

PRACTICAL DEEP LEARNING
A Python-Based Introduction

by Ronald T. Kneusel

San Francisco

PRACTICAL DEEP LEARNING. Copyright © 2021 by Ronald T. Kneusel.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage or
retrieval system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-7185-0074-7 (print)
ISBN-13: 978-1-7185-0075-4 (ebook)

Publisher: William Pollock
Executive Editor: Barbara Yien
Production Editor: Dapinder Dosanjh
Developmental Editor: Alex Freed
Cover Illustration: Gina Redman
Interior Design: Octopod Studios
Technical Reviewer: Paul Nord
Copyeditor: Chris Cartwright
Proofreader: Sharon Wilkey

The following images are reproduced with permission. Figure 4-2: the middle image is licensed
under the Creative Commons Attribution 2.0 Generic license
(https://commons.wikimedia.org/wiki/File:Border_Collie_liver_portrait.jpg) and the right image is
licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license
(https://commons.wikimedia.org/wiki/File:Lynn-red_merle_Aussie_12_Months.jpg)

For information on book distributors or translations, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data
Names: Kneusel, Ronald T., author.
Title: Practical deep learning : a python-based introduction / Ronald T. Kneusel.
Description: First edition. | San Francisco, CA : No Starch Press, Inc.,
 [2021] | Includes index.
Identifiers: LCCN 2020035097 (print) | LCCN 2020035098 (ebook) | ISBN
 9781718500747 (paperback) | ISBN 9781718500754 (ebook)
Subjects: LCSH: Machine learning. | Python (Computer program language)
Classification: LCC Q325.5 .K55 2021 (print) | LCC Q325.5 (ebook) | DDC 006.3/1–dc23
LC record available at https://lccn.loc.gov/2020035097
LC ebook record available at https://lccn.loc.gov/2020035098

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc.
Other product and company names mentioned herein may be the trademarks of their respective

https://commons.wikimedia.org/wiki/File:Border_Collie_liver_portrait.jpg
https://commons.wikimedia.org/wiki/File:Lynn-red_merle_Aussie_12_Months.jpg
mailto:info@nostarch.com
http://www.nostarch.com/
https://lccn.loc.gov/2020035097
https://lccn.loc.gov/2020035098

owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we are
using the names only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch Press, Inc.
shall have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in it.

For my children: David, Peter, Paul, Monica, Joseph, and Francis.

About the Author

Ron Kneusel has been working with machine learning in industry since
2003 and completed a PhD in machine learning from the University of
Colorado, Boulder, in 2016. He currently works for L3Harris Technologies,
Inc. Ron has two other books, both available from Springer: Numbers and
Computers, and Random Numbers and Computers.

About the Technical Reviewer

Paul Nord works for the Valparaiso University Department of Physics and
Astronomy as a technical specialist and research assistant. He is a 1991
graduate from Valparaiso University with a degree in physics. He also
earned a master’s degree in analytics and modeling from VU in 2017. Paul
has worked on numerous machine learning projects, including the Disk
Detective Collaboration, a Faculty Learning Community discussion group,
and an art show using Google Deep Dream. Paul’s other activities include
science outreach programs for kids of all ages.

BRIEF CONTENTS

Foreword
Acknowledgments
Introduction
Chapter 1: Getting Started
Chapter 2: Using Python
Chapter 3: Using NumPy
Chapter 4: Working with Data
Chapter 5: Building Datasets
Chapter 6: Classical Machine Learning
Chapter 7: Experiments with Classical Models
Chapter 8: Introduction to Neural Networks
Chapter 9: Training a Neural Network
Chapter 10: Experiments with Neural Networks
Chapter 11: Evaluating Models
Chapter 12: Introduction to Convolutional Neural Networks
Chapter 13: Experiments with Keras and MNIST
Chapter 14: Experiments with CIFAR-10
Chapter 15: A Case Study: Classifying Audio Samples
Chapter 16: Going Further
Index

CONTENTS IN DETAIL

FOREWORD

ACKNOWLEDGMENTS

INTRODUCTION
Who Is This Book For?
What Can You Expect to Learn?
About This Book

1
GETTING STARTED
The Operating Environment

NumPy
scikit-learn
Keras with TensorFlow

Installing the Toolkits
Basic Linear Algebra

Vectors
Matrices
Multiplying Vectors and Matrices

Statistics and Probability
Descriptive Statistics
Probability Distributions
Statistical Tests

Graphics Processing Units
Summary

2
USING PYTHON
The Python Interpreter

Statements and Whitespace
Variables and Basic Data Structures

Representing Numbers
Variables
Strings
Lists
Dictionaries

Control Structures
if-elif-else Statements
for Loops
while Loops
break and continue Statements
with Statement
Handling Errors with try-except Blocks

Functions
Modules
Summary

3
USING NUMPY
Why NumPy?

Arrays vs. Lists
Testing Array and List Speed

Basic Arrays
Defining an Array with np.array
Defining Arrays with 0s and 1s

Accessing Elements in an Array
Indexing into an Array
Slicing an Array
The Ellipsis

Operators and Broadcasting
Array Input and Output
Random Numbers
NumPy and Images

Summary

4
WORKING WITH DATA
Classes and Labels
Features and Feature Vectors

Types of Features
Feature Selection and the Curse of Dimensionality

Features of a Good Dataset
Interpolation and Extrapolation
The Parent Distribution
Prior Class Probabilities
Confusers
Dataset Size

Data Preparation
Scaling Features
Missing Features

Training, Validation, and Test Data
The Three Subsets
Partitioning the Dataset
k-Fold Cross Validation

Look at Your Data
Searching for Problems in the Data
Cautionary Tales

Summary

5
BUILDING DATASETS
Irises
Breast Cancer
MNIST Digits
CIFAR-10
Data Augmentation

Why Should You Augment Training Data?

Ways to Augment Training Data
Augmenting the Iris Dataset
Augmenting the CIFAR-10 Dataset

Summary

6
CLASSICAL MACHINE LEARNING
Nearest Centroid
k-Nearest Neighbors
Naïve Bayes
Decision Trees and Random Forests

Recursion Primer
Building Decision Trees
Random Forests

Support Vector Machines
Margins
Support Vectors
Optimization
Kernels

Summary

7
EXPERIMENTS WITH CLASSICAL MODELS
Experiments with the Iris Dataset

Testing the Classical Models
Implementing a Nearest Centroid Classifier

Experiments with the Breast Cancer Dataset
Two Initial Test Runs
The Effect of Random Splits
Adding k-fold Validation
Searching for Hyperparameters

Experiments with the MNIST Dataset
Testing the Classical Models
Analyzing Runtimes

Experimenting with PCA Components
Scrambling Our Dataset

Classical Model Summary
Nearest Centroid
k-Nearest Neighbors
Naïve Bayes
Decision Trees
Random Forests
Support Vector Machines

When to Use Classical Models
Handling Small Datasets
Dealing with Reduced Computational Requirements
Having Explainable Models
Working with Vector Inputs

Summary

8
INTRODUCTION TO NEURAL NETWORKS
Anatomy of a Neural Network

The Neuron
Activation Functions
Architecture of a Network
Output Layers
Representing Weights and Biases

Implementing a Simple Neural Network
Building the Dataset
Implementing the Neural Network
Training and Testing the Neural Network

Summary

9
TRAINING A NEURAL NETWORK
A High-Level Overview
Gradient Descent

Finding Minimums
Updating the Weights

Stochastic Gradient Descent
Batches and Minibatches
Convex vs. Nonconvex Functions
Ending Training
Updating the Learning Rate
Momentum

Backpropagation
Backprop, Take 1
Backprop, Take 2

Loss Functions
Absolute and Mean Squared Error Loss
Cross-Entropy Loss

Weight Initialization
Overfitting and Regularization

Understanding Overfitting
Understanding Regularization
L2 Regularization
Dropout

Summary

10
EXPERIMENTS WITH NEURAL NETWORKS
Our Dataset
The MLPClassifier Class
Architecture and Activation Functions

The Code
The Results

Batch Size
Base Learning Rate
Training Set Size
L2 Regularization
Momentum

Weight Initialization
Feature Ordering
Summary

11
EVALUATING MODELS
Definitions and Assumptions
Why Accuracy Is Not Enough
The 2 × 2 Confusion Matrix
Metrics Derived from the 2 × 2 Confusion Matrix

Deriving Metrics from the 2 × 2 Table
Using Our Metrics to Interpret Models

More Advanced Metrics
Informedness and Markedness
F1 Score
Cohen’s Kappa
Matthews Correlation Coefficient
Implementing Our Metrics

The Receiver Operating Characteristics Curve
Gathering Our Models
Plotting Our Metrics
Exploring the ROC Curve
Comparing Models with ROC Analysis
Generating an ROC Curve
The Precision–Recall Curve

Handling Multiple Classes
Extending the Confusion Matrix
Calculating Weighted Accuracy
Multiclass Matthews Correlation Coefficient

Summary

12
INTRODUCTION TO CONVOLUTIONAL NEURAL NETWORKS
Why Convolutional Neural Networks?

Convolution
Scanning with the Kernel
Convolution for Image Processing

Anatomy of a Convolutional Neural Network
Different Types of Layers
Passing Data Through the CNN

Convolutional Layers
How a Convolution Layer Works
Using a Convolutional Layer
Multiple Convolutional Layers
Initializing a Convolutional Layer

Pooling Layers
Fully Connected Layers
Fully Convolutional Layers
Step by Step
Summary

13
EXPERIMENTS WITH KERAS AND MNIST
Building CNNs in Keras

Loading the MNIST Data
Building Our Model
Training and Evaluating the Model
Plotting the Error

Basic Experiments
Architecture Experiments
Training Set Size, Minibatches, and Epochs
Optimizers

Fully Convolutional Networks
Building and Training the Model
Making the Test Images
Testing the Model

Scrambled MNIST Digits
Summary

14
EXPERIMENTS WITH CIFAR-10
A CIFAR-10 Refresher
Working with the Full CIFAR-10 Dataset

Building the Models
Analyzing the Models

Animal or Vehicle?
Binary or Multiclass?
Transfer Learning
Fine-Tuning a Model

Building Our Datasets
Adapting Our Model for Fine-Tuning
Testing Our Model

Summary

15
A CASE STUDY: CLASSIFYING AUDIO SAMPLES
Building the Dataset

Augmenting the Dataset
Preprocessing Our Data

Classifying the Audio Features
Using Classical Models
Using a Traditional Neural Network
Using a Convolutional Neural Network

Spectrograms
Classifying Spectrograms

Initialization, Regularization, and Batch Normalization
Examining the Confusion Matrix

Ensembles
Summary

16
GOING FURTHER
Going Further with CNNs

Reinforcement Learning and Unsupervised Learning
Generative Adversarial Networks
Recurrent Neural Networks
Online Resources
Conferences
The Book
So Long and Thanks for All the Fish

INDEX

FOREWORD

Since the dawn of the modern digital era, scientists and engineers have
taken inspiration from the human brain to imagine how massively parallel
networks of simple neuron-like processors might learn and adapt from
experience. There have been waves of excitement in this topic as new
mathematical methods were developed. In 1958, Frank Rosenblatt proposed
a learning device called the Perceptron, which had the amazing property
that it could learn any task that one could program it by hand to perform.
The enthusiasm for this device vanished when Marvin Minsky and
Seymour Papert performed a careful analysis showing limitations on what
the device could be programmed to do, both in principle and in practice.

In the late 1980s, cognitive scientist David Rumelhart, along with
Geoffrey Hinton and Ronald Williams, proposed a learning algorithm called
back propagation that had the potential to overcome the limitations
identified by Minsky and Papert. Impressive demonstrations of the
algorithm, such as a text-to-speech system called NetTalk, led to another
surge of interest in neural networks. This time, enthusiasm in the field was
dampened when the algorithm did not seem to scale up to handle larger
problems.

Over the next 20 years, computers got faster, datasets got larger, and
new software tools made it easier to build neural networks. With these
developments, much larger models became feasible. The field was
rechristened deep learning, and a new generation of practitioners were able
to tackle problems on a scale that was previously unimaginable.

Although history suggests that we will once again hit a wall with
modern deep learning, the field has proven that it can solve difficult,
practical, high-impact problems. From voice-controlled assistants to
human-expert-level diagnosis of medical images to autonomous vehicles to
myriad other behind-the-scenes applications, our lives have been
transformed. The deep learning revolution is upon us, and the future holds
untold promises of capabilities yet to come.

One might think that such advanced technology is beyond the
understanding of most of us, but the underlying principles are quite

understandable and accessible. Indeed, the academic grandparents of the
deep learning revolution were psychologists by training. A standard desktop
computer with open source software tools is adequate to explore the ideas
and concepts in this textbook. With a modest investment in hardware
upgrades (notably, a graphics processing unit, or GPU), the computer
becomes what would have been considered a supercomputer a decade ago,
enabling sophisticated research and implementation.

Dr. Kneusel is an expert in image processing and has over 15 years of
industry experience with machine learning. He wrote Practical Deep
Learning to make the field approachable to novices and hobbyists. With no
assumption of background knowledge, it starts at the beginning. It shows
how to build a dataset that will be useful for training a successful deep
learning model. It then explores classical machine learning algorithms with
the intent of grounding the methods that led to the deep learning revolution.

Practical Deep Learning provides not only a solid conceptual
foundation but also the practical guidance readers will appreciate to design
their own projects and solutions. It addresses how to tune and evaluate the
performance of a machine learning model via the standards of current
practice. Throughout the book, intuition is emphasized. Practical knowledge
builds on intuition.

Practical Deep Learning also serves as a springboard to help launch
you on to more advanced treatments of the methods and algorithms. The
last four chapters dive into convolutional neural networks, a workhorse of
supervised deep learning. The experiments in these chapters use standard
datasets familiar to all those who work in the field. These chapters
culminate in a case study, an example of how to approach a problem, from a
dataset to evaluating a predictive model.

No book is complete. Practical Deep Learning is an introduction. The
final chapter of the book points you toward what you may want to
investigate next as you continue your journey into the deep learning
revolution. Enjoy the exploration.

Michael C. Mozer, PhD
Professor, Department of Computer Science and

Institute of Cognitive Science
University of Colorado, Boulder

Research Scientist
Google Research

Mountain View, California

ACKNOWLEDGMENTS

“I am not I in myself alone, but only in all others.”
As this quote from David Bentley Hart states, we are only ourselves in

relation to all others. This is true in every area of our lives, including, even,
in the writing of books.

First, I’d like to thank my family for their patience and encouragement
to help me see this project through.

Next, I want to thank my editor, No Starch’s very excellent and easy-to-
work-with Ms. Alex Freed, who turned a mass of rough text into a flowing
and coherent book. The same is to be said of Mr. Paul Nord, who saved me
from my foolish errors and ensured that what I claim is true, is true. Any
remaining errors are on me for not listening to Paul’s suggestions.

Finally, I want to thank all the good folks at No Starch Press for
believing in the book and helping it to become a reality.

INTRODUCTION

When I was in high school, I wanted to write a tic-tac-toe program that the
user would play against a computer. At the time, I was blissfully unaware of
how real computer scientists approached such a problem. I had only my
own thoughts, and those were to implement a lot of rules using the crude if-
then statements and gotos supported by unstructured Applesoft BASIC. It
was a lot of rules—a few hundred lines’ worth.

In the end, the program worked well enough, until I found the sequence
of moves that my rules didn’t cover and was able to win every time. I felt
certain that there must be a way to teach a computer how to do things by
showing it examples instead of brute-force code and rules—a way to make
the computer learn on its own.

As an undergraduate student in the later 1980s, I was excited to sign up
for a course in artificial intelligence. The course finally answered my
question about how to write a tic-tac-toe playing program, but the computer
wasn’t learning; it was still just using a clever algorithm. Incidentally, the
same course assured us that while it was expected that someday a computer
would beat the world’s best chess player, which happened in 1997, it was
impossible for a computer to beat the best human at a game like Go. In
March 2016, the AlphaGo deep learning program did just that.

In 2003, while working as a consultant for a scientific computing
company, I was assigned to a project with a major medical device
manufacturer. The goal was to classify, in real time, intravascular
ultrasound images of coronary arteries by using machine learning: a

subfield of artificial intelligence that learns from data on its own,
developing models that were not explicitly programmed by a human. This
was what I was waiting for!

I was vaguely aware of machine learning and that there were strange
beasts called neural networks that could do some interesting things, but for
the most part, machine learning was simply a small research area and not
something the average computer science person paid much attention to.
However, during the project, I fell in love with the idea of training a
machine to do something useful without explicitly writing a lot of code. I
kept learning on my own, even after the project ended.

Circa 2010, I was involved with another machine learning project, and
the timing was perfect. People were just beginning to discuss a new
approach to machine learning called deep learning, which revived the old
neural networks. When 2012 rolled around, the flood-gates opened. I was
fortunate enough to be in the room at the ICML 2012 conference in
Edinburgh, Scotland when Google presented its initial breakthrough deep
learning results that responded to cats in YouTube videos. The room was
crowded. After all, there were a whopping 800 people at the conference.

It’s now 2020, and the machine learning conference I recently went to
had over 13,000 attendees. Machine learning has exploded: it’s not a fad
that will disappear. Machine learning has profoundly affected our lives and
will continue to do so. It would be nice to know something about it, to get
past the oftentimes hyped-up presentations down to the essential core,
which is interesting enough, no hype needed. That is why this book exists,
to help you learn the essentials of machine learning. Specifically, we’ll be
focusing on the approach known as deep learning.

Who Is This Book For?
I wrote this book for readers who have no background in machine learning,
but who are curious and willing to experiment with things. I’ve kept the
math to a minimum. My goal is to help you understand core concepts and
build intuition you can use going forward.

At the same time, I didn’t want to write a book that simply instructed
you on how to use existing toolkits but was devoid of any real substance as
to the why of things. It’s true that if all you care about is the how, you can

build useful models. But without the why, you’ll only be parroting, not
understanding, let alone eventually moving the field forward with your own
contributions.

As far as assumptions on my part, I assume you have some familiarity
with computer programming, in any language. The language of choice for
machine learning, whether you are a student or a major corporation, is
Python, so that’s the language we’ll use. I’ll also assume you’re familiar
with high school math but not calculus. A little calculus will creep in
anyway, but you should be able to follow the ideas, even if the technique is
unfamiliar. I’ll also assume you know a bit of statistics and basic
probability. If you’ve forgotten those topics since high school, don’t worry
—you’ll find relevant sections in Chapter 1 that give you enough of a
background to follow the narrative.

What Can You Expect to Learn?
If you work through this book in its entirety, you can expect to learn about
the following:

How to build a good training dataset. This is a dataset that will let your
model be successful when used “in the wild.”
How to work with two of the leading machine learning toolkits: scikit-
learn and Keras.
How to evaluate the performance of a model once you’ve trained and
tested it.
How to use several classical machine learning models like k-Nearest
Neighbors, Random Forests, or Support Vector Machines.
How neural networks work and are trained.
How to develop models using convolutional neural networks.
How to start with a given set of data and develop a successful model
from scratch.

About This Book

This book is about machine learning. Machine learning is about building
models that take input data and arrive at some conclusion from that data.
That conclusion might be a label placing the object into a particular class of
objects, like a certain kind of dog, or a continuous output value, say the
price one should ask for a house with the given set of amenities. The key
here is that the model learns from the data on its own. In effect, the model
learns by example.

You can think of the model as a mathematical function, y = f (x), where
y is the output, the class label, or the continuous value, and x is the set of
features representing the unknown input. Features are measurements or
information about the input that the model can use to learn what output to
generate. For example, x might be a vector representing the length, width,
and weight of a fish, where each of those measurements is a feature. Our
goal is to find f, a mapping between x and y that we’ll be able to use on new
instances of x, for which we do not know y.

The standard way to learn f is to give our model (or algorithm) known
data, and have the model learn the parameters it needs to make f a useful
mapping. This is why it’s called machine learning: the machine is learning
the parameters of the model. We’re not thinking of the rules ourselves and
cementing them in code. Indeed, for some model types like neural
networks, it’s not even clear what the model has learned, only that the
model is now performing at a useful level.

There are three main branches to machine learning: supervised learning,
unsupervised learning, and reinforcement learning. The process we just
described falls under supervised learning. We supervised the training of the
model with a set of known x and y values, the training set. We call a dataset
like this a labeled dataset because we know the y that goes with each x.
Unsupervised learning attempts to learn the parameters used by the model
using only x. We won’t discuss unsupervised learning here, but you can
transfer a lot of our discussion of supervised learning if you want to explore
that area on your own later.

Reinforcement learning trains models to perform tasks, like playing
chess or Go. The model learns a set of actions to take given the current state
of its world. This is an important area of machine learning, and it has
recently achieved a high level of success on tasks previously thought to be

solely the domain of humans. Sadly, compromises had to be made to make
this book manageable, so we’ll ignore reinforcement learning altogether.

One quick note on terminology. In the media, a lot of what we’re talking
about in this book is referred to as artificial intelligence, or AI. While this is
not wrong, it’s somewhat misleading: machine learning is one subfield of
the broader field of artificial intelligence. Another term you’ll often hear is
deep learning. This term is a bit nebulous, but for our purposes, we’ll use it
to mean machine learning with neural networks, in particular, neural
networks with many layers (hence deep). Figure 1 shows the relationship
between these terms.

Figure 1: The relationship between artificial intelligence, machine learning, and deep learning

Of course, within the fields of machine learning and deep learning,
there’s considerable variety. We’ll encounter a number of models
throughout this book. We could arrange them in what we’ll call “the tree of
machine learning,” pictured in Figure 2.

Figure 2: The tree of machine learning

The tree shows the growth from traditional machine learning at the root
to modern deep learning at the top of the tree. Consider this a preview of
what’s to come: we’ll look at each of these models in this book.

Along those same lines, we’ll end this introduction with a quick
synopsis of each chapter.

Chapter 1: Getting Started This chapter tells you how to set up our
assumed working environment. It also includes sections about vectors,
matrices, probability, and statistics that you can use as refreshers or for
background.

Chapter 2: Using Python This chapter will get you started on Python.

Chapter 3: Using NumPy NumPy is an extension to Python. It’s what
makes Python useful for machine learning. If you are not familiar with
it, peruse this chapter.

Chapter 4: Working with Data Bad datasets lead to bad models; we’ll
teach you what makes a good one.

Chapter 5: Building Datasets We’ll build the datasets used throughout
the book. You’ll also learn how to augment datasets.

Chapter 6: Classical Machine Learning To understand where you are
going, sometimes it’s good to know where you came from. Here we’ll
cover some of the original machine learning models.

Chapter 7: Experiments with Classical Models This chapter shows
the strengths and weaknesses of the old-school approach to machine
learning. We’ll refer to these results for comparison purposes
throughout the book.

Chapter 8: Introduction to Neural Networks Modern deep learning is
all about neural networks; we’ll introduce them here.

Chapter 9: Training a Neural Network This challenging chapter gives
you the knowledge you need to understand how neural networks are
trained. Some basic calculus slipped into this chapter, but don’t panic—
it’s discussed at a high level to give you intuition, and the notation isn’t
as frightening as it might seem at first.

Chapter 10: Experiments with Neural Networks Here we run
experiments to build intuition and get a feel for actually working with
data.

Chapter 11: Evaluating Models To understand the results presented in
machine learning papers, talks, and lectures, we need to understand how
to evaluate models. This chapter will take you through the process.

Chapter 12: Introduction to Convolutional Neural Networks The
deep learning we will focus on in this book is embodied in the idea of a
convolutional neural network, or CNN. This chapter discusses the basic
building blocks of these networks.

Chapter 13: Experiments with Keras and MNIST Here we’ll explore
how CNNs work by experimenting with the MNIST dataset, the

workhorse of deep learning.

Chapter 14: Experiments with CIFAR-10 The MNIST dataset, useful
as it is, is a simple one for CNNs to master. Here we explore another
workhorse dataset, CIFAR-10, which consists of actual images and will
challenge our models.

Chapter 15: A Case Study: Classifying Audio Samples We’ll
conclude with a case study. We start with a new dataset, one not in
widespread use, and work through the process of building a good model
for it. This chapter uses everything we studied in the book, from
building and augmenting data to classical models, traditional neural
networks, CNNs, and ensembles of models.

Chapter 16: Going Further No book is complete. This one won’t even
try to be. This chapter points out some of what we’ve neglected and
helps you sift through the mountains of resources around you related to
machine learning so you can focus on what you should study next.

All the code in the book, organized by chapter, can be found here:
https://nostarch.com/practical-deep-learning-python/. Let’s now take a look
at setting up our operating environment.

https://nostarch.com/practical-deep-learning-python/

1
GETTING STARTED

This chapter introduces our operating environment and details how to set it
up. It also includes a primer on some of the math we will encounter. We’ll
end with a brief note about graphics processors, or GPUs, which you may
have heard are essential for deep learning. For our purposes, they’re not, so
don’t worry—this book won’t suddenly cost you a lot of money.

The Operating Environment
In this section, we’ll detail the environment we’ll assume throughout the
remainder of the book. Our underlying assumption is that we’re using a 64-
bit Linux system. The exact distribution is not critical, but to make things
simpler in the presentation, we’ll also assume that we’re using Ubuntu
20.04. Given the excellent support behind the Ubuntu distribution, we trust
that any newer distributions will also work similarly. The Python language
is our lingua franca, the common language of machine learning.
Specifically, we’ll use Python 3.8.2; that’s the version used by Ubuntu
20.04.

Let’s look at a quick overview of the Python toolkits that we’ll be using.

NumPy

NumPy is a Python library that adds array processing abilities to Python.
While Python lists can be used like one-dimensional arrays, in practice they
are too slow and inflexible. The NumPy library adds the array features
missing from Python—features that are necessary for many scientific
applications. NumPy is a base library required by all the other libraries
we’ll use.

scikit-learn
All of the traditional machine learning models we’ll explore in this book are
found in the superb scikit-learn library, or sklearn, as it’s usually called when
loaded into Python. Note also that we’re writing scikit-learn without caps as
this is how the authors consistently refer to it in their documentation. This
library uses NumPy arrays. It implements a standardized interface to many
different machine learning models as well as an entire host of other
functionality that we won’t even have time to touch. I strongly encourage
you to review the official sklearn documentation (https://scikit-
learn.org/stable/documentation.html) as you become more and more
familiar with machine learning and the tools behind it.

Keras with TensorFlow
Deep learning is hard enough to understand, let alone implement efficiently
and correctly, so instead of attempting to write convolutional neural
networks from scratch, we’ll use one of the popular toolkits already in
active development. From its inception, the deep learning community has
supported the development of toolkits to make deep networks easier to use
and has made the toolkits open source with very generous licenses. At the
time of this writing, there are many popular toolkits we could have used in
Python. Among many others, these include the following:

Keras
PyTorch
Caffe
Caffe2
Apache MXnet

https://scikit-learn.org/stable/documentation.html

Some of these toolkits are waxing, and others appear to be waning. But the
one that has probably the most active following at present is Keras with the
TensorFlow backend, so that’s the one we’ll use here.

Keras (https://keras.io/) is a Python deep learning toolkit that uses the
TensorFlow toolkit (https://www.tensorflow.org/) under the hood.
TensorFlow is an open source Google product that implements the core
functionality of deep neural networks for many different platforms. We
selected Keras not only because it’s popular and in active development, but
also because it’s straightforward to use. Our goal is to become familiar with
deep learning to the point where we can implement models and use them
with a minimum of programming overhead.

Installing the Toolkits
We can’t reasonably give an exhaustive guide for installing the toolkits on
all systems and hardware. Instead, we’ll provide step-by-step instructions
for the specific operating system we’ll use as the reference system. These
steps, along with the minimum version numbers of the libraries, should be
enough for most readers to get a working system in place.

Remember, we’re assuming that we’re working in a Linux environment,
specifically Ubuntu 20.04. Ubuntu is a widely used Linux distribution, and
it runs on almost any modern computer system. Other Linux distributions
will work, as will macOS, but the instructions here are specific to Ubuntu.
For the most part, the machine learning community has left the Windows
operating system. Still, individuals have ported toolkits to Windows;
therefore, an adventurous reader might give Windows a try.

A freshly installed Ubuntu 20.04 base desktop system gives us Python
3.8.2 for free. To install the remaining packages, we need to go into a shell
and execute the sequence of steps below in the order given:

$ sudo apt - get update
$ sudo apt - get install python3 - pip
$ sudo apt - get install build - essential python3 - dev
$ sudo apt - get install python3 - setuptools python3 - numpy
$ sudo apt - get install python3 - scipy libatlas - base - dev
$ sudo apt - get install python3 - matplotlib
$ pip3 install scikit - learn
$ pip3 install tensorflow

https://keras.io/
https://www.tensorflow.org/

$ pip3 install pillow
$ pip3 install h5py
$ pip3 install keras

Once the installation is complete, we’ll have installed the following
versions of the libraries and toolkits:

NumPy 1.17.4
sklearn 0.23.2
keras 2.4.3
tensorflow 2.2.0
pillow 7.0.0
h5py 2.10.0
matplotlib 3.1.2

The pillow library is an image processing library, h5py is a library for
working with HDF5 format data files, and matplotlib is for plotting. HDF5 is
a generic, hierarchical file format for storing scientific data. Keras uses it to
store model parameters.

The following two sections are light introductions to some of the math
that will creep into the book.

Basic Linear Algebra
We’re about to look at vectors and matrices. The math that deals with these
concepts falls under the general heading of linear algebra, or matrix theory.
As you might imagine, linear algebra is a complex field. All we need to
know for this book is what a vector is, what a matrix is, and how we can
multiply two vectors, or two matrices, or vectors and matrices together.
We’ll see later on that this gives us a powerful way to implement specific
models, particularly neural networks.

Let’s begin by looking at vectors.

Vectors
A vector is a one-dimensional list of numbers. Mathematically, a vector
might appear as

a = [0, 1, 2, 3, 4]

with the third element given as a2 = 2. Notice we’re following the
programming convention of indexing from zero, so a2 gives us the third
element in the vector.

The vector above was written horizontally and therefore is known as a
row vector. When used in mathematical expressions, however, vectors are
usually assumed to be written vertically:

When written vertically, a vector is known as a column vector. This
vector has five elements and is denoted as a five-element column vector. In
this book, we’ll typically use vectors to represent one sample: one set of
features that we’ll input to a model.

Mathematically, vectors are used to represent points in space. If we’re
talking about the two-dimensional (2D) Cartesian plane, we locate a point
with a vector of two numbers, (x,y), where x is the distance along the x-axis
and y is the distance along the y-axis. That vector represents a point in two
dimensions, even though the vector itself has only one dimension. If we
have three dimensions, we need a vector with three elements, (x,y,z).

In machine learning, since we often use vectors to represent the inputs
to our models, we’ll be working with dozens to hundreds of dimensions. Of
course, we can’t plot them as points in a space, but mathematically, that’s
what they are. As we’ll see, some models, such as the k-Nearest Neighbors
model, use the feature vectors as just that—points in a high-dimensional
space.

Matrices
A matrix is a two-dimensional array of numbers where we index a
particular entry by its row number and column number. For example, this is
a matrix:

If we want to refer to the 6, we write a1,2 = 6. Again, we’re indexing from
zero. Because this matrix a has three rows and three columns, we call it a 3
× 3 matrix.

Multiplying Vectors and Matrices
The simplest way to think of multiplying two vectors together is to multiply
their corresponding elements. For example:

[1, 2, 3] × [4, 5, 6] = [4, 10, 18]

This is the most common way to multiply an array when using a toolkit
like NumPy, and we’ll make heavy use of this in the chapters that follow.
However, in mathematics, this is seldom actually done.

When multiplying vectors together mathematically, we need to know if
they are row or column vectors. We’ll work with two vectors, A = (a,b,c),
and B = (d,e,f), which, following mathematical convention, are assumed to
be column vectors. Adding a superscript T turns a column vector into a row
vector. The mathematically allowed ways to multiply A and B are

which is called the outer product and

which is called the inner product, or dot product. Notice that the outer
product becomes a matrix, and the inner product becomes a single number,
a scalar.

When multiplying a matrix and a vector, the vector is typically on the
right side of the matrix. The multiplication can proceed if the number of
columns in the matrix matches the number of elements in the vector, again
assumed to be a column vector. The result is also a vector with as many
elements as there are rows in the matrix (read ax + by + cz as a single
element).

For example:

Here we’ve multiplied a 2 × 3 matrix by a 3 × 1 column vector to get a 2 ×
1 output vector. Notice that the number of columns of the matrix and the
number of rows of the vector match. If they do not, then the multiplication
is not defined. Also, notice that the values in the output vector are sums of
products of the matrix and vector. This same rule applies when multiplying
two matrices:

Here multiplying a 2 × 3 matrix by a 3 × 2 matrix has given us a 2 × 2
answer.

When we get to convolutional neural networks, we’ll work with arrays
that have three and even four dimensions. Generically, these are referred to
as tensors. If we imagine a stack of matrices, all the same size, we get a
three-dimensional tensor, and we can use the first index to refer to any one
of the matrices and the remaining two indices to refer to a particular
element of that matrix. Similarly, if we have a stack of three-dimensional
tensors, we have a four-dimensional tensor, and we can use the first index
of that to refer to any one of the three-dimensional tensors.

The main points of this section are that vectors have one dimension,
matrices have two dimensions, there are rules for multiplying these objects
together, and our toolkits will work with four-dimensional tensors in the

end. We’ll review some of these points as we encounter them later in the
book.

Statistics and Probability
The topics of statistics and probability are so broad that often it’s better to
either say almost nothing or to write a book or two. Therefore, I’ll mention
only key ideas that we’ll use throughout the book and leave the rest to you
to pick up as you see fit. I’ll assume you know some basic things about
probability from flipping coins and rolling dice.

Descriptive Statistics
When we do experiments, we need to report the results in some meaningful
way. Typically, for us, we’ll report results as the mean (arithmetic average)
plus or minus a quantity known as the standard error of the mean (SE).
Let’s define the standard error of the mean through an example.

If we have many measurements x, say the length of a part of a flower,
then we can calculate the mean () by adding all the values together and
dividing by the number of values we added. Then, once we have the mean,
we can calculate the average spread of the individual values around the
mean by subtracting each value from the mean, squaring the result, and
adding all these squared values together before dividing by the number of
values we added minus one. This number is the variance. If we take the
square root of this value, we get the standard deviation (σ), which we’ll see
again below. With the standard deviation, we can calculate the standard
error of the mean as , where n is the number of values that we
used to calculate the mean. The smaller the SE is, the more tightly the
values are clustered around the mean. We can interpret this value as the
uncertainty we have about the mean value. This means we expect the actual
mean, which we don’t really know, to be between and .

Sometimes, we’ll talk about the median instead of the mean. The
median is the middle value, the value that half of our samples are below and
half are above. To find the median for a set of values, we first sort the
values numerically and then find the middle value. This is the exact middle
value if we have an odd number of samples, or the mean of the two middle

values if we have an even number of samples. The median is sometimes
more useful than the mean if the samples do not have a good, even spread
around the mean. The classic example is income. A few very rich people
move the mean income up to the point where it does not have much
meaning. Instead, the median, the value where half the people make less
and half make more, is more representative.

In later chapters, we’ll talk about descriptive statistics. These are values
derived from a dataset that can be used to understand the dataset. We just
mentioned three of them: the mean, the median, and the standard deviation.
We’ll see how to use these and how they can be plotted to help us
understand a dataset.

Probability Distributions
In this book, we’ll talk about something known as a probability
distribution. You can think of it as an oracle of sorts—something that, when
asked, will give us a number or set of numbers. For example, when we train
a model, we use numbers, or sets of numbers, that we measure; we can
think of those numbers as coming from a probability distribution. We’ll
refer to that distribution as the parent distribution. Think of it as the thing
that generates the data we’ll feed our model; another, more Platonic, way to
think about it is as the ideal set of data that our data is approximating.

Probability distributions come in many different forms; some even have
names. The two that we’ll encounter are the two most common: uniform
and normal distributions. You’ve already encountered a uniform
distribution: it’s what we get if we roll a fair die. If the die has six sides, we
know that the likelihood of getting any value, 1 through 6, is the same. If
we roll the die 100 times and tally the numbers that come up, we know that
the tally will be roughly equal for each number and that in the long run, we
can easily convince ourselves that the number will even out.

A uniform distribution is an oracle that is equally likely to give us any
of its allowed responses. Mathematically, we’ll write uniform distributions
as U(a,b) where U means uniform and a and b are the range of values it will
use to bracket its response. Unless we specify the distribution gives only
integers, any real number is allowed as the response. Notationally, we write
x ~ U(0,1) to mean that x is a value returned by the oracle that gives real
numbers in the range (0,1) with equal likelihood. Also, note that using “("

and “)" to bracket a range excludes the associated bound, while using “["
and “]" includes it. Thus U[0,1) returns values from 0 to 1, including 0 but
excluding 1.

A normal distribution, also called a Gaussian distribution, is visually a
bell curve—a shape where one value is most likely, and then the likelihood
of the other values decreases as one gets further from the most likely value.
The most likely value is the mean, , and the parameter that controls how
quickly the likelihood drops to zero (without ever really reaching it) is the
standard deviation, σ (sigma). For our purposes, if we want a sample from a
normal distribution, we’ll write to mean x is drawn from a
normal distribution with a mean of and a standard deviation of σ.

Statistical Tests
Another topic that will pop up from time to time is the idea of a statistical
test, a measurement used to decide if a particular hypothesis is likely true or
not. Typically, the hypothesis relates to two sets of measurements, and the
hypothesis is that the two sets of measurements came from the same parent
distribution. If the statistic calculated by the test is outside of a certain
range, we reject the hypothesis and claim we have evidence that the two
sets of measurements are not from the same parent distribution.

Here, we’ll usually use the t-test, a common statistical test that assumes
our data is normally distributed. Because we assumed that our data is
normally distributed, which may or may not be true, the t-test is known as a
parametric test.

Sometimes, we’ll use another test, the Mann–Whitney U test, which is
like a t-test in that it helps us decide if two samples are from the same
parent distribution, but it makes no assumption about how the data values in
the sample are themselves distributed. Tests like these are known as
nonparametric tests.

Whether the test is parametric or nonparametric, the value we ultimately
get from the test is called a p-value. It represents the probability that we
would see the test statistic value we calculated if the hypothesis that the
samples come from the same parent distribution is true. If the p-value is
low, we have evidence that the hypothesis is not true.

The usual p-value cutoff is 0.05, indicating a 1 in 20 chance that we’d
measure the test statistic value (t-test or Mann–Whitney U) even if the
samples came from the same parent distribution. However, in recent years,
it has become clear that this threshold is too generous. When p-values are
near 0.05, but not above, we begin to think there is some evidence against
the hypothesis. If the p-value is, say, 0.001 or even less, then we have
strong evidence that the samples are not from the same parent distribution.
In this case, we say that the difference is statistically significant.

Graphics Processing Units
One of the enabling technologies for modern deep learning was the
development of powerful graphics processing units (GPUs). These are co-
computers implemented on graphics cards. Originally designed for video
gaming, the highly parallel nature of GPUs has been adapted to the extreme
computational demands of deep neural network models. Many of the
advances of recent years would not have been possible without the
supercomputer-like abilities GPUs provide to even basic desktop
computers. NVIDIA is the leader in the creation of GPUs for deep learning,
and via its Compute Unified Device Architecture (CUDA), NVIDIA has
been foundational to the success of deep learning. It’s not an
understatement to say that without GPUs, deep learning would not have
happened, or at least not been so widely used.

That said, we’re not expecting GPUs to be present for the models we’ll
work with in this book. We’ll use small enough datasets and models so that
we can train in a reasonable amount of time using just a CPU. We’ve
already enforced this decision in the packages we’ve installed, since the
version of TensorFlow we installed is a CPU-only version.

If you do have a CUDA-capable GPU and you want to use it for the
deep learning portion of this book, please do so, but don’t think that you
need to purchase one to run the examples. If you’re using a GPU, be sure to
have CUDA properly installed before installing the packages indicated
previously and be sure to install a GPU-enabled version of TensorFlow. The
sklearn toolkit is CPU only.

Summary
In this chapter, we summarized our operating environment. Next, we
described the essential Python toolkits we’ll use throughout the book and
gave detailed instructions for installing the toolkits assuming an Ubuntu
20.04 Linux distribution. As mentioned, the toolkits will work just as nicely
on many other Linux distributions as well as macOS. We then briefly
reviewed some of the math we’ll encounter later and ended with an
explanation of why we do not need GPUs for our models.

In the next chapter, we’ll review the fundamentals of Python.

2
USING PYTHON

If you’re already familiar with Python, you can skip this chapter. This
summary is for those who are comfortable with programming but who
aren’t familiar with Python. We’ll cover only enough of the language to be
able to read and understand the code examples in this book. If you have
little to no experience with computer programming, you should first read a
more complete text like Python Crash Course, 2nd Edition, by Eric Matthes
(No Starch Press, 2019).

Python is, at its simplest, sequential statements grouped into blocks via
indentation; data structures like numbers, strings, tuples, lists, and
dictionaries; control structures including if-elif-else, for loops, while loops,
with statements, and try-except blocks; functions with optional nested
functions; and a large library of importable modules. We’ll cover each of
these features.

The Python Interpreter
On a Linux system, Python is typically used in one of two ways. You can
run the Python interpreter from the command line and enter commands
interactively, or you can run a script of Python commands. Simply enter
python3 in your console to use Python interactively:

$ python3
Python 3.6.7 (default, Oct 22 2018, 11:32:17)
[GCC 8.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

As you can see, Python opens a prompt for you to enter commands into,
beginning with >>>. Type an expression like 1+2 and hit ENTER. Python will
respond immediately by evaluating the equation and passing you the result.
When you want to exit the console, use CTRL-D.

Statements and Whitespace
As in almost every other programming language, unless modified by a
control flow structure, statements in Python are executed one after the other
in the order in which they appear in the code. Consider, for example, this
code:

statement1
statement2
statement3

Here statement1 will be executed first, followed by statement2, and then,
finally, statement3.

Multiple statements can be grouped into units called blocks. For
example, the condition of an if statement evaluating to True could trigger a
block to run. Syntactically, the statements that go with the if need to be
marked in some way so that the computer knows which statements to
execute. Classic languages like Pascal used bulky BEGIN and END keywords.
The C family of languages, which includes most of the languages in current
widespread use, uses curly brackets: “{" and “}".

In Python, we use indentation. This makes reading Python code
somewhat elegant as it follows the format of a traditional outline. It also
makes the code more visually consistent across authors and leaves less
room for confusion. In Python, when we use an if else statement, we can
easily see which statements should run with which part of the condition,
even if we have not yet understood the format of the if statement. For
example:

if condition1:
 statement1
 statement2
else:
 statement3

The indentation makes it clear that statement1 and statement2 are executed
when condition1 (whatever it is) is true. Similarly, we see that statement3 is
executed when condition1 is not true.

Notice the colons in the preceding if example. Python uses these to
designate blocks of code. You must place a colon after any control
statement, and then the next line should always be indented one level. If
you try to use a control structure but don’t provide any statements in the
body of the control structure, Python will throw an error.

For example, the else: clause cannot be present without at least one
statement in the block. If there is no need for the else, just don’t include it.
(If you really want to include it, use the pass keyword to indicate to Python
that you know a statement needs to be there, but you really don’t want that
condition to do anything.)

Indentation can seem intimidating to people new to Python, but you can
make it easier on yourself by properly configuring your text editor. Python
convention says that you should tell your text editor to do the following:

1. Insert spaces in place of tab characters. Shun tab characters like the
plague.

2. Insert four spaces every time you hit the T A B key.
3. Automatically indent when you hit the E N T E R key.

With these settings, when you enter the “:” of a control statement, just
hit ENTER, and Python will indent the block automatically.

The way to configure these settings depends on the text editor used, of
course, but any text editor worth its salt will be able to do all of these, and
many have automatic indentation set as standard. If you use integrated
development environments (IDEs), then it’s probable that once the IDE
recognizes that you’re coding in Python, most of these conventions will just
happen.

Variables and Basic Data Structures
Python’s native data structures are simple and elegant. In this section, we’ll
cover number representation, variables, strings, lists, and dictionaries.

Representing Numbers
Numbers in Python are of two kinds: integers or floating-point. Integers are
whole numbers like 42 and 66. Floating-point numbers are those with a
decimal point like 3.1415 and 2.718. We’ll ignore complex numbers in this
book, although Python supports them.

If you don’t include a decimal point, Python will assume you mean an
integer; otherwise, it will use floating-point numbers. Floating-point
numbers can also be specified using scientific notation, where 6.022e23

means 6.023 × 1023.
Most programming languages can represent only numbers in a certain

range, but Python does not have this restriction for integers, which can be as
large as there is memory to hold them. For fun, enter 2**2001 and see what
happens. The many ways in which computers store and operate on numbers
is quite fascinating. Those who are curious might want to look further.1

Variables
Variables provide a useful place to store data for reuse. Fortunately, using
Python variables is straightforward. Python is dynamically typed, which
means we don’t need to declare the type of data a variable will store in
advance. We simply assign data to a variable, and Python figures out the
type for us.

We can even change the type of data stored in a variable by assigning a
new value, regardless of its type. For example, all of these are valid
assignments in Python:

❶ >>> v = 123
❷ >>> n = 3.141592
❸ >>> v = 6.022e23

The code assigns integer 123 to v ❶, the floating-point value 3.141592
to n ❷, and then reassigns a floating-point value to v: 6.022 × 1023 ❸.

Python variable names are case-sensitive, must start with a letter, and
can include letters, numbers, and “_” (underscore) characters. Many Python
programmers follow the camel-case convention of Java, shown here, but
this is not strictly required:

>>> myVariableName=123

Strings
Python supports textual data with strings. You mark the beginning and end
of strings with quotes, either single (’), double (’’), or triple (’’’), as long as
you use the same for both opening and closing. The triple-quoted string is
special: it can span multiple lines of text, and you would often use it
immediately after defining a function to implement a simple documentation
string. All of these are valid Python strings:

>>> thing1 = 'how now brown cow?'
>>> thing2 = "I don't think; therefore I am not."
>>> thing3 = """
one
two
three
"""

Here, thing1 is a simple string; thing2 is also a simple string, but note that
it has a single quote embedded in it to act as an apostrophe. We can do this
because we started the string with a double quote character; if we wanted to
use double quotes inside the string, then we would have to enclose it with
single quotes.

The last string, thing3, spans multiple lines. The newline characters typed
to move from one to two are also part of the string, and when printed, they
will be shown. Note, if you actually enter the assignment to thing3 in the
Python interpreter, you will see that the interpreter inserts an ellipsis (...).
We ignored those in the example as they would be confusing and are not
really part of the string.

Lists
Strings and numbers are primitive data types, meaning they are not made up
of grouped collections of data. Think of them as atoms. They can be

combined into more sophisticated data structures by using tuples and lists.
A list is an ordered collection of other data, which could be primitive data
or any other collection of data. A list can hold lists, for example.

Basic List Operations
Unlike with some other data types, the order in which items are appended to
a list matters. Let’s just jump in with some examples of lists and then talk
about what’s happening:

❶ >>> t = ["Quednoe","Biggles",39]
 >>> t
 ['Quednoe', 'Biggles', 39]
❷ >>> t[0]
 'Quednoe'
 >>> t[1]
 'Biggles'
 >>> t[2]
 39

First, we define a list ❶. We use a “[” character to start the list, enter the
items, and end with a “]” character. Items in the list are separated by
commas (,). This list has three items, as we see when we ask Python to
evaluate the expression t, which is the list itself.

We can index into lists by using a number and square brackets, just as
we would an array. Here we ask for the first item in the list using bracket
notation ❷. We do the same for the second and the third.

We can add to a list by using the append method:

>>> t.append(3.14)
>>> t
 ['Quednoe', 'Biggles', 39, 3.14]

Here we see that the list, t, now has a fourth member, 3.14. Note that
appending an item to a list adds it to the end of the list.

Let’s look at a few more examples with lists.

❶ >>> t[-1]
 3.14
❷ >>> t[0:2]
 ['Quednoe', 'Biggles']
❸ >>> t[1] = 'Melvin'

 >>> t
 ['Quednoe', 'Melvin', 39, 3.14]
❹ >>> t.index("Melvin")
 1

These examples show us how to use a negative index ❶, which will
start at the end of the list and count backward, so that -1 will always return
the last item in the list. We also see how to use a range to select a subset of
the list ❷.

To use Python ranges, follow the format [a:b] to return all items from
index a to one less than b. Mathematically this is [a,b), where the b-th item
is not included. So, asking for t[0:2] will return items 0 and 1 only. Note, if
you skip the beginning part or ending part of the range, it defaults to the
first item (if the beginning is skipped) or the last item (if the ending is
skipped).

If you use an index on the left side of an assignment statement, that
element of the list is modified ❸. We now see that the second element of
the list has changed.

Finally, we use the index method to search the list for an item ❹. If the
item is found, index returns the index of the item. If the item is not in the list,
Python will raise an error.

If you want to know if an item is in the list but do not care where it is,
use in, like so:

>>> b = [1,2,3,4]
>>> 2 in b
 True
>>> 5 in b
 False

Here the returned values are Booleans, True and False. Note the uppercase
on True and False. Booleans can be assigned to variables as well. We should
also mention None, which is Python’s version of NULL as found in other
languages (at least to a first approximation). We’ll see a good use for None
when we talk about Python functions in “Functions– on page 39.

Copying Lists

One last thing to note about lists is that Python does not copy lists when you
assign them to new variables; instead, it points the new variable to the
location in memory where the list already exists. For example:

>>> a = [0,1,2,3,4]
>>> a
 [0, 1, 2, 3, 4]
>>> b = a
>>> b
 [0, 1, 2, 3, 4]

Here we define a as a list of five numbers. We then assign that list to a
new variable, b, and see that b is, indeed, the same as a.

So far, so good. However, what if we decide to change an element of a
like so:

>>> a[2] = 3
>>> a
 [0, 1, 3, 3, 4]
>>> b
 [0, 1, 3, 3, 4]

We see that a has updated as we desired, but, perhaps surprisingly, so
has b. This is because assigning a to b points b to the same place in memory
as a. It does not actually copy the contents of a.

If we want to copy a when we assign it to b, we need to explicitly select
all the elements of a like this:

❶ >>> b = a[:]
 >>> a
 [0, 1, 3, 3, 4]
 >>> b
 [0, 1, 3, 3, 4]
 >>> a[2] = 2
 >>> a
 [0, 1, 2, 3, 4]
 >>> b
 [0, 1, 3, 3, 4]

Here we define a list, a, and then assign a to b by selecting all of the
elements of a ❶. We see that b now looks like a. Next, we update the third
item in a and see that a now looks as we expect, with its third item now 2
instead of 3. However, b has not been altered in this case because the

original assignment created a new list in memory by selecting all the
elements of a.

The reason Python doesn’t automatically copy lists is that lists can be
large, so copying them unnecessarily would waste a lot of memory.
Completely copying a list made up of other, nested, lists can be nontrivial.
The selecting everything method ❶ makes only a shallow copy—nested
elements are still aliased. Use the deepcopy function of the copy module to
recursively copy all levels of a list with nested elements.

Python has another data type similar to a list called a tuple. Tuples,
defined with parentheses rather than square brackets, are just like lists
except that once defined, they cannot be modified. In general, we will stick
with lists, but NumPy uses tuples from time to time (see Chapter 3).

Dictionaries
The last data type we’ll look at is the dictionary. A dictionary is made up of
a set of keys, each associated with a value. You define dictionaries with “{”
and “}” characters. As with a list, the value can be anything, including
another dictionary. They key is typically a string but can be a number or
other object as well. You define a dictionary like so:

>>> d = {"a":1, "b":2, "c":3}
>>> d.keys()
 dict_keys(['a', 'b', 'c'])

This example shows how to define the dictionary by directly listing its
contents. The elements of the dictionary are given as key:value pairs. Here,
the keys are all strings, and the value associated with each key is an integer.
The keys method returns all the keys in the dictionary.

The syntax above is useful when the contents of the dictionary are
already known. Typically, this isn’t the case. Most of the time, the
dictionary is defined, and we add elements individually:

>>> d = {}
>>> d["a"] = 1
>>> d["b"] = 2
>>> d["c"] = 3

Here we define an empty dictionary d, and individually assign values for
a new set of keys. If the key already exists in the dictionary d, its value is
updated.

To get the value associated with a particular key, just index the
dictionary with the key:

>>> d["b"]
 2

If the key doesn’t exist in that dictionary, Python will raise an error. To
test if a key is in the dictionary, use in, like so:

>>> "c" in d
 True

Between lists and dictionaries, you can conveniently store almost any
data. This is one of the benefits of a language like Python: programmers can
devote energy to completing the task at hand instead of implementing
complicated data structures. Lists and dictionaries are fast to use and
generally all you’ll need unless you’re doing scientific programming, in
which case we have NumPy, as discussed in Chapter 3.

Control Structures
Python implements several control structures to allow you to alter program
flow using syntax. We’ll look at these:

if-elif-else

for loops
while loops
with statements
try-except blocks

if-elif-else Statements
An if statement makes a decision. You give it a condition that must result in
a Boolean value, True or False. If the condition is true, the first block of the if
statement is executed. If the condition is false, nothing happens and the

code moves past the if statement, unless you include an else, in which case
the body of the else will be executed. You can test multiple conditions in one
statement by using the elif keyword, which adds additional conditions with
their own blocks of code to run. For example:

❶ >>> disc = b**2 - 4*a*c
❷ >>> if (disc < 0):
 print("imaginary")
 ❸ elif (disc == 0):
 print("single real")
 else:
 ❹ print("two real")

This checks the discriminant of a quadratic polynomial, ax2 + bx + c, to
identify the number and type of solution: a real number, a pair of real
numbers, or imaginary numbers. The solutions are the values of x that make
the polynomial equal to zero.

First, the code calculates the discriminant value (disc) ❶. It then asks if
the value is less than zero ❷. If it is, it means there are two imaginary
solutions. If the discriminant is exactly zero ❸, there’s only one solution, a
real number. Finally, the else executes if neither of the conditions is true; in
this case, it means there are two real-number solutions ❹. The parentheses
around the conditions are not required but can help with readability. Also
note that Python uses “**” for exponentiation so that b**2-4*a*c = b2 – 4ac.
You can use as many elif clauses as needed, including none, followed by an
optional final else. Python lacks the case or switch statements found in other
common programming languages.

for Loops
Almost all structured programming languages have loops to run a particular
block of code repeatedly. In this section, we’ll cover a few kinds in Python.

Python’s primary looping construct is the for loop. In other languages,
typically for loops are counted loops from some starting value to an ending
value that increments by some fixed amount. In Python, loops run over
objects that can be iterated through, things that have a next method. This
includes the characters of a string, the elements of a list or tuple, or the
elements of a dictionary.

Python has two built-in functions that are quite handy with loops. The
first is range, which creates a generator object that produces integers in order,
starting with 0 unless otherwise specified:

❶ >>> for i in range(6):
 print(i)
 0
 1
 2
 3
 4
 5

The range function ❶ returns the values 0...5, and the for statement assigns
the values one at a time to i for each iteration of the loop. Here we simply
print the current value of i using the built-in Python function, print.

Another useful function to use with for loops is enumerate. This function
returns two values. The first is the index of the current element of its
argument and the second is the element itself. An example will clarify:

>>> x = ["how","now","brown","cow"]
>>> for i in x: ❶
 print(i)
how
now
brown
cow
>>> for i,v in enumerate(x): ❷
 print(i,v)
0 how
1 now
2 brown
3 cow

In the first loop over just the list x ❶, we get each element of x assigned
to i for each iteration. The second loop uses enumerate and gives us two values
for each iteration: the current index, stored in i, and the current element of
the list x, stored in v ❷. Python is capable of assigning multiple parts to
multiple variables at the same time. In this case, the loop body prints the
index followed by the element at that index.

What happens when we use a for loop with a dictionary? Let’s see:

❶ >>> d = {"a":1, "b":2, "c":2.718}
❷ >>> for i in d:
 print(i)
 a
 b
 c
❸ >>> for i in d:
 print(i, d[i])
 a 1
 b 2
 c 2.718

Here we first define a dictionary, d, with three keys ❶. If we simply
loop over the dictionary variable, we will be given the keys ❷. However, if
we then use the key to return the associated value, as in the second loop ❸,
we’ll iterate over the entire dictionary, accessing each value exactly once.

One particularly attractive feature of Python is that we can combine a for
loop with a list in a list comprehension. A list comprehension starts out as a
list with a leading “[”, but instead of listing the individual elements, the
body of the list is actually code that generates the list. This shorthand takes
a bit of getting used to, but once you’re familiar with it, you’ll see that it’s
an efficient replacement for many for loops. For example:

❶ >>> import random
 >>> a = []
 >>> for i in range(10000):
❷ a.append(random.random())
❸ >>> b = [random.random() for i in range(10000)]
❹ >>> m3 = [i for i in range(10000) if (i % 3) == 0]

We first import the standard random number library ❶ and then fill the
list a with 10,000 random numbers in the range [0,1) (meaning 0 is
included, 1 is not) ❷. Next, we also fill b with 10,000 random numbers but
do so using a list comprehension ❸. Note that the syntax is the same as
when we define a list with values, but here the body of the list is something
that returns a value. In this case, it’s a call to random.random() and a for loop
over 10,000 elements.

The last example creates a list, m3, of all multiples of 3, including 0, less
than 10,000 ❹. The if clause is the test that decides whether a particular i
value will be in the list. The percent operator is modulo, which gives the

remainder after division. In this case, it’s asking if the remainder after
dividing i by 3, using integer division, is zero. If it is, there is no remainder,
which means i is a multiple of 3 (or 0).

while Loops
Many programming languages include both top-tested and bottom-tested
loops. A top-tested loop tests the loop condition at the beginning, before
executing any of the body, and if the test is not true, the body is never
executed. A bottom-tested loop executes the body at least once and then
tests to see if the loop should execute again. The while loop in C is a top-
tested loop and the do...while loop is a bottom-tested loop. Python has only a
top-tested while loop with the following syntax:

❶ >>> i = 0
❷ >>> while (i < 4):
 print(i)
 ❸ i += 1
 0
 1
 2
 3

We have to initialize the loop control variable (i) with a 0 before we start
the loop ❶ so that the condition i < 4 is true to begin with ❷. Also note that
we explicitly increment i at the end of the body of the loop ❸. The
expression i += 1 is shorthand for i = i + 1 and increments i by 1. Python
doesn’t support C-style increment and decrement such as i ++. If you try it,
Python will kindly let you know with a SyntaxError.

The while loop repeats as long as the condition evaluates to True. It’s up to
the programmer to do things in the loop body that will eventually make the
condition False so the loop will end. You can also manually exit the loop, as
you’ll see in the following section.

break and continue Statements
The for and while loops work with two other Python statements: to
immediately exit the loop, use the break statement; to immediately move to
the next iteration, use continue. One common use of break is to leave an
infinite loop:

>>> i = 0
>>> while True:
 print(i)
 i += 1
 if (i == 4):
 ❶ break
0
1
2
3

This produces the same output as the earlier while loop example, but
exits the loop explicitly via break when the termination condition is met ❶;
here, that’s when i is incremented up to 4. Using break for this toy example
does not really make sense since there are other, clearer ways to do this, but
often the loop might need to execute until the program ends or until some
other rare situation or error occurs. For example, the command line
interpreter will keep checking for keyboard input. As each character comes
in, it is added to a buffer. However, if the character is a “newline,” it breaks
out of the loop and interprets the contents of the buffer.

The continue statement iterates the loop without executing any body
statements after it. For example:

>>> for i in range(4):
 print(i)
 ❶ continue
 print("xyzzy")
0
1
2
3

Here the presence of continue ❶ ensures that the second print statement is
never executed.

with Statement
The Python with statement is useful when dealing with files. For example,
the following code uses a with statement to open a file on disk and read its
contents into a string:

>>> with open("sesame") as f:
 s = f.read()
>>> s
'this is a file\n'

The with statement opens a file called sesame and assigns the file object
to f. We then use the read method to read the entire file as a string and assign
it to s. Evaluating s shows us that the file contains the string “this is a file”
with a newline character at the end.

Note that the example above uses open and read but doesn’t explicitly
close the file when done. This is because when the with statement exits, the
close method is called automatically as f leaves scope (meaning f is defined
only within the body of the with statement).

Handling Errors with try-except Blocks
Finally, let’s take a quick look at Python’s ability to trap and process errors,
rather than let errors halt our programs. Again, we’ll just look at a quick
skeleton of Python’s error-control abilities as an aid to debugging.

To capture an error instead of letting it stop program execution, we can
encapsulate the statements that might cause the error with a try...except block.
If an error is raised by any of the statements after the try and before the
except, it will be caught and execution will pass to the statements of the except
clause. The example here shows how to catch any error that happens within
the statements enclosed by the try block; though it’s useful to know that
Python has a rich set of error types, and users can define their own:

>>> x = 1.0/0.0
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: float division by zero
>>> try:
 x = 1.0/0.0
 except:
 x = 0
>>> x
0

Here we first attempt to assign the result of a division by zero to x. This
fails with the given error message from Python. However, if we wrap the

assignment in a try block, Python will move to the x = 0 line of the except
block and assign x = 0 as shown.

If you’re not using a sophisticated Python programming environment
that supports breaks while executing code, the following construct is useful,
as it halts execution when encountered. Here it halts execution immediately
after the divide-by-zero error occurs:

>>> try:
 x = 1.0/0.0
 except:
 import pdb; pdb.set_trace()

When an error occurs, the pdb module will be imported, if it hasn’t been
already, and the set_trace function will be called to enter into a debugging
environment. Of course, pdb.set_trace() can be called at any point in the code—
it need not be inside of a try...except block.

Functions
You define a function in Python with the def keyword followed by the
function name and a list of arguments the function will take in parentheses.
Even if you include no arguments, you must include a pair of parentheses.
Since Python is dynamically typed, you list the parameters of the function
but no type information. You can, if necessary, also include default values.
Again, we are ignoring Python’s object-oriented abilities and just focusing
on a small section of what we can do with functions. Let’s define a simple
function:

>>> def product(a,b):
 return a*b
>>> product(4,5)
 20

This function is called product and it accepts two arguments that we will
refer to in the function as a and b. The body of this function consists of a
single statement—a return statement, which returns to the point in the code
where product was called with the given value, here the product of the two
arguments. If we test this function, then we see that it does indeed multiply
its arguments.

Next, let’s redefine product and supply a default value for the second
argument using the following code:

>>> def product(a,b=3):
 return a*b
>>> product(4,5)
 20
>>> product(3)
 9

We supply default values in the argument list of the function. If we use
two arguments, Python will assign the value of the second argument inside
the function as before. However, if we do not supply a second argument,
Python will use the given default value of 3, giving us a meaningful return
value of 3 × 3 = 9. Supplying a default value to a function argument makes
it a keyword parameter, and, as we see above, we do not need to supply a
value for that argument when we invoke the function. This technique is
particularly handy, and we will see it in our code examples from time to
time.

Our final example below shows how to define a function that accepts no
arguments:

>>> def pp():
 print("plugh")
>>> pp()
 plugh

The function pp has an empty argument list. The only statement in the
body of the function prints the word plugh. There is no return value.

Python allows you to nest function definitions so that a function can
itself have functions defined within it. The inner functions are accessible to
only the outer function. There is seldom a need to do this, and if you find
yourself doing it often, you might want to think about refactoring to an
object-oriented design; but, on occasion, it makes sense, so we mention it
here.

Finally, one helpful thing to do is to make the default value None,
enabling us inside the function to check whether the value was given by
testing if the argument is None. Any variable holding any type of data can be
tested against None.

Modules
We conclude our whirlwind review of Python with a look at the module
system. This is akin to the C standard library, and it provides Python with a
rich set of tools out of the box, all defined as modules. Naturally, users can
create their own modules as well. A module, then, is a collection of
functions that can be imported into your program. You can also import
specific functions from a specific module into your own program, rather
than the whole module, as long as you’re aware of the possibility that the
imported function might have the same name as a function from another
namespace.

By namespace, we mean a bag of functions, sort of like a family, where
the functions are the names of the individuals in the family. All the
functions that our program knows about are in our namespace. If we import
a function from a module, that function is now also in our namespace. If we
import the entire module and refer to the function by prefixing the module
name, we get to use the function, but it’s not in our namespace. We’ll see
shortly why this distinction matters.

Let’s see some examples using the modules of the Python library:

>>> import time
>>> time.time()
 1524693601.402852

We first import the time module. This means that we now have access to
all the functions in the time module as long as we prefix the function name
with time.. The time function of the time module returns the current time as the
number of seconds since January 1, 1970. Known as the epoch time, this is
useful for timing how long code takes to execute. Because the value
returned only increases, the difference in epoch time at the start of the code
to the end of the code indicates the length of time for code execution.

Let’s look at another example:

>>> from time import ctime, localtime
>>> ctime()
 'Wed Apr 25 16:00:21 2020'
>>> localtime().tm_year
 2018

Here, instead of importing the entire time module, we import only two
functions from it. Doing this puts the functions in our namespace so that we
can call them directly. The ctime function returns a string showing the
current date and time, while the localtime function returns the sections of the
current time broken down by date and time part. Here we show the year at
the time of this writing.

Our last example shows us why it is often best to import a module
directly instead of importing functions from it:

>>> def sqrt(x):
 return 4
>>> sqrt(2)
 4
>>> from math import *
>>> sqrt(2)
 1.4142135623730951

First, we define a function we call sqrt. This function always returns 4 no
matter what the argument is. Not particularly useful, of course, but still a
valid Python function.

Next, let’s import the entire math library of functions. This syntax takes
all the functions in the module and places them in our namespace so we can
refer to them without using the module name as well. After doing this, we
see that sqrt now returns the actual square root.

What happened to our dubious implementation of sqrt? It was masked
when we imported the entire math library because the math library also
contains a function called sqrt and, since the math library was imported after
our sqrt was defined, the math library’s version of sqrt takes precedence.

Python’s module library is one of the key strengths of the language in
terms of utility. The standard library has extensive documentation. For a
quick look at the list of available Python 3.X modules, see
https://docs.python.org/3/py-modindex.html. The main Python site is here:
http://www.python.org/. I strongly recommend that you spend some time at
these links and really learn all that Python has to offer.

Summary

https://docs.python.org/3/py-modindex.html
http://www.python.org/

In this chapter, we reviewed the fundamentals of Python to give us the
background we need to understand the code examples in the remainder of
this book. We learned about Python syntax and statements. We also
examined Python variables and data structures, and then explored Python’s
suite of control structures and functions, ending with a look at Python’s
module library.

In the next chapter, we’ll dive into NumPy to see how to make Python
even more useful to us. NumPy is a core piece of the machine learning
toolkit used by virtually all machine learning libraries, including the ones
we will use in this book.

1. See Numbers and Computers by Ronald T. Kneusel (Springer-Verlag,
2017).

3
USING NUMPY

NumPy is foundational to all of the machine learning we’ll explore in this
book. If you’re already comfortable with NumPy, you can skip this chapter.
If you’re not, don’t be shy; consider this chapter a refresher and dive in.

A full tutorial of NumPy is beyond what we can cover here, so if you’re
interested, you can look further at
https://docs.scipy.org/doc/numpy/user/quickstart.html.

Why NumPy?
Python is an elegant programming language but it lacks an important data
structure that’s fundamental to scientific and mathematical programming:
the array. Yes, you could use a dictionary as an array, or a sizeable
predefined list, but this would be an abuse of those data structures—and,
more practically, it would be slow. Let’s look at the difference in
implementation between an array and a list. Python lists are more advanced
than the notion of a list we’re using here, but in essence they’re the same.

Arrays vs. Lists
The array is simply a fixed-size block of contiguous memory, a single
block of RAM with no gaps, used to represent a set of n elements, each of
which uses exactly m bytes. For example, an IEEE 754 double precision

https://docs.scipy.org/doc/numpy/user/quickstart.html

floating-point number occupies 64 bits of memory, 8 bytes, and is what
Python uses under the hood for its float data type. Therefore, an array of n =
100 Python floats would occupy, at a minimum, nm = 100(8) = 800 bytes of
memory. If Python had arrays as a data structure, it would allocate 800
bytes of memory and point the array variable name, A, to the memory as in
Figure 3-1.

Figure 3-1: An array stored in contiguous memory

Whenever we want to access an element of the array, say x[3], we can
very quickly calculate the exact location in memory by adding 3(8) = 24 to
the memory address of the base of the array. This is the indexing operation
for an array.

Multidimensional arrays are also stored in memory as contiguous
blocks, and the indexing operation is only slightly more complicated. A
multi-dimensional array uses two or more numbers to index the elements.
Think of a chess board; two numbers are needed to determine the location
of a piece: the row and the column. Therefore, the chess board is a two-
dimensional array. If we add one more dimension to turn the chess board
into a stack of chess boards, we need three numbers to locate a piece: the
row, the column, and the board number. Therefore, we have a three-
dimensional array.

We will use arrays with one, two, and three dimensions throughout the
book. All of these are stored in memory as a single block of RAM. The
point is, an array is quick to index, and therefore operations on array
elements can be performed very quickly.

Contrast this with a list. Figure 3-2 shows the basic structure of a list, B,
in memory. In this case, the elements in the list are not in contiguous
memory, but are scattered throughout RAM with pointers linking one
element to the next, like a chain. Each link in the chain contains the data

value we want to store and a pointer to the memory of the next link in the
chain.

Figure 3-2: A list stored as a collection of linked nodes scattered throughout memory

We can’t index into a list by just adding an offset to a base memory
address. Instead, if we want the fourth element of the list, then we need to
start at the head of the list, use the link there to the next element, and the
next, and the next, to reach the memory associated with the fourth element,
the 3 in Figure 3-2. This isn’t too bad until we want to index the 1,000,000th
element and have to repeat the process 1 million times instead of adding 8
million once to a base address.

Most machine learning involves arrays. If the array has a single
dimension, we call it a vector; vectors are the inputs to many of our models.
If the array has two dimensions, it’s a matrix. A matrix can be thought of as
a chess board or an image where each pixel of the image is one of the board
locations. Matrices can also be an input to our models, or used internally by
the model; for example, the weight matrices of a neural network, or the
convolution kernels and filter outputs of a convolutional neural network are
matrices.

Therefore, it’s critically important to be able to quickly operate on array
data. This is where the numpy library comes in. It adds the missing array data
type to Python so that we can perform calculations rapidly. Frankly, without
it, Python would be unsuitable for implementing anything but the simplest
of machine learning algorithms. However, with NumPy, Python
immediately becomes the premier environment for machine learning
research.

Testing Array and List Speed
Let’s see a quick example of how much speed NumPy gives us over pure
Python. The code we’ll execute is in Listing 3-1.

❶ import numpy as np
 import time
 import random

 n = 1000000
 a = [random.random() for i in range(n)]
 b = [random.random() for i in range(n)]

 s = time.time()
❷ c = [a[i]*b[i] for i in range(n)]
 print("comprehension:", time.time()-s)

 s = time.time()
 c = []
❸ for i in range(n):
 c.append(a[i]*b[i])
 print("for loop:", time.time()-s)

 s = time.time()
❹ c = [0]*n
 for i in range(n):
 c[i] = a[i]*b[i]
 print("existing list:", time.time()-s)

❺ x = np.array(a)
 y = np.array(b)
 s = time.time()
 c = x*y
 print("NumPy time", time.time()-s)

Listing 3-1: Comparing NumPy to pure Python. See numpy_speed_test.py.

In Listing 3-1, we first import the numpy library ❶ and then create two
lists of random numbers using a list comprehension. These lists include
1,000,000 elements each. Our goal is to multiply the two lists together,
element by element, as quickly as possible.

We can measure the time the program takes to run by logging our
starting time in s and subtracting it from our ending time when we print.
The time function of the time module returns the number of seconds,
including fractions of a second, since a set origin time (January 1, 1970).
We print time.time()-s after each operation we run.

In our first attempt to multiply a and b, we use a list comprehension ❷.
Next, we use a loop ❸ to select each element from a and b and append their

product to the list c. Note that this approach starts with an empty list and
appends each new product to it so that the list needs to grow in memory.

As a third approach, we pre-allocate the output list so that instead of
appending each output to c, we update the corresponding element of c ❹.
This approach might be a bit faster—we’ll see.

Finally, we use NumPy to do the calculation ❺. We exclude the time it
takes to make the two lists into NumPy arrays (lines 25–26) since we could
have easily created the random arrays (vectors since they are 1D) with a call
to the NumPy random number module. The entire operation with NumPy
vectors is c = x*y. Notice that there’s no explicit looping. NumPy is an array-
processing library, and it will automatically iterate over all the elements of
the arrays for you.

If we run the code in Listing 3-1 ten times to get an average runtime for
each of the four approaches, we find the following:

Approach Runtime (seconds, mean ± SE)
List comprehension 0.158855 ± 0.000426
for loop 0.226371 ± 0.000823
for loop w/existing list 0.201825 ± 0.000409
NumPy 0.009253 ± 0.000027

This table shows that NumPy is on average just under 25× faster than pure
Python with a naïve implementation. This is why we want to use NumPy
for machine learning in Python! Here, SE means standard error of the
mean, which is the standard deviation divided by the square root of the
number of values that went into the mean, 10 in this case. The standard
deviation is a measure of how the values differ from the mean. A large
standard deviation means that the values are spread over a broad range.
These standard deviations are small, meaning the times are consistent from
run to run.

Listing 3-1 shows us the true power of NumPy. Operations are
immediately broadcast across compatible dimensions without requiring
explicit loops. The normal linear algebra operations on vectors and matrices
are also present, but in general, operations on NumPy arrays are performed
automatically element-wise, without looping.

Now that you’ve seen why we’re using NumPy, let’s take a look at
some of its features.

Basic Arrays
NumPy is all about arrays, so we’ll start there. Let’s dive right in with some
basic examples and then explain what they do and why they look the way
they do.

Defining an Array with np.array
Let’s start with some basic array creation:

>>> import numpy as np
>>> a = np.array([1,2,3,4])
>>> a
 array([1, 2, 3, 4])
>>> a.size
 4
>>> a.shape
 (4,)
>>> a.dtype
 dtype('int64')

Here we define an array, a, using the array function. The argument to the
array function needs to be something that NumPy can turn into an array. A
list is something that NumPy can turn into an array, as is a tuple, so these
are most often the arguments to the array function.

If we ask Python to show us what’s in a, we’re told it’s an array and
given the values. NumPy will display the contents of an array, but if the
array has many elements, it will show us only the first and last few.

We next ask for the three most common properties of a NumPy array:
the size, the shape, and the data type (dtype). The array a has four elements,
so its size is 4. The size of an array is the number of elements it contains.
The array a is a vector, meaning it’s only one-dimensional, so the shape is
returned as a tuple, always, where the first and only dimension is 4,
meaning there are four elements along the first dimension.

The data type is new in that Python normally doesn’t care about data
types. But to be memory efficient, the numpy library has to care about them.

When we created a using array, we didn’t specify a data type, so NumPy
defaulted to 64-bit integers because all the values in the list we gave to array
were integers. If even one of them had been a float, NumPy would have
instead defaulted to 64-bit floating-point numbers, the same as the double
type in languages like C, C++, and Java.

Now let’s be explicit about the type of data that we want the NumPy
array to hold:

>>> b = np.array([1,2,3,4], dtype="uint8")
>>> b.dtype
 dtype('uint8')
>>> c = np.array([1,2,3,4], dtype="float64")
>>> c.dtype
 dtype('float64')

Here we define two arrays, b and c. Both arrays contain the same
elements from the list [1,2,3,4]. However, notice the dtype keyword argument
to array. This tells NumPy the data type to use for the array. For b, we are
telling NumPy to use an unsigned 8-bit integer (uint8). This is a byte or a
single ASCII character. If we ask for the dtype property, we are told that the
array b is, indeed, of data type unsigned 8-bit integer.

The array c contains the same elements as b, but here we tell NumPy to
make the array hold 64-bit floating-point numbers. Again, asking for the
data type tells us that the array c is of the requested type. When working
with NumPy, we must be aware of the type of data our arrays will hold.

The most commonly used NumPy data types, and their C equivalents,
are given in Table 3-1. When defining arrays, specify the NumPy data type
as a string with the data type name. We will see examples of this next.

Table 3-1: NumPy Data Type Names, C Equivalents, and Range

NumPy
name

Equivalent C
type

Range

float64 double ± [2.225 × 10–308, 1.798 × 10308]
float32 float ± [1.175 × 10–38, 3.403 × 1038]
int64 long long [–263, 263–1]
uint64 unsigned long

long
[0, 264–1]

int32 long [–231, 231–1

NumPy
name

Equivalent C
type

Range

uint32 unsigned long [0, 232–1]
uint8 unsigned char [0, 255 = 28–1]

So far, we’ve created only vectors with NumPy. Let’s look at how to
create a matrix, a two-dimensional array:

>>> d = np.array([[1,2,3],[4,5,6],[7,8,9]])
>>> d.shape
 (3, 3)
>>> d.size
 9
>>> d
 array([[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]])

We use the array function as before, but instead of a single list, we pass
in a list of lists. Each element of the supplied list is itself a list of three
elements, and there are three such lists. Therefore, the resulting NumPy
array will be a 3×3 matrix. The first row of the matrix is the first list of
three elements ([1,2,3]), the second row is the second list ([4,5,6]), and the
third row is the third list ([7,8,9]).

If we ask for the shape of d, we’re told that it’s (3, 3). This tuple says that
there are two dimensions to the array, since there are two elements in the
tuple, and that the first dimension has length 3 (three rows) and that the
second dimension also has length 3 (three columns). Asking for the size of d
tells us that there are nine elements. The size of a NumPy array is equal to
the product of all the values in the tuple returned by shape, here 3 × 3 = 9.

Asking for the array itself causes NumPy to print it. As the array is
small, NumPy shows us the entire array as a two-dimensional matrix:

NumPy is not limited to two-dimensional arrays. For example, here’s a
three-dimensional array:

>>> d = np.array([[[1,11,111],[2,22,222]],
 [[3,33,333],[4,44,444]]])
>>> d.shape
 (2, 2, 3)
>>> d
 array([[[1, 11, 111],
 [2, 22, 222]],

 [[3, 33, 333],
 [4, 44, 444]]])

We know that d is three-dimensional because shape returns a tuple with
three elements. We also know that d is three-dimensional because the list we
passed to array contains two sublists, each of which contains two sublists
with three elements each, hence a shape of (2, 2, 3). NumPy displays d using a
blank line between the two 2×2 subarrays. We can think of a three-
dimensional array as a vector where each element of the vector is a matrix.
We will use three-dimensional NumPy arrays to hold collections of images.
For this example, d can be thought of as holding two images, each of two
rows by three columns.

Defining Arrays with 0s and 1s
Defining NumPy arrays with the array function would be very tedious if we
wanted a large array since we need to supply the elements of the array.
Fortunately, NumPy is not so cruel. Let’s look now at two NumPy
workhorse functions that we’ll use often in this book. The first builds arrays
where every element is initialized to 0:

>>> x = np.zeros((2,3,4))
>>> x.shape
 (2, 3, 4)
>>> x.dtype
 dtype('float64')
>>> b = np.zeros((10,10),dtype="uint32")
>>> b.shape
 (10, 10)
>>> b.dtype
 dtype('uint32')

The zeros function returns new arrays with every element set to 0. The
example defines x to be a three-dimensional array since the argument to zeros
is the shape of the new array—in this case, the tuple (2,3,4). This array can be

thought of as a pair of tiny images, each 3×4 pixels. Notice that the default
type for an array created with zeros is a 64-bit float (dtype). This means each
element of the array uses 8 bytes in memory.

The array b has two dimensions, 10×10 elements, and we’ve explicitly
declared it to be of 32-bit unsigned integers. This means that each element
uses only 4 bytes in memory. When using NumPy, we need to be aware of
how much memory an array might be using to avoid allocating arrays that
are exceptionally large or of a large data type, such as float64, that wastes
memory.

Our second workhorse function is similar to zeros but instead initializes
each element to 1:

>>> y = np.ones((3,3))
>>> y
 array([[1., 1., 1.],
 [1., 1., 1.],
 [1., 1., 1.]])
>>> y = 10*np.ones((3,3))
>>> y
 array([[10., 10., 10.],
 [10., 10., 10.],
 [10., 10., 10.]])
>>> y.dtype
 dtype('float64')
>>> y.astype("uint8")
 array([[10, 10, 10],
 [10, 10, 10],
 [10, 10, 10]], dtype=uint8)

Just like zeros, ones takes a tuple specifying the number of elements along
each dimension of the array, here a 3×3 matrix. We can also optionally
specify a dtype to make the array hold something other than 64-bit floats.

The real utility of ones is creating arrays initialized to any value. We do
this by multiplying the ones array by the value we want, here 10. Notice how
NumPy realizes that we’re multiplying by a scalar value and performs the
operation on every element of the array automatically—no loops required.

We slipped in something new, the astype method. This method on an
array returns a copy of the array, casting each element to the given data
type. Note, casting to a data type that cannot hold the original values, like
casting 64-bit floats to unsigned bytes, will result in data being lost. NumPy

will do its best, but this is also something to be aware of when using
NumPy.

Finally, in Python, a list or dictionary object is passed by reference so
that assigning one to a new variable doesn’t make a copy; it simply creates
an alias that points back to the original memory. This saves time and space
but can lead to unintended consequences if we get careless. The same is
true with NumPy arrays. They can be very large, so it doesn’t make sense to
copy them every time they are passed to a function. If you want to actually
create a new copy of a NumPy array, use the copy method or an array slice
that represents all the elements of the array. Unlike Python lists, NumPy
arrays are flat: the value in a particular place in the array cannot be another
array.

So, all the following statements, except the second, create a copy of the
array a:

>>> a = np.arange(10)
>>> b = a
>>> c = a.copy()
>>> d = a[:]

Changing an element of a will change the corresponding element of b
since b is pointing to the same memory as a, but the elements of c and d will
be unaffected.

Accessing Elements in an Array
In this section, we’ll look at two different ways to access elements in an
array.

Indexing into an Array
Arrays aren’t much use if we can’t refer to the elements within them and
update them when necessary. This is called array indexing. Understanding
array indexing is critical to making good use of NumPy. Let’s jump in with
some examples:

 >>> b = np.zeros((3,4),dtype='uint8')
 >>> b
 array([[0, 0, 0, 0],

 [0, 0, 0, 0],
 [0, 0, 0, 0]], dtype=uint8)
❶ >>> b[0,1] = 1
 >>> b[1,0] = 2
 >>> b
 array([[0, 1, 0, 0],
 [2, 0, 0, 0],
 [0, 0, 0, 0]], dtype=uint8)

We index arrays in the same way that we index lists, with square
brackets: [begins the index and] ends it. In between the square brackets
goes an expression that tells NumPy which elements of the array to return
or assign—this is the subscript. A subscript is appended to an array name to
specify one or more elements of the array.

In the example above, b is a matrix of three rows and four columns with
each element initialized to 0. We see this when we evaluate b.

Next, we do something new: we set up an assignment statement ❶
where the left-hand side of the statement is not a single variable name but a
variable name with a subscript, the text [0,1]. This subscript tells NumPy that
the value of the right-hand side of the statement, here just 1, should be put
into the element of b at row 0 and column 1. Likewise, NumPy should put a
2 into the element at row 1, column 0. We see that NumPy did as we asked
when we look at b and see that the second column of row 0 is now 1, and
the first column of row 1 is now 2.

If we continue working with b as defined previously, we see how to ask
NumPy for elements from the array:

>>> b[1,0]
 2
>>> b[1]
 array([2, 0, 0, 0], dtype=uint8)
>>> b[1][0]
 2

Since b is a matrix, we need subscripts to select a specific element of it,
one for the row, another for the column. Therefore, b[1,0] should return the
value in the second row and first column, as we see it does.

The next line uses a single subscript, b[1], and returns the entire second
row of b. This is a very useful feature that we’ll see in our own code
throughout the book.

Lastly, if b[1] returns the entire second row of the matrix, b, then we can
use b[1][0] to ask for the first element of that row. We see that it matches the
result of the b[1,0] syntax we started with.

Slicing an Array
Accessing individual elements of an array, or an entire subarray, with a
single index is useful, but NumPy is far more flexible than that. It’s possible
to specify parts of the array by using slicing, which returns subarrays carved
out of the larger array as if with a knife. Let’s look at how it works:

>>> a = np.arange(10)
>>> a
 array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> a[1:4]
 array([1, 2, 3])
>>> a[3:7]
 array([3, 4, 5, 6])

Here we use arange, which is the NumPy analogue of the Python range
function, to set a to a vector of the digits [0,9]. We then ask for a slice of
this vector, a[1:4], and see that it returns [1, 2, 3]. The slice was specified with
two values: the first is the starting index, 1, and the second is the ending
index, 4.

Wait—if the ending index is 4,then shouldn’t the slice have returned [1,
2, 3, 4] instead? NumPy follows the Python convention for lists, so the
ending index is never included in the returned subarray. We can read the
slice as asking for all the elements of a starting at index 1 and up to but not
including index 4. Mathematically, a slice given as a[x:y] means all elements,
i, of a such that x ≤ i < y. Therefore, the second example, a[3:7], now makes
sense as it’s asking for all elements of a starting with index 3 up to but not
including index 7.

The slices selected all elements in the given range. NumPy allows for an
optional third slice argument that specifies a step size. If not given, the step
size is 1. Therefore, with a as a vector of the digits as before, we get this:

>>> a[0:8:2]
 array([0, 2, 4, 6])
>>> a[3:7:2]
 array([3, 5])

The first slice starts at the beginning of the array, index 0, and goes to
index 8 (but not including index 8) returning every second element. The
second example does the same starting with index 3.

Any part of the full slice syntax, [x:y:z], may be omitted, but at least one
colon must remain. If so, the default value is the first index (for x), the last
index (for y), and 1 (for z). For example:

>>> a[:6]
 array([0, 1, 2, 3, 4, 5])
>>> a[6:]
 array([6, 7, 8, 9])

In the first example, the starting index is omitted so it defaults to 0 and
we’re given the first six elements of a. In the second example, the ending
index is omitted so it defaults to the last index, meaning “return everything
from index 6 to the end.” In both cases, the increment was omitted and
defaulted to 1.

Array slicing leads to some handy shortcuts. Two are given here:

>>> a[-1]
 9
>>> a[::-1]
 array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])

The first example shows us that like Python lists, NumPy arrays can be
indexed with negative values to count from the end of an axis. So, asking
for index –1 will always return the last element.

The second example is a bit mysterious at first. We know that a is a
vector of the digits from 0 through 9. The example returns the vector in
reverse order. How? Let’s break down the meaning of ::-1. We said that any
part of the array slice notation can be omitted, and if it is, the default is
either the first index, the last index, or the increment. In this case, the first
index is omitted so it defaults to 0. The required colon (:) is present, and
then the last index is omitted so it defaults to the last index. Then there’s a :
for the increment, which is given as –1, to count backward from the ending
index to the starting index. This is what counts backward and reverses the
elements of the array.

Naturally, array slicing works with NumPy arrays with any number of
dimensions. Let’s look at slicing a two-dimensional matrix:

>>> b = np.arange(20).reshape((4,5))
>>> b
 array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9],
 [10, 11, 12, 13, 14],
 [15, 16, 17, 18, 19]])
>>> b[1:3,:]
 array([[5, 6, 7, 8, 9],
 [10, 11, 12, 13, 14]])
>>> b[2:,2:]
 array([[12, 13, 14],
 [17, 18, 19]])

We define b to be a vector of the numbers [0,19] by using arange and then
immediately use reshape to change the vector into a matrix of four rows and
five columns. The argument to reshape is a tuple specifying the new shape for
the array. There must be exactly as many elements in the array as the new
shape. The vector had 20 elements, and the new shape has 4 × 5 = 20
elements, so we are okay in this case.

Array slicing applies per dimension, so the second example, b[1:3,:] is
asking for rows 1 and 2 and all the columns in those rows. That is what : by
itself means—all the elements along that axis.

The next example asks for all the rows and columns starting with row 2
and column 2. This is the submatrix pulled from the lower-right corner of
the full matrix b.

The Ellipsis
NumPy supports a shorthand notation for slicing that’s sometimes useful.
Let’s show it and then discuss what it’s doing. First, however, we need to
define some arrays to work with:

>>> c = np.arange(27).reshape((3,3,3))
>>> c
 array([[[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]],
 [[9, 10, 11],
 [12, 13, 14],
 [15, 16, 17]],
 [[18, 19, 20],
 [21, 22, 23],
 [24, 25, 26]]])

>>> a = np.ones((3,3))
>>> a
 array([[1., 1., 1.],
 [1., 1., 1.],
 [1., 1., 1.]])

First we define c to be a three-dimensional array with three elements
along each dimension. We use the same reshape trick that we used previously,
and we know it will work because 3 × 3 × 3 = 27 and there are 27 elements
in the initial vector produced by arange. Again, we can think of c as three 3×3
images stacked together. Next we use ones to define a simple 3×3 matrix
with every value set to 1.

From our discussion of array slicing so far, we know that we can replace
the 3×3 subarray in c for any particular “image” by using the colon notation.
For example, let’s replace the second “image” of c by a:

>>> c[1,:,:] = a
>>> c
array([[[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]],
 [[1, 1, 1],
 [1, 1, 1],
 [1, 1, 1]],
 [[18, 19, 20],
 [21, 22, 23],
 [24, 25, 26]]])

Here we tell NumPy to replace the second subarray, which is 3×3, with
the 3×3 array in a. It’s the second subarray because the first index is given
as 1. When we print c, we see that the second 3×3 subarray is now all 1s.

Now for the shorthand notation. This time, we want to replace the first
3×3 subarray of c with a. We could do this with a syntax of c[0,:,:] but instead
we’ll use the shorthand notation:

>>> c[0,...] = a
>>> c
 array([[[1, 1, 1],
 [1, 1, 1],
 [1, 1, 1]],
 [[1, 1, 1],
 [1, 1, 1],
 [1, 1, 1]],
 [[18, 19, 20],

 [21, 22, 23],
 [24, 25, 26]]])

Notice that instead of c[0,:,:], where we specified all the indices of all the
remaining dimensions of c, we used c[0,...] which NumPy interprets as
meaning “and as many colons as necessary to cover all the remaining
dimensions.” Of course, the shape of a must match the shape of the subarray
specified by all the remaining dimensions. In this example, there are two
remaining dimensions and a is a two-dimensional array, so we do match.
The ellipsis notation (...) is commonly used in Python code related to
machine learning, so that’s why I mention it here. You could argue that
from a readability standpoint, using ... is not a good idea because it requires
the reader of the code to remember how many dimensions a particular array
has.

Operators and Broadcasting
NumPy uses all the standard math operators as well as a heap of other
methods and functions that implement more advanced operations. NumPy
also uses a concept called broadcasting to decide how to apply an operator
to arrays. Let’s look at some simple operators and broadcasting:

>>> a = np.arange(5)
>>> a
 array([0, 1, 2, 3, 4])
>>> c = np.arange(5)[::-1]
>>> c
 array([4, 3, 2, 1, 0])
>>> a*3.14
 array([0., 3.14, 6.28, 9.42, 12.56])
>>> a*a
 array([0, 1, 4, 9, 16])
>>> a*c
 array([0, 3, 4, 3, 0])
>>> a//(c+1)
 array([0, 0, 0, 1, 4])

From earlier examples, we know that a is a vector of the digits 0 through
4. And, we know because of our discussion of array slicing, that c is a
vector of the digits 4 down to 0, the reverse of a.

With that in mind, we see that multiplying a by 3.14 multiplies each
element by 3.14. NumPy has broadcast the scalar 3.14 across all the
elements of the array a. NumPy would do this no matter what shape a has.
Operating on an array with a scalar performs the operation on all elements
of the array, regardless of its shape.

The expression a*a multiplies a by itself. In this case, NumPy sees that
the two arrays have the same shape, so it multiplies corresponding
elements, thereby squaring each element of a. Multiplying a by c is also
straightforward because c has the same shape as a.

The last example uses broadcasting twice. First, it broadcasts the scalar
1 across c to add one to each element of c. This operation does not change
the shape of c, so dividing a by using integer division (// not /), by the
expression (c+1), works since each has the same shape.

Let’s look at some more examples. There’s no end to the number of
examples we could give, but one more small set should cement the concepts
for us. First a more complex broadcasting example:

>>> a
 array([0, 1, 2, 3, 4])
>>> b=np.arange(25).reshape((5,5))
>>> b
 array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9],
 [10, 11, 12, 13, 14],
 [15, 16, 17, 18, 19],
 [20, 21, 22, 23, 24]])
>>> a*b
 array([[0, 1, 4, 9, 16],
 [0, 6, 14, 24, 36],
 [0, 11, 24, 39, 56],
 [0, 16, 34, 54, 76],
 [0, 21, 44, 69, 96]])

Remember that a is a vector of digits. We then define b to be a 5×5
matrix of the numbers 0 through 24. Next, we multiply a and b.

At this point, you should object. How can we multiply these two arrays
when their shapes don’t match? The array a has only 5 elements, while b has
25. This is where broadcasting comes into play. NumPy recognizes that the
five-element vector in a matches the size of each row of b so it multiplies
each row of b by a to return a new 5×5 matrix. This sort of broadcasting is

actually quite handy. We’ll be storing our datasets primarily as two-
dimensional NumPy arrays, where each row is a sample and the columns
correspond to input values for that sample.

NumPy also supports matrix math operations. These are the operations
on vectors and matrices that we find in linear algebra. For example:

>>> x = np.arange(5)
>>> x
 array([0, 1, 2, 3, 4])
>>> np.dot(x,x)
 30

Here we define x to be a simple vector of five elements. We then
introduce NumPy’s primary vector and matrix product function, dot, to
multiply x by itself. We already know that if we multiply x by itself in the
standard way, using x*x, we’ll get each element times itself, giving [0,1,4,9,16],
but that’s not what we get here. Instead we get the scalar value, 30. Why?

The answer has to do with what dot does. It doesn’t implement element-
wise multiplication but instead implements linear algebra multiplication.
Specifically, because both arguments to dot are vectors, it implements vector
times vector, which is known as the dot product, hence the name of the
NumPy function. The dot product for vectors multiplies each element of the
first vector by the corresponding element of the second vector and then
adds all those products together. So, for dot(x,x) NumPy is calculating as
follows:

[0, 1, 2, 3, 4] × [0, 1, 2, 3, 4] = [0, 1, 4, 9, 16]; 0 + 1 + 4 + 9 + 16 = 30

The dot function can be used to multiply two vectors, a vector and a
matrix, or two matrices, all following the rules of linear algebra, which are
beyond the scope of this book to explore in detail. That said, the dot function
is of great importance to us because it is the workhorse function of machine
learning with NumPy. In the end, most of modern machine learning boils
down to math with vectors and matrices.

Let’s look at an example using dot with two matrices:

>>> a = np.arange(9).reshape((3,3))
>>> b = np.arange(9).reshape((3,3))
>>> a

 array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]])
>>> np.dot(a,b)
 array([[15, 18, 21],
 [42, 54, 66],
 [69, 90, 111]])
>>> a*b
 array([[0, 1, 4],
 [9, 16, 25],
 [36, 49, 64]])

Here we define both a and b to be the same 3×3 matrix of the digits 0
through 9. We then use dot with these two matrices. For comparison
purposes, we also show normal multiplication of the two matrices.

