we can
see that the trail of points that seem to connect the two clusters is not densely populated.
Even without the axis scales, we would predict the bottom-left cluster to be regular users
and the top-right to be hackers (since we imagine there are more regular users than
hackers, and regular users have higher success rates). The points in the middle are more
difficult to judge, however:

Figure 8.11 – Scatter plot of successes versus attempts by IP address

Exploratory data analysis 513

Without making any assumptions, we can draw a boundary line grouping the middle
points with their nearest cluster:

>>> ax = pivot.plot(
... kind='scatter', x='attempts', y='success', alpha=0.25,
... title='successes vs. attempts by IP address'
...)
>>> plt.axvline(
... 125, label='sample boundary',
... color='red', linestyle='--'
...)
>>> plt.legend(loc='lower right')

Of course, when lacking labeled data, it is difficult to evaluate the effectiveness of this
decision boundary:

Figure 8.12 – Visualizing a decision boundary

514 Rule-Based Anomaly Detection

Luckily for us, we have data on which IP addresses the hackers used because we have
been given labeled data to conduct our research, so we can use seaborn to actually
see the separation:

>>> fig, axes = plt.subplots(1, 2, figsize=(15, 5))
>>> for ax in axes:
... sns.scatterplot(
... y=pivot.success, x=pivot.attempts,
... hue=pivot.assign(
... is_hacker=\
... lambda x: x.index.isin(attacks.source_ip)
...).is_hacker,
... ax=ax, alpha=0.5
...)
... for spine in ['top', 'right']: # make less boxy
... ax.spines[spine].set_visible(False)
>>> axes[1].set_xscale('log')
>>> plt.suptitle('successes vs. attempts by IP address')

Our intuition about there being two distinct clusters was dead-on. The middle area,
however, was much trickier to determine. The blue (darker) points on the left do appear
to be following a line upward, while the orange (lighter) points on the left are following
a line to the orange cluster. By plotting the log of the attempts instead, we get a little more
separation between our orange middle points and the blue points:

Figure 8.13 – Using labeled data to check our intuition

Implementing rule-based anomaly detection 515

Remember, we can also use a box plot to check for possible outliers, which will be shown
as points. Let's see what successes and attempts look like per IP address:

>>> pivot[['attempts', 'success']].plot(
... kind='box', subplots=True, figsize=(10, 3),
... title='stats per IP address'
...)

The points marked as outliers coincide with the points in the upper-right corner of the
scatter plots we made:

Figure 8.14 – Checking for outliers

Now that we have a good understanding of our data, we are ready to learn how to
implement a few simple anomaly detection strategies.

Implementing rule-based anomaly detection
It's time to catch those hackers. After the EDA in the previous section, we have an
idea of how we might go about this. In practice, this is much more difficult to do, as it
involves many more dimensions, but we have simplified it here. We want to find the IP
addresses with excessive amounts of attempts accompanied by low success rates, and
those attempting to log in with more unique usernames than we would deem normal
(anomalies). To do this, we will employ threshold-based rules as our first foray into
anomaly detection; then, in Chapter 11, Machine Learning Anomaly Detection, we will
explore a few machine learning techniques as we revisit this scenario.

516 Rule-Based Anomaly Detection

Since we are interested in flagging IP addresses that are suspicious, we are going to arrange
the data so that we have hourly aggregated data per IP address (if there was activity for
that hour):

>>> hourly_ip_logs = log.assign(
... failures=lambda x: np.invert(x.success)
...).groupby('source_ip').resample('1H').agg({
... 'username': 'nunique', 'success': 'sum',
... 'failures': 'sum'
... }).assign(
... attempts=lambda x: x.success + x.failures,
... success_rate=lambda x: x.success / x.attempts,
... failure_rate=lambda x: 1 - x.success_rate
...).dropna().reset_index()

Tip
The np.invert() function is an easy way to flip Boolean values. It turns
True to False and False to True along a NumPy array-like structure.

The aggregated data looks like this:

Figure 8.15 – Hourly aggregated data per IP address

The simplest form of rule-based anomaly detection involves calculating a threshold
value and checking to see whether the data is beyond the threshold. This could mean
values falling below some lower bound threshold, or values exceeding some upper bound
threshold. Since we are looking at login attempts, we are interested in values that are
greater than normal. Therefore, we will be calculating the threshold for our upper bounds
and comparing that to our data.

Implementing rule-based anomaly detection 517

Percent difference
Provided that we have an idea of what normal login attempt activity (minus the hackers)
looks like on the site, we can flag values that deviate from this by a certain percentage.
In order to calculate this baseline, we could take a few IP addresses at random with
replacement for each hour, and average the number of login attempts they made. We are
bootstrapping since we don't have much data (about 50 unique IP addresses to pick from
for each of the 24 hours).

To do this, we could write a function that takes in the aggregated dataframe we just made,
along with the name of a statistic to calculate per column of the data to use as the starting
point for the threshold:

>>> def get_baselines(hourly_ip_logs, func, *args, **kwargs):
... """
... Calculate hourly bootstrapped statistic per column.
...
... Parameters:
... - hourly_ip_logs: Data to sample from.
... - func: Statistic to calculate.
... - args: Additional positional arguments for `func`
... - kwargs: Additional keyword arguments for `func`
...
... Returns:
... `DataFrame` of hourly bootstrapped statistics
... """
... if isinstance(func, str):
... func = getattr(pd.DataFrame, func)
...
... return hourly_ip_logs.assign(
... hour=lambda x: x.datetime.dt.hour
...).groupby('hour').apply(
... lambda x: x\
... .sample(10, random_state=0, replace=True)\
... .pipe(func, *args, **kwargs, numeric_only=True)
...)

Important note
In the previous code snippet, random_state is used with sample() for
reproducibility; however, in practice, we will probably not want to always pick
the same rows.

518 Rule-Based Anomaly Detection

Notice that we can get equally sized samples for all groups (hours, here) if we use
sample() inside apply() after grouping by the column we want to sample with. This
means that we are selecting 10 rows with replacement per hour for each column. We have
to sample by hour here because, if we do simple random sampling, there is a good chance
we won't have a statistic for every hour. Let's use get_baselines() to calculate the
column baselines using the mean:

>>> averages = get_baselines(hourly_ip_logs, 'mean')
>>> averages.shape
(24, 7)

Tip
If, instead, we wanted to perform stratified random sampling, we could replace
10 in the get_baselines() function with x.shape[0] * pct,
where pct is the percentage we want to sample from each group.

Each column has the mean per hour for the 10 IP addresses chosen randomly to estimate
normal behavior. This technique, however, doesn't guarantee that we won't mix any of the
hacker activity into our baseline calculations. For example, let's take a look at the six hours
with the highest baseline values for failure rate:

>>> averages.nlargest(6, 'failure_rate')

We might find it difficult to flag any activity at hours 19, 23, or 14 with this baseline
because the failure rate and unique usernames tried are both high:

Figure 8.16 – Hourly baselines using the mean

Implementing rule-based anomaly detection 519

To combat this issue, we could trim our summary statistics by making the top x%
ineligible for use in our baseline calculation. Let's remove values greater than the 95th
percentile of data from each hour. First, we will write a function to trim rows from a given
hour that have data above a given quantile:

>>> def trim(x, quantile):
... """
... Remove rows with entries for the username, attempts,
... or failure_rate columns above a given quantile.
... """
... mask = (
... (x.username <= x.username.quantile(quantile)) &
... (x.attempts <= x.attempts.quantile(quantile)) &
... (x.failure_rate
... <= x.failure_rate.quantile(quantile))
...)
... return x[mask]

Next, we will group the IP address data by hour and apply our trimming function. Since
we will be using our bootstrapping function, we need to clean up some of the extra
columns that will result from this operation, so we drop the hour column, reset the index,
and then remove the grouping column and the old index:

>>> trimmed_hourly_logs = hourly_ip_logs\
... .assign(hour=lambda x: x.datetime.dt.hour)\
... .groupby('hour').apply(lambda x: trim(x, 0.95))\
... .drop(columns='hour').reset_index().iloc[:,2:]

Now, we can use the get_baselines() function to grab our baseline using the average
with the trimmed data:

>>> averages = get_baselines(trimmed_hourly_logs, 'mean')
>>> averages.iloc[[19, 23, 3, 11, 14, 16]]

520 Rule-Based Anomaly Detection

The trimmed baseline is now quite different from Figure 8.16 at hours 19, 23, and 14:

Figure 8.17 – Trimmed hourly baselines using the mean

Now that we have our baseline, let's write a function that will do the heavy lifting of
calculating the threshold from our baseline and the percentage difference per column,
returning the IP addresses that have been flagged as hackers:

>>> def pct_change_threshold(hourly_ip_logs, baselines,
... pcts=None):
... """
... Return flagged IP addresses based on thresholds.
...
... Parameters:
... - hourly_ip_logs: Aggregated data per IP address.
... - baselines: Hourly baselines per column in data.
... - pcts: Dictionary of custom percentages per column
... for calculating upper bound thresholds
... (baseline * pct). If not provided, pct will be 1
...
... Returns: `Series` containing the IP addresses flagged.
... """
... pcts = {} if not pcts else pcts
...
... return hourly_ip_logs.assign(
... hour=lambda x: x.datetime.dt.hour
...).join(
... baselines, on='hour', rsuffix='_baseline'
...).assign(
... too_many_users=lambda x: x.username_baseline \
... * pcts.get('username', 1) <= x.username,

Implementing rule-based anomaly detection 521

... too_many_attempts=lambda x: x.attempts_baseline \

... * pcts.get('attempts', 1) <= x.attempts,

... high_failure_rate=lambda x: \

... x.failure_rate_baseline \

... * pcts.get('failure_rate', 1) <= x.failure_rate

...).query(

... 'too_many_users and too_many_attempts '

... 'and high_failure_rate'

...).source_ip.drop_duplicates()

The pct_change_threshold() function uses a series of chained operations to give us
the flagged IP addresses:

1. First, it joins the baselines to the hourly IP address logs on the hour column. Since
all the baseline columns have the same names as the hourly IP address logs, and we
don't want to join on them, we suffix their names with '_baseline'.

2. After that, all the data we need to check whether the thresholds were exceeded is
in the same dataframe. We use assign() to make three new Boolean columns,
indicating whether each of our conditions (too many users, too many attempts, and
high failure rate) has been violated.

3. Then, we chain a call to the query() method, which lets us easily select rows
where all of these Boolean columns are True (notice we don't need to explicitly say
<column> == True).

4. Lastly, we make sure to return just the IP addresses and to drop any duplicates in
case the same IP address was flagged for multiple hours.

In order to use this function, we need to pick a percentage difference from each of our
baselines. By default, that will be 100% of the baseline, which, since it is the average, will
flag way too many IP addresses. Instead, let's get the IP addresses this flags with values
25% higher than the baseline for each criterion:

>>> pct_from_mean_ips = pct_change_threshold(
... hourly_ip_logs, averages,
... {key: 1.25 for key in [
... 'username', 'attempts', 'failure_rate'
...]}
...)

522 Rule-Based Anomaly Detection

Tip
The percentages we use are in a dictionary, with the key being the column they
are for and the value being the percentage itself. If the caller of the function
doesn't provide these, we have default values of 100%, since we are using
get() to select from the dictionary.

These rules flagged 73 IP addresses:

>>> pct_from_mean_ips.nunique()
73

Important note
In practice, we probably wouldn't run this rule on the entries used to calculate
the baselines because they influence the definition of the baseline with their
behavior.

Tukey fence
As we discussed in Chapter 1, Introduction to Data Analysis, the mean is not robust to
outliers. If we feel there are many outliers influencing our baselines, we could go back
to the percent difference and try out the median or look into using a Tukey fence.
Remember from previous chapters that the Tukey fence gets its bounds from the first and
third quartiles and the interquartile range (IQR). Since we only care about exceeding the
upper bound, this solves the issue with the mean, provided that outliers make up less than
25% of our data. We can use the following to calculate the upper bound:

Our get_baselines() function will still help us, but we need to do some additional
processing. We will write a function that will calculate the upper bound of the Tukey fence
and let us test out various values for the multiplier (k). Notice that we also have the option
to use percentages with the Tukey fence here:

>>> def tukey_fence_test(trimmed_data, logs, k, pct=None):
... """
... See which IP addresses get flagged with a Tukey fence
... with multiplier k and optional percent differences.
...
... Parameters:
... - trimmed_data: Data for calculating the baselines
... - logs: The data to test

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑄𝑄3 + 𝑘𝑘 × 𝐼𝐼𝑄𝑄𝐼𝐼

Implementing rule-based anomaly detection 523

... - k: The multiplier for the IQR

... - pct: Dictionary of percentages per column for use

... with `pct_change_threshold()`

...

... Returns:

... `pandas.Series` of flagged IP addresses

... """

... q3 = get_baselines(trimmed_data, 'quantile', .75)\

... .drop(columns=['hour'])

...

... q1 = get_baselines(trimmed_data, 'quantile', .25)\

... .drop(columns=['hour'])

...

... iqr = q3 - q1

... upper_bound = (q3 + k * iqr).reset_index()

...

... return pct_change_threshold(logs, upper_bound, pct)

Let's use the tukey_fence_test() function to grab the IP addresses that exceed the
upper bound of the Tukey fence using an IQR multiplier of 3:

>>> tukey_fence_ips = tukey_fence_test(
... trimmed_hourly_logs, hourly_ip_logs, k=3
...)

With this method, we flag 83 IP addresses:

>>> tukey_fence_ips.nunique()
83

Important note
We used a multiplier of 3 here. However, depending on the application, we may
see 1.5 used in order to be less restrictive. In reality, we can use any number;
finding the best one may require some trial and error.

524 Rule-Based Anomaly Detection

Z-score
Remember, from Chapter 1, Introduction to Data Analysis, that we can also calculate
Z-scores and flag IP addresses a given number of standard deviations from the mean. The
pct_change_threshold() function we wrote earlier won't help us as is, since we
aren't just comparing with the baseline. Instead, we need to subtract the baseline for the
mean from all the values and divide by the baseline for the standard deviation, so we must
rework our approach.

Let's write a new function, z_score_test(), to perform our Z-score tests using
any number of standard deviations above the mean as a cutoff. First, we will use the
get_baselines() function to calculate the baseline standard deviations by hour with
the trimmed data. Then, we join the standard deviations and means together, adding the
suffixes. This allows us to adapt the logic of pct_change_threshold() for this task:

>>> def z_score_test(trimmed_data, logs, cutoff):
... """
... See which IP addresses get flagged with a Z-score
... greater than or equal to a cutoff value.
...
... Parameters:
... - trimmed_data: Data for calculating the baselines
... - logs: The data to test
... - cutoff: Flag row when z_score >= cutoff
...
... Returns:
... `pandas.Series` of flagged IP addresses
... """
... std_dev = get_baselines(trimmed_data, 'std')\
... .drop(columns=['hour'])
... averages = get_baselines(trimmed_data, 'mean')\
... .drop(columns=['hour'])
...
... return logs.assign(hour=lambda x: x.datetime.dt.hour)\
... .join(std_dev.join(
... averages, lsuffix='_std', rsuffix='_mean'
...), on='hour')\
... .assign(
... too_many_users=lambda x: (
... x.username - x.username_mean
...)/x.username_std >= cutoff,

Implementing rule-based anomaly detection 525

... too_many_attempts=lambda x: (

... x.attempts - x.attempts_mean

...)/x.attempts_std >= cutoff,

... high_failure_rate=lambda x: (

... x.failure_rate - x.failure_rate_mean

...)/x.failure_rate_std >= cutoff

...).query(

... 'too_many_users and too_many_attempts '

... 'and high_failure_rate'

...).source_ip.drop_duplicates()

Let's call our function with a cutoff of three or more standard deviations from the mean:

>>> z_score_ips = \
... z_score_test(trimmed_hourly_logs, hourly_ip_logs, 3)

With this method, we flag 62 IP addresses:

>>> z_score_ips.nunique()
62

Important note
In practice, the cutoff value for the Z-score is also a parameter we will want
to tune.

Evaluating performance
So, we now have a series of IP addresses for each set of rules, but we would like to
know how well each method did (assuming we can actually check). In this case, we
have the attacker IP addresses for our research, so we can see how many each method
got right—this is not so trivial in practice; instead, we could mark things that we have
discovered to be malicious in the past and look out for similar behavior in the future.

526 Rule-Based Anomaly Detection

This is a classification problem with two classes; we want to classify each IP address
as either a valid user or a nefarious one. This leaves us with four possible outcomes that
we can visualize using a confusion matrix:

Figure 8.18 – The confusion matrix

In this application, these outcomes mean the following:

• True Positive (TP): Our method flagged it as malicious, and it was.

• True Negative (TN): Our method didn't flag it, and it wasn't malicious.

• False Positive (FP): Our method flagged it, but it wasn't malicious.

• False Negative (FN): Our method didn't flag it, but it was malicious.

True positives and true negatives mean our method did well, but false positives and false
negatives are possible areas for improvement (bear in mind that this will never be perfect).
Let's now write a function that will help determine where each method stands:

>>> def evaluate(alerted_ips, attack_ips, log_ips):
... """
... Calculate true positives (TP), false positives (FP),
... true negatives (TN), and false negatives (FN) for
... IP addresses flagged as suspicious.
...
... Parameters:
... - alerted_ips: `Series` of flagged IP addresses

Implementing rule-based anomaly detection 527

... - attack_ips: `Series` of attacker IP addresses

... - log_ips: `Series` of all IP addresses seen

...

... Returns:

... Tuple of the form (TP, FP, TN, FN)

... """

... tp = alerted_ips.isin(attack_ips).sum()

... tn = np.invert(np.isin(

... log_ips[~log_ips.isin(alerted_ips)].unique(),

... attack_ips

...)).sum()

... fp = np.invert(alerted_ips.isin(attack_ips)).sum()

... fn = np.invert(attack_ips.isin(alerted_ips)).sum()

... return tp, fp, tn, fn

Before we begin calculating metrics, let's make a partial function so we don't have to keep
passing in the series of attacker IP addresses (attacks.source_ip) and IP addresses
in the logs (pivot.index). Remember, a partial function allows us to fix the values for
certain arguments and call the function later:

>>> from functools import partial
>>> scores = partial(
... evaluate, attack_ips=attacks.source_ip,
... log_ips=pivot.index
...)

Now, let's use this to calculate some metrics to measure our performance. One common
metric is the false positive rate (FPR), which tells us the false alarm rate. It is calculated
by taking the ratio of false positives to everything that was actually negative:

The false discovery rate (FDR), which tells us the percentage of positives that are
incorrect, is another way of looking at false alarms:

𝑭𝑭𝑭𝑭𝑭𝑭 = 𝑭𝑭𝑭𝑭
𝑭𝑭𝑭𝑭 + 𝑻𝑻𝑻𝑻

𝑭𝑭𝑭𝑭𝑭𝑭 = 𝑭𝑭𝑭𝑭
𝑭𝑭𝑭𝑭+ 𝑻𝑻𝑭𝑭

528 Rule-Based Anomaly Detection

Let's see what the FPR and FDR are for our percent difference from the mean approach:

>>> tp, fp, tn, fn = scores(pct_from_mean_ips)
>>> fp / (fp + tn), fp / (fp + tp)
(0.00392156862745098, 0.0136986301369863)

Another metric of interest is the false negative rate (FNR), which tells us what we fail to
detect (the miss rate). It is calculated by taking the ratio of false negatives to everything
that was actually positive:

An alternative way of looking at false negatives is the false omission rate (FOR), which
tells us the percentage of cases we incorrectly mark as negatives:

Our percent difference from the mean method has no false negatives, so both FNR and
FOR are zero:

>>> fn / (fn + tp), fn / (fn + tn)
(0.0, 0.0)

There is typically a trade-off here—do we want to catch as many hackers as possible,
and risk flagging valid users (by focusing on FNR/FOR), or do we want to keep from
inconveniencing our valid users and risk missing hacker activity (by minimizing FPR/
FDR)? These questions are tough to answer and will depend on the domain, as the cost
of false positives is not necessarily equal to (or even close in scale to) the cost of false
negatives.

Tip
We will discuss additional metrics that can be used to evaluate our
performance in Chapter 9, Getting Started with Machine Learning in Python.

Let's now write a function to handle all these calculations for us:

>>> def classification_stats(tp, fp, tn, fn):
... """Calculate metrics"""
... return {
... 'FPR': fp / (fp + tn), 'FDR': fp / (fp + tp),
... 'FNR': fn / (fn + tp), 'FOR': fn / (fn + tn)
... }

𝑭𝑭𝑭𝑭𝑭𝑭 = 𝑭𝑭𝑭𝑭
𝑭𝑭𝑭𝑭+ 𝑻𝑻𝑻𝑻

𝑭𝑭𝑭𝑭𝑭𝑭 = 𝑭𝑭𝑭𝑭
𝑭𝑭𝑭𝑭+ 𝑻𝑻𝑭𝑭

Implementing rule-based anomaly detection 529

We can now use the results from the evaluate() function to calculate our metrics.
For the percentage difference from the mean, we get the following output:

>>> classification_stats(tp, fp, tn, fn)
{'FPR': 0.00392156862745098, 'FDR': 0.0136986301369863,
 'FNR': 0.0, 'FOR': 0.0}

It looks like our trio of criteria did quite well. If we were concerned with the hacker IP
addresses being chosen when we calculated the baselines, but didn't want to trim, we
could have run this with the median instead of the mean:

>>> medians = get_baselines(hourly_ip_logs, 'median')
>>> pct_from_median_ips = pct_change_threshold(
... hourly_ip_logs, medians,
... {key: 1.25 for key in
... ['username', 'attempts', 'failure_rate']}
...)

Using the median, we achieve similar performance to the mean. In this case, however, we
didn't need to trim the data beforehand. This is because the median is robust to outliers,
meaning that picking a single hacker IP address in a given hour doesn't affect that hour's
baseline as it would the mean:

>>> tp, fp, tn, fn = scores(pct_from_median_ips)
>>> classification_stats(tp, fp, tn, fn)
{'FPR': 0.00784313725490196, 'FDR': 0.02702702702702703,
 'FNR': 0.0, 'FOR': 0.0}

To compare each of the methods discussed, we can use dictionary comprehensions
to populate a DataFrame object with the performance metrics:

>>> pd.DataFrame({
... method: classification_stats(*scores(ips))
... for method, ips in {
... 'means': pct_from_mean_ips,
... 'medians': pct_from_median_ips,
... 'Tukey fence': tukey_fence_ips,
... 'Z-scores': z_score_ips
... }.items()
... })

530 Rule-Based Anomaly Detection

Tip
The scores() function returns a tuple of (tp, fp, tn, fn), but
the classification_stats() function expects four arguments.
However, since scores() returns them in the same order that
classification_stats() expects them, we can use * to
unpack the tuple and send the values as four positional arguments.

The mean is affected by outliers, but once we trimmed the data, it became a viable
method. We didn't need to trim the data to work with the median; the usefulness of
the median hinges on the data containing fewer than 50% outliers. The Tukey fence takes
this a step further by using the third quartile and assuming that fewer than 25% of the
data points are outliers. The Z-score method is also affected by outliers because it uses
the mean; however, with the trimmed data, we were able to achieve good performance
with a modest cutoff of three:

Figure 8.19 – Comparing performance

Ultimately, which method we use in practice will depend on how costly it is to have
a false positive versus a false negative—is it worse to raise the alarm when nothing
is wrong, or to be silent when something is? In this case, we would err on the side
of minimizing false negatives since we don't want to miss anything.

Important note
Another common use case for anomaly detection is in quality or process
control in industrial settings, such as monitoring factory equipment
performance and output. Process control uses threshold-based and
pattern-based rules to determine whether systems are out of control. These
can be used for things such as determining when the distribution of the
underlying data has changed, which could be a precursor for later problems.
Western Electric rules and Nelson rules are common ones. References for
both can be found in the Further reading section at the end of this chapter.

Summary 531

Summary
In our second application chapter, we learned how to simulate events in Python and got
additional exposure to writing packages. We also saw how to write Python scripts that can
be run from the command line, which we used to run our simulation of the login attempt
data. Then, we performed some EDA on the simulated data to see whether we could figure
out what would make hacker activity easy to spot.

This led us to zero in on the number of distinct usernames attempting to authenticate
per IP address per hour, as well as the number of attempts and failure rates. Using these
metrics, we were able to create a scatter plot, which appeared to show two distinct groups
of points, along with some other points connecting the two groups; naturally, these
represented the groups of valid users and the nefarious ones, with some of the hackers not
being as obvious as others.

Finally, we set about creating rules that would flag the hacker IP addresses for their
suspicious activity. First, we used pandas to reshape our data into hourly aggregates
per IP address. Then, we wrote functions to trim values greater than the 95th percentile
and calculate baselines for a given statistic per hour, which we used to create our rules
based on percentage difference from the mean and median, exceeding the upper bound
of a Tukey fence, and using Z-scores. We saw that building good rules depended on
carefully tuning our parameters: the percentage for the differences from the mean
and median, the multiplier for the Tukey fence, and the threshold for the Z-score. To
determine which of the rules was performing the best, we used the miss rate, false
omission rate, false discovery rate, and the false alarm rate.

In the next two chapters, we will introduce machine learning in Python using
scikit-learn, and in Chapter 11, Machine Learning Anomaly Detection, we will
revisit this scenario for anomaly detection using machine learning.

532 Rule-Based Anomaly Detection

Exercises
Complete the following exercises to practice the concepts covered in this chapter:

1. Run the simulation for December 2018 into new log files without making the
user base again. Be sure to run python3 simulate.py -h to review the
command-line arguments. Set the seed to 27. This data will be used for the
remaining exercises.

2. Find the number of unique usernames, attempts, successes, and failures, as well as
the success/failure rates per IP address, using the data simulated from exercise 1.

3. Create two subplots with failures versus attempts on the left, and failure rate versus
distinct usernames on the right. Draw decision boundaries for the resulting plots.
Be sure to color each data point by whether or not it is a hacker IP address.

4. Build a rule-based criteria using the percentage difference from the median that
flags an IP address if the failures and attempts are both five times their respective
medians, or if the distinct usernames count is five times its median. Be sure to use
a one-hour window. Remember to use the get_baselines() function to
calculate the metrics needed for the baselines.

5. Calculate metrics to evaluate how well these rules performed using the
evaluate() and classification_stats() functions from this chapter.

Further reading
Check out the following resources for more information on the topics covered in this
chapter:

• A Gentle Introduction to the Bootstrap Method: https://
machinelearningmastery.com/a-gentle-introduction-to-the-
bootstrap-method/

• An Introduction to the Bootstrap Method: https://towardsdatascience.
com/an-introduction-to-the-bootstrap-method-58bcb51b4d60

• Adding Salt to Hashing: A Better Way to Store Passwords: https://auth0.
com/blog/adding-salt-to-hashing-a-better-way-to-store-
passwords/

• Brute-Force Attack: https://en.wikipedia.org/wiki/Brute-force_
attack

https://machinelearningmastery.com/a-gentle-introduction-to-the-bootstrap-method/
https://machinelearningmastery.com/a-gentle-introduction-to-the-bootstrap-method/
https://machinelearningmastery.com/a-gentle-introduction-to-the-bootstrap-method/
https://towardsdatascience.com/an-introduction-to-the-bootstrap-method-58bcb51b4d60
https://towardsdatascience.com/an-introduction-to-the-bootstrap-method-58bcb51b4d60
https://auth0.com/blog/adding-salt-to-hashing-a-better-way-to-store-passwords/
https://auth0.com/blog/adding-salt-to-hashing-a-better-way-to-store-passwords/
https://auth0.com/blog/adding-salt-to-hashing-a-better-way-to-store-passwords/
https://en.wikipedia.org/wiki/Brute-force_attack
https://en.wikipedia.org/wiki/Brute-force_attack

Further reading 533

• Classification Accuracy Is Not Enough: More Performance Measures You Can
Use: https://machinelearningmastery.com/classification-
accuracy-is-not-enough-more-performance-measures-you-can-
use/

• Dictionary Attack: https://en.wikipedia.org/wiki/Dictionary_
attack

• Nelson Rules: https://en.wikipedia.org/wiki/Nelson_rules

• Offline Password Cracking: The Attack and the Best Defense: https://www.
alpinesecurity.com/blog/offline-password-cracking-the-
attack-and-the-best-defense-against-it

• Poisson Point Process: https://en.wikipedia.org/wiki/Poisson_
point_process

• Precision and Recall: https://en.wikipedia.org/wiki/Precision_and_
recall

• Probability Distributions in Python: https://www.datacamp.com/
community/tutorials/probability-distributions-python

• Rainbow Tables: Your Password's Worst Nightmare: https://www.lifewire.
com/rainbow-tables-your-passwords-worst-nightmare-2487288

• RFC 1597 (Address Allocation for Private Internets): http://www.faqs.org/
rfcs/rfc1597.html

• Sampling Techniques: https://towardsdatascience.com/sampling-
techniques-a4e34111d808

• Trimmed Estimator: https://en.wikipedia.org/wiki/Trimmed_
estimator

• Western Electric rules: https://en.wikipedia.org/wiki/Western_
Electric_rules

https://machinelearningmastery.com/classification-accuracy-is-not-enough-more-performance-measures-you-can-use/
https://machinelearningmastery.com/classification-accuracy-is-not-enough-more-performance-measures-you-can-use/
https://machinelearningmastery.com/classification-accuracy-is-not-enough-more-performance-measures-you-can-use/
https://en.wikipedia.org/wiki/Dictionary_attack
https://en.wikipedia.org/wiki/Dictionary_attack
https://en.wikipedia.org/wiki/Nelson_rules
https://www.alpinesecurity.com/blog/offline-password-cracking-the-attack-and-the-best-defense-against-it
https://www.alpinesecurity.com/blog/offline-password-cracking-the-attack-and-the-best-defense-against-it
https://www.alpinesecurity.com/blog/offline-password-cracking-the-attack-and-the-best-defense-against-it
https://en.wikipedia.org/wiki/Poisson_point_process
https://en.wikipedia.org/wiki/Poisson_point_process
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Precision_and_recall
https://www.datacamp.com/community/tutorials/probability-distributions-python
https://www.datacamp.com/community/tutorials/probability-distributions-python
https://www.lifewire.com/rainbow-tables-your-passwords-worst-nightmare-2487288
https://www.lifewire.com/rainbow-tables-your-passwords-worst-nightmare-2487288
http://www.faqs.org/rfcs/rfc1597.html
http://www.faqs.org/rfcs/rfc1597.html
https://towardsdatascience.com/sampling-techniques-a4e34111d808
https://towardsdatascience.com/sampling-techniques-a4e34111d808
https://en.wikipedia.org/wiki/Trimmed_estimator
https://en.wikipedia.org/wiki/Trimmed_estimator
https://en.wikipedia.org/wiki/Western_Electric_rules
https://en.wikipedia.org/wiki/Western_Electric_rules

Section 4:
Introduction to

Machine Learning
with Scikit-Learn

Up to this point in the book, we have focused on data analysis tasks using pandas, but
there is so much more data science we can do with Python. These next three chapters will
serve as an introduction to machine learning in Python with scikit-learn—that's
not to say that we will be abandoning everything we have worked on so far, though. As
we have seen, pandas is an essential tool for quickly exploring, cleaning, visualizing, and
analyzing data—all of which still need to be done before attempting any machine learning.
We won't go into any theory; instead, we will show how machine learning tasks, such as
clustering, classification, and regression, can be easily implemented in Python.

This section comprises the following chapters:

• Chapter 9, Getting Started with Machine Learning in Python

• Chapter 10, Making Better Predictions – Optimizing Models

• Chapter 11, Machine Learning Anomaly Detection

9
Getting Started

with Machine
Learning in Python

This chapter will expose us to the vernacular of machine learning and the common tasks
that machine learning can be used to solve. Afterward, we will learn how we can prepare
our data for use in machine learning models. We have discussed data cleaning already, but
only for human consumption—machine learning models require different preprocessing
(cleaning) techniques. There are quite a few nuances here, so we will take our time with
this topic and discuss how we can use scikit-learn to build preprocessing pipelines
that streamline this procedure, since our models will only be as good as the data they are
trained on.

Next, we will walk through how we can use scikit-learn to build a model and
evaluate its performance. Scikit-learn has a very user-friendly API, so once we know how
to build one model, we can build any number of them. We won't be going into any of
the mathematics behind the models; there are entire books on this, and the goal of this
chapter is to serve as an introduction to the topic. By the end of this chapter, we will be
able to identify what type of problem we are looking to solve and some algorithms that
can help us, as well as how to implement them.

538 Getting Started with Machine Learning in Python

The following topics will be covered in this chapter:

• Overview of the machine learning landscape

• Performing exploratory data analysis using skills learned in previous chapters

• Preprocessing data for use in a machine learning model

• Clustering to help understand unlabeled data

• Learning when regression is appropriate and how to implement it with scikit-learn

• Understanding classification tasks and learning how to use logistic regression

Chapter materials
In this chapter, we will be working with three datasets. The first two come from data on
wine quality that was donated to the UCI Machine Learning Data Repository (http://
archive.ics.uci.edu/ml/index.php) by P. Cortez, A. Cerdeira, F. Almeida, T.
Matos, and J. Reis, which contains information on the chemical properties of various wine
samples, along with a rating of the quality from a blind tasting by a panel of wine experts.
These files can be found in the data/ folder inside this chapter's folder in the GitHub
repository (https://github.com/stefmolin/Hands-On-Data-Analysis-
with-Pandas-2nd-edition/tree/master/ch_09) as winequality-red.csv
and winequality-white.csv for red and white wine, respectively.

Our third dataset was collected using the Open Exoplanet Catalogue database,
which can be found at https://github.com/OpenExoplanetCatalogue/
open_exoplanet_catalogue/. This database provides data in eXtensible
Markup Language (XML) format, which is similar to HTML. The planet_data_
collection.ipynb notebook on GitHub contains the code that was used to parse
this information into the CSV files we will use in this chapter; while we won't be going
over this explicitly, I encourage you to take a look at it. The data files can be found in the
data/ folder, as well. We will use planets.csv for this chapter; however, the parsed
data for the other hierarchies is provided for exercises and further exploration. These
are binaries.csv, stars.csv, and systems.csv, which contain data on binaries
(stars or binaries forming a group of two), data on a single star, and data on planetary
systems, respectively.

We will be using the red_wine.ipynb notebook to predict red wine quality, the
wine.ipynb notebook to classify wines as red or white based on their chemical
properties, and the planets_ml.ipynb notebook to build a regression model to
predict the year length of planets and perform clustering to find similar planet groups.
We will use the preprocessing.ipynb notebook for the section on preprocessing.

http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/ch_09
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/ch_09
https://github.com/OpenExoplanetCatalogue/open_exoplanet_catalogue/
https://github.com/OpenExoplanetCatalogue/open_exoplanet_catalogue/

Overview of the machine learning landscape 539

Back in Chapter 1, Introduction to Data Analysis, when we set up our environment,
we installed a package from GitHub called ml_utils. This package contains utility
functions and classes that we will use for our three chapters on machine learning. Unlike
the last two chapters, we won't be discussing how to make this package; however, those
interested can look through the code at https://github.com/stefmolin/
ml-utils/tree/2nd_edition and follow the instructions from Chapter 7, Financial
Analysis – Bitcoin and the Stock Market, to install it in editable mode.

The following are the reference links for the data sources:

• Open Exoplanet Catalogue database, available at https://github.com/
OpenExoplanetCatalogue/open_exoplanet_catalogue/#data-
structure.

• P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by
data mining from physicochemical properties. In Decision Support Systems, Elsevier,
47(4):547-553, 2009. Available online at http://archive.ics.uci.edu/ml/
datasets/Wine+Quality.

• Dua, D. and Karra Taniskidou, E. (2017). UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml/index.php]. Irvine, CA: University of
California, School of Information and Computer Science.

Overview of the machine learning landscape
Machine learning is a subset of artificial intelligence (AI) whereby an algorithm can
learn to predict values from input data without explicitly being taught rules. These
algorithms rely on statistics to make inferences as they learn; they then use what they
learn to make predictions.

Applying for a loan, using a search engine, sending a robot vacuum to clean a specific
room with a voice command—machine learning can be found everywhere we look. This is
because it can be used for many purposes, for example, voice recognition by AI assistants
such as Alexa, Siri, or Google Assistant, mapping floor plans by exploring surroundings,
determining who will default on a loan, figuring out which search results are relevant, and
even painting (https://www.boredpanda.com/computer-deep-learning-
algorithm-painting-masters/).

https://github.com/OpenExoplanetCatalogue/open_exoplanet_catalogue/#data-structure
https://github.com/OpenExoplanetCatalogue/open_exoplanet_catalogue/#data-structure
https://github.com/OpenExoplanetCatalogue/open_exoplanet_catalogue/#data-structure
http://archive.ics.uci.edu/ml/datasets/Wine+Quality
http://archive.ics.uci.edu/ml/datasets/Wine+Quality
http://archive.ics.uci.edu/ml/index.php
https://www.boredpanda.com/computer-deep-learning-algorithm-painting-masters/
https://www.boredpanda.com/computer-deep-learning-algorithm-painting-masters/

540 Getting Started with Machine Learning in Python

Machine learning models can be made to adapt to changes in the input over time and
are a huge help in making decisions without the need for a human each time. Think
about applying for a loan or a credit line increase on a credit card; the bank or credit
card company will rely on a machine learning algorithm to look up things from the
applicant's credit score and history with them to determine whether the applicant should
be approved. Most likely, they will only approve the applicant at that moment if the model
predicts a strong chance he or she can be trusted with the loan or new credit limit. In the
case where the model can't be so sure, they can send it over to a human to make the final
decision. This reduces the amount of applications employees have to sift through to just
the borderline cases, while also providing faster answers for those non-borderline cases
(the process can be nearly instantaneous).

One important thing to call out here is that models that are used for tasks such as loan
approvals, by law, have to be interpretable. There needs to be a way to explain to the
applicant why they were rejected—sometimes, reasons beyond technology can influence
and limit what approaches or data we use.

Types of machine learning
Machine learning is typically divided into three categories: unsupervised learning,
supervised learning, and reinforcement learning. We use unsupervised learning when
we don't have labeled data telling us what our model should say for each data point. In
many cases, gathering labeled data is costly or just not feasible, so unsupervised learning
will be used. Note that it is more difficult to optimize the performance of these models
because we don't know how well they are performing. If we do have access to the labels,
we can use supervised learning; this makes it much easier for us to evaluate our models
and look to improve them since we can calculate metrics on their performance compared
to the true labels.

Tip
Since unsupervised learning looks to find meaning in the data without
a correct answer, it can be used to learn more about the data as a part of the
analysis or before moving on to supervised learning.

Reinforcement learning is concerned with reacting to feedback from the environment;
this is used for things such as robots and AI in games. It is well beyond the scope of this
book, but there are resources in the Further reading section for more information.

Overview of the machine learning landscape 541

Note that not all machine learning approaches fit neatly into the aforementioned
categories. One example is deep learning, which aims to learn data representations using
methods such as neural networks. Deep learning methods are often seen as black boxes,
which has prevented their use in certain domains where interpretable models are required;
however, they are used for tasks such as speech recognition and image classification. Deep
learning is also beyond the scope of this book, but it is good to be aware that it is also
machine learning.

Important note
Interpretable machine learning is an active area of research. Check out the
resources in the Further reading section for more information.

Common tasks
The most common machine learning tasks are clustering, classification, and regression.
In clustering, we look to assign data into groups, with the goal being that the groups
are well-defined, meaning that members of the group are close together and groups are
separated from other groups. Clustering can be used in an unsupervised manner in an
attempt to gain a better understanding of the data, or in a supervised manner to try to
predict which cluster data belongs to (essentially classification). Note that clustering can
be used for prediction in an unsupervised manner; however, we will need to decipher
what each cluster means. Labels that are obtained from clustering can even be used as the
input for a supervised learner to model how observations are mapped to each group; this
is called semi-supervised learning.

Classification, as we discussed in the previous chapter, looks to assign a class label to the
data, such as benign or malicious. This may sound like assigning it to a cluster, however, we
aren't worried about how similar the values that are assigned to benign are, just marking
them as benign. Since we are assigning to a class or category, this class of models is used
to predict a discrete label. Regression, on the other hand, is for predicting numeric
values, such as housing prices or book sales; it models the strength and magnitude of the
relationships between variables. Both can be performed as unsupervised or supervised
learning; however, supervised models are more likely to perform better.

542 Getting Started with Machine Learning in Python

Machine learning in Python
Now that we know what machine learning is, we need to know how we can build our
own models. Python offers many packages for building machine learning models; some
libraries we should be aware of include the following:

• scikit-learn: Easy to use (and learn), it features a consistent API for machine
learning in Python (https://scikit-learn.org/stable/index.html)

• statsmodels: A statistical modeling library that also provides statistical tests
(https://www.statsmodels.org/stable/index.html)

• tensorflow: A machine learning library developed by Google that features faster
calculations (https://www.tensorflow.org/)

• keras: A high-level API for running deep learning from libraries such as
TensorFlow (https://keras.io/)

• pytorch: A deep learning library developed by Facebook (https://pytorch.
org)

Tip
Most of these libraries use NumPy and SciPy, a library built on top of NumPy
for statistics, mathematics, and engineering purposes. SciPy can be used to
handle linear algebra, interpolation, integration, and clustering algorithms,
among other things. More information on SciPy can be found at https://
docs.scipy.org/doc/scipy/reference/tutorial/
general.html.

In this book, we will be using scikit-learn for its user-friendly API. In scikit-
learn, our base class is an estimator (not to be confused with a model when used in
statistical terms), which is capable of learning from the data via its fit() method. We
use transformers to prepare our data with their transform() method—transforming
the data into something predictors (classes for supervised or unsupervised learning) can
use with their predict() method. The model classes are capable of calculating how
well they perform using a score() method. Knowing just these four methods, we can
easily build any machine learning model offered by scikit-learn. More information
on this design pattern can be found at https://scikit-learn.org/stable/
developers/develop.html.

https://scikit-learn.org/stable/index.html
https://www.statsmodels.org/stable/index.html
https://www.tensorflow.org/
https://keras.io/
https://pytorch.org
https://pytorch.org
https://docs.scipy.org/doc/scipy/reference/tutorial/general.html
https://docs.scipy.org/doc/scipy/reference/tutorial/general.html
https://docs.scipy.org/doc/scipy/reference/tutorial/general.html
https://scikit-learn.org/stable/developers/develop.html
https://scikit-learn.org/stable/developers/develop.html

Exploratory data analysis 543

Exploratory data analysis
As we have learned throughout this book, our first step should be to engage in some
exploratory data analysis (EDA) to get familiar with our data. In the interest of brevity,
this section will include a subset of the EDA that's available in each of the notebooks—be
sure to check out the respective notebooks for the full version.

Tip
While we will use pandas code to perform our EDA, be sure to check out the
pandas-profiling package (https://github.com/pandas-
profiling/pandas-profiling), which can be used to quickly
perform some initial EDA on the data via an interactive HTML report.

Let's start with our imports, which will be the same across the notebooks we will use in
this chapter:

>>> %matplotlib inline
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> import pandas as pd
>>> import seaborn as sns

We will start our EDA with the wine quality data before moving on to the planets.

