

Python for
Professionals

Learning Python as a Second Language

 by
Matt Telles

ii

FIRST EDITION 2020
Copyright © BPB Publications, India

All Rights Reserved. No part of this publication may be reproduced or distributed in
any form or by any means or stored in a database or retrieval system, without the prior
written permission of the publisher with the exception to the program listings which may
be entered, stored and executed in a computer system, but they can not be reproduced
by the means of publication.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The information contained in this book is true to correct and the best of author’s &
publisher’s knowledge. The author has made every effort to ensure the accuracy of
these publications, but cannot be held responsible for any loss or damage arising from
any information in this book.

All trademarks referred to in the book are acknowledged as properties of their
respective owners.

Distributors:
BPB PUBLICATIONS
20, Ansari Road, Darya Ganj
New Delhi-110002
Ph: 23254990/23254991

MICRO MEDIA
Shop No. 5, Mahendra Chambers,
150 DN Rd. Next to Capital Cinema,
V.T. (C.S.T.) Station, MUMBAI-400 001
Ph: 22078296/22078297

DECCAN AGENCIES
4-3-329, Bank Street,
Hyderabad-500195
Ph: 24756967/24756400

BPB BOOK CENTRE
376 Old Lajpat Rai Market,
Delhi-110006
Ph: 23861747

Published by Manish Jain for BPB Publications, 20 Ansari Road, Darya Ganj,
New Delhi-110002 and Printed by him at Repro India Ltd, Mumbai

ISBN: 978-93-89423-754

 iii

Dedicated to
My wife Teresa

iv

About the Author

Matt Telles is a 35-year veteran in the software industry. He has worked with
virtually all programming languages, and has been a developer, manager, tester,
and designer. He’s been working on Python for several years and is constantly
extending his knowledge in the field.

Matt is married with three children, living in New York, the United States. He has
a menagerie of cats, dogs and a turtle, and loves reading books on his Microsoft
Surface on the train to work every morning.

 v

About the Reviewer

Tarun Behal is a computer scientist and software engineer with almost 8 years of
experience in software development. He completed his graduation in computer
science and software engineering from UPTU, India, in 2012. Currently pursuing
masters from BITS Pilani, India. Since then, he has worked with several technologies
and languages, including Odoo, Django, JavaScript, Ruby, PHP and Python. He
currently resides in Noida, India and works for Adobe Inc.

Some of the applications covered by Tarun during his career include RESTful APIs,
ERPs, billing platforms, hotel management, financial systems and e-commerce
websites. He has been using Python on both personal and professional projects
since 2012, and he is passionate about software design, software quality, and
coding standards.

I would like to thank my parents for their love, good advice, and continuous
support. I would also like to thank all my friends that I met along the way, who
enriched my life, for motivating me and helping me progress.

vi

Acknowledgement

First and foremost, I would like to thank all of the employers who have allowed
me to learn my skills while working for them. Thank you for that opportunity.

Secondly, I would like to thank my family, who have put up with me while writing
this book.

Finally, I’d like to thank everyone who reads the book, and finds anything in it to
be useful in their daily lives. I’ve spend a lot of time over the years learning from
others, this is my chance to give back to the community.

– Matt Telles

 vii

Preface

Python has become very popular among programmers, testers, and web developers.
The majority of Python is easy to pick up and run with right away, but the details of
the language are sometimes a bit difficult to understand without good examples.
The purpose of this book is to help a professional programmer get started quickly
with the language. The target audience of this book is someone who has written
programs in the past, not necessarily in Python though. This book is divided into
10 chapters and it provides a detailed description of the core concepts of Python
programming.

Chapter 1 introduces the history and installation of Python, as well as the differences
between the current versions to help you determine which one to install.

Chapter 2 addresses the basic data types in Python, as well as the collections and
iterables.

Chapter 3 discusses the nuts and bolts of Pythons, with a focus on conditional
statements, loops, and objects, with their attributes.

Chapter 4 discusses how to work with Python, from the immediate mode of the
interpreter to the importing of pre-built packages and modules for use in your
application.

Chapter 5 is involved with object-oriented programming as it applies to Python.
You will learn about the pillars of object orientation and how they are implemented
using the Python programming language.

Chapter 6 addresses the concepts of advanced manipulations in Python. You will
learn about comprehensions, generators and slices.

Chapter 7 is all about input and output in Python, from writing to the console to
reading and writing files. You’ll learn about JSON and text files, as well as working
with binary file formats.

Chapter 8 describes imports and exports, how to use other people’s code and make
your own code available for the community or your own company.

Chapter 9 addresses a variety of miscellaneous topics, from decorators and
properties to documentation and metaclasses.

viii

Chapter 10 will help you to focus on not reinventing the wheel by exploring some
of the more popular Python packages available to you, and looking at how to use
them in your own programs.

Chapter 11 will present a series of tips and tricks that you can use to immediately
upgrade your Python programming skills.

 ix

Errata

We take immense pride in our work at BPB Publications and follow best practices to
ensure the accuracy of our content to provide with an indulging reading experience
to our subscribers. Our readers are our mirrors, and we use their inputs to reflect
and improve upon human errors if any, occurred during the publishing processes
involved. To let us maintain the quality and help us reach out to any readers who
might be having difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

x

Table of Contents

 1. The History and Installation of Python .. 1
 Introduction .. 1
 Structure .. 1
 Objectives .. 2
 Python: the language ... 2
 History ... 2
 Selecting a Python version .. 4
 Why not use 2.7? ... 4
 Which 3.x to use? ... 5
 Installing .. 5
 Testing your installation .. 8
 The Zen of Python.. 9
 Keeping it simple .. 10
 Keeping it readable ..11
 Never is better than right now ..11
 Using pip ... 12
 Using virtual environments .. 15
 Python IDE’s and command line work... 18
 Hello world ... 21
 Conclusion .. 22
 Questions ... 23

 2. Python Types and Constructs .. 25
 Introduction .. 25
 Structure .. 25
 Objectives .. 26
 Integers .. 26
 Floating point numbers ... 29
 Boolean .. 31
 Complex values .. 32
 Variable naming ... 33

 xi

 Strings .. 34
 Finding substrings ... 36
 Multiple line strings ... 38
 Concatenating .. 39
 Other methods .. 39
 Python Collections ... 41
 Lists .. 41
 Dictionaries .. 45
 Getting the value of a key .. 46
 Testing if a key is in a dictionary .. 46
 Iterating .. 47
 Length of a dictionary ... 48
 Adding new items ... 48
 Nested dictionaries .. 49
 Sets ... 51
 Tuples ... 55
 Iterators and iterables .. 56
 Sorted ... 66
 The zip function ... 70
 Booleans and truthiness .. 71
 Comments ... 73
 Conclusion .. 74
 Questions ... 74

 3. The Nuts and Bolts .. 75
 Introduction .. 75
 Structure .. 75
 Objectives .. 76
 Conditionals .. 76
 The “walrus” operator ... 77
 ANDs, ORs, NOTs, and logicals ... 78
 Indentation .. 81
 The pass statement ... 82
 Loops .. 83
 Functions ... 91

xii

 Parameters.. 92
 Return values ... 92
 Required vs optional arguments .. 95
 Keyword arguments ... 95
 Variable length arguments ... 96
 Lambdas ... 97
 Classes ... 99
 Scoping ... 105
 Objects ... 108
 Conclusion .. 109
 Questions ... 109

 4. Organizational Skills ...111
 Introduction ...111
 Structure ...111
 Objectives ...112
 Immediate mode ...112
 Modules ..115
 Packages .. 121
 Importing .. 125
 Paths ... 127
 Dot notation in naming ... 128
 Installing packages using pip ... 129
 Insuring requirements with pip ... 134
 User installs vs system installs .. 135
 Conclusion .. 136
 Questions ... 136

 5. Object-Oriented Programming ... 137
 Introduction .. 137
 Structure .. 137
 Objective .. 138
 Object-oriented programming with Python .. 138
 Abstraction ... 138
 Encapsulation ... 138

 xiii

 Inheritance ... 139
 Multiple inheritance ... 143
 Polymorphism, the Python way ... 147
 Overloading of methods ... 150
 Overloading of operators .. 153
 Comparisons and overloading .. 158
 Read-only attributes ... 160
 The __new__operator ... 163
 Classes and Iteratables .. 165
 Chaining of operations .. 167
 Initialization .. 172
 Conclusion .. 176
 Questions ... 176

 6. Advanced Manipulations ... 177
 Introduction .. 177
 Structure .. 177
 Objectives .. 178
 List comprehensions .. 178
 Dictionary comprehensions .. 183
 Nested dictionary comprehensions ... 186
 Applying functions ... 187
 Restrictions on dictionary comprehensions .. 188
 Set comprehensions ... 188
 Generators ... 191
 Building a string from a list .. 196
 Searching a string ... 199
 Searching a collection .. 201
 Using a set of functions to create an extensible state machine 204
 Filtering vs removing .. 207
 Slicing... 209
 Lambda expressions ...211
 The ‘splat’ operator and unpacking .. 212
 Conclusion .. 214
 Questions ... 214

xiv

 7. File Input and Output ... 215
 Introduction .. 215
 Structure .. 215
 Objectives .. 215
 Files .. 216
	 	 	 	 Working	with	files .. 216
 Using the with statement .. 219
 Reading fixed length data from files in Python 220
	 	 	 	 Reading	a	text	file	by	lines	in	Python .. 223
 A readlines real-world example ... 225
 Python and binary files ... 226
 JSON parsing .. 229
 JSON writing .. 231
 Serializing complex objects in JSON ... 232
 Reading in text vs reading in lines .. 235
 Writing out lines .. 235
 Output formatting ... 236
 Pickling .. 240
 Conclusion .. 242
 Questions ... 242

 8. Imports and Reuse ... 243
 Introduction .. 243
 Structure .. 243
 Objectives .. 244
 Import and reuse of code .. 244
 Importing ... 245
 Importing modules ... 248
 Importing packages .. 250
 Dynamic imports ... 252
 Working with the os module .. 254
	 	 	 	 Directory	and	file	information ... 256
 Listing installed packages ... 256
 Reflection ... 258
	 	 	 	 Using	Reflection ... 262

 xv

 Conclusion .. 266
 Questions ... 266

 9. Miscellaneous ... 267
 Introduction .. 267
 Structure .. 267
 Objectives .. 268
 Decorators ... 268
 Variable arguments .. 275
 Character encoding .. 278
 Properties .. 280
 Description strings ... 283
 Namespaces .. 284
 Context managers .. 285
 Metaclasses ... 287
 Dynamic classes and functions .. 289
 Deep vs shallow copying .. 290
 Exception handling .. 292
 Conclusion .. 295
 Questions ... 295

 10. Not Reinventing the Wheel ... 297
 Introduction .. 297
 Structure .. 297
 Objectives .. 298
 Not reinventing the wheel .. 298
 Itertools .. 299
 Flask ... 303
 Adding authentication ... 309
 Numpy ..311
 Installing Numpy... 312
 Getting started: The basic array ... 313
 Accessing Numpy Data ... 314
 Data types .. 314
 Modifying arrays with Numpy .. 316

xvi

 Numpy mathematical functions .. 317
 Logging .. 320
 Unit test ... 323
 Setup and teardown ... 326
 Mocking ... 326
 Concurrency .. 330
 The emoji package ... 333
 The pprint package .. 334
 The requests package... 335
 Conclusion .. 338
 Questions ... 338

 11. General Tips and Tricks ... 339
 Introduction .. 339
 Structure .. 339
 Objectives .. 340
 Implementing a switch statement with dictionaries............................. 340
 Remove duplicates from a list .. 345
 Determine the size of your objects in memory 347
 Find the most frequent item in a list ... 352
 Creating an enum in a class .. 354
 Detect Python version ... 356
 Using the _ (underscore) operator ... 357
 Discovering where a module is imported from 358
 Swapping two values without an intermediate temporary 359
 Using the classmethod decorator to create static methods 361
 Using the **kwargs to pass a named list of parameters 362
 Type hints .. 364
 Finding the day of the week using the calendar module 366
 Working with regular expressions ... 367
 Conclusion .. 369
 Questions ... 370

Chapter 1
The History and

Installation of
Python

Introduction
Every professional programmer who has been in the industry for any length of time
has seen changes. Whether it is a new job, or a new boss, or simply a new approach
at work, change is the only constant in the programming world. New operating
systems, new frameworks, new devices, and, of course, new programming languages.
For those of us that came up in the Unix world, or using MS-DOS, change has been
dramatic. If you’ve worked mostly in the Linux world, the change may have been
less dramatic. Changes in your development language, however, are always both
exiting and traumatic. Moving to a new language is like moving to a new house
with all new things to get used to and to accept. If you are coming from the Java, C#
or C++ world, transitioning to Python might be confusing. Not only has the syntax
changed, but the very way of thinking has changed. The purpose of this book is to
ease that transition, and to help you think like a Pythonista. A Pythonista, of course,
is one that has adopted Python as their primary language, and struggles to master
new concepts in Python at all times.

Structure
•	 History
•	 Selecting	a	Python	version

2 Python for Professionals

•	 The	Zen	of	Python
•	 Keeping	it	simple
•	 Using	virtual	environments
•	 Using	pip
•	 Python	IDE’s	and	command	line	work

Objectives
By the end of this chapter, you should understand how to select a Python version
to use, how to install the Python system, and how to use some of the general tools
that Python developers need in their day to day experience. You will learn about the
history	of	Python,	the	Zen	of	Python,	and	how	to	keep	it	simple.

Python: the language
One	 of	 the	most	 frustrating	 things	 for	 professional	 developers	 is	 finding	 a	 good	
transition methodology. Let’s be honest, you don’t want to learn about what a
memory location is, or how the compiler/interpreter works to do your job. You
want to start out with that nice simple Hello world example, see how the types and
statement work, and what the gotcha’s are in the language. You already know what
loops are, what assignment statements are, and how to use functions and classes from
your previous work. What you don’t know is how that new language implements all
these things, and that’s what you will learn here.

We will look at the basics of Python in this chapter, as well as introducing some basic
concepts	that	you’ll	need	to	think	about	when	writing	in	Python.	You’ll	find	out	a	
little bit of trivia, because what developer doesn’t love to know trivia about his or
her	 language?	You’ll	find	out	 the	philosophy	behind	Python	and	why	 things	are	
the way they are. Then we’ll get into the nuts and bolts of getting you a functional
development	environment,	and	show	you	how	to	create	your	first	Python	program.

Welcome to Python! May your journey be fruitful and your code concise.

History
If you’ve never seen Python before, it might surprise you to know that it has been
around	for	a	very	long	time.	Older	than	Java	and	C#,	Python	was	first	created	in	the	
late 1980s. It was created by Guido Van Rossum	at	CWI	in	the	Netherlands.	The	first	
cut at the language didn’t get much traction in the real world of software development
though. It wasn’t until the turn of the millennium, the year 2000, when Python 2.0
came out and people began to use it in earnest.

Where the original Python language was a very simple interpreted language best
suited for UNIX scripting, the second version of the language was much more

The History and Installation of Python 3

robust. Supporting memory management and garbage collection, not to mention full
object-oriented programming (OOP) concepts like classes and inheritance, it made
writing complex tasks very easy. Much like Visual Basic did for Windows, Python
did for the early days of Linux, making it easy for non-developers to get quickly into
programming. Unlike Visual Basic, however, Python was well thought out, enough
so that advanced programming was done quickly. Because it was interpreted, the
development cycle for Python was rapid, and thus was adopted in many companies
for that reason alone.

As the language adoption increased, so did the packages, code libraries that
accomplished complex tasks. We’ll look at those later in the book, but Python today
is	used	for	such	diverse	tasks	as	writing	web	servers	and	doing	artificial	intelligence.	
It has excellent mathematical libraries that make it ideal for doing statistical work as
well. Because of its small footprint, Python is available on virtually every platform in
existence. With the second release came support for Unicode, giving it international
acceptance as well.

Python is a byte-code language, like Java or C#. That means that the interpreter
will compile your scripts into a simplistic byte code that can be quickly and easily
interpreted. This is good, in that it is fast and easy to use. At the same time, there is
a cost, as there always is. Python interprets things as it reaches them, meaning that
syntax errors aren’t caught at compile time, but at run-time.

The biggest reason that people gravitate to Python is its simplicity. Rather than some
languages	which	have	a	dozen	different	constructs	for	looping,	Python	has	but	two;	
the for statement and the while statement. A language like Java requires a dozen
lines	to	open	a	file	and	write	to	it,	Python	requires	three.	In	C#	or	C++,	you	have	to	
structure	your	code	in	a	specific	manner	that	the	compiler	accepts,	in	Python;	you	can	
implement	a	full	program	in	a	single	line	in	a	single	file.	Functional	programming	
used to require hideously complicated languages like Scala, which in turn required
the	Java	system;	Python	can	do	it	in	a	few	lines	of	code.	That’s	not	to	say	that	Python	
can replace all existing programming languages, it most certainly can’t. Being an
interpreted language, it is naturally slower than a compiled language. It lacks the
GUI libraries that many languages come with, and the security built into other byte-
code languages like C# or Java.

Oh,	and	finally,	the	fun	facts.	Python	isn’t	named	after	a	snake.	Rather,	it	is	named	
after the British comedy show Monty Python. It has become so popular that it is the de
facto standard programming language at Google, a somewhat large multi-national
software company. Python is open source, meaning that it isn’t controlled by a single
company or a single person. Anyone can contribute to the Python system, there is
a committee that approves language changes, but if you want your own personal
version, you can do so. Finally, in a study done by Ocado Technology, Python is a more
popular language than French in schools. Take that Napoleon!

4 Python for Professionals

Selecting a Python version
Jumping right in to the topic, as professionals do, let’s get started with Python. Of
course,	first	we	need	to	install	the	system	on	our	devices.	Python	will	run	on	almost	
anything, although it isn’t really recommended that you write code on your phone.
You can, though, which speaks to the simplicity of the language and the compactness
of the interpreter. Still, we’ll stick with writing code on a computer. For the purposes
of this book, it doesn’t matter whether you use a PC, a Mac, or a Linux box, the
language is exactly the same. The environment you choose to develop with may
vary, but the reality is, you can use any editor you want, either an integrated (IDE)
system or a simple text editor and command-line execution. Before we get to install
the system, we need to make a big decision. Should we use Python 2 or Python 3?

For the purposes of this book, we will be using Python 3.x. almost all of the code and
libraries	will	work	just	fine	in	the	latest	Python	2.7	release,	but	for	consistency	sake,	
we’ll choose Python 3.