The two results are not the same. The first uses linear algebra rules for
multiplying two 3×3 matrices, which says that the first element of the 3×3
output will be the first column of b, [0, 3, 6], multiplied element by element
with the first row of a, [0, 1, 2], with each product summed:

[0, 3, 6] × [0, 1, 2] = [0, 3, 12]; 0 + 3 + 12 = 15

A similar process creates each of the other entries. For the simple
multiplication, the first element of the 3×3 output is simply 0 × 0 = 0.

If the inputs to dot are matrices, then dot acts as we expect: it’s matrix
multiplication. It’s when one of the inputs is a vector and the other a matrix
that things get a little sloppy. NumPy is somewhat careless about whether
the vector is a row or column vector—it produces the correct result
regardless, though the shape of the result might not follow linear algebra
rules precisely.

We trudged through the linear algebra examples because as you
continue to explore machine learning, you’ll encounter code using dot quite
frequently. It’s good to know what it does, but because of its tolerance of
the shape of its inputs, you might need to work through the code paying
careful attention to the actual shapes of your arrays to avoid getting lost.

Array Input and Output

NumPy would be difficult to use if it didn’t provide the means for storing
arrays on disk and reading arrays from disk. Sure, we could use a standard
Python module like pickle, but that’s inefficient and makes interchange
between software packages difficult. Fortunately for us, the creators of
NumPy were thorough and included input/output functions.

In the following, we’ll refer to several disk files. The first is abc.txt,
which looks like this:

1 2 3
4 5 6
7 8 9

It’s a file of three lines with three numbers per line separated by a space.
The second is abc_tab.txt, which is identical to abc.txt, but the spaces have
been replaced by a tab character, \t in Python. Tab-delimited files are
commonly used to store data in files. The last file is abc.csv, which is a
comma-separated values (CSV) file often used by spreadsheet programs.
It’s also the same as abc.txt, but the spaces have been replaced by commas.
Now, let’s look at NumPy’s basic input/output capabilities.

 >>> a = np.loadtxt("abc.txt")
 >>> a
 array([[1., 2., 3.],
 [4., 5., 6.],
 [7., 8., 9.]])
 >>> a = np.loadtxt("abc_tab.txt")
 >>> a
 array([[1., 2., 3.],
 [4., 5., 6.],
 [7., 8., 9.]])
❶ >>> a = np.loadtxt("abc.csv", delimiter=",")
 >>> a
 array([[1., 2., 3.],
 [4., 5., 6.],
 [7., 8., 9.]])
❷ >>> np.save("abc.npy", a)
❸ >>> b = np.load("abc.npy")
 >>> b
 array([[1., 2., 3.],
 [4., 5., 6.],
 [7., 8., 9.]])
❹ >>> np.savetxt("ABC.txt", b)
 >>> np.savetxt("ABC.csv", b, delimiter=",")

The first three examples use loadtxt, which reads text files and produces
NumPy arrays from them. The first two examples show that loadtxt knows
how to parse files with values separated by spaces and tab characters. The
function uses the rows of the text file as rows of the matrix, and the values
on each line as the elements in each row.

The third example explicitly states that the delimiter (separator)
between values in the text file is the comma character (,) ❶. This is how to
read a .csv file in NumPy.

NumPy uses the save function to write arrays to disk ❷. This function
writes a single array to the given filename. NumPy uses a .npy file
extension to identify the file as containing a NumPy array. We’ll make
extensive use of .npy files throughout this book.

To read an array back into memory from disk, use load ❸. Note that the
data in the array is loaded, but you must assign it to a new variable name.
The .npy file doesn’t store the original name of the array.

Sometimes we’ll want to write arrays in a format that will be readable
by other programs or humans. On those occasions, we’ll use the savetxt
function ❹. These examples write text files, first using spaces between
values and then using a comma between values.

What if we want to write multiple arrays to disk? Are we forced to use a
single file for each array? Fortunately, no, we can use savez and read them
with load.

For example:

 >>> a
 array([[1., 2., 3.],
 [4., 5., 6.],
 [7., 8., 9.]])
 >>> b
 array([[1., 2., 3.],
 [4., 5., 6.],
 [7., 8., 9.]])
❶ >>> np.savez("arrays.npz", a=a, b=b)
 >>> q = np.load("arrays.npz")
❷ >>> list(q.keys())
 ['a', 'b']
 >>> q['a']
 array([[1., 2., 3.],
 [4., 5., 6.],
 [7., 8., 9.]])

 >>> q['b']
 array([[1., 2., 3.],
 [4., 5., 6.],
 [7., 8., 9.]])

Here we store the two arrays, a and b, to a single file, arrays.npz ❶. We
still read the file with load, but instead of the arrays, q is more like a
dictionary so that if we ask for the keys as a list ❷, we get a list of the
names of the arrays read from the file. Referencing an array by its name
returns it.

Look again at the call to savez ❶. Notice how we specified the arrays?
This is the keyword approach, and it gives the arrays the keyword name,
which we made the same as the variable name so that when we asked for
the keys after opening the file, we got back the names we expect. We could
have dispensed with the keyword names and simply used the following:

>>> np.savez("arrays.npz", a, b)

This would write the arrays to the file by using default names of arr_0 and
arr_1. Lastly, since arrays can be quite large, we might want to compress
them (losslessly!), and for that, we’d have used savez_compressed in place of
savez.

Compression might be worth it, but it does slow reading and writing.
For example, a 64-bit floating-point array of 10 million element requires at
a minimum 80,000,000 bytes of memory. Using savez to write such an array
to disk uses 80,000,244 bytes and takes only a fraction of a second. The
extra 244 bytes are overhead for the structure of the dictionary. Writing the
compressed file to disk takes a second or two but results in a file of
11,960,115 bytes, considerably smaller. Since this example was made using
arange, each element of the output array was unique so the compression is
not the result of storing an array of 10 million zeros. For the curious, storing
10 million zeros uncompressed still uses 80,000,244 bytes but compressed
uses only 77,959 bytes on disk. So, the more redundant the array, the more
the savings when compressed.

Random Numbers

NumPy has extensive support for pseudorandom number generation. We’ll
be sloppy and simply call them random numbers, understanding that
computers are not capable by any algorithmic process of producing actual
random numbers—if you’re curious about pseudorandom number
generation, you can read my book, Random Numbers and Computers
(Springer 2018). The NumPy random number library is under random and
can generate samples from many different distributions, the most common
being a uniform distribution, [0,1). This means that any (representable)
floating-point number in that range is equally likely. Usually, this is what
we want. At other times we might want to use a normal distribution that
looks like the classic bell-shaped curve. Many physical processes follow
this curve. NumPy can generate such samples as well.

The random number functions we’ll use in this book are random.random to
generate random numbers from [0,1), random.normal to generate random
numbers drawn from a bell-shaped curve, and random.seed to set the seed of
the generator so we can produce the same sequence of random numbers
over and over. We’ll leave it to the philosophers to decide if such a
sequence still deserves the label random or, for that matter, if it ever did,
regardless of the seed value.

NumPy and Images
Some of the datasets we’ll use are image based. We’ll want to work with
the datasets in NumPy, so we need to know something about how to work
with images in Python and how to get images into and out of NumPy
arrays. Fortunately, it’s pretty straightforward. Besides NumPy, we’ll need
to work with the Pillow module (PIL) to read and write images. We have
Pillow installed already—it comes with the installation of our main toolkits.
We also have some sample images as part of sklearn.

We need to think in terms of two worlds when working with images.
There’s the “NumPy” world, where the image has been converted into a
NumPy array, and there’s the PIL world that reads and writes images in
common graphics formats like JPEG and PNG. The distinction really isn’t
so black-and-white—we can do image processing in PIL too, and sometimes
that is more convenient; but for now, we’ll use PIL only as a way to read and
write image files.

Images are two-dimensional arrays of numbers, but if the image is color,
we will have three or even four numbers for each pixel, each a byte value
representing the intensity of the red, green, blue, and sometimes, alpha,
channels of the image. We’ll assume that all of our images are either one-
channel grayscale or three-channel RGB. We’ll eliminate any alpha channel
when we encounter one. The alpha channel determines how transparent the
pixel is.

First, let’s see how to get at the example images sklearn provides and how
to turn them into PIL images, store them on disk, and display them:

❶ >>> from PIL import Image
 >>> from sklearn.datasets import load_sample_images
❷ >>> china = load_sample_images().images[0]
 >>> flower = load_sample_images().images[1]
 >>> china.shape, china.dtype
 ((427, 640, 3), dtype('uint8'))
 >>> flower.shape, flower.dtype
 ((427, 640, 3), dtype('uint8'))
❸ >>> imChina = Image.fromarray(china)
 >>> imFlower = Image.fromarray(flower)
 >>> imChina.show()
 >>> imFlower.show()
❹ >>> imChina.save("china.png")
 >>> imFlower.save("flower.png")
❺ >>> im = Image.open("china.png")
 >>> im.show()

First, we need to import PIL ❶ and the sample images function from
sklearn. Once we have those, we can get at the actual images as NumPy
arrays ❷. We see that the china and flower images are three-dimensional
arrays, meaning they are RGB images. The images are 427×640 pixels. The
third dimension is 3, corresponding to the red, green, and blue channels. If
the images were grayscale, they would have only two dimensions.

We can convert the NumPy arrays to PIL image objects ❸ by using the
fromarray function. The argument is assumed to be a NumPy array of the
proper format for conversion. Usually this means that the array must have a
data type of uint8. Once we have the PIL image objects, we can view the
images with the show method.

To write the images to disk as actual graphics files, not NumPy arrays,
we use the save method on the PIL objects ❹. The format of the output file is
determined by the file extension. Here we’re using PNG.

To read an image file from disk, we use the open function ❺. Note that
open returns a PIL image object, not a NumPy array.

Let’s see how to turn the PIL image object into a NumPy array. Also,
let’s see how to use PIL to make a color image grayscale before turning it
into a NumPy array. We’ll use each of these steps later in the book:

 >>> im = Image.open("china.png")
❶ >>> img = np.array(im)
 >>> img.shape, img.dtype
 ((427, 640, 3), dtype('uint8'))
❷ >>> gray = im.convert("L")
 >>> gray.show()
 >>> g = np.array(gray)
 >>> g.shape, g.dtype
 ((427, 640), dtype('uint8'))

We first load the image from disk into a PIL image object, im. We then
pass the image object to NumPy via the array function ❶. This function is
savvy enough to recognize a PIL image object and make the proper
conversion to a NumPy array.

We can also turn the PIL RGB image into a grayscale image using the
convert method. Note that PIL uses L for luminance to refer to grayscale
images ❷. Again, array converts the now grayscale image into a NumPy
array. We see that the image has only two dimensions, as we would expect
from a grayscale image, where each pixel value is just a shade of gray, not a
color.

The PIL module has many other abilities. It’s a good idea to look at the
Pillow website, https://pillow.readthedocs.io/en/5.1.x/, to see the other
things you can do with PIL.

Summary
In this chapter, we reviewed how to work with NumPy, the foundational
toolkit used by both sklearn and Keras. This gives us the background we need
to understand the code examples we’ll see later in the book. It’s essential to
understand how to use NumPy, at least at a basic level. The examples in this
chapter should help.

https://pillow.readthedocs.io/en/5.1.x/

Now that we’re familiar with NumPy, we are ready to dive into working
with data.

4
WORKING WITH DATA

Developing a proper dataset is the single most important part of building a
successful machine learning model. Machine learning models live and die
by the phrase “garbage in, garbage out.” As you saw in Chapter 1, the
model uses the training data to configure itself to the problem. If the
training data is not a good representation of the data the model will receive
when it is used, we can’t expect our model to perform well. In this chapter,
we’ll learn how to create a good dataset that represents the data the model
will encounter in the wild.

Classes and Labels
In this book, we’re exploring classification: we’re building models that put
things into discrete categories, or classes, like dog breed, flower type, digit,
and so on. To represent classes, we give each input in our training set an
identifier called a label. A label could be the string “Border Collie" or,
better still, a number like 0 or 1.

Models don’t know what their inputs represent. They don’t care whether
the input is a picture of a border collie or the value of Google stock. To the
model, it’s all numbers. The same is true of labels. Because the label for the
input has no intrinsic meaning to the model, we can represent classes
however we choose. In practice, class labels are usually integers starting

with 0. So, if there are 10 classes, the class labels are 0, 1, 2, …, 9. In
Chapter 5, we’ll work with a dataset that has 10 classes representing images
of different real-world things. We’ll simply map them to the integers as in
Table 4-1.

Table 4-1: Label Classes with Integers: 0, 1, 2, . . .

Label Actual class
0 airplanes
1 cars
2 birds
3 cats
4 deer
5 dogs
6 frogs
7 horses
8 ships
9 trucks

With that labeling, every training input that is a dog is labeled 5, while
every input that is a truck is labeled 9. But what exactly is it that we’re
labeling? In the next section, we’ll cover features and feature vectors, the
very lifeblood of machine learning.

Features and Feature Vectors
Machine learning models take features as inputs and deliver, in the case of a
classifier, a label as output. So what are these features and where do they
come from?

For most models, features are numbers. What the numbers represent
depends upon the task at hand. If we’re interested in identifying flowers
based on measurements of their physical properties, our features are those
measurements. If we’re interested in using the dimensions of cells in a
medical sample to predict whether a tumor is breast cancer or not, the
features are those dimensions. With modern techniques, the features might
be the pixels of an image (numbers), or a sound’s frequency (numbers) or

even how many foxes were counted by a camera trap over a two-week
period (numbers).

Features, then, are whatever numbers we want to use as inputs. The goal
of training the model is to get it to learn a relationship between the input
features and the output label. We assume that a relationship exists between
the input features and output label before training the model. If the model
fails to train, it might be that there is no relationship to learn.

After training, feature vectors with unknown class labels are given to
the model, and the model’s output predicts the class label based on the
relationships it discovered during training. If the model is repeatedly
making poor predictions, one possibility is that the selected features are not
sufficiently capturing that relationship. Before we go into what makes a
good feature, let’s take a closer look at the features themselves.

Types of Features
To recap, features are numbers representing something that is measured or
known, and feature vectors are sets of these numbers used as inputs to the
model. There are different kinds of numbers you could use as features, and
as you’ll see, they’re not all created equal. Sometimes you’ll have to
manipulate them before you can input them into your model.

Floating-Point Numbers
In Chapter 5, we’ll be building a historic flower dataset. The features of that
dataset are actual measurements of things like a flower’s sepal width and
height (in centimeters). A typical measurement might be 2.33 cm. This is a
floating-point number—a number with a decimal point, or, if you remember
your high school math courses, a real number. Most models want to work
with floating-point numbers, so you can just use the measurements as they
are. Floating-point numbers are continuous, meaning there are an infinite
number of values between one integer and the next, so we have a smooth
transition between them. As we’ll see later on, some models expect
continuous values.

Interval Values

Floating-point numbers don’t work for everything, however. Clearly,
flowers cannot have 10.14 petals, though they might have 9, 10, or 11.
These numbers are integers: whole numbers without a fractional part or a
decimal point. Unlike floating-point numbers, they are discrete, which
means they pick out only certain values, leaving gaps in between.
Fortunately for us, integers are just special real numbers, so models can use
them as they are.

In our petal example, the difference between 9, 10, and 11 is meaningful
in that 11 is bigger than 10, and 10 is bigger than 9. Not only that, but 11 is
bigger than 10 in exactly the same way that 10 is bigger than 9. The
difference, or interval, between the values is the same: 1. This value is
called an interval value.

The pixels in an image are interval values, because they represent the
(assumed linear) response of some measurement device, like a camera or an
MRI machine, to some physical process like intensity and color of visible
light or the number of hydrogen protons in free water in tissue. The key
point is that if value x is the next number in the sequence after value y, and
value z is the number before value y, then the difference between x and y is
the same difference as between y and z.

Ordinal Values
Sometimes the interval between the values is not the same. For example,
some models include someone’s educational level to predict whether or not
they will default on a loan. If we encode someone’s educational level by
counting their years of schooling, we could use that safely since the
difference between 10 years of schooling and 8 is the same as the difference
between 8 years of schooling and 6. However, if we simply assign 1 for
“completed high school,” 2 for “has an undergraduate degree,” and 3 for
“has a doctorate or other professional degree,” we’d probably be in trouble;
while 3 > 2 > 1 is true, whether or not meaningful for our model, the
difference between the values represented by 3 and 2 and 2 and 1 is not the
same. Features like these are called ordinal because they express an
ordering, but the differences between the values are not necessarily always
the same.

Categorical Values

Sometimes we use numbers as codes. We might encode sex as 0 for male
and 1 for female, for example. In this case, 1 is not understood to be greater
than 0 or less than 0, so these are not interval or ordinal values. Instead,
these are categorical values. They express a category but say nothing about
any relationship between the categories.

Another common example, perhaps relevant to classifying flowers, is
color. We might use 0 for red, 1 for green, and 2 for blue. Again, no
relationship exists between 0, 1, or 2 in this case. This doesn’t mean we
can’t use categorical features with our models, but it does mean that we
usually can’t use them as they are since most types of machine learning
models expect at least ordinal, if not interval numbers.

We can make categorical values at least ordinal by using the following
trick. If we wanted to use a person’s sex as an input, instead of saying 0 for
male and 1 for female, we would create a two-element vector, one element
for each possibility. The first digit in the vector will indicate whether the
input is male by signaling either 0 (meaning they’re not male) or 1
(meaning they are). The second digit will indicate whether or not they are
female. We map the categorical values to a binary vector, as shown in Table
4-2.

Table 4-2: Representing Categories as Vectors

Categorical value Vector representation
0 → 1 0
1 → 0 1

Here a 0 in the “is male” feature is meaningfully less than a 1 in that
feature, which fits the definition of an ordinal value. The price we pay is to
expand the number of features in our feature vector, as we need one feature
for each of the possible categorical values. With five colors, for example,
we would need a five-element vector; with five thousand, a five-thousand-
element vector.

To use this scheme, the categories must be mutually exclusive, meaning
there will be only one 1 in each row. Because there’s always only one
nonzero value per row, this approach is sometimes called a one-hot
encoding.

Feature Selection and the Curse of Dimensionality
This section is about feature selection, the process of selecting which
features to use in your feature vectors, and why you shouldn’t include
features you don’t need. Here’s a good rule of thumb: the feature vector
should contain only features that capture aspects of the data that allow the
model to generalize to new data.

In other words, features should capture aspects of the data that help the
model separate the classes. It’s impossible to be more explicit, since the set
of best features are always dataset specific, unknowable in advance. But
that doesn’t mean we can’t say things that might be helpful in guiding us
toward a useful set of features for whatever dataset we’re working with.

Like many things in machine learning, selecting features comes with
trade-offs. We need enough features to capture all the relevant parts of the
data so that the model has something to learn from, but if we have too many
features, we fall victim to the curse of dimensionality.

To explain what this means, let’s look at an example. Suppose our
features are all restricted to the range [0,1). That’s not a typo; we’re using
interval notation, where a square bracket means the bound is included in the
range, and a parenthesis means the bound is excluded. So here 0 is allowed
but 1 isn’t. We’ll also assume our feature vectors are either two-dimensional
or three-dimensional. That way, we can plot each feature vector as a point
in a 2D or 3D space. Finally, we’ll simulate datasets by selecting feature
vectors, 2D or 3D, uniformly at random so that each element of the vector
is in [0,1).

Let’s fix the number of samples at 100. If we have two features, or a 2D
space, we can represent 100 randomly selected 2D vectors as in the top of
Figure 4-1. Now, if we have three features, or a 3D space, those same 100
features look like the bottom of Figure 4-1.

Figure 4-1: One hundred random samples in 2D space (top) and in 3D space (bottom)

Since we’re assuming our feature vectors can come from anywhere in
the 2D or 3D space, we want our dataset to sample as much of that space as
possible so that it represents the space well. We can get a measure of how
well the 100 points are filling the space by splitting each axis into 10 equal
sections. Let’s call these sections bins. We’ll end up with 100 bins in the 2D
space, because it has two axes (10 × 10), and 1,000 in the 3D space,
because it has three axes (10 × 10 × 10). Now, if we count the number of
bins occupied by at least one point and divide that number by the total
number of bins, we’ll get the fraction of bins that are occupied.

Doing this gives us 0.410 (out of a maximum of 1.0) for the 2D space
and 0.048 for the 3D space. This means that 100 samples were able to
sample about half of the 2D feature space. Not bad! But 100 samples in the
3D feature space sampled only about 5 percent of the space. To fill the 3D
space to the same fraction as the 2D space, we’d need about 1,000—or 10
times as many as we have. This general rule applies as the dimensionality
increases: a 4D feature space would need about 10,000 samples, while a
10D feature space would need about 10,000,000,000! As the number of
features increases, the amount of training data we need to get a
representative sampling of the possible feature space increases dramatically,
approximately as 10d, where d is the number of dimensions. This is the
curse of dimensionality, and it was the bane of machine learning for
decades. Fortunately for us, modern deep learning has overcome this curse,
but it’s still relevant when working with traditional models like the ones we
will explore in Chapter 6.

For example, a typical color image on your computer might have 1,024
pixels on a side where each pixel requires 3 bytes to specify the color as a
mix of red, green, and blue. If we wanted to use this image as input to a
model, we’d need a feature vector with d = 1024 × 1024 × 3 = 3,145,728
elements. This means we’d need some 103,145,728 samples to populate our
feature space. Clearly, this is not possible. We’ll see in Chapter 12 how to
overcome this curse by using a convolutional neural network.

Now that we know about classes, features, and feature vectors, let’s
describe what it means to have a good dataset.

Features of a Good Dataset
The dataset is everything. This is no exaggeration, since we build the model
from the dataset. The model has parameters—be they the weights and
biases of a neural network, the probabilities of each feature occurring in a
Naïve Bayes model, or the training data itself in the case of Nearest
Neighbors. The parameters are what we use the training data to find out:
they encode the knowledge of the model and are learned by the training
algorithm.

Let’s back up a little bit and define the term dataset as we we’ll use it in
this book. Intuitively, we understand what a dataset is, but let’s be more
scientific and define it as a collection of pairs of values, {X,Y}, where X is
an input to the model and Y is a label. Here X is some set of values that
we’ve measured and grouped together, like length and width of flower
parts, and Y is the thing we want to teach the model to tell us, such as which
flower or which animal the data best represents.

For supervised learning, we act as the teacher, and the model acts as the
student. We are teaching the student by presenting example after example,
saying things like “this is a cat” and “this is a dog,” much as we would
teach a small child with a picture book. In this case, the dataset is a
collection of examples, and training consists of showing the examples to
the model repeatedly, until the model “gets it”—that is, until the parameters
of the model are conditioned and adjusted to minimize the error made by
the model for this particular dataset. This is the learning part of machine
learning.

Interpolation and Extrapolation
Interpolation is the process of estimating within a certain known range.
And extrapolation occurs when we use the data we have to estimate outside
the known range. Generally speaking, our models are more accurate when
they in some sense interpolate, which means we need a dataset that is a
comprehensive representation of the range of values that could be used as
inputs to the model.

As an example, let’s look at world population, in billions, from 1910 to
1960 (Table 4-3). We have data for every 10 years in our known range,
1910 to 1960.

Table 4-3: The World Population by Decade

Year Population (billions)
1910 1.750
1920 1.860
1930 2.070
1940 2.300
1950 2.557
1960 3.042

If we find the “best fitting” line to plot through this data, we can use it as a
model to predict values. This is called linear regression, and it allows us to
estimate the population for any year we choose. We’ll skip the actual fitting
process, which you can do simply with online tools, and jump to the model:

p = 0.02509y – 46.28

For any year, y, we can get an estimate of the population, p. What was the
world population in 1952? We don’t have actual data for 1952 in our table,
but using the model, we can estimate it like so:

p = 0.02509(1952) – 46.28 = 2.696 billion

By checking the actual world population data for 1952, we know that it was
2.637 billion, so our estimate of 2.696 billion was only some 60 million off.
The model seems to be pretty good!

In using the model to estimate the world population in 1952, we
performed interpolation. We made an estimate for a value that was between
data points we had, and the model gave us a good result. Extrapolation, on
the other hand, is measuring beyond what is known, outside the range of
our data.

Let’s use our model to estimate world population in 2000, 40 years after
the data we used to build our model ends:

p = 0.02509(2000) – 46.28 = 3.900 billion

According to the model, it should be close to 3.9 billion, but we know from
actual data that the world population in 2000 was 6.089 billion. Our model

is off by over 2 billion people. What happened here is that we applied the
model to input it wasn’t suited for. If we remain in the range of inputs that
the model is “trained” to know about, namely, dates from 1910 through
1960, then the model performs well enough. Once we went beyond the
model’s training, however, it fell apart because it assumed knowledge we
didn’t possess.

When we interpolate, the model will see examples that are similar to the
set of examples it saw during training. Perhaps unsurprisingly, it will do
better on these examples than when we extrapolate and ask the model to go
beyond its training.

When it comes to classification, it’s essential we have comprehensive
training data. Let’s assume we’re training a model to identify dog breeds. In
our dataset, we have hundreds of images of classic black-and-white border
collies like the one on the left in Figure 4-2. If we then give the model a
new image of a classic border collie, we will, hopefully, get back a correct
label: “Border Collie.” This is akin to asking the model to interpolate: it’s
working with something is has already seen before because the “Border
Collie” label in the training data included many examples of classic border
collies.

Figure 4-2: A border collie with classic markings (left), a border collie with liver-colored markings
(middle), an Australian shepherd (right)

However, not every border collie has the classic border collie markings.
Some are marked like the collie in the middle of Figure 4-2. Since we didn’t
include images like this in the training set, the model must now try to go
beyond what it was trained to do and give a correct output label for an

instance of a class it was trained on but of a type it was not trained with. It
will likely fail, giving a false output like “Australian Shepherd,” a breed
similar to a border collie, as seen on the right of Figure 4-2.

The key concept to remember, however, is that the dataset must cover
the full range of variation within the classes the model will see when the
model is predicting labels for unknown inputs.

The Parent Distribution
The dataset must be representative of the classes it’s modeling. Buried in
this idea is the assumption that our data has a parent distribution, an
unknown data generator that created the particular dataset we’re using.

Consider this parallel from philosophy. The ancient Greek philosopher
Plato uses the concept of ideals. In his view, there was an ideal chair
somewhere “out there,” and all existing chairs were more or less perfect
copies of that ideal chair. This is what we mean by the relationship between
the dataset we are using, the copy, and the parent distribution, the ideal
generator. We want the dataset to be a representation of the ideal.

We can think of a dataset as a sample from some unknown process that
produces data according to the parent distribution. The type of data it
produces—the values and ranges of the features—will follow some
unknown, statistical rule. For example, when you roll a die, each of the six
values is equally likely in the long run. We call this a uniform parent
distribution. If you make a bar graph of the number of times each value
appears as you roll the die many times, then you will get a (more or less)
horizontal line since each value is equally likely to happen. We see a
different distribution when we measure the height of adults. The
distribution of heights will have a form with two humps, one around mean
male height and the other around mean female height.

The parent distribution is what generates this overall shape. The training
data, the test data, and the data you give the model to make decisions must
all come from the same parent distribution. This is a fundamental
assumption models make, and one that shouldn’t seem too surprising to us.
Still, sometimes it’s easy to mix things up and train with data from one
parent distribution while testing or using the model with data from a
different parent distribution. (How to train with one parent distribution and

use that model with data from a different distribution is a very active
research area at the moment. Search for “domain adaptation.”)

Prior Class Probabilities
The prior class probability is the probability with which each class in the
dataset appears in the wild.

In general, we want our dataset to match the prior probabilities of the
classes. If class A appears 85 percent of the time and class B only 15
percent of the time, then we want class A to appear 85 percent of the time
and class B to appear 15 percent of the time in our training set.

There are exceptions, however. Say one of the classes we want the
model to learn is rare, showing up only once for every 10,000 inputs. If we
make the dataset strictly follow the actual prior probabilities, the model
might not see enough examples of the rare class to learn anything helpful
about it. And, worse yet, what if the rare class is the class we are most
interested in?

For example, let’s pretend we’re building a robot that locates four-leaf
clovers. We’ll assume that we already know that the input to the model is a
clover; we just want to know whether it has three or four leaves. We know
that an estimated 1 in every 5,000 clovers is a four-leaf clover. Building a
dataset with 5,000 three-leaf clovers for every instance of a four-leaf clover
seems reasonable until we realize that a model that simply says every input
is a three-leaf clover will be right, on average, 4,999 times out of 5,000! It
will be an extremely accurate but completely useless model because it never
finds the class we’re interested in.

Instead, we might use a 10:1 ratio of three-leaf to four-leaf clovers. Or,
when training the model, we might start with an even number of three- and
four-leaf clovers, and then, after training for a time, change to a mix that is
increasingly closer to the actual prior probability. This trick doesn’t work
for all model types, but it does work for neural networks. Why this trick
works is poorly understood but, intuitively, we can imagine the network
learning first about the visual difference between a three-leaf and four-leaf
clover and then learning something about the actual likelihood of
encountering a four-leaf clover as the mix changes to be closer to the actual
prior probabilities.

In reality, the trick is used because it often results in better-performing
models. For much of machine learning, especially deep learning, empirical
tricks and techniques are well in advance of any theory to back them up. “It
just works better; that’s why” is still a valid, though ultimately unsatisfying,
answer to many questions about why a particular approach works well.

How to work with imbalanced data is something the research
community is still actively investigating. Some choose to start with a more
balanced ratio of classes; others use data augmentation (see Chapter 5) to
boost the number of samples from the underrepresented class.

Confusers
We said that we need to include examples in our dataset that reflect all the
natural variation in the classes we want to learn. This is definitely true, but
at times it is particularly important to include training samples that are
similar to one or more of our classes but really are not examples of that
class.

Consider two models. The first learns the difference between images of
dogs and images of cats. The second learns the difference between images
of dogs and images that are not dogs. The first model has it easy. The input
is either a dog or a cat, and the model is trained using images of dogs and
images of cats. The second model, however, has it rougher. It’s obvious that
we need images of dogs for training. But, what should the “not dog” images
be? Given the preceding discussion, we should be starting to intuit that
we’ll need images that cover the space of images the model will see in the
wild.

We can take this one step further. If we want to tell the difference
between dogs and not dogs, we should be sure to include wolves in the “not
a dog” class when training. If we don’t, the model might not learn enough
to tell the difference when it encounters a wolf and will return a “dog”
classification. If we build the dataset by using hundreds of “not dog”
images that are all pictures of penguins and parrots, should we be surprised
if the model decides to call a wolf a dog?

In general, we need to make sure the dataset includes confusers, or hard
negatives—examples that are similar enough to other classes to be mistaken
for them, but don’t belong in the class. Confusers give the model a chance
to learn the more precise features of a class. Hard negatives are particularly

useful when distinguishing between something and everything else, as in
“dog” versus “not dog.”

Dataset Size
So far we’ve talked about what kind of data to include in a dataset, but how
much of it do we need? “All of it" is a temptingly cheeky answer. For our
model to be as precise as possible, we should use as many examples as
possible. But it’s rarely possible to get all of the data.

Choosing the size of your dataset means considering a trade-off between
accuracy and the time and energy it takes to acquire the data. Acquiring
data can be expensive or slow, or, as we saw with our clover example,
sometimes the key class of the dataset is rare and seldom encountered.
Because labeled data is generally expensive and slow to acquire, we should
have some idea of how much we need before we get started.

Unfortunately, the truth is that there is no formula that answers the
question of how much data is enough data. After a certain point, there are
diminishing returns on the benefit of additional data. Moving from 100
examples to 1,000 examples might boost the accuracy of the model
dramatically, but moving from 1,000 to 10,000 examples might offer only a
small increase in accuracy. The increased accuracy needs to be balanced
against the effort and expense of acquiring an additional 9,000 training
examples.

Another factor to consider is the model itself. Models have a capacity,
which determines the complexity they can support relative to the amount of
training data available. The capacity of a model is directly related to its
number of parameters. A larger model with more parameters will require a
lot of training data to be able to find the proper parameter settings. And
though it’s often a good idea to have more training examples than model
parameters, deep learning can work well when there is less training data
than parameters. For example, if the classes are very different from each
other—think buildings versus oranges—and it’s easy for us to tell the
difference, the model likely will also learn the difference quickly, so we can
get away with fewer training examples. On the other hand, if we’re trying to
separate wolves from huskies, we might need a lot more data. We will
discuss what to do when you don’t have a lot of training data in Chapter 5,
but none of those tricks are a good substitute for simply getting more data.

The only correct answer to the question of how much data is needed is
“all of it.” Get as much as is practical, given the constraints of the problem:
expense, time, rarity, and so forth.

Data Preparation
Before we move on to building actual datasets, we’re going to cover two
situations you’ll likely encounter before you can feed your dataset to a
model: how to scale features, and what to do if a feature value is missing.

Scaling Features
A feature vector built from a set of different features might have a variety of
ranges. One feature might take on a wide range of values, say, –1000 to
1000, while another might be restricted to a range of 0 to 1. Some models
will not work well when this happens, as one feature dominates the others
because of its range. Also, some model types are happiest when features
have a mean value that is close to 0.

The solution to these issues is scaling. We’ll assume for the time being
that every feature in the feature vector is continuous. We’ll work with a fake
dataset consisting of five features and 15 samples. This means that our
dataset has 15 samples—feature vectors and their labels—and each of the
feature vectors has five elements. We’ll assume there are three classes. The
dataset looks like Table 4-4.

Table 4-4: A Hypothetical Dataset

S
a
m
p
l
e

x0 x1 x2 x3 x4 L
a
b
e
l

0 6998 0.1361 0.3408 0.0000735
0

78596048 0

1 6580 0.4908 3.0150 0.0000448
4

38462706 1

S
a
m
p
l
e

x0 x1 x2 x3 x4 L
a
b
e
l

2 7563 0.9349 4.3465 0.0000100
3

6700340 2

3 8355 0.6529 2.1271 0.0000296
6

51430391 0

4 2393 0.4605 2.7561 0.0000339
5

27284192 0

5 9498 0.0244 2.7887 0.0000888
0

78543394 2

6 4030 0.6467 4.8231 0.0000040
3

19101443 2

7 5275 0.3560 0.0705 0.0000089
9

96029352 0

8 8094 0.7979 3.9897 0.0000669
1

7307156 1

9 843 0.7892 0.9804 0.0000579
8

10179751 1

1
0

1221 0.9564 2.3944 0.0000781
5

14241835 0

1
1

5879 0.0329 2.0085 0.0000956
4

34243070 2

1
2

923 0.4159 1.7821 0.0000246
7

52404615 1

1
3

5882 0.0002 1.5362 0.0000506
6

18728752 2

1
4

1796 0.7247 2.3190 0.0000133
2

96703562 1

As this is the first dataset covered in the book, let’s go over it
thoroughly to introduce some notation and see what is what. The first
column in Table 4-4 is the sample number. The sample is an input, in this
case a collection of five features representing a feature vector. Notice that

the numbering starts at 0. As we’ll be using Python arrays (NumPy arrays)
for data, we’ll start counting at 0 in all cases.

The next five columns are the features in each sample, labeled x0 to x4,
again starting indices at 0. The final column is the class label. Since there
are three classes, the labels run from 0 through 2. There are five samples
from class 0, five from class 1, and five from class 2. Therefore, this is a
small but balanced dataset; the prior probability of each class is 33 percent,
which should, ideally, be close to the actual prior probability of the classes
appearing in the wild.

If we had a model, then each row would be its own input. Writing {x0,
x1, x2, x3, x4} to refer to these is tedious, so instead, when we are referring
to a full feature vector, we’ll use an uppercase letter. For example, we’d
refer to Sample 2 as X2 for dataset X. We’ll also sometimes use matrices—
2D arrays of numbers—that are also labeled with uppercase letters, for
clarity. When we want to refer to a single feature, we’ll use a lowercase
letter with subscript, for example, x3.

Let’s look at the ranges of the features. The minimum, maximum, and
range (the difference between the maximum and minimum) of each feature
are shown in Table 4-5.

Table 4-5: The Minimum, Maximum, and Range of the Features in Table 4-4

Fe
atu
re

Minimum Maximum Range

x0 843.0 9498.0 8655.0
x1 0.0002 0.9564 0.9562
x2 0.0705 4.8231 4.7526
x3 4.03e-06 9.564e-05 9.161e-05
x4 6700340.0 96703562.0 90003222.0

Note the use of computer notation like 9.161e-05. This how computers
represent scientific notation: 9.161 × 10–5 = 0.00009161. Notice, also, that
each feature covers a very different range. Because of this, we’ll want to
scale the features so their ranges are more similar. Scaling is a valid thing to

do prior to training a model as long as you scale all new inputs the same
way.

Mean Centering
The simplest form of scaling is mean centering. This is easy to do: from
each feature, simply subtract the mean (average) value of the feature over
the entire dataset. The mean over a set of values, xi i = 0, 1, 2, … is simply
the sum of each value divided by the number of values:

The mean value for feature x0 is 5022, so to center x0, we replace each
value like so:

xi ← xi – 5022, i = 0, 1, 2, . . .

where in this case the i index is across the samples, not the other elements
of the feature vector.

Repeating the preceding steps for the mean value of all the other
features will center the entire dataset. The result is that the mean value of
each feature, over the dataset, is now 0, meaning the feature values
themselves are all above and below 0. For deep learning, mean centering is
often done by subtracting a mean image from each input image.

Changing the Standard Deviation to 1
Mean centering helps, but the distribution of values around 0 remains the
same as before the mean was subtracted. All we did was shift the data down
toward 0. The spread of values around the mean has a formal name: it’s
called the standard deviation, and it’s computed as the average difference of
the data values and the mean:

The letter σ (sigma) is the usual name for the standard deviation in
mathematics. You don’t need to memorize this formula. It’s there to show
us how to calculate a measure of the spread, or range, of the data relative to
the mean value of the data.

Mean centering changes to 0, but it does not change σ. Sometimes we
want to go further and, along with mean centering, change the spread of the
data so that the ranges are the same, meaning the standard deviation for
each feature is 1. Fortunately, doing this is straightforward. We replace each
feature value, x, with

where and σ are the mean and standard deviation of each feature across
the dataset. For example, the preceding toy dataset can be stored as a 2D
NumPy array

x = [
 [6998, 0.1361, 0.3408, 0.00007350, 78596048],
 [6580, 0.4908, 3.0150, 0.00004484, 38462706],
 [7563, 0.9349, 4.3465, 0.00001003, 6700340],
 [8355, 0.6529, 2.1271, 0.00002966, 51430391],
 [2393, 0.4605, 2.7561, 0.00003395, 27284192],
 [9498, 0.0244, 2.7887, 0.00008880, 78543394],
 [4030, 0.6467, 4.8231, 0.00000403, 19101443],
 [5275, 0.3560, 0.0705, 0.00000899, 96029352],
 [8094, 0.7979, 3.9897, 0.00006691, 7307156],
 [843, 0.7892, 0.9804, 0.00005798, 10179751],
 [1221, 0.9564, 2.3944, 0.00007815, 14241835],
 [5879, 0.0329, 2.0085, 0.00009564, 34243070],
 [923, 0.4159, 1.7821, 0.00002467, 52404615],
 [5882, 0.0002, 1.5362, 0.00005066, 18728752],
 [1796, 0.7247, 2.3190, 0.00001332, 96703562],
]

so that the entire dataset can be processed in one line of code:

x = (x - x.mean(axis=0)) / x.std(axis=0)

This approach is called standardization or normalizing, and you should
do it to most datasets, especially when using one of the traditional models

discussed in Chapter 6. Whenever possible, standardize your dataset so that
the features have 0 mean and a standard deviation of 1.

If we standardize the preceding dataset, what will it look like?
Subtracting, per feature, the mean value of that feature and dividing by the
standard deviation gives us a new dataset (Table 4-6). Here, we’ve
shortened the numbers to four decimal digits for display and have dropped
the label.

Table 4-6: The Data in Table 4-4 Standardized

Sa
mp
le

x0 x1 x2 x3 x4

0 0.6
93
0

–1.1259 –1.5318 0.9525 1.1824

1 0.5
46
4

–0.0120 0.5051 –0.0192 –0.1141

2 0.8
91
2

1.3826 1.5193 –1.1996 –1.1403

3 1.1
69
0

0.4970 –0.1712 –0.5340 0.3047

4 –
0.9
22
1

–0.1071 0.3079 –0.3885 –0.4753

5 1.5
69
9

–1.4767 0.3327 1.4714 1.1807

6 –
0.3
47
9

0.4775 1.8823 –1.4031 –0.7396

Sa
mp
le

x0 x1 x2 x3 x4

7 0.0
88
7

–0.4353 –1.7377 –1.2349 1.7456

8 1.0
77
5

0.9524 1.2475 0.7291 –1.1207

9 –
1.4
65
7

0.9250 –1.0446 0.4262 –1.0279

10 –
1.3
33
2

1.4501 0.0323 1.1102 –0.8966

11 0.3
00
5

–1.4500 –0.2615 1.7033 –0.2505

12 –
1.4
37
7

–0.2472 –0.4340 –0.7032 0.3362

13 0.3
01
6

–1.5527 –0.6213 0.1780 –0.7517

14 –
1.1
31
5

0.7225 –0.0250 –1.0881 1.7674

If you compare the two tables, you’ll see that after our manipulations,
the features are more similar than they were in the original set. If we look at
x3, we’ll see that the mean of the values is – 1.33e – 16 = –1.33 × 10–16 = –
0.000000000000000133, which is virtually 0. Good! This is what we want.
If you do the calculations, you’d see that the means of the other features are

similarly close to 0. What about the standard deviation? For x3 it’s
0.99999999, which is virtually 1—again, this is what we’d like. We’ll use
this new, transformed, dataset to train the model.

Therefore, we must apply the per feature means and standard
deviations, as measured on the training set, to any new inputs we’re giving
to the model:

Here, xnew is the new feature vector we want to apply to the model, and
 and σtrain are the mean and standard deviation, per feature, from the

training set.

Missing Features
Sometimes we don’t have all the features we need for a sample. We might
have forgotten to make a measurement, for example. These are missing
features, and we need to find a way to correct them, since most models
don’t have the ability to accept missing data.

One solution is to fill in the missing values with values that are outside
of the feature’s range, in the hopes that the model will learn to ignore those
values or make more use of other features. Indeed, some more advanced
deep learning models intentionally zero some of the input as a form of
regularization (we’ll see what that means in later chapters).

For now, we’ll learn the second most obvious solution: replacing
missing features with the mean value of features over the dataset. Let’s look
again at our practice dataset from earlier. This time, we’ll have some
missing data to deal with (Table 4-7).

Table 4-7: Our Sample Dataset (Table 4-4) with Some Holes

S
a
m
p
l
e

x0 x1 x2 x3 x4 Label

S
a
m
p
l
e

x0 x1 x2 x3 x4 Label

0 69
98

0.1
36
1

0.3
40
8

0.0000735
0

78596048 0

1 0.4
90
8

0.0000448
4

38462706 1

2 75
63

0.9
34
9

4.3
46
5

6700340 2

3 83
55

0.6
52
9

2.1
27
1

0.0000296
6

51430391 0

4 23
93

0.4
60
5

2.7
56
1

0.0000339
5

27284192 0

5 94
98

2.7
88
7

0.0000888
0

78543394 2

6 40
30

0.6
46
7

4.8
23
1

0.0000040
3

2

7 52
75

0.3
56
0

0.0
70
5

0.0000089
9

96029352 0

8 80
94

0.7
97
9

3.9
89
7

0.0000669
1

7307156 1

9 0.9
80
4

10179751 1

S
a
m
p
l
e

x0 x1 x2 x3 x4 Label

1
0

12
21

0.9
56
4

2.3
94
4

0.0000781
5

14241835 0

1
1

58
79

0.0
32
9

2.0
08
5

0.0000956
4

34243070 2

1
2

92
3

0.0000246
7

1

1
3

58
82

0.0
00
2

1.5
36
2

0.0000506
6

18728752 2

1
4

17
96

0.7
24
7

2.3
19
0

0.0000133
2

96703562 1

The blank spaces indicate missing values. The means of each feature,
ignoring missing values, are shown in Table 4-8.

Table 4-8: The Means for Features in Table 4-7

x0 x1 x2 x3 x4
5223
.6

0.51
58

2.345 4.71e-05 42957735.0

If we replace each missing value with the mean, we’ll get a dataset we can
standardize and use to train a model.

Of course, real data is better, but the mean is the simplest substitute we
can reasonably use. If the dataset is large enough, we might instead generate
a histogram of the values of each feature and select the mode—the most
common value—but using the mean should work out just fine, especially if

your dataset has a lot of samples and the number of missing features is
fairly small.

Training, Validation, and Test Data
Now that we have a dataset—a collection of feature vectors—we’re ready
to start training a model, right? Well, actually, no. That’s because we don’t
want to use the entire dataset for training. We’ll need to use some of the
data for other purposes, and so we need to split it into at least two subsets,
although ideally we’d have three. We call these subsets the training data,
validation data, and test data.

The Three Subsets
The training data is the subset we use to train the model. The important
thing here is selecting feature vectors that well represent the parent
distribution of the data.

The test data is the subset used to evaluate how well the trained model
is doing. We never use the test data when training the model; that would be
cheating, because we’d be testing the model on data it has seen before. Put
the test dataset aside, resist the temptation to touch it until the model is
complete, and then use it to evaluate the model.

The third dataset is the validation data. Not every model needs a
validation dataset, but for deep learning models, having one is helpful. We
use the validation dataset during training as though it’s test data to get an
idea of how well the training is working. It can help us decide things like
when to stop training and whether we’re using the proper model.

For example, a neural network has some number of layers, each with
some number of nodes. We call this the architecture of the model. During
training, we can test the performance of the neural network with the
validation data to figure out whether we should continue training or stop
and try a different architecture. We don’t train the model with the validation
set, and we don’t use the validation set to modify model parameters. We
also can’t use validation data when reporting actual model performance,
since we used results based on the validation data to select the model in the

first place. Again, this would make it seem like the model is doing better
than it is.

Figure 4-3 illustrates the three subsets and their relationships to one
another. On the left is the whole dataset. This is the entire collection of
feature vectors and associated labels. On the right are the three subsets. The
training data and the validation data work together to train and develop the
model, while the test data is held back until the model is ready for it. The
size of the cylinders reflects the relative amount of data that should fall into
each subset, though in practice the validation and test subsets might be even
smaller.

Figure 4-3: Relationships among training, validation, and test subsets

To recap: use the training and validation sets to build the model and the
test set to evaluate it.

Partitioning the Dataset
How much data should go into each dataset?

A typical split is 90 percent for training, 5 percent for validation, and 5
percent for testing. For deep learning models, this is fairly standard. If
you’re working with a very large dataset, you could go as low as 1 percent
each for validation and testing. For classic models, which might not learn as
well, we might want to make the test dataset larger to ensure we are able to
generalize to a wide variety of possible inputs. In those cases, you might try
something like 80 percent for training and 10 percent each for validation
and test. If you’re not using validation data, the full 20 percent might go to
testing. These larger test sets might be appropriate for multiclass models
that have classes with low prior probabilities. Or, since the test set is not

used to define the model, you might increase the number of rare classes in
the test set. This might be of particular value should missing the rare class
be a costly event (think missing a tumor in a medical image).

Now that we’ve determined how much data to put into each set, let’s
use sklearn to generate a dummy dataset that we can partition:

>>> import numpy as np
>>> from sklearn.datasets import make_classification
>>> x,y = make_classification(n_samples=10000, weights=(0.9,0.1))
>>> x.shape
 (10000, 20)
>>> len(np.where(y == 0)[0])
 8969
>>> len(np.where(y == 1)[0])
 1031

Here, we’ve used two classes and 20 features to generate 10,000
samples. The dataset is imbalanced, with 90 percent of the samples in class
0 and 10 percent in class 1. The output is a 2D array of samples (x) and
associated 0 or 1 labels (y). The dataset is generated from multidimensional
Gaussians that are the analogs of the normal bell curve in more than one
dimension, but that doesn’t matter to us right now. The useful part for us is
that we have a collection of feature vectors and labels, so that we can look
at ways in which the dataset might be split into subsets.

The key to the preceding code is the call to make_classification, which
accepts the number of samples requested and the fraction for each class.
The np.where calls simply find all the class 0 and class 1 instances so that len
can count them.

Earlier, we talked about the importance of preserving—or at least
approaching—the actual prior probabilities of the different classes in our
dataset. If one class makes up 10 percent of real world cases, it would
ideally make up 10 percent of our dataset. Now we need to find a way to
preserve this prior class probability in the subsets we make for training,
validation, and test. There are two main ways to do this: partitioning by
class and random sampling.

Partitioning by Class
The exact approach, which is suitable when the dataset is small or perhaps
when one class is rare, is to determine the number of samples representing

each class, and then set aside selected percentages of each, by class, before
merging them together. So, if there are 9,000 samples from class 0, and
1,000 samples from class 1, and we want to put 90 percent of the data into
training and 5 percent each into validation and test, we would select 8,100
samples, at random, from the class 0 collection and 900 samples, at
random, from the class 1 collection to make up the training set. Similarly,
we would randomly select 450 of the remaining 900 unused class 0 samples
for the validation set along with 50 of the remaining unused class 1 data.
The remaining class 0 and class 1 samples become the test set.

Listing 4-1 shows the code to construct the subsets using a 90/5/5 split
of the original data.

 import numpy as np
 from sklearn.datasets import make_classification

❶ a,b = make_classification(n_samples=10000, weights=(0.9,0.1))
 idx = np.where(b == 0)[0]
 x0 = a[idx,:]
 y0 = b[idx]
 idx = np.where(b == 1)[0]
 x1 = a[idx,:]
 y1 = b[idx]

❷ idx = np.argsort(np.random.random(y0.shape))
 y0 = y0[idx]
 x0 = x0[idx]
 idx = np.argsort(np.random.random(y1.shape))
 y1 = y1[idx]
 x1 = x1[idx]

❸ ntrn0 = int(0.9*x0.shape[0])
 ntrn1 = int(0.9*x1.shape[0])
 xtrn = np.zeros((int(ntrn0+ntrn1),20))
 ytrn = np.zeros(int(ntrn0+ntrn1))
 xtrn[:ntrn0] = x0[:ntrn0]
 xtrn[ntrn0:] = x1[:ntrn1]
 ytrn[:ntrn0] = y0[:ntrn0]
 ytrn[ntrn0:] = y1[:ntrn1]

❹ n0 = int(x0.shape[0]-ntrn0)
 n1 = int(x1.shape[0]-ntrn1)
 xval = np.zeros((int(n0/2+n1/2),20))
 yval = np.zeros(int(n0/2+n1/2))
 xval[:(n0//2)] = x0[ntrn0:(ntrn0+n0//2)]
 xval[(n0//2):] = x1[ntrn1:(ntrn1+n1//2)]
 yval[:(n0//2)] = y0[ntrn0:(ntrn0+n0//2)]

 yval[(n0//2):] = y1[ntrn1:(ntrn1+n1//2)]

❺ xtst = np.concatenate((x0[(ntrn0+n0//2):],x1[(ntrn1+n1//2):]))
 ytst = np.concatenate((y0[(ntrn0+n0//2):],y1[(ntrn1+n1//2):]))

Listing 4-1: Exact construction of training, validation, and test datasets

There’s a lot of bookkeeping in this code. First, we create the dummy
dataset ❶ and split it into class 0 and class 1 collections, stored in x0,y0 and
x1,y1, respectively. We then randomize the ordering ❷. This will let us pull
off the first n samples for the subsets without worrying that we might be
introducing a bias because of ordering in the data. Because of how sklearn
generates the dummy dataset, this step isn’t required, but it’s always a good
idea to ensure randomness in the ordering of samples.

We use a trick that’s helpful when reordering samples. Because we store
the feature vectors in one array and the labels in another, the NumPy shuffle
methods will not work. Instead, we generate a random vector of the same
length as our number of samples and then use argsort to return the indices of
the vector that would put it in sorted order. Since the values in the vector
are random, the ordering of the indices used to sort it will also be random.
These indices then reorder the samples and labels so that the each label is
still associated with the correct feature vector.

Next, we extract the first 90 percent of samples for the two classes and
build the training subset with samples in xtrn and labels in ytrn ❸. We do the
same for the 5 percent validation set ❹ and the remaining 5 percent for the
test set ❺.

Partitioning by class is tedious, to say the least. We do know, however,
that the class 0 to class 1 ratio in each of the subsets is exactly the same.

Random Sampling
Must we be so precise? In general, no. The second common method for
partitioning the full dataset is via random sampling. If we have enough data
—and 10,000 samples is enough data—we can build our subsets by
randomizing the full dataset and then extracting the first 90 percent of
samples as the training set, the next 5 percent as the validation set, and the
last 5 percent as the test set. This is what we show in Listing 4-2.

❶ x,y = make_classification(n_samples=10000, weights=(0.9,0.1))
 idx = np.argsort(np.random.random(y.shape[0]))
 x = x[idx]
 y = y[idx]

❷ ntrn = int(0.9*y.shape[0])
 nval = int(0.05*y.shape[0])

❸ xtrn = x[:ntrn]
 ytrn = y[:ntrn]
 xval = x[ntrn:(ntrn+nval)]
 yval = y[ntrn:(ntrn+nval)]
 xtst = x[(ntrn+nval):]
 ytst = y[(ntrn+nval):]

Listing 4-2: Random construction of training, validation, and test datasets

We randomize the dummy dataset stored in x and y ❶. We need to know
how many samples to include in each of the subsets. First, the number of
samples for the training set is 90 percent of the total in the dataset ❷, while
the number in the validation set is 5 percent of the total. The remainder, also
5 percent, is the test set ❸.

This method is so much simpler than the one shown in Listing 4-1.
What’s the downside of using it? The possible downside is that the mix of
classes in each of these subsets might not quite be the fractions we want.
For example, imagine we want a training set of 9,000 samples, or 90
percent of the original 10,000 samples, with 8,100 of them from class 0, and
900 of them from class 1. Running the Listing 4-2 code 10 times gives the
splits between class 0 and class 1 in the training set that are shown in Table
4-9.

Table 4-9: Ten Training Splits Generated by Random Sampling

Run Class 0 Class 1
1 8058 (89.5) 942 (10.5)
2 8093 (89.9) 907 (10.1)
3 8065 (89.6) 935 (10.4)
4 8081 (89.8) 919 (10.2)
5 8045 (89.4) 955 (10.6)
6 8045 (89.4) 955 (10.6)
7 8066 (89.6) 934 (10.4)

Run Class 0 Class 1
8 8064 (89.6) 936 (10.4)
9 8071 (89.7) 929 (10.3)
10 8063 (89.6) 937 (10.4)

The number of samples in class 1 ranges from as few as 907 samples to
as many as 955 samples. As the number of samples of a particular class in
the full dataset decreases, the number in the subsets will start to vary more.
This is especially true of smaller subsets, like the validation and test sets.
Let’s do a separate run, this time looking at the number of samples from
each class in the test set (Table 4-10).

Table 4-10: Ten Test Splits Generated by Random Sampling

Run Class 0 Class 1
1 446 (89.2) 54 (10.8)
2 450 (90.0) 50 (10.0)
3 444 (88.8) 56 (11.2)
4 450 (90.0) 50 (10.0)
5 451 (90.2) 49 (9.8)
6 462 (92.4) 38 (7.6)
7 441 (88.2) 59 (11.8)
8 449 (89.8) 51 (10.2)
9 449 (89.8) 51 (10.2)
10 438 (87.6) 62 (12.4)

In the test set, the number of samples from class 1 ranges from 38 to 62.
Will these differences influence how the model learns? Probably not,

but they might make the test results look better than they are, as most
models struggle to identify the classes that are least common in the training
set. The possibility exists of a pathological split that results in having no
examples from a particular class, but in practice, it’s not really that likely
unless your pseudorandom number generator is particularly poor. Still, it’s
worth keeping the possibility in mind. If concerned, use the exact split
approach in Listing 4-1. In truth, the better solution is, as always, to get
more data.

Algorithmically, the steps to produce the training, validation, and test
splits are as follows:

1. Randomize the order of the full dataset so that classes are evenly
mixed.

2. Calculate the number of samples in the training (ntrn) and validation
(nval) sets by multiplying the number of samples in the full dataset by
the desired fraction. The remaining samples will fall into the test set.

3. Assign the first ntrn samples to the training set.
4. Assign the next nval samples to the validation set.
5. Finally, assign the remaining samples to the test set.

At all times, ensure that the order of the samples is truly random, and
that when reordering the feature vectors, you’re sure to reorder the labels in
the exact same sequence. If this is done, this simple splitting process will
give a good split unless the dataset is very small or some classes are very
rare.

We neglected to discuss one consequence of this approach. If the full
dataset is small to begin with, partitioning it will make the training set even
smaller. In Chapter 7, we’ll see a powerful approach to dealing with a small
dataset, one that’s used heavily in deep learning. But first, let’s look at a
principled way to work with a small dataset to get an idea of how well it
will perform on new data.

k-Fold Cross Validation
Modern deep learning models typically need very large datasets, and
therefore, you’re able to use a single training/validation/test split as
described previously. More traditional machine learning models, like those
in Chapter 6, however, often work with datasets that are too small (in
general) for deep learning models. If we use a single training/validation/test
split on those datasets, we might be holding too much data back for testing,
or else have too few samples in the test set to get a meaningful
measurement of how well the model is working.

One way to address this issue is to use k-fold cross validation, a
technique that ensures each sample in the dataset is used at some point for
training and testing. Use this technique for small datasets intended for

traditional machine learning models. It can also be helpful as a way to
decide between different models.

To do k-fold cross validation, first partition the full, randomized dataset
into k non-overlapping groups, x0,x1,x2,…,xk–1. Your k value is arbitrary,
though it typically ranges from 5 to 10. Figure 4-4a shows this split,
imagining the entire dataset laid out horizontally.

We can train a model by holding x0 back as test data and using the other
groups, x1,x2,…,xk–1 as training data. We’ll ignore validation data for the
time being; after building the current training data, we can always hold
some of it back as validation data if we want. Call this trained model m0.
You can then start over from scratch, this time holding back x1 as test data
and training with all the other groups, including x0. We’ll get a new trained
model. Call it m1. By design, m0 and m1 are the same type of model. What
we are interested in here is multiple instances of the same type of model
trained with different subsets of the full dataset.

Repeat this process for each of the groups, as in Figure 4-4b, and we’ll
have k models trained with (k – 1)/k of the data each, holding 1/k of the data
back for testing. What k should be depends upon how much data is in the
full dataset. Larger k means more training data but less test data. If the per
model training time is low, tend toward a larger k as this increases the per
model training set size.

Figure 4-4: k-fold cross validation. Partitioning the dataset into non-overlapping regions, k=7(a).
The first three train/test splits using first x0 for test, then x1 for test, and so on (b).

Once the k models are trained, you can evaluate them individually and
average their metrics to get an idea of how a model trained on the full
dataset would behave. See Chapter 11 to learn about ways to evaluate a
model. If using k-fold cross validation to select among two or more models
(say, between using k-NN or a Support Vector Machine1), repeat the full
training and evaluation process for each type of model and compare their
results.
Once we have an idea of how well the model is performing on the averaged
evaluation metrics, we can start over again and train the selected model type
using all of the dataset for training. This is the advantage of k-fold cross
validation: it lets you have your cake and eat it, too.

Look at Your Data

It’s quite easy to assemble features and feature vectors, and then go ahead
and put the training, validation, and test sets together without pausing to
look at the data to see if it makes sense. This is especially true with deep
learning models using huge collections of images or other multidimensional
data. Here are a few problems you’ll want to look out for:

Mislabeled data Assume we’re building a large dataset—one with
hundreds of thousands of labeled samples. Further, assume that we’re
going to use the dataset to build a model that will be able to tell the
difference between dogs and cats. Naturally, we need to feed the model
many, many dog images and many, many cat images. No problem, you
say; we’ll just collect a lot of images using something like Google
Images. Okay, that’ll work. But if you simply set up a script to
download image search results matching “dog” and “cat,” you’ll also
get a lot of other images that are not of dogs or cats, or images that
contain dogs and cats along with other things. The labels won’t be
perfect. While it is true that deep learning models can be resistant to
such label noise, you want to avoid it whenever possible.

Missing or outlier data Imagine you have a collection of feature
vectors, and you have no idea how common it is that features are
missing. If a large percentage of a particular feature is missing, that
feature will become a hindrance to the model and you should eliminate
it. Or, if there are extreme outliers in the data, you might want to
remove those samples, especially if you’re going to standardize, since
outliers will strongly affect the mean subtracted from the feature values.

Searching for Problems in the Data
How can we look for these problems in the data? Well, for feature vectors,
we can often load the dataset into a spreadsheet, if it isn’t too large. Or we
could write a Python script to summarize the data, feature by feature, or
bring the data into a statistics program and examine it that way.

Typically, when summarizing values statistically, we look at the mean
and standard deviation, both defined previously, as well as the largest value
and the smallest value. We could also look at the median, which is the value
we get when we sort the values from smallest to largest and pick the one in
the middle. (If the number of values is even, we’d average the two middle
values.) Let’s look at one of the features from our earlier example. After

sorting the values from smallest to largest, we can summarize the data in the
following way.

x2
0.0705
0.3408
0.9804
1.5362
1.7821
2.0085
2.1271
2.3190
2.3944
2.7561
2.7887
3.0150
3.9897
4.3465
4.8231

Mean () = 2.3519
Standard deviation (σ) = 1.3128
Standard error (SE) = 0.3390
Median = 2.3190
Minimum = 0.0705
Maximum = 4.8231

We’ve already explored the concepts of mean, minimum, maximum,
and standard deviation. The median is there, as well; I’ve highlighted it in
the list of features on the left. Notice that after sorting, the median appears
in the exact middle of the list. It’s often known as the 50th percentile,
because the same amount of data is above it as below.

There is also a new value listed, the standard error, also called the
standard error of the mean. This is the standard deviation divided by the
square root of the number of values in the dataset:

The standard error is a measure of the difference between our mean value,
, and the mean value of the parent distribution. The basic idea is this: if we
have more measurements, we’ll have a better idea of the parent distribution
that is generating the data, and so the mean value of the measurements will
be closer to the mean value of the parent distribution.

Notice also that the mean and the median are relatively close to each
other. The phrase relatively close has no rigorous mathematical meaning, of
course, but we can use it as an ad hoc indicator that the data might be
normally distributed, meaning we could reasonably replace the missing
values by the mean (or median), as we saw previously.

The preceding values were computed easily using NumPy, as seen in
Listing 4-3.

 import numpy as np

❶ f = [0.3408,3.0150,4.3465,2.1271,2.7561,
 2.7887,4.8231,0.0705,3.9897,0.9804,
 2.3944,2.0085,1.7821,1.5362,2.3190]
 f = np.array(f)
 print
 print("mean = %0.4f" % f.mean())
 print("std = %0.4f" % f.std())
❷ print("SE = %0.4f" % (f.std()/np.sqrt(f.shape[0])))
 print("median= %0.4f" % np.median(f))
 print("min = %0.4f" % f.min())
 print("max = %0.4f" % f.max())

Listing 4-3: Calculating basic statistics. See feature_stats.py.

After loading NumPy, we manually define the x2 features (f) and turn
them into a NumPy array ❶. Once the data is a NumPy array, calculating
the desired values is straightforward, as all of them, except the standard
error, are simple method or function calls. The standard error is calculated
via the preceding formula ❷ where the first element of the tuple NumPy
returns for the shape is the number of elements in a vector.

Numbers are nice, but pictures are often better. You can visualize the
data with a box plot in Python. Let’s generate one to view the standardized

values of our dataset. Then we’ll discuss what the plot is showing us. The
code to create the plot is in Listing 4-4.

 import numpy as np
 import matplotlib.pyplot as plt

❶ d = [[0.6930, -1.1259, -1.5318, 0.9525, 1.1824],
 [0.5464, -0.0120, 0.5051, -0.0192, -0.1141],
 [0.8912, 1.3826, 1.5193, -1.1996, -1.1403],
 [1.1690, 0.4970, -0.1712, -0.5340, 0.3047],
 [-0.9221, -0.1071, 0.3079, -0.3885, -0.4753],
 [1.5699, -1.4767, 0.3327, 1.4714, 1.1807],
 [-0.3479, 0.4775, 1.8823, -1.4031, -0.7396],
 [0.0887, -0.4353, -1.7377, -1.2349, 1.7456],
 [1.0775, 0.9524, 1.2475, 0.7291, -1.1207],
 [-1.4657, 0.9250, -1.0446, 0.4262, -1.0279],
 [-1.3332, 1.4501, 0.0323, 1.1102, -0.8966],
 [0.3005, -1.4500, -0.2615, 1.7033, -0.2505],
 [-1.4377, -0.2472, -0.4340, -0.7032, 0.3362],
 [0.3016, -1.5527, -0.6213, 0.1780, -0.7517],
 [-1.1315, 0.7225, -0.0250, -1.0881, 1.7674]]
❷ d = np.array(d)
 plt.boxplot(d)
 plt.show()

Listing 4-4: A box plot of the standardized toy dataset. See box_plot.py.

The values themselves are in Table 4-6. We can store the data as a 2D
array and make the box plot using Listing 4-4. We manually define the
array ❶ and then plot it ❷. The plot is interactive, so experiment with the
environment provided until you feel comfortable with it. The old-school
floppy disk icon will store the plot to your disk.

The box plot generated by the program is shown in Figure 4-5.

Figure 4-5: The box plot produced by Listing 4-4

How do we interpret the box plot? I’ll show you by examining the box
representing the standardized feature x2, shown in Figure 4-6.

The lower box line, Q1, marks the end of the first quartile. This means
that 25 percent of the data values for a feature are less than this value. The
median, Q2, is the 50 percent mark, and therefore is the end of the second
quartile. Half the data values are less than this value. The upper box line,
Q3, is the 75 percent mark. The remaining 25 percent of the data values are
above Q3.

Figure 4-6: The standardized feature x2 from our dataset

Two lines above and below the box are also shown. These are the
whiskers. (Matplotlib calls them fliers, but this is an unconventional term.)
The whiskers are the values at Q1 – 1.5 × IQR and Q3 + 1.5 × IQR. By
convention, values outside this range are considered outliers.

Looking at outliers can be helpful, because you might realize they’re
mistakes in data entry and drop them from the dataset. Whatever you do
with the outliers, however, be prepared to justify it should you ever plan on
publishing or otherwise presenting results based on the dataset. Similarly,
you might be able to drop samples with missing values, but make sure
there’s no systematic error causing the missing data, and check that you’re
not introducing bias into the data by dropping those samples. In the end,
common sense should override slavish adherence to convention.

Cautionary Tales
So, at the risk of being repetitive, look at your data. The more you work
with it, the more you will understand it, and the more effectively you will
be able to make reasonable decisions about what goes in and what comes
out, and why. Recall that the goal of the dataset is to faithfully and
completely capture the parent distribution, or what the data will look like in
the wild when the model is used.

Two quick anecdotes come to mind. They both illustrate ways models
may well learn things we did not intend or even consider.

The first was told to me as an undergraduate student in the 1980s. In
this story, an early form of neural network was tasked with detecting tank
and non-tank images. The neural network seemed to work well in testing,
but when used in the field, the detection rate dropped rapidly. The
researchers realized that the tank images were taken on a cloudy day, and
the non-tank were taken on a sunny day. The recognition system had not
learned the difference between tanks and non-tanks at all; instead, it had
learned the difference between cloudy and sunny days. The moral of this
story is that the training set needs to include all of the conditions the model
will see in the wild.

The second anecdote is more recent. I heard it in a talk at the Neural
Information Processing Systems (NIPS) 2016 conference in Barcelona,
Spain, and later found it repeated in the researchers’ paper.2 In this case, the
authors, who were demonstrating their technique for getting a model to
explain its decisions, trained a model that claimed to tell the difference
between images of huskies and images of wolves. The model appeared to
work rather well, and during the talk, the authors polled the audience
composed of machine learning researchers about how believable the model
was. Most thought it was a good model. Then, using their technique, the
speaker revealed that the network had not learned much, if anything, about
the difference between huskies and wolves. Instead, it had learned that the
wolf pictures had snow in the background and the husky pictures did not.

Think about your data and be on the lookout for unintended
consequences. Models are not human. We bring a lot of preconceived
notions and unintended biases to the dataset.

Summary
In this chapter, we described the components of a dataset (classes, labels,
features, feature vectors) and then characterized a good dataset,
emphasizing the importance of ensuring that the dataset well represents the
parent distribution. We then described basic data preparation techniques
including how to scale data and one approach for dealing with missing
features. After that, we learned how to separate the full dataset into training,
validation, and test subsets and how to apply k-fold cross validation, which
is especially useful with small datasets. We ended the chapter with tips on
how to simply examine the data to make sure it makes sense.

In the next chapter, we’ll take what we have learned in this chapter and
apply it directly to construct the datasets we will use throughout the
remainder of this book.

1. These are examples of classical machine learning models. We’ll learn
more about them later in the book.

2. Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. “Why Should
I Trust You?: Explaining the Predictions of Any Classifier.” In
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1135–1144. ACM, 2016.

5
BUILDING DATASETS

The previous chapter had a lot of detailed advice. Now let’s put it all into
practice to build the datasets we’ll use throughout the remainder of the
book. Some of these datasets are well suited to traditional models, because
they consist of feature vectors. Others are better suited to deep learning
models that work with multidimensional inputs—in particular, images, or
things that can be visualized as images.

We’ll work through acquiring the raw data and preprocessing the data to
make it suitable for our tools. We won’t make actual training/validation/test
splits until we use these datasets for specific models. It is worth noting here
that preprocessing the data to make it suitable for a model is often one of
the most labor-intensive of machine learning tasks. All the same, if it is not
done, or not done well, your model may end up being far less useful than
you want it to be.

Irises
Perhaps the most classic of all machine learning datasets is the iris flower
dataset, developed in 1936 by R. A. Fisher in his paper, “The Use of
Multiple Measurements in Taxonomic Problems.” It’s a small dataset of
three classes with 50 samples in each class. There are four features: sepal
width, sepal length, petal width, and petal length, all in centimeters. The

three classes are I. setosa, I. versicolour, and I. virginica. This dataset is
built into sklearn, but we’ll instead download it from the University of
California, Irvine, Machine Learning Repository to practice working with
externally sourced data and introduce a rich collection of datasets suitable
for many traditional machine learning models. The main repository is
located at https://archive.ics.uci.edu/ml/index.php, but you can download
the irises dataset directly from https://archive.ics.uci.edu/ml/datasets/iris/.

At the time of this writing, this dataset has been downloaded nearly 1.8
million times. You can download it by selecting the Data Folder link near
the top of the page, then right-clicking and saving the iris.data file, ideally
to a new directory called iris. Let’s take a look at the start of this file:

5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa

Because the class names at the end of each line are all the same, we
should immediately suspect that the samples are sorted by class. Looking at
the rest of the file confirms this. So, as emphasized in Chapter 4, we must
be sure to randomize the data before training a model. Also, we need to
replace the class names with integer labels. We can load the dataset into
Python with the script in Listing 5-1.

 import numpy as np

❶ with open("iris.data") as f:
 lines = [i[:-1] for i in f.readlines()]

❷ n = ["Iris-setosa","Iris-versicolor","Iris-virginica"]
 x = [n.index(i.split(",")[-1]) for i in lines if i != ""]
 x = np.array(x, dtype="uint8")

❸ y = [[float(j) for j in i.split(",")[:-1]] for i in lines if i != ""]
 y = np.array(y)

❹ i = np.argsort(np.random.random(x.shape[0]))
 x = x[i]
 y = y[i]

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/datasets/iris/

❺ np.save("iris_features.npy", y)
 np.save("iris_labels.npy", x)

Listing 5-1: Loading the raw iris dataset and mapping to our standard format

First, we load the text file containing the data. The list comprehension
removes the extraneous newline character ❶. Next, we create the vector of
labels by converting the text label into an integer, 0–2. The last element in
the list, created by splitting a line along commas, is the text label. We want
NumPy arrays, so we turn the list into one. The uint8 is unnecessary, but
since the labels are never negative and they’re never larger than 2, we save
a bit of space by making the data type an unsigned 8-bit integer ❷.

Creating the feature vectors as a 150-row by 4-column matrix comes
next via a double list comprehension. The outer comprehension (i) moves
over lines from the file, and the inner one (j) takes the list of measurements
for each sample and turns them into floating-point numbers. We then
convert the list of lists into a 2D NumPy array ❸. We finish by randomizing
the dataset as we did previously ❹, and, finally, we write the NumPy arrays
to disk so we can use them later ❺.

Figure 5-1 shows a box plot of the features. This is a well-behaved
dataset, but the second feature does have some possible outliers. Because
the features all have similar scales, we’ll use the features as they are.

Figure 5-1: Box plot of the four iris dataset features

Breast Cancer
Our second dataset, the Wisconsin Diagnostic Breast Cancer dataset, is also
in sklearn, and you can also download it from the UCI Machine Learning
Repository. We’ll follow the preceding procedure and download the dataset
to see how to process it. This seems unnecessary, true, but just as it’s crucial
to build a good dataset to have any hope of training a good model, it’s
equally important to learn how to work with data sources that are not in the
format we want. Should you one day decide to make machine learning and
data science a career, you’ll be faced with this issue on a near-daily basis.

Download the dataset by going to
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+
(Diagnostic)/. Then, click the Data Folder link, and save the wdbc.data
file.

This dataset contains cell measurements taken from slides of fine-needle
biopsies of breast masses. There are 30 continuous features and two classes:
malignant (cancer, 212 samples) and benign (no cancer, 357 samples). This
is also a popular dataset, with over 670,000 downloads. The first line of the
file is shown here:

842302,M,17.99,10.38,122.8,1001,0.1184, ...

The first element in that line is a patient ID number that we don’t need
to worry about. The second element is the label—M for malignant, and B
for benign. The rest of the numbers in the line are 30 measurements related
to cell size. The features themselves are of different scales, so besides
creating the raw dataset, we’ll also create a standardized version. As this is
the entirety of the dataset and we’ll have to hold some of it back for testing,
we don’t need to record the per feature means and standard deviations in
this case. If we were able to acquire more data generated in the same way,
perhaps from an old file that was forgotten about, we would need to keep
these values so that we could standardize the new inputs. The script to build
this dataset, and to generate a summary box plot, is in Listing 5-2.

 import numpy as np
 import matplotlib.pyplot as plt

❶ with open("wdbc.data") as f:
 lines = [i[:-1] for i in f.readlines() if i != ""]

❷ n = ["B","M"]
 x = np.array([n.index(i.split(",")[1]) for i in lines],dtype="uint8")
 y = np.array([[float(j) for j in i.split(",")[2:]] for i in lines])
 i = np.argsort(np.random.random(x.shape[0]))
 x = x[i]
 y = y[i]
 z = (y - y.mean(axis=0)) / y.std(axis=0)

❸ np.save("bc_features.npy", y)
 np.save("bc_features_standard.npy", z)
 np.save("bc_labels.npy", x)

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)/

 plt.boxplot(z)
 plt.show()

Listing 5-2: Loading the raw breast cancer dataset

The first thing we do is read in the raw text data ❶. We then extract
each label and map it to 0 for benign and 1 for malignant. Note here that we
used 1 for the natural target case, so that a model outputting a probability
value is indicating likelihood of finding cancer ❷. We extract the 30
features per sample as floats using a nested list comprehension to first pull
out the text of the features (i) and then map them to floats (j). This produces
a nested list, which NumPy conveniently converts into a matrix of 569 rows
and 30 columns.

Next, we randomize the dataset and calculate the standardized version
by subtracting, per feature, the mean value of that feature and dividing by
the standard deviation. We’ll work with this version and examine it in the
box plot of Figure 5-2 ❸, which shows all 30 features after standardization.

Figure 5-2: Box plot of the 30 breast cancer dataset features

We don’t need to know in this case what the features represent. We’ll
work with the dataset under the assumption that the selected features are
sufficient to the task of determining malignancy. Our models will indicate
to us whether or not this is the case. The features are now all of the same
scale as we can see by the location of the boxes on the y-axis: they’re all
covering basically the same range. One characteristic of the data is
immediately evident—namely, that there are many apparent outliers, as
called out by the interquartile range (see Figure 4-6). These aren’t
necessarily bad values, but they are an indicator that the data isn’t normally
distributed—it doesn’t, per feature, follow a bell-curve-type distribution.

MNIST Digits
Our next dataset isn’t typically composed of feature vectors, but is instead
made up of thousands of small images of handwritten digits. This dataset is
the workhorse of modern machine learning, and one of the first datasets
deep learning researchers go to when looking to test new ideas. It’s
overused, but that’s because it’s so well understood and simple to work
with.

The dataset has a long history, but the version we’ll use, the most
common version, is known simply as the MNIST dataset. The canonical
source for the dataset, http://yann.lecun.com/exdb/mnist/, includes some
background material. To save time, we’ll use Keras to download and format
the dataset.

Keras will return the dataset as 3D NumPy arrays. The first dimension
is the number of images—60,000 for training and 10,000 for test. The
second and third dimensions are the pixels of the images. The images are
28×28 pixels in size. Each pixel is an unsigned 8-bit integer, [0,255].

Because we want to work with models that expect vectors as inputs, and
because we want to use this dataset to illustrate certain properties of models
later in the book, we’ll create additional datasets from this initial one. To do
so, first we’ll unravel the images to form feature vectors so that we can use
this dataset with traditional models that expect vector inputs. Second, we’ll
use images, but we’ll permute the order of the images in the dataset. We’ll
permute the order of the pixels of each image in the same way, so while the
pixels will no longer be in the order that produces the digit image, the
reordering will be deterministic, and applied consistently across all images.
Third, we’ll create an unraveled feature vector version of these permuted
images. We’ll use these additional datasets to explore differences between
traditional neural networks and convolutional neural network models.

Use Listing 5-3 to build the dataset files.

 import numpy as np
 import keras
 from keras.datasets import mnist

❶ (xtrn, ytrn), (xtst, ytst) = mnist.load_data()
 idx = np.argsort(np.random.random(ytrn.shape[0]))
 xtrn = xtrn[idx]
 ytrn = ytrn[idx]

http://yann.lecun.com/exdb/mnist/

 idx = np.argsort(np.random.random(ytst.shape[0]))
 xtst = xtst[idx]
 ytst = ytst[idx]

 np.save("mnist_train_images.npy", xtrn)
 np.save("mnist_train_labels.npy", ytrn)
 np.save("mnist_test_images.npy", xtst)
 np.save("mnist_test_labels.npy", ytst)

❷ xtrnv = xtrn.reshape((60000,28*28))
 xtstv = xtst.reshape((10000,28*28))
 np.save("mnist_train_vectors.npy", xtrnv)
 np.save("mnist_test_vectors.npy", xtstv)

❸ idx = np.argsort(np.random.random(28*28))
 for i in range(60000):
 xtrnv[i,:] = xtrnv[i,idx]
 for i in range(10000):
 xtstv[i,:] = xtstv[i,idx]
 np.save("mnist_train_scrambled_vectors.npy", xtrnv)
 np.save("mnist_test_scrambled_vectors.npy", xtstv)

❹ t = np.zeros((60000,28,28))
 for i in range(60000):
 t[i,:,:] = xtrnv[i,:].reshape((28,28))
 np.save("mnist_train_scrambled_images.npy", t)
 t = np.zeros((10000,28,28))
 for i in range(10000):
 t[i,:,:] = xtstv[i,:].reshape((28,28))
 np.save("mnist_test_scrambled_images.npy", t)

Listing 5-3: Loading and building the various MNIST datasets

We start by telling Keras to load the MNIST dataset ❶. When run for
the first time, Keras will show a message about downloading the dataset.
After that, it won’t show the message again.

The dataset itself is stored in four NumPy arrays. The first, xtrn, has a
shape of (60000, 28, 28) for the 60,000 training images, each 28×28 pixels.
The associated labels are in ytrn as integers, [0,9]. The 10,000 test images
are in xtst with labels in ytst. We also randomize the order of the samples and
write the arrays to disk for future use.

Next, we unravel the training and test images and turn them into vectors
of 784 elements ❷. Unraveling takes the first row of pixels followed by the
second row and so on until all rows are laid end to end. We get 784
elements because 28 × 28 = 784.

Following this, we generate a permutation of the 784 elements in the
unraveled vectors (idx) ❸.

We use the permuted vectors to form new, scrambled, digit images and
store them on disk ❹. The scrambled images are made from the scrambled
vectors by undoing the unravel operation. In NumPy, this is just a call to the
reshape method of the vector arrays. Note that at no time do we alter the
relative ordering of the images, so we need to store only one file each for
the train and test labels.

Figure 5-3 shows representative digits from the MNIST dataset.

Figure 5-3: Representative MNIST digit images

We don’t need to standardize the images, as we know they’re all on the
same scale already, since they’re pixels. We’ll sometimes scale them as we
use them, but for now we can leave them on disk as byte grayscale images.
The dataset is reasonably balanced; Table 5-1 shows the training
distribution. Therefore, we don’t need to worry about imbalanced data.

Table 5-1: Digit Frequencies for the MNIST Training Set

Digit Count
0 5,923
1 6,742
2 5,958
3 6,131
4 5,842
5 5,421
6 5,918
7 6,265
8 5,851
9 5,949

CIFAR-10
CIFAR-10 is another standard deep learning dataset that’s small enough for
us to use without requiring a lot of training time or a GPU. As with MNIST,
we can extract the dataset with Keras, which will download it the first time
it’s requested. The source page for CIFAR-10 is at
https://www.cs.toronto.edu/\%7Ekriz/cifar.html.

It’s worth perusing the page to learn more about where the dataset came
from. It consists of 60,000 32×32 pixel RGB images from 10 classes, with
6,000 samples in each class. The training set contains 50,000 images, and
the test set contains 10,000 images. The 10 classes are shown here in Table
5-2.

Table 5-2: CIFAR-10 Class Labels and Names

Label Class
0 airplane
1 automobile
2 bird
3 cat
4 deer
5 dog
6 frog
7 horse
8 ship

Label Class
9 truck

Figure 5-4 shows, row by row, a collection of representative images
from each class. Let’s extract the dataset, store it for future use, and create
vector representations, much as we did for MNIST.

Figure 5-4: Representative CIFAR-10 images

The script to do all of this is in Listing 5-4.

 import numpy as np
 import keras
 from keras.datasets import cifar10

❶ (xtrn, ytrn), (xtst, ytst) = cifar10.load_data()
 idx = np.argsort(np.random.random(ytrn.shape[0]))
 xtrn = xtrn[idx]
 ytrn = ytrn[idx]
 idx = np.argsort(np.random.random(ytst.shape[0]))
 xtst = xtst[idx]
 ytst = ytst[idx]

 np.save("cifar10_train_images.npy", xtrn)
 np.save("cifar10_train_labels.npy", ytrn)
 np.save("cifar10_test_images.npy", xtst)
 np.save("cifar10_test_labels.npy", ytst)

❷ xtrnv = xtrn.reshape((50000,32*32*3))
 xtstv = xtst.reshape((10000,32*32*3))
 np.save("cifar10_train_vectors.npy", xtrnv)
 np.save("cifar10_test_vectors.npy", xtstv)

Listing 5-4: Loading and building the various CIFAR-10 datasets

We first load CIFAR-10 from Keras ❶. As with MNIST, the dataset will
download automatically the first time that the code is run. And, as with
MNIST, we randomize the train and test splits. The training data is in xtrn as
a (50,000; 32; 32; 3) array. The last dimension is for the three color
components for each pixel: red, green, and blue. The test data is similar, and
is in xtst as a (10,000; 32; 32; 3) array. Finally, we write the randomized
train and test images to disk. Next, we unravel the images to produce 32 ×
32 × 3 = 3072 element feature vectors representing the images ❷ and write
them to disk.

Data Augmentation
As we saw in Chapter 4, the dataset is everything, so it needs to be as
complete as possible. You’ll normally achieve this by carefully selecting
samples that fit within the range of inputs the model will encounter when
you use it. Thinking back to our earlier analogy, we need the model to
interpolate and not extrapolate. But sometimes, even though we have a
wide range of possible samples, we don’t have a lot of actual samples. This
is where data augmentation can help.

Data augmentation uses the data in the existing dataset to generate new
possible samples to add to the set. These samples are always based, in some

way, on the existing data. Data augmentation is a powerful technique and is
particularly helpful when our actual dataset is small. In a practical sense,
data augmentation should probably be used whenever it’s feasible.

Data augmentation takes the data we already have and modifies it to
create new samples that could have plausibly come from the same parent
distribution as our actual data. That means that if we were patient enough to
keep collecting real data, we could measure those new samples. Sometimes
data augmentation can go beyond what we would actually measure, yet still
help the model learn to generalize to the actual data. For example, a model
using images as input might benefit from unrealistic colors or backgrounds
when the actual inputs to the model would never use those colors or
backgrounds.

While data augmentation works in many situations and is a mainstay of
deep learning, you won’t always be able to use it because not all data can be
realistically enhanced.

In this section, we’ll take a look at why we’d want to consider using
data augmentation and how we might go about doing it. We’ll then augment
two of the datasets we developed previously, so when we build models, we
can see how augmentation affects the models’ learning. As far as
augmentation is concerned, here’s a rule of thumb: in general, you should
perform data augmentation whenever possible, especially if the dataset is
small.

Why Should You Augment Training Data?
In Chapter 4, we encountered the curse of dimensionality. We saw that the
solution to it, for many models, is to fill in the space of possible inputs with
more and more training data. Data augmentation is one way we can fill in
this space. We’ll need to do this in the future; in Chapter 6, for example,
we’ll meet the k-Nearest Neighbor classifier, perhaps the simplest of all
classifiers.

This classifier depends, critically, on having enough training data to
adequately fill in the input feature space. If there are three features, then the
space is three-dimensional and the training data will fit into some cube in
that space. The more training data we have, the more samples we’ll have in
the cube, and the better the classifier will do. That’s because the classifier
measures the distance between points in the training data and that of a new,

unknown feature vector and votes on what label to assign. The denser the
space is with training points, the more often the voting process will
succeed. Loosely speaking, data augmentation fills in this space. For most
datasets, acquiring more data, more samples of the parent distribution, will
not fill in every part of the feature space but will create a more and more
complete picture of what the parent distribution looks like in the feature
space.

When we work with modern deep learning models (Chapter 12), we’ll
see that data augmentation has additional benefits. During training, a neural
network becomes conditioned to learn features of the training data. If the
features the network learns to pay attention to are actually useful for
distinguishing the classes, all is well. But, as we saw with the wolf and
husky example of Chapter 4, sometimes the network learns the wrong thing,
which can’t be used to generalize to new inputs—like the fact that the wolf
class images had snow in the background and the husky images did not.

Taking steps to avoid this tendency is known as regularization.
Regularization helps the network learn important features of the training
data, ones that generalize as we want them to. Data augmentation is—short
of acquiring more actual data—perhaps the simplest way to regularize the
network as it learns. It conditions the learning process to not pay attention
to quirks of the particular samples selected for the training set but to instead
focus on more general features of the data. At least, that is the hope.

An additional benefit of data augmentation is that it lessens the
likelihood of overfitting when training. We’ll discuss overfitting more in
Chapter 9, but succinctly, it’s what happens when the model learns the
training data nearly perfectly without learning to generalize to new inputs.
Using a small dataset can lead to overfitting if the model is able to basically
memorize the training data. Data augmentation increases the dataset size,
reducing the probability of overfitting and possibly allowing use of a model
with a larger capacity. (Capacity is a nebulous concept. Think “bigger,” in
that the model can learn more of what is important in the training data,
while still generalizing to new data.)

One extremely important point needs to be made about data
augmentation as it relates to the training/validation/test split of the dataset:
you must be sure that every augmented sample belongs to the same set. For
example, if we augment sample X12345, and this sample has been assigned

to the training set, then we must ensure that all of the augmented samples
based on X12345 are also members of the training set. This is so important
that it’s worth reiterating: be sure to never mix an augmented sample based
on an original sample between the training, validation, and test sets.

If we don’t follow this rule, our beliefs about the quality of the model
will be unfounded, or at least partially unwarranted, because there will be
samples in the validation and test sets that are, essentially, also in the
training set, since they’re based on the training data. This warning may
seem unnecessary, but it’s really easy to make this mistake, especially if
working with others or with a database of some kind.

The correct way to augment data is after the training, validation, and
test splits have been made. Then, augment at least the training data and
label all the new samples as training data.

What about augmenting the validation and test splits? It isn’t wrong to
do so, and might make sense if you don’t have a lot of either. I haven’t run
across any studies that tried to be rigorous about the effects of augmenting
the validation and test data, but, conceptually, it shouldn’t hurt, and might
even help.

Ways to Augment Training Data
To augment a dataset, we need to generate new samples from it that are
plausible, meaning they could really occur in the dataset. For images, this is
straightforward; you can often rotate the image, or flip it horizontally or
vertically. Other times, you can manipulate the pixels themselves to change
the contrast or alter the colors. Some have even gone so far as to simply
swap entire color bands—swapping the red channel with the blue channel,
for example.

Of course, the manipulations must make sense. A subtle rotation might
mimic a change in the camera’s orientation, and a left-to-right flip might
mimic the experience of looking in a mirror. But a top-to-bottom flip
probably wouldn’t be as realistic. True, a monkey might hang upside-down
in a picture, but flipping the picture would flip the tree and the ground, as
well. On the other hand, you might be able to do a top-to-bottom flip in an
aerial image, which shows objects in any orientation.

Okay, so images are generally straightforward to augment, and it’s easy
to understand whether the augmentation makes sense. Augmentation of a

feature vector is more subtle. It’s not always clear how to do it, or if it’s
even possible. What can we do in that case?

Again, the guiding principle is that the augmentation makes sense. If we
encoded color as a one-hot vector of, say, red, green, or blue, and an
instance of a class can be red or green or blue, then one way to augment is
to shift the color between red, green, and blue. If a sample can represent
male or female, then we could also change those values to get a new sample
of the same class but with a different gender.

These are unusual things to do, however. Typically, you try to augment
continuous values, creating a new feature vector that still represents the
original class. We’ll examine one way to do this next by augmenting the iris
dataset. After that, we’ll augment the CIFAR-10 dataset to see how to work
with images.

Augmenting the Iris Dataset
The iris dataset has 150 samples from three classes, each with four
continuous features. We’ll augment it by using principal component
analysis (PCA). This is an old technique, in use for over a century. It was
common in machine learning before the advent of deep learning to combat
the curse of dimensionality, because it can reduce the number of features in
a dataset. It also has a variety of uses outside of machine learning.

Imagine that we have a dataset with only two features—for example,
the first two features of the iris dataset. A scatter plot of these features will
show us where the samples fall in 2D space. Figure 5-5 shows a plot of the
first two features of the iris dataset for classes 1 and 2. The plot has shifted
the origin to (0,0) by subtracting the mean value of each feature. This does
not change the variance or scatter of the data, only its origin.

The plot in Figure 5-5 also shows two arrows. These are the two
principal components of the data. Since the data is 2D, we have two
components. If we had 100 features, then we would have up to 100
principal components. This is what PCA does: it tells you the directions of
the variance of the data. These directions are the principal components.

Figure 5-5: The first two iris features for classes 1 and 2, with their principal components

The principal components also tell you how much of the variance of the
data is explained by each of these directions. In the plot, the length of the
arrow corresponds to the fraction of the total variance explained by each
component. As you can see, the largest component is along the diagonal
that matches the greatest scatter of the points. Traditional machine learning
uses PCA to reduce the number of features while still, hopefully,
representing the dataset well. This is how PCA can help fight the curse of
dimensionality: find the principal components and then throw the less
influential ones away. However, for data augmentation, we want to keep all
the components.

The code that produced Figure 5-5 is in Listing 5-5.

 import numpy as np
 import matplotlib.pylab as plt

 from sklearn import decomposition

❶ x = np.load("../data/iris/iris_features.npy")[:,:2]
 y = np.load("../data/iris/iris_labels.npy")
 idx = np.where(y != 0)
 x = x[idx]
 x[:,0] -= x[:,0].mean()
 x[:,1] -= x[:,1].mean()

❷ pca = decomposition.PCA(n_components=2)
 pca.fit(x)
 v = pca.explained_variance_ratio_

❸ plt.scatter(x[:,0],x[:,1],marker='o',color='b')
 ax = plt.axes()
 x0 = v[0]*pca.components_[0,0]
 y0 = v[0]*pca.components_[0,1]
 ax.arrow(0, 0, x0, y0, head_width=0.05, head_length=0.1, fc='r', ec='r')
 x1 = v[1]*pca.components_[1,0]
 y1 = v[1]*pca.components_[1,1]
 ax.arrow(0, 0, x1, y1, head_width=0.05, head_length=0.1, fc='r', ec='r')
 plt.xlabel("x_0", fontsize=16)
 plt.ylabel("x_1", fontsize=16)
 plt.show()

Listing 5-5: Iris PCA plot

Much of the preceding code is to make the plot ❸. The imports are
standard except for a new one from sklearn, the decomposition module. We
load the iris dataset we previously saved, keeping only the first two features
in x and the labels in y. We then keep only class 1 and class 2 features by
excluding class 0. Next, we subtract the per feature means to center the data
about the point (0,0) ❶.

Then we create the PCA object and fit the iris data to it ❷. There are
two features, so the number of components in this case is also two. The
PCA Python class mimics the standard approach of sklearn: it defines the
model, then fits data to it. Once this is done, we have the principal
components stored in pca and accessible via the components_ member variable.
We set v to a vector representing the fraction of the variance in the data
explained by each of the principal component directions. Since there are
two components, this vector also has two components.

The components are always listed in decreasing order, so that the first
component is the direction describing the majority of the variance, the

second component is the next most important, and so on. In this case, the
first component describes some 84 percent of the variance and the second
describes the remaining 16 percent. We’ll use this ordering when we
generate new augmented samples. Here we use the fraction to scale the
length of the arrows in the plot showing the principal component directions
and relative importance.

How is Figure 5-5 useful for data augmentation? Once you know the
principal components, you can use PCA to create derived variables, which
means you rotate the data to align it with the principal components. The
transform method of the PCA class does this by mapping an input—in our
case, the original data—to a new representation where the variance is
aligned with the principal components. This mapping is exact, and you can
reverse it by using the inverse_transform method.

Doing this alone doesn’t generate new samples for us. If we take the
original data, x, transform it to the new representation, and then inverse
transform it, we’ll end up where we started, with x. But, if we transform x
and then, before calling the inverse transform, modify some of the principal
components, we’ll return a new set of samples that are not x but are based
on x. This is precisely what we want for data augmentation. Next, we’ll see
which components to modify, and how.

The components are ordered in pca by their importance. We want to keep
the most important components as they are, because we want the inverse
transform to produce data that looks much like the original data. We don’t
want to transform things too much, or the new samples won’t be plausible
instances of the class we claim they represent. We’ll arbitrarily say that we
want to keep the components that, cumulatively, represent some 90 percent
to 95 percent of the variance in the data. These we won’t modify at all. The
remaining components will be modified by adding normally distributed
noise. Recall that normally distributed means it follows the bell curve so
that most of the time the value will be near the middle, which we’ll set to 0,
meaning no change to the component, and increasingly rarely to larger
values. We’ll add the noise to the existing component and call the inverse
transform to produce new samples that are very similar but not identical to
the originals.