Red wine quality data
Let's read in our red wine data and do some EDA using techniques we have learned
throughout this book:

>>> red_wine = pd.read_csv('data/winequality-red.csv')

https://github.com/pandas-profiling/pandas-profiling
https://github.com/pandas-profiling/pandas-profiling

544 Getting Started with Machine Learning in Python

We have data on 11 different chemical properties of red wine, along with a column
indicating the quality score from the wine experts that participated in the blind taste
testing. We can try to predict the quality score by looking at the chemical properties:

Figure 9.1 – Red wine dataset

Let's see what the distribution of the quality column looks like:

>>> def plot_quality_scores(df, kind):
... ax = df.quality.value_counts().sort_index().plot.barh(
... title=f'{kind.title()} Wine Quality Scores',
... figsize=(12, 3)
...)
... ax.axes.invert_yaxis()
... for bar in ax.patches:
... ax.text(
... bar.get_width(),
... bar.get_y() + bar.get_height()/2,
... f'{bar.get_width()/df.shape[0]:.1%}',
... verticalalignment='center'
...)
... plt.xlabel('count of wines')
... plt.ylabel('quality score')
...
... for spine in ['top', 'right']:
... ax.spines[spine].set_visible(False)
...
... return ax
>>> plot_quality_scores(red_wine, 'red')

Exploratory data analysis 545

The information on the dataset says that quality varies from 0 (terrible) to 10
(excellent); however, we only have values in the middle of that range. An interesting task
for this dataset could be to see if we can predict high-quality red wines (a quality score of
7 or higher):

Figure 9.2 – Distribution of red wine quality scores

All of our data is numeric, so we don't have to worry about handling text values; we also
don't have any missing values:

>>> red_wine.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 fixed acidity 1599 non-null float64
 1 volatile acidity 1599 non-null float64
 2 citric acid 1599 non-null float64
 3 residual sugar 1599 non-null float64
 4 chlorides 1599 non-null float64
 5 free sulfur dioxide 1599 non-null float64
 6 total sulfur dioxide 1599 non-null float64
 7 density 1599 non-null float64
 8 pH 1599 non-null float64
 9 sulphates 1599 non-null float64
 10 alcohol 1599 non-null float64
 11 quality 1599 non-null int64
dtypes: float64(11), int64(1)
memory usage: 150.0 KB

546 Getting Started with Machine Learning in Python

We can use describe() to get an idea of what scale each of the columns is on:

>>> red_wine.describe()

The result indicates that we will definitely have to do some scaling if our model uses
distance metrics for anything because our columns aren't all on the same range:

Figure 9.3 – Summary statistics for the red wine dataset

Lastly, let's use pd.cut() to bin our high-quality red wines (roughly 14% of the data)
for later:

>>> red_wine['high_quality'] = pd.cut(
... red_wine.quality, bins=[0, 6, 10], labels=[0, 1]
...)
>>> red_wine.high_quality.value_counts(normalize=True)
0 0.86429
1 0.13571
Name: high_quality, dtype: float64

Important note
We are stopping our EDA here for brevity; however, we should make sure
to fully explore our data and consult domain experts before attempting any
modeling. One thing to pay particular attention to is correlations between
variables and what we are trying to predict (high-quality red wine, in this case).
Variables with strong correlations may be good features to include in a model.
However, note that correlation does not imply causation. We already learned
a few ways to use visualizations to look for correlations: the scatter matrix we
discussed in Chapter 5, Visualizing Data with Pandas and Matplotlib, and the
heatmap and pair plot from Chapter 6, Plotting with Seaborn and Customization
Techniques. A pair plot is included in the red_wine.ipynb notebook.

Exploratory data analysis 547

White and red wine chemical properties data
Now, let's look at the red and white wine data together. Since the data comes in separate
files, we need to read in both and concatenate them into a single dataframe. The white
wine file is actually semi-colon (;) separated, so we must provide the sep argument to
pd.read_csv():

>>> red_wine = pd.read_csv('data/winequality-red.csv')
>>> white_wine = \
... pd.read_csv('data/winequality-white.csv', sep=';')

We can also look at the quality scores of the white wines, just as we did with the red ones,
and we will find that the white wines tend to be rated higher overall. This might bring us
to question whether the judges preferred white wine over red wine, thus creating a bias in
their ratings. As it is, the rating system that was used seems to be pretty subjective:

Figure 9.4 – Distribution of white wine quality scores

Both of these dataframes have the same columns, so we can combine them without
further work. Here, we use pd.concat() to stack the white wine data on top of the red
wine data after adding a column to identify which wine type each observation belongs to:

>>> wine = pd.concat([
... white_wine.assign(kind='white'),
... red_wine.assign(kind='red')
...])
>>> wine.sample(5, random_state=10)

548 Getting Started with Machine Learning in Python

As we did with the red wine dataset, we can run info() to check whether we need to
perform type conversion or whether we are missing any data; thankfully, we have no need
here either. Our combined wine dataset looks like this:

Figure 9.5 – Combined wine dataset

Using value_counts(), we can see that we have many more white wines than red
wines in the data:

>>> wine.kind.value_counts()
white 4898
red 1599
Name: kind, dtype: int64

Lastly, let's examine box plots for each chemical property broken out by wine type using
seaborn. This can help us identify features (model inputs) that will be helpful when
building our model to distinguish between red and white wine:

>>> import math
>>> chemical_properties = [col for col in wine.columns
... if col not in ['quality', 'kind']]
>>> melted = \
... wine.drop(columns='quality').melt(id_vars=['kind'])
>>> fig, axes = plt.subplots(
... math.ceil(len(chemical_properties) / 4), 4,
... figsize=(15, 10)
...)
>>> axes = axes.flatten()
>>> for prop, ax in zip(chemical_properties, axes):
... sns.boxplot(
... data=melted[melted.variable.isin([prop])],
... x='variable', y='value', hue='kind', ax=ax
...).set_xlabel('')
>>> for ax in axes[len(chemical_properties):]:
... ax.remove() # remove the extra subplots

Exploratory data analysis 549

>>> plt.suptitle(
... 'Comparing Chemical Properties of Red and White Wines'
...)
>>> plt.tight_layout()

Given the following result, we might look to use fixed acidity, volatile acidity, total sulfur
dioxide, and sulphates when building a model since they seem to be distributed differently
for red and white wines:

Figure 9.6 – Comparing red and white wine on a chemical level

Tip
Comparing the distributions of variables across classes can help inform feature
selection for our model. If we see that the distribution for a variable is very
different between classes, that variable may be very useful to include in our
model. It is essential that we perform an in-depth exploration of our data
before moving on to modeling. Be sure to use the visualizations we covered in
Chapter 5, Visualizing Data with Pandas and Matplotlib, and Chapter 6, Plotting
with Seaborn and Customization Techniques, as they will prove invaluable for
this process.

550 Getting Started with Machine Learning in Python

We will come back to this visualization in Chapter 10, Making Better Predictions –
Optimizing Models, when we examine incorrect predictions made by our model. Now, let's
take a look at the other dataset we will be working with.

Planets and exoplanets data
An exoplanet is simply a planet that orbits a star outside of our solar system, so from here
on out we will refer to both collectively as planets. Let's read in our planets data now:

>>> planets = pd.read_csv('data/planets.csv')

Some interesting tasks we can do with this data would be to find clusters of similar planets
based on their orbits and try to predict the orbit period (how long a year is on a planet), in
Earth days:

Figure 9.7 – Planets dataset

We can build a correlation matrix heatmap to help find the best features to use:

>>> fig = plt.figure(figsize=(7, 7))
>>> sns.heatmap(
... planets.drop(columns='discoveryyear').corr(),
... center=0, vmin=-1, vmax=1, square=True, annot=True,
... cbar_kws={'shrink': 0.8}
...)

Exploratory data analysis 551

The heatmap shows us that the semi-major axis of a planet's orbit is highly positively
correlated to the length of its period, which makes sense since the semi-major axis
(along with eccentricity) helps define the path that a planet travels around its star:

Figure 9.8 – Correlations between features in the planets dataset

To predict period, we probably want to look at semimajoraxis, mass, and
eccentricity. The orbit eccentricity quantifies how much the orbit differs from a
perfect circle:

Figure 9.9 – Understanding eccentricity

552 Getting Started with Machine Learning in Python

Let's see what shapes the orbits we have are:

>>> planets.eccentricity.min(), planets.eccentricity.max()
(0.0, 0.956) # circular and elliptical eccentricities
>>> planets.eccentricity.hist()
>>> plt.xlabel('eccentricity')
>>> plt.ylabel('frequency')
>>> plt.title('Orbit Eccentricities')

It looks like nearly everything is an ellipse, which we would expect since these are planets:

Figure 9.10 – Distribution of orbit eccentricities

An ellipse, being an elongated circle, has two axes: major and minor for the longest and
shortest ones, respectively. The semi-major axis is half the major axis. When compared
to a circle, the axes are analogous to the diameter, crossing the entire shape, and the
semi-axes are akin to the radius, being half the diameter. The following is how this
would look in the case where the planet orbited a star that was exactly in the center of
its elliptical orbit (due to gravity from other objects, in reality, the star can be anywhere
inside the orbit path):

Exploratory data analysis 553

Figure 9.11 – Understanding the semi-major axis

Now that we understand what these columns mean, let's do some more EDA. This data
isn't as clean as our wine data was—it's certainly much easier to measure everything when
we can reach out and touch it. We only have eccentricity, semimajoraxis, or
mass data for a fraction of the planets, despite knowing most of the period values:

>>> planets[[
... 'period', 'eccentricity', 'semimajoraxis', 'mass'
...]].info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4094 entries, 0 to 4093
Data columns (total 4 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 period 3930 non-null float64
 1 eccentricity 1388 non-null float64
 2 semimajoraxis 1704 non-null float64
 3 mass 1659 non-null float64
dtypes: float64(4)
memory usage: 128.1 KB

If we were to drop data where any of these columns was null, we would be left with about
30% of it:

>>> planets[[
... 'period', 'eccentricity', 'semimajoraxis', 'mass'
...]].dropna().shape
(1222, 4)

554 Getting Started with Machine Learning in Python

If we are simply looking for a way to predict the length of the year (when we have these
values available) to learn more about their relationship, we wouldn't necessarily worry
about throwing out the missing data. Imputing it here could be far worse for our model.
At least everything is properly encoded as a decimal (float64); however, let's check
whether we need to do some scaling (beneficial if our model is sensitive to differences in
magnitude):

>>> planets[[
... 'period', 'eccentricity', 'semimajoraxis', 'mass'
...]].describe()

This shows us that, depending on our model, we will definitely have to do some scaling
because the values in the period column are much larger than the others:

Figure 9.12 – Summary statistics for the planets dataset

We could also look at some scatter plots. Note that there is a list column for the group
the planet belongs to, such as Solar System or Controversial. We might want to
see if the period (and distance from the star) influences this:

>>> sns.scatterplot(
... x=planets.semimajoraxis, y=planets.period,
... hue=planets.list, alpha=0.5
...)
>>> plt.title('period vs. semimajoraxis')
>>> plt.legend(title='')

Exploratory data analysis 555

The controversial planets appear to be spread throughout and have larger semi-major axes
and periods. Perhaps they are controversial because they are very far from their star:

Figure 9.13 – Planet period versus semi-major axis

Unfortunately, we can see that the scale of period is making this pretty difficult to read,
so we could try a log transformation on the y-axis to get more separation in the denser
section on the lower-left. Let's just point out the planets in our solar system this time:

>>> fig, ax = plt.subplots(1, 1, figsize=(10, 10))
>>> in_solar_system = (planets.list == 'Solar System')\
... .rename('in solar system?')
>>> sns.scatterplot(
... x=planets.semimajoraxis, y=planets.period,
... hue=in_solar_system, ax=ax
...)
>>> ax.set_yscale('log')
>>> solar_system = planets[planets.list == 'Solar System']
>>> for planet in solar_system.name:
... data = solar_system.query(f'name == "{planet}"')
... ax.annotate(
... planet,
... (data.semimajoraxis, data.period),
... (7 + data.semimajoraxis, data.period),
... arrowprops=dict(arrowstyle='->')
...)
>>> ax.set_title('log(orbital period) vs. semi-major axis')

556 Getting Started with Machine Learning in Python

There were certainly a lot of planets hiding in that lower-left corner of the plot. We can see
many planets with years shorter than Mercury's 88 Earth-day year now:

Figure 9.14 – Our solar system compared to exoplanets

Now that we have a feel for the data we will be working with, let's learn how to prepare it
for use in a machine learning model.

Preprocessing data 557

Preprocessing data
In this section, we will be working in the preprocessing.ipynb notebook before we
return to the notebooks we used for EDA. We will begin with our imports and read in the
data:

>>> import numpy as np
>>> import pandas as pd

>>> planets = pd.read_csv('data/planets.csv')
>>> red_wine = pd.read_csv('data/winequality-red.csv')
>>> wine = pd.concat([
... pd.read_csv(
... 'data/winequality-white.csv', sep=';'
...).assign(kind='white'),
... red_wine.assign(kind='red')
...])

Machine learning models follow the garbage in, garbage out principle. We have to make
sure that we train our models (have them learn) on the best possible version of the data.
What this means will depend on the model we choose. For instance, models that use a
distance metric to calculate how similar observations are will easily be confused if our
features are on wildly different scales. Unless we are working with a natural language
processing (NLP) problem to try and understand the meaning of words, our model will
have no use for—or worse, be unable to interpret—textual values. Missing or invalid data
will also cause problems; we will have to decide whether to drop them or impute them.
All of the adjustments we make to our data before giving it to our model to learn from are
collectively called preprocessing.

Training and testing sets
So far, machine learning sounds pretty great, though—we can build a model that will
learn how to perform a task for us. Therefore, we should give it all the data we have so that
it learns well, right? Unfortunately, it's not that simple. If we give the model all of our data,
we risk overfitting it, meaning that it won't be able to generalize well to new data points
because it was fit to the sample rather than the population. On the other hand, if we don't
give it enough data, it will underfit and be unable to capture the underlying information
in the data.

Tip
When a model fits the randomness in the data, it is said to fit the noise in
the data.

558 Getting Started with Machine Learning in Python

Another thing to consider is that if we use all of our data to train the model, how can
we evaluate its performance? If we test it on the data we used for training, we will be
overestimating how good it is because our model will always perform better on the
training data. For these reasons, it's important to split our data into a training set and
testing set. To do so, we could shuffle our dataframe and select the top x% of the rows for
training and leave the rest for testing:

shuffled = \
 planets.reindex(np.random.permutation(planets.index))
train_end_index = int(np.ceil(shuffled.shape[0] * .75))
training = shuffled.iloc[:train_end_index,]
testing = shuffled.iloc[train_end_index:,]

This would work, but it's a lot to write every time. Thankfully, scikit-learn provides
us with the train_test_split() function in the model_selection module,
which is a more robust, easier-to-use solution. It requires us to separate our input data (X)
from our output data (y) beforehand. Here, we will pick 75% of the data to be used for the
training set (X_train, y_train) and 25% for the testing set (X_test, y_test). We
will set a seed (random_state=0) so that the split is reproducible:

>>> from sklearn.model_selection import train_test_split

>>> X = planets[['eccentricity', 'semimajoraxis', 'mass']]
>>> y = planets.period

>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, test_size=0.25, random_state=0
...)

While there are no specific criteria for what constitutes a good size for the test set, a rule
of thumb is usually between 10% and 30% of the data. However, if we don't have much
data, we will shift toward a 10% testing set to make sure that we have enough data to
learn from. Conversely, if we have a lot of data, we may move toward 30% testing, since,
not only do we not want to overfit, but we want to give our model a good amount of
data to prove its worth. Note that there is a big caveat with this rule of thumb: there are
diminishing returns on the amount of training data we use. If we have a ton of data, we
will most likely use much less than 70% of it for training because our computational costs
may rise significantly for possibly minuscule improvements and an increased risk of
overfitting.

Preprocessing data 559

Important note
When building models that require tuning, we split the data into training,
validation, and testing sets. We will introduce validation sets in Chapter 10,
Making Better Predictions – Optimizing Models.

Let's take a look at the dimensions of our training and testing sets now. Since we are using
three features (eccentricity, semimajoraxis, and mass), X_train and X_test
have three columns. The y_train and y_test sets will be a single column each. The
number of observations in the X and y data for training will be equal, as will be the case
for the testing set:

>>> X.shape, y.shape # original data
((4094, 3), (4094,))
>>> X_train.shape, y_train.shape # training data
((3070, 3), (3070,))
>>> X_test.shape, y_test.shape # testing data
((1024, 3), (1024,))

X_train and X_test are returned to us as dataframes since that is the format we passed
them in as. If we are working with data in NumPy directly, we will get NumPy arrays
or ndarrays back instead. We are going to work with this data for other examples in
the Preprocessing data section, so let's take a look at the first five rows of the X_train
dataframe. Don't worry about the NaN values for now; we will discuss different ways of
handling them in the Imputing section:

>>> X_train.head()
 eccentricity semimajoraxis mass
1390 NaN NaN NaN
2837 NaN NaN NaN
3619 NaN 0.0701 NaN
1867 NaN NaN NaN
1869 NaN NaN NaN

Both y_train and y_test are series since that is what we passed into the train_
test_split() function. If we had passed in a NumPy array, that is what we would
have gotten back instead. The rows in y_train and y_test must line up with the rows
in X_train and X_test, respectively. Let's confirm this by looking at the first five rows
of y_train:

>>> y_train.head()

560 Getting Started with Machine Learning in Python

1390 1.434742
2837 51.079263
3619 7.171000
1867 51.111024
1869 62.869161
Name: period, dtype: float64

Indeed, everything matches up, as expected. Note that for our wine models, we need to
use stratified sampling, which can also be done with train_test_split() by passing
the values to stratify on in the stratify argument. We will see this in the Classification
section. For now, let's move on to the rest of our preprocessing.

Scaling and centering data
We've seen that our dataframes had columns with very different scales; if we want to use
any model that calculates a distance metric (such as k-means, which we will discuss in
this chapter, or k-nearest neighbors (k-NN), which we will discuss briefly in Chapter 10,
Making Better Predictions – Optimizing Models), we will need to scale these. As we
discussed back in Chapter 1, Introduction to Data Analysis, we have quite a few options for
doing so. Scikit-learn provides options in the preprocessing module for standardizing
(scaling by calculating Z-scores) and min-max scaling (to normalize data to be in the
range [0, 1]), among others.

Important note
We should check the requirements of the model we are building to see if the
data needs to be scaled.

For standard scaling, we use the StandardScaler class. The fit_transform()
method combines fit(), which figures out the mean and standard deviation needed
to center and scale, and transform(), which applies the transformation to the data.
Note that, when instantiating a StandardScaler object, we can choose to not subtract
the mean or not divide by the standard deviation by passing False to with_mean or
with_std, respectively. Both are True by default:

>>> from sklearn.preprocessing import StandardScaler

>>> standardized = StandardScaler().fit_transform(X_train)

examine some of the non-NaN values
>>> standardized[~np.isnan(standardized)][:30]

Preprocessing data 561

array([-5.43618156e-02, 1.43278593e+00, 1.95196592e+00,
 4.51498477e-03, -1.96265630e-01, 7.79591646e-02,
 ...,
 -2.25664815e-02, 9.91013258e-01, -7.48808523e-01,
 -4.99260165e-02, -8.59044215e-01, -5.49264158e-02])

After this transformation, the data is in scientific notation. The information after the
character e tells us where the decimal point got moved to. For a + sign, we move the
decimal point to the right by the number of places indicated; we move to the left for a -
sign. Therefore, 1.00e+00 is equivalent to 1, 2.89e-02 is equivalent to 0.0289, and
2.89e+02 is equivalent to 289. The transformed planets data is mostly between -3 and 3
because everything is now a Z-score.

Other scalers can be used with the same syntax. Let's use the MinMaxScaler class to
transform the planets data into the range [0, 1]:

>>> from sklearn.preprocessing import MinMaxScaler

>>> normalized = MinMaxScaler().fit_transform(X_train)

examine some of the non-NaN values
>>> normalized[~np.isnan(normalized)][:30]
array([2.28055906e-05, 1.24474091e-01, 5.33472803e-01,
 1.71374569e-03, 1.83543340e-02, 1.77824268e-01,
 ...,
 9.35966714e-04, 9.56961137e-02, 2.09205021e-02,
 1.50201619e-04, 0.00000000e+00, 6.59028789e-06])

Tip
Another option is the RobustScaler class, which uses the median and
IQR for robust to outliers scaling. There is an example of this in the notebook.
More preprocessing classes can be found at https://scikit-learn.
org/stable/modules/classes.html#module-sklearn.
preprocessing.

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing

562 Getting Started with Machine Learning in Python

Encoding data
All of the scalers discussed so far address the preprocessing of our numeric data, but how
can we deal with categorical data? We need to encode the categories into integer values.
There are a few options here, depending on what the categories represent. If our category
is binary (such as 0/1, True/False, or yes/no), then we will encode these as a single
column for both options, where 0 is one option and 1 is the other. We can easily do this
with the np.where() function. Let's encode the wine data's kind field as 1 for red and
0 for white:

>>> np.where(wine.kind == 'red', 1, 0)
array([0, 0, 0, ..., 1, 1, 1])

This is effectively a column that tells us whether or not the wine is red. Remember, we
concatenated the red wines to the bottom of the white wines when we created our wine
dataframe, so np.where() will return zeros for the top rows and ones for the bottom
rows, just like we saw in the previous result.

Tip
We can also use the LabelBinarizer class from scikit-learn to
encode the kind field. Note that if our data is actually continuous, but we
want to treat it as a binary categorical value, we could use the Binarizer
class and provide a threshold or pd.cut()/pd.qcut(). There are
examples of these in the notebook.

If our categories are ordered, we may want to use ordinal encoding on those columns;
this will preserve the ordering of the categories. For instance, if we wanted to classify
the red wines as low, medium, or high quality, we could encode this as 0, 1, and 2,
respectively. The advantages of this are that we can use regression techniques to predict
the quality, or we can use this as a feature in the model to predict something else; this
model would be able to use the fact that high is better than medium, which is better than
low quality. We can achieve this with the LabelEncoder class. Note that the labels will
be created according to alphabetical order, so the first category alphabetically will be 0:

>>> from sklearn.preprocessing import LabelEncoder

>>> pd.Series(LabelEncoder().fit_transform(pd.cut(
... red_wine.quality,
... bins=[-1, 3, 6, 10],
... labels=['0-3 (low)', '4-6 (med)', '7-10 (high)']
...))).value_counts()

Preprocessing data 563

1 1372
2 217
0 10
dtype: int64

Important note
Scikit-learn provides the OrdinalEncoder class, but our data is not in
the correct format—it expects 2D data (such as a DataFrame or ndarray
object), instead of the 1D Series object we are working with here. We still
need to ensure that the categories are in the proper order beforehand.

However, note that the ordinal encoding may create a potential data issue. In our example,
if high-quality wines are now 2 and medium-quality wines are 1, the model may interpret
that 2 * med = high. This is implicitly creating an association between the levels of
quality that we may not agree with.

Alternatively, a safer approach would be to perform one-hot encoding to create two
new columns—is_low and is_med, which take only 0 or 1. Using those two, we
automatically know whether the wine quality was high (when is_low = is_med = 0).
These are called dummy variables or indicator variables; they numerically represent
group membership for use in machine learning. If the indicator or dummy has a value
of 1, that row is a member of that group; in our example of wine quality categories, if
is_low is 1, then that row is a member of the low-quality group. This can be achieved
with the pd.get_dummies() function and the drop_first argument, which will
remove the redundant column.

Let's use one-hot encoding to encode the list column in the planets data, since the
categories have no inherent order. Before we do any transformations, let's take a look at
the lists we have in the data:

>>> planets.list.value_counts()
Confirmed planets 3972
Controversial 97
Retracted planet candidate 11
Solar System 9
Kepler Objects of Interest 4
Planets in binary systems, S-type 1
Name: list, dtype: int64

564 Getting Started with Machine Learning in Python

We can use the pd.get_dummies() function to create dummy variables if we want to
include the planet list in our models:

>>> pd.get_dummies(planets.list).head()

This turns our single series into the following dataframe, where the dummy variables were
created in the order they appeared in the data:

Figure 9.15 – One-hot encoding

As we discussed previously, one of these columns is redundant because the values in the
remaining ones can be used to determine the value for the redundant one. Some models
may be significantly affected by the high correlation between these columns (referred to
as multicollinearity), so we should remove one redundant column by passing in the
drop_first argument:

>>> pd.get_dummies(planets.list, drop_first=True).head()

Note that the first column from the previous result has been removed, but we can still
determine that all but the last row were in the Confirmed Planets list:

Figure 9.16 – Dropping redundant columns after one-hot encoding

Preprocessing data 565

Note that we can obtain a similar result by using the LabelBinarizer class and its
fit_transform() method on our planets list. This won't drop a redundant feature,
so we once again have the first feature belonging to the confirmed planets list, which can
be seen in bold in the following result:

>>> from sklearn.preprocessing import LabelBinarizer

>>> LabelBinarizer().fit_transform(planets.list)
array([[1, 0, 0, 0, 0, 0],
 [1, 0, 0, 0, 0, 0],
 [1, 0, 0, 0, 0, 0],
 ...,
 [1, 0, 0, 0, 0, 0],
 [1, 0, 0, 0, 0, 0],
 [1, 0, 0, 0, 0, 0]])

Important note
Scikit-learn provides the OneHotEncoder class, but our data is not in the
correct format—it expects the data to come in a 2D array, and our series is just
1D. We will see an example of how to use this in the Additional transformers
section.

Imputing
We already know that we have some missing values in our planet data, so let's discuss
a few of the options scikit-learn offers for handling them, which can be found in
the impute module: imputing with a value (using constants or summary statistics),
imputing based on similar observations, and indicating what is missing.

Back in the Exploratory data analysis section, we ran dropna() on the planets data
we planned to model with. Let's say we don't want to get rid of it, and we want to
try imputing it instead. The last few rows of our data have some missing values for
semimajoraxis:

>>> planets[['semimajoraxis', 'mass', 'eccentricity']].tail()
 semimajoraxis mass eccentricity
4089 0.08150 1.9000 0.000
4090 0.04421 0.7090 0.038
4091 NaN 0.3334 0.310
4092 NaN 0.4000 0.270
4093 NaN 0.4200 0.160

566 Getting Started with Machine Learning in Python

We can use the SimpleImputer class to impute with a value, which will be the mean by
default:

>>> from sklearn.impute import SimpleImputer

>>> SimpleImputer().fit_transform(
... planets[['semimajoraxis', 'mass', 'eccentricity']]
...)
array([[1.29 , 19.4 , 0.231],
 [1.54 , 11.2 , 0.08],
 [0.83 , 4.8 , 0.],
 ...,
 [5.83796389, 0.3334 , 0.31],
 [5.83796389, 0.4 , 0.27],
 [5.83796389, 0.42 , 0.16]])

The mean hardly seems like a good strategy here since the planets we know about may
share something in common, and surely things like what system a planet is a part of and
its orbit can be good indicators of some of the missing data points. We have the option to
provide the strategy parameter with a method other than the mean; currently, it can
be median, most_frequent, or constant (specify the value with fill_value).
None of these is really appropriate for us; however, scikit-learn also provides the
KNNImputer class for imputing missing values based on similar observations. By default,
it uses the five nearest neighbors and runs k-NN, which we will discuss in Chapter 10,
Making Better Predictions – Optimizing Models, using the features that aren't missing:

>>> from sklearn.impute import KNNImputer

>>> KNNImputer().fit_transform(
... planets[['semimajoraxis', 'mass', 'eccentricity']]
...)
array([[1.29 , 19.4 , 0.231],
 [1.54 , 11.2 , 0.08],
 [0.83 , 4.8 , 0.],
 ...,
 [0.404726, 0.3334 , 0.31],
 [0.85486 , 0.4 , 0.27],
 [0.15324 , 0.42 , 0.16]])

Preprocessing data 567

Notice that each of the bottom three rows has a unique value imputed for the semi-major
axis now. This is because the mass and eccentricity were used to find similar planets
from which to impute the semi-major axis. While this is certainly better than using the
SimpleImputer class for the planets data, imputing can be dangerous.

Rather than imputing the data, in some cases, we may be more interested in noting where
we have missing data and using that as a feature in our model. This can be achieved with
the MissingIndicator class:

>>> from sklearn.impute import MissingIndicator

>>> MissingIndicator().fit_transform(
... planets[['semimajoraxis', 'mass', 'eccentricity']]
...)
array([[False, False, False],
 [False, False, False],
 [False, False, False],
 ...,
 [True, False, False],
 [True, False, False],
 [True, False, False]])

As we turn our attention to the final set of preprocessors that we will discuss, notice that
all of them have a fit_transform() method, along with fit() and transform()
methods. This API design decision makes it very easy to figure out how to use new classes
and is one of the reasons why scikit-learn is so easy to learn and use—it's very
consistent.

Additional transformers
What if, rather than scaling our data or encoding it, we want to run a mathematical
operation, such as taking the square root or the logarithm? The preprocessing
module also has some classes for this. While there are a few that perform a specific
transformation, such as the QuantileTransformer class, we will focus our attention
on the FunctionTransformer class, which lets us provide an arbitrary function to use:

>>> from sklearn.preprocessing import FunctionTransformer

>>> FunctionTransformer(
... np.abs, validate=True
...).fit_transform(X_train.dropna())

568 Getting Started with Machine Learning in Python

array([[0.51 , 4.94 , 1.45],
 [0.17 , 0.64 , 0.85],
 [0.08 , 0.03727, 1.192],
 ...,
 [0.295 , 4.46 , 1.8],
 [0.34 , 0.0652 , 0.0087],
 [0.3 , 1.26 , 0.5]])

Here, we took the absolute value of every number. Take note of the validate=True
argument; the FunctionTransformer class knows that scikit-learn models won't
accept NaN values, infinite values, or missing ones, so it will throw an error if we get those
back. For this reason, we run dropna() here as well.

Notice that for scaling, encoding, imputing, and transforming data, everything we
passed was transformed. If we have features of different data types, we can use the
ColumnTransformer class to map transformations to a column (or group of columns)
in a single call:

>>> from sklearn.compose import ColumnTransformer
>>> from sklearn.impute import KNNImputer
>>> from sklearn.preprocessing import (
... MinMaxScaler, StandardScaler
...)

>>> ColumnTransformer([
... ('impute', KNNImputer(), [0]),
... ('standard_scale', StandardScaler(), [1]),
... ('min_max', MinMaxScaler(), [2])
...]).fit_transform(X_train)[10:15]
array([[0.17 , -0.04747176, 0.0107594],
 [0.08 , -0.05475873, 0.01508851],
 [0.15585591, nan, 0.13924042],
 [0.15585591, nan, nan],
 [0. , -0.05475111, 0.00478471]])

Preprocessing data 569

There is also the make_column_transformer() function, which will name the
transformers for us. Let's make a ColumnTransformer object that will treat categorical
data and numerical data differently:

>>> from sklearn.compose import make_column_transformer
>>> from sklearn.preprocessing import (
... OneHotEncoder, StandardScaler
...)

>>> categorical = [
... col for col in planets.columns
... if col in [
... 'list', 'name', 'description',
... 'discoverymethod', 'lastupdate'
...]
...]
>>> numeric = [
... col for col in planets.columns
... if col not in categorical
...]
>>> make_column_transformer(
... (StandardScaler(), numeric),
... (OneHotEncoder(sparse=False), categorical)
...).fit_transform(planets.dropna())
array([[3.09267587, -0.2351423 , -0.40487424, ...,
 0. , 0.],
 [1.432445 , -0.24215395, -0.28360905, ...,
 0. , 0.],
 [0.13665505, -0.24208849, -0.62800218, ...,
 0. , 0.],
 ...,
 [-0.83289954, -0.76197788, -0.84918988, ...,
 1. , 0.],
 [0.25813535, 0.38683239, -0.92873984, ...,
 0. , 0.],
 [-0.26827931, -0.21657671, -0.70076129, ...,
 0. , 1.]])

570 Getting Started with Machine Learning in Python

Tip
We are passing sparse=False upon instantiating our OneHotEncoder
object so that we can see our result. In practice, we don't need to do this since
scikit-learn models know how to handle NumPy sparse matrices.

Building data pipelines
It sure seems like there are a lot of steps involved in preprocessing our data, and they
need to be applied in the correct order for both training and testing data—quite tedious.
Thankfully, scikit-learn offers the ability to create pipelines to streamline the
preprocessing and ensure that the training and testing sets are treated the same. This
prevents issues, such as calculating the mean using all the data in order to standardize it
and then splitting it into training and testing sets, which will create a model that looks like
it will perform better than it actually will.

Important note
When information from outside the training set (such as using the full dataset
to calculate the mean for standardization) is used to train the model, it is
referred to as data leakage.

We are learning about pipelines before we build our first models because they ensure that
the models are built properly. Pipelines can contain all the preprocessing steps and the
model itself. Making a pipeline is as simple as defining the steps and naming them:

>>> from sklearn.pipeline import Pipeline
>>> from sklearn.preprocessing import StandardScaler
>>> from sklearn.linear_model import LinearRegression

>>> Pipeline([
... ('scale', StandardScaler()), ('lr', LinearRegression())
...])
Pipeline(steps=[('scale', StandardScaler()),
 ('lr', LinearRegression())])

Preprocessing data 571

We aren't limited to using pipelines with models—they can also be used inside other
scikit-learn objects, for example, ColumnTransformer objects. This makes it
possible for us to first use k-NN imputing on the semi-major axis data (the column at
index 0) and then standardize the result. We can then include this as part of a pipeline,
which gives us tremendous flexibility in how we build our models:

>>> from sklearn.compose import ColumnTransformer
>>> from sklearn.impute import KNNImputer
>>> from sklearn.pipeline import Pipeline
>>> from sklearn.preprocessing import (
... MinMaxScaler, StandardScaler
...)

>>> ColumnTransformer([
... ('impute', Pipeline([
... ('impute', KNNImputer()),
... ('scale', StandardScaler())
...]), [0]),
... ('standard_scale', StandardScaler(), [1]),
... ('min_max', MinMaxScaler(), [2])
...]).fit_transform(X_train)[10:15]
array([[0.13531604, -0.04747176, 0.0107594],
 [-0.7257111 , -0.05475873, 0.01508851],
 [0. , nan, 0.13924042],
 [0. , nan, nan],
 [-1.49106856, -0.05475111, 0.00478471]])

Just like with the ColumnTransformer class, we have a function that can make
pipelines for us without having to name the steps. Let's make another pipeline, but this
time we will use the make_pipeline() function:

>>> from sklearn.pipeline import make_pipeline

>>> make_pipeline(StandardScaler(), LinearRegression())
Pipeline(steps=[('standardscaler', StandardScaler()),
 ('linearregression', LinearRegression())])

Note that the steps have been automatically named the lowercase version of the class
name. As we will see in the next chapter, naming the steps will make it easier to optimize
model parameters by name. The consistency of the scikit-learn API will also allow
us to use this pipeline to fit our model and make predictions using the same object, which
we will see in the next section.

572 Getting Started with Machine Learning in Python

Clustering
We use clustering to divide our data points into groups of similar points. The points
in each group are more like their fellow group members than those of other groups.
Clustering is commonly used for tasks such as recommendation systems (think of how
Netflix recommends what to watch based on what other people who've watched similar
things are watching) and market segmentation.

For example, say we work at an online retailer and want to segment our website users
for more targeted marketing efforts; we can gather data on time spent on the site, page
visits, products viewed, products purchased, and much more. Then, we can have an
unsupervised clustering algorithm find groups of users with similar behavior; if we make
three groups, we can come up with labels for each group according to its behavior:

Figure 9.17 – Clustering website users into three groups

Since we can use clustering for unsupervised learning, we will need to interpret the groups
that are created and then try to derive a meaningful name for each group. If our clustering
algorithm identified the three clusters in the preceding scatter plot, we may be able to
make the following behavioral observations:

• Frequent customers (group 0): Purchase a lot and look at many products.

• Occasional customers (group 1): Have made some purchases, but less than the
most frequent customers.

• Browsers (group 2): Visit the website, but haven't bought anything.

Clustering 573

Once these groups have been identified, the marketing team can focus on marketing to
each of these groups differently; it's clear that the frequent customers will do more for
the bottom line, but if they are already buying a lot, perhaps the marketing budget is
better utilized trying to increase the purchases of the occasional customers or converting
browsers into occasional customers.

Important note
Deciding on the number of groups to create can clearly influence how the
groups are later interpreted, meaning that this is not a trivial decision. We
should at least visualize our data and obtain some domain knowledge on it
before attempting to guess the number of groups to split it into.

Alternatively, clustering can be used in a supervised fashion if we know the group labels
for some of the data for training purposes. Say we collected data on login activity, like in
Chapter 8, Rule-Based Anomaly Detection, but we had some examples of what attacker
activity looks like; we could gather those data points for all activity and then use a
clustering algorithm to assign to the valid users group or to the attacker group. Since
we have the labels, we can tweak our input variables and/or the clustering algorithm we
use to best align these groups to their true group.

k-means
The clustering algorithms offered by scikit-learn can be found in the cluster
module's documentation at https://scikit-learn.org/stable/modules/
classes.html#module-sklearn.cluster. We will take a look at k-means, which
iteratively assigns points to the nearest group using the distance from the centroid of the
group (center point), making k groups. Since this model uses distance calculations, it is
imperative that we understand the effect scale will have on our results beforehand; we can
then decide which columns, if any, to scale.

Important note
There are many ways to measure the distance between points in space. Often,
Euclidean distance, or straight-line distance, is the default; however, another
common one is Manhattan distance, which can be thought of as city-block
distance.

When we plotted out the period versus the semi-major axis for all the planets using a log
scale for the period, we saw a nice separation of the planets along an arc. We are going to
use k-means to find groups of planets with similar orbits along that arc.

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.cluster
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.cluster

574 Getting Started with Machine Learning in Python

Grouping planets by orbit characteristics
As we discussed in the Preprocessing data section, we can build a pipeline to scale and
then model our data. Here, our model will be a KMeans object that makes eight clusters
(for the number of planets in our solar system—sorry, Pluto). Since the k-means
algorithm randomly picks its starting centroids, it's possible to get different cluster
results unless we specify the seed. Therefore, we also provide random_state=0 for
reproducibility:

>>> from sklearn.cluster import KMeans
>>> from sklearn.pipeline import Pipeline
>>> from sklearn.preprocessing import StandardScaler

>>> kmeans_pipeline = Pipeline([
... ('scale', StandardScaler()),
... ('kmeans', KMeans(8, random_state=0))
...])

Once we have our pipeline, we fit it on all the data since we aren't trying to predict
anything (in this case)—we just want to find similar planets:

>>> kmeans_data = planets[['semimajoraxis', 'period']].dropna()
>>> kmeans_pipeline.fit(kmeans_data)
Pipeline(steps=[('scale', StandardScaler()),
 ('kmeans', KMeans(random_state=0))])

Once the model is fit to our data, we can use the predict() method to get the cluster
labels for each point (on the same data that we used previously). Let's take a look at the
clusters that k-means identified:

>>> fig, ax = plt.subplots(1, 1, figsize=(7, 7))
>>> sns.scatterplot(
... x=kmeans_data.semimajoraxis,
... y=kmeans_data.period,
... hue=kmeans_pipeline.predict(kmeans_data),
... ax=ax, palette='Accent'
...)
>>> ax.set_yscale('log')
>>> solar_system = planets[planets.list == 'Solar System']

Clustering 575

>>> for planet in solar_system.name:
... data = solar_system.query(f'name == "{planet}"')
... ax.annotate(
... planet,
... (data.semimajoraxis, data.period),
... (7 + data.semimajoraxis, data.period),
... arrowprops=dict(arrowstyle='->')
...)
>>> ax.get_legend().remove()
>>> ax.set_title('KMeans Clusters')

Mercury and Venus landed in the same cluster, as did Earth and Mars. Jupiter, Saturn,
and Uranus each belong to separate clusters, while Neptune and Pluto share a cluster:

Figure 9.18 – Eight clusters of planets identified by k-means

576 Getting Started with Machine Learning in Python

We picked eight clusters arbitrarily here, since this is the number of planets in our solar
system. Ideally, we would have some domain knowledge about the true groupings or need
to pick a specific number. For example, say we want to fit wedding guests at five tables so
that they all get along, then our k is 5; if we can run three marketing campaigns on user
groups, we have a k of 3. If we have no intuition as to the number of groups there will be
in the data, a rule of thumb is to try the square root of our observations, but this can yield
an unmanageable amount of clusters. Therefore, if it doesn't take too long to create many
k-means models on our data, we can use the elbow point method.

The elbow point method for determining k
The elbow point method involves creating multiple models with many values of k and
plotting each model's inertia (within-cluster sum of squares) versus the number of
clusters. We want to minimize the sum of squared distances from points to their cluster's
center while not creating too many clusters.

The ml_utils.elbow_point module contains our elbow_point() function, which
has been reproduced here:

import matplotlib.pyplot as plt

def elbow_point(data, pipeline, kmeans_step_name='kmeans',
 k_range=range(1, 11), ax=None):
 """
 Plot the elbow point to find an appropriate k for
 k-means clustering.

 Parameters:
 - data: The features to use
 - pipeline: The scikit-learn pipeline with `KMeans`
 - kmeans_step_name: Name of `KMeans` step in pipeline
 - k_range: The values of `k` to try
 - ax: Matplotlib `Axes` to plot on.

 Returns:
 A matplotlib `Axes` object
 """
 scores = []
 for k in k_range:
 pipeline.named_steps[kmeans_step_name].n_clusters = k
 pipeline.fit(data)

Clustering 577

 # score is -1*inertia so we multiply by -1 for inertia
 scores.append(pipeline.score(data) * -1)

 if not ax:
 fig, ax = plt.subplots()

 ax.plot(k_range, scores, 'bo-')
 ax.set_xlabel('k')
 ax.set_ylabel('inertias')
 ax.set_title('Elbow Point Plot')

 return ax

Let's use the elbow point method to find an appropriate value for k:

>>> from ml_utils.elbow_point import elbow_point

>>> ax = elbow_point(
... kmeans_data,
... Pipeline([
... ('scale', StandardScaler()),
... ('kmeans', KMeans(random_state=0))
...])
...)
>>> ax.annotate(
... 'possible appropriate values for k', xy=(2, 900),
... xytext=(2.5, 1500), arrowprops=dict(arrowstyle='->')
...)
>>> ax.annotate(
... '', xy=(3, 3480), xytext=(4.4, 1450),
... arrowprops=dict(arrowstyle='->')
...)

578 Getting Started with Machine Learning in Python

The point at which we see diminishing returns is an appropriate k, which may be around
two or three here:

Figure 9.19 – Interpreting an elbow point plot

If we create just two clusters, we divide the planets into a group with most of the planets
(orange) and a second group with only a few in the upper-right (blue), which are likely to
be outliers:

Figure 9.20 – Two clusters of planets identified by k-means

Clustering 579

Note that while this may have been an appropriate amount of clusters, it doesn't tell us as
much as the previous attempt. If we wanted to know about planets that are similar to each
of the planets in our solar system, we would want to use a larger k.

Interpreting centroids and visualizing the cluster space
Since we standardized our data before clustering, we can look at the centroids, or cluster
centers, to see the Z-score that the members are closest to. A centroid's location will be the
average of each of the dimensions of the points in the cluster. We can grab this with the
cluster_centers_ attribute of the model. The centroid of the blue cluster is located
at (18.9, 20.9), which is in the (semi-major axis, period) format; remember, these are
Z-scores, so these are quite far from the rest of the data. The orange cluster, on the other
hand, is centered at (-0.035, -0.038).

Let's build a visualization that shows us the location of the centroids with the scaled input
data and the cluster distance space (where points are represented as the distance to their
cluster's centroid). First, we will set up our layout for a smaller plot inside of a larger one:

>>> fig = plt.figure(figsize=(8, 6))
>>> outside = fig.add_axes([0.1, 0.1, 0.9, 0.9])
>>> inside = fig.add_axes([0.6, 0.2, 0.35, 0.35])

Next, we grab the scaled version of the input data and the distances between those data
points and the centroid of the cluster they belong to. We can use the transform() and
fit_transform() (fit() followed by transform()) methods to convert the input
data into cluster distance space. We get NumPy ndarrays back, where each value in the
outer array represents the coordinates of a point:

>>> scaled = kmeans_pipeline_2.named_steps['scale']\
... .fit_transform(kmeans_data)
>>> cluster_distances = kmeans_pipeline_2\
... .fit_transform(kmeans_data)

580 Getting Started with Machine Learning in Python

Since we know that each array in the outer array will have the semi-major axis as the first
entry and the period as the second, we use [:,0] to select all the semi-major axis values
and [:,1] to select all the period values. These will be the x and y for our scatter plot.
Note that we actually don't need to call predict() to get the cluster labels for the data
because we want the labels for the data we trained the model on; this means that we can
use the labels_ attribute of the KMeans object:

>>> for ax, data, title, axes_labels in zip(
... [outside, inside], [scaled, cluster_distances],
... ['Visualizing Clusters', 'Cluster Distance Space'],
... ['standardized', 'distance to centroid']
...):
... sns.scatterplot(
... x=data[:,0], y=data[:,1], ax=ax, alpha=0.75, s=100,
... hue=kmeans_pipeline_2.named_steps['kmeans'].labels_
...)
...
... ax.get_legend().remove()
... ax.set_title(title)
... ax.set_xlabel(f'semimajoraxis ({axes_labels})')
... ax.set_ylabel(f'period ({axes_labels})')
... ax.set_ylim(-1, None)

Lastly, we annotate the location of the centroids on the outer plot, which shows the scaled
data:

>>> cluster_centers = kmeans_pipeline_2\
... .named_steps['kmeans'].cluster_centers_
>>> for color, centroid in zip(
... ['blue', 'orange'], cluster_centers
...):
... outside.plot(*centroid, color=color, marker='x')
... outside.annotate(
... f'{color} center', xy=centroid,
... xytext=centroid + [0, 5],
... arrowprops=dict(arrowstyle='->')
...)