Why not use 2.7?
Python 2 is coming to the end of its useful lifetime. That doesn’t mean that it will
go	away	anytime	soon;	there	are	literally	millions	of	lines	of	Python	code	out	there	
that	use	the	2.x	environments.	However,	the	Python	organization	(see:	https://www.
python.org/) has decided that January of 2020 will be the last date for which new
updates will be made to Python 2. It isn’t like the language will implode, or that all
of your scripts and applications will suddenly stop working, but there are regular
bug	fixes	and	language	feature	updates	that	will	no	longer	be	applied	to	the	Python	
2.x branch. For this reason, we will be using Python 3.x in this book, and you should
in your own code.

Migrating	from	Python	2.7	to	3.0	is	not	a	major	endeavor,	and	there	are	many	guides	
to doing so. The biggest obvious change, for those of you that worry about this sort
of	thing,	is	that	the	print	statement,	which	looked	like	this	in	Python	1.0	and	2.0:
print "something"

Will	be	converted	into	a	full-fledged	function:
print("something")

This change can be annoying if you get used to writing code without the parentheses.
In	addition,	it	works	fine	with	parentheses	in	Python	2.x,	so	you	might	as	well	just	
get used to it. To be honest, there was never a good reason to omit the parentheses
around	statements;	it	was	a	holdover	from	older	languages	like	BASIC.

The History and Installation of Python 5

Which 3.x to use?
Once we have made the decision to go with Python 3.x, the next question is which
number	 to	fill	 in	after	 the	x.	The	answer	 is	 that	 it	 really	doesn’t	matter.	As	of	 the	
writing	 of	 this	 book,	 Python	 3.7	 is	 the	most	 current	 version,	 but	 3.6	 is	 the	most	
commonly used version. There are a few packages out there that have not yet been
updated	to	support	some	changes	in	3.7,	so	a	number	of	people	are	not	yet	using	it.	
For our purposes, any version will do, as we are not going to get into the internals of
the	language	and	interpreter.	In	the	code,	it	may	assume	you	are	using	Python	3.7,	
but if you have a slightly older or newer version, don’t worry, it is almost certain that
the code here will work as advertised. If a newer version comes out after the book is
published, the code on the associated website will be updated to work with it, and
so you are golden.

Installing
All	versions	of	Python	can	be	found	on	the	main	Python	downloads	page	at:	https://
www.python.org/downloads/.	You	will	find	installers	here	for	all	major	operating	
systems and devices, as well. While the actual mechanics of installing Python vary
slightly depending on the system you are installing it on, the basics are always the
same.	The	distribution	is	available	in	several	flavors;	depending	on	your	familiarity	
with	each	you	can	choose	the	one	that	best	fits	your	skill	levels.	For	example,	all	of	
the	 operating	 systems	distribute	Python	 as	 a	 compressed	ZIP	file.	 For	Windows,	
you could select that and install it on your local environment, or you could use
the MSI installer that is native to Microsoft Windows. Likewise, for the Macintosh,
there	is	a	native	zip	file	as	well	as	a	native	Mac	installer	file	(PKGfile).	The	official	
Linux/UNIX distribution is done by a compressed tarball	file	(TGZ)	which	can	
be expanded on the system of your choice. Individual Linux distributions normally
come with Python pre-installed, although you can add your own.

A	 note	 about	 installing:	 Unlike	 many	 languages,	 Python	 permits	 you	 to	 install	
multiple versions on the same machine and choose between them when building
your projects. We’ll talk about this more in a little bit when we discuss virtual
environments.

For	 the	 Mac,	 the	 default	 OSX	 installation	 comes	 with	 Python	 2.7	 installed.	
Unfortunately,	this	version	is	not	only	old;	but	it	is	not	the	general	distribution	too.	
As a result, you will want to install a newer version whether or not your system
already contains Python.

In this case, we’ll go through the installation process for Windows and Mac, since
they	are	similar	but	slightly	different.

For	Mac	OSX,	first,	download	the	package	from	the	above	link	at	python.org.	While	
you can select any of the possible downloads, it is recommended that you use the

6			 Python for Professionals

64	bit	stable	installer.	The	Mac	is	moving	away	from	32-bit	programming,	as	most	
operating systems are, and it is simply easier and more forward-looking to work with
64-bit	code	now,	instead	of	porting	it	later.	Download	the	python-3.7.<revision>-
macosx<os-version>.pkg file	to	your	Mac	downloads	directory	(~/Downloads).
In	this	case:

Revision is the current released version of Python. As of the writing of this book, that
number is 4, it is most likely that this will change, possibly even to the minor version
(.7).	Python	is	normally	completely	backwardly	compatible,	so	this	shouldn’t	present	
a problem for you.

Launch the installer by either opening it in Mac Finder and double-clicking it, or
selecting Open in the download bar of your browser. You should see the installer
window pop up as shown in Figure 1.1:

Figure 1.1: The Python installer running on Mac OS10.9

The History and Installation of Python 7

Click Continue will lead you through the process of installation. Note that you will
be presented with a screen informing you that you absolutely, positively must read
the license agreement before continuing (Figure 1.2).

Figure 1.2: Read license nag screen

Scroll through the license screen using the scroll bar on the right and click agree, and
it will stop nagging at you. Your next selection is where to install it. Normally, unless
you are on a corporate machine where you cannot install things outside your own
personal directory, you can just accept the defaults here. Click on through until you
reach the Install button and click it, the installer will do its work and you will have
Python 3.x installed on your Macintosh.

For Windows, the process is very similar. Launch the installer in Windows as shown
in Figure 1.3. Click the install button. You may wish to customize your installation
to place the system where you want it on your computer. Depending on your

8 Python for Professionals

configuration,	you	may	be	asked	to	allow	the	installation	to	proceed.	Go	ahead	and	
do	so.	It	will	chug	along	for	a	while	and	then	finish:

Figure 1.3: The Windows installer.

In the Windows environment, this is all that is necessary. The installer will do the
rest of the work, and you can proceed with testing your installation.

Testing your installation
Python has no visual element, aside from an included package called IDLE (as in
Eric	 Idle,	 one	 of	 the	 stars	 of	Monty	 Python),	which	 differs	 from	 environment	 to	
environment. Instead, Python is run from the command line or shell. To verify that
your Python installation went swimmingly, open up a terminal (Mac) or command
window (Windows) and type "python"	and	hit	enter.	You	should	see	the	following:

Python 3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018, 05:52:31)

[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.57)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

To exit the Python interactive shell, type quit() and press return.

The History and Installation of Python 9

For the Windows world, click on the Start button and scroll down to the Python entry
(for	my	system,	it	was	Python	3.7,	but	yours	might	be	slightly	different).	It	should	
have a new entry below it. Notice that there is an entry called Python 3.x where x is
the version you installed. Click on that and you will see a new Command Prompt
launched with the entire environment variables set for the Windows world. You can
then follow the instructions above to verify that the system is working properly.

Congratulations! You have just installed Python on your system. You are well on
your way to becoming a Pythonista.

The Zen of Python
Python is more than simply a programming language, at least to those that use it.
It is a way of creating software that is simple and straightforward, leading to better
applications that are easier to maintain and debug. The Agile movement drew a
lot of its inspiration from the Python philosophies and many of the things we take
for granted in software development are here because of the push of the Python
community.

The philosophy of Python is so important that it is actually baked right into the
language.	To	see	it,	start	your	Python	interpreter	and	type	the	following:
import this

We will talk about the import statement and its usage a bit later, that’s not the point
here. This is an easter egg in the interpreter itself. If you’ve typed it correctly, hitting
return	should	show	you	the	following:

>> import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

10 Python for Professionals

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.

Although that way may not be obvious at first unless you're Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea -- let's do more of those!

Understanding	the	Zen	understands	what	Python	is	all	about.	Put	simply,	the	Zen	
can be broken down into three basic groups. First, keep it simple. Second, keep it
readable. Finally, if you can’t explain it in a one line comment, it is probably too
difficult	to	implement,	much	less	support.

Keeping it simple
In most programming languages, developers strive for elegance and efficiency.Python
will	never	be	the	most	efficient	language	in	the	world,	since	it	is	interpreted,	but	it	
is generally fast enough for anything but systems level programming. Elegance, to
the average developer, seems to have become synonymous with complicated. For
example,	in	Java,	we	might	write	something	like	this	to	use	the	streams	library:

Integer sum = list.stream().map(Employee::getSalary)

 .reduce(0, (Integer a, Integer b) -> Integer.sum(a, b));

To a Java programmer, something like this makes sense. If you aren’t a Java
programmer, this code is intended to sum up the values in a list of integers. We
aren’t going to get into serious Python programming in this chapter, but let’s take a
quick look at what the same code would look like in Python.

Assuming	one	has	a	list	of	integers:
a = [1,2,3]

And	you	wanted	to	sum	them,	you’d	write:
the_sum = sum(a)

Where sum is a Python function that accepts an iterable, that is a container of values
that can be iterated over, and returns the total of them. If you don’t happen to know
that	the	function	exists,	you	could	write:

sum = 0

for x in l:

 sum += x

The History and Installation of Python 11

Both approaches do the same thing, the second one is easier to understand if you
are	coming	from	another	programming	language	like	C++	or	Java.	The	first	is	more	
intuitive to the Python programmer. Both are simple and easy to read. Given a
choice, choose simplicity over elegance.

Keeping it readable
Many programming languages do not enforce any sort of constraints about how the
code	can	look.	For	example,	this	is	perfectly	valid	C++:
int x=0; for (int i=0;i<10;++i) x = x+i; printf("x = %d\n", x);

It works, simply because the only delimiter that C++ cares about is the semi-colon.
Any statement terminated by a semi-colon will be parsed as a separate bit of code,
no matter how cluttered it looks, or how hard it is to read.

Python	uses	a	different	approach	 to	 statements.	 Indentation	 is	 the	key	 to	Python	
code. Each block of code has to be indented to the same or a greater level than the
block above it. For example, to write an if	statement	in	Python,	we	use	the	following:
if (some_condition):

do_something

else:

do_something_else()

then_do_something_cool()

You can see from the above code clearly that the do_something line is only called if
the if statement above it evaluates to true, as the do_something_else line is only
called if the statement is false. The then_do_something_cool function is called
after the if is evaluated, no matter what the if statement evaluates to. By simply
glancing at the indentation level, we know exactly where a given piece of code falls.
Indentation is not only nice, it is required in Python.

Never is better than right now
This particular statement might seem odd if you are coming from another
programming language. Python encourages you to do things right, or not do them at
all. The language hasn’t changed radically over the years because the designers and
implementors of Python long ago decided that a feature that just made it easier wasn’t
necessary. Instead, they selected more generalized features, as we will see, that made
it possible to do things the way you need them done. When you are writing Python
code, don’t look for the coolest way to do it, select the one that will be the easiest for
people to understand and modify.

Most of the Python tools and extensions that are used today are written in Python.
The language did not require changes to make it more powerful, Python developers

12 Python for Professionals

managed that with the minimal language they were given. As we will see when we
discuss things like virtual environments and pip, Python allows for you to extend its
power without changing the language for everyone else.

Using pip
Not quite time to start coding yet, but it is time to explore a little of the environment.
Let’s begin with the pip command. The pip command is short-hand for package
installer for Python, and is used to download and install packages. Packages are
like libraries in C++ or Java, and are similar to the C# NuGet components. It extends
the language by adding new bits of functionality that is available to your code.

For some environments, pip is automatically installed. For others, such as Linux and
MacOS, you need to install it before you can use it. For Mac OSX, you install pip
using the easy_install	program:

sudo easy_install pip

The sudo part is necessary because pip becomes part of the system functionality,
available through /usr/bin, and thus requires elevated permissions to install. Once
you have pip installed, it is simple to use.

For right now, there are four commands that you should concern yourself with for
pip:

Command Arguments Purpose
install <package-list> Installs one or more packages from the

command line into the Python environment
uninstall <package-list> Removes one or more packages from the

command line from the Python environment
list n/a Lists all installed packages.
search Package-name To	find	a	given	package	given	a	full	or	partial	

name.

For example, running the pip list command in my current environment returns the
following	(this	list	is	partial,	and	will	vary	by	your	environment):

Package Version
asn1crypto 0.24.0
certifi 2019.6.16
cffi 1.11.5
chardet 3.0.4
Click 7.0
cryptography 2.4.2

The History and Installation of Python 13

decorator 4.4.0
EasyProcess 0.2.7
enum34 1.1.6
Flask 1.0.3
gevent 1.4.0
greenlet 0.4.15
idna 2.6

As you can see, the Python environment comes with a number of pre-installed
packages. The list above does show some that have been installed by hand on my
system. The name of the package is the name that is listed in the package repository.
For Python, the main package repository is called PyPI. This is short for Python
Package Index.	The	package	name	is	the	first	column,	and	the	currently	installed	
version of the package is the second column. All Python packages have versions
baked	into	them,	so	that	you	can	find	the	proper	version	for	the	version	of	Python	
and other packages you are using. We will discuss versioning in Chapter <TODO>
as	well	as	talking	about	how	you	can	define	the	exact	set	of	packages	and	versions	
that you need for a given project.

Suppose, for example, one of your fellow developers tells you about this wonderful
package called Flask. As we will see later on, Flask is a package that helps you
to	write	web	services.	We	could	search	for	the	flask	package	using	the	pip	search	
command:
pip search flask

The return from this command is a list of packages that match the search string,
including	those	in	which	the	name	is	contained	within	it.	Here	is	a	very	partial	list	
of what would be printed out.

pip search flask

Flask-SimpleMDE (0.3.0) - Flask-SimpleMDE - a Flask extension for

 SimpleMDE

Flask-Pure (0.5) - Flask-Pure - a Flask extension for Pure.
css

Flask-OrientDB (0.1) - A Flask extension for using OrientDB
with Flask

Flask-ElasticUtils (0.1.7) - ElasticUtils for Flask

Flask-Waitress (0.0.1) - Flask Waitress

flask-zs (0.0.17) - A helpers for Flask.

flask-ws (0.0.1.0) - Websocket for flask.

14 Python for Professionals

Flask-PubSub (0.1.0) - Flask-PubSub

flask-helloworld (1.0.0) - Flask Helloworld

sockjs-flask (0.3) - SockJs for Flask

Flask-Stripe (0.1.0) - Flask-Stripe

Flask-Quik (0.1.1) - Quik for Flask

Flask-BDEA (0.1.0) - Flask-BDEA

Flask-Helper (0.19) - Flask Helper

Flask-GripControl (0.0.1) - Flask GripControl

Flask-SRI (0.1.0) - Flask-SRI

As you can see, there are a lot of pieces to the Flask system. This is in keeping with
the keep it simple philosophy of Python. Someone wrote a good general purpose
package	 that	 did	 something.	 Other	 people	 came	 along	 and	 added	 very	 specific	
extensions to that package, but rather than force everyone to use a massive package
that contained much more than they might want, they created a separate package
to add to the base one. For example, the flask-ws package requires the basic Flask
package, and then adds functionality allowing you to use web sockets (internet
protocol connections) along with your Flask functionality.

The output from search is the package name, with the version in parentheses,
followed by a description of the package. The simplest way to install a package is to
use	the	basic	form	of	the	install	command:
pip install Flask

This command will install the current version of the base Flask library. If Flask has
multiple versions, the latest will be used. What if you don’t want the latest version?
The	pip	command	supports	this	variant:
pip install Flask==1.04

Where 1.04 is	the	specific	version	you	want.	It	even	allows	you	to	do	this:
pip install Flask>=1.04

Where 1.04 is the minimum version you want.

What if you have the package installed, but what to upgrade to a more current
version? Typing pip install package will not do anything if the package is already
installed. Adding the –upgrade	 flag	 to	 the	 command	 pip install –upgrade
package however, will upgrade the package in place for all users.

Likewise, you can remove packages that are installed. This can free up space, as well
as removing packages that might be interfering with things, such as the oddball case
where you have a local package of the same name as one installed via pip.
pip uninstall Flask

The History and Installation of Python 15

This command will remove the Flask package from the global environment.

Another interesting thing about the pip command, the creators of Python, and pip,
understood that using Python in a corporate environment and in build environments
means that you don’t always have permission to install to the centralized location
for packages. For these cases, the –user	flag	will	 install	 the	package	only	 for	 the	
current user.

Finally, we come to the subject of dependencies. It is not at all uncommon, as seen in
the Flask case above, for a given package to rely on having other packages already
installed. The pip command automatically handles dependent packages by installing
all	of	the	dependencies	first.	This	is	done	via	the	information	that	is	provided	in	the	
package	definition,	which	will	be	discussed	later	in	the	book.

Oh, one last thing about pip. It is written in Python! You can prove this to yourself
by	running	this	command:
python –m pip

We’ll talk about what this means, but essentially it means run the pip module through
the Python interpreter. Any module can be run directly if it has a main entry point.

Using virtual environments
Our next non-programming programming topic is that of a unique Pythonesque
concept, virtual environments. A virtual environment is a self-contained sandbox
of sorts for a Python project. It is easier to explain why the thing exists than how it
works, so let’s just talk about that. Virtual environments might sound like the latest
in game technology, but they are anything but.

One	of	the	biggest	problems	in	software	development	is	collisions	between	different	
systems. In the Windows world, we called it DLL Hell, in which you had multiple
versions of a dynamic link library. In the Mac world, this wasn’t an issue until OSX,
in which everything was moved into a centralized area, causing problems with
version collisions.

Let’s say that you are developing a brand new version of your application. This
application, written in Python, requires a certain package. That package, let’s called
it Foo, was created just for your application. It was version 1.0 of the package and did
things	in	a	very	specific	way.	Sadly,	the	developers	who	wrote	Foo	took	it	with	them	
when	they	got	fired	from	the	company	and	came	out	with	a	version	2.0	that	isn’t	at	
all backwardly compatible. Even more sadly, your new application requires version
2.0 of the Foo package to run, since it has all kinds of sparkly new functionality. In
the majority of programming languages that used any sort of centralized library
system, you would be out of luck. There would be no way to have both versions of
the package installed on your system. This is the problem that virtual environments
solve.

16			 Python for Professionals

Like pip, virtual environments are written in Python. You can create one using the
venv package (there are others, the virtual environment structure is standard, anyone
can	create	amodule	to	implement	it).	Where	Python	is	different	from	other	systems	
is	that	not	only	can	you	define	the	versions	of	packages,	even	system	packages	that	
you	want	 for	 your	 project,	 you	 can	 also	 define	 exactly	what	 versions	 of	 Python	
and its tools you want to use for your project. You can even have multiple virtual
environments for a single project, and switch between them.

It	is	a	standard	process	to	define	a	virtual	environment	for	each	and	every	project	
you create. The overhead is fairly minimal, and you gain a lot of safety and control.
If someone accidentally upgrades your Python interpreter as part of a corporate-
wide	initiative,	it	will	not	affect	your	individual	projects,	since	they	refer	to	a	specific	
version of Python and packages.

The reason that virtual environments came to be is due to one of the rare poor
choices by Python’s designers. There are two types of packages that can be installed
for Python, system packages and site packages. System packages are never a big
problem because they are part of the release version and will always work with a
given release of the Python interpreter. You can re-download a system package for
a given version and be assured that it will continue to work without interruption.