The previous paragraph is pretty dense. The code will make things
easier to understand. Our approach to generating augmented data is shown

in Listing 5-6.

 import numpy as np
 from sklearn import decomposition

❶ def generateData(pca, x, start):
 original = pca.components_.copy()
 ncomp = pca.components_.shape[0]
 a = pca.transform(x)
 for i in range(start, ncomp):
 pca.components_[i,:] += np.random.normal(scale=0.1, size=ncomp)
 b = pca.inverse_transform(a)
 pca.components_ = original.copy()
 return b

 def main():
 ❷ x = np.load("../../../data/iris/iris_features.npy")
 y = np.load("../../../data/iris/iris_labels.npy")

 N = 120
 x_train = x[:N]
 y_train = y[:N]
 x_test = x[N:]
 y_test = y[N:]

 pca = decomposition.PCA(n_components=4)
 pca.fit(x)
 print(pca.explained_variance_ratio_)
 start = 2
 ❸ nsets = 10
 nsamp = x_train.shape[0]
 newx = np.zeros((nsets*nsamp, x_train.shape[1]))
 newy = np.zeros(nsets*nsamp, dtype="uint8")

 ❹ for i in range(nsets):
 if (i == 0):
 newx[0:nsamp,:] = x_train
 newy[0:nsamp] = y_train
 else:
 newx[(i*nsamp):(i*nsamp+nsamp),:] =
 generateData(pca, x_train, start)
 newy[(i*nsamp):(i*nsamp+nsamp)] = y_train

 ❺ idx = np.argsort(np.random.random(nsets*nsamp))
 newx = newx[idx]
 newy = newy[idx]
 np.save("iris_train_features_augmented.npy", newx)
 np.save("iris_train_labels_augmented.npy", newy)
 np.save("iris_test_features_augmented.npy", x_test)

 np.save("iris_test_labels_augmented.npy", y_test)

 main()

Listing 5-6: Augmenting the iris data with PCA. See iris_data_augmentation.py.

The main function ❷ loads the existing iris data, x, and the corresponding
labels, y, and then calls PCA, this time using all four features of the dataset.
This gives us the four principal components telling us how much of the
variance is explained by each component:

0.92461621 0.05301557 0.01718514 0.00518309

The first two principal components describe over 97 percent of the
variance. Therefore, we’ll leave the first two components alone, indices 0
and 1, and start with index 2 when we want to generate new samples.

We next declare the number of sets we’ll define ❸. A set here means a
new collection of samples. Since the samples are based on the original data,
x, with 150 samples, each new set will contain 150 samples as well. In fact,
they’ll be in the same order as the original samples, so that the class label
that should go with each of these new samples is in the same order as the
class labels in y. We don’t want to lose our original data, either, so nsets=10
puts the original data and nine new sets of samples based on that original
data—for a total of 1,500 samples—in the new dataset. We grab the number
of samples in x, 150, and define the arrays to hold our new features (newx)
and associated labels (newy).

Next, we loop to generate the new samples, one set of 150 at a time ❹.
The first pass simply copies the original data into the output arrays. The
remaining passes are similar, updating the source and destination indices of
the output arrays appropriately, but instead of assigning x, we assign the
output of generateData. When the loop is done, we scramble the order of the
entire dataset and write it to disk ❺.

All of the magic is in generateData ❶. We pass in the PCA object (pca), the
original data (x), and the starting principal component index (start). We set
the last argument to 2 to leave the two most important components alone.
We keep a copy of the actual components so we can reset the pca object
before we return. Then we define ncomp, the number of principal

components, for convenience and call the forward transformation mapping
the original data along the principal components.

The loop updates the two least important components by adding a
random value drawn from a normal curve with mean value 0 and a standard
deviation of 0.1. Why 0.1? No special reason; if the standard deviation is
small, then the new samples will be near the old samples, while if it’s larger,
they’ll be farther away and possibly not representative of the class anymore.
Next, we call the inverse transformation using the modified principal
components and restore the actual components. Finally, we return the new
set of samples.

Let’s look at the new dataset, shown in Figure 5-6. The big gray dots are
from our original dataset, and the smaller black dots are the augmented
samples. As we can readily see, they all fall near an existing sample, which
is what we would expect from modifying only the weakest of the principal
components. Since we copied the original data into the augmented dataset,
each big dot has a small dot at the center.

Figure 5-6: The first two features of the original iris dataset (large dots) and the augmented features
generated by Listing 5-6 (small points)

This approach is appropriate for continuous features only, as was
previously stated, and you should be careful to modify only the weakest of
the principal components, and only by a small amount. Experimentation is
important here. As an exercise, try applying the same technique to augment
the breast cancer dataset, which also consists of continuous features.

Augmenting the CIFAR-10 Dataset
Augmenting the iris dataset involved a lot of discussion and some less than
obvious math. Fortunately for us, augmenting images is generally a lot
simpler, but still just as effective when training modern models. When we
build convolutional neural network models (Chapter 12), we’ll see how to
do augmentation on the fly when training, a particularly helpful approach,

but for now we’ll do the augmentation first and build a new dataset with
additional versions of the existing images.

Figure 5-4 shows representative images from each class in the CIFAR-
10 dataset. These are color images stored as RGB data for the red, green,
and blue channels. They were taken from ground level, so top and bottom
flips do not make sense here, while left and right flips do. Translations—
shifting the image in the x or y direction, or both—are one common
technique. Small rotations are another common technique.

However, each of these raises an issue: what to do with pixels that have
no data after the shift or rotate? If I shift an image 3 pixels to the left, I need
to fill in the three columns on the right with something. Or, if I rotate to the
right, there will be pixels at the upper right and lower left that need to be
filled in. There are several ways to handle this. One is to simply leave the
pixels black, or all 0 values, and let the model learn that there is no helpful
information there. Another is to replace the pixels with the mean value of
the image, which also provides no information and will, we hope, be
ignored by the model. However, the most popular solution is to crop the
image.

The image is 32×32 pixels. Pulling a random patch from the image of,
say, 28×28 pixels is the equivalent of shifting the image by a random x or y
position of up to 4 pixels without needing to worry about filling in
anything. If we rotate the image first, which will require interpolation of the
pixels, and then crop to remove the edge regions, we’ll again have no empty
pixels to worry about. Keras has tools for doing this via an image generator
object used during training. When we’re using Keras to build models, we’ll
make use of it, but for now, we’ll do all of the work ourselves in order to
understand the process.

We need to mention one point here. So far, we’ve talked about building
a dataset for training a model. What should we do when we want to use the
model? Do we hand the model random croppings of the test inputs as well?
No. Instead, we hand the model a cropping centered on the image. So, for
CIFAR-10, we would take each 32 × 32 test input and crop it to 28 × 28 by
dropping the outer 6 pixels, then present that to the model. We do this
because the center crop still represents the actual test image and not some
augmented version of it.

Figure 5-7 illustrates what we mean by rotations, flips, random
croppings for training, and center cropping for testing. In (a) we rotate the
image and take a center crop. The output image is in the white square. In (b)
we flip left to right and crop randomly. In (c), we take two random crops
without flipping, and in (d) we take a center crop for testing, without any
rotation or flip. Some people augment test images, but we won’t do so here.

Figure 5-7: Rotate, then center crop (a). Flip left to right, then crop randomly (b). Two random crops
during training (c). Center crop for testing, with no rotation or flip (d).

Listing 5-7 shows how to augment the CIFAR-10 training set with
random crops, rotations, and flips.

 import numpy as np
 from PIL import Image

❶ def augment(im, dim):
 img = Image.fromarray(im)
 if (np.random.random() < 0.5):
 img = img.transpose(Image.FLIP_LEFT_RIGHT)
 if (np.random.random() < 0.3333):
 z = (32-dim)/2
 r = 10*np.random.random()-5
 img = img.rotate(r, resample=Image.BILINEAR)
 img = img.crop((z,z,32-z,32-z))
 else:
 x = int((32-dim-1)*np.random.random())
 y = int((32-dim-1)*np.random.random())
 img = img.crop((x,y,x+dim,y+dim))
 return np.array(img)

 def main():
 ❷ x = np.load("../data/cifar10/cifar10_train_images.npy")
 y = np.load("../data/cifar10/cifar10_train_labels.npy")
 factor = 10
 dim = 28
 z = (32-dim)/2
 newx = np.zeros((x.shape[0]*factor, dim,dim,3), dtype="uint8")
 newy = np.zeros(y.shape[0]*factor, dtype="uint8")
 k=0
 ❸ for i in range(x.shape[0]):
 im = Image.fromarray(x[i,:])
 im = im.crop((z,z,32-z,32-z))
 newx[k,...] = np.array(im)
 newy[k] = y[i]
 k += 1
 for j in range(factor-1):
 newx[k,...] = augment(x[i,:], dim)
 newy[k] = y[i]
 k += 1
 idx = np.argsort(np.random.random(newx.shape[0]))
 newx = newx[idx]
 newy = newy[idx]
 np.save("../data/cifar10/cifar10_aug_train_images.npy", newx)
 np.save("../data/cifar10/cifar10_aug_train_labels.npy", newy)

 ❹ x = np.load("../data/cifar10/cifar10_test_images.npy")
 newx = np.zeros((x.shape[0], dim,dim,3), dtype="uint8")
 for i in range(x.shape[0]):
 im = Image.fromarray(x[i,:])
 im = im.crop((z,z,32-z,32-z))
 newx[i,...] = np.array(im)
 np.save("../data/cifar10/cifar10_aug_test_images.npy", newx)

Listing 5-7: Augmenting the CIFAR-10 dataset. See cifar10_augment.py.

The main function loads the existing dataset and defines our
augmentation factor, crop size, and a constant for defining a center crop ❷.

The new image will be put in newx, which has the following dimensions:
(500,000;28;28;3); there are 50,000 training images, each with 32×32 pixels
and three color bands. We set the augmentation factor to 10. Similarly, there
will be 500,000 labels. The counter, k, will index into this new dataset. For
every image in the old dataset, we’ll create nine completely new versions
and center crop the original ❶ ❸.

As the dataset consists of images, it’s easiest to work with the data in
image form, so we make the current sample an actual PIL image in order to
easily crop it. This is the center crop of the original image. We store it in the
new output array.

There are two Python idioms here that we’ll see more than once. The
first is to turn a NumPy array representing an image into a PIL image:

im = Image.fromarray(arr)

The second is to go the other way and turn a PIL image into a NumPy
array:

arr = np.array(im)

We must be sure that the NumPy array is a valid image data type like
unsigned byte (uint8). Use the astype NumPy array method to cast between
types, remembering that you bear all responsibility for understanding what
that casting entails.

Referring back to Listing 5-7, we are creating the nine versions of the
current image. For each of these, we simply copy the label and assign the
output array an augmented version. We’ll describe the augment function
shortly. Once the new dataset has been constructed, we scramble the order
and write the augmented training dataset to disk ❸.

We’re not quite done, however. We created an augmented training set
that cropped the original 32 × 32 images to 28 × 28. We must, therefore, at
least crop the original test set ❹. As we stated previously, we use a center
crop and no augmentation of the test data. Therefore, we simply load the
test dataset, define the new output test dataset, and run a loop that crops the
32 × 32 images to 28 × 28. When done, we write the cropped test data to

disk. Note that we did not modify the order of the images in the test set; we
simply cropped them, so we do not need to write a new file for the test
labels.

The augment function ❶ is where all the action is. We immediately
change the input NumPy array into an actual PIL image object. We next
decide, with a 50-50 chance, whether or not we will flip the image left to
right. Note that we do not crop the image just yet.

Next, we ask whether we should rotate the image or not. We select
rotation with a probability of 33 percent (1 in 3 chance). Why 33 percent?
No particular reason, but it seems that we might want to crop randomly
more often than we rotate. We could even drop this probability down to 20
percent (1 in 5 chance). If we do rotate, we select the rotation angle, [–5,5]
and then call the rotate method using bilinear interpolation to make the
rotated image look a bit nicer than simply using the nearest neighbor, which
is the PIL default. Next, we center crop the rotated image. This way, we will
not get any black pixels on the edges where the rotation had no image
information to work with.

If we do not rotate, we are free to select a random crop. We choose the
upper-left corner of this random crop, ensuring that the cropped square will
not exceed the dimensions of the original image. Finally, we convert the
data back to a NumPy array and return.

Summary
In this chapter, we built four datasets that we’ll use as examples throughout
the rest of the book. The first two, irises and breast cancer histology, are
based on feature vectors. The last two, MNIST and CIFAR-10, are
represented as images. We then learned about two data augmentation
methods: augmenting a feature vector of continuous values using PCA and,
more critical for deep learning, augmenting images by basic
transformations.

In the next chapter, we’ll transition to our discussion of classical
machine learning models. In the chapter after that, we’ll use these datasets
with those models.

6
CLASSICAL MACHINE LEARNING

It’s satisfying to be able to write “Classical Machine Learning” as it implies
that there is something newer that makes older techniques “classical.” Of
course, we know by now that there is—deep learning—and we’ll get to it in
the chapters that follow. But first, we need to build our intuition by
examining older techniques that will help cement concepts for us and,
frankly, because the older techniques are still useful when the situation
warrants.

It’s tempting to include some sort of history here. To keep to the
practical nature of this book, we won’t, but a full history of machine
learning is needed, and as of this writing, I have not found one. Historians
reading this, please take note. I will say that machine learning is not new;
the techniques of this chapter go back decades and have had considerable
success on their own.

However, the successes were always limited in a way that deep learning
has now largely overcome. Still, owning a hammer doesn’t make everything
a nail. You will encounter problems that are well suited to these older
techniques. This might be because there’s too little data available to train a
deep model, because the problem is simple and easily solved by a classical
technique, or because the operating environment is not conducive to a large,
deep model (think microcontroller). Besides, many of these techniques are
easier to understand, conceptually, than a deep model is, and all the

comments of earlier chapters about building datasets, as well as the
comments in Chapter 11 about evaluating models, still apply.

The following sections will introduce several popular classical models,
not in great detail, but in essence. All of these models are supported by
sklearn. In Chapter 7, we’ll apply the models to some of the datasets we
developed in Chapter 5. This will give us an idea of the relative
performance of the models when compared to each other as well as giving
us a baseline for comparing the performance of deep models in subsequent
chapters.

We’ll examine six classical models. The order in which we discuss them
roughly tracks with the complexity of the type of model. The first three,
Nearest Centroid, k-Nearest Neighbors, and Naïve Bayes, are quite simple
to understand and implement. The last three, Decision Trees, Random
Forests, and Support Vector Machines, are harder, but we’ll do our best to
explain what’s going on.

Nearest Centroid
Assume we want to build a classifier and that we have a properly designed
dataset of n classes (see Chapter 4). For simplicity, we’ll assume that we
have m samples of each of the n classes. This isn’t necessary but saves us
from adding many subscripts to things. Since our dataset is properly
designed, we have training samples and test samples. We don’t need
validation samples in this case, so we can throw them into the training set.
Our goal is to have a model that uses the training set to learn so we can
apply the model to the test set to see how it will do with new, unknown
samples. Here the sample is a feature vector of floating-point values.

The goal of selecting components for a feature vector is to end up with a
feature vector that makes the different classes distinct in the feature space.
Let’s say that the feature vector has w features. This means we can think of
the feature vector as the coordinates of a point in a w-dimensional space. If
w = 2 or w = 3, we can graph the feature vectors. However, mathematically,
there’s no reason for us to restrict w to 2 or 3; all of what we describe here
works in 100, 500, or 1000 dimensions. Note it won’t work equally well:
the dreaded curse of dimensionality will creep in and eventually require an

exponentially large training dataset, but we’ll ignore this elephant in the
room for now.

If the features are well chosen, we might expect a plot of the points in
the w-dimensional space to group the classes so that all of the samples from
class 0 are near each other, and all of the samples from class 1 are near each
other but distinct from class 0, and so forth. If this is our expectation, then
how might we use this knowledge to assign a new, unknown sample to a
particular class? Of course, this is the goal of classification, but in this case,
given our assumption that the classes are well separated in the feature
space, what is something simple we could do?

Figure 6-1 shows a hypothetical 2D feature space with four distinct
classes. The different classes are clearly separated in this toy example. A
new, unknown feature vector will fall into this space as a point. The goal is
to assign a class label to the new point, either square, star, circle, or triangle.

Figure 6-1: A hypothetical 2D feature space with four distinct classes

Since the points of Figure 6-1 are so well grouped, we might think that
we could represent each group by an average position in the feature space.
Instead of the 10 square points, we’d use a single point to represent the
squares. This seems an entirely reasonable thing to do.

It turns out, the average point of a group of points has a name: the
centroid, the center point. We know how to compute the average of a set of
numbers: add them up and divide by how many we added. To find the
centroid of a set of points in 2D space, we first find the average of all the x-
axis coordinates and then the average of all the y-axis coordinates. If we
have three dimensions, we’ll do this for the x-, y-, and z-axes. If we have w
dimensions, we’ll do it for each of the dimensions. In the end, we’ll have a
single point that we can use to represent the entire group. If we do this for
our toy example, we get Figure 6-2, where the centroid is shown as the
large marker.

Figure 6-2: A hypothetical 2D feature space with four distinct classes and their centroids

How is the centroid helpful to us? Well, if a new, unknown sample is
given to us, it will be a point in the feature space as mentioned previously.
We can then measure the distance between this point and each of the
centroids and assign the class label of the closest centroid. The idea of
distance is somewhat ambiguous; there are many different ways to define
distance. One obvious way is to draw straight line between the two points;
this distance is known as the Euclidean distance, and it’s easy enough to
compute. If we have two points, (x0,y0) and (x1,y1) then the Euclidean
distance between them is simply the following:

If we have three dimensions, the distance between two points becomes

which can be generalized to w dimensions for two points, x0 and x1, as

where is the i-th component of the point x0. This means, component by
component, find the difference between the two points, square it, and add it
to the squared difference of all the other components. Then, take the square
root.

Figure 6-3 shows a sample point in the feature space as well as the
distances to the centroids. The shortest distance is to the circle class, so
we’d assign the new sample to that class.

Figure 6-3: A hypothetical 2D feature space with four distinct classes, their centroids, and a new,
unknown sample

The process we just implemented is known as a Nearest Centroid
classifier. It’s also sometimes called template matching. The centroids of
the classes learned from the training data are used as a proxy for the class as
a whole. Then, new samples use those centroids to decide on a label.

This seems so simple and perhaps even somewhat obvious, so why isn’t
this classifier used more? Well, there are several reasons. One has already
been mentioned, the curse of dimensionality. As the number of features
increases, the space gets larger and larger, and we need exponentially more
training data to get a good idea of where the centroids should be. So, a large
feature space implies that this might not be the right approach.

There’s a more severe problem, however. Our toy example had very
tight groups. What if the groups are more diffuse, even overlapping? Then

the selection of the Nearest Centroid becomes problematic: how would we
know whether the closest centroid represents class A or class B?

Still more severe is that a particular class might fall into two or more
distinct groups. If we calculate the centroid of only the class as a whole, the
centroid will be between the groups for the class and not represent either
cluster well. We’d need to know that the class is split between groups and
use multiple centroids for the class. If the feature space is small, we can plot
it and see that the class is divided between groups. However, if the feature
space is larger, there’s no easy way for us to decide that the class is divided
between multiple groups and that multiple centroids are required. Still, for
elementary problems, this approach might be ideal. Not every application
deals with difficult data. We might be building an automated system that
needs to make simple, easy decisions on new inputs. In that case, this
simple classifier might be a perfect fit.

k-Nearest Neighbors
As we saw earlier, one problem with a centroid approach is that the classes
might be divided among multiple groups in the feature space. As the
number of groups increases, so would the number of centroids necessary to
specify the class. This implies another approach. Instead of computing per
class centroids, what if we used the training data as is and selected the class
label for a new input sample by finding the closest member of the training
set and using its label?

This type of classifier is called a Nearest Neighbor classifier. If we look
at only the closest sample in the training set, we are using one neighbor, so
we call the classifier a 1-Nearest Neighbor or 1-NN classifier. But we don’t
need to look at only the nearest training point. We might want to look at
several and then vote to assign a new sample the most common class label.
In the event of a tie, we can select one of the class labels at random. If we
use three nearest neighbors, we have a 3-NN classifier, and if we use k
neighbors, we have a k-NN classifier.

Let’s revisit the hypothetical dataset of Figure 6-1 but generate a new
version where the tight clusters are more spread out. We still have two
features and four classes with 10 examples each. Let’s set k = 3, a typical
value. To assign a label to a new sample, we plot the sample in the feature

space and then find the three closest training data points to it. Figure 6-4
shows the three nearest neighbors for three unknown samples.

The three training data points closest to Sample A are square, square,
and star. Therefore, by majority vote, we assign Sample A to the class
square. Similarly, the three closest training data points for Sample B are
circle, triangle, and triangle. Therefore, we declare Sample B to be of class
triangle. Things are more interesting with Sample C. In this case, the three
closest training samples are each from a different class: circle, star, and
triangle. So, voting is a tie.

When this happens, the k-NN implementation has to make a choice. The
simplest thing to do is select the class label at random since one might argue
that any of the three are equally as likely. Alternatively, one might believe a
little more strongly in the value of the distance between the unknown
sample and the training data and select the one with the shortest distance. In
this case, we’d label Sample C with class star, since that’s the training
sample closest to it.

Figure 6-4: Applying k-NN for k =3 to three unknown samples A, B, and C

The beauty of a k-NN classifier is that the training data is the model—
no training step is necessary. Of course, the training data must be carried
around with the model and, depending upon the size of the training set,
finding the k nearest neighbors for a new input sample might be
computationally very expensive. People have worked for decades to try to
speed up the neighbor search or store the training data more efficiently, but
in the end, the curse of dimensionality is still there and still an issue.

However, some k-NN classifiers have performed very well: if the
dimensionality of the feature space is small enough, k-NN might be
attractive. There needs to be a balance between training data size, which
leads to better performance but more storage and more laborious searching
for neighbors, and the dimensionality of the feature space. The same sort of
scenario that might make Nearest Centroid a good fit will also make k-NN a
good fit. However, k-NN is perhaps more robust to diffuse and somewhat

overlapping class groups than Nearest Centroid is. If the samples for a class
are split between several groups, k-NN will be superior to Nearest Centroid.

Naïve Bayes
Widely used in natural language processing research, the Naïve Bayes
classifier is simple to implement and straightforward to understand, though
we’ll have to include some math to do it. However, I promise, the
description of what’s happening will make the math understandable even if
the notation isn’t so familiar.

The technique uses Bayes’ theorem (see Thomas Bayes’ “An Essay
Towards Solving a Problem in the Doctrine of Chances” published in 1763).
The theorem relates probabilities, and its modern formulation is

which uses some mathematical notation from probability theory that we
need to describe to understand how we’ll use this theorem to implement a
classifier.

The expression P(A|B) represents the probability that event A has
occurred, given event B has already occurred. In this context, it’s called the
posterior probability. Similarly, P(B|A) represents the probability that event
B has occurred, given event A has occurred. We call P(B|A) the likelihood
of B, given A. Finally, P(A) and P(B) represent, respectively, the probability
that event A has occurred, regardless of event B, and the probability that
event B has occurred, regardless of event A. We call P(A) the prior
probability of A. P(B) is the probability of B happening regardless of A.

Bayes’ theorem gives us the probability of something happening (event
A) given that we already know something else has happened (event B). So
how does this help us classify? We want to know whether a feature vector
belongs to a given class. We know the feature vector, but we don’t know the
class. So if we have a dataset of m feature vectors, where each feature
vector has n features, x = {x1,x2,x3,…,xn}, then we can replace the B in
Bayes’ theorem with each of the features in the feature vector. We can also

replace A with y, the class label we want to assign to a new, unknown
feature vector x. The theorem now looks like this:

Let’s explain things a bit. Bayes’ theorem states that if we know the
likelihood of having x be our feature vector given that y is the class, and we
know how often class y shows up (this is P(y), the prior probability of y),
then we can calculate the probability that the class of the feature vector x is
y. If we are able to do this for all the possible classes, all the different y
values, we can select the highest probability and label the input feature
vector x as belonging to that class, y.

Recall that a training dataset is a set of pairs, (xi,yi), for a known feature
vector, xi, and a known class it belongs to, yi. Here the i superscript is
counting the feature vector and label pairs in the training dataset. Now,
given a dataset like this, we can calculate P(y) by making a histogram of
how often each class label shows up in the training set. We believe that the
training set fairly represents the parent distribution of possible feature
vectors so that we can use the training data to calculate the values we need
to make use of Bayes’ theorem. (See Chapter 4 for techniques to ensure that
the dataset is a good one.)

Once we have P(y), we need to know the likelihood, P(x1,x2,x3,…,xn|y).
Unfortunately, we can’t calculate this directly. But all is not lost: we’ll make
an assumption that will let us move ahead. We’ll assume that each of the
features in x is statistically independent. This means that the fact that we
measure a particular x1 has nothing whatsoever to do with the values of any
of the other n – 1 features. This isn’t true always, or even most of the time,
but in practice, it turns out that this assumption is often close enough to true
that we can get by. This is why it’s called Naïve Bayes, as it’s naïve to
assume the features are independent of each other. That assumption is most
definitely not true, for example, when our input is an image. The pixels of
an image are highly dependent upon each other. Pick one at random, and the
pixels next to it are almost certainly within a few values of it.

When two events are independent, their joint probability, the probability
that they both happen, is simply the product of their individual probabilities.

The independence assumption lets us change the likelihood portion of
Bayes’ theorem like so:

The ∏ symbol means multiplied together, much like the ∑ symbol means
added together. The right side of the equation is saying that if we know the
probability of measuring a particular value of a feature, say feature xi, given
that the class label is y, we can get the likelihood of the entire feature vector
x, given class label y, by multiplying each of the per feature probabilities
together.

If our dataset consists of categorical values, or discrete values like
integers (for example, age), then we can use the dataset to calculate the
P(xi|y) values by building a histogram for each feature for each class. For
example, if feature x2 for class 1 has the following values

7, 4, 3, 1, 6, 5, 2, 8, 5, 4, 4, 2, 7, 1, 3, 1, 1, 3, 3, 3, 0, 3,
4, 4, 2, 3, 4, 5, 2, 4, 2, 3, 2, 4, 4, 1, 3, 3, 3, 2, 2, 4, 6, 5,
2, 6, 5, 2, 6, 6, 3, 5, 2, 4, 2, 4, 5, 4, 5, 5, 2, 5, 3, 4, 3, 1,
6, 6, 5, 3, 4, 3, 3, 4, 1, 1, 3, 5, 4, 4, 7, 0, 6, 2, 4, 7, 4, 3,
4, 3, 5, 4, 6, 2, 5, 4, 4, 5, 6, 5

then each value occurs with the following probability

0: 0.02
1: 0.08
2: 0.15
3: 0.20
4: 0.24
5: 0.16
6: 0.10
7: 0.04
8: 0.01

which comes from the number of times each value occurs divided by 100,
the total number of values in the dataset.

This histogram is exactly what we need to find P(x2|y = 1), the
probability for feature 2 when the class label is 1. For example, we can

expect a new feature vector of class 1 to have x2 = 4 about 24 percent of the
time and to have x2 = 1 about 8 percent of the time.

By building tables like this for each feature and each class label, we can
complete our classifier for the categorical and discrete cases. For a new
feature vector, we use the tables to find the probability that each feature
would have that value. We multiply each of those probabilities together and
then multiply by the prior probability of that class. This, repeated for each
of the m classes in the dataset, will give us a set of m posterior probabilities.
To classify the new feature vector, select the largest of these m values, and
assign the corresponding class label.

How do we calculate P(xi|y) if the feature values are continuous? One
way would be to bin the continuous values and then make tables as in the
discrete case. Another is to make one more assumption. We need to make
an assumption about the distribution of possible xi feature values that we
could measure. Most natural phenomena seem to follow a normal
distribution. We discussed the normal distribution in Chapter 1. Let’s
assume, then, that the features all follow normal distributions. A normal
distribution is defined by its mean value (μ, mu) and a standard deviation
(σ, sigma). The mean value is just the average value we’d expect if we drew
samples from the distribution repeatedly. The standard deviation is a
measure of how wide the distribution is—how spread out it is around the
mean value.

Mathematically, what we want to do is replace each P(xi|y) like so

P(xi|y) ≈ N(μi, σi)

for each feature in our feature vector. Here N(μi,σi) is notation meaning a
normal distribution centered around some mean value (μ) and defined by a
spread (σ).

We don’t really know the exact μ and σ values, but we can approximate
them from the training data. For example, assume the training data consists
of 25 samples, where the class label is 0. Further, assume that the following
are the values of feature 3, that is, x3, in those cases:

0.21457111, 4.3311102, 5.50481251, 0.80293956, 2.5051598,
2.37655204, 2.4296739, 2.84224169, -0.11890662, 3.18819152,

1.6843311, 4.05982237, 4.14488722, 4.29148855, 3.22658406,
6.45507675, 0.40046778, 1.81796124, 0.2732696, 2.91498336,
1.42561983, 2.73483704, 1.68382843, 3.80387653, 1.53431146

Then we’d use μ3 = 2.58 and σ3 = 1.64 when setting up the normal
distribution for feature 3 for class 0 since the average of these values is
2.58, and the standard deviation, the spread around the mean value, is 1.64.

When a new unknown sample is given to the classifier, we would
compute the probability of the given x3 happening if the actual class was
class 0 by using the following equation.

This equation comes from the definition of a normal distribution with
mean μ and standard deviation σ. It says that the likelihood of a particular
feature value, given the class is y, is distributed around the mean value we
measured from the training data according to the normal distribution. This
is an assumption we are making on top of the independence assumption
between features.

We use this equation for each of the features in the unknown feature
vector. We’d then multiply the resulting probabilities together, and multiply
that value by the prior probability of class 0 happening. We’d repeat this
process for each of the classes. In the end, we’ll have m numbers, the
probabilities of the feature vector belonging to each of the m classes. To
make a final decision, we’d do what we did before: select the largest of
these probabilities and label the input as being of the corresponding class.

Some readers may complain that we ignored the denominator of Bayes’
theorem. We did that because it’s a constant across all the calculations, and
since we always select the largest posterior probability, we really don’t care
whether we divide each value by a constant. We’ll select the same class
label, regardless.

Also, for the discrete case, it’s possible that our training set does not
have any instances of a value that rarely shows up. We ignored that, too, but
it is a problem since if the value never shows up, the P(xi|y) we use would
be 0, making the entire posterior probability 0. This often happens in

natural language processing, where a particular word is rarely used. A
technique called Laplace smoothing gets around this, but for our purposes,
we claim that a “good” training set will represent all possible values for the
features and simply press ahead. The sklearn MultinomialNB Naïve Bayes
classifier for discrete data uses Laplace smoothing by default.

Decision Trees and Random Forests
The left side of Figure 6-5 shows an x-ray image of a puppy with a
malformed right hip socket. Since the puppy is on its back in the x-ray, the
right hip socket is on the left side of the image. The right side of Figure 6-5
shows the corresponding histogram of the pixel intensities (8-bit values,
[0,255]). There are two modes to this histogram, corresponding to the dark
background and the lighter-intensity x-ray data. If we want to classify each
pixel of the image into either background or x-ray, we can do so with the
following rule: “If the pixel intensity is less than 11, call the pixel
background.”

Figure 6-5: An x-ray image of a puppy (left). The corresponding histogram of 8-bit pixel values
[0,255] (right).

This rule implements a decision made about the data based on one of
the features, in this case, the pixel intensity value. Simple decisions like this
are at the heart of Decision Trees, the classification algorithm we’ll explore
in this section. For completeness, if we apply the decision rule to each pixel
in the image and output 0 or 255 (maximum pixel value) for background
versus x-ray data, we get a mask showing us which pixels are part of the
image. See Figure 6-6.

Figure 6-6: An x-ray image of a puppy (left). The corresponding pixel mask generated by the
decision rule. White pixels are part of the x-ray image (right).

A Decision Tree is a set of nodes. The nodes either define a condition
and branch based on the truth or falsehood of the condition, or select a
particular class. Nodes that do not branch are called leaf nodes. Decision
Trees are called trees because, especially for the binary case we’ll consider
here, they branch like trees. Figure 6-7 shows a Decision Tree learned by
the sklearn DecisionTreeClassifier class for the full iris dataset using the first
three features. See Chapter 5.

Figure 6-7: A Decision Tree classifier for the iris dataset

By convention, the first node in the tree, the root, is drawn at the top.
For this tree, the root node asks the question, “Is the petal length ≤ 2.45?” If
it is, the left branch is taken, and the tree immediately reaches a leaf node
and assigns a label of “virginica” (class 0). We’ll discuss the other
information in the nodes shortly. If the petal length is not ≤ 2.45, the right
branch is taken, leading to a new node that asks, “Is the petal length ≤
4.75?” If so, we move to a node that asks a question about the sepal length.
If not, we move to the right node and consider the petal length again. This
process continues until a leaf is reached, which determines the class label.

The process just described is exactly how a Decision Tree is used after
it’s created. For any new feature vector, the series of questions is asked
starting with the root node, and the tree is traversed until a leaf node is
reached to decide the class label. This is a human-friendly way to move
through the classification process, which is why Decision Trees are handy
in situations where the “why” of the class assignment is as important to
know as the class assignment itself. A Decision Tree can explain itself.

Using a Decision Tree is simple enough, but how is the tree created in
the first place? Unlike the simple algorithms in the previous sections, the
tree-building process is more involved, but not so involved that we can’t
follow through the main steps to build some intuition as to what goes into
defining the tree.

Recursion Primer
Before we talk about the Decision Tree algorithm, however, we need to
discuss the concept of recursion. If you’re familiar with computer science,
you probably already know that tree-like data structures and recursion go
hand in hand. If not, don’t worry; recursion is a straightforward but
powerful concept. The essence of a recursive algorithm is that the algorithm
repeats itself at different levels. When implemented as a function in a

programming language, this generally means that the function calls itself on
a smaller version of the problem. Naturally, if the function calls itself
indefinitely, we’ll have an infinite loop, so the recursion needs a stopping
condition—something that says we no longer need to recurse.

Let’s introduce the idea of recursion mathematically. The factorial of an
integer, n, denoted n!, is defined to be

n! = n(n – 1)(n – 2)(n – 3) . . . (n – n + 1)

which just means multiply together all the integers from 1 to n. By
definition, 0! = 1. Therefore, the factorial of 5 is 120 because

5! = 5 × 4 × 3 × 2 × 1 = 120

If we look at 5! we see that it is nothing more than 5 × 4! or, in general,
that, n! = n × (n – 1)!. Now, let’s write a Python function to calculate
factorials recursively using this insight. The code is simple, also a hallmark
of many recursive functions, as Listing 6-1 shows.

def fact(n):
 if (n <= 1):
 return 1
 else:
 return n*fact(n-1)

Listing 6-1: Calculating the factorial

The code is a direct implementation of the rule that the factorial of n is n
times the factorial of n – 1. To find the factorial of n, we first ask if n is 1. If
it is, we know the factorial is 1 so we return 1—this is our stopping
condition. If n is not 1, we know that the factorial of n is simply n times the
factorial of n-1, which we find by calling fact with n-1 as the argument.

Building Decision Trees
The algorithm to build a Decision Tree is also recursive. Let’s walk through
what happens at a high level. The algorithm starts with the root node,
determines the proper rule for that node, and then calls itself on the left and
right branches. The call to the left branch will start again as if the left
branch is the root node. This will continue until a stopping condition is met.

For a Decision Tree, the stopping condition is a leaf node (we’ll discuss
how a Decision Tree knows whether to create a leaf node next). Once a leaf
node is created, the recursion terminates, and the algorithm returns to that
leaf’s parent node and calls itself on the right branch. The algorithm then
starts again as if the right branch were the root node. Once both recursive
calls terminate, and a node’s left and right subtrees are created, the
algorithm returns to that node’s parent, and so on and so forth until the
entire tree is constructed.

Now to get a little more specific. How is the training data used to build
the tree? When the root node is defined, all the training data is present—
say, all n samples. This is the set of samples used to pick the rule the root
node implements. Once that rule has been selected and applied to the
training samples, we have two new sets of samples: one for the left side (the
true side) and one for the right side (the false side).

The recursion then works with these nodes, using their respective set of
training samples, to define the rule for the left and right branches. Every
time a branch node is created, the training set for that branch node gets split
into samples that meet the rule and samples that don’t meet the rule. A leaf
node is declared when the set of training samples is either too small, of a
sufficiently high proportion of one class, or the maximum tree depth has
been reached.

By now you’re probably wondering, “How do we select the rule for a
branch node?” The rule relates a single input feature, like the petal length,
to a particular value. The Decision Tree is a greedy algorithm; this means
that at every node it selects the best rule for the current set of information
available to it. In this case, this is the current set of training samples that are
available to the node. The best rule is the one that best separates the classes
into two groups. This implies that we need a way to select possible
candidate rules and that we have a way to determine that a candidate rule is
“best.” The Decision Tree algorithm uses brute force to locate candidate
rules. It runs through all possible combinations of features and values,
making continuous values discrete by binning, and evaluates the purity of
the left and right training sets after the rule is applied. The best-performing
rule is the one kept at that node.

“Best performing" is determined by the purity of the split into left and
right training sample subsets. One way to measure purity is to use the Gini

index. This is the metric sklearn uses. The Gini index of each node in the
iris example of Figure 6-7 is shown. It’s calculated as

where P(yi) is the fraction of training examples in the subset for the current
node that are of class i. A perfect split between classes, all of one class and
none of the other, will result in a Gini index of 0. A 50-50 split has a Gini
index of 0.5. The algorithm seeks to minimize the Gini index at each node
by selecting the candidate rule that results in the smallest Gini index.

For example, in Figure 6-7 the right-hand node below the root has a
Gini index of 0.5. This means that the rule for the node above, the root, will
result in a subset of the training data that has petal length > 2.45, and that
subset will be evenly divided between classes 1 and 2. This is the meaning
of the “value” line in the node text. It shows the number of training samples
in the subset that defined the node. The “class” line is the class that would
be assigned if the tree were stopped at that node. It’s simply the class label
of the class that has the largest number of training samples in the node’s
subset. When the tree is used on new, unknown samples, it’s run from root
to a leaf, always.

Random Forests
Decision Trees are useful when the data is discrete or categorical or has
missing values. Continuous data needs to be binned first (sklearn does this
for you). Decision Trees have a bad habit, however, of overfitting the
training data. This means that they are likely to learn meaningless statistical
nuances of the training data that you happened to use, instead of learning
meaningful general features of the data that are useful when applied to
unknown data samples. Decision Trees also grow very large, as the number
of features grows, unless managed by depth parameters.

Decision Tree overfitting can be mitigated by using Random Forests. In
fact, unless your problem is simple, you probably want to look at using a
Random Forest from the start. The following three concepts lead from a
Decision Tree to a Random Forest:

Ensembles of classifiers and voting between them
Resampling of the training set by selecting samples with replacement
Selection of random feature subsets

If we have a set of classifiers, each trained on different data or of a
different type, like a k-NN and a Naïve Bayes, we can use their outputs to
vote on the actual category to assign to any particular unknown sample.
This is called an ensemble and, with diminishing returns as the number of
classifiers increases, it will, in general, improve the performance over that
of any individual classifier. We can employ a similar idea and imagine an
ensemble, or forest, of Decision Trees, but unless we do something more
with the training set, we’ll have a forest of exactly the same tree because a
particular set of training examples will always lead to the exact same
Decision Tree. The algorithm to create a Decision Tree is deterministic—it
always returns the same results.

A way to deal with the particular statistical nuances of the training set
you have to work with is to select a new training set from the original
training set but allow the same training set sample to be selected more than
once. This is selection with replacement. Think of it as choosing colored
marbles from a bag, but before you select the next marble, put the one you
just selected back in the bag so you might pick it again. A new dataset
selected in this way is known as a bootstrap sample. Building a collection
of new datasets in this way is known as bagging, and it is models built from
this collection of resampled datasets that build the Random Forest.

If we train multiple trees, each with a resampled training set with
replacement, we’ll get a forest of trees, each one slightly different from the
others. This alone, along with ensemble voting, will probably improve
things. However, there’s one issue. If some of the features are highly
predictive, they will dominate, and the resulting forest of trees will be very
similar to one another and therefore suffer from very similar weaknesses.
This is where the random of Random Forest comes into play.

Instead of just bagging, which changes the distribution of samples in the
per tree training set but not the set of features examined, what if we also
randomly selected, for each tree in the forest, a subset of the features
themselves and trained on only those features? Doing this would break the
correlation between the trees and increase the overall robustness of the

forest. In practice, if there are n features per feature vector, each tree will
randomly select of them over which to build the tree. Random Forests
are supported in sklearn as well.

Support Vector Machines
Our final classical machine learning model is the one that held neural
networks at bay for most of the 1990s, the Support Vector Machine (SVM).
If the neural network is a highly data-driven, empirical approach to
generating a model, the SVM is a highly elegant, mathematically founded,
approach. We’ll discuss the performance of an SVM at a conceptual level as
the mathematics involved is beyond what we want to introduce here. If
you’re so inclined, the classic reference is “Support-Vector Networks” by
Cortes and Vapnik (1995).

We can summarize what a Support Vector Machine is doing by gaining
intuition about the concepts of margins, support vectors, optimization, and
kernels. Let’s look at each concept in turn.

Margins
Figure 6-8 shows a two-class dataset with two features. We’ve plotted each
sample in the dataset with feature 1 along the x-axis and feature 2 along the
y-axis. Class 0 is shown as circles, class 1 as diamonds. This is obviously a
contrived dataset, one that’s easily separated by plotting a line between the
circles and the diamonds.

Figure 6-8: A toy dataset with two classes, circles and diamonds, and two features, x-axis and y-axis

A classifier can be thought of as locating one or more planes that split
the space of the training data into homogeneous groups. In the case of
Figure 6-8 the separating “plane” is a line. If we had three features, the
separating plane would be a 2D plane. With four features, the separating
plane would be three-dimensional, and for n dimensions the separating
plane is n – 1 dimensional. Since the plane is multidimensional, we refer to
it as a hyperplane and say that the goal of the classifier is to separate the
training feature space into groups using hyperplanes.

If we look again at Figure 6-8, we can imagine an infinite set of lines
that separate the training data into two groups, with all of class 0 on one
side and all of class 1 on the other. Which one do we want to use? Well,
let’s think a bit about what the position of a line separating the two classes
implies. If we draw a line more to the right side, just before any of the
diamonds, we’ll have separated the training data, but only barely so. Recall,
we’re using the training data as a surrogate for the true distribution of

samples of each class. The more training data we have, the more faithfully
we’ll know that true distribution. However, we don’t really know it.

A new, unknown sample, which must be of class 0 or class 1, will fall
somewhere on the graph. It’s reasonable to believe that there are class 1
(diamond) samples in the wild that will fall even closer to the circles than
any of the samples in the training set. If the separating line is too close to
the diamonds, we run the risk of calling valid class 1 samples class 0
because the separating line is too far to the right. We can make a similar
claim if we place the separating line very close to the class 0 points
(circles). Then we run the risk of mislabeling class 0 samples as class 1
(diamonds).

Therefore, in the absence of more training data, it seems most
reasonable to choose the separating line that is as far from both classes as
possible. This is the line that is farthest from the rightmost circles while still
being as far to the left of the diamonds as possible. This line is the maximal
margin location, where the margin is defined as the distance from the
closest sample points. Figure 6-9 shows the maximal margin location as the
heavy line with the maximum margin indicated by the two dotted lines. The
goal of an SVM is to locate the maximum margin position, as this is the
location where we can be most certain to not misclassify new samples,
given the knowledge gained from the training set.

Figure 6-9: The toy dataset of Figure 6-8 with the maximal margin separating line (heavy) and the
maximum margins (dotted)

Support Vectors
Look again at Figure 6-9. Notice the four training data points on the
margin? These are the training samples that define the margin, or, in other
words, support the margin; hence they are support vectors. This is the origin
of the name Support Vector Machine. The support vectors define the
margin, but how can we use them to locate the margin position? Here is
where we’ll simplify things a bit to avoid a large amount of complex vector
mathematics that will only muddy the waters for us. For a more
mathematical treatment, see “A Tutorial on Support Vector Machines for
Pattern Recognition” by Christopher Burges (1998).

Optimization
Mathematically, we can find the maximum margin hyperplane by solving
an optimization problem. Recall that in an optimization problem, we have a

quantity that depends on certain parameters, and we want to find the set of
parameter values that makes the quantity as small or as large as possible.

In the SVM case, the orientation of the hyperplane can be specified by a
vector, . There is also an offset, b, which we must find. Finally, before we
can do the optimization, we need to change the way we specify the class
labels. Instead of using 0 or 1 for yi, the label of the i-th training sample, xi,
we’ll use –1 or +1. This will let us define the condition of the optimization
problem more simply.

So, mathematically, what we want is to find and b so that the quantity

 is as small as possible, given that for all yi
labels and xi training vectors in the dataset. This sort of optimization
problem is readily solved via a technique called quadratic programming.
(We’re ignoring another important mathematical step here: the actual
optimization problem solved uses a Lagrangian to solve the dual form, but
again, we’ll try to avoid muddying the waters too much.)

The preceding formulation is for a case where the dataset, assumed to
have only two classes, can be separated by a hyperplane. This is the linearly
separable case. In reality, as we well appreciate by now, not every dataset
can be separated this way. So, the full form of the optimization problem
includes a fudge factor, C, which affects the size of the margin found. This
factor shows up in the sklearn SVM class and needs to be specified to some
level. From a practical point of view, C is a hyperparameter of the SVM, a
value that we need to set to get the SVM to train properly. The right value
of C is problem dependent. In general, any parameter of a model that is not
learned by the model but must be set to use the model, like C for an SVM
or k for k-NN, is a hyperparameter.

Kernels
There’s one more mathematical concept we need to introduce, with suitable
hand waving. The preceding description is for a linear SVM and uses the
training data directly (the). The nonlinear case maps the training data to
another space by passing it through a function, typically called , that
produces a new version of the training data vector, . The SVM algorithm
uses inner products, , which means that the mapped version will use

. In this notation, vectors are thought of as a column of numbers
so that T, the transpose, produces a row vector. Then normal matrix
multiplication of a 1 × n row vector and an n × 1 column vector will result
in a 1 × 1 output, which is a scalar. The inner product is typically written as

and the function is called a kernel. The linear kernel is simply ,
but other kernels are possible. The Gaussian kernel is a popular one, also
known as a radial basis function (RBF) kernel. In practical use, this kernel
introduces a new parameter, apart from C, which is γ. This parameter relates
to how spread out the Gaussian kernel is around a particular training point,
with smaller values extending the range of influence of the training sample.
Typically, one uses a grid search over C and, if using the RBF kernel, γ, to
locate the best performing model.

To summarize, then, a Support Vector Machine uses the training data,
mapped through a kernel function, to optimize the orientation and location
of a hyperplane that produces the maximum margin between the hyperplane
and the support vectors of the training data. The user needs to select the
kernel function and associated parameters like C and γ so that the model
best fits the training data.

Support Vector Machines dominated machine learning in the 1990s and
early 2000s, before the advent of deep learning. This is because they’re
trained efficiently and don’t need extensive computational resources to be
successful. Since the arrival of deep learning, however, SVMs have fallen
somewhat by the wayside because powerful computers have enabled neural
networks to do what previously was not possible with more limited
computing resources. Still, SVMs have a place at the table. One popular
approach uses a large neural network trained on a particular dataset as a
preprocessor for a different dataset with an SVM trained on the output of
the neural network (minus the top layers).

Summary
In this chapter, we introduced six of the most common classic machine
learning models: Nearest Centroid, k-NN, Näive Bayes, Decision Tree,

Random Forest, and SVMs. These models are classic because they have
been used for decades. They are also still relevant if the conditions they
support best are present. At times, the classic model is still the correct
choice. An experienced machine learning practitioner will know when to
fall back to the classics.

In the next chapter, we’ll use each of these models, via sklearn, to
perform a number of experiments that will build our intuition of how the
models work and when to use them.

7
EXPERIMENTS WITH CLASSICAL

MODELS

In Chapter 6, we introduced several classical machine learning models.
Let’s now take the datasets we built in Chapter 5 and use them with these
models to see how well they perform. We’ll use sklearn to create the models
and then we’ll compare them by looking at how well they do on the held-
out test sets.

This will give us a good overview of how to work with sklearn and help
us build intuition about how the different models perform relative to one
another. We’ll use three datasets: the iris dataset, both original and
augmented; the breast cancer dataset; and the vector form of the MNIST
handwritten digits dataset.

Experiments with the Iris Dataset
We’ll start with the iris dataset. This data set has four continuous features—
the measurements of the sepal length, sepal width, petal length, and petal
width—and three classes—different iris species. There are 150 samples, 50
each from the three classes. In Chapter 5, we applied PCA augmentation to
the dataset, so we actually have two versions we can work with: the original
150 samples and the 1200 augmented training samples. Both can use the
same test set.

We’ll use sklearn to implement versions of the Nearest Centroid, k-NN,
Naïve Bayes, Decision Tree, Random Forest, and SVM models we outlined
in Chapter 6. We’ll quickly see how powerful and elegant the sklearn
toolkit is since our tests are virtually all identical across the models. The
only thing that changes is the particular class we instantiate.

Testing the Classical Models
The code for our initial tests is in Listing 7-1.

 import numpy as np
 from sklearn.neighbors import NearestCentroid
 from sklearn.neighbors import KNeighborsClassifier
 from sklearn.naive_bayes import GaussianNB, MultinomialNB
 from sklearn.tree import DecisionTreeClassifier
 from sklearn.ensemble import RandomForestClassifier
 from sklearn.svm import SVC

❶ def run(x_train, y_train, x_test, y_test, clf):
 clf.fit(x_train, y_train)
 print(" predictions :", clf.predict(x_test))
 print(" actual labels:", y_test)
 print(" score = %0.4f" % clf.score(x_test, y_test))
 print()

 def main():
 ❷ x = np.load("../data/iris/iris_features.npy")
 y = np.load("../data/iris/iris_labels.npy")
 N = 120
 x_train = x[:N]; x_test = x[N:]
 y_train = y[:N]; y_test = y[N:]
 ❸ xa_train=np.load("../data/iris/iris_train_features_augmented.npy")
 ya_train=np.load("../data/iris/iris_train_labels_augmented.npy")
 xa_test =np.load("../data/iris/iris_test_features_augmented.npy")
 ya_test =np.load("../data/iris/iris_test_labels_augmented.npy")

 print("Nearest Centroid:")
 ❹ run(x_train, y_train, x_test, y_test, NearestCentroid())
 print("k-NN classifier (k=3):")
 run(x_train, y_train, x_test, y_test,
 KNeighborsClassifier(n_neighbors=3))
 print("Naive Bayes classifier (Gaussian):")
 ❺ run(x_train, y_train, x_test, y_test, GaussianNB())
 print("Naive Bayes classifier (Multinomial):")
 run(x_train, y_train, x_test, y_test, MultinomialNB())
 ❻ print("Decision Tree classifier:")
 run(x_train, y_train, x_test, y_test, DecisionTreeClassifier())

 print("Random Forest classifier (estimators=5):")
 run(xa_train, ya_train, xa_test, ya_test,
 RandomForestClassifier(n_estimators=5))

 ❼ print("SVM (linear, C=1.0):")
 run(xa_train, ya_train, xa_test, ya_test, SVC(kernel="linear", C=1.0))
 print("SVM (RBF, C=1.0, gamma=0.25):")
 run(xa_train, ya_train, xa_test, ya_test,
 SVC(kernel="rbf", C=1.0, gamma=0.25))
 print("SVM (RBF, C=1.0, gamma=0.001, augmented)")
 run(xa_train, ya_train, xa_test, ya_test,
 SVC(kernel="rbf", C=1.0, gamma=0.001))
 ❽ print("SVM (RBF, C=1.0, gamma=0.001, original)")
 run(x_train, y_train, x_test, y_test,
 SVC(kernel="rbf", C=1.0, gamma=0.001))

Listing 7-1: Classic models using the iris dataset. See iris_experiments.py.

First, we import the necessary classes and modules. Notice that each of
the classes represents a single type of model (classifier). For the Naïve
Bayes classifier, we’re using two versions: the Gaussian version, GaussianNB,
because the features are continuous values, and MultinomialNB for the discrete
case to illustrate the effect of choosing a model that’s inappropriate for the
dataset we’re working with. Because sklearn has a uniform interface for its
classifiers, we can simplify things by using the same function to train and
test any particular classifier. That function is run ❶. We pass in the training
features (x_train) and labels (y_train) along with the test features and labels
(x_test, y_test). We also pass in the particular classifier object (clf).

The first thing we do inside run is fit the model to the data by calling fit
with the training data samples and labels. This is the training step. After the
model is trained, we can test how well it does by calling the predict method
with the held-out test data. This method returns the predicted class label for
each sample in the test data. We held back 30 samples from the original 150
so predict will return a vector of 30 class label assignments, which we print.
Next, we print the actual test labels so we can compare them visually with
the predictions. Finally, we use the score method to apply the classifier to the
test data (x_test) using the known test labels (y_test) to calculate the overall
accuracy.

The accuracy is returned as a fraction between 0 and 1. If every test
sample were given the wrong label, the accuracy would be 0. Even random
guessing will do better than that, so a return value of 0 is a sign that

something is amiss. Since there are three classes in the iris dataset, we’d
expect a classifier that guesses the class at random to be right about one-
third of the time and return a value close to 0.3333. The actual score is
calculated as

score = Nc/(Nc + Nw)

where Nc is the number of test samples for which the predicted class is
correct; that is, it matches the class label in y_test. Nw is the number of test
samples where the predicted class does not match the actual class label.

Now that we have a way to train and test each classifier, all we need to
do is load the datasets and run a series of experiments by creating different
classifier objects and passing them to run. Back inside of main, we begin by
loading the original iris dataset and separating it into train and test cases ❷.
We also load the augmented iris dataset that we created in Chapter 5 ❸. By
design, the two test sets are identical, so regardless of which training set we
use, the test set will be the same. This simplifies our comparisons.

We then define and execute the Nearest Centroid classifier ❹. The
output is shown here:

Nearest Centroid:
 predictions :[011202120211112202201101102211]
 actual labels:[011202120211112202201101102211]
 score = 1.0000

We’ve removed spaces to make a visual comparison between the
predicted and actual class labels easier. If there’s an error, the corresponding
value, 0–2, will not match between the two lines. The score is also shown.
In this case, it’s 1.0, which tells us that the classifier was perfect in its
predictions on the held-out test set. This isn’t surprising; the iris dataset is a
simple one. Because the iris dataset was randomized when created in
Chapter 5, you might get a different overall score. However, unless your
randomization was particularly unfortunate, you should have a high test
score.

Based on what we learned in Chapter 6, we should expect that if the
Nearest Centroid classifier is perfect on the test data, then all the other more
sophisticated models will likewise be perfect. This is generally the case

here, but as we’ll see, careless selection of model type or model
hyperparameter values will result in inferior performance even from a more
sophisticated model.

Look again at Listing 7-1, where we train a Gaussian Naïve Bayes
classifier by passing an instance of GaussianNB to run ❺. This classifier is also
perfect and returns a score of 1.0. This is the correct way to use continuous
values with a Naïve Bayes classifier. What happens if we instead use the
discrete case even though we have continuous features? This is the
MultinomialNB classifier, which assumes the features are selected from a
discrete set of possible values. For the iris dataset, we can get away with
defining such a classifier because the feature values are non-negative.
However, because the features are not discrete, this model is not perfect and
returns the following:

Naive Bayes classifier (Multinomial):
 predictions :[011202220211122202202101102221]
 actual labels:[011202120211112202201101102211]
 score = 0.8667

Here we see that the classifier is only 86.7 percent accurate on our test
samples. If we need discrete counts for the probabilities, why did this
approach work at all in this case? The answer is evident in the sklearn
source code for the MultinomialNB classifier. The method that counts feature
frequencies per class uses np.dot so that even if the feature values are
continuous, the output will be a valid number, though not an integer. Still,
mistakes were made, so we shouldn’t be happy. We should instead be
careful to select the proper classifier type for the actual data we’re working
with.

The next model we train in Listing 7-1 is a Decision Tree ❻. This
classifier is perfect on this dataset, as is the Random Forest trained next.
Note, the Random Forest is using five estimators, meaning five random
trees are created and trained; voting between the individual outputs
determines the final class label. Note also that the Random Forest is trained
on the augmented iris dataset, xa_train, because of the limited number of
training samples in the unaugmented dataset.

We then train several SVM classifiers ❼, also on the augmented dataset.
Recall that SVMs have two parameters we control: the margin constant, C,
and gamma used by the Gaussian kernel.

The first is a linear SVM, meaning we need a value for the margin
constant (C). We define C to be 1.0, the default value for sklearn. This
classifier is perfect on the test data, as is the following classifier using the
Gaussian kernel, for which we also set γ to 0.25. The SVC class defaults to
auto for gamma, which sets γ to 1/n, where n is the number of features. For the
iris dataset, n = 4 so γ = 0.25.

Next, we train a model with very small γ. The classifier is still perfect
on the test data. Lastly, we train the same type of SVM, but instead of the
augmented training data, we use the original training data ❽. This classifier
is not perfect:

SVM (RBF, C=1.0, gamma=0.001, original)
 predictions :[022202020222222202202202202220]
 actual labels:[011202120211112202201101102211]
 score = 0.5667

In fact, it’s rather dismal. It never predicts class 1 and is right only 56.7
percent of the time. This shows that data augmentation is valuable as it
turned a lousy classifier into a good one—at least, good as far as we can
know from the small test set we are using!

Implementing a Nearest Centroid Classifier
What if we were stranded on a deserted island and didn’t have access to
sklearn? Could we still quickly build a suitable classifier for the iris
dataset? The answer is “yes,” as Listing 7-2 shows. This code implements a
quick-and-dirty Nearest Centroid classifier for the iris dataset.

 import numpy as np

❶ def centroids(x,y):
 c0 = x[np.where(y==0)].mean(axis=0)
 c1 = x[np.where(y==1)].mean(axis=0)
 c2 = x[np.where(y==2)].mean(axis=0)
 return [c0,c1,c2]

❷ def predict(c0,c1,c2,x):
 p = np.zeros(x.shape[0], dtype="uint8")
 for i in range(x.shape[0]):
 d = [((c0-x[i])**2).sum(),
 ((c1-x[i])**2).sum(),
 ((c2-x[i])**2).sum()]
 p[i] = np.argmin(d)

 return p

 def main():
 ❸ x = np.load("../data/iris/iris_features.npy")
 y = np.load("../data/iris/iris_labels.npy")
 N = 120
 x_train = x[:N]; x_test = x[N:]
 y_train = y[:N]; y_test = y[N:]
 c0, c1, c2 = centroids(x_train, y_train)
 p = predict(c0,c1,c2, x_test)
 nc = len(np.where(p == y_test)[0])
 nw = len(np.where(p != y_test)[0])
 acc = float(nc) / (float(nc)+float(nw))
 print("predicted:", p)
 print("actual :", y_test)
 print("test accuracy = %0.4f" % acc)

Listing 7-2: A quick-and-dirty Nearest Centroid classifier for the iris dataset. See iris_centroids.py.

We load the iris data and separate it into train and test sets as before ❸.
The centroids function returns the centroids of the three classes ❶. We can
easily calculate these by finding the per feature means of each training
sample of the desired class. This is all it takes to train this model. If we
compare the returned centroids with those in the preceding trained
NearestCentroid classifier (see the centroids_ member variable), we get precisely
the same values.

Using the classifier is straightforward, as predict shows ❷. First, we
define the vector of predictions, one per test sample (x). The loop defines d,
a vector of Euclidean distances from the current test sample, x[i], to the three
class centroids. The index of the smallest distance in d is the predicted class
label (p[i]).

Let’s unpack d a bit more. We set d to a list of three values, the distances
from the centroids to the current test sample. The expression

((c0-x[i])**2).sum()

is a bit dense. The phrase c0-x[i] returns a vector of four numbers—four
because we have four features. These are the differences between the
centroid of class 0 and the test sample feature value. This quantity is
squared, which squares each of the four values. This squared vector is
summed, element by element, to return the distance measure.

Strictly speaking, we’re missing a final step. The actual distance
between c0 and x[i] is the square root of this value. Since we’re simply
looking for the smallest distance to each of the centroids, we don’t need to
calculate the square root. The smallest value will still be the smallest value,
whether we take the square root of all the values or not. Running this code
produces the same output as we saw previously for the Nearest Centroid
classifier, which is encouraging.

The iris dataset is extremely simple, so we shouldn’t be surprised by the
excellent performance of our models even though we saw that careless
selection of model type and hyperparameters will cause us trouble. Let’s
now look at a larger dataset with more features, one that was not meant as a
toy.

Experiments with the Breast Cancer Dataset
The two-class breast cancer dataset we developed in Chapter 5 has 569
samples, each with 30 features, all measurements from a histology slide.
There are 212 malignant cases (class 1) and 357 benign cases (class 0).
Let’s train our classic models on this dataset and see what sort of results we
get. As all the features are continuous, let’s use the normalized version of
the dataset. Recall that a normalized dataset is one where, per feature in the
feature vector, each value has the mean for that feature subtracted and then
is divided by the standard deviation:

Normalization of the dataset maps all the features into the same overall
range so that the value of one feature is similar to the value of another. This
helps many model types and is a typical data preprocessing step, as we
discussed in Chapter 4.

Two Initial Test Runs
First, we’ll do a quick run with a single test split, as we did in the previous
section. The code is in Listing 7-3 and mimics the code we described

previously, where we pass in the model instance, train it, and then score it
using the testing data.

import numpy as np
from sklearn.neighbors import NearestCentroid
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB, MultinomialNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC

def run(x_train, y_train, x_test, y_test, clf):
 clf.fit(x_train, y_train)
 print(" score = %0.4f" % clf.score(x_test, y_test))
 print()

def main():
 x = np.load("../data/breast/bc_features_standard.npy")
 y = np.load("../data/breast/bc_labels.npy")
 ❶ N = 455
 x_train = x[:N]; x_test = x[N:]
 y_train = y[:N]; y_test = y[N:]

 print("Nearest Centroid:")
 run(x_train, y_train, x_test, y_test, NearestCentroid())
 print("k-NN classifier (k=3):")
 run(x_train, y_train, x_test, y_test,
 KNeighborsClassifier(n_neighbors=3))
 print("k-NN classifier (k=7):")
 run(x_train, y_train, x_test, y_test,
 KNeighborsClassifier(n_neighbors=7))
 print("Naive Bayes classifier (Gaussian):")
 run(x_train, y_train, x_test, y_test, GaussianNB())
 print("Decision Tree classifier:")
 run(x_train, y_train, x_test, y_test, DecisionTreeClassifier())
 print("Random Forest classifier (estimators=5):")
 run(x_train, y_train, x_test, y_test,
 RandomForestClassifier(n_estimators=5))
 print("Random Forest classifier (estimators=50):")
 run(x_train, y_train, x_test, y_test,
 RandomForestClassifier(n_estimators=50))
 print("SVM (linear, C=1.0):")
 run(x_train, y_train, x_test, y_test, SVC(kernel="linear", C=1.0))
 print("SVM (RBF, C=1.0, gamma=0.03333):")
 run(x_train, y_train, x_test, y_test,
 SVC(kernel="rbf", C=1.0, gamma=0.03333))

Listing 7-3: Initial models using the breast cancer dataset. See bc_experiments.py.

As before, we load the dataset and split it into training and testing data.
We keep 455 of the 569 samples for training (80 percent), and the
remaining 114 samples are the test set (74 benign, 40 malignant). The
dataset is already randomized, so we skip that step here. We then train nine
models: Nearest Centroid (1), k-NN (2), Naïve Bayes (1), Decision Tree
(1), Random Forest (2), linear SVM (1), and an RBF SVM (1). For the
Support Vector Machines, we use the default C value, and for γ, we use 1/30
= 0.033333 since we have 30 features. Running this code gives us the
scores in Table 7-1.

Table 7-1: Breast Cancer Model Scores

Model type Score
Nearest Centroid 0.9649
3-NN classifier 0.9912
7-NN classifier 0.9737
Naïve Bayes (Gaussian) 0.9825
Decision Tree 0.9474
Random Forest (5) 0.9298
Random Forest (50) 0.9737
Linear SVM (C = 1) 0.9737
RBF SVM (C = 1, γ = 0.03333) 0.9825

Note the number in parentheses for the Random Forest classifiers is the
number of estimators (number of trees in the forest).

A few things jump out at us. First, perhaps surprisingly, the simple
Nearest Centroid classifier is right nearly 97 percent of the time. We also
see that all the other classifiers are doing better than the Nearest Centroid,
except for the Decision Tree and the Random Forest with five trees.
Somewhat surprisingly, the Naïve Bayes classifier does very well, matching
the RBF SVM. The k = 3 Nearest Neighbor classifier does best of all, 99
percent accurate, even though we have 30 features, meaning our 569
samples are points scattered in a 30-dimensional space. Recall, a weakness
of k-NN is the curse of dimensionality: it requires more and more training
samples as the number of features increases. The results with all the
classifiers are good, so this is a hint to us that the separation between
malignant and benign is, for this dataset, distinct. There isn’t much overlap
between the two classes using these features.

So, are we done with this dataset? Hardly! In fact, we’ve just begun.
What happens if we run the code a second time? Do we get the same
scores? Would we expect not to? A second run gives us Table 7-2.

Table 7-2: Breast Cancer Scores, Second Run

Model type Score
Nearest Centroid 0.9649
3-NN classifier 0.9912
7-NN classifier 0.9737
Naïve Bayes (Gaussian) 0.9825
Decision Tree 0.9386
Random Forest (5) 0.9474
Random Forest (50) 0.9649
Linear SVM (C = 1) 0.9737
RBF SVM (C = 1, γ = 0.03333) 0.9825

We’ve highlighted the scores that changed. Why would anything change? A
bit of reflection leads to an aha! moment: the Random Forest is just that,
random, so naturally we’d expect different results run to run. What about
the Decision Tree? In sklearn, the Decision Tree classifier will randomly
select a feature and find the best split, so different runs will also lead to
different trees. This is a variation on the basic decision tree algorithm we
discussed in Chapter 6.

All the other algorithms are fixed: for a given training dataset, they can
lead to only one model. As an aside, the SVM implementation in sklearn
does use a random number generator, so at times different runs will give
slightly different results, but, conceptually, we’d expect the same model for
the same input data. The tree-based classifiers, however, do change between
training runs. We’ll explore this variation more next. For now, we need to
add some rigor to our quick analysis.

The Effect of Random Splits
Let’s change the split between training and testing data and see what
happens to our results. We don’t need to list all the code again since the
only change is to how x_train and x_test are defined. Before splitting, we
randomize the order of the full dataset but do so by first fixing the

pseudorandom number seed so that each run gives the same ordering to the
dataset.

Looking again at Listing 7-3, insert the following code before ❶ so that
we generate a fixed permutation of the dataset (idx).

np.random.seed(12345)
idx = np.argsort(np.random.random(y.shape[0]))
x = x[idx]
y = y[idx]

It’s fixed because we fixed the pseudorandom number generator seed value.
We then reorder the samples (x) and labels (y) accordingly before splitting
into train and test subsets as before. Running this code gives us the results
in Table 7-3.

Table 7-3: Breast Cancer Scores After Randomizing the Dataset

Model type Score
Nearest Centroid 0.9474
3-NN classifier 0.9912
7-NN classifier 0.9912
Naïve Bayes (Gaussian) 0.9474
Decision Tree 0.9474
Random Forest (5) 0.9912
Random Forest (50) 1.0000
Linear SVM (C = 1) 0.9649
RBF SVM (C = 1, γ = 0.03333) 0.9737

Notice these are entirely different from our earlier results. The k-NN
classifiers are both equally good, the SVM classifiers are worse, and the 50-
tree Random Forest achieves perfection on the test set. So, what is
happening? Why are we getting all these different results run to run?

We’re seeing the effect of the random sampling that builds the train and
test splits. The first split just happened to use an ordering of samples that
gave good results for one model type and less good results for other model
types. The new split favors different model types. Which is correct? Both.
Recall what the dataset represents: a sampling from some unknown parent
distribution that generates the data that we actually have. If we think in
those terms, we see that the dataset we have is an incomplete picture of the

true parent distribution. It has biases, though we don’t know what they are
necessarily, and is deficient in that there are parts of the parent distribution
that the dataset does not represent well.

Further, when we split the data after randomizing the order, we might
end up with a “bad” mix in the train or test portion—a mix of the data that
does a poor job of representing the true distribution. If so, we might train a
model to recognize a slightly different distribution that does not match the
true distribution well, or the test set might be a bad mix and not be a fair
representation of what the model has learned. This effect is even more
pronounced when the proportion of the classes is such that one or more are
rare and possibly not present in the train or test split. This is precisely the
issue that caused us to introduce the idea of k-fold cross-validation in
Chapter 4. With k-fold validation, we’ll be sure to use every sample as both
train and test at some point and buy ourselves some protection against a bad
split by averaging across all the folds.

However, before we apply k-fold validation to the breast cancer dataset,
we should notice one essential thing. We modified the code of Listing 7-3 to
fix the pseudorandom number seed so that we could reorder the dataset in
exactly the same way each time we run. We then ran the code and saw the
results. If we rerun the code, we’ll get exactly the same output, even for the
tree-based classifiers. This is not what we saw earlier. The tree classifiers
are stochastic—they will generate a unique tree or forest each time—so we
should expect the results to vary somewhat from run to run. But now they
don’t vary; we get the same output each time. By setting the NumPy
pseudorandom number seed explicitly, we fixed not only the ordering of the
dataset, but also the ordering of the pseudorandom sequence sklearn will
use to generate the tree models. This is because sklearn is also using the
NumPy pseudorandom number generator. This is a subtle effect with
potentially serious consequences and in a larger project might be very
difficult to pick up as a bug. The solution is to set the seed to a random
value after we’re done reordering the dataset. We can do this by adding one
line after y = y[idx]

np.random.seed()

so that the pseudorandom number generator is reset by using the system
state, typically read from /dev/urandom. Now when we run again, we’ll get

different results for the tree models, as before.

Adding k-fold Validation
To implement k-fold validation, we first need to pick a value for k. Our
dataset has 569 samples. We want to split it so that there are a decent
number of samples per fold because we want to make the test set a
reasonable representation of the data. This argues toward making k small.
However, we also want to average out the effect of a bad split, so we might
want k to be larger. As with most things in life, a balance must be sought. If
we set k = 5, we’ll get 113 samples per split (ignoring the final four
samples, which should have no meaningful impact). This leaves 80 percent
for training and 20 percent for test for each combination of folds, a
reasonable thing to do. So, we’ll use k = 5, but we’ll write our code so that
we can vary k if we want.

We already have an approach for training multiple models on a train/
test split. All we need to add is code to generate each of the k folds and then
train the models on them. The code is in Listing 7-4 and Listing 7-5, which
show the helper functions and main function, respectively. Let’s start with
Listing 7-4.

import numpy as np
from sklearn.neighbors import NearestCentroid
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB, MultinomialNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
import sys

def run(x_train, y_train, x_test, y_test, clf):
 clf.fit(x_train, y_train)
 return clf.score(x_test, y_test)

def split(x,y,k,m):
 ❶ ns = int(y.shape[0]/m)
 s = []
 for i in range(m):
 ❷ s.append([x[(ns*i):(ns*i+ns)],
 y[(ns*i):(ns*i+ns)]])
 x_test, y_test = s[k]
 x_train = []
 y_train = []

 for i in range(m):
 if (i==k):
 continue
 else:
 a,b = s[i]
 x_train.append(a)
 y_train.append(b)
 ❸ x_train = np.array(x_train).reshape(((m-1)*ns,30))
 y_train = np.array(y_train).reshape((m-1)*ns)
 return [x_train, y_train, x_test, y_test]

def pp(z,k,s):
 m = z.shape[1]
 print("%-19s: %0.4f +/- %0.4f | " % (s, z[k].mean(),
 z[k].std()/np.sqrt(m)), end='')
 for i in range(m):
 print("%0.4f " % z[k,i], end='')
 print()

Listing 7-4: Using k-fold validation to evaluate the breast cancer dataset. Helper functions. See
bc_kfold.py.

Listing 7-4 begins by including all the modules we used before and then
defines three functions: run, split, and pp. The run function looks familiar. It
takes a train set, test set, and model instance, trains the model, and then
scores the model against the test set. The pp function is a pretty-print
function to show the per split scores along with the average score across all
the splits. The average is shown as the mean ± the standard error of the
mean. Recall that an sklearn score is the overall accuracy of the model on
the test set, or the fraction of times that the model predicted the actual class
of the test sample. Perfection is a score of 1.0, and complete failure is 0.0.
Complete failure is rare because even random guessing will get it right
some fraction of the time.

The only interesting function in Listing 7-4 is split. Its arguments are the
full dataset, x, the corresponding labels, y, the current fold number, k, and
the total number of folds, m. We’ll divide the full dataset into m distinct sets,
the folds, and use the k-th fold as test while merging the remaining m – 1
folds into a new training set. First, we set the number of samples per fold
❶. The loop then creates a list of folds, s. Each element of this list contains
the feature vectors and labels of the fold ❷.

The test set is simple, it’s the k-th fold, so we set those values next
(x_test, y_test). The loop then takes the remaining m – 1 folds and merges

them into a new training set, x_train, with labels, y_train.
The two lines after the loop are a bit mysterious ❸. When the loop ends,

x_train is a list, each element of which is a list representing the feature
vectors of the fold we want in the training set. So we first make a NumPy
array of this list and then reshape it so that x_train has 30 columns, the
number of features per vector, and ns(m – 1) rows, where ns is the number
of samples per fold. Thus x_train becomes x minus the samples we put into
the test fold, those of the k-th fold. We also build y_train so that the correct
label goes with each the feature vector in x_train.

Listing 7-5 shows us how to use the helper functions.

def main():
 x = np.load("../data/breast/bc_features_standard.npy")
 y = np.load("../data/breast/bc_labels.npy")
 idx = np.argsort(np.random.random(y.shape[0]))
 x = x[idx]
 y = y[idx]
 ❶ m = int(sys.argv[1])
 z = np.zeros((8,m))

 for k in range(m):
 x_train, y_train, x_test, y_test = split(x,y,k,m)
 z[0,k] = run(x_train, y_train, x_test, y_test,
 NearestCentroid())
 z[1,k] = run(x_train, y_train, x_test, y_test,
 KNeighborsClassifier(n_neighbors=3))
 z[2,k] = run(x_train, y_train, x_test, y_test,
 KNeighborsClassifier(n_neighbors=7))
 z[3,k] = run(x_train, y_train, x_test, y_test,
 GaussianNB())
 z[4,k] = run(x_train, y_train, x_test, y_test,
 DecisionTreeClassifier())
 z[5,k] = run(x_train, y_train, x_test, y_test,
 RandomForestClassifier(n_estimators=5))
 z[6,k] = run(x_train, y_train, x_test, y_test,
 RandomForestClassifier(n_estimators=50))
 z[7,k] = run(x_train, y_train, x_test, y_test,
 SVC(kernel="linear", C=1.0))

 pp(z,0,"Nearest"); pp(z,1,"3-NN")
 pp(z,2,"7-NN"); pp(z,3,"Naive Bayes")
 pp(z,4,"Decision Tree"); pp(z,5,"Random Forest (5)")
 pp(z,6,"Random Forest (50)"); pp(z,7,"SVM (linear)")

Listing 7-5: Using k-fold validation to evaluate the breast cancer dataset. Main code. See
bc_kfold.py.

The first thing we do in main is load the full dataset and randomize the
ordering. The number of folds, m, is read from the command line ❶ and
used to create the output array, z. This array holds the per fold scores for
each of the eight models we’ll train, so it has shape 8 × m. Recall, when
running a Python script from the command line, any arguments passed after
the script name are available in sys.argv, a list of strings. This is why the
argument is passed to int to convert it to an integer ❶.

Next, we loop over the m folds, where k is the fold that we’ll be using
for test data. We create the split and then use the split to train the eight
model types we trained previously. Each call to run trains a model of the
type passed in and returns the score found by running that model against the
k-th fold as test data. We store these results in z. Finally, we use pp to display
the per model type and per fold scores along with the average score over all
the folds.

A sample run of this code, for k = 5 and showing only the mean score
across folds, gives the results in Table 7-4.

Table 7-4: Breast Cancer Scores as Mean Over Five Folds

Model Mean ± SE
Nearest Centroid 0.9310 ± 0.0116
3-NN 0.9735 ± 0.0035
7-NN 0.9717 ± 0.0039
Naïve Bayes 0.9363 ± 0.0140
Decision Tree 0.9027 ± 0.0079
Random Forest (5) 0.9540 ± 0.0107
Random Forest (50) 0.9540 ± 0.0077
SVM (linear) 0.9699 ± 0.0096

Here we’re showing the average performance of each model over all
folds. One way to understand the results is that this is the sort of
performance we should expect, per model type, if we were to train the
model using all of the data in the dataset and test it against new samples
from the same parent distribution. Indeed, in practice, we would do just
this, as we can assume that the reason behind making the model in the first
place is to use it for some purpose going forward.

Run the code a second time with k = 5. A new set of outputs appears.
This is because we’re randomizing the order of the dataset on every run
(Listing 7-5). This makes a new set of splits and implies that each model
will be trained on a different subset mix of the full dataset on each run. So,
we should expect different results. Let’s run the code 1,000 times with k =
5. Note, training this many models takes about 20 minutes on a very
standard desktop computer. For each run we’ll get an average score over the
five folds. We then compute the mean of these averages, which is known as
the grand mean. Table 7-5 shows the results.

Table 7-5: Breast Cancer Scores as Grand Mean Over 1,000 Runs with Five Folds

Model Grand mean ± SE
Nearest Centroid 0.929905 ± 0.000056
3-NN 0.966334 ± 0.000113
7-NN 0.965496 ± 0.000110
Naïve Bayes 0.932973 ± 0.000095
Decision Tree 0.925706 ± 0.000276
Random Forest (5) 0.948378 ± 0.000213
Random Forest (50) 0.958845 ± 0.000135
SVM (linear) 0.971871 ± 0.000136

We can take these grand means as an indication of how well we’d
expect each model to do against a new set of unknown feature vectors. The
small standard errors of the mean are an indication of how well the mean
value is known, not how well a model of that type trained on a dataset will
necessarily perform. We use the grand mean to help us order the models so
we can select one over another.

Ranking the models from highest score to lowest gives the following:

1. SVM (linear)
2. k-NN (k = 3)
3. k-NN (k = 7)
4. Random Forest (50)
5. Random Forest (5)
6. Naïve Bayes (Gaussian)
7. Nearest Centroid

8. Decision Tree

This is interesting given that we might expect the SVM to be best, but
would likely assume the Random Forests to do better than k-NN. The
Decision Tree was not as good as we thought, and was less accurate than
the Nearest Centroid classifier.

Some comments are in order here. First, note that these results are
derived from the training of 8,000 different models on 1,000 different
orderings of the dataset. When we study neural networks, we’ll see much
longer training times. Experimenting with classical machine learning
models is generally easy to do since each change to a parameter doesn’t
require a lengthy training session.

Second, we didn’t try to optimize any of the model hyperparameters.
Some of these hyperparameters are indirect, like assuming that the features
are normally distributed so that the Gaussian Naïve Bayes classifier is a
reasonable choice, while others are numerical, like the number of neighbors
in k-NN or the number of trees in a Random Forest. If we want to
thoroughly develop a good classifier for this dataset using a classic model,
we’ll have to explore some of these hyperparameters. Ideally, we’d repeat
the experiments many, many times for each new hyperparameter setting to
arrive at a tight mean value for the score, as we have previously with the
grand means over 1,000 runs. We’ll play a bit more with hyperparameters in
the next section, where we see how we can search for good ones that work
well with our dataset.

Searching for Hyperparameters
Let’s explore the effect of some of the hyperparameters on various model
types. Specifically, let’s see if we can optimize our choice of k for k-NN,
forest size for Random Forest, and the C margin size of the linear SVM.

Fine-Tuning Our k-NN Classifier
Because the number of neighbors in a k-NN classifier is an integer, typically
odd, it’s straightforward to repeat our five-fold cross validation experiment
while varying k for k ∈ {1,3,5,7,9,11,13,15}. To do this, we need only
change the main loop in Listing 7-5 so that each call to run uses
KNeighborsClassifier with a different number of neighbors, as follows.

for k in range(m):
 x_train, y_train, x_test, y_test = split(x,y,k,m)
 z[0,k] = run(x_train, y_train, x_test, y_test,
 KNeighborsClassifier(n_neighbors=1))
 z[1,k] = run(x_train, y_train, x_test, y_test,
 KNeighborsClassifier(n_neighbors=3))
 z[2,k] = run(x_train, y_train, x_test, y_test,
 KNeighborsClassifier(n_neighbors=5))
 z[3,k] = run(x_train, y_train, x_test, y_test,
 KNeighborsClassifier(n_neighbors=7))
 z[4,k] = run(x_train, y_train, x_test, y_test,
 KNeighborsClassifier(n_neighbors=9))
 z[5,k] = run(x_train, y_train, x_test, y_test,
 KNeighborsClassifier(n_neighbors=11))
 z[6,k] = run(x_train, y_train, x_test, y_test,
 KNeighborsClassifier(n_neighbors=13))
 z[7,k] = run(x_train, y_train, x_test, y_test,
 KNeighborsClassifier(n_neighbors=15))

The grand mean of the scores for 1,000 repetitions of the five-fold
cross-validation code using a different random ordering of the full dataset
each time gives the results in Table 7-6.

Table 7-6: Breast Cancer Scores as Grand Mean for Different k Values and Five-Fold Validation

k Grand mean ± SE
1 0.951301 ± 0.000153
3 0.966282 ± 0.000112
5 0.965998 ± 0.000097
7 0.96520 ± 0.000108
9 0.967011 ± 0.000100
11 0.965069 ± 0.000107
13 0.962400 ± 0.000106
15 0.959976 ± 0.000101

We’ve highlighted the k = 9 because it returned the highest score. This
indicates that we might want to use k = 9 for this dataset.

Fine-Tuning Our Random Forest
Let’s look at the Random Forest model. The sklearn RandomForestClassifier
class has quite a few hyperparameters that we could manipulate. To avoid
being excessively pedantic, we’ll seek only an optimal number of trees in

the forest. This is the n_estimators parameter. As we did for k in k-NN, we’ll
search over a range of forest sizes and select the one that gives the best
grand mean score for 1,000 runs at five folds each per run.

This is a one-dimensional grid-like search. We varied k by one, but for
the number of trees in the forest, we need to cover a larger scale. We don’t
expect there to be a meaningful difference between 10 trees in the forest or
11, especially considering that each Random Forest training session will
lead to a different set of trees even if the number of trees is fixed. We saw
this effect several times in the previous section. Instead, let’s vary the
number of trees by selecting from nt ∈ {5,20,50,100,200,500,1000,5000}
where nt is the number of trees in the forest (number of estimators).
Running this search gives us the grand means in Table 7-7.

Table 7-7: Breast Cancer Scores as Grand Mean for Different Random Forest Sizes and Five-Fold
Validation

nt Grand mean ± SE
5 0.948327 ± 0.000206
20 0.956808 ±0.000166
50 0.959048 ± 0.000139
100 0.959740 ± 0.000130
200 0.959913 ± 0.000122
500 0.960049 ± 0.000117
750 0.960147 ± 0.000118
1000 0.960181 ± 0.000116

The first thing to notice is that the differences are very small, though if
you run the Mann–Whitney U test, you’ll see that the difference between nt
= 5 (worst) and nt = 1000 (best) is statistically significant. However, the
difference between nt = 200 and nt = 1000 is not significant. Here we need
to make a judgment call. Setting nt = 1000 did give the best result but it’s
indistinguishable, for practical purposes, from nt = 500 or even nt = 100.
Since runtime for a Random Forest scales linearly in the number of trees,
using nt = 100 results in a classifier that is on average 10× faster than using
nt = 1000. So, depending upon the task, we might select nt = 100 over nt =
1000 for that reason.

Fine-Tuning Our SVMs
Let’s turn our attention to the linear SVM. For the linear kernel, we’ll adjust
C. Note, sklearn has other parameters, as it did for the Random Forest, but
we’ll leave them at their default settings.

What range of C should we search over? The answer is problem
dependent but the sklearn default value of C = 1 is a good starting point.
We’ll select C values around 1 but over several orders of magnitude.
Specifically, we’ll select from C ∈
{0.001,0.01,0.1,1.0,2.0,10.0,50.0,100.0}. Running one thousand five-fold
validations, each for a different random ordering of the full dataset, gives
grand means as shown in Table 7-8.

Table 7-8: Breast Cancer Scores as Grand Mean for Different SVM C Values and Five-Fold
Validation

C Grand mean ± SE
0.001 0.938500 ± 0.000066
0.01 0.967151 ± 0.000089
0.1 0.975943 ± 0.000101
1.0 0.971890 ± 0.000141
2.0 0.969994 ± 0.000144
10.0 0.966239 ± 0.000154
50.0 0.959637 ± 0.000186
100.0 0.957006 ± 0.000189

C = 0.1 gives the best accuracy. While, statistically, the difference
between C = 0.1 and C = 1 is meaningful, in practice the difference is only
about 0.4 percent, so the default value of C = 1 would likewise be a
reasonable choice. Further refinement of C is possible because we see that
C = 0.01 and C = 2 give the same accuracy, while C = 0.1 is higher than
either, implying that if the C curve is smooth, there’s a maximum accuracy
for some C in [0.01,2.0].

Finding the right C for our dataset is a crucial part of successfully using
a linear SVM. Our preceding rough run used a one-dimensional grid search.
We do expect, since C is continuous, that a plot of the accuracy as a
function of C will also be smooth. If that’s the case, one can imagine
searching for the right C, not with a grid search but with an optimization

algorithm. In practice, however, the randomness of the ordering of the
dataset and its effect on the output of k-fold cross-validation results will
probably make any C found by an optimization algorithm too specific to the
problem at hand. Grid search over a larger scale, with possibly one level of
refinement, is sufficient in most cases. The take-home message is: do spend
some time looking for the proper C value to maximize the effectiveness of
the linear SVM.

Observant readers will have noticed that the preceding analysis has
ignored the RBF kernel SVM. Let’s revisit it now and see how to do a
simple two-dimensional grid search over C and γ, where γ is the parameter
associated with the RBF (Gaussian) kernel. sklearn has the GridSearchCV class
to perform sophisticated grid searching. We’re not using it here to be
pedagogical and show how to do simple grid searches directly. It’s
especially important for this kernel to select good values for both of these
parameters.

For the search, we’ll use the same range of C values as we used for the
linear case. For γ we’ll use powers of two, 2p, times the sklearn default
value, 1/30 = 0.03333 for p ∈ [–4,3]. The search will, for the current C
value, do five-fold validation over the dataset for each γ value before
moving to the next C value so that all pairs of (C,γ) are considered. The pair
that results in the largest score (accuracy) will be output. The code is in
Listing 7-6.

import numpy as np
from sklearn.svm import SVC

def run(x_train, y_train, x_test, y_test, clf):
 clf.fit(x_train, y_train)
 return clf.score(x_test, y_test)

def split(x,y,k,m):
 ns = int(y.shape[0]/m)
 s = []
 for i in range(m):
 s.append([x[(ns*i):(ns*i+ns)], y[(ns*i):(ns*i+ns)]])
 x_test, y_test = s[k]
 x_train = []
 y_train = []
 for i in range(m):
 if (i==k):
 continue
 else:

 a,b = s[i]
 x_train.append(a)
 y_train.append(b)
 x_train = np.array(x_train).reshape(((m-1)*ns,30))
 y_train = np.array(y_train).reshape((m-1)*ns)
 return [x_train, y_train, x_test, y_test]

def main():
 m = 5
 x = np.load("../data/breast/bc_features_standard.npy")
 y = np.load("../data/breast/bc_labels.npy")
 idx = np.argsort(np.random.random(y.shape[0]))
 x = x[idx]
 y = y[idx]

 ❶ Cs = np.array([0.01,0.1,1.0,2.0,10.0,50.0,100.0])
 gs = (1./30)*2.0**np.array([-4,-3,-2,-1,0,1,2,3])
 zmax = 0.0
 ❷ for C in Cs:
 for g in gs:
 z = np.zeros(m)
 for k in range(m):
 x_train, y_train, x_test, y_test = split(x,y,k,m)
 z[k] = run(x_train, y_train, x_test, y_test,
 SVC(C=C,gamma=g,kernel="rbf"))
 ❸ if (z.mean() > zmax):
 zmax = z.mean()
 bestC = C
 bestg = g
 print("best C = %0.5f" % bestC)
 print(" gamma = %0.5f" % bestg)
 print(" accuracy= %0.5f" % zmax)

Listing 7-6: A two-dimensional grid search for C and for an RBF kernel SVM. Breast cancer
dataset. See bc_rbf_svm_search.py.

The two helper functions, run and split, are exactly the same as we used
before (see Listing 7-4); all the action is in main. We fix the number of folds
at five and then load and randomize the full dataset.

We then define the specific C and γ values to search over ❶. Note how
gs is defined. The first part is 1/30, the reciprocal of the number of features.
This is the default value for γ used by sklearn. We then multiply this factor
by an array, (2–4,2–3,2–1,20,21,22,23), to get the final γ values we’ll search
over. Notice that one of the γ values is exactly the default sklearn uses since
20 = 1.

The double loop ❷ iterates over all possible pairs of C and γ. For each
one, we do five-fold validation to get a set of five scores in z. We then ask if
the mean of this set is greater than the current maximum (zmax) and if so,
update the maximum and keep the C and γ values as our current bests ❸.
When the loops over C and γ exit, we have our best values in bestC and bestg.

If we run this code repeatedly, we’ll get different outputs each time.
This is because we’re randomizing the order of the full dataset, which will
alter the subsets in the folds, leading to a different mean score over the
folds. For example, 10 runs produced the output in Table 7-9.

Table 7-9: Breast Cancer Scores for an RBF SVM with Different C and γ Values Averaged Over 10
Runs

C γ accuracy
1 0.03333 0.97345
2 0.03333 0.98053
10 0.00417 0.97876
10 0.00417 0.97699
10 0.00417 0.98053
10 0.01667 0.98053
10 0.01667 0.97876
10 0.01667 0.98053
1 0.03333 0.97522
10 0.00417 0.97876

These results hint that (C,γ) = (10,0.00417) is a good combination. If we
use these values to generate a grand mean over 1,000 runs of five-fold
validation as before, we get an overall accuracy of 0.976991, or 97.70
percent, which is the highest grand mean accuracy of any model type we
trained on the breast cancer histology dataset.

The breast cancer dataset is not a large dataset. We were able to use k-
fold validation to find a good model that worked well with it. Now, let’s
move from a pure vector-only dataset to one that is actually image-based
and much larger, the MNIST dataset.

Experiments with the MNIST Dataset

The last dataset we’ll work with in this chapter is the vector version of the
MNIST handwritten digit dataset (see Chapter 5). Recall, this dataset
consists of 28×28 pixel grayscale images of handwritten digits, [0,9], one
digit centered per image. This dataset is by far the most common workhorse
dataset in machine learning, especially in deep learning, and we’ll use it
throughout the remainder of the book.

Testing the Classical Models
MNIST contains 60,000 training images, roughly evenly split among the
digits, and 10,000 test images. Since we have a lot of training data, at least
for classic models like those we’re concerned with here, we won’t make use
of k-fold validation, though we certainly could. We’ll train on the training
data and test on the testing data and trust that the two come from a common
parent distribution (they do).

Since our classic models expect vector inputs, we’ll use the vector form
of the MNIST dataset we created in Chapter 5. The images are unraveled so
that the first 28 elements of the vector are row 0, the next 28 are row 1, and
so on for an input vector of 28 × 28 = 784 elements. The images are stored
as 8-bit grayscale, so the data values run from 0 to 255. We’ll consider three
versions of the dataset. The first is the raw byte version. The second is a
version where we scale the data to [0,1) by dividing by 256, the number of
possible grayscale values. The third is a normalized version where, per
“feature” (really, pixel), we subtract the mean of that feature across the
dataset and then divide by the standard deviation. This will let us explore
how the range of the feature values affects things, if at all.

Figure 7-1 shows examples of the original images and the resulting
normalized vectors raveled back into images and scaled [0,255].
Normalizing affects the appearance but does not destroy spatial
relationships among the parts of the digit images. Just scaling the data to
[0,1) will result in images that look the same as those on the top of Figure
7-1.

Figure 7-1: Original MNIST digits (top) and normalized versions used by the models (bottom)

The code we’ll use is very similar to what we used previously, but for
reasons that will be explained next, we will replace the SVC class with a new
SVM class, LinearSVC. First, take a look at the helper functions in Listing 7-
7.

import time
import numpy as np
from sklearn.neighbors import NearestCentroid
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB, MultinomialNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import LinearSVC
from sklearn import decomposition

def run(x_train, y_train, x_test, y_test, clf):
 s = time.time()
 clf.fit(x_train, y_train)
 e_train = time.time() - s
 s = time.time()
 score = clf.score(x_test, y_test)
 e_test = time.time() - s
 print("score = %0.4f (time, train=%8.3f, test=%8.3f)"
 % (score, e_train, e_test))

def train(x_train, y_train, x_test, y_test):
 print(" Nearest Centroid : ", end='')
 run(x_train, y_train, x_test, y_test, NearestCentroid())
 print(" k-NN classifier (k=3) : ", end='')
 run(x_train, y_train, x_test, y_test,
 KNeighborsClassifier(n_neighbors=3))
 print(" k-NN classifier (k=7) : ", end='')
 run(x_train, y_train, x_test, y_test,
 KNeighborsClassifier(n_neighbors=7))
 print(" Naive Bayes (Gaussian) : ", end='')
 run(x_train, y_train, x_test, y_test, GaussianNB())
 print(" Decision Tree : ", end='')
 run(x_train, y_train, x_test, y_test, DecisionTreeClassifier())
 print(" Random Forest (trees= 5) : ", end='')
 run(x_train, y_train, x_test, y_test,

 RandomForestClassifier(n_estimators=5))
 print(" Random Forest (trees= 50) : ", end='')
 run(x_train, y_train, x_test, y_test,
 RandomForestClassifier(n_estimators=50))
 print(" Random Forest (trees=500) : ", end='')
 run(x_train, y_train, x_test, y_test,
 RandomForestClassifier(n_estimators=500))
 print(" Random Forest (trees=1000): ", end='')
 run(x_train, y_train, x_test, y_test,
 RandomForestClassifier(n_estimators=1000))
 print(" LinearSVM (C=0.01) : ", end='')
 run(x_train, y_train, x_test, y_test, LinearSVC(C=0.01))
 print(" LinearSVM (C=0.1) : ", end='')
 run(x_train, y_train, x_test, y_test, LinearSVC(C=0.1))
 print(" LinearSVM (C=1.0) : ", end='')
 run(x_train, y_train, x_test, y_test, LinearSVC(C=1.0))
 print(" LinearSVM (C=10.0) : ", end='')
 run(x_train, y_train, x_test, y_test, LinearSVC(C=10.0))

Listing 7-7: Training differently scaled versions of the MNIST dataset using classic models. Helper
functions. See mnist_experiments.py.

The run function of Listing 7-7 is also similar to those used previously,
except we’ve added code to time how long training and testing takes. These
times are reported along with the score. We added this code for MNIST
because, unlike the tiny iris and breast cancer datasets, MNIST has a larger
number of training samples so that runtime differences among the model
types will start to show themselves. The train function is new, but all it does
is wrap calls to run for the different model types.