In the resulting plot, we can easily see that the three blue points are quite different from
the rest and that they are the only members of the second cluster:

Clustering 581

Figure 9.21 – Visualizing the planets in the cluster distance space

So far, we have been using transform() or combination methods, such as
fit_predict() or fit_transform(), but not all models will support these
methods. We will see a slightly different workflow in the Regression and Classification
sections. In general, most scikit-learn objects will support the following, based on
what they are used for:

Figure 9.22 – General reference for the scikit-learn model API

582 Getting Started with Machine Learning in Python

Now that we have built a few models, we are ready for the next step: quantifying their
performance. The metrics module in scikit-learn contains various metrics for
evaluating model performance across clustering, regression, and classification tasks;
the API lists the functions at https://scikit-learn.org/stable/modules/
classes.html#module-sklearn.metrics. Let's discuss how to evaluate an
unsupervised clustering model next.

Evaluating clustering results
The most important criterion for evaluating our clustering results is that they are useful
for what we set out to do; we used the elbow point method to pick an appropriate value for
k, but that wasn't as useful to us as the original model with eight clusters. That being said,
when looking to quantify the performance, we need to pick metrics that match the type of
learning we performed.

When we know the true clusters for our data, we can check that our clustering model
places the points together in a cluster as they are in the true cluster. The cluster label given
by our model can be different than the true one—all that matters is that the points in
the same true cluster are also together in the predicted clusters. One such metric is the
Fowlkes-Mallows Index, which we will see in the end-of-chapter exercises.

With the planets data, we performed unsupervised clustering because we don't have labels
for each data point, and therefore, we can't measure how well we did against those. This
means that we have to use metrics that evaluate aspects of the clusters themselves, such as
how far apart they are and how close the points in a cluster are together. We can compare
multiple metrics to get a more well-rounded evaluation of the performance.

One such method is called the silhouette coefficient, which helps quantify cluster
separation. It is calculated by subtracting the mean of the distances between every two
points in a cluster (a) from the mean of distances between points in a given cluster and
the closest different cluster (b) and dividing by the maximum of the two:

𝑏𝑏 − 𝑎𝑎
max(𝑎𝑎, 𝑏𝑏)

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics

Clustering 583

This metric returns values in the range [-1, 1], where -1 is the worst (clusters are wrongly
assigned) and 1 is the best; values near 0 indicate overlapping clusters. The higher this
number is, the better defined (more separated) the clusters are:

>>> from sklearn.metrics import silhouette_score
>>> silhouette_score(
... kmeans_data, kmeans_pipeline.predict(kmeans_data)
...)
0.7579771626036678

Another score we could use to evaluate our clustering result is the ratio of within-cluster
distances (distances between points in a cluster) to the between-cluster distances
(distances between points in different clusters), called the Davies-Bouldin score. Values
closer to zero indicate better partitions between clusters:

>>> from sklearn.metrics import davies_bouldin_score
>>> davies_bouldin_score(
... kmeans_data, kmeans_pipeline.predict(kmeans_data)
...)
0.4632311032231894

One last metric for unsupervised clustering that we will discuss here is the Calinski and
Harabasz score, or Variance Ratio Criterion, which is the ratio of dispersion within
a cluster to dispersion between clusters. Higher values indicate better defined (more
separated) clusters:

>>> from sklearn.metrics import calinski_harabasz_score
>>> calinski_harabasz_score(
... kmeans_data, kmeans_pipeline.predict(kmeans_data)
...)
21207.276781867335

For a complete list of clustering evaluation metrics offered by scikit-learn (including
supervised clustering) and when to use them, check out the Clustering performance
evaluation section of their guide at https://scikit-learn.org/stable/
modules/clustering.html#clustering-evaluation.

https://scikit-learn.org/stable/modules/clustering.html#clustering-evaluation
https://scikit-learn.org/stable/modules/clustering.html#clustering-evaluation

584 Getting Started with Machine Learning in Python

Regression
With the planets dataset, we want to predict the length of the year, which is a numeric
value, so we will turn to regression. As mentioned at the beginning of this chapter,
regression is a technique for modeling the strength and magnitude of the relationship
between independent variables (our X data)—often called regressors—and the dependent
variable (our y data) that we want to predict.

Linear regression
Scikit-learn provides many algorithms that can handle regression tasks, ranging from
decision trees to linear regression, spread across modules according to the various
algorithm classes. However, typically, the best starting point is a linear regression, which
can be found in the linear_model module. In simple linear regression, we fit our data
to a line of the following form:

Here, epsilon (ε) is the error term and betas (β) are coefficients.

Important note
The coefficients we get from our model are those that minimize the cost
function, or error between the observed values (y) and those predicted with
the model (ŷ, pronounced y-hat). Our model gives us estimates of these
coefficients, and we write them as �̂�𝛽𝑖𝑖 (pronounced beta-hat).

However, if we want to model additional relationships, we need to use multiple linear
regression, which contains multiple regressors:

Linear regression in scikit-learn uses ordinary least squares (OLS), which yields the
coefficients that minimize the sum of squared errors (measured as the distance between
y and ŷ). The coefficients can be found using the closed-form solution, or estimated
with optimization methods, such as gradient descent, which uses the negative gradient
(direction of steepest ascent calculated with partial derivatives) to determine which
coefficients to try next (see the link in the Further reading section for more information).
We will use gradient descent in Chapter 11, Machine Learning Anomaly Detection.

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥 + 𝜀𝜀

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 +⋯+ 𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛 + 𝜀𝜀

Regression 585

Important note
Linear regression makes some assumptions about the data, which we must keep
in mind when choosing to use this technique. It assumes that the residuals are
normally distributed and homoskedastic and that there is no multicollinearity
(high correlations between the regressors).

Now that we have a little background on how linear regression works, let's build a model
to predict the orbit period of a planet.

Predicting the length of a year on a planet
Before we can build our model, we must isolate the columns that are used to predict
(semimajoraxis, mass, and eccentricity) from the column that will be predicted
(period):

>>> data = planets[
... ['semimajoraxis', 'period', 'mass', 'eccentricity']
...].dropna()
>>> X = data[['semimajoraxis', 'mass', 'eccentricity']]
>>> y = data.period

This is a supervised task. We want to be able to predict the length of a year on a planet
using its semi-major axis, mass, and eccentricity of orbit, and we have the period lengths
for most of the planets in the data. Let's create a 75/25 split of training to testing data so
that we can assess how well this model predicts year length:

>>> from sklearn.model_selection import train_test_split
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, test_size=0.25, random_state=0
...)

Once we have separated the data into the training and testing sets, we can create and fit
the model:

>>> from sklearn.linear_model import LinearRegression
>>> lm = LinearRegression().fit(X_train, y_train)

This fitted model can be used to examine the estimated coefficients and also to predict
the value of the dependent variable for a given set of independent variables. We will cover
both of these use cases in the next two sections.

586 Getting Started with Machine Learning in Python

Interpreting the linear regression equation
The equation derived from a linear regression model gives coefficients to quantify
the relationships between the variables. Care must be exercised when attempting to
interpret these coefficients if we are dealing with more than a single regressor. In the
case of multicollinearity, we can't interpret them because we are unable to hold all other
regressors constant to examine the effect of a single one.

Thankfully, the regressors we are using for the planets data aren't correlated, as we saw
from the correlation matrix heatmap we made in the Exploratory data analysis section
(Figure 9.8). So, let's get the intercept and coefficients from the fitted linear model object:

get intercept
>>> lm.intercept_
-622.9909910671811

get coefficients
>>> [(col, coef) for col, coef in
... zip(X_train.columns, lm.coef_)]
[('semimajoraxis', 1880.4365990440929),
 ('mass', -90.18675916509196),
 ('eccentricity', -3201.078059333091)]

This yields the following equation for our linear regression model of planet year length:

In order to interpret this more completely, we need to understand the units everything
is in:

• period (length of year): Earth days

• semimajoraxis: Astronomical units (AUs)

• mass: Jupiter masses (planet mass divided by Jupiter's mass)

• eccentricity: N/A

Tip
An astronomical unit is the average distance between the Earth and the Sun,
which is equivalent to 149,597,870,700 meters.

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = −623 + 1880 × 𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠 − 90.2 ×𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 3201 × 𝑝𝑝𝑒𝑒𝑒𝑒𝑝𝑝𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑒𝑒𝑒𝑒

Regression 587

The intercept in this particular model doesn't have any meaning: if the planet had a
semi-major axis of zero, no mass, and a perfect circle eccentricity, its year would be -623
Earth days long. A planet must have a non-negative, non-zero period, semi-major axis,
and mass, so this clearly makes no sense. We can, however, interpret the other coefficients.
The equation says that, holding mass and eccentricity constant, adding one additional AU
to the semi-major axis distance increases the year length by 1,880 Earth days. Holding the
semi-major axis and eccentricity constant, each additional Jupiter mass decreases the year
length by 90.2 Earth days.

Going from a perfectly circular orbit (eccentricity=0) to a nearly parabolic escape
orbit (eccentricity=1) will decrease the year length by 3,201 Earth days; note that
these are approximate for this term because, with a parabolic escape orbit, the planet will
never return, and consequently, this equation wouldn't make sense. In fact, if we tried to
use this equation for eccentricities greater than or equal to 1, we would be extrapolating
because we have no such values in the training data. This is a clear example of when
extrapolation doesn't work. The equation tells us that the larger the eccentricity, the
shorter the year, but once we get to eccentricities of one and beyond, the planets never
come back (they have reached escape orbits), so the year is infinite.

All of the eccentricity values in the training data are in the range [0, 1), so we are
interpolating (predicting period values using data in the ranges we trained on). This
means that as long as the eccentricity of the planet we want to predict is also in the range
[0, 1), we can use this model to make the prediction.

Making predictions
Now that we have an idea of the effect each of our regressors has, let's use our model to
make predictions of year length for the planets in the test set:

>>> preds = lm.predict(X_test)

Let's visualize how well we did by plotting the actual and predicted values:

>>> fig, axes = plt.subplots(1, 1, figsize=(5, 3))
>>> axes.plot(
... X_test.semimajoraxis, y_test, 'ob',
... label='actuals', alpha=0.5
...)
>>> axes.plot(
... X_test.semimajoraxis, preds, 'or',
... label='predictions', alpha=0.5
...)

588 Getting Started with Machine Learning in Python

>>> axes.set(xlabel='semimajoraxis', ylabel='period')
>>> axes.legend()
>>> axes.set_title('Linear Regression Results')

The predicted values seem pretty close to the actual values and follow a similar pattern:

Figure 9.23 – Predictions versus actual values

Tip
Try running this regression with just the semimajoraxis regressor. Some
reshaping of the data will be necessary, but this will show how much better this
performs as we add in eccentricity and mass. In practice, we often have
to build many versions of our model to find one we are happy with.

We can check their correlation to see how well our model tracks the true relationship:

>>> np.corrcoef(y_test, preds)[0][1]
0.9692104355988059

Our predictions are very strongly positively correlated with the actual values (0.97
correlation coefficient). Note that the correlation coefficient will tell us whether our model
moves with the actual data; however, it will not tell us whether we are off magnitude-wise.
For that, we will use the metrics discussed in the following section.

Regression 589

Evaluating regression results
When looking to evaluate a regression model, we are interested in how much of the
variance in the data our model is able to capture, as well as how accurate the predictions
are. We can use a combination of metrics and visuals to assess the model for each of these
aspects.

Analyzing residuals
Whenever we work with linear regression, we should visualize our residuals, or the
discrepancies between the actual values and the model's predictions; as we learned in
Chapter 7, Financial Analysis – Bitcoin and the Stock Market, they should be centered
around zero and homoskedastic (similar variance throughout). We can use a kernel
density estimate to assess whether the residuals are centered around zero and a scatter plot
to see if they are homoskedastic.

Let's look at the utility function in ml_utils.regression, which will create these
subplots for checking the residuals:

import matplotlib.pyplot as plt
import numpy as np

def plot_residuals(y_test, preds):
 """
 Plot residuals to evaluate regression.

 Parameters:
 - y_test: The true values for y
 - preds: The predicted values for y

 Returns:
 Subplots of residual scatter plot and residual KDE
 """
 residuals = y_test – preds

 fig, axes = plt.subplots(1, 2, figsize=(15, 3))

 axes[0].scatter(np.arange(residuals.shape[0]), residuals)
 axes[0].set(xlabel='Observation', ylabel='Residual')

590 Getting Started with Machine Learning in Python

 residuals.plot(kind='kde', ax=axes[1])
 axes[1].set_xlabel('Residual')

 plt.suptitle('Residuals')
 return axes

Now, let's look at the residuals for this linear regression:

>>> from ml_utils.regression import plot_residuals
>>> plot_residuals(y_test, preds)

It looks like our predictions don't have a pattern (left subplot), which is good; however,
they aren't quite centered around zero and the distribution has negative skew (right
subplot). These negative residuals occur when the predicted year was longer than the
actual year:

Figure 9.24 – Examining the residuals

Tip
If we find patterns in the residuals, our data isn't linear and the chances are
that visualizing the residuals could help us plan our next move. This may mean
employing strategies such as polynomial regression or log transformations of
the data.

Regression 591

Metrics
In addition to examining the residuals, we should calculate metrics to evaluate our
regression model. Perhaps the most common is R2 (pronounced R-squared), or the
coefficient of determination, which quantifies the proportion of variance in the
dependent variable that we can predict from our independent variables. It is calculated
by subtracting the ratio of the sum of squared residuals to the total sum of squares from 1:

Tip
Sigma (Σ) represents the sum. The average of the y values is denoted as ȳ
(pronounced y-bar). The predictions are denoted with ŷ (pronounced y-hat).

This value will be in the range [0, 1], where higher values are better. Objects of the
LinearRegression class in scikit-learn use R2 as their scoring method.
Therefore, we can simply use the score() method to calculate it for us:

>>> lm.score(X_test, y_test)
0.9209013475842684

We can also get R2 from the metrics module:

>>> from sklearn.metrics import r2_score
>>> r2_score(y_test, preds)
0.9209013475842684

This model has a very good R2; however, keep in mind that there are many factors that
affect the period, such as the stars and other planets, which exert a gravitational force on
the planet in question. Despite this abstraction, our simplification does pretty well because
the orbital period of a planet is determined in large part by the distance that must be
traveled, which we account for by using the semi-major axis data.

There is a problem with R2, though; we can keep adding regressors, which would make our
model more and more complex while at the same time increasing R2. We need a metric
that penalizes model complexity. For that, we have adjusted R2, which will only increase if
the added regressor improves the model more than what would be expected by chance:

𝑅𝑅2 = 1 − 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟

= 1 −
∑ (𝑦𝑦𝑟𝑟 − �̂�𝑦𝑟𝑟)2

𝑟𝑟
∑ (𝑦𝑦𝑟𝑟 − �̅�𝑦)2𝑟𝑟

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅2 = 1 − (1 − 𝑅𝑅2) × 𝑛𝑛_𝑜𝑜𝑜𝑜𝐴𝐴 − 1
𝑛𝑛_𝑜𝑜𝑜𝑜𝐴𝐴 − 𝑛𝑛_𝑟𝑟𝐴𝐴𝑟𝑟𝑟𝑟𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝑟𝑟𝐴𝐴 − 1

592 Getting Started with Machine Learning in Python

Unfortunately, scikit-learn doesn't offer this metric; however, it is very easy to
implement ourselves. The ml_utils.regression module contains a function for
calculating the adjusted R2 for us. Let's take a look at it:

from sklearn.metrics import r2_score

def adjusted_r2(model, X, y):
 """
 Calculate the adjusted R^2.

 Parameters:
 - model: Estimator object with a `predict()` method
 - X: The values to use for prediction.
 - y: The true values for scoring.

 Returns:
 The adjusted R^2 score.
 """
 r2 = r2_score(y, model.predict(X))
 n_obs, n_regressors = X.shape
 adj_r2 = \
 1 - (1 - r2) * (n_obs - 1)/(n_obs - n_regressors - 1)
 return adj_r2

Adjusted R2 will always be lower than R2. By using the adjusted_r2() function, we can
see that our adjusted R2 is slightly lower than the R2 value:

>>> from ml_utils.regression import adjusted_r2
>>> adjusted_r2(lm, X_test, y_test)
0.9201155993814631

Unfortunately, R2 (and adjusted R2) values don't tell us anything about our prediction
error or even whether we specified our model correctly. Think back to when we discussed
Anscombe's quartet in Chapter 1, Introduction to Data Analysis. These four different
datasets have the same summary statistics. They also have the same R2 when fit with
a linear regression line (0.67), despite some of them not indicating a linear relationship:

Regression 593

Figure 9.25 – R2 can be misleading

Another metric offered by scikit-learn is the explained variance score, which tells
us the percentage of the variance that is explained by our model. We want this as close
to 1 as possible:

4 6 8 10 12 14 16 18

x

2

4

6

8

10

12

y

 = 0.82

y = 0.50x + 3.00

R

2

 = 0.67

x

 = 9.00 |

x

 = 3.16

y

 = 7.50 |

y

 = 1.94

I - linear

4 6 8 10 12 14 16 18

x

2

4

6

8

10

12

y

 = 0.82

y = 0.50x + 3.00

R

2

 = 0.67

x

 = 9.00 |

x

 = 3.16

y

 = 7.50 |

y

 = 1.94

II - non-linear

4 6 8 10 12 14 16 18

x

2

4

6

8

10

12

y

 = 0.82

y = 0.50x + 3.00

R

2

 = 0.67

x

 = 9.00 |

x

 = 3.16

y

 = 7.50 |

y

 = 1.94

III - linear with outlier

4 6 8 10 12 14 16 18

x

2

4

6

8

10

12

y

 = 0.82

y = 0.50x + 3.00

R

2

 = 0.67

x

 = 9.00 |

x

 = 3.16

y

 = 7.50 |

y

 = 1.94

IV - vertical with outlier

Anscombe's Quartet

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝑣𝑣𝑒𝑒 = 1 − 𝑣𝑣𝑒𝑒𝑣𝑣(𝑣𝑣𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟)
𝑣𝑣𝑒𝑒𝑣𝑣(𝑒𝑒𝑣𝑣𝑎𝑎𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟) = 1 − 𝑣𝑣𝑒𝑒𝑣𝑣(𝑦𝑦 − �̂�𝑦)

𝑣𝑣𝑒𝑒𝑣𝑣(𝑦𝑦)

594 Getting Started with Machine Learning in Python

We can see that our model explains 92% of the variance:

>>> from sklearn.metrics import explained_variance_score
>>> explained_variance_score(y_test, preds)
0.9220144218429371

We aren't limited to looking at variance when evaluating our regression models; we can
also look at the magnitude of the errors themselves. The remaining metrics we will discuss
in this section all yield errors in the same unit of measurement we are using for prediction
(Earth days here), so we can understand the meaning of the size of the error.

Mean absolute error (MAE) tells us the average error our model made in either direction.
Values range from 0 to ∞ (infinity), with smaller values being better:

By using the scikit-learn function, we can see that our MAE was 1,369 Earth days:

>>> from sklearn.metrics import mean_absolute_error
>>> mean_absolute_error(y_test, preds)
1369.441817073533

Root mean squared error (RMSE) allows for further penalization of poor predictions:

Scikit-learn provides a function for the mean squared error (MSE), which is the portion
of the preceding equation inside the square root; therefore, we simply have to take the
square root of the result. We would use this metric when large errors are undesirable:

>>> from sklearn.metrics import mean_squared_error
>>> np.sqrt(mean_squared_error(y_test, preds))
3248.499961928374

𝑀𝑀𝐴𝐴𝐴𝐴 =
∑ |𝑦𝑦𝑖𝑖 − �̂�𝑦𝑖𝑖|𝑖𝑖

𝑛𝑛

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ (𝑦𝑦𝑖𝑖 − �̂�𝑦𝑖𝑖)2𝑖𝑖
𝑛𝑛

Classification 595

An alternative to all these mean-based measures is the median absolute error, which is
the median of the residuals. This can be used in cases where we have a few outliers in our
residuals, and we want a more accurate description of the bulk of the errors. Note that this
is smaller than the MAE for our data:

>>> from sklearn.metrics import median_absolute_error
>>> median_absolute_error(y_test, preds)
759.8613358335442

There is also a mean_squared_log_error() function, which can only be used for
non-negative values. Some of the predictions are negative, which prevents us from using
this. Negative predictions happen when the semi-major axis is very small (less than 1)
since that is the only portion of the regression equation with a positive coefficient. If the
semi-major axis isn't large enough to balance out the rest of our equation, the prediction
will be negative and, thus, automatically incorrect. For a complete list of regression
metrics offered by scikit-learn, check out https://scikit-learn.org/
stable/modules/classes.html#regression-metrics.

Classification
The goal of classification is to determine how to label data using a set of discrete labels.
This probably sounds similar to supervised clustering; however, in this case, we don't
care how close members of the groups are spatially. Instead, we concern ourselves with
classifying them with the correct class label. Remember, in Chapter 8, Rule-Based Anomaly
Detection, when we classified the IP addresses as valid user or attacker? We didn't care
how well-defined clusters of IP addresses were—we just wanted to find the attackers.

Just as with regression, scikit-learn provides many algorithms for classification tasks.
These are spread across modules, but will usually say Classifier at the end for classification
tasks, as opposed to Regressor for regression tasks. Some common methods are logistic
regression, support vector machines (SVMs), k-NN, decision trees, and random forests;
here, we will discuss logistic regression.

https://scikit-learn.org/stable/modules/classes.html#regression-metrics
https://scikit-learn.org/stable/modules/classes.html#regression-metrics

596 Getting Started with Machine Learning in Python

Logistic regression
Logistic regression is a way to use linear regression to solve classification tasks. However,
it uses the logistic sigmoid function to return probabilities in the range [0, 1] that can be
mapped to class labels:

Figure 9.26 – The logistic sigmoid function

Let's use logistic regression to classify red wines as high or low quality and to classify
wines as red or white based on their chemical properties. We can treat logistic regression
as we did the linear regression in the previous section, using the linear_model module
in scikit-learn. Just like the linear regression problem, we will be using a supervised
method, so we have to split our data into testing and training sets.

Tip
While the examples discussed in this section are both binary classification
problems (two classes), scikit-learn provides support for multiclass
problems as well. The process of building multiclass models will be nearly
identical to the binary case but may require passing an additional parameter to
let the model know that there are more than two classes. You will have a chance
to build a multiclass classification model in the exercises at the end of this
chapter.

Classification 597

Predicting red wine quality
We made the high_quality column back at the beginning of this chapter, but
remember that there was a large imbalance in the number of red wines that were
high quality. So, when we split our data, we will stratify by that column for a stratified
random sample to make sure that both the training and testing sets preserve the ratio of
high-quality to low-quality wines in the data (roughly 14% are high quality):

>>> from sklearn.model_selection import train_test_split

>>> red_y = red_wine.pop('high_quality')
>>> red_X = red_wine.drop(columns='quality')

>>> r_X_train, r_X_test, \
... r_y_train, r_y_test = train_test_split(
... red_X, red_y, test_size=0.1, random_state=0,
... stratify=red_y
...)

Let's make a pipeline that will first standardize all of our data and then build a logistic
regression. We will provide the seed (random_state=0) for reproducibility and
class_weight='balanced' to have scikit-learn compute the weights of the
classes, since we have an imbalance:

>>> from sklearn.preprocessing import StandardScaler
>>> from sklearn.pipeline import Pipeline
>>> from sklearn.linear_model import LogisticRegression

>>> red_quality_lr = Pipeline([
... ('scale', StandardScaler()),
... ('lr', LogisticRegression(
... class_weight='balanced', random_state=0
...))
...])

The class weights determine how much the model will be penalized for wrong predictions
for each class. By selecting balanced weights, wrong predictions on smaller classes will
carry more weight, where the weight will be inversely proportional to the frequency of the
class in the data. These weights are used for regularization, which we will discuss more in
Chapter 10, Making Better Predictions – Optimizing Models.

598 Getting Started with Machine Learning in Python

Once we have our pipeline, we can fit it to the data with the fit() method:

>>> red_quality_lr.fit(r_X_train, r_y_train)
Pipeline(steps=[('scale', StandardScaler()),
 ('lr', LogisticRegression(
 class_weight='balanced',
 random_state=0))])

Lastly, we can use our model fit on the training data to predict the red wine quality for the
test data:

>>> quality_preds = red_quality_lr.predict(r_X_test)

Tip
Scikit-learn makes it easy to switch between models because we can count
on them to have the same methods, such as score(), fit(), and
predict(). In some cases, we also can use predict_proba() for
probabilities or decision_function() to evaluate a point with the
equation derived by the model instead of predict().

Before we move on to evaluating the performance of this model, let's build another
classification model using the full wine dataset.

Determining wine type by chemical properties
We want to know whether it is possible to tell red and white wine apart based solely on
their chemical properties. To test this, we will build a second logistic regression model,
which will predict whether a wine is red or white. First, let's split our data into testing and
training sets:

>>> from sklearn.model_selection import train_test_split

>>> wine_y = np.where(wine.kind == 'red', 1, 0)
>>> wine_X = wine.drop(columns=['quality', 'kind'])

>>> w_X_train, w_X_test, \
... w_y_train, w_y_test = train_test_split(
... wine_X, wine_y, test_size=0.25,
... random_state=0, stratify=wine_y
...)

Classification 599

We will once again use logistic regression in a pipeline:

>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.pipeline import Pipeline
>>> from sklearn.preprocessing import StandardScaler

>>> white_or_red = Pipeline([
... ('scale', StandardScaler()),
... ('lr', LogisticRegression(random_state=0))
...]).fit(w_X_train, w_y_train)

Finally, we will save our predictions of which kind of wine each observation in the test set
was:

>>> kind_preds = white_or_red.predict(w_X_test)

Now that we have predictions for both of our logistic regression models using their
respective testing sets, we are ready to evaluate their performance.

Evaluating classification results
We evaluate the performance of classification models by looking at how well each class
in the data was predicted by the model. The positive class is the class of interest to us; all
other classes are considered negative classes. In our red wine classification, the positive
class is high quality, while the negative class is low quality. Despite our problem only being
a binary classification problem, the metrics that are discussed in this section extend to
multiclass classification problems.

600 Getting Started with Machine Learning in Python

Confusion matrix
As we discussed in Chapter 8, Rule-Based Anomaly Detection, a classification problem
can be evaluated by comparing the predicted labels to the actual labels using a confusion
matrix:

Figure 9.27 – Evaluating classification results with a confusion matrix

Each prediction can be one of four outcomes, based on how it matches up to the
actual value:

• True Positive (TP): Correctly predicted to be the positive class

• False Positive (FP): Incorrectly predicted to be the positive class

• True Negative (TN): Correctly predicted to not be the positive class

• False Negative (FN): Incorrectly predicted to not be the positive class

Important note
False positives are also referred to as type I errors, while false negatives are
type II errors. Given a certain classifier, an effort to reduce one will cause an
increase in the other.

Scikit-learn provides the confusion_matrix() function, which we can pair with
the heatmap() function from seaborn to visualize our confusion matrix. In the
ml_utils.classification module, the confusion_matrix_visual()
function handles this for us:

import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from sklearn.metrics import confusion_matrix

Classification 601

def confusion_matrix_visual(y_true, y_pred, class_labels,
 normalize=False, flip=False,
 ax=None, title=None, **kwargs):
 """
 Create a confusion matrix heatmap

 Parameters:
 - y_test: The true values for y
 - preds: The predicted values for y
 - class_labels: What to label the classes.
 - normalize: Whether to plot the values as percentages.
 - flip: Whether to flip the confusion matrix. This is
 helpful to get TP in the top left corner and TN in
 the bottom right when dealing with binary
 classification with labels True and False.
 - ax: The matplotlib `Axes` object to plot on.
 - title: The title for the confusion matrix
 - kwargs: Additional keyword arguments to pass down.

 Returns: A matplotlib `Axes` object.
 """
 mat = confusion_matrix(y_true, y_pred)
 if normalize:
 fmt, mat = '.2%', mat / mat.sum()
 else:
 fmt = 'd'
 if flip:
 class_labels = class_labels[::-1]
 mat = np.flip(mat)

 axes = sns.heatmap(
 mat.T, square=True, annot=True, fmt=fmt,
 cbar=True, cmap=plt.cm.Blues, ax=ax, **kwargs
)
 axes.set(xlabel='Actual', ylabel='Model Prediction')
 tick_marks = np.arange(len(class_labels)) + 0.5
 axes.set_xticks(tick_marks)
 axes.set_xticklabels(class_labels)
 axes.set_yticks(tick_marks)
 axes.set_yticklabels(class_labels, rotation=0)
 axes.set_title(title or 'Confusion Matrix')
 return axes

602 Getting Started with Machine Learning in Python

Let's call our confusion matrix visualization function to see how we did for each of
our classification models. First, we will look at how well the model identified high-quality
red wines:

>>> from ml_utils.classification import confusion_matrix_visual
>>> confusion_matrix_visual(
... r_y_test, quality_preds, ['low', 'high']
...)

Using the confusion matrix, we can see that the model had trouble finding the high-
quality red wines consistently (bottom row):

Figure 9.28 – Results for the red wine quality model

Now, let's look at how well the white_or_red model predicted the wine type:

>>> from ml_utils.classification import confusion_matrix_visual
>>> confusion_matrix_visual(
... w_y_test, kind_preds, ['white', 'red']
...)

Classification 603

It looks like this model had a much easier time, with very few incorrect predictions:

`

Figure 9.29 – Results for the white or red wine model

Now that we understand the composition of the confusion matrix, we can use it to
calculate additional performance metrics.

Classification metrics
Using the values in the confusion matrix, we can calculate metrics to help evaluate the
performance of a classifier. The best metrics will depend on the goal for which we are
building the model and whether our classes are balanced. The formulas in this section are
derived from the data we get from the confusion matrix, where TP is the number of true
positives, TN is the number of true negatives, and so on.

Accuracy and error rate
When our classes are roughly equal in size, we can use accuracy, which will give us the
percentage of correctly classified values:

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇

604 Getting Started with Machine Learning in Python

The accuracy_score() function in sklearn.metrics will calculate the accuracy
as per the formula; however, the score() method of our model will also give us the
accuracy (this isn't always the case, as we will see with grid search in Chapter 10, Making
Better Predictions – Optimizing Models):

>>> red_quality_lr.score(r_X_test, r_y_test)
0.775

Since accuracy is the percentage we correctly classified (our success rate), it follows that
our error rate (the percentage we got wrong) can be calculated as follows:

Our accuracy score tells us that we got 77.5% of the red wines correctly classified
according to their quality. Conversely, the zero_one_loss() function gives us the
percentage of values that were misclassified, which is 22.5% for the red wine quality
model:

>>> from sklearn.metrics import zero_one_loss
>>> zero_one_loss(r_y_test, quality_preds)
0.22499999999999998

Note that while both of these are easy to compute and understand, they require a
threshold. By default, this is 50%, but we can use any probability we wish as a cutoff when
predicting the class using the predict_proba() method in scikit-learn. In
addition, accuracy and error rate can be misleading in cases of class imbalance.

Precision and recall
When we have a class imbalance, accuracy can become an unreliable metric for
measuring our performance. For instance, if we had a 99/1 split between two classes,
A and B, where the rare event, B, is our positive class, we could build a model that was
99% accurate by just saying everything belonged to class A. This problem stems from the
fact that true negatives will be very large, and being in the numerator (in addition to the
denominator), they will make the results look better than they are. Clearly, we shouldn't
bother building a model if it doesn't do anything to identify class B; thus, we need
different metrics that will discourage this behavior. For this, we use precision and recall
instead of accuracy. Precision is the ratio of true positives to everything flagged positive:

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒 = 1 − 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑟𝑟𝑎𝑎𝑎𝑎 = 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇

Classification 605

Recall gives us the true positive rate (TPR), which is the ratio of true positives to
everything that was actually positive:

In the case of the 99/1 split between classes A and B, the model that classifies everything as
A would have a recall of 0% for the positive class, B (precision would be undefined—0/0).
Precision and recall provide a better way of evaluating model performance in the face of a
class imbalance. They will correctly tell us that the model has little value for our use case.

Scikit-learn provides the classification_report() function, which will calculate
precision and recall for us. In addition to calculating these metrics per class label, it also
calculates the macro average (unweighted average between classes) and the weighted
average (average between classes weighted by the number of observations in each class).
The support column indicates the count of observations that belong to each class using
the labeled data.

The classification report indicates that our model does well at finding the low-quality red
wines, but not so great with the high-quality red wines:

>>> from sklearn.metrics import classification_report
>>> print(classification_report(r_y_test, quality_preds))
 precision recall f1-score support

 0 0.95 0.78 0.86 138
 1 0.35 0.73 0.47 22

 accuracy 0.78 160
 macro avg 0.65 0.75 0.66 160
weighted avg 0.86 0.78 0.80 160

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

606 Getting Started with Machine Learning in Python

Given that the quality scores are very subjective and not necessarily related to the
chemical properties, it is no surprise that this simple model doesn't perform too well. On
the other hand, chemical properties are different between red and white wines, so this
information is more useful for the white_or_red model. As we can imagine, based on
the confusion matrix for the white_or_red model, the metrics are good:

>>> from sklearn.metrics import classification_report
>>> print(classification_report(w_y_test, kind_preds))
 precision recall f1-score support

 0 0.99 1.00 0.99 1225
 1 0.99 0.98 0.98 400

 accuracy 0.99 1625
 macro avg 0.99 0.99 0.99 1625
weighted avg 0.99 0.99 0.99 1625

Just like accuracy, both precision and recall are easy to compute and understand, but
require thresholds. In addition, precision and recall each only consider half of the
confusion matrix:

Figure 9.30 – Confusion matrix coverage for precision and recall

Classification 607

There is typically a trade-off between maximizing recall and maximizing precision, and
we have to decide which is more important to us. This preference can be quantified using
the F score.

F score
The classification report also includes the F1 score, which helps us balance precision and
recall using the harmonic mean of the two:

Important note
The harmonic mean is the reciprocal of the arithmetic mean, and is used with
rates to get a more accurate average (compared to the arithmetic mean of the
rates). Both precision and recall are proportions in the range [0, 1], which we
can treat as rates.

The Fβ score, pronounced F-beta, is the more general formulation for the F score.
By varying β, we can put more weight on precision (β between 0 and 1) or on recall
(β greater than 1), where β is how many more times recall is valued over precision:

Some commonly used values for β are as follows:

• F0.5 score: Precision twice as important as recall

• F1 score: Harmonic mean (equal importance)

• F2 score: Recall twice as important as precision

The F score is also easy to compute and relies on thresholds. However, it doesn't consider
true negatives and is hard to optimize due to the trade-offs between precision and recall.
Note that when working with large class imbalances, we are typically more concerned
with predicting the positive class correctly, meaning that we may be less interested in true
negatives, so using a metric that ignores them isn't necessarily an issue.

Tip
Functions for precision, recall, F1 score, and Fβ score can be found in the
sklearn.metrics module.

𝐹𝐹1 = 2 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 =

2 × 𝑇𝑇𝑇𝑇
2 × 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝐹𝐹

𝐹𝐹𝛽𝛽 = (1 + 𝛽𝛽2) × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟
𝛽𝛽2 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

608 Getting Started with Machine Learning in Python

Sensitivity and specificity
Along the lines of the precision and recall trade-off, we have another pair of metrics
that can be used to illustrate the delicate balance we strive to achieve with classification
problems: sensitivity and specificity.

Sensitivity is the true positive rate, or recall, which we saw previously. Specificity,
however, is the true negative rate, or the proportion of true negatives to everything that
should have been classified as negative:

Note that, together, specificity and sensitivity consider the full confusion matrix:

Figure 9.31 – Confusion matrix coverage for sensitivity and specificity

We would like to maximize both sensitivity and specificity; however, we could easily
maximize specificity by decreasing the number of times we classify something as the
positive class, which would decrease sensitivity. Scikit-learn doesn't offer specificity as
a metric—preferring precision and recall—however, we can easily make our own by
writing a function or using the make_scorer() function from scikit-learn.
We are discussing them here because they form the basis of the sensitivity-specificity plot,
or ROC curve, which is the topic of the following section.

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

Classification 609

ROC curve
In addition to using metrics to evaluate classification problems, we can turn to
visualizations. By plotting the true positive rate (sensitivity) versus the false positive rate
(1 - specificity), we get the Receiver Operating Characteristic (ROC) curve. This curve
allows us to visualize the trade-off between the true positive rate and the false positive
rate. We can identify a false positive rate that we are willing to accept and use that to find
the threshold to use as a cutoff when predicting the class with probabilities using the
predict_proba() method in scikit-learn. Say that we find the threshold to be
60%—we would require predict_proba() to return a value greater than or equal to
0.6 to predict the positive class (predict() uses 0.5 as the cutoff).

The roc_curve() function from scikit-learn calculates the false and true positive
rates at thresholds from 0 to 100% using the probabilities of an observation belonging
to a given class, as determined by the model. We can then plot this, with the goal being
to maximize the area under the curve (AUC), which is in the range [0, 1]; values below
0.5 are worse than guessing and good scores are above 0.8. Note that when referring to
the area under a ROC curve, the AUC may also be written as AUROC. The AUROC
summarizes the model's performance across thresholds.

The following are examples of good ROC curves. The dashed line would be random
guessing (no predictive value) and is used as a baseline; anything below that is considered
worse than guessing. We want to be toward the top-left corner:

Figure 9.32 – Comparing ROC curves

610 Getting Started with Machine Learning in Python

The ml_utils.classification module contains a function for plotting our ROC
curve. Let's take a look at it:

import matplotlib.pyplot as plt
from sklearn.metrics import auc, roc_curve

def plot_roc(y_test, preds, ax=None):
 """
 Plot ROC curve to evaluate classification.

 Parameters:
 - y_test: The true values for y
 - preds: The predicted values for y as probabilities
 - ax: The `Axes` object to plot on

 Returns:
 A matplotlib `Axes` object.
 """
 if not ax:
 fig, ax = plt.subplots(1, 1)

 fpr, tpr, thresholds = roc_curve(y_test, preds)

 ax.plot(
 [0, 1], [0, 1], color='navy', lw=2,
 linestyle='--', label='baseline'
)
 ax.plot(fpr, tpr, color='red', lw=2, label='model')

 ax.legend(loc='lower right')
 ax.set_title('ROC curve')
 ax.set_xlabel('False Positive Rate (FPR)')
 ax.set_ylabel('True Positive Rate (TPR)')

 ax.annotate(
 f'AUC: {auc(fpr, tpr):.2}', xy=(0.5, 0),
 horizontalalignment='center'
)

 return ax

Classification 611

As we can imagine, our white_or_red model will have a very good ROC curve. Let's
see what that looks like by calling the plot_roc() function. Since we need to pass
the probabilities of each entry belonging to the positive class, we need to use the
predict_proba() method instead of predict(). This gives us the probabilities
that each observation belongs to each class.

Here, for every row in w_X_test, we have a NumPy array of [P(white), P(red)].
Therefore, we use slicing to select the probabilities that the wine is red for the ROC
curve ([:,1]):

>>> from ml_utils.classification import plot_roc
>>> plot_roc(
... w_y_test, white_or_red.predict_proba(w_X_test)[:,1]
...)

Just as we expected, the ROC curve for the white_or_red model is very good, with
an AUC of nearly 1:

Figure 9.33 – ROC curve for the white or red wine model

612 Getting Started with Machine Learning in Python

Given the other metrics we have looked at, we don't expect the red wine quality prediction
model to have a great ROC curve. Let's call our function to see what the ROC curve for
the red wine quality model looks like:

>>> from ml_utils.classification import plot_roc
>>> plot_roc(
... r_y_test, red_quality_lr.predict_proba(r_X_test)[:,1]
...)

This ROC curve isn't as good as the previous one, as expected:

Figure 9.34 – ROC curve for the red wine quality model

Our AUROC is 0.85; however, note that the AUROC provides optimistic estimates under
class imbalance (since it considers true negatives). For this reason, we should also look at
the precision-recall curve.

Precision-recall curve
When faced with a class imbalance, we use precision-recall curves instead of ROC
curves. This curve shows precision versus recall at various probability thresholds. The
baseline is a horizontal line at the percentage of the data that belongs to the positive
class. We want our curve above this line, with an area under the precision-recall curve
(AUPR) greater than that percentage (the higher the better).

Classification 613

The ml_utils.classification module contains the plot_pr_curve() function
for drawing precision-recall curves and providing the AUPR:

import matplotlib.pyplot as plt
from sklearn.metrics import (
 auc, average_precision_score, precision_recall_curve
)

def plot_pr_curve(y_test, preds, positive_class=1, ax=None):
 """
 Plot precision-recall curve to evaluate classification.

 Parameters:
 - y_test: The true values for y
 - preds: The predicted values for y as probabilities
 - positive_class: Label for positive class in the data
 - ax: The matplotlib `Axes` object to plot on

 Returns: A matplotlib `Axes` object.
 """
 precision, recall, thresholds = \
 precision_recall_curve(y_test, preds)

 if not ax:
 fig, ax = plt.subplots()

 ax.axhline(
 sum(y_test == positive_class) / len(y_test),
 color='navy', lw=2, linestyle='--', label='baseline'
)
 ax.plot(
 recall, precision, color='red', lw=2, label='model'
)
 ax.legend()
 ax.set_title(
 'Precision-recall curve\n'
 f"""AP: {average_precision_score(
 y_test, preds, pos_label=positive_class
):.2} | """
 f'AUC: {auc(recall, precision):.2}'
)
 ax.set(xlabel='Recall', ylabel='Precision')

614 Getting Started with Machine Learning in Python

 ax.set_xlim(-0.05, 1.05)
 ax.set_ylim(-0.05, 1.05)

 return ax

Since the implementation of the AUC calculation in scikit-learn uses interpolation,
it may give an optimistic result, so our function also calculates average precision (AP),
which summarizes the precision-recall curve as the weighted mean of the precision scores
(Pn) achieved at various thresholds. The weights are derived from the change in recall (Rn)
between one threshold and the next. Values are between 0 and 1, with higher values being
better:

Let's take a look at the precision-recall curve for the red wine quality model:

>>> from ml_utils.classification import plot_pr_curve
>>> plot_pr_curve(
... r_y_test, red_quality_lr.predict_proba(r_X_test)[:,1]
...)

This still shows that our model is better than the baseline of random guessing; however,
the performance reading we get here seems more in line with the lackluster performance
we saw in the classification report. We can also see that the model loses lots of precision
when going from a recall of 0.2 to 0.4. Here, the trade-off between precision and recall is
evident, and we will likely choose to optimize one:

Figure 9.35 – Precision-recall curve for the red wine quality model

𝐴𝐴𝐴𝐴 =∑(𝑅𝑅𝑛𝑛 − 𝑅𝑅𝑛𝑛−1) × 𝐴𝐴𝑛𝑛
𝑛𝑛

Classification 615

Since we have a class imbalance between the high-quality and low-quality red wines (less
than 14% are high quality), we must make a choice as to whether we optimize precision
or recall. Our choice would depend on who we work for in the wine industry. If we are
renowned for producing high-quality wine, and we are choosing which wines to provide
to critics for reviews, we want to make sure we pick the best ones and would rather miss
out on good ones (false negatives) than tarnish our name with low-quality ones that the
model classifies as high quality (false positives). However, if we are trying to make the
best profit from selling the wines, we wouldn't want to sell such a high-quality wine for
the same price as a low-quality wine (false negative), so we would rather overprice some
low-quality wines (false positives).