Site packages, on the other hand, are developed and distributed by third-party
developers. The package we discussed above, Flask, is an example of a site package.
While a system package is always guaranteed to be compatible with the Python
version it is written for, there are no such guarantees for site packages. As in our
example	above,	you	might	have	three	different	versions	of	Flask	for	three	different	
applications that you are maintaining. The poor choice made by the designers was
that site packages are all, by default, stored in the same place and without regard for
versioning. Let’s say that we have two projects that use a site package, called Package
A. One of these projects uses Package A version 1.0, while the second project uses
version 2.0 If you install version 2.0 of the package, it will overwrite all (or worse,
part) of version 1.0. This clearly is not an optimal solution.

Site	packages	are	normally	stored	in	a	specific	single	directory,	which	is	pointed	to	
by an environment variable in the operating system. Python uses that environment
variable to determine where to load its site packages. The virtual environment resets
that environment variable, but only for the lifetime of the virtual environment. This
is confusing, because the notion of overriding the environment is confusing. It is
easier to show you how all this works from the user perspective.

For the moment, we are going to assume that our project is on the Mac, and that it exists
in the ~/projects/project_1 directory. To create a new virtual environment
within the directory, we’d issue the following command in the Terminal (on Mac, a
Command	Prompt	in	Windows):
cd ~/projects/project_1
python3 –m venv env

The History and Installation of Python 17

This command loads the venv module into the Python interpreter, and passes along
the argument env to that module. It will create a new subdirectory within the current
directory (which we have changed to be projects/project1) called env. Note that
since	we	are	using	Python	3.6,	we	use	the	"python3" command to run it. On the Mac,
using the python	command	will	launch	the	default	system	version,	which	is	2.7.	You	
cannot remove the system version on Macs which is annoying.

If we look at the contents of the env	directory,	we	will	see	the	following	structure:

├── bin

├── activate

├── activate.csh

├── activate.fish

├── easy_install

├── easy_install-3.6

├── pip

├── pip

├── pip3.6│

├── python -> python3.6

├── python3 -> python3.6

└── python3.6 ->

 /Library/Frameworks/Python.framework/Versions/3.5/bin/python3.6

├── include

├── lib

 └── python3.6

 └── site-packages

└── pyvenv.cfg

The bin directory contains a bunch of the applications that are used by Python, like
pip and easy_install, as well as links to the actual Python executables. In this
case, the python3	 executable	 is	 pointing	 at	 the	 system	python3.6	 executable.	We	
could modify this to point at anything we want, and venv actually gives us a way
to do this. For example, if you wanted to create a virtual environment using Python
3.7,	you’d	run:
python –m venv --python=/usr/bin/python2.6 venv2_6

This command would create a structure virtually identical to the one above, but in
place	of	Python	3.6,	it	would	be	using	version	2.6.	Normally,	you	wouldn’t	switch	
back and forth between versions 2.x and 3.x, but you can.

18 Python for Professionals

Once you have created the virtual environment, you have to activate it to use it. To
do	this,	there	is	a	shell	script	file	(batch	file	in	Windows)	called	activate,	in	the	bin
directory.	In	Linux	or	on	macOSX,	you’d	enter	the	command:
source bin/activate

For Windows, you’d run bin/Scripts/activate.bat, otherwise the process is the
same.

Once you run this command, you will see the following change to your Terminal or
Command	Prompt:
(env) my-machine:bin my-user$

Notice the (env) part of the Command Prompt, which indicates that we are running
inside a virtual environment. Normally, on the Mac, if I were to type python, I will
get	the	default	2.7	installation	versions.	Within	the	virtual	environment,	however,	
typing	python	gives	me:

Python 3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018, 05:52:31)

[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.57)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

The important directory here, though, isn’t the bin one but rather the lib directory
and the site-packages directory beneath it. Thanks to the wonders of environment
variables and links, this is where any packages that you install once the virtual
environment is activated will be placed. Since each virtual environment has its own
site-packages directory, each time you install things for a given environment, you
will get another copy of it. This isn’t wonderful for disk space, but it is for detangling
the mess that is site package collision.

It is important to note that only after a virtual environment is created and activated
will site packages be stored in it locally. Before that, they will be installed globally.
Because Python will follow the PYTHONPATH	environment	variable	to	find	its	site-
packages, this means that within the environment, site-packages in the virtual
environment	are	found	first,	while	outside	of	 it,	 the	global	site-package will be
the only one found. We’ll talk a little more about this when we discuss imports and
modules.

Python IDE’s and command line work
One	of	the	nicest	things	about	working	with	Python	is	that	there	are	no	specific	tools	
that you absolutely have to use. You can choose your own editors, your own source
code control, and your own reporting mechanisms. The only thing that is required is
that you have a version of Python on your system. Most developers, however, prefer
one of two approaches to software development.

The History and Installation of Python 19

The	first	type	of	developer	is	what	is	often	referred	to	as	the	bare metal sort. These are
the developers that don’t want any sort of fancy integrated system. They have the
source code editors that they have been using forever. Most of them work directly
from the command line, and look at the output from the compiler or interpreter
and then go back into those editors in order to make changes before running again.
These developers are very comfortable with the output of their tools and wouldn’t
change	anything	for	the	world.	Python	works	just	fine	for	people	like	this	group.

The second group of developers prefers a modicum of hand holding, using integrated
environments that do a lot of the work for you. These integrated environments make
it simple to create new projects, setting up the environments and virtual settings
automatically. They remember your favorite settings for compiling and running
code,	and	show	errors	in	a	list	that	can	be	used	to	go	directly	to	the	offending	line.

For	the	first	group,	you	already	know	what	you	want	to	do.	The	process	for	creating	
a new Python project is simple. Create a new sub-directory named after your project.
Create a new virtual environment by running the python -m venv env command
from	the	command	line.	Create	a	new	Python	file	within	that	directory	using	your	
favorite	text	editor.	Syntax	check	and	run	the	file	using	the	command	python my-
file.py, where my-file.py	is	the	name	of	your	newly	created	file.	Look	at	the	output,	
make any changes, and continue.

For the second group, things are a little more interesting. There are numerous
integrated	environments	available	for	Python.	Some	of	them	are	free	of	charge;	some	
of them are commercial and cost money. As of the writing of this book, the two most
popular integrated development environments (IDEs) are PyCharm, which was
created by Jet Brains software, and Visual Code, which was created by Microsoft.
Both have their advantages and disadvantages.

PyCharm is solely for the development of Python applications, although it is based
on the same core code that is used for IntelliJ for Java and Scala, as well as other
languages like C++ (that one is called CLion). PyCharm is distributed in two forms,
a community edition that is open-source and free, and a more extensive professional
edition. The community edition, which can be downloaded from https://www.
jetbrains.com/pycharm/download/ can be seen in Figure 1.4. You can see that it
has sections to edit code, output from your running Python script, and a Project
tree	that	allows	you	to	see	all	of	 the	files	 in	your	project	 in	one	go.	PyCharm	has	
become something of a standard in Python development in the corporate world,

20 Python for Professionals

thanks mostly to the integration with third party tools like source control and build
systems. PyCharm is available on Windows, Mac, and many Linux distributions.

Figure 1.4: PyCharm IDE

Visual Code, on the other hand, is a more general purpose code editor that can be
extended	and	configured	to	use	in	most	development	languages.	Visual	Code	is	a	
stripped down version of the popular Visual Studio development environment from
Microsoft, but it has been re-written to run on virtually any operating system. The
Visual	Code	environment	 is	almost	 infinitely	extensible	and	has	plug-in	modules	
that allow you to connect to source code control systems, to build systems, to compile
and run almost every language known to man. It has extensions that will allow you
to syntax check your Python code, run it, debug it, and anything else you might
imagine. Visual Code is freely available on most platforms, including Windows, Mac

The History and Installation of Python 21

and Linux. Figure 1.5 shows	the	Visual	Code	environment	with	a	new	Python	file	
created with code in it.

Figure 1.5: The Visual Code IDE

We	will	not	specify	an	editor	or	IDE	in	this	book;	you	are	free	to	use	anything	you	
like. Individual chapter screen shots may show a particular IDE or editor, simply to
illustrate what the code looks like in a nicely formatted and colored manner, but that
does not indicate that you are in any way obligated to use that editor. Python is all
about freedom for the developer, making it as easy as possible, while not restricting
you in anything but syntax.

Hello world
No programming book worth its salt would be complete without an introductory
Hello world exercise that shows you the simplest possible form of the language in a
working example. In the Agile world, we call this a Minimal Viable Product, and
for Python, it honestly could not be any simpler.

22 Python for Professionals

To	create	an	MVP	for	our	Python	Hello	World	program,	we	first	create	a	new	file.	
In	this	example,	the	file	is	called	hello_world.py, but you can call it anything you
like. The extension.py	is	the	default	for	Python	files,	but	it	isn’t	a	real	requirement.	
If you want to call it hello_world.py3,	to	indicate	that	it	is	a	Python	3.6	file,	that’s	
up	to	you.	The	Python	interpreter	doesn’t	care	what	the	file	is	called,	or	what	the	
extension is, it is simply a convention that is used. If you call it something else, just
substitute that in for the remainder of the exercise.

Within	your	new	file,	place	the	following	line:
print("Hello world")

The information within the quotation marks is unimportant, it is a literal string, and
the interpreter will just display whatever you put there. What does matter is that
you enclose the literal string in parentheses. If you have previously used Python 2.x,
this	was	not	mandatory;	this	is	a	change	for	Python	3.x.	Also	important	is	that	the	
print statement be in lowercase. Python is case sensitive. Finally, there should be no
spaces	before	the	print	statement	on	a	line	in	your	file.	Python	is	very	sensitive	to	
indentation, as we will see in the following chapters.

Run	 your	 first	 Python	 program	 by	 typing	 the	 following	 at	 a	 Command	 Prompt	
(Windows)	or	Terminal	(Mac),	or	Shell	window	(Linux):
python3 hello_world.py

If	all	goes	well,	you	should	see	the	disk	spin	a	bit	and	finally	spit	out:
Hello world

On Terminal immediately below your command. The whole session should look
something	like	this:
python3 test.py

Hello world

Congratulations!	You	have	written	your	first	Python	program!

By the way, if something goes wrong, such as seeing an error like python3 not
found, verify that the path to the Python application is in your path. If you installed
Python from this terminal window, it may not have picked up changes to your path.
The easiest solution is to open a new terminal window and try it again.

Conclusion
In this chapter, you learned how to install the Python system and how to select a
specific	version	of	it	to	write	your	application	code.	You	should	have	learned	about	
pip, the Python package installer, as well as the IDE’s available and the immediate
mode	 interpreter.	Hopefully,	you	picked	up	 some	of	 the	principles	 that	make	up	
Python development, and some of the rules that Pythonistas use when writing code.

The History and Installation of Python 23

In our next chapter we’ll begin writing real code, introducing you to the types and
constructs that make up the Python programming language.

Questions
1.	 How	long	has	Python	been	in	existence?

2. What are the two major versions of Python available?

3. What is a virtual environment?

4.	 How	do	you	run	a	Python	script	file	from	the	command	line?

Chapter 2
Python Types

and
Constructs

Introduction
Every discussion of programming begins with looking at the types of values that
you can store, along with the ways in which you can work with those variables.
Python, and this book, is no exception to the rule. In this chapter, we'll start out by
looking at the various types of data that can be used in Python, and how you can use
them. We'll explore how to convert from one to another, how to build enumerable
types such as lists and sets, and how Python expects things to be created.

Data types, of course, are the building blocks that make up a language. Surprisingly,
Python has fewer of them than most, because it does much more with them.

Structure
•	 Data	types
•	 Iterators	and	iterables
•	 Classes	and	objects
•	 Booleans	and	truthyness

26			 Python for Professionals

Objectives
In this chapter, you will learn about the various data types in Python, from simple
types	 like	 integers	 and	floats	 to	more	 complex	 types	 like	 classes	 and	 collections.	
You will explore the concept of iterators and iterables, of booleans and truthyness, a
truly	Pythonesque	concept.	We	will	talk	a	little	about	complex	numbers,	a	difficult	
math concept made simple in Python. Finally, we'll talk about that standard of
programming, commenting.

Integers
The most basic numeric type is the integer. Integers are whole numbers with no
fractional portion. In most languages, there are numerous types of integers,
representing very small numbers, like bytes, up to very large numbers, like long
integers, or even long long values. Instead, Python uses a single integer type, which
is	fixed	precision,	allowing	it	to	store	any	value	up	to	available	machine	memory.	
That is to say, we can have a single variable, myInt,	which	can	be	used	to	store:
myInt = 1

myInt = 123456789012345678901234567899

We	can	show	this	using	the	Python	interactive	tool:
>>> myInt = 123456789012345678901234567899

>>> print(myInt)

123456789012345678901234567899

>>> myInt = 12345678901234567890123456789919823198273198273198273982739
812739871298371298371298379812739812739812739812739817239871298371298372
913

>>> print(myInt)

123456789012345678901234567899198231982731982731982739827398127398712983
71298371298379812739812739812739812739817239871298371298372913

As you can see, there really are no limits for integer values. There are limits on things
like the maximum number of entries in an enumerable, this value can be discovered
by using the sys.maxsize constant. To get at Python constants like this, we use the
import	statement:
import sys

print(sys.maxsize)

Running	this	on	a	Mac	gives	the	following	output:

9223372036854775807

Python Types and Constructs 27

As you can see this is a pretty big number. Unlike Java, or C++, there is no concern
about	converting	smaller	integer	value	variables	into	larger	ones,	or	vice	versa:
i=1

i=42000000000000

As you can see, it works the same way either way.

As with all languages, integers can be added, multiplied, divided and subtracted,
and you will mostly get what you expect. Using the interactive interpreter we can
see	this:
>>> x = 1

>>> y = 2

>>> print(x+y)

3

>>> print(y-x)

1

>>> print(x*y)

2

There is a single exception, however, and that is in division.
>>> print(x/y)

0.5

Dividing two integers in most languages will give you the natural integer result. For
example, dividing 1 by 2 in C++ or Java will give you 0, since the result is a fraction
less than one, and fractions cannot be represented in integer format. If you want to
do	integer	division,	such	as	finding	out	whether	or	not	a	number	is	odd,	use	the	//	
operator:
>>> print(x//y)

0

The // operator is also called the floor division operator. It works in conjunction
with the modulus operator, %, which returns the remainder of the division of two
integers:
>>> x = 42

>>> y = 5

>>> print(x%y)

2

>>> print(x//y)

8

28 Python for Professionals

Finally, we have the power operator, which raises a given number to a given power.
In math, we might write 2^5, to indicate the value 2 multiplied by itself 5	times:
2^5 = 2*2*2*2*2 = 32

In	Python,	we	would	write	this	as:
>>> print(2**5)

32

Naturally,	Python	supports	assignment.	You	can	assign	a	constant	to	a	variable:
x = 1

Or	you	can	assign	another	variable	to	a	given	variable:
y= 1

x= y

print(x)

print(y)

If you run this in the interactive interpreter, you will see that both x and y have the
value of 1.

In addition to the simple operations Python also supports short-hand notation for
most of the operators. For example, we can use the += operator to add a value to a
given	variable:
>>> x = 10

>>> x += 5

>>> print(x)

15

In addition, there are versions of the short-hand operators for subtraction (-=),
division (/=), multiplication (*=),	power,	modulus,	and	floor	division	(**=, %=, and
//=	respectively):
>>> x = 10

>>> x **= 2

>>> print(x)

100

>>> x /= 10

>>> print(x)

10

>>> x //= 3

>>> print(x)

Python Types and Constructs 29

3

>>> x %= 2

>>> print(x)

1

If you happen to read older Python books, or online documentation, you may see
a	type	called	long,	which	represents	an	arbitrary	fixed	point	value.	The	long	value	
has been subsumed into the integer type in Python 3, although you can still use it if
you	want	to:
x=long(10000)

Aside from the creation statement, the long type is simply an integer under the
covers and can be treated like one using all operators listed above. Finally, there is a
function	to	convert	a	value	to	integers,	called	int.	You	can	use	it	with	floating	point	
numbers	like	this:
>>> x=int(5.6)

>>> print(x)

5

The int()	function	can	also	be	used	to	convert	a	string	to	an	integer:
>>> print(int('5'))

5

The	function,	however,	cannot	be	used	with	non-integer	strings:
>>> print(int('5.0'))

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ValueError: invalid literal for int() with base 10: '5.0'

Floating point numbers
A	float	point	number	is	much	like	an	integer	in	Python,	with	the	exception	of	using	
floating	point	math,	rather	than	integer	math.	That	is,	dividing	10 by 0 gives you 2.5
as	a	floating	point	value.	Any	integer	value	automatically	becomes	a	floating	point	
number if the decimal point is included. We can verify this using the built-in Python
type	function,	which	tells	you	what	type	of	value	something	is:
>>> x = 1

>>> print(type(x))

<type 'int'>

>>> x = 1.0

30 Python for Professionals

>>> print(type(x))

<type 'float'>

Floating point numbers, of course, can be added together, multiplied together,
divided by each other and so on and so forth. In addition, if you use an integer value
in any of the operations, it will be promoted	to	a	float	and	the	result	will	be	a	floating	
point	value:
>>> print(x * 5)

5.0

The usual operators (+, -, +=, -=,	and	so	forth)	can	be	used	with	floating	point	
numbers, which is no surprise. What might be a surprise is that you can use the
modulus	operator	with	floating	point	number:
>>> x = 5.0

>>> x %= 3

>>> print(x)

2.0

This isn't something you see in a lot of languages, although the mathematical world
has accepted functions like this for all time. This is another part of the 'no surprises'
aspect of Python, things generally work the way you expect them to, even when you
aren't thinking about it.

Another	thing	that	might	surprise	you	is	that	floating	point	numbers	can	be	in	both	
parts of exponential equations. For example, I can raise a number to the one-half
power	(which	happens	to	be	the	square	root):

>>> print(25**0.5)
5.0

Likewise,	you	can	raise	a	floating	point	number	to	an	exponential	power:
>>> print(2.5**2)

6.25

It is probably worth mentioning, at this point, that Python follows the standard order
of precedence for operators, sometimes called PEMDAS (Parentheses, Exponents,
Multiplication, Division, Addition, and Subtraction). So,	if	you	write	this:
>>> x = 5*2**3

You might expect x to be 1000, since 5*2 is 10, and 10 raised to the third power is
1000.	However,	when	we	apply	the	order	of	precedence,	it	is	as	if	we	re-wrote	this	
equation	as:

x=5*(2**3)

Python Types and Constructs 31

Raising 2 to the third power gives us 8, and multiplying that by 5 gives us the
expected	answer	of	40:
>>> print(x)

40

There is no penalty to putting parentheses around expressions if you aren't sure of
what	the	order	is,	so	feel	free	to	do	so.	For	example:
>>> 5/4-4

-3

If you re-wrote this as 5/(4-4), you'd get ..
Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ZeroDivisionError: integer division or modulo by zero

Python is kind enough to point out to us that we tried to divide by zero and generates
an error, called an exception. We'll learn all about exceptions and exception handling
later in the book.