Now take a look at Listing 7-8, which contains the main function.

def main():
 x_train = np.load("mnist_train_vectors.npy").astype("float64")
 y_train = np.load("mnist_train_labels.npy")
 x_test = np.load("mnist_test_vectors.npy").astype("float64")
 y_test = np.load("mnist_test_labels.npy")

 print("Models trained on raw [0,255] images:")
 train(x_train, y_train, x_test, y_test)
 print("Models trained on raw [0,1) images:")
 train(x_train/256.0, y_train, x_test/256.0, y_test)

 ❶ m = x_train.mean(axis=0)
 s = x_train.std(axis=0) + 1e-8
 x_ntrain = (x_train - m) / s
 x_ntest = (x_test - m) / s

 print("Models trained on normalized images:")
 train(x_ntrain, y_train, x_ntest, y_test)

 ❷ pca = decomposition.PCA(n_components=15)
 pca.fit(x_ntrain)
 x_ptrain = pca.transform(x_ntrain)
 x_ptest = pca.transform(x_ntest)

 print("Models trained on first 15 PCA components of normalized images:")
 train(x_ptrain, y_train, x_ptest, y_test)

Listing 7-8: Training differently scaled versions of the MNIST dataset using classic models. Main
function. See mnist_experiments.py.

The main function of Listing 7-8 loads the data and then trains the
models using the raw byte values. It then repeats the training using a scaled
[0,1) version of the data and a scaled version of the testing data. These are
the first two versions of the dataset we’ll use.

Normalizing the data requires knowledge of the per feature means and
standard deviations ❶. Note, we add a small value to the standard
deviations to make up for pixels that have a standard deviation of zero. We
can’t divide by zero, after all. We need to normalize the test data, but which
means and which standard deviations should we use? Generally, we have
more training data than testing data, so using the means and standard
deviations from the training data makes sense; they are a better
representation of the true means and standard deviations of the parent
distribution that generated the data in the first place. However, at times,
there may be slight differences between the training and testing data
distributions, in which case it might make sense to consider the testing
means and standard deviations. In this case, because the MNIST training
and test datasets were created together, there’s no difference, so the training
values are what we’ll use. Note that the same per feature means and
standard deviations will need to be used for all new, unknown samples, too.

Next, we apply PCA to the dataset just as we did for the iris data in
Chapter 5 ❷. Here we’re keeping the first 15 components. These account
for just over 33 percent of the variance in the data and reduce the feature
vector from 784 features (the pixels) to 15 features (the principal
components). Then we train the models using these features.

Running this code produces a wealth of output that we can learn from.
Let’s first consider the scores per model type and data source. These are in

Table 7-10; values in parentheses are the number of trees in the Random
Forest.

Table 7-10: MNIST Model Scores for Different Preprocessing Steps

Model Raw
[0,255]

Scaled
[0,1)

Norm
alized

PCA

Nearest Centroid 0.8203 0.8203 0.8092 0.7523
k-NN (k = 3) 0.9705 0.9705 0.9452 0.9355
k-NN (k = 7) 0.9694 0.9694 0.9433 0.9370
Naïve Bayes 0.5558 0.5558 0.5239 0.7996
Decision Tree 0.8773 0.8784 0.8787 0.8403
Random Forest (5) 0.9244 0.9244 0.9220 0.8845
Random Forest (50) 0.9660 0.9661 0.9676 0.9215
Random Forest (500) 0.9708 0.9709 0.9725 0.9262
Random Forest (1000) 0.9715 0.9716 0.9719 0.9264
LinearSVM (C = 0.01) 0.8494 0.9171 0.9158 0.8291
LinearSVM (C = 0.1) 0.8592 0.9181 0.9163 0.8306
LinearSVM (C = 1.0) 0.8639 0.9182 0.9079 0.8322
LinearSVM (C = 10.0) 0.8798 0.9019 0.8787 0.7603

Look at the Nearest Centroid scores. These make sense as we move
from left to right across the different versions of the dataset. For the raw
data, the center location of each of the 10 classes leads to a simple classifier
with an accuracy of 82 percent—not too bad considering random guessing
would have an accuracy closer to 10 percent (1/10 for 10 classes). Scaling
the data by a constant won’t change the relative relationship between the
per class centroids so we’d expect the same performance in column 2 of
Table 7-10 as in column 1.

Normalizing, however, does more than divide the data by a constant.
We saw the effect clearly in Figure 7-1. This alteration, at least for the
MNIST dataset, changes the centroids’ relationships to each other and
results in a decrease in accuracy to 80.9 percent.

Finally, using PCA to reduce the number of features from 784 to 15 has
a severe negative impact, resulting in an accuracy of only 75.2 percent.
Note the word only. In the past, before the advent of deep learning, an
accuracy of 75 percent on a problem with 10 classes would generally have

been considered to be pretty good. Of course, it really isn’t. Who would get
in a self-driving car that has an accident one time out of every four trips?
We want to do better.

Let’s consider the k-NN classifiers next. We see similar performance for
both k = 3 and k = 7 and the same sort of trend as we saw with the Nearest
Centroid classifier. This is to be expected given how similar the two types
of models actually are. The difference in accuracy between the two
(centroid and k-NN) is dramatic, however. An accuracy of 97 percent is
generally regarded as good. But still, who would opt for elective surgery
with a 3 percent failure rate?

Things get interesting when we look at the Naïve Bayes classifier. Here
all the versions of the dataset perform poorly, though still five times better
than guessing. We see a large jump in accuracy with the PCA processed
dataset, from 56 percent to 80 percent. This is the only model type to
improve after using PCA. Why might this be? Remember, we’re using
Gaussian Naïve Bayes, which means our independence assumption is
coupled with an assumption that the continuous feature values are, per
feature, really drawn from a normal distribution whose parameters, the
mean and standard deviation, we can estimate from the feature values
themselves.

Now recall what PCA does, geometrically. It’s the equivalent of rotating
the feature vectors onto a new set of coordinates aligned with the largest
orthogonal directions derivable from the dataset. The word orthogonal
implies that no part of a direction overlaps with any other part of any other
direction. Think of the x-, y-, and z-axes of a three-dimensional plot. No
part of the x is along the y or z, and so forth. This is what PCA does.
Therefore, PCA makes the first assumption of Naïve Bayes more likely to
be true, that the new features are indeed independent of each other. Add in
the Gaussian assumption as to the distribution of the per pixel values, and
we have an explanation for what we see in Table 7-10.

The tree-based classifiers, Decision Tree and Random Forest, perform
much the same until we get to the PCA version of the dataset. Indeed, there
is no difference between the raw data and the data scaled by 256. Again,
this is to be expected as all scaling by a constant does is scale the decision
thresholds for each of the nodes in the body of the tree or trees. As before,

working with reduced dimensionality vectors via PCA results in a loss of
accuracy because potentially important information has been discarded.

For any data source, we see scores that make sense relative to each
other. As before, the single Decision Tree performs worst, which it should
except for simple cases since it’s competing against a collection of trees via
the Random Forests. For the Random Forests, we see that the score
improves as the number of trees in the forest increases—again expected.
However, the improvement comes with diminishing returns. There’s a
significant improvement when going from 5 trees to 50 trees, but a minimal
improvement in going from 500 trees to 1,000 trees.

Before we look at the SVM results, let’s understand why we made the
switch from the SVC class to LinearSVC. As the name suggests, LinearSVC
implements only a linear kernel. The SVC class is more generic and can
implement other kernels, so why switch?

The reason has to do with runtime. In computer science, there are
specific definitions of complexity and an entire branch devoted to the
analysis of algorithms and how they perform as their inputs scale larger and
larger. All we’ll concern ourselves with here is big-O notation. This is a
way of characterizing how the runtime of an algorithm changes as the input
(or the number of inputs) gets larger and larger.

For example, a classic bubble sort algorithm works just fine on a few
dozen numbers to be sorted. But, as the input gets larger (more numbers to
be sorted), the runtime increases not linearly but quadratically, meaning the
time to sort the numbers, t, is proportional to the square of the number of
numbers to be sorted, t ∝ n2, which is written as O(n2). So, the bubble sort
is an order n2 algorithm. In general, we want algorithms that are better than
n2, more like n, written as O(n), or even independent of n, written as O(1).
It turns out that the kernel algorithm for training an SVM is worse than
O(n2) so that when the number of training samples increases, the runtime
explodes. This is one reason for the switch from the SVC class to LinearSVC,
which doesn’t use kernels.

The second reason for the switch has to do with the fact that Support
Vector Machines are designed for binary classification—only two classes.
The MNIST dataset has 10 classes, so something different has to be done.
There are multiple approaches. According to the sklearn documentation, the
SVC class uses a one-versus-one approach that trains pairs of classifiers, one

class versus another: class 0 versus class 1, class 1 versus class 2, class 0
versus class 2, and so on. This means it ends up training not one but m(m –
1)/2 classifiers for m = 10 classes, or 10(10 – 1)/2 = 45 separate classifiers.
This isn’t efficient in this case. The LinearSVC classifier uses a one-versus-
rest approach. This means it trains an SVM to classify “0” versus “1–9”,
then “1” versus “0, 2–9”, and so on, for a total of only 10 classifiers, one for
each digit.

It’s with the SVM classifiers that we see a definite benefit to scaling the
data versus the raw byte inputs. We also see that the optimal C value is
likely between C = 0.1 and C = 1.0. Note that simple [0,1) scaling leads to
SVM models that outperform (for this one dataset!) the models trained on
the normalized data. The effect is small but consistent for different C
values. And, as we saw before, dropping the dimensionality from 784
features to only 15 features via PCA leads to a rather large loss of accuracy.
PCA seems not to have helped in this case. We’ll come back to it in a bit
and see if we can understand why.

Analyzing Runtimes
Let’s now look at the runtime performance of the algorithms. Table 7-11
shows the train and test times, in seconds, for each model type and dataset
version.

Look at the test times. This is how long each model takes to classify all
10,000 digit images in the test set. The first thing that jumps out at us is that
k-NN is slow. Classifying the test set takes over 10 minutes when full
feature vectors are used! It’s only when we drop down to the first 15 PCA
components that we see reasonable k-NN runtimes. This is a good example
of the price we pay for a seemingly simple idea. Recall, the k-NN classifier
finds the k closest training samples to the unknown sample we wish to
classify. Here closest means in a Euclidean sense, like the distance between
two points on a graph, except in this case we don’t have two or three
dimensions but 784.

Table 7-11: Training and Testing Times (Seconds) for Each Model Type

Raw
[0,255]

Scaled
[0,1)

Normalize
d

PCA

Model trai
n

test trai
n

test trai
n

test trai
n

testRaw
[0,255]

Scaled
[0,1)

Normalize
d

PCA

Model trai
n

test trai
n

test trai
n

test trai
n

test

Nearest
Centroid

0.2
3

0.0
3

0.2
4

0.0
3

0.2
4

0.0
3

0.0
1

0.0
0

K-NN (K
= 3)

33.
24

74
7.3
4

33.
63

74
7.2
2

33.
66

69
9.5
8

0.0
9

3.6
4

K-NN (K
= 7)

33.
45

74
6.0
0

33.
69

74
6.6
5

33.
68

70
9.6
2

0.0
9

4.6
5

Naïve
Bayes

0.8
0

0.8
8

0.8
5

0.9
0

0.8
3

0.9
4

0.0
2

0.0
1

Decision
Tree

25.
42

0.0
3

25.
41

0.0
2

25.
42

0.0
2

2.1
0

0.0
0

Random
Forest (5)

2.6
5

0.0
6

2.7
0

0.0
6

2.6
1

0.0
6

1.2
0

0.0
3

Random
Forest (50)

25.
56

0.4
6

25.
14

0.4
6

25.
27

0.4
6

12.
06

0.2
5

Random
Forest
(500)

25
2.6
5

4.4
1

24
9.6
9

4.4
7

24
9.1
9

4.4
5

12
1.1
0

2.5
1

Random
Forest
(1000)

50
7.5
2

8.8
6

49
9.2
3

8.7
1

49
9.1
0

8.9
1

24
2.4
4

5.0
0

LinearSV
M (C =
0.01)

16
9.4
5

0.0
2

5.9
3

0.0
2

23
2.9
3

0.0
2

16.
91

0.0
0

LinearSV
M (C =
0.1)

17
0.5
8

0.0
2

36.
00

0.0
2

32
0.1
7

0.0
2

37.
46

0.0
0

LinearSV
M (C =
1.0)

17
0.7
4

0.0
2

96.
34

0.0
2

48
8.0
6

0.0
2

66.
49

0.0
0

Raw
[0,255]

Scaled
[0,1)

Normalize
d

PCA

Model trai
n

test trai
n

test trai
n

test trai
n

test

LinearSV
M (C =
10.0)

17
0.4
6

0.0
2

15
4.3
4

0.0
2

54
1.6
9

0.0
2

86.
87

0.0
0

Therefore, for each of the test samples, we need to find the k = 3 or k =
7 closest points in the training data. The naïve way to do this is to calculate
the distance between the unknown sample and each of the 60,000 training
samples, sort them, look at the k smallest distances, and vote to decide the
output class label. This is a lot of work because we have 60,000 training
samples and 10,000 test samples for a total of 600,000,000 distance
calculations. It isn’t as bad as all that because sklearn automatically selects
the algorithm used to find the nearest neighbors, and decades of research
has uncovered “better than brute force” approaches. Curious readers will
want to investigate the terms K-D-tree and Ball tree (sometimes called
Metric tree). See “An Empirical Comparison of Exact Nearest Neighbor
Algorithms” by Kibriya and Frank (2007). Still, because of the extreme
difference in runtimes between the other model types and k-NN, it’s
necessary to remember just how slow k-NN can be if the dataset is large.

The next slowest test times are for the Random Forest classifiers. We
understand why the forest with 500 trees takes 10 times longer to run than
the forest with 50 trees; we have 10 times as many trees to evaluate.
Training times also scale linearly. Reducing the size of the feature vectors
with PCA improves things but not by a factor of 50 (784 features divided
by 15 PCA features ≈ 50), so the performance difference is not primarily
influenced by the size of the feature vector.

The linear SVMs are the next slowest to train after the Random Forests,
but their execution time is extremely low. Long training times and short
classification (inference) times are a hallmark of many model types. The
simplest models are quick to train and quick to use, like Nearest Centroid or
Naïve Bayes, but in general, “slow to train, quick to use” is a safe
assumption. It’s especially true of neural networks.

Using PCA hurt the performance of the models except for the Naïve
Bayes classifier. Let’s do an experiment to see the effect of PCA as the
number of PCA components changes.

Experimenting with PCA Components
For Tables 7-10 and 7-11, we selected 15 PCA components that represented
about 33 percent of the variance in the dataset. This value was selected at
random. You could imagine training models using some other number of
principal components.

Let’s examine the effect of the number of PCA components used on the
accuracy of the resulting model. We’ll vary the number of components from
10 to 780, which is basically all the features in the image. For each number
of components, we’ll train a Naïve Bayes classifier, a Random Forest of 50
trees, and a linear SVM with C = 1.0. The code to do this is in Listing 7-9.

def main():
 x_train = np.load("../data/mnist/mnist_train_vectors.npy")
 .astype("float64")
 y_train = np.load("../data/mnist/mnist_train_labels.npy")
 x_test = np.load("../data/mnist/mnist_test_vectors.npy").astype("float64")
 y_test = np.load("../data/mnist/mnist_test_labels.npy")
 m = x_train.mean(axis=0)
 s = x_train.std(axis=0) + 1e-8
 x_ntrain = (x_train - m) / s
 x_ntest = (x_test - m) / s

 n = 78
 pcomp = np.linspace(10,780,n, dtype="int16")
 nb=np.zeros((n,4))
 rf=np.zeros((n,4))
 sv=np.zeros((n,4))
 tv=np.zeros((n,2))

 for i,p in enumerate(pcomp):
 ❶ pca = decomposition.PCA(n_components=p)
 pca.fit(x_ntrain)
 (*\newpage*)
 xtrain = pca.transform(x_ntrain)
 xtest = pca.transform(x_ntest)
 tv[i,:] = [p, pca.explained_variance_ratio_.sum()]
 ❷ sc,etrn,etst =run(xtrain, y_train, xtest, y_test, GaussianNB())
 nb[i,:] = [p,sc,etrn,etst]
 sc,etrn,etst =run(xtrain, y_train, xtest, y_test,
 RandomForestClassifier(n_estimators=50))

 rf[i,:] = [p,sc,etrn,etst]
 sc,etrn,etst =run(xtrain, y_train, xtest, y_test, LinearSVC(C=1.0))
 sv[i,:] = [p,sc,etrn,etst]

 np.save("mnist_pca_tv.npy", tv)
 np.save("mnist_pca_nb.npy", nb)
 np.save("mnist_pca_rf.npy", rf)
 np.save("mnist_pca_sv.npy", sv)

Listing 7-9: Model accuracy as a function of the number of PCA components used. See mnist_pca.py.

First, we load the MNIST dataset and compute the normalized version.
This is the version that we’ll use with PCA. Next, we set up storage for the
results. The variable pcomp stores the specific number of PCA components
that will be used from 10 to 780 in steps of 10. Then we start a loop over
the number PCA components. We find the requested number of components
(p) and map the dataset to the actual dataset trained and tested (xtrain, xtest)
❶.

We also store the actual amount of variance in the dataset explained by
the current number of principal components (tv). We’ll plot this value later
to see how quickly the number of components covers the majority of the
variance in the dataset.

Next, we train and test a Gaussian Naïve Bayes classifier using the
current number of features ❷. The run function called here is virtually
identical to that used in Listing 7-7 except that it returns the score, the
training time, and the testing time. These are captured and put into the
appropriate output array (nb). Then we do the same for the Random Forest
and linear SVM.

When the loop completes, we have all the data we need and we store the
NumPy arrays on disk for plotting. Running this code takes some time, but
the output, when plotted, leads to Figure 7-2.

The solid curve shows the fraction of the total variance in the dataset
explained by the current number of PCA components (x-axis). This curve
will reach a maximum of 1.0 when all the features in the dataset are used.
It’s helpful in this case because it shows how quickly adding new
components explains major orientations of the data. For MNIST, we see
that about 90 percent of the variance is explained by using less than half the
possible number of PCA components.

Figure 7-2: Results of the PCA search

The remaining three curves plot the accuracy of the resulting models on
the test data. The best-performing model, in this case, is the Random Forest
with 50 trees (triangles). This is followed by the linear SVM (squares) and
then Naïve Bayes (circles). These curves show how the number of PCA
components tracks with accuracy, and while the Random Forest and SVM
change only slowly as PCA changes, we see that the Naïve Bayes classifier
rapidly loses accuracy as the number of PCA components increases. Even
the Random Forest and SVM decrease as the number of PCA components
increases, which we might expect because the curse of dimensionality will
eventually creep in. It seems likely that the dramatically different behavior
of the Naïve Bayes classifier is due to violations of the independence
assumption as the number of components used increases.

The maximum accuracy and the number of PCA components where it
occurs are shown in Table 7-12.

Table 7-12: Maximum Accuracy on MNIST by Model and Number of Components

Model Accuracy Compone
nts

Variance

Naïve Bayes 0.81390 20 0.3806
Random Forest (50) 0.94270 100 0.7033
Linear SVM (C = 1.0) 0.91670 370 0.9618

Table 7-12 tracks with the plot in Figure 7-2. Interestingly, the SVM
does not reach a maximum until nearly all the features in the original
dataset are used. Also, the best accuracy found for the Random Forest and
SVM is not as good as seen previously for other versions of the dataset that
did not use PCA. So, for these models, PCA is not a benefit; it is, however,
for the Naïve Bayes classifier.

Scrambling Our Dataset
Before we leave this section, let’s look at one more experiment that we’ll
come back to in Chapter 9 and again in Chapter 12. In Chapter 5, we made
a version of the MNIST dataset that scrambled the order of the pixels in the
digit images. The scrambling wasn’t random: the same pixel in each input
image was moved to the same position in the output image, resulting in
images that, at least to us, no longer look like the original digit, as Figure 7-
3 shows. How might this scrambling affect the accuracy of the models
we’ve been using in this chapter?

Figure 7-3: Original MNIST digits (top) and scrambled versions of the same digit (bottom).

Let’s repeat the experiment code of Listing 7-8, this time running only
the scaled [0,1) version of the scrambled MNIST images. Since the only

difference to the original code is the source filenames and the fact that we
call run only once, we’ll forgo a new listing.

Placing the accuracy results side by side gives us Table 7-13.

Table 7-13: MNIST Scores by Model Type for Unscrambled and Scrambled Digits

Model Unscrambled
[0,1)

Scrambled [0,1)

Nearest Centroid 0.8203 0.8203
k-NN (k = 3) 0.9705 0.9705
k-NN (k = 7) 0.9694 0.9694
Naïve Bayes 0.5558 0.5558
Decision Tree 0.8784 0.8772
Random Forest (5) 0.9244 0.9214
Random Forest (50) 0.9661 0.9651
Random Forest (500) 0.9709 0.9721
Random Forest (1000) 0.9716 0.9711
LinearSVM (C = 0.01) 0.9171 0.9171
LinearSVM (C = 0.1) 0.9181 0.9181
LinearSVM (C = 1.0) 0.9182 0.9185
LinearSVM (C = 10.0) 0.9019 0.8885

Here we see virtually no difference between the scrambled and unscrambled
results. In fact, for several models, the results are identical. For stochastic
models, like the Random Forests, the results are still very similar. Is this
surprising? Perhaps at first, but if we think about it for a bit, we realize that
it really shouldn’t be.

All of the classic models are holistic: they operate on the entire feature
vector as a single entity. While we can’t see the digits anymore because our
vision does not operate holistically, the information present in the image is
still there, so the models are just as happy with the scrambled as
unscrambled inputs. When we get to Chapter 12, we’ll encounter a different
result of this experiment.

Classical Model Summary

What follows is a summary of the pros and cons related to each of the
classical model types we have explored in this chapter. This can be used as
a quick list for future reference. It will also take some of the observations
we made via our experiments and make them more concrete.

Nearest Centroid
This is the simplest of all the models and can serve as a baseline. It’s
seldom adequate unless the task at hand is particularly easy. The single
centroid for each class is needlessly restrictive. You could use a more
generalized approach that first finds an appropriate number of centroids for
each class and then groups them together to build the classifier. In the
extreme, this approaches k-NN but is still simpler in that the number of
centroids is likely far less than the number of training samples. We’ll leave
the implementation of this variation as an exercise for the motivated reader.

Pros
As we saw in this chapter, the implementation of a Nearest Centroid
classifier takes only a handful of code. Additionally, Nearest Centroid is not
restricted to binary models and readily supports multiclass models, like the
irises. Training is very fast and since only one centroid is stored per class,
the memory overhead is likewise very small. When used to label an
unknown sample, run time is also very small because the distance from the
sample to each class centroid is all that needs to be computed.

Cons
Nearest Centroid makes a simplistic assumption about the distribution of
the classes in the feature space—one that’s seldom met in practice. As a
consequence of this assumption, the Nearest Centroid classifier is only
highly accurate when the classes form a single tight group in the feature
space and the groups are distant from each other like isolated islands.

k-Nearest Neighbors
This is the simplest model to train since there’s no training: we store the
training set and use it to classify new instances by finding the k nearest
training set vectors and voting.

Pros
As just mentioned, no training required makes k-NN particularly attractive.
It also can perform quite well, especially if the number of training samples
is large relative to the dimensionality of the feature space (that is, the
number of features in the feature vector). Multiclass support is implicit and
doesn’t require a special approach.

Cons
The simplicity of “training” comes at a cost: classification is slow because
of the need to look at every training example to find the nearest neighbors
to the unknown feature vector. Decades of research, still underway, have
sped up the search to improve the naïve implementation of looking at every
training sample every time, but, as we saw in this chapter, classification is
still slow, especially when compared to the speed of other model types (for
example, SVM).

Naïve Bayes
This model is conceptually simple and efficient, and surprisingly valid even
when the core assumption of feature independence isn’t met.

Pros
Naïve Bayes is fast to train and fast to classify with, both positives. It also
supports multiclass models instead of just binary, and other than continuous
features. As long as the probability of a particular feature value can be
computed, we can apply Naïve Bayes.

Cons
The feature independence assumption central to Naïve Bayes is seldom true
in practice. The more correlated the features (the more a change in, say,
feature x2 implies that x3 will change), the poorer the performance of the
model (in all likelihood).

While Naïve Bayes works directly with discrete valued features, using
continuous features often involves a second level of assumption, as when
we assumed that the continuous breast cancer dataset features were well

represented as samples from a Gaussian distribution. This second
assumption, which is also likely seldom true in practice, means that we
need to estimate the parameters of the distribution from the dataset instead
of using histograms to stand in for the actual feature probabilities.

Decision Trees
This model is useful when it’s important to be able to understand, in human
terms, why a particular class was selected.

Pros
Decision Trees are reasonably fast to train. They’re also fast to use for
classifying. Multiclass models are not a problem and are not restricted to
using just continuous features. A Decision Tree can justify its answer by
showing the particular steps used to reach a decision: the series of questions
asked from the root to the leaf.

Cons
Decision Trees are prone to overfitting—to learning elements of the training
data that are not generally true of the parent distribution. Also,
interpretability degrades as the tree increases in size. Tree depth needs to be
balanced with the quality of the decisions (labels) as the leaves of the tree.
This directly affects the error rate.

Random Forests
This is a more powerful form of Decision Tree that uses randomness to
reduce the overfitting problem. Random Forests are one of the best
performing of the classic model types and apply to a wide range of problem
domains.

Pros
Like Decision Trees, Random Forests support multiclass models and other
than continuous features. They are reasonably fast to train and to use for
inference. Random Forests are also robust to differences in scale between
features in the feature vector. In general, the accuracy improves, with
diminishing returns, as the size of the forest grows.

Cons
The easy interpretability of a Decision Tree disappears with a Random
Forest. While each tree in the forest can justify its decision, the combined
effect of the forest as a whole can be difficult to understand.

The inference runtime of a forest scales linearly with the number of
trees. However, this can be mitigated by parallelization since each tree in
the forest is making a calculation that does not depend on any other tree
until combining the output of all trees to make an overall decision.

As stochastic models, the overall performance of a forest varies from
training session to training session for the same dataset. In general, this isn’t
an issue, but a pathological forest could exist—if possible, train the forest
several times to get a sense of the actual performance.

Support Vector Machines
Before the “rebirth” of neural networks, Support Vector Machines were
generally considered to provide the pinnacle of model performance when
they were applicable and well-tuned.

Pros
SVMs can give show excellent performance when properly tuned. Inference
is very fast once trained.

Cons
Multiclass models are not directly supported. Extensions for multiclass
problems require training multiple models whether using one-versus-one or
one-versus-rest approaches. Additionally, SVMs expect only continuous
features and feature scaling matters; normalization or other scaling is often
necessary to get good performance.

Large datasets are difficult to train when using other than linear kernels,
and SVMs often require careful tuning of margin and kernel parameters (C,
γ), though this can be mitigated somewhat by search algorithms that seek
the best hyperparameter values.

When to Use Classical Models
The classical models may be classic, but they are still appropriate under the
right conditions. In this section, we’ll discuss when you should consider a
classical model instead of a more modern approach.

Handling Small Datasets
One of the best reasons for working with a classic model is when the
dataset is small. If you have only a few tens or hundreds of examples, then a
classic model might be a good fit, whereas a deep learning model might not
have enough training data to condition itself to the problem. Of course,
there are exceptions. A deep neural network can, via transfer learning,
sometimes learn from relatively few examples. Other approaches, like zero-
shot or few-shot learning, may also allow a deep network to learn from a
small dataset. However, these techniques are far beyond the scope of what
we want to address in this book. For us, the rule of thumb is: when the
dataset is small, consider using a classic model.

Dealing with Reduced Computational Requirements
Another reason to consider a classic model is when computational
requirements must be kept to a minimum. Deep neural networks are
notoriously demanding of computational resources. The thousands,
millions, and even billions of connections in a deep network all require
extensive calculation. Implementing such a model on a small handheld
device, or on an embedded microcontroller, will not work, or at least not
work in any reasonable timeframe.

In such cases, you might consider a classic model that doesn’t require a
lot of overhead. Simple models like Nearest Centroid or Naïve Bayes are
good candidates. So are Decision Trees and Support Vector Machines, once
trained. From the previous experiments, k-NN is probably not a good
candidate unless the feature space or training set is small. This leads to our
next rule of thumb: when computation must be kept to a minimum, consider
using a classic model.

Having Explainable Models

Some classic models can explain themselves by revealing exactly how they
arrived at their answer for a given unknown input. This includes Decision
Trees, by design, but also k-NN (by showing the labels of the k voters),
Nearest Centroid (by virtue of the selected centroid), and even Naïve Bayes
(by the selected posterior probability). By way of contrast, deep neural
networks are black boxes—they do not explain themselves—and it’s an
active area of research to learn how to get a deep network to give some
reason for its decision. This research has not been entirely unsuccessful, to
be sure, but it’s still far from looking like the decision path in a tree
classifier. Therefore, we can give another rule of thumb: when it’s essential
to know how the classifier makes its decision, consider using a classic
model.

Working with Vector Inputs
Our final rule of thumb, acknowledging, of course, that there are indeed
others we could give, has to do with the form of the inputs to the model.
Modern deep learning systems often work with inputs that are not an
amalgamation of separate features put into a single vector but instead are
multidimensional inputs, such as images, where the “features” (pixels) are
not different from each other but of the same kind and often highly
correlated (the red pixel of the apple likely has a red pixel next to it, for
example). A color image is a three-dimensional beast: there are three color
images, one for the red channel, one for the blue channel, and one for the
green channel. If the inputs are images from other sources, like satellites,
there might be four to eight or more channels per image. A convolutional
neural network is designed precisely for inputs such as these and will look
for spatial patterns characteristic of the classes the network is trying to learn
about. See Chapter 12 for more details.

But if the input to the model is a vector, especially a vector where the
particular features are not related to each other (the key assumption of the
Naïve Bayes classifier), then a classic model might be appropriate, since
there’s no need to look for structure among the features beyond the global
interpretation that the classic models perform by considering the input as a
single monolithic entity. Therefore, we might give the rule as: when the
input is a feature vector without spatial structure (unlike an image),

especially if the features are not related to each other, consider using a
classic model.

It’s important to remember that these are rule-of-thumb suggestions, and
that they aren’t always applicable to a particular problem. Also, it’s possible
to use deep networks even if these rules seem to apply; it’s just that they
may not give the best performance, or might be overkill, like using a
shotgun to kill a fly. The main point of this book is to build intuition so that
when a situation arises, we’ll know how to use the techniques we are
exploring to maximum advantage. Pasteur said, “In the fields of
observation, chance favors only the prepared mind” (lecture at the
University of Lille, December 1854), and we wholeheartedly agree.

Summary
In this chapter, we worked with six common classical machine learning
models: Nearest Centroid, k-Nearest Neighbors, Naïve Bayes, Decision
Trees, Random Forests, and Support Vector Machines. We applied them to
three datasets that were developed in Chapter 5: irises, breast cancer, and
MNIST digits. We used the results of the experiments with these datasets to
gain insight into the strengths and weaknesses of each model type along
with the effect of different data preprocessing steps. We ended the chapter
with a discussion of the classic models and when it might be appropriate to
use them.

In the next chapter, we’ll move on from the classic models and begin
our exploration of neural networks, the backbone of modern deep learning.

8
INTRODUCTION TO NEURAL

NETWORKS

Neural networks are the heart of deep learning. In Chapter 9, we’ll take a
deep dive into what we’ll call traditional neural networks. However, before
we do that, we’ll introduce the anatomy of a neural network, followed by a
quick example.

Specifically, we’ll present the components of a fully connected feed-
forward neural network. Visually, you can imagine the network as shown in
Figure 8-1. We’ll refer to this figure often in this chapter and the next. Your
mission, should you choose to accept it, is to commit this figure to memory
to save wear and tear on the book by flipping back to it repeatedly.

Figure 8-1: A sample neural network

After discussing the structure and parts of a neural network, we’ll
explore training our example network to classify irises. From this initial
experiment, Chapter 9 will lead us to gradient descent and the
backpropagation algorithm—the standard way that neural networks,
including advanced deep neural networks, are trained. This chapter is
intended as a warm-up. The heavy lifting starts in Chapter 9.

Anatomy of a Neural Network
A neural network is a graph. In computer science, a graph is a series of
nodes, universally drawn as circles, connected by edges (short line
segments). This abstraction is useful for representing many different kinds
of relationships: roads between cities, who knows whom on social media,
the structure of the internet, or a series of basic computational units that can
be used to approximate any mathematical function.

The last example is, of course, deliberate. Neural networks are universal
function approximators. They use a graph structure to represent a series of
computational steps mapping an input feature vector to an output value,
typically interpreted as a probability. Neural networks are built in layers.
Conceptually, they act from left to right, mapping an input feature vector to
the output(s) by passing values along the edges to the nodes. Note, the

nodes of a neural network are often referred to as neurons. We’ll see why
shortly. The nodes calculate new values based on their inputs. The new
values are then passed to the next layer of nodes and so on until the output
nodes are reached. In Figure 8-1, there’s an input layer on the left, a hidden
layer to its right, another hidden layer right of that, and a single node in the
output layer.

The previous section included the phrase fully connected feedforward
neural network without much explanation. Let’s break it down. The fully
connected part means every node of a layer has its output sent to every node
of the next layer. The feedforward part means that information passes from
left to right through the network without being sent back to a previous
layer; there is no feedback, no looping, in the network structure. This leaves
only the neural network part.

The Neuron
Personally, I have a love/hate relationship with the phrase neural network.
The phrase itself comes from the fact that in a very crude approximation,
the basic unit of the network resembles a neuron in a brain. Consider Figure
8-2, which we’ll describe in detail shortly.

Figure 8-2: A single neural network node

Recalling that our visualization of a network always moves from left to
right, we see that the node (the circle) accepts input from the left, and has a
single output on the right. Here there are two inputs, but it might be
hundreds.

Many inputs mapped to a single output echo how a neuron in the brain
works: structures called dendrites accept input from many other neurons,
and the single axon is the output. I love this analogy because it leads to a
cool way of talking and thinking about the networks. But I hate the analogy
because these artificial neurons are, operationally, quite different from real
ones, and the analogy quickly falls apart. There is an anatomical similarity
to actual neurons, but they’re not the same, and it leads to confusion on the
part of those who are not familiar with machine learning, causing some to
believe that computer scientists are truly building artificial brains or that the
networks think. The meaning of the word think is hard to pin down, but to
me it doesn’t apply to what a neural network does.

Returning now to Figure 8-2, we see two squares on the left, a bunch of
lines, a circle, a line on the right, and a bunch of labels with subscripts.
Let’s sort this out. If we understand Figure 8-2, we’ll be well on our way to
understanding neural networks. Later, we’ll see an implementation of our
visual model in code and be surprised to learn how simple it can be.

Everything in Figure 8-2 focuses on the circle. This is the actual node.
In reality, it implements a mathematical function called the activation
function, which calculates the output of the node, a single number. The two
squares are the inputs to the node. This node accepts features from an input
feature vector; we use squares to differentiate from circles, but the input
might just as well have come from another group of circular nodes in a
previous network layer.

Each input is a number, a single scalar value, which we’re calling x0 and
x1. These inputs move to the node along the two line segments labeled w0
and w1. These line segments represent weights, the strength of the
connection. Computationally, the inputs (x0, x1) are multiplied by the
weights (w0, w1), summed, and given to the activation function of the node.
Here we’re calling the activation function h, a fairly common thing to call
it.

The value of the activation function is the output of the node. Here
we’re calling this output a. The inputs, multiplied by the weights, are added
together and given to the activation function to produce an output value. We
have yet to mention the b0 value, which is also added in and passed to the
activation function. This is the bias term. It’s an offset used to adjust the

input range to make it suitable for the activation function. In Figure 8-2, we
added a zero subscript. There is a bias value for each node in each layer, so
the subscript here implies that this node is the first node in the layer.
(Remember computer people always count from zero, not one.)

This is all that a neural network node does: a neural network node
accepts multiple inputs, x0,x1,…, multiplies each by a weight value, w0,w1,
…, sums these products along with the bias term, b, and passes this sum to
the activation function, h, to produce a single scalar output value, a:

a = h(w0x0 + w1x1 + … + b)

That’s it. Get a bunch of nodes together, link them appropriately, figure
out how to train them to set the weights and biases, and you have a useful
neural network. As you’ll see in the next chapter, training a neural network
is no easy feat. But once trained, they’re simple to use: feed it a feature
vector, and out comes a classification.

As an aside, we’ve been calling these graphs neural networks, and will
continue to do so, sometimes using the abbreviation NN. If you read other
books or papers, you might see them called artificial neural networks
(ANNs) or even multi-layer perceptrons (MLPs), as in the sklearn
MLPClassifier class name. I recommend sticking with neural network, but
that’s just me.

Activation Functions
Let’s talk about activation functions. The activation function for a node
takes a single scalar input, the sum of the inputs times the weights plus the
bias, and does something to it. In particular, we need the activation function
to be nonlinear so that the model can learn complex functions.
Mathematically, it’s easiest to see what a nonlinear function is by stating
what a linear function is and then saying that any mapping that is not linear
is . . . nonlinear.

A linear function, g, has output that is directly proportional to the input,
g(x) ∝ x, where ∝ means proportional to. Alternatively, the graph of a
linear function is a straight line. Therefore, any function whose graph is not
a straight line is a nonlinear function.

For example, the function

g(x) = 3x + 2

is a linear function because its graph is a straight line. A constant function
like g(x) = 1 is also linear. However, the function

g(x) = x2 + 2

is a nonlinear function because the exponent of x is 2. Transcendental
functions are also nonlinear. Transcendental functions are functions like
g(x) = logx, or g(x) = ex, where e = 2.718... is the base of the natural
logarithm. Trigonometric functions like sine and cosine, their inverses, and
functions like tangent that are built from sine and cosine are also
transcendental functions. These functions are transcendental because you
cannot form them as finite combinations of elementary algebra operations.
They are nonlinear because their graphs are not straight lines.

The network needs nonlinear activation functions; otherwise, it will be
able to learn only linear mappings, and linear mappings are not sufficient to
make the networks generally useful. Consider a trivial network of two
nodes, each with one input. This means there’s one weight and one bias
value per node, and the output of the first node is the input of the second. If
we set h(x) = 5x – 3, a linear function, then for input x the network
computes output a1 to be

a1 = h(w1a0 + b1)
= h(w1h(w0x + b0) + b1)
= h(w1(5(w0x + b0) – 3) + b1)
= h(w1(5w0x + 5b0 – 3) + b1)
= h(5w1w0x + 5w1b0 – 3w1 + b1)
= 5(5w1w0x + 5w1b0 – 3w1 + b1) – 3
= (25w1w0)x + (25w1b0 – 15w1 + 5b1 – 3)
= Wx + B

for W = 25w1w0 and B = 25w1b0 – 15w1 + 5b1 – 3, which is also a linear
function, another line with slope W and intercept B since neither W nor B
depend on x. Therefore, a neural network with linear activation functions
would learn only a linear model since the composition of linear functions is

also linear. It’s precisely this limitation of linear activation functions that
caused the first neural network “winter” in the 1970s: research into neural
networks was effectively abandoned because they were thought to be too
simple to learn complex functions.

Okay, so we want nonlinear activation functions. Which ones? There are
an infinite number of possibilities. In practice, a few have risen to the top
because of their proven usefulness or nice properties or both. Traditional
neural networks used either sigmoid activation functions or hyperbolic
tangents. A sigmoid is

and the hyperbolic tangent is

Plots of both of these functions are in Figure 8-3, with the sigmoid on the
top and the hyperbolic tangent on the bottom.

The first thing to notice is that both of these functions have roughly the
same “S” shape. The sigmoid runs from 0 as you go further left along the x-
axis to 1 as you go to the right. At 0, the function value is 0.5. The
hyperbolic tangent does the same but goes from –1 to +1 and is 0 at x = 0.

More recently, the sigmoid and hyperbolic tangent have been replaced
by the rectified linear unit, or ReLU for short. The ReLU is simple, and has
convenient properties for neural networks. Even though the word linear is
in the name, the ReLU is a nonlinear function—its graph is not a straight
line. When we discuss backpropagation training of neural networks in
Chapter 9, we’ll learn why this change has happened.

Figure 8-3: A sigmoid function (top) and a hyperbolic tangent function (bottom). Note that the y-axis
scales are not the same.

The ReLU is as follows and is shown in Figure 8-4.

Figure 8-4: The rectified linear activation function, ReLU(x) = max(0,x)

ReLU is called rectified because it removes the negative values and
replaces them with 0. In truth, the machine learning community uses several
different versions of this function, but all are essentially replacing negative
values with a constant or some other value. The piecewise nature of the

ReLU is what makes it nonlinear and, therefore, suitable for use as a neural
network activation function. It’s also computationally simple, far faster to
calculate than either the sigmoid or the hyperbolic tangent. This is because
the latter functions use ex, which, in computer terms, means a call to the exp
function. This function is typically implemented as a sum of terms of a
series expansion, translating into dozens of floating-point operations in
place of the single if statement necessary to implement a ReLU. Small
savings like this add up in an extensive network with potentially thousands
of nodes.

Architecture of a Network
We’ve discussed nodes and how they work, and hinted that nodes are
connected to form networks. Let’s look more closely at how nodes are
connected, the architecture of the network.

Standard neural networks like the ones we are working with in this
chapter are built in layers, as you saw in Figure 8-1. We don’t need to do
this, but as we’ll see, this buys us some computational simplicity and
greatly simplifies training. A feedforward network has an input layer, one or
more hidden layers, and an output layer. The input layer is simply the
feature vector, and the output layer is the prediction (probability). If the
network is for a multiclass problem, the output layer might have more than
one node, with each node representing the model’s prediction for each of
the possible classes of inputs.

The hidden layers are made of nodes, and the nodes of layer i accept as
input the output of the nodes of layer i – 1 and pass their outputs to the
inputs of the nodes of layer i + 1. The connections between the layers are
typically fully connected, meaning every output of every node of layer i – 1
is used as an input to every node of layer i, hence fully connected. Again,
we don’t need to do this, but it simplifies the implementation.

The number of hidden layers and the number of nodes in each hidden
layer define the architecture of the network. It has been proven that a single
hidden layer with enough nodes can learn any function mapping. This is
good because it means neural networks are applicable to machine learning
problems since, in the end, the model acts as a complex function mapping
inputs to output labels and probabilities. However, like many theoretical
results, this does not mean that it’s practical for a single layer network to be

used in all situations. As the number of nodes (and layers) in a network
grows, so, too, does the number of parameters to learn (weights and biases),
and therefore the amount of training data needed goes up as well. It’s the
curse of dimensionality again.

Issues like these stymied neural networks for a second time in the
1980s. Computers were too slow to train large networks, and, regardless,
there was usually too little data available to train the network anyway.
Practitioners knew that if both of these situations changed, then it would
become possible to train large networks that would be far more capable than
the small networks of the time. Fortunately for the world, the situation
changed in the early 2000s.

Selecting the proper neural network architecture has a huge impact on
whether or not your model will learn anything. This is where experience
and intuition come in. Selecting the right architecture is the dark art of
using neural networks. Let’s try to be more helpful by giving some (crude)
rules of thumb:

If your input has definite spatial relationships, like the parts of an
image, you might want to use a convolutional neural network instead
(Chapter 12).
Use no more than three hidden layers. Recall, in theory, one
sufficiently large hidden layer is all that is needed, so use as few
hidden layers as necessary. If the model learns with one hidden layer,
then add a second to see if that improves things.
The number of nodes in the first hidden layer should match or (ideally)
exceed the number of input vector features.
Except for the first hidden layer (see previous rule), the number of
nodes per hidden layer should be the same as or some value between
the number of nodes in the previous layer and the following layer. If
layer i – 1 has N nodes and layer i + 1 has M nodes, then layer i might
be good with N ≤ x ≤ M nodes.

The first rule says that a traditional neural network best applies to situations
where your input does not have spatial relationships—that is, you have a
feature vector, not an image. Also, when your input dimension is small, or
when you do not have a lot of data, which makes it hard to train a larger

convolutional network, you should give a traditional network a try. If you
do think you are in a situation where a traditional neural network is called
for, start small, and grow it as long as performance improves.

Output Layers
The last layer of a neural network is the output layer. If the network is
modeling a continuous value, known as regression, a use case we’re
ignoring in this book, then the output layer is a node that doesn’t use an
activation function; it simply reports the argument to h in Figure 8-2. Note
that this is the same as saying that the activation function is the identity
function, h(x) = x.

Our neural networks are for classification; we want them to output a
decision value. If we have two classes labeled 0 and 1, we make the
activation function of the final node a sigmoid. This will output a value
between 0 and 1 that we can interpret as a likelihood or probability that the
input belongs to class 1. We make our classification decision based on the
output value with a simple rule: if the activation value is less than 0.5, call
the input class 0; otherwise, call it class 1. We’ll see in Chapter 11 how
changing this threshold of 0.5 can be used to tune a model’s performance
for the task at hand.

If we have more than two classes, we need to take a different approach.
Instead of a single node in the output layer, we’ll have N output nodes, one
for each class, each one using the identity function for h. Then, we apply a
softmax operation to these N outputs and select the output with the largest
softmax value.

Let’s illustrate what we mean by softmax. Suppose we have a dataset
with four classes in it. What they represent doesn’t really matter; the
network doesn’t know what they represent, either. The classes are labeled 0,
1, 2, and 3. So, N = 4 means our network will have four output nodes, each
one using the identity function for h. This looks like Figure 8-5, where we
have also shown the softmax operation and the resulting output vector.

Figure 8-5: The last hidden layer n-1 and output layer (n, nodes numbered) for a neural network with
four classes. The softmax operation is applied, producing a four-element output vector,
[p0,p1,p2,p3].

We select the index of the largest value in this output vector as the class
label for the given input feature vector. The softmax operation ensures that
the elements of this vector sum to 1, so we can again be a bit sloppy and
call these values the probability of belonging to each of the four classes.
That is why we take only the largest value to decide the output class label.

The softmax operation is straightforward: the probability for each of the
outputs is simply

where ai is the i-th output, and the denominator is the sum over all the
outputs. For the example, i = 0,1,2,3, and the index of the largest value will
be the class label assigned to the input.

As an example, assume the output of the four last layer nodes is

a0 = 0.2

a1 = 1.3

a2 = 0.8

a3 = 2.1

Then calculate the softmax as follows:

p0 = e0.2/(e0.2 + e1.3 + e0.8 + e2.1) = 0.080

p1 = e1.3/(e0.2 + e1.3 + e0.8 + e2.1) = 0.240

p2 = e0.8/(e0.2 + e1.3 + e0.8 + e2.1) = 0.146

p3 = e2.1/(e0.2 + e1.3 + e0.8 + e2.1) = 0.534

Select class 3 because p3 is the largest. Note that the sum of the pi values is
1.0, as we would expect.

Two points should be mentioned here. In the preceding equations, we
used the sigmoid to calculate the output of the network. If we set the
number of classes to 2 and calculate the softmax, we’ll get two output
values: one will be some p, and the other will be 1 – p. This is identical to
the sigmoid alone, selecting the probability of the input being of class 1.

The second point has to do with implementing the softmax. If the
network outputs, the a values, are large, then ea might be very large, which
is something the computer will not like. Precision will be lost, at least, or
the value might overflow and make the output meaningless. Numerically, if
we subtract the largest a value from all the others before calculating the
softmax, we’ll take the exponential over smaller values that are less likely
to overflow. Doing this for the preceding example gives new a values

where we subtract 2.1 because that is the largest a value. This leads to
precisely the same p values we found before, but this time protected against
overflow in the case that any of the a values are too large.

Representing Weights and Biases
Before we move on to an example neural network, let’s revisit the weights
and biases and see that we can greatly simplify the implementation of a
neural network by viewing it in terms of matrices and vectors.

Consider the mapping from an input feature vector of two elements to
the first hidden layer with three nodes (a1 in Figure 8-1). Let’s label the
edges between the two layers (the weights) as wij with i = 0,1 for the inputs
x0 and x1 and j = 0,1,2 for the three hidden layer nodes numbered from top
to bottom of the figure. Additionally, we need three bias values that are not
shown in the figure, one for each hidden node. We’ll call these b0, b1, and
b2, again, top to bottom.

In order to calculate the outputs of the activation functions, h, for the
three hidden nodes, we need to find the following.

a0 = h(w00x0 + w10x1 + b0)

a1 = h(w01x0 + w11x1 + b1)

a2 = h(w02x0 + w12x1 + b2)

But, remembering how matrix multiplication and vector addition work, we
see that this is exactly

where , and W is a 3 × 2
matrix of weight values. In this case, the activation function, h, is given a
vector of input values and produces a vector of output values. This is
simply applying h to every element of . For example, applying h to a
vector with three elements is

with h applied separately to each element of .
Since the NumPy Python module is designed to work with arrays, and

matrices and vectors are arrays, we arrive at the pleasant conclusion that the
weights and biases of a neural network can be stored in NumPy arrays and
we need only simple matrix operations (calls to np.dot) and addition to work
with a fully connected neural network. Note this is why we want to use
fully connected networks: their implementation is straightforward.

To store the network of Figure 8-1, we need a weight matrix and bias
vector between each layer, giving us three matrices and three vectors: a
matrix and vector each for the input to the first hidden layer, the first hidden
layer to the second, and the second hidden layer to the output. The weight
matrices are of dimensions 3 × 2, 2 × 3, and 1 × 2, respectively. The bias
vectors are of length 3, 2, and 1.

Implementing a Simple Neural Network
In this section, we’ll implement the sample neural network of Figure 8-1
and train it on two features from the iris dataset. We’ll implement the
network from scratch but use sklearn to train it. The goal of this section is
to see how straightforward it is to implement a simple neural network.

Hopefully, this will clear some of the fog that might be hanging around
from the discussion of the previous sections.

The network of Figure 8-1 accepts an input feature vector with two
features. It has two hidden layers, one with three nodes and the other with
two nodes. It has one sigmoid output. The activation functions of the hidden
nodes are also sigmoids.

Building the Dataset
Before we look at the neural network code, let’s build the dataset we’ll train
against and see what it looks like. We know the iris dataset already, but for
this example, we’ll use only two classes and only two of the four features.
The code to build the train and test datasets is in Listing 8-1.

 import numpy as np
❶ d = np.load("iris_train_features_augmented.npy")
 l = np.load("iris_train_labels_augmented.npy")
 d1 = d[np.where(l==1)]
 d2 = d[np.where(l==2)]
❷ a=len(d1)
 b=len(d2)
 x = np.zeros((a+b,2))
 x[:a,:] = d1[:,2:]
 x[a:,:] = d2[:,2:]
❸ y = np.array([0]*a+[1]*b)
 i = np.argsort(np.random.random(a+b))
 x = x[i]
 y = y[i]
❹ np.save("iris2_train.npy", x)
 np.save("iris2_train_labels.npy", y)
❺ d = np.load("iris_test_features_augmented.npy")
 l = np.load("iris_test_labels_augmented.npy")
 d1 = d[np.where(l==1)]
 d2 = d[np.where(l==2)]
 a=len(d1)
 b=len(d2)
 x = np.zeros((a+b,2))
 x[:a,:] = d1[:,2:]
 x[a:,:] = d2[:,2:]
 y = np.array([0]*a+[1]*b)
 i = np.argsort(np.random.random(a+b))
 x = x[i]
 y = y[i]
 np.save("iris2_test.npy", x)
 np.save("iris2_test_labels.npy", y)

Listing 8-1: Building the simple example dataset. See nn_iris_dataset.py.

This code is straightforward data munging. We start with the augmented
dataset and load the samples and labels ❶. We want only class 1 and class
2, so we find the indices of those samples and pull them out. We’re keeping
only features 2 and 3 and put them in x ❷. Next, we build the labels (y) ❸.
Note, we recode the class labels to 0 and 1. Finally, we scramble the order
of the samples and write the new dataset to disk ❹. Last of all, we repeat
this process to build the test samples ❺.

Figure 8-6 shows the training set. We can plot it in this case because we
have only two features.

Figure 8-6: The training data for the two-class, two-feature iris dataset

We immediately see that this dataset is not trivially separable. There is
no simple line we can draw that will correctly split the training set into two
groups, one all class 0 and the other all class 1. This makes things a little
more interesting.

Implementing the Neural Network
Let’s see how to implement the network of Figure 8-1 in Python using
NumPy. We’ll assume that it’s already trained, meaning we already know
all the weights and biases. The code is in Listing 8-2.

 import numpy as np
 import pickle
 import sys

 def sigmoid(x):
 return 1.0 / (1.0 + np.exp(-x))

 def evaluate(x, y, w):
 ❶ w12,b1,w23,b2,w34,b3 = w
 nc = nw = 0
 prob = np.zeros(len(y))
 for i in range(len(y)):
 a1 = sigmoid(np.dot(x[i], w12) + b1)
 a2 = sigmoid(np.dot(a1, w23) + b2)
 prob[i] = sigmoid(np.dot(a2, w34) + b3)
 z = 0 if prob[i] < 0.5 else 1
 ❷ if (z == y[i]):
 nc += 1
 else:
 nw += 1
 return [float(nc) / float(nc + nw), prob]

❸ xtest = np.load("iris2_test.npy")
 ytest = np.load("iris2_test_labels.npy")
❹ weights = pickle.load(open("iris2_weights.pkl","rb"))
 score, prob = evaluate(xtest, ytest, weights)
 print()
 for i in range(len(prob)):
 print("%3d: actual: %d predict: %d prob: %0.7f" %
 (i, ytest[i], 0 if (prob[i] < 0.5) else 1, prob[i]))
 print("Score = %0.4f" % score)

Listing 8-2: Using the trained weights and biases to classify held-out test samples. See
nn_iris_evaluate.py.

Perhaps the first thing we should notice is how short the code is. The
evaluate function implements the network. We also need to define sigmoid as
NumPy does not have it natively. The main code loads the test samples
(xtest) and associated labels (ytest) ❸. These are the files generated by the
preceding code, so we know that xtest is of shape 23 × 2 because we have 23
test samples, and each has two features. Similarly, ytest is a vector of 23
labels.

When we train this network, we’ll store the weights and biases as a list
of NumPy arrays. The Python way to store a list on disk is via the pickle
module, so we use pickle to load the list from disk ❹. The list weights has six
elements representing the three weight matrices and three bias vectors that
define the network. These are the “magic” numbers that our training has
conditioned to the dataset. Finally, we call evaluate to run each of the test
samples through the network. This function returns the score (accuracy) and
the output probabilities for each sample (prob). The remainder of the code
displays the sample number, actual label, predicted label, and associated
output probability of being class 1. Finally, the score (accuracy) is shown.

The network is implemented in evaluate; let’s see how. First, pull the
individual weight matrices and bias vectors from the supplied weight list ❶.
These are NumPy arrays: w12 is a 2 × 3 matrix mapping the two-element
input to the first hidden layer with three nodes, w23 is a 3 × 2 matrix
mapping the first hidden layer to the second hidden layer, and w34 is a 2 × 1
matrix mapping the second hidden layer to the output. The bias vectors are
b1, three elements; b2, two elements; and b3, a single element (a scalar).

Notice the weight matrices are not of the same shape as we previously
indicated they would be. They are transposes. This is because we’re
multiplying vectors, which are treated as 1 × 2 matrices, by the weight
matrices. Because scalar multiplication is commutative, meaning ab = ba,
we see that we’re still calculating the same argument value for the
activation function.

Next, evaluate sets the number correct (nc) and number wrong (nw)
counters to 0. These are for calculating the overall score across the entire
test set. Similarly, we define prob, a vector to hold the output probability
value for each of the test samples.

The loop applies the entire network to each test sample. First, we map
the input vectors to the first hidden layer and calculate a1, a vector of three

numbers, the activation for each of the three hidden nodes. We then take
these first hidden layer activations and calculate the second hidden layer
activations, a2. This is a two-element vector as there are two nodes in the
second hidden layer. Next, we calculate the output value for the current
input vector and store it in the prob array. The class label, z, is assigned by
checking if the output value of the network is < 0.5 or not. Finally, we
increment the correct (nc) or incorrect (nw) counters based on the actual
label for this sample (y[i]) ❷. When all samples have been passed through
the network, the overall accuracy is returned as the number of correctly
classified samples divided by the total number of samples.

This is all well and good; we can implement a network and pass input
vectors through it to see how well it does. If the network had a third hidden
layer, we would pass the output of the second hidden layer (a2) through it
before calculating the final output value.

Training and Testing the Neural Network
The code in Listing 8-2 applies the trained model to the test data. To train
the model in the first place, we’ll use sklearn. The code to train the model is
in Listing 8-3.

 import numpy as np
 import pickle
 from sklearn.neural_network import MLPClassifier

 xtrain= np.load("iris2_train.npy")
 ytrain= np.load("iris2_train_labels.npy")
 xtest = np.load("iris2_test.npy")
 ytest = np.load("iris2_test_labels.npy")

❶ clf = MLPClassifier(
 ❷ hidden_layer_sizes=(3,2),
 ❸ activation="logistic",
 solver="adam", tol=1e-9,
 max_iter=5000,
 verbose=True)
 clf.fit(xtrain, ytrain)
 prob = clf.predict_proba(xtest)
 score = clf.score(xtest, ytest)

❹ w12 = clf.coefs_[0]
 w23 = clf.coefs_[1]
 w34 = clf.coefs_[2]

 b1 = clf.intercepts_[0]
 b2 = clf.intercepts_[1]
 b3 = clf.intercepts_[2]
 weights = [w12,b1,w23,b2,w34,b3]
 pickle.dump(weights, open("iris2_weights.pkl","wb"))

 print()
 print("Test results:")
 print(" Overall score: %0.7f" % score)
 print()
 for i in range(len(ytest)):
 p = 0 if (prob[i,1] < 0.5) else 1
 print("%03d: %d - %d, %0.7f" % (i, ytest[i], p, prob[i,1]))
 print()

Listing 8-3: Using sklearn to train the iris neural network. See nn_iris_mlpclassifier.py.

First, we load the training and testing data from disk. These are the
same files we created previously. Then we set up the neural network object,
an instance of MLPClassifier ❶. The network has two hidden layers, the first
with three nodes and the second with two nodes ❷. This matches the
architecture in Figure 8-1. The network is also using logistic layers ❸. This
is another name for a sigmoid layer. We train the model by calling fit just as
we did for other sklearn model types. Since we set verbose to True, we’ll get
output showing us the loss for each iteration.

Calling predict_proba gives us the output probabilities on the test data. This
method is also supported by most other sklearn models. This is the model’s
certainty as to the assigned output label. We then call score to calculate the
score over the test set as we have done before.

We want to store the learned weights and biases so we can use them
with our test code. We can pull them directly from the trained model ❹.
These are packed into a list (weights) and dumped to a Python pickle file.

The remaining code prints the results of running the sklearn trained
model against the held-out test data. For example, a particular run of this
code gives

Test results:
 Overall score: 1.0000000

000: 0 - 0, 0.0705069
001: 1 - 1, 0.8066224
002: 0 - 0, 0.0308244
003: 0 - 0, 0.0205917

004: 1 - 1, 0.9502825
005: 0 - 0, 0.0527558
006: 1 - 1, 0.9455174
007: 0 - 0, 0.0365360
008: 1 - 1, 0.9471218
009: 0 - 0, 0.0304762
010: 0 - 0, 0.0304762
011: 0 - 0, 0.0165365
012: 1 - 1, 0.9453844
013: 0 - 0, 0.0527558
014: 1 - 1, 0.9495079
015: 1 - 1, 0.9129983
016: 1 - 1, 0.8931552
017: 0 - 0, 0.1197567
018: 0 - 0, 0.0406094
019: 0 - 0, 0.0282220
020: 1 - 1, 0.9526721
021: 0 - 0, 0.1436263
022: 1 - 1, 0.9446458

indicating that the model was perfect against the small test dataset. The
output shows the sample number, the actual class label, the assigned class
label, and the output probability of being class 1. If we run the pickle file
holding the sklearn network’s weights and biases through our evaluation
code, we see that the output probabilities are precisely the same as the
preceding code, indicating that our hand-generated neural network
implementation is working correctly.

Summary
In this chapter, we discussed the anatomy of a neural network. We described
the architecture, the arrangement of nodes, and the connections between
them. We discussed the output layer nodes and the functions they compute.
We then saw that all the weights and biases could be conveniently
represented by matrices and vectors. Finally, we presented a simple network
for classifying a subset of the iris data and showed how it could be trained
and evaluated.

Now that we have our feet wet, let’s move on and dive into the theory
behind neural networks.

9
TRAINING A NEURAL NETWORK

In this chapter, we’ll discuss how to train a neural network. We’ll look at
the standard approaches and tricks being used in the field today. There will
be some math, some hand-waving, and a whole host of new terms and
concepts. But you don’t need to follow the math at a deep level: we’ll gloss
over things as needed to get the main point across.

This chapter is perhaps the most challenging in the book, at least
conceptually. It certainly is mathematically. While it’s crucially important to
building intuition and understanding, sometimes we get impatient and like
to dive into things first to test the waters. Thanks to preexisting libraries, we
can do that here. If you want to play around with neural networks before
learning how they work, jump to Chapter 10 before coming back here to fill
in the theory. But do come back.

It’s possible to learn to use powerful toolkits like sklearn and Keras
without understanding how they work. That approach should not satisfy
anyone, though the temptation is real. Understanding how these algorithms
work is well worth your time.

A High-Level Overview
Let’s begin this chapter with an overview of the concepts we’ll discuss.
Read it, but don’t fret if the concepts are unclear. Instead, try to get a feel

for the overall process.
The first step in training a neural network is selecting intelligent initial

values for the weights and biases. We then use gradient descent to modify
these weights and biases so that we reduce the error over the training set.
We’ll use the average value of the loss function to measure the error, which
tells us how wrong the network currently is. We know if the network is
right or wrong because we have the expected output for each input sample
in the training set (the class label).

Gradient descent is an algorithm that requires gradients. For now, think
of gradients as measures of steepness. The larger the gradient, the steeper
the function is at that point. To use gradient descent to search for the
smallest value of the loss function, we need to be able to find gradients. For
that, we’ll use backpropagation. This is the fundamental algorithm of
neural networks, the one that allows them to learn successfully. It gives us
the gradients we need by starting at the output of the network and moving
back through the network toward the input. Along the way, it calculates the
gradient value for each weight and bias.

With the gradient values, we can use the gradient descent algorithm to
update the weights and biases so that the next time we pass the training
samples through the network, the average of the loss function will be less
than it was before. In other words, our network will be less wrong. This is
the goal of training, and we hope it results in a network that has learned
general features of the data.

Learning general features of the dataset requires regularization. There
are many approaches to regularization, and we’ll discuss the main ones.
Without regularization, the training process is in danger of overfitting, and
we could end up with a network that doesn’t generalize. But with
regularization, we can be successful and get a useful model.

So, the following sections introduce gradient descent, backpropagation,
loss functions, weight initialization, and, finally, regularization. These are
the main components of successful neural network training. We don’t need
to understand these in all their gory mathematical details; instead, we need
to understand them conceptually so we can build an intuitive approach to
what it means to train a neural network. With this intuition, we’ll be able to
make meaningful use of the parameters that sklearn and Keras give us for
training.

Gradient Descent
The standard way to train a neural network is to use gradient descent.

Let’s parse the phrase gradient descent. We already know what the word
descent means. It means to go down from somewhere higher up. What
about gradient? The short answer is that a gradient indicates how quickly
something changes with respect to how fast something else changes.
Measuring how much one thing changes as another changes is something
we’re all familiar with. We all know about speed, which is how position
changes as time changes. We even say it in words: miles per hour or
kilometers per hour.

You’re probably already familiar with the gradient in another context.
Consider the equation of a line

y = mx + b

where m is the slope and b is the y-axis intercept. The slope is how quickly
the line’s y position changes with each change in the x position. If we know
two points that are on the line, (x0,y0) and (x1,y1), then we can calculate the
slope as

which, in words, we might say as “y’s per x.” It’s a measure of how steep or
shallow the line is: its gradient. In mathematics, we often talk about a
change in a variable, and the notation for that is to put a Δ (delta) in front.
So, we might write the slope of a line as

to drive home the point that the slope is the change in y for each change in
x. Fortunately for us, it turns out that not only do lines have a slope at each
point, but also most functions have a slope at each point. However, except
for straight lines, this slope changes from point to point. A picture will help
here. Consider Figure 9-1.

Figure 9-1: A function with several tangent lines indicated

The graph in Figure 9-1 is of a polynomial. Notice the lines drawn on
the figure that are just touching the function. These are tangent lines. And
as lines, they have a slope we can see in the plot. Now imagine moving one
of the lines over the function so that it continues to touch the function at
only one point; imagine how the slope of the line changes as it moves.

It turns out that how the slope changes over the function is itself a
function, and it’s called the derivative. Given a function and x value, the
derivative tells us the slope of the function at that point, x. The fact that
functions have derivatives is a fundamental insight of calculus, and of
fundamental importance to us.

The notion of a derivative is essential because for single variable
functions, the derivative at the point x is the gradient at x; it’s the direction
in which the function is changing. If we want to find the minimum of the
function, the x that gives us the smallest y, we want to move in the direction

opposite to the gradient as that will move us in the direction of the
minimum.

The derivative is written in many different ways, but the way that
echoes the idea of the slope, how y changes for a change in x, is

We’ll return to this form next when discussing the backpropagation
algorithm. That’s it for the gradient; now let’s take a closer look at descent.

Finding Minimums
Since we want a model that makes few mistakes, we need to find the set of
parameters that lead to a small value for the loss function. In other words,
we need to find a minimum of the loss function.

Look again at Figure 9-1. The minimum is on the right, where tangent
line C is. We can see it’s the minimum, and notice that the gradient is 0
there. This tells us we’re at a minimum (or maximum). If we start at B, we
see that the slope of the tangent line is negative (down and to the right).
Therefore, we need to move to an x value in the positive direction because
this is opposite to the sign of the gradient. Doing this will take us closer to
the minimum at C. Similarly, if we start at D, the slope of the tangent line is
positive (up and to the right) meaning we need to move in the negative x
direction, again toward C, to move closer to the minimum. All of this hints
at an algorithm for finding the minimum of a function: pick a starting point
(an x value) and use the gradient to move to a lower point.

For simple functions of just x, like those of Figure 9-1, this approach
will work nicely, assuming we start in a good place like B or D. When we
move to more than one dimension, it turns out that this approach will still
work nicely provided we start in a good place with our initial guess.

Working still with Figure 9-1 and assuming we’re starting at B, we see
that the gradient tells us to move to the right, toward C. But how do we
select the next x value to consider, to move us closer to C? This is the step
size, and it tells us how big a jump we make from one x position to the next.
Step size is a parameter we have to choose, and in practice this value, called
the learning rate, is often fluid and gets smaller and smaller as we move,

under the assumption that as we move, we get closer and closer to the
minimum value and therefore need smaller and smaller steps.

This is all well and good, even intuitive, but we have a small problem.
What if instead of starting at B or D, we start at A? The gradient at A is
pointing us to the left, not the right. In this case, our simple algorithm will
fail—it will move us to the left, and we’ll never reach C. The figure shows
only one minimum, at C, but we can easily imagine a second minimum, say
to the left of A, that doesn’t go as low (doesn’t have as small a y value) as
C. If we start at A, we’ll move toward this minimum, and not the one at C.
Our algorithm will fall into a local minimum. Once in, our algorithm can’t
get us out, and we won’t be able to find the global minimum at C. We’ll see
that this is a genuine issue for neural networks, but one that for modern
deep networks is, almost magically, not much of an issue after all.

So how does all of this help us train a neural network? The gradient tells
us how a small change in x changes y. If x is one of the parameters of our
network and y is the error given by the loss function, then the gradient tells
us how much a change in that parameter affects the overall error of the
network. Once we know that, we’re in a position to modify the parameter
by an amount based on the gradient, and we know that this will move us
toward a minimum error. When the error over the training set is at a
minimum, we can claim that the network has been trained.

Let’s talk a bit more about the gradients and parameters. All of our
discussion to this point, based on Figure 9-1, has been rather one-
dimensional; our functions are functions of x only. We talked about
changing one thing, the position along the x-axis, to see how it affects the y
position. In reality, we’re not working with just one dimension. Every
weight and bias in our network is a parameter, and the loss function value
depends upon all of them. For the simple network in Figure 8-1 alone, there
are 20 parameters, meaning that the loss function is a 20-dimensional
function. Regardless, our approach remains much the same: if we know the
gradient for each parameter, we can still apply our algorithm in an attempt
to locate a set of parameters minimizing the loss.

Updating the Weights
We’ll talk about how to get gradient values in a bit, but for the time being
let’s assume we have them already. We’ll say that we have a set of numbers

that tells us how, given the current configuration of the network, a change in
any weight or bias value changes the loss. With that knowledge, we can
apply gradient descent: we adjust the weight or bias by some fraction of that
gradient value to move us, collectively, toward a minimum of the entire loss
function.

Mathematically, we update each weight and bias using a simple rule:

w ← w –Δw

Here w is one of the weights (or biases), η (eta) is the learning rate (the step
size), and Δw is the gradient value.

Listing 9-1 gives an algorithm for training a neural network using
gradient descent.

1. Pick some intelligent starting values for the weights and biases.
2. Run the training set through the network using its current weights and
biases and calculate the average loss.
3. Use this loss to get the gradient for each weight and bias.
4. Update the weight or bias value by the step size times the gradient value.
5. Repeat from step 2 until the loss is low enough.

Listing 9-1: Gradient descent in five (deceptively) simple steps

The algorithm appears simple, but as they say, the devil is in the details.
We have to make choices at every step, and every choice we make will
prompt further questions. For example, step 1 says to “Pick some intelligent
starting values.” What should they be? It turns out that successfully training
a neural network depends critically on choosing good initial values. We
already saw how this might be so in our preceding example using Figure 9-
1 where if we start at A, we won’t find the minimum at C. Much research
has been conducted over the years related to step 1.

Step 2 is straightforward; it’s the forward-pass through the network. We
haven’t talked in detail about the loss function itself; for now, just think of it
as a function measuring the effectiveness of the network on the training set.

Step 3 is a black box for the time being. We’ll explore how to do it
shortly. For now, assume we can find the gradient values for each
parameter.

Step 4 follows the form of the previous equation that moves the
parameter from its current value to one that will reduce the overall loss. In

practice, the simple form of this equation is not sufficient; there are other
terms, like momentum, that preserve some fraction of the previous weight
change for the next iteration (next pass of the training data through the
network) so that parameters do not change too wildly. We’ll revisit
momentum later. For now, let’s look at a variation of gradient descent, the
one that is actually used to train deep networks.

Stochastic Gradient Descent
The previous steps describe gradient descent training of a neural network.
As we might expect, in practice there are many different flavors of this
basic idea. One that’s in widespread use and works well empirically is
called stochastic gradient descent (SGD). The word stochastic refers to a
random process. We’ll see next why the word stochastic goes before
gradient descent in this case.

Batches and Minibatches
Step 2 of Listing 9-1 says to run the complete training set through the
network using the current values of the weights and biases. This approach is
called batch training, so named because we use all of the training data to
estimate the gradients. Intuitively, this is a reasonable thing to do: we’ve
carefully constructed the training set to be a fair representation of the
unknown parent process that generates the data, and it’s this parent process
we want the network to successfully model for us.

If our dataset is small, like the original iris dataset of Chapter 5, then
batch training makes sense. But what if our training dataset isn’t small?
What if it’s hundreds of thousands or even millions of samples? We’ll be
facing longer and longer training times.

We’ve run into a problem. We want a large training set as that will
(hopefully) better represent the unknown parent process that we want to
model. But the larger the training set, the longer it takes to pass each sample
through the network, get an average value for the loss, and update the
weights and biases. We call passing the entire training set through the
network an epoch, and we’ll need many dozens to hundreds of epochs to
train the network. Doing a better job of representing the thing we want to

model means longer and longer computation times because of all the
samples that must be passed through the network.

This is where SGD comes into play. Instead of using all the training
data on each pass, let’s alternatively select a small subset of the training
data and use the average loss calculated from it to update the parameters.
We’ll calculate an “incorrect” gradient value because we’re estimating the
loss over the full training set using only a small sample, but we’ll save a lot
of time.

Let’s see how this sampling plays out with a simple example. We’ll
define a vector of 100 random bytes using NumPy:

>>> d = np.random.normal(128,20,size=100).astype("uint8")
>>> d
130, 141, 99, 106, 135, 119, 98, 147, 152, 163, 118, 149, 122,
133, 115, 128, 176, 132, 173, 145, 152, 79, 124, 133, 158, 111,
139, 140, 126, 117, 175, 123, 154, 115, 130, 108, 139, 129, 113,
129, 123, 135, 112, 146, 125, 134, 141, 136, 155, 152, 101, 149,
137, 119, 143, 136, 118, 161, 138, 112, 124, 86, 135, 161, 112,
117, 145, 140, 123, 110, 163, 122, 105, 135, 132, 145, 121, 92,
118, 125, 154, 148, 92, 142, 118, 128, 128, 129, 125, 121, 139,
152, 122, 128, 126, 126, 157, 124, 120, 152

Here the byte values are normally distributed around a mean of 128.
The actual mean of the 100 values is 130.9. Selecting subsets of these
values, 10 at a time, gives us an estimate of the actual mean value

>>> i = np.argsort(np.random.random(100))
>>> d[i[:10]].mean()
138.9

with repeated subsets leading to estimated means of 135.7, 131.7, 134.2,
128.1, and so forth.

None of the estimated means are the actual mean, but they are all close
to it. If we can estimate the mean from a random subset of the full dataset,
we can see by analogy that we should be able to estimate the gradients of
the loss function with a subset of the full training set. Since the sample is
randomly selected, the resulting gradient values are randomly varying
estimates. This is why we add the word stochastic in front of gradient
descent.

Because passing the full training set through the network on each
weight and bias update step is known as batch training, passing a subset
through is known as minibatch training. You will hear people use the term
minibatch quite frequently. A minibatch is the subset of the training data
used for each stochastic gradient descent step. Training is usually some
number of epochs, where the relationship between epochs and minibatches
is as follows:

In practice, we don’t really want to select the minibatches at random
from the full training set. If we do that, we run the risk of not using all the
samples: some might never be selected, and others might be selected too
often. Typically, we randomize the order of the training samples and select
fixed-size blocks of samples sequentially whenever a minibatch is required.
When all available training samples are used, we can shuffle the full
training set order and repeat the process. Some deep learning toolkits don’t
even do this; they instead cycle through the same set of minibatches again.

Convex vs. Nonconvex Functions
SGD sounds like a concession to practicality. In theory, it seems that we’d
never want to use it, and we might expect that our training results will
suffer because of it. However, the opposite is generally true. In some sense,
gradient descent training of a neural network shouldn’t work at all because
we’re applying an algorithm meant for convex functions to one that is
nonconvex. Figure 9-2 illustrates the difference between a convex function
and a nonconvex function.

Figure 9-2: A convex function of x (left). A nonconvex function of x (right).

A convex function is such that a line segment between any two points
on the function does not cross the function at any other point. The black line
on the left of Figure 9-2 is one example, and any such segment will not
cross the function at any other point, indicating that this is a convex
function. However, the same can’t be said of the curve on the right of
Figure 9-2. This is the curve from Figure 9-1. Here the black line does cross
the function.

Gradient descent is designed to find the minimum when the function is
convex, and because it relies only on the gradient, the first derivative, it’s
sometimes known as a first-order optimization method. Gradient descent
should not work, in general, with nonconvex functions because it runs the
risk of getting trapped in a local minimum instead of finding the global
minimum. Again, we saw this with the example in Figure 9-1.

Here’s where stochastic gradient descent helps. In multiple dimensions,
the gradient will point in a direction that isn’t necessarily toward the nearest
minimum of the loss function. This means that our step will be in a slightly
wrong direction, but that somewhat wrong direction might help us avoid
getting trapped somewhere we don’t want to be.

The situation is more complicated, of course, and more mysterious. The
machine learning community has been struggling with the contradiction
between the obvious success of using first-order optimization on the
nonconvex loss function and the fact that it shouldn’t work at all.

Two ideas are emerging. The first is what we just stated, that stochastic
gradient descent helps by actually moving us in a slightly wrong direction.
The second idea, which seems to be pretty much proven now, is that, for the
loss functions used in deep learning, it turns out that there are many, many
local minimums and that these are all basically the same, so that landing in
almost any one of them will result in a network that performs well.

Some researchers argue that most gradient descent learning winds up on
a saddle point; this is a place that looks like a minimum but isn’t. Imagine a
saddle for a horse and place a marble in the middle. The marble will sit in
place, but you could push the marble in a certain direction and have it roll
off the saddle. The argument, not without some justification, is that most
training ends on a saddle point, and better results are possible with a better
algorithm. Again, however, even the saddle point, if it is one, is still for
practical purposes a good place to be, so the model is successful regardless.

In practice, then, we should use stochastic gradient descent because it
leads to better overall learning and reduces the training time by not
requiring full batches. It does introduce a new hyperparameter, the
minibatch size, that we must select at some point before training.

Ending Training
We haven’t yet discussed a critical question: when should we stop training?
Remember that in Chapter 5, we went through some effort to create training
sets, validation sets, and test sets. This is where we’ll use the validation
sets. While training, we can use the accuracy, or some other metric, on the
validation set to decide when to stop. If using SGD, we typically run the
validation set through the network for each minibatch or set of minibatches
to compute the accuracy. By tracking the accuracy on the validation set, we
can decide when to stop training.

If we train for a long time, eventually two things usually happen. The
first is that the error on the training set goes toward zero; we get better and
better on the training set. The second is that the error on the validation set
goes down and then, eventually, starts to go back up.

These effects are due to overfitting. The training error goes down and
down as the model learns more and more to represent the parent distribution
that generated the dataset. But, eventually, it will stop learning general
things about the training set. At this point, we’re overfitting, and we want to

stop training because the model is no longer learning general features and is
instead learning minutiae about the particular training set we’re using. We
can watch for this by using the validation set while training. Since we don’t
use the samples in the validation set to update the weights and biases of the
network, it should give us a fair test of the current state of the network.
When overfitting starts, the error on the validation set will begin to go up
from a minimum value. What we can do then is to keep the weights and
biases that produced the minimum value on the validation set and claim that
those represent the best model.

We don’t want to use any data that has influenced training to measure
the final effectiveness of our network. We use the validation set to decide
when to stop training, so characteristics of the samples in the validation set
have also influenced the final model; this means we can’t strongly rely on
the validation set to give us an idea of how the model will behave on new
data. It’s only the held-out test set, unused until we declare victory over
training, that gives us some idea of how we might expect the model to
perform on data in the wild. So, just as it is anathema to report training set
accuracy as a measure of how good the model is, it’s also anathema to
report the validation set accuracy.

Updating the Learning Rate
In our generic update equation for changing the weights and biases based
on the gradient, we introduced a hyperparameter, η (eta), the learning rate or
step size. It’s a scale factor indicating how much we should update the
weight or bias based on the gradient value.

We previously stated that the learning rate doesn’t need to be fixed and
that it could, and even should, get smaller and smaller as we train under the
assumption that we need smaller and smaller steps to get to the actual
minimum value of the loss function. We didn’t state how we should actually
update the learning rate.

There’s more than one way to update the step size, but some are more
helpful than others. The MLPClassifier class of sklearn, which uses SGD
solvers, has three options. The first is to never change the learning rate—
just leave η at its initial value, η0. The second is to scale η so that it
decreases with epochs (minibatches) according to

where η0 is set by the user, t is the iteration (epoch, minibatch), and p is an
exponent on t, also picked by the user. The sklearn default p is 0.5—that is,
scale by , which seems a reasonable default.

The third option is to adapt the learning rate by watching the loss
function value. As long as the loss is decreasing, leave the learning rate
where it is. When the loss stops decreasing for a set number of minibatches,
divide the learning rate by some value like 5, the sklearn default. If we
never change the learning rate, and it’s too large, we might end up moving
around the minimum without ever being able to reach it because we’re
consistently stepping over it. It’s a good idea then to decrease the learning
rate when using SGD. Later in the book, we’ll encounter other optimization
approaches that automatically adjust the learning rate for us.

Momentum
There’s one last wrinkle in SGD we have to cover. As we saw previously,
the weight update equation for both gradient descent and SGD is

w ← w – ηΔw

We update the weight by the learning rate (η) times the gradient, which we
are representing here as Δw.

A common and powerful trick is to introduce a momentum term that
adds back some fraction of the previous Δw, the update of the prior
minibatch. The momentum term prevents the w parameter from changing
too quickly in response to a particular minibatch. Adding in this term gives
us

wi+1 ← wi – ηΔwi + μΔwi–1

We’ve added subscripts to indicate the next pass through the network (i +
1), the current pass (i), and the previous pass (i – 1). The previous pass Δw
is the one we need to use. A typical value for μ (mu), the momentum, is
around 0.9. Virtually all toolkits implement momentum in some form,
including sklearn.

Backpropagation
We’ve been operating under the assumption that we know the gradient
value for each parameter. Let’s discuss how the backpropagation algorithm
gives us these magic numbers. The backpropagation algorithm is perhaps
the single most important development in the history of neural networks as
it enables the training of large networks with hundreds, thousands, millions,
and even billions of parameters. This is especially true of the convolutional
networks we’ll work with in Chapter 12.

The backpropagation algorithm itself was published by Rumelhart,
Hinton, and Williams in 1986 in their paper “Learning Representations by
Back-propagating Errors.” It’s a careful application of the chain rule for
derivatives. The algorithm is called backpropagation because it works
backward from the output layer of the network toward the input layer,
propagating the error from the loss function down to each parameter of the
network. Colloquially, the algorithm is known as backprop; we’ll use that
term here, so we sound more like native machine learning experts.

Adding backprop into the training algorithm for gradient descent, and
tailoring it to SGD, gives us the algorithm in Listing 9-2.

1. Pick some intelligent starting values for the weights and biases.
2. Run a minibatch through the network using its current weights and biases
and calculate the average loss.
3. Use this loss and backprop to get the gradient for each weight and bias.
4. Update the weight or bias value by the step size times the gradient value.
5. Repeat from step 2 until the loss is low enough.

Listing 9-2: Stochastic gradient descent with backprop

Step 2 of Listing 9-2 is referred to as the forward pass; step 3 is the
backward pass. The forward pass is also how we’ll use the network after
it’s finally trained. The backward pass is backprop calculating the gradients
for us so that we can update the parameters in step 4.

We’ll describe backprop twice. First, we’ll do so with a simple example
and work with the actual derivatives. Second, we’ll work with a more
abstract notation to see how backprop applies to actual neural networks in a
general sense. There is no way to sugarcoat this: this section involves
derivatives, but we already have a good intuitive sense of what those are

from our discussion of gradient descent, so we should be in good shape to
proceed.

Backprop, Take 1
Suppose we have two functions, z = f (y) and y = g(x), meaning z = f (g(x)).
We know that the derivative of the function g gives us dy/dx, which tells us
how y changes when x changes. Similarly, we know that the derivative of
the function f will give us dz/dy. The value of z depends upon the
composition of f and g, meaning the output of g is the input to f, so if we
want to find an expression for dz/dx, how z changes with x, we need a way
to link through the composed functions. This is what the chain rule for
derivatives gives us:

This notation is especially nice because we can imagine the dy “term”
canceling just as it would if these were actual fractions.

How does this help us? In a neural network, the output of one layer is
the input to the next, which is composition, so we can see intuitively that
the chain rule might apply. Remember that we want the values that tell us
how the loss function changes with respect to the weights and biases. Let’s
call the loss function L and any given weight or bias w. We want to
calculate ∂ℒ/∂w for all the weights and biases.

Alarm bells should be going off in your head. The previous paragraph
slipped in new notation. So far, we’ve been writing derivatives as dy/dx, but
the derivative for the loss with respect to a weight was written as ∂ℒ/∂w.
What is this fancy ∂?

When we had a function of one variable, just x, there was only one
slope at a point to talk about. As soon as we have a function with more than
one variable, the idea of the slope at a point becomes ambiguous. There are
an infinite number of lines tangent to the function at any point. So we need
the idea of the partial derivative, which is the slope of the line in the
direction of the variable we’re considering when all other variables are
treated as fixed. This tells us how the output will change as we change only

the one variable. To note that we are using a partial derivative, we shift
from d to ∂, which is just a script d.

Let’s set up a straightforward network so that we can see how the chain
rule leads directly to the expressions we want. We’re looking at the network
in Figure 9-3, which consists of an input, two hidden layers of a single node
each, and an output layer.

Figure 9-3: A simple network to illustrate the chain rule

For simplicity, we’ll ignore any bias values. Additionally, let’s define the
activation function to be the identity function, h(x) = x. This simplification
removes the derivative of the activation function to make things more
transparent.

For this network, the forward pass computes

h1 = w1x

 h2 = w2h1

 y = w3h2

which follows the form we’ve used previously, chaining things together by
making the output of one layer the input to the next. This gives us the
output of the network, y, for input x. If we’re looking to train the network,
we’ll have a training set, a set of pairs, (xi, ŷ), i = 0, 1, …, that are examples
of what the output should be for a given input. Note that the forward pass
moved from the input, x, to the output, y. We’ll next see why the backward
pass moves from the output to the input.

Now let’s define the loss function, ℒ, to be the squared error between y,
the network output for a given input x, and ŷ, the output we should get.
Functionally, the loss looks like the following.

For simplicity, we’re ignoring the fact that the loss is a mean over the
training set or some minibatch drawn from it. The factor of is not strictly
necessary but it’s commonly used to make the derivative a bit nicer. Since
we’re looking to minimize the loss for a particular set of weights, it doesn’t
matter that we’re always multiplying the loss by a constant factor of —the
smallest loss will still be the smallest loss regardless of its actual numeric
value.

To use gradient descent, we need to find how the loss changes with the
weights. In this simple network, that means we need to find three gradient
values, one each for w1, w2, and w3. This is where the chain rule comes into
play. We’ll write the equations first and then talk about them:

The order of these equations shows why this algorithm is called
backpropagation. To get the partial derivative for the output layer
parameter, we need only the output and the loss, y and ℒ. To get the partial
derivative for the middle layer weight, we need the following two partial
derivatives from the output layer:

Finally, to get the partial derivative for the input layer weight, we need
partial derivatives from the output and middle layer. In effect, we have
moved backward through the network propagating values from later layers.

For each of these equations, the right-hand side matches the left-hand
side if we imagine the “terms” canceling like fractions. Since we selected a
particularly simple form for the network, we can calculate the actual
gradients by hand. We need the following gradients, from the right-hand
side of the preceding equations.

The ∂ℒ/∂y comes from the form we selected for the loss and the rules of
differentiation from calculus.

Putting these back into the equations for the gradients of the weights
gives us

After a forward pass, we have numeric values for all the quantities on
the right-hand side of these equations. Therefore, we know the numeric
value of the gradients. The update rule from gradient descent then tells us to
change the weights like the following.

where η is the learning rate parameter defining how large a step to take
when updating.

To recap, we need to use the chain rule, the heart of the backprop
algorithm, to find the gradients we need to update the weights during
training. For our simple network, we were able to work out the value of
these gradients explicitly by moving backward through the network from
the output toward the input. Of course, this is just a toy network. Let’s now
take a second look at how to use backprop in a more general sense to
calculate the necessary gradients for any network.

Backprop, Take 2

Let’s begin by revisiting the loss function and introducing some new
notation. The loss function is a function of all the parameters in the
network, meaning that every weight and bias value contributes to it. For
example, the loss for the network of Figure 8-1, which has 20 weights and
biases, could be written as

Note we’ve introduced a new notation for the parameters:

This represents the weight that links the j-th input, an output of the i – 1
layer, to the k-th node of layer i. We also have

to represent the bias value for the k-th node of the i-th layer. Here layer 0 is
the input layer itself. The parentheses on the exponent are a label, the layer
number; they should not be interpreted as actual exponents. Therefore,

is the weight from the third output of the first layer to the first node of the
second layer. This is the highlighted weight in Figure 9-4. Remember that
we always number nodes top to bottom, starting with 0.

Figure 9-4: The network of Figure 8-1 with weight w(2)
20 marked with a bold line

This notation is a bit daunting, but it will let us reference any weight or
bias of the network precisely. The number we need to use backprop is the
partial derivative of the loss with respect to each weight or bias. Therefore,
what we want to find ultimately is written, in all its glorious mathematical
notation, as

This gives us the slope: the amount the loss will change for a change in the
weight linking the k-th node of the i-th layer to the j-th output of the i – 1
layer. A similar equation gives us the partial derivatives of the biases.

We can simplify this cumbersome notation by dealing only with the
layer number understanding that buried in the notation is a vector (biases,
activations) or matrix (weights) so that we want to find

These correspond to a matrix for all the weights linking layer i – 1 to i, and
a vector for all the biases of layer i, respectively.

We’ll protect our notational sanity by looking at things in terms of
vectors and matrices. Let’s start with the output layer and see what that
buys us. We know that the activations of the output layer, layer L, are found
via

a(L) = h(W(L)a(L–1) + b(L))

with a being the activations from layer L – 1, b the bias vector for layer L,
and W the weight matrix between layers L – 1 and L. The activation
function is h.

Additionally, we’ll define the argument to h to be z(L)

z(L) ≡ W(L)a(L–1) + b(L)

and call ∂L/∂z(l) the error, the contribution to the loss from the inputs to
layer l. Next, we define

so that we can work with δ (delta) from now on.
For the output layer, we can write δ as

The notation h′(z(L)) is another way to write the derivative of h (with respect
to z) evaluated at z(L). The ⋅ represents elementwise multiplication. This is
the way NumPy works when multiplying two arrays of the same size so that
if C = A ⋅ B, then Cij = AijBij. Technically, this product is called the
Hadamard product, named for the French mathematician Jacques
Hadamard.

The preceding means that to use backpropagation, we need a loss
function that can be differentiated—a loss function for which a derivative
exists at every point. This isn’t too much of a burden; the loss functions
we’ll examine in the next section meet this criterion. We also need an
activation function that can be differentiated so we can find h(z). Again, the

activation functions we have considered so far are essentially all
differentiable.

Note I say “essentially” because the derivative of the ReLU is undefined at x = 0. The
derivative from the left is 0 while the derivative from the right is 1. In practice,
implementations choose a particular value to return should the argument to the derivative
of the ReLU be exactly 0. For example, TensorFlow simply asks if the argument is less
than or equal to 0 and, if it is, returns 0 as the derivative. Otherwise, it returns 1. This
works because, numerically, there is so much rounding off happening to floating-point
values during calculations that it’s unlikely the value passed to the derivative of the ReLU
function was actually meant to be identically 0.

The equation for δ tells us the error due to the inputs to a particular
layer. We’ll see next how to use this to get the error from each weight of a
layer.

With δ(L) in hand, we can propagate the error down to the next layer via

δ(l) = ((W(l+1))Tδl+1
) · h′(z(l))

where, for the next-to-last layer, l + 1 = L. The T represents matrix
transpose. This is a standard matrix operation that involves a reflection
across the diagonal so that if

then

We need the transpose of the weight matrix because we are going in the
opposite direction from the forward pass. If there are three nodes in layer l
and two in layer l + 1, then the weight matrix between them, W, is a 2 × 3
matrix, so Wx is a two-element vector. In backprop, we are going from layer
l + 1 to layer l, so we transpose the weight matrix to map the two-element
vector, here δ, to a three-element vector for layer l.

The δ(l) equation is used for every layer moving backward through the
network. The output layer values are given by δ(L), which starts the process.

Once we have the errors per layer, we can finally find the gradient
values we need. For the biases, the values are the elements of δ for that
layer

for the j-th element of the bias for the l-th layer. For the weights, we need

linking the k-th output of the previous layer to the j-th error for the current
layer, l.

Using the preceding equations for each layer of the network gives us the
set of weight and bias gradient values needed to continue applying gradient
descent.

As I hope you can see from this rather dense section, we can use a
convenient mathematical definition of the error to set up an iterative process
that moves the error from the output of the network back through the layers
of the network to the input layer. We cannot calculate the errors for a layer
without already knowing the errors for the layer after it, so we end up
propagating the error backward through the network, hence the name
backpropagation.

Loss Functions
The loss function is used during training to measure how poorly the
network is doing. The goal of training is to make this value as small as
possible, while still generalizing to the true characteristics of the data. In
theory, we can create any loss function we want if we feel it’s relevant to
the problem at hand. If you read the deep learning literature, you’ll see
papers do this all the time. Still, most research falls back on a few standard

loss functions that, empirically, do a good job most of the time. We’ll
discuss three of those here: absolute loss (sometimes called L1 loss), mean
squared error (sometimes called L2 loss), and cross-entropy loss.

Absolute and Mean Squared Error Loss
Let’s start with the absolute and mean squared error loss functions. We’ll
discuss them together because they’re very similar mathematically.

We’ve seen mean squared error already in our discussion of backprop.
Absolute loss is new. Mathematically, the two equations are

where we’ve labeled them abs for absolute value and MSE for mean
squared error, respectively. Note that we’ll always use y for the network
output, the output from the forward pass with input x. We’ll always use ŷ
for the known training class label, which is always an integer label starting
with 0.

Even though we’re writing the loss functions in a simple form, we need
to remember that when used, the value is really the mean of the loss over
the training set or minibatch. This is also the origin of mean in mean
squared error. Therefore, we really should be writing this:

Here we’re finding the average of the squared error loss over the N values
in the training set (or minibatch).

Both of these loss functions are reasonable if we consider what they are
measuring. We want the network to output a value that matches the
expected value, the sample label. The difference between these two is an
indication of how wrong the network output is. For the absolute loss, we
find the difference and drop the sign, which is what the absolute value does.

For the MSE loss, we find the difference and then square it. This also makes
the difference positive because multiplying a negative number by itself
always results in a positive number. As mentioned in the
“Backpropagation” section on page 200, the factor on the MSE loss
simplifies the derivative of the loss function but does not change how it
works.

The absolute loss and MSE are different, however. The MSE is more
sensitive to outliers. This is because we’re squaring the difference, and a
plot of y = x2 grows quickly as x, the difference, gets larger. For the absolute
loss, this effect is minimized because there is no squaring; the difference is
merely the difference.

In truth, neither of these loss functions are commonly used for neural
networks when the goal of the network is classification, which is our
implicit assumption in this book. It’s more common to use the cross-entropy
loss, presented next. We want the network output to lead to the correct class
label for the input. However, it’s entirely possible to train a network to
output a continuous real value instead. This is called regression, and both of
these loss functions are quite useful in that context.