Note that we could easily have classified everything as low quality to never disappoint
or as high quality to maximize our profit selling them; however, this isn't too practical.
It's clear that we need to strike an acceptable balance between false positives and false
negatives. To do so, we need to quantify this trade-off between the two extremes in terms
of what matters to us more. Then, we can use the precision-recall curve to find a threshold
that meets our precision and recall targets. In Chapter 11, Machine Learning Anomaly
Detection, we will work through an example of this.

Let's now take a look at the precision-recall curve for our white or red wine classifier:

>>> from ml_utils.classification import plot_pr_curve
>>> plot_pr_curve(
... w_y_test, white_or_red.predict_proba(w_X_test)[:,1]
...)

Note that this curve is in the upper right-hand corner. With this model, we can achieve
high precision and high recall:

Figure 9.36 – Precision-recall curve for the white or red wine model

616 Getting Started with Machine Learning in Python

As we saw with the red wine quality model, AUPR works very well with class imbalance.
However, it can't be compared across datasets, is expensive to compute, and is hard
to optimize. Note that this was just a subset of the metrics we can use to evaluate
classification problems. All the classification metrics offered by scikit-learn can
be found at https://scikit-learn.org/stable/modules/classes.
html#classification-metrics.

Summary
This chapter served as an introduction to machine learning in Python. We discussed
the terminology that's commonly used to describe learning types and tasks. Then, we
practiced EDA using the skills we learned throughout this book to get a feel for the wine
and planet datasets. This gave us some ideas about what kinds of models we would want to
build. A thorough exploration of the data is essential before attempting to build a model.

Next, we learned how to prepare our data for use in machine learning models and the
importance of splitting the data into training and testing sets before modeling. In order
to prepare our data efficiently, we used pipelines in scikit-learn to package up
everything from our preprocessing through our model.

We used unsupervised k-means to cluster the planets using their semi-major axis and
period; we also discussed how to use the elbow point method to find a good value for
k. Then, we moved on to supervised learning and made a linear regression model to
predict the period of a planet using its semi-major axis, eccentricity of orbit, and mass.
We learned how to interpret the model coefficients and how to evaluate the model's
predictions. Finally, we turned to classification to identify high-quality red wines (which
had a class imbalance) and distinguish between red and white wine by their chemical
properties. Using precision, recall, F1 score, confusion matrices, ROC curves, and
precision-recall curves, we discussed how to evaluate classification models.

It's important to remember that machine learning models make assumptions about the
underlying data, and while this wasn't a chapter on the mathematics of machine learning,
we should make sure that we understand that there are consequences for violating these
assumptions. In practice, when looking to build models, it's crucial that we have a solid
understanding of statistics and domain-level expertise. We saw that there is a multitude
of metrics for evaluating our models. Each metric has its strengths and weaknesses, and,
depending on the problem, some are better than others; we must take care to choose the
appropriate metrics for the task at hand.

In the next chapter, we will learn how to tune our models to improve their performance,
so make sure to complete the exercises to practice this chapter's material before
moving on.

https://scikit-learn.org/stable/modules/classes.html#classification-metrics
https://scikit-learn.org/stable/modules/classes.html#classification-metrics

Exercises 617

Exercises
Practice building and evaluating machine learning models in scikit-learn with the
following exercises:

1. Build a clustering model to distinguish between red and white wine by their
chemical properties:

a) Combine the red and white wine datasets (data/winequality-red.csv
and data/winequality-white.csv, respectively) and add a column for the
kind of wine (red or white).

b) Perform some initial EDA.

c) Build and fit a pipeline that scales the data and then uses k-means clustering to
make two clusters. Be sure not to use the quality column.

d) Use the Fowlkes-Mallows Index (the fowlkes_mallows_score() function
is in sklearn.metrics) to evaluate how well k-means is able to make the
distinction between red and white wine.

e) Find the center of each cluster.

2. Predict star temperature:

a) Using the data/stars.csv file, perform some initial EDA and then build
a linear regression model of all the numeric columns to predict the temperature
of the star.

b) Train the model on 75% of the initial data.

c) Calculate the R2 and RMSE of the model.

d) Find the coefficients for each regressor and the intercept of the linear regression
equation.

e) Visualize the residuals using the plot_residuals() function from the
ml_utils.regression module.

618 Getting Started with Machine Learning in Python

3. Classify planets that have shorter years than Earth:

a) Using the data/planets.csv file, build a logistic regression model with the
eccentricity, semimajoraxis, and mass columns as regressors. You will
need to make a new column to use for the y (year shorter than Earth).

b) Find the accuracy score.

c) Use the classification_report() function from scikit-learn to see
the precision, recall, and F1 score for each class.

d) With the plot_roc() function from the ml_utils.classification
module, plot the ROC curve.

e) Create a confusion matrix using the confusion_matrix_visual() function
from the ml_utils.classification module.

4. Multiclass classification of white wine quality:

a) Using the data/winequality-white.csv file, perform some initial EDA on
the white wine data. Be sure to look at how many wines had a given quality score.

b) Build a pipeline to standardize the data and fit a multiclass logistic regression
model. Pass multi_class='multinomial' and max_iter=1000 to the
LogisticRegression constructor.

c) Look at the classification report for your model.

d) Create a confusion matrix using the confusion_matrix_visual() function
from the ml_utils.classification module. This will work as is for
multiclass classification problems.

e) Extend the plot_roc() function to work for multiple class labels. To do so,
you will need to create a ROC curve for each class label (which are quality scores
here), where a true positive is correctly predicting that quality score and a false
positive is predicting any other quality score. Note that ml_utils has a function
for this, but try to build your own implementation.

f) Extend the plot_pr_curve() function to work for multiple class labels
by following a similar method to part e). However, give each class its own
subplot. Note that ml_utils has a function for this, but try to build your own
implementation.

Further reading 619

5. We have seen how easy the scikit-learn API is to navigate, making it a cinch
to change which algorithm we are using for our model. Rebuild the red wine quality
model that we created in this chapter using an SVM instead of logistic regression.
We haven't discussed this model, but you should still be able to use it in scikit-
learn. Check out the link in the Further reading section to learn more about the
algorithm. Some guidance for this exercise is as follows:

a) You will need to use the SVC (support vector classifier) class from scikit-
learn, which can be found at https://scikit-learn.org/stable/
modules/generated/sklearn.svm.SVC.html.

b) Use C=5 as an argument to the SVC constructor.

c) Pass probability=True to the SVC constructor to be able to use the
predict_proba() method.

d) Build a pipeline first using the StandardScaler class and then the SVC class.

e) Be sure to look at the classification report, precision-recall curve, and confusion
matrix for the model.

Further reading
Check out the following resources for more information on the topics that were covered in
this chapter:

• A Beginner's Guide to Deep Reinforcement Learning: https://pathmind.com/
wiki/deep-reinforcement-learning

• An Introduction to Gradient Descent and Linear Regression: https://spin.
atomicobject.com/2014/06/24/gradient-descent-linear-
regression/

• Assumptions of Multiple Linear Regression: https://www.
statisticssolutions.com/assumptions-of-multiple-linear-
regression/

• Clustering: https://scikit-learn.org/stable/modules/
clustering.html

• Generalized Linear Models: https://scikit-learn.org/stable/
modules/linear_model.html

• Guide to Interpretable Machine Learning – Techniques to dispel the black box
myth of deep learning: https://towardsdatascience.com/guide-to-
interpretable-machine-learning-d40e8a64b6cf

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://pathmind.com/wiki/deep-reinforcement-learning
https://pathmind.com/wiki/deep-reinforcement-learning
https://spin.atomicobject.com/2014/06/24/gradient-descent-linear-regression/
https://spin.atomicobject.com/2014/06/24/gradient-descent-linear-regression/
https://spin.atomicobject.com/2014/06/24/gradient-descent-linear-regression/
https://www.statisticssolutions.com/assumptions-of-multiple-linear-regression/
https://www.statisticssolutions.com/assumptions-of-multiple-linear-regression/
https://www.statisticssolutions.com/assumptions-of-multiple-linear-regression/
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/linear_model.html
https://scikit-learn.org/stable/modules/linear_model.html
https://towardsdatascience.com/guide-to-interpretable-machine-learning-d40e8a64b6cf
https://towardsdatascience.com/guide-to-interpretable-machine-learning-d40e8a64b6cf

620 Getting Started with Machine Learning in Python

• In Depth: k-Means: https://jakevdp.github.io/
PythonDataScienceHandbook/05.11-k-means.html

• Interpretable Machine Learning – A Guide for Making Black Box Models Explainable:
https://christophm.github.io/interpretable-ml-book/

• Interpretable Machine Learning – Extracting human understandable insights
from any Machine Learning model: https://towardsdatascience.com/
interpretable-machine-learning-1dec0f2f3e6b

• MAE and RMSE – Which Metric is Better?: https://medium.com/human-
in-a-machine-world/mae-and-rmse-which-metric-is-better-
e60ac3bde13d

• Model evaluation: quantifying the quality of predictions: https://scikit-
learn.org/stable/modules/model_evaluation.html

• Preprocessing data: https://scikit-learn.org/stable/modules/
preprocessing.html

• Scikit-learn Glossary of Common Terms and API Elements: https://scikit-
learn.org/stable/glossary.html#glossary

• Scikit-learn User Guide: https://scikit-learn.org/stable/user_
guide.html

• Seeing Theory Chapter 6: Regression Analysis: https://seeing-theory.
brown.edu/index.html#secondPage/chapter6

• Simple Beginner's Guide to Reinforcement Learning & its implementation: https://
www.analyticsvidhya.com/blog/2017/01/introduction-to-
reinforcement-learning-implementation/

• Support Vector Machine – Introduction to Machine Learning Algorithms:
https://towardsdatascience.com/support-vector-machine-
introduction-to-machine-learning-algorithms-934a444fca47

• The 5 Clustering Algorithms Data Scientists Need to Know: https://
towardsdatascience.com/the-5-clustering-algorithms-data-
scientists-need-to-know-a36d136ef68

https://jakevdp.github.io/PythonDataScienceHandbook/05.11-k-means.html
https://jakevdp.github.io/PythonDataScienceHandbook/05.11-k-means.html
https://christophm.github.io/interpretable-ml-book/
https://towardsdatascience.com/interpretable-machine-learning-1dec0f2f3e6b
https://towardsdatascience.com/interpretable-machine-learning-1dec0f2f3e6b
https://medium.com/human-in-a-machine-world/mae-and-rmse-which-metric-is-better-e60ac3bde13d
https://medium.com/human-in-a-machine-world/mae-and-rmse-which-metric-is-better-e60ac3bde13d
https://medium.com/human-in-a-machine-world/mae-and-rmse-which-metric-is-better-e60ac3bde13d
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/preprocessing.html
https://scikit-learn.org/stable/modules/preprocessing.html
https://scikit-learn.org/stable/glossary.html#glossary
https://scikit-learn.org/stable/glossary.html#glossary
https://scikit-learn.org/stable/user_guide.html
https://scikit-learn.org/stable/user_guide.html
https://seeing-theory.brown.edu/index.html#secondPage/chapter6
https://seeing-theory.brown.edu/index.html#secondPage/chapter6
https://www.analyticsvidhya.com/blog/2017/01/introduction-to-reinforcement-learning-implementation/
https://www.analyticsvidhya.com/blog/2017/01/introduction-to-reinforcement-learning-implementation/
https://www.analyticsvidhya.com/blog/2017/01/introduction-to-reinforcement-learning-implementation/
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68

10
Making Better

Predictions –
Optimizing Models

In the previous chapter, we learned how to build and evaluate our machine learning
models. However, we didn't touch upon what we can do if we want to improve their
performance. Of course, we could try out a different model and see if it performs
better—unless there are requirements that we use a specific method for legal reasons
or in order to be able to explain how it works. We want to make sure we use the best
version of the model that we can, and for that, we need to discuss how to tune our models.

This chapter will introduce techniques for the optimization of machine learning model
performance using scikit-learn, as a continuation of the content in Chapter 9,
Getting Started with Machine Learning in Python. Nonetheless, it should be noted that
there is no panacea. It is entirely possible to try everything we can think of and still have
a model with little predictive value; such is the nature of modeling.

622 Making Better Predictions – Optimizing Models

Don't be discouraged though—if the model doesn't work, consider whether the
data collected suffices to answer the question, and whether the algorithm chosen is
appropriate for the task at hand. Often, subject matter expertise will prove crucial when
building machine learning models, because it helps us determine which data points will
be relevant, as well as to take advantage of known interactions between the variables
collected.

In particular, the following topics will be covered:

• Hyperparameter tuning with grid search

• Feature engineering

• Building ensemble models combining many estimators

• Inspecting classification prediction confidence

• Addressing class imbalance

• Penalizing high regression coefficients with regularization

Chapter materials
In this chapter, we will be working with three datasets. The first two come from data
on wine quality donated to the UCI Machine Learning Data Repository (http://
archive.ics.uci.edu/ml/index.php) by P. Cortez, A. Cerdeira, F. Almeida,
T. Matos, and J. Reis, and contain information on the chemical properties of various
wine samples along with a rating of the quality from a blind tasting session by a panel
of wine experts. These files can be found in the data/ folder inside this chapter's
folder in the GitHub repository (https://github.com/stefmolin/Hands-
On-Data-Analysis-with-Pandas-2nd-edition/tree/master/ch_10) as
winequality-red.csv and winequality-white.csv for red and white wine,
respectively.

Our third dataset was collected using the Open Exoplanet Catalogue database, at
https://github.com/OpenExoplanetCatalogue/open_exoplanet_
catalogue/, which provides data in XML format. The parsed planet data can be found
in the data/planets.csv file. For the exercises, we will also be working with the star
temperature data from Chapter 9, Getting Started with Machine Learning in Python, which
can be found in the data/stars.csv file.

http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/ch_10
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/ch_10
https://github.com/OpenExoplanetCatalogue/open_exoplanet_catalogue/
https://github.com/OpenExoplanetCatalogue/open_exoplanet_catalogue/

Chapter materials 623

For reference, the following data sources were used:

• Open Exoplanet Catalogue database, available at https://github.com/
OpenExoplanetCatalogue/open_exoplanet_catalogue/#data-
structure.

• P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by
data mining from physicochemical properties. In Decision Support Systems, Elsevier,
47(4):547-553, 2009. Available online at http://archive.ics.uci.edu/ml/
datasets/Wine+Quality.

• Dua, D. and Karra Taniskidou, E. (2017). UCI Machine Learning Repository
(http://archive.ics.uci.edu/ml/index.php). Irvine, CA: University of
California, School of Information and Computer Science.

We will be using the red_wine.ipynb notebook to predict red wine quality,
wine.ipynb to distinguish between red and white wine based on their chemical
properties, and the planets_ml.ipynb notebook to build a regression model to
predict the year length of planets in Earth days.

Before we get started, let's handle our imports and read in our data:

>>> %matplotlib inline
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> import pandas as pd
>>> import seaborn as sns

>>> planets = pd.read_csv('data/planets.csv')
>>> red_wine = pd.read_csv('data/winequality-red.csv')
>>> white_wine = \
... pd.read_csv('data/winequality-white.csv', sep=';')
>>> wine = pd.concat([
... white_wine.assign(kind='white'),
... red_wine.assign(kind='red')
...])
>>> red_wine['high_quality'] = pd.cut(
... red_wine.quality, bins=[0, 6, 10], labels=[0, 1]
...)

https://github.com/OpenExoplanetCatalogue/open_exoplanet_catalogue/#data-structure
https://github.com/OpenExoplanetCatalogue/open_exoplanet_catalogue/#data-structure
https://github.com/OpenExoplanetCatalogue/open_exoplanet_catalogue/#data-structure
http://archive.ics.uci.edu/ml/datasets/Wine+Quality
http://archive.ics.uci.edu/ml/datasets/Wine+Quality
http://archive.ics.uci.edu/ml/index.php

624 Making Better Predictions – Optimizing Models

Let's also create our training and testing sets for the red wine quality, wine type by
chemical properties, and planets models:

>>> from sklearn.model_selection import train_test_split

>>> red_y = red_wine.pop('high_quality')
>>> red_X = red_wine.drop(columns='quality')
>>> r_X_train, r_X_test, \
... r_y_train, r_y_test = train_test_split(
... red_X, red_y, test_size=0.1, random_state=0,
... stratify=red_y
...)

>>> wine_y = np.where(wine.kind == 'red', 1, 0)
>>> wine_X = wine.drop(columns=['quality', 'kind'])
>>> w_X_train, w_X_test, \
... w_y_train, w_y_test = train_test_split(
... wine_X, wine_y, test_size=0.25,
... random_state=0, stratify=wine_y
...)

>>> data = planets[
... ['semimajoraxis', 'period', 'mass', 'eccentricity']
...].dropna()
>>> planets_X = data[
... ['semimajoraxis', 'mass', 'eccentricity']
...]
>>> planets_y = data.period
>>> pl_X_train, pl_X_test, \
... pl_y_train, pl_y_test = train_test_split(
... planets_X, planets_y, test_size=0.25, random_state=0
...)

Important note
Remember that we will be working in dedicated notebooks for each of the
datasets, so while the setup code is all in the same code block to make it easier
to follow in the book, make sure to work in the notebook corresponding to the
data in question.

Hyperparameter tuning with grid search 625

Hyperparameter tuning with grid search
No doubt you have noticed that we can provide various parameters to the model classes
when we instantiate them. These model parameters are not derived from the data itself
and are referred to as hyperparameters. Some examples of these are regularization terms,
which we will discuss later in this chapter, and weights. Through the process of model
tuning, we seek to optimize our model's performance by tuning these hyperparameters.

How can we know we are picking the best values to optimize our model's performance?
One way is to use a technique called grid search to tune these hyperparameters. Grid
search allows us to define a search space and test all combinations of hyperparameters in
that space, keeping the ones that result in the best model. The scoring criterion we define
will determine the best model.

Remember the elbow point method we discussed in Chapter 9, Getting Started with
Machine Learning in Python, for finding a good value for k in k-means clustering? We can
employ a similar visual method to find the best value for our hyperparameters. This will
involve splitting our training data into training and validation sets. We need to save the
test set for the final evaluation of the model, so we use the validation set to test each of
our models when searching for the best values of the hyperparameters. To reiterate, the
validation set and the test set are not the same—they must be disjoint datasets. This split
can be done with train_test_split(). Here, we will use the red wine quality dataset:

>>> from sklearn.model_selection import train_test_split

>>> r_X_train_new, r_X_validate,\
... r_y_train_new, r_y_validate = train_test_split(
... r_X_train, r_y_train, test_size=0.3,
... random_state=0, stratify=r_y_train
...)

Then, we can build the model multiple times for all the values of the hyperparameters
we want to test, and score them based on the metric that matters most to us. Let's try to
find a good value for C, the inverse of the regularization strength, which determines the
weight of the penalty term for logistic regression and is discussed more in-depth in the
Regularization section toward the end of this chapter; we tune this hyperparameter to
reduce overfitting:

>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.metrics import f1_score
>>> from sklearn.pipeline import Pipeline
>>> from sklearn.preprocessing import MinMaxScaler

626 Making Better Predictions – Optimizing Models

we will try 10 values from 10^-1 to 10^1 for C
>>> inv_regularization_strengths = \
... np.logspace(-1, 1, num=10)
>>> scores = []

>>> for inv_reg_strength in inv_regularization_strengths:
... pipeline = Pipeline([
... ('scale', MinMaxScaler()),
... ('lr', LogisticRegression(
... class_weight='balanced', random_state=0,
... C=inv_reg_strength
...))
...]).fit(r_X_train_new, r_y_train_new)
... scores.append(f1_score(
... pipeline.predict(r_X_validate), r_y_validate
...))

Tip
Here, we are using np.logspace() to get our range of values to try for C.
To use this function, we supply starting and stopping exponents to use with
a base number (10, by default). So np.logspace(-1, 1, num=10)
gives us 10 evenly spaced numbers between 10-1 and 101.

This is then plotted as follows:

>>> plt.plot(inv_regularization_strengths, scores, 'o-')
>>> plt.xscale('log')
>>> plt.xlabel('inverse of regularization strength (C)')
>>> plt.ylabel(r'F_1 score')
>>> plt.title(
... r'F_1 score vs. '
... 'Inverse of Regularization Strength'
...)

Hyperparameter tuning with grid search 627

Using the resulting plot, we can pick the value that maximizes our performance:

Figure 10.1 – Searching for the best hyperparameters

Scikit-learn provides the GridSearchCV class in the model_selection module for
carrying out this exhaustive search much more easily. Classes that end with CV utilize
cross-validation, meaning they divide up the training data into subsets, some of which
will be the validation set for scoring the model (without needing the testing data until
after the model is fit).

One common method of cross-validation is k-fold cross-validation, which splits the
training data into k subsets and will train the model k times, each time leaving one subset
out to use as the validation set. The score for the model will be the average across the k
validation sets. Our initial attempt was 1-fold cross-validation. When k=3, this process
looks like the following diagram:

Figure 10.2 – Understanding k-fold cross-validation

628 Making Better Predictions – Optimizing Models

Tip
When working with classification problems, scikit-learn will implement
stratified k-fold cross-validation. This ensures that the percentage of samples
belonging to each class will be preserved across folds. Without stratification,
it's possible some validation sets will see a disproportionately low (or high)
amount of a given class, which can distort the results.

GridSearchCV uses cross-validation to find the best hyperparameters in the search
space, without the need to use the testing data. Remember, test data should not influence
the training process in any way—neither when training the model nor when tuning
hyperparameters—otherwise, the model will have issues generalizing. This happens
because we would be picking the hyperparameters that give the best performance on the
test set, thus leaving no way to test on unseen data, and overestimating our performance.

In order to use GridSearchCV, we need to provide a model (or pipeline) and a search
space, which will be a dictionary mapping the hyperparameter to tune (by name) to a list
of values to try. Optionally, we can provide a scoring metric to use, as well as the number
of folds to use with cross-validation. We can tune any step in the pipeline by prefixing
the hyperparameter name with the name of that step, followed by two underscores. For
instance, if we have a logistic regression step called lr and want to tune C, we use lr__C
as the key in the search space dictionary. Note that if our model has any preprocessing
steps, it's imperative that we use a pipeline.

Let's use GridSearchCV for the red wine quality logistic regression, searching for
whether or not to fit our model with an intercept and the best value for the inverse of the
regularization strength (C). We will use the F1 score macro average as the scoring metric.
Note that, due to the consistency of the API, GridSearchCV can be used to score, fit,
and predict with the same methods as the underlying models. By default, the grid search
will run in series, but GridSearchCV is capable of performing multiple searches in
parallel, greatly speeding up this process:

>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.model_selection import GridSearchCV
>>> from sklearn.pipeline import Pipeline
>>> from sklearn.preprocessing import MinMaxScaler

>>> pipeline = Pipeline([
... ('scale', MinMaxScaler()),
... ('lr', LogisticRegression(class_weight='balanced',
... random_state=0))
...])

Hyperparameter tuning with grid search 629

>>> search_space = {
... 'lr__C': np.logspace(-1, 1, num=10),
... 'lr__fit_intercept': [True, False]
... }

>>> lr_grid = GridSearchCV(
... pipeline, search_space, scoring='f1_macro', cv=5
...).fit(r_X_train, r_y_train)

Once the grid search completes, we can isolate the best hyperparameters from the search
space with the best_params_ attribute. Notice that this result is different from our
1-fold cross-validation attempt because each of the folds has been averaged together to
find the best hyperparameters overall, not just for a single fold:

best values of `C` and `fit_intercept` in search space
>>> lr_grid.best_params_
{'lr__C': 3.593813663804626, 'lr__fit_intercept': True}

Tip
We can also retrieve the best version of the pipeline from the grid search
with the best_estimator_ attribute. If we want to see the score the best
estimator (model) had, we can grab it from the best_score_ attribute; note
that this will be the score we specified with the scoring argument.

Our F1 score macro average is now higher than what we achieved in Chapter 9, Getting
Started with Machine Learning in Python:

>>> from sklearn.metrics import classification_report
>>> print(classification_report(
... r_y_test, lr_grid.predict(r_X_test)
...))
 precision recall f1-score support

 0 0.94 0.80 0.87 138
 1 0.36 0.68 0.47 22

 accuracy 0.79 160
 macro avg 0.65 0.74 0.67 160
weighted avg 0.86 0.79 0.81 160

630 Making Better Predictions – Optimizing Models

Note that the cv argument doesn't have to be an integer—we can provide one of the
splitter classes mentioned at https://scikit-learn.org/stable/modules/
classes.html#splitter-classes if we want to use a method other than the
default of k-fold for regression or stratified k-fold for classification. For example, when
working with time series, we can use TimeSeriesSplit as the cross-validation object
to work with successive samples and avoid shuffling. Scikit-learn shows how the
cross-validation classes compare at https://scikit-learn.org/stable/auto_
examples/model_selection/plot_cv_indices.html.

Let's test out RepeatedStratifiedKFold on the red wine quality model instead of
the default StratifiedKFold, which will repeat the stratified k-fold cross-validation
10 times by default. All we have to do is change what we passed in as cv in the first
GridSearchCV example to be a RepeatedStratifiedKFold object. Note
that—despite using the same pipeline, search space, and scoring metric—we have
different values for best_params_ because our cross-validation process has changed:

>>> from sklearn.model_selection import RepeatedStratifiedKFold

>>> lr_grid = GridSearchCV(
... pipeline, search_space, scoring='f1_macro',
... cv=RepeatedStratifiedKFold(random_state=0)
...).fit(r_X_train, r_y_train)

>>> print('Best parameters (CV score=%.2f):\n %s' % (
... lr_grid.best_score_, lr_grid.best_params_
...)) # f1 macro score
Best parameters (CV score=0.69):
 {'lr__C': 5.994842503189409, 'lr__fit_intercept': True}

In addition to cross-validation, GridSearchCV allows us to specify the metric we want
to optimize with the scoring parameter. This can be a string for the name of the score
(as in the previous code blocks), provided that it is in the list at https://scikit-
learn.org/stable/modules/model_evaluation.html#common-cases-
predefined-values; otherwise, we can either pass the function itself or make our
own using the make_scorer() function from sklearn.metrics. We can even
provide a dictionary of scorers (in the form of {name: function}) for grid search,
provided that we specify which one we want to use for optimization by passing its name to
the refit parameter. Therefore, we can use grid search to find the hyperparameters that
help us maximize our performance on the metrics we discussed in the previous chapter.

https://scikit-learn.org/stable/modules/classes.html#splitter-classes
https://scikit-learn.org/stable/modules/classes.html#splitter-classes
https://scikit-learn.org/stable/auto_examples/model_selection/plot_cv_indices.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_cv_indices.html
https://scikit-learn.org/stable/modules/model_evaluation.html#common-cases-predefined-values
https://scikit-learn.org/stable/modules/model_evaluation.html#common-cases-predefined-values
https://scikit-learn.org/stable/modules/model_evaluation.html#common-cases-predefined-values

Hyperparameter tuning with grid search 631

Important note
The time it takes to train our model should also be something we evaluate
and look to optimize. If it takes us double the training time to get one
more correct classification, it's probably not worth it. If we have a
GridSearchCV object called grid, we can see the average fit time
by running grid.cv_results_['mean_fit_time'].

We can use GridSearchCV to search for the best parameters for any step in our pipeline.
For example, let's use grid search with a pipeline of preprocessing and linear regression
on the planets data (similar to when we modeled planet year length in Chapter 9, Getting
Started with Machine Learning in Python) while minimizing mean absolute error (MAE)
instead of the default R2:

>>> from sklearn.linear_model import LinearRegression
>>> from sklearn.metrics import \
... make_scorer, mean_squared_error
>>> from sklearn.model_selection import GridSearchCV
>>> from sklearn.pipeline import Pipeline
>>> from sklearn.preprocessing import StandardScaler

>>> model_pipeline = Pipeline([
... ('scale', StandardScaler()),
... ('lr', LinearRegression())
...])
>>> search_space = {
... 'scale__with_mean': [True, False],
... 'scale__with_std': [True, False],
... 'lr__fit_intercept': [True, False],
... 'lr__normalize': [True, False]
... }
>>> grid = GridSearchCV(
... model_pipeline, search_space, cv=5,
... scoring={
... 'r_squared': 'r2',
... 'mse': 'neg_mean_squared_error',
... 'mae': 'neg_mean_absolute_error',
... 'rmse': make_scorer(
... lambda x, y: \
... -np.sqrt(mean_squared_error(x, y))
...)
... }, refit='mae'
...).fit(pl_X_train, pl_y_train)

632 Making Better Predictions – Optimizing Models

Note that we are using the negative of all the metrics except R2. This is because
GridSearchCV will attempt to maximize the score, and we want to minimize our errors.
Let's check the best parameters for the scaling and linear regression in this grid:

>>> print('Best parameters (CV score=%.2f):\n%s' % (
... grid.best_score_, grid.best_params_
...)) # MAE score * -1
Best parameters (CV score=-1215.99):
{'lr__fit_intercept': False, 'lr__normalize': True,
 'scale__with_mean': False, 'scale__with_std': True}

The tuned model's MAE is more than 120 Earth days smaller than the MAE we got in
Chapter 9, Getting Started with Machine Learning in Python:

>>> from sklearn.metrics import mean_absolute_error
>>> mean_absolute_error(pl_y_test, grid.predict(pl_X_test))
1248.3690943844194

It's important to note that while a model may be fast to train, we shouldn't create
a large, granular search space; in practice, it's better to start with a few different
spread-out values, and then examine the results to see which areas warrant a more
in-depth search. For instance, say we are looking to tune the C hyperparameter. On our
first pass, we may look at the result of np.logspace(-1, 1). If we see that the best
value for C is at either end of the spectrum, we can then look at values above/below the
value. If the best value is in the range, we may look at a few values around it. This process
can be performed iteratively until we don't see additional improvement. Alternatively, we
could use RandomizedSearchCV, which will try 10 random combinations in the search
space (by default) and find the best estimator (model). We can change this number with
the n_iter argument.

Important note
Since the process of tuning hyperparameters requires us to train our model
multiple times, we must consider the time complexity of our models. Models
that take a long time to train will be very costly to use with cross-validation.
This will likely cause us to shrink our search space.

Feature engineering 633

Feature engineering
When trying to improve performance, we may also consider ways to provide the best
features (model inputs) to our model through the process of feature engineering. The
Preprocessing data section in Chapter 9, Getting Started with Machine Learning in Python,
introduced us to feature transformation when we scaled, encoded, and imputed our
data. Unfortunately, feature transformation may mute some elements of our data that
we want to use in our model, such as the unscaled value of the mean of a specific feature.
For this situation, we can create a new feature with this value; this and other new features
are added during feature construction (sometimes called feature creation).

Feature selection is the process of determining which features to train the model on.
This can be done manually or through another process, such as machine learning. When
looking to choose features for our model, we want features that have an impact on our
dependent variable without unnecessarily increasing the complexity of our problem.
Models built with many features increase in complexity, but also, unfortunately, have
a higher tendency to fit noise, because our data is sparse in such a high-dimensional
space. This is referred to as the curse of dimensionality. When a model has learned the
noise in the training data, it will have a hard time generalizing to unseen data; this is
called overfitting. By restricting the number of features the model uses, feature selection
can help address overfitting.

Feature extraction is another way we can address the curse of dimensionality. During
feature extraction, we reduce the dimensionality of our data by constructing combinations
of features through a transformation. These new features can be used in place of the
originals, thereby reducing the dimensionality of the problem. This process, called
dimensionality reduction, also includes techniques where we find a certain number of
components (less than the original) that explain most of the variance in the data. Feature
extraction is often used in image recognition problems, since the dimensionality of the
task is the total number of pixels in the image. For instance, square ads on websites are
350x350 pixels (this is one of the most common sizes), so an image recognition task using
images that size has 122,500 dimensions.

Tip
Thorough EDA and domain knowledge are a must for feature engineering.

Feature engineering is the subject of entire books; however, as it is a more advanced topic,
we will go over just a few techniques in this section. There is a good book on the subject
in the Further reading section, which also touches upon using machine learning for
feature learning.

634 Making Better Predictions – Optimizing Models

Interaction terms and polynomial features
We discussed the use of dummy variables back in the Preprocessing data section of
Chapter 9, Getting Started with Machine Learning in Python; however, we merely
considered the effect of that variable on its own. In our model that tries to predict red
wine quality using chemical properties, we are considering each property separately.
However, it is important to consider whether the interaction between these properties has
an effect. Perhaps when the levels of citric acid and fixed acidity are both high or both low,
the wine quality is different than if one is high and one is low. In order to capture the effect
of this, we need to add an interaction term, which will be the product of the features.

We may also be interested in increasing the effect of a feature in the model through feature
construction; we can achieve this by adding polynomial features made from this feature.
This involves adding higher degrees of the original feature, so we could have citric acid,
citric acid2, citric acid3, and so on in the model.

Tip
We can generalize linear models by using interaction terms and polynomial
features because they allow us to model the linear relationship of non-linear
terms. Since linear models tend to underperform in the presence of multiple or
non-linear decision boundaries (the surface or hypersurface that separates the
classes), this can improve performance.

Scikit-learn provides the PolynomialFeatures class in the preprocessing module
for easily creating interaction terms and polynomial features. This comes in handy when
building models with categorical and continuous features. By specifying just the degree,
we can get every combination of the features less than or equal to the degree. High degrees
will increase model complexity greatly and may lead to overfitting.

If we use degree=2, we can turn citric acid and fixed acidity into the following, where
1 is the bias term that can be used in a model as an intercept term:

By calling the fit_transform() method on the PolynomialFeatures object, we
can generate these features:

>>> from sklearn.preprocessing import PolynomialFeatures

>>> PolynomialFeatures(degree=2).fit_transform(
... r_X_train[['citric acid', 'fixed acidity']]
...)

1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑐𝑐𝑐𝑐𝑎𝑎 + 𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑎𝑎 𝑎𝑎𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐𝑎𝑎 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑐𝑐𝑐𝑐𝑎𝑎2 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑐𝑐𝑐𝑐𝑎𝑎 × 𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑎𝑎 𝑎𝑎𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐𝑎𝑎 + 𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑎𝑎 𝑎𝑎𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐𝑎𝑎2

Feature engineering 635

array([[1.000e+00, 5.500e-01, 9.900e+00, 3.025e-01,
 5.445e+00, 9.801e+01],
 [1.000e+00, 4.600e-01, 7.400e+00, 2.116e-01,
 3.404e+00, 5.476e+01],
 [1.000e+00, 4.100e-01, 8.900e+00, 1.681e-01,
 3.649e+00, 7.921e+01],
 ...,
 [1.000e+00, 1.200e-01, 7.000e+00, 1.440e-02,
 8.400e-01, 4.900e+01],
 [1.000e+00, 3.100e-01, 7.600e+00, 9.610e-02,
 2.356e+00, 5.776e+01],
 [1.000e+00, 2.600e-01, 7.700e+00, 6.760e-02,
 2.002e+00, 5.929e+01]])

Let's dissect the first row of our array in the previous code block (highlighted in bold) to
understand how we got each of these values:

Figure 10.3 – Examining the interaction terms and polynomial features created

If we are only interested in the interaction variables (citric acid × fixed acidity, here), we
can specify interaction_only=True. In this case, we also don't want the bias term,
so we specify include_bias=False as well. This will give us the original variables
along with their interaction term(s):

>>> PolynomialFeatures(
... degree=2, include_bias=False, interaction_only=True
...).fit_transform(
... r_X_train[['citric acid', 'fixed acidity']]
...)
array([[0.55 , 9.9 , 5.445],
 [0.46 , 7.4 , 3.404],
 [0.41 , 8.9 , 3.649],
 ...,
 [0.12 , 7. , 0.84],
 [0.31 , 7.6 , 2.356],
 [0.26 , 7.7 , 2.002]])

636 Making Better Predictions – Optimizing Models

We can add these polynomial features to our pipeline:

>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.model_selection import GridSearchCV
>>> from sklearn.pipeline import Pipeline
>>> from sklearn.preprocessing import (
... MinMaxScaler, PolynomialFeatures
...)

>>> pipeline = Pipeline([
... ('poly', PolynomialFeatures(degree=2)),
... ('scale', MinMaxScaler()),
... ('lr', LogisticRegression(
... class_weight='balanced', random_state=0
...))
...]).fit(r_X_train, r_y_train)

Note that this model is slightly better than before we added these additional terms, which
was the model used in Chapter 9, Getting Started with Machine Learning in Python:

>>> from sklearn.metrics import classification_report

>>> preds = pipeline.predict(r_X_test)
>>> print(classification_report(r_y_test, preds))
 precision recall f1-score support
 0 0.95 0.79 0.86 138
 1 0.36 0.73 0.48 22

 accuracy 0.78 160
 macro avg 0.65 0.76 0.67 160
weighted avg 0.87 0.78 0.81 160

Adding polynomial features and interaction terms increases the dimensionality of our
data, which may not be desirable. Sometimes, rather than looking to create more features,
we look for ways to consolidate them and reduce the dimensionality of our data.

Feature engineering 637

Dimensionality reduction
Dimensionality reduction shrinks the number of features we train our model on. This
is done to reduce the computational complexity of training the model without sacrificing
much performance. We could just choose to train on a subset of the features (feature
selection); however, if we think there is value in those features, albeit small, we may look
for ways to extract the information we need from them.

One common strategy for feature selection is to discard features with low variance. These
features aren't very informative since they are mostly the same value throughout the data.
Scikit-learn provides the VarianceThreshold class for carrying out feature selection
according to a minimum variance threshold. By default, it will discard any features that
have zero variance; however, we can provide our own threshold. Let's perform feature
selection on our model that predicts whether a wine is red or white based on its chemical
composition. Since we have no features with zero variance, we will choose to keep features
whose variance is greater than 0.01:

>>> from sklearn.feature_selection import VarianceThreshold
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.pipeline import Pipeline
>>> from sklearn.preprocessing import StandardScaler

>>> white_or_red_min_var = Pipeline([
... ('feature_selection',
... VarianceThreshold(threshold=0.01)),
... ('scale', StandardScaler()),
... ('lr', LogisticRegression(random_state=0))
...]).fit(w_X_train, w_y_train)

This removed two features with low variance. We can get their names with the Boolean
mask returned by the VarianceThreshold object's get_support() method, which
indicates the features that were kept:

>>> w_X_train.columns[
... ~white_or_red_min_var.named_steps[
... 'feature_selection'
...].get_support()
...]
Index(['chlorides', 'density'], dtype='object')

638 Making Better Predictions – Optimizing Models

Using only 9 of the 11 features, our performance hasn't been affected much:

>>> from sklearn.metrics import classification_report
>>> print(classification_report(
... w_y_test, white_or_red_min_var.predict(w_X_test)
...))
 precision recall f1-score support

 0 0.98 0.99 0.99 1225
 1 0.98 0.95 0.96 400

 accuracy 0.98 1625
 macro avg 0.98 0.97 0.97 1625
weighted avg 0.98 0.98 0.98 1625

Tip
Check out the other feature selection options in the feature_selection
module at https://scikit-learn.org/stable/modules/
classes.html#module-sklearn.feature_selection.

If we believe there is value in all the features, we may decide to use feature extraction
rather than discarding them entirely. Principal component analysis (PCA) performs
feature extraction by projecting high-dimensional data into lower dimensions, thereby
reducing the dimensionality. In return, we get the n components that maximize
explained variance. This will be sensitive to the scale of the data, so we need to do some
preprocessing beforehand.

Let's take a look at the pca_scatter() function in the ml_utils.pca module, which
will help us visualize our data when reduced to two dimensions:

import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import MinMaxScaler

def pca_scatter(X, labels, cbar_label, cmap='brg'):
 """
 Create a 2D scatter plot from 2 PCA components of X

 Parameters:
 - X: The X data for PCA
 - labels: The y values

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_selection
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_selection

Feature engineering 639

 - cbar_label: The label for the colorbar
 - cmap: Name of the colormap to use.

 Returns:
 Matplotlib `Axes` object
 """
 pca = Pipeline([
 ('scale', MinMaxScaler()),
 ('pca', PCA(2, random_state=0))
]).fit(X)
 data, classes = pca.transform(X), np.unique(labels)

 ax = plt.scatter(
 data[:, 0], data[:, 1],
 c=labels, edgecolor='none', alpha=0.5,
 cmap=plt.cm.get_cmap(cmap, classes.shape[0])
)

 plt.xlabel('component 1')
 plt.ylabel('component 2')

 cbar = plt.colorbar()
 cbar.set_label(cbar_label)
 cbar.set_ticks(classes)

 plt.legend([
 'explained variance\n'
 'comp. 1: {:.3}\ncomp. 2: {:.3}'.format(
 *pca.named_steps['pca'].explained_variance_ratio_
)
])
 return ax

Let's visualize the wine data with two PCA components to see if there is a way to separate
red from white:

>>> from ml_utils.pca import pca_scatter

>>> pca_scatter(wine_X, wine_y, 'wine is red?')
>>> plt.title('Wine Kind PCA (2 components)')

640 Making Better Predictions – Optimizing Models

Most of the red wines are in the bright green mass of points at the top, and the white
wines are in the blue point mass at the bottom. Visually, we can see how to separate them,
but there is still some overlap:

Figure 10.4 – Using two PCA components to separate wines by type

Tip
PCA components will be linearly uncorrelated, since they were obtained
through an orthogonal transformation (perpendicularity extended to higher
dimensions). Linear regression assumes the regressors (input data) are not
correlated, so this can help address multicollinearity.

Note the explained variances of each component from the previous plot's legend—the
components explain over 50% of the variance in the wine data. Let's see if using three
dimensions improves the separation. The pca_scatter_3d() function in the
ml_utils.pca module uses mpl_toolkits, which comes with matplotlib for
3D visualizations:

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.decomposition import PCA
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import MinMaxScaler

Feature engineering 641

def pca_scatter_3d(X, labels, cbar_label, cmap='brg',
 elev=10, azim=15):
 """
 Create a 3D scatter plot from 3 PCA components of X

 Parameters:
 - X: The X data for PCA
 - labels: The y values
 - cbar_label: The label for the colorbar
 - cmap: Name of the colormap to use.
 - elev: The degrees of elevation to view the plot from.
 - azim: The azimuth angle on the xy plane (rotation
 around the z-axis).

 Returns:
 Matplotlib `Axes` object
 """
 pca = Pipeline([
 ('scale', MinMaxScaler()),
 ('pca', PCA(3, random_state=0))
]).fit(X)
 data, classes = pca.transform(X), np.unique(labels)

 fig = plt.figure()
 ax = fig.add_subplot(111, projection='3d')

 p = ax.scatter3D(
 data[:, 0], data[:, 1], data[:, 2],
 alpha=0.5, c=labels,
 cmap=plt.cm.get_cmap(cmap, classes.shape[0])
)

 ax.view_init(elev=elev, azim=azim)

 ax.set_xlabel('component 1')
 ax.set_ylabel('component 2')
 ax.set_zlabel('component 3')

 cbar = fig.colorbar(p, pad=0.1)
 cbar.set_ticks(classes)
 cbar.set_label(cbar_label)

642 Making Better Predictions – Optimizing Models

 plt.legend([
 'explained variance\ncomp. 1: {:.3}\n'
 'comp. 2: {:.3}\ncomp. 3: {:.3}'.format(
 *pca.named_steps['pca'].explained_variance_ratio_
)
])

 return ax

Let's use our 3D visualization function on the wine data again to see if white and red are
easier to separate with three PCA components:

>>> from ml_utils.pca import pca_scatter_3d

>>> pca_scatter_3d(
... wine_X, wine_y, 'wine is red?', elev=20, azim=-10
...)
>>> plt.suptitle('Wine Type PCA (3 components)')

It seems like we could slice off the green (right) point mass from this angle, although we
still have a few points in the wrong section:

Figure 10.5 – Using three PCA components to separate wines by type

Feature engineering 643

Important note
PCA performs linear dimensionality reduction. Check out t-SNE and Isomap
to perform manifold learning for non-linear dimensionality reduction.