Finally, like integers, there is a float function that will convert given inputs into
floating	point	values	to	be	stored	in	variables:
>>> x=float(1)

>>> print(x)

1.0

>>> x=float("1")

>>> print(x)

1.0

>>> x=float("1.5")

>>> print(x)

1.5

Unlike	the	int	function,	float	does	accept	integers	as	well	as	floating	points	in	strings.

Boolean
In Python, as with virtually all programming languages, the notion of Boolean
values means true or false. Python does have an actual Boolean type, which you can
assign True or False to. Note that in Python, unlike many languages, the values
are	actually	capitalized.	Thus,	you	can	write:

x = True

32 Python for Professionals

But not:

x = true

Writing the former will be accepted by the interpreter, writing the latter will generate
an error message.

You don't have to use the True and False values, if you really don't want to. As we
will see in just a little bit, the Python notion of truthy-ness and falsy-ness is extended
to handle numeric and string values, not to mention the infamous None.

To	get	slightly	ahead	of	ourselves,	but	to	get	an	idea	of	how	Python	handles	Booleans:
>>> x = True

>>> print(x)

True

>>> if x:

... print("Yes")

... else:

... print("no")

Don't worry if you don't completely understand this block, it is a conditional
statement in Python that uses the shorthand for True as if x. The output from this
block	is:
Yes

Complex values
It is an odd concept, but Python natively supports complex numbers. If you don't
know what a complex number is, chances are you have never needed to use one.
This wouldn't be terribly surprising, as complex numbers are an odd branch of math.
Complex numbers have two parts to them, a real part and an imaginary part.

If you don't have any need to work with complex numbers, feel free to skip this
section. If you do use them, such as in electronics work, you should continue reading.
Most of the work in complex numbers are straightforward. You create one using the
complex()	operator:

>>> x=complex(2,3)

>>> print(x)

(2+3j)

>>> y=complex(3,4)

>>> print(y)

Python Types and Constructs 33

(3+4j)

>>> print(x+y)

(5+7j)

Likewise, one can add, subtract, multiply and divide complex numbers, in accordance
with the rules of math. Also in accordance with math, you can multiply and divide a
complex	number	by	a	constant	value.	For	example:
>>> x=complex(1.0, 2.0)

>>> print(x)

(1+2j)

>>> x *= 2

>>> print(x)

(2+4j)

>>> print(x/2)

(1+2j)

In	a	nice	little	touch,	Python	also	allows	you	to	define	a	complex	number	without	
using the complex() operator, you can write it as if you were writing a normal math
equation:
>>> x = 3+4j

>>> print(x)

(3+4j)

You can extract the real and imaginary portions of a complex number using the .real
and .imag	properties	of	the	complex	number:

>>> x = 3+5j

>>> print(x.real)

3.0

>>> print(x.imag)

5.0

If you are accustomed to languages like C++ or Java, where you must implement
your own complex variable type, or use someone else's, it is certainly nice to see it
done for you with all of the proper work and testing done before it ever gets to you.

Variable naming
In	 some	 languages,	 naming	 of	 variables	 is	 a	 hotly	 contested	 thing.	 	 Hungarian	
naming	conventions,	extended	naming,	naming	for	different	variables	in	functions	

34 Python for Professionals

or classes instead of in global code, all of these things become religious wars in the
programming community. Python is a lot less hung up on such things. There are,
however, a few conventions and rules that not only make sense, they actually have
to be followed.

Python	has	the	following	absolute	rules	for	variables:
•	 Variable	names	are	case	sensitive.	Thus	x	and	X	are	different	variables
•	 The	first	character	in	a	Python	variable	name	must	be	a	letter.	Once	past	the	

first	letter,	you	can	use	any	combination	of	letters,	upper	or	lower	case,	as	
well	as	numbers,	or	the	underscore	character.	A	note	here:	there	are	special	
cases where a variable should begin with an underscore.

•	 Variable	names	can	be	almost	any	length,	but	a	single	line	in	Python	should	
only	be	79	characters	or	less,	so	that's	the	practical	limit

•	 Variables	may	not	be	reserved	words	like	if,	for,	range,	or	while.
In	terms	of	recommended	naming	conventions:
•	 Python	 programmers	 lean	 toward	 meaningful	 names,	 instead	 of	 short	

meaningless ones.
•	 Variables	should	be	in	snake	case	(that	is,	this_is_a_variable) rather than

Camel case thisIsAVariable, something more common to Java.
•	 Variable	naming	should	be	consistent	across	modules.	If	you	call	something	

water_temperature, then use water_clarity in the same module, rather
than clarity.

Some notes on variables in Python.
•	 There	 is	 no	 declaration	 of	 variables	 in	 Python,	 nor	 any	 type	 definition.	A	

variable exists from the point at which it is assigned a value.
•	 Variables	can	be	chained	together	in	assignments:

 a = b = c = 0

 f1 = f2 = f3 = 0.0

 nil_value = None

•	 The	special	value	None indicates a variable without a value, it is akin to the
NULL type in C++ or null in Java.

Strings
The next logical data type to consider is the string. Strings are one of the most
important data types in any programming language, since it is via the string that we
normally communicate with the user. Prompts to input, headers for outputs, error
messages and generalized reports all require the string type. A string, of course,
is simply a collection of characters. In many ways, strings in Python really are

Python Types and Constructs 35

collections,	which	we	will	 talk	about	next.	However,	 they	also	have	a	few	special	
considerations that make them worth talking about individually.

Probably the most important aspect of strings to the Python programmer is that they
are immutable. Immutable, if you are unfamiliar with the term, means that they
cannot be changed. In many languages, the string type is mutable. For example, in
C++,	we	can	do	something	like	this:
std::string my_string;

my_string = "This is a test";

my_string[2] = 'a';

Which	makes	the	final	version	of	my_string equal to Thas is a test. This is perfectly
fine	and	the	compiler	will	not	complain	in	the	least.	In	C#	and	Java,	however,	trying	
to do this will result in an error which explains that the operator[] is read-only.
Not terribly useful, but it is accurate. These languages support immutable strings.
To see what we are talking about, let's look at a Python string.
>> s = "Hello world"

>>> s[1] = 'a'

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'str' object does not support item assignment

As you can see, we can't assign to a single character position of a Python string. Does
that mean we can't change them? No, that's not the case at all. Python has what is
called slicing. In most languages, this is called a substring, but in Python it is a bit
more	powerful.	The	slicing	operator	in	Python	looks	like	this:

s = "Hello world"

print(s[2]) -- This prints 'l'

But	we	can	rebuild	a	string	from	slices:

s=s[:1]+'k'+s[2:]

>>> print(s)

Hkllo world

Note that we have modified the string s. Of course, we've actually done nothing of
the sort, because strings are immutable. Instead, we have created a brand new string
out of the pieces of the original and a new character, and then assigned that string to
the original variable.

The slicing operator, though, has a lot more power than that. As you can see in the
above	example,	you	aren't	required	to	fill	in	the	start	and	end	arguments,	letting	us	
use [:2] which means 'start at the beginning of the string and go until the second

36			 Python for Professionals

position'. That's just the start. There's an optional third parameter that allows you to
specify	a	step	count.	For	example,	if	we	do	this:
>>> s = "Hello world"

>>> print(s[0:len(s):2])

The	output	from	this	command	looks	like	this:
Hlowrd

Note that the len() operator works with any collection, it returns the number of
elements in the collection. A string is just a collection of characters, so the number of
elements is the number of characters in the string.

There is, of course, a str	operator	that	will	convert	something	to	a	string:

>>> x = 1

>>> s = str(x)

>>> print(s)

1

>>> print(len(s))

1

As you can see, the result of the str() is a string. If you don't believe it, we can
verify	this	in	two	ways.	First,	we	can	check	the	type	of	the	variable:

>>> print(type(s))

<class 'str'>

Secondly,	we	can	verify	that	you	can't	find	the	length	of	an	int:
>>> print(len(x))

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: object of type 'int' has no len()

Finding substrings
A string is a kind of collection, and collections need the ability to search for things.
Python supports searching strings in two ways. First, there is a method on the string
object called find. Find is much like the C# or Java string index operator, it returns the
position	of	the	string	you	supply	within	the	string	you	want	to	search.	For	example:

s = "This is a test"

>>> print(s.find('is'))

2

Python Types and Constructs 37

The	find	method	indicates	the	index,	zero	based,	where	it	find	the	first	occurrence	of	
a	string.	If	there	are	multiple	strings	that	match,	only	the	first	will	be	returned.	If	no	
substring requested could be found, the result is –1, which is also much like its other
language counterparts.
>>> print(s.find('xyzzy'))

-1

This is not really a Pythonic way of doing things, however, particularly if all you
want to know is whether or not the substring exists within the parent. Imagine, for
example, that we are parsing some sort of known stock ticker line and all we want
to know is whether or not it contains the stock symbol we are looking for. In this
example, we'll imagine that the stock symbol is for Apple Computers, AAPL.

We	could	do	this:
if s.find('AAPL') != -1:

 do_something_with_the_ticker_line(s)

This is complicated though, and fraught with error potential. What if someone
decides down the line to change the signal value returned to None? This would
actually make a great deal of sense. We don't want to know where it is in the string,
just	whether	or	not	it	is	there.	For	this,	Python	provides	the	'in'	operator:
>>> s = 'Stock Symbol: AAPL|Ticker Value: 123.45|Volume: 123123123'

>>> print ('AAPL' in s)

True

Just	to	show	you	that	it	works	properly,	consider	the	following:
>>> s = 'Stock Symbol: AAPL|Ticker Value: 123.45|Volume: 123123123'

>>> print ('AAPL' in s)

True

The in operator works for all sorts of collections, including strings, lists and
dictionaries, which we will see shortly. You can also use the not in operator to see
if	a	string	is	not	contained	within	a	parent	string:
>>> print('IBM' in s)

False

>>> print('IBM' not in s)

True

This approach is not only more readable, but less error prone and thus more Pythonic.
As you see, Python is all about making things easier for developers now and in the
future.

38 Python for Professionals

Multiple line strings
As you've seen, one of the tenets of Python is to keep lines readable. In fact, one of
the	Python	principles	is	to	never	have	a	line	more	than	79	characters.	This	limitation,	
by the way, comes from the good old days of terminals, which could only display 80
characters across. While modern displays with high resolution monitors can show
many more characters than that, it is still a good idea not to make your lines overly
long, since people don't always remember to scroll to the right to see the whole
thing.

There is no error generated if you create a line more than 80 characters, as
there might have been in COBOL or FORTRAN, it is simply frowned upon.
Good Python checkers will issue a warning if you have a line that extends
beyond the limit.

Sadly, the modern world always intrudes on the best laid plans of programmers. We
often	have	error	messages	that	are	more	than	79	characters.	How	are	we	to	put	these	
into	our	code?	We	could	do	something	clever,	and	store	them	in	a	file,	only	to	read	
them and display them, but that causes other issues. Instead, we can create multiple
line	strings.	There	are	two	ways	to	do	this:
>>> s = "This is a test of the emergency broadcast system" \

... " and it will display an emergency if you put a line of text" \

... " that is more than 80 characters on a single line"

>>> print(s)

This is a test of the emergency broadcast system and it will display an
emergency if you put a line of text that is more than 80 characters on a
single line

The backslash character \ tells the Python interpreter that you are continuing a line.
Normally, a single statement must be contained in a single line, aside from blocks,
which	we	have	briefly	looked	at	in	if	statements.

There's another way to do it, however, which is easier to read and therefore considered
more	Pythonic.	The	triple	quote	construct	looks	like	this:
>>> s1 = """ This is a test of the emergency broadcast system.

... and it will display an emergency if you put a line of text

... that is more than 80 characters on a single line

... """

>>> print(s1)

 This is a test of the emergency broadcast system.

 and it will display an emergency if you put a line of text

Python Types and Constructs 39

 that is more than 80 characters on a single line

As you can see, the triple quote is easier to read than the backslash and is generally
preferred.

Concatenating
It is not at all uncommon to need to concatenate two strings together, for output
purposes, or to build a message for logging, or simply to check against some other
string.	Python	uses	the	natural	+	symbol	to	concatenate	strings:
>>> s = "Hello"

>>> s1 = "world"

>>> print(s+s1)

Helloworld

Of	course,	that	output	is	kind	of	ugly.	We	need	a	little	white	space	in	the	middle:
>>> print(s+" "+s1)

Hello world

As you can see, a string literal is treated exactly the same way as a string variable,
which is consistent with Python treating all kinds of objects equally.

Other methods
Strings are one of the most heavily used types in programming, so it is of little
surprise that Python provides a wide array of functionality based around them. As of
Python3, the string type supports both ASCII and UNICODE strings, so that foreign
languages, characters with accent marks and multi-byte strings are all supported.
Here	is	a	list	of	some	of	the	methods	that	you	can	use	on	a	string:

Method Purpose Example
capitalize Capitalizes	the	first	letter	

of the string
print(name.capitalize()):
This prints a string matt as Matt.

lower Returns the string in
lower case. Does not
modify the existing string

s= "THIS IS A TEST

print(s.lower()): This prints
this is a test.

upper Returns the string in
upper case. Does not
modify the existing string.

s= "this is a test"

print(s.upper()): This prints
THIS IS A TEST.

center, ljust,
rjust

Returns	a	justified	string	
using the formatting
requested.

print('test',10) prints
test .

40 Python for Professionals

startswith,
endswith

Returns true if the string
begins or ends with the
requested substring

print("This is a test".
startswith("This)):	This	prints	
True

replace Replaces a given substring
with a replacement
substring

print('this'.replace('is',
'was')): This prints thwas.

split Returns a list of words
split by a given separator.
The default is space

s="This is a test"

print(s.split()): This prints
(‘This’, ‘is’, ‘a’, ‘test’).

strip, rstrip,
lstrip

Trims spaces from either
the front and back of a
string, or just the back or
front, depending on the
version

s=" . This is a test . "

print(s.strip()): This prints
This is a test with no leading
or trailing spaces.

find, rfind Returns the position of the
first,	or	last,	position	of	a	
substring within a string,
or –1 if it can't be found

s="test the test"

s.find(‘test’) returns 0

s.rfind(‘test’) returns 9

As you can see, there are a lot of functions built into the string library! Finally, as a
note,	you	can	chain	different	methods	together	to	form	a	simple	function:
>>> s = "ThIs Is A tEsT"

>>> s.lower().find('is')

2

Python allows you to chain together methods, so long as each one returns an object
of	the	correct	type.	You	cannot	chain	together	a	method	that	returns	a	different	type	
using	methods	on	the	original	object.	For	example,	find	returns	an	integer	value,	so	
you	can't	do	this:
>>> s.find('is').lower()

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

AttributeError: 'int' object has no attribute 'lower'

When we begin to talk about writing our own types and classes, we'll look at how
you can make all of this possible for your own functionality.

Finally,	 let's	 discuss	 the	 join	 function	 for	 strings.	 Here's	 how	 join	 works.	 If	 you	
have a string, you can Imagine for a moment that you have an array of strings.
Python	doesn't	have	arrays,	it	has	lists,	which	we	will	look	at	next.	However,	most	
programmers of any experience understand arrays, so we'll use those for right now.

array = ["a", "b", "c"]

Python Types and Constructs 41

You	want	to	print	the	array	of	strings	out	as	a	single	string,	essentially	flattening	it	
into	a	single	string.	Here's	what	we	want	to	see:	abc. If we print the array, though,
we'll see [a,b,c].	The	join	method	makes	it	possible	to	do	this:
>>> array = ["a","b","c"]

>>> print(array)

['a', 'b', 'c']

>>> print(''.join(array))

abc

But wait! There's more, as the commercials are all so fond of saying. The string at
the	beginning	is	used	to	concatenate	all	of	the	pieces	of	the	array,	so	we	can	do	this:
>>> print('+'.join(array))

a+b+c

Pretty	cool,	isn't	it?	Oh,	one	final	note	on	strings.	You	may	see,	in	this	book	and	in	
code around the Internet, the usage of either the single quote (') or double quote (")
surrounding a string. This is perfectly normal, Python considers them the same. The
only	difference	is	that	if	you	have	a	string	that	contains	one	of	those	quote	types,	you	
can	only	encapsulate	it	in	the	other	type:

s= 'This is a "test"'

And

s= "This ain't a test"

Python Collections
As experienced programmers know, variables are only the tip of the iceberg when
it comes to writing code. You can't create an applications by assigning things to
variables,	 you	 have	 to	 actually	 do	 something	with	 them.	 The	 first	 step	 to	 doing	
something with the data is to arrange it into data structures that can be manipulated
in groups. Python has a variety of ways to group data. These groups are referred
to as collections, or sometimes iterables. The latter name comes from the notion that
you normally need to step through the individual elements of a given collection, a
process known as iterating.

Lists
It might surprise you to know that Python has no concept of an array, which is a
central construct in languages like Java or C++ or C#. Lists are the closest thing that
Python	has	to	an	array,	and	you	will	find	that	the	syntax	of	a	list	is	very	similar	to	
that of an array.

42 Python for Professionals

Here's	how	you	define	a	Python	list:

my_list = []

This statement, using square brackets, creates an empty list. Likewise, you can create
a	list	of	elements	by	placing	them	inside	of	the	brackets:

my_list = [1,2,3]

This statement creates a list with three values, the integers 1, 2, and 3. This likely
looks normal to you, if you are coming from Java or C++. It is just an array with three
elements. But could you do something like this in Java?