Cross-Entropy Loss
Even though we can use the absolute and MSE loss functions in training a
neural network for classification, the most commonly used loss is the cross-
entropy loss (closely related to the log-loss). This loss function assumes the
output of the network is a softmax (vector) for the multiclass case or a
sigmoid (logistic, scalar) for the binary case. Mathematically, it looks like
this for M classes in the multiclass case:

What is the cross-entropy doing that often makes it a better choice for
training a neural network for classification? Let’s think about the multiclass
case with softmax outputs. The definition of softmax means that the

network outputs can be thought of as probability estimates of the likelihood
that the input represents each of the possible classes. If we have three
classes, we might get a softmax output that looks like this:

y = (0.03, 0.87, 0.10)

This output roughly means that the network thinks there is a 3 percent
chance the input is of class 0, an 87 percent chance it is of class 1, and a 10
percent chance it is of class 2. This is the output vector, y. We compute the
loss by supplying the actual label via a vector where 0 means not this class
and 1 means this class. So, the ŷ vector associated with the input that led to
this y would be

ŷ = (0,1,0)

for an overall loss value of

ℒent = –(0(log 0.03) + 1(log 0.87) + 0(log 0.10)) = 0.139262

The three predictions of the network can be thought of together as a
probability distribution, just like the one we get when we sum together the
likelihoods of different outcomes for throwing two dice. We also have a
known probability distribution from the class label. For the preceding
example, the actual class is class 1, so we made a probability distribution
that assigns no chance to classes 0 and 2, and 100 percent probability to
class 1, the actual class. As the network trains, we expect the output
distribution to be closer and closer to (0,1,0), the distribution for the label.

Minimizing the cross-entropy drives the network toward better and
better predictions of the probability distribution for the different classes we
want the network to learn about. Ideally, these output distributions will look
like the training labels: 0 for all classes except the actual class, which has an
output of 1.

For classification tasks, we usually use the cross-entropy loss. The
sklearn MLPClassifier class uses cross-entropy. Keras supports cross-entropy
loss as well, but provides many others, including absolute and mean
squared error.

Weight Initialization
Before we can train a neural network, we need to initialize the weights and
biases. Step 1 of Listing 9-1 on gradient descent says to “Pick some
intelligent starting values for the weights and biases.”

The initialization techniques examined here all depend upon selecting
random numbers in some range. More than that, the random numbers need
to be either uniform over that range or normally distributed. Uniformly
distributed means that all the values in the range are equally likely to be
selected. This is what you get for each number, 1 through 6, if you roll a fair
die many times over. Normally distributed values were introduced in
Chapter 4. These are values with a particular mean, the most likely value
returned, and a range around the mean over which the likelihood of a value
being selected falls off gradually toward 0 according to a parameter known
as the standard deviation. This is the classic bell curve shape. Either
distribution can be used. The main point is that the initial weights are not all
the same value (like 0) because if they are, all gradients will be the same
during backprop, and each weight will change in the same way. The initial
weights need to be different to break this symmetry and allow individual
weights to adapt themselves to the training data.

In the early days of neural networks, people initialized the weights and
biases by choosing values in [0,1) uniformly (U(0,1)) or by drawing them
from the standard normal distribution, N(0,1), with a mean of 0 and a
standard deviation of 1. These values were often multiplied by some small
constant, like 0.01. In many cases, this approach works, at least for simple
networks. However, as networks became more complex, this simple
approach fell apart. Networks initialized in this way had trouble learning,
and many failed to learn at all.

Let’s fast-forward several decades and a great deal of research later.
Researchers realized that precisely how the weights of a particular layer
should be initialized depended primarily on a few things: the type of
activation function used and the number of weights coming into the layer
(fin) and, possibly, going out (fout). These realizations led to the main
initialization approaches in use today.

The sklearn MLPClassifier class uses Glorot initialization. This is also
sometimes called Xavier initialization, though some toolkits mean

something different when they use that term.1 (Note Xavier and Glorot
actually refer to the same person.) Let’s see how sklearn uses Glorot
initialization. The key method in MLPClassifier for initializing the weights is
_init_coef. This method uses a uniform distribution and sets the range for it so
that the weights are in

where the bracket notation indicates the smallest possible value selected
(left) to the largest possible value (right). As the distribution is uniform,
every value in that range is equally likely to be selected.

We did not yet specify what A is. This value depends upon the
activation function used. According to the literature, if the activation
function is a sigmoid (logistic), then A = 2 is suggested. Otherwise, A = 6 is
recommended.

Now to confuse things. Some toolkits, like Caffe, use an alternate form
of Xavier initialization by which they mean a multiplier on samples from a
standard normal distribution. In that case, we initialize the weights with
draws from

To add even more confusion, the introduction of the rectified linear unit
(ReLU) resulted in a further recommended change. This is known now as
He initialization and it replaces the 1 in Xavier initialization with a 2:

For more on this, see “Delving Deep into Rectifiers: Surpassing Human-
Level Performance on ImageNet Classification” by Kaiming He et al.

The key point with these initialization schemes is that the old-school
“small random value” is replaced by a more principled set of values that
take the network architecture into account via fin and fout.

The preceding discussion ignored bias values. This was intentional.
While it might be okay to initialize the bias values instead of leaving them
all 0, prevailing wisdom, which is fickle and fluid, currently says it’s best to
initialize them all to 0. That said, sklearn MLPClassifier initializes the bias
values in the same way as the weights.

Overfitting and Regularization
The goal of training a model is for it to learn essential, general features of
the parent distribution the dataset is sampled from. That way, when the
model encounters new inputs, it’s prepared to interpret them correctly. As
we’ve seen in this chapter, the primary method for training a neural network
involves optimization—looking for the “best” set of parameters so that the
network makes as few errors as possible on the training set.

However, it’s not enough to simply look for the best set of values that
minimizes the training error. If we make no mistakes when classifying the
training data, it’s often the case that we’ve overfitted and haven’t actually
learned general features of the data. This is more likely the situation with
traditional models, neural network or classical, and less so with deep
models like the convolutional networks of Chapter 12.

Understanding Overfitting
We’ve mentioned overfitting from time to time before now but have not
gained any good intuition as to what it is. One way to think of overfitting is
to consider a separate problem, the problem of fitting a function to a set of
points. This is known as curve fitting, and one approach to it is to optimize
some measure of error over the points by finding parameters to the function
that minimize the error. This should sound familiar. It’s exactly what we do
when training a neural network.

As an example of curve fitting, consider the following points:

x y
0.00 50.0
0.61 –17.8
1.22 74.1
1.83 29.9

x y
2.44 114.8
3.06 55.3
3.67 66.0
4.28 89.1
4.89 128.3
5.51 180.8
6.12 229.7
6.73 229.3
7.34 227.7
7.95 354.9
8.57 477.1
9.18 435.4
9.79 470.1

We want to find a function, y = f (x), that describes these points—a function
that might have been the parent function these points were measured from,
albeit noisily.

Typically, when curve fitting, we already know the form of the function;
it’s the parameters we’re looking for. But what if we didn’t know the exact
form of the function, only that it was some kind of polynomial? In general,
a polynomial looks like this for some maximum exponent, n:

y = a0 + a1x + a2x2 + a3x3 + … + anxn

The goal of fitting a polynomial to a dataset is to find the parameters,
a0,a1,a2,…,an. The method for doing this usually minimizes the squared
difference between y, a given output for a given x position, and f (x), the
function output at the same x for the current set of parameters. This should
sound very familiar, as we discussed using precisely this type of loss
function for training a neural network.

How does this relate to overfitting? Let’s plot the previous dataset,
along with the result of fitting two different functions to it. The first
function is

y = a0 + a1x + a2x2

which is a quadratic function, the type of function you may have learned to
hate as a beginning algebra student. The second function is

y = a0 + a1x + a2x2 + a3x3 + … + a14x14 + a15x15

which is a 15th-degree polynomial. The results are shown in Figure 9-5.

Figure 9-5: A dataset and two functions fit to it: a quadratic (dashed) and a 15th-degree polynomial
(solid)

Which function does a better job of capturing the general trend of the
dataset? The quadratic clearly follows the general trend of the data, while
the 15th-degree polynomial is all over the place. Look again at Figure 9-5.
If all we use to decide that we have fit the data well is the distance between
the data points and the corresponding function value, we’d say that the
15th-degree polynomial is the better fit; it passes through nearly all the data

points, after all. This is analogous to training a neural network and
achieving perfection on the training set. The cost of that perfection might
well be a poor ability to generalize to new inputs. The quadratic fit of
Figure 9-5 did not hit the data points, but it did capture the general trend of
the data, making it more useful should we want to make predictions about
the y values we’d expect to get for a new x value.

When a human wants to fit a curve to something like our sample
dataset, they usually look at the data and, noticing the general trend, select
the function to fit. It might also be the case that the expected functional
form is already known from theory. If we want to be analogous to neural
networks, however, we’ll find ourselves in a situation where we don’t know
the proper function to fit, and need to find a “best” one from the space of
functions of x along with its parameters.

Hopefully, this example drives home the idea that training a neural
network is not an optimization problem like other optimization problems—
we need something to push the function the network is learning in a
direction that captures the essence of the data without falling into the trap of
paying too much attention to specific features of the training data. That
something is regularization, and you need it, especially for large networks
that have a huge capacity.

Understanding Regularization
Regularization is anything that pushes the network to learn the relevant
features of the parent distribution and not the details of the training set. The
best form of regularization is increasing the size and representative nature
of the training set. The larger the dataset and the better it represents all the
types of samples the network will encounter in the wild, the better it will
learn. Of course, we’re typically forced to work with a finite training set.
The machine learning community has spent, and is spending, untold time
and energy learning how to get more from smaller datasets.

In Chapter 5, we encountered perhaps the second-best way to regularize
a model, data augmentation. This is a proxy for having a larger dataset,
where we use the data we do have to generate new training samples that are
plausibly from the parent distribution. For example, we considered
increasing a limited set of training images by simple rotations, flips, and
shifts of the images already in the training set. Data augmentation is

powerful, and you should use it when possible. It’s particularly easy to
apply when working with images as inputs, though in Chapter 5 we also
saw a way to augment a dataset consisting of continuously valued vectors.

We now have two tricks in our regularization toolbox: more data and
data augmentation. These are the best tricks to know, but there others that
you should use when available. Let’s look at two more: L2 regularization
and dropout. The former is now standard and widely supported by the
toolkits, including sklearn and Keras. The latter is powerful and was a game
changer when it appeared in 2012.

L2 Regularization
A model with a few weights that have large values is somehow less simple
than a model that has smaller weights. Therefore, keeping the weights small
will hopefully allow the network to implement a simpler function better
suited to the task we want it to learn.

We can encourage the weights to be small by using L2 regularization.
L2 regularization adds a term to the loss function so that the loss becomes

where the first term is whatever loss we’re already using, and the second
term is the new L2 regularization term. Notice that the loss is a function of
the input (x), the label (y), the weights (w), and the biases (b), where we
mean all the weights and all the biases of the network. The regularization
term is a sum over all the weights in the network and only the weights. The
“L2” label is what causes us to square the weights.

Here L2 refers to the type of norm or distance. You might be familiar
with the equation for the distance between two points on the plane: d2 = (x2
– x1)2 + (y2 – y1)2. This is the Euclidean distance, also known as the L2
distance, because the values are squared. This is why the regularization
term is called L2 and the weight values are squared. It’s also possible to use
an L1 loss term, where instead of squaring the weights, one uses the
absolute value. In practice, L2 regularization is more common and, at least
empirically, seems to work better for neural network classifiers.

The λ (lambda) multiplier sets the importance of this term; the larger it
is, the more it dominates the overall loss used to train the network. Typical
values of λ are around 0.0005. We’ll see in a little bit why the multiplier is
λ/2 and not just λ.

What is the L2 term doing? Recall that the loss is the thing we want to
minimize while training. The new L2 term sums the squares of the weights
of the network. If weights are large, the loss is large, and that’s something
we don’t want while training. Smaller weights make the L2 term smaller, so
gradient descent will favor small weights, whether they are positive or
negative, since we square the weight value. If all the weights of the network
are relatively small, and none strongly dominate, then the network will use
all of the weights to represent the data, and this is a good thing when it
comes to preventing overfitting.

L2 regularization is also known as weight decay because of what the L2
term does during backprop. Backprop gives us the partial derivative of the
loss function with respect to wi. Adding L2 regularization means that the
partial derivative of the total loss now adds in the partial derivative of the
L2 term itself with respect to any particular weight, wi. The derivative of

 is λw; the cancels the factor of 2 that would otherwise be there. Also,
since we want the partial derivative with respect to a specific weight, wi, all
the other parts of the L2 term go to 0. The net effect is that the update for
weight wi during gradient descent becomes

where η (eta) is the learning rate, and we are ignoring any additional
momentum term. The ηλwi term is new. It is due to L2 regularization, and
we can see that it’s pushing the weights toward 0 as training progresses
because both η and λ are < 1, so on each minibatch, we’re subtracting some
small fraction of the weight value. The weight can still increase, but to do
so, the gradient of the original loss must be large.

We previously stated that the form of the loss function is up to us, the
developer of the network. A regularization term isn’t the only kind of term
we can add to the loss function. As we did with the L2 term, we can create
and add terms to change the behavior of the network during training and

help it learn what we want it to learn. This is a powerful technique that can
be used to customize various aspects of what a neural network learns.

Dropout
Dropout took the machine learning community by storm when it appeared
in 2012, see “Imagenet Classification with Deep Convolutional Neural
Networks” by Alex Krizhevsky et al. As of Fall 2020, this paper has been
cited over 70,000 times, and as one well-known machine learning
researcher told me privately at the time, “If we had had dropout in the
1980s, this would be a different world now.” So, what is dropout, and why
was everyone so excited by it?

To answer that question, we need to review the concept of ensembles of
models. We talked about them a bit in Chapter 6. An ensemble is a group of
models, all slightly different and all trained on the same dataset or a slightly
different version of the dataset. The idea is straightforward: since training
most models involves randomness, training multiple similar models should
result in a set that is mutually reinforcing—one where the set of outputs can
be combined to produce a result that is better than any one model alone.
Ensembles are useful, and we use them often, but they come at a price in
terms of runtime. If it takes x milliseconds to run a sample through a neural
network, and we have an ensemble of 20 networks, then our evaluation time
(inference time) has jumped to 20x milliseconds, ignoring the possibility of
parallel execution. In some situations, that is unacceptable (to say nothing
of the storage and power requirements for 20 big networks versus 1). Since
the net result of an ensemble of models is better overall performance, we
can say that an ensemble is a kind of regularizer as well since it embodies
the “wisdom of the crowd.”

Dropout takes the ensemble idea to an extreme but does so only during
training and without creating a second network so that in the end, we still
have one model to deal with. Like many good ideas in statistics, this one
requires randomness. Right now, when we train the network, we do a
forward pass using the current weights and biases. What if, during that
forward pass, we randomly assign a 0 or a 1 to each node of the network so
that nodes with a 1 are used in the next layer while nodes with a 0 are
dropped out? We’d effectively be running the training samples through a

different neural network configuration each time. For example, see Figure
9-6.

Figure 9-6: Possible networks used when applying dropout during training

Here we show the network of Figure 8-1 but with a 0 or 1 for each of
the hidden nodes. This 0 or 1 determines whether the output is used or not.
The heavy lines in the network show the connections that are still valid. In
other words, the heavy lines show the network that was actually used to
create the output accumulated for backprop. If we do this for each training
sample, we can readily see that we’ll be training a vast number of neural
networks, each trained on a single sample. Moreover, since the weights and
biases persist between forward passes, all the networks will share those
weights in the hope that the process will reinforce good weight values that
represent the essence of the dataset. As we’ve mentioned several times in
this chapter, learning the essence of the data is the goal of training; we want
to generalize well to new data from the same virtual parent distribution that
generated the training set in the first place. Dropout is serious
regularization.

I previously said that we “randomly assign a 0 or a 1” to the nodes. Do
we assign them equally? The probability with which we drop nodes in a
layer is something we get to specify. Let’s call it p. Typically, p = 0.5,
meaning about 50 percent of the nodes in a layer will be dropped for each
training sample. Setting p = 0.8 would drop 80 percent of the nodes, while p
= 0.1 would drop only 10 percent. Sometimes a different probability is used
for different layers of the network, especially the first input layer, which
should use a smaller probability than the hidden nodes. If we drop too many
of the inputs, we’ll lose the source of the signal we’re trying to get the
network to recognize. Dropout applied to the input layer can be thought of
as a form of data augmentation.

Conceptually, dropout is training a large set of networks that share
weights. The output of each of these networks can be combined with the
others via a geometric mean, assuming we use a softmax output. The
geometric mean of two numbers is the square root of their product. The
geometric mean of n numbers is the nth root of their product. In the case of
dropout, it turns out that this can be approximated by using the entire
network with all the weights multiplied by the probability that they would
be included. Given we said p is the probability that a node is dropped, the
weights need to be multiplied by 1 – p, as that is the probability the node
would not be dropped. So, if we fix p = 0.5 and use it for all the nodes, then
the final network is the one where all the weights are divided by 2.

As of this writing, sklearn’s MLPClassifier class does not support dropout,
but Keras most certainly does, so we’ll see dropout again in Chapter 12.

Summary
Because this is an important chapter, let’s review what we’ve learned in a
little more depth. In this chapter, we described how to train a neural
network using gradient descent and backpropagation. The overall sequence
of steps is as follows:

1. Select the architecture of the model. This means the number of layers,
their sizes, and the type of activation function.

2. Initialize the weights and biases of the network using intelligently
selected initial values.

3. Run a minibatch of training samples through the network and compute
the mean loss over the minibatch. We discussed common loss
functions.

4. Using backpropagation, calculate the contribution of each weight and
bias to the overall loss for the minibatch.

5. Using gradient descent, update the weight and bias values of the model
based on the contributions found via backpropagation. We discussed
stochastic gradient descent and its relationship to the concept of
minibatches.

6. Repeat from step 3 until the desired number of epochs or minibatches
have been processed, or the loss has dropped below some threshold, or
stopped changing much, or when the score on a validation set of
samples has reached its minimum value.

7. If the network isn’t learning well, apply regularization and train again.
We looked at L2 regularization and dropout in this chapter. Data
augmentation, or increasing the size or representativeness of the
training set, can also be thought of as regularization.

The goal of training a neural network is to learn the parameters of a
model that generalizes well to unseen inputs. This is the goal of all
supervised machine learning. For a neural network, we know it’s able to
approximate any function, with enough capacity and enough training data.
Naïvely, we may think that we are doing nothing more than ordinary
optimization, but, in an important sense, we are not. Perfection on the
training set is often not a good thing; it’s often a sign of overfitting. Instead,
we want the model to learn a function that captures the essential nature of
the function implied by the training set. We use the test data to give us
confidence that we’ve learned a useful function.

In the next chapter, we’ll get real and explore traditional neural
networks through a series of experiments using sklearn.

1. For more on these, see Glorot, Xavier, and Yoshua Bengio.
“Understanding the Difficulty of Training Deep Feedforward Neural
Networks.”

10
EXPERIMENTS WITH NEURAL

NETWORKS

In Chapter 9, we discussed the theory behind neural networks. In this
chapter, we’ll trade equations for code and run a number of experiments
designed to increase our intuition regarding the essential parameters of
neural networks: architecture and activation functions, batch size, base
learning rate, training set size, L2 regularization, momentum, weight
initialization, feature ordering, and the precision of the weights and biases.

To save space and eliminate tedious repetition, we won’t show the
specific code for each experiment. In most cases, the code is only trivially
different from the previous example; we’re usually changing only the
particular argument to the MLPClassifier constructor we’re interested in. The
code for each experiment is included in the set of files associated with this
book, and we’ll list the network parameters and the name of the file. When
necessary, we’ll provide code to clarify a particular approach. We’ll show
the code for the first experiment in its entirety.

Our Dataset
We’ll be working with the MNIST dataset’s vector form, which we
assembled in Chapter 5. Recall that this dataset consists of 28×28 pixel 8-
bit grayscale images of handwritten digits, [0,9]. In vector form, each 28 ×

28 image is unraveled into a vector of 28 × 28 = 784 elements, all bytes
([0,255]). The unraveling lays each row end to end. Therefore, each sample
has 784 elements and an associated label. The training set has 60,000
samples, while the test set has 10,000. For our experiments, we won’t use
all of the data in the training set. This is to help illustrate the effect of
network parameters and to keep our training times reasonable. Refer back
to Figure 5-3 for representative MNIST digits.

The MLPClassifier Class
The MLPClassifier class follows the same format as the other sklearn
classifiers. There is a constructor and the expected methods: fit for training,
score for applying the classifier to test data, and predict to make a prediction
on unknown inputs. We’ll also use predict_proba to return the actual predicted
per class probabilities. The constructor has many options:

MLPClassifier(hidden_layer_sizes=(100,), activation='relu',
 solver='adam', alpha=0.0001, batch_size='auto',
 learning_rate='constant', learning_rate_init=0.001,
 power_t=0.5, max_iter=200, shuffle=True,
 random_state=None, tol=0.0001, verbose=False,
 warm_start=False, momentum=0.9, nesterovs_momentum=True,
 early_stopping=False, validation_fraction=0.1, beta_1=0.9,
 beta_2=0.999, epsilon=1e-08)

Here we’ve provided the default values for each parameter. See the
sklearn documentation page at http://scikit-learn.org/ for a complete
description of each parameter. We’ll set some of these to specific values,
and others will be changed for the experiments while still others are
relevant in only specific situations. The key parameters we’ll work with are
in Table 10-1.

The following set of experiments explores the effect of various
MLPClassifier parameters. As mentioned, we’ll show all the code used for the
first experiment, understanding that only small changes are needed to
perform the other experiments. At times, we’ll show little code snippets to
make the change concrete.

Table 10-1: Important MLPClassifier Constructor Keywords and Our Default Values for Them

http://scikit-learn.org/

Keyword DescriptionKeyword Description
hidden_layer_sizes Tuple giving the hidden layer

sizes
activation Activation function type; for

example, ReLU
alpha L2 parameter—we called it λ

(lambda)
batch_size Minibatch size
learning_rate_init The learning rate, η (eta)
max_iter Number of training epochs
warm_start Continue training or start again
momentum Momentum
solver Solver algorithm ("sgd")
nesterovs_momentum Use Nesterov momentum (False)
early_stopping Use early stopping (False)
learning_rate Learning rate schedule

("constant")
tol Stop early if loss change < tol

(1e-8)
verbose Output to console while training

(False)

Architecture and Activation Functions
When designing a neural network, we immediately face two fundamental
questions: what architecture and what activation function? These are
arguably the most important deciding factors for a model’s success. Let’s
explore what happens when we train a model using different architectures
and activation functions while holding the training dataset fixed.

The Code
As promised, for this first experiment we’ll show the code in its entirety,
starting with the helper functions in Listing 10-1.

import numpy as np
import time
from sklearn.neural_network import MLPClassifier

def run(x_train, y_train, x_test, y_test, clf):
 s = time.time()
 (*\pagebreak*)
 clf.fit(x_train, y_train)
 e = time.time()-s
 loss = clf.loss_
 weights = clf.coefs_
 biases = clf.intercepts_
 params = 0
 for w in weights:
 params += w.shape[0]*w.shape[1]
 for b in biases:
 params += b.shape[0]
 return [clf.score(x_test, y_test), loss, params, e]

def nn(layers, act):
 return MLPClassifier(solver="sgd", verbose=False, tol=1e-8,
 nesterovs_momentum=False, early_stopping=False,
 learning_rate_init=0.001, momentum=0.9, max_iter=200,
 hidden_layer_sizes=layers, activation=act)

Listing 10-1: Helper functions for experimenting with the architecture and activation function. See
mnist_nn_experiments.py.

Listing 10-1 imports the usual modules and then defines two helper
functions, run and nn. Starting with nn, we see that all it does is return an
instance of MLPClassifier using the hidden layer sizes and the given activation
function type.

The hidden layer sizes are given as a tuple, where each element is the
number of nodes in the corresponding layer. Recall that sklearn works with
only fully connected layers, so a single number is all we need to specify the
size. The input samples given for training determine the size of the input
layer. Here the input samples are vectors representing the digit images, so
there are 28 × 28 = 784 nodes in the input layer.

What about the output layer? It’s not specified explicitly because it
depends on the number of classes in the training labels. The MNIST dataset
has 10 classes, so there will be 10 nodes in the output layer. When the
predict_proba method is called to get an output probability, sklearn applies a
softmax over the 10 outputs. If the model is binary, meaning the only class
labels are 0 and 1, then there is only one output node, a logistic (sigmoid),
representing the probability of belonging to class 1.

Now let’s look at the parameters we passed in to MLPClassifier. First, we
explicitly state that we want to use the SGD solver. The solver is the
approach used to modify the weights and biases during training. All the
solvers use backprop to calculate the gradients; how we use those gradients
varies. Plain vanilla SGD is good enough for us right now.

Next, we set a low tolerance so that we’ll train the requested number of
epochs (max_iter). We also turn off Nesterov momentum (a variant of
standard momentum) and early stopping (generally useful but not desired
here).

The initial learning rate is set to the default value of 0.001, as is the
value of standard momentum, 0.9. The number of epochs is arbitrarily set to
200 (the default), but we’ll explore this more in the experiments that follow.
Please indulge your curiosity at all times and see what changing these
values does to things. For consistency’s sake, we’ll use these values as
defaults throughout unless they are the parameters we want to experiment
with.

The other helper function in Listing 10-1 is run. This function will train
and test the classifier object it’s passed using the standard sklearn fit and
score methods. It also does some other things that we have not seen before.

In particular, after timing how long training takes, we extract the final
training loss value, the network weights, and the network biases from the
MLPClassifier object so that we can return them. The MLPClassifier class
minimizes the log-loss, which we described in Chapter 9. We store the log-
loss in the loss_ member variable. The size of this value, and how it changes
during training, gives us a clue as to how well the network is learning. In
general, the smaller the log-loss, the better the network is doing. As you
explore neural networks more and more, you’ll begin to develop intuition
for what a good loss value is and whether the training process is learning
quickly or not by how rapidly the loss changes.

The weights and biases are stored in the coefs_ and intercepts_ member
variables. These are lists of NumPy matrices (weights) and vectors (biases),
respectively. Here we use them to calculate the number of parameters in the
network by summing the number of elements in each matrix and vector.
This is what the two small loops in the run function do. Finally, we return all
this information, including the score against the test set, to the main function.
The main function is shown in Listing 10-2.

def main():
 x_train = np.load("mnist_train_vectors.npy").astype("float64")/256.0
 y_train = np.load("mnist_train_labels.npy")
 x_test = np.load("mnist_test_vectors.npy").astype("float64")/256.0
 y_test = np.load("mnist_test_labels.npy")

 N = 1000
 x_train = x_train[:N]
 y_train = y_train[:N]
 x_test = x_test[:N]
 y_test = y_test[:N]

 layers = [
 (1,), (500,), (800,), (1000,), (2000,), (3000,),
 (1000,500), (3000,1500),
 (2,2,2), (1000,500,250), (2000,1000,500),
]

 for act in ["relu", "logistic", "tanh"]:
 print("%s:" % act)
 for layer in layers:
 scores = []
 loss = []
 tm = []
 for i in range(10):
 s,l,params,e = run(x_train, y_train, x_test, y_test,
 nn(layer,act))
 scores.append(s)
 loss.append(l)
 tm.append(e)
 s = np.array(scores)
 l = np.array(loss)
 t = np.array(tm)
 n = np.sqrt(s.shape[0])
 print(" layers: %14s, score= %0.4f +/- %0.4f,
 loss = %0.4f +/- %0.4f (params = %6d, time = %0.2f s)" % \
 (str(layer), s.mean(), s.std()/n, l.mean(),
 l.std()/n, params, t.mean()))

Listing 10-2: The main function for experimenting with the architecture and activation function. See
mnist_nn_experiments.py.

We first load the MNIST train and test data stored in x_train (samples)
and y_train (labels), and x_test and y_test. Notice that we divide the samples by
256.0 to make them floats in the range [0,1). This normalization is the only
preprocessing we’ll do in this chapter.

As the full training set has 60,000 samples and we want to run many
training sessions, we’ll use only the first 1,000 samples for training. We’ll
likewise keep the first 1,000 test samples. Our goal in this chapter is to see
relative differences as we change parameters, not to build the best model
possible, so we’ll sacrifice the quality of the model to get results in a
reasonable timeframe. With 1,000 training samples, we’ll have only 100
instances of each digit type, on average. We’ll vary the number of training
samples for specific experiments.

The layers list holds the different architectures we’ll explore. Ultimately,
we’ll pass these values to the hidden_layer_sizes argument of the MLPClassifier
constructor. Notice that we’ll examine architectures ranging from a single
hidden layer with a single node to three hidden layers with up to 2,000
nodes per layer.

The main loop runs over three activation function types: rectified linear
unit, logistic (sigmoid) unit, and the hyperbolic tangent. We’ll train a model
for each combination of activation function type and architecture (layers).
Moreover, since we know neural network training is stochastic, we’ll train
10 models for each combination and report the mean and standard error of
the mean, so we’re not thrown off by a particularly bad model that isn’t
representative.

Note When you run the code in the experiments that follow, you’ll likely generate warning
messages from sklearn like this one:

ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached
and the optimization hasn't converged yet.

The messages are sklearn’s way of telling you that the number of training
iterations completed before sklearn felt that the network had converged to a
good set of weights.The warnings are safe to ignore and can be disabled
completely by adding -W ignore to the command line when you run the code;
for example:

$ python3 -W ignore mnist_nn_experiments.py

The Results
Running this code takes several hours to complete, and produces output
with lines that look something like this:

layers:(3000,1500), score=0.8822+/-0.0007, loss=0.2107+/-0.0006
(params=6871510, time=253.42s)

This tells us that using a ReLU activation function, and an architecture
with two hidden layers of 3,000 and 1,500 nodes each, the models had an
average score of 88.2 percent and an average final training loss of 0.21
(remember that lower is better). It also tells us that the neural network had a
total of nearly 6.9 million parameters and took, on average, a little more
than four minutes to train.

Table 10-2 summarizes the scores for the various network architectures
and activation function types.

Table 10-2: Mean Score (mean ± SE) on the MNIST Test Set as a Function of the Architecture and
Activation Function Type

Architecture ReLU Tanh Logistic
(sigmoid)

1 0.2066 ±
0.0046

0.2192 ±
0.0047

0.1718 ±
0.0118

500 0.8616 ±
0.0014

0.8576 ±
0.0011

0.6645 ±
0.0029

800 0.8669 ±
0.0014

0.8612 ±
0.0011

0.6841 ±
0.0030

1000 0.8670 ± 0.001 0.8592 ±
0.0014

0.6874 ±
0.0028

2000 0.8682 ±
0.0008

0.8630 ±
0.0012

0.7092 ±
0.0029

3000 0.8691 ±
0.0005

0.8652 ±
0.0011

0.7088 ±
0.0024

1000; 500 0.8779 ±
0.0011

0.8720 ±
0.0011

0.1184 ±
0.0033

3000; 1500 0.8822 ±
0.0007

0.8758 ±
0.0009

0.1221 ±
0.0001

1000; 500;
250

0.8829 ±
0.0011

0.8746 ±
0.0012

0.1220 ±
0.0000

2000; 1000;
500

0.8850 ±
0.0007

0.8771 ±
0.0010

0.1220 ±
0.0000

In each case, we show the mean score on the reduced test set averaged
over the 10 models trained (plus or minus the standard error of the mean).
There is quite a bit of information in this table, so let’s look at it carefully.

If we look at the activation type, we immediately see something is off.
The results for the logistic activation function show improved scores as the
single hidden layer gets larger, something we might expect to see, but when
we move to more than one hidden layer, the network fails to train. We know
that it was unable to train because the scores on the test set are abysmal. If
you check the output, you’ll see that the loss values do not go down. If the
loss value does not decrease while training proceeds, something is wrong.

It’s not immediately evident why training failed for the logistic
activation function case. One possibility is a bug in sklearn, but this is
rather unlikely given how widely used the toolkit is. The most likely culprit
has to do with network initialization. The sklearn toolkit uses the standard,
commonly used initialization schemes we discussed in Chapter 8. But these
are tailored for ReLU and tanh activation functions and may not be
performing well for the logistic case.

For our purposes, we can view this failure as a glaring sign that the
logistic activation function is not a good one to use for the hidden layers.
Sadly, this is precisely the activation function that was widely used
throughout much of the early history of neural networks, so we were
shooting ourselves in the foot from the beginning. No wonder it took so
long for neural networks to finally find their proper place! From here on
out, we’ll ignore the logistic activation function results.

Consider again the scores for the single hidden layer networks (see
Table 10-2, rows 1–6). For the ReLU and tanh activation functions, we see
a steady improvement in the performance of the networks. Also, note that in
each case, the ReLU activation function slightly outperforms tanh for the
same number of nodes in the hidden layer, though these differences are
likely not statistically significant with only 10 models per architecture. Still,
it follows a general observation prevalent in the community: ReLU is
preferred to tanh.

If we look at the remaining rows of Table 10-2, we see that adding a
second and even third hidden layer continues to improve the test scores but
with diminishing returns. This is also a widely experienced phenomenon
that we should look at a little more closely. In particular, we should consider

the number of parameters in the models of Table 10-2. This makes the
comparison a bit unfair. If, instead, we train models that have closely
matched numbers of parameters, then we can more fairly compare the
performance of the models. Any differences in performance we see can be
plausibly attributed to the number of layers used since the overall number
of parameters will be virtually the same.

By modifying the layers array in Listing 10-2, we can train multiple
versions of the architectures shown in Table 10-3. The number of nodes per
layer was selected to parallel the overall number of parameters in the
models.

Table 10-3: Model Architectures Tested to Produce Figure 10-1

Architecture Number of parameters
1000 795,010
2000 1,590,010
4000 3,180,010
8000 6,360,010
700; 350 798,360
1150; 575 1,570,335
1850; 925 3,173,685
2850; 1425 6,314,185
660; 330; 165 792,505
1080; 540; 270 1,580,320
1714; 857; 429 3,187,627
2620; 1310; 655 6,355,475

Where did the magic numbers in Table 10-3 come from? We first picked
the single-layer sizes we wanted to test. We then determined the number of
parameters in models with those architectures. Next, we crafted two-layer
architectures using the rules of thumb from Chapter 8 so that the number of
parameters in those models will be close to the corresponding number of
parameters in the single-layer models. Finally, we repeated the process for
three-layer models. Doing things this way lets us compare the performance
of the models for very similar numbers of parameters. In essence, we’re
fixing the number of parameters in the model and altering only the way they
interact with each other.

Training models as we did in Listing 10-2, but this time averaging 25
models instead of just 10, gives us Figure 10-1.

Figure 10-1: Scores (mean ± E) on the MNIST test set for the architectures of Table 10-3 as a
function of the number of parameters in the network

Let’s parse Figure 10-1. First, note that the x-axis, the number of
parameters in the model, is given in millions. Second, we can compare the
three lines going vertically as those models all have similar numbers of
parameters. The legend tells us which plot represents models with one, two,
or three hidden layers.

Looking at the leftmost points, representing the smallest models in each
case, we see that changing from a single layer to two layers gives us a jump
in model performance. Also, moving from two layers to three results in
another, smaller rise. This repeats for all the layer sizes moving left to right.
We’ll address the dip in performance between the two largest models for

single- and double-layer architectures in a bit. Fixing the number of
parameters but increasing the depth of the network (number of layers)
results in better performance. We might be tempted here to say, “Go deep,
not wide,” but there will be cases where this doesn’t work. Still, it’s worth
remembering: more layers can help, not just a wider layer with more nodes.

What about the dip for the largest models in the one- and two-layer
cases? These are the rightmost points of Figure 10-1. Recall, the models
used to make the plot were trained with only 1,000 samples each. For the
largest models, there likely wasn’t enough data to adequately train such a
wide model. If we were to increase the number of training samples, which
we can do because we have 60,000 to choose from for MNIST, we might
see the dip go away. I’ll leave this as an exercise for the reader.

Batch Size
Let’s now turn our attention to how batch size affects training. Recall that
here batch size means minibatch size, a subset of the full training set used in
the forward pass to calculate the average loss over the minibatch. From this
loss, we use backprop to update the weights and biases. Processing a single
minibatch, then, results in a single gradient-descent step—a single update to
the parameters of the network.

We’ll train a fixed-size subset of MNIST for a set number of epochs
with different minibatch sizes to see how that affects the final test scores.
Before we do that, however, we need to understand, for epochs and
minibatches, the process sklearn uses to train a neural network.

Let’s look briefly at the actual sklearn source code for the MLPClassifier
class, in the _fit_stochastic method, found at https://github.com/scikit-
learn/scikit-
learn/blob/7389dba/sklearn/neural_network/multilayer_perceptron.py.
Understanding that this method is an internal one and might change from
version to version, we see code that looks like this:

for it in range(self.max_iter):
 X, y = shuffle(X, y, random_state=self._random_state)
 accumulated_loss = 0.0
 for batch_slice in gen_batches(n_samples, batch_size):
 activations[0] = X[batch_slice]
 batch_loss, coef_grads, intercept_grads = self._backprop(

https://github.com/scikit-learn/scikit-learn/blob/7389dba/sklearn/neural_network/multilayer_perceptron.py

 X[batch_slice], y[batch_slice], activations, deltas,
 coef_grads, intercept_grads)
 accumulated_loss += batch_loss * (batch_slice.stop -
 batch_slice.start)
 grads = coef_grads + intercept_grads
 self._optimizer.update_params(grads)
 self.n_iter_ += 1

There are two for loops, the first over the number of epochs (max_iter),
and the second over the number of minibatches present in the training data.
The gen_batches function returns minibatches from the training set. In reality,
it returns slice indices with X[batch_slice] returning the actual training
samples, but the effect is the same. The calls to _backprop and update_params
complete the gradient descent step for the current minibatch.

An epoch is a full pass through the minibatches present in the training
set. The minibatches themselves are groupings of the training data so that
looping over the minibatches uses all the samples in the training set once. If
the number of training samples is not an integer multiple of the minibatch
size, the final minibatch will be smaller than expected, but that will not
affect training in the long run.

We can view this graphically as in Figure 10-2, where we see how an
epoch is built from the minibatches in the training set. In Figure 10-2, the
entire training set is represented as the epoch with n samples. A minibatch
has m samples, as indicated. The last minibatch is smaller than the rest to
indicate that the n/m might not be an integer.

Figure 10-2: The relationship between epochs (n), minibatches (m), and samples {x0,x1, …,xn-1}

Figure 10-2 also implies that the order of the samples in the training set
is essential, which is why we shuffled the datasets when we made them.
The sklearn toolkit will also rearrange the samples after every epoch during
training if desired. As long as a minibatch is, statistically, a random sample
from the training set as a whole, things should be okay. If the minibatch is
not, then it might give a biased view of the gradient direction during
backprop.

Our minibatch experiment will fix the number of MNIST training
samples at 16,384 while we vary the minibatch size. We’ll also fix the
number of epochs at 100. The scores we report are the mean and standard
error for five different runs of the same model, each with a different random
initialization. The MLPClassifier object is therefore instantiated via

MLPClassifier(solver="sgd", verbose=False, tol=1e-8,
 nesterovs_momentum=False, early_stopping=False,
 learning_rate_init=0.001, momentum=0.9, max_iter=100,
 hidden_layer_sizes=(1000,500), activation="relu",
 batch_size=bz)

This code indicates that all of the models have two hidden layers of
1,000 and 500 nodes, respectively, making the architecture of the entire
network 784-1000-500-10 when adding in the nodes of the input and output
layers. The only parameter that varies when defining a network is the
batch_size. We’ll use the batch sizes in Table 10-4 along with the number of
gradient descent steps taken for each epoch (see Figure 10-2).

Table 10-4: Minibatch Sizes and the Corresponding Number of Gradient Descent Steps per Epoch

Minibatch size SGD steps per epoch
2 8,192
4 4,096
8 2,048
16 1,024
32 512
64 256
128 128
256 64
512 32
1,024 16

Minibatch size SGD steps per epoch
2,048 8
4,096 4
8,192 2
16,384 1

When the minibatch size is 2, over 8,000 gradient descent steps will be
taken per epoch, but when the minibatch size is 8,192, only 2 gradient
descent steps are taken. Fixing the number of epochs should favor a smaller
minibatch size since there will be correspondingly more gradient descent
steps, implying more opportunity to move toward the optimal set of
network parameters.

Figure 10-3 plots the mean score as a function of the minibatch size.
The code that generated the data for the plot is in the mnist_nn_experiments
_batch_size.py file. The plotting code itself is in
mnist_nn_experiments_batch _size_plot.py. The curve that concerns us for
the moment is the one using circles. We’ll explain the square symbol curve
shortly.

Figure 10-3: Average score on the MNIST test set as a function of minibatch size (mean ± SE) for a
fixed number of epochs (100) regardless of the minibatch size (circles) or a fixed number of
minibatches (squares)

Here we’ve fixed the number of epochs at 100, so by varying the
minibatch size, we vary the number of gradient steps: the larger the
minibatch, the fewer gradient steps we take. Because the minibatch is
larger, the steps themselves are based on a more faithful representation of
the actual gradient direction; however, the number of steps is reduced
because there are fewer minibatches per epoch, leading to poorer
convergence: we are not reaching a good minimum of the loss function.

A more “fair” test might be to see what happens when we adjust the
number of epochs so that the number of minibatches examined is constant
regardless of the minibatch size. One way to do that is to note that the
number of minibatches per epoch is n/m, where n is the number of training
samples, and m is the number of minibatches. If we call the overall number

of minibatches we want to run M, then, to hold it fixed, we need to set the
number of epochs to

so that regardless of m, we perform a total of M gradient descent steps
during training.

Let’s keep the same set of minibatches but alter the number of epochs
according to the preceding equation. We need to select M, the overall
number of minibatches (gradient descent steps). Let’s set it to M = 8,192 so
that the number of epochs is an integer in each case. When the minibatch
size is 2, we use one epoch to get 8,192 minibatches. And when the
minibatch size is 16,384 (n is still also 16,384 samples), we get 8,192
epochs. If we do this, we get a completely different set of results, the square
symbol curve in Figure 10-3, where we see that the mean score is pretty
much a constant representing the constant number of gradient descent
updates performed during training. When the minibatch size is small,
corresponding to points near 0 in Figure 10-3, we do see a degradation in
performance, but after a certain minibatch size, the performance levels off,
reflecting the constant number of gradient descent updates combined with a
reasonable estimate of the true gradient from using a large enough
minibatch.

For the set of base neural network parameters, specifically for a fixed
learning rate, fixing the number of epochs results in reduced performance
because of the design of sklearn. Fixing the number of minibatches
examined results in mainly constant performance.

Base Learning Rate
In Chapter 9, we introduced the basic equation for updating the weights of a
neural network during training:

w ← w – ηΔw

Here η (eta) is the learning rate, the parameter that controls the step size
based on the gradient value, Δw. In sklearn, η is specified via the learning

_rate_init parameter. During training, the learning rate is often reduced, so that
the step sizes get smaller the closer we get to the training minimum
(hopefully!). For our experiments here, however, we’re using a constant
learning rate, so whatever value we set learning_rate_init to persists throughout
the entire training session. Let’s see how this value affects learning.

For this experiment, we fix the minibatch size at 64 samples and the
architecture to (1000,500), meaning two hidden layers with 1,000 and 500
nodes, respectively. We then look at two main effects. The first is what we
get when we fix the number of epochs regardless of the base learning rate.
In this case, we’ll always take a set number of gradient descent steps during
training. The second case fixes the product of the base learning rate and the
number of epochs. This case is interesting because it looks at the effect on
the test score of fewer large steps versus many small steps. The code for
these experiments is in mnist_experiments_base_lr.py. The training set is
the first 20,000 MNIST samples.

The first experiment fixes the epochs at 50 and loops over different base
learning rates:

[0.2, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001]

The second uses the same base learning rates but varies the number of
epochs so that in each case the product of the base learning rate and epochs
is 1.5. This leads to the following number of epochs matched to the
preceding base learning rates:

[8, 15, 30, 150, 300, 1500, 3000, 15000]

Running the two experiments takes some time. When they’re complete,
we can plot the test score as a function of the base learning rate size. Doing
this gives us Figure 10-4.

Figure 10-4: MNIST test scores as a function of the base learning rate. The circles represent the fixed
epochs case. The squares are the fixed product of the base learning rate and the epochs case.

Figure 10-4 shows two plots. In the first plot, using circles, the number
of epochs was fixed at 50. Fixing the number of epochs fixes the number of
gradient descent steps taken during training. We then vary the learning rate.
The larger the learning rate, the bigger the steps we’ll take.

Imagine walking over a football field, attempting to get to the very
center from one of the corners in a limited number of steps. If we take large
steps, we might move over a lot of ground quickly, but we won’t be able to
zero in on the center because we’ll keep stepping past it. If we take tiny
steps, we’ll cover only a short distance from the corner toward the center.
We might be on track, but since we’re allowed only a certain number steps,
we can’t reach the center. Intuitively, we can perhaps convince ourselves
that there is a sweet spot where the step size and the number of steps we get
to take combine to get us to the center.

We see this effect in the circle plot of Figure 10-4. The leftmost point
represents the case of tiny steps. We do relatively poorly because we
haven’t traversed enough of the error space to find the minimum. Similarly,
the rightmost point represents taking very large steps. We do poorly because
we keep stepping past the minimum. The best score happens when the
number of steps we get to make and the size of those steps work together to
move us to the minimum. In the figure, this happens when the base learning
rate is 0.1.

Now let’s look at the square symbol plot in Figure 10-4. This plot
comes from the scores found when the product of the base learning rate and
the number of epochs is constant, meaning small learning rates will run for
a large number of epochs. For the most part, the test scores are the same for
all base learning rates except the very largest. In our walking over the
football field thought experiment, the square symbol plot corresponds to
taking a few large steps or very many small steps. We can imagine both
approaches getting us close to the center of the field, at least until our step
size is too large to let us land at the center.

Some readers might be objecting at this point. If we compare the first
three points of both the circle and square plots in Figure 10-4, we see a
large gap. For the circles, the performance improves as the base learning
rate increases. For the squares, however, the performance remains high and
constant regardless of the base learning rate. For the circles, we trained for
50 epochs, always. This is a more significant number of epochs than were
used for the squares plot for the corresponding base learning rates. This
means that in the circles’ case, we stomped around quite a bit after we got
near the center of the field. For the case of the squares, however, we limited
the number of epochs, so we stopped walking when we were near the center
of the field, hence the improved performance. This implies that we need to
adjust the number of epochs (gradient descent steps taken) to match the
learning rate so that we get near to the minimum of the loss function
quickly, without a lot of stomping around, but not so quickly that we are
taking large steps that won’t let us converge on the minimum.

Thus far we’ve been holding the learning rate constant throughout
training. Because of space considerations, we can’t fully explore the effect
of changing the learning rate during training. Still, we can at least use our
football field thought experiment to help us visualize why changing the
learning rate during training makes sense. Recall, the network is initialized

intelligently but randomly. This means we start somewhere on the field at
random. The odds are low that this arbitrary position is near the center, the
minimum of the error surface, so we do need to apply gradient descent to
move us closer to the center. At first, we might as well take significant steps
to move quickly through the field. Since we are following the gradient, this
moves us toward the center. If we keep taking large steps, however, we
might overshoot the center. After taking a few large steps, we might think it
wise to start taking smaller steps, believing that we are now closer to our
goal of reaching the center. The more we walk, the smaller our steps so we
can get as close to the center as possible. This is why the learning rate is
typically reduced during training.

Training Set Size
We’ve mentioned that the number of samples in the training set affects
performance significantly. Let’s use the MNIST data to quantify this
assertion. For this experiment, we’ll vary the number of training set samples
while adjusting the number of epochs so that in each case, we take
(approximately) 1,000 gradient descent steps during training. The code for
this experiment is in mnist_nn_experiments_samples.py. In all cases, the
minibatch size is 100, and the architecture of the network has two hidden
layers of 1,000 and 500 nodes, respectively. Figure 10-5 shows the results
of this experiment.

Figure 10-5: MNIST test scores as a function of the number of training samples

Figure 10-5 is particularly satisfying because it shows exactly what
we’d expect to see. If we have too little training data, we cannot learn to
generalize well because we’re training the model with a very sparse sample
from the parent distribution. As we add more and more training data, we’d
expect a potentially rapid rise in the performance of the network since the
training set is a better and better sample of the parent distribution we’re
asking the model to learn.

Figure 10-5 shows that increasing the training set size results in
diminishing returns. Moving from 1,000 to 5,000 training set samples
results in a substantial improvement in performance, but moving from
5,000 to even 10,000 samples gives us only a small performance boost, and
further increases in the training set size level off at some ceiling
performance. We can think of this level region as having reached some
capacity—that the model has pretty much learned all it will learn from the

dataset. At this point, we might think of enlarging the network architecture
to see if we get a jump in test set scores provided we have enough training
samples available.

L2 Regularization
In Chapter 9, we discussed regularization techniques that improve network
generalization, including L2 regularization. We saw that L2 regularization,
which adds a new term to the loss function during training, is functionally
equivalent to weight decay and penalizes the network during training if the
weights get large.

In sklearn, the parameter controlling the strength of L2 regularization is
alpha. If this parameter is 0, there is no L2 regularization, while the
regularization increases in intensity as alpha increases. Let’s explore the
effect of L2 regularization on our MNIST networks.

For this experiment, we’ll fix the minibatch size at 64. We’ll also set the
momentum to 0 so that the effect we see is due to L2 regularization alone.
Finally, we’ll use a smaller network with two hidden layers of 100 and 50
nodes each and a small training set of the first 3,000 MNIST samples. The
code is in mnist_nn_experiments_L2.py.

Unlike the previous experiments, in this case, we’d like to evaluate the
test data after each training epoch so that we can watch the network learn
over the training process. If it is learning, the error on the test set will go
down as the number of training epochs increases. We know that sklearn will
loop over all the minibatches in the dataset for one epoch, so we can set the
number of training epochs to 1. However, if we set max_iter to 1 and then call
the fit method, the next time we call fit, we’ll start over with a newly
initialized network. This won’t help us at all; we need to preserve the
weights and biases between calls to fit.

Fortunately for us, the creators of sklearn thought ahead and added the
warm_start parameter. If this parameter is set to True, a call to fit will not re-
initialize the network but will use the existing weights and biases. If we set
max_iter to 1 and warm_start to True, we’ll be able to watch the network learn by
calling score after each epoch of training. Calling score gives us the accuracy
on the test data. If we want the error, the value we need to track is 1 – score.

This is the value we plot as a function of epoch. The alpha values we’ll plot
are

[0.0, 0.1, 0.2, 0.3, 0.4]

We’ve made these rather large compared to the default so we can see the
effect.

Focusing on the test error only, the code for evaluating a single epoch
is:

def epoch(x_train, y_train, x_test, y_test, clf):
 clf.fit(x_train, y_train)
 val_err = 1.0 - clf.score(x_test, y_test)
 clf.warm_start = True
 return val_err

Here, fit is called to perform one epoch of training. Then we calculate the
error on the test set and store it in val_err. Setting warm_start to True after calling
fit ensures that the first call to epoch will properly initialize the network, but
subsequent calls will keep the weights and biases from the previous call.

Training then happens in a simple loop:

def run(x_train, y_train, x_test, y_test, clf, epochs):
 val_err = []
 clf.max_iter = 1
 for i in range(epochs):
 verr = epoch(x_train, y_train, x_test, y_test, clf)
 val_err.append(verr)
 return val_err

This loop collects the per epoch results and returns them to the main
function, which itself loops over the α values we’re interested in.

Let’s run this code and plot val_err, the test error, as a function of the
number of epochs for each alpha. Figure 10-6 is the result.

Figure 10-6: MNIST test error as a function of training epoch for different values of α

The first thing we notice in Figure 10-6 is that any nonzero value for α
produces a lower test error compared to not using L2 regularization at all.
We can conclude that L2 regularization is helpful. The different α values all
result in approximately the same test error, but larger values are slightly
more effective and reach a lower test error sooner. Compare α = 0.1 to α =
0.4, for example.

Notice that larger α values seem noisier: the plot is thicker as the error
jumps around more, relative to the smaller α values. To understand this,
think about the total loss minimized during training. When α is large, we’re
placing more importance on the L2 term relative to the network’s error over
the minibatch. This means that when we ask the network to adjust the
weights and biases during backprop, it’ll be more strongly affected by the
magnitude of the parameters of the network than the training data itself.

Because the network is focusing less on reducing the loss due to the training
data, we might expect the per epoch test error to vary more.

Momentum
Momentum alters the weight update during training by adding in a fraction
of the gradient value used to update the weight in the previous minibatch.
The fraction is specified as a multiplier on the previous gradient value,
[0,1]. We covered momentum in Chapter 9.

Let’s see how changing this parameter affects training. In this case, the
setup for the experiment is simple. It’s identical to the approach used
previously for L2 regularization, but instead of fixing the momentum
parameter (μ) and varying the L2 weight (α), we’ll fix α = 0.0001 and vary
μ. All the other parts remain the same: training by single epochs, the
network configuration, and so forth. See the file
mnist_nn_experiments_momentum.py.

We’ll explore these momentum values:

[0.0, 0.3, 0.5, 0.7, 0.9, 0.99]

They range from no momentum term (μ = 0) to a large momentum term
(μ = 0.99). Running the experiment produces Figure 10-7.

In Figure 10-7, we see three distinct regions. The first, represented by
no momentum or relatively small momentum values (μ = 0.3, μ = 0.5),
shows the highest test set error. The second shows improvement with
moderate momentum values (μ = 0.7, μ = 0.9), including the “standard”
(sklearn default) value of 0.9. In this case, however, a large momentum of
0.99 lowers the test set error from about 7.5 percent to about 6 percent.
Momentum helps and should be used, especially with values near the
standard of 0.9. In practice, people seldom seem to alter the momentum
much, but as this example shows, sometimes it makes a big difference to
the results.

Figure 10-7: MNIST test error as a function of training epoch for different values of μ

Note that we severely limited the training set to a mere 3,000 samples,
about 300 per digit, which likely made momentum matter more because the
training set was a small and less complete of a sample of the parent
distribution we want the model to learn. Increasing the training set size to
30,000 results in a different, and more typical, ordering of the plot, where a
momentum of 0.9 is the best option.

Weight Initialization
Once treated rather cavalierly, the initial set of values used for the weights
and biases of a network is now known to be extremely important. The
simple experiment of this section shows this plainly.

The sklearn toolkit initializes the weights and biases of a neural network
by calling the _init_coef method of the MLPClassifier class. This method selects
weights and biases randomly according to the Glorot algorithm we
discussed in Chapter 9. This algorithm sets the weights and biases to values
sampled uniformly from the range

where fin is the number of inputs and fout is the number of outputs for the
current layer being initialized. If the activation function is a sigmoid, A = 2;
otherwise, A = 6.

If we play a little trick, we can change the way that sklearn initializes
the network and thereby experiment with alternative initialization schemes.
The trick uses Python’s object-oriented programming abilities. If we make a
subclass of MLPClassifier, let’s call it simply Classifier, we can override the
_init_coef method with our own. Python also allows us to add new member
variables to a class instance arbitrarily, which gives us all we need.

The remainder of the experiment follows the format of the previous
sections. We’ll ultimately plot the test error by epoch of the MNIST digits
trained on a subset of the full data for different initialization approaches.
The model itself will use the first 6,000 training samples, a minibatch size
of 64, a constant learning rate of 0.01, a momentum of 0.9, an L2
regularization parameter of 0.2, and an architecture with two hidden layers
of 100 and 50 nodes each. See mnist_nn_experiments_init.py for this
experiment’s code.

We’ll test four new weight initialization schemes along with the
standard Glorot approach of sklearn. The schemes are shown in Table 10-5.

Table 10-5: Weight Initialization Schemes

Name Equation Description
Glorot sklearn default

He He initialization for ReLU

Name Equation Description
Xavier Alternate Xavier

Uniform 0.01(U(0,1)-0.5) Classic small uniform
Gaussian 0.005N(0,1) Classic small Gaussian

Recall that N(0,1) refers to a sample from a bell curve with a mean of 0 and
a standard deviation of 1 while U(0,1) refers to a sample drawn uniformly
from [0,1), meaning all values in that range are equally likely except 1.0.
Each of the new initialization methods sets the bias values to 0, always.
However, sklearn’s Glorot implementation sets the bias values in the same
way it sets the weights.

Note As mentioned in Chapter 9 , both Xavier and Glorot refer to the same person, Xavier
Glorot. We’re differentiating here because the form we’re calling Xavier is referred to as
such in other machine learning toolkits like Caffe, and the equation used is different from
the equation used in the original paper.

This all sounds nice and neat, but how to implement it in code? First,
we define a new Python class, Classifier, which is a subclass of MLPClassifier.
As a subclass, the new class immediately inherits all the functionality of the
superclass (MLPClassifier) while allowing us the freedom to override any of
the superclass methods with our own implementation. We simply need to
define our own version of _init_coef with the same arguments and return
values. In code, it looks like this:

class Classifier(MLPClassifier):
 def _init_coef(self, fan_in, fan_out):
 if (self.init_scheme == 0):
 return super(Classifier, self)._init_coef(fan_in, fan_out)
 elif (self.init_scheme == 1):
 weights = 0.01*(np.random.random((fan_in, fan_out))-0.5)
 biases = np.zeros(fan_out)
 elif (self.init_scheme == 2):
 weights = 0.005*(np.random.normal(size=(fan_in, fan_out)))
 biases = np.zeros(fan_out)
 elif (self.init_scheme == 3):
 weights = np.random.normal(size=(fan_in, fan_out))* \
 np.sqrt(2.0/fan_in)
 biases = np.zeros(fan_out)
 elif (self.init_scheme == 4):
 weights = np.random.normal(size=(fan_in, fan_out))* \

 np.sqrt(1.0/fan_in)
 biases = np.zeros(fan_out)

The initialization we perform depends on the value of init_scheme. This is
a new member variable that we use to select the initialization method (see
Table 10-6).

Table 10-6: Initialization Scheme and init_scheme Value

Value Initialization method
0 sklearn default
1 Classic small uniform
2 Classic small Gaussian
3 He initialization
4 Alternate Xavier

We set the variable immediately after creating the Classifier object.
We know that training a network more than once results in slightly

different performance because of the way the network is initialized.
Therefore, training a single network for each initialization type will likely
lead to a wrong view of how well the initialization performs because we
might hit a bad set of initial weights and biases. To mitigate this, we need to
train multiple versions of the network and report the average performance.
Since we want to plot the test error as a function of the training epoch, we
need to track the test error at each epoch for each training of each
initialization scheme. This suggests a three-dimensional array:

test_err = np.zeros((trainings, init_types, epochs))

We have trainings trainings of each initialization type (init_types) for a
maximum of epochs epochs.

With all of this in place, the generation and storage of the actual
experiment output is straightforward, if rather slow, taking the better part of
a day to run:

for i in range(trainings):
 for k in range(init_types):
 nn = Classifier(solver="sgd", verbose=False, tol=0,
 nesterovs_momentum=False, early_stopping=False,
 learning_rate_init=0.01, momentum=0.9,

 hidden_layer_sizes=(100,50), activation="relu", alpha=0.2,
 learning_rate="constant", batch_size=64, max_iter=1)
 nn.init_scheme = k
 test_err[i,k,:] = run(x_train, y_train, x_test, y_test, nn, epochs)
np.save("mnist_nn_experiments_init_results.npy", test_err)

Here nn is the classifier instance to train, init_scheme sets the initialization
scheme to use, and run is the function we defined earlier to train and test the
network incrementally.

If we set the number of training sessions to 10, the number of epochs to
4,000, and plot the mean test error per epoch, we get Figure 10-8.

Figure 10-8: MNIST test error as a function of training epoch for different weight initialization
methods (mean over 10 training runs)

Let’s understand what the figure is showing us. The five initialization
approaches are marked, each pointing to one of the five curves in the figure.
The curves themselves are familiar to us by now; they show the test set

error as a function of the training epoch. In this case, the value plotted for
each curve is the average over 10 training runs of the same network
architecture initialized with the same approach but different random values.

We immediately see two distinct groups of results. On the top, we have
the test error for the classic initialization approaches using small uniform or
normally distributed values (Gaussian). On the bottom, we have the results
for the more principled initialization in current use. Even this basic
experiment shows the effectiveness of modern initialization approaches
quite clearly. Recall, the classic approaches were part of the reason neural
networks had a bad name a few decades ago. Networks were finicky and
difficult to train in large part because of improper initialization.

Looking at the bottom set of results, we see that for this experiment,
there is little difference between the sklearn default initialization, which we
are calling Glorot, and the initialization approach of He. The two plots are
virtually identical. The plot labeled Xavier is slightly worse at first , but
toward the end of our training runs matches the other two. Sklearn is using
a good initialization strategy.

The plot also shows us something else. For the classic initialization
approaches, we see the test set error level off and remain more or less
constant. For the modern initialization approaches, we observe the test error
increase slightly with the training epoch. This is particularly true for the
Glorot and He methods. This increase is a telltale sign of overfitting: as we
keep training, the model stops learning general features of the parent
distribution and starts to focus on specific features of the training set. We
didn’t plot the training set error, but it would be going down even as the test
set error starts to rise. The lowest test set error is at about 1,200 epochs.
Ideally, this would be where we stop training because we have the most
reliable evidence that the model is in a good place to correctly predict new,
unseen inputs. Further training tends to degrade model generalization.

Why did the increase in the test error happen? The likely cause of this
effect is too small of a training set, only 6,000 samples. Also, the model
architecture is not very large, with only 100 and 50 nodes in the hidden
layers.

This section dramatically demonstrates the benefit of using current,
state-of-the-art network initialization. When we explore convolutional
neural networks in Chapter 12, we’ll use these approaches exclusively.

Feature Ordering
We’ll end our MNIST experiments with a bit of fun that we’ll return to
again when we’re exploring convolutional neural networks. All of the
experiments so far use the MNIST digits as a vector made by laying the
rows of the digit images end to end. When we do this, we know that the
elements of the vector are related to each other in a way that will
reconstruct the digit should we take the vector and reshape it into a 28 × 28
element array. This means, except for the end of one row and the beginning
of the next, that the pixels in the row are still part of the digit—the spatial
relationship of the components of the image is preserved.

However, if we scramble the pixels of the image, but always scramble
the pixels in the same way, we’ll destroy the local spatial relationship
between the pixels. This local relationship is what we use when we look at
the image to decide what digit it represents. We look for the top part of a 5
to be a straight line segment and the bottom portion to curve on the right
side, and so forth.

Look at Figure 7-3. The figure shows MNIST digit images on the top
row and what the same digit images look like after scrambling (bottom). In
Chapter 7, we showed that this scrambling does not affect the accuracy of
classic machine learning models; the models consider the inputs
holistically, not by local spatial relationships as we do. Is this true for neural
networks as well? Also, if true, will the network learn as quickly with the
scrambled inputs as it does with the original images? Let’s find out.

The code for this experiment is found in
mnist_nn_experiments_scrambled .py, where we simply define our now
expected neural network model

MLPClassifier(solver="sgd", verbose=False, tol=0,
 nesterovs_momentum=False, early_stopping=False,
 learning_rate_init=0.01, momentum=0.9,
 hidden_layer_sizes=(100,50), activation="relu",
 alpha=0.2, learning_rate="constant", batch_size=64, max_iter=1)

and train it on the first 6,000 MNIST digit samples—first as usual, and then
using the scrambled versions. We compute the test set error as a function of
the epoch and average the results over 10 runs before plotting. The result is
Figure 10-9.

Figure 10-9: MNIST test error as a function of training epoch for scrambled and unscrambled digits

In the figure, we see the answer to our earlier questions. First, yes,
traditional neural networks do interpret their input vectors holistically, like
the classic models. Second, yes, the network learns just as rapidly with the
scrambled digits as it does with the unscrambled ones. The difference
between the scrambled and unscrambled curves in Figure 10-9 is not
statistically significant.

These results indicate that (traditional) neural networks “understand”
their inputs in their entirety and do not look for local spatial relationships.
We’ll see a different outcome to this experiment when we work with
convolutional neural networks (Chapter 12). It’s precisely this lack of
spatial awareness (assuming images as inputs) that limited neural networks
for so long and led to the development of convolutional neural networks,
which are spatially aware.

Summary
In this chapter, we explored the concepts developed in Chapters 8 and 9 via
experiments with the MNIST dataset. By varying key parameters associated
with the network architecture and gradient descent learning process, we
increased our intuition as to how the parameters influence the overall
performance of the network. Space considerations prevented us from
thoroughly exploring all the MLPClassifier options, so I encourage you to
experiment more on your own. In particular, experiment with using the
different solvers, Nesterov momentum, early stopping, and, particularly
crucial for training convolutional neural networks, nonconstant learning
rates.

The next chapter explores techniques and metrics for evaluating the
performance of machine learning models. This interlude before we jump to
convolutional neural networks will supply us with tools we can use to help
understand the performance of more advanced model types.

11
EVALUATING MODELS

So far, we’ve evaluated models by looking at their accuracy on a held-out
test set. This is natural and intuitive, but as we’ll learn in this chapter, it’s
not all that we can, or should, do to evaluate a model.

We’ll begin this chapter by defining metrics and delineating some basic
assumptions. Then we’ll look at why we need more than just accuracy.
We’ll introduce the concept of a confusion matrix and spend time
discussing the metrics we can derive from it. From there, we’ll jump to
performance curves, which are the best way to compare different models
together. Finally, we’ll extend the idea of a confusion matrix to the
multiclass case. We won’t say all there is to say about performance metrics,
as this area is still somewhat evolving. However, by the end of this chapter,
you’ll be familiar with the sorts of numbers that people involved in machine
learning will throw around and have a good understanding of what they
mean.

Definitions and Assumptions
There are many other metrics besides accuracy that we can use to help us
evaluate how well a model is performing. These allow us to reasonably
compare models. Let’s start by defining the word metric. For us, a metric is

a number or set of numbers that represents something about how well the
model is doing.

The value of the metric increases or decreases as the performance of the
model increases or decreases, or possibly vice versa. At times, we’ll be a bit
sloppy and refer to graphs as metrics as well since we use them to judge the
performance of a model.

We’re concerned with evaluating a model for which we have a single
held-out test set. We’ll assume that we followed the advice of Chapter 4 and
built three datasets: a training set to teach the model, a validation set to
decide when the model was done training, and a held-out test set to evaluate
the trained model. We’ve now trained our model, thereby utilizing the
training and validation sets, and want to know how well we’ve done.

We have another, implicit assumption in this chapter. It’s a crucial one:
we assume that the held-out test set is a good representation of the parent
distribution that generated the data. Put another way, the held-out test set
must represent the sort of data the model will encounter in the wild in as
many ways as possible. For example, the frequency with which particular
classes appear in the test set should match, as far as is practical, the
expected rates that will be encountered when the model is used.

This is necessary because the training set is conditioning the model to
expect a particular distribution, a particular set of characteristics, and if the
data given to the model when it’s used has different characteristics, the
model won’t perform well. A difference in distribution between the training
set and the set of data presented to the model when it’s used is one of the
most common reasons deployed machine learning models fail in actual use.

Why Accuracy Is Not Enough
A binary classifier outputs a single decision for a particular input: class 0 or
class 1. Let’s define the following,

Nc, the number of test examples the model correctly classified
Nw, the number of test examples the model got wrong

Then, the overall accuracy of this model, a number between 0 and 1, is

This is the accuracy as we have been using it throughout the book. Note, in
this chapter, we will use ACC when we mean the overall accuracy.

This seems like a pretty reasonable metric, but there are a couple of
good reasons not to trust this number too much. For example, Nc and Nw tell
us nothing about the relative frequency of each class. What if one class is
rare? Let’s see how that might affect things.

If the model is 95 percent accurate (ACC = 0.95), we might be happy.
However, let’s say the frequency (read prior probability) of class 1 is only 5
percent, meaning that on average, if we draw 100 samples from the test set,
about 5 of them will be of class 1 and the other 95 will be of class 0. We see
that a model that predicts all inputs are of class 0 will be right 95 percent of
the time. But consider this: our model might be returning only class 0 for all
inputs. If we stick with the overall accuracy, we might think we have a good
model when, in fact, we have a terrible model that we could implement in
two lines of Python as

def predict(x):
 return 0

In this code, we say that the class is 0 regardless of the input feature
vector, x. No one would be satisfied with such a model.

The prior probabilities of the classes affect how we should think about
the overall accuracy. However, if we know the following

N0, the number of class 0 instances in our test set
N1, the number of class 1 instances in our test set
C0, the number of class 0 instances our model found
C1, the number of class 1 instances our model found

we can easily compute the accuracy per class:

The final expression is just another way to compute the overall accuracy
because it tallies all of the correct classifications divided by the number of
samples tested.

The per class accuracy is better than the overall accuracy because it
accounts for any imbalance in the frequency of the respective classes in the
test set. For our previous hypothetical test set with the frequency of class 1
at 5 percent, if the classifier were predicting class 0 for all inputs, we would
detect it because our per class accuracies would be ACC0 = 1.0 and ACC1 =
0.0. This makes sense. We’d get every class 0 sample correct and every
class 1 sample wrong (we’d call them class 0 anyway). Per class accuracies
will show up again when we consider evaluating multiclass models.

A more subtle reason to not just use the overall accuracy is that being
wrong might bring a much higher cost than being right. This introduces
something outside just the test set: it introduces the meaning we assign to
class 0 and class 1. For example, if our model is testing for breast cancer,
perhaps using the dataset we created in Chapter 5, reporting class 1
(malignant) when, in fact, the sample does not represent a malignant case
might cause anxiety for the woman waiting for her test results. With further
testing, however, she’ll be shown to not have breast cancer after all. But
consider the other case. A benign result that is actually malignant might
mean that she will not receive treatment, or receive it too late, which could
very well be fatal. The relative cost of one class versus another isn’t the
same and might literally mean the difference between life and death. The
same could be said of a self-driving car that thinks the child playing in the
middle of the road is an empty soda can, or any number of other real-world
examples.

We use models in the real world, so their outputs are connected to the
real world, and sometimes the cost associated with an output is significant.
Using just the overall accuracy of a model can be misleading because it
does not take the cost of an error into account.

The 2 × 2 Confusion Matrix
The models we’ve worked with so far have all ultimately assigned each
input a class label. For example, a neural network with a logistic output is
interpreted as a probability of membership of class 1. Using a typical
threshold of 0.5 lets us assign a class label: if the output is < 0.5, call the
input class 0; otherwise, call it class 1. For other model types, the decision
rule is different (for example, voting in k-NN), but the effect is the same:
we get a class assignment for the input.

If we run our entire test set through our model and apply the decision
rule, we get the assigned class label along with the true class label for each
sample. Again, thinking only of the binary classifier case, we have four
possible outcomes for each input sample in regards to the assigned class
and the true class (see Table 11-1).

Table 11-1: Possible Relationships Between the True Class Label and the Assigned Class Label for a
Binary Classifier

Assigned
class

True class Case

0 0 True negative (TN)
0 1 False negative (FN)
1 0 False positive (FP)
1 1 True positive (TP)

The Case label defines how we’ll talk about these situations. If the actual
class of the input is class 0 and the model assigns class 0, we have a
correctly identified negative case, so we have a true negative, or TN. If the
actual class is class 1 and the model assigns class 1, we have a correctly
identified positive case, so we have a true positive, or TP. However, if the
actual class is class 1 and the model assigns class 0, we have a positive case
wrongly called a negative case, so we have a false negative, or FN. Finally,

if the actual class is 0 and the model assigns class 1, we have a negative
case wrongly called a positive case, so we have a false positive, or FP.

We can place each of the inputs in our test set into one, and only one, of
these cases. Doing this lets us tally the number of times each case appears
in the test set, which we can present nicely as a table (see Table 11-2).

Table 11-2: Definition of the Class Labels in the 2 × 2 Table

Actual
class 1

Actual
class 0

Model assigns class 1 TP FP
Model assigns class 0 FN TN

I have placed the case labels (TP, FP, and so forth) in the location where the
actual tally counts would go for each case.

This table is called a 2 × 2 confusion matrix (or 2 × 2 contingency
table). It is 2 × 2 because there are two rows and two columns. It is a
confusion matrix because it shows us at a glance how the classifier is
performing and, especially, where it is confused. The classifier is confused
when it assigns an instance of one class to the other class. In the 2 × 2 table,
this confusion shows up as counts that are not along the main diagonal of
the table (upper left to lower right). These are the FP and FN entries. A
model that performs flawlessly on the test set will have FP = 0 and FN = 0;
it will make no mistakes in assigning class labels.

In Chapter 7, we experimented with the breast cancer dataset built in
Chapter 5. We reported the performance of classic models against this
dataset by looking at their overall accuracy. This is what the sklearn score
method returns. Let’s now instead look at some 2 × 2 tables generated from
the test set for these models.

The code we are looking at is in the file bc_experiments.py. This code
trains multiple classic model types. Instead of using the overall accuracy,
however, let’s introduce a new function that computes the entries in the 2 ×
2 table (Listing 11-1):

def tally_predictions(clf, x, y):
 p = clf.predict(x)
 score = clf.score(x,y)
 tp = tn = fp = fn = 0

 for i in range(len(y)):
 if (p[i] == 0) and (y[i] == 0):
 tn += 1
 elif (p[i] == 0) and (y[i] == 1):
 fn += 1
 (*\pagebreak*)
 elif (p[i] == 1) and (y[i] == 0):
 fp += 1
 else:
 tp += 1
 return [tp, tn, fp, fn, score]

Listing 11-1: Generating tally counts

This function accepts a trained sklearn model object (clf), the test
samples (x), and the corresponding actual test labels (y). The first thing this
function does is use the sklearn model to predict a class label for each of the
test samples; the result is stored in p. It then calculates the overall score, and
loops over each of the test samples and compares the predicted class label
(p) to the actual known class label (y) to see if that sample is a true positive,
true negative, false positive, or false negative. When done, all of these
values are returned.

Applying tally_predictions to the output of bc_experiments.py gives us
Table 11-3. Here, the sklearn model type is given.

Table 11-3: 2 × 2 Tables for the Breast Cancer Test Set

In Table 11-3, we see four 2 × 2 tables corresponding to the test set
applied to the respective models: Nearest Centroid, 3-NN, Decision Tree,

and linear SVM. From the tables alone, we see that the best-performing
model was the 3-NN as it had only one false positive and no false negatives.
This means that the model never called a true malignant case benign and
only once called a benign case malignant. Given our discussion in the
previous section, we see that this is an encouraging result.

Look now at the results for the Nearest Centroid and the Decision Tree.
The overall accuracies for these models are 94.7 percent and 93.9 percent,
respectively. From the accuracy alone, we might be tempted to say that the
Nearest Centroid model is better. However, if we look at the 2 × 2 tables,
we see that even though the Decision Tree had more false positives (6), it
had only one false negative, while the Nearest Centroid had two false
negatives. Again, in this case, a false negative means a missed cancer
detection with potentially serious consequences. So, for this dataset, we
want to minimize false negatives even if that means we need to tolerate a
small increase in false positives. Therefore, we’ll select the Decision Tree
over the Nearest Centroid model.

Metrics Derived from the 2 × 2 Confusion Matrix
Looking at the raw 2 × 2 table is helpful, but even more helpful are the
metrics derived from it. Let’s look at several of these in this section to see
how they can help us interpret the information in the 2 × 2 table. Before we
start, however, we should keep in mind that the metrics we’ll discuss are
sometimes a bit controversial. There is still healthy academic debate as to
which are best to use when. Our intention here is to introduce them via
examples, and to describe what it is that they are measuring. As a machine
learning practitioner, you’ll encounter virtually all of these from time to
time, so it’s wise to at least be familiar with them.

Deriving Metrics from the 2 × 2 Table
The first metrics are derived directly from the values in the 2 × 2 table: TP,
TN, FP, FN. Think of these as the bread-and-butter metrics. They’re easy to
compute and easy to understand. Recall the general form of the 2 × 2 table
from Table 11-2. We’ll now define two other quantities:

The true positive rate (TPR) is the probability that an actual instance of
class 1 will be correctly identified by the model. The TPR is frequently
known by other names: sensitivity, recall, and hit rate. You will likely see it
referred to as sensitivity in medical literature.

The true negative rate (TNR) is the probability that an actual instance of
class 0 will be correctly identified by the model. The TNR is also known as
the specificity, again, particularly so in medical literature. Both of these
quantities, as probabilities, have a value between 0 and 1; higher is better. A
perfect classifier will have TPR = TNR = 1.0; this happens when it makes
no mistakes so that FP = FN = 0, always.

The TPR and TNR need to be understood together to assess a model.
For example, we previously mentioned that if class 1 is rare and the model
always predicts class 0, it will have high accuracy. If we look at TPR and
TNR in that case, we’ll see that the TNR is 1 because the model never
assigns an instance of class 0 to class 1 (FP = 0). However, the TPR is 0 for
the very same reason, all actual instances of class 1 will be misidentified as
false negatives; they get assigned to class 0. Therefore, the two metrics
together immediately indicate that the model is not a good one.

What about the breast cancer case where a false negative might be fatal?
How do we want the TPR and TNR to look in this case? Ideally, of course,
we want them to both be as high as possible, but we might be willing to use
the model anyway if the TPR is very high while the TNR might be lower. In
that situation, we know that actual breast cancers, when presented, are
detected almost always. Why? Because the false negative count (FN) is
virtually 0, so the denominator of the TPR is about TP, which implies a
TPR of about 1.0. If, on the other hand, we tolerate false positives (actual
negative instances called malignant by the model), we see that the TNR
might be well below 1.0 because the denominator of the TNR includes the
FP counts.

The TPR and TNR tell us something about the likelihood that the model
will pick up actual class 1 and class 0 instances. What it does not tell us,
however, is how much faith we should put into the output of the model. For
example, if the model says “class 1,” should we believe it? To make that
assessment, we need two other metrics derived directly from the 2 × 2 table:

The positive predictive value (PPV) is most often known as the
precision. It’s the probability that when the model says the instance is of
class 1, it is of class 1. Similarly, the negative predictive value (NPV) is the
probability that the model is correct when it claims an instance is of class 0.
Both of these values are also numbers between 0 and 1, where higher is
better.

The only difference between the TPR and the PPV is whether we
consider false negatives or false positives in the denominator. By including
the false positives, the instances the model says are of class 1 when they are
really of class 0; we get the probability that the model output is correct.

For the case of a model that always predicts class 0, the PPV is
undefined because both the TP and FP are zero. All of the class 1 instances
are pushed into the FN count, and the TN count includes all the actual class
0 instances. For the case where TPR is high, but TNR is not, we have a
nonzero FP count so that the PPV goes down. Let’s make up an example to
see why this is so and how we might understand it.

Let’s say that our breast cancer model has produced the following 2 × 2
table (Table 11-4).

Table 11-4: A Hypothetical 2 × 2 Table for a Breast Cancer Dataset

Actual 1 Actual 0
Model
assigns 1

312 133

Actual 1 Actual 0
Model
assigns 0

6 645

In this example, the metrics we have covered so far are

TPR = 0.9811

TNR = 0.8398

PPV = 0.7011

NPV = 0.9908

This means a truly malignant case will be called malignant by the model 98
percent of the time, but a benign case will be called benign only 84 percent
of the time. The PPV of 70 percent implies that when the model says
“malignant,” there is only a 70 percent chance that the case is malignant;
however, because of the high TPR, we know that buried in the “malignant”
outputs are virtually all of the actual breast cancer cases. Notice also that
this implies a high NPV, so when the model says “benign,” we have very
high confidence that the instance is not breast cancer. This is what makes
the model useful even if the PPV is less than 100 percent. In a clinical
setting, this model will warrant further testing when it says “malignant” but
in general, no further testing will likely be needed if it says “benign.” Of
course, what acceptable levels of these metrics are depends upon the use
case for the model. Some might call an NPV of only 99.1 percent too low
given the potentially very high cost of missing a cancer detection. Thoughts
like these likely also motivate the recommended frequency of screening.

There are two additional basic metrics we can easily derive from the 2 ×
2 table:

These metrics tell us the likelihood that a sample will be a false positive if
the actual class is class 0 or a false negative if the actual class is class 1,
respectively. The FPR will show up again later when we talk about using
curves to assess models. Notice that FPR = 1 – TNR and FNR = 1 – TPR.

Calculating these basic metrics is straightforward, especially if we use
the output of the tally_predictions function defined previously as the input
(Listing 11-2):

def basic_metrics(tally):
 tp, tn, fp, fn, _ = tally
 return {
 "TPR": tp / (tp + fn),
 "TNR": tn / (tn + fp),
 "PPV": tp / (tp + fp),
 "NPV": tn / (tn + fn),
 (*\pagebreak*)
 "FPR": fp / (fp + tn),
 "FNR": fn / (fn + tp)
 }

Listing 11-2: Calculating basic metrics

We break up the list returned by tally_predictions, disregarding the
accuracy, and then build and return a dictionary containing each of the six
basic metrics we described. Of course, robust code would check for
pathological cases where the denominators are zero, but we’ve ignored that
code here to preserve clarity in the presentation.

Using Our Metrics to Interpret Models
Let’s use tally_predictions and basic_metrics to interpret some models. We’ll work
with the vector form of the MNIST data but keep only digits 3 and 5 so that
we have a binary classifier. The code is similar to that found in
mnist_experiments.py, which we used in Chapter 7.

Keeping only digits 3 and 5 leaves us with 11,552 training samples
(6,131 3s; 5,421 5s) and 1,902 test samples of which 1,010 are 3s and 892
are 5s. The actual code is in mnist_2x2_tables.py with selected output in
Table 11-5.

Table 11-5: Selected Output from MNIST 3 vs. 5 Models and Corresponding Basic Metrics

Model TP TN FP FN

Model TP TN FP FN
Nearest
Centroid

760 909 101 132

3-NN 878 994 16 14
Naïve
Bayes

612 976 34 280

RF 500 884 1,003 7 8
LinearSV
M

853 986 24 39

Model TPR TNR PPV NPV FP
R

FN
R

Nearest
Centroid

0.8520 0.9000 0.8827 0.8732 0.1
00
0

0.1
48
0

3-NN 0.9843 0.9842 0.9821 0.9861 0.0
15
8

0.0
15
7

Naïve
Bayes

0.6851 0.9663 0.9474 0.7771 0.0
33
7

0.3
13
9

RF 500 0.9910 0.9931 0.9921 0.9921 0.0
06
9

0.0
09
0

LinearSV
M

0.9563 0.9762 0.9726 0.9620 0.0
23
8

0.0
43
7

In Table 11-5, we see the raw counts at the top and the metrics defined
in this section at the bottom. Lots of numbers! Let’s parse things a bit to see
what’s going on. We’ll concentrate on the metrics at the bottom of the table.
The first two columns show the true positive rate (sensitivity, recall) and the
true negative rate (specificity). These values should be examined together.

If we look at the Nearest Centroid results, we see TPR = 0.8520 and
TNR = 0.9000. Here class 1 is a five, and class 0 is a three. So, the Nearest
Centroid classifier will call 85 percent of the fives it sees “five.” Similarly,
it will call 90 percent of the threes it sees “three.” While not too shabby, we

should not be impressed. Looking down the columns, we see that two
models performed very well for these metrics: 3-NN and the Random
Forest with 500 trees. In both cases, the TPR and TNR were nearly identical
and quite close to 1.0. This is a sign of the model performing well. Absolute
perfection would be TPR = TNR = PPV = NPV = 1.0 and FPR = FNR =
0.0. The closer we get to perfection, the better. If attempting to pick the best
model for this classifier, we would likely choose the Random Forest
because it was the closest to perfection on the test set.

Let’s look briefly at the Naïve Bayes results. The TNR (specificity) is
reasonably high, about 97 percent. However, the TPR (sensitivity) of 68.5
percent is pathetic. Roughly speaking, only two out of every three 5’s
presented to this model will be correctly classified. If we examine the next
two columns, the positive and negative predictive values, we see a PPV of
94.7 percent, meaning when the model does happen to say the input is a
five, we can be somewhat confident that it is a five. However, the negative
predictive value isn’t so good at 77.7 percent. Looking at the top portion of
Table 11-5 shows us what is happening in this case. The FP count is only 34
out of 1010 threes in the test set, but the FN count is high: 280 of the fives
were labeled “three.” This is the source of the low NPV for this model.

Here is a good rule of thumb for these metrics: a well-performing model
has TPR, TNR, PPV, and NPV very close to 1.0, and FPR and FNR very
close to 0.0.

Look again at Table 11-5, particularly the lower metrics for the Random
Forest. As their names suggest, the FPR and FNR values are rates. We can
use them to estimate how often FP and FN will occur when using the
model. For example, if we present the model with N = 1,000 cases that are
threes (class 0), we can use the FPR to estimate how many of them the
model will call fives (class 1):

estimated number of FP = FPR × N = 0.0069(1000) ≈ 7

A similar calculation gives us the estimated number of FN for N = 1000:
instances that are really 5’s:

estimated number of FN = FNR × N = 0.0090(1000) = 9

The same holds for the TPR and TNR, which also have “rate” in their
names (N = 1000 each for actual threes and fives):

estimated number of TP = TPR × N = 0.9910(1000) = 991

estimated number of FN = FNR × N = 0.9931(1000) = 993

These calculations show how well this model performs on the test data.

More Advanced Metrics
Let’s look in this section at what I’m arbitrarily calling more advanced
metrics. I say they are more advanced because instead of using the 2 × 2
table entries directly, they are built from values calculated from the table
itself. In particular, we’ll examine five advanced metrics: informedness,
markedness, F1 score, Cohen’s kappa, and the Matthews correlation
coefficient (MCC).

Informedness and Markedness
Informedness and markedness go together. They are somewhat less well
known than other metrics in this section, but they will hopefully be better
known in the future. I said earlier that TPR (sensitivity) and TNR
(specificity) should be interpreted together. The informedness (also called
Youden’s J statistic) does just that:

Informedness = TPR + TNR − 1

Informedness is a number in [–1,+1] that combines both the TPR and TNR.
The higher the informedness is, the better. An informedness of 0 implies
random guessing, while an informedness of 1 implies perfection (on the test
set). An informedness of less than 0 might suggest a model that is worse
than random guessing. An informedness of –1 implies that all true positive
instances were called negatives, and vice versa. In that case, we could swap
the label the model wants to assign to each input and get a quite good
model. Only pathological models lead to negative informedness values.

The markedness combines the positive and negative predictive values in
the same way that informedness combines TPR and TNR:

Markedness = PPV + NPV − 1

We see that it has the same range as informedness. The informedness says
something about how well the model is doing at correctly labeling inputs
from each class. The markedness says something about how well the model
is doing at being correct when it does claim a particular label for a
particular input, be it class 0 or class 1. Random guessing will give a
markedness near 0 and perfection a markedness near 1.

I like that the informedness and markedness each capture essential
aspects of the model’s performance in a single number. Some claim that
these metrics are unbiased by the prior probabilities of the particular
classes. This means if class 1 is significantly less common than class 0, the
informedness and markedness are not affected. For in-depth details, see
“Evaluation: From Precision, Recall and F-measure to ROC, Informedness,
Markedness, and Correlation” by David Martin Powers.

F1 Score
The F1 score, rightly or wrongly, is widely used, and we should be familiar
with it. The F1 score combines two basic metrics into one. Its definition is
straightforward in terms of precision (PPV) and recall (TPR):

The F1 score is a number in [0,1], where higher is better. Where does
this formula come from? It’s not obvious in this form, but the the F1 score
is the harmonic mean of the precision and recall. A harmonic mean is the
reciprocal of the arithmetic mean of the reciprocals. Like this,

One criticism of the F1 score is that it does not take the true negatives
into account as informedness does (via the TNR). If we look at the
definition of PPV and TPR, we see that both of these quantities depend
entirely on the TP, FP, and FN counts from the 2 × 2 table, but not the TN
count. Additionally, the F1 score places equal weight on the precision and
the recall. Precision is affected by false positives, while recall is affected by
false negatives. From the previous breast cancer model, we saw that the
human cost of a false negative is substantially higher than a false positive.
Some argue that this must be taken into account when evaluating model
performance, and indeed it should. However, if the relative costs of a false
positive and a false negative are the same, the F1 score will have more
meaning.

Cohen’s Kappa
Cohen’s kappa is another statistic commonly found in machine learning. It
attempts to account for the possibility that the model might put the input
into the correct class by accident. Mathematically, the metric is defined as

where po is the observed accuracy and pe is the accuracy expected by
chance. For a 2 × 2 table, these values are defined to be

with N being the total number of samples in the test set.
Cohen’s kappa is generally between 0 and 1. 0 means a complete

disagreement between the assigned class labels and the given class labels. A
negative value indicates worse than chance agreement. A value near 1
indicates strong agreement.

Matthews Correlation Coefficient
Our final metric is Matthews correlation coefficient (MCC). It is the
geometric mean of the informedness and markedness. In that sense, it is,
like the F1 score, a combination of two metrics into one.

The MCC is defined as

which, mathematically, works out to the geometric mean of the
informedness and markedness:

The MCC is favored by many because it takes the full 2 × 2 table into
account, including the relative frequency of the two classes (the class prior
probabilities). This is something that the F1 score does not do because it
ignores the true negatives.

The MCC is a number between 0 and 1, with higher being better. If
considering only one value as a metric for evaluating a binary model, make
it the MCC. Note, there are four sums in the denominator of the MCC. If
one of these sums is 0, the entire denominator will be 0, which is a problem
since we cannot divide by 0. Fortunately, in that case, the denominator can
be replaced with 1 to give a still meaningful result. A well-performing
model has MCC close to 1.0.

Implementing Our Metrics
Let’s write a function to construct these metrics from a given 2 × 2 table.
The code is shown in Listing 11-3:

from math import sqrt
def advanced_metrics(tally, m):
 tp, tn, fp, fn, _ = tally
 n = tp+tn+fp+fn
 po = (tp+tn)/n
 pe = (tp+fn)*(tp+fp)/n**2 + (tn+fp)*(tn+fn)/n**2

 return {
 "F1": 2.0*m["PPV"]*m["TPR"] / (m["PPV"] + m["TPR"]),
 "MCC": (tp*tn - fp*fn) / sqrt((tp+fp)*(tp+fn)*(tn+fp)*(tn+fn)),
 "kappa": (po - pe) / (1.0 - pe),
 "informedness": m["TPR"] + m["TNR"] - 1.0,
 "markedness": m["PPV"] + m["NPV"] - 1.0
 }

Listing 11-3: Calculating advanced metrics

For the sake of simplicity, we’re not checking if the MCC denominator
is 0 as a full implementation would.

This code takes the tallies and basic metrics as arguments and returns a
new dictionary with the more advanced metrics. Let’s see how our MNIST
example from Table 11-5 looks when we calculate the advanced metrics.

Table 11-6 shows the metrics of this section for the MNIST 3 versus 5
models. A few things are worth noticing. First, the F1 score is always
higher than the MCC or Cohen’s kappa. In a way, the F1 score is overly
optimistic. As previously noted, the F1 score does not take the true
negatives into account, while both the MCC and Cohen’s kappa do.

Table 11-6: Selected Output from MNIST 3 vs. 5 Models and Corresponding Advanced Metrics

Model F1 MCC Cohen
’s κ

Infor
medne
ss

Marke
dness

Nearest
Centroid

0.8671 0.7540 0.7535 0.7520 0.7559

3-NN 0.9832 0.9683 0.9683 0.9685 0.9682

Model F1 MCC Cohen
’s κ

Infor
medne
ss

Marke
dness

Naïve
Bayes

0.7958 0.6875 0.6631 0.6524 0.7244

RF 500 0.9916 0.9842 0.9842 0.9841 0.9842
LinearSV
M

0.9644 0.9335 0.9334 0.9325 0.9346

Another thing to note is that well-performing models, like 3-NN and the
Random Forest, score highly in all of these metrics. When the model
performs well, the difference between the F1 score and MCC is smaller
than when the model is doing poorly (Naïve Bayes, for example). Notice
also that the MCC is always between the informedness and markedness, as
a geometric mean will be. Finally, from the values in Table 11-5 and Table
11-6, we see that the best-performing model is the Random Forest, based on
the MCC of 0.9842.

In this section, and the two before it, we looked at quite a few metrics
and saw how they could be calculated and interpreted. A well-performing
model will score highly on all of these metrics. This is the hallmark of a
good model. It’s when the models we’re evaluating are less than sterling
that the relative differences between the metrics, and the meaning of the
metrics, really comes into play. That’s when we need to consider specific
metric values and the cost associated with the mistakes the models are
making (FP and FN). In those cases, we have to use our judgment and
problem-specific factors to decide which model is ultimately selected.

Now, let’s shift gears and take a look at a graphical way of evaluating
model performance.

The Receiver Operating Characteristics Curve
They say that a picture is worth a thousand words. In this section, we’ll
learn that a picture—more accurately, a curve—can be worth upward of a
dozen numbers. That is, we’ll learn how to turn the output of a model into a
curve that captures more of the performance than the metrics of the
previous sections can. Specifically, we’ll learn about the widely used

receiver operating characteristics (ROC) curve: what it is, how to plot it,
and how to use sklearn to plot it for us.

Gathering Our Models
To make the curve, we need a model that outputs a probability of belonging
to class 1. In the previous sections, we used models that output a class label
so that we could tally the TP, TN, FP, and FN counts. For our ROC curves,
we still need these counts, but instead of the class label as model output, we
need the probability of class 1 membership. We’ll apply different thresholds
to these probabilities to decide what label to give the input.

Fortunately for us, traditional neural networks (and the deep networks
we will see in Chapter 12) output the necessary probability. If we’re using
sklearn, other classical models can also be made to output a probability
estimate, but we’ll ignore that fact here to keep things simple.

Our test case is a series of neural networks trained to decide between
even MNIST digits (class 0) and odd MNIST digits (class 1). Our inputs are
the vector form of the digits that we’ve been using up to this point in the
book. We can use the training and test data we created in Chapter 5—we
only need to recode the labels so that digits 0, 2, 4, 6, and 8 are class 0,
while digits 1, 3, 5, 7, and 9 are class 1. That is easily accomplished with a
few lines of code:

old = np.load("mnist_train_labels.npy")
new = np.zeros(len(old), dtype="uint8")
new[np.where((old % 2) == 0)] = 0
new[np.where((old % 2) == 1)] = 1
np.save("mnist_train_even_odd_labels.npy", new)

old = np.load("mnist_test_labels.npy")
new = np.zeros(len(old), dtype="uint8")
new[np.where((old % 2) == 0)] = 0
new[np.where((old % 2) == 1)] = 1
np.save("mnist_test_even_odd_labels.npy", new)

The directory paths point to the same place the other MNIST data is
stored. We use the fact that the remainder when an even number is divided
by 2 is always 0 or 1 depending on whether the number is even or odd.

What models will we test? To emphasize the difference between the
respective models, we’ll intentionally train models that we know are far

from ideal. In particular, we’ll use the following code to generate the
models and produce the probability estimates:

import numpy as np
from sklearn.neural_network import MLPClassifier

def run(x_train, y_train, x_test, y_test, clf):
 clf.fit(x_train, y_train)
 return clf.predict_proba(x_test)

def nn(layers):
 return MLPClassifier(solver="sgd", verbose=False, tol=1e-8,
 nesterovs_momentum=False, early_stopping=False, batch_size=64,
 learning_rate_init=0.001, momentum=0.9, max_iter=200,
 hidden_layer_sizes=layers, activation="relu")

def main():
 x_train = np.load("mnist_train_vectors.npy").astype("float64")/256.0
 y_train = np.load("mnist_train_even_odd_labels.npy")
 x_test = np.load("mnist_test_vectors.npy").astype("float64")/256.0
 y_test = np.load("mnist_test_even_odd_labels.npy")
 x_train = x_train[:1000]
 y_train = y_train[:1000]
 layers = [(2,), (100,), (100,50), (500,250)]
 mlayers = ["2", "100", "100x50", "500x250"]
 for i,layer in enumerate(layers):
 prob = run(x_train, y_train, x_test, y_test, nn(layer))
 np.save("mnist_even_odd_probs_%s.npy" % mlayers[i], prob)

The code can be found in the file mnist_even_odd.py. The run and nn
functions should be familiar. We used virtually identical versions in Chapter
10, where nn returns a configured MLPClassifier object and run trains the
classifier and returns the prediction probabilities on the test set. The main
function loads the train and test sets, limits the training set to the first 1,000
samples (about 500 even and 500 odd), then loops over the hidden layer
sizes we will train. The first two are single hidden layer networks with 2
and 100 nodes, respectively. The last two are two hidden layer networks
with 100 × 50 and 500 × 250 nodes per layer.