We can use the pca_explained_variance_plot() function from the
ml_utils.pca module to visualize the cumulative explained variance as a function
of the number of PCA components:

import matplotlib.pyplot as plt
import numpy as np

def pca_explained_variance_plot(pca_model, ax=None):
 """
 Plot the cumulative explained variance of PCA components.

 Parameters:
 - pca_model: The PCA model that has been fit already
 - ax: Matplotlib `Axes` object to plot on.

 Returns:
 A matplotlib `Axes` object
 """
 if not ax:
 fig, ax = plt.subplots()

 ax.plot(
 np.append(
 0, pca_model.explained_variance_ratio_.cumsum()
), 'o-'
)

 ax.set_title(
 'Total Explained Variance Ratio for PCA Components'
)
 ax.set_xlabel('PCA components used')
 ax.set_ylabel('cumulative explained variance ratio')

 return ax

644 Making Better Predictions – Optimizing Models

We can pass the PCA part of our pipeline to this function in order to see the cumulative
explained variance:

>>> from sklearn.decomposition import PCA
>>> from sklearn.pipeline import Pipeline
>>> from sklearn.preprocessing import MinMaxScaler
>>> from ml_utils.pca import pca_explained_variance_plot

>>> pipeline = Pipeline([
... ('normalize', MinMaxScaler()),
... ('pca', PCA(8, random_state=0))
...]).fit(w_X_train, w_y_train)

>>> pca_explained_variance_plot(pipeline.named_steps['pca'])

The first four PCA components explain about 80% of the variance:

Figure 10.6 – Explained variance for PCA components used

Feature engineering 645

We can also use the elbow point method to find a good value for the number of PCA
components to use, just as we did with k-means in Chapter 9, Getting Started with
Machine Learning in Python. For this, we need to make a scree plot, which shows
the explained variance for each component. The ml_utils.pca module has the
pca_scree_plot() function for creating this visualization:

import matplotlib.pyplot as plt
import numpy as np

def pca_scree_plot(pca_model, ax=None):
 """
 Plot explained variance of each consecutive PCA component.

 Parameters:
 - pca_model: The PCA model that has been fit already
 - ax: Matplotlib `Axes` object to plot on.

 Returns: A matplotlib `Axes` object
 """
 if not ax:
 fig, ax = plt.subplots()

 values = pca_model.explained_variance_
 ax.plot(np.arange(1, values.size + 1), values, 'o-')
 ax.set_title('Scree Plot for PCA Components')
 ax.set_xlabel('component')
 ax.set_ylabel('explained variance')
 return ax

We can pass the PCA part of our pipeline to this function in order to see the variance
explained by each PCA component:

>>> from sklearn.decomposition import PCA
>>> from sklearn.pipeline import Pipeline
>>> from sklearn.preprocessing import MinMaxScaler
>>> from ml_utils.pca import pca_scree_plot

>>> pipeline = Pipeline([
... ('normalize', MinMaxScaler()),
... ('pca', PCA(8, random_state=0))
...]).fit(w_X_train, w_y_train)
>>> pca_scree_plot(pipeline.named_steps['pca'])

646 Making Better Predictions – Optimizing Models

The scree plot tells us we should try four PCA components because there are diminishing
returns after that component:

Figure 10.7 – Diminishing returns for each additional PCA component after the fourth

We can build a model on top of these four PCA features in a process called
meta-learning, where the last model in the pipeline is trained on the output from
a different model, not the original data itself:

>>> from sklearn.decomposition import PCA
>>> from sklearn.pipeline import Pipeline
>>> from sklearn.preprocessing import MinMaxScaler
>>> from sklearn.linear_model import LogisticRegression

>>> pipeline = Pipeline([
... ('normalize', MinMaxScaler()),
... ('pca', PCA(4, random_state=0)),
... ('lr', LogisticRegression(
... class_weight='balanced', random_state=0
...))
...]).fit(w_X_train, w_y_train)

Feature engineering 647

Our new model performs nearly as well as the original logistic regression that used 11
features, with just 4 features made with PCA:

>>> from sklearn.metrics import classification_report

>>> preds = pipeline.predict(w_X_test)
>>> print(classification_report(w_y_test, preds))
 precision recall f1-score support

 0 0.99 0.99 0.99 1225
 1 0.96 0.96 0.96 400

 accuracy 0.98 1625
 macro avg 0.98 0.98 0.98 1625
weighted avg 0.98 0.98 0.98 1625

After performing dimensionality reduction, we no longer have all of the features we
started with—reducing the number of features was the point after all. However, it is
possible that we will want to perform different feature engineering techniques on subsets
of our features; in order to do so, we need to understand feature unions.

Feature unions
We may want to build a model on features from a variety of sources, such as PCA, in
addition to selecting a subset of the features. For these purposes, scikit-learn
provides the FeatureUnion class in the pipeline module. This also allows us to
perform multiple feature engineering techniques at once, such as feature extraction
followed by feature transformation, when we combine this with a pipeline.

Creating a FeatureUnion object is just like creating a pipeline, but rather than passing
the steps in order, we pass the transformations we want to make. These will be stacked side
by side in the result. Let's use a feature union of interaction terms and select the features
with a variance above 0.01 to predict red wine quality:

>>> from sklearn.feature_selection import VarianceThreshold
>>> from sklearn.pipeline import FeatureUnion, Pipeline
>>> from sklearn.preprocessing import (
... MinMaxScaler, PolynomialFeatures
...)
>>> from sklearn.linear_model import LogisticRegression

648 Making Better Predictions – Optimizing Models

>>> combined_features = FeatureUnion([
... ('variance', VarianceThreshold(threshold=0.01)),
... ('poly', PolynomialFeatures(
... degree=2, include_bias=False, interaction_only=True
...))
...])

>>> pipeline = Pipeline([
... ('normalize', MinMaxScaler()),
... ('feature_union', combined_features),
... ('lr', LogisticRegression(
... class_weight='balanced', random_state=0
...))
...]).fit(r_X_train, r_y_train)

To illustrate the transformation that took place, let's examine the first row from the
training set for the red wine quality data after the FeatureUnion object transforms it.
Since we saw that our variance threshold results in nine features, we know they are the
first nine entries in the resulting NumPy array, and the rest are the interaction terms:

>>> pipeline.named_steps['feature_union']\
... .transform(r_X_train)[0]
array([9.900000e+00, 3.500000e-01, 5.500000e-01, 5.000000e+00,
 1.400000e+01, 9.971000e-01, 3.260000e+00, 1.060000e+01,
 9.900000e+00, 3.500000e-01, 5.500000e-01, 2.100000e+00,
 6.200000e-02, 5.000000e+00, 1.400000e+01, 9.971000e-01,
 ..., 3.455600e+01, 8.374000e+00])

We can also look at the classification report to see that we got a marginal improvement in
F1 score:

>>> from sklearn.metrics import classification_report

>>> preds = pipeline.predict(r_X_test)
>>> print(classification_report(r_y_test, preds))
 precision recall f1-score support

 0 0.94 0.80 0.87 138
 1 0.36 0.68 0.47 22

 accuracy 0.79 160
 macro avg 0.65 0.74 0.67 160
weighted avg 0.86 0.79 0.81 160

Feature engineering 649

In this example, we selected our features such that they had variance greater than 0.01,
making the assumption that if the feature doesn't take on many different values then
it may not be that helpful. Rather than making this assumption, we can use a machine
learning model to help determine which features are important.

Feature importances
Decision trees recursively split the data, making decisions on which features to use for
each split. They are greedy learners, meaning they look for the largest split they can make
each time; this isn't necessarily the optimal split when looking at the output of the tree.
We can use a decision tree to gauge feature importances, which determine how the tree
splits the data at the decision nodes. These feature importances can help inform feature
selection. Note that feature importances will sum to one, and higher values are better. Let's
use a decision tree to see how red and white wine can be separated on a chemical level:

>>> from sklearn.tree import DecisionTreeClassifier

>>> dt = DecisionTreeClassifier(random_state=0).fit(
... w_X_train, w_y_train
...)

>>> pd.DataFrame([(col, coef) for col, coef in zip(
... w_X_train.columns, dt.feature_importances_
...)], columns=['feature', 'importance']
...).set_index('feature').sort_values(
... 'importance', ascending=False
...).T

This shows us that the most important chemical properties in distinguishing between red
and white wine are total sulfur dioxide and chlorides:

Figure 10.8 – Importance of each chemical property in predicting wine type

650 Making Better Predictions – Optimizing Models

Tip
Using the top features, as indicated by the feature importances, we can try to
build a simpler model (by using fewer features). If possible, we want to simplify
our models without sacrificing much performance. See the wine.ipynb
notebook for an example.

If we train another decision tree with a max depth of two, we can visualize the top of the
tree (it is too large to visualize if we don't limit the depth):

>>> from sklearn.tree import export_graphviz
>>> import graphviz

>>> graphviz.Source(export_graphviz(
... DecisionTreeClassifier(
... max_depth=2, random_state=0
...).fit(w_X_train, w_y_train),
... feature_names=w_X_train.columns
...))

Important note
Graphviz software will need to be installed (if it isn't already) in order
to visualize the tree. It can be downloaded at https://graphviz.
gitlab.io/download/, with the installation guide at https://
graphviz.readthedocs.io/en/stable/manual.
html#installation. Note that the kernel will need to be restarted
after installing. Otherwise, pass out_file='tree.dot' to the
export_graphviz() function and then generate a PNG file by
running dot -T png tree.dot -o tree.png from the command
line. As an alternative, scikit-learn provides the plot_tree()
function, which uses matplotlib; consult the notebook for an example.

This results in the following tree, which first splits on total sulfur dioxide (which has the
highest feature importance), followed by chlorides on the second level. The information
at each node tells us the criterion for the split (the top line), the value of the cost function
(gini), the number of samples at that node (samples), and the number of samples in each
class at that node (values):

https://graphviz.gitlab.io/download/
https://graphviz.gitlab.io/download/
https://graphviz.readthedocs.io/en/stable/manual.html#installation
https://graphviz.readthedocs.io/en/stable/manual.html#installation
https://graphviz.readthedocs.io/en/stable/manual.html#installation

Feature engineering 651

Figure 10.9 – Decision tree for predicting wine type based on chemical properties

We can also apply decision trees to regression problems. Let's find the feature importances
for the planets data using the DecisionTreeRegressor class:

>>> from sklearn.tree import DecisionTreeRegressor

>>> dt = DecisionTreeRegressor(random_state=0).fit(
... pl_X_train, pl_y_train
...)
>>> [(col, coef) for col, coef in zip(
... pl_X_train.columns, dt.feature_importances_
...)]
[('semimajoraxis', 0.9969449557611615),
 ('mass', 0.0015380986260574154),
 ('eccentricity', 0.0015169456127809738)]

652 Making Better Predictions – Optimizing Models

Basically, the semi-major axis is the main determinant in the period length, which we
already knew, but if we visualize a tree, we can see why. The first four splits are all based
on the semi-major axis:

Figure 10.10 – Decision tree for predicting planet period

Decision trees can be pruned after being grown to maximum depth, or provided
with a max depth before training, to limit growth and thus avoid overfitting. The
scikit-learn documentation provides tips to address overfitting and other potential
issues when using decision trees at https://scikit-learn.org/stable/
modules/tree.html#tips-on-practical-use. Keep this in mind as we discuss
ensemble methods.

https://scikit-learn.org/stable/modules/tree.html#tips-on-practical-use
https://scikit-learn.org/stable/modules/tree.html#tips-on-practical-use

Ensemble methods 653

Ensemble methods
Ensemble methods combine many models (often weak ones) to create a stronger
one that will either minimize the average error between observed and predicted values
(the bias) or improve how well it generalizes to unseen data (minimize the variance).
We have to strike a balance between complex models that may increase variance, as they
tend to overfit, and simple models that may have high bias, as these tend to underfit. This
is called the bias-variance trade-off, which is illustrated in the following subplots:

Figure 10.11 – The bias-variance trade-off

Ensemble methods can be broken down into three categories: boosting, bagging, and
stacking. Boosting trains many weak learners, which learn from each other's mistakes
to reduce bias, making a stronger learner. Bagging, on the other hand, uses bootstrap
aggregation to train many models on bootstrap samples of the data and aggregate the
results together (using voting for classification, and the average for regression) to reduce
variance. We can also combine many different model types together with voting. Stacking
is an ensemble technique where we combine many different model types using the outputs
of some as the inputs to others; this is done to improve predictions. We saw an example of
stacking when we combined PCA and logistic regression in the Dimensionality reduction
section earlier in this chapter.

Random forest
Decision trees have a tendency to overfit, especially if we don't set limits on how far they
can grow (with the max_depth and min_samples_leaf parameters). We can address
this overfitting issue with a random forest, which is a bagging algorithm where we train
many decision trees in parallel using bootstrap samples of our data and aggregate the
output. In addition, we have the option of scoring each tree on the data in the training
set that it didn't receive in its bootstrap sample, called out-of-bag samples, with the
oob_score parameter.

654 Making Better Predictions – Optimizing Models

Important note
The min_samples_leaf parameter requires a minimum number of
samples to be on the final nodes in the tree (or leaves); this prevents the trees
from being fit until they only have a single observation at each leaf.

Each of the trees also gets a subset of the features (random feature selection), which
defaults to the square root of the number of features (the max_features parameter).
This can help address the curse of dimensionality. As a consequence, however, the random
forest can't be as easily interpreted as the decision trees that make it up. We can, however,
extract feature importances from the random forest, just as we did with the decision tree.

Let's use the RandomForestClassifier class from the ensemble module to build
a random forest (with n_estimators trees in it) for the classification of high-quality
red wines:

>>> from sklearn.ensemble import RandomForestClassifier
>>> from sklearn.model_selection import GridSearchCV

>>> rf = RandomForestClassifier(
... n_estimators=100, random_state=0
...)

>>> search_space = {
... 'max_depth': [4, 8], # keep trees small
... 'min_samples_leaf': [4, 6]
... }

>>> rf_grid = GridSearchCV(
... rf, search_space, cv=5, scoring='precision'
...).fit(r_X_train, r_y_train)

>>> rf_grid.score(r_X_test, r_y_test)
0.6

Note that our precision with the random forest is already much better than the 0.35 we
got in Chapter 9, Getting Started with Machine Learning in Python. The random forest
is robust to outliers and able to model non-linear decision boundaries to separate the
classes, which may explain part of this dramatic improvement.

Ensemble methods 655

Gradient boosting
Boosting looks to improve upon the mistakes of previous models. One way of doing this
is to move in the direction of the steepest reduction in the loss function for the model.
Since the gradient (the multi-variable generalization of the derivative) is the direction
of steepest ascent, this can be done by calculating the negative gradient, which yields the
direction of steepest descent, meaning the best improvement in the loss function from the
current result. This technique is called gradient descent.

Important note
Although gradient descent sounds great, there are some potential issues with
it. It's possible to end up in a local minimum (a minimum in a certain region
of the cost function); the algorithm will stop, thinking that we have the optimal
solution, when in fact we don't, because we would like the global minimum
(the minimum over the whole region).

Scikit-learn's ensemble module provides the GradientBoostingClassifier and
GradientBoostingRegressor classes for gradient boosting using decision trees.
These trees will boost their performance through gradient descent. Note that gradient
boosted trees are more sensitive to noisy training data than the random forest. In addition,
we must consider the additional time required to build all the trees in series, unlike the
parallel training we can benefit from with the random forest.

Let's use grid search and gradient boosting to train another model for classifying the
red wine quality data. In addition to searching for the best values for the max_depth
and min_samples_leaf parameters, we will search for a good value for the
learning_rate parameter, which determines the contribution each tree will make
in the final estimator:

>>> from sklearn.ensemble import GradientBoostingClassifier
>>> from sklearn.model_selection import GridSearchCV

>>> gb = GradientBoostingClassifier(
... n_estimators=100, random_state=0
...)

>>> search_space = {
... 'max_depth': [4, 8], # keep trees small
... 'min_samples_leaf': [4, 6],
... 'learning_rate': [0.1, 0.5, 1]
... }

656 Making Better Predictions – Optimizing Models

>>> gb_grid = GridSearchCV(
... gb, search_space, cv=5, scoring='f1_macro'
...).fit(r_X_train, r_y_train)

The F1 macro score we achieve with gradient boosting is better than the 0.66 we got with
logistic regression in Chapter 9, Getting Started with Machine Learning in Python:

>>> gb_grid.score(r_X_test, r_y_test)
0.7226024272287617

Both bagging and boosting have given us better performance than the logistic regression
model; however, we may find that the models don't always agree and that we could
improve performance even more by having the models vote before making the final
prediction.

Voting
When trying out different models for classification, it may be interesting to measure
their agreement using Cohen's kappa score. We can use the cohen_kappa_score()
function in the sklearn.metrics module to do so. The score ranges from complete
disagreement (-1) to complete agreement (1). Our boosting and bagging predictions have
a high level of agreement:

>>> from sklearn.metrics import cohen_kappa_score

>>> cohen_kappa_score(
... rf_grid.predict(r_X_test), gb_grid.predict(r_X_test)
...)
0.7185929648241206

Sometimes, we can't find a single model that works well for all of our data, so we may
want to find a way to combine the opinions of various models to make the final decision.
Scikit-learn provides the VotingClassifier class for aggregating model opinions on
classification tasks. We have the option of specifying the voting type, where hard results
in majority rules and soft will predict the class with the highest sum of probabilities
across the models.

Ensemble methods 657

As an example, let's create a classifier for each voting type using the three estimators
(models) from this chapter—logistic regression, random forest, and gradient boosting.
Since we will run fit(), we pass in the best estimator from each of our grid searches
(best_estimator_). This avoids running each grid search again unnecessarily, which
will also train our model faster:

>>> from sklearn.ensemble import VotingClassifier

>>> majority_rules = VotingClassifier(
... [('lr', lr_grid.best_estimator_),
... ('rf', rf_grid.best_estimator_),
... ('gb', gb_grid.best_estimator_)],
... voting='hard'
...).fit(r_X_train, r_y_train)

>>> max_probabilities = VotingClassifier(
... [('lr', lr_grid.best_estimator_),
... ('rf', rf_grid.best_estimator_),
... ('gb', gb_grid.best_estimator_)],
... voting='soft'
...).fit(r_X_train, r_y_train)

Our majority_rules classifier requires two of the three models to agree (at a
minimum), while the max_probabilities classifier has each model vote with its
predicted probabilities. We can measure how well they perform on the test data with the
classification_report() function, which tells us that majority_rules is a
little better than max_probabilities in terms of precision. Both are better than the
other models we have tried:

>>> from sklearn.metrics import classification_report

>>> print(classification_report(
... r_y_test, majority_rules.predict(r_X_test)
...))
 precision recall f1-score support

 0 0.92 0.95 0.93 138
 1 0.59 0.45 0.51 22

 accuracy 0.88 160
 macro avg 0.75 0.70 0.72 160
weighted avg 0.87 0.88 0.87 160

658 Making Better Predictions – Optimizing Models

>>> print(classification_report(
... r_y_test, max_probabilities.predict(r_X_test)
...))
 precision recall f1-score support

 0 0.92 0.93 0.92 138
 1 0.52 0.50 0.51 22

 accuracy 0.87 160
 macro avg 0.72 0.71 0.72 160
weighted avg 0.87 0.87 0.87 160

Another important option with the VotingClassifier class is the weights
parameter, which lets us place more or less emphasis on certain estimators when voting.
For example, if we pass weights=[1, 2, 2] to majority_rules, we are giving
extra weight to the predictions made by the random forest and gradient boosting
estimators. In order to determine which models (if any) should be given extra weight,
we can look at individual performance and prediction confidence.

Inspecting classification prediction confidence
As we saw with ensemble methods, when we know the strengths and weaknesses of our
model, we can employ strategies to attempt to improve performance. We may have two
models to classify something, but they most likely won't agree on everything. However,
say that we know that one does better on edge cases, while the other is better on the
more common ones. In that case, we would likely want to investigate a voting classifier
to improve our performance. How can we know how the models perform in different
situations, though?

Inspecting classification prediction confidence 659

By looking at the probabilities the model predicts of an observation belonging to a given
class, we can gain insight into how confident our model is when it is correct and when it
errs. We can use our pandas data wrangling skills to make quick work of this. Let's see
how confident our original white_or_red model from Chapter 9, Getting Started with
Machine Learning in Python, was in its predictions:

>>> prediction_probabilities = pd.DataFrame(
... white_or_red.predict_proba(w_X_test),
... columns=['prob_white', 'prob_red']
...).assign(
... is_red=w_y_test == 1,
... pred_white=lambda x: x.prob_white >= 0.5,
... pred_red=lambda x: np.invert(x.pred_white),
... correct=lambda x: (np.invert(x.is_red) & x.pred_white)
... | (x.is_red & x.pred_red)
...)

Tip
We can tweak the probability threshold for our model's predictions by using
the predict_proba() method, instead of predict(). This will
give us the probabilities that the observation belongs to each class. We can
then compare that to our custom threshold. For example, we could use 75%:
white_or_red.predict_proba(w_X_test)[:,1] >= .75.

One way to identify this threshold is to determine the false positive rate we are
comfortable with, and then use the data from the roc_curve() function
in the sklearn.metrics module to find the threshold that results in
that false positive rate. Another way is to find a satisfactory spot along the
precision-recall curve, and then get the threshold from the precision_
recall_curve() function. We will work through an example in
Chapter 11, Machine Learning Anomaly Detection.

660 Making Better Predictions – Optimizing Models

Let's use seaborn to make a plot showing the distribution of the prediction probabilities
when the model was correct versus when it was incorrect. The displot() function
makes it easy to plot the kernel density estimate (KDE) superimposed on a histogram.
Here, we will also add a rug plot, which shows where each of our predictions ended up:

>>> g = sns.displot(
... data=prediction_probabilities, x='prob_red',
... rug=True, kde=True, bins=20, col='correct',
... facet_kws={'sharey': True}
...)
>>> g.set_axis_labels('probability wine is red', None)
>>> plt.suptitle('Prediction Confidence', y=1.05)

The KDE for correct predictions is bimodal, with modes near 0 and near 1, meaning the
model is very confident when it is correct, which, since it is correct most of the time,
means it is very confident in general. The peak of the correct predictions KDE at 0 is
much higher than the one at 1 because we have many more white wines than red wines in
the data. Note that the KDE shows probabilities of less than zero and greater than one as
possible. For this reason, we add the histogram to confirm that the shape we are seeing is
meaningful. The histogram for correct predictions doesn't have much in the middle of the
distribution, so we include the rug plot to better see which probabilities were predicted.
The incorrect predictions don't have many data points, but it appears to be all over the
place, because when the model got it wrong, it got fooled pretty badly:

Figure 10.12 – Prediction confidence when the model was correct versus incorrect

Inspecting classification prediction confidence 661

This outcome tells us we may want to look into the chemical properties of the wines that
were incorrectly classified. It's possible they were outliers and that is why they fooled
the model. We can modify the box plots by wine type from the Exploratory data analysis
section in Chapter 9, Getting Started with Machine Learning in Python, to see if anything
stands out (Figure 9.6).

First, we isolate the chemical properties for the incorrectly classified wines:

>>> incorrect = w_X_test.assign(is_red=w_y_test).iloc[
... prediction_probabilities.query('not correct').index
...]

Then, we add some calls to scatter() on the Axes object to mark these wines on the
box plots from before:

>>> import math

>>> chemical_properties = [col for col in wine.columns
... if col not in ['quality', 'kind']]
>>> melted = \
... wine.drop(columns='quality').melt(id_vars=['kind'])

>>> fig, axes = plt.subplots(
... math.ceil(len(chemical_properties) / 4), 4,
... figsize=(15, 10)
...)
>>> axes = axes.flatten()

>>> for prop, ax in zip(chemical_properties, axes):
... sns.boxplot(
... data=melted[melted.variable.isin([prop])],
... x='variable', y='value', hue='kind', ax=ax,
... palette={'white': 'lightyellow', 'red': 'orchid'},
... saturation=0.5, fliersize=2
...).set_xlabel('')
... for _, wrong in incorrect.iterrows():
... # _ is convention for collecting info we won't use
... x_coord = -0.2 if not wrong['is_red'] else 0.2
... ax.scatter(
... x_coord, wrong[prop], marker='x',
... color='red', s=50
...)

662 Making Better Predictions – Optimizing Models

>>> for ax in axes[len(chemical_properties):]:
... ax.remove()

>>> plt.suptitle(
... 'Comparing Chemical Properties of Red and White Wines'
... '\n(classification errors are red x\'s)'
...)
>>> plt.tight_layout() # clean up layout

This results in each of the incorrectly classified wines being marked with a red X. In
each subplot, the points on the left box plot are white wines and those on the right
box plot are red wines. It appears that some of them may have been outliers for a few
characteristics—such as red wines with high residual sugar or sulfur dioxide, and white
wines with high volatile acidity:

Figure 10.13 – Checking whether incorrect predictions were outliers

Despite having many more white wines than red wines in the data, our model is able to
distinguish between them pretty well. This isn't always the case. Sometimes, in order to
improve our performance, we need to address the class imbalance.

Addressing class imbalance 663

Addressing class imbalance
When faced with a class imbalance in our data, we may want to try to balance the
training data before we build a model around it. In order to do this, we can use one of the
following imbalanced sampling techniques:

• Over-sample the minority class.

• Under-sample the majority class.

In the case of over-sampling, we pick a larger proportion from the minority class in
order to get closer to the amount of the majority class; this may involve a technique
such as bootstrapping or generating new data similar to the values in the existing data
(using machine learning algorithms such as nearest neighbors). Under-sampling, on the
other hand, will take less data overall by reducing the amount taken from the majority
class. The decision to use over-sampling or under-sampling will depend on the amount
of data we started with, and in some cases, computational costs. In practice, we wouldn't
try either of these without first trying to build the model with the class imbalance. It's
important not to try to optimize things prematurely; not to mention that by building the
model first, we have a baseline to compare our imbalanced sampling attempts against.

Important note
Huge performance issues can arise if the minority class that we have in the
data isn't truly representative of the full spectrum present in the population.
For this reason, our method of collecting the data in the first place should be
both known to us and carefully evaluated before proceeding to modeling. If we
aren't careful, we could easily build a model that can't generalize to new data,
regardless of how we handle the class imbalance.

Before we explore any imbalanced sampling techniques, let's create a baseline model
using k-nearest neighbors (k-NN) classification, which will classify observations
according to the class of the k-nearest observations in the n-dimensional space of the
data (our red wine quality data is 11-dimensional). For comparison purposes, we will use
the same number of neighbors for all the models in this section; however, it is certainly
possible that the sampling techniques will result in a different value performing better. We
will use five neighbors:

>>> from sklearn.neighbors import KNeighborsClassifier
>>> knn = KNeighborsClassifier(n_neighbors=5).fit(
... r_X_train, r_y_train
...)
>>> knn_preds = knn.predict(r_X_test)

664 Making Better Predictions – Optimizing Models

Our k-NN model is fast to train because it is a lazy learner—calculations are made at
classification time. It is important to keep in mind the time our models take to train and
make predictions, as this can dictate which models we can use in practice. A model that
performs marginally better but takes twice as long to train or predict may not be worth
it. As the dimensionality of our data increases, the k-NN model will become less and
less feasible. We can use the %%timeit magic to get an estimate of how long it takes on
average to train. Note that this will train the model multiple times, so it might not be the
best strategy to time a computationally intense model:

>>> %%timeit
>>> from sklearn.neighbors import KNeighborsClassifier
>>> knn = KNeighborsClassifier(n_neighbors=5).fit(
... r_X_train, r_y_train
...)
3.24 ms ± 599 µs per loop
(mean ± std. dev. of 7 runs, 100 loops each)

Let's compare this result with training a support vector machine (SVM), which
projects the data into a higher dimension to find the hyperplane that separates the
classes. A hyperplane is the n-dimensional equivalent of a plane, just like a plane is the
two-dimensional equivalent of a line. SVMs are typically robust to outliers and can model
non-linear decision boundaries; however, SVMs get slow very quickly, so it will be a good
comparison:

>>> %%timeit
>>> from sklearn.svm import SVC
>>> svc = SVC(gamma='auto').fit(r_X_train, r_y_train)
153 ms ± 6.7 ms per loop
(mean ± std. dev. of 7 runs, 1 loop each)

Now that we have our baseline model and an idea of how it works, let's see how the
baseline k-NN model performs:

>>> from sklearn.metrics import classification_report
>>> print(classification_report(r_y_test, knn_preds))
 precision recall f1-score support

 0 0.91 0.93 0.92 138
 1 0.50 0.41 0.45 22

 accuracy 0.86 160
 macro avg 0.70 0.67 0.69 160
weighted avg 0.85 0.86 0.86 160

Addressing class imbalance 665

With this performance benchmark, we are ready to try out imbalanced sampling.
We will be using the imblearn package, which is provided by the scikit-learn
community. It provides implementations for over- and under-sampling using various
strategies, and it is just as easy to use as scikit-learn, since they both follow the
same API conventions. For reference, the documentation can be found at https://
imbalanced-learn.readthedocs.io/en/stable/api.html.

Under-sampling
As we hinted at earlier, under-sampling will reduce the amount of data available to train
our model on. This means we should only attempt this if we have enough data that we can
accept eliminating some of it. Let's see what happens with the red wine quality data, since
we don't have much data to begin with.

We will use the RandomUnderSampler class from imblearn to randomly under-
sample the low-quality red wines in the training set:

>>> from imblearn.under_sampling import RandomUnderSampler

>>> X_train_undersampled, y_train_undersampled = \
... RandomUnderSampler(random_state=0)\
... .fit_resample(r_X_train, r_y_train)

We went from almost 14% of the training data being high-quality red wine to 50% of it;
however, notice that this came at the price of 1,049 training samples (more than half of
our training data):

before
>>> r_y_train.value_counts()
0 1244
1 195
Name: high_quality, dtype: int64

after
>>> pd.Series(y_train_undersampled).value_counts().sort_index()
0 195
1 195
dtype: int64

https://imbalanced-learn.readthedocs.io/en/stable/api.html
https://imbalanced-learn.readthedocs.io/en/stable/api.html

666 Making Better Predictions – Optimizing Models

Fitting our model with the under-sampled data is no different from before:

>>> from sklearn.neighbors import KNeighborsClassifier

>>> knn_undersampled = KNeighborsClassifier(n_neighbors=5)\
... .fit(X_train_undersampled, y_train_undersampled)
>>> knn_undersampled_preds = knn_undersampled.predict(r_X_test)

Using the classification report, we see that under-sampling is definitely not an
improvement—we hardly had any data for this model:

>>> from sklearn.metrics import classification_report

>>> print(
... classification_report(r_y_test, knn_undersampled_preds)
...)
 precision recall f1-score support

 0 0.93 0.65 0.77 138
 1 0.24 0.68 0.35 22

 accuracy 0.66 160
 macro avg 0.58 0.67 0.56 160
weighted avg 0.83 0.66 0.71 160

In situations where we have limited data to start with, under-sampling is simply not
feasible. Here, we lost over half of the already small amount of data we had. Models need
a good amount of data to learn from, so let's try over-sampling the minority class now.

Over-sampling
It's clear that with smaller datasets, it won't be beneficial to under-sample. Instead, we can
try over-sampling the minority class (the high-quality red wines, in this case). Rather than
doing random over-sampling with the RandomOverSampler class, we are going to use
the Synthetic Minority Over-sampling Technique (SMOTE) to create new (synthetic)
red wines similar to the high-quality ones using the k-NN algorithm. By doing this, we are
making a big assumption that the data we have collected about the chemical properties of
the red wine does influence the quality rating of the wine.

Addressing class imbalance 667

Important note
The SMOTE implementation in imblearn comes from this paper:

N. V. Chawla, K. W. Bowyer, L. O.Hall, W. P. Kegelmeyer, SMOTE: synthetic
minority over-sampling technique, Journal of Artificial Intelligence Research, 321-
357, 2002, available at https://arxiv.org/pdf/1106.1813.pdf.

Let's use SMOTE with the five nearest neighbors to over-sample the high-quality red
wines in our training data:

>>> from imblearn.over_sampling import SMOTE

>>> X_train_oversampled, y_train_oversampled = SMOTE(
... k_neighbors=5, random_state=0
...).fit_resample(r_X_train, r_y_train)

Since we over-sampled, we will have more data than we did before, gaining an extra 1,049
high-quality red wine samples:

before
>>> r_y_train.value_counts()
0 1244
1 195
Name: high_quality, dtype: int64

after
>>> pd.Series(y_train_oversampled).value_counts().sort_index()
0 1244
1 1244
dtype: int64

Once again, we will fit a k-NN model, using the over-sampled data this time:

>>> from sklearn.neighbors import KNeighborsClassifier

>>> knn_oversampled = KNeighborsClassifier(n_neighbors=5)\
... .fit(X_train_oversampled, y_train_oversampled)

>>> knn_oversampled_preds = knn_oversampled.predict(r_X_test)

https://arxiv.org/pdf/1106.1813.pdf

668 Making Better Predictions – Optimizing Models

Over-sampling performed much better than under-sampling, but unless we were looking
to maximize recall, we are better off sticking with our original strategy for k-NN:

>>> from sklearn.metrics import classification_report

>>> print(
... classification_report(r_y_test, knn_oversampled_preds)
...)
 precision recall f1-score support
 0 0.96 0.78 0.86 138
 1 0.37 0.82 0.51 22

 accuracy 0.78 160
 macro avg 0.67 0.80 0.68 160
weighted avg 0.88 0.78 0.81 160

Note that since SMOTE is creating synthetic data, we must carefully consider the side
effects this may have on our model. If we can't make the assumption that all the values of
a given class are representative of the full spectrum of the population and that this won't
change over time, we cannot expect SMOTE to work well.

Regularization
When working with regressions, we may look to add a penalty term to our regression
equation to reduce overfitting by punishing certain decisions for coefficients made by the
model; this is called regularization. We are looking for the coefficients that will minimize
this penalty term. The idea is to shrink the coefficients toward zero for features that don't
contribute much to reducing the error of the model. Some common techniques are ridge
regression, LASSO (short for Least Absolute Shrinkage and Selection Operator) regression,
and elastic net regression, which combines the LASSO and ridge penalty terms. Note that
since these techniques rely on the magnitude of the coefficients, the data should be scaled
beforehand.

Ridge regression, also called L2 regularization, punishes high coefficients (�̂�𝛽) by adding
the sum of the squares of the coefficients to the cost function (which regression looks to
minimize when fitting), as per the following penalty term:

This penalty term is also weighted by λ (lambda), which indicates how large the penalty
will be. When this is zero, we have ordinary least squares regression, as before.

𝐿𝐿2 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝜆𝜆 ∑ �̂�𝛽𝑗𝑗
2

𝑗𝑗

Regularization 669

Important note
Remember the C parameter from the LogisticRegression class? By
default, the LogisticRegression class will use the L2 penalty term,
where C is 1/λ. However, it also supports L1, but only with certain solvers.

LASSO regression, also called L1 regularization, drives coefficients to zero by adding
the sum of the absolute values of the coefficients to the cost function. This is more robust
than L2 regularization because it is less sensitive to extreme values:

Since LASSO drives coefficients of certain features in the regression to zero (where they
won't contribute to the model), it is said to perform feature selection.

Important note
Both the L1 and L2 penalties are also referred to as L1 and L2 norms
(a mathematical transformation on a vector to be in the range [0, ∞)) and
written as ‖�̂�𝛽‖1 and ‖�̂�𝛽‖1

2 , respectively.

Elastic net regression combines both LASSO and ridge penalty terms into the following
penalty term, where we can tune both the strength of the penalty (λ) and the percentage
of the penalty that is L1 (and consequently, the percentage that is L2) with α (alpha):

Scikit-learn implements ridge, LASSO, and elastic net regressions with the Ridge,
Lasso, and ElasticNet classes, respectively, which can be used in the same way as
the LinearRegression class. There is also a CV version of each of these (RidgeCV,
LassoCV, and ElasticNetCV), which features built-in cross-validation. Using all the
defaults for these models, we find that LASSO performs the best at predicting the length
of the year in Earth days with the planet data:

>>> from sklearn.linear_model import Ridge, Lasso, ElasticNet

>>> ridge, lasso, elastic = Ridge(), Lasso(), ElasticNet()

𝐿𝐿1 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝜆𝜆 ∑|�̂�𝛽𝑗𝑗|
𝑗𝑗

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛𝑒𝑒𝑒𝑒 𝑝𝑝𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 = λ (1 − 𝛼𝛼
2 ∑ �̂�𝛽𝑗𝑗

2

𝑗𝑗
+ 𝛼𝛼 ∑|�̂�𝛽𝑗𝑗|

𝑗𝑗
)

670 Making Better Predictions – Optimizing Models

>>> for model in [ridge, lasso, elastic]:
... model.fit(pl_X_train, pl_y_train)
... print(
... f'{model.__class__.__name__}: ' # get model name
... f'{model.score(pl_X_test, pl_y_test):.4}'
...)
Ridge: 0.9206
Lasso: 0.9208
ElasticNet: 0.9047

Note that these scikit-learn classes have an alpha parameter, which lines up with
λ in the previous equations (not α). For ElasticNet, α in the equations lines up with
the l1_ratio parameter, which defaults to 50% LASSO. In practice, both of these
hyperparameters are determined with cross-validation.

Summary
In this chapter, we reviewed various techniques we can employ to improve model
performance. We learned how to use grid search to find the best hyperparameters in a
search space, and how to tune our model using the scoring metric of our choosing with
GridSearchCV. This means we don't have to accept the default in the score() method
of our model and can customize it to our needs.

In our discussion of feature engineering, we learned how to reduce the dimensionality
of our data using techniques such as PCA and feature selection. We saw how to use the
PolynomialFeatures class to add interaction terms to models with categorical and
numerical features. Then, we learned how to use the FeatureUnion class to augment
our training data with transformed features. In addition, we saw how decision trees can
help us understand which features in the data contribute most to the classification or
regression task at hand, using feature importances. This helped us see the importance of
sulfur dioxide and chlorides in distinguishing between red and white wine on a chemical
level, as well as the importance of a planet's semi-major axis in determining its period.

Afterward, we took a look at the random forest, gradient boosting, and voting classifiers
to discuss ensemble methods and how they seek to address the bias-variance trade-off
through bagging, boosting, and voting strategies. We also saw how to measure agreement
between classifiers with Cohen's kappa score. This led us to examine our white_or_red
wine classifier's confidence in its correct and incorrect predictions. Once we know the
ins and outs of our model's performance, we can try to improve upon it through the
appropriate ensemble method to capitalize on its strengths and mitigate its weaknesses.

Exercises 671

After that, we learned how to use the imblearn package to implement over- and
under-sampling strategies when faced with a class imbalance. We tried to use this to
improve our ability to predict red wine quality scores. In this example, we got some
exposure to the k-NN algorithm and the issues with modeling small datasets. Finally,
we learned how we can use regularization to penalize high coefficients and reduce
overfitting with regression, using ridge (L2 norm), LASSO (L1 norm), and elastic net
penalties; remember, LASSO is often used as a method of feature selection since it drives
coefficients to zero.

In the next chapter, we will revisit the simulated login attempt data and use machine
learning to detect anomalies. We will also see how we can apply both unsupervised and
supervised learning in practice.

Exercises
Complete the following exercises to practice the skills covered in this chapter. Be sure
to consult the Machine learning workflow section in the Appendix as a refresher on the
process of building models:

1. Predict star temperature with elastic net linear regression as follows:

a) Using the data/stars.csv file, build a pipeline to normalize the data with
a MinMaxScaler object and then run elastic net linear regression using all the
numeric columns to predict the temperature of the star.

b) Run grid search on the pipeline to find the best values for alpha, l1_ratio,
and fit_intercept for the elastic net in the search space of your choice.

c) Train the model on 75% of the initial data.

d) Calculate the R2 of your model.

e) Find the coefficients for each regressor and the intercept.

f) Visualize the residuals using the plot_residuals() function from the
ml_utils.regression module.

672 Making Better Predictions – Optimizing Models

2. Perform multiclass classification of white wine quality using a support vector
machine and feature union as follows:

a) Using the data/winequality-white.csv file, build a pipeline to standardize
data, then create a feature union between interaction terms and a feature selection
method of your choice from the sklearn.feature_selection module,
followed by an SVM (use the SVC class).

b) Run grid search on your pipeline with 85% of the data to find the best values for
the include_bias parameter (PolynomialFeatures) and the C parameter
(SVC) in the search space of your choosing with scoring='f1_macro'.

c) Look at the classification report for your model.

d) Create a confusion matrix using the confusion_matrix_visual() function
from the ml_utils.classification module.

e) Plot a precision-recall curve for multiclass data using the plot_multiclass_
pr_curve() function from the ml_utils.classification module.

3. Perform multiclass classification of white wine quality using k-NN and over-
sampling as follows:

a) Using the data/winequality-white.csv file, create a test and training set
with 85% of the data in the training set. Stratify on quality.

b) With imblearn, use the RandomOverSampler class to over-sample the
minority quality scores.

c) Build a pipeline to standardize data and run k-NN.

d) Run grid search on your pipeline with the over-sampled data on the search space
of your choosing to find the best value for k-NN's n_neighbors parameter
with scoring='f1_macro'.

e) Look at the classification report for your model.

f) Create a confusion matrix using the confusion_matrix_visual() function
from the ml_utils.classification module.

g) Plot a precision-recall curve for multiclass data using the plot_multiclass_
pr_curve() function from the ml_utils.classification module.

Exercises 673

4. Can wine type (red or white) help determine the quality score?

a) Using the data/winequality-white.csv and data/winequality-
red.csv files, create a dataframe with the concatenated data and a column
indicating which wine type the data belongs to (red or white).

b) Create a test and training set with 75% of the data in the training set. Stratify
on quality.

c) Build a pipeline using a ColumnTransformer object to standardize the numeric
data while one-hot encoding the wine type column (something like is_red and
is_white, each with binary values), and then train a random forest.

d) Run grid search on your pipeline with the search space of your choosing
to find the best value for the random forest's max_depth parameter with
scoring='f1_macro'.

e) Take a look at the feature importances from the random forest.

f) Look at the classification report for your model.

g) Plot a ROC curve for multiclass data using the plot_multiclass_roc()
function from the ml_utils.classification module.

h) Create a confusion matrix using the confusion_matrix_visual() function
from the ml_utils.classification module.

5. Make a multiclass classifier to predict wine quality with majority rules voting by
performing the following steps:

a) Using the data/winequality-white.csv and data/winequality-
red.csv files, create a dataframe with concatenated data and a column indicating
which wine type the data belongs to (red or white).

b) Create a test and training set with 75% of the data in the training set. Stratify
on quality.

c) Build a pipeline for each of the following models: random forest, gradient
boosting, k-NN, logistic regression, and Naive Bayes (GaussianNB). The
pipeline should use a ColumnTransformer object to standardize the numeric
data while one-hot encoding the wine type column (something like is_red and
is_white, each with binary values), and then build the model. Note that we will
discuss Naive Bayes in Chapter 11, Machine Learning Anomaly Detection.

674 Making Better Predictions – Optimizing Models

d) Run grid search on each pipeline except Naive Bayes (just run fit() on it) with
scoring='f1_macro' on the search space of your choosing to find the best
values for the following:

i) Random forest: max_depth

ii) Gradient boosting: max_depth

iii) k-NN: n_neighbors

iv) Logistic regression: C

e) Find the level of agreement between each pair of two models using the
cohen_kappa_score() function from the metrics module in
scikit-learn. Note that you can get all the combinations of the two
easily using the combinations() function from the itertools module
in the Python standard library.

f) Build a voting classifier with the five models built using majority rules
(voting='hard') and weighting the Naive Bayes model half as much
as the others.

g) Look at the classification report for your model.

h) Create a confusion matrix using the confusion_matrix_visual() function
from the ml_utils.classification module.