>>> my_list = [1,2.5,"Hello world"]

>>> print(my_list)

[1, 2.5, 'Hello world']

Python does not require that lists be homogeneous. You can put any sort of data into
a list, and Python will allow it. In the above example, we have a list that contains an
integer	value,	a	float,	and	a	string.	You	can	apply	list	functionality	to	this	list:

len(list)

You	can	even	test	to	see	if	a	list	contains	a	value	of	a	specific	type,	even	if	the	list	is	
not	homogeneous:

>>> print(2.5 in my_list)

True

You might wonder if you can apply the usual arithmetic operators to lists, and the
answer	is,	of	course	you	can!	It	just	doesn't	always	work	the	way	you	would	expect:

>>> my_list += 'fred'

>>> print(my_list)

[1, 2.5, 'Hello world', 'f', 'r', 'e', 'd']

As you can see, we expected it to add the string fred to our list, but instead, it
added each of the characters to the list. Why would it do this? Because strings are
collections. When you add one collection to another, you add all of the elements
individually to the target collections. But wait, you cry! What if you want to add
the string to the collection as a single element. Well, you do this by creating a list
containing	the	single	element	that	is	the	string:

>>> my_list = [1,2,3,4]

>>> my_list_1 = ['fred']

>>> print(my_list + my_list_1)

[1, 2, 3, 4, 'fred']

Python Types and Constructs 43

You can kind of multiple lists, and while it does exactly what you would expect it to
do,	it	probably	isn't	as	useful	as	you	might	think:

>>> my_list = [1,2]

>>> print(my_list*3)

[1, 2, 1, 2, 1, 2]

You cannot, however, subtract one list from another, at least not by using the minus
sign. You cannot divide lists either. You can remove	elements	from	a	list:

>>> my_list = [1,2,3,4]

>>> my_list.remove(3)

>>> print(my_list)

[1, 2, 4]

An important point here is that the remove	 operator	 removes	 the	first	 element	 it	
finds	that	matches,	not	all	of	them:

>>> my_list = [1,1,2,2,3,3,4]

>>> my_list.remove(2)

>>> print(my_list)

[1, 1, 2, 3, 3, 4]

The remove function removes elements by value. To remove them by their position
(index) in the list, use the del	function:

>> my_list = [1,1,2,2,3,3,4]

>>> del my_list[1]

>>> print(my_list)

[1, 2, 2, 3, 3, 4]

Lists, unlike strings, are mutable. You can add to them, remove from them, even
modify them in place. To add a new entry to a list, use the append	method:

>>> my_list = [1,2,3]

>>> my_list.append(4)

>>> print(my_list)

[1, 2, 3, 4]

If you prefer to add something other than at the end, use the 	method:

>>> my_list.insert(0, 5)

>>> print(my_list)

44 Python for Professionals

[5, 1, 2, 3, 4]

Again,	because	lists	are	mutable,	you	can	change	a	value	in	place:

>>> my_list[1] = 6

>>> print(my_list)

[5, 6, 2, 3, 4]

As	always,	 lists	 are	 like	 Java,	C#	or	C++	arrays,	 they	are	zero	based.	So	 the	first	
element is at position zero, the second at position 1, and so forth up to the length
of	the	list	minus	one.	To	find	the	length	of	a	list,	use	the	same	len operator as for
strings.

>>> print(len(my_list))

5

Finally, before we move on to the next topic, let's take a look at a uniquely Pythonic
concept. If you have a list, but what you want is just the values within the list, such
as when you are passing values to a function, you can use the unpacking operator
(*). This isn't always clear, and we'll examine it in more detail when we look at
functions,	but	take	a	look	at	the	difference	between	the	two	outputs	here:

>>> print(my_list)

[5, 6, 2, 3, 4]

>>> print(*my_list)

5 6 2 3 4

To show you when you'd use this, we'll get a little bit ahead of ourselves, but you'll
see	how	it	works.	Suppose	we	enter	this	into	the	immediate	interpreter:

>>> def func(arg1, arg2, arg3):

... print(arg1)

... print(arg2)

... print(arg3)

...

>>> l = [1,2,3]

Here,	we	have	created	a	function	that	takes	three	arguments;	arg1,	arg2,	and	arg3.	
We've	also	created	a	list	that	has	three	elements.	You	cannot	do	this:

>>> func(l)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

Python Types and Constructs 45

TypeError: func() missing 2 required positional arguments: 'arg2' and
'arg3'

>>> func(*l)

As the Python interpreter informs you, the function expects three arguments, not a
list.	But	thanks	to	the	wonders	of	unpacking,	you	can	do	this:

>>> func(*l)

1

2

3

If you run across the unpacking operator, now you will at least understand what it
is trying to do.

Dictionaries
A dictionary is simply a container of name and value pairs. Most languages have a
variation of the dictionary, although few have it actually built into the language. In
C++ and Java, forexample, they are often called Hash Sets, because that's how they
are implemented. Python prefers to call things what they are, instead of worrying
about the underlying implementation.

Although dictionaries are very powerful, the one important thing to remember about
them is that they are unordered. That is, if I add a batch of values to a dictionary,
there is absolutely no guarantee that when I iterate through the object I will get them
back in the same order. Normally, that isn't the use case of a dictionary, so that isn't
a problem. The other important thing to remember, which the basic functionality of
a dictionary is, is that they cannot contain multiple keys of the same value. Each key
must be unique.

The	basic	setup	of	a	dictionary	in	Python	looks	like	this:

>>> d = {

... "key1": "value1",

... "key2": "value2",

... "key3": 3

... }

>>> print(d)

{'key1': 'value1', 'key2': 'value2', 'key3': 3}

You will notice that you don't have to have values of the same type, as shown by
key3.

46			 Python for Professionals

There is absolutely no requirement that the key be a string either, although typically,
we	use	them	that	way.	Consider	the	following:
>>> d1 = {

... 1: "This is a test",

... 2: "This is another test",

... 3.5: "This is the last test"

... }

>>> print(d1)

{1: 'This is a test', 2: 'This is another test', 3.5: 'This is the last
test'}

The only requirement for a key in a dictionary is that the key must be of an immutable
type, such as string, numeric, or boolean. It cannot be a list, as that is a mutable type.

Getting the value of a key
Creating a dictionary is all well and good, but clearly, what we want is to be able to
get back the value of a given key in the dictionary. This is fairly simply in Python,
we just use the [] operator with the key name we are interested in. Given the above
dictionary, suppose that we want to get back the value of 2	as	a	key:
>>> print(d1[2])

This is another test

You don't have to know the type of the value, although if you want to use it that will
become a necessity.

Testing if a key is in a dictionary
The problem with a dictionary is that you might think there is a key in it that isn't,
in fact, there. For example, consider the following example using the dictionary we
defined	previously:

>>> print(d1[3])

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

KeyError: 3

This error will stop your program at this point with an exception. You can either
handle the exception, which is slow if you are doing this over and over, or you can
verify that the key you are looking for is in the dictionary to begin with. For this
purpose,	we	use,	what	else,	the	in	operator:

Python Types and Constructs 47

>>> print(3 in d1)

False

We will look at how to deal with such cases when we take up the conditional options
in Python.

Iterating
The normal use case for a dictionary is to load it with keys that are assigned values,
and then look up those values at run time for various scenarios. For example, we
might	want	to	look	up	the	value	of	a	given	configuration	option	stored	in	a	dictionary.	
However,	there	are	times	when	we	want	to	walk	through	a	dictionary	and	look	at	all	
of the keys and values. We can do this in numerous ways. Let's look at three of them.

First,	we	can	iterate	over	the	keys	as	the	default	of	the	dictionary:
>>> d = {

... "key1": "value1",

... "key2": "value2",

... "key3": "value3"

... }

>>> print(d)

{'key1': 'value1', 'key2': 'value2', 'key3': 'value3'}

>>> for x in d:

... print(x)

key1

key2

key3

We can also print out the values of the dictionary, taking advantage of the fact that
they dictionary look up uses the key. In fact, we can print out both in the same
iteration:

>>> for x in d:

... print("Key: " + x + " Value: " + d[x])

...

Key: key1 Value: value1

Key: key2 Value: value2

Key: key3 Value: value3

48 Python for Professionals

Finally, we can use the items property of the dictionary, which returns us both the
key	and	value	in	a	single	statement:
>>> for k, v in d.items():

... print("Key: " + k + " Value: " + v)

...

Key: key1 Value: value1

Key: key2 Value: value2

Key: key3 Value: value3

Length of a dictionary
The length of a dictionary is the number of keys in the dictionary, which is returned
by the len()	 function,	 just	 like	strings	and	lists.	Using	the	dictionary	we	defined	
above,	that	would	be	represented	as	follows:
>>> print(len(d))

3

Adding new items
Dictionaries are mutable, you can add or remove items, or even modify existing
items in the dictionary. Modifying a dictionary is done in exactly the same fashion
as	retrieving	the	value:
>>> d['key1'] = 'valuenew'

>>> print(d)

{'key1': 'valuenew', 'key2': 'value2', 'key3': 'value3'}

Somewhat surprisingly, the exact same method is used for adding a new value to
the dictionary.

>>> d['key4'] = 'value4'

>>> print(d)

{'key1': 'valuenew', 'key2': 'value2', 'key3': 'value3', 'key4': 'value4'}

Of course, you would want to check to see if a value existed if you were worried
about overwriting an existing entry, since there is no indication that the entry
changed, since assignment and addition are exactly the same.

You can delete entries from a dictionary as well. Much like lists, you can use the del
function, or you can use the pop	function.	Both	work	for	either	dictionaries	or	lists:
>>> del d['key1']

>>> print(d)

Python Types and Constructs 49

{'key2': 'value2', 'key3': 'value3', 'key4': 'value4'}

Or:

>>> d.pop('key4')

'value4'

>>> print(d)

{'key2': 'value2', 'key3': 'value3'}

Note that unlike del(), the pop function will return you the item you are removing
from the dictionary. In either case, you can only delete the entry by key, not by value.
To	delete	items	by	value,	you'd	need	to	iterate	over	the	dictionary	and	find	all	of	the	
keys that had that value and then remove them one at a time.

It is a BAD IDEA to delete items in any sort of iteration over a collection in
Python.

Nested dictionaries
As mentioned earlier, both the key and value sides of a dictionary can be any valid
Python type, so long as it is hashable (which is basically all types). Let's consider
a more real world example. Suppose, for example, that we want to store some
configuration	 information	 for	 our	 application.	 However,	 our	 application	 runs	 in	
different	environments.	We'll	call	the	environments	production_1, production_2
and production_3.

In each of the environments, we want to be able to store things like the number of
web servers, the name of the environment that we want to display for users, and
perhaps the maximum number of users that the environment can support. We could
do	this	by	having	a	different	dictionary	 for	each	environment,	and	then	selecting	
the	one	we	want	based	on	the	name	of	the	specific	environment	that	we	are	trying	
to get information about. Alternatively, we could take advantage of the fact that
dictionaries can be nested. Let's look at how that might be done.

We	could	do	it	this	way:
product_1_dictionary = {

 "number_of_web_servers": 3,

 "name_to_display": "Production Server East",

 "maximum_number_of_users": 100

}

product_2_dictionary = {

 "number_of_web_servers": 5,

50 Python for Professionals

 "name_to_display": "Production Server West",

 "maximum_number_of_users": 500

}

product_3_dictionary = {

 "number_of_web_servers": 1,

 "name_to_display": "Demo Server",

 "maximum_number_of_users": 5

}

production_dictionary = {

 "production_1": product_1_dictionary,

 "production_2": product_2_dictionary,

 "production_3": product_3_dictionary

}

environment = "production_1"

print(production_dictionary[environment]['name_to_display'])

We assemble each dictionary, then create a master dictionary that stores each one of
them,	keyed	to	the	name	we	specified	above	(production_1, and more).

This works the way you expect, the output is Production Server East for the
print	statement	at	the	bottom.	Alternatively,	we	could	do	it	all	in	one	place:
production_dictionary_a = {

 "production_1": {

 "number_of_web_servers": 3,

 "name_to_display": "Production Server East",

 "maximum_number_of_users": 100

 },

 "production_2": {

 "number_of_web_servers": 5,

 "name_to_display": "Production Server West",

 "maximum_number_of_users": 500

 },

Python Types and Constructs 51

 "production_3": {

 "number_of_web_servers": 1,

 "name_to_display": "Demo Server",

 "maximum_number_of_users": 5

 }

}

print(production_dictionary_a[environment]['name_to_display'])

This works as well and prints out the same value. It is slightly more compact as well,
and easier to read since it is in one place. Please note that you need to have commas
after each block of the dictionary, to indicate to the interpreter that this is a separate
piece.

Sets
Like dictionaries, sets are unordered collections of data in Python. Unlike dictionaries,
they do not contain keys, but instead lists of values. In this, they are very much like
the list data type. In fact, a set is a combination of the dictionary type and the list
type. It contains a list of values, but the values must be unique. You can have a list
that	looks	like	this:
list = [1,2,3,4,3,2,1]

print(list)

Printing	this	out	gives	us	what	we	have	come	to	expect:
[1, 2, 3, 4, 3, 2, 1]

A	set,	however,	 is	defined	in	a	syntax	that	 looks	more	like	a	dictionary	and	has	a	
uniqueness	property	like	a	dictionary	too:
set = {1,2,3,4,3,2,1}

print(set)

set([1, 2, 3, 4])

Notice	 the	 syntax	 of	 defining	 the	 set	 is	 the	 curly	 braces,	 but	 without	 the	 colon	
denoting keys and values.

You can also use the set()	function	to	define	a	set:
s = set([1,2,3,4,5,4,3,2,1])

print(s)

set([1, 2, 3, 4, 5])

Notice however, that a set is created using a list of items (actually, any iterable).
Also notice that a set is created without displaying an error for the duplicate values.

52 Python for Professionals

They	are	simply	filtered	out.	There's	nothing	magical	about	creating	a	set	from	a	list,	
either.	Consider	our	previous	dictionary	example,	made	into	a	set:
s = set(production_dictionary)

print(s)

set(['production_1', 'production_2', 'production_3'])

Why do we care about sets? Let's look at how simple Python's functionality makes it
to do really complex tasks. This is the beginning text of the Declaration of Independence
of the United States of America:

text = """

The unanimous Declaration of the thirteen united States of America,

When in the Course of human events, it becomes necessary for one people

to dissolve the political bands which have connected them with another,

and to assume among the powers of the earth, the separate and equal station

to which the Laws of Nature and of Nature's God entitle them, a decent
respect

to the opinions of mankind requires that they should declare the causes
which

impel them to the separation.

We hold these truths to be self-evident, that all men are created equal,

that they are endowed by their Creator with certain unalienable Rights,
that among these are Life,

Liberty and the pursuit of Happiness.

"""

If	we	want	to	find	out	all	of	the	individual	words	in	the	declaration,	we	can	use	the	
string	split	function	to	get	back	a	list	of	them:
list_of_words = text.split()

print(list_of_words)

The	output	of	this,	clipped	for	space,	looks	like	this:
['The', 'unanimous', 'Declaration', 'of', 'the', 'thirteen', 'united',
'States', 'of', 'America,', 'When', 'in', 'the', 'Course', 'of', 'human' ..]

You will notice that the words are duplicated. There are an awful lot of of s in the
text. What if we just want the individual words and don't want to see the duplicates?
That's where the beauty of sets comes in. We can directly convert the list of duplicate
words	into	a	set	of	unique	words	in	a	single	line:

Python Types and Constructs 53

set_of_words = set(list_of_words)

print(set_of_words)

The	output	of	this	single	line,	again	abbreviated	for	space,	gives	us	the	unique	list:
set(['and', 'among', 'all', 'have', 'people', 'pursuit', 'God', 'When',
'it', 'Liberty', 'one', 'America,' …]

If you don't like the way it is displayed, and would prefer to just see the words
written	out,	we	can	do	that	in	a	single	line	too:
print(' '.join(set_of_words))

and among all have people pursuit God When it Liberty one America …

Now you can begin to see the true power of Python. Just a few more notes on sets.
You can add new data to sets with the add	function:
s = set([1,2,3,4,5,4,3,2,1])

print(s)

s.add(99)

print(s)

set([1, 2, 3, 4, 5])

set([1, 2, 99, 4, 5, 3])

Observe that the new entry appears randomly inserted into the new set.

You can also remove items from sets. Unlike lists, you needn't worry about whether
you	 are	 removing	 all	 entries	 of	 a	 given	value,	 since	 there	 is	 by	definition	only	 a	
single one. The removal is done via the discard	function:
s = set([1,2,3,4,5])

s.discard(3)

print(s)

set([1, 2, 4, 5])

The union and intersection of sets provide the ability to add and subtract set
contents. Union is the unique combination of two sets, and is done via the | (pipe)
operator. If you are accustomed to working in Java, or C#, this will seem logical, as
the | operator is the or operator in those languages. Essentially, the union of sets is
the	logical	combination	of	values	in	one	OR	the	other:

s1 = set([1,2,3,4,5])

s2 = set([6,7,8,9,10])

print(s1 | s2)

set([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

54 Python for Professionals

Likewise, the & (and) operator is used to determine the intersection of two sets.
Intersection	is	really	defined	as	the	set	of	elements	that	are	in	both	set	one	AND set
two, so again, this makes sense.
s1 = set([1,2,3,4,5,6])

s2 = set([3,4,5,6,7,8])

print(s1 & s2)

set([3, 4, 5, 6])

The	difference	between	two	sets	is	the	set	of	all	values	which	are	in	the	first	set	but	
not in the second. Not surprisingly, it is represented by the subtraction operator, the
minus	sign:
s1 = set([1,2,3,4,5,6])

s2 = set([3,4,5,6,7,8])

print(s1 - s2)

set([1, 2])

As with regular math, s1 – s2 is not equal to s2 – s1,	nor	is	it	for	sets:

print(s2-s1)

set([8, 7])

The very last set related thing is checking to see whether one set is a subset, or
superset, of another set. A set which is a subset of another set contains items which
are all in the superset. A set which is a superset contains all of the items of the subset,
with potentially other items as well. Two sets which contain the same items are
considered to be both subsets and supersets of each other. The subset notation is >=,
while the superset notation is <=:
s1 = [1,2,3,4,5]

s2 = [2,3,4]

print(s1 <= s2)

print(s2 >= s1)

s3 = [2,3,4]

print(s2 >= s3)

print(s3 >= s2)

This	snippet	prints	out:

True

True

True

Python Types and Constructs 55

True

Tuples
Our next Python type for your consideration is the tuple. A tuple is a set of data
values	that	can't	be	modified	once	created.	A	tuple	looks	like	this:
x=(1,2,3)

In spite of its name, which makes it sound as if it should have two values, a tuple
can actually have as many values inside of it as you like. Tuples are very much like
lists, except that they are immutable (meaning you can't change them, and that they
can be the keys in dictionaries). You can only assign to a tuple once, so things like
this	don't	work:
>>> x[0] = 1

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'tuple' object does not support item assignment

You cannot delete an element from a tuple, nor add a new one to it. You can delete
the entire tuple using the delete function, which erases the entire variable. Tuples
are	ordered,	so	that	the	order	you	define	them	in	is	what	they	will	always	exist	as.

The	primary	purpose	of	tuples	is	to	create	data	structures	that	can't	be	modified.	You	
can	use	most	of	the	list	functionality	on	a	tuple:
>>> print(x[::-1])

(3, 2, 1)

This example reverses a tuple's values when printing them. This doesn't change the
actual variable, it simply returns a new tuple in reverse order.

As we will see when we get to functions and methods, tuples are mostly used to
return multiple values from a function.