Plotting Our Metrics
The output of clf.predict_proba is a matrix with as many rows as there are test
samples (ten thousand in this case). The matrix has as many columns as
there are classes; since we’re dealing with a binary classifier, there are two

columns per sample. The first is the probability that the sample is even
(class 0), and the second is the probability of the sample being odd (class
1). For example, the first 10 outputs for one of the models are shown in
Table 11-7.

Table 11-7: Example Model Output Showing the Assigned per Class Probabilities Along with the
Actual Original Class Label

Class 0 Class 1 Actual label
0.009678 0.990322 3
0.000318 0.999682 3
0.001531 0.998469 7
0.007464 0.992536 3
0.011103 0.988897 1
0.186362 0.813638 7
0.037229 0.962771 7
0.999412 0.000588 2
0.883890 0.116110 6
0.999981 0.000019 6

The first column is the probability of being even, and the second is the
probability of being odd. The third column is the actual class label for the
sample showing that the predictions are spot on. The odd digits have high
class 1 probabilities and low class 0 probabilities, while the opposite is true
for the even samples.

When we build a 2 × 2 table from the performance of a model on a
held-out test set, we get a collection of TP, TN, FP, and FN numbers from
which we can calculate all the metrics of the previous sections. This
includes the true positive rate (TPR, sensitivity) and the false positive rate
(FPR, equal to 1 – specificity). Implicit in the table is the threshold we used
to decide when the model output should be considered class 1 or class 0. In
the previous sections, this threshold was 0.5. If the output is ≥ 0.5, we
assign the sample to class 1; otherwise, we assign it to class 0. Sometimes
you’ll see this threshold added as a subscript like TPR0.5 or FPR0.5.

Mathematically, we can consider the TPR and FPR calculated from a 2
× 2 table to be a point on the FPR (x-axis) versus TPR (y-axis) plane,
specifically, the point (FPR, TPR). Since both FPR and TPR range from 0

to 1, the point (FPR, TPR) will lie somewhere within a square of length 1
with the lower-left corner of the square at the point (0,0) and the upper-right
corner at the point (1,1). Every time we change our decision threshold, we
get a new 2 × 2 table leading to a new point on the FPR versus TPR plane.
For example, if we change our decision threshold from 0.5 to 0.3 so that
each output class 1 probability of 0.3 or higher is called class 1, we’ll get a
new 2 × 2 table and a new point, (FPR0.3,TPR0.3), on the plane. As we
systematically change the decision threshold from high to low, we generate
a sequence of points that we can connect to form a curve.

Curves generated by changing a parameter in this way are called
parametric curves. The points are functions of the threshold. Let’s call the
threshold value θ (theta) and vary it from near 1 to near 0. Doing so lets us
calculate a set of points, (FPRθ,TPRθ), which, when plotted, lead to a curve
in the FPR versus TPR plane. As noted earlier, this curve has a name: the
receiver operating characteristics (ROC) curve. Let’s look at an ROC curve
and explore what such a curve can tell us.

Exploring the ROC Curve
Figure 11-1 shows the ROC curve for the MNIST even-versus-odd model
with a single hidden layer of 100 nodes.

Figure 11-1: An ROC curve with key elements marked

The labeled points represent the FPR and TPR for the given threshold
values. The dashed line is the diagonal from (0,0) to (1,1). This dashed line
represents a classifier that guesses its output randomly. The closer our curve
is to this dashed line, the less powerful the model is. If your curve lies on
top of the line, you might as well flip a coin and assign the label that way.
Any curve below the dashed line is performing worse than random
guessing. If the model were entirely wrong, meaning it calls all class 1
instances class 0, and vice versa, a curious thing happens: we can turn the
entirely wrong model into a perfectly correct model by changing all class 1
output to class 0 and all class 0, output to class 1. It’s unlikely that you will
run across a model this bad.

The ROC curve in Figure 11-1 has a single point labeled perfection in
the upper-left corner of the graph. This is the ideal we are striving for. We

want our ROC curve to move up and to the left toward this point. The
closer we get the curve to this point, the better the model is performing
against our test set. A perfect model will have an ROC curve that jumps up
vertically to this point and then horizontally to the point (1,1). The ROC
curve in Figure 11-1 is going in the right direction and represents a
reasonably well-performing model.

Notice the labeled θ values. We can select a level of performance from
the model by adjusting θ. In this case, the typical default value of 0.5 gives
us the best performance because that threshold value returns a TPR and
FPR with the best balance, the point closest to the upper left of the graph.
However, there are reasons we might want to use a different θ value. If we
make θ small, say 0.1, we move along the curve toward the right. Two
things happen. First, the TPR goes up to about 0.99, meaning we correctly
assign about 99 percent of the real class 1 instances handed to the model to
class 1. Second, the FPR also goes up, to about 0.32, meaning we will
simultaneously call about 32 percent of the true negatives (class 0) class 1
as well. If our problem is such that we can tolerate calling some negative
instances “positive,” knowing that we now have a meager chance of doing
the opposite, calling a positive case “negative,” we might choose to change
the threshold to 0.1. Think of the previous breast cancer example: we never
want to call a positive case “negative,” so we tolerate more false positives
to know we are not mislabeling any actual positives.

What does it mean to move the threshold (θ) to 0.9? In this case, we’ve
moved along the curve to the left, to a point with a very low false-positive
rate. We might do this if we want to know with a high degree of confidence
that when the model says “class 1,” it is an instance of class 1. This means
we want a high positive predictive value (PPV, precision). Recall the
definition of the PPV:

The PPV is high if FP is low. Setting θ to 0.9 makes the FP low for any
given test set. For the ROC curve of Figure 11-1, moving to θ = 0.9 implies
an FPR of about 0.02 and a TPR of about 0.71 for a PPV of about 0.97. At
θ = 0.9, when the model outputs “class 1,” there is a 97 percent chance that
the model is correct. In contrast, at θ = 0.1, the PPV is about 76 percent. A

high threshold can be used in a situation where we are interested in
definitely locating an example of class 1 without caring that we might not
detect all class 1 instances.

Changing the threshold θ moves us along the ROC curve. As we do so,
we should expect the metrics of the previous section to also change as a
function of θ. Figure 11-2 shows us how the MCC and PPV change with θ.

Figure 11-2: How MCC (circles) and PPV (squares) change as the decision threshold (θ) changes for
the MNIST even/odd model of Figure 11-1

In the figure, we see that as the threshold goes up, so does the PPV. The
model becomes more confident when it declares an input a member of class
1. However, this is tempered by the change in MCC, which, as we
previously saw, is an excellent single metric measure of overall model

performance. In this case, the highest MCC is at θ = 0.5, with MCC falling
off as the threshold increases or decreases.

Comparing Models with ROC Analysis
The ROC curve gives us a significant amount of information. It’s also
handy for comparing models, even if those models are radically different
from each other in architecture or approach. However, care must be taken
when making the comparison so that the test sets used to generate the
curves are ideally the same or very nearly the same.

Let’s use ROC analysis to compare the different MNIST even/odd digit
models that we trained previously. We’ll see if this helps us to choose
between them.

Figure 11-3 shows the ROC curves for these models with an inset
expanding the upper-left corner of the graph to make it easier to distinguish
one model from the other. The number of nodes in each hidden layer is
indicated to identify the models.

Figure 11-3: ROC curves for the MNIST even/odd models. The model hidden layer sizes are
indicated.

We immediately see that one ROC curve is significantly different from
the other three. This is the ROC curve for the model with a single hidden
layer with two nodes. All the other ROC curves are above this one. As a
general rule, if one ROC curve is entirely above another, then the model
that generated the curve can be considered superior. All of the larger
MNIST even/odd models are superior to the model with only two nodes in
its hidden layer.

The other three models are quite close to each other, so how do we
choose one? The decision isn’t always clear-cut. Following our rule of
thumb about ROC curves, we should select the two-layer model with 500
and 250 nodes, respectively, as its ROC curve is above the others. However,
we might hesitate depending upon our use case. This model has over

500,000 parameters. Running it requires use of all of those parameters. The
100 × 50 model contains slightly more than 80,000 parameters. That’s less
than one-fifth the number of the larger model. We might decide that
processing speed considerations eclipse the small improvement in the
overall performance of the larger model and select the smaller model. The
ROC analysis showed us that doing so involves only a minor performance
penalty.

Another factor to consider when comparing ROC curves visually is the
slope of the curve when the FPR is small. A perfect model has a vertical
slope since it jumps immediately from the point (0,0) to (0,1). Therefore,
the better model will have an ROC curve that has a steeper slope in the low
FPR region.

A commonly used metric derived from the ROC curve is the area under
it. This area is usually abbreviated as AUC or, in medical circles, Az. A
perfect ROC curve has an AUC of 1.0 since the curve jumps from (0,0) to
(0,1) and then over to (1,1), forming a square of side 1 with an area of 1. A
model that guesses randomly (the diagonal line in the ROC plot) has an
AUC of 0.5, the area of the triangle formed by the dashed diagonal line. To
calculate the area under an arbitrary ROC curve, one needs to perform
numerical integration. Fortunately for us, sklearn knows how to do this, so
we don’t need to. We’ll see this shortly.

People often report the AUC, but as time goes by, I’m less and less in
favor of it. The main reason is that AUC replaces the highly informative
graph with a single number, but different ROC curves can lead to the same
AUC. If the AUC of two curves is the same, but one leans far to the right
while the other has a steep slope in the low FPR region, we might be
tempted to think the models are roughly equivalent in terms of
performance, when, in reality, the model with the steeper slope is likely the
one we want because it will reach a reasonable TPR without too many false
positives.

Another caution when using the AUC is that the AUC changes only a
small amount for even fairly significant changes in other parameters. This
makes it difficult for humans to judge well based on AUC values that are
only slightly different from each other. For example, the AUC of the
MNIST even/odd model with two nodes in its hidden layer is 0.9373, while
the AUC of the model with 100 nodes is 0.9722. Both are well above 0.9

out of a possible 1.0, so, are they both about the same? We know that they
are not, since the ROC curves clearly show the two-node model to be well
below the other.

Generating an ROC Curve
We are now ready to learn how to create an ROC curve. The easy way to
get the ROC curve, and AUC, is to use sklearn:

import os
import sys
import numpy as np
import matplotlib.pylab as plt
from sklearn.metrics import roc_auc_score, roc_curve

def main():
 labels = np.load(sys.argv[1])
 probs = np.load(sys.argv[2])
 pname = sys.argv[3]

 auc = roc_auc_score(labels, probs[:,1])
 roc = roc_curve(labels, probs[:,1])
 print("AUC = %0.6f" % auc)

 plt.plot(roc[0], roc[1], color='r')
 plt.plot([0,1],[0,1], color='k', linestyle=':')
 plt.xlabel("FPR")
 plt.ylabel("TPR")
 plt.tight_layout(pad=0, w_pad=0, h_pad=0)
 plt.savefig(pname, dpi=300)
 plt.show()

This routine reads a set of labels and the associated per class
probabilities, such as the output generated by the code in the previous
section. It then calls the sklearn functions roc_auc_score and roc_curve to return
the AUC and the ROC points, respectively. The ROC curve is plotted,
saved to disk, and displayed.

We need not use sklearn as a black box. We can generate the ROC curve
points ourselves quickly enough. We load the same inputs, the labels, and
the per class probabilities, but instead of calling a library function, we loop
over the threshold values of interest and calculate TP, TN, FP, and FN for
each threshold. From these, we can directly calculate the FPR and TPR,

which gives us the set of points we need to plot. The code to do this is
straightforward:

def table(labels, probs, t):
 tp = tn = fp = fn = 0
 for i,l in enumerate(labels):
 c = 1 if (probs[i,1] >= t) else 0
 if (l == 0) and (c == 0):
 tn += 1
 if (l == 0) and (c == 1):
 fp += 1
 if (l == 1) and (c == 0):
 fn += 1
 if (l == 1) and (c == 1):
 tp += 1
 return [tp, tn, fp, fn]

def main():
 labels = np.load(sys.argv[1])
 probs = np.load(sys.argv[2])
 pname = sys.argv[3]

 th = [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1]
 roc = []
 for t in th:
 tp, tn, fp, fn = table(labels, probs, t)
 tpr = tp / (tp + fn)
 fpr = fp / (tn + fp)
 roc.append([fpr, tpr])
 roc = np.array(roc)

 xy = np.zeros((roc.shape[0]+2, roc.shape[1]))
 xy[1:-1,:] = roc
 xy[0,:] = [0,0]
 xy[-1,:] = [1,1]
 plt.plot(xy[:,0], xy[:,1], color='r', marker='o')
 plt.plot([0,1],[0,1], color='k', linestyle=':')
 plt.xlabel("FPR")
 plt.ylabel("TPR")
 plt.savefig(pname)
 plt.show()

The main function loads the labels and probabilities. The loop over th
applies the different threshold values, accumulating the ROC points in roc
by calling the table function, which calculates the TP, TN, FP, and FN for the
current threshold.

The table function loops over all the per class probabilities assigning a
class label of 1 if the class 1 probability is greater than or equal to the
current threshold value. This class assignment is then compared to the
actual class label, and the appropriate tally counter is incremented.

Once the ROC points are calculated, the plot is made by adding the
point (0,0) to the beginning of the point list and the point (1,1) to the end of
the list. Doing this ensures that the plot extends the full range of FPR
values. The points are plotted and saved to disk.

The Precision–Recall Curve
Before leaving this section, we should mention one other evaluation curve
that you will run across from time to time in machine learning. This is the
precision-recall (PR) curve. As the name suggests, it plots the PPV
(precision) and TPR (recall, sensitivity) as the decision threshold varies,
just like an ROC curve. A good PR curve moves toward the upper right
instead of the upper left as a good ROC curve does. The points of this curve
are easily generated in sklearn using the precision_recall_curve function in the
metrics module.

We’re not spending time with this curve because it does not take the
true negatives into account. Consider the definition of the PPV and TPR to
see that this is so. My bias against the PR curve stems from the same
concern as my bias against the F1 score. By not taking the true negatives
into account, the PR curve and F1 score give an incomplete picture of the
quality of the classifier. The PR curve does have utility when the true
positive class is rare or when the true negative performance is not essential.
However, in general, for evaluating classifier performance, I claim it is best
to stick to the ROC curve and the metrics we have defined.

Handling Multiple Classes
All of the metrics we’ve discussed so far apply to binary classifiers only. Of
course, we know that many classifiers are multiclass: they output multiple
labels, not just 0 or 1. To evaluate these models, we’ll extend our idea of the
confusion matrix to the multiclass case and see that we can also extend
some of the metrics we’re already familiar with as well.

We need some multiclass model results to work with. Thankfully, the
MNIST data is already multiclass. Recall, we went to the trouble of
recoding the labels to make the dataset binary. Here we’ll train models with
the same architectures, but this time we’ll leave the labels as they are so that
the model will output one of ten labels: the digit it assigned to the test input,
the output of the predict method of the MLPClassifier class. We won’t show the
code as it’s identical to the code in the previous section except that predict is
called in place of predict_proba.

Extending the Confusion Matrix
The basis for our binary metrics was the 2 × 2 confusion matrix. The
confusion matrix is readily extended to the multiclass case. To do that, we
let the rows of the matrix represent the actual class labels, while the
columns of the matrix represent the model’s predictions. The matrix is
square with as many rows and columns as there are classes in the dataset.
For MNIST, then, we arrive at a 10 × 10 confusion matrix since there are 10
digits.

We calculate the confusion matrix from the actual known test labels and
the predicted labels from the model. There is a function in the metrics module
of sklearn, confusion_matrix, which we can use, but it’s straightforward enough
to calculate it ourselves:

def confusion_matrix(y_test, y_predict, n=10):
 cmat = np.zeros((n,n), dtype="uint32")
 for i,y in enumerate(y_test):
 cmat[y, y_predict[i]] += 1
 return cmat

Here n is the number of classes, fixed at 10 for MNIST. If needed, we
could instead determine it from the supplied test labels.

The code is straightforward. The inputs are vectors of the actual labels
(y_test) and the predicted labels (y_predict), and the confusion matrix (cmat) is
filled in by incrementing each possible index formed from the actual label
and the predicted label. For example, if the actual label is 3 and the
predicted label is 8, then we add one to cmat[3,8].

Let’s look at the confusion matrix for a model with one hidden layer of
100 nodes (Table 11-8).

Table 11-8: Confusion Matrix for the Model with a Single Hidden Layer of 100 Nodes

0 1 2 3 4 5 6 7 8 9
0 9

4
3

0 6 9 0 10 7 1 4 0

1 0 11
02

14 5 1 1 3 1 8 0

2 1
6

15 86
2

36 18 1 17 24 41 2

3 3 1 10 93
7

0 20 3 13 17 6

4 2 8 4 2 87
9

0 14 1 6 66

5 1
9

3 3 53 13 71
9

17 3 44 18

6 1
4

3 4 2 21 15 89
4

1 4 0

7 3 21 32 7 10 1 0 90
2

1 51

8 1
7

14 11 72 11 46 21 9 74
9

24

9 1
0

11 1 13 42 5 2 31 10 88
4

The rows represent the actual test sample label, [0,9]. The columns are
the label assigned by the model. If the model is perfect, there will be a one-
to-one match between the actual label and the predicted label. This is the
main diagonal of the confusion matrix. Therefore, a perfect model will have
entries along the main diagonal, and all other elements will be 0. Table 11-8
is not perfect, but the largest counts are along the main diagonal.

Look at row 4 and column 4. The place where the row and column meet
has the value 879. This means that there were 879 times when the actual
class was 4 and the model correctly predicted “4” as the label. If we look
along row 4, we see other numbers that are not zero. Each of these
represents a case where an actual 4 was called another digit by the model.

For example, there were 66 times when a 4 was called a “9” but only one
case of a 4 being labeled a “7”.

Column 4 represents the cases when the model called the input a “4”.
As we saw, it was correct 879 times. However, there were other digits that
the model accidentally labeled as “4”, like the 21 times a 6 was called a “4”
or the one time a 1 was mistaken for a “4”. There were no cases of a 3 being
labeled a “4”.

The confusion matrix tells us at a glance how well the model is doing
on the test set. We can quickly see if the matrix is primarily diagonal. If it
is, the model is doing a good job on the test set. If not, we need to take a
closer look to see what classes are being confused with other classes. A
simple adjustment to the matrix can help. Instead of the raw counts, which
require us to remember how many examples of each class are in the test set,
we can divide the values of each row by the sum of the row. Doing so
converts the entries from counts to fractions. We can then multiply the
entries by 100 to convert to percents. This transforms the confusion matrix
into what we’ll call an accuracy matrix. The conversion is straightforward:

acc = 100.0*(cmat / cmat.sum(axis=1))

Here cmat is the confusion matrix. This produces an accuracy matrix,
Table 11-9.

Table 11-9: A Confusion Matrix Presented as per Class Accuracies

0 1 2 3 4 5 6 7 8 9
0 9

6
.
2

0. 0.6 0.9 0. 1.1 0.7 0.1 0.4 0.

1 0
.

97.
1

1.4 0.5 0.1 0.1 0.3 0.1 0.8 0.

2 1
.
6

1.3 83.
5

3.6 1.8 0.1 1.8 2.3 4.2 0.2

3 0
.
3

0.1 1. 92.
8

0. 2.2 0.3 1.3 1.7 0.6

0 1 2 3 4 5 6 7 8 9
4 0

.
2

0.7 0.4 0.2 89.
5

0. 1.5 0.1 0.6 6.5

5 1
.
9

0.3 0.3 5.2 1.3 80.
6

1.8 0.3 4.5 1.8

6 1
.
4

0.3 0.4 0.2 2.1 1.7 93.
3

0.1 0.4 0.

7 0
.
3

1.9 3.1 0.7 1. 0.1 0. 87.
7

0.1 5.1

8 1
.
7

1.2 1.1 7.1 1.1 5.2 2.2 0.9 76.
9

2.4

9 1
.

1. 0.1 1.3 4.3 0.6 0.2 3. 1. 87.
6

The diagonal shows the per class accuracies. The worst performing class is
8 with an accuracy of 76.9 percent, and the best performing class is 1 with
an accuracy of 97.1 percent. The non-diagonal elements are the percentage
of the actual class labeled as a different class by the model. For class 0, the
model called a true zero class “5” 1.1 percent of the time. The row
percentages sum to 100 percent (within rounding error).

Why did class 8 do so poorly? Looking across the row for class 8, we
see that the model mistook 7.1 percent of the actual 8 instances for a “3”
and 5.2 percent of the instances for a “5”. Confusing an 8 with a “3” was
the biggest single mistake the model made, though 6.5 percent of 4
instances were labeled “9” as well. A moment’s reflection makes sense of
the errors. How often do people confuse 8 and 3 or 4 and 9? This model is
making errors similar to those humans make.

The confusion matrix can reveal pathological performance as well.
Consider the MNIST model in Figure 11-3, with a single hidden layer of
only two nodes. The accuracy matrix it produces is shown in Table 11-10.

We can immediately see that this is an inferior model. Column 5 is
entirely zero, meaning the model never outputs “5” for any input. Much the

same is true for output labels “8” and “9”. On the other hand, the model
likes to call inputs “0”, “1”, “2”, or “3” as those columns are densely
populated for all manner of input digits. Looking at the diagonal, we see
that only 1 and 3 stand a reasonable chance of being correctly identified,
though many of these will be called “7”. Class 8 is rarely correctly labeled
(1.3 percent). A poorly performing model will have a confusion matrix like
this, with oddball outputs and large off-diagonal values.

Table 11-10: Accuracy Matrix for the Model with Only Two Nodes in Its Hidden Layer

0 1 2 3 4 5 6 7 8 9
0 51

.0
1.0 10.

3
0.7 1.8 0.0 34.

1
0.7 0.0 0

.
4

1 0.
4

88.
3

0.4 1.1 0.8 0.0 0.0 9.3 1.0 0
.
0

2 8.
6

2.8 75.
2

6.9 1.7 0.0 1.4 3.0 0.3 0
.
6

3 0.
2

1.0 4.9 79.
4

0.3 0.0 0.0 13.
5

0.0 0
.
2

4 28
.4

31.
3

7.3 2.1 9.7 0.0 0.3 13.
6

1.0 0
.
5

5 11
.4

42.
5

2.2 4.9 4.4 0.0 0.1 16.
5

0.9 0
.
3

6 35
.4

1.0 5.4 0.2 1.4 0.0 55.
0

0.0 0.0 0
.
1

7 0.
4

5.2 2.0 66.
2

0.8 0.0 0.0 25.
5

0.2 0
.
3

8 10
.5

41.
9

2.8 8.0 4.1 0.0 0.1 22.
1

1.3 0
.
4

0 1 2 3 4 5 6 7 8 9
9 4.

7
9.1 5.8 26.

2
5.8 0.0 0.2 41.

2
2.2 3

.
1

Calculating Weighted Accuracy
The diagonal elements of an accuracy matrix tell us the per class accuracies
for the model. We can calculate an overall accuracy by averaging these
values. However, this could be misleading if one or more classes is far more
prevalent in the test data than the others. Instead of a simple average, we
should use a weighted average. The weights are based on the total number
of test samples from each class divided by the total number of test samples
presented to the model. Say we have three classes and their frequency and
per class accuracies in our test set are as in Table 11-11:

Table 11-11: Hypothetical per Class Accuracies for a Model with Three Classes

Class Frequency Accuracy
0 4,004 88.1
1 6,502 76.6
2 8,080 65.2

Here we have N = 4,004 + 6,502 + 8,080 = 18586 test samples. Then,
the per class weights are shown in Table 11-12.

Table 11-12: Example per-class weights

Class Weight
0 4,004 / 18,586 = 0.2154
1 6,502 / 18,586 = 0.3498
2 8,080 / 18,586 = 0.4347

The average accuracy can be calculated to be

ACC = 0.2154 × 88.1 + 0.3498 × 76.6 + 0.4347 × 65.2 = 74.1

Philosophically, we should replace the weights with the actual per class
prior probabilities, if we know them. These probabilities are the true

likelihood of the class appearing in the wild. However, if we assume that
the test set is fairly constructed, we’re likely safe using only the per class
frequencies. We claim that a properly built test set will represent the true
prior class probabilities reasonably well.

In code, the weighted mean accuracy can be calculated succinctly from
the confusion matrix:

def weighted_mean_acc(cmat):
 N = cmat.sum()
 C = cmat.sum(axis=1)
 return ((C/N)*(100*np.diag(cmat)/C)).sum()

N is the total number of samples that were tested, which is just the sum
of the entries in the confusion matrix since every sample in the test set falls
somewhere in the matrix, and C is a vector of the number of samples per
class. This is just the sum of the rows of the confusion matrix. The per class
accuracy, as a percentage, is calculated from the diagonal elements of the
confusion matrix (np.diag(cmat)) divided by the number of times each class
shows up in the test set, C. Multiply by 100 to make these percent
accuracies.

If we summed these per class and divided by the number of classes, we
would have the (potentially misleading) unweighted mean accuracy.
Instead, we first multiply by C/N, the fraction of all test samples that were
of each class (recall, C is a vector), and then sum to get the weighted
accuracy. This code works for any size confusion matrix.

For the MNIST models of the previous section, we calculate weighted
mean accuracies to be those in Table 11-13.

Table 11-13: Weighted Mean Accuracies for the MNIST Models

Architecture Weighted mean accuracy
2 40.08%
100 88.71%
100 × 50 88.94%
500 × 250 89.63%

Table 11-13 shows the sort of diminishing returns we’ve seen previously as
the model size increases. The single hidden layer of 100 nodes is virtually

identical to the two hidden layer model with 100 and 50 nodes and only 1
percent worse than the much larger model with 500 nodes and 250 nodes in
its hidden layers. The model with only two nodes in the hidden layer
performs poorly. Since there are 10 classes, random guessing would tend to
have an accuracy of 1/10 = 0.1 = 10 percent, so even this very strange
model that maps 784 input values (28×28 pixels) to only two and then to
ten output nodes is still four times more accurate than random guessing.
However, this is misleading on its own because, as we just saw in Table 11-
10, the confusion matrix for this model is quite strange. We certainly would
not want to use this model. Nothing beats careful consideration of the
confusion matrix.

Multiclass Matthews Correlation Coefficient
The 2 × 2 confusion matrix led to many possible metrics. While it’s
possible to extend several of those metrics to the multiclass case, we’ll
consider only the main metric here: the Matthews correlation coefficient
(MCC). For the binary case, we saw that the MCC was

This can be extended to the multiclass case by using terms from the
confusion matrix like so

where

Here, K is the number of classes, and C is the confusion matrix. This
notation is from the sklearn website’s description of the MCC, giving us a
direct view of how it’s implemented. We don’t need to follow the equations
in detail; we need to know only that the MCC is built from the confusion
matrix in the multiclass case as in the binary case. Intuitively, this makes
sense. The binary MCC is a value in the range [–1,+1]. The multiclass case
changes the lower bound based on the number of classes, but the upper
bound remains 1.0, so the closer the MCC is to 1.0, the better the model is
doing.

Calculating the MCC for the MNIST models, as we did for the weighted
mean accuracy, gives Table 11-14.

Table 11-14: The MCC for the MNIST Models

Architecture MCC
2 0.3440
100 0.8747
100 × 50 0.8773
500 × 250 0.8849

Again, this shows us that the smallest model is inferior while the other three
models are all quite similar in terms of performance. The time to make
predictions on the 10,000 test samples, however, varies quite a bit by
model. The single hidden layer model with 100 nodes takes 0.052 seconds,
while the largest model needs 0.283 seconds, over five times longer. If
speed is essential, the smaller model might be preferable. Many factors
come into play when deciding on a model to use. The metrics discussed in
this chapter are guides, but they should not be followed blindly. In the end,
only you know what makes sense for the problem you are trying to solve.

Summary
In this chapter, we learned why accuracy is not a sufficient measure of the
performance of a model. We learned how to generate the 2 × 2 confusion
matrix for a binary classifier, and what this matrix tells us about the model’s
performance on the held-out test set. We derived basic metrics from the 2 ×
2 confusion matrix and used those basic metrics to derive more advanced
metrics. We discussed the utility of the various metrics to build our intuition
as to how and when to use them. We then learned about the receiver
operating characteristics (ROC) curve, including what it illustrates about
the model and how to interpret it to compare models against each other.
Finally, we introduced the multiclass confusion matrix, giving examples of
how to interpret it and how to extend some of the binary classifier metrics
to the multiclass case.

In the next chapter, we’ll reach the pinnacle of our machine learning
models: convolutional neural networks (CNNs). The next chapter
introduces the basic ideas behind the CNN; later chapters will conduct
many experiments using this deep learning architecture.

12
INTRODUCTION TO

CONVOLUTIONAL NEURAL
NETWORKS

In this chapter, we’ll introduce a new and potent approach to dealing with
multidimensional information. In particular, we’ll work through the theory
and high-level operation of convolutional neural networks (CNNs), a
cornerstone of modern deep learning.

We’ll begin by presenting the motivations behind the development of
CNNs. Convolutions are the heart of CNNs, so they’ll come next. We’ll
discuss them in some detail, in particular how they’re used by the CNN.
We’ll then introduce a basic CNN and work through its anatomy. We’ll use
this basic CNN architecture for the remainder of the chapter. After we
dissect a CNN, we’ll work through how convolutional layers work. Then
come pooling layers. We’ll see what they do, what benefit they offer, and
what price they exact in return. To round out our discussion of the
fundamental components of a CNN, we’ll present the fully connected
layers, which, in reality, are just the layers of a traditional, fully connected,
feed-forward neural network like those of Chapter 8.

One topic will be conspicuously absent from this chapter: the mechanics
of training a CNN. In part, we’ll gloss over training because it’s messy once
convolutional layers are introduced, but primarily because we’ve already
discussed backpropagation in Chapter 9, and we use the same algorithm to

train a CNN. We calculate the weights and biases of all layers from the
average loss over the training minibatch and use backprop to determine the
derivatives we need to update the weights and biases for each stochastic
gradient descent step.

Why Convolutional Neural Networks?
CNNs have several advantages over traditional neural networks. First, the
convolutional layers of a CNN require vastly fewer parameters than fully
connected neural networks, as we’ll see later in the chapter. CNNs require
fewer parameters because the convolution operation applies parameters in
each layer to small subsets of the input instead of the entire input at once, as
is done with a traditional neural network.

Second, CNNs introduce the idea of spatial invariance, the ability to
detect a spatial relationship in the input regardless of where it appears. For
example, if the input to a neural network is an image of a cat, a traditional
neural network will take the image in as a single feature vector, meaning
that if a cat appears in the upper-left corner of the image, the network will
learn that cats can appear in the upper-left corners of the image but not that
they can also appear in the lower-right corners (unless the training data
contains examples with cats in the lower-right corners). For a CNN,
however, the convolution operation can detect cats anywhere they appear.

While CNNs are usually used with two-dimensional inputs, they can
also be used with one-dimensional inputs, like the feature vectors we have
worked with up to now. However, the feature vectors we’ve worked with,
like the iris measurements, don’t reflect any sort of spatial relationship as
the parts of an image of a cat do. There’s nothing there for the convolution
operation to take advantage of. This doesn’t mean that a CNN won’t work,
but it does mean that it might not be the best sort of model to use. As
always, we need to understand how various model types operate so we
select the best model for the task at hand.

Note Depending on who you ask, CNNs were either developed in 1980 by Fukushima to
implement the Neocognitron model or in 1998 by LeCun et al. as presented in their famous
paper “Gradient-Based Learning Applied to Document Recognition,” which, as of this
writing, has been referenced over 21,000 times. My take is that both deserve credit, though
LeCun used the phrase convolutional neural network or convnet as they are still

sometimes called, and what is described in the paper is what we will work with in this
book. The Neocognitron reflected some of the ideas in a CNN, but not CNNs themselves.

Convolution
Convolution involves sliding one thing over another. For us, this means
sliding a kernel, a small 2D array, over the input, which might be the input
image to the CNN or the output of a lower convolutional layer. There is a
formal mathematical definition of convolution, but it really won’t help us
right now. Luckily, all our inputs are discrete, which means we can get
away with a bit of a hand-waving. For simplicity, we’ll focus on only the
two-dimensional case.

Scanning with the Kernel
The kernel is the thing we are asking the convolutional layer to learn during
training. It’s a collection of small 2D arrays that we move over the input.
Ultimately, the kernels become the weights of a convolutional layer in a
CNN.

The essential operation of convolution is taking some small section of
the input, the same size as the kernel, covering it with the kernel,
performing some operation on the set of numbers to produce a single output
number, and then repeating the process after moving the kernel to a new
position in the input. Just how far the kernel is moved is known as the
stride. Typically, the stride is 1, meaning the kernel slides over one element
of the input.

Figure 12-1 shows the effect of convolution on part of an MNIST digit
image.

Figure 12-1: Convolving a kernel with an image

The image portion is on the left of Figure 12-1, where you can see part
of a handwritten 8. The boxes correspond to pixel intensities, though for
presentation purposes, we’ve expanded the original image so that many
shades of gray are visible in each “pixel” box. The actual pixel values the
convolution works with are given next, after the arrow.

Here, the kernel is

This is the set of numbers we’ll slide over the input pixels. This is a 3 × 3
matrix, so we need to cover a 3 × 3 region of the input image. The first 3 ×
3 region, the upper-left corner, is

We said that convolution performs an operation with the kernel and the
covered region as the input. The operation is straightforward: multiply
corresponding entries and sum them. Finding the first output value of the
convolution begins with

When the preceding elements are summed, this gives the output value as

0 + (–248) + 0 + (–145) + 759 + (–54) + 0 + (–253) + 0 = 59

Okay, the output of the first convolution operation is 59. What do we do
with that number? The kernel is 3 × 3, an odd number along each side. This
means that there is a middle element, the one with the 3 in it. The place in
the output array where the middle number is gets replaced with the output
value, the 59. Figure 12-1 shows the full output of the convolution. Sure
enough, the first element of the output is 59, located at the center of the
kernel when the kernel is covering the upper-left corner.

The remaining output values are calculated in precisely the same way
but by moving the kernel over 1 pixel each time. When the end of a row is
reached, the kernel moves back to the left side but down 1 pixel. In this
way, it slides over the entire input image to produce the output shown in
Figure 12-1, just like the scan lines of an old analog television.

The next output value is

which sums to – 212, as we see on the right side of Figure 12-1.
Repeating the convolution operation produces the output shown in

Figure 12-1. Notice the empty boxes around the output. These values are
empty because the middle of our 3 × 3 kernel does not cover the edge of the
input array. Therefore, the output matrix of numbers is two smaller in each
dimension than the input. If the kernel were 5 × 5, there would be a border
2 pixels wide instead of 1.

Implementations of 2D convolution need to make a decision about these
border pixels. There are options, and most toolkits support several of them.
One is to simply ignore these pixels and make the output smaller than the
input, as we’ve shown in Figure 12-1. This approach is often known as
exact or valid because we retain only values that are actually output by the
operation.

Another approach is to imagine that a border of 0 values surrounds the
input image. The border is as thick as is needed so that the kernel fits with

its middle value matching the upper-left pixel of the input. For our example
in Figure 12-1, this means a border of 1 pixel because the kernel is 3 × 3
and there is one element on either side of the kernel’s center value. If the
kernel were 5 × 5, the border would be 2 pixels since there are two values
on either side of the kernel center. This is known as zero-padding and gives
an output that is the same size as the input. Instead of convolving a 28×28
pixel MNIST digit image with a 3 × 3 kernel and getting a 26×26 pixel
output as shown in Figure 12-1, we get an output that is also 28×28 pixels.

If we zero pad the example image in Figure 12-1, we can fill in the first
empty output square like so

which sums to – 213. This means that the upper-left corner of the output
matrix in Figure 12-1, which currently has an empty box, could be replaced
by – 213. Similarly, the rest of the empty boxes would have values, and the
output of the convolution operation would be 28×28 pixels.

Convolution for Image Processing
Convolution, when used in a neural network, is sometimes viewed as
magical, a special operation that lets convolutional neural networks do the
wonderful things that they can do. This is more or less true, but the
convolution operation is certainly not anything new. Even if we ignore
mathematics entirely and think only of the discrete convolution of 2D
images, we see that image scientists were using convolution for image
processing decades before convolution was applied to machine learning.

The convolution operation allows for all manner of image processing.
For example, consider the images shown in Figure 12-2.

Figure 12-2: 5 × 5 convolution kernels applied to an image

The original moon image is on the upper left. The other three images
are the output from convolving the moon image with different 5 × 5
kernels. Moving clockwise from the upper right, the kernels either
emphasize edges, diagonal structures (upper left to lower right), or blur the
input image. All of this is accomplished by changing the values in the
kernel, but the convolution operation remains the same.

From a machine learning perspective, the power of a convolutional
approach comes partially from the savings in terms of parameters. If a
model can learn a set of kernels, that is a smaller set of numbers to learn
than the weights for a fully connected model. This is a good thing on its
own. The fact that a convolution can pull out other information about an

image, such as its slowly changing components (the blur of Figure 12-2), its
rapidly changing components (the edges of Figure 12-2), or even
components along a specific direction (the diagonals of Figure 12-2), means
that the model gains insight as to what is in the input. And, since we move
the kernel over the image, we’re not dependent upon where in the image
these structures occur.

Anatomy of a Convolutional Neural Network
Medical students learn about anatomy by dissecting a cadaver to see the
parts and how they relate to each other. In similar, though less challenging,
fashion, we’ll start with the body of a CNN, an illustration of its basic
architecture, and then pull it apart to learn what each component is and
what it does.

Figure 12-3 shows us our body. This is the default example CNN used
by the Keras toolkit to train a model that classifies MNIST digits. We’ll use
it as our standard for the remainder of this chapter.

Figure 12-3: The architecture of a basic convolutional neural network

How do we interpret this figure? Like a traditional neural network, a
CNN has an input and an output. In this case, the input is the digit image on
the upper left. The network then flows left to right, following the arrows. At
the end of the top row, the network continues on the following row. Note,
we’ve duplicated the layer at the end of the top row and placed it at the
beginning of the next row for presentation purposes.

The flow continues along the bottom row, again left to right, until the
output is reached. The output here is a softmax layer to give us the
likelihoods of each of the possible digits, just as we saw for the traditional
neural networks of Chapter 10.

Different Types of Layers
Between each arrow is a layer of the network. The first thing we notice is
that, unlike a traditional neural network, a CNN has many kinds of layers.
Let’s list them here. We’ll discuss each in turn:

Convolutional (Conv)
ReLU
Pooling (Pool)
Dropout
Flatten
Dense

We should note that we’re using the Keras names for the layers. For
instance, Keras uses Dense for what many other toolkits call fully connected
or even InnerProduct layers.

Several of these layers should already be familiar. We know a ReLU
layer implements a rectified linear unit that takes each of its inputs and asks
if it is greater than or less than 0. If the input is less than 0, the output is 0;
otherwise, the output is the input. We can express this mathematically as

ReLU(x) = max(0, x)

where the max function returns the largest of its two arguments.
Likewise, we mentioned dropout in Chapter 9. Dropout selects a

percentage of its outputs at random during training and sets them to 0. This

provides a powerful form of regularization to help the network learn
meaningful representations of the input data. There are two dropout layers
in our basic CNN. The first uses a probability of 25 percent, meaning
during any minibatch pass while training, some 25 percent of the outputs
will be set to 0. The second dropout layer uses a probability of 50 percent.

The Flatten and Dense layers are old friends, though we know them by
another name and not as independent entities. Our traditional feedforward
neural network uses fully connected layers to process a one-dimensional
vector. Here, Flatten and Dense work together to implement a fully
connected layer. The Flatten layer takes its input—usually a four-
dimensional array (we’ll see why later)—and turns it into a vector. It does
something similar to what we did to construct the vector form of the
MNIST dataset, where we put the pixels of each row end-to-end to unravel
the two-dimensional image. The Dense layer implements a traditional
neural network layer, where each input value is mapped to each node of the
Dense layer. Typically, the output of the Dense layer is passed to another
Dense layer or a softmax layer to let the network make predictions.

Internally, many layers of a CNN expect four-dimensional arrays as
inputs and produce four-dimensional arrays as outputs. The first dimension
is the number of inputs in the minibatch. So, if we have a minibatch of 24,
the first dimension of the 4D array will be 24.

The second and third dimensions are called the height and width. If the
input to a layer is the input to the model (say, an image), then these
dimensions are truly the height and width dimensions of the image. If the
input is really the output of some other layer, say a (yet to be described)
convolutional layer, the height and width refer to the output from applying a
convolutional kernel to some input. For example, the output in Figure 12-1
has height and width of 26.

The last dimension is the number of channels, if an input image; or the
number of feature maps, if the output of a convolutional or pooling layer.
The number of channels in an image is simply the number of bands, where
a grayscale image has a single band and a color image typically has three
bands, one each for red, green, and blue. Some color images also have an
alpha channel used to specify how transparent a pixel is, but these are
typically dropped before passing the image through a CNN.

The output in Figure 12-1 is called a feature map because it is the
response from convolving a kernel over an input. As we saw in Figure 12-2,
convolving a kernel over an image can pull out features in the image, so the
outputs of the kernels used by a convolutional layer are called feature maps.

This leaves two layers to investigate: Convolutional and Pooling. These
layers are new.

In our basic CNN, the convolutions operate on sets of two-dimensional
inputs where by set I mean a stack of two-dimensional arrays, where the
third dimension is the number of channels or feature maps. This means that
unlike every other model we’ve looked at in this book, the input here really
is the full image, not a vector created from the image. In terms of CNNs,
however, the convolutions need not operate on only two-dimensional
inputs. Three-dimensional convolutions exist, as do one-dimensional,
though both are seldom used compared to two-dimensional convolutions.

A pooling layer is used to reduce the spatial dimension of its input by
combining input values according to some rule. The most common rule is
max, where the largest value in the small block moved over the input is
kept; the other values are discarded. Again, we’ll cover pooling layers at
length in this chapter.

Many other layer types can be used by modern networks, and many of
these are directly supported in Keras already, though it’s possible to add
your own layers. This flexibility is one reason Keras often quickly supports
new deep learning developments. As with a traditional neural network, for a
layer to have weights that can be learned, the layer needs to be
differentiable in a mathematical sense so that the chain rule can continue,
and the partial derivatives can be calculated to learn how to adjust the
weights during gradient descent. If the previous sentence is not clear, it’s
time to review the backprop section of Chapter 9.

Passing Data Through the CNN
Let’s look again at Figure 12-3. A lot is happening here beyond just the
order and names of the layers. Many layers have numbers in italics running
along the bottom. These numbers represent the dimensions of the output of
the layer, the height, width, and number of feature maps. If the layer has
only a single number, it outputs a vector with that many elements.

The input to the CNN is a 28 × 28 × 1 image. The output of a
convolutional layer is a set of feature maps. Thus the output of the first
convolutional layer is 26 × 26 × 32, meaning there are 32 feature maps,
each a 26 × 26 image calculated from the single 28 × 28 × 1 input image.
Similarly, the output of the second convolutional layer is 24 × 24 × 64, a set
of 64 feature maps derived from the 26 × 26 × 32 input, which was itself
the output of the first convolutional layer.

We see that the pooling layer at the end of the first row takes its 24 × 24
× 64 input and reduces it to 12 × 12 × 64. The “max” label tells us what the
pooling is doing; it takes a 2 × 2 region of the input and returns the largest
value. Since the input is 2 × 2 and it returns only one value, this reduces
each 24 × 24 input to a 12 × 12 output. This process is applied to each
feature map so that the output is 12 × 12 × 64.

Looking at the bottom row of Figure 12-3 shows us that the Flatten
layer takes the 12 × 12 × 64 output of the pooling layer and turns it into a
vector of 9,216 elements. Why 9,216? Because 12 × 12 × 64 = 9,216. Next,
the Dense layer has 128 nodes, and, finally, our output softmax has 10
nodes because there are 10 classes, the digits 0 through 9.

In Figure 12-3, the ReLU and Dropout layers have no numbers below
them. These layers do not alter the shape of their inputs. They simply
perform some operation on each of the elements regardless of the shape.

The convolutional layers of our basic CNN have other numbers
associated with them: “3 × 3” and “32” or “64”. The 3 × 3 tells us the size
of the convolutional kernel, and the 32 or 64 tells us the number of feature
maps.

We already alluded to the 2 × 2 part of the pooling layer. This represents
the size of the pooling kernel, which, much like a convolutional kernel,
slides over the input, feature map by feature map (or channel by channel),
to reduce the size of the input. Working with a 2 × 2 pooling kernel implies
that, typically, the output will be one-half the size of the input in each of the
row and column dimensions.

Figure 12-3 has familiar parts, but the presentation is new to us, and we
have these mysterious new layers to think about, like convolutional and
pooling layers, so we are sure to be somewhat nebulous in our
understanding right now. That is perfectly fine. We have new ideas and
some visual indications of how they link together to make a CNN. For now,

this is all we need. The remainder of this chapter will, I hope, be a series of
“aha!” moments for you as you think back to this figure and its parts. When
you understand what each is doing, you’ll start to see why they are where
they are in the processing chain, leading from image input to output
softmax predictions.

Convolutional Layers
If our discussion of convolution ended with the preceding sections, we’d
understand the essential operation but still be in the dark about exactly how
a convolutional layer in a CNN works. Bearing this in mind, let’s look at
how the convolution idea generalizes across the inputs and outputs of a
CNN’s convolutional layer.

How a Convolution Layer Works
The input and output of a convolutional layer can both be thought of as
stacks of 2D arrays (or matrices). The operation of the convolutional layer
is best illustrated with a simple example showing how to map the input
stack of arrays to the output stack.

Before we present our example, we need to introduce some
terminology. We previously described the convolution operation in terms of
applying a kernel to an input, both of which are 2D. We’ll continue to use
the term kernel for this single, 2D matrix. When implementing a
convolutional layer, however, we’ll soon see that we need stacks of kernels,
which are typically referred to in machine learning as filters. A filter is a
stack of kernels. The filter, via its kernels, is applied over the input stack to
produce the output stack. Since during training the model is learning
kernels, it is fair to say that the model is also learning filters.

For our example, the input is a stack of two 5 × 5 arrays, the kernel size
is 3 × 3, and we want an output stack that is three deep. Why three?
Because, as the designer of the CNN architecture, we believe that learning
three outputs will help the network learn the task at hand. The convolution
operation determines the width and height of each output array; we select
the depth. We’ll use valid convolution, losing a border of thickness one on
the output, meaning our input will drop two in width and height. Therefore,
a 5 × 5 input convolved with a 3 × 3 kernel will create a 3 × 3 output.

That accounts for the change in dimension, but how do we go from a
stack of two arrays to a stack of three? The key to mapping the 5 × 5 × 2
input to the desired 3 × 3 × 3 output is the set of kernels, the filter, learned
during training. Let’s see how the filter gives us the mapping we want.

We’ll assume we already know the filters at this point, each of which is
a 3 × 3 × 2 stack of kernels. In general, if there are M arrays in the input
stack and we want N arrays in the output stack using a kernel that is K × K,
then we need a set of N filters, each one of which is a stack of K × K kernels
M deep. Let’s explore why.

If we break up the stack so we can see each element clearly, our input
stack looks like this:

We have two 5 × 5 matrices labeled 0 and 1. The values were selected at
random.

To get an output stack of three, we need a set of three filters. The stack
of kernels in each filter is two deep, to mirror the number of arrays in the
input stack. The kernels themselves are 3 × 3, so we have three 3 × 3 × 2
filters, where we convolve each kernel in the filter with the corresponding
input array. The three filters are

where we’ve added 0 and 1 labels to show which kernels are applied to
which input stack arrays. We also have a bias vector, as we did for the
traditional neural network layers. This is a vector, one value for each kernel
stack, that we add in at the end to help align the output of the convolutional
layer to the data, just as we did for the traditional neural network layers.
The bias adds one more degree of freedom to the layer—one more thing
that can be learned to help the layer learn the most it can from the data. For
our example, the bias vector is b = {1,0,2}, selected at random.

To get the output stack, we convolve each kernel of each filter with the
corresponding input array, sum the elements of the resulting output, and add
the bias value. For filter k0, we convolve the first input array with the first
kernel to get

Note we’re using * to mean the full convolution operation, which is fairly
standard. We repeat this operation for the second kernel in k0, applying it to
the second array of the input:

Finally, we sum the two convolution outputs and add in the bias value:

This gives us the first output array, the application of filter k0 to the input
stack.

We repeat this process for filters k1 and k2 to get their outputs so that the
final convolutional layer output for the given input is

where we have written the stacked arrays side by side, a 3 × 3 × 3 output, as
desired.

Our convolutional layer example mapped a 5 × 5 × 2 input to a 3 × 3 ×
3 output. If we naïvely used a fully connected layer instead, we would need
a weight matrix that has 50 × 27 = 1350 weights that need to be learned. In
contrast, the convolutional layer used only 3 × 3 × 2 weights per filter and
three filters for a total of 54 weights, excluding bias values. This is a
significant reduction.

Using a Convolutional Layer
The preceding example showed us how a convolutional layer works. Now
let’s see the effect of one. Imagine that we’ve trained the network shown in
Figure 12-3, so we have the weights and biases we need to run unknown
images through the network. (You’ll see how to train a CNN in Chapter
Experiments with Keras and MNIST.)

The first layer of the network in Figure 12-3 is a convolutional layer
that maps a 28 × 28 × 1 input, the single-channel grayscale digit image, to a
26 × 26 × 32 output using a filter with 32 3 × 3 kernels. Therefore, we
know that the weights between the input image and output fit in an array
that is 3 × 3 × 1 × 32: 3 × 3 for the kernel size, 1 for the number of input
channels, and 32 for the number of kernels in the filter.

After training, what do the 32 3 × 3 kernels of the filter actually look
like? We can extract them from the trained model and print them as a set of
32 3 × 3 matrices. Here are the first two:

This is nice, but not particularly helpful for building intuition about what
the kernels do.

We can also visualize the kernels of a filter by converting the matrices
to images. To get the kernels as images, we first note that all the kernel
values happen to fit in the range [–0.5,+0.5], so if we add 0.5 to each kernel
value, we’ve mapped the range to [0,1]. After this, multiplication by 255
converts the kernel values to byte values, the same values a grayscale image
uses. Additionally, a value of 0 is now 127, which is a middle gray value.

After this conversion, the kernels can be shown as grayscale images,
where negative kernel values are closer to black, and positive kernel values
are closer to white. A final step is needed, however, because the mapped
kernels are still only 3×3 pixels. The last step is to upscale the 3 × 3 images
to 64×64 pixels. We’ll upscale in two different ways. The first uses nearest-
neighbor sampling to show the kernel in blocks. The second uses a Lanczos
filter, which smooths the image, making it easier to see the orientation of
the kernel. Figure 12-4 shows the kernel images with the block versions on
top and the smoothed versions on the bottom.

Figure 12-4: The 32 learned kernels of the first convolutional layer (top). Smoothed versions to show
the orientations more clearly (bottom).

These images represent the 32 kernels learned by the first convolutional
layer of the model in Figure 12-3. There is just enough detail in the images
to hint that the kernels are selecting for structure in specific directions, just
like the kernel that produced the image on the lower right of Figure 12-2,
which emphasized diagonal structures.

Let’s turn our attention now to the effect of the kernels. What do the
kernels do to an input MNIST image? We can run a sample MNIST image
through the kernels by convolving each kernel with the sample, here a “3”,

and following a process similar to the one that produced the preceding
kernel images. The result is a set of 32 26 × 26 images, which we again
upscale to 64 × 64 before displaying them. Figure 12-5 shows the result.

Figure 12-5: The 32 kernels applied to a sample MNIST input

The order of the kernels shown in Figure 12-4 matches the images in
Figure 12-5. For example, the top-right image of Figure 12-4 shows a
kernel that is light on the upper left and dark on the lower right, meaning it
will detect structures along the diagonal from lower left to upper right. The
output from applying this kernel to the sample is the upper-right image of
Figure 12-5. We see that the kernel enhanced parts of the three that are
primarily diagonal from the lower left to the upper right. Note, this example
is easy to interpret because the input is a grayscale image with a single
channel. This means that there is no summing of kernel outputs across
channels as we previously saw for the more general operation.

Typically, the first convolutional layer of a CNN learns kernels that
select for specific orientations, textures, or, if the input image is RGB,
colors. For the grayscale MNIST images, orientation is most important. The
kernels learned at higher convolutional layers in the CNN are also selecting
for things, but the interpretation of what the kernel is selecting becomes
more and more abstract and difficult to understand. It is worth noting that

the kernels learned by a CNN’s first convolutional layer are very similar to
the first layer of visual processing in the mammalian brain. This is the
primary visual cortex or V1 layer that detects lines and edges. Additionally,
always keep in mind that the set of convolutional and pooling layers are
there to learn a new feature representation: a new representation of the input
image. This new representation does a better job of separating classes so
that the fully connected layers can more easily distinguish between them.

Multiple Convolutional Layers
Most CNNs have more than one convolutional layer. One reason for this is
to build up features that are influenced by larger portions of the input as one
goes deeper into the network. This introduces the ideas of receptive field
and effective receptive field. The two concepts are similar and often
confused. We can explain both by looking at Figure 12-6.

Figure 12-6: Receptive fields

The figure shows the output of two convolutional layers and the input to
the model. We’re showing only the relevant parts of the output, using a 3 ×
3 kernel. We’re also ignoring the depth of the filters since the receptive
fields (defined next) are the same across the depth of the convolutional
layer outputs.

Figure 12-6 should be read right to left as the arrows indicate. This is
the opposite direction to the flow of data through the network. Here, we are
looking back to earlier layers to see what has influenced the output value at
a higher layer. The squares are output values. The rightmost shaded square
is one of the outputs of Conv2. This is our starting point for looking back to
see what influences this value. The arrows point to the outputs of Conv1
that influence the shaded value in Conv2. The value in Conv2 then has a 3 ×
3 receptive field as it is directly influenced by the 3 × 3 shaded outputs of
Conv1. This is how we’ll define receptive field: the set of outputs from the
layer immediately before that directly influence the output of the current
layer.

If we look at the set of input values that directly influence the 3 × 3
shaded region of Conv1, we see a 5 × 5 region. This makes sense: each
shaded output of Conv1 has a receptive field that is a 3 × 3 region of the
input. The receptive field is 3 × 3 because the kernels of Conv1 are 3 × 3
kernels. They overlap so that the shaded 5 × 5 input region is what all the
shaded Conv1 outputs are influenced by.

Look again at the rightmost shaded output value. If we trace back to the
input all the values that can influence it, we see that the shaded 5 × 5 region
of the input can affect its value. This region of the input is the effective
recep- tive field for the rightmost shaded output of Conv2. This output value
responds, ultimately, to what is happening in the input image in the leftmost
shaded region. As the CNN gets deeper, with additional convolutional
layers, we can see how the effective receptive field can change so that
deeper convolutional layers are working with values ultimately derived
from larger and larger portions of the input to the model.

Initializing a Convolutional Layer
In Chapter 9, we saw that the performance of a traditional neural network
was strongly influenced by the type of random initialization used for the
learned weights and biases. The same is true for CNNs. Recall that the
weights of a convolutional layer are the values of the kernels. They are
learned during backprop, just like the weights of a traditional neural
network. We need an intelligent way to initialize these values when we set
up the network. Fortunately, the best initialization approaches for a

traditional neural network apply directly to convolutional layers as well. For
example, Keras defaults to Glorot initialization, which, as we saw in
Chapter 9, is sometimes called Xavier initialization in other toolkits.

Let’s move on now from convolutional layers to pooling layers. These
are simpler but perform an important, if somewhat controversial, function.

Pooling Layers
Our favorite figure, Figure 12-3, shows a pooling layer after the first two
convolutional layers. This pooling layer takes an input stack of 24 × 24 ×
64 and produces an output stack of 12 × 12 × 64. The pooling part is
marked as “2 × 2”. What’s going on here?

The key is the “2 × 2”. This means, for each of the 64 24 × 24 inputs,
we move a 2 × 2 sliding window over the input and perform an operation
similar to convolution. Not explicitly called out in Figure 12-3 is that the
stride is also 2 so that the sliding 2 × 2 window jumps by two to avoid
overlapping itself. This is typically the case, but doesn’t need to be. Since
the pooling operation is per input in the stack, the output leaves the stack
size unchanged. This is contrary to what a convolutional layer often does.

Let’s look at the pooling operation applied to a single input in the stack,
a 24 × 24 matrix. Figure 12-7 shows us what’s going on.

Figure 12-7: Applying 2 × 2 max pooling to an 8 × 8 input

The first 2 × 2 values are mapped to the first output value. Then we
move over two and map the next 2 × 2 region to the output and so on until
the entire input is mapped. The operation performed on each 2 × 2 region is
up to the architect of the CNN. The most common operation is “select the
largest value,” or max pooling, which is what we show in Figure 12-7. This
is also the operation the model in Figure 12-3 is performing. Another fairly
common pooling operation is to average the values.

We can see from Figure 12-7 that the 8 × 8 input matrix is mapped to a
4 × 4 output matrix. This explains why the output of the pooling layer in
Figure 12-3 is 12 × 12; each dimension is half the size of the input.

The pooling operation is straightforward but throws information away.
So why do it at all? The primary motivation for pooling is to reduce the
number of values in the network. Typically, as depth increases, the number
of filters used by convolutional layers increases, by design. We see this for
even the simple network of Figure 12-3, where the first convolutional layer
has 32 filters, while the second has 64. Therefore, the second convolutional

layer outputs 24 × 24 × 64 = 36,864 values, but after 2 × 2 pooling, there
are only 12 × 12 × 64 = 9,216 values to work with, a 75 percent reduction.
It’s important to note that we’re talking about the number of values present
as we move data through the network, not the number of learned parameters
in the layers. The second convolutional layer in Figure 12-3 has 3 × 3 × 32
× 64 = 18,432 learned parameters (ignoring bias values), while the pooling
layer has no learned parameters.

This reduction in the number of values in the output, which is our
representation of the input, speeds up computation and acts as a regularizer
to guard against overfitting. The regularization techniques and rationales of
Chapter 9 are equally valid for CNNs. However, since pooling throws
information away and selects proxies to represent entire regions of the
representation (the convolutional layer outputs), it alters the spatial
relationship between parts of the input. This loss of spatial relationships
might be critical for some applications and has motivated people like
Geoffrey Hinton to eliminate pooling by introducing other types of
networks (search for “capsule networks”).

Specifically, Hinton said the following regarding pooling layers in
response to a question on Reddit asking for his most controversial opinion
on machine learning:

The pooling operation used in convolutional neural networks is
a big mistake and the fact that it works so well is a disaster. If
the pools do not overlap, pooling loses valuable information
about where things are. We need this information to detect
precise relationships between the parts of an object.

He elaborates further in the answer, pointing out that allowing pooling
operations to overlap does preserve some of the spatial relationships in a
crude way. An overlapping pooling operation might be to use a 2 × 2
window as we used in Figure 12-7, but use a stride of 1 instead of 2.

Concerns aside, pooling layers are an essential part of CNNs as
presently implemented, but be careful when adding them to a model. Let’s
move on now to the top layers of a CNN, the fully connected layers.

Fully Connected Layers

In the second row of Figure 12-3, all the layers starting with Flatten form
the fully connected layer of the model. The figure uses Keras terminology;
many people call the Dense layer the fully connected layer and assume
there is a Flatten operation as part of it along with the activation (ReLU)
and optional dropout before the softmax layer. Therefore, the model in
Figure 12-3 has only one fully connected layer.

We previously stated that the net effect of the convolutional and pooling
layers is to change the representation of the input feature (the image, say)
into one that makes it easier for a model to reason about. During training,
we are asking the network to learn a different, often more compact,
representation of the input to help the model perform better on unseen
inputs. For the model in Figure 12-3, all the layers up to and including the
pooling layer (and the dropout layer after it for training) are there to learn a
new representation of the input image. In this case, the fully connected
layer is the model: it will take that new representation and ultimately make
a classification based on it.

Fully connected layers are just that, fully connected. The weights
between the flattened final pooling layer of 9,216 elements for Figure 12-3
(12 × 12 × 64 = 9,216) and the Dense layer of 128 elements are the same as
if we were building a traditional neural network. This means that there are
9,216 × 128 = 1,179,648 weights plus an additional 128 bias values that
need to be learned during training. Therefore, of the 1,199,882 parameters
(weights and biases) in the model of Figure 12-3, 98.3 percent of them are
in the transition between the final pooling layer and the fully connected
layer. This illustrates an important point: fully connected layers are
expensive in terms of parameters that need to be learned, just as they are for
traditional neural networks. Ideally, if the feature learning layers, the
convolutional and pooling layers, are doing their job well, we might expect
to need only one or two fully connected layers.

Fully connected layers have another disadvantage, besides memory use,
that can impact their utility. To see what this disadvantage is, consider the
following scenario: you want to be able to locate digits in grayscale images.
Assume for simplicity that the background is black. If you use the model of
Figure 12-3 trained on MNIST digits, you will have a model that is very
good at identifying digits centered in 28×28 pixel images, but what if the
input images are large and you do not know where the digits are in the
image, let alone how many digits there are? Then things get a little more

interesting. The model of Figure 12-3 expects input images that are 28×28
pixels in size and only that size. In Chapter 13, we will work through this
problem in detail as an experiment, but for now, let’s discuss fully
convolutional layers, a possible solution to this disadvantage of using fully
connected layers in CNNs.

Fully Convolutional Layers
In the last section, I said that the model of Figure 12-3 expects input images
that are 28×28 pixels in size and only that size. Let’s see why.

There are many kinds of layers in this model. Some, like the ReLU and
dropout layers, have no impact on the dimensionality of the data flowing
through the network. The same cannot be said of the convolutional,
pooling, and fully connected layers. Let’s look at these layers one by one to
see how they are tied to the dimensionality of the input image.

The convolutional layers implement convolutions. By definition, a
convolution involves moving a fixed-size kernel over some input image
(thinking purely 2D here). Nothing in that operation specifies the size of the
input image. The output of the first convolutional layer in Figure 12-3 is 26
× 26 × 32. The 32 comes from the number of filters selected by the
architecture. The 26 × 26 comes from using a 3 × 3 convolution kernel on a
28 × 28 input with no padding. If the input image were instead 64×64
pixels, the output of this layer would be 62 × 62 × 32, and we wouldn’t
need to do anything to alter the architecture of the network. The
convolutional layers of a CNN are agnostic to the spatial dimensions of
their inputs.

The pooling layer in Figure 12-3 takes a 24 × 24 × 64 input and
produces a 12 × 12 × 64 output. As we previously saw, the pooling
operation is much like the convolution operation: it slides a fixed size
window over the input, spatially, and produces an output; in this case, the
output is half the dimensionality of the input while leaving the depth the
same. Again, nothing in this operation fixes the spatial dimensions of the
input stack. If the input stack were 32 × 32 × 64, the output of this max
pooling operation would be 16 × 16 × 64 without a change needed to the
architecture.

Finally, we have the fully connected layer that maps the 12 × 12 × 64 =
9,216 pooling output to a 128 element fully connected (Dense) layer. As we
saw in Chapter 8, fully connected neural networks use matrices of weights
between layers in their implementation. There are 9,216 elements in the
output of the pooling layer and a fixed 128 in the dense layer, so we need a
matrix that is 9,216 × 128 elements. This size is fixed. If we use the
network with a larger, say 32 × 32, input image, by the time we get through
the pooling layer, the output size will be 14 × 14 × 64 = 12,544, which
would require an existing 12,544 × 128 weight matrix to map to the fully
connected layer. Of course, this won’t work; we trained a network that uses
a 9,216 × 128 matrix. The fully connected layers of a CNN fix the input
size of the CNN. If we could get around this, we could apply inputs of any
size to the CNN, assuming memory allows.

We could, naïvely, simply slide a 28 × 28 window over the larger input
image, run each 28×28 pixel image through the model as we trained it, and
output a larger map, where each pixel now has a probability of that digit
being present. There are 10 digits, so we would have 10 output maps. This
sliding window approach certainly works, but it’s very computationally
expensive, as many simplistic implementations of algorithms often are.

Fortunately for us, we can do better by converting the fully connected
layer into an equivalent convolutional layer to make the model a fully
convolutional network. In a fully convolutional network, there are no fully
connected layers, and we’re not restricted to using a fixed input size. The
relationship between input size and the output of the network when it is
fully convolutional is something we will see in Chapter 13, but the essential
operation is to look at the size of the last standard convolutional or pooling
layer and replace the fully connected layer that follows with a convolutional
layer using a kernel of the same size.

In Figure 12-3, the output of the pooling layer is 12 × 12 × 64.
Therefore, instead of the 128-element fully connected layer that we saw
fixes our input size, we can mathematically get the same calculation by
changing the fully connected layer into a 12 × 12 × 128 convolutional layer.
Convolving a 12 × 12 kernel over a 12 × 12 input produces a single number.
Therefore, the output of the 12 × 12 × 128 convolutional layer will be a 1 ×
1 × 128 array, which is functionally the same as the 128 outputs of the fully
connected layer that we originally used. Additionally, the convolution
operation between a 12 × 12 kernel and a 12 × 12 input is to simply

multiply the kernel values by the input values, element by element, and sum
them. This is what a fully connected layer does for each of its nodes.

We do not save anything in terms of the number of parameters when
using a convolutional layer this way. We can see this from Figure 12-3. The
9,216 elements of the pooling layer output times the 128 nodes of the fully
connected layer means we have 9,216 × 128 = 1,179,648 weights + 128
bias terms needed for both the fully connected and fully convolutional
layers. When moving to the 12 × 12 × 128 convolutional layer, we have 12
× 12 × 64 × 128 = 1,179,648 weights to learn, the same as before. However,
now we also have the freedom to change the input size, as the 12 × 12 ×
128 convolutional layer will automatically convolve over any larger input,
giving us outputs that represent the application of the network to 28 × 28
regions of the input with a stride determined by the specific architecture of
the network.

Fully convolutional networks stem from the 2014 paper by Long,
Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic
Segmentation,” which has been referenced over 19,000 times as of this
writing. The phrase semantic segmentation refers to assigning a class label
to each pixel of the input image. Currently, the go-to architecture for
semantic segmentation is the U-Net (see “U-Net: Convolutional Networks
for Biomedical Image Segmentation” by Ronneberger, Fischer, and Brox,
2015) which has seen widespread success, especially in medical domains.

We’ve discussed the primary CNN layers, those found in Figure 12-3.
There are many more that we could cover, but they are generally beyond
what we want to present at this level, with one exception, batch
normalization, which we’ll experiment with in Chapter 15. New layer types
are being added all the time in response to active research projects.
However, in the end, the core includes the layers we have discussed in this
chapter. Let’s move on now and see how a trained CNN processes unknown
inputs.

Step by Step
In the previous sections, we discussed the architecture and layers of our
sample CNN, Figure 12-3. In this section, we will illustrate the operation of
the network to see how it responds to two new inputs, one a “4” and the

other a “6”. We assume the network is fully trained; we’ll train for real it in
Chapter 13.

The input image is passed through the model layer by layer

input → conv0 → conv1 → pool → dense → softmax

using the trained weights and biases to calculate outputs for each layer. We
will refer to these as the activations. The output of the first convolutional
layer is a stack of 32 26 × 26 images, the response of the input image to
each of the 32 kernels. This stack then passes to the second convolutional
layer to produce 64 24 × 24 outputs. Note, between the two convolutional
layers is a ReLU operation that clips the output so that anything that would
have been negative is now 0. Doing this adds a nonlinearity to the data as it
flows through the network. Without this nonlinearity, the net effect of the
two convolutional layers is to act like a single convolutional layer. With the
nonlinearity imposed by the ReLU, we enable the two convolutional layers
to learn different things about the data.

The second ReLU operation makes the stack of 64 24 × 24 outputs 0 or
positive. Next, a 2 × 2 max pooling operation reduces the 64 outputs to 12 ×
12 in size. After this, a standard fully connected layer produces 128 output
values as a vector from the 9,216 values in the stack of 12 × 12 activations.
From this, a set of 10 outputs, one for each digit, is calculated via a
softmax. These are the output values of the network representing the
network’s confidence as to which class label should be assigned to the input
image.

We can illustrate the activations by displaying the output images: either
26 × 26 for the first convolutional layer, 24 × 24 for the second
convolutional layer, or 12 × 12 for the pooling layer. To show the
activations from the fully connected layer, we can make an image of 128
bars, where the intensity of each bar represents the vector value. Figure 12-
8 shows the activations for our two sample digits.

Figure 12-8: Model activations per layer. The output is inverted: darker implies stronger activation.

Note that the images are inverted so that darker corresponds to stronger
activation values. We are not showing the softmax outputs. These values are

0 1 2 3 4 5 6 7 8 9
4 0

.
0
0

0
.
0
0

0
.
0
0

0.0
0

0.9
9

0.0
0

0.0
0

0.0
0

0.0
0

0.0
0

0 1 2 3 4 5 6 7 8 9
6 0

.
0
0

0
.
0
0

0
.
0
0

0.0
0

0.0
0

0.0
0

0.9
9

0.0
0

0.0
0

0.0
0

indicating that in both cases, the model is very confident of the class label
that should be assigned and that it was, in fact, correct.

Looking back at Figure 12-8, we see that the output of the first
convolutional layer is simply the response of the single input image
(grayscale) and the kernels of the layer. This hearkens back to Figure 12-2,
where we saw that convolution could be used to highlight aspects of the
input image. After the ReLU operation, the responses of the 64 filters of the
second convolutional layer, each a stack of 32 kernels, seems to be picking
out different portions or strokes in the input images. These can be thought
of as a set of smaller components from which the input is constructed. The
second ReLU and pooling operation preserve much of the structure of the
second convolutional layer outputs, but reduce the size to one quarter what
it was previously. Finally, the output of the fully connected layer shows the
pattern derived from the input image, the new representation that we expect
to be easier to classify than the raw image input.

The dense layer outputs of Figure 12-8 are different from each other.
This begs the question: what do these outputs look like for several instances
of four and six digits? Is there something in common that we can see, even
in these values? We might expect that there is because we know this
network has been trained and has achieved a very high accuracy of over 99
percent on the test set. Let’s take a look at running ten “4” and ten “6”
images from the test set through the network and compare the dense layer
activations. This gives us Figure 12-9.

Figure 12-9: Dense layer activations for ten instances of 4 and 6. The output is inverted: darker
implies stronger activation.

On the left, we see the actual input to the model. On the right is the
representation of the 128 outputs in the fully connected layer, the one that
feeds into the softmax. Each digit has a particular pattern that is common to
each one of the digits. However, there are also variations. The middle “4”
has a very short stem, and we see that its representation in the fully
connected layer is also different from all the other examples. Still, this digit
was successfully called a “4” by the model with a certainty of 0.999936.

Figure 12-9 provides evidence that the model learned what we wanted it
to learn in terms of representation of the input. The softmax layer maps the
128 elements of the dense layer to 10, the output nodes from which the
softmax probabilities are calculated. This is, in effect, a simple traditional

neural network with no hidden layers. This simpler model succeeds in
correctly labeling the images because the new representation of the inputs
does a much better job of separating the classes so that even a simple model
can make solid predictions. It also succeeds because the training process
jointly optimizes both the weights of this top layer model and the weights of
the lower layers that generate the input to the model at the same time, so
they reinforce each other. Sometimes you will see this referred to in the
literature at end-to-end training.

We can demonstrate the claim that the features are better separated by
looking at a plot of the dense layer activations for the MNIST test data. Of
course, we can’t look at the actual plot, as I have no idea how to visualize a
plot in 128 dimensions, but all is not lost. The machine learning community
has created a powerful visualization tool called t-SNE, which, fortunately
for us, is part of sklearn. This algorithm intelligently maps high-
dimensional spaces to lower-dimensional spaces, including 2D. If we run a
thousand randomly selected MNIST test images through the model and then
run the resulting 128-dimension dense layer activations through t-SNE, we
can produce a 2D plot where the separation between classes reflects the
actual separation in the 128-dimensional space. Figure 12-10 is the result.

Figure 12-10: How well the model separates test samples by class (t-SNE plot)

In this plot, each class uses a different plot symbol. If the model did not
correctly classify the sample, it is shown as a larger star. In this case, only a
handful of samples were misclassified. The separation by class type is very
evident; the model has learned a representation that makes it
straightforward to decide on the correct class label in most cases. We can
readily count 10 different blobs in the t-SNE plot.

Summary
In this chapter, we introduced the major components of convolutional
neural networks. These are workhorse networks for modern deep learning,
especially for vision tasks because of their ability to learn from spatial

relationships. We worked through a model to classify MNIST digits and
detailed new processing layers, including convolutional layers and pooling
layers. We then learned that the fully connected layers of a CNN are
analogs of the traditional neural networks we learned about in earlier
chapters.

Next, we saw how to modify the fully connected layers to enable
operation on larger inputs. Finally, we looked at the activations generated
by the network when a sample image was passed through and saw how the
convolution and pooling layers worked together to produce a new
representation of the input, one that helped to separate the classes in the
feature space, thereby enabling high accuracy.

In the next chapter, we’ll continue our look at CNNs, but instead of
theory, we’ll work with actual examples to see how the various parameters
of the network, and the hyperparameters used during training, affect model
performance. This will help us build intuition about how to work with
CNNs in the future.

13
EXPERIMENTS WITH KERAS AND

MNIST

In the last chapter, we covered the essential components and functionality
of a CNN. In this chapter, we’ll work with our test model from Chapter 12.
We’ll first learn how to implement and train it in Keras. After that, we’ll
conduct a set of experiments that will build our intuition for how different
architectures and learning parameter choices affect the model.

From there, we’ll move beyond classification of simple input images
and expand the network by converting it into a fully convolutional model
capable of processing arbitrary inputs and locating digits wherever they
occur in the input.

After fully convolutional networks, we’ll wander a little deeper into the
pool of deep learning and fulfill a promise made in Chapter 7: we’ll explore
how well CNNs perform on the scrambled MNIST digit experiment. We
saw in Chapter 10 that scrambling the pixels of the digits made it virtually
impossible for us to see what the digit was but had little to no effect on how
well a traditional neural network was able to interpret the digits. Is the same
true with a CNN? We’ll find out.

Building CNNs in Keras

The model from Figure 12-3 is straightforward to implement in Python
using the keras library. We’ll list the code first, explain it, and then run it to
see what sort of output it produces. The code naturally falls into three
sections. The first loads the MNIST data and configures it for Keras; the
second builds the model; and the third trains the model and applies it to the
test data.

Loading the MNIST Data
Listing 13-1 has the first part of our code.

 import keras
 from keras.datasets import mnist
 from keras.models import Sequential
 from keras.layers import Dense, Dropout, Flatten
 from keras.layers import Conv2D, MaxPooling2D
 from keras import backend as K

 batch_size = 128
 num_classes = 10
 epochs = 12
 img_rows, img_cols = 28, 28

❶ (x_train, y_train), (x_test, y_test) = mnist.load_data()

❷ if K.image_data_format() == 'channels_first':
 x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
 x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
 input_shape = (1, img_rows, img_cols)
 else:
 x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
 x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
 input_shape = (img_rows, img_cols, 1)

❸ x_train = x_train.astype('float32')
 x_test = x_test.astype('float32')
 x_train /= 255
 x_test /= 255

❹ y_train = keras.utils.to_categorical(y_train, num_classes)
 y_test = keras.utils.to_categorical(y_test, num_classes)

Listing 13-1: Loading and data preprocessing

Keras is a rather large toolkit consisting of many modules. We import
the library first and then specific functions from it. The mnist module gives

us access to the MNIST data from within Keras; the Sequential model type is
for implementing a CNN. Our CNN will need some specific layers, the
ones we saw used in Figure 12-3: Dense, Dropout, Flatten, Conv2D, and
MaxPool2D, all of which we import. Keras supports a plethora of other
layers; I encourage you to spend some quality time with their
documentation pages: https://keras.io/.

Next, we set the learning parameters, including the number of epochs,
classes, and minibatch size. There are 10 classes, and the images are 28×28
pixel grayscale. Like sklearn, in Keras, you specify the number of epochs
(full passes through the training set), not the number of minibatches that
should be processed. Keras automatically processes the entire training set
per epoch in sets of the minibatch size—here 128 samples at a time. Recall
that MNIST’s training set consists of 60,000 samples, so there are at least
60,000/128 = 468 minibatches per epoch using integer division. There will
be 469 if Keras uses the remainder, the samples that do not build a complete
minibatch. Remember that each minibatch process results in a gradient
descent step: an update of the parameters of the network.

After loading the MNIST train and test data ❶ come a few lines of code
that may seem somewhat mysterious at first ❷. Keras is a higher-level
toolkit that uses potentially different lower-level backends. In our case, the
backend is TensorFlow, which we installed in Chapter 1. Different backends
expect the model input in different forms. The image_data_format function
returns a string indicating where the underlying toolkit expects to see the
number of channels or filters for convolutional layers. The TensorFlow
backend returns channels_last, meaning it expects an image to be represented
as a 3D array of H × W × C, where H is the image height, W is the image
width, and C is the number of channels. For a grayscale image like MNIST,
the number of channels is 1. The code in ❷ reformats the input images to
match what Keras is expecting to see.

The next block of code converts the byte image values to floating-point
numbers in the range [0,1] ❸. This is the only scaling done to the input
data, and this type of scaling is typical of CNNs that work with images.

Finally, the to_categorical function is used to map the class labels in y_test to
one-hot vector representations ❹, which is how Keras wants to see the
labels. As we’ll see, the model has 10 outputs, so the mapping is to a vector
of 10 elements; each element is 0 except for the element whose index

https://keras.io/

corresponds to the label in y_test. That element is set to 1. For example,
y_test[333] is of class 6 (a “6” digit). After the call to to_categorical, y_test[333]
becomes

array([0.,0.,0.,0.,0.,0.,1.,0.,0.,0.], dtype=float32)

where all entries are 0 except index 6, which is 1.

Building Our Model
With the dataset preprocessed, we can build our model. The code shown in
Listing 13-2 builds the exact model we defined with pictures in Figure 12-3.

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
 activation='relu',
 input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

model.compile(loss=keras.losses.categorical_crossentropy,
 optimizer=keras.optimizers.Adadelta(),
 metrics=['accuracy'])

print("Model parameters = %d" % model.count_params())
print(model.summary())

Listing 13-2: Building the MNIST model

Keras defines the model as an instance of the Sequential class. The model
is built by adding layers to that instance, hence all the calls to the add
method. The argument to add is the new layer. The layers are added from the
input side to the output side, so the first layer we need to add is the 2D
convolutional layer that uses a 3 × 3 kernel on the input image. Note, we are
not specifying the number of images nor the minibatch size; Keras will
handle that for us when the model is put together and trained. Right now,
we are defining the architecture.

Using the architecture defined in Figure 12-3, the first layer is a Conv2D
layer. The first argument is the number of filters; here, 32. The kernel size is
given as a tuple, (3,3). Kernels don’t need to be square, hence the kernel
width and height. It’s possible that the spatial relationship of the parts of
your input might be better detected with a non-square kernel. If so, Keras
lets you use one. That said, almost all kernels in practical use are square.
After the kernel, we define an activation function to apply to the output of
the convolutional layer, here a ReLU. The shape of the input to this layer is
explicitly defined via input_shape, and we saw that earlier for our MNIST
model using a TensorFlow backend, the shape is a tuple, (28,28,1).

Next, we add the second convolutional layer. This one has 64 filters,
also using a 3 × 3 kernel and a ReLU activation on the output. Note, we do
not need to specify the shape here: Keras knows the input shape because it
knows the shape of the previous convolutional layer’s output.

Max pooling comes next. We explicitly state that the pooling size is 2 ×
2, with an implied stride of 2. If we wanted to use average pooling here, we
would replace MaxPooling2D with AveragePooling2D.

After pooling comes our first dropout layer, which uses a 25 percent
probability of dropping an output, here the output of the max-pooling layer.

We discussed earlier how Keras separates the operations of a fully
connected layer into Flatten and Dense layers. This allows more fine-
grained control of the architecture. We add a Flatten layer to map the pooling
output to a vector and then pass this vector to a Dense layer to implement the
classic fully connected layer. The dense layer has 128 nodes and uses a
ReLU for the activation function. If we want dropout on the output of the
dense layer, we need to add it explicitly, so we add one with a probability of
50 percent.

The final dense layer has 10 nodes, one for each possible class label.
The activation is set to softmax to get a softmax output on the inputs to this
layer. Since this is the last layer we define, the output of this layer, the
softmax probabilities for membership in each of the 10 classes, is the output
of the entire model.

To configure the model for training, we need to call the compile method.
This sets the loss function used during training (loss) and the specific
optimization algorithm to use (optimizer). The metrics keyword is used to
define which metrics to report during training. For our example, we are

using the categorical cross-entropy loss, which is the multiclass version of
the binary cross-entropy loss. We described this loss function in Chapter 9;
it is the go-to loss function for many CNNs.

We will need to discuss the optimizer keyword more thoroughly. In
Chapter 9, we presented gradient descent and the more common version,
stochastic gradient descent. As you might expect, the machine learning
community has not been content to simply use this algorithm as is; much
research has been done to see if it can be improved upon for training neural
networks. This has led to the development of multiple variations on
gradient descent, many of which Keras supports.

If we want, we can use classic stochastic gradient descent here. The
example, however, is using a variant called Adadelta. This is itself a variant
of the Adagrad algorithm that seeks to change the learning rate (step size)
intelligently during training. For practical purposes, we should consider
Adadelta an improved version of stochastic gradient descent. Keras also
supports other optimization approaches that we do not intend to cover here,
but you can read about in the Keras documentation, particularly Adam and
RMSprop.

After the call to compile, our model is defined. The convenience methods
count_params and summary produce output characterizing the model itself. When
we run the code, we’ll see the sort of output they produce.

Training and Evaluating the Model
Finally, with both data and model defined, we can train and then evaluate
the model on the test data. The code for this is in Listing 13-3.

history = model.fit(x_train, y_train,
 batch_size=batch_size,
 epochs=epochs,
 verbose=1,
 validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
model.save("mnist_cnn_model.h5")

Listing 13-3: Training and testing the MNIST model

The fit method trains the network using the supplied training samples
(x_train) and a one-hot vector version of the associated class label (y_test). We
also pass in the number of epochs and the minibatch size. Setting verbose to 1
will produce the output shown in Listing 13-4. Lastly, we have validation _data.
For this example, we’re being a bit sloppy and passing in all the test data
instead of holding some back for final testing. (This is just a simple
example, after all.) Normally, we’d hold some test data back to use after the
final model has been trained. This ensures that results on this held-out test
data represent what we might encounter when using the model in the wild.

Notice that the fit method returns something. This is a History object, and
its history property holds a per epoch summary of the training and validation
loss and accuracy values. We can use these to make summary plots if we
wish.

Once the model is trained, we can get a score, similar to the score of
sklearn, by calling the evaluate method and passing in the test data. The
method returns a list with the loss and accuracy of the model on the
supplied data, which we simply print.

We can use the save method to write the model itself to disk for future
use. Notice the file extension. Keras dumps the model in an HDF5 file.
HDF5 is a generic hierarchical data format widely used in scientific circles.
In this case, the file contains all the weights and biases of the model and the
layer structure.

Running this code produces the output shown in Listing 13-4:

Using TensorFlow backend.
Model parameters = 1199882

Layer (type) Output Shape Param #
==
conv2d_1 (Conv2D) (None, 26, 26, 32) 320
conv2d_2 (Conv2D) (None, 24, 24, 64) 18496
max_pooling2d_1 (MaxPooling2 (None, 12, 12, 64) 0
dropout_1 (Dropout) (None, 12, 12, 64) 0
flatten_1 (Flatten) (None, 9216) 0
dense_1 (Dense) (None, 128) 1179776
dropout_2 (Dropout) (None, 128) 0
dense_2 (Dense) (None, 10) 1290
==
Total params: 1,199,882
Trainable params: 1,199,882
Non-trainable params: 0

Train on 60000 samples, validate on 10000 samples
Epoch 1/12-loss:0.2800 acc:0.9147 val_loss:0.0624 val_acc:0.9794
Epoch 2/12-loss:0.1003 acc:0.9695 val_loss:0.0422 val_acc:0.9854
Epoch 3/12-loss:0.0697 acc:0.9789 val_loss:0.0356 val_acc:0.9880
Epoch 4/12-loss:0.0573 acc:0.9827 val_loss:0.0282 val_acc:0.9910
Epoch 5/12-loss:0.0478 acc:0.9854 val_loss:0.0311 val_acc:0.9901
Epoch 6/12-loss:0.0419 acc:0.9871 val_loss:0.0279 val_acc:0.9908
Epoch 7/12-loss:0.0397 acc:0.9883 val_loss:0.0250 val_acc:0.9914
Epoch 8/12-loss:0.0344 acc:0.9891 val_loss:0.0288 val_acc:0.9910
Epoch 9/12-loss:0.0329 acc:0.9895 val_loss:0.0273 val_acc:0.9916
Epoch 10/12-loss:0.0305 acc:0.9909 val_loss:0.0296 val_acc:0.9904
Epoch 11/12-loss:0.0291 acc:0.9911 val_loss:0.0275 val_acc:0.9920
Epoch 12/12-loss:0.0274 acc:0.9916 val_loss:0.0245 val_acc:0.9916
Test loss: 0.02452171179684301
Test accuracy: 0.9916

Listing 13-4: MNIST training output

We’ve excluded some informational and warning messages from the
lower-level TensorFlow toolkit and condensed the output to make it easier
to follow in the text.

At the start of the run, Keras informs us that TensorFlow is our backend.
It also shows us the shape of the training data, the now familiar 60,000
samples with a shape of 28 × 28 × 1 (×1 since the images are grayscale).
We have the usual 10,000 test samples as well.

Next comes a report on the model. This report shows the layer type,
shape of the output from the layer, and the number of parameters in the
layer. For example, the first convolutional layer uses 32 filters and 3 × 3
kernels, so the output with a 28 × 28 input will be 26 × 26 × 32. The None
listed for each layer is in the place where the number of elements in the
minibatch normally is. The printout is showing only the relationship
between the layers; because nothing in the architecture changes the number
of elements in the minibatch, there’s no need to explicitly mention the
minibatch elements (hence the None). The parameters are 3 × 3 × 32 for the
filters plus an additional 32 bias terms for the 320 parameters listed.

As mentioned in Chapter 12, the lion’s share of the parameters in the
model are between the Flatten layer and the Dense layer. The layer named
dense_2 is the softmax layer mapping the 128 elements of the Dense layer to
the 10 elements of the softmax: 128 × 10 + 10 = 1290, where the additional

10 are the bias terms. Note that the Dropout and Pooling layers have no
parameters because there is nothing to learn in those layers.

After the report on the model’s structure, we have the verbose output of
the training call to fit. We asked for 12 epochs—12 full passes through the
training data—using a minibatch of 128 samples. The output lists the stats
for each pass. We see that the loss goes down as we train, which is expected
if the model is learning, and that the accuracy (acc) on the training data goes
up. The validation data is used during training to test the model, but this
data is not used to update the model’s weights and biases. The loss on the
validation data is also going down with each epoch, but more slowly. What
we don’t want to see here is the validation loss going up, though it will
jump around somewhat, especially if the validation set is not very big. We
see an opposite effect with the validation accuracy (val_acc). It is going up
for each epoch of training. If the model were to start overfitting, we’d see
this accuracy go down after some point. This is the value of validation data:
to tell us when to stop training.

The final two lines of output are the loss and accuracy of the model on
the test samples passed to the evaluate method. Since the validation and test
sets are the same in this example, these lines match the output for epoch 12.
The final accuracy of this model is 99.16 percent—certainly a very good
accuracy to see.

Plotting the Error
We can use the saved history to plot the loss or error (1 – accuracy) as a
function of the training epoch. The plots are similar in shape, so we show
only the error plot in Figure 13-1.

Figure 13-1: The MNIST training and validation errors as a function of epoch

The error on the training data falls off quickly and, as we’ve seen
before, tends toward 0 as training continues. In this case, the validation
error falls slightly and then levels off at a value similar to the training error.
At this point in the book, you might have alarm bells going off in your head
when you look at Figure 13-1. The initial training error is greater than the
initial validation error!

The full cause of this is hard to pin down, but one component is using
dropout in the network. Dropout is applicable only during training, and
because of the dropping of nodes in layers, dropout is in effect training
many models at once, which, initially, causes a large error before the model
“settles down” and the error drops per epoch. We can see that this might be
the case here because if we simply comment out the Dropout layers in Listing
13-4 and retrain, we get a new error plot, Figure 13-2.

Figure 13-2: The MNIST training and validation errors as a function of epoch when no Dropout
layers are present

In Figure 13-2, we see that the validation error quickly becomes greater
than the training error, as we would expect. Additionally, we see that the
final validation error is much greater than the final validation error for
Figure 13-1, about 10 percent versus 1 percent. This is also something we
expect if dropout is actually a sensible thing to use, which it is. Note also
that by the 12th epoch, the training set error is roughly the same regardless
of the presence of Dropout layers.

Finally, some of what we see in Figures 13-1 and 13-2 is due to the way
Keras reports training and validation accuracies. The reported training
accuracy (and loss) at the end of an epoch is the average over the epoch,
but, of course, this is changing as the model learns and tends to increase.
However, the validation accuracy reported is for the model as it is at the end
of the epoch, so at times is it possible for the training accuracy to be
reported as less than the validation accuracy.

Now that we’ve seen how to build a simple CNN and run it on a dataset,
we are in a position to start experimenting with CNNs. Of course, there are
an infinite number of experiments we could perform—just look at the rate
at which new papers on deep learning appear on sites like arxiv.org or the
explosion of attendance at machine learning conferences—so we need to
restrict ourselves to some basic explorations. Hopefully, these will motivate
you to explore more on your own.

Basic Experiments
We did a bit of experimentation already when we removed the Dropout
layer. All our experiments follow the same general pattern: make a slightly
different version of the model, train it, and evaluate it against the test set.
We will try three different types of experiments. The first type modifies the
architecture of the model; removing Dropout layers falls into this category.
The second type explores the interplay between training set size, minibatch
size, and epochs. The last type alters the optimizer used during training.

In all three cases, to avoid excessive code listings, we’ll simply
comment on the variation to the code in the previous section with the
understanding that the remaining code is the same from experiment to
experiment. We’ll number the experiments, and you can match the results
with the number to find the actual Python source code for the experiment.
The code is available from the website associated with this book:
https://nostarch.com/practical-deep-learning-python/.

In the previous section, we used the entire training set of 60,000
samples for training and the whole test set of 10,000 samples for both
validation and as the final test set. Here, we’ll restrict ourselves to using the
first 1,000 or 1,024 training samples as the entire training set. Additionally,
we’ll use the first 1,000 samples of the test set as the validation set and
reserve the last 9,000 samples for the final test set we’ll use when training is
complete. We’ll report the accuracy of these 9,000 images that were unseen
during training. The results will include the baseline model accuracy and
number of parameters, for comparison purposes.

Bear in mind that unless stated otherwise, the accuracies we present
represent a single training session for each experiment. You should get
slightly different results if you run these experiments yourself, but those

http://arxiv.org/
https://nostarch.com/practical-deep-learning-python/

slight differences shouldn’t outweigh the larger differences in accuracy that
will result from changing the model and/or training process.

Finally, the models in this section are multiclass, so we could examine
the confusion matrices to see how the models are making their mistakes.
However, it would be exceedingly tedious to do this for each experiment.
Instead, we will use the overall accuracy as our metric, trusting that it is a
sufficient measure in this case.

Architecture Experiments
Architecture modifications imply removing or adding new layers or altering
the parameters of a layer. We’ve made a number of architecture
modifications and compiled the resulting accuracies in Table 13-1.

Table 13-1: Results from Modifying the Model Architecture

Ex
p.

Modification Test accuracy Parameters

0 Baseline 92.70% 1,199,882
1 Add Conv3, 3 × 3 × 64

before Pooling
94.30% 2,076,554

2 Duplicate Conv2, Pooling
layer

94.11% 261,962

3 Conv1, 3 × 3 × 32 to 5 ×
5 × 32

93.56% 1,011,978

4 Dense layer to 1,024
nodes

92.76% 9,467,274

5 Conv1, Conv2, halve
number of filters

92.38% 596,042

6 Second Dense layer with
128 nodes

91.90% 1,216,394

7 Dense layer to 32 nodes 91.43% 314,090
8 Remove Pooling layer 90.68% 4,738,826
9 No ReLU after conv

layers
90.48% 1,199,882

10 Remove Conv2 89.39% 693,962

In Table 13-1, the baseline results and model size are given first,
followed by the various experiments from most accurate to least accurate.
Let’s look at the table and interpret the results.

First, we see that adding a third convolutional layer after the second
convolutional layer (Experiment 1) improves the performance of the model
but also adds 876,672 parameters. Increasing the depth of the network
seems to improve the performance of the model but at the expense of
increasing the number of parameters.

However, in Experiment 2 we also increase the depth of the network by
duplicating the second convolutional layer and the following pooling layer,
but because of the second pooling layer, the total number of parameters in
the network goes down by 937,920. This is a substantial saving for virtually
the same performance. This indicates that depth is good, but so is the
judicious use of pooling layers to keep the number of parameters small. For
this dataset, Experiment 2 is a solid architecture to use.

Next, we see that an adjustment to the kernel size of the first
convolutional layer, Experiment 3, leads to an improvement relative to the
baseline. There are more parameters in the first convolutional layer (832
versus 320), but because of the edge effects when using an exact
convolution, by the time we get to the output of the Flatten layer, there are
now only 7744 values versus 9216 for the baseline model. This means that
the large matrix between the Flatten and Dense layers goes from 1,179,776
down to 991,360 parameters with a net result that the model overall has
187,904 fewer parameters.

This is good: better performance and fewer parameters to learn. Is there
a downside to the change of Experiment 3? Not really. Instead, one might
argue that adjusting the kernel size for the first convolutional layer has
made the model more appropriate for the spatial information in the digit
images, thereby making the new representation learned by the
convolutional and pooling layers that much better at separating the classes.
In general, there seems to be a best kernel size for the first convolutional
layer, the layer that deals with the input to the model. That kernel size is
related to the spatial structure of the inputs: some sizes will be better at
detecting input features that are better for separating the classes. This
general rule does not appear to hold for higher convolutional layers, and

there the prevailing wisdom is to use 3 × 3 kernels for most convolutional
layers except the first.

Can we combine Experiment 3 and Experiment 2? Certainly. We simply
make the first convolutional layer of Experiment 2 use a 5 × 5 kernel
instead of a 3 × 3 kernel. If we do this, we get a model with an overall
accuracy of 94.23 percent that needs only 188,746 parameters. With this
trivial change, we’ve achieved the performance of Experiment 10 by using
only 9 percent of the parameters.