Further reading
Check out the following resources for more information on the topics covered in this
chapter:

• A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning:
https://machinelearningmastery.com/gentle-introduction-
gradient-boosting-algorithm-machine-learning/

• A Kaggler's Guide to Model Stacking in Practice: https://datasciblog.
github.io/2016/12/27/a-kagglers-guide-to-model-stacking-
in-practice/

• Choosing the right estimator: https://scikit-learn.org/stable/
tutorial/machine_learning_map/index.html

• Cross-validation: evaluating estimator performance: https://scikit-learn.
org/stable/modules/cross_validation.html

https://machinelearningmastery.com/gentle-introduction-gradient-boosting-algorithm-machine-learning/
https://machinelearningmastery.com/gentle-introduction-gradient-boosting-algorithm-machine-learning/
https://datasciblog.github.io/2016/12/27/a-kagglers-guide-to-model-stacking-in-practice/
https://datasciblog.github.io/2016/12/27/a-kagglers-guide-to-model-stacking-in-practice/
https://datasciblog.github.io/2016/12/27/a-kagglers-guide-to-model-stacking-in-practice/
https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/cross_validation.html

Further reading 675

• Decision Trees in Machine Learning: https://towardsdatascience.com/
decision-trees-in-machine-learning-641b9c4e8052

• Ensemble Learning to Improve Machine Learning Results: https://blog.
statsbot.co/ensemble-learning-d1dcd548e936

• Ensemble Methods: https://scikit-learn.org/stable/modules/
ensemble.html

• Feature Engineering Made Easy by Divya Susarla and Sinan Ozdemir: https://
www.packtpub.com/big-data-and-business-intelligence/
feature-engineering-made-easy

• Feature Selection: https://scikit-learn.org/stable/modules/
feature_selection.html#feature-selection

• Gradient Boosting vs Random Forest: https://medium.com/@aravanshad/
gradient-boosting-versus-random-forest-cfa3fa8f0d80

• Hyperparameter Optimization in Machine Learning: https://www.datacamp.
com/community/tutorials/parameter-optimization-machine-
learning-models

• L1 Norms versus L2 Norms: https://www.kaggle.com/residentmario/
l1-norms-versus-l2-norms

• Modern Machine Learning Algorithms: Strengths and Weaknesses: https://
elitedatascience.com/machine-learning-algorithms

• Principal component analysis: https://en.wikipedia.org/wiki/
Principal_component_analysis

• Regularization in Machine Learning: https://towardsdatascience.com/
regularization-in-machine-learning-76441ddcf99a

• The Elements of Statistical Learning by Jerome H. Friedman, Robert Tibshirani, and
Trevor Hastie: https://web.stanford.edu/~hastie/ElemStatLearn/

https://towardsdatascience.com/decision-trees-in-machine-learning-641b9c4e8052
https://towardsdatascience.com/decision-trees-in-machine-learning-641b9c4e8052
https://blog.statsbot.co/ensemble-learning-d1dcd548e936
https://blog.statsbot.co/ensemble-learning-d1dcd548e936
https://scikit-learn.org/stable/modules/ensemble.html
https://scikit-learn.org/stable/modules/ensemble.html
https://www.packtpub.com/big-data-and-business-intelligence/feature-engineering-made-easy
https://www.packtpub.com/big-data-and-business-intelligence/feature-engineering-made-easy
https://www.packtpub.com/big-data-and-business-intelligence/feature-engineering-made-easy
https://scikit-learn.org/stable/modules/feature_selection.html#feature-selection
https://scikit-learn.org/stable/modules/feature_selection.html#feature-selection
mailto:https://medium.com/@aravanshad/gradient-boosting-versus-random-forest-cfa3fa8f0d80
mailto:https://medium.com/@aravanshad/gradient-boosting-versus-random-forest-cfa3fa8f0d80
https://www.datacamp.com/community/tutorials/parameter-optimization-machine-learning-models
https://www.datacamp.com/community/tutorials/parameter-optimization-machine-learning-models
https://www.datacamp.com/community/tutorials/parameter-optimization-machine-learning-models
https://www.kaggle.com/residentmario/l1-norms-versus-l2-norms
https://www.kaggle.com/residentmario/l1-norms-versus-l2-norms
https://elitedatascience.com/machine-learning-algorithms
https://elitedatascience.com/machine-learning-algorithms
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
https://towardsdatascience.com/regularization-in-machine-learning-76441ddcf99a
https://towardsdatascience.com/regularization-in-machine-learning-76441ddcf99a
https://web.stanford.edu/~hastie/ElemStatLearn/

11
Machine Learning

Anomaly Detection
For our final application chapter, we will be revisiting anomaly detection on login
attempts. Let's imagine we work for a company that launched its web application at
the beginning of 2018. This web application has been collecting log events for all login
attempts since it launched. We know the IP address that the attempt was made from, the
result of the attempt, when it was made, and which username was entered. What we don't
know is whether the attempt was made by one of our valid users or a nefarious party.

Our company has been expanding and, since data breaches seem to be in the news every
day, has created an information security department to monitor the traffic. The CEO saw
our rule-based approach to identifying hackers from Chapter 8, Rule-Based Anomaly
Detection, and was intrigued by our initiative, but wants us to move beyond using rules
and thresholds for such a vital task. We have been tasked with developing a machine
learning model for anomaly detection of the login attempts on the web application.

678 Machine Learning Anomaly Detection

Since this will require a good amount of data, we have been given access to all the logs
from January 1, 2018 through December 31, 2018. In addition, the newly formed security
operations center (SOC) will be auditing all this traffic now and will indicate which time
frames contain nefarious users based on their investigations. Since the SOC members are
subject matter experts, this data will be exceptionally valuable to us. We will be able to use
the labeled data they provide to build a supervised learning model for future use; however,
it will take them some time to sift through all the traffic, so we should get started with
some unsupervised learning until they have that ready for us.

In this chapter, we will cover the following topics:

• Exploring the simulated login attempts data

• Utilizing unsupervised methods of anomaly detection

• Implementing supervised anomaly detection

• Incorporating a feedback loop with online learning

Chapter materials
The materials for this chapter can be found at https://github.com/stefmolin/
Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/
ch_11. In this chapter, we will be revisiting attempted login data; however, the
simulate.py script has been updated to allow additional command-line arguments.
We won't be running the simulation this time, but be sure to take a look at the script and
check out the process that was followed to generate the data files and create the database
for this chapter in the 0-simulating_the_data.ipynb notebook. The user_
data/ directory contains the files used for this simulation, but we won't be using them
directly in this chapter.

The simulated log data we will be using for this chapter can be found in the logs/
directory. The logs_2018.csv and hackers_2018.csv files are logs of login
attempts and a record of hacker activity from all 2018 simulations, respectively. Files
with the hackers prefix are treated as the labeled data we will receive from the SOC,
so we will pretend we don't have them initially. The files with 2019 instead of 2018 in
the name are the data from simulating the first quarter of 2019, rather than the full year.
In addition, the CSV files have been written to the logs.db SQLite database. The logs
table contains the data from logs_2018.csv and logs_2019.csv; the attacks
table contains the data from hackers_2018.csv and hackers_2019.csv.

https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/ch_11
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/ch_11
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/ch_11

Chapter materials 679

The parameters of the simulation vary per month, and in most months, the hackers are
varying their IP addresses for each username they attempt to log in with. This will make
our method from Chapter 8, Rule-Based Anomaly Detection, useless because we were
looking for IP addresses with many attempts and high failure rates. If the hackers now
vary their IP addresses, we won't have many attempts associated with them. Therefore,
we won't be able to flag them with that strategy, so we will have to find another way
around this:

Figure 11.1 – Simulation parameters

Important note
The merge_logs.py file contains the Python code to merge the logs from
each of the individual simulations, and run_simulations.sh contains a
Bash script for running the entire process. These are provided for completeness,
but we don't need to use them (or worry about Bash).

Our workflow for this chapter has been split across several notebooks, which are all
preceded by a number indicating their order. Before we have the labeled data, we will
conduct some EDA in the 1-EDA_unlabeled_data.ipynb notebook, and then move
on to the 2-unsupervised_anomaly_detection.ipynb notebook to try out some
unsupervised anomaly detection methods. Once we have the labeled data, we will perform
some additional EDA in the 3-EDA_labeled_data.ipynb notebook, and then move
on to the 4-supervised_anomaly_detection.ipynb notebook for supervised
methods. Finally, we will use the 5-online_learning.ipynb notebook for our
discussion of online learning. As usual, the text will indicate when it is time to switch
between notebooks.

680 Machine Learning Anomaly Detection

Exploring the simulated login attempts data
We don't have labeled data yet, but we can still examine the data to see whether there is
something that stands out. This data is different from the data in Chapter 8, Rule-Based
Anomaly Detection. The hackers are smarter in this simulation—they don't always try as
many users or stick with the same IP address every time. Let's see whether we can come
up with some features that will help with anomaly detection by performing some EDA in
the 1-EDA_unlabeled_data.ipynb notebook.

As usual, we begin with our imports. These will be the same for all notebooks, so it will be
reproduced in this section only:

>>> %matplotlib inline
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> import pandas as pd
>>> import seaborn as sns

Next, we read in the 2018 logs from the logs table in the SQLite database:

>>> import sqlite3

>>> with sqlite3.connect('logs/logs.db') as conn:
... logs_2018 = pd.read_sql(
... """
... SELECT *
... FROM logs
... WHERE
... datetime BETWEEN "2018-01-01" AND "2019-01-01";
... """,
... conn, parse_dates=['datetime'],
... index_col='datetime'
...)

Tip
If the SQLAlchemy package (https://www.sqlalchemy.org/) is
installed in the environment we are working with (as is the case for us), we
have the option of providing the database uniform resource identifier (URI)
for the connection when calling pd.read_sql(), eliminating the need
for the with statement. In our case, this would be sqlite:///logs/
logs.db, where sqlite is the dialect and logs/logs.db is the path
to the file. Note that there are three / characters in a row.

https://www.sqlalchemy.org/

Exploring the simulated login attempts data 681

Our data looks like this:

Figure 11.2 – Login attempt logs for 2018

Our data types will be the same as in Chapter 8, Rule-Based Anomaly Detection, with
the exception of the success column. SQLite doesn't support Boolean values, so this
column was converted to the binary representation of its original form (stored as an
integer) upon writing the data to the database:

>>> logs_2018.dtypes
source_ip object
username object
success int64
failure_reason object
dtype: object

Important note
We are using a SQLite database here because the Python standard library
provides the means to make the connection already (sqlite3). If we want
to use another type of database, such as MySQL or PostgreSQL, we will
need to install SQLAlchemy (and possibly additional packages, depending
on the database dialect). More information can be found at https://
pandas.pydata.org/pandas-docs/stable/user_guide/
io.html#sql-queries. Check the Further reading section at the end of
this chapter for a SQLAlchemy tutorial.

https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#sql-queries
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#sql-queries
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#sql-queries

682 Machine Learning Anomaly Detection

Using the info() method, we see that failure_reason is the only column with nulls.
It is null when the attempt is successful. When looking to build a model, we should also
pay attention to the memory usage of our data. Some models will require increasing the
dimensionality of our data, which can quickly get too large to hold in memory:

>>> logs_2018.info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 38700 entries,
2018-01-01 00:05:32.988414 to 2018-12-31 23:29:42.482166
Data columns (total 4 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 source_ip 38700 non-null object
 1 username 38700 non-null object
 2 success 38700 non-null int64
 3 failure_reason 11368 non-null object
dtypes: int64(1), object(3)
memory usage: 1.5+ MB

Running the describe() method tells us that the most common reason for failure is
providing the wrong password. We can also see that the number of unique usernames
tried (1,797) is well over the number of users in our user base (133), indicating some
suspicious activity. The most frequent IP address made 314 attempts, but since that isn't
even one per day (remember we are looking at the full year of 2018), we can't make any
assumptions:

>>> logs_2018.describe(include='all')
 source_ip username success failure_reason
count 38700 38700 38700.000000 11368
unique 4956 1797 NaN 3
top 168.123.156.81 wlopez NaN error_wrong_password
freq 314 387 NaN 6646
mean NaN NaN 0.706253 NaN
std NaN NaN 0.455483 NaN
min NaN NaN 0.000000 NaN
25% NaN NaN 0.000000 NaN
50% NaN NaN 1.000000 NaN
75% NaN NaN 1.000000 NaN
max NaN NaN 1.000000 NaN

Exploring the simulated login attempts data 683

We can look at the unique usernames with attempted logins per IP address, as in
Chapter 8, Rule-Based Anomaly Detection, which shows us that most of the IP addresses
have a few usernames, but there is at least one with many:

>>> logs_2018.groupby('source_ip')\
... .agg(dict(username='nunique'))\
... .username.describe()
count 4956.000000
mean 1.146287
std 1.916782
min 1.000000
25% 1.000000
50% 1.000000
75% 1.000000
max 129.000000
Name: username, dtype: float64

Let's calculate the metrics per IP address:

>>> pivot = logs_2018.pivot_table(
... values='success', index='source_ip',
... columns=logs_2018.failure_reason.fillna('success'),
... aggfunc='count', fill_value=0
...)
>>> pivot.insert(0, 'attempts', pivot.sum(axis=1))
>>> pivot = pivot\
... .sort_values('attempts', ascending=False)\
... .assign(
... success_rate=lambda x: x.success / x.attempts,
... error_rate=lambda x: 1 - x.success_rate
...)
>>> pivot.head()

684 Machine Learning Anomaly Detection

The top five IP addresses with the most attempts appear to be valid users since they have
relatively high success rates:

Figure 11.3 – Metrics per IP address

Let's use this dataframe to plot successes versus attempts per IP address to see whether
there is a pattern we can exploit to separate valid activity from malicious activity:

>>> pivot.plot(
... kind='scatter', x='attempts', y='success',
... title='successes vs. attempts by IP address',
... alpha=0.25
...)

There appear to be a few points at the bottom that don't belong, but notice the scales on
the axes don't perfectly line up. The majority of the points are along a line that is slightly
less than a 1:1 relationship of attempts to successes. Recall that this chapter's simulation is
more realistic than the one we used in Chapter 8, Rule-Based Anomaly Detection; as such,
if we compare Figure 8.11 to this plot, we can observe that it is much more difficult to
separate valid from malicious activity here:

Figure 11.4 – Scatter plot of successes versus attempts per IP address

Exploring the simulated login attempts data 685

Remember, this is a binary classification problem where we want to find a way to
distinguish between valid user and attacker login activity. We want to build a model that
will learn some decision boundary that separates valid users from attackers. Since valid
users have a higher probability of entering their password correctly, the relationship
between attempts and successes will be closer to 1:1 compared to the attackers. Therefore,
we may imagine the separation boundary looking something like this:

Figure 11.5 – A possible decision boundary

Now, the question is, which of those two groups is the attackers? Well, if more of the IP
addresses are the attackers (since they use different IP addresses for each username they
attempt), then the valid users would be considered outliers, and the attackers would be
considered "inliers" with a box plot. Let's create one to see if that is what is happening:

>>> pivot[['attempts', 'success']].plot(
... kind='box', subplots=True, figsize=(10, 3),
... title='stats per IP address'
...)

686 Machine Learning Anomaly Detection

Indeed, this appears to be what is happening. Our valid users have more successes than
the attackers because they only use 1-3 different IP addresses:

Figure 11.6 – Looking for outliers using metrics per IP address

Clearly, looking at the data like this isn't helping too much, so let's see whether a smaller
granularity can help us. Let's visualize the distributions of attempts, the number of
usernames, and the number of failures per IP address on a minute-by-minute resolution
for January 2018:

>>> from matplotlib.ticker import MultipleLocator

>>> ax = logs_2018.loc['2018-01'].assign(
... failures=lambda x: 1 - x.success
...).groupby('source_ip').resample('1min').agg({
... 'username': 'nunique',
... 'success': 'sum',
... 'failures': 'sum'
... }).assign(
... attempts=lambda x: x.success + x.failures
...).dropna().query('attempts > 0').reset_index().plot(
... y=['attempts', 'username', 'failures'], kind='hist',
... subplots=True, layout=(1, 3), figsize=(20, 3),
... title='January 2018 distributions of minutely stats'
... 'by IP address'
...)
>>> for axes in ax.flatten():
... axes.xaxis.set_major_locator(MultipleLocator(1))

Exploring the simulated login attempts data 687

It looks like most of the IP addresses have just a single username associated with them;
however, some IP addresses also have multiple failures for their attempts:

Figure 11.7 – Distribution of metrics per minute per IP address

Perhaps a combination of unique usernames and failures will give us something that
doesn't rely on the IP address being constant. Let's visualize the number of usernames
with failures per minute over 2018:

>>> logs_2018.loc['2018'].assign(
... failures=lambda x: 1 - x.success
...).query('failures > 0').resample('1min').agg(
... {'username': 'nunique', 'failures': 'sum'}
...).dropna().rename(
... columns={'username': 'usernames_with_failures'}
...).usernames_with_failures.plot(
... title='usernames with failures per minute in 2018',
... figsize=(15, 3)
...).set_ylabel('usernames with failures')

This looks promising; we should definitely be looking into spikes in usernames with
failures. It could be an issue with our website, or something malicious:

Figure 11.8 – Usernames with failures over time

After a thorough exploration of the data we will be working with, we have an idea of what
features we could use when building machine learning models. Since we don't yet have the
labeled data, let's try out some unsupervised models next.

688 Machine Learning Anomaly Detection

Utilizing unsupervised methods of anomaly
detection
If the hackers are conspicuous and distinct from our valid users, unsupervised methods
may prove pretty effective. This is a good place to start before we have labeled data, or
if the labeled data is difficult to gather or not guaranteed to be representative of the full
spectrum we are looking to flag. Note that, in most cases, we won't have labeled data,
so it is crucial that we are familiar with some unsupervised methods.

In our initial EDA, we identified the number of usernames with a failed login attempt in a
given minute as a feature for anomaly detection. We will now test out some unsupervised
anomaly detection algorithms, using this feature as the jumping-off point. Scikit-learn
provides a few such algorithms. In this section, we will look at isolation forest and local
outlier factor; a third method, using a one-class support vector machine (SVM), is in the
Exercises section.

Before we can try out these methods, we need to prepare our training data. Since the
SOC will be sending over the labeled data for January 2018 first, we will use just the
January 2018 minute-by-minute data for our unsupervised models. Our features will be
the day of the week (one-hot encoded), the hour of the day (one-hot encoded), and the
number of usernames with failures. See the Encoding data section in Chapter 9, Getting
Started with Machine Learning in Python, for a refresher on one-hot encoding, if needed.

Let's turn to the 2-unsupervised_anomaly_detection.ipynb notebook and
write a utility function to grab this data easily:

>>> def get_X(log, day):
... """
... Get data we can use for the X
...
... Parameters:
... - log: The logs dataframe
... - day: A day or single value we can use as a
... datetime index slice
...
... Returns:
... A `pandas.DataFrame` object
... """

Utilizing unsupervised methods of anomaly detection 689

... return pd.get_dummies(

... log.loc[day].assign(

... failures=lambda x: 1 - x.success

...).query('failures > 0').resample('1min').agg(

... {'username': 'nunique', 'failures': 'sum'}

...).dropna().rename(

... columns={'username': 'usernames_with_failures'}

...).assign(

... day_of_week=lambda x: x.index.dayofweek,

... hour=lambda x: x.index.hour

...).drop(columns=['failures']),

... columns=['day_of_week', 'hour']

...)

Now, we can grab January and store it in X:

>>> X = get_X(logs_2018, '2018-01')
>>> X.columns
Index(['usernames_with_failures', 'day_of_week_0',
 'day_of_week_1', 'day_of_week_2', 'day_of_week_3',
 'day_of_week_4', 'day_of_week_5', 'day_of_week_6',
 'hour_0', 'hour_1', ..., 'hour_22', 'hour_23'],
 dtype='object')

Isolation forest
The isolation forest algorithm uses splitting techniques to isolate outliers from the rest of
the data; therefore, it can be used for anomaly detection. Under the hood, it is a random
forest where the splits are made on randomly chosen features. A random value of that
feature between its maximum and its minimum is selected to split on. Note that this range
is from the range of the feature at that node in the tree, not the starting data.

690 Machine Learning Anomaly Detection

A single tree in the forest will look something like the following:

Figure 11.9 – Example of a single tree in an isolation forest

Utilizing unsupervised methods of anomaly detection 691

The average length of the path that must be traveled from the top of each tree in the forest
to the leaf containing a given point is used to score a point as an outlier or inlier. The
outliers have much shorter paths, since they will be one of the few on a given side of a split
and have less in common with other points. Conversely, points with many dimensions in
common will take more splits to separate.

Important note
More information on this algorithm can be found at https://scikit-
learn.org/stable/modules/outlier_detection.
html#isolation-forest.

Let's implement an isolation forest with a pipeline that first standardizes our data:

>>> from sklearn.ensemble import IsolationForest
>>> from sklearn.pipeline import Pipeline
>>> from sklearn.preprocessing import StandardScaler

>>> iso_forest_pipeline = Pipeline([
... ('scale', StandardScaler()),
... ('iforest', IsolationForest(
... random_state=0, contamination=0.05
...))
...]).fit(X)

We had to specify how much of the data was expected to be outliers (contamination),
which we estimated to be 5%; this will be difficult to choose since we don't have labeled
data. There is an auto option that will determine a value for us but, in this case, it gives us
no outliers, so it's clear that that value isn't the one we want. In practice, we could perform
a statistical analysis on the data to determine an initial value or consult domain experts.

The predict() method can be used to check whether each data point is an outlier.
Anomaly detection algorithms implemented in scikit-learn typically return 1 or -1
if the point is an inlier or outlier, respectively:

>>> isolation_forest_preds = iso_forest_pipeline.predict(X)
>>> pd.Series(np.where(
... isolation_forest_preds == -1, 'outlier', 'inlier'
...)).value_counts()
inlier 42556
outlier 2001
dtype: int64

https://scikit-learn.org/stable/modules/outlier_detection.html#isolation-forest
https://scikit-learn.org/stable/modules/outlier_detection.html#isolation-forest
https://scikit-learn.org/stable/modules/outlier_detection.html#isolation-forest

692 Machine Learning Anomaly Detection

Since we don't have the labeled data yet, we will come back to evaluate this later; for now,
let's take a look at the second unsupervised algorithm that we will discuss in this chapter.

Local outlier factor
While inliers are typically located in denser regions of the dataset (32-dimensional here),
outliers tend to be located in sparser, more isolated regions with few neighboring points.
The local outlier factor (LOF) algorithm looks for these sparsely populated regions to
identify outliers. It scores all points based on the ratio of the density around each point to
that of its nearest neighbors. Points that are considered normal will have similar densities
to their neighbors; those with few others nearby will be considered abnormal.

Important note
More information on this algorithm can be found at https://scikit-
learn.org/stable/modules/outlier_detection.
html#local-outlier-factor.

Let's build another pipeline, but swap out the isolation forest for LOF. Note that we have
to guess the best value for the n_neighbors parameter, because GridSearchCV has
nothing to score models on if we don't have labeled data. We are using the default value
for this parameter, which is 20:

>>> from sklearn.neighbors import LocalOutlierFactor
>>> from sklearn.pipeline import Pipeline
>>> from sklearn.preprocessing import StandardScaler

>>> lof_pipeline = Pipeline([
... ('scale', StandardScaler()),
... ('lof', LocalOutlierFactor())
...]).fit(X)

Now, let's see how many outliers we have this time. LOF doesn't have a predict()
method, so we have to check the negative_outlier_factor_ attribute of the
LOF object to see the scores of each of the data points we fit it with:

>>> lof_preds = lof_pipeline.named_steps['lof']\
... .negative_outlier_factor_
>>> lof_preds
array([-1.33898756e+10, -1.00000000e+00, -1.00000000e+00, ...,
 -1.00000000e+00, -1.00000000e+00, -1.11582297e+10])

https://scikit-learn.org/stable/modules/outlier_detection.html#local-outlier-factor
https://scikit-learn.org/stable/modules/outlier_detection.html#local-outlier-factor
https://scikit-learn.org/stable/modules/outlier_detection.html#local-outlier-factor

Utilizing unsupervised methods of anomaly detection 693

There is another difference between LOF and isolation forests: the values for the
negative_outlier_factor_ attribute aren't strictly -1 or 1. In fact, they can be
any number—take a look at the first and last values in the previous result, and you'll
see that they are way less than -1. This means we can't use the method we used with
the isolation forest to count the inliers and outliers. Instead, we need to compare the
negative_outlier_factor_ attribute to the offset_ attribute of the LOF model,
which tells us the cutoff value as determined by the LOF model during training (using the
contamination parameter):

>>> pd.Series(np.where(
... lof_preds < lof_pipeline.named_steps['lof'].offset_,
... 'outlier', 'inlier'
...)).value_counts()
inlier 44248
outlier 309
dtype: int64

Now that we have two unsupervised models, we need to compare them to see which one
would be more beneficial to our stakeholders.

Comparing models
LOF indicates fewer outliers than the isolation forest, but perhaps they don't even agree
with each other. As we learned in Chapter 10, Making Better Predictions – Optimizing
Models, we can use the cohen_kappa_score() function from sklearn.metrics to
check their level of agreement:

>>> from sklearn.metrics import cohen_kappa_score

>>> is_lof_outlier = np.where(
... lof_preds < lof_pipeline.named_steps['lof'].offset_,
... 'outlier', 'inlier'
...)
>>> is_iso_outlier = np.where(
... isolation_forest_preds == -1, 'outlier', 'inlier'
...)

>>> cohen_kappa_score(is_lof_outlier, is_iso_outlier)
0.25862517997335677

694 Machine Learning Anomaly Detection

They have a low level of agreement, indicating that it's not so obvious which data points
are anomalies. Without labeled data, however, it really is impossible for us to tell which
one is better. We would have to work with the consumers of the results to determine
which model gives them the most useful data. Thankfully, the SOC has just sent over the
January 2018 labeled data, so we can determine which of our models is better and let them
start using it until we get a supervised model ready.

First, we will read in the labeled data they wrote to the database in the attacks table
and add some columns indicating the minute the attack started, the duration, and when
it ended:

>>> with sqlite3.connect('logs/logs.db') as conn:
... hackers_jan_2018 = pd.read_sql(
... """
... SELECT *
... FROM attacks
... WHERE start BETWEEN "2018-01-01" AND "2018-02-01";
... """, conn, parse_dates=['start', 'end']
...).assign(
... duration=lambda x: x.end - x.start,
... start_floor=lambda x: x.start.dt.floor('min'),
... end_ceil=lambda x: x.end.dt.ceil('min')
...)
>>> hackers_jan_2018.shape
(7, 6)

Note that the SOC only has a single IP address for the ones involved in each attack, so it's
a good thing we aren't relying on that anymore. Instead, the SOC wants us to tell them at
which minute there was suspicious activity so that they can investigate further. Also note
that while the attacks are quick in duration, our minute-by-minute data means we will
trigger many alerts per attack:

Figure 11.10 – Labeled data for evaluating our models

Utilizing unsupervised methods of anomaly detection 695

Using the start_floor and end_ceil columns, we can create a range of datetimes
and can check whether the data we marked as outliers falls within that range. For this,
we will use the following function:

>>> def get_y(datetimes, hackers, resolution='1min'):
... """
... Get data we can use for the y (whether or not a
... hacker attempted a log in during that time).
...
... Parameters:
... - datetimes: The datetimes to check for hackers
... - hackers: The dataframe indicating when the
... attacks started and stopped
... - resolution: The granularity of the datetime.
... Default is 1 minute.
...
... Returns: `pandas.Series` of Booleans.
... """
... date_ranges = hackers.apply(
... lambda x: pd.date_range(
... x.start_floor, x.end_ceil, freq=resolution
...),
... axis=1
...)
... dates = pd.Series(dtype='object')
... for date_range in date_ranges:
... dates = pd.concat([dates, date_range.to_series()])
... return datetimes.isin(dates)

Now, let's find the datetimes in our X data that had hacker activity:

>>> is_hacker = \
... get_y(X.reset_index().datetime, hackers_jan_2018)

We now have everything we need to make a classification report and a confusion matrix.
Since we will be passing in the is_hacker series a lot, we will make some partials to
reduce our typing a bit:

>>> from functools import partial
>>> from sklearn.metrics import classification_report
>>> from ml_utils.classification import confusion_matrix_visual

>>> report = partial(classification_report, is_hacker)

696 Machine Learning Anomaly Detection

>>> conf_matrix = partial(
... confusion_matrix_visual, is_hacker,
... class_labels=[False, True]
...)

Let's start with the classification reports, which indicate that the isolation forest is much
better in terms of recall:

>>> iso_forest_predicts_hacker = isolation_forest_preds == - 1
>>> print(report(iso_forest_predicts_hacker)) # iso. forest
 precision recall f1-score support

 False 1.00 0.96 0.98 44519
 True 0.02 0.82 0.03 38

 accuracy 0.96 44557
 macro avg 0.51 0.89 0.50 44557
weighted avg 1.00 0.96 0.98 44557

>>> lof_predicts_hacker = \
... lof_preds < lof_pipeline.named_steps['lof'].offset_
>>> print(report(lof_predicts_hacker)) # LOF
 precision recall f1-score support

 False 1.00 0.99 1.00 44519
 True 0.03 0.26 0.06 38

 accuracy 0.99 44557
 macro avg 0.52 0.63 0.53 44557
weighted avg 1.00 0.99 1.00 44557

To better understand the results in the classification report, let's create confusion matrices
for our unsupervised methods and place them side-by-side for comparison:

>>> fig, axes = plt.subplots(1, 2, figsize=(15, 5))

>>> conf_matrix(
... iso_forest_predicts_hacker,
... ax=axes[0], title='Isolation Forest'
...)

Utilizing unsupervised methods of anomaly detection 697

>>> conf_matrix(
... lof_predicts_hacker,
... ax=axes[1], title='Local Outlier Factor'
...)

The isolation forest has more true positives and a greater number of false positives
compared to LOF, but it has fewer false negatives:

Figure 11.11 – Confusion matrices for our unsupervised models

The SOC has informed us that false negatives are much more costly than false positives.
However, they would like us to keep false positives in check to avoid bogging down the
team with an excessive number of false alarms. This tells us that recall (the true positive
rate (TPR)) is more valuable than precision as a performance metric. The SOC wants us
to target a recall of at least 70%.

Since we have a very large class imbalance, the false positive rate (FPR) won't be too
informative for us. Remember, the FPR is the ratio of false positives to the sum of false
positives and true negatives (everything belonging to the negative class). Due to the nature
of the attacks being rare, we will have a very large number of true negatives and, therefore,
our FPR will remain very low. Consequently, the secondary metric determined by the
SOC is to attain a precision of 85% or greater.

The isolation forest model exceeds our target recall, but the precision is too low. Since we
were able to obtain some labeled data, we can now use supervised learning to find the
minutes with suspicious activity (note that this won't always be the case). Let's see whether
we can use this extra information to find the minutes of interest more precisely.

698 Machine Learning Anomaly Detection

Implementing supervised anomaly detection
The SOC has finished up labeling the 2018 data, so we should revisit our EDA to make
sure our plan of looking at the number of usernames with failures on a minute resolution
does separate the data. This EDA is in the 3-EDA_labeled_data.ipynb notebook.
After some data wrangling, we are able to create the following scatter plot, which shows
that this strategy does indeed appear to separate the suspicious activity:

Figure 11.12 – Confirming that our features can help form a decision boundary

In the 4-supervised_anomaly_detection.ipynb notebook, we will create some
supervised models. This time we need to read in all the labeled data for 2018. Note that
the code for reading in the logs is omitted since it is the same as in the previous section:

>>> with sqlite3.connect('logs/logs.db') as conn:
... hackers_2018 = pd.read_sql(
... """
... SELECT *
... FROM attacks
... WHERE start BETWEEN "2018-01-01" AND "2019-01-01";
... """, conn, parse_dates=['start', 'end']
...).assign(
... duration=lambda x: x.end - x.start,
... start_floor=lambda x: x.start.dt.floor('min'),
... end_ceil=lambda x: x.end.dt.ceil('min')
...)

Implementing supervised anomaly detection 699

Before we build our models, however, let's create a new function that will create both X
and y at the same time. The get_X_y() function will use the get_X() and get_y()
functions we made earlier, returning both X and y:

>>> def get_X_y(log, day, hackers):
... """
... Get the X, y data to build a model with.
...
... Parameters:
... - log: The logs dataframe
... - day: A day or single value we can use as a
... datetime index slice
... - hackers: The dataframe indicating when the
... attacks started and stopped
...
... Returns:
... X, y tuple where X is a `pandas.DataFrame` object
... and y is a `pandas.Series` object
... """
... X = get_X(log, day)
... y = get_y(X.reset_index().datetime, hackers)
... return X, y

Now, let's make a training set with January 2018 data and a testing set with February 2018
data, using our new function:

>>> X_train, y_train = \
... get_X_y(logs_2018, '2018-01', hackers_2018)
>>> X_test, y_test = \
... get_X_y(logs_2018, '2018-02', hackers_2018)

Important note
While we have a very large class imbalance, we don't jump right to balancing
the training sets. It's crucial to try out the model without premature
optimization. If we build our model and see that it is being affected by the class
imbalance, then we can try those techniques. Remember to be very cautious
with over-/under-sampling techniques, as some make assumptions of the data
that aren't always applicable or realistic. Think about SMOTE—would we really
expect all future attackers to be similar to the ones we have in the data?

700 Machine Learning Anomaly Detection

Let's use this data to build some supervised anomaly detection models. Remember that
the SOC has given us the performance requirements in terms of recall (at least 70%) and
precision (85% or greater), so we will use those metrics to evaluate our models.

Baselining
Our first step will be to build some baseline models, so we know that our machine
learning algorithms are performing better than some simpler models and have predictive
value. We will build two such models:

• A dummy classifier that will predict labels based on the stratification in the data.

• A Naive Bayes model that will predict the labels leveraging Bayes' theorem.

Dummy classifier
A dummy classifier will give us a model that is equivalent to the baseline we have been
drawing on our ROC curves. The results will be poor on purpose. We will never use
this classifier to actually make predictions; rather, we can use it to see whether the
models we are building are better than random guessing strategies. In the dummy module,
scikit-learn provides the DummyClassifier class precisely for this purpose.

Using the strategy parameter, we can specify how the dummy classifier will make its
predictions. Some interesting options are as follows:

• uniform: The classifier will guess each time whether or not the observation
belongs to a hacking attempt.

• most_frequent: The classifier will always predict the most frequent label, which,
in our case, will result in never marking anything as nefarious. This will achieve
high accuracy, but be useless since the minority class is the class of interest.

• stratified: The classifier will use the class distribution from the training data
and maintain that ratio with its guesses.

Let's build a dummy classifier with the stratified strategy:

>>> from sklearn.dummy import DummyClassifier

>>> dummy_model = DummyClassifier(
... strategy='stratified', random_state=0
...).fit(X_train, y_train)
>>> dummy_preds = dummy_model.predict(X_test)

Implementing supervised anomaly detection 701

Now that we have our first baseline model, let's measure its performance for comparisons.
We will be using both the ROC curve and the precision-recall curve to show how the class
imbalance can make the ROC curve optimistic of performance. To reduce typing, we will
once again make some partials:

>>> from functools import partial
>>> from sklearn.metrics import classification_report
>>> from ml_utils.classification import (
... confusion_matrix_visual, plot_pr_curve, plot_roc
...)

>>> report = partial(classification_report, y_test)
>>> roc = partial(plot_roc, y_test)
>>> pr_curve = partial(plot_pr_curve, y_test)
>>> conf_matrix = partial(
... confusion_matrix_visual, y_test,
... class_labels=[False, True]
...)

Recall from our initial discussion of ROC curves in Chapter 9, Getting Started with
Machine Learning in Python, that the diagonal line was random guessing of a dummy
model. If our performance isn't better than this line, our model has no predictive value.
The dummy model we just created is equivalent to this line. Let's visualize the baseline
ROC curve, precision-recall curve, and confusion matrix using subplots:

>>> fig, axes = plt.subplots(1, 3, figsize=(20, 5))
>>> roc(dummy_model.predict_proba(X_test)[:,1], ax=axes[0])
>>> conf_matrix(dummy_preds, ax=axes[1])
>>> pr_curve(
... dummy_model.predict_proba(X_test)[:,1], ax=axes[2]
...)
>>> plt.suptitle('Dummy Classifier with Stratified Strategy')

702 Machine Learning Anomaly Detection

The dummy classifier wasn't able to flag any of the attackers. The ROC curve (TPR versus
FPR) indicates that the dummy model has no predictive value, with an area under the
curve (AUC) of 0.5. Note that the area under the precision-recall curve is nearly zero:

Figure 11.13 – Baselining with a dummy classifier

Since we have a very large class imbalance, the stratified random guessing strategy should
perform horrendously on the minority class and very well on the majority class. We can
observe this by examining the classification report:

>>> print(report(dummy_preds))
 precision recall f1-score support

 False 1.00 1.00 1.00 39958
 True 0.00 0.00 0.00 5

 accuracy 1.00 39963
 macro avg 0.50 0.50 0.50 39963
weighted avg 1.00 1.00 1.00 39963

Naive Bayes
Our last baseline model will be a Naive Bayes classifier. Before we discuss this model, we
need to review a few concepts of probability. The first is conditional probability. When
dealing with two events, A and B, the probability of event A happening given that event B
happened is the conditional probability and is written as P(A|B). When events A and B
are independent, meaning B happening doesn't tell us anything about A happening and
vice versa, P(A|B) is P(A).

Implementing supervised anomaly detection 703

The conditional probability is defined as the joint probability of both A and B occurring
(which is the intersection of these events), written as P(A ∩ B), divided by the probability
of B occurring (provided this is not zero):

This equation can be rearranged as follows:

The joint probability of A ∩ B is equivalent to B ∩ A; therefore, we get the following
equation:

It then follows that we can change the first equation to use conditional probabilities
instead of the joint probability. This gives us Bayes' theorem:

When working with the previous equation, P(A) is referred to as the prior probability,
or initial degree of belief that event A will happen. After accounting for event B occurring,
this initial belief gets updated; this is represented as P(A|B) and is called the posterior
probability. The likelihood of event B given event A is P(B|A). The support that event
B occurring gives to our belief of observing event A is the following:

Let's take a look at an example—say we are building a spam filter, and we find that 10%
of emails are spam. This 10% is our prior, or P(spam). We want to know the probability
an email we just received is spam given that it contains the word free—we want to find
P(spam|free). In order to find this, we need the probability that the word free is in an email
given that it is spam, or P(free|spam), and the probability of the word free being in an
email, or P(free).

𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵)
𝑃𝑃(𝐵𝐵) , 𝑖𝑖𝑖𝑖 𝑃𝑃(𝐵𝐵) ≠ 0

𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) = 𝑃𝑃(𝐴𝐴|𝐵𝐵) × 𝑃𝑃(𝐵𝐵)

𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) = 𝑃𝑃(𝐵𝐵 ∩ 𝐴𝐴) = 𝑃𝑃(𝐵𝐵|𝐴𝐴) × 𝑃𝑃(𝐴𝐴)

𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃(𝐵𝐵|𝐴𝐴) × 𝑃𝑃(𝐴𝐴)
𝑃𝑃(𝐵𝐵)

𝑃𝑃(𝐵𝐵|𝐴𝐴)
𝑃𝑃(𝐵𝐵)

704 Machine Learning Anomaly Detection

Suppose we learned that 12% of emails contained the word free and 20% of the emails that
were determined to be spam contained the word free. Plugging all this into the equation
from before, we see that once we know an email contains the word free, our belief that it is
spam increases from 10% to 16.7%, which is our posterior probability:

Bayes' theorem can be leveraged in a type of classifier called Naive Bayes. Depending
on the assumptions we make of the data, we get a different member of the Naive Bayes
family of classifiers. These models are very fast to train because they make a simplifying
assumption of conditional independence of each pair of the X features, given the y
variable (meaning P(xi|y,x1...xn) is equivalent to P(xi|y)). They are called naive because this
assumption is often incorrect; however, these classifiers have traditionally worked well in
building spam filters.

Let's say we also find multiple dollar signs in the email and the word prescription, and we
want to know the probability of it being spam. While some of these features may depend
on each other, the Naive Bayes model will treat them as conditionally independent. This
means our equation for the posterior probability is now the following:

Suppose we find out that 5% of spam emails contain multiple dollar signs, 55% of spam
emails contain the word prescription, 25% of emails contain multiple dollar signs, and the
word prescription is found in 2% of emails overall. This means that our belief of the email
being spam, given that it has the words free and prescription and multiple dollar signs,
increases from 10% to 91.7%:

Now that we understand the basics of the algorithm, let's build a Naive Bayes classifier.
Note that scikit-learn provides various Naive Bayes classifiers that differ by the
assumed distributions of the likelihoods of the features, which we defined as P(xi|y,x1...xn).
We will use the version that assumes they are normally distributed, GaussianNB:

>>> from sklearn.naive_bayes import GaussianNB
>>> from sklearn.pipeline import Pipeline
>>> from sklearn.preprocessing import StandardScaler

𝑃𝑃(𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎|𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) = 𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓|𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎) × 𝑃𝑃(𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎)
𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) = 0.20 × 0.10

0.12 ≈ 16.7%

𝑃𝑃(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, $$$, 𝑠𝑠𝑓𝑓𝑓𝑓𝑠𝑠𝑝𝑝𝑓𝑓𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) = 𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) × 𝑃𝑃($$$|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) × 𝑃𝑃(𝑠𝑠𝑓𝑓𝑓𝑓𝑠𝑠𝑝𝑝𝑓𝑓𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) × 𝑃𝑃(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) × 𝑃𝑃($$$) × 𝑃𝑃(𝑠𝑠𝑓𝑓𝑓𝑓𝑠𝑠𝑝𝑝𝑓𝑓𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

𝑃𝑃(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, $$$, 𝑠𝑠𝑓𝑓𝑓𝑓𝑠𝑠𝑝𝑝𝑓𝑓𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) = 0.20 × 0.05 × 0.55 × 0.10
0.12 × 0.25 × 0.02 ≈ 91.7%

Implementing supervised anomaly detection 705

>>> nb_pipeline = Pipeline([
... ('scale', StandardScaler()),
... ('nb', GaussianNB())
...]).fit(X_train, y_train)
>>> nb_preds = nb_pipeline.predict(X_test)

We can retrieve the class priors from the model, which, in this case, tells us that the prior
for a minute containing normal activity is 99.91% versus 0.09% for abnormal activity:

>>> nb_pipeline.named_steps['nb'].class_prior_
array([9.99147160e-01, 8.52840182e-04])

Naive Bayes makes a nice baseline model because we don't have to tune any
hyperparameters, and it is quick to train. Let's see how it performs on the test data
(February 2018):

>>> fig, axes = plt.subplots(1, 3, figsize=(20, 5))
>>> roc(nb_pipeline.predict_proba(X_test)[:,1], ax=axes[0])
>>> conf_matrix(nb_preds, ax=axes[1])
>>> pr_curve(
... nb_pipeline.predict_proba(X_test)[:,1], ax=axes[2]
...)
>>> plt.suptitle('Naive Bayes Classifier')

The Naive Bayes classifier finds all five attackers and is above the baseline (the dashed
line) in both the ROC curve and precision-recall curve, meaning this model has some
predictive value:

Figure 11.14 – Performance of the Naive Bayes classifier

706 Machine Learning Anomaly Detection

Unfortunately, we are triggering an enormous quantity of false positives (8,218). For
the month of February, roughly 1 out of every 1,644 attack classifications was indeed
an attack. This has the effect of desensitizing the users of these classifications. They may
choose to always ignore our classifications because they are too noisy and, consequently,
miss a real issue. This trade-off can be captured in the metrics of the classification report:

>>> print(report(nb_preds))
 precision recall f1-score support

 False 1.00 0.79 0.89 39958
 True 0.00 1.00 0.00 5

 accuracy 0.79 39963
 macro avg 0.50 0.90 0.44 39963
weighted avg 1.00 0.79 0.89 39963

While the Naive Bayes classifier outperforms the dummy classifier, it does not meet the
requirements of our stakeholders. Precision rounds to zero for the target class because we
have lots of false positives. Recall is higher than precision because the model is better with
false negatives than false positives (since it isn't very discerning). This leaves the F1 score at
zero. Now, let's try to beat these baseline models.