Because	a	tuple	is	an	iterable	sequence,	you	can	get	at	individual	pieces	of	it:
print(x[0])

1

And, in keeping with our discussion about sets, you can use a tuple to create a set,
since	it	is	a	collection	that	is	iterable:

>>> x=(1,2,3,4,5,6,5,4,3,2,1)

>>> print(x)

(1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1)

>>> s=set(x)

56			 Python for Professionals

>>> print(s)

set([1, 2, 3, 4, 5, 6])

One last thing. Earlier, it was stated that a tuple could be created with any number
of	elements.	If	you	try	creating	a	tuple	with	a	single	element,	you	will	find	that	this	
doesn't	appear	to	be	true:

>>> t=(1)

>>> print(t)

1

>>> print(type(t))

<type 'int'>

It	can	be	done,	however,	there's	just	a	slight	trick	to	it:

>>> t=(1,)

>>> print(t)

(1,)

>>> print(type(t))

<type 'tuple'>

Iterators and iterables
As we have seen, Python's collection types all have similar functionality. The
differences	tend	to	be	in	the	sort	of	data	they	contain.	For	example,	a	tuple	and	a	list	
are the exact same thing from the outside, with the exception that you cannot modify
a tuple (it is immutable). This means that all methods for the tuple are the same as
that for the list, with the exception of the append and modify ones. There are quite
a number of functions that can be used for collections in Python. Let's take a look at
some of them here.

The any() method returns True if any single element in a collection is not False.
We'll talk a little but about true and false later, but for now, just accept that anything
that exists and is not zero is true. This isn't one hundred percent accurate, but it is
close enough to understand the problem now.

To	see	how	it	works,	let's	start	out	with	something	very	basic:

>>> x=[True,False,False]

>>> print(any(x))

True

>>> x=[False,False,False]

Python Types and Constructs 57

>>> print(any(x))

False

As	you	can	see,	 the	first	 list	contains	one	True element and two False ones. The
any()	function	checks	all	of	the	elements,	stopping	as	soon	as	it	finds	a	valid	True	
element.	In	this	case,	the	very	first	element	is	True and the function returns a true
value. For the second case, none of the elements is true and therefore the function
returns a false value.

Why would you use any()? Consider the case where you are implementing a web
system that requires a user to accept all of the privacy statements. This is a big deal
now in the European market, and thus is a big deal for programmers. If you collect
all of the user responses to your privacy statements into a list, you can then simply
call any() to very that they were all accepted.

The all() function is the converse of any(). It returns true only if all of the items in
a	list	are	true.	Here's	an	example:

>>> x=[1,2,3,0]

>>> print(all(x))

False

>>> x=[1,2,3,4]

>>> print(all(x))

True

Note that a non-zero value is considered True in Python, and thus any list that
contains all non-zero values is true for the all() function. What happens if you
have a negative value? Let's try that out, since experimentation is the core of the
Pythonista.

>>> x=[-1,1,2,-3]

>>> print(all(x))

True

Not surprisingly, negative numbers are considered truthy. You will hear the term
truthy thrown about a lot in Python. Things aren't absolutely true or false, they are
mostly true (that is, non-zero) or mostly false (that is, zero or None or False). Rather
than worry about exactly what the programmer uses, Python groups together things
that make sense.

The next function to consider is the enumerate() function. The enumerate function
is one of those handy things that most programming languages require you to
handle yourself. For example, let's imagine that you are working in Java, and have
an array of elements. You want to print out the elements in a table, with an index

58 Python for Professionals

value showing the number of the element and then the value. You'd probably do
something	like	this:
for(int i=1; i<11; i++)

{ System.out.println("Element: " + I + " equals " + myarray[I]); }

This certainly works, but it is not only error prone, but hard to read. Enter Python
and the enumerate()	function:
>>> for idx, value in enumerate(my_array):

... print(idx, value)

...

0 1

1 2

2 3

3 4

4 5

5 6

As you can see, the enumerate() function returns an enumerator, hence its name,
which	contains	two	values.	The	first	is	the	index	of	the	position	you	are	at	in	the	list	
or other collection. The second is the value at that position in the collection. Needless
to	say,	you	can	use	an	enumerate	call	on	any	Python	collection:
d = {

 "Element1" : 1.0,

 "Element2" : 2.0,

 "Element3" : 3.0

 }

0 Element1

1 Element2

2 Element3

for idx, value in enumerate(d):

 print(idx, value)

Of	course,	dictionaries	have	both	keys	and	values.	How	then	to	print	them	all	out	in	
a simple, Pythonistic way?

d = {

 "Element1" : 1.0,

Python Types and Constructs 59

 "Element2" : 2.0,

 "Element3" : 3.0

 }

for idx, (key, value) in enumerate(d.items()):

 print("Entry {0} has a key of {1} and a value of {2}".format(idx,
key, value))

The	output	from	this	little	program	snippet	is:

Entry 0 has a key of Element1 and a value of 1.0

Entry 1 has a key of Element2 and a value of 2.0

Entry 2 has a key of Element3 and a value of 3.0

Which is exactly what we were looking for!

Filtering is something that is almost a standard when working with data sets these
days.	From	doing	high-performance	filtering	of	Big	Data	to	simply	filtering	down	
lists of items that the user can select from based on a given input, the ability to
filter	is	important.	Python,	of	course,	considers	filtering	to	be	important	enough	to	
make as part of the basic language, rather than bolting it on. You'll see that this is a
common theme for Python.

To	use	filter,	we	need	a	function	that	determines	whether	or	not	the	data	passed	to	
it is valid for the result set. In our example, we'll look at a simple function, since we
haven't	really	discussed	functions	yet,	that	checks	if	a	given	value	is	odd:
def odd(x):

 return not (x % 2)== 0

We	can	test	this	function	in	the	immediate	window:
print(odd(3))

print(odd(4))

True

False

As you can see, the function tells us whether or not a given number is odd or not.
Now,	let's	take	a	list	of	numbers:

x=[1,2,3,4,5,6,7,8,9,10,11]

result = filter(odd, x)

for r in result:

 print(r)

60			 Python for Professionals

1

3

5

7

9

11

As	you	can	see,	the	filter	function	works	properly.	We'll	expand	on	this	a	little	later,	
as we learn about lambda functions and generators, and be able to write the last line
as a single line of Python.

When we think of maps, we usually think of GPS coordinates, of paper displays of
geographic	areas,	and	the	like.	However,	map	has	another	meaning,	which	is	to	take	
a given set of data and project it (or map it) onto a given set of information. In Python,
we use the map()	function	to	apply	a	specific	operation	to	a	collection	of	data.	For	
example, if you wanted to create a list of the squares of an input list, you might write
something	like	this:
input_list = [1,2,3,4,5]

output_list = []

for i in input_list:

 output_list.append(i*i)

print(output_list)

As	you	might	expect,	the	output	from	this	is:
[1, 4, 9, 16, 25]

In	Python,	however,	we	can	do	this	much	more	easily,	using	the	map()	function:
def square(x):

 return x*x

output_list = map(square, input_list)

for o in output_list:

 print(o)

This is a simplistic example, one can imagine much more complicated ones in which
the input_list is transformed through multiple processes.

The next stop on the Python express is the range() function. This is actually one of the
most used, and most versatile functions in the Python arsenal. The range() function
generates a list of items, based on inputs. If you are a C++ or Java programmer, you
probably know the basis of the range function. It is the same thing you are used to

Python Types and Constructs 61

specifying in your for loops. For example, in C++, if you want to write a loop that
goes	from	one	to	ten,	you'd	write:

for(int I=0; I<10; ++I)

This loop goes from the starting value, 0, up to but not including the ending value,
10. So, you would see the numbers 0 to 9 used within the loop. The equivalent
Python range	loop	looks	like	this:

for I in range(0,10):

Again, this loop goes forward, starting at zero, and ending at nine (the stop value
minus	 one).	 In	C++,	 you	 can	 also	 use	 that	 final	 argument	 in	 the	for loop to go
backwards,	as	a	simple	example:
for (int I=10; I>0; --I)

This loop starts at the value of ten, and goes backwards until it reaches 1. The > sign
indicates that it should go only to the value before the stop value of zero. So, you
would see the numbers 10, 9, 8 and so forth, until you reached on. The equivalent
Python range	loop	looks	similar:
for I in range(10,1,-1):

The	primary	difference	between	range	and	the	Java	or	C++	for	loop	is	that	the	range	
function can be used outside of a loop. The range() function produces an iterator. If
you	ever	used	Python	2,	you	may	have	written	something	like	this:
list_of_integers_from_1_to_10 = range(1,11)

This will not work in Python 3, it is one of the big changes from the 2.x range of the
language.	Instead,	if	you	write:
list_of_integers = range(1,11)

You are actually creating an iterator, a sequence operator, not a collection. So, while
you could do things like range(0,10)[5] in Python 2.x, this will not work in Python 3.
The developers of Python rarely take away something without giving you something
in	return,	so	we	can	write	things	like:
my_list = list(range(0,10))

This produces a list of values from zero to nine, which you can slice, dice, and iterate
over to your heart's content.

Likewise, you can apply all of the things we've learned so far to your range	object:

my_list = list(range(0,5))

print(my_list[2])

for s in map(square, my_list):

 print(s)

62			 Python for Professionals

This	code	produces	the	following	output:

2 --> This s the index my_list[2]

0 --> These are the squares of the values in the list

1

4

9

16

Clearly, the range operator is very powerful and versatile. It is one of those things
you	will	find	yourself	using	again	and	again.	It	isn't	required	that	you	use	constant	
values	in	it	either,	you	can	do	things	like	this:

s = "This is a test"

for i in range(0, len(s), 2):

 print(s[i])

T

i

s

a

t

S

A relative of range, with respect to utility and versatility, is the slicing operator in
Python. You may not recognize the slicing operator, since it isn't used as a verb like
range or any. In the C++ or Java worlds, the slicing operator is a close relative of
the index operator, which looks like []. You can use the slice operator in a variety of
ways, and most Python developers use it in more than one in a given application. So,
let's take a look at this versatile functionality, in each of its fashions.

First	of	all,	the	slice	operator	is	used	to	retrieve	a	specific	index	of	an	interable.	For	
strings,	for	example,	we	can	look	at	the	3rd	character	in	a	string	directly,	using	slicing:
s = "This is a test"

print(s[2])

As always, any iterable in Python, like Java or C++ or C#, is zero-based. Thus, the
third	 character	 is	 character	 number	 three,	 whereas	 the	 first	 character	 is	 number	
zero. Printing out the third character is using the string as an indexable collection, in
this case of characters, and retrieving the third one. As with all languages, trying to
access	a	character	outside	of	the	range	of	the	string:

Python Types and Constructs 63

print(s[len(s)])

IndexError: string index out of range

This error occurs because the len() function returns the total number of characters
in a string, and the indexing is zero-based. So, for the string above, we are trying
to print out one character more than the number we are allowed, and so we get an
error.

Likewise,	you	would	assume	that	doing	the	following	would	also	generate	an	error:
s = "This is a test"

print(s[-1])

Running	this	in	interactive	mode	gives	you	the	following	output:
T

Wait, you say, how can that be? Minus one is clearly outside the range of zero to the
number of characters in the string minus one, right? Well, kind of. In Python, the
indexing operator can be used directly in two ways. Positive values count from the
left side of the string or array. That is, array[1] is the second value, and array[4] is
the	fifth.	However,	if	you	user	a	negative	index,	you	can	retrieve	values	from	the	right	
side of the array. For a string, that means the end of the string moving backwards. In
fact, we can print out a string using the same methodology we've used before, and
then	print	it	out	backwards	simply	by	changing	the	sign	of	the	index:
a = "test"

for i in range(0, len(a)):

 print(a[i])

print("Backwards:")

for i in range(0, len(a)):

 print(a[-(i+1)])

The output of this snippet looks like this:

t

e

s

t

Backwards:
t

s

e

T

64			 Python for Professionals

As you can see, we are printing out the string using the exact same methodology,
but moving from the back forward. The only reason we need to do the (I+1) part is
because a negative zero is still zero.

The slicing operator isn't restricted to a single index, however, it can have more than
one.	Unlike	functions,	however,	the	indices	are	separated	by	the	colon	(:)	rather	than	
the	comma:
a = "test"

print(a[1:3])

The slice operator used this way returns a slice	of	the	iterable	beginning	with	the	first	
index and terminating with the second index. So, in the example above, we would
expect it to print out the characters from the second to the fourth. In fact, if you run
the	snippet,	you	see	the	following	output:

es

This,	of	course,	is	the	middle	of	the	string	we	defined.	Given	what	you've	seen	so	far,	
it shouldn't surprise you at all to know that you can also use negative indices in the
exact	same	fashion:

print(a[-3:-1])

Es

An important point about these indices. You can omit one or more of the indices by
simply leaving it out in the code. If you do this, the outermost limit of that index will
be	used.	For	example,	if	we	write:
a = "test"

print(a[:3])

Python will interpret this as if we had written [0 : 3] since the omitted index is on the
left hand side. That side would naturally begin with 0.	Similarly,	if	we	were	to	write:

a = "test"

print(a[2:])

In	 this	 case,	 Python	 assumes	 that	 the	 code	 really	means:	 [2:len(a)-1] since the
right-most index will always be the length of the iterable. Running this code, not
surprisingly,	gives	us	an	output	of:
st

Which is exactly what we would expect, again. With the exception of negative
numbers,	 this	 really	 isn't	much	different	 than	any	other	 language,	aside	 from	the	
fact that you can't do it this directly. In Java, or C++, at least for strings, there is some
variant of the substring operator that will return you a string made up of characters
in a given range. Unless you roll your own, though, it won't work for negative, or
missing, values.

Python Types and Constructs 65

Python allows for one more entry in the slicing operator, also separated by a colon.
This is the step count you wish to use for getting from the start to the end. It is a
smidge confusing, because it doesn't do exactly what you might think if you were
using	Java.	For	example,	consider	these	statements:

a = "test"

print(a[0:4:2])

The	output	from	this	is:

ts

Not surprising, we told Python to output things starting from the left, ending on the
right, and incrementing by two.

But what about this?
a = "test"

print(a[4:0:-2])

This	one	prints	out:

te

Surprised? You shouldn't be, it starts out at the left-hand end, goes backward two
characters at a time, and ends when it goes past the right-hand end.

But	this	one	is	likely	a	surprise:
a = "test"

print(a[::-1])

This	snippet	prints	out	the	following:
tset

This is the string backwards. In fact, this is a very common use of the slicing operator,
to reverse a string, or other iterable in a string line. It might not be obvious with non-
strings,	but	take	a	look	what	happens	to	a	normal	list:

x=[1,2,3,4,5]

print(x[::-1])

[5, 4, 3, 2, 1]

This is the exact same thing. Strings are printed as runs of characters, while lists are
printed as individual elements, otherwise you are looking at the same process.

66			 Python for Professionals

Go back through and work through all of the slicing operator examples, because
they are going to be a common usage pattern in your coding of Python.

Sorted
If	filtering	is	the	number	two	most	common	thing	in	the	software	development	world,	
then sorting is certainly number one. We often need to present data in sorted order
for the user, whether by name or date or some other bit of information. Naturally,
Python was built with this need in mind. There are several ways to sort items in
Python, let's look at the most common one, the sorted function.

Here's	an	example	of	sorting	a	simple	list	of	words:

x = ["This", "is", "a", "test", "of", "beta", "gamma", "zeta", "alpha 2"]

xs = sorted(x)

print(xs)

['This', 'a', 'alpha 2', 'beta', 'gamma', 'is', 'of', 'test', 'zeta']

The result of calling the sorted function on a collection is a new collection, in sorted
order. When sorting strings, as you can see above, the sorting is case sensitive, thus
the	capital	letters	come	first,	and	the	lower	case	letters	second.	Within	a	single	letter,	
of course, each subsequent letter in the string is examined and compared to produce
the sort order, as you can see with the a and alpha entries.

You might wonder, can I simply sort a string? The answer, of course, is yes, since
a string is just a collection of characters. The result may or may not be useful,
depending	on	what	you	are	trying	to	do:
x = "This is a test of beta gamma zeta alpha2"

xs = sorted(x)

print(xs)

[' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '2', 'T', 'a', 'a', 'a', 'a',
'a', 'a', 'a', 'b', 'e', 'e', 'e', 'f', 'g', 'h', 'h', 'i', 'i', 'l', 'm',
'm', 'o', 'p', 's', 's', 's', 't', 't', 't', 't', 'z']

As you can see, the result of sorting a string is again a list, this time of characters.
This makes sense, since each individual element in the collection is sorted, and in
this case, the individual elements are characters.

What if you wanted to sort a string by words? We've already looked at all of the
pieces you need to do this. To begin with, we take the sentence string and split it
into words:
xw = x.split()

print(xw)

Python Types and Constructs 67

['This', 'is', 'a', 'test', 'of', 'beta', 'gamma', 'zeta', 'alpha2']

Next,	we	sort	the	resulting	list	of	words:
xws = sorted(xw)

print(xws)

['This', 'a', 'alpha2', 'beta', 'gamma', 'is', 'of', 'test', 'zeta']

As you can see, the result is the same as the original list that we sorted above. Sorted,
of	course,	accepts	any	sort	of	iterable,	so	we	can	sort	dictionaries	too:
d = {

 1: "zeta",

 2: "xylem",

 3: "wisconsin",

 4: "violent"

}

ds = sorted(d)

print(ds)

[1, 2, 3, 4]

Of course, the result of sorting a dictionary is a sorted list of keys, so this is one
way that you could make a dictionary into an ordered collection, rather than an
unordered one. Sorted also works for tuples, because it does not modify the original
collection.	You	may	remember	that	tuples	are	immutable,	they	cannot	be	modified	in	
order or contents. The sorted	function	returns	a	copy	of	the	tuple:
t = (1,5,2,4,3)

ts = sorted(t)

print(ts)

print(t)

[1, 2, 3, 4, 5]

(1, 5, 2, 4, 3)

Note	that	the	second	tuple	shown	is	the	original,	and	it	is	not	modified	in	the	least.	
As a note, there is a sort method that exists only for lists, and sorts elements in
place. When you have a list, and you don't mind modifying its order, you can call
sort	instead:

t = [5,3,1,2,4]

print(t)

t.sort()

68			 Python for Professionals

print(t)

[5, 3, 1, 2, 4]

[1, 2, 3, 4, 5]

Naturally, this won't work for tuples or other immutables, since you can't change
their values or orders.