You might be tempted to simply increase the size of the Dense layer, the
layer that can be thought of as using the new feature representation
discovered by the convolutional and pooling layers below it. However,
doing so (Experiment 4) results in no real improvement in overall accuracy,
but with a substantial increase in the number of parameters. We know the
cause: the 9,216 × 128 weight matrix between the Flatten and Dense layers
is now a 9,216 × 1,024 matrix. Clearly, for CNNs, we want to create the
best feature representation so that a simpler top layer can be used.

With Experiment 5, we see that we can make the model significantly
smaller, a reduction of 603,840 parameters, while still achieving the same
overall accuracy by simply halving the number of filters learned in each of
the convolutional layers: 32 → 16 for Conv1 and 64 → 32 for Conv2.
Again, this is a good optimization provided the slight (perhaps in this case
meaningless) difference in accuracy is acceptable. If we look again at
Figure 12-8, we can see that, especially for the second convolutional layer
with 64 filters, the responses are very similar for many filters. This implies
that there are redundant filters that are not adding much to the new feature
representation presented to the Dense layers. Despite halving the number of
filters learned, there are still filters that learn to capture the important
aspects of the input data used to separate the classes.

Experiment 7 plays with the Dense layer nodes, and Experiment 6 adds
a second Dense layer. Neither offers a real benefit. For Experiment 7, the
change in the number of model parameters is significant due to the 9,216 ×
128 matrix weight becoming a 9,216 × 32 matrix. However, 32 nodes does
not seem to be the ideal number to make use of the new feature
representation. The second Dense layer of Experiment 6 isn’t too awful in
terms of increasing the number of parameters to learn, but it isn’t buying us

much, either. If we use a larger training set, we might get some
improvement, but we’ll leave that as an exercise for the reader.

In the previous chapter, we read about the criticisms levied against
pooling layers. What if we remove the pooling layer entirely (Experiment
8)? First, we see that accuracy drops relative to the baseline model. Worse,
we see that the size of the network has increased dramatically, from
1,199,882 parameters to 4,738,826, by a factor of nearly four. This is due to
the increase in the number of elements in the output of the Flatten layer,
which has gone from 9,216 to 36,864, resulting in a weight matrix of
36,864 × 128 + 128 = 4,718,720 elements. This example demonstrates why
we use pooling layers even with the price they bring in terms of the loss of
information about the relative position of object parts.

Each of the convolutional layers in the baseline model uses ReLU on its
outputs. Removing these ReLU operations, Experiment 9, leads to a 2
percent reduction in accuracy on the test set. Clearly, the ReLU is helping
somewhat. What might it be doing? The ReLU leaves positive values
unchanged and sets negative values to 0. When used with the output of a
convolutional layer, the ReLU is keeping more strongly activated responses
to the filters, positive responses, while suppressing negative responses. This
seems to be helping the entire process of learning a new representation of
the input.

Finally, Experiment 10 removed Conv2 entirely. This has the greatest
effect on the overall accuracy because the features passed to the Dense layer
are then based solely on the output of the first convolutional layer filters.
There was no opportunity for the model to learn from these outputs and
develop filter responses based on the larger effective receptive field seen by
the second convolutional layer.

However, given what we saw in the results of Experiment 3, which
increased the kernel size used by the first convolutional layer, we might
wonder whether this change from 3 × 3 to 5 × 5 kernels might somewhat
compensate for the loss of the second convolutional layer. Fortunately, this
is very easy to test. We simply change the 3 × 3 kernel parameter of Conv1
to a 5 × 5 and train again. Doing this validates our intuition: the resulting
overall accuracy increases to 92.39 percent, virtually the same as the
baseline model. Also, this 5 × 5 model has only 592,074 parameters,

making the change inexpensive in terms of the number of model
parameters.

From all of these results, do we have a winner, an architecture that is
lean but highly effective? We do—it is Experiment 2 with a 5 × 5 kernel for
the first convolutional layer. In Keras, to build this architecture, we need the
code in Listing 13-5.

model = Sequential()
model.add(Conv2D(32, kernel_size=(5, 5),
 activation='relu',
 input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

Listing 13-5: Building the architecture for Experiment 2

We’ve simply duplicated the Conv2D, MaxPooling2D, and Dropout layers and
used (5,5) for the kernel size of the first layer.

If we train this model using all 60,000 samples of the MNIST training
set, we get a final held-out test set accuracy of 99.51 percent for an error of
0.49 percent. This is using all 10,000 samples. According to benchmarks.ai,
a website that tracks current bests on different machine learning datasets,
the state-of-the-art MNIST error is 0.21 percent, so we are not state of the
art, but we are better than the 99.16 percent accuracy we saw in Listing 13-
4 for the default architecture.

Training Set Size, Minibatches, and Epochs
These experiments examine the interplay between training set size,
minibatch size, and number of epochs. Our model will be the default model
we were using previously, Experiment 0, but this time we’ll use 1,024

http://benchmarks.ai/

samples for the training set. We’ll be using powers of two as the minibatch
sizes; this is a convenient size, as all of our minibatch sizes divide it evenly.

Recall, Keras, like sklearn, runs through a given number of epochs, or
full passes through the training set. Additionally, the minibatch size (batch
_size) specifies the number of samples used in each iteration, after which the
average error (the cross-entropy loss) is used to update the parameters.
Therefore, each processed minibatch leads to a single gradient descent step,
and the training set size divided by the minibatch size is the number of
gradient descent steps taken per epoch.

For our experiments, we’ll use the following minibatch sizes:

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024

For a training set of 1,024 samples (approximately 100 for each digit),
the number of gradient descent steps per epoch is the reverse of this list:
1,024 for a batch size of 1, down to 1 for a batch size of 1,024.

Let’s generate two plots. The first will plot the final test set accuracy for
the two cases: a fixed number of gradient descent steps regardless of
minibatch size, and a fixed number of epochs irrespective of minibatch size.
The second plot will show us the clock time to train the model for each
case. The code leading to the plots is in Experiments 26 through 31 (fixed
number of gradient descent steps) and Experiments 32 through 42 (fixed
number of epochs).

The test set accuracy as a function of minibatch size is given as the
mean of five runs in Figure 13-3, and the standard error of the mean given
by the error bars. Let’s look at the fixed number of gradient descent steps
regardless of minibatch size (triangles). In some toolkits, this is referred to
as using a fixed number of iterations, where iteration means a single update
leading to a gradient descent step.

Figure 13-3: MNIST test set accuracy as a function of minibatch size and fixed gradient descent steps
or fixed epochs

The number of gradient descent steps was fixed at 1,024. This means
that we need to change the number of epochs, depending on how many
minibatches are in the training set. For the case of a single sample used per
update (batch_size=1), we get the required 1,024 steps in a single epoch, so we
set the number of epochs to 1. For a minibatch size of two, we get 512 steps
per epoch, so we set the number of epochs in the code to 2 to get 1,024
steps overall. The pattern continues: to get the 1,024 gradient descent steps
for each minibatch size, we need to set the number of epochs to the
minibatch size.

We see that except for the smallest minibatch sizes, when we fix the
number of gradient descent steps, we get very consistent overall accuracies.
After minibatch sizes of about 16, things do not change too much. The

general rule for CNNs is to use smaller batch sizes. This seems to help with
model generalization for datasets that are not as simple as MNIST, and, as
we’ll soon see, decreases training time significantly.

The second curve of Figure 13-3 shows the accuracy for a fixed number
of epochs (circles). If we change the minibatch size but do not increase the
number of training epochs to make the number of gradient descent steps
remain constant, we’ll be using larger and better estimates of the gradient,
but we’ll also be taking fewer steps. We see that doing this quickly results
in a substantial decrease in accuracy. We should not be surprised. With a
minibatch size of one, training for 12 epochs gives us a model that took 12
× 1,024 = 12,288 gradient descent steps. Granted, the gradient estimate was
particularly noisy in this case since we use only one training sample to
estimate it, but with lots of steps, we arrived at a well-performing model all
the same. By the time we get to a minibatch of 1,024 samples, the size of
our training set, we see that we took only 12 gradient descent steps before
calling it a day. No wonder the results are so poor.

The second plot of this section is Figure 13-4.

Figure 13-4: Model training time as a function of minibatch size and fixed gradient descent steps or
fixed epochs

As before, let’s start with the fixed number of gradient descent steps
(triangles). We see immediately that the training time is linearly
proportional to the minibatch size. This is reasonable since we just saw that
we need to increase the number of epochs to keep the number of gradient
descent steps constant while increasing the minibatch size. Therefore, the
amount of data passed through the network is increasing proportionally, so
the time required for the forward and backward training passes will increase
proportionally as well. From this, we see that large minibatch sizes cost
clock time.

For a fixed number of epochs, we see a different story. For tiny
minibatch sizes, training time goes up due to the number of forward and
backward passes. For the case of a minibatch of one, we need 12,288 such
passes, as we just saw. However, by the time we get to minibatches of even

32 samples at a time, we have only 1024/32 = 32 passes per epoch for a
total of 384 for the entire training session. This is far fewer than for the
smallest minibatch size, so we might expect the training time for
minibatches this size or larger to be roughly constant in time, as we see in
Figure 13-4.

What can we glean from these two plots? The following: to balance run
time and accuracy, we want to use minibatch sizes that are large enough to
give us a reasonable estimate of the gradient but small enough that, for a
fixed number of model updates (gradient descent steps), we can train
quickly. This argues for minibatch sizes in the 16 to 128 range, in general.
Indeed, a review of the deep learning literature sees minibatches in this
range almost exclusively for most applications. For this example, minibatch
sizes above 16, based on Figure 13-3 (triangles), result in models that are all
basically the same in terms of accuracy, but the training time for a model
using a minibatch size of 16, according to Figure 13-4 (triangles), compared
to one of size 1,024, is a few seconds versus approximately 30 minutes.

Optimizers
So far, all of our experiments have used the same gradient descent
algorithm, or optimizer: Adadelta. Let’s take a look at how our MNIST
model does if we change the optimizer but leave everything else fixed. Our
model is Experiment 0, the model we’ve been using all along in this
chapter. We’ll continue to use 1,000 test samples for validation and 9,000 to
determine our final accuracy. However, instead of using the first 1,000 or
1,024 training samples, we’ll increase the number to the first 16,384
samples. We fix the minibatch size at 128 and the number of epochs to 12,
as before. We’ll report the results as mean and standard error over five runs.

Keras currently supports the following optimizers: stochastic gradient
descent (SGD), RMSprop, Adagrad, Adadelta, and Adam. We’ll train using
each of these in turn. For Adagrad, Adadelta, and Adam, we leave the
parameters at their default settings, as recommended by the Keras
documentation. For RMSprop, the only parameter the Keras documentation
recommends adjusting is the learning rate (lr), which we set to 0.01, a
typical value. For SGD, we set the learning rate to 0.01 as well and set
standard momentum to 0.9, also a very typical value. The code is found in
Experiments 43 through 47.

Figure 13-5 shows the test set accuracy (top) and training time (bottom)
for each of the optimizers.

Figure 13-5: Test set accuracy (top) and training time (bottom) by optimization algorithm

First, notice that there is not too much difference between the results
produced by each optimizer. This is good news. However, by looking at the
error bars, it seems clear that Adadelta, Adagrad, and Adam all perform
slightly better than SGD or RMSprop. This is borne out in the deep learning
literature as well, though each dataset should be looked at independently.

In terms of training time, the different optimizers are also roughly
equivalent, though SGD is fastest and consistently so. This performance
difference might be important for a very large dataset. Adam is also
consistently faster than Adadelta for basically the same performance.
Again, these results are evident in the literature where both SGD and Adam
are widely used.

This section has been thorough in terms of minute details associated
with changing model architectures and training parameters. Hopefully, it
has helped you develop intuition about how to configure a CNN and how to
train it. Rules of thumb are hard to present in this area, but I have given
some general guidance. Exceptions to these rules abound, however, and you
have to simply try things, observe the results, and adapt when presented
with a new dataset.

Let’s move on now from classifying simple inputs to answering the
question of how to make a model that can locate targets in arbitrary images.

Fully Convolutional Networks
We introduced fully convolutional networks in Chapter 12. Let’s take our
basic MNIST CNN model and convert it to a fully convolutional version

and see how we can use it to locate digits in larger images. Our basic
approach is to train the model using fully connected layers, as before, and
then to create a fully convolutional version and update the weights with
those from the fully connected model. We can then apply the new model to
arbitrary size inputs to locate digits (hopefully).

Building and Training the Model
First, we train our base model on the full MNIST dataset. The only change
we’ll make is to train for 24 epochs instead of just 12. The output of this
process is an HDF5 file that contains the trained weights and biases. All we
then need to do is create the fully convolutional version by changing the
fully connected layer and copy the weights and biases from the old model to
the new. The code for this is straightforward, as shown in Listing 13-6.

 from keras.models import Sequential, load_model
 from keras.layers import Dense, Dropout, Flatten
 from keras.layers import Conv2D, MaxPooling2D
❶ weights = load_model('mnist_cnn_base_model.h5').get_weights()

 model = Sequential()
 model.add(Conv2D(32, kernel_size=(3, 3),
 activation='relu',
 ❷ input_shape=(None,None,1)))
 model.add(Conv2D(64, (3, 3), activation='relu'))
 model.add(MaxPooling2D(pool_size=(2, 2)))
 model.add(Dropout(0.25))

❸ model.add(Conv2D(128, (12,12), activation='relu'))
 model.add(Dropout(0.5))

❹ model.add(Conv2D(10, (1,1), activation='softmax'))

❺ model.layers[0].set_weights([weights[0], weights[1]])
 model.layers[1].set_weights([weights[2], weights[3]])
 model.layers[4].set_weights([weights[4].reshape([12,12,64,128]), weights[5]])
 model.layers[6].set_weights([weights[6].reshape([1,1,128,10]), weights[7]])

 model.save('mnist_cnn_fcn_model.h5')

Listing 13-6: Creating the trained fully connected model

After importing the necessary Keras modules, we load the trained
weights from the fully connected model ❶. Then, we construct the fully

convolutional version much as we did for the fully connected version.
However, there are some key differences. The first has to do with the input
convolutional layer ❷. In the fully connected model, we specified the input
image size here, 28×28 pixels with one channel (grayscale). For the fully
convolutional case, we do not know the size of the input, so we use None
instead for the width and height. We do know that the input will be a single
channel image, so we leave the 1.

Since the Dense layers are the reason we have to use fixed size inputs,
we replace them with equivalent convolutional layers ❸. We replace

model.add(Flatten())
model.add(Dense(128, activation='relu'))

with

model.add(Conv2D(128, (12,12), activation='relu'))

The (12,12) is the output size of the max-pooling layer above, and the 128
is the number of filters to learn that stand in for the 128 nodes we had
before. Again, the critical point here is that the output of this convolutional
layer is 1 × 1 × 128 because convolving a 12 × 12 input with a 12 × 12
kernel produces a single output value. The difference is that the
convolutional layer is not tied to any fixed input size as the combination of
Flatten and Dense was.

The final softmax layer also needs to be made fully convolutional ❹.
There are ten outputs, one per digit, and the activation remains the same.
The kernel size, however, is 1 × 1. The input to this layer is 1 × 1 × 128, so
the kernel size to cover it is 1 × 1. Again, if we were to work through the
math, we’d see that a 1 × 1 × 128 input to a 1 × 1 × 10 convolutional layer
matches that of a fully connected layer of 128 nodes mapped to 10 nodes in
the next layer. The difference here is that if the input is larger than 1 × 1, we
can still convolve over it.

Now that we’ve constructed the fully convolutional version of our
model, we need to copy the weights from the trained fully connected model
to it ❺. We loaded the trained weights into weights. This is a list of NumPy
arrays for the weights and biases, layer by layer. So, weights[0] refers to the
weights of the first Conv2D layer, and weights[1] are the biases. Similarly,
weights[2] and weights[3] are the weights and bias values for the second

convolutional layer. We set them in the new fully convolutional model by
updating the proper layers via the set_weights method. Layers 0 and 1 are the
two convolutional layers.

Layer 4 is the new Conv2D layer that replaced the Flatten and Dense
layers of the original model. Here when we set the weights, we need to
reshape them to match the form of a convolutional layer: 12 × 12 × 64 ×
128. This is for a 12 × 12 kernel mapped over 64 inputs leading to 128
outputs. The 64 is the number of 12 × 12 outputs from the pooling layer
above.

Finally, we set the output layer weights. Again, we need to reshape them
to 1 × 1 × 128 × 10 for the 1 × 1 × 128 input and 10 outputs. The biases for
the two new Conv2D layers are in weights[5] and weights[7], so we add them as
well.

The fully convolutional model is now defined and completely populated
with the weights and biases from the fully connected model. Figure 13-6
shows the mapping between models, with the original architecture on the
left and the fully convolutional architecture on the right. The boxes
represent layers, with the top set of numbers being the input and the bottom
the output. For the fully convolutional model, input height and width are
arbitrary and marked with “--”.

Figure 13-6: Mapping a fully connected model (left) to a fully convolutional model (right)

All that is left to do is write the new fully convolutional model to disk,
and it’s ready to use. Let’s see how.

Making the Test Images
To test the fully convolutional model, we first need images with digits.
Unlike our training images, which were small and had a single digit in the
center, we want larger test images that contain many digits in arbitrary
locations. The MNIST dataset consists of shades of gray on a black
background; therefore, our test images should have a black background
also. This will make the test images come from the same “domain” as the
training images, which, as we’ve emphasized before, is critical. Making

models adapt to different data domains is an active research area. Search for
domain adaptation.

Making the test images by using Python and the digits from the MNIST
test set is straightforward. We didn’t use the test set images for training, so
using them to make our larger test images isn’t cheating. The code is shown
in Listing 13-7.

import os
import sys
import numpy as np
import random
from PIL import Image

os.system("rm -rf images; mkdir images")

if (len(sys.argv) > 1):
 N = int(sys.argv[1])
else:
 N = 10

x_test = np.load("data/mnist/mnist_test_images.npy")

for i in range(N):
❶ r,c = random.randint(6,12), random.randint(6,12)
 g = np.zeros(r*c)
❷ for j in range(r*c):
 if (random.random() < 0.15):
 g[j] = 1
 g = g.reshape((r,c))
 g[:,0] = g[0,:] = g[:,-1] = g[-1,:] = 0

❸ img = np.zeros((28*r,28*c), dtype="uint8")
 for x in range(r):
 for y in range(c):
 if (g[x,y] == 1):
 ❹ n = random.randint(0, x_test.shape[0])
 im = x_test[n]
 img[28*x:(28*x+28), 28*y:(28*y+28)] = im

 Image.fromarray(img).save("images/image_%04d.png" % i)

Listing 13-7: Building large MNIST test set images

We’re making use of the MNIST test set file we created in Chapter 5.
We could just as quickly have loaded the test images through Keras, as we
did earlier for our basic CNN experiments. The code itself creates an output

directory, images, and gets the number of images to build from the
command line, if given (N).

The images are of random sizes ❶. Here, r and c are the number of rows
and columns in the large image in terms of the number of 28 × 28 MNIST
digits. To decide where to place our digits so they don’t overlap, we create a
grid, g, with either a 0 or a 1 in each possible digit position (r*c of them) ❷.
There is a 15 percent chance that any grid position will contain a 1. We then
reshape the grid into an actual 2D array and set the border positions of the
grid to 0 to ensure that no digits appear on the edge of the image.

The actual output image is then defined ❸ as the number of rows and
columns are multiplied by 28, the width and height of the MNIST digit. We
loop over each digit position (x and y), and if the grid value at that row and
column is 1, then we select a digit at random and copy it to the current row
and column digit position in the output image (img) ❹. When every grid
position has been examined, the image is written to disk so that we can use
it with our fully convolutional network.

Testing the Model
Let’s test the model—first on single MNIST digits and then on the
randomly generated large digit images. The fully convolutional model
should work as well with single MNIST digits as the fully connected model
did. The code to test this assertion is in Listing 13-8.

import numpy as np
from keras.models import load_model

x_test = np.load("data/mnist/mnist_test_images.npy")/255.0
y_test = np.load("data/mnist/mnist_test_labels.npy")
model = load_model("mnist_cnn_fcn_model.h5")

N = y_test.shape[0]
nc = nw = 0.0
for i in range(N):
❶ p = model.predict(x_test[i][np.newaxis,:,:,np.newaxis])
 c = np.argmax(p)
 if (c == y_test[i]):
 nc += 1
 else:
 nw += 1
print("Single MNIST digits, n=%d, accuracy = %0.2f%%" % (N, 100*nc/N))

Listing 13-8: Verifying that the fully convolutional model works with single MNIST digits

We load the MNIST test images and labels, along with the fully
convolutional model, and then loop over each test image and ask the model
to make a prediction ❶. Note, the image is 2D, but we must pass a 4D array
to the predict method, hence using np.newaxis to create the missing axes. The
prediction for the digit is stored in p as a vector of per class probabilities.
The label associated with the largest of these probabilities is the label
assigned to the input digit by the model c. If c matches the actual test label,
we increment the number of correct predictions (nc); otherwise, we
increment the number of wrong predictions (nw). Once all 10,000 test
images have been processed, we can output the overall accuracy, which is
99.25 percent for my training of the fully convolutional model.

Okay, the fully convolutional model is highly accurate, but so what? We
passed single-digit images to it as inputs and got a single output value. We
had this capability before with the fully connected model. To expose the
utility of the fully convolutional model, let’s now pass the large MNIST
digit images as input. In code, we do this as shown in Listing 13-9.

import os
import numpy as np
from keras.models import load_model
from PIL import Image

model = load_model("mnist_cnn_fcn_model.h5")

os.system("rm -rf results; mkdir results")
n = len(os.listdir("images"))

for i in range(n):
 f = "images/image_%04d.png" % i
 ❶ im = np.array(Image.open(f))/255.0
 p = model.predict(im[np.newaxis,:,:,np.newaxis])
 np.save("results/results_%04d.npy" % i, p[0,:,:,:])

Listing 13-9: Running the fully convolutional model over large test images

We import the necessary modules and then load the fully convolutional
model. We then create a new output directory, results, and find the number
of large digit images (n). Next, we loop over each of the large digit images.

After loading the image from disk, being careful to make a NumPy
array from it and scaling it by 255 since the training data was also scaled by

255 ❶, we make a prediction and store the model output in p. Notice, we
make a 4D input to predict, just as we did for the single digits earlier, but this
time, im is larger than 28 × 28 and contains multiple digits. Because the
model is fully convolutional, this isn’t an issue; we will not get an error.
Instead, p is a 4D array with the first dimension of one, the number of input
images, and a final dimension of ten, the number of digits. The middle two
dimensions of p are a function of the size of the input passed to the predict
method. Since the input was larger than 28×28 pixels, the entire model
convolved over the input image as though the model was a convolutional
layer with a kernel of 28 × 28. Specifically, the output of this convolution
has height and width of

where H,W are the height and width of the input image and h,w are the
height and width of the output array from predict. The 28 in the formula is the
size of the inputs we initially trained on, 28 × 28 digit images. Where did
the mysterious 2 come from in the denominator? This is the stride of the 28
× 28 kernel over the input image. It is 2 because that is the factor the input
image is changed by when it gets down to the fully convolutional output
layers. The input was 28 × 28, but, after the two convolutional layers and
the pooling layer, the input is mapped to 12 × 12 and ⌊28/12⌋ = 2.

We stated that the array in p is 4D; now we know we get a specific-size
output based on convolving a 28 × 28 region over the input image using a
stride of 2. What do we get at each of the h,w output array positions? The
last element of the 4D output has size 10; these are the per class predictions
at the specific h,w output position that corresponds to the 28 × 28 kernel.

Let’s make this abstract description more concrete. The upper-left
corner of Figure 13-7 shows one of the large input images where we’ve
inverted it to make it black on a white background and added a border so
you can see the full size of the image.

Figure 13-7: Per digit heatmap output of the fully convolutional model for the input image on the
upper left. The model was trained on the standard MNIST dataset.

The image in the top left of Figure 13-7 is 336 pixels wide and 308
pixels tall, meaning the output from passing this image to the model will be
an array that is 1 × 141 × 155 × 10, exactly what we expect from the
equations on page 744 for the output array dimensions. The output array
represents the model’s predictions at each of the 28 × 28 regions of the
input image when using a stride of 2. There is one prediction for each digit.
For example, if p is the 4D output of the predict method for the image on the
left of Figure 13-7, then p[0,77,88,:] will return a 10-element vector
representing the per class probabilities of each digit class for the 28 × 28
input region of the image that maps to 77 × 88. In this case, we get the
following:

array([0.10930195, 0.12363277, 0.131005 , 0.10506018, 0.05257199,
 0.07958104, 0.0947836 , 0.11399861, 0.08733559, 0.10272926],
 dtype=float32)

This tells us that there is no strong likelihood, according to the model, that
any particular digit is present at this location. We know this because all the
output probabilities are much lower than even the minimum cutoff
threshold of 0.5. The output of predict can be thought of as a probability map,
typically called a heatmap, giving us the probability that there is a digit in
that location. The model output can be thought of as 10 heatmaps, one for
each digit.

The remaining images of Figure 13-7 show the heatmaps for each of the
10 digits, again inverted so that higher probabilities are darker. The
heatmaps were thresholded at 0.98, meaning any probability value less than
0.98 was set to 0. This removes the weak outputs like the ones we just saw.
We are interested only in the model’s strongest responses per digit. To make
the heat maps, we double the size of the output from the model and set the
output image locations with an offset to account for the position of the
convolutional output. This is akin to what we saw in Figure 12-1, where the
convolution operation returns an output that is smaller than the input when
no zero padding is used. Specifically, the code that produces the digit
heatmaps is in Listing 13-10.

 import os
 import sys
 import numpy as np
 from PIL import Image

❶ threshold = float(sys.argv[1])
 iname = sys.argv[2]
 rname = sys.argv[3]
 outdir= sys.argv[4]
 os.system("rm -rf %s; mkdir %s" % (outdir, outdir))

❷ img = Image.open(iname)
 c,r = img.size
 hmap = np.zeros((r,c,10))
 res = np.load(rname)
 x,y,_ = res.shape
 xoff = (r - 2*x) // 2
 yoff = (c - 2*y) // 2

❸ for j in range(10):
 h = np.array(Image.fromarray(res[:,:,j]).resize((2*y,2*x)))
 hmap[xoff:(xoff+x*2), yoff:(yoff+y*2),j] = h
 np.save("%s/graymaps.npy" % outdir, hmap)
❹ hmap[np.where(hmap < threshold)] = 0.0
 for j in range(10):
 img = np.zeros((r,c), dtype="uint8")
 for x in range(r):
 for y in range(c):
 ❺ img[x,y] = int(255.0*hmap[x,y,j])
 img = 255-img
 Image.fromarray(img).save("%s/graymap_digit_%d.png" % (outdir, j))

Listing 13-10: Building heatmap images

Here we’re calling the output images graymaps because they’re
grayscale images representing the response of the model to different
locations in the input image. We first pass in the threshold value, the source
image name, the response of the model to that source image, and an output
directory where the graymaps will be written ❶. This directory is
overwritten each time. Next, the source image is loaded to get its
dimensions ❷. These are used to create the output heatmaps (hmap). We also
load the associated model responses (res) and calculate the offsets. Note that
hmap is the same size as the image. We then fill in each digit graymap of
hmap with the resized model response ❸ and store the full set of graymaps in
the output directory.

To make the output grayscale images like those shown in Figure 13-7,
we first threshold the heatmaps, setting any value less than the supplied
cutoff to 0 ❹. Then, for each digit, we create an output image and simply
scale the remaining heatmap values by 255 since they are probabilities in
the range [0,1) ❺. Then, before writing the image to disk, we invert by
subtracting from 255. This makes stronger activations dark and weaker
activations lighter. Because of the strong threshold applied (0.98), our
output graymaps are effectively binary; this is what we want to indicate
where the model is most certain of a digit being located.

Let’s look back at Figure 13-7 and see if we can interpret these
responses. The source image has one 0 on the lower right. If we look at the
graymap for digit 0, we see a single dark blob in that location. This means
the model has indicated a strong response that there is a 0 digit at that
location. So far, so good. However, we also see another strong response
from the model near the 4 on the left side of the input image. The model has
made a mistake. The input has two 4s in it. If we look at the graymaps for
digit 4, we see two dark blobs corresponding to these digits, but we also see
many other small areas of strong activation near other digits that are not 4s.
The model we trained was over 99 percent accurate on single MNIST test
digits, so why are the responses of the fully convolutional model so noisy?
Just look at all the small strong responses for 2s when the input does not
contain any 2s. Sometimes, the model is doing well, as for 8s where the
graymap shows strong responses for all the 8s in the input, but then it does
poorly for other digits like 7s. And, there are no 5s at all, but the model is
returning many hits.

Here is an opportunity for us to expand our thinking and intuition. We
trained the model on the standard MNIST digit dataset. All of the digits in
this dataset are well centered in the images. However, when the model is
convolved over the large input image, there will be many times when the
input to the model is not a well-centered digit but only part of a digit. The
model has never seen partial digits, and since it must give an answer, it
sometimes offers answers that are meaningless—the part of a digit it sees
may be part of a 6, for example, but the model “thinks” it is a 5.

One possible solution is to teach the model about partial MNIST digits.
We can do this by augmenting the standard MNIST dataset with shifted
versions of its digits. Imagine a 4 shifted to the lower right so that only part

of it is visible. It will still be labeled a 4, so the model will have an
opportunity to learn what a shifted 4 digit looks like. The code to make this
shifted dataset is in the file make_shifted_mnist_dataset.py, but we’ll show
only the function that makes a shifted copy of an input MNIST digit here.
This function is called four times for each training and test image (to create
a shifted test dataset). We keep the original centered digit and four
randomly shifted copies of it to make a dataset that is five times as large as
the original. The random shift function is.

def shifted(im):
 r,c = im.shape
 x = random.randint(-r//4, r//4)
 y = random.randint(-c//4, c//4)
 img = np.zeros((2*r,2*c), dtype="uint8")
 xoff = r//2 + x
 yoff = c//2 + y
 img[xoff:(xoff+r), yoff:(yoff+c)] = im
 img = img[r//2:(r//2+r),c//2:(c//2+c)]
 return img

with im being the input image supplied as a NumPy array. Based on the
input size, we pick random x and y shifts that can be positive or negative
and up to one-quarter of the image size. Varying this limit to, say, one-third
or one-half would be worth the experiment. A new image is created (img),
which is twice the size of the original. The original is then put into the
larger image at an offset based on the shift positions, and the center portion
of the larger image, matching the input image dimensions, is returned as the
offset version of the input.

To use the augmented dataset, we need first to retrain the fully
connected MNIST model, then rebuild the fully convolutional model using
the new weights and biases, and, finally, run the large test images through
the model as before. Doing all of this leads to new graymaps (Figure 13-8).

Figure 13-8: Per digit heatmap output of the fully convolutional model for the upper-left input image.
The model was trained on the MNIST dataset augmented by shifting the digits.

We see a vast improvement, so we have impressive evidence that our
intuition was correct: the initial model was unable to deal effectively with
partial digits, but when we trained it with partial digits included, the
resulting responses were robust over the actual digits and very weak to
nonexistent for other digits. We really should not be surprised by these
results. Our first model did not represent the space of inputs that the model
would see when used in the wild. It knew nothing about partial MNIST
digits. The second model was trained on a dataset that is a better
representation of the space of possible inputs, so it performs significantly
better.

Using fully convolutional networks in this way has been superseded in
recent years by other, more advanced techniques that we do not have space
nor computing power to work with in this book. Many models that localize
objects in images output not a heatmap, but a bounding box covering the
image. For example, the YOLO model (https://pjreddie.com/darknet/yolo/)
is capable of real-time object detection in images, and it uses bounding
boxes around the objects with their label. In Chapter 12, we mentioned
semantic segmentation and U-Nets as current state-of-the-art models that
assign a class label to each pixel of the input. Both of these approaches are
useful and are, in a sense, extensions of the fully convolutional model
approach we just demonstrated here.

Scrambled MNIST Digits
In Chapter 10, we showed that scrambling the order of the pixels in an
MNIST digit (Figure 7-3), provided the remapping of pixels is
deterministically applied to each image, poses no problem for a traditional
neural network. It is still able to train well and assign class labels just as
effectively as with unscrambled digits. See Figure 10-9.

Let’s see if this still holds with CNNs. We made the scrambled MNIST
digit dataset in Chapter 5. All we need to do here is substitute it for the
standard MNIST dataset in our baseline CNN model, the one we started the
chapter with. If we train this model with the scrambled data, and do so
repeatedly to get some error bars, we get Figure 13-9.

https://pjreddie.com/darknet/yolo/

Figure 13-9: Test set error per epoch for a model trained on unscrambled and scrambled MNIST
digits. Mean and SE over six training sessions.

Here we see that unlike the traditional neural network, the CNN does
have some trouble: the test error for the scrambled digits is higher than for
the unscrambled digits. Why? Recall, the CNN uses convolution and learns
kernels that help create a new representation of the input, one that a simple
model, the top layers, can readily use to distinguish between classes.

Convolution generates responses that are spatially dependent. In the
case of the scrambled digits, that spatial dependence is mostly eliminated; it
is only by considering the digit image as a whole, like a traditional neural
network, that a class determination can be made. This means there is little
for the lower layers of the CNN to learn. Of course, the CNN is still
learning and does a better job with the scrambled digits than the traditional
model in the end, about 2 percent error versus 4.4 percent, but the
distinction between scrambled and unscrambled is more significant.

Summary
In this chapter, we built our intuition around CNNs by working with the
MNIST dataset. We explored the effect of basic architecture changes;
learned about the interplay among training set size, minibatch size, and
number of training epochs; and explored the effect of the optimization
algorithm.

We saw how to convert a model using fully connected layers into a fully
convolutional model. We then learned how to apply that model to search for
digits in arbitrarily sized input images. We also learned that we needed to
increase the expressiveness of our dataset to do a better job of representing
the distribution of inputs the model sees when used.

Finally, we saw via an experiment with the scrambled MNIST digits
that the strength of CNNs—their ability to learn spatial relationships within
data—can sometimes be of little help when the spatial relationships are
weak or nonexistent.

In the next chapter, we’ll continue our exploration of basic CNNs with a
new dataset, one of actual images: CIFAR-10.

14
EXPERIMENTS WITH CIFAR-10

In this chapter, we’ll perform a series of experiments with the CIFAR-10
dataset we built in Chapter 5. First, we’ll see how two models, one shallow,
the other deeper, perform on the full dataset. After that, we’ll work with
grouped subsets of the entire dataset to see if we can tell the difference
between animals and vehicles. Next, we’ll answer the question of what’s
better for the CIFAR-10 dataset, a single multiclass model or a set of binary
models, one per class.

We’ll close the chapter by introducing transfer learning and fine-tuning.
These are important concepts, often confounded, that are widely used in the
machine learning community, so we should develop an intuitive feel for
how they work.

A CIFAR-10 Refresher
Before we dive into the experiments, let’s refamiliarize ourselves with the
dataset we’re working with. CIFAR-10 is a 10-class dataset from the
Canadian Institute for Advanced Research (CIFAR). We built this dataset in
Chapter 5 but deferred its use until now. CIFAR-10 consists of 32×32-pixel
RGB images of animals (six classes) and vehicles (four classes). Take a
look at Figure 5-4 for some sample images. The training set has 50,000
images, 5,000 from each class, so it is a balanced dataset. The test set

consists of 10,000 images, 1,000 from each class. CIFAR-10 is probably the
second most widely used standard dataset in machine learning after MNIST.
There is also a 100-class version, CIFAR-100, that we’ll not work with in
this book, but you’ll see it pop up often in the literature.

As of this writing, the best performing model on unaugmented CIFAR-
10 has achieved a 1 percent error on the test set (benchmarks.ai). The model
that did this has 557 million parameters. Our models will be significantly
smaller and have a much larger test error. However, this is a true image
dataset, unlike MNIST, which is very clean and has a uniform black
background for every digit. Because of the variation in natural images,
especially in their backgrounds, we might expect models to have a harder
time learning the CIFAR-10 classes compared to MNIST.

For reference throughout the chapter, here are CIFAR-10 classes:

Label Class Label Class
0 airplane 5 dog
1 automobile 6 frog
2 bird 7 horse
3 cat 8 ship
4 deer 9 truck

Working with the Full CIFAR-10 Dataset
Let’s train two different models on the entire CIFAR-10 dataset. The first
model is the same one we used in Chapter 13 for the MNIST dataset. We’ll
refer to this model as our shallow model because it has only two
convolutional layers. We’ll need to adapt it a touch for the 32 × 32 RGB
inputs, but that’s straightforward enough to do. The second model, which
we’ll call our deep model, uses multiple convolutional layers before the
pooling and fully connected layers.

Additionally, we’ll experiment with both stochastic gradient descent and
Adadelta as our optimization algorithms. We’ll fix the minibatch size at 64
and train for 60 epochs for a total of 46,875 gradient descent steps. For
SGD, we’ll use a learning rate of 0.01 and a momentum of 0.9. Recall,
Adadelta is adaptive and alters the learning rate on the fly. We can decrease
the learning rate for SGD as training progresses, but 0.01 is relatively small,

http://benchmarks.ai/

and we have a large number of gradient descent steps, so we’ll just leave it
a constant.

The shallow model has 1,626,442 parameters, while the deep model has
only 1,139,338. The deep model is deep because it has more layers, but
because each convolutional layer is using exact convolution, the output
decreases by two each time (for a 3 × 3 kernel). Therefore, the flatten layer
after the pooling layer has only 7,744 values compared to 12,544 for the
shallow model. The weight matrix between the flatten layer and the dense
layer of 128 nodes contains the vast majority of the parameters, 7,744 × 128
= 991,232 compared to 12,544 × 128 = 1,605,632. Thus, going deeper has
actually reduced the number of parameters to learn. This slightly
counterintuitive result reminds us of the large expense incurred by fully
connected layers and some of the initial motivation for the creation of
CNNs.

Building the Models
You’ll find the code for the shallow model in cifar10_cnn.py (Adadelta) and
cifar10_cnn_SGD.py (SGD). We’ll work through the code in pieces. The
shallow model starts in much the same way as for the MNIST dataset, as
shown in Listing 14-1.

import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
import numpy as np

batch_size = 64
num_classes = 10
epochs = 60
img_rows, img_cols = 32, 32

x_train = np.load("cifar10_train_images.npy")
y_train = np.load("cifar10_train_labels.npy")
x_test = np.load("cifar10_test_images.npy")
y_test = np.load("cifar10_test_labels.npy")

if K.image_data_format() == 'channels_first':
 x_train = x_train.reshape(x_train.shape[0], 3, img_rows, img_cols)
 x_test = x_test.reshape(x_test.shape[0], 3, img_rows, img_cols)
 input_shape = (3, img_rows, img_cols)

else:
 x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 3)
 x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 3)
 input_shape = (img_rows, img_cols, 3)

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
(*\newpage*)
x_train /= 255
x_test /= 255

y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

Listing 14-1: Preparing the CIFAR-10 dataset

We import the necessary modules and load the CIFAR-10 dataset from
the NumPy files we created in Chapter 5. Notice that the image dimensions
are now 32 × 32, not 28 × 28, and that the number of channels is 3 (RGB)
instead of 1 (grayscale). As before, we scale the inputs by 255 to map the
images to [0,1] and convert the label numbers to one-hot vectors using
to_categorical.

Next, we define the model architecture (Listing 14-2).

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
 activation='relu',
 input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

model.compile(loss=keras.losses.categorical_crossentropy,
 optimizer=keras.optimizers.Adadelta(),
 metrics=['accuracy'])

Listing 14-2: Building the shallow CIFAR-10 model

This step is identical to the MNIST version for the shallow model (see
Listing 13-1). For the deep model, we add more convolutional layers, as
shown in Listing 14-3.

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
 activation='relu',
 input_shape=input_shape))

model.add(Conv2D(64, (3,3), activation='relu'))
model.add(Conv2D(64, (3,3), activation='relu'))
model.add(Conv2D(64, (3,3), activation='relu'))
model.add(Conv2D(64, (3,3), activation='relu'))

model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.25))

model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

model.compile(loss=keras.losses.categorical_crossentropy,
 optimizer=keras.optimizers.Adadelta(),
 metrics=['accuracy'])

Listing 14-3: Building the deep CIFAR-10 model

The extra convolutional layers give the model the opportunity to learn a
better representation of the input data, which for CIFAR-10 is more
complex than the simple MNIST images. The representation might be better
because a deeper network can learn more abstract representations that
encompass larger structures in the inputs.

The code snippets in Listings 14-2 and 14-3 compile the model using
Adadelta as the optimization algorithm. We also want a version of each that
uses SGD. If we replace the reference to Adadelta() in the compile method with
the following

optimizer=keras.optimizers.SGD(lr=0.01, momentum=0.9)

we’ll use SGD with the learning rate and momentum values we indicated
earlier. For completeness, the rest of the code for both shallow and deep
models is shown in Listing 14-4.

print("Model parameters = %d" % model.count_params())
print(model.summary())

history = model.fit(x_train, y_train,
 batch_size=batch_size,
 epochs=epochs,
 verbose=1,
 validation_data=(x_test[:1000], y_test[:1000]))

score = model.evaluate(x_test[1000:], y_test[1000:], verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

model.save("cifar10_cnn_model.h5")

Listing 14-4: Training and testing the CIFAR-10 models

This code summarizes the model architecture and number of
parameters, trains by calling the fit method using the first 1,000 test samples
for validation, and then evaluates the trained model on the remaining 9,000
test samples by calling the evaluate method. We report the test loss and
accuracy. Then we write the model to disk (save), and store the history
showing the per epoch loss and accuracy during training. We’ll use the
history files to generate plots showing the loss and error (1 – accuracy) as a
function of the training epoch.

Listing 14-4 gives us four files: shallow model + Adadelta, shallow
model + SGD, deep model + Adadelta, and deep model + SGD. Let’s run
each of these to see our final test accuracy and then look at plots of the
training process to see what we can learn.

Running the code trains and evaluates the models. This takes some time
on our CPU-only system, about eight hours total. The random initialization
Keras uses means that when you run the code yourself, you should see
slightly different answers. When I ran the code, I got Table 14-1.

Table 14-1: Test Set Accuracies by Model Size and Optimizer

Shallow Deep
Adadelta 71.9% 74.8%
SGD 70.0% 72.8%

The table tells us that using Adadelta gave us a more accurate model for
both shallow and deep models compared to SGD. We also see that the deep
model outperforms the shallow model regardless of optimizer. Adaptive
optimizers like Adadelta and Adam (also in Keras) are generally preferred

to plain old SGD for this reason. However, I have seen claims that SGD is
ultimately just as good or better once the learning rate is set up right and
decreased as training proceeds. Of course, nothing prevents us from starting
with an adaptive optimizer and then switching to SGD after some number
of epochs. The idea here is that the adaptive optimizer “gets close” to a
minimum of the loss function while SGD fine-tunes the process at that
point.

Analyzing the Models
Let’s look at how the loss changes during training. Figure 14-1 shows the
loss per epoch for the shallow and deep models using Adadelta (top) and
SGD (bottom).

Figure 14-1: Training loss for shallow and deep models using Adadelta (top) and SGD (bottom)

Starting with the Adadelta loss plot, we see that compared to SGD, the
loss is not as low. We also see that for the shallow model, the loss is
increasing slightly per epoch. This is a counterintuitive result and seems to
contradict conventional wisdom that the training loss should only decrease.
There are reports of this happening with Adam, another adaptive optimizer,
so it is likely an artifact of the adaptation algorithm. Regardless, as we saw
in Table 14-1, Adadelta leads to higher accuracies for both shallow and
deep models.

On the bottom of Figure 14-1, we see that SGD leads to a smaller loss
for the shallow model compared to the deep model. This is typically
interpreted as a hint for potential overfitting. The model is learning the
details of the training set as the loss tends to 0. The shallow model using
SGD was the least performant model according to Table 14-1. The deep
model using SGD did not have such a small loss, at least up to 60 training
epochs.

What about the validation set accuracy during training? Figure 14-2
plots the error by epoch. The error is easier to understand visually; it should
tend toward 0 as accuracy increases. Again, the Adadelta models are on the
top, and the SGD models are on the bottom.

As expected, regardless of optimizer, the deeper model performed better
and had a lower validation set error during training. Note, the validation set
error is not the final, held-out test set error, but instead the portion of the
test set used during training, the first 1,000 samples in this case.

The SGD curves on the bottom of Figure 14-2 follow what our intuition
should tell us: as the model trains, it gets better, leading to a smaller error.
The deep model quickly overtakes the shallow model—again, an intuitive
result. Also, the curves are relatively smooth as the model gets better and
better.

The Adadelta error plots on the top of Figure 14-2 are a different story.
There is an obvious decrease in the error after the first few epochs.
However, after that, the validation set error jumps around somewhat
chaotically though still following our intuition that the deep model should
have a smaller error than the shallow model. This chaotic result is due to the
adaptive nature of the Adadelta algorithm, which is adjusting the learning
rate on the fly to search for a better minimum. From the results of Table 14-
1, it’s clear that Adadelta is finding better-performing models.

Figure 14-2: Validation set error for shallow and deep models using Adadelta (top) and SGD
(bottom)

These experiments tell us that adaptive optimization algorithms and
deeper networks (to a point) tend toward better-performing models. While
recognizing the danger inherent in attempting to offer advice in this field, it
seems safe to say that one should start with adaptive optimization and use a
large enough model. To find out just what large enough means, I suggest

starting with a modest model and, after training, making it deeper and
seeing if that improves things. Eventually, the model will be too large for
the training set, so there will be a cutoff point where increasing the size of
the model no longer helps. In that case, get more training data, if possible.

Let’s now shift our attention to working with subsets of CIFAR-10.

Animal or Vehicle?
Four of the ten classes in CIFAR-10 are vehicles; the remaining six are
animals. Let’s build a model to separate the two and see what we can learn
from it. We already have the images; all we need do is recode the labels so
that all the vehicles are marked as class 0 and all the animals as class 1.
Doing this is straightforward, as shown in Listing 14-5.

import numpy as np
y_train = np.load("cifar10_train_labels.npy")
y_test = np.load("cifar10_test_labels.npy")
for i in range(len(y_train)):
 if (y_train[i] in [0,1,8,9]):
 y_train[i] = 0
 else:
 y_train[i] = 1
for i in range(len(y_test)):
 if (y_test[i] in [0,1,8,9]):
 y_test[i] = 0
 else:
 y_test[i] = 1
np.save("cifar10_train_animal_vehicle_labels.npy", y_train)
np.save("cifar10_test_animal_vehicle_labels.npy", y_test)

Listing 14-5: Adjusting the labels of CIFAR-10 into vehicles (class 0) and animals (class 1)

We load the existing train and test label files, already matched in order
with the train and test image files, and build new label vectors mapping the
vehicle classes—classes 0, 1, 8, and 9—to 0 and all the others to 1.

The code in the previous section for building and training the model
remains the same except for the definition of the model architecture and the
particular file we load for the train and test labels. The number of classes
(num_classes) is set to 2, the minibatch size is 128, and we’ll train for 12
epochs. The training set isn’t completely balanced—there are 20,000
vehicles and 30,000 animals—but the imbalance isn’t severe, so we should

be in good shape. Remember that when one class is scarce, it becomes
difficult for the model to learn it well. We’ll stick with Adadelta as the
optimizer and use the first 1,000 test samples for validation and the
remaining 9,000 for final test. We’ll use the same shallow architecture used
in the previous section.

Training this model on the CIFAR-10 images with the recoded labels
gives us a final test accuracy of 93.6 percent. Let’s be a little pedantic and
calculate all the performance metrics from Chapter 11. To do this, we
update the tally_predictions function defined in that chapter (Listing 11-1) to
work with a Keras model. We’ll also use basic_metrics (Listing 11-2) and
advanced_metrics (Listing 11-3) from Chapter 11. The updated code for
tally_predictions is shown in Listing 14-6.

def tally_predictions(model, x, y):
 pp = model.predict(x)
 p = np.zeros(pp.shape[0], dtype="uint8")
 ❶ for i in range(pp.shape[0]):
 p[i] = 0 if (pp[i,0] > pp[i,1]) else 1
 tp = tn = fp = fn = 0
 for i in range(len(y)):
 if (p[i] == 0) and (y[i] == 0):
 tn += 1
 elif (p[i] == 0) and (y[i] == 1):
 fn += 1
 elif (p[i] == 1) and (y[i] == 0):
 fp += 1
 else:
 tp += 1
 score = float(tp+tn) / float(tp+tn+fp+fn)
 return [tp, tn, fp, fn, score]

Listing 14-6: Calculating basic metrics for Keras models

We pass in the model, test samples (x), and test labels (y). Unlike the
sklearn version of tally_predictions, here we first use the model to predict per
class probabilities (pp). This returns a 2D array, one row for each sample in
x, where the columns are the probabilities assigned per class. Here there are
two columns because there are only two classes: vehicle or animal.

Before we can tally the true positives, true negatives, false positives
(vehicle classified as animal), and false negatives (animal classified as
vehicle), we need to assign a class label to each test sample. We do this by
looping over the predictions, row by row, and asking whether the

probability for class 0 is greater than class 1 or not ❶. Once we have
assigned a predicted class label (p), we can calculate the tallies and return
them along with the overall score (accuracy). We pass the list returned by
tally_predictions to basic_metrics and then pass the output of both of these
functions to advanced_metrics, as in Chapter 11.

The full set of binary classifier metrics gives us the following:

Metric Result
TP 5,841
FP 4,80
TN 3,520
FN 159
TPR (sensitivity, recall) 0.9735
TNR (specificity) 0.8800
PPV (precision) 0.9241
NPV 0.9568
FPR 0.1200
FNR 0.0265
F1 0.9481
MCC 0.8671
κ 0.8651
Informedness 0.8535
Markedness 0.8808
Accuracy 0.9361

We see that this is a well-performing model although a specificity of 88
percent is a little on the low side. As argued in Chapter 11, the Matthews
correlation coefficient (MCC) is possibly the best single number for
characterizing a binary classifier. Here we have an MCC of 0.8671 out of
1.0, indicative of a good model.

Recall that the sensitivity is the probability that an animal is called an
“animal” by this model, and the specificity is the probability that a vehicle
is called a “vehicle.” The precision is the probability that when the model
assigns a label of “animal,” it is correct, and the NPV (negative predictive
value) is the probability of the model being correct when it assigns a label
of “vehicle.” Note also that the false positive rate (FPR) is 1 – specificity,
and the false negative rate (FNR) is 1 – sensitivity.

A little more code will calculate the ROC curve and its area:

from sklearn.metrics import roc_auc_score, roc_curve
def roc_curve_area(model, x, y):
 pp = model.predict(x)
 p = np.zeros(pp.shape[0], dtype="uint8")
 for i in range(pp.shape[0]):
 p[i] = 0 if (pp[i,0] > pp[i,1]) else 1
 auc = roc_auc_score(y,p)
 roc = roc_curve(y,pp[:,1])
 return [auc, roc]

Again, we pass in the trained model, the test samples (x), and the animal
or vehicle labels (y). We also convert the output probabilities to class
predictions, as we did in Listing 14-6. The AUC is 0.9267, and Figure 14-3
shows the ROC curve (note the zoomed axes). This curve is steep and close
to the upper-left corner of the plot—all good signs of a well-performing
model.

Figure 14-3: ROC curve for the animal or vehicle model

We grouped animals and vehicles and asked a single model to learn
something about the difference between them. Clearly, some characteristics
differentiate the two classes, and the model has learned to use them
successfully. However, unlike most binary classifiers, we know finer label
assignments for the test data. For example, we know which of the animals
are birds or deer or frogs. Likewise, we know which samples are airplanes,
ships, or trucks.

When the model makes a mistake, the mistake is either a false positive
(calling a vehicle an animal) or a false negative (calling an animal a
vehicle). We chose animals to be class 1, so false positives are cases where
a vehicle was called an animal. The converse is true for false negatives. We
can use the full class labels to tell us how many of the false positives are
represented by which vehicle classes, and we can do the same for the false

negatives to tell us which animal classes were assigned to the vehicle class.
A few lines of code in Listing 14-7 give us what we are after.

 import numpy as np
 from keras.models import load_model
 x_test = np.load("cifar10_test_images.npy")/255.0
 y_label= np.load("cifar10_test_labels.npy")
 y_test = np.load("cifar10_test_animal_vehicle_labels.npy")
 model = load_model("cifar10_cnn_animal_vehicle_model.h5")
 pp = model.predict(x_test)
 p = np.zeros(pp.shape[0], dtype="uint8")
 for i in range(pp.shape[0]):
 p[i] = 0 if (pp[i,0] > pp[i,1]) else 1
 hp = []; hn = []
❶ for i in range(len(y_test)):
 if (p[i] == 0) and (y_test[i] == 1):
 hn.append(y_label[i])
 elif (p[i] == 1) and (y_test[i] == 0):
 hp.append(y_label[i])
 hp = np.array(hp)
 hn = np.array(hn)
 a = np.histogram(hp, bins=10, range=[0,9])[0]
 b = np.histogram(hn, bins=10, range=[0,9])[0]
 print("vehicles as animals: %s" % np.array2string(a))
 print("animals as vehicles: %s" % np.array2string(b))

Listing 14-7: Using the fine class labels to determine which classes account for false positives and
false negatives

First, we load the test set images, actual labels (y_label), and animal or
vehicle labels (y_test). Then, as before, we load the model and get the model
predictions (p). We want to keep track of the actual class label for each false
positive and false negative, the mistakes the classifier has made. We do this
by looping over the predictions and comparing them to the animal or
vehicle labels ❶. When there is an error, we keep the actual label of the
sample, be it an FN (hn) or FP (hp). Note that this works because when we
defined the animal or vehicle labels, we were careful to keep the order the
same as the original label set.

Once we have the actual labels for all FP and FN cases, we use histogram
to do the tallying for us. There are 10 actual class labels, so we tell histogram
that we want to use 10 bins. We also need to specify the range for the bins
(range=[0,9]). We want only the counts themselves, so we need to keep only
the first array returned by histogram, hence the [0] at the end of the call.
Finally, we print the arrays to get

vehicles as animals: [189 69 0 0 0 0 0 0 105 117]
animals as vehicles: [0 0 64 34 23 11 12 15 0 0]

This means that of the vehicles the model called “animal,” 189 of them
were of class 0, airplane. The vehicle class least likely to be identified as an
animal is class 1, automobile. Ships and trucks were similarly likely to be
mistaken for an animal. Going the other way, we see that class 2, birds,
were most likely to be mistaken for vehicles and class 5, dogs, were least
likely to be misclassified, though frogs were a close second.

What to make of this? The most commonly misclassified vehicle is an
airplane, while the most commonly misclassified animal is a bird. This
makes sense: a picture of an airplane and a picture of a bird flying do look
similar. I’ll leave it to you to make connections among the other categories.

Binary or Multiclass?
Conventional wisdom in machine learning is that a multiclass model will
generally outperform multiple binary models. While this is almost certainly
true for large datasets, large models, and situations with many classes, like
the ImageNet dataset of 1,000 classes, how does it pan out for small models
like the ones we’re working with in this chapter? Let’s find out.

There are 5,000 instances of each class in the CIFAR-10 dataset and 10
classes. This means we can train 10 binary models where the target class
(class 1) is one of the 10 classes, and the other class is everything else. This
is known as a one-vs-rest approach. To classify an unknown sample, we run
it through each of the 10 classifiers and assign the label of the model
returning the most confident answer. The datasets are all imbalanced, 5,000
class 1 instances to 45,000 class 0, but, as we’ll see, there is still enough
data to learn the difference between classes.

We need some code to train 10 one-vs-rest models. We’ll use the
shallow architecture we’ve used before, with a minibatch size of 128, and
we’ll train for 12 epochs. Before we can train, however, we need to reassign
the class labels for the train and test sets so that all instances of the target
class are a 1 and everything else is a 0. To build the per class labels, we’ll
use Listing 14-8.

 import sys
 import numpy as np
❶ class1 = eval("["+sys.argv[1]+"]")
 y_train = np.load("cifar10_train_labels.npy")
 y_test = np.load("cifar10_test_labels.npy")
 for i in range(len(y_train)):
 if (y_train[i] in class1):
 y_train[i] = 1
 else:
 y_train[i] = 0
 for i in range(len(y_test)):
 if (y_test[i] in class1):
 y_test[i] = 1
 else:
 y_test[i] = 0
 np.save(sys.argv[2], y_train)
 np.save(sys.argv[3], y_test)

Listing 14-8: Building the per class labels

This code makes use of the command line. To call it, use something like

$ python3 make_label_files.py 1 train_1.npy test_1.npy

The first argument is the desired target class label, here 1 for
automobiles, and the next two arguments are the names in which to store
the new label assignments for the train and test images. The code itself
loops over the actual train and test labels, and if the label is the target class,
the corresponding output label is 1; otherwise, it is 0.

This code is more flexible than mapping a single class. By using eval ❶,
we can pass in a comma-separated string of all the CIFAR-10 labels we
want to treat as the target class. For example, to use this code to make labels
for the animal versus vehicle example of the previous section, we’d make
the first argument 2,3,4,5,6,7.

Once we have new labels for each of the 10 classes, we can use them to
train 10 models. All we need do is change num_classes to 2 and load each of
the respective reassigned label files for y_train and y_test. At the bottom of the
file, we need to change the call to model.save to store the per class models as
well. We’ll assume the models are in files named
cifar10_cnn_<X>_model.h5 where <X> is a digit, 0–9, representing a
CIFAR-10 class label. Our multiclass model is the shallow architecture
trained on the full CIFAR-10 dataset for 12 epochs (cifar10_cnn_model.h5).

To train the binary models, use the train_single_models script. This script calls
cifar10_cnn_arbitrary.py to train a model using a specified binary dataset.

To test the models, we need to first load them all from disk along with
the test set data. Then we need to run all the data through the multiclass
model and each of the individual class models keeping the predictions.
From the predictions, we can assign class labels and build confusion
matrices to see how well each approach does. First, let’s load the test set
and the models:

x_test = np.load("cifar10_test_images.npy")/255.0
y_test = np.load("cifar10_test_labels.npy")
mm = load_model("cifar10_cnn_model.h5")
m = []
for i in range(10):
 m.append(load_model("cifar10_cnn_%d_model.h5" % i))

Notice that we are scaling the test set by 255, as we did with the training
data. We’ll keep the multiclass model in mm and load the 10 single class
models into the list, m.

Next, we apply the models to each test set sample:

mp = np.argmax(mm.predict(x_test), axis=1)
p = np.zeros((10,10000), dtype="float32")
for i in range(10):
 p[i,:] = m[i].predict(x_test)[:,1]
bp = np.argmax(p, axis=0)

Calling predict with the 10,000 test samples returns a 10,000 × 10 matrix
for the multiclass model or 10,000 × 2 for the individual models. Each row
corresponds to a test sample, and each column is the model’s output for
each class. For the multiclass case, we set mp to the maximum value across
the columns (axis=1) to get a vector of 10,000 values, each of which is the
predicted class label.

We loop over the individual models and call predict, keeping only the
class 1 probabilities. These are placed into p, where the rows are the
individual model outputs for that class label, and the columns are the
specific class 1 prediction probabilities for each of the 10,000 test samples.
If we return the maximum value across the rows by using argmax and axis=0,
we’ll get the class label of the model that had the highest predicted
probability for each test sample. This is what is in bp.

With our predictions in hand, we can generate the confusion matrices:

cm = np.zeros((10,10), dtype="uint16")
cb = np.zeros((10,10), dtype="uint16")

for i in range(10000):
 cm[y_test[i],mp[i]] += 1
 cb[y_test[i],bp[i]] += 1

np.save("cifar10_multiclass_conf_mat.npy", cm)
np.save("cifar10_binary_conf_mat.npy", cb)

Here rows represent the true class label, and columns represent the
model’s predicted label. We also store the confusion matrices for future use.

We can display the confusion matrices with the code in Listing 14-9:

print("One-vs-rest confusion matrix (rows true, cols predicted):")
print("%s" % np.array2string(100*(cb/1000.0), precision=1))
print()
print("Multiclass confusion matrix:")
print("%s" % np.array2string(100*(cm/1000.0), precision=1))

Listing 14-9: Displaying the confusion matrices. See cifar10_one_vs_many.py

We divide the counts in cb and cm by 1,000 because each class is
represented by that many samples in the test set. This converts the
confusion matrix entries to a fraction and then a percent when multiplied by
100.

So, how did we do? The multiple one-vs-rest classifiers produced

C
l
a
s
s

0 1 2 3 4 5 6 7 8 9

0 7
5
.
0

2.8 3.4 2.1 1.7 0.4 2.3 0.2 4.1 8.0

C
l
a
s
s

0 1 2 3 4 5 6 7 8 9

1 0
.
8

84.
0

0.2 0.9 0.3 0.3 1.1 0.0 1.2 11.
2

2 6
.
5

1.6 54.
0

6.3 9.5 5.3 9.1 2.3 0.8 4.6

3 1
.
6

3.6 3.8 52.
1

7.1 12.
9

10.
6

2.2 0.9 5.2

4 1
.
8

0.8 3.6 6.5 67.
6

2.3 8.6 5.3 1.3 2.2

5 1
.
4

1.4 3.5 16.
9

4.7 61.
8

4.0 2.6 0.5 3.2

6 0
.
8

0.7 1.4 3.4 2.8 1.0 86.
4

0.2 0.3 3.0

7 1
.
5

1.3 1.7 4.9 5.2 5.2 1.5 71.
5

0.1 7.1

8 5
.
3

4.4 0.1 1.1 0.5 0.6 1.1 0.5 79.
1

7.3

9 1
.
7

4.0 0.2 0.8 0.1 0.4 0.5 0.3 0.8 91.
2

And the multiclass classifier came up with

C
l
a
s
s

0 1 2 3 4 5 6 7 8 9C
l
a
s
s

0 1 2 3 4 5 6 7 8 9

0 7
0
.
2

1.6 6.0 2.6 3.3 0.5 1.8 0.9 9.8 3.3

1 2
.
0

79.
4

1.0 1.3 0.5 0.5 1.3 0.4 2.8 10.
8

2 5
.
2

0.6 56.
2

6.6 13.
5

6.1 7.3 2.6 1.4 0.5

3 1
.
2

1.1 7.2 57.
7

10.
2

11.
5

7.3 1.7 1.2 0.9

4 1
.
9

0.2 5.2 4.6 77.
4

1.6 4.8 2.7 1.5 0.1

5 1
.
0

0.2 6.4 20.
7

7.7 56.
8

2.7 3.5 0.8 0.2

6 0
.
3

0.1 4.5 5.2 5.7 1.5 82.
4

0.0 0.0 0.3

7 1
.
4

0.2 4.0 6.3 10.
1

4.1 0.9 71.
7

0.1 1.2

8 4
.
7

3.0 0.8 2.0 1.3 0.6 1.0 0.6 82.
6

3.4

9 2
.
4

6.1 0.7 2.6 1.2 0.7 1.2 1.6 3.2 80.
3

The diagonals are the correct class assignments. Ideally, the matrix
would be only diagonal elements. All other elements are mistakes, cases
where the model or models chose the wrong label. Since each class is
equally represented in the test set, we can calculate an overall accuracy for
both models by using the unweighted average of the diagonals. If we do
this, we get the following:

one-vs-rest: 72.3%
multiclass: 71.5%

The one-vs-rest classifiers have the slight edge in this case, though the
difference is less than 1 percent. Of course, we needed to do 10 times the
work to get the one-vs-rest confusion matrix—ten classifiers were used
instead of just one. The multiclass model was about 10 percent better on
class 4 (deer) than the one-vs-rest models, but it was approximately 11
percent worse on class 9 (trucks). These are the two most substantial per
class differences in accuracy. The multiclass model is confusing trucks with
class 8, ships (3.2 percent), and class 1, cars (6.1 percent), more often than
the one-vs-rest models. We can see how this might happen. Trucks and cars
have wheels, and trucks and ships are (especially at the low resolution of
CIFAR-10) both box-like.

Did we arrive at a definitive answer regarding one-vs-rest or multiclass
models? No, nor could we in general. However, we did, objectively, get
slightly better performance by using the multiple models.

One argument given against using multiple models, besides the extra
computation necessary, is that using a single model for multiple classes
provides the model with the opportunity to see examples that are similar to
a particular class but are not instances of that class. These hard negatives
serve to regularize the model by forcing it to (indirectly) pay attention to
features that are dissimilar between classes instead of features that might be
strongly associated with a class but are also present in other classes. We
first encountered hard negatives in Chapter 4.

However, in this case, it’s difficult to say that the argument holds. For
the multiclass model, class 9 (trucks) was more likely to be confused with
class 1 (car, 6.1 percent) than one-vs-rest models (4.0 percent). One
possible explanation might be that the multiclass model was forced, with
limited training data, to try to learn the difference between trucks, cars, and

other vehicles, while the one-vs-rest models were, individually, trying to
learn only the difference between a truck and any other vehicle.

Transfer Learning
We’ll use the term transfer learning to refer to taking a pretrained deep
network and using it to produce new features for another machine learning
model. Our transfer learning example will be a toy model meant to show
the process, but many models have been built using features generated by
large pretrained networks that used huge datasets. In particular, many
models have been built using features generated by AlexNet and the various
ResNet architectures, which were pretrained on the ImageNet dataset.

We’ll use the pretrained model to turn input images into output feature
vectors, which we’ll then use to train classical machine learning models.
When a model is used to turn an input into another feature representation,
typically a new feature vector, the output is often called an embedding: we
are using the pretrained network to embed the inputs we want to classify
into another space—one that we hope will let us build a useful model. We
can use transfer learning when the model we want to develop has too few
training examples to make a good model on its own.

When using transfer learning, it is helpful to know or believe that both
models were trained using similar data. If you read the literature, you’ll find
that this is true for many of the typical transfer learning examples. The
inputs are natural images of some class, and the embedding models were
trained on natural images. By natural image, I mean a photograph of
something in the world as opposed to an x-ray or other medical image.
Clearly, the CIFAR-10 images and the MNIST images are quite different
from each other, so we shouldn’t hope for too much success with transfer
learning. We’re using what we have on hand to demonstrate the technique.

We’ll use a shallow CIFAR-10 model like the ones we just saw to
generate the embedding vectors. This model was trained on the full CIFAR-
10 dataset for 12 epochs. We’ll embed the MNIST dataset by passing the
MNIST digit images through the pretrained model, keeping the output of
the Dense layer, the 128-node vectors used to generate the 10-class softmax
predictions.

We need to consider a few things before making the embedding. First,
the CIFAR-10 model was trained on 32 × 32 RGB images. Therefore, we
need to make the MNIST digit images fit this input expectation. Second,
even though there are 10 classes for both CIFAR-10 and MNIST, this is
only a coincidence; in practice, the number of classes between the two
datasets do not need to match.

How should we get the 28 × 28 MNIST images into a model that’s
expecting 32 × 32 RGB images? Typically, when working with image data
and transfer learning, we’ll resize the images to make them fit. Here, since
the MNIST digits are smaller than the CIFAR-10 images, we can center the
28 × 28 digit image in the middle of a 32 × 32 input. Moreover, we can turn
a grayscale image into an RGB image by setting each channel (red, green,
and blue) to the single grayscale input.

The code for all of the following is in transfer_learning.py. Setting up
the embedding process looks like this:

import numpy as np
from keras.models import load_model
from keras import backend as K
from keras.datasets import mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train/255.0
x_test = x_test/255.0
model = load_model("cifar10_cnn_model.h5")

We first load the modules we need from Keras. Then we load the Keras
model file, cifar10_cnn_model.h5, which contains a shallow model from
the first section of this chapter trained for 12 epochs on the full CIFAR-10
dataset.

Once we have the data loaded and scaled, we can pass each MNIST
train and test image through the Keras model and extract the 128-node
vector from the Dense layer. This turns each MNIST image into a 128-
element vector; see Listing 14-10.

train = np.zeros((60000,128))
k = 0
for i in range(600):
 t = np.zeros((100,32,32,3))
 ❶ t[:,2:30,2:30,0] = x_train[k:(k+100)]
 t[:,2:30,2:30,1] = x_train[k:(k+100)]

 t[:,2:30,2:30,2] = x_train[k:(k+100)]
 _ = model.predict(t)
 ❷ out = [model.layers[5].output]
 func = K.function([model.input, K.learning_phase()], out)
 (*\newpage*)
 train[k:(k+100),:] = func([t, 1.])[0]
 k += 100
np.save("mnist_train_embedded.npy", train)

test = np.zeros((10000,128))
k = 0
for i in range(100):
 t = np.zeros((100,32,32,3))
 t[:,2:30,2:30,0] = x_test[k:(k+100)]
 t[:,2:30,2:30,1] = x_test[k:(k+100)]
 t[:,2:30,2:30,2] = x_test[k:(k+100)]
 _ = model.predict(t)
 out = [model.layers[5].output]
 func = K.function([model.input, K.learning_phase()], out)
 test[k:(k+100),:] = func([t, 1.])[0]
 k += 100
np.save("mnist_test_embedded.npy", test)

Listing 14-10: Running the MNIST images through the pretrained CIFAR-10 model

There are 60,000 MNIST training images. We pass each through the
Keras model in blocks of 100 to be more efficient than processing each
image individually; this means we need to process 600 sets of 100. We do
the same for the test images, of which there are 10,000, so we process 100
sets of 100. We’ll store the output vectors in train and test.

The processing loop for both the train and test images first creates a
temporary array, t, to hold the current set of 100 images. To use the Keras
model predict method, we need a four-dimensional input: the number of
images, height, width, and number of channels. We load t by copying the
current set of 100 train or test images, indexed by k, to t; we do that three
times, once for each channel ❶. With t loaded, we call the predict method of
the model. We throw the output away, since we’re after the values output by
the Dense layer of the Keras model. This is layer 5 for the shallow
architecture ❷. The output of func is the 100 output vectors of the Dense
layer we get after passing the inputs through the network. We assign these
to the current block of 100 in train and move to the next set of 100. When
we’ve processed the entire MNIST dataset, we keep the embedded vectors

in a NumPy file. Then we repeat every step we used to process the training
set for the test set.

At this point, we have our embedded vectors, so it’s natural to ask
whether or not the embedding is helping separate the classes. We can see if
this is true by using a t-SNE plot of the vectors by class label (Figure 14-4).

Figure 14-4: t-SNE plot showing the separation by class for the embedded MNIST digit vectors

Compare this figure with Figure 12-10, which shows the separation for
a model trained explicitly on MNIST digits. That model shows a clear,
unambiguous separation of the classes, but Figure 14-4 is far less clear.
However, even though there is overlap, there are concentrations of the
classes in different parts of the plot, so we have some reason to hope that a
model might be able to learn how to classify digits using these vectors.

Let’s train some models using the embedded vectors. For this, we’ll
head back into the world of classical machine learning. We’ll train some of
the models we trained in Chapter 7 by using the vector form of the MNIST
digits images.

The code to train and test the models is straightforward. We’ll train a
Nearest Centroid, 3-Nearest Neighbor, Random Forest with 50 trees, and a
linear SVM with C = 0.1, as shown in Listing 14-11.

from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import NearestCentroid
from sklearn.svm import LinearSVC

clf0 = NearestCentroid()
clf0.fit(train, y_train)
nscore = clf0.score(test, y_test)

clf1 = KNeighborsClassifier(n_neighbors=3)
clf1.fit(train, y_train)
kscore = clf1.score(test, y_test)

clf2 = RandomForestClassifier(n_estimators=50)
clf2.fit(train, y_train)
rscore = clf2.score(test, y_test)

clf3 = LinearSVC(C=0.1)
clf3.fit(train, y_train)
sscore = clf3.score(test, y_test)

print("Nearest Centroid : %0.2f" % nscore)
print("3-NN : %0.2f" % kscore)
print("Random Forest : %0.2f" % rscore)
print("SVM : %0.2f" % sscore)

Listing 14-11: Training classical models using the MNIST embedded vectors

We load the relevant sklearn modules, create the specific model
instances, and call fit, passing in the 128-element training vectors and the
associated class labels. The score method returns the overall accuracy of the
now trained model on the test set.

Running this code gives us scores of

Model Score
Nearest Centroid 0.6799

Model Score
3-Nearest Neighbors 0.9010
Random Forest (50) 0.8837
SVM (C=0.1) 0.8983

which we can compare to the scaled scores for same models in Table 7-10:

Model Score
Nearest Centroid 0.8203
3-Nearest Neighbors 0.9705
Random Forest (50) 0.9661
SVM (C =0.1) 0.9181

Clearly, in this case, our embedding is not giving us a head start over
the raw data. We should not be surprised by this: we knew our two datasets
were fairly distinct, and the t-SNE plot showed that the pretrained CIFAR-
10 model was not ideally suited to separating the MNIST images in the
embedding space. The poor separation of the classes in Figure 14-4
explains the poor performance of the Nearest Centroid model: 68 percent
accuracy versus 82 percent when trained on the digit images themselves.
Moreover, by their very nature, digit images are already distinct from each
other, especially on a uniform background, since the digits were intended by
humans to be easily distinguished by sight.

A bit of code gives us the confusion matrix for any of these models:

def conf_mat(clf,x,y):
 p = clf.predict(x)
 c = np.zeros((10,10))
 for i in range(p.shape[0]):
 c[y[i],p[i]] += 1
 return c
cs = conf_mat(clf, test, y_test)
cs = 100.0*cs / cs.sum(axis=1)
np.set_printoptions(suppress=True)
print(np.array2string(cs, precision=1, floatmode="fixed"))

Here clf is any of the models, test is the embedded test set, and y_test is the
labels. We return the confusion matrix with counts in each element, so we
divide by the sum of the rows, since the row represents the true label, and

multiply by 100 to get percents. Then we print the array using NumPy
commands to get a single digit of accuracy and no scientific notation.

We know already why the Nearest Centroid result is so poor. What
about the Random Forest and SVM? The confusion matrix for the Random
Forest model is shown here:

C
l
a
s
s

0 1 2 3 4 5 6 7 8 9

0 9
6
.
7

0.0 0.5 0.5 0.4 0.2 0.9 0.0 0.4 0.3

1 0
.
0

98.
6

0.5 0.0 0.4 0.1 0.4 0.0 0.1 0.1

2 1
.
8

0.2 87.
0

2.5 1.0 1.0 1.7 0.8 4.1 0.6

3 1
.
1

0.1 2.5 80.
8

0.2 6.7 0.9 1.1 6.0 1.6

4 0
.
3

0.4 1.3 0.0 88.
3

0.1 1.9 1.7 0.6 5.2

5 0
.
6

0.8 0.7 9.8 1.6 78.
8

1.8 1.1 1.6 0.8

6 3
.
0

0.4 0.6 0.0 0.7 1.0 93.
5

0.2 0.4 0.0

7 0
.
2

1.0 2.9 0.1 2.7 0.4 0.0 87.
7

0.7 4.4

C
l
a
s
s

0 1 2 3 4 5 6 7 8 9

8 1
.
4

0.1 2.7 5.0 1.5 1.6 0.6 0.8 84.
0

2.0

9 2
.
2

0.2 1.3 1.6 2.9 0.6 0.3 3.4 1.5 86.
2

We’ve highlighted the two lowest-performing classes, 3 and 5, along
with the two digits they are most often confused with. We see that the
model is confusing 3’s with 5’s and 8’s. The SVM confusion matrix shows
the same effect. If we take Figure 14-4 and show only classes 3, 5, and 8,
then we get Figure 14-5. Considerable mixing between the classes is plain
to see.

Figure 14-5: t-SNE plot showing class 3 (plus), class 5 (cross), and class 8 (triangle right)

The purpose of this section was to introduce the idea of transfer learning
through an example that used the datasets we had on hand. As you can see,
this experiment was not a success. The datasets we used were very different
from each other, so we might have expected this to be the case, but it was
useful to verify for ourselves. In the next section, we’ll see how we can go
one step beyond transfer learning.

Fine-Tuning a Model
In the previous section, we defined transfer learning as using weights from
a model trained on one dataset with data from a (hopefully very similar)
dataset. We used the weights to map the inputs to a new space and trained

models on the mapped data. In this section, we’ll do something similar, but
instead of leaving the weights as they are, we’ll let the weights vary while
we continue training the model with a new, smaller dataset. We are calling
this fine-tuning.

In fine-tuning, we are training a neural network, but instead of
initializing the weights to random values, selected according to an
intelligent initialization scheme, we start with the weights from a model
trained on a similar but different dataset. We might use fine-tuning when we
do not have a lot of training data, but we believe our data comes from a
distribution that’s very similar to one for which we have either a lot of data
or a trained model. For example, we might have access to the weights of a
large model trained with a large dataset, like the ImageNet dataset we’ve
mentioned previously. It is quite simple to download such a pretrained
model. Additionally, we might have a small dataset of images for classes
that are not in ImageNet; say, photographs of guppies, angelfish, and tetras.
These are popular freshwater aquarium fish not in ImageNet. We can start
with a larger model pretrained on ImageNet and fine-tune using the smaller
fish dataset. That way, we can take advantage of the fact that the model is
already well adapted to inputs of this kind and, hopefully, get a good model
with a small dataset.

Our experiment will use CIFAR-10. Our goal is to train a model to
differentiate between images of dogs and cats using the deep architecture
from the first section of this chapter. However, our dataset is small; we have
approximately 500 images of each class to work with. We also have a larger
dataset, all the vehicles from CIFAR-10.

Therefore, we’ll train the following models with this data:

1. The shallow architecture using the small dog and cat dataset.
2. The deep architecture using the small dog and cat dataset.
3. The deep architecture pretrained on the vehicle data and fine-tuned on

the small dog and cat dataset.

For the last case, we’ll train several variations using different
combinations of frozen weights.

Building Our Datasets

Before we get to fine-tuning, we need to build our datasets. We’ll use
unaugmented CIFAR-10 to construct the small dog and cat dataset. We’ll
use augmented CIFAR-10 to construct the vehicle dataset. We augmented
CIFAR-10 in Chapter 5.

Building the small dog and cat dataset is straightforward, as shown in
Listing 14-12.

x_train = np.load("cifar10_train_images.npy")[:,2:30,2:30,:]
y_train = np.load("cifar10_train_labels.npy")
x_test = np.load("cifar10_test_images.npy")[:,2:30,2:30,:]
y_test = np.load("cifar10_test_labels.npy")
xtrn = []; ytrn = []
xtst = []; ytst = []

for i in range(y_train.shape[0]):
 if (y_train[i]==3):
 xtrn.append(x_train[i])
 ytrn.append(0)
 if (y_train[i]==5):
 xtrn.append(x_train[i])
 ytrn.append(1)
for i in range(y_test.shape[0]):
 if (y_test[i]==3):
 xtst.append(x_test[i])
 ytst.append(0)
 if (y_test[i]==5):
 xtst.append(x_test[i])
 ytst.append(1)

np.save("cifar10_train_cat_dog_small_images.npy", np.array(xtrn)[:1000])
np.save("cifar10_train_cat_dog_small_labels.npy", np.array(ytrn)[:1000])
np.save("cifar10_test_cat_dog_small_images.npy", np.array(xtst)[:1000])
np.save("cifar10_test_cat_dog_small_labels.npy", np.array(ytst)[:1000])

Listing 14-12: Building the small dog and cat dataset

We load the full CIFAR-10 data, train and test, and then loop over each
sample. If the class is 3, cat, or 5, dog, we add the image and label to our
lists, making sure to recode the class label so that 0 is cat and 1 is dog.
When all the samples have been added, we keep the first 1,000 and write
them to disk to be our small dog and cat training and test sets. Keeping the
first 1,000 samples gives us a dataset that is close to split 50/50 between
classes.

Notice that immediately after loading the CIFAR-10 images, we
subscript them with [:,2:30,2:30,:]. Recall, the augmented version of the dataset
includes small shifts of the image, so when we built it in Chapter 5, we
reduced the size from 32 × 32 to 28 × 8. Therefore, when we build our
vehicle dataset, we’ll be working with images that are 28×28 pixels. The
subscript extracts the center 28 × 28 region of each image. The first
dimension is the number of images in the train or test set. The last
dimension is the number of channels—three since these are RGB images.

Building the vehicle dataset is equally straightforward (Listing 14-13).

x_train = np.load("cifar10_aug_train_images.npy")
y_train = np.load("cifar10_aug_train_labels.npy")
x_test = np.load("cifar10_aug_test_images.npy")
y_test = np.load("cifar10_test_labels.npy")

vehicles= [0,1,8,9]
xv_train = []; xv_test = []
yv_train = []; yv_test = []

for i in range(y_train.shape[0]):
 if (y_train[i] in vehicles):
 xv_train.append(x_train[i])
 yv_train.append(vehicles.index(y_train[i]))
for i in range(y_test.shape[0]):
 if (y_test[i] in vehicles):
 xv_test.append(x_test[i])
 yv_test.append(vehicles.index(y_test[i]))

np.save("cifar10_train_vehicles_images.npy", np.array(xv_train))
np.save("cifar10_train_vehicles_labels.npy", np.array(yv_train))
np.save("cifar10_test_vehicles_images.npy", np.array(xv_test))
np.save("cifar10_test_vehicles_labels.npy", np.array(yv_test))

Listing 14-13: Building the vehicle dataset

Here we work with the augmented versions. The augmented test set is
28×28 pixels per image using the central region of the original test set.
Also, as we loop through the train and test sets looking for samples that are
in one of the vehicle classes, we can do our recoding of the class label by
asking for the index into the vehicles list of the element matching the
current sample’s class label, hence using index on vehicles. The vehicle dataset
has 200,000 samples in the training set, 50,000 from each of the four
classes.

To proceed then, we need to (1) train the deep model on the vehicle
dataset; (2) adapt the model to the dog and cat dataset; and (3) train the
deep model initialized with the weights from the vehicle model. We’ll also
train the shallow and deep models from scratch, using the dog and cat
dataset for comparison purposes.

We gave the code for the deep model in the first section of this chapter
so we won’t reproduce it here. In particular, see Listing 14-3. The code
itself is in the file cifar10_cnn_vehicles.py. The relevant changes for the
vehicle model are shown here:

batch_size = 64
num_classes = 4
epochs = 12
img_rows, img_cols = 28,28

x_train = np.load("cifar10_train_vehicles_images.npy")
y_train = np.load("cifar10_train_vehicles_labels.npy")
x_test = np.load("cifar10_test_vehicles_images.npy")
y_test = np.load("cifar10_test_vehicles_labels.npy")

We use a minibatch size of 64. There are four classes (airplane,
automobile, ship, truck), and we’ll train for 12 epochs. When we’re done
training, we’ll store the model in cifar10_cnn_vehicles_model.h5 so we can
use its weights and biases for fine-tuning the dog and cat model. Training
this model takes several hours on our CPU system. The final test accuracy
is 88.2 percent, so it is performing well enough for our purposes.

Adapting Our Model for Fine-Tuning
Now we need to adapt the vehicle model for the dog and cat dataset and
fine-tuning. Specifically, we need to replace the top softmax layer that
expects four classes with one that expects two. We also need to decide
which layer’s weights we’ll freeze and which we’ll update during training.
This step is essential, and we’ll see how our choices affect the fine-tuning
results.

When fine-tuning, it’s standard practice to freeze lower-level weights;
they are not updated at all when training. The idea here is that if our new
data is similar to the data used for the pretraining step, the lower levels of
the model are already adapted, and we should not change them. We allow
only the higher-level layers to change as these are the ones that need to

learn about the representation of the new data. Which layers we freeze and
which we allow to train depends on the size of the model and the data itself.
Experimentation is required. Note that the transfer learning of the previous
section can be considered fine-tuning with all the weights frozen.

Note that if we’re using SGD with fine-tuning, we typically reduce the
learning rate by a factor of, say, 10. The rationale is the same as for freezing
the lower-level weights: the model is already “close” to a desired minimum
of the error function, so we don’t need big steps to find it. Our experiment
will use Adadelta, which will adjust the learning rate step size for us.

The deep model has multiple convolutional layers. We’ll experiment
with freezing the first two; these are the lowest and are most likely already
tuned to the low-level features of the CIFAR-10 dataset, at least the
vehicles. Of course, since our dog and cat images come from CIFAR-10 as
well, we know that they are from the same parent distribution or domain as
the vehicle images. We’ll also experiment with a model that freezes all the
convolutional layers and allows only the dense layers to be adapted during
training. Doing this is reminiscent of transfer learning, though we’ll allow
the dense layers to update their weights.

Let’s create the code for fine-tuning by using the vehicle model that we
trained earlier (Listing 14-14).

import keras
from keras.models import load_model
from keras.layers import Dense
from keras import backend as K
import numpy as np

batch_size = 64
num_classes = 2
epochs = 36
img_rows, img_cols = 28,28

x_train = np.load("cifar10_train_cat_dog_small_images.npy")
y_train = np.load("cifar10_train_cat_dog_small_labels.npy")
x_test = np.load("cifar10_test_cat_dog_small_images.npy")
y_test = np.load("cifar10_test_cat_dog_small_labels.npy")

if K.image_data_format() == 'channels_first':
 x_train = x_train.reshape(x_train.shape[0], 3, img_rows, img_cols)
 x_test = x_test.reshape(x_test.shape[0], 3, img_rows, img_cols)
 input_shape = (3, img_rows, img_cols)
else:

 x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 3)
 x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 3)
 input_shape = (img_rows, img_cols, 3)

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255

y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

Listing 14-14: Fine-tuning the vehicle model. See cifar10_cnn_cat_dog_fine_tune_3.py.

These lines should be familiar by now. First we load and preprocess the
small dog and cat dataset. Note that we are using a minibatch size of 64,
two classes (0 = cat, 1 = dog), and 36 epochs.

Next, we need to load the vehicle model, strip off its top layer, and
replace it with a two-class softmax (Listing 14-15). This is also where we
will freeze some combination of the first two convolutional layers.

 model = load_model("cifar10_cnn_vehicles_model.h5")

❶ model.layers.pop()
❷ model.outputs = [model.layers[-1].output]
 model.layers[-1].outbound_nodes = []
❸ model.add(Dense(num_classes, name="softmax", activation='softmax'))

❹ model.layers[0].trainable = False
 model.layers[1].trainable = False

 model.compile(loss=keras.losses.categorical_crossentropy,
 optimizer=keras.optimizers.Adadelta(),
 metrics=['accuracy'])

Listing 14-15: Adjusting the vehicle model for dogs and cats

After we load the model, we use Keras to remove the top layer ❶. We
need to patch the model to make the next-to-top layer look like the top
layer; this allows the add method to work correctly ❷. Then, we add a new
softmax layer for two classes ❸. This example is set to freeze the weights
of the first two convolutional layers ❹. We’ll test each possible
combination involving the first two convolutional layers. Finally, we
compile the updated model and specify the Adadelta optimizer.

We train the model by calling the fit method, as before as shown in
Listing 14-16.

score = model.evaluate(x_test[100:], y_test[100:], verbose=0)
print('Initial test loss:', score[0])
print('Initial test accuracy:', score[1])

history = model.fit(x_train, y_train,
 batch_size=batch_size,
 epochs=epochs,
 verbose=0,
 validation_data=(x_test[:100], y_test[:100]))

score = model.evaluate(x_test[100:], y_test[100:], verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

model.save("cifar10_cnn_cat_dog_fine_tune_3_model.h5")

Listing 14-16: Training and testing the dog and cat model

We are calling evaluate using the last 90 percent of the test data, before
calling fit. This will give us an indication of how well the dog and cat model
does when using the vehicle weights as they are. Then we call fit and evaluate
a second time. Finally, we save the model and the training history. This
model froze both of the first two convolutional layers. Other models will
freeze or unfreeze these layers for the remaining three possibilities.

We mentioned earlier that we’d also train a model by freezing all of the
convolutional layers. In essence, this is saying that we want to preserve
whatever new representation the vehicle model learned and apply it directly
to the dog and cat model , allowing only the top fully connected layers to
adjust themselves. This is almost the same as the transfer learning approach
of the previous section. To freeze all the convolutional layers, we replace
the direct assignments to specific layers’ trainable property with a loop over
all the layers:

for i in range(5):
 model.layers[i].trainable = False

Testing Our Model

Let’s run the fine-tuning tests. We’ll train each possible combination six
times so we can get statistics on the mean accuracies. This accounts for the
stochastic nature of the initialization process. Although we initialized the
model with pretrained weights, we added a new top softmax layer with two
outputs. The output of the dense layer below it has 128 nodes, so each
model needs to randomly initialize 128 × 2 + 2 = 258 weights and biases for
the new layer. This is the source of the difference.

Without training, the initial model accuracy hovers around 50 to 51
percent, with each model slightly different because of the initialization we
just mentioned. This is a two-class model, so this means that without any
training, it is randomly guessing between dog and cat.

After we have trained all of the models and tallied all of the per model
accuracies, we get Table 14-2, where we present accuracy as mean ±
standard error.

Table 14-2: Dog and Cat Test Set Accuracies for the Shallow, Deep, and Fine-Tuned Deep Models

Model Freeze Conv0 Freeze Conv1 Accuracy (%)
Shallow – – 64.375 ±

0.388
Deep – – 61.142 ±

0.509
Fine-tune 0 False False 62.683 ±

3.689
Fine-tune 1 True False 69.142 ±

0.934
Fine-tune 2 False True 68.842 ±

0.715
Fine-tune 3 True True 70.050 ±

0.297
Freeze all – – 57.042 ±

0.518

What to make of these results? First, we see that training the deep
architecture from scratch with the small dog and cat dataset is not
particularly effective: only about 61 percent accurate. Training the shallow
architecture from scratch does better, with an accuracy of around 64

percent. These are our baselines. Will fine-tuning a model trained on
different data help? From looking at the fine-tune results, the answer is
“yes,” but clearly, not all the fine-tuning options are equally effective: two
are even worse than the best from-scratch result (“Fine-tune 0” and “Freeze
all”). So, we do not want to freeze all the convolutional layers, nor do we
want to be free to update all of them.

This leaves fine-tune models 1, 2, and 3 to consider. The “Fine-tune 3”
model performed best, though the differences between these models are not
statistically significant. Let’s go with freezing the first two convolutional
layers, then. What might be happening to make this approach better than the
other models? By freezing these lowest layers, we are fixing them and
preventing them from being changed by training. These layers were trained
on a much larger vehicle dataset that included standard augmentations like
shifts and rotates. And, as we already saw in Figure 12-4, the kernels
learned by these lower layers are edge and texture detectors. They have
been conditioned to learn about the sorts of structures present in CIFAR-10
images, and, since our dog and cat dataset is also from CIFAR-10, it is
reasonable to believe that the same kernels will be useful with those images
as well.

However, when we froze all the convolutional layers of the deep
architecture, we saw a significant decrease in performance. This implies
that higher-level convolutional layers are not well-adapted to the dog and
cat structures, which, again, makes perfect sense. Because of their effective
receptive fields, higher layers are learning about larger structures in the
input images; these are also the larger structures that distinguish dogs from
cats. If we cannot modify these layers, there is no opportunity for them to
be conditioned on the very things that we need them to learn.

This fine-tuning example shows the power of the technique when it is
applicable. However, like most things in machine learning, there is only
intuition as to why and when it’s successful. Recent work has shown that
sometimes, fine-tuning a large model trained on a dataset that is not very
close to the intended dataset can lead to performance that is no better than
training a shallower model, provided enough data is present. For example,
see “Transfusion: Understanding Transfer Learning for Medical Imaging”
by Maithra Raghu et al. This paper uses transfer learning/fine-tuning
between pretrained ImageNet models and medical images and shows that
shallow models trained from scratch are often just as good.

Summary
This chapter explored convolutional neural networks applied to the CIFAR-
10 dataset. We started by training two architectures, one shallow, the other
deep, on the full dataset. We then asked whether or not we can train a model
to distinguish between animals and vehicles. Next, we answered the
question of whether or not a single multiclass model or multiple binary
models performed better for CIFAR-10. After this, we introduced two
fundamental techniques, transfer learning and fine-tuning, and showed how
to implement them in Keras. These techniques should be understood and in
your deep learning bag of tricks going forward.

In the next chapter, we’ll present a case study with a dataset we have not
yet worked with. We’ll assume the role of data scientists tasked with
making a model for this dataset and work our way through, from initial data
processing to model exploration and final model construction.

15
A CASE STUDY: CLASSIFYING AUDIO

SAMPLES

Let’s bring together everything that we’ve learned throughout the book.
We’ll be looking at a single case study. The scenario is this: we are data
scientists, and our boss has tasked us with building a classifier for audio
samples stored as .wav files. We’ll begin with the data itself. We first want
to build some basic intuition for how it’s structured. From there, we’ll build
augmented datasets we can use for training models. The first dataset uses
the sound samples themselves, a one-dimensional dataset. We’ll see that
this approach isn’t as successful as we would like it to be.

We’ll then turn the audio data into images to allow us to explore two-
dimensional CNNs. This change of representation will lead to a big
improvement in model performance. Finally, we’ll combine multiple
models in ensembles to see how to leverage the relative strengths and
weaknesses of the individual models to boost overall performance still
more.

Building the Dataset
There are 10 classes in our dataset, which consists of 400 samples total, 40
samples per class, each 5 seconds long. We’ll assume we cannot get any

more data because it’s time-consuming and expensive to record the samples
and label them. We must work with the data we are given and no more.

Throughout this book, we have consistently preached about the
necessity of having a good dataset. We’ll assume that the dataset we have
been handed is complete in the sense that our system will encounter only
types of sound samples in the dataset; there will be no unknown class or
classes. Additionally, we’ll also assume that the balanced nature of the
dataset is real, and all classes are indeed equally likely.

The audio dataset we’ll use is called ESC-10. For a complete
description, see “ESC: Dataset for Environmental Sound Classification” by
Karol J. Piczal (2015). The dataset is available at
https://github.com/karoldvl/ESC-50/. But it needs to be extracted from the
larger ESC-50 dataset, which doesn’t have a license we can use. The ESC-
10 subset does.

Let’s do some preprocessing to extract the ESC-10 .wav files from the
larger ESC-50 dataset. Download the single ZIP-file version of the dataset
from the preceding URL and expand it. This will create a directory called
ESC-50-master. Then, use the code in Listing 15-1 to build the ESC-10
dataset from it.

import sys
import os
import shutil

classes = {
 "rain":0,
 "rooster":1,
 "crying_baby":2,
 "sea_waves":3,
 "clock_tick":4,
 "sneezing":5,
 "dog":6,
 "crackling_fire":7,
 "helicopter":8,
 "chainsaw":9,
}

with open("ESC-50-master/meta/esc50.csv") as f:
 lines = [i[:-1] for i in f.readlines()]
lines = lines[1:]

os.system("rm -rf ESC-10")
os.system("mkdir ESC-10")

https://github.com/karoldvl/ESC-50/

os.system("mkdir ESC-10/audio")

meta = []
for line in lines:
 t = line.split(",")
 if (t[-3] == 'True'):
 meta.append("ESC-10/audio/%s %d" % (t[0],classes[t[3]]))
 src = "ESC-50-master/audio/"+t[0]
 dst = "ESC-10/audio/"+t[0]
 shutil.copy(src,dst)

with open("ESC-10/filelist.txt","w") as f:
 for m in meta:
 f.write(m+"\n")

Listing 15-1: Building the ESC-10 dataset

The code uses the ESC-50 metadata to identify the sound samples that
belong to the 10 classes of the ESC-10 dataset and then copies them to the
ESC-10/audio directory. It also writes a list of the audio files to filelist.txt.
After running this code, we’ll use only the ESC-10 files.