Logistic regression
Since logistic regression is another simple model, let's try it out next. We used logistic
regression in Chapter 9, Getting Started with Machine Learning in Python, for classification
problems, so we already know how it works. As we learned in Chapter 10, Making Better
Predictions – Optimizing Models, we will use a grid search to find a good value for the
regularization hyperparameter in our desired search space, using recall_macro for
scoring. Remember there is a large cost associated with false negatives, so we are focusing
on recall. The _macro suffix indicates that we want to average the recall between the
positive and negative classes, instead of looking at it overall (due to the class imbalance).

Tip
If we know exactly how much more valuable recall is to us over precision, we
can replace this with a custom scorer made using the make_scorer()
function in sklearn.metrics. The notebook we are working in has an
example.

Implementing supervised anomaly detection 707

When using grid search, warnings from scikit-learn may be printed at each
iteration. Therefore, to avoid having to scroll through all that, we will use the %%capture
magic command to capture everything that would have been printed, keeping our
notebook clean:

>>> %%capture
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.model_selection import GridSearchCV
>>> from sklearn.pipeline import Pipeline
>>> from sklearn.preprocessing import StandardScaler

>>> lr_pipeline = Pipeline([
... ('scale', StandardScaler()),
... ('lr', LogisticRegression(random_state=0))
...])

>>> search_space = {'lr__C': [0.1, 0.5, 1, 2]}

>>> lr_grid = GridSearchCV(
... lr_pipeline, search_space, scoring='recall_macro', cv=5
...).fit(X_train, y_train)

>>> lr_preds = lr_grid.predict(X_test)

Tip
With %%capture, all errors and output will be captured by default. We
have the option of writing --no-stderr to hide errors only and
--no-stdout to hide output only. These go after %%capture; for
example, %%capture --no-stderr.

If we want to hide specific errors, we can use the warnings module, instead.
For example, after importing filterwarnings from the warnings
module, we can run the following to ignore warnings of future deprecations:
filterwarnings('ignore',
 category=DeprecationWarning)

708 Machine Learning Anomaly Detection

Now that we have our logistic regression model trained, let's check on the performance:

>>> fig, axes = plt.subplots(1, 3, figsize=(20, 5))
>>> roc(lr_grid.predict_proba(X_test)[:,1], ax=axes[0])
>>> conf_matrix(lr_preds, ax=axes[1])
>>> pr_curve(lr_grid.predict_proba(X_test)[:,1], ax=axes[2])
>>> plt.suptitle('Logistic Regression Classifier')

This model has no false positives and is much better than the baselines. The ROC curve is
significantly closer to the top-left corner, as is the precision-recall curve to the top-right
corner. Notice that the ROC curve is a bit more optimistic about the performance:

Figure 11.15 – Performance using logistic regression

This model meets the requirements of the SOC. Our recall is at least 70% and our
precision is at least 85%:

>>> print(report(lr_preds))
 precision recall f1-score support

 False 1.00 1.00 1.00 39958
 True 1.00 0.80 0.89 5

 accuracy 1.00 39963
 macro avg 1.00 0.90 0.94 39963
weighted avg 1.00 1.00 1.00 39963

The SOC has given us data for January and February 2019, and they want us to update
our model. Unfortunately, our model has already been trained, so we have the choice of
rebuilding from scratch or ignoring this new data. Ideally, we would build a model with
a feedback loop to incorporate this (and future) new data. In the next section, we will
discuss how to do this.

Incorporating a feedback loop with online learning 709

Incorporating a feedback loop with online
learning
There are some big issues with the models we have built so far. Unlike the data we worked
with in Chapter 9, Getting Started with Machine Learning in Python, and Chapter 10,
Making Better Predictions – Optimizing Models, we wouldn't expect the attacker behavior
to be static over time. There is also a limit to how much data we can hold in memory,
which limits how much data we can train our model on. Therefore, we will now build
an online learning model to flag anomalies in usernames with failures per minute.
An online learning model is constantly getting updated (in near real time via streaming,
or in batches). This allows us to learn from new data as it comes and then get rid of it
(to keep space in memory).

In addition, the model can evolve over time and adapt to changes in the underlying
distribution of the data. We will also be providing our model with feedback as it learns
so that we are able to make sure it stays robust to changes in the hacker behavior over
time. This is called active learning. Not all models in scikit-learn support this
kind of behavior; so, we are limited to the models that offer a partial_fit() method
(models without this need to be trained from scratch with new data).

Tip
Scikit-learn refers to models implementing the partial_fit() method
as incremental learners. More information, including which models support
this, can be found at https://scikit-learn.org/stable/
computing/scaling_strategies.html#incremental-
learning.

Our data is currently being rolled up to the minute and then passed to the model, so
this will be batch learning, not streaming; however, note that if we were to put this into
production, we could update our model each minute, if desired.

Creating the PartialFitPipeline subclass
We saw in Chapter 9, Getting Started with Machine Learning in Python, that the
Pipeline class made streamlining our machine learning processes a cinch, but
unfortunately, we can't use it with the partial_fit() method. To get around this, we
can create our own PartialFitPipeline class, which is a subclass of the Pipeline
class but supports calling partial_fit(). The PartialFitPipeline class is
located in the ml_utils.partial_fit_pipeline module.

https://scikit-learn.org/stable/computing/scaling_strategies.html#incremental-learning
https://scikit-learn.org/stable/computing/scaling_strategies.html#incremental-learning
https://scikit-learn.org/stable/computing/scaling_strategies.html#incremental-learning

710 Machine Learning Anomaly Detection

We simply inherit from sklearn.pipeline.Pipeline and define a single new
method—partial_fit()—which will call fit_transform() on all the steps except
the last one, and partial_fit() on the last step:

from sklearn.pipeline import Pipeline

class PartialFitPipeline(Pipeline):
 """
 Subclass of sklearn.pipeline.Pipeline that supports the
 `partial_fit()` method.
 """

 def partial_fit(self, X, y):
 """
 Run `partial_fit()` for online learning estimators
 when used in a pipeline.
 """
 # for all but last step
 for _, step in self.steps[:-1]: # (name, object) tuples
 X = step.fit_transform(X)

 # grab object from tuple position 1 for partial_fit()
 self.steps[-1][1].partial_fit(X, y)

 return self

Now that we have the PartialFitPipeline class, the last piece that remains is to
select a model capable of online learning.

Stochastic gradient descent classifier
Our logistic regression model performed well—it met the requirements for recall and
precision. However, the LogisticRegression class does not support online learning
because the method it uses to calculate the coefficients is a closed-form solution. We have
the option of using an optimization algorithm, such as gradient descent, to determine the
coefficients instead; this will be capable of online learning.

Incorporating a feedback loop with online learning 711

Rather than use a different incremental learner, we can train a new logistic regression
model with the SGDClassifier class. It uses stochastic gradient descent (SGD) to
optimize the loss function of our choice. For this example, we will be using log loss, which
gives us a logistic regression where the coefficients are found using SGD.

Whereas standard gradient descent optimization looks at all the samples or batches
to estimate the gradient, SGD reduces the computational cost by selecting samples at
random (stochastically). How much the model learns from each sample is determined by
the learning rate, with earlier updates having more of an effect than later ones. A single
iteration of SGD is carried out as follows:

1. Shuffle the training data.

2. For each sample in the training data, estimate the gradient and update the model
with decreasing strength as determined by the learning rate.

3. Repeat step 2 until all samples have been used.

In machine learning, we use epochs to refer to the number of times the full training
set is used. The process of SGD we just outlined is for a single epoch. When we train
for multiple epochs, we repeat the preceding steps for the desired number of epochs,
continuing each time from where we left off.

Now that we understand how SGD works, we are ready to build our model. Here's an
overview of the process we will follow before presenting it to the SOC:

Figure 11.16 – Process for preparing our online learning model

Let's now turn to the 5-online_learning.ipynb notebook to build our online
learning model.

Building our initial model
First, we will use the get_X_y() function to get our X and y training data using the full
year of 2018:

>>> X_2018, y_2018 = get_X_y(logs_2018, '2018', hackers_2018)

Build model
using all of 2018 data

Update model
with January 2019 data

Update model
with February 2019 data

Evaluate model
using January 2019 data

Evaluate model
on February 2019 data

Evaluate model and
present results using

March 2019 data

712 Machine Learning Anomaly Detection

Since we will be updating this model in batches, our test set will always be the data we are
using for our current predictions. After we do so, it will become the training set and be
used to update the model. Let's build our initial model trained on the 2018 labeled data.
Note that the PartialFitPipeline object is created in the same way we create
a Pipeline object:

>>> from sklearn.linear_model import SGDClassifier
>>> from sklearn.preprocessing import StandardScaler
>>> from ml_utils.partial_fit_pipeline import \
... PartialFitPipeline

>>> model = PartialFitPipeline([
... ('scale', StandardScaler()),
... ('sgd', SGDClassifier(
... random_state=10, max_iter=1000,
... tol=1e-3, loss='log', average=1000,
... learning_rate='adaptive', eta0=0.01
...))
...]).fit(X_2018, y_2018)

Our pipeline will first standardize the data, and then pass it to the model. We start
building our model using the fit() method so that we have a good starting point for
our updates with partial_fit() later. The max_iter parameter defines the number
of epochs for the training. The tol parameter (tolerance) specifies when to stop iterating,
which occurs when the loss from the current iteration is greater than the previous
loss minus the tolerance (or we have reached max_iter iterations). We specified
loss='log' to use logistic regression; however, there are many other options for the
loss functions, including the default value of 'hinge' for a linear SVM.

Here, we also passed in a value for the average parameter, telling the SGDClassifier
object to store the coefficients as averages of the results once 1,000 samples have been
seen; note that this parameter is optional and, by default, this won't be calculated.
Examining these coefficients can be achieved as follows:

>>> [(col, coef) for col, coef in
... zip(X_2018.columns, model.named_steps['sgd'].coef_[0])]
[('usernames_with_failures', 0.9415581997027198),
 ('day_of_week_0', 0.05040751530926895),
 ...,
 ('hour_23', -0.02176726532333003)]

Incorporating a feedback loop with online learning 713

Lastly, we passed in eta0=0.01 for our starting learning rate and specified to only
adjust the learning rate when we have failed to improve our loss by the tolerance defined
for a given number of consecutive epochs (learning_rate='adaptive'). This
number of epochs is defined by the n_iter_no_change parameter, which will be 5
(the default), since we aren't setting it explicitly.

Evaluating the model
Since we now have labeled data for January and February 2019, we can evaluate how the
model performs each month. First, we read in the 2019 data from the database:

>>> with sqlite3.connect('logs/logs.db') as conn:
... logs_2019 = pd.read_sql(
... """
... SELECT *
... FROM logs
... WHERE
... datetime BETWEEN "2019-01-01" AND "2020-01-01";
... """,
... conn, parse_dates=['datetime'],
... index_col='datetime'
...)
... hackers_2019 = pd.read_sql(
... """
... SELECT *
... FROM attacks
... WHERE start BETWEEN "2019-01-01" AND "2020-01-01";
... """,
... conn, parse_dates=['start', 'end']
...).assign(
... start_floor=lambda x: x.start.dt.floor('min'),
... end_ceil=lambda x: x.end.dt.ceil('min')
...)

Next, we isolate the January 2019 data:

>>> X_jan, y_jan = get_X_y(logs_2019, '2019-01', hackers_2019)

714 Machine Learning Anomaly Detection

The classification report indicates that this model performs pretty well, but our recall for
the positive class is lower than our target:

>>> from sklearn.metrics import classification_report
>>> print(classification_report(y_jan, model.predict(X_jan)))
 precision recall f1-score support

 False 1.00 1.00 1.00 44559
 True 1.00 0.64 0.78 44

 accuracy 1.00 44603
 macro avg 1.00 0.82 0.89 44603
weighted avg 1.00 1.00 1.00 44603

Remember, our stakeholders have specified we must achieve a recall (TPR) of at least 70%
and a precision of at least 85%. Let's write a function that will show us the ROC curve,
confusion matrix, and precision-recall curve and indicate the region we need to be in as
well as where we currently are:

>>> from ml_utils.classification import (
... confusion_matrix_visual, plot_pr_curve, plot_roc
...)

>>> def plot_performance(model, X, y, threshold=None,
... title=None, show_target=True):
... """
... Plot ROC, confusion matrix, and precision-recall curve.
...
... Parameters:
... - model: The model object to use for prediction.
... - X: The features to pass in for prediction.
... - y: The actuals to evaluate the prediction.
... - threshold: Value to use as when predicting
... probabilities.
... - title: A title for the subplots.
... - show_target: Whether to show the target regions.
...
... Returns:
... Matplotlib `Axes` object.
... """
... fig, axes = plt.subplots(1, 3, figsize=(20, 5))

Incorporating a feedback loop with online learning 715

... # plot each visualization

... plot_roc(y, model.predict_proba(X)[:,1], ax=axes[0])

... confusion_matrix_visual(

... y,

... model.predict_proba(X)[:,1] >= (threshold or 0.5),

... class_labels=[False, True], ax=axes[1]

...)

... plot_pr_curve(

... y, model.predict_proba(X)[:,1], ax=axes[2]

...)

...

... # show the target regions if desired

... if show_target:

... axes[0]\

... .axvspan(0, 0.1, color='lightgreen', alpha=0.5)

... axes[0]\

... .axhspan(0.7, 1, color='lightgreen', alpha=0.5)

... axes[0].annotate(

... 'region with acceptable\nFPR and TPR',

... xy=(0.1, 0.7), xytext=(0.17, 0.65),

... arrowprops=dict(arrowstyle='->')

...)

...

... axes[2]\

... .axvspan(0.7, 1, color='lightgreen', alpha=0.5)

... axes[2].axhspan(

... 0.85, 1, color='lightgreen', alpha=0.5

...)

... axes[2].annotate(

... 'region with acceptable\nprecision and recall',

... xy=(0.7, 0.85), xytext=(0.3, 0.6),

... arrowprops=dict(arrowstyle='->')

...)

...

... # mark the current performance

... tn, fn, fp, tp = \

... [int(x.get_text()) for x in axes[1].texts]

... precision, recall = tp / (tp + fp), tp / (tp + fn)

... fpr = fp / (fp + tn)

...

... prefix = 'current performance' if not threshold \

... else f'chosen threshold: {threshold:.2%}'

716 Machine Learning Anomaly Detection

... axes[0].annotate(

... f'{prefix}\n- FPR={fpr:.2%}'

... f'\n- TPR={recall:.2%}',

... xy=(fpr, recall), xytext=(0.05, 0.45),

... arrowprops=dict(arrowstyle='->')

...)

... axes[2].annotate(

... f'{prefix}\n- precision={precision:.2%}'

... f'\n- recall={recall:.2%}',

... xy=(recall, precision), xytext=(0.2, 0.85),

... arrowprops=dict(arrowstyle='->')

...)

...

... if title: # show the title if specified

... plt.suptitle(title)

...

... return axes

Now, let's call the function to see how we are doing:

>>> axes = plot_performance(
... model, X_jan, y_jan,
... title='Stochastic Gradient Descent Classifier '
... '(Tested on January 2019 Data)'
...)

Notice we are not currently meeting the specifications of our stakeholders; our
performance is not in the target region:

Figure 11.17 – Model performance with a default threshold

Incorporating a feedback loop with online learning 717

Our resulting recall (TPR) is 63.64%, which doesn't meet the goal of 70% or better. By
default, when we use the predict() method, our probability threshold is 50%. If we
are targeting a specific precision/recall or TPR/FPR region, we may have to change the
threshold and use predict_proba() to get the desired performance.

The ml_utils.classification module contains the find_threshold_roc()
and find_threshold_pr() functions, which will help us pick a threshold along
the ROC curve or precision-recall curve, respectively. Since we are targeting a specific
precision/recall region, we will use the latter. This function uses the precision_
recall_curve() function from scikit-learn also, but instead of plotting the
resulting precision and recall data, we use it to select the thresholds that meet our criteria:

from sklearn.metrics import precision_recall_curve

def find_threshold_pr(y_test, y_preds, *, min_precision,
 min_recall):
 """
 Find the threshold to use with `predict_proba()` for
 classification based on the minimum acceptable precision
 and the minimum acceptable recall.

 Parameters:
 - y_test: The actual labels.
 - y_preds: The predicted labels.
 - min_precision: The minimum acceptable precision.
 - min_recall: The minimum acceptable recall.

 Returns: The thresholds that meet the criteria.
 """
 precision, recall, thresholds = \
 precision_recall_curve(y_test, y_preds)

 # precision and recall have one extra value at the end
 # for plotting -- needs to be removed to make a mask
 return thresholds[
 (precision[:-1] >= min_precision) &
 (recall[:-1] >= min_recall)
]

718 Machine Learning Anomaly Detection

Important note
The notebook also shows an example of finding a threshold for a TPR/FPR
goal. Our current target precision/recall happens to give the same threshold as
targeting a TPR (recall) of at least 70% and an FPR of at most 10%.

Let's use this function to find a threshold that meets our stakeholders' specifications.
We take the max of the probabilities that fall in the desired region to pick the least
sensitive of the candidate thresholds:

>>> from ml_utils.classification import find_threshold_pr
>>> threshold = find_threshold_pr(
... y_jan, model.predict_proba(X_jan)[:,1],
... min_precision=0.85, min_recall=0.7
...).max()
>>> threshold
0.0051533333839830974

This result tells us that we can reach the desired precision and recall if we flag results that
have a 0.52% chance of being in the positive class. No doubt this seems like a very low
probability, or that the model isn't sure of itself, but we can think about it this way: if the
model thinks there is even a slight chance that the login activity is suspicious, we want to
know. Let's see how our performance looks using this threshold:

>>> axes = plot_performance(
... model, X_jan, y_jan, threshold=threshold,
... title='Stochastic Gradient Descent Classifier '
... '(Tested on January 2019 Data)'
...)

This threshold gives us a recall of 70.45%, satisfying our stakeholders. Our precision is in
the acceptable range as well:

Figure 11.18 – Model performance using a custom threshold

Incorporating a feedback loop with online learning 719

Using the custom threshold, we have correctly identified another three cases, reducing our
false negatives, which are very costly for the SOC. Here, this improvement didn't come
at the cost of additional false positives, but remember, there is often a trade-off between
reducing false negatives (type II error) and reducing false positives (type I error). In
some cases, we have a very low tolerance for type I errors (the FPR must be very small),
whereas in others, we are more concerned with finding all the positive cases (the TPR
must be high). In information security, we have a low tolerance for false negatives because
they are very costly; therefore, we will move forward with the custom threshold.

Important note
Sometimes, the requirements of a model's performance aren't feasible. It's
important to maintain an open line of communication with stakeholders to
explain the issues and discuss relaxing criteria when necessary.

Updating the model
Continuous updating will help the model adapt to changes in hacker behavior over time.
Now that we have evaluated our January predictions, we can use them to update the
model. To do so, we use the partial_fit() method and the labeled data for January,
which will run a single epoch on the January data:

>>> model.partial_fit(X_jan, y_jan)

Our model has now been updated, so we can test its performance on the February data
now. Let's grab the February data first:

>>> X_feb, y_feb = get_X_y(logs_2019, '2019-02', hackers_2019)

720 Machine Learning Anomaly Detection

February had fewer attacks, but we caught a higher percentage of them (80%):

>>> print(classification_report(
... y_feb, model.predict_proba(X_feb)[:,1] >= threshold
...))
 precision recall f1-score support

 False 1.00 1.00 1.00 40248
 True 1.00 0.80 0.89 10

 accuracy 1.00 40258
 macro avg 1.00 0.90 0.94 40258
weighted avg 1.00 1.00 1.00 40258

Let's look at the performance plots for February to see how they changed:

>>> axes = plot_performance(
... model, X_feb, y_feb, threshold=threshold,
... title='Stochastic Gradient Descent Classifier '
... '(Tested on February 2019 Data)'
...)

Notice the area under the precision-recall curve has increased and more of the curve is in
the target region:

Figure 11.19 – Model performance after one update

Incorporating a feedback loop with online learning 721

Presenting our results
The SOC has finished up the March data. They want us to implement into our model the
feedback they gave on our February predictions, and then make predictions for the March
data for them to review. They will be evaluating our performance on each minute in
March, using the classification report, ROC curve, confusion matrix, and precision-recall
curve. It's time to put our model to the test.

First, we need to update our model for the February data:

>>> model.partial_fit(X_feb, y_feb)

Next, we grab the March data and make our predictions, using a threshold of 0.52%:

>>> X_march, y_march = \
... get_X_y(logs_2019, '2019-03', hackers_2019)
>>> march_2019_preds = \
... model.predict_proba(X_march)[:,1] >= threshold

Our classification report looks good. We have a recall of 76%, a precision of 88%, and
a solid F1 score:

>>> from sklearn.metrics import classification_report
>>> print(classification_report(y_march, march_2019_preds))
 precision recall f1-score support

 False 1.00 1.00 1.00 44154
 True 0.88 0.76 0.81 29

 accuracy 1.00 44183
 macro avg 0.94 0.88 0.91 44183
weighted avg 1.00 1.00 1.00 44183

Now, let's see how the plots look:

>>> axes = plot_performance(
... model, X_march, y_march, threshold=threshold,
... title='Stochastic Gradient Descent Classifier '
... '(Tested on March 2019 Data)'
...)

722 Machine Learning Anomaly Detection

Our AUC for the ROC curve is slightly higher now, while it dropped for the precision-
recall curve:

Figure 11.20 – Model performance after two updates

Further improvements
The SOC is pleased with our results and now wants us to provide predictions each minute.
They have also promised to provide feedback within an hour. We won't implement this
request here, but we will briefly discuss how we could go about this.

We have been using batch processing to update the model each month; however, in order
to provide our stakeholders with what they want, we will need to shorten our feedback
loop by performing the following actions:

• Running predict_proba() on our model every single minute and having
the predictions sent to our stakeholders. This will require setting up a process to
pass the logs one minute at a time to a preprocessing function, and then to the
model itself.

• Delivering the results to our stakeholders via an agreed-upon medium.

• Updating the model with partial_fit() every hour using the feedback we
receive from the stakeholders (once we have determined how to have them share
this information with us).

After the aforementioned actions are implemented, all that remains is for us to put the
model into production and determine the update and prediction frequencies everyone
will be accountable for meeting.

Summary 723

Summary
In practice, detecting attackers isn't easy. Real-life hackers are much savvier than the ones
in this simulation. Attacks are also much less frequent, creating a huge class imbalance.
Building machine learning models that will catch everything just isn't possible. That is
why it is so vital that we work with those who have domain knowledge; they can help us
squeeze some extra performance out of our models by really understanding the data and
its peculiarities. No matter how experienced we become with machine learning, we should
never turn down help from someone who often works with the data in question.

Our initial attempts at anomaly detection were unsupervised while we waited for the
labeled data from our subject matter experts. We tried LOF and isolation forest using
scikit-learn. Once we received the labeled data and performance requirements from
our stakeholders, we determined that the isolation forest model was better for our data.

However, we didn't stop there. Since we had just been given the labeled data, we tried
our hand at supervised methods. We learned how to build baseline models using dummy
classifiers and Naive Bayes. Then, we revisited logistic regression to see whether it
could help us. Our logistic regression model performed well; however, since it used a
closed-form solution to find the coefficients, we were unable to incorporate a feedback
loop without retraining the model from scratch.

This limitation led us to build an online learning model, which is constantly updated.
First, we had to make a subclass to allow pipelines to use the partial_fit() method.
Then, we tried SGD classification with log loss. We were able to train on an entire year of
data at once, and then update our model when we received new labeled data. This allows
the model to adjust to changes in the distributions of the features over time.

In the next chapter, we will recap what we have learned throughout the book and
introduce additional resources for finding data, as well as working with it in Python.

724 Machine Learning Anomaly Detection

Exercises
Complete the following exercises for some practice with the machine learning workflow
and exposure to some additional anomaly detection strategies:

1. A one-class SVM is another model that can be used for unsupervised outlier
detection. Build a one-class SVM with the default parameters, using a pipeline with
a StandardScaler object followed by a OneClassSVM object. Train the model
on the January 2018 data, just as we did for the isolation forest. Make predictions on
that same data. Count the number of inliers and outliers this model identifies.

2. Using the 2018 minutely data, build a k-means model with two clusters after
standardizing the data with a StandardScaler object. With the labeled data in
the attacks table in the SQLite database (logs/logs.db), see whether this
model gets a good Fowlkes-Mallows score (use the fowlkes_mallows_score()
function in sklearn.metrics).

3. Evaluate the performance of a random forest classifier for supervised anomaly
detection. Set n_estimators to 100 and use the remaining defaults, including
the prediction threshold. Train on January 2018 and test on February 2018.

4. The partial_fit() method isn't available with the GridSearchCV class.
Instead, we can use its fit() method with a model that has a partial_fit()
method (or a PartialFitPipeline object) to find the best hyperparameters
in our search space. Then, we can grab the best model from the grid search
(best_estimator_) and use partial_fit() on it. Try this with the
PassiveAggressiveClassifier class from the sklearn.linear_model
module and a PartialFitPipeline object. This online learning classifier is
passive when it makes a correct prediction, but aggressive in correcting itself when
it makes an incorrect prediction. Don't worry about selecting a custom threshold.
Be sure to follow these steps:

a) Run a grid search using the January 2018 data for the initial training.

b) Grab the tuned model with the best_estimator_ attribute.

c) Evaluate the best estimator with the February 2018 data.

d) Make updates with the February 2018 data.

e) Evaluate the final model on March through June 2018 data.

Further reading 725

Further reading
Check out the following resources for more information on the topics covered in this
chapter:

• Deploying scikit-learn Models at Scale: https://towardsdatascience.com/
deploying-scikit-learn-models-at-scale-f632f86477b8

• Local Outlier Factor for Anomaly Detection: https://towardsdatascience.
com/local-outlier-factor-for-anomaly-detection-
cc0c770d2ebe

• Model Persistence (from the scikit-learn user guide): https://scikit-learn.
org/stable/modules/model_persistence.html

• Novelty and Outlier Detection (from the scikit-learn user guide): https://
scikit-learn.org/stable/modules/outlier_detection.html

• Naive Bayes (from the scikit-learn user guide): https://scikit-learn.org/
stable/modules/naive_bayes.html

• Outlier Detection with Isolation Forest: https://towardsdatascience.com/
outlier-detection-with-isolation-forest-3d190448d45e

• Passive Aggressive Algorithm (video explanation): https://www.youtube.com/
watch?v=uxGDwyPWNkU

• Python Context Managers and the "with" Statement: https://blog.ramosly.
com/python-context-managers-and-the-with-statement-
8f53d4d9f87

• Seeing Theory – Chapter 5, Bayesian Inference: https://seeing-theory.
brown.edu/index.html#secondPage/chapter5

• SQLAlchemy — Python Tutorial: https://towardsdatascience.com/
sqlalchemy-python-tutorial-79a577141a91

• Stochastic Gradient Descent (from the scikit-learn user guide): https://scikit-
learn.org/stable/modules/sgd.html

• Strategies to scale computationally: bigger data (from the scikit-learn user guide):
https://scikit-learn.org/stable/computing/scaling_
strategies.html

• Unfair Coin Bayesian Simulation: https://github.com/xofbd/unfair-
coin-bayes

https://towardsdatascience.com/deploying-scikit-learn-models-at-scale-f632f86477b8
https://towardsdatascience.com/deploying-scikit-learn-models-at-scale-f632f86477b8
https://towardsdatascience.com/local-outlier-factor-for-anomaly-detection-cc0c770d2ebe
https://towardsdatascience.com/local-outlier-factor-for-anomaly-detection-cc0c770d2ebe
https://towardsdatascience.com/local-outlier-factor-for-anomaly-detection-cc0c770d2ebe
https://scikit-learn.org/stable/modules/model_persistence.html
https://scikit-learn.org/stable/modules/model_persistence.html
https://scikit-learn.org/stable/modules/outlier_detection.html
https://scikit-learn.org/stable/modules/outlier_detection.html
https://scikit-learn.org/stable/modules/naive_bayes.html
https://scikit-learn.org/stable/modules/naive_bayes.html
https://towardsdatascience.com/outlier-detection-with-isolation-forest-3d190448d45e
https://towardsdatascience.com/outlier-detection-with-isolation-forest-3d190448d45e
https://www.youtube.com/watch?v=uxGDwyPWNkU
https://www.youtube.com/watch?v=uxGDwyPWNkU
https://blog.ramosly.com/python-context-managers-and-the-with-statement-8f53d4d9f87
https://blog.ramosly.com/python-context-managers-and-the-with-statement-8f53d4d9f87
https://blog.ramosly.com/python-context-managers-and-the-with-statement-8f53d4d9f87
https://seeing-theory.brown.edu/index.html#secondPage/chapter5
https://seeing-theory.brown.edu/index.html#secondPage/chapter5
https://towardsdatascience.com/sqlalchemy-python-tutorial-79a577141a91
https://towardsdatascience.com/sqlalchemy-python-tutorial-79a577141a91
https://scikit-learn.org/stable/modules/sgd.html
https://scikit-learn.org/stable/modules/sgd.html
https://scikit-learn.org/stable/computing/scaling_strategies.html
https://scikit-learn.org/stable/computing/scaling_strategies.html
https://github.com/xofbd/unfair-coin-bayes
https://github.com/xofbd/unfair-coin-bayes

Section 5:
Additional
Resources

In this concluding section, we will recap everything we have covered in this book and
provide you with some additional books, web resources, and documentation that you can
use to dive further into various data science topics and practice your skills.

This section comprises the following chapter:

• Chapter 12, The Road Ahead

12
The Road Ahead

Throughout this book, we have covered a lot of material, and you are now capable of
performing data analysis and machine learning tasks entirely in Python. We began our
journey by learning about some introductory statistics and how to set up our environment
for data science in Python. Then, we learned about the basics of using pandas and how
to bring data into Python. With this knowledge, we were able to work with APIs, read
from files, and query databases to grab data for our analyses.

After we collected our data, we learned how to perform data wrangling in order to clean
up our data and get it into a usable format. Next, we learned how to work with time
series and combine data from different sources as well as aggregate it. Once we had
a good handle on data wrangling, we moved on to visualizations and used pandas,
matplotlib, and seaborn to create a variety of plot types, and we also learned how to
customize them.

Armed with this knowledge, we were able to tackle some real-world analyses by looking
at the financial data for bitcoin and the FAANG stocks and trying to detect hackers
attempting to authenticate to a web application. In addition, we learned how to build our
own Python packages, write our own classes, and simulate data.

Finally, we got an introduction to machine learning using scikit-learn. We discussed
how to build model pipelines, taking us from preprocessing the data through to model
fitting. Afterward, we discussed how we can evaluate the performance of our models
and how we can try to improve their performance. Our discussion of machine learning
culminated in using machine learning models to detect hackers attempting to gain access
to a web application through a brute-force attack.

730 The Road Ahead

Now that you have gained all this knowledge, it is important to nurture it so that you
retain it. This means that you must practice every chance you get. This chapter provides
the following resources for continuing your data science journey:

• Resources for finding data on a variety of topics

• Websites and services to practice working with data

• Coding challenges and educational content to improve your Python skills

Data resources
As with any skill, to get better we need to practice, which for us means we need to
find data to practice on. There is no best dataset to practice with; rather, each person
should find data that they are interested in exploring. While this section is by no means
comprehensive, it contains resources for data from various topics in the hopes that
everyone will find something they want to use.

Tip
Unsure of what kind of data to look for? What are some of the things you have
wondered about related to a topic that you find interesting? Has data been
collected on this topic, and can you access it? Let your curiosity guide you.

Python packages
Both seaborn and scikit-learn provide built-in sample datasets that you can
experiment with in order to get more practice with the material we've covered in the
book and to try out new techniques. These datasets are often very clean and thus easy to
work with. Once you're comfortable with the techniques, you can move on to finding data
using the other resources that are mentioned in the following sections, which will be more
representative of real-world data.

Seaborn
Seaborn provides the load_dataset() function, which reads the data from a CSV file
in a small GitHub repository for seaborn data. These datasets are the ones that are used
in the seaborn documentation, so it is important to keep in mind that they may change.
The data can be obtained from the repository directly at https://github.com/
mwaskom/seaborn-data.

https://github.com/mwaskom/seaborn-data
https://github.com/mwaskom/seaborn-data

Data resources 731

Scikit-learn
Scikit-learn includes a datasets module, which can be used to generate random
datasets to test algorithms or to import certain datasets that are popular in the machine
learning community. Be sure to check out the documentation for more information:

• Generating random datasets for machine learning tasks: https://scikit-
learn.org/stable/modules/classes.html#samples-generator

• Loading supported datasets: https://scikit-learn.org/stable/
modules/classes.html#loaders

There is also the fetch_openml() function in the sklearn.datasets module,
which will fetch datasets by name from OpenML (https://www.openml.org/),
which contains many free datasets for machine learning.

Searching for data
The following are a few places you can use to search for data on a variety of topics:

• DataHub: https://datahub.io/search

• Google Dataset Search: https://datasetsearch.research.google.
com/

• Open Data on Amazon Web Services: https://registry.opendata.aws/

• OpenML: https://www.openml.org

• SNAP library of datasets collected by Stanford University: https://snap.
stanford.edu/data/index.html

• UCI Machine Learning Repository: http://archive.ics.uci.edu/ml/
index.php

APIs
We saw how great working with APIs can be for gathering data; the following are some
APIs for gathering data that may be of interest to you:

• Facebook API: https://developers.facebook.com/docs/graph-api

• NOAA Climate Data API: https://www.ncdc.noaa.gov/cdo-web/
webservices/v2

• NYTimes API: https://developer.nytimes.com/

• OpenWeatherMap API: https://openweathermap.org/api

https://scikit-learn.org/stable/modules/classes.html#samples-generator
https://scikit-learn.org/stable/modules/classes.html#samples-generator
https://scikit-learn.org/stable/modules/classes.html#loaders
https://scikit-learn.org/stable/modules/classes.html#loaders
https://www.openml.org/
https://datahub.io/search
https://datasetsearch.research.google.com/
https://datasetsearch.research.google.com/
https://registry.opendata.aws/
https://www.openml.org
https://snap.stanford.edu/data/index.html
https://snap.stanford.edu/data/index.html
http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
https://developers.facebook.com/docs/graph-api
https://www.ncdc.noaa.gov/cdo-web/webservices/v2
https://www.ncdc.noaa.gov/cdo-web/webservices/v2
https://developer.nytimes.com/
https://openweathermap.org/api

732 The Road Ahead

• Twitter API: https://developer.twitter.com/en/docs

• USGS Earthquake API: https://earthquake.usgs.gov/fdsnws/
event/1/

Websites
This section contains selected data resources across various topics that can be accessed
through a website. Obtaining the data for an analysis may be as simple as downloading a
CSV file or it may require parsing HTML with pandas. If you must resort to scraping the
page (make sure you have tried the ways we discussed in this book first), be sure that you
aren't violating the terms of use of the website.

Finance
We worked with finance data several times throughout this book. If you are interested
in further financial analysis, in addition to the pandas_datareader package we
discussed in Chapter 7, Financial Analysis – Bitcoin and the Stock Market, consult the
following resources:

• Google Finance: https://google.com/finance

• NASDAQ historical stock prices: https://www.nasdaq.com/market-
activity/quotes/historical

• Quandl: https://www.quandl.com

• Yahoo! Finance: https://finance.yahoo.com

Government data
Government data is often open to the public. The following resources contain data
provided by some governments:

• European Union open data: http://data.europa.eu/euodp/en/data

• NASA: https://nasa.github.io/data-nasa-gov-frontpage/

• NYC data: https://opendata.cityofnewyork.us/data/

• UK government data: https://data.gov.uk/

• UN data: http://data.un.org/

• US census data: https://census.gov/data.html

• US government data: https://www.data.gov/

https://developer.twitter.com/en/docs
https://earthquake.usgs.gov/fdsnws/event/1/
https://earthquake.usgs.gov/fdsnws/event/1/
https://google.com/finance
https://www.nasdaq.com/market-activity/quotes/historical
https://www.nasdaq.com/market-activity/quotes/historical
https://www.quandl.com
https://finance.yahoo.com
http://data.europa.eu/euodp/en/data
https://nasa.github.io/data-nasa-gov-frontpage/
https://opendata.cityofnewyork.us/data/
https://data.gov.uk/
http://data.un.org/
https://census.gov/data.html
https://www.data.gov/

Data resources 733

Health and economy
Economic, medical, and social data from around the world is available at the following
websites:

• Gapminder: https://www.gapminder.org/data/

• Health Data: https://healthdata.gov/search/type/dataset

• World Health Organization: https://www.who.int/data/gho

The following are additional resources for data on the COVID-19 pandemic:

• Coronavirus (COVID-19) data in the United States (NYTimes): https://
github.com/nytimes/covid-19-data

• COVID-19 data repository by the Center for Systems Science and
Engineering (CSSE) at Johns Hopkins University: https://github.com/
CSSEGISandData/COVID-19

• COVID-19 pandemic (ECDC): https://www.ecdc.europa.eu/en/
covid-19-pandemic

• Open COVID-19 datasets: https://researchdata.wisc.edu/open-
covid-19-datasets/

Social networks
For those interested in text-based data or graph data, check out the following resources on
social networks:

• List of Twitter data resources: https://github.com/shaypal5/awesome-
twitter-data

• Social network data: https://snap.stanford.edu/data/
ego-Facebook.html

Sports
For the sports lover, check out the following websites, which provide databases and web
pages for statistics on all your favorite players:

• Baseball database (practice working with a DB): http://www.seanlahman.
com/baseball-archive/statistics/

• Baseball player statistics: https://www.baseball-reference.com/
players/

https://www.gapminder.org/data/
https://healthdata.gov/search/type/dataset
https://www.who.int/data/gho
https://github.com/nytimes/covid-19-data
https://github.com/nytimes/covid-19-data
https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
https://www.ecdc.europa.eu/en/covid-19-pandemic
https://www.ecdc.europa.eu/en/covid-19-pandemic
https://researchdata.wisc.edu/open-covid-19-datasets/
https://researchdata.wisc.edu/open-covid-19-datasets/
https://github.com/shaypal5/awesome-twitter-data
https://github.com/shaypal5/awesome-twitter-data
https://snap.stanford.edu/data/ego-Facebook.html
https://snap.stanford.edu/data/ego-Facebook.html
http://www.seanlahman.com/baseball-archive/statistics/
http://www.seanlahman.com/baseball-archive/statistics/
https://www.baseball-reference.com/players/
https://www.baseball-reference.com/players/

734 The Road Ahead

• Basketball player statistics: https://www.basketball-reference.com/
players/

• Football (American) player statistics: https://www.pro-football-
reference.com/players/

• Football (soccer) statistics: https://www.whoscored.com/Statistics

• Hockey player statistics: https://www.hockey-reference.com/
players/

Miscellaneous
The following resources vary in topic, but be sure to check these out if nothing has piqued
your interest so far:

• Amazon reviews data: https://snap.stanford.edu/data/web-Amazon.
html

• Data extracted from Wikipedia: https://wiki.dbpedia.org/develop/
datasets

• Google Trends: https://trends.google.com/trends/

• Movies from MovieLens: https://grouplens.org/datasets/
movielens/

• Yahoo Webscope (reference library of datasets): https://webscope.
sandbox.yahoo.com/

Practicing working with data
Throughout this book, we have worked with various datasets from different sources with
step-by-step instructions. It doesn't have to stop here, though. This section is dedicated to
some resources that can be used to continue with guided instruction and, eventually, work
toward building a model for a predefined problem.

Kaggle (https://www.kaggle.com/) offers content for learning data science,
datasets for exploration that are shared by members of the community, and competitions
that have been posted by companies—perhaps the Netflix recommendation contest
sounds familiar (https://www.kaggle.com/netflix-inc/netflix-prize-
data)? These contests are a great way for you to practice your machine learning skills
and become more visible in the community (especially to potential employers).

https://www.basketball-reference.com/players/
https://www.basketball-reference.com/players/
https://www.pro-football-reference.com/players/
https://www.pro-football-reference.com/players/
https://www.whoscored.com/Statistics
https://www.hockey-reference.com/players/
https://www.hockey-reference.com/players/
https://snap.stanford.edu/data/web-Amazon.html
https://snap.stanford.edu/data/web-Amazon.html
https://wiki.dbpedia.org/develop/datasets
https://wiki.dbpedia.org/develop/datasets
https://trends.google.com/trends/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://webscope.sandbox.yahoo.com/
https://webscope.sandbox.yahoo.com/
https://www.kaggle.com/
https://www.kaggle.com/netflix-inc/netflix-prize-data
https://www.kaggle.com/netflix-inc/netflix-prize-data

Python practice 735

Important note
Kaggle isn't the only place you can participate in data science competitions.
Some additional ones are listed at https://towardsdatascience.
com/top-competitive-data-science-platforms-other-
than-kaggle-2995e9dad93c.

DataCamp (https://www.datacamp.com/), while not entirely free, provides various
data science courses in Python. They include instructional videos and fill-in-the-blank
coding practice problems so that you can build up your understanding of the topics.

Python practice
We have seen throughout this book that working with data in Python isn't just pandas,
matplotlib, and numpy; there are many ways our workflow can benefit from us being
strong Python programmers in general. With strong Python skills, we can build web
applications with Flask, make requests of an API, efficiently iterate over combinations
or permutations, and find ways to speed up our code. While this book didn't focus on
honing these skills directly, here are some free resources for practicing with Python and
thinking like a programmer:

• HackerRank: https://www.hackerrank.com

• Codewars: https://www.codewars.com

• LeetCode: https://www.leetcode.com

• CodinGame: https://www.codingame.com

While not free, Python Morsels (https://www.pythonmorsels.com/) provides
weekly Python exercises that will help you learn to write more Pythonic code and get
more familiar with the Python standard library. Exercises vary in difficulty but can be set
to a higher or lower difficulty as needed.

Another great resource is Pramp (https://www.pramp.com), which lets you practice
for a programming interview with a randomly assigned peer. Your peer will interview you
with a random question and evaluate how you approach the interview, your code, and
how well you explain yourself. After 30 minutes, it's your turn to interview your peer.

https://towardsdatascience.com/top-competitive-data-science-platforms-other-than-kaggle-2995e9dad93c
https://towardsdatascience.com/top-competitive-data-science-platforms-other-than-kaggle-2995e9dad93c
https://towardsdatascience.com/top-competitive-data-science-platforms-other-than-kaggle-2995e9dad93c
https://www.datacamp.com/
https://www.hackerrank.com
https://www.codewars.com
https://www.leetcode.com
https://www.codingame.com
https://www.pythonmorsels.com/
https://www.pramp.com

736 The Road Ahead

Khan Academy (https://www.khanacademy.org/) can be a great resource for
learning more about a subject. If you want a primer on computer science algorithms or
some of the mathematics behind machine learning algorithms (such as linear algebra and
calculus), then this is a great place to start.

Lastly, LinkedIn Learning (https://www.linkedin.com/learning/) has
many video courses on a wide range of topics, including Python, data science, and
machine learning. New users get a free month-long trial. Consider taking the Learning
the Python 3 Standard Library course (https://www.linkedin.com/learning/
learning-the-python-3-standard-library) to level up your Python skills;
as we saw throughout this book, a solid command of the standard library helps us write
more concise and efficient code.

Summary
This chapter provided you with many places where you can find datasets across myriad
topics. In addition, you also learned about various websites where you can take courses
and work through tutorials, practice machine learning, and improve your Python skills.
It's important to keep your skills sharp and stay curious, so, for whatever interests you,
look for data and perform your own analyses. These are things you can put on your
GitHub account as your data portfolio.