You probably noticed in our string sorting example that the capital letter beginning a
word sorted earlier than the lower case letters. This is because capital A comes before
lower-case a in the ASCII encoding scheme. What if you wanted to sort things based
on lower case letters only? There are two alternatives here. If you are sorting the
string	by	itself,	you	can	just	call	the	lower	function	on	it:

x = "This is a test of beta gamma zeta alpha2"

xs = sorted(x.lower())

print(xs)

[' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '2', 'a', 'a', 'a', 'a', 'a',
'a', 'a', 'b', 'e', 'e', 'e', 'f', 'g', 'h', 'h', 'i', 'i', 'l', 'm', 'm',
'o', 'p', 's', 's', 's', 't', 't', 't', 't', 't', 'z']

The designers of Python, however, recognized that sometime you would need to be
able to sort on things that they had not anticipated. For this reason, the sorted()
function permits you to specify a third argument, called key, which is a function that
returns the key for a given element to sort. This function can be one you write, or it
can	be	a	built	in	function.	For	example,	in	our	lower	case	key	above,	we	could	write:
x = "This is a test of beta gamma zeta alpha2"

xs = sorted(xw, key=str.lower)

And it will work exactly the same way. It works for all collections, so you could split
the	string	into	a	list	of	words	and	apply	the	same	logic:
x = "This is a test of beta gamma zeta alpha2"

xw = x.split()

xs = sorted(xw, key=str.lower)

print(xs)

['a', 'alpha2', 'beta', 'gamma', 'is', 'of', 'test', 'This', 'zeta']

Going back to our dictionary sorting example, you can see that the sorted() method
only appears to sort on the keys to the dictionary. Likewise, for a list of structured
items,	such	as	tuples,	you	can	only	sort	on	the	first	element:
marks = [

 ('Fred', 'Science', 90),

 ('George', 'Math', 95),

Python Types and Constructs 69

 ('Albert', 'English', 90)

]

print(sorted(marks))

[('Albert', 'English', 90), ('Fred', 'Science', 90), ('George', 'Math', 95)]

Does it surprise you that you can sort a list of tuples? You can't sort an individual
tuple, because it is immutable, but the list containing them is not. In any case, the
sorted()	function	automatically	sorts	on	the	first	element	of	the	tuple,	in	this	case	
the name. What if we wanted to sort on the class for the student, which is the second
element of the tuple? The answer lies in the key argument to the sorted function,
which	can	return	a	piece	of	its	caller:
def get_class(t):

 return t[1]

print(sorted(marks, key=get_class))

In this case, we've created a function that just returns the second element of the
tuple. When we talk about lambda functions, which are almost exactly the same as
they are in Java or C#, you'll see that we can substitute one of those for an in-place
extraction.

For	beginners	in	Python,	this	is	often	more	than	enough	to	get	going	with.	However,	
the professional is already thinking ahead, wondering about how to accomplish
other tasks. In a school assignment, you'd be asked to sort a list of grades. But in
the real world, the program manager is harassing you to sort the list by subject, and
within the subject, by grade, so that he can see things the way a teacher would want
to. Surprise! Python is way ahead of you. To get there, though, we have to introduce
a slightly new concept, imports. We'll talk about these considerably more further
in the book, so for now, just accept that an import in Python is very much akin to
the	include	statement	in	C++	or	the	self-same	import	statement	in	Java.	Here's	how	
you would do it. First, the code, since it is easier to discuss code with a programmer
than to lecture to them. To begin with, we are going to increase the size of our list of
grades,	so	you	can	see	the	actual	impact	of	the	code:

marks = [

 ('Fred', 'Science', 90),

 ('George', 'Math', 95),

 ('Albert', 'English', 90),

 ('Zelda', 'English', 96),

 ('Alvin', 'Math', 92)

Now, we'll duplicate the sorted()	function	call	above,	but	use	a	slightly	different	
method	for	extracting	the	element	we	want	to	sort	by:

70			 Python for Professionals

from operator import itemgetter, attrgetter, methodcaller

from operator import itemgetter, attrgetter, methodcaller

print(sorted(marks, key=itemgetter(1)))

[('Albert', 'English', 90), ('Zelda', 'English', 96), ('George', 'Math',
95), ('Alvin', 'Math', 92), ('Fred', 'Science', 90)]

As you can see, the output still sorts by the subject (the second element in the tuple),
but	leaves	all	of	the	other	pieces	in	the	order	in	which	they	were	defined.	Now,	let's	
add a little complexity to the problem, sorting by the grade within the subject. As
we can see from the data, both the Math and English subjects have multiple entries,
and at least one of them is not already sorted.

Here's	the	modification	to	our	code	to	sort	by	a	second	data	element:
from operator import itemgetter, attrgetter, methodcaller

print(sorted(marks, key=itemgetter(1, 2)))

That's the only change needed, adding a second parameter to the itemgetter
function	call!	Looking	at	the	output:

[('Albert', 'English', 90), ('Zelda', 'English', 96), ('Alvin', 'Math',
92), ('George', 'Math', 95), ('Fred', 'Science', 90)]

You can see that the Math scores have been updated to be in the requested sort order.

Finally, we would be remiss if we didn't point out that there is another optional
argument to the sorted() function called reverse. As you might guess, reverse is
used to indicate that you want to sort the elements in reverse order, in other words
in descending order. The default, of course, is ascending.
a_sorted_list = [1,2,3,4,5,6,7,8,9,10]

print(sorted(a_sorted_list, reverse=True))

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

The reverse and key argument can be used together, but you cannot specify a
different	sort	order	(ascending	or	descending)	for	each	key	you	select.	If	you	want	to	
do something like that, you'll have to write your own sort routine.

The zip function
If you have worked in the software world for any length of time, as most of you
have, you have encountered the zip program or one of its combinations. The zip
program	compresses	files	down	into	an	archive	which	can	then	be	more	easily	copied	
or transmitted. You might think, therefore, that the zip() function in Python might
be related to compression and archiving. You would be wrong, they have absolutely
nothing in common.

Python Types and Constructs 71

The zip() function name in Python comes from a shortening of zipper. The zip
function takes a set of iterables, and weaves them together to form a list of tuples
that contain the elements of each. In its absolutely simplest form, the zip() function
accepts	no	arguments	and	returns	an	empty	list:
print(zip())

[]

In	the	next	most	complicated	case	is	applying	zip	to	a	list	of	elements:
string_list = ["Alpha", "Beta", "Gamma"]

print(zip(string_list))

[('Alpha',), ('Beta',), ('Gamma',)]

As you can see, this case produces a list of tuples, with a single element each. You
can	guess,	therefore,	that	if	we	add	a	second	list	to	the	equation:
number_list = [1,2,3]

print(zip(string_list, number_list))

[('Alpha', 1), ('Beta', 2), ('Gamma', 3)]

Hopefully,	you	can	see	the	pattern	at	this	point.	Each	element	is	zipped into a tuple
with the other list elements in the same position. Do you wonder what happens if
you have a list that is shorter than the rest? You might think that you get a tuple with
less elements in the output list, but that isn't the case. The zip() function uses the
shortest	list	given	as	the	length	of	the	output	list:
misc_list = [2.5, 5.0]

print(zip(string_list, number_list, misc_list))

[('Alpha', 1, 2.5), ('Beta', 2, 5.0)]

This can be a useful way to build 'sets' of data to work with, but it is limited to the
smallest possible list that covers all of the inputs.

Booleans and truthiness
We	have	briefly	touched	on	Boolean	and	the	idea	of	true	and	false	in	Python	earlier,	
but it is worth exploring the concept just a bit. Most languages have the concept of
true	or	false.	In	C++	and	Java,	there	are	pre-defined	constants	for	true	and	false	that	
you use with the Boolean type. Python also has the notion of True and False (note
the capitalization, Python does not support true and false), but applies the idea a
little more broadly.

In Python, there are three basic truth types. For integer values, the value of zero is
false. All other values, whether positive or negative, are true. With this said, however,
that doesn't mean that the value equates to True.	For	example,	if	we	write	this:

72			 Python for Professionals

for i in range(-1, 2):

 print(i, i == True)

The	output	might	surprise	you	a	little:
(-1, False)

(0, False)

(1, True)

However,	if	we	do	something	that	expects	a	true	or	false	result:
for i in range(-1, 2):

 if i:

 print("True!")

 else:

 print("FALSE")

True!

FALSE

True!

As you can see, any non-zero number is truish, or truthy. It does not mean, however,
that a number is equal to True, which is where the notion of truthiness comes from.
Here	is	a	simple	chart	for	each	type	of	data	in	Python	that	shows	you	the	values	of	
False for that data type.

Type False Value True Values
int 0 Anything but 0
sequence Empty sequence Any sequence with values
None Always False Never false

A sequence, of course, is a list, dictionary, tuple, or string. That means that the empty
string	is	a	false	value:

s1 = ""

s2 = " "

if s1:

 print("S1 = TRUE")

else:

 print("S1 = FALSE")

if s2:

Python Types and Constructs 73

 print("S2 = TRUE")

else:

 print("S2 = FALSE")

As you can see, an empty string, that is one with zero characters in it, is False,
whereas a string with any characters in it, even blanks, is True. Similarly a list with
zero elements is False, and all collections with at least one element is False.

It is very important to remember that comparing truthiness, that is if <value> is not
the same as comparing to True, if <value> == True. Those starting out with the
language from other languages often want to be as concise as possible, and make the
mistake of comparing to the True value. Don't make this mistake.

Comments
For beginning programmers, this is enough to get them started writing code. You've
been doing this for a while, though, and know that sooner or later you will have to
explain to others exactly what your code is doing. Explaining the behavior of code
is done through either documentation, electronic or paper, and in code comments.
Hopefully,	we	all	fully	comment	our	code!

Python	supports	 two	methods	of	commenting	code.	The	first	 is	 to	use	the	pound	
(#) symbol for a single line comment. Anything that follows the pound symbol is
considered to be comment, it will not be read or executed by the interpreter. Oh, for
those of you younger than the concept of pound signs and phone keyboards, this is
also called the hash sign, as in hashtag #Python!

You might want to comment a block of code that you are writing to indicate where
the	values	come	from,	for	example:
This is Planck's Constant, which relates the energy of a photon to its
frequency

planks_constant = 6.62607015*(10**-34)

This allows people to understand what your line of code is meant to do. You can also
use the single line comment to remove a piece of code from executing at the moment.
For example, we might use it to comment out statements that we use for debugging
purposes,	but	don't	want	in	the	production	level	code:

x= y*z/j+l

#print(x)

In this case, we are removing the print statement from executing during normal
production. This is a common way of leaving in things that are useful for the
developer during the development and maintenance phases of a project.

74			 Python for Professionals

Python also supports multi-line comments, which are usually used to indicate the
purpose of a block of code, or to embed things like copyright statements in your
code for corporate purposes. The multi-line comment in Python is done using the
triple quote format, which you may remember is also the way in which to create
a string that is longer than a single line. By now assigning the block to a variable,
Python will not allocate space for the string, so it becomes a simple human-readable
comment:

"""

This is a multi-line comment.

It doesn't do anything.

"""

Conclusion
Programming	 is	 both	 difficult	 and	 easy.	 It	 is	 difficult	 because,	 unlike	 math	 and	
the hard sciences, there is no single right answer to how to program something. At
the same time, it is easy because the number of things you really need to know is
limited. In this chapter, we have reviewed most of the pieces that you will need to
write Python programs. From this point on, we are going to focus on the nuts and
bolts of the language, how to take the little pieces we've learned here and turn them
into	full-fledged	Python	applications.

In our next chapter, we will explore some of the nuts and bolts of the Python
programming language, tackling the basic programming building blocks like
conditionals and loops.

Questions
1.	 What	is	the	difference	between	an	integer	and	a	float?

2.	 How	do	you	iterate	over	a	collection?

3.	 What	is	the	difference	between	a	mutable	and	immutable	collection?

4.	 How	do	you	create	multi-line	comments	in	Python

Chapter 3
The Nuts and

Bolts

Introduction
To this point, we've looked at the building blocks of the Python language, getting it
running, the data types available, and some of the basic functionality built into the
language. As a professional, you know that the building blocks are just the groceries
in a meal, the meat and potatoes that have to be assembled into something delicious
and wonderful. In this chapter, we'll start looking at those recipe components, the
ways in which the language works. We'll look at the various kinds of conditional
statements, as well as the shorthands that those statements allow. We'll look at
looping	constructs,	so	that	you	can	repeat	yourself	in	code	ad	infinitum.	Then	we'll	
start looking at extending the language, creating your own groupings of code into
functions, building your own types using classes, and how Python works with those
classes	to	create	objects	that	can	themselves	be	extended	and	modified	in	your	code.

Structure
•	 Conditionals
•	 Indentation
•	 Functions
•	 Classes
•	 Objects

76			 Python for Professionals

Objectives
By the end of this chapter, you should be able to put together a complete application
in	Python.	It	might	not	be	efficient	or	ideal,	but	it	will	work	and	do	a	bit	more	than	
the	classical	'Hello	world'	program	that	most	beginning	books	start	with.

Conditionals
Most modern programming languages contain one or more conditional statements.
The main conditional is the if statement, which executes code only if a statement
evaluates to a true value. Some languages support a ternary operator, which is
simply a short-hand if statement. Yet other languages contain a switch statement,
which allows you to evaluate a given value and execute a block of code based on its
value in a list of possible values.

Python has the classic if statement and a few variants of this simply statement.
The basic language has no switch statement, although we'll look at ways to do this
later on in the book in the Chapter 11:Tips and Tricks section. Python does not have a
case statement because the if statement makes it unnecessary. Let's start out with
the simplest form of the if statement, the simple if. An if statement is made up of
a condition to evaluate and one or more lines of code that should be executed if the
condition	evaluates	to	any	truthy	expression.	For	example:

x = 100

if x == 100:

 print("X = 100")

As you can see, we have an if statement, followed by a condition to evaluate (x
equal to 100). If x is less than 100 or greater than 100, the code block within the if
statement will not be evaluated. If the value of x is exactly 100, then the program will
print out the string X = 100. There are a number of things worth mentioning here.

First, notice that Python uses the C# style == operator to make an exact comparison
to a value. For numeric values, simple comparison is done. For other values, a
comparison is done using the rules for that data type. Strings are compared for both
case and content, so HELLO WORLD is not equal to hello world, nor is This Is A
Test equal to Test is a This.

The comparison operators are not surprising, but we'll list them out for completeness
anyway:

Operator Meaning
== Two values are equal
> Left hand value is greater than the right hand value

The Nuts and Bolts 77

>= Left hand value is greater than or equal to the right hand value
< Left hand value is less than the right hand value
<= Left hand value is less than or equal to the right hand value
<> The left hand value is not equal to the right hand value
!= The left hand value is not equal to the right hand value

A	few	things	worth	noting.	Python,	like	C++,	C#	and	Java,	differentiates	between	
the assignment operator (=) and the comparison operator (==). In C++, for example,
writing something like if x = 99 is permitted in some versions of the language, and
does what you said to do but probably not what you meant to do. There are legitimate
reasons to do things like this, but the developers of Python decided that it would be
in	the	best	interests	of	programmers	everywhere	not	to	permit	it.	As	a	result;
if x = 100:

 print("X is 100")

 if x = 100:

 ^

SyntaxError: invalid syntax

You will also notice that Python accepts both the <> and != versions of not equal to.
Why? There's really no reason given for it, except that Python attempts to appeal to
as wide a base as possible, and selecting a single method for this, in an environment
in which about half the languages accept each version, seems like a problem in the
making.	Either	way,	you	can	do	either	of	these:
x = 100

if x <> 99:

 print("Not 99")

if x != 99:

 print("Not 99")

Not 99

Not 99

The "walrus" operator
Although	this	piece	of	functionality	does	not	exist	in	Python	3.7,	it	will	in	Python	
3.8. The so-called walrus operator	which	is	the	:=	operator,	does	an	assignment	and	
a	test	at	the	same	time.	So,	instead	of	writing:

x = dictionary_1['something']

If x == nil:

78			 Python for Professionals

 Do_something()

We can now write:

If x := dictionary['something']:

Do_something()

It isn't a major change, for all of the vociferous comments about it in the Python
community, but it is something that will likely be there as you program in Python in
the real world, so it is worth knowing about.

ANDs, ORs, NOTs, and logicals
Languages like Java, C++ and C# use a confusing array of logical operators. The &&
symbol means and from a logical viewpoint, as in this && that means this and that
where both must be true for the expression to evaluate to true.

Python doesn't try to trick you into remembering whether there is one or two
ampersands in the and operator. In most other languages, the single ampers and is a
bitwise operator. For example, you might want to know if the low bit of a number is
set	for	some	reason.	In	Python,	and	most	languages,	we	can	do	this:
for x in range(0,3):

print("Value: {0}".format(x))

 if x & 1:

 print("Low bit set!")

Value: 0

Value: 1

Low bit set!

Value: 2

The equivalent bitwise operator for or is the | (pipe sign). Neither of these operators
can be used in an if statement to test for a combination of factors. Instead, Python
has	the	AND	and	NOT	operators:

x = 10

if x < 20 and x > 5:

print("In range")

In range

Python	does	have	an	operator	that	you	won't	find	in	most	other	languages,	the	is
operator. You can use the is operator in a variety of ways. You can use it as the
equivalent	of	an	equal	statement:

The Nuts and Bolts 79

if x is 10:

 print("X is 10")

You can use the is	statement	to	test	for	the	type	of	a	variable:
if type(x) is int:

 print("X is an integer")

Finally, you can test to see if two variables point to the same location or value in
memory.	Consider	the	following	snippets:
x = "True"

y = "True"

z = "False"

if x is y:

 print("X = Y")

if x is z:

print("X = Z")

x = 1

y = 1

z = 2

if x is y:

 print("Yes")

if z is x:

 print("No")

These	lines	print	out	the	following:

X = Y

Yes

This is because x and y point at the same string True	in	the	first	example,	while	z
does not. In the second block, x and y both point at the integer value 1, so they are
the same. The value of z points at 2, however, so it isn't the same.

Finally, you can combine the is with the NOT operator to see if something isn't the
same	as	something	else:
if z is not x:

print"It is not!")

It is not!

80 Python for Professionals

One more thing, you might notice that comparing a single element to a list or other
collection doesn't work (aside from comparing two strings for content equality).
In most languages, to check to see if a given value is in a collection, you'd have
to write some sort of looping construct to go through the various elements of the
collection	and	compare	them	to	the	value	you	are	trying	to	find.	Python	makes	this	
considerably	easier	with	the	in	and	not	in	operators:

list_of_commands = ['help', 'quit', 'file']

command = 'help'

if command in list_of_commands:

 print("Valid command")

bad_command = "fred"

if bad_command not in list_of_commands:

 print("The bad command was not found!")

Valid command

The bad command was not found!

For lists and sets, the value is checked against each list element. For dictionaries, the
value is checked against the keys of the dictionary. For strings, the operator checks
to see if the given sub-string is found anywhere within the given string.