If all is well, we should now have 400 five-second .wav files, 40 from
each of the 10 classes: rain, rooster, crying baby, sea waves, clock tick,
sneezing, dog, crackling fire, helicopter, and chainsaw. We’ll politely
refrain from asking our boss exactly why she wants to discriminate between
these particular classes of sound.

Augmenting the Dataset
Our first instinct should be that our dataset is too small. After all, we have
only 40 examples of each sound, and we know that some of those will need
to be held back for testing, leaving even fewer per class for training.

We could resort to k-fold validation, but in this case, we’ll instead opt
for data augmentation. So, how do we augment audio data?

Recall, the goal of data augmentation is to create new data samples that
could plausibly come from the classes in the dataset. With images, we can
make obvious changes like shifting, flipping left and right, and so on. With
continuous vectors, we’ve seen how to use PCA to augment the data (see
Chapter 5). To augment the audio files, we need to think of things we can
do that will produce new files that still sound like the original class. Four
thoughts come to mind.

First, we can shift the sample in time, much as we can shift an image to
the left or right a few pixels. Second, we can simulate a noisy environment
by adding a small amount of random noise to the sound itself. Third, we can
shift the pitch of the sound, and make it higher or lower by some small
amount. Not surprisingly, this is known as pitch shifting. Finally, we can
lengthen or compress the sound in time. This is known as time shifting.

Doing all of this sounds complicated, especially if we haven’t worked
with audio data before. I should point out that in practice, being presented
with unfamiliar data is a very real possibility; we don’t all get to choose
what we need to work with.

Fortunately for us, we’re working in Python, and the Python community
is vast and talented. It turns out that adding one library to our system will
allow us to easily do time stretching and pitch shifting. Let’s install the
librosa library. This should do the trick for us:

$ sudo pip3 install librosa

With the necessary library installed, we can augment the ESC-10 dataset
with the code in Listing 15-2.

 import os
 import random
 import numpy as np
 from scipy.io.wavfile import read, write
 import librosa as rosa
 N = 8
 os.system("rm -rf augmented; mkdir augmented")
 os.system("mkdir augmented/train augmented/test")
❶ src_list = [i[:-1] for i in open("ESC-10/filelist.txt")]
 z = [[] for i in range(10)]
 for s in src_list:
 _,c = s.split()
 z[int(c)].append(s)
❷ train = []
 test = []
 for i in range(10):
 p = z[i]
 random.shuffle(p)
 test += p[:8]
 train += p[8:]
 random.shuffle(train)
 random.shuffle(test)

 augment_audio(train, "train")
 augment_audio(test, "test")

Listing 15-2: Augmenting the ESC-10 dataset, part 1

This code loads the necessary modules, including the librosa module,
which we’ll just call rosa, and two functions from the SciPy wavfile module
that let us read and write NumPy arrays as .wav files.

We set the number of samples per class that we’ll hold back for testing
(N=8) and create the output directory where the augmented sound files will
reside (augmented). Then we read the file list we created with Listing 15-1 ❶.
Next, we create a nested list (z) to hold the names of the audio files
associated with each of the 10 classes.

Using the list of files per class, we pull it apart and create train and test
file lists ❷. Notice that we randomly shuffle the list of files per class and
the final train and test lists. This code follows the convention we discussed in
Chapter 4 of separating train and test first, then augmenting.

We can augment the train and test files by calling augment_audio. This
function is in Listing 15-3.

def augment_audio(src_list, typ):
 flist = []
 for i,s in enumerate(src_list):
 f,c = s.split()
 ❶ wav = read(f) # (sample rate, data)
 base = os.path.abspath("augmented/%s/%s" %
 (typ, os.path.basename(f)[:-4]))
 fname = base+".wav"
 ❷ write(fname, wav[0], wav[1])
 flist.append("%s %s" % (fname,c))
 for j in range(19):
 d = augment(wav)
 fname = base+("_%04d.wav" % j)
 ❸ write(fname, wav[0], d.astype(wav[1].dtype))
 flist.append("%s %s" % (fname,c))

 random.shuffle(flist)
 with open("augmented_%s_filelist.txt" % typ,"w") as f:
 for z in flist:
 f.write("%s\n" % z)

Listing 15-3: Augmenting the ESC-10 dataset, part 2

The function loops over all the filenames in the given list (src_list), which
will be either train or test. The filename is separated from the class label,
and then the file is read from disk ❶. As indicated in the comment, wav is a
list of two elements. The first is the sampling rate in Hz (cycles per second).
This is how often the analog waveform was digitized to produce the .wav
file. For ESC-10, the sampling rate is always 44,100 Hz, which is the
standard rate for a compact disc. The second element is a NumPy array
containing the actual digitized sound samples. These are the values we’ll
augment to produce new data files.

After setting up some output pathnames, we write the original sound
sample to the augmented directory ❷. Then, we start a loop to generate 19
more augmented versions of the current sound sample. The augmented
dataset, as a whole, will be 20 times larger, for a total of 8,000 sound files,
6,400 for training and 1,600 for testing. Note, the sound samples for an
augmented source file are assigned to d. The new sound file is written to
disk using the sample rate of 44,100 Hz and the augmented data matching
the datatype of the source ❸.

As we create the augmented sound files, we also keep track of the
filename and class and write them to a new file list. Here typ is a string
indicating train or test.

This function calls yet another function, augment. This is the function that
generates an augmented version of a single sound file by randomly applying
some subset of the four augmentation strategies mentioned previously:
shifting, noise, pitch shifting, or time-shifting. Some or all of these might be
used for any call to augment. The augment function itself is shown in Listing
15-4.

def augment(wav):
 sr = wav[0]
 d = wav[1].astype("float32")
 ❶ if (random.random() < 0.5):
 s = int(sr/4.0*(np.random.random()-0.5))
 d = np.roll(d,s)
 if (s < 0):
 d[s:] = 0
 else:
 d[:s] = 0
 ❷ if (random.random() < 0.5):
 d += 0.1*(d.max()-d.min())*np.random.random(d.shape[0])
 ❸ if (random.random() < 0.5):

 pf = 20.0*(np.random.random()-0.5)
 d = rosa.effects.pitch_shift(d, sr, pf)
 ❹ if (random.random() < 0.5):
 rate = 1.0 + (np.random.random()-0.5)
 d = rosa.effects.time_stretch(d,rate)
 if (d.shape[0] > wav[1].shape[0]):
 d = d[:wav[1].shape[0]]
 else:
 w = np.zeros(wav[1].shape[0], dtype="float32")
 w[:d.shape[0]] = d
 d = w.copy()
 return d

Listing 15-4: Augmenting the ESC-10 dataset, part 3

This function separates the samples (d) from the sample rate (sr) and
makes sure the samples are floating-point numbers. For ESC-10, the source
samples are all of type int16 (signed 16-bit integers). Next come four if
statements. Each one asks for a single random float, and if that float is less
than 0.5, we execute the body of the if. This means that we apply each
possible augmentation with a probability of 50 percent.

The first if shifts the sound samples in time ❶ by rolling the NumPy
array, a vector, by some number of samples, s. This value amounts to at
most an eighth of a second, sr/4.0. Note that the shift can be positive or
negative. The quantity sr/4.0 is the number of samples in a quarter of a
second. However, the random float is in the range [–0.5,+0.5], so the
ultimate shift is at most an eighth of a second. If the shift is negative, we
need to zero samples at the end of the data; otherwise, we zero samples at
the start.

Random noise is added by literally adding a random value of up to one-
tenth of the range of the audio signal back in ❷. When played, this adds
hiss, as you might hear on an old cassette tape.

Next comes shifting the pitch of the sample by using librosa. The pitch
shift is expressed in musical steps, or fractions thereof. We randomly pick a
float in the range [–10,+10] (pf) and pass it along with the data (d) and
sampling rate (sr) to the librosa pitch_shift effect function ❸.

The last augmentation uses the librosa function to stretch or compress
time (time_stretch) ❹. We adjust using an amount of time (rate) that is in the
range [–0.5,+0.5]. If time was stretched, we need to chop off the extra

samples to ensure that the sample length remains constant. If time was
compressed, we need to add zero samples at the end.

Lastly, we return the new, augmented samples.
Running the code in Listing 15-2 creates a new augmented data

directory with subdirectories train and test. These are the raw sound files
that we’ll work with going forward. I encourage you to listen to some of
them to understand what the augmentations have done. The filenames
should help you quickly tell the originals from the augmentations.

Preprocessing Our Data
Are we ready to start building models? Not yet. Our experience told us that
the dataset was too small, and we augmented accordingly. However, we
haven’t yet turned the raw data into something we can pass to a model.

A first thought is to use the raw sound samples. These are already
vectors representing the audio signal, with the time between the samples set
by the sampling rate of 44,100 Hz. But we don’t want to use them as they
are. The samples are all exactly five seconds long. At 44,100 samples per
second, that means each sample is a vector of 44,100 × 5 = 220,500
samples. That’s too long for us to work with effectively.

With a bit more thought, we might be able to convince ourselves that
distinguishing between a crying baby and a barking dog might not need
such a high sampling rate. What if instead of keeping all the samples, we
kept only every 100th sample? Moreover, do we really need five seconds’
worth of data to identify the sounds? What if we kept only the first two
seconds worth?

Let’s keep only the first two seconds of each sound file; that’s 88,200
samples. And let’s keep only every 100th sample, so each sound file now
becomes a vector of 882 elements. That’s hardly more than an unraveled
MNIST digit image, and we know we can work with those.

Listing 15-5 has the code to build the actual initial version of the dataset
we’ll use to build the models.

import os
import random
import numpy as np
from scipy.io.wavfile import read
sr = 44100 # Hz

N = 2*sr # number of samples to keep
w = 100 # every 100

afiles = [i[:-1] for i in open("augmented_train_filelist.txt")]
trn = np.zeros((len(afiles),N//w,1), dtype="int16")
lbl = np.zeros(len(afiles), dtype="uint8")
for i,t in enumerate(afiles):
 ❶ f,c = t.split()
 trn[i,:,0] = read(f)[1][:N:w]
 lbl[i] = int(c)
np.save("esc10_raw_train_audio.npy", trn)
np.save("esc10_raw_train_labels.npy", lbl)

afiles = [i[:-1] for i in open("augmented_test_filelist.txt")]
tst = np.zeros((len(afiles),N//w,1), dtype="int16")
lbl = np.zeros(len(afiles), dtype="uint8")
for i,t in enumerate(afiles):
 f,c = t.split()
 tst[i,:,0] = read(f)[1][:N:w]
 lbl[i] = int(c)
np.save("esc10_raw_test_audio.npy", tst)
np.save("esc10_raw_test_labels.npy", lbl)

Listing 15-5: Building reduced samples dataset

This code builds train and test NumPy files containing the raw data. The
data is from the augmented sound files we built in Listing 15-2. The file list
contains the file location and class label ❶. We load each file in the list and
put it into an array, either the train or test array.

We have a one-dimensional feature vector and a number of train or test
files, so we might expect we need a two-dimensional array to store our data,
either 6400 × 882 for the training set or 1600 × 882 for the test set.
However, we know we’ll ultimately be working with Keras, and we know
that Keras wants a dimension for the number of channels, so we define the
arrays to be 6400 × 882 × 1 and 1600 × 882 × 1 instead. The most
substantial line in this code is the following:

trn[i,:,0] = read(f)[1][:N:w]

It reads the current sound file, keeps only the sound samples ([1]), and
from the sound samples keeps only the first two seconds, worth at every
100th sample, [:N:w]. Spend a little time with this code. If you’re confused,
I’d suggest experimenting with NumPy at the interactive Python prompt to
understand what it’s doing.

In the end, we have train and test files for the 882 element vectors and
associated labels. We’ll build our first models with these. Figure 15-1
shows the resulting vector for a crying baby.

Figure 15-1: Feature vector for a crying baby

The x-axis is sample number (think “time”), and the y-axis is the sample
value.

Classifying the Audio Features
We have our training and test sets. Let’s build some models and see how
they do. Since we have feature vectors, we can start quickly with classical
models. After those, we can build some one-dimensional convolutional
networks and see if they perform any better.

Using Classical Models
We can test the same suite of classical models we used in Chapter 7 with
the breast cancer dataset. Listing 15-6 has the setup code.

 import numpy as np
 from sklearn.neighbors import NearestCentroid
 from sklearn.neighbors import KNeighborsClassifier
 from sklearn.naive_bayes import GaussianNB
 from sklearn.ensemble import RandomForestClassifier
 from sklearn.svm import LinearSVC

 x_train = np.load("esc10_raw_train_audio.npy")[:,:,0]
 y_train = np.load("esc10_raw_train_labels.npy")
 (*\pagebreak*)
 x_test = np.load("esc10_raw_test_audio.npy")[:,:,0]
 y_test = np.load("esc10_raw_test_labels.npy")

❶ x_train = (x_train.astype('float32') + 32768) / 65536
 x_test = (x_test.astype('float32') + 32768) / 65536

 train(x_train, y_train, x_test, y_test)

Listing 15-6: Classifying the audio features with classical models, part 1

Here we import the necessary model types, load the dataset, scale it, and
then call a train function that we’ll introduce shortly.

Scaling is crucial here. Consider the y-axis range for Figure 15-1. It
goes from about –4000 to 4000. We need to scale the data so that the range
is smaller and the values are closer to being centered around 0. Recall, for
the MNIST and CIFAR-10 datasets, we divided by the maximum value to
scale to [0,1].

The sound samples are 16-bit signed integers. This means the full range
of values they can take on covers [–32,768,+32,767]. If we make the
samples floats, add 32,768, and then divide by 65,536 (twice the lower
value) ❶, we’ll get samples in the range [0,1), which is what we want.

Training and evaluating the classical models is straightforward, as
shown in Listing 15-7.

def run(x_train, y_train, x_test, y_test, clf):
 clf.fit(x_train, y_train)
 score = 100.0*clf.score(x_test, y_test)
 print("score = %0.2f%%" % score)

def train(x_train, y_train, x_test, y_test):
 print("Nearest Centroid : ", end='')
 run(x_train, y_train, x_test, y_test, NearestCentroid())
 print("k-NN classifier (k=3) : ", end='')
 run(x_train, y_train, x_test, y_test, KNeighborsClassifier(n_neighbors=3))
 print("k-NN classifier (k=7) : ", end='')
 run(x_train, y_train, x_test, y_test, KNeighborsClassifier(n_neighbors=7))
 print("Naive Bayes (Gaussian) : ", end='')
 run(x_train, y_train, x_test, y_test, GaussianNB())
 print("Random Forest (trees= 5) : ", end='')
 run(x_train, y_train, x_test, y_test,
 RandomForestClassifier(n_estimators=5))
 print("Random Forest (trees= 50) : ", end='')
 run(x_train, y_train, x_test, y_test,
 RandomForestClassifier(n_estimators=50))
 print("Random Forest (trees=500) : ", end='')
 run(x_train, y_train, x_test, y_test,
 RandomForestClassifier(n_estimators=500))
 print("Random Forest (trees=1000): ", end='')
 run(x_train, y_train, x_test, y_test,
 RandomForestClassifier(n_estimators=1000))
 print("LinearSVM (C=0.01) : ", end='')
 run(x_train, y_train, x_test, y_test, LinearSVC(C=0.01))
 print("LinearSVM (C=0.1) : ", end='')
 run(x_train, y_train, x_test, y_test, LinearSVC(C=0.1))
 print("LinearSVM (C=1.0) : ", end='')
 run(x_train, y_train, x_test, y_test, LinearSVC(C=1.0))
 print("LinearSVM (C=10.0) : ", end='')
 run(x_train, y_train, x_test, y_test, LinearSVC(C=10.0))

Listing 15-7: Classifying the audio features with classical models, part 2

The train function creates the particular model instances and then calls
run. We saw this same code structure in Chapter 7. The run function uses fit to
train the model and score to score the model on the test set. For the time
being, we’ll evaluate the models based solely on their overall accuracy (the
score). Running this code produces output like this:

Nearest Centroid : score = 11.9%
k-NN classifier (k=3) : score = 12.1%
k-NN classifier (k=7) : score = 10.5%
Naive Bayes (Gaussian) : score = 28.1%
Random Forest (trees= 5) : score = 22.6%
Random Forest (trees= 50) : score = 30.8%
Random Forest (trees=500) : score = 32.8%
Random Forest (trees=1000): score = 34.4%
LinearSVM (C=0.01) : score = 16.5%
LinearSVM (C=0.1) : score = 17.5%

LinearSVM (C=1.0) : score = 13.4%
LinearSVM (C=10.0) : score = 10.2%

We can see very quickly that the classical models have performed
terribly. Many of them are essentially guessing the class label. There are 10
classes, so random chance guessing should have an accuracy around 10
percent. The best-performing classical model is a Random Forest with
1,000 trees, but even that is performing at only 34.44 percent—far too low
an overall accuracy to make the model one we’d care to use in most cases.
The dataset is not a simple one, at least not for old-school approaches.
Somewhat surprisingly, the Gaussian Naïve Bayes model is right 28 percent
of the time. Recall that the Gaussian Naïve Bayes expects the samples to be
independent from one another. Here the independence assumption between
the sound samples for a particular test input is not valid. The feature vector,
in this case, represents a signal evolving in time, not a collection of features
that are independent of each other.

The models that failed the most are Nearest Centroid, k-NN, and the
linear SVMs. We have a reasonably high-dimensional input, 882 elements,
but only 6,400 of them in the training set. That is likely too few samples for
the nearest neighbor classifiers to make use of—the feature space is too
sparsely populated. Once again, the curse of dimensionality is rearing its
ugly head. The linear SVM fails because the features seem not to be
linearly separable. We did not try an RBF (Gaussian kernel) SVM, but we’ll
leave that as an exercise for the reader. If you do try it, remember that there
are now two hyperparameters to tune: C and γ.

Using a Traditional Neural Network
We haven’t yet tried a traditional neural network. We could use the sklearn
MLPClassifier class as we did before, but this is a good time to show how to
implement a traditional network in Keras. Listing 15-8 has the code.

import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras import backend as K
import numpy as np

batch_size = 32
num_classes = 10

epochs = 16
nsamp = (882,1)
x_train = np.load("esc10_raw_train_audio.npy")
y_train = np.load("esc10_raw_train_labels.npy")
x_test = np.load("esc10_raw_test_audio.npy")
y_test = np.load("esc10_raw_test_labels.npy")
x_train = (x_train.astype('float32') + 32768) / 65536
x_test = (x_test.astype('float32') + 32768) / 65536
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

model = Sequential()
model.add(Dense(1024, activation='relu', input_shape=nsamp))
model.add(Dropout(0.5))
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(num_classes, activation='softmax'))

model.compile(loss=keras.losses.categorical_crossentropy,
 optimizer=keras.optimizers.Adam(),
 metrics=['accuracy'])
model.fit(x_train, y_train,
 batch_size=batch_size,
 epochs=epochs,
 verbose=0,
 validation_data=(x_test, y_test))
 (*\pagebreak*)
score = model.evaluate(x_test, y_test, verbose=0)
print('Test accuracy:', score[1])

Listing 15-8: A traditional neural network in Keras

After loading the necessary modules, we load the data itself and scale it
as we did for the classical models. Next, we build the model architecture.
We need only Dense layers and Dropout layers. We do put in a Flatten layer to
eliminate the extra dimension (note the shape of nsamp) before the final
softmax output. Unfortunately, this model does not improve things for us:
we achieve an accuracy of only 27.6 percent.

Using a Convolutional Neural Network
Classical models and the traditional neural network don’t cut it. We should
not be too surprised, but it was easy to give them a try. Let’s move on and
apply a one-dimensional convolutional neural network to this dataset to see
if it performs any better.

We haven’t worked with one-dimensional CNNs yet. Besides the
structure of the input data, the only difference is that we replace calls to
Conv2D and MaxPooling2D with calls to Conv1D and MaxPooling1D.

The code for the first model we’ll try is shown in Listing 15-9.

import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv1D, MaxPooling1D
import numpy as np

batch_size = 32
num_classes = 10
epochs = 16
nsamp = (882,1)
x_train = np.load("esc10_raw_train_audio.npy")
y_train = np.load("esc10_raw_train_labels.npy")
x_test = np.load("esc10_raw_test_audio.npy")
y_test = np.load("esc10_raw_test_labels.npy")
x_train = (x_train.astype('float32') + 32768) / 65536
x_test = (x_test.astype('float32') + 32768) / 65536
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv1D(32, kernel_size=3, activation='relu',
 input_shape=nsamp))
model.add(MaxPooling1D(pool_size=3))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
 optimizer=keras.optimizers.Adam(),
 metrics=['accuracy'])
history = model.fit(x_train, y_train,
 batch_size=batch_size,
 epochs=epochs,
 verbose=1,
 validation_data=(x_test[:160], y_test[:160]))
score = model.evaluate(x_test[160:], y_test[160:], verbose=0)
print('Test accuracy:', score[1])

Listing 15-9: A 1D CNN in Keras

This model loads and preprocesses the dataset as before. This
architecture, which we’ll call the shallow architecture, has a single

convolutional layer of 32 filters with a kernel size of 3. We’ll vary this
kernel size in the same way we tried different 2D kernel sizes for the
MNIST models. Following the Conv1D layer is a single max-pooling layer
with a pool kernel size of 3. Dropout and Flatten layers come next before a
single Dense layer of 512 nodes with dropout. A softmax layer completes the
architecture.

We’ll train for 16 epochs using a batch size of 32. We’ll keep the
training history so we can examine the losses and validation performance as
a function of epoch. There are 1,600 test samples. We’ll use 10 percent for
the training validation and the remaining 90 percent for the overall
accuracy. Finally, we’ll vary the Conv1D kernel size from 3 to 33 in an
attempt to find one that works well with the training data.

Let’s define four other architectures. We’ll refer to them as medium,
deep0, deep1, and deep2. With no prior experience working with this data,
it makes sense to try multiple architectures. At present, there’s no way to
know ahead of time what the best architecture is for a new dataset. All we
have is our previous experience.

Listing 15-10 lists the specific architectures, separated by comments.

medium
model = Sequential()
model.add(Conv1D(32, kernel_size=3, activation='relu',
 input_shape=nsamp))
model.add(Conv1D(64, kernel_size=3, activation='relu'))
model.add(Conv1D(64, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=3))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

deep0
model = Sequential()
model.add(Conv1D(32, kernel_size=3, activation='relu',
 input_shape=nsamp))
model.add(Conv1D(64, kernel_size=3, activation='relu'))
model.add(Conv1D(64, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=3))
model.add(Dropout(0.25))
model.add(Conv1D(64, kernel_size=3, activation='relu'))
model.add(Conv1D(64, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=3))

model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

deep1
model = Sequential()
model.add(Conv1D(32, kernel_size=3, activation='relu',
 input_shape=nsamp))
model.add(Conv1D(64, kernel_size=3, activation='relu'))
model.add(Conv1D(64, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=3))
model.add(Dropout(0.25))
model.add(Conv1D(64, kernel_size=3, activation='relu'))
model.add(Conv1D(64, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=3))
model.add(Dropout(0.25))
model.add(Conv1D(64, kernel_size=3, activation='relu'))
model.add(Conv1D(64, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=3))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

deep2
model = Sequential()
model.add(Conv1D(32, kernel_size=3, activation='relu',
 input_shape=nsamp))
model.add(Conv1D(64, kernel_size=3, activation='relu'))
model.add(Conv1D(64, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=3))
model.add(Dropout(0.25))
model.add(Conv1D(64, kernel_size=3, activation='relu'))
model.add(Conv1D(64, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=3))
model.add(Dropout(0.25))
model.add(Conv1D(64, kernel_size=3, activation='relu'))
model.add(Conv1D(64, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=3))
model.add(Dropout(0.25))
model.add(Conv1D(64, kernel_size=3, activation='relu'))
model.add(Conv1D(64, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=3))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512, activation='relu'))

model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

Listing 15-10: Different 1D CNN architect

If we train multiple models, varying the first Conv1D kernel size each
time, we get the results in Table 15-1. We’ve highlighted the best-
performing model for each architecture.

Table 15-1: Test Set Accuracies by Convolutional Kernel Size and Model Architecture

Kernel size Shallo
w

Mediu
m

Deep0 Deep1 Deep2

3 44.51 41.39 48.75 54.03 9.93
5 43.47 41.74 44.72 53.96 48.47
7 38.47 40.97 46.18 52.64 49.31
9 41.46 43.06 46.88 48.96 9.72
11 39.65 40.21 45.21 52.99 10.07
13 42.71 41.67 46.53 50.56 52.57
15 40.00 42.78 46.53 50.14 47.08
33 27.57 42.22 41.39 48.75 9.86

Looking at Table 15-1, we see a general trend of accuracy improving as
the model depth increases. However, at the deep2 model, things start to fall
apart. Some of the models fail to converge, showing an accuracy equivalent
to random guessing. The deep1 model is the best performing for all kernel
sizes. When looking across by kernel size, the kernel with width 3 is the
best performing for three of the five architectures. All of this implies that
the best combination for the 1D CNNs is to use an initial kernel of width 3
and the deep1 architecture.

We trained this architecture for only 16 epochs. Will things improve if
we train for more? Let’s train the deep1 model for 60 epochs and plot the
training and validation loss and error to see how they converge (or don’t).
Doing this produces Figure 15-2, where we see the training and validation
loss (top) and error (bottom) as a function of epoch.

Figure 15-2: Training and validation loss (top) and error (bottom) for the deep1 architecture

Immediately, we should pick up on the explosion of the loss for the
validation set. The training loss is continually decreasing until after about
epoch 18 or so; then the validation loss goes up and becomes oscillatory.
This is a clear example of overfitting. The likely source of this overfitting is
our limited training set size, only 6,400 samples, even after data
augmentation. The validation error remains more or less constant after
initially decreasing. The conclusion is that we cannot expect to do much
better than an overall accuracy of about 54 percent for this dataset using
one-dimensional vectors.

If we want to improve, we need to be more expressive with our dataset.
Fortunately for us, we have another preprocessing trick up our sleeves.

Spectrograms
Let’s return to our augmented set of audio files. To build the dataset, we
took the sound samples, keeping only two seconds’ worth and only every
100th sample. The best we could do is an accuracy of a little more than 50
percent.

However, if we work with a small set of sound samples from an input
audio file, say 200 milliseconds worth, we can use the vector of samples to
calculate the Fourier transform. The Fourier transform of a signal measured
at regular intervals tells us the frequencies that went into building the
signal. Any signal can be thought of as the sum of many different sine and
cosine waves. If the signal is composed of only a few waves, like the sound
you might get from an instrument like the ocarina, then the Fourier
transform will have essentially a few peaks at those frequencies. If the
signal is complex, like speech or music, then the Fourier transform will
have many different frequencies, leading to many different peaks.

The Fourier transform itself is complex-valued: each element has both a
real and an imaginary component. You can write it as a + bi, where a and b
are real numbers and . If we use the absolute value of these

quantities, we’ll get a real number representing the energy of a particular
frequency. This is called the power spectrum of the signal. A simple tone
might have energy in only a few frequencies, while something like a
cymbal crash or white noise will have energy more or less evenly
distributed among all frequencies. Figure 15-3 shows two power spectra.

Figure 15-3: Power spectrum of an ocarina (top) and cymbal (bottom)

On the top is the spectrum of an ocarina, and on the bottom is a cymbal
crash. As expected, the ocarina has energy in only a few frequencies, while
the cymbal uses all the frequencies. The important point for us is that
visually the spectra are quite different from each other. (The spectra were
made with Audacity, an excellent open source audio processing tool.)

We could use these power spectra as feature vectors, but they represent
only the spectra of tiny slices of time. The sound samples are five seconds

long. Instead of using a spectrum, we will use a spectrogram. The
spectrogram is an image made up of columns that represent individual
spectra. This means that the x-axis represents time and the y-axis represents
frequency. The color of a pixel is proportional to the energy in that
frequency at that time.

In other words, a spectrogram is what we get if we orient the power
spectra vertically and use color to represent intensity at a given frequency.
With this approach, we can turn an entire sound sample into an image. For
example, Figure 15-4 shows the spectrogram of a crying baby. Compare
this to the feature vector of Figure 15-1.

Figure 15-4: Spectrogram of a crying baby

To create spectrograms of the augmented audio files, we need a new
tool and a bit of code. The tool we need is called sox. It’s not a Python
library, but a command line tool. Odds are that it is already installed if you
are using our canonical Ubuntu Linux distribution. If not, you can install it:

$ sudo apt-get install sox

We’ll use sox from inside a Python script to produce the spectrogram
images we want. Each sound file becomes a new spectrogram image.

The source code to process the training images is in Listing 15-11.

 import os
 import numpy as np
 from PIL import Image

 rows = 100
 cols = 160
❶ flist = [i[:-1] for i in open("augmented_train_filelist.txt")]
 N = len(flist)
 img = np.zeros((N,rows,cols,3), dtype="uint8")
 lbl = np.zeros(N, dtype="uint8")
 p = []

 for i,f in enumerate(flist):
 src, c = f.split()
 ❷ os.system("sox %s -n spectrogram" % src)
 im = np.array(Image.open("spectrogram.png").convert("RGB"))
 ❸ im = im[42:542,58:858,:]
 im = Image.fromarray(im).resize((cols,rows))
 img[i,:,:,:] = np.array(im)
 lbl[i] = int(c)
 p.append(os.path.abspath(src))

 os.system("rm -rf spectrogram.png")
 p = np.array(p)
❹ idx = np.argsort(np.random.random(N))
 img = img[idx]
 lbl = lbl[idx]
 p = p[idx]
 np.save("esc10_spect_train_images.npy", img)
 np.save("esc10_spect_train_labels.npy", lbl)
 np.save("esc10_spect_train_paths.npy", p)

Listing 15-11: Building the spectrograms

We start by defining the size of the spectrogram. This is the input to our
model, and we don’t want it to be too big because we’re limited in the size
of the inputs we can process. We’ll settle for 100×160 pixels. We then load
the training file list ❶ and create NumPy arrays to hold the spectrogram
images and associated labels. The list p will hold the pathname of the source
for each spectrogram in case we want to get back to the original sound file
at some point. In general, it’s a good idea to preserve information to get
back to the source of derived datasets.

Then we loop over the file list. We get the filename and class label and
then call sox, passing in the source sound filename ❷. The sox application is
sophisticated. The syntax here turns the given sound file into a spectrogram
image with the name spectrogram.png. We immediately load the output
spectrogram into im, making sure it’s an RGB file with no transparency
layer (hence the call to convert("RGB")).

The spectrogram created by sox has a border with frequency and time
information. We want only the spectrogram image portion, so we subset the
image ❸. We determined the indices we’re using empirically. It’s possible,
but somewhat unlikely, that a newer version of sox will require tweaking
these to avoid including any border pixels.

Next, we resize the spectrogram so that it fits in our 100×160 pixel
array. This is downsampling, true, but hopefully enough characteristic
information is still present to allow a model to learn the difference between
classes. We keep the downsampled spectrogram and the associated class
label and sound file path.

When we’ve generated all the spectrograms, the loop ends, and we
remove the final extraneous spectrogram PNG file. We convert the list of
sound file paths to a NumPy array so we can store it in the same manner as
the images and labels. Finally, we randomize the order of the images as a
precaution against any implicit sorting that might group classes ❹. This is
so that minibatches extracted sequentially are representative of the mix of
classes as a whole. To conclude, we write the images, labels, and pathnames
to disk. We repeat this entire process for the test set.

Are we able to visually tell the difference between the spectrograms of
different classes? If we can do that easily, then we have a good shot of
getting a model to tell the difference, too. Figure 15-5 shows 10
spectrograms of the same class in each row.

Figure 15-5: Sample spectrograms for each class in ESC-10. Each row shows 10 examples from the
same class.

Visually, we can usually tell the spectra apart, which is encouraging.
With our spectrograms in hand, we are ready to try some 2D CNNs to see if
they do better than the 1D CNNs.

Classifying Spectrograms
To work with the spectrogram dataset, we need 2D CNNs. A possible
starting point is to convert the shallow 1D CNN architecture to 2D by
changing Conv1D to Conv2D, and MaxPooling1D to MaxPooling2D. However, if we
do this, the resulting model has 30.7 million parameters, which is many
more than we want to work with. Instead, let’s opt for a deeper architecture
that has fewer parameters and then explore the effect of different first
convolutional layer kernel sizes. The code is in Listing 15-12.

import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D

import numpy as np

batch_size = 16
num_classes = 10
epochs = 16
img_rows, img_cols = 100, 160
input_shape = (img_rows, img_cols, 3)
x_train = np.load("esc10_spect_train_images.npy")
y_train = np.load("esc10_spect_train_labels.npy")
x_test = np.load("esc10_spect_test_images.npy")
y_test = np.load("esc10_spect_test_labels.npy")
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3), activation='relu',
 input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

model.compile(loss=keras.losses.categorical_crossentropy,
 optimizer=keras.optimizers.Adam(),
 metrics=['accuracy'])
history = model.fit(x_train, y_train,
 batch_size=batch_size, epochs=epochs,
 verbose=0, validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test accuracy:', score[1])
model.save("esc10_cnn_deep_3x3_model.h5")

Listing 15-12: Classifying spectrograms

Here we are using a minibatch size of 16 for 16 epochs along with the
Adam optimizer. The model architecture has two convolutional layers, a
max-pooling layer with dropout, another convolutional layer, and a second
max-pooling layer with dropout. There is a single dense layer of 128 nodes
before the softmax output.

We’ll test two kernel sizes for the first convolutional layer: 3 × 3 and 7
× 7. The 3 × 3 configuration is shown in Listing 15-12. Replace (3,3) with
(7,7) to alter the size. All the initial 1D convolutional runs used a single
training of the model for evaluation. We know that because of random
initialization, we’ll get slightly different results from training to training,
even if nothing else changes. For the 2D CNNs, let’s train each model six
times and present the overall accuracy as a mean ± standard error of the
mean. Doing just this gives us the following overall accuracies:

Kernel size Score
3 × 3 78.78 ± 0.60%
7 × 7 78.44 ± 0.72%

This indicates that there is no meaningful difference between using a 3 × 3
initial convolutional layer kernel size or a 7 × 7. Therefore, we’ll stick with
3 × 3 going forward.

Figure 15-6 shows the training and validation loss (top) and error
(bottom) for one run of the 2D CNN trained on the spectrograms. As we
saw in the 1D CNN case, after only a few epochs, the validation error starts
to increase.

The 2D CNN performs significantly better than the 1D CNN did: 79
percent accuracy versus only 54 percent. This level of accuracy is still not
particularly useful for many applications, but for others, it might be
completely acceptable. Nevertheless, we’d like to do better if we can. It’s
worth noting that we have a few limitations in our data and, for that matter,
our hardware, since we are restricting ourselves to a CPU-only approach,
which limits the amount of time we are willing to wait for models to train.
Here is where the some 25-fold increase in performance possible with
GPUs would be helpful, assuming our use case allows for using GPUs. If
we’re planning to run the model on an embedded system, for example, we
might not have a GPU available, so we’d want to stick with a smaller model
anyway.

Figure 15-6: Training and validation loss (top) and error (bottom) for the 2D CNN architecture

Initialization, Regularization, and Batch Normalization
The literature tells us that there are other things we can try. We already
augmented the dataset, a powerful technique, and we are using dropout,
another powerful technique. We can try using a new initialization strategy,
He initialization, which has been shown to often work better than Glorot
initialization, the Keras default. We can also try applying L2 regularization,
which Keras implements as weight decay per layer. See Chapter 10 for a
refresher on these techniques.

To set the layer initialization algorithm, we need to add the following
keyword to the Conv2D and first Dense layer:

kernel_initializer="he_normal"

To add L2 regularization, we add the following keyword to the Conv2D
and first Dense layer:

kernel_regularizer=keras.regularizers.l2(0.001)

Here λ = 0.001. Recall, λ is the L2 regularization scale factor.
We could test these together, but instead we’ve tested them individually

to see what effect, if any, they have for this dataset. Training six models as
before gives the following overall accuracies:

Regularizer Score
He initialization 78.5 ± 0.5%
L2 regularization 78.3 ± 0.4%

This is no different, statistically, from the previous results. In this case,
these approaches are neither beneficial nor detrimental.

Batch normalization is another well-tested, go-to technique widely used
by the machine learning community. We mentioned batch normalization
briefly in Chapter 12. Batch normalization does just what its name suggests:
it normalizes the inputs to a layer of the network, subtracting per feature

means and dividing by the per feature standard deviations. The output of the
layer multiplies the normalized input by a constant and adds an offset. The
net effect is the input values are mapped to new output values by a two-step
process: normalize the input and then apply a linear transform to get the
output. The parameters of the linear transform are learned during backprop.
At inference time, means and standard deviations learned from the dataset
are applied to unknown inputs.

Batch normalization has shown itself time and again to be effective,
especially in speeding up training. Machine learning researchers are still
debating the exact reasons why it works as it does. To use it in Keras, you
simply insert batch normalization after the convolutional and dense layers
of the network (and after any activation function like ReLU used by those
layers). Batch normalization is known to not work well with dropout, so
we’ll also remove the Dropout layers. The relevant architecture portion of
the model code is shown in Listing 15-13.

from keras.layers import BatchNormalization

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
 activation='relu', input_shape=input_shape))
model.add(BatchNormalization())

model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(BatchNormalization())
model.add(Dense(num_classes, activation='softmax'))

Listing 15-13: Adding in batch normalization

If we repeat our training process, six models with mean and standard
error reporting of the overall accuracy, we get

Batch normalization 75.56 ± 0.59%

which is significantly less than the mean accuracy found without batch
normalization but including dropout.

Examining the Confusion Matrix
We’ve seen in this section that our dataset is a tough one. Augmentation and
dropout have been effective, but other things like ReLU-specific
initialization, L2 regularization (weight decay), and even batch
normalization have not improved things for us. That doesn’t mean these
techniques are ineffective, just that they are not effective for this particular
small dataset.

Let’s take a quick look at the confusion matrix generated by one of the
models using our chosen architecture. We’ve seen previously how to
calculate the matrix; we’ll show it here for discussion and for comparison
with the confusion matrices we’ll make in the next section. Table 15-2
shows the matrix; as always, rows are the true class label, and columns are
the model-assigned label.

Table 15-2: Confusion Matrix for the Spectrogram Model

C
l
a
s
s

0 1 2 3 4 5 6 7 8 9

0 8
5
.
6

0.0 0.0 5.6 0.0 0.0 0.0 5.0 0.6 3.1

1 0
.
0

97.
5

1.2 0.0 0.6 0.6 0.0 0.0 0.0 0.0

2 0
.
0

13.
8

72.
5

0.6 0.6 3.8 6.2 0.0 0.6 1.9

C
l
a
s
s

0 1 2 3 4 5 6 7 8 9

3 2
5
.
0

0.0 0.0 68.
1

0.0 2.5 0.6 0.0 2.5 1.2

4 0
.
6

0.0 0.0 0.0 84.
4

6.2 5.0 3.8 0.0 0.0

5 0
.
0

0.0 0.6 0.0 0.0 94.
4

4.4 0.6 0.0 0.0

6 0
.
0

0.0 1.2 0.0 0.0 10.
6

88.
1

0.0 0.0 0.0

7 9
.
4

0.0 0.6 0.0 15.
6

1.9 0.0 63.
8

7.5 1.2

8 1
8
.
1

1.9 0.0 5.6 0.0 1.2 2.5 6.9 55.
6

8.1

9 7
.
5

0.0 8.1 0.6 0.0 0.6 0.0 1.9 10.
0

71.
2

The three worst-performing classes are helicopter (8), fire (7), and
waves (3). Both waves and helicopter are most often confused with rain (0),
while fire is most often confused with clock (4) and rain. The best
performing classes are rooster (1) and sneezing (5). These results make
sense. A rooster’s crow and a person sneezing are distinct sounds; nothing
really sounds like them. However, it is easy to see how waves and a
helicopter could be confused with rain, or the crackle of a fire with the tick
of a clock.

Does this mean we’re stuck at 78.8 percent accuracy? No, we have one
more trick to try. We’ve been training and evaluating the performance of
single models. Nothing is stopping us from training multiple models and
combining their results. This is ensembling. We presented ensembles briefly
in Chapter 6 and again in Chapter 9 when discussing dropout. Now, let’s
use the idea directly to see if we can improve our sound sample classifier.

Ensembles
The core idea of an ensemble is to take the output of multiple models
trained on the same, or extremely similar, dataset(s) and combine them. It
embodies the “wisdom of the crowds” concept: one model might be better
at certain classes or types of inputs for a particular class than another, so it
makes sense that if they work together, they might arrive at a final result
better than either one could do on its own.

Here, we’ll use the same machine learning architecture we used in the
previous section. Our different models will be separate trainings of this
architecture using the spectrograms as input. This is a weaker form of
ensembling. Typically, the models in the ensemble are quite different from
each other, either different architectures of neural networks, or completely
different types of models like Random Forests and k-Nearest Neighbors.
The variation between models here is due to the random initialization of the
networks and the different parts of the loss landscape the network finds
itself in when training stops.

Our approach works like this:

1. Train multiple models (n = 6) using the spectrogram dataset.
2. Combine the softmax output of these models on the test set in some

manner.
3. Use the resulting output from the combination to predict the assigned

class label.

We hope that the set of class labels assigned after combining the individual
model outputs is superior to the set assigned by the model architecture used
alone. Intuitively, we feel that this approach should buy us something. It
makes sense.

However, a question immediately arises: how do we best combine the
outputs of the individual networks? We have total freedom in the answer to
that question. What we are looking for is an f () such that

ypredict = f(y0, y1, y2, … , yn)

where yi, i = 0, 1, …, n are the outputs of the n models in the ensemble and f
() is some function, operation, or algorithm that best combines them into a
single new prediction, ypredict.

Some combination approaches come readily to mind: we could average
the outputs and select the largest, keep maximum per class output across the
ensemble and then choose the largest of those, or use voting to decide
which class label should be assigned. We’ll try all three of these.

Let’s start with the first three approaches. We already have the six
ensemble models: they’re the models we trained in the previous section to
give us the mean accuracy on the test set. This model architecture uses
dropout, but no alternate initialization, L2 regularization, or batch
normalization.

It’s straightforward enough to run the test set through each of the
models trained in the previous section (Listing 15-14):

 import sys
 import numpy as np
 from keras.models import load_model

 model = load_model(sys.argv[1])
 x_test = np.load("esc10_spect_test_images.npy")/255.0
 y_test = np.load("esc10_spect_test_labels.npy")
❶ prob = model.predict(x_test)
❷ p = np.argmax(prob, axis=1)

 cc = np.zeros((10,10))
 for i in range(len(y_test)):
 cc[y_test[i],p[i]] += 1

❸ print(np.array2string(cc.astype("uint32")))
 cp = 100.0 * cc / cc.sum(axis=1)
❹ print(np.array2string(cp, precision=1))
 print("Overall accuracy = %0.2f%%" % (100.0*np.diag(cc).sum()/cc.sum(),))
 np.save(sys.argv[2], prob)

Listing 15-14: Applying multiple models to the test set

This code expects the name of the trained model file as the first
argument and the name of an output file to store the model predictions as
the second argument. Then, it loads the model and spectrogram test data,
applies the model to the test data ❶, and predicts class labels by selecting
the highest output value ❷.

The code also calculates the confusion matrix and displays it twice, first
as actual counts ❸ and again as a percentage of the actual class ❹. Finally,
it displays the overall accuracy and writes the probabilities to the disk. With
this code, we can store the predictions of each of the six models.

Now that we have the predictions, let’s combine them in the first of the
three ways mentioned previously. To calculate the average of the model
predictions, we first load each model’s predictions, and then average and
select the maximum per sample as shown in Listing 15-15.

p0 = np.load("prob_run0.npy")
p1 = np.load("prob_run1.npy")
p2 = np.load("prob_run2.npy")
p3 = np.load("prob_run3.npy")
p4 = np.load("prob_run4.npy")
p5 = np.load("prob_run5.npy")
y_test = np.load("esc10_spect_test_labels.npy")
prob = (p0+p1+p2+p3+p4+p5)/6.0
p = np.argmax(prob, axis=1)

Listing 15-15: Averaging the test set results

The resulting percentage confusion matrix is

C
l
a
s
s

0 1 2 3 4 5 6 7 8 9

0 8
3
.
8

0.0 0.0 7.5 0.0 0.0 0.0 4.4 0.0 4.4

1 0
.
0

97.
5

1.9 0.0 0.0 0.6 0.0 0.0 0.0 0.0

C
l
a
s
s

0 1 2 3 4 5 6 7 8 9

2 0
.
0

10.
0

78.
1

0.0 0.0 3.1 6.2 0.0 0.0 2.5

3 9
.
4

0.0 0.0 86.
2

0.0 3.1 0.6 0.0 0.0 0.6

4 0
.
6

0.0 0.0 0.0 83.
1

5.6 5.0 5.6 0.0 0.0

5 0
.
0

0.0 0.0 0.0 0.6 93.
8

5.6 0.0 0.0 0.0

6 0
.
0

0.0 0.6 0.0 0.0 8.8 90.
6

0.0 0.0 0.0

7 8
.
1

0.0 0.0 0.0 17.
5

1.9 0.0 64.
4

7.5 0.6

8 6
.
2

0.0 0.0 7.5 0.0 1.9 4.4 8.8 66.
2

5.0

9 5
.
0

0.0 5.0 1.2 0.0 0.6 0.0 1.9 10.
6

75.
6

with an overall accuracy of 82.0 percent.
This approach is helpful: we went from 79 percent to 82 percent in

overall accuracy. The most significant improvements were in class 3
(waves) and class 8 (helicopter).

Our next approach, shown in Listing 15-16, keeps the maximum
probability across the six models for each class and then selects the largest
to assign the class label.

p = np.zeros(len(y_test), dtype="uint8")
for i in range(len(y_test)):
 t = np.array([p0[i],p1[i],p2[i],p3[i],p4[i],p5[i]])
 p[i] = np.argmax(t.reshape(60)) % 10

Listing 15-16: Keeping the test set maximum

This code defines a vector, p, of the same length as the vector of actual
labels, y_test. Then, for each test sample, we form t, a concatenation of all six
models’ predictions for each class. We reshape t so that it is a one-
dimensional vector of 60 elements. Why 60? We have 10 class predictions
times 6 models. The maximum of this vector is the largest value, the index
of which is returned by argmax. We really don’t want this index; instead, we
want the class label this index maps to. Therefore, if we take this index
modulo 10, we will get the proper class label, which we assign to p. With p
and y_test, we can calculate the confusion matrix:

C
l
a
s
s

0 1 2 3 4 5 6 7 8 9

0 8
2
.
5

0.0 0.0 9.4 0.0 0.0 0.0 4.4 0.6 3.1

1 0
.
0

95.
0

4.4 0.0 0.0 0.0 0.0 0.6 0.0 0.0

2 0
.
0

10.
0

78.
8

0.0 0.0 3.1 5.6 0.0 0.0 2.5

3 5
.
0

0.0 0.0 90.
6

0.0 2.5 0.6 0.0 0.6 0.6

4 1
.
2

0.0 0.0 0.0 81.
2

6.2 5.0 6.2 0.0 0.0

C
l
a
s
s

0 1 2 3 4 5 6 7 8 9

5 0
.
0

0.0 0.0 0.0 0.6 93.
8

5.6 0.0 0.0 0.0

6 0
.
0

0.0 0.6 0.0 0.6 8.8 90.
0

0.0 0.0 0.0

7 8
.
8

0.0 0.0 0.0 16.
2

2.5 0.0 65.
0

6.9 0.6

8 8
.
1

0.0 0.0 6.2 0.0 1.9 4.4 9.4 63.
1

6.9

9 3
.
8

0.0 4.4 3.1 0.0 0.0 0.0 1.9 10.
6

76.
2

This gives us an overall accuracy of 81.6 percent.
Voting is the typical approach used to combine outputs from several

models. To implement voting in this case, we’ll use Listing 15-17.

 t = np.zeros((6,len(y_test)), dtype="uint32")
❶ t[0,:] = np.argmax(p0, axis=1)
 t[1,:] = np.argmax(p1, axis=1)
 t[2,:] = np.argmax(p2, axis=1)
 t[3,:] = np.argmax(p3, axis=1)
 t[4,:] = np.argmax(p4, axis=1)
 t[5,:] = np.argmax(p5, axis=1)
 p = np.zeros(len(y_test), dtype="uint8")
 for i in range(len(y_test)):
 q = np.bincount(t[:,i])
 p[i] = np.argmax(q)

Listing 15-17: Voting to select the best class label

We first apply argmax across the six model predictions to get the
associated labels ❶, storing them in a combined matrix, t. We then define p
as before to hold the final assigned class label. We loop over each of the test
samples, where we use a new NumPy function, bincount, to give us the
number of times each class label occurs for the current test sample. The
largest such count is the most often selected label, so we use argmax again to
assign the proper output label to p. Note, this code works because our class
labels are integers running consecutively from 0 through 9. This alone is a
good enough reason to use such simple and ordered class labels.

Here is the confusion matrix produced by this voting procedure:

C
l
a
s
s

0 1 2 3 4 5 6 7 8 9

0 8
6
.
2

0.0 0.0 8.8 0.0 0.0 0.0 3.8 0.0 1.2

1 0
.
0

98.
1

1.2 0.0 0.0 0.6 0.0 0.0 0.0 0.0

2 0
.
0

10.
6

78.
1

0.0 0.0 3.1 5.6 0.0 0.0 2.5

3 1
4
.
4

0.0 0.0 81.
2

0.0 3.1 0.6 0.0 0.0 0.6

4 0
.
6

0.0 0.0 0.0 83.
8

5.6 5.0 5.0 0.0 0.0

5 0
.
0

0.0 0.0 0.0 0.6 94.
4

5.0 0.0 0.0 0.0

C
l
a
s
s

0 1 2 3 4 5 6 7 8 9

6 0
.
0

0.0 1.2 0.0 0.6 9.4 88.
8

0.0 0.0 0.0

7 8
.
8

0.0 0.0 0.0 18.
1

1.9 0.0 65.
6

5.0 0.6

8 7
.
5

0.0 0.0 6.9 0.0 3.1 3.8 8.8 67.
5

2.5

9 5
.
6

0.0 6.2 1.2 0.0 0.6 0.0 1.9 11.
2

73.
1

This gives us an overall accuracy of 81.7 percent.
Each of these three ensemble approaches improved our results, almost

identically. A simple combination of the model outputs gave us, essentially,
an accuracy boost of 3 percent over the base model alone, thereby
demonstrating the utility of ensemble techniques.

Summary
This chapter presented a case study, a new dataset, and the steps we need to
take to work through building a useful model. We started by working with
the dataset as given to us, as raw sound samples, which we were able to
augment successfully. We noticed that we had a feature vector and
attempted to use classical models. From there, we moved on to 1D
convolutional neural networks. Neither of these approaches was particularly
successful.

Fortunately for us, our dataset allowed for a new representation, one
that illustrated more effectively what composed the data and, especially
important for us, introduced spatial elements so that we could work with 2D

convolutional networks. With these networks, we improved quite a bit on
the best 1D results, but we were still not at a level that was likely to be
useful.

After exhausting our bag of CNN training tricks, we moved to
ensembles of classifiers. With these, we discovered a modest improvement
by using simple approaches to combining the base model outputs (for
example, averaging).

We can show the progression of models and their overall accuracies to
see how our case study evolved:

Model Data source Accuracy
Gaussian Naïve Bayes 1D sound sample 28.1%
Random Forest (1,000
trees)

1D sound sample 34.4%

1D CNN 1D sound sample 54.0%
2D CNN Spectrogram 78.8%
Ensemble (average) Spectrogram 82.0%

This table shows the power of modern deep learning and the utility of
combining it with well-proven classical approaches like ensembles.

This chapter concludes our exploration of machine learning. We started
at the beginning, with data and datasets. We moved on to the classical
machine learning models, and then dove into traditional neural networks so
that we would have a solid foundation from which to understand modern
convolutional neural networks. We explored CNNs in detail and concluded
with a case study as an illustration of how you might approach a new
dataset to build a successful model. Along the way, we learned about how
to evaluate models. We became familiar with the metrics used by the
community so that we can understand what people are talking about and
presenting in their papers.

Of course, this entire book has been an introduction, and we have barely
scratched the surface of the ever-expanding world that is machine learning.
Our final chapter will serve as a jumping-off point—a guide to where you
may want to wander next to expand your machine learning knowledge
beyond the tight bounds we’ve been required to set for ourselves here.

16
GOING FURTHER

You now have what I feel is a good introduction to modern machine
learning. We have covered building datasets, classical models, model
evaluation, and introductory deep learning, from traditional neural networks
to convolutional neural networks. This short chapter is intended to help you
go further.

We’ll look at both short-term “what’s next” sorts of things as well as
longer-term forks in the road you may wish to explore. We’ll also include
online resources where you will find the latest and greatest (always
cognizant that anything online is ephemeral). After that comes a necessarily
subjective list of conferences you may wish to attend. We’ll close the
chapter and book with a thank you and a goodbye.

Going Further with CNNs
Even after four chapters’ worth of material, we’ve barely scratched the
surface of what convolutional neural networks can do. In part, we limited
ourselves so you could grasp the fundamentals. And, in part, we were
limited because we made a conscious decision not to require a GPU.
Training complex models with a GPU is, in general, 20 to 25 times faster
than using a CPU. With a GPU in your system, preferably designed for
deep learning applications, the possibilities increase dramatically.

The models we developed were small, reminiscent of the original LeNet
models LeCun developed in the 1990s. They get the point across, but they
will not go too far in many cases. Modern CNNs come in a variety of
flavors and now “standard” architectures. With a GPU, you can explore
these larger architectures.

These architectures should be on your list of what to look at next:

ResNet
U-Net
VGG
DenseNet
Inception
AlexNet
YOLO

Fortunately, the Keras toolkit we introduced (but also barely explored)
supports all of these architectures. The two that seem especially useful to
me are ResNet and U-Net. The latter is for semantic segmentation of inputs
and has been widely successful, especially in medical imaging. To
successfully train any of these architectures before your computer’s power
supply or hard drive has failed, to say nothing of your heart, you do need a
GPU. Medium to higher-end gaming GPUs (from NVIDIA, for example)
will support new enough versions of CUDA that you can get going with a
card for under 500 USD. The real trick is ensuring that your computer will
support the card. The power requirements are high, typically requiring a
power supply of 600W or more, and a slot that supports a double-wide PCIe
card. Go for RAM over performance; the more RAM the GPU has, the
larger a model it will support.

Even if you don’t upgrade your system with a GPU, it’s worth your time
to study the aforementioned architectures to see what makes them special
and to understand how additional layers work. Check out the Keras
documentation for more details: keras.io.

http://keras.io/

Reinforcement Learning and Unsupervised
Learning
This book has dealt exclusively with supervised learning. Of the three main
branches of machine learning, supervised learning is probably the most
widely used. Recalling the Marx brothers, supervised learning is like
Groucho, the one everyone remembers. That isn’t an insult to the memory
of Harpo and Chico, nor is it an insult to the other two branches of machine
learning: reinforcement learning and unsupervised learning.

Reinforcement learning is goal-oriented; it encourages models to learn
how to behave and act to maximize a reward. Instead of learning how to
take an input and map it to a specific output class, as in supervised learning,
reinforcement learning learns how to act in the current situation to
maximize an overall goal, like winning a game. Many of the impressive
news stories related to machine learning have involved reinforcement
learning. These include the first Atari 2600 game-playing systems capable
of beating the best humans, as well as the fall of the world Go champion to
AlphaGo, and the even more impressive achievement of AlphaGo Zero,
which mastered Go from scratch without learning from millions of games
played by humans. Any self-driving car system is likely extremely
complex, but it’s a sure bet that reinforcement learning is a key part of that
system.

Unsupervised learning refers to systems that learn on their own from
unlabeled input data. Historically, this meant clustering, algorithms like k-
means that take unlabeled feature vectors and attempt to group them by
some similarity metric. Currently, one might argue that unsupervised
learning is viewed as somewhat unimportant, given the insane amount of
work being done with supervised learning and reinforcement learning. This
is only half true; a lot of supervised learning is attempting to use unlabeled
data (search for domain adaptation). How much of our own learning is
unsupervised? An autonomous system set loose on an alien world will
likely be more successful if it can learn things its creators didn’t know it
would need to know. This suggests the importance of unsupervised
learning.

Generative Adversarial Networks
Generative adversarial networks (GANs) burst on the scene in 2014, the
brainchild of deep learning researcher Ian Goodfellow. GANs were quickly
heralded as the most significant advance in machine learning in 20 years
(Yann LeCun, spoken at NIPS 2016, Barcelona).

Recent news about models that can generate an infinite number of
photo-quality human faces use GANs. So do models that create simulated
scenes and convert images of one style (say, a painting) to another (like a
photograph). GANs wed a network that generates outputs, often based on
some random setting of its input, to a discriminative network that tries to
learn how to tell the difference between real inputs and inputs that came
from the generative part. The two networks are trained together so that the
generative network gets better and better at fooling the discriminative
network. In contrast, the discriminative network gets better and better at
learning how to tell the difference. The result is a generative network that is
pretty good at outputting what you want it to output.

A proper study of GANs would require a book, but they are well worth
a look and some of your time, at least to develop an intuitive sense of what
is going on. A good place to start is with the particularly popular GAN
architecture, CycleGAN, which has, in turn, spawned a small army of
similar models.

Recurrent Neural Networks
A major topic entirely ignored by this book is recurrent neural networks
(RNNs). These are networks with feedback loops, and they work well for
processing sequences like a time series of measurements—think sound
samples or video frames. The most common form is the LSTM, the long
short-term memory network. Recurrent networks are widely used in neural
translation models like Google Translate that have made it possible to do
real-time translation between dozens of languages.

Online Resources

The online resources for machine learning are legion and growing daily.
Here are a few places that I find helpful and that are likely to stand the test
of time. In no particular order:

Reddit Machine Learning (www.reddit.com/r/MachineLearning/)
Look here for up-to-the-minute news and discussions of the latest
papers and research.

Arxiv (https://arxiv.org/) Machine learning progresses too quickly for
most papers to go through the lengthy peer-review process print journals
require. Instead, almost without exception, researchers and many
conferences place all their papers on this preprint server, providing free
access to the very latest in machine learning research. It can be daunting
to sift through. Personally, I use the Arxiv app for my phone and several
times a week peruse the following categories: Computer Vision and
Pattern Recognition, Artificial Intelligence, Neural and Evolutionary
Computing, and Machine Learning. The number of papers appearing in
just these categories per week is impressive and a good indication of
how active this field really is. To address the insane quantity of papers,
deep learning researcher Andrej Karpathy created the useful Arxiv
Sanity site at http://www.arxiv-sanity.com/.

GitHub (https://github.com/) This is a place where people can host
software projects. Go to the site directly and search for machine
learning projects or use a standard search engine and add the keyword
github to the search. With the explosion of machine learning projects, a
beautiful thing has happened. The vast majority of the projects are
freely available, even for commercial use. This typically includes full
source code and datasets. If you read about something in a paper on
Arxiv, you’ll likely find an implementation of it on Github.

Coursera (https://www.coursera.org/) Coursera is a premier site for
online courses, the vast majority of which can be audited for free. There
are other sites, but Coursera was co-founded by Andrew Ng, and his
machine learning course is very popular.

YouTube (https://www.youtube.com/) YouTube is a force of nature at
this point, but it is chock-full of machine learning videos. Let the viewer
beware, but with some digging and judicious selection, you’ll find a lot

http://www.reddit.com/r/MachineLearning/
https://arxiv.org/
http://www.arxiv-sanity.com/
https://github.com/
https://www.coursera.org/
https://www.youtube.com/

here, including demonstrations of the latest and greatest. Search for
“Neural Networks for Machine Learning” taught by Geoffrey Hinton.

Kaggle (https://www.kaggle.com/) Kaggle hosts machine learning
competitions and is a good resource for datasets. Winners detail their
models and training processes, providing ample opportunity to learn the
art.

Conferences
One of the best ways to learn a new language is to immerse yourself in a
culture that speaks the language. The same is true for machine learning. The
way to immerse yourself in the culture of machine learning is to attend
conferences. This can be expensive, but many schools and companies view
it as important, so you might be able to get support for attending.

The massive explosion of interest in machine learning has caused a new
phenomenon, one that I haven’t seen happen in other academic disciplines:
conferences selling out. This is true of the biggest conferences, but it might
be happening to other conferences as well. If you want to attend, be aware
that timing matters. Again, in no particular order, and missing many good
but smaller conferences, consider the following:

NeurIPS (formerly NIPS) Short for Neural Information Processing
Systems, this is likely the biggest machine learning conference. At this
academic conference, you can expect to see the latest research
presented. NeurIPS has sold out quickly in recent years, in under 12
minutes in 2018 (!), and has now switched to a lottery system, so unless
you are a presenter of some kind, getting the golden ticket email
allowing you to register is not assured. It’s usually held in Canada.

ICML Short for International Conference on Machine Learning, this is
perhaps the second largest annual conference. This academic conference
has several tracks and workshops and is typically held in Europe or
North America.

ICLR The International Conference on Learning Representations is a
deep learning–focused academic conference. If you want in-the-weeds
technical presentations on deep learning, this is the place to be.

https://www.kaggle.com/

CVPR Computer Vision and Pattern Recognition is another large
conference that’s perhaps slightly less academic than ICLR. CVPR is
popular and not exclusively machine learning–oriented.

GTC The GPU Technology Conference, sponsored by NVIDIA, is a
technical conference as opposed to an academic conference. The annual
presentation of new NVIDIA hardware happens here, along with a large
expo, in San Jose, California.

The Book
Saying there are a few machine learning books out there is like saying there
are a few fish in the sea. However, as far as deep learning is concerned, one
stands head-and-shoulders above the rest: Deep Learning by Ian
Goodfellow, Yoshua Bengio, and Aaron Courville (MIT Press, 2016). See
http://www.deeplearningbook.org/.

Deep Learning is the book you should go to if you want to get serious
about being a machine learning researcher. Even if you don’t, it covers the
key topics in depth and with mathematical rigor. The book is not for those
looking to get better at using one toolkit or another, but for those who want
to see the theory behind machine learning and the math that goes with it. In
essence, it’s an advanced undergraduate—if not graduate-level text, but that
shouldn’t put you off. At some point, you will want to take a look at this
book, so keep it in the back of your mind—or on your bookshelf.

So Long and Thanks for All the Fish
We’ve reached the end of the book. There’s no monster here, only
ourselves, and the knowledge and intuition we’ve gained by working
through the preceding chapters. Thank you for persevering. It’s been fun for
me to write; I genuinely hope it’s been fun for you to read and contemplate.
Don’t stop now—take what we’ve developed and run with it. If you’re like
me, you’ll see applications for machine learning everywhere. Go forth and
classify!

http://www.deeplearningbook.org/

INDEX

A
activation function, 171–172
Adadelta, 313, 326, 344, 350
Adagrad, 313, 326
Adam, 313, 326
Apache MXNet, 2
area under the ROC curve (AUC), 273–274, 354
array processing, 2
artificial intelligence (AI), xxviii
Arxiv, 414
Az, 273

B
backpropagation, 174, 190, 200, 203
bagging, 123
batch size, 231
batch training, 195
Bayes, Thomas, 114
Bengio, Yoshua, 416
big-O notation, 155
bootstrap sample, 123
bounding box, 340
box plot, 78

IQR, 80
whiskers, 80

Brox, Thomas, 304
Burges, Christopher, 126

C
Caffe, 2
Caffe2, 2
capsule networks, 301
Cartesian plane, 4
case study, 378

classical models, 385
classifier

audio features, 385
neural network, 388
spectrograms, 398

CNN
batch normalization, 402
ensembles, 404
initialization, 402
one-dimensional, 389
regularization, 402
two-dimensional, 398
voting, 405

dataset, 378
augmentation, 379
ESC-10, 378
preprocessing, 383
spectrogram, 394–395

sox, 396
categorical value, 54
centroid, 109
CIFAR-10, 90, 343–344

binary versus multiclass, 357
building models, 345
one-versus-rest, 357

classes, 51
classification, 51

clustering algorithms, 413
CNN, 6, 283

activations, 306
advanced models, 411
AlexNet, 412
anatomy of, 288
architecture, 288–289
bounding box, 340
building, 310
constructing in Keras, 312
convolution, 284

exact, 287
filter, 293
valid, 287
zero-padding, 287

convolutional layer
effect, 295
initialization, 299
operation, 292
stacking, 298

data flow, 291
DenseNet, 412
effective receptive field, 298–299
end-to-end training, 307
evaluating, 314
experiments, 319

architecture, 319
epochs, 323
minibatches, 323
optimizers, 326
training set size, 323

feature maps, 290
filter, 293
fully convolutional network, 303, 309, 328, 331

building and training, 328
graymap, 337
heatmap, 336
history, 284
Inception, 412
kernel, 284

using, 285
layer types, 289
layers

convolutional, 289, 292
dense, 289
dropout, 289
flatten, 289
fully connected, 290, 301
fully convolutional, 302
inner product, 290
inputs, 290
pooling, 289, 299
ReLU, 289

LeNet, 412
loss function, 313
max pooling, 300
motivation, 284
Neocognitron, 284
optimizer, 313

Adadelta, 313
Adagrad, 313
Adam, 313
RMSprop, 313
stochastic gradient descent (SGD), 313

optimizers, 326
outputs, 304
plotting

error, 317

loss, 317
pooling layer

maximum, 300
stride, 299

probability map, 336
receptive field, 298
ResNet, 412
scaling data, 311
semantic segmentation, 412
spatial invariance, 284
stride, 285
training, 314
U-Net, 340, 412
VGG, 412
YOLO, 340, 412

Cohen’s kappa, 263
comparing models, 271
Compute Unified Device Architecture (CUDA), 9, 412
conference

Computer Vision and Pattern Recognition (CVPR), 415
GPU Technology Conference (GTC), 415
International Conference on Learning Representations (ICLR), 415
International Conference on Machine Learning (ICML), 415
Neural Information Processing Systems (NIPS), 415
NeurIPS, 415

conferences, 415
confusion matrix, 254, 255

multiclass, 276
contingency table, 255
convolution, 284

exact, 287
image processing, 287
valid, 287
zero-padding, 287

convolutional neural network see CNN, 283
Cortes, Corinna, 124
Coursera, 414
Courville, Aaron, 416
curse of dimensionality, 55
curve fitting, 213

D
data augmentation, 92, 215

approaches, 94
images, 101
rationale, 93
using PCA, 97

dataset, 7, 57
k-fold validation, 74
augmentation, 92

approaches, 94
images, 101
PCA, 97
rationale, 93

bagging, 123
balanced, 64
breast cancer dataset, 86
categorical value, 54
cautionary tales, 80
CIFAR-10 dataset, 90
classes, 51
confuser, 61–62
curse of dimensionality, 55
discrete value, 53
ESC-10, 378
feature selection, 55

feature vectors, 53
floating-point number, 53
hard negative, 62
interval value, 53
irises dataset, 84
label, 51
mean centering, 64
mislabeled data, 76
missing features, 67
MNIST dataset, 88
normalizing, 65–66, 135
one-hot encoding, 55
ordinal value, 54
outliers, 76, 80
partitioning, 69–70, 74
partitioning by class, 70
pitch shifting, 379
potential problems, 76
preprocessing, 63, 83
random sampling, 72
sample, 4
scaling, 63–64
spectrogram, 394–395
standardizing, 65–66, 135
summarizing, 76
test data, 68
time shifting, 379
training data, 68
validation data, 68

Decision Tree, 164
deep learning, xxviii
Deep Learning Book (Goodfellow et al.), 416
derivative, 192

local minimum, 193

minimum, 192
partial, 201
tangent line, 192

descriptive statistics, 7
discriminative network, 413
domain adaptation, 60, 331, 413
dot product, 5
dropout, 217

E
effective receptive field, 298–299
embedding, 361
ensemble, 123
epoch, 195
Euclidean distance, 110
experiments

breast cancer, 135
CIFAR-10

analyzing models, 348
animal or vehicle, 352
binary versus multiclass, 357
building models, 345
fine-tuning, 367
transfer learning, 361

irises, 129, 182
classical models, 130

MNIST, 150
activation function, 223
activation results, 227
architecture, 223
architecture results, 227
base learning rate, 235

batch size, 231
classical models, 150
code, 223
initialization, 243
L2 regularization, 239
momentum, 242
neural networks, 222
scrambled, 161, 247
training set size, 238

MNIST CNN
basic experiments, 319
building models, 312
dataset, 310
epochs, 323
fully convolutional, 328
minibatches, 323
optimizers, 326
scrambled, 340
training set size, 323

extrapolation, 58

F
F1 score, 263
false negative rate (FNR), 259
false positive rate (FPR), 259
feature, 52

types, 53
feature selection, 55
feature vectors, 52–53
fine-tuning, 367

example, 368
rationale, 371

Fischer, Philipp, 304
Fisher, R.A., 84
floating-point number, 53, 85, 382
Fourier transform, 394

power spectrum, 394
Frank, Eibe, 157
fully connected layers, 301
fully convolutional layer, 302
fully convolutional network, 328

building and training, 328
function

convex, 196
nonconvex, 196

G
Gaussian distribution, 8
generative adversarial network

CycleGAN, 413
generative adversarial network (GAN), 413
generative network, 413
Gini index, 122
GitHub, 414
Glorot, Xavier, 244
Goodfellow, Ian, 413, 416
GPU, 1
gradient, 190

slope, 191
gradient descent, 190

algorithm, 194
batch training, 195
epoch, 195

first-order, 197
learning rate, 193, 235
local minimum, 193
minibatch, 195–196
momentum, 199, 242
stochastic, 194

grand mean, 143
graph, 170

edges, 170
nodes, 170

graphics processing unit (GPU), 1, 9

H
Hadamard product, 207
Hadamard, Jacques, 207
HDF5, 3, 314
He, Kaiming, 212
heatmap, 336
Hinton, Geoffrey E., 200, 301, 415
hit rate, 257
hyperbolic tangent, 174
hyperparameters, 144

optimizing, 145
hyperplane, 125
hypothesis testing, 8

I
image processing, 287
informedness, 262
inner product, 5

interpolation, 58
interval value, 53

J
joint probability, 115

K
K-D-tree, 157
k-fold validation, 74, 140
k-means, 413
k-Nearest Neighbor (k-NN), 112–113
k-NN classifier, 112–113, 139, 145, 154
Kaggle, 415
Karpathy, Andrej, 414
Keras, 2

documentation, 311, 412
kernel, 284
Kibriya, Ashraf M., 157
Kneusel, Ronald T. Numbers and Computers, 14
Krizhevsky, Alex, 217

L
L2 regularization, 216
label, 51
learning rate, 193–194, 198, 235

schedule, 198
LeCun, Yann, 412–413
line

intercept, 191

slope, 191
linear algebra, 4

matrix, 5
multiplication, 6
multiplication by vector, 5

scalar, 5
tensor, 6
transpose, 5
vector, 4

column, 4
inner product, 5
multiplication, 5
outer product, 5
row, 4

linear function, 172
linear regression, 58
Linux, 3

Ubuntu, 3
local minimum, 193
long short-term memory, 414
loss function, 190, 192, 208, 313

absolute error, 209
cross-entropy loss, 210, 313
mean squared error (MSE), 209

LSTM, 414

M
Macintosh, 3
macOS, 3
main function, 99
Mann-Whitney U test, 8, 147
markedness, 262

matrix, 5, 31
multiplication, 6, 181
multiplication by vector, 5
transpose, 185

matrix multiplication, 6
Matthes, Eric, Python Crash Course, 11
Matthews Correlation Coefficient (MCC), 264

multiclass, 281
max pooling, 300
mean, 6

standard error, 6
median, 7
metric, 251
metrics

2 × 2 table, 255
accuracy, 132, 252
accuracy matrix, 277
advanced metrics, 262
area under the ROC curve (AUC), 273
Az, 273
CIFAR-10 example, 354
Cohen’s kappa, 263
confusion matrix, 254–255

multiclass, 276
contingency table, 255
derived metrics, 257
F1 score, 263
false negative (FN), 254–255
false negative rate (FNR), 259
false positive (FP), 254–255
false positive rate (FPR), 259
grand mean, 143
hit rate, 257
implementation, 264

informedness, 262
interpreting models, 260
markedness, 262
Matthews Correlation Coefficient (MCC), 264

multiclass, 281
multiclass, 276
negative predictive value (NPV), 258
per class accuracy, 253
positive predictive value (PPV), 258
precision, 258
precision-recall curve, 275
recall, 257
receiver operating characteristics (ROC), 266

elements of, 269
generating, 273

score, 132
sensitivity, 257
specificity, 257
t-SNE, 307, 363
true negative (TN), 254
true negative rate (TNR), 257
true positive (TP), 254, 254
true positive rate (TPR), 257
weighted accuracy, 279
Youden’s J statistic, 262

minibatch, 195–196, 231
minibatch training, 196
missing features, 67
model

capacity, 62
classical models, 108

computational requirements, 165
explainability, 166
small datasets, 165

summary, 162
vector inputs, 166
when to use, 165

comparing, 271
Decision Tree, 117–118

construction, 121
summary, 164

ensemble, 123
fine-tuning, 367
generative adversarial network (GAN), 413
Gini index, 122
hyperparameters, 144

optimizing, 145
long short-term memory, 414
LSTM, 414
Naïve Bayes, 113

Gaussian, 131
Multinomial, 131
summary, 163

Nearest Centroid, 108, 111
summary, 162

Nearest Neighbor, 5, 112
optimizing, 145
summary, 163

overfitting, 190, 213
pretrained, 368
Random Forest, 117, 122–123

optimizing, 146
summary, 164

recurrent neural network (RNN), 414
Support Vector Machine (SVM), 124

kernel, 127
margin, 124–125
optimizing, 126, 147

summary, 165
support vector, 126

template matching, 111
transfer learning, 361

momentum, 199, 242
multidimensional array, 30

N
Naïve Bayes, 115, 155, 163

Gaussian, 144, 155
Nearest Centroid, 162
Nearest Neighbor, 5, 163
negative predictive value (NPV), 258
neural network, 171

activation function, 171–172
hyperbolic tangent, 174
identity, 178
ReLU, 174
sigmoid, 174

anatomy, 170
ANN, 172
architecture, 176
backpropagation, 190, 200
backward pass, 200
bias, 172
essence, 172
feedback, 171
forward pass, 200
fully connected feedforward, 169, 170
function approximation, 170
hidden layer, 170
implementation, 182–183

multi-layer perceptron (MLP), 172
neuron, 170–171
output layer, 172, 178
regularization, 190, 213, 215

dropout, 217
L2, 216
weight decay, 216

representation, 180
rules of thumb, 177
softmax, 178
traditional, 169
training, 219

batch, 195
epoch, 195
gradient descent, 190
loss function, 190, 192, 208
minibatch, 195, 196
momentum, 199
overview, 190
stochastic gradient descent (SGD), 194
stopping, 197
weight update, 193

weight initialization, 190, 211, 243
weights, 172

Ng, Andrew, 414
nominal value, 54
nonlinear function, 172

transcendental, 173
trigonometric, 173

nonparametric test, 8
normal distribution, 7, 8
normalizing, 65–66, 135
Numbers and Computers (Kneusel), 14
NumPy, 2

arange, 39–40
argsort, 72
array, 33
array indexing, 37
arrays versus lists, 30
astype, 37
basic arrays, 33
broadcasting, 42
contiguous memory, 30
convert array to image, 104
convert image to array, 104
copy, 37
data types, 33, 34
documentation, 29
dot, 44
dtype, 33
ellipsis, 41, 42
histogram, 356
images, 48

channels, 48
indexing and memory, 30
input and output, 45
load, 46
loadtxt, 46
normally distributed random numbers, 48
ones, 36–37
operators, 42
performance, 31
pseudorandom seed, 138
random

seed, 48
random, 48
rationale, 29
reshape, 40

save, 46
savetxt, 46
savez, 46
savez_compressed, 47
shape, 35
slicing, 39

short cuts, 40
subscript, 38
uniform random numbers, 48
where, 70
zeros, 36

NVIDIA, 9, 412

O
one-hot encoding, 55
online resources, 414
operating environment, 1
ordinal value, 54
outer product, 5
outliers, 80
overfitting, 94, 198, 213

P
p-value, 8
parent distribution, 7, 60, 252
partial derivative, 201
Pasteur, Louis, 167
Piczal, Karol J., 378
Pillow, 3

PIL, 48
convert, 50

fromarray, 49
open, 49
save, 49
show, 49
documentation, 50

Plato, 7, 60
pooling, 299
positive predictive value (PPV), 258
power spectrum, 394
Powers, David Martin, 262
precision, 258
precision-recall curve, 275
preprocessing, 83
primary visual cortex, 297
principal component analysis (PCA), 95, 153, 158

MNIST, 158
prior class probability, 60, 253
probability, 6

Bayes’ theorem, 114
distribution, 7
Gaussian distribution, 8
joint probability, 115
likelihood, 114
normal distribution, 7, 8, 116
notation

uniform distribution, 8
parent distribution, 7, 60
posterior probability, 114
prior class probability, 60
prior probability, 114
uniform distribution, 7

probability distribution, 7
probability map, 336

pseudorandom sequence, 140
Python

blocks, 12
bottom-tested loop, 22
break, 22–23
continue, 22–23
control structures, 19

for, 20
if, 12, 19
try, 24
while, 22
with, 23

data structures, 13
debugging, 24
dictionaries, 13, 18
documentation, 27
dynamic typing, 14
editor conventions, 13
enumerate, 20
essence, 11
except, 24
exceptions, 24
exiting, 12
False, 16
floating-point numbers, 13
for loops, 20
function definition, 24

defaults, 25
if statement, 19
intentation, 12
interactive mode, 12
librosa, 380
list comprehensions, 21
list operations, 15

lists, 13, 15
copying, 16

lists in memory, 30
module, 26

copy, 17
deepcopy, 17
time, 26, 32

namespaces, 26
None, 16
pass, 13
pickle, 45, 184
primitive data types, 15
range, 20, 39
statements, 12
strings, 13, 14

quotes, 15
top-tested loop, 22
True, 16
try, 24
tuple, 17
variables, 13–14

camel-case, 14
naming, 14

while loop, 22
whitespace, 12
with statement, 23

Python Crash Course (Matthes), 11
PyTorch, 2

R
Raghu, Maithra, 375
Random Forest, 122–123, 164
Random Numbers and Computers (Kneusel), 48

recall, 257
receiver operating characteristics (ROC), 266, 269–275

elements of, 269
receptive field, 298
rectified linear unit (ReLU), 174
recurrent neural networks (RNNs), 414
recursion, 120
Reddit Machine Learning, 414
regularization, 94, 190, 213, 215

dropout, 217
L2, 216, 239
weight decay, 216, 239

reinforcement learning, xxviii, 412
AlphaGo, 413
AlphaGo Zero, 413
Atari 2600, 413

RMSprop, 313, 326
Ronneberger, Olaf, 304
Rumelhart, David E., 200

S
sample, 4
scalar, 5
scikit-learn, 2

DecisionTreeClassifier, 130
documentation, 2
GaussianNB, 130
KNeighborsClassifier, 130
make_classification, 70
MLPClassifier, 172, 186, 222
MultinomialNB, 130
NearestCentroid, 130

RandomForestClassifier, 130
SVC, 130

SciPy, 380
wavfile, 380

semantic segmentation, 412
sensitivity, 257
sigmoid, 174
softmax, 178
specificity, 257
spectrogram, 395
standard deviation, 7–8, 32, 65, 211
standard error, 6
standardizing, 65–66, 135
statistical test, 8
statistically significant, 9
statistics, 6

bootstrap sample, 123
descriptive, 6–7
dot product, 44
grand mean, 143
hypothesis testing, 8
Mann-Whitney U test, 8
mean, 6

standard error, 6
median, 7
nonparametric test, 8
p-value, 8
parametric test, 8
quartile, 79
standard deviation, 7, 8, 33, 65, 117
standard error, 6, 32, 77
statistically independent, 115
statistically significant, 9

t-test, 8
variance, 7

stochastic gradient descent (SGD), 194, 224, 313, 326, 344
supervised learning, xxviii, 57, 412
Support Vector Machine (SVM), 165

kernel, 127
margin, 124–125
one-versus-one, 156
one-versus-rest, 156
optimizing, 126
support vector, 126

T
t-SNE, 307
t-test, 8
tangent line, 192
tensor, 6
TensorFlow, 2

documentation, 2
test data, 68
toolkit

Apache MXNet, 2
Caffe, 2
Caffe2, 2
HDF5, 3
installation, 3
Keras, 2
NumPy, 2
Pillow, 3
PyTorch, 2
scikit-learn, 2
TensorFlow, 2

versions, 3
training data, 68
training set, xxviii
transcendental functions, 173
transfer learning, 361

embedding, 361
trigonometric functions, 173
true negative rate (TNR), 257
true positive rate (TPR), 257

U
U-Net, 340
Ubuntu, 1
UCI Machine Learning Repository, 84
uniform distribution, 7
uniformly distributed, 211
unsupervised learning, xxviii, 412

V
validation data, 68
Vapnik, Vladimir, 124
variance, 7
vector, 4, 31

column vector, 4
dot product, 5
inner product, 5
multiplication, 5
outer product, 5
row vector, 4

W
weight decay, 216
weight initialization, 190, 211, 243

Glorot, 212
He, 212
Xavier, 212

weight update, 193–194
weighted accuracy, 279
weights, 172
Williams, Ronald J., 200
Windows, 3

Y
YOLO, 340
Youden’s J statistic, 262
YouTube, 415

Z
zero-padding, 287

COLOPHON

The fonts used in Practical Deep Learning are New Baskerville, Futura,
The Sans Mono Condensed and Dogma. The book was typeset with
LATEX 2ε package nostarch by Boris Veytsman (2008/06/06 v1.3 Typesetting
books for No Starch Press).

Contents in Detail

1. Cover Page
2. Title Page
3. Copyright Page
4. Dedication
5. About the Author
6. About the Technical Reviewer
7. BRIEF CONTENTS
8. CONTENTS IN DETAIL
9. FOREWORD

10. ACKNOWLEDGMENTS
11. INTRODUCTION

1. Who Is This Book For?
2. What Can You Expect to Learn?
3. About This Book

12. 1 GETTING STARTED
1. The Operating Environment
2. Installing the Toolkits
3. Basic Linear Algebra
4. Statistics and Probability
5. Graphics Processing Units
6. Summary

13. 2 USING PYTHON
1. The Python Interpreter
2. Statements and Whitespace
3. Variables and Basic Data Structures
4. Control Structures
5. Functions
6. Modules
7. Summary

14. 3 USING NUMPY
1. Why NumPy?
2. Basic Arrays
3. Accessing Elements in an Array
4. Operators and Broadcasting

file:///tmp/calibre_4.99.4_tmp_57jezvgy/t5j3ysh8_pdf_out/OEBPS/Images/cover.xhtml

5. Array Input and Output
6. Random Numbers
7. NumPy and Images
8. Summary

15. 4 WORKING WITH DATA
1. Classes and Labels
2. Features and Feature Vectors
3. Features of a Good Dataset
4. Data Preparation
5. Training, Validation, and Test Data
6. Look at Your Data
7. Summary

16. 5 BUILDING DATASETS
1. Irises
2. Breast Cancer
3. MNIST Digits
4. CIFAR-10
5. Data Augmentation
6. Summary

17. 6 CLASSICAL MACHINE LEARNING
1. Nearest Centroid
2. k-Nearest Neighbors
3. Naïve Bayes
4. Decision Trees and Random Forests
5. Support Vector Machines
6. Summary

18. 7 EXPERIMENTS WITH CLASSICAL MODELS
1. Experiments with the Iris Dataset
2. Experiments with the Breast Cancer Dataset
3. Experiments with the MNIST Dataset
4. Classical Model Summary
5. When to Use Classical Models
6. Summary

19. 8 INTRODUCTION TO NEURAL NETWORKS
1. Anatomy of a Neural Network
2. Implementing a Simple Neural Network
3. Summary

20. 9 TRAINING A NEURAL NETWORK
1. A High-Level Overview
2. Gradient Descent
3. Stochastic Gradient Descent
4. Backpropagation
5. Loss Functions
6. Weight Initialization
7. Overfitting and Regularization
8. Summary

21. 10 EXPERIMENTS WITH NEURAL NETWORKS
1. Our Dataset
2. The MLPClassifier Class
3. Architecture and Activation Functions
4. Batch Size
5. Base Learning Rate
6. Training Set Size
7. L2 Regularization
8. Momentum
9. Weight Initialization

10. Feature Ordering
11. Summary

22. 11 EVALUATING MODELS
1. Definitions and Assumptions
2. Why Accuracy Is Not Enough
3. The 2 × 2 Confusion Matrix
4. Metrics Derived from the 2 × 2 Confusion Matrix
5. More Advanced Metrics
6. The Receiver Operating Characteristics Curve
7. Handling Multiple Classes
8. Summary

23. 12 INTRODUCTION TO CONVOLUTIONAL NEURAL
NETWORKS

1. Why Convolutional Neural Networks?
2. Convolution
3. Anatomy of a Convolutional Neural Network
4. Convolutional Layers
5. Pooling Layers

6. Fully Connected Layers
7. Fully Convolutional Layers
8. Step by Step
9. Summary

24. 13 EXPERIMENTS WITH KERAS AND MNIST
1. Building CNNs in Keras
2. Basic Experiments
3. Fully Convolutional Networks
4. Scrambled MNIST Digits
5. Summary

25. 14 EXPERIMENTS WITH CIFAR-10
1. A CIFAR-10 Refresher
2. Working with the Full CIFAR-10 Dataset
3. Animal or Vehicle?
4. Binary or Multiclass?
5. Transfer Learning
6. Fine-Tuning a Model
7. Summary

26. 15 A CASE STUDY: CLASSIFYING AUDIO SAMPLES
1. Building the Dataset
2. Classifying the Audio Features
3. Spectrograms
4. Classifying Spectrograms
5. Ensembles
6. Summary

27. 16 GOING FURTHER
1. Going Further with CNNs
2. Reinforcement Learning and Unsupervised Learning
3. Generative Adversarial Networks
4. Recurrent Neural Networks
5. Online Resources
6. Conferences
7. The Book
8. So Long and Thanks for All the Fish

28. INDEX

1. i

2. ii
3. iii
4. iv
5. v
6. vi
7. vii
8. viii
9. ix

10. x
11. xi
12. xii
13. xiii
14. xiv
15. xv
16. xvi
17. xvii
18. xviii
19. xix
20. xx
21. 1
22. 2
23. 3
24. 4
25. 5
26. 6
27. 7
28. 8
29. 9
30. 10
31. 11
32. 12
33. 13
34. 14
35. 15
36. 16
37. 17
38. 18

39. 19
40. 20
41. 21
42. 22
43. 23
44. 24
45. 25
46. 26
47. 27
48. 28
49. 29
50. 30
51. 31
52. 32
53. 33
54. 34
55. 35
56. 36
57. 37
58. 38
59. 39
60. 40
61. 41
62. 42
63. 43
64. 44
65. 45
66. 46
67. 47
68. 48
69. 49
70. 50
71. 51
72. 52
73. 53
74. 54
75. 55

76. 56
77. 57
78. 58
79. 59
80. 60
81. 61
82. 62
83. 63
84. 64
85. 65
86. 66
87. 67
88. 68
89. 69
90. 70
91. 71
92. 72
93. 73
94. 74
95. 75
96. 76
97. 77
98. 78
99. 79

100. 80
101. 81
102. 82
103. 83
104. 84
105. 85
106. 86
107. 87
108. 88
109. 89
110. 90
111. 91
112. 92

113. 93
114. 94
115. 95
116. 96
117. 97
118. 98
119. 99
120. 100
121. 101
122. 102
123. 103
124. 104
125. 105
126. 106
127. 107
128. 108
129. 109
130. 110
131. 111
132. 112
133. 113
134. 114
135. 115
136. 116
137. 117
138. 118
139. 119
140. 120
141. 121
142. 122
143. 123
144. 124
145. 125
146. 126
147. 127
148. 128
149. 129

150. 130
151. 131
152. 132
153. 133
154. 134
155. 135
156. 136
157. 137
158. 138
159. 139
160. 140
161. 141
162. 142
163. 143
164. 144
165. 145
166. 146
167. 147
168. 148
169. 149
170. 150
171. 151
172. 152
173. 153
174. 154
175. 155
176. 156
177. 157
178. 158
179. 159
180. 160
181. 161
182. 162
183. 163
184. 164
185. 165
186. 166

187. 167
188. 168
189. 169
190. 170
191. 171
192. 172
193. 173
194. 174
195. 175
196. 176
197. 177
198. 178
199. 179
200. 180
201. 181
202. 182
203. 183
204. 184
205. 185
206. 186
207. 187
208. 188
209. 189
210. 190
211. 191
212. 192
213. 193
214. 194
215. 195
216. 196
217. 197
218. 198
219. 199
220. 200
221. 201
222. 202
223. 203

224. 204
225. 205
226. 206
227. 207
228. 208
229. 209
230. 210
231. 211
232. 212
233. 213
234. 214
235. 215
236. 216
237. 217
238. 218
239. 219
240. 220
241. 221
242. 222
243. 223
244. 224
245. 225
246. 226
247. 227
248. 228
249. 229
250. 230
251. 231
252. 232
253. 233
254. 234
255. 235
256. 236
257. 237
258. 238
259. 239
260. 240

261. 241
262. 242
263. 243
264. 244
265. 245
266. 246
267. 247
268. 248
269. 249
270. 250
271. 251
272. 252
273. 253
274. 254
275. 255
276. 256
277. 257
278. 258
279. 259
280. 260
281. 261
282. 262
283. 263
284. 264
285. 265
286. 266
287. 267
288. 268
289. 269
290. 270
291. 271
292. 272
293. 273
294. 274
295. 275
296. 276
297. 277

298. 278
299. 279
300. 280
301. 281
302. 282
303. 283
304. 284
305. 285
306. 286
307. 287
308. 288
309. 289
310. 290
311. 291
312. 292
313. 293
314. 294
315. 295
316. 296
317. 297
318. 298
319. 299
320. 300
321. 301
322. 302
323. 303
324. 304
325. 305
326. 306
327. 307
328. 308
329. 309
330. 310
331. 311
332. 312
333. 313
334. 314

335. 315
336. 316
337. 317
338. 318
339. 319
340. 320
341. 321
342. 322
343. 323
344. 324
345. 325
346. 326
347. 327
348. 328
349. 329
350. 330
351. 331
352. 332
353. 333
354. 334
355. 335
356. 336
357. 337
358. 338
359. 339
360. 340
361. 341
362. 342
363. 343
364. 344
365. 345
366. 346
367. 347
368. 348
369. 349
370. 350
371. 351

372. 352
373. 353
374. 354
375. 355
376. 356
377. 357
378. 358
379. 359
380. 360
381. 361
382. 362
383. 363
384. 364
385. 365
386. 366
387. 367
388. 368
389. 369
390. 370
391. 371
392. 372
393. 373
394. 374
395. 375
396. 376
397. 377
398. 378
399. 379
400. 380
401. 381
402. 382
403. 383
404. 384
405. 385
406. 386
407. 387
408. 388

409. 389
410. 390
411. 391
412. 392
413. 393
414. 394
415. 395
416. 396
417. 397
418. 398
419. 399
420. 400
421. 401
422. 402
423. 403
424. 404
425. 405
426. 406
427. 407
428. 408
429. 409
430. 410
431. 411
432. 412
433. 413
434. 414
435. 415
436. 416
437. 417
438. 418
439. 419
440. 420
441. 421
442. 422
443. 423
444. 424
445. 425

446. 426
447. 427
448. 428

	Title Page
	Copyright Page
	Dedication
	About the Author
	About the Technical Reviewer
	BRIEF CONTENTS
	CONTENTS IN DETAIL
	FOREWORD
	ACKNOWLEDGMENTS
	INTRODUCTION
	Who Is This Book For?
	What Can You Expect to Learn?
	About This Book

	1 GETTING STARTED
	The Operating Environment
	Installing the Toolkits
	Basic Linear Algebra
	Statistics and Probability
	Graphics Processing Units
	Summary

	2 USING PYTHON
	The Python Interpreter
	Statements and Whitespace
	Variables and Basic Data Structures
	Control Structures
	Functions
	Modules
	Summary

	3 USING NUMPY
	Why NumPy?
	Basic Arrays
	Accessing Elements in an Array
	Operators and Broadcasting
	Array Input and Output
	Random Numbers
	NumPy and Images
	Summary

	4 WORKING WITH DATA
	Classes and Labels
	Features and Feature Vectors
	Features of a Good Dataset
	Data Preparation
	Training, Validation, and Test Data
	Look at Your Data
	Summary

	5 BUILDING DATASETS
	Irises
	Breast Cancer
	MNIST Digits
	CIFAR-10
	Data Augmentation
	Summary

	6 CLASSICAL MACHINE LEARNING
	Nearest Centroid
	k-Nearest Neighbors
	Naïve Bayes
	Decision Trees and Random Forests
	Support Vector Machines
	Summary

	7 EXPERIMENTS WITH CLASSICAL MODELS
	Experiments with the Iris Dataset
	Experiments with the Breast Cancer Dataset
	Experiments with the MNIST Dataset
	Classical Model Summary
	When to Use Classical Models
	Summary

	8 INTRODUCTION TO NEURAL NETWORKS
	Anatomy of a Neural Network
	Implementing a Simple Neural Network
	Summary

	9 TRAINING A NEURAL NETWORK
	A High-Level Overview
	Gradient Descent
	Stochastic Gradient Descent
	Backpropagation
	Loss Functions
	Weight Initialization
	Overfitting and Regularization
	Summary

	10 EXPERIMENTS WITH NEURAL NETWORKS
	Our Dataset
	The MLPClassifier Class
	Architecture and Activation Functions
	Batch Size
	Base Learning Rate
	Training Set Size
	L2 Regularization
	Momentum
	Weight Initialization
	Feature Ordering
	Summary

	11 EVALUATING MODELS
	Definitions and Assumptions
	Why Accuracy Is Not Enough
	The 2 × 2 Confusion Matrix
	Metrics Derived from the 2 × 2 Confusion Matrix
	More Advanced Metrics
	The Receiver Operating Characteristics Curve
	Handling Multiple Classes
	Summary

	12 INTRODUCTION TO CONVOLUTIONAL NEURAL NETWORKS
	Why Convolutional Neural Networks?
	Convolution
	Anatomy of a Convolutional Neural Network
	Convolutional Layers
	Pooling Layers
	Fully Connected Layers
	Fully Convolutional Layers
	Step by Step
	Summary

	13 EXPERIMENTS WITH KERAS AND MNIST
	Building CNNs in Keras
	Basic Experiments
	Fully Convolutional Networks
	Scrambled MNIST Digits
	Summary

	14 EXPERIMENTS WITH CIFAR-10
	A CIFAR-10 Refresher
	Working with the Full CIFAR-10 Dataset
	Animal or Vehicle?
	Binary or Multiclass?
	Transfer Learning
	Fine-Tuning a Model
	Summary

	15 A CASE STUDY: CLASSIFYING AUDIO SAMPLES
	Building the Dataset
	Classifying the Audio Features
	Spectrograms
	Classifying Spectrograms
	Ensembles
	Summary

	16 GOING FURTHER
	Going Further with CNNs
	Reinforcement Learning and Unsupervised Learning
	Generative Adversarial Networks
	Recurrent Neural Networks
	Online Resources
	Conferences
	The Book
	So Long and Thanks for All the Fish

	INDEX