Thank you for reading this book! I hope you got just as much out of it as these two
data-analyzing pandas.

https://www.khanacademy.org/
https://www.linkedin.com/learning/
https://www.linkedin.com/learning/learning-the-python-3-standard-library
https://www.linkedin.com/learning/learning-the-python-3-standard-library

Exercises 737

Exercises
The exercises in this chapter are open-ended—no solutions are provided. They are meant
to give you some ideas so that you can get started on your own:

1. Practice machine learning classification by participating in the Titanic challenge on
Kaggle at https://www.kaggle.com/c/titanic.

2. Practice machine learning regression techniques by participating in the housing
prices challenge on Kaggle at https://www.kaggle.com/c/house-prices-
advanced-regression-techniques.

3. Perform an analysis on something that interests you. Some interesting ideas include
the following:

a) Predicting likes on Instagram: https://towardsdatascience.com/
predict-the-number-of-likes-on-instagram-a7ec5c020203

b) Analyzing delays of NJ transit trains: https://medium.com/@
pranavbadami/how-data-can-help-fix-nj-transit-
c0d15c0660fe

c) Using visualizations to solve data science problems: https://
towardsdatascience.com/solving-a-data-science-challenge-
the-visual-way-355cfabcb1c5

4. Complete five challenges across any one of the sites in the Python practice section
of this chapter. For example, you can try the following challenges:

a) Finding two numbers that add to a specific sum exactly: https://leetcode.
com/problems/two-sum/

b) Validating credit card numbers: https://www.hackerrank.com/
challenges/validating-credit-card-number/problem

https://www.kaggle.com/c/titanic
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://towardsdatascience.com/predict-the-number-of-likes-on-instagram-a7ec5c020203
https://towardsdatascience.com/predict-the-number-of-likes-on-instagram-a7ec5c020203
mailto:https://medium.com/@pranavbadami/how-data-can-help-fix-nj-transit-c0d15c0660fe
mailto:https://medium.com/@pranavbadami/how-data-can-help-fix-nj-transit-c0d15c0660fe
mailto:https://medium.com/@pranavbadami/how-data-can-help-fix-nj-transit-c0d15c0660fe
https://towardsdatascience.com/solving-a-data-science-challenge-the-visual-way-355cfabcb1c5
https://towardsdatascience.com/solving-a-data-science-challenge-the-visual-way-355cfabcb1c5
https://towardsdatascience.com/solving-a-data-science-challenge-the-visual-way-355cfabcb1c5
https://leetcode.com/problems/two-sum/
https://leetcode.com/problems/two-sum/
https://www.hackerrank.com/challenges/validating-credit-card-number/problem
https://www.hackerrank.com/challenges/validating-credit-card-number/problem

738 The Road Ahead

Further reading
You can consult the following blogs and articles to stay up to date with Python and data
science:

• Armin Ronacher's blog (author of Flask): http://lucumr.pocoo.org/

• Data Science Central: http://www.datasciencecentral.com/

• Data Science Topic on Medium: https://medium.com/topic/data-
science

• Kaggle blog: https://medium.com/kaggle-blog

• KD Nuggets: http://www.kdnuggets.com/websites/blogs.html

• Machine Learning topic on Medium: https://medium.com/topic/machine-
learning

• Planet Python: https://planetpython.org/

• Programming topic on Medium: https://medium.com/topic/programming

• Python tips: http://book.pythontips.com/en/latest/index.html

• Python 3 Module of the Week: https://pymotw.com/3/

• Towards Data Science: https://towardsdatascience.com/

• Trey Hunner's blog (creator of Python Morsels): https://treyhunner.com/
blog/archives/

The following resources contain information for learning how to build custom scikit-
learn classes:

• Building scikit-learn transformers: https://dreisbach.us/articles/
building-scikit-learn-compatible-transformers/

• Creating your own estimator in scikit-learn: http://danielhnyk.cz/
creating-your-own-estimator-scikit-learn/

• Scikit-learn BaseEstimator: https://scikit-learn.org/stable/
modules/generated/sklearn.base.BaseEstimator.html

• Scikit-learn rolling your own estimator: https://scikit-learn.org/
stable/developers/develop.html#developing-scikit-learn-
estimators

• Scikit-learn TransformerMixin: https://scikit-learn.org/stable/
modules/generated/sklearn.base.TransformerMixin.
html#sklearn.base.TransformerMixin

http://lucumr.pocoo.org/
http://www.datasciencecentral.com/
https://medium.com/topic/data-science
https://medium.com/topic/data-science
https://medium.com/kaggle-blog
http://www.kdnuggets.com/websites/blogs.html
https://medium.com/topic/machine-learning
https://medium.com/topic/machine-learning
https://planetpython.org/
https://medium.com/topic/programming
http://book.pythontips.com/en/latest/index.html
https://pymotw.com/3/
https://towardsdatascience.com/
https://treyhunner.com/blog/archives/
https://treyhunner.com/blog/archives/
https://dreisbach.us/articles/building-scikit-learn-compatible-transformers/
https://dreisbach.us/articles/building-scikit-learn-compatible-transformers/
http://danielhnyk.cz/creating-your-own-estimator-scikit-learn/
http://danielhnyk.cz/creating-your-own-estimator-scikit-learn/
https://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html
https://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html
https://scikit-learn.org/stable/developers/develop.html#developing-scikit-learn-estimators
https://scikit-learn.org/stable/developers/develop.html#developing-scikit-learn-estimators
https://scikit-learn.org/stable/developers/develop.html#developing-scikit-learn-estimators
https://scikit-learn.org/stable/modules/generated/sklearn.base.TransformerMixin.html#sklearn.base.TransformerMixin
https://scikit-learn.org/stable/modules/generated/sklearn.base.TransformerMixin.html#sklearn.base.TransformerMixin
https://scikit-learn.org/stable/modules/generated/sklearn.base.TransformerMixin.html#sklearn.base.TransformerMixin

Further reading 739

Cheat sheets for coding with Python's data science stack can be found here:

• Jupyter Notebook Cheat Sheet: https://s3.amazonaws.com/assets.
datacamp.com/blog_assets/Jupyter_Notebook_Cheat_Sheet.pdf

• Jupyter Notebook Keyboard Shortcuts: https://www.cheatography.com/
weidadeyue/cheat-sheets/jupyter-notebook/pdf_bw/

• Matplotlib Cheat Sheet: https://s3.amazonaws.com/assets.datacamp.
com/blog_assets/Python_Matplotlib_Cheat_Sheet.pdf

• NumPy Cheat Sheet: https://s3.amazonaws.com/assets.datacamp.
com/blog_assets/Numpy_Python_Cheat_Sheet.pdf

• Pandas Cheat Sheet: http://pandas.pydata.org/Pandas_Cheat_Sheet.
pdf

• Scikit-Learn Cheat Sheet: https://s3.amazonaws.com/assets.datacamp.
com/blog_assets/Scikit_Learn_Cheat_Sheet_Python.pdf

Cheat sheets for machine learning algorithms, mathematics, probability, and statistics can
be found here:

• Calculus Cheat Sheet: https://ml-cheatsheet.readthedocs.io/en/
latest/calculus.html

• Linear Algebra in 4 Pages: https://minireference.com/static/
tutorials/linear_algebra_in_4_pages.pdf

• Probability and Statistics Cheat Sheet: http://web.mit.edu/~csvoss/
Public/usabo/stats_handout.pdf

• 15 Statistical Hypothesis Tests in Python (Cheat Sheet): https://
machinelearningmastery.com/statistical-hypothesis-tests-
in-python-cheat-sheet/

https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Jupyter_Notebook_Cheat_Sheet.pdf
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Jupyter_Notebook_Cheat_Sheet.pdf
https://www.cheatography.com/weidadeyue/cheat-sheets/jupyter-notebook/pdf_bw/
https://www.cheatography.com/weidadeyue/cheat-sheets/jupyter-notebook/pdf_bw/
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Python_Matplotlib_Cheat_Sheet.pdf
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Python_Matplotlib_Cheat_Sheet.pdf
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Numpy_Python_Cheat_Sheet.pdf
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Numpy_Python_Cheat_Sheet.pdf
http://pandas.pydata.org/Pandas_Cheat_Sheet.pdf
http://pandas.pydata.org/Pandas_Cheat_Sheet.pdf
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Scikit_Learn_Cheat_Sheet_Python.pdf
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Scikit_Learn_Cheat_Sheet_Python.pdf
https://ml-cheatsheet.readthedocs.io/en/latest/calculus.html
https://ml-cheatsheet.readthedocs.io/en/latest/calculus.html
https://minireference.com/static/tutorials/linear_algebra_in_4_pages.pdf
https://minireference.com/static/tutorials/linear_algebra_in_4_pages.pdf
http://web.mit.edu/~csvoss/Public/usabo/stats_handout.pdf
http://web.mit.edu/~csvoss/Public/usabo/stats_handout.pdf
https://machinelearningmastery.com/statistical-hypothesis-tests-in-python-cheat-sheet/
https://machinelearningmastery.com/statistical-hypothesis-tests-in-python-cheat-sheet/
https://machinelearningmastery.com/statistical-hypothesis-tests-in-python-cheat-sheet/

740 The Road Ahead

For additional resources on machine learning algorithms, linear algebra, calculus,
probability, and statistics, you can refer to the following:

• An Interactive Guide to the Fourier Transform: https://betterexplained.
com/articles/an-interactive-guide-to-the-fourier-
transform/

• Introduction to Probability by Joseph Blitzstein and Jessica Hwang: https://www.
amazon.com/Introduction-Probability-Chapman-Statistical-
Science/dp/1138369918

• An Introduction to Statistical Learning by Gareth James, Daniela Witten, Trevor
Hastie, and Robert Tibshirani: https://www.statlearning.com/

• Fourier Transforms (scipy.fft): https://docs.scipy.org/doc/scipy/
reference/tutorial/fft.html

• Find likeliest periodicity for time series with numpy's Fourier Transform?
(StackOverflow question): https://stackoverflow.com/
questions/44803225/find-likeliest-periodicity-for-time-
series-with-numpys-fourier-transform

• Numerical Computing is Fun (GitHub): https://github.com/
eka-foundation/numerical-computing-is-fun

• Probabilistic Programming and Bayesian Methods for Hackers (GitHub): https://
github.com/CamDavidsonPilon/Probabilistic-Programming-and-
Bayesian-Methods-for-Hackers

• Seeing Theory (A visual introduction to probability and statistics): https://
seeing-theory.brown.edu/index.html

• Think Stats: Exploratory Data Analysis in Python: http://greenteapress.
com/thinkstats2/html/index.html

Miscellaneous reading on Python and programming in general can be found here:

• Defining Custom Magics (IPython): https://ipython.readthedocs.io/en/
stable/config/custommagics.html

• Flask Tutorial (Build Web Applications in Python): https://flask.
palletsprojects.com/en/1.1.x/tutorial/

• IPython Tutorial: https://ipython.readthedocs.io/en/stable/
interactive/

• Programming Best Practices: https://thefullstack.xyz/dry-yagni-
kiss-tdd-soc-bdfu

https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/
https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/
https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/
https://www.amazon.com/Introduction-Probability-Chapman-Statistical-Science/dp/1138369918
https://www.amazon.com/Introduction-Probability-Chapman-Statistical-Science/dp/1138369918
https://www.amazon.com/Introduction-Probability-Chapman-Statistical-Science/dp/1138369918
https://www.statlearning.com/
https://docs.scipy.org/doc/scipy/reference/tutorial/fft.html
https://docs.scipy.org/doc/scipy/reference/tutorial/fft.html
https://stackoverflow.com/questions/44803225/find-likeliest-periodicity-for-time-series-with-numpys-fourier-transform
https://stackoverflow.com/questions/44803225/find-likeliest-periodicity-for-time-series-with-numpys-fourier-transform
https://stackoverflow.com/questions/44803225/find-likeliest-periodicity-for-time-series-with-numpys-fourier-transform
https://github.com/eka-foundation/numerical-computing-is-fun
https://github.com/eka-foundation/numerical-computing-is-fun
https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
https://seeing-theory.brown.edu/index.html
https://seeing-theory.brown.edu/index.html
http://greenteapress.com/thinkstats2/html/index.html
http://greenteapress.com/thinkstats2/html/index.html
https://ipython.readthedocs.io/en/stable/config/custommagics.html
https://ipython.readthedocs.io/en/stable/config/custommagics.html
https://flask.palletsprojects.com/en/1.1.x/tutorial/
https://flask.palletsprojects.com/en/1.1.x/tutorial/
https://ipython.readthedocs.io/en/stable/interactive/
https://ipython.readthedocs.io/en/stable/interactive/
https://thefullstack.xyz/dry-yagni-kiss-tdd-soc-bdfu
https://thefullstack.xyz/dry-yagni-kiss-tdd-soc-bdfu

Further reading 741

Relevant MOOCs and videos can be found here:

• Advanced Optimization (Harvard): https://online-learning.harvard.
edu/course/advanced-optimization

• Linear Algebra – Foundations to Frontiers (edX): https://www.edx.org/
course/linear-algebra-foundations-to-frontiers

• Machine Learning (Coursera with Andrew Ng): https://www.coursera.org/
learn/machine-learning

• Mathematics for Machine Learning (Coursera): https://www.coursera.org/
specializations/mathematics-machine-learning

• Statistics 110 (Harvard) on YouTube: https://www.youtube.com/
playlist?list=PL2SOU6wwxB0uwwH80KTQ6ht66KWxbzTIo

• Statistical Learning (Stanford): https://online.stanford.edu/courses/
sohs-ystatslearning-statistical-learning

The following books are helpful for getting experience with many different facets of the
Python language:

• Automate the Boring Stuff with Python by Al Sweigart: https://
automatetheboringstuff.com/

• Learn Python 3 the Hard Way by Zed A. Shaw: https://
learnpythonthehardway.org/python3/preface.html

Python machine learning books and training resources can be found here:

• Hands-on Machine Learning with Scikit-Learn and TensorFlow Jupyter Notebooks:
https://github.com/ageron/handson-ml

• Introduction to Machine Learning with Python: A Guide for Data Scientists
by Andreas C. Müller and Sarah Guido: https://www.amazon.com/
Introduction-Machine-Learning-Python-Scientists/
dp/1449369413

• ML training repositories from scikit-learn core developer
Andreas Müller (training given at conferences): https://
github.com/amueller?tab=repositories&q=ml-
training&type=&language=&sort=

• Python Machine Learning – Third Edition by Sebastian Raschka and Vahid Mirjalili:
https://www.packtpub.com/product/python-machine-learning-
third-edition/9781789955750

https://online-learning.harvard.edu/course/advanced-optimization
https://online-learning.harvard.edu/course/advanced-optimization
https://www.edx.org/course/linear-algebra-foundations-to-frontiers
https://www.edx.org/course/linear-algebra-foundations-to-frontiers
https://www.coursera.org/learn/machine-learning
https://www.coursera.org/learn/machine-learning
https://www.coursera.org/specializations/mathematics-machine-learning
https://www.coursera.org/specializations/mathematics-machine-learning
https://www.youtube.com/playlist?list=PL2SOU6wwxB0uwwH80KTQ6ht66KWxbzTIo
https://www.youtube.com/playlist?list=PL2SOU6wwxB0uwwH80KTQ6ht66KWxbzTIo
https://online.stanford.edu/courses/sohs-ystatslearning-statistical-learning
https://online.stanford.edu/courses/sohs-ystatslearning-statistical-learning
https://automatetheboringstuff.com/
https://automatetheboringstuff.com/
https://learnpythonthehardway.org/python3/preface.html
https://learnpythonthehardway.org/python3/preface.html
https://github.com/ageron/handson-ml
https://www.amazon.com/Introduction-Machine-Learning-Python-Scientists/dp/1449369413
https://www.amazon.com/Introduction-Machine-Learning-Python-Scientists/dp/1449369413
https://www.amazon.com/Introduction-Machine-Learning-Python-Scientists/dp/1449369413
https://github.com/amueller?tab=repositories&q=ml-training&type=&language=&sort=
https://github.com/amueller?tab=repositories&q=ml-training&type=&language=&sort=
https://github.com/amueller?tab=repositories&q=ml-training&type=&language=&sort=
https://www.packtpub.com/product/python-machine-learning-third-edition/9781789955750
https://www.packtpub.com/product/python-machine-learning-third-edition/9781789955750

742 The Road Ahead

The following resources introduce the concepts of bias and fairness in machine learning
models as well as tools for mitigating bias:

• AI Fairness 360 (IBM): https://developer.ibm.com/technologies/
artificial-intelligence/projects/ai-fairness-360/

• Weapons of Math Destruction by Cathy O'Neil: https://www.amazon.
com/Weapons-Math-Destruction-Increases-Inequality/
dp/0553418815

• What-If Tool (Google): https://pair-code.github.io/what-if-tool/

Resources for getting started with interactive and animated visualizations can be found
here:

• Getting Started with Holoviews: https://coderzcolumn.com/tutorials/
data-science/getting-started-with-holoviews-basic-plotting

• How to Create Animated Graphs in Python: https://towardsdatascience.
com/how-to-create-animated-graphs-in-python-bb619cc2dec1

• Interactive Data Visualization in Python with Bokeh: https://realpython.
com/python-data-visualization-bokeh/

• PyViz Tutorial: https://pyviz.org/tutorials/index.html

https://developer.ibm.com/technologies/artificial-intelligence/projects/ai-fairness-360/
https://developer.ibm.com/technologies/artificial-intelligence/projects/ai-fairness-360/
https://www.amazon.com/Weapons-Math-Destruction-Increases-Inequality/dp/0553418815
https://www.amazon.com/Weapons-Math-Destruction-Increases-Inequality/dp/0553418815
https://www.amazon.com/Weapons-Math-Destruction-Increases-Inequality/dp/0553418815
https://pair-code.github.io/what-if-tool/
https://coderzcolumn.com/tutorials/data-science/getting-started-with-holoviews-basic-plotting
https://coderzcolumn.com/tutorials/data-science/getting-started-with-holoviews-basic-plotting
https://towardsdatascience.com/how-to-create-animated-graphs-in-python-bb619cc2dec1
https://towardsdatascience.com/how-to-create-animated-graphs-in-python-bb619cc2dec1
https://realpython.com/python-data-visualization-bokeh/
https://realpython.com/python-data-visualization-bokeh/

Solutions
Solutions for each chapter's exercises can be found at https://github.com/
stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/
master/solutions in their respective folders.

https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/solutions
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/solutions
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition/tree/master/solutions

Appendix

Data analysis workflow
The following diagram depicts a generalized data analysis workflow from data collection
and processing through drawing conclusions and deciding next steps:

Figure 1 – Generalized data analysis workflow

Data

Collect data EDA +
Data Wrangling Get more data?

Yes

Draw conclusionsNo

Communicate
results

746 Appendix

Choosing the appropriate visualization
When creating a data visualization, it is paramount that we select an appropriate plot type;
the following diagram can be used to help select the proper visualization:

Figure 2 – Flow chart for choosing an appropriate visualization

Data

What do we want to
visualize?

Line plot

KDE

Scatter plot
Hexbin

or
Swarm plot

Do the points overlap?

Trends and evolution over time

Relationships
between variables

No Yes

Histogram

ECDF

Box plot
or

Violin plot

Bar plot
or

Stacked bar plot

Counts and frequencies

Binned (discretized) distribution

Estimate continuous distribution

Estimate cumulative probabilities
and percentiles

Median, IQR, and potential outliers

How many variables?

2

Scatter matrix / pairplot
or

Correlation heatmap
many

Interpolate?

Bar plot
or

Stacked bar plot

Yes

No

Machine learning workflow 747

Machine learning workflow
The following diagram summarizes the workflow for building machine learning models
from data collection and data analysis through training and evaluating the model:

Figure 3 – Overview of the process of building a machine learning model

Data

Collect data EDA +
Data Wrangling Get more data?

Yes

Draw conclusions

Communicate
results

No

Build model?No

Split data Training data

Testing data Preprocess Grid search

Build model
Build model

Build model

Test on validation
setTest on validation

setTest on validation
set

Finished cross
validation?

Best estimatorBuild new model?Evaluate model on
unseen data

Report findings /
publish model

Training data No

YesYes

No

Testing data

Yes

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
http://www.packt.com

750 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Python Data Analysis, Third Edition

Avinash Navlani, Armando Fandango, Ivan Idris

ISBN: 978-1-78995-524-8

• Explore data science and its various process models

• Perform data manipulation using NumPy and pandas for aggregating, cleaning,
and handling missing values

• Create interactive visualizations using Matplotlib, Seaborn, and Bokeh

• Retrieve, process, and store data in a wide range of formats

• Understand data preprocessing and feature engineering using pandas and
scikit-learn

https://www.packtpub.com/product/python-data-analysis-third-edition/9781789955248

Why subscribe? 751

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

Tarek Amr

ISBN: 978-1-83882-604-8

• Understand when to use supervised, unsupervised, or reinforcement learning
algorithms

• Find out how to collect and prepare your data for machine learning tasks

• Tackle imbalanced data and optimize your algorithm for a bias or variance tradeoff

• Apply supervised and unsupervised algorithms to overcome various machine
learning challenges

• Employ best practices for tuning your algorithm's hyper parametersAttack web and
database servers to exfiltrate data

• Discover how to use neural networks for classification and regression

• Build, evaluate, and deploy your machine learning solutions to production

https://www.packtpub.com/product/hands-on-machine-learning-with-scikit-learn-and-scientific-python-toolkits/9781838826048

752 Other Books You May Enjoy

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

http://authors.packtpub.com
http://authors.packtpub.com

Index

Symbols
5-number summary 18

A
abstract method 422
accuracy 603
active learning 709
aggregations, per group

calculating 231-237
alpha 33, 452
Anscombe's quartet

about 26
reference link 28

application programming
interfaces (APIs) 7, 731

area under the curve (AUC) 609, 702
area under the precision-recall

curve (AUPR) 612
area under the receiver operating

characteristic curve (AUROC) 609
ARIMA model

about 468-470
comparing 472-475

artificial intelligence (AI) 539
AssetGroupAnalyzer class 454-456

astronomical units (AUs) 586
autocorrelation plots 317
autoregressive integrated moving average

autoregressive (ARIMA) models 31
average precision (AP) 614

B
bagging 653
base condition 134
baseline models

building 700
dummy classifier 700-702
Naive Bayes 702-706

bear market 453
Bernoulli trial 22
Bessels correction

reference link 15
beta 437
bias-variance trade-off 653
binary search 132
binning 213
bitwise AND operator (&) 91
bitwise negation operator (~) 94
bitwise OR operator (|) 92
Boolean masks 90

754 Index

boosting 653
bootstrap aggregation 653
bootstrapping 318
bootstrap plots 318, 319
bootstrap sample 12
box plot 19
bull market 453

C
Calinski and Harabasz score 583
candlestick plot 425
categorical 145
centroid 573, 579
chaining 85
classification

about 541, 595
results, evaluating 599

classification metrics
about 603
accuracy and error rate 603, 604
F score 607
precision and recall 604-606
sensitivity and specificity 608

classification prediction confidence
inspecting 658-662
over-sampling 666-668
under-sampling 665, 666

class imbalance
about 604
addressing 663, 664

class methods 405
clustering

about 541, 572, 573
results, evaluating 582, 583

coefficient of determination 591
coefficient of variation (CV) 17, 457
colormaps 375-383

common distributions 22, 23
compare() method 157
conda module 37-39
conditional probability 702
confusion matrix 526, 600-603
context manager 70
contour plot 337
correlation 24
covariance 24
Create, Read, Update, and

Delete (CRUD) 195
cross tab

generating 237-241
cross-validation 627
cross-validation classes

reference link 630
cumulative distribution function

(CDF) 21, 297
curse of dimensionality 633
cyclical component 30

D
data

adding 98
additional transformers 567-570
centering 560, 561
creating 99-106
deleting 107-110
encoding 562-565
imputing 565-567
preprocessing 557
removing 98
scaling 23, 24, 560, 561
sets, testing 557-560
sets, training 557-560
summarizing 18-22
working with 734, 735

Index 755

data aggregation, with pandas and Numpy
about 228, 229
by group 231-237
DataFrames, summarizing 230, 231
pivot table and crosstab,

generating 237-241
data analysis fundamentals

about 6, 7
data collection 7
data wrangling 8
drawing conclusions 10, 11
exploratory data analysis (EDA) 9, 10

database-style operations
performing, on DataFrames 195, 196

DataCamp
reference link 735

data cleaning
about 118, 119, 138
data, reindexing 147-160
data, reordering 147-160
data, sorting 147-160
renaming columns 139, 140
type conversion 140-146

data collection 7
data enhancing, with original data

aggregating 127
binning 127
new columns, adding 126
resampling 127

data enrichment 126, 127
DataFrame object

data, describing 77-81
data, examining 74-77
data, summarizing 77-81
inspecting 74

DataFrame operations
arithmetic and statistics 210-212
binning 213-217

functions, applying 217-220
pipes 225-228
using, to enrich data 209
window calculations 220

DataFrames
database-style operations,

performing 195, 196
merging 198-209
querying 197, 198
summarizing 230, 231

data issues
mitigating 179-189

data leakage 570
data manipulation 118
data pipelines

building 570, 571
data reshaping

about 160, 162
DataFrames, melting 169-172
DataFrames, pivoting 163-169
DataFrames, transposing 162

data resources
about 730
accessing, through websites 732
Python packages 730
searching for 731

data resources, accessing through websites
about 732
finance 732
government data 732
health and economy 733
miscellaneous 734
social networks 733
sports 733

data subsets
columns, selecting 82-84
filtering 90-97
grabbing 81

756 Index

indexing 87-90
slicing 85-87

data transformation
about 119, 120
long data format 123-126
wide data format 120, 122

data wrangling
about 8, 9, 118
issues 8

data wrangling process
data cleaning 118, 119
data enrichment 126, 127
data transformation 119, 120

Davies-Bouldin score 583
decision trees 649
decorators 405
deep copy 98
deep learning 541
dependent variable 29
descriptive statistics

about 12
common distributions 22, 23
data, scaling 23
data, summarizing 18-22
measure of central tendency 13
measures of spread 15
summary statistics 26, 27
variables relationships 26
variables relationships,

quantifying 24, 25
dimensionality reduction 633, 637
discretizing 213
diversification 459
drawing conclusions 10, 11
dummy classifier

about 700
options 700

dummy variables 563
duplicate data

handling 172, 173

E
Elastic net regression 669
elbow point method 576
empirical cumulative distribution

function (ECDF) 22, 293
engineering notation 359
ensemble methods

about 653
gradient boosting 655, 656
random forest 653, 654
voting 656-658

entity recognition problem 101
epochs 711
error rate 604
exceptions 500
exoplanets data 550-556
exploratory data analysis (EDA)

about 6, 9, 10, 49, 413-418, 503-515, 543
exoplanets data 550-556
multiple assets, visualizing 439-445
planets data 550-556
red wine chemical properties

data 547-549
red wine quality data 543-546
stock, visualizing 424-438
Visualizer class family 418-424
white wine chemical properties

data 547-549
exponential distribution 22
exponentially weighted moving

average (EWMA) 224, 434
eXtensible Markup Language (XML) 538
extrapolation 30

Index 757

F
Facebook, Apple, Amazon, Netflix,

and Google (FAANG) 412
false alarm rate 527
false discovery rate (FDR) 527
false negative rate (FNR) 528
false omission rate (FOR) 528
false positive rate (FPR) 527, 697
feature construction 633
feature creation 633
feature engineering

about 633
dimensionality reduction 637-647
feature importances 649-652
feature unions 647-649
interaction terms and polynomial

features 634-636
feature engineering process 126
feature extraction 633
feature importances 649
feature selection 633
feature_selection module

reference link 638
feature transformation 633
feedback loop

incorporating, with online
learning model 709

filter() method 97
financial data

collecting 401
financial instruments, technical analysis

about 446
AssetGroupAnalyzer class 454, 456
AssetGroupAnalyzer class, used, for

comparing assests 457-460
StockAnalyzer class 446-454

Fowlkes Mallows Index 582
f-strings 128
full outer join 204

G
generator 382
generator expressions 384
Global Historical Climatology Network

- Daily (GHCND) 117
gradient 655
gradient boosting 655, 656
gradient descent 584, 655
Graphviz software

download link 650
greedy learners 649
grid search 625

H
harmonic mean 607
heteroskedastic 470
hierarchical index 164
historical data

collecting, from Yahoo! Finance 410-413
used, for modeling performance 460

homoskedasticity 470
HTTP methods

reference link 71
HTTP Status Codes

reference link 129
hyperparameter

about 625
tuning, with grid search 625-632

hyperplane 664

758 Index

I
imputation 186
incremental learners

reference link 709
independent variable 29
indicator variables 563
inferential statistics 32, 33
inner join 200
instance methods 405
integrated development

environment (IDE) 38
interaction terms 634
interpolation 30
interquartile range (IQR) 17, 522
invalid data

handling 172, 173
IPython

reference link 51
isolation forest algorithm

about 689-692
reference link 691

iterables 340
iterator 340

J
JavaScript Object Notation (JSON) 67
join 198
joint probability 703
Jupyter

URL 44
JupyterLab

URL 44
Jupyter Notebooks

about 40
JupyterLab, closing 43, 44

JupyterLab, launching 41
virtual environment, validating 42, 43

K
Kaggle

reference link 734
keras

reference link 542
kernel 42
kernel density estimate (KDE)

19, 293, 330, 660
k-fold cross-validation 627
Khan Academy

URL 736
k-means

about 573
centroids, interpreting 579-582
cluster space, visualizing 579-582
determining, with elbow point

method 576-579
planets, grouping by orbit

characteristics 574-576
k-nearest neighbors (k-NN) 560, 663
kurtosis 21

L
L1 regularization 669
L2 regularization 668
lag plot 315-317
lambda functions 103, 144
LASSO regression 669
left join 202
linear regression

about 584
equation, interpreting 586, 587
metrics 591-595

Index 759

planet orbit period, predicting 585
predictions, creating 587, 588
residuals, analyzing 589, 590
results, evaluating 589
with statsmodels 471, 472

LinkedIn Learning
URL 736

local outlier factor (LOF) algorithm
about 692, 693
reference link 692

login_attempt_simulator package
LoginAttemptSimulator class 489-496

login attempts simulation
from command line 496-503

logistic regression
about 596, 706-708
red wine quality, predicting 597, 598
wine type by chemical properties,

determining 598, 599
long data format 119, 123-126

M
machine learning

about 539
common tasks 541
in Python 542
overview 539, 540
types 540

matplotlib
about 263
additional options 274, 275
basics 264-270
plot components 271-274
plots, formatting with 347

mean 13
mean absolute error (MAE) 594, 631
mean squared error (MSE) 594

measures of central tendency
about 13
mean 13
median 13, 14
mode 14

measures of spread
about 15
coefficient of variation (CV) 17
interquartile range (IQR) 17
quartile coefficient of dispersion 18
range 15
standard deviation 16
variance 15

median 13, 14
median absolute error 595
meta-learning 646
method parameter

bfill method 156
ffill method 156
nearest method 156

min-max scaling 23
missing data

handling 172, 173
miss rate 528
mode 14
model classes 542
model tuning 625
module 397
modulo operator (%) 384
multicollinearity 564
multiple linear regression 584

N
Naive Bayes 702-706
National Oceanic and Atmospheric

Administration (NOAA) 117

760 Index

natural language processing
(NLP) 102, 557

negative class 599
Nelson rules 530
neural networks 541
NOT 94
Not a Number (NaN) 77
np.where() method 158
Numpy

data, aggregating with 228, 230

O
OHLC data 152
one-hot encoding 563
online learning model

about 709
used, for incorporating

feedback loop 709
ordinal encoding 562
ordinary least squares (OLS) 584
out-of-bag samples 653
overfitting 633
over-sampling 663, 666-668

P
package 397
pandas

counts and frequencies 302-311
data, aggregating with 228, 230
distribution 293-302
evolution 278-285
need for 40
plotting with 276, 278
variables, relationship between 285-292

Pandas DataFrame
creating 59, 60
creating, from API 70-73
creating, from database 68-70
creating, from file 64-68
creating, from Python object 60-64

Pandas data structure
about 49-53
DataFrame class 56, 58
index class 55, 56
series class 53, 54

pandas.plotting module
about 311, 312
autocorrelation plots 317
bootstrap plots 318, 319
lag plot 315-317
scatter matrices 312-315

pandas-profiling package
reference link 543

PartialFitPipeline subclass
creating 709, 710

partials 489
Pearson correlation coefficient 24
PEP 8, style guide for Python code

reference link 403
performance, modeling with

historical data
about 460
ARIMA model 468-470
ARIMA model, comparing 472-475
linear regression, with

statsmodels 471, 472
StockModeler class 461-467
time series, decomposition 467, 468

pivot point 447
pivot table

generating 237-241

Index 761

planets data 550-556
plots, formatting with matplotlib

about 347
axes, formatting 355-362
labels 347-350
legends 350-354
legends, formatting 355
titles 347-350

Poisson distribution 22
polynomial features 634
positive class 599
posterior probability 703
pprint module

reference link 131
Pramp

reference link 735
precision 604
precision-recall curve 612, 614-616
preprocessing 557
preprocessing classes

reference link 561
principal component analysis (PCA) 638
prior probability 703
private methods 423
probability density function

(PDF) 20, 297, 493
probability mass function (PMF) 22, 493
problematic data

finding 173-179
Prompt Assessment of Global Earthquakes

for Response (PAGER) 80
Python

machine learning 542
packages 542
resources, for practicing with 735, 736

Pythonic way 384
Python Morsels

reference link 735

Python package
about 730
building 396
installing 39
scikit-learn 731
seaborn 730
stock_analysis package,

overview 398, 399
structure 397, 398
UML diagrams 399, 400

pytorch
reference link 542

Q
quartile coefficient of dispersion 18

R
random forest 653, 654
random variable 21
range 15
raw string 94
README file

URL 398
recall 605
Receiver Operating Characteristic

(ROC) curve 609-612
recursive implementation 134
red, green, blue, alpha (RGBA) 375
red wine chemical properties

data 547-549
red wine quality data 543-546
regression 28, 541, 584
regression metrics

reference link 595
regressors 584
regular expressions (regex) 94

762 Index

regularization 668, 669
reindex() method 160
reinforcement learning 540
resampling 12
residuals 339, 589
ridge regression 668
right join 202
root mean squared error (RMSE) 594
R-squared (R2) 591
rug plot 660
rule-based anomaly detection

implementing 515, 516
percent difference 517-522
performance, evaluating 525-530
Tukey fence, using 522, 523
Z-scores, calculating 524, 525

S
sampling, methods

reference link 12
scatter matrices 312-315
scikit-learn

reference link 542
SciPy

reference link 542
seaborn, utilizing for advanced plotting

about 325, 326
categorical data 326-331
correlations 331-339
faceting 345, 346
heatmaps, generating 331-339
regression plots 340-344

seasonality component 30
semi-quartile range 18
semi-supervised learning 541
sensitivity 608
set difference 208

set operations 207
shallow copy 98
Sharpe ratio 454
silhouette coefficient 582
simple linear regression 584
simulated login attempts data

exploring 680-687
sklearn.cluster module

reference link 573
slicing 85
sort_values() method 176
specificity 608
splitter classes

reference link 630
SQL queries

reference link 681
stacking 653
standard deviation 16
static methods 419
statistical foundations

about 11
descriptive statistics 12
inferential statistics 32, 33
prediction and forecasting 28-31
sampling 12

statsmodels
linear regression with 471, 472
reference link 542

stochastic gradient descent
(SGD) classifier

about 710, 711
improvements 722
model, building 712-719
model, updating 719, 720
results, presenting 721, 722

stock_analysis package
overview 398, 399

StockAnalyzer class 446-454

Index 763

StockModeler class 461-467
StockReader class 401-409
string methods

reference link 85
Structured Query Language (SQL) 69, 196
summary statistics 26, 27
supervised anomaly detection

baseline models, building 700
implementing 698, 699
logistic regression 706-708

supervised learning 540
support vector machine

(SVM) 595, 664-688
swarm plot 328
Synthetic Minority Over-sampling

Technique (SMOTE) 666

T
temperature data

collecting, via weather API 127-138
finding, via weather API 127-138

tensorflow
reference link 542

time series data
differenced data, calculating 249
merging 254-256
resampling 250-254
shifting, for lagged data 248, 249
time-based selection and

filtering 242-248
working with 241

time series decomposition 30
traditional implementation 134
training sets 625
transpose 162
trend component 30
true positive rate (TPR) 605, 697

Tukey box plot 19
Tukey fence

using 522, 523
type I errors 600
type II errors 600

U
UML diagrams 399, 400
under-sampling 663-666
Unified Modeling Language (UML) 399
uniform distribution 22
uniform resource identifier (URI) 680
union 209
univariate statistics 12
unsupervised anomaly detection

isolation forest 689-692
local outlier factor (LOF)

algorithm 692, 693
methods, utilizing 688, 689
models, comparing 693-697

unsupervised learning 540

V
validation sets 625
variables relationships

quantifying 24-26
variance 15
Variance Ratio Criterion 583
vectorized operations 157
venv module

about 35
for Linux 36, 37
for macOS 36, 37
for Windows 36
reference link 36

764 Index

virtual environment
about 34
conda module 37-39
Jupyter Notebooks 40
pandas, need for 40
Python packages, installing 39
setting up 34
venv module 35

visualization customization
about 362, 363
annotations 371-373
color scheme, selecting 373-375
conditional coloring 383, 384
reference lines, adding 363-368
regions, shading 368-371
textures 385-387

visualizations
customizing 362

Visualizer class family 418-424
voting 656-658

W
weather API

exploring, to find and collect
temperature data 127-138

web scraping 401
Western Electric rules 530
white wine chemical properties

data 547-549
wide data format 119-122
windows

expanding 223, 224
exponentially weighted moving

average (EWMA) 224
rolling 220-222

Y
Yahoo! Finance

historical data, collecting from 410-413

Z
Zen of Python 385
Z-score 23

	Cover
	Title Page
	Copyright and Credits
	Dedicated
	Foreword to the Second Edition
	Foreword to the First Edition
	Contributors
	Table of Contents
	Preface
	Section 1:
Getting Started with Pandas
	Chapter 1: Introduction to Data Analysis
	Chapter materials
	The fundamentals of data analysis
	Data collection
	Data wrangling
	Exploratory data analysis
	Drawing conclusions

	Statistical foundations
	Sampling
	Descriptive statistics
	Prediction and forecasting
	Inferential statistics

	Setting up a virtual environment
	Virtual environments
	Installing the required Python packages
	Why pandas?
	Jupyter Notebooks

	Summary
	Exercises
	Further reading

	Chapter 2: Working with Pandas DataFrames
	Chapter materials
	Pandas data structures
	Series
	Index
	DataFrame

	Creating a pandas DataFrame
	From a Python object
	From a file
	From a database
	From an API

	Inspecting a DataFrame object
	Examining the data
	Describing and summarizing the data

	Grabbing subsets of the data
	Selecting columns
	Slicing
	Indexing
	Filtering

	Adding and removing data
	Creating new data
	Deleting unwanted data

	Summary
	Exercises
	Further reading

	Section 2:
Using Pandas for Data Analysis
	Chapter 3: Data Wrangling with Pandas
	Chapter materials
	Understanding data wrangling
	Data cleaning
	Data transformation
	Data enrichment

	Exploring an API to find and collect temperature data
	Cleaning data
	Renaming columns
	Type conversion
	Reordering, reindexing, and sorting data

	Reshaping data
	Transposing DataFrames
	Pivoting DataFrames
	Melting DataFrames

	Handling duplicate, missing, or invalid data
	Finding the problematic data
	Mitigating the issues

	Summary
	Exercises
	Further reading

	Chapter 4: Aggregating Pandas DataFrames
	Chapter materials
	Performing database-style operations on DataFrames
	Querying DataFrames
	Merging DataFrames

	Using DataFrame operations to enrich data
	Arithmetic and statistics
	Binning
	Applying functions
	Window calculations
	Pipes

	Aggregating data
	Summarizing DataFrames
	Aggregating by group
	Pivot tables and crosstabs

	Working with time series data
	Time-based selection and filtering
	Shifting for lagged data
	Differenced data
	Resampling
	Merging time series

	Summary
	Exercises
	Further reading

	Chapter 5: Visualizing Data with Pandas and Matplotlib
	Chapter materials
	An introduction to matplotlib
	The basics
	Plot components
	Additional options

	Plotting with pandas
	Evolution over time
	Relationships between variables
	Distributions
	Counts and frequencies

	The pandas.plotting module
	Scatter matrices
	Lag plots
	Autocorrelation plots
	Bootstrap plots

	Summary
	Exercises
	Further reading

	Chapter 6: Plotting with Seaborn and Customization Techniques
	Chapter materials
	Utilizing seaborn for advanced plotting
	Categorical data
	Correlations and heatmaps
	Regression plots
	Faceting

	Formatting plots with matplotlib
	Titles and labels
	Legends
	Formatting axes

	Customizing visualizations
	Adding reference lines
	Shading regions
	Annotations
	Colors
	Textures

	Summary
	Exercises
	Further reading

	Section 3:
Applications –
Real-World Analyses Using Pandas
	Chapter 7: Financial Analysis – Bitcoin and the Stock Market
	Chapter materials
	Building a Python package
	Package structure
	Overview of the stock_analysis package
	UML diagrams

	Collecting financial data
	The StockReader class
	Collecting historical data from Yahoo! Finance

	Exploratory data analysis
	The Visualizer class family
	Visualizing a stock
	Visualizing multiple assets

	Technical analysis of financial instruments
	The StockAnalyzer class
	The AssetGroupAnalyzer class
	Comparing assets

	Modeling performance using historical data
	The StockModeler class
	Time series decomposition
	ARIMA
	Linear regression with statsmodels
	Comparing models

	Summary
	Exercises
	Further reading

	Chapter 8: Rule-Based Anomaly Detection
	Chapter materials
	Simulating login attempts
	Assumptions
	The login_attempt_simulator package
	Simulating from the command line

	Exploratory data analysis
	Implementing rule-based anomaly detection
	Percent difference
	Tukey fence
	Z-score
	Evaluating performance

	Summary
	Exercises
	Further reading

	Section 4:
Introduction to Machine Learning with Scikit-Learn
	Chapter 9: Getting Started
with Machine Learning in Python
	Chapter materials
	Overview of the machine learning landscape
	Types of machine learning
	Common tasks
	Machine learning in Python

	Exploratory data analysis
	Red wine quality data
	White and red wine chemical properties data
	Planets and exoplanets data

	Preprocessing data
	Training and testing sets
	Scaling and centering data
	Encoding data
	Imputing
	Additional transformers
	Building data pipelines

	Clustering
	k-means
	Evaluating clustering results

	Regression
	Linear regression
	Evaluating regression results

	Classification
	Logistic regression
	Evaluating classification results

	Summary
	Exercises
	Further reading

	Chapter 10: Making Better Predictions – Optimizing Models
	Chapter materials
	Hyperparameter tuning with grid search
	Feature engineering
	Interaction terms and polynomial features
	Dimensionality reduction
	Feature unions
	Feature importances

	Ensemble methods
	Random forest
	Gradient boosting
	Voting

	Inspecting classification prediction confidence
	Addressing class imbalance
	Under-sampling
	Over-sampling

	Regularization
	Summary
	Exercises
	Further reading

	Chapter 11: Machine Learning Anomaly Detection
	Chapter materials
	Exploring the simulated login attempts data
	Utilizing unsupervised methods of anomaly detection
	Isolation forest
	Local outlier factor
	Comparing models

	Implementing supervised anomaly detection
	Baselining
	Logistic regression

	Incorporating a feedback loop with online learning
	Creating the PartialFitPipeline subclass
	Stochastic gradient descent classifier

	Summary
	Exercises
	Further reading

	Section 5:
Additional Resources
	Chapter 12: The Road Ahead
	Data resources
	Python packages
	Searching for data
	APIs
	Websites

	Practicing working with data
	Python practice
	Summary
	Exercises
	Further reading

	Solutions
	Appendix
	About Packt
	Other Books You May Enjoy
	Index