Returning to the if statement, you are probably accustomed to the various forms
of it in other languages. You can test for a condition and do something if it is true.
If it is not true, there is usually an else clause that you can use to do something
else. Python has the same structure, but adds something of a twist. Remember that
Python doesn't have a switch (or case) statement? There's a reason for this, Python
has the elif	and	else	statements	instead.	Here's	what	it	looks	like	in	code:

cmd = "quit"

if cmd == "help":

 print("I'd be happy to help you!")

elif cmd == "stop":

 print("We can stop whenever you like!")

elif cmd == "drop":

 print("Consider the matter dropped")

else:

 print"I have no idea what you are asking")

The	block	is	evaluated	in	the	following	fashion.	If	the	first	condition	(cmd == "Help")
is not met, the Python interpreter moves to the next statement, which is an "elif".

The Nuts and Bolts 81

Elif is short for else...if and does another comparison. At any point in the stack
of if's and elif's, any condition that matches terminates the check, and control
drops to the next statement below the block. If none of the elif statements match,
control passes to the else statement. In the example above, since the command
string given doesn't match, we see the else statement printed out.

You've probably noticed that the if and elif and else statements terminate with a
colon. This indicates to the interpreter that what follows this is a command block
to	be	executed	for	the	if.	If	you	leave	off	the	colon,	the	interpreter	will	generate	an	
annoying	error:

cmd = "quit"

if cmd == "help"

 if cmd == "help"

 ^

SyntaxError: invalid syntax

Obviously, there's nothing wrong with your syntax, it is telling you that it expected
to	find	a	terminating	colon.	Watch	out	for	this,	since	the	colon	is	easy	to	forget,	and	
most IDE systems don't display a clear enough signal when the condition is detected.

Indentation
Indentation is the amount of white space that a coding line begins with. Up to this
point, we've spent a lot of time looking at how the code looks without really talking
about some of the details of the syntax. The most important detail is indentation,
so	let's	take	a	bit	of	a	look	at	that	now.	For	many	programming	languages	defined	
after COBOL and FORTRAN, indentation is unimportant. C++ does not care which
column you begin coding in, Java doesn't care whether or not a line within a block is
indented a certain amount. C# has no issues with deciding what block a given line of
code	belongs	to,	it	is	defined	by	the	curly	brace	characters	that	define	blocks.

Python is an older language, and one designed around simplicity. For this reason,
the indentation level is critical to the interpreter deciding whether a given piece of
code belongs to a block or not. For example, these two snippets of code have very
different	outputs:

Block 1

x = True

if not x:

 print("The value is true")

 print("So we will do what we need to do")

82 Python for Professionals

Block 2:

if not x:

 print("The value is true")

print("So we will do what we need to do")

In	the	case	of	the	first	block,	where	both	of	the	print statements are indented, the
interpreter will recognize them as a single block and will not output either statement,
since x is not True.	In	the	case	of	the	second	block,	where	the	first	line	is	indented,	
and the second is not, the second line is not considered part of the if block, and will
be output regardless of the value of x.

Indentation is most important when you have nested blocks of code. As an example,
we	might	have	something	like	this:

for i in range(0,10):

if i % 2 != 0:

 print("{0} is odd".format(i))

Without the indentation, the Python interpreter has no way of knowing that the
print statement is contained within the if statement.

The pass statement
Back in the early days of programming, when assembly language was the only option
for writing code on a computer, there was a statement called noop. This statement,
pronounced no op, was short for no operation. In short, it did nothing. Why would
you want a statement that did nothing? It turns out, doing nothing is often quite
valuable. For one thing, you could use it in place of a wait statement to kill time. For
another, you could put it in branching statements. Many assembly languages had a
the equivalent of the if statement, but required an else. What if you didn't want to do
anything in the else case? You put in the noop command.

Python has the equivalent of the noop command, it is called pass. There are a few
cases when you want to use it, and most of those will be covered when we discuss
classes	and	functions.	For	now,	however,	if	you	see	something	like	this:

if somecondition:

 Do_this()

else:

 pass

Realize that this statement is likely there temporarily, to address the fact that the
programmer knows that something needs to be done if the condition is not true, but
isn't entirely sure what. It is kind of like a comment, but in code.

The Nuts and Bolts 83

Now that we have all of the pieces in place and understood, it's time to look at the
important	things	in	any	language,	the	flow	constructs.

Loops
If you happen to be old enough to remember the original BASIC programming
language, you will recall that it had no looping structure. A loop was done by the
GOTO	statement:

10 DO_SOMETHING

 .. doing something

 IF NOT DONE GOTO 10

Seems awfully primitive and error prone, doesn't it? If the value of DONE, whatever
that is, never got set properly it would keep going back and forth across the statements
forever. Fortunately, we all know that we don't do things like that anyway. For
example, nobody would ever do something like anymore in modern languages like
Java or C++.

In	Java,	for	example,	you	couldn't	possibly	do	something	like	this:

class MainClass

{

 public static void main(String[] args)

 {

 int count = 1;

 while (count < 10)

 {

 System.out.println("Count is: " + count);

 }

 }

}

Yes, this loop will continue forever. Yes, it is exactly the same as BASIC. It is called an
infinite	loop,	and	there	are	few	languages	in	the	world	that	you	cannot	define	such	a	
construct	in.	Python	is	not	one	of	those	languages,	you	can	create	an	infinite	loop	in	
Python just as easily as in any other language.

In	spite	of	this	little	affront	to	programmers	everywhere,	Python	does	support	loops.	
In	fact,	 it	supports	 two	different	sorts	of	 loops,	 the	for and while loops. Would
it	surprise	you	to	know	that	there	is	little	difference	between	them?	This	is	true	of	
most languages. Python has some things that are a little easier to do in one form

84 Python for Professionals

or another, but the truth is, you can replace a while loop with a for loop anywhere,
just as you can replace a for loop with a while	anywhere.	Keep	that	in	mind	when	
designing your applications.

The	loop	types	are:
• for
• while

In general, the form of the for loop is for <variable> in <iterable>. There are
quite	a	number	of	ways	to	create	an	interable,	we'll	look	at	two	specific	ones	here.	
First, there is the range() function that we've looked at before. This makes the for
loop most like the Java or C++ for loop. These languages have for loops of the
form for <variable = initial state; <variable> != terminal state;
<variable>modification function. Let's say that you have a loop to count the
odd	numbers	from	zero	to	ten.	We	could	write	this	in	C++	as:

for (int I=0; I<10; ++I) {

if (I % 2 != 0)

 cout << I << endl;

}

The	equivalent	Python	for	loop	to	accomplish	the	same	thing	looks	like	this:

for i in range(0, 10):

if i % 2 != 0:

 print(i)

As	you	can	see,	while	there	is	a	minor	difference	in	syntax,	the	basic	loop	is	the	same.	
C++	and	Java	are	a	bit	more	direct	about	how	the	loop	variable	is	modified,	whereas	
Python hides it within the range() function, but this takes almost no time to get
used to. Likewise, if we have a list (or array in C++) and want to iterate over it, the
syntax	is	similar	but	different:

for (int I=0; I<array.length(); ++I) {

 cout << array[I] << endl;

}

In	Python,	we'd	write:

for a in array:

 print(a)

Once	again,	ignoring	the	slight	syntactical	differences,	these	are	quite	similar.

The Nuts and Bolts 85

The second sort of loop is also found in Java, C++ and so forth, and is called the
while loop. As its name implies, the loop executes while a given condition is true.
The general form of the while	loop	is:

while condition:

 do_some_stuff

Obviously, the most dangerous thing about the while loop is that it requires you to
think about the condition that terminates it, and make sure that the condition is set
at	some	point.	Of	course,	there	are	times	when	you	really	do	want	an	infinite	loop.	
For example, suppose that you are writing an application that is meant to monitor
the state of your system. You might want it to never end, unless it was physically
killed.	In	this	case,	you	could	create	an	infinite	loop	by	writing:
while (True):

The while loop is important because it evaluates its condition at the top of the loop,
meaning that your code may not execute at all. For example, if we write a loop like
this:
done = True

while not done:

print("Not done!")

You will discover that it doesn't print anything at all. If you are accustomed to the
do…while loop in other languages, which always executes at least once, this can be
a little disconcerting. Whatever you choose to do, it is important to understand that
the while loop can be exited from any point in the code, using the break statement.

The break	statement	shouldn't	be	unfamiliar;	it	exists	in	most	modern	programming	
languages. The essential function of the statement is to drop out of whatever loop
you	are	in.	Normally,	this	is	done	in	response	to	a	specific	condition	being	reached.	
For	example,	consider	the	following	code:
done = False

while not done:

print("Enter a command: ")

 cmd = get_a_command()

if cmd.lower() == 'quit':

 break

 print("Processing command: " + cmd)

This code snippet will process commands, presumably from some sort of input
function.	Perhaps	it	is	reading	them	from	a	file,	or	from	the	user	console,	or	maybe	
it is just playing back a list of commands to do a test. Whatever the case, we want to
continue doing so until the command is quit. When this command is encountered,

86			 Python for Professionals

the	break	statement	is	triggered	and	control	passes	to	the	first	statement	following	
the end of the loop.

The important part of understanding that last statement is to realize that if there
are nested loops, a break statement exits the loop in which it is executed. Let's look
at an example of a nested loop that requires the innermost loop to exit on a given
condition:
i = 0

j = 0

while i < 3:

 while j < 3:

 if i == j:

 break

print("i = {0} and j = {1}".format(i,j))

j = j + 1

i = i + 1

This	set	of	loop's	purpose	appears	to	be	to	find	the	combinations	of	values	where	the	
two	indices	are	not	the	same.	In	fact,	the	output	from	this	loop	is	as	follows:
i = 1 and j = 0

i = 2 and j = 1

As you can see, the break statement here does not exit all the way out of the nested
loop construct. It only exits out of the while k < 3 loop, and picks up with the I =
I + 1 statement in the outer loop. The break	statement	is	often	the	final	alternative	
for getting out of a sticky situation in a loop, so remember it when writing complex
looping code.

Like the break	 statement,	 the	 continue	 statement	 also	 alters	 the	 flow	 of	 a	 loop.	
Rather than dropping out of the loop, however, the continue statement goes to the
end of the loop in which it is executed, and starts from the beginning again. This
can	be	useful	if	an	error	is	encountered,	or	if	the	code	cannot	handle	a	specific	use	
case. For example, suppose you want to go between two values, dividing the current
setting of the value into a given constant. You might write code that looks something
like	this:

start = -3

end = 3

idx = start

while idx <= end:

 val= 12345 / idx

The Nuts and Bolts 87

 print(val)

 idx = idx + 1

This	code	seems	all	fine	and	dandy,	but	it	has	a	rather	nasty	flaw.	If	you	run	the	code,	
you	will	see	that	flaw:
Traceback (most recent call last):

 val = 12345 / idx

 ZeroDivisionError: integer division or modulo by zero

Oh dear, we don't want to be dividing by zero. But we do want all of the other cases
to run. This is an excellent case for the continue statement, right? Well, not exactly.
Suppose	we	did	this:
start = -3

end = 3

idx = start

while idx <= end:

 if idx == 0:

 continue

 val = 12345 / idx

 print(val)

 idx = idx + 1

This	code	appears	to	work,	the	loop	will	find	the	zero	value	and	drop	to	the	bottom,	
executing from the next iteration, right? No, not quite. As mentioned earlier, the
continue statement goes to the very end, starting at the top. So the idx value is never
incremented	and	the	loop	will	continue	forever.	An	infinite	loop!

Instead	of	creating	an	infinite	loop	and	spending	days	figuring	out	why	our	program	
never	terminates,	let's	fix	it.	The	continue	statement	can	be	placed	anywhere,	all	code	
will	be	executed	normally	until	it	is	hit.	So	let's	modify	our	code	to	look	like	this:

start = -3

end = 3

idx = start

while idx <= end:

 if idx == 0:

 idx = idx + 1

 continue

val = 12345 / idx

88 Python for Professionals

printval)

idx = idx + 1

Running	this	code	results	in	the	following	output:
-4115

-6173

-12345

12345

6172

4115

This output is exactly what we were looking for. One last thing before we move on
to the next subject. Python has a very strange construct that doesn't really appear
useful	until	you	need	it.	This	is	the	else	statement	in	a	loop.	This	definitely	sounds	
strange, doesn't it? Why would a loop contain an else statement? The else statements
are for if statements, not loops. Yet, when you see how it works, you immediately
understand it and wonder why nobody else thought of this.

Here's	 how	 it	 happens.	 If	 a	 loop	 terminates	 normally,	 that	 is,	 runs	 through	 the	
condition for which it was set up, the else statement is called. It is a kind of all went
well extension to the loop. On the other hand, if a break statement is encountered in
the loop, the else statement is not called. You can use the else in both for and while
loops. Let's look at an example because this really does seem very strange.

signal_values = [1,5,9,99]

test_value = 3

for v in signal_values:

if v == test_value:

 break

 else:

 print("The value was not found!")

If you run this code, you will see the output The value was not found!.	However,	
if you modify the value of the test_value variable to be 5, you'll see no output at
all. This is because the value was found in the signal_values array. Yes, you could
simply test for this using test_value in signal_values, that isn't really the point
to this exercise. The idea is, you either exited the loop due to an error condition, or to
finding	something	before	you	reached	the	end.	Normally,	we	would	write	something	
like	this	in	another	language:

The Nuts and Bolts 89

signal_values = [1,5,9,99]

test_value = 3

found_it = False

for v in signal_values:

 if v == test_value:

 found_it = True

 break

if not found_it:

 print("The value was not found!")

In Python, this isn't necessary, and leads to less error prone coding. If we forgot to
set	the	flag	before	exiting	the	loop,	we	might	think	we	found	the	signal	value,	and	
proceed accordingly and wrongly.

The	else	statement	can	also	be	used	in	while	loops.	To	see	how,	let's	create	our	first	
real Python program of the book, a very simple guessing game. We won't talk about
the input parts quite yet, just accept that raw_input inputs a string from the user
console:

import random

real_value = random.randint(1, 100)

guesses = 0

while guesses < 10:

 guess = int(raw_input('Enter your guess: '))

 if guess == real_value:

 print("You got it!")

 break

 elif guess < real_value:

 print("Too low!")

 elif guess > real_value:

 print("Too high!")

 guesses = guesses + 1

else:

 print("Better luck next time!")

90 Python for Professionals

Here	are	two	output	runs	of	the	little	program.	The	first	is	a	successful	guess,	the	
second	a	failure:

Enter your guess: 50

Too high!

Enter your guess: 30

Too low!

Enter your guess: 40

Too low!

Enter your guess: 45

Too low!

Enter your guess: 48

Too low!

Enter your guess: 49

You got it!

And the second:

Enter your guess: 5

Too low!

Enter your guess: 90

Too low!

Enter your guess: 35

Too low!

Enter your guess: 45

Too low!

Enter your guess: 55

Too low!

Enter your guess: 65

Too low!

Enter your guess: 75

Too low!

Enter your guess: 86

Too low!

Enter your guess: 1

The Nuts and Bolts 91

Too low!

Enter your guess: 2

Too low!

Better luck next time!

As you can see, the else part only triggered when the guess count exceeded our limit.
It also shows that someone is a terrible guesser.

That concludes our discussion of loops. Between the basic loop structure and the
basic conditional structure, you can see that you have the vast majority of the basic
functionality handled for writing Python code. In fact, you could, and we did, write
a complete application using nothing but these processing constructs.

Python, however, was meant to not only be useful, but be reusable and maintainable.
Being reusable means not to repeat yourself in your own code. There is a programming
acronym called DRY that says just that. Don't Repeat Yourself. To make code easily
portable, and easy to reuse, we need something that encapsulates that code into
pieces that can be moved around. Which brings us to our next subject, functions.

Functions
Every modern programming language has the notion of a function. A function is
simply an encapsulation of a block of code. It can take input in the form of parameters,
and it can produce output, in the form of returned values. Python supports functions
as	first-class	citizens,	which	means	that	you	can	assign	a	function	to	a	variable,	and	
execute it from that variable. To begin with, let's take a look at the basic form of a
function.

In	Python,	a	function	looks	like	this:

def function_name(arguments):

 # One or more statements to accomplish something

 return (optional)

The function_name	 is	 a	 user-defined	 name	 for	 this	 function.	 	 Unlike	 some	
programming languages, such as Java or C++, you cannot have multiple functions of
the	same	name	with	different	arguments	in	Python.	It	isn't	an	error;	it	just	absolutely	
won't	do	what	you	expect	it	to	do.	For	example:

def func1(a, b, c):

 sum = c

 for i in range(a,b):

 sum = sum + i

 return sum

92 Python for Professionals

def func1(a,b):

 sum = 0

 for i in range(a,b):

sum = sum + i

 return sum

print(func1(1, 2, 3))

You	 would	 expect	 that	 this	 would	 call	 the	 first	 function,	 which	 accepts	 three	
arguments, but it does not work. Rather, running this snippet results in the following
error	from	the	Python	interpreter:
Traceback (most recent call last):

File "/Users/mtelles/PycharmProjects/html/func_test.py", line 14, in
<module>

 print(func1(1, 2, 3))

TypeError: func1() takes exactly 2 arguments (3 given)

On	the	other	hand,	calling	this	function:
print(func1(1, 2))

Works	fine	and	returns	the	expected	value	of	1. There are ways around this, as we
will see shortly.

Parameters
Parameters are arguments to the function. As we'll see in a bit, they can be required
or optional, and can be referred to by position or by name. For the moment, we'll
assume that all of the parameters are required and passed by position, as they are
in most languages. Most compiled languages require you to pass arguments by
position, meaning that the order of the arguments passed in has to match the order
that are processed by the function. In other words, if you have a function in Java or
C++	or	C#	that	is	defined	as	func(a,b,c,d) then the parameters you pass to the
function have to match a,b,c, and d in that order.

Parameters	can	be	of	any	valid	Python	type,	including	user	defined	types	like	classes.	

Return values
A return value is the value that is returned to the caller of the function or method. By
default, a Python function returns None.	That	means,	if	you	have	a	function	like	this:

def a_function():

The Nuts and Bolts 93

print"This is a function")

And	you	call	this	function	like	this:
x = a_function()

print(x)

You	will	see	output	like	this:
This is a function

None

The	first	line	is	output	by	the	function	itself,	the	second	line	is	the	value	of	x. None
is the default value for anything, so it is what you get back if the function returns no
values. Returning a value is done by, you guessed it, the return statement!

We	could	modify	the	above	function	to	return	a	Boolean	value:
def a_function():

print("This is a function")

 return True

x = a_function()

print(x)

The output from this function is, as you expect.
This is a function

True

Functions can return multiple values. The return value is a tuple containing the
values	returned	from	the	code	in	the	function:

def function_returning_multiple_values(a,b,c):

 return a*2,b*3,c*4

print(function_returning_multiple_values(1,2,3))

The output here is: (2, 6, 12)

Python passes parameters by reference. That means, if you change what a variable
refers	to	(or,	as	you	might	say	in	Java	or	C++,	points	at),	it	will	be	modified	in	the	
calling	code.	You	cannot	change	what	an	ordinary	type,	such	as	int	or	float,	points	
to,	so	it	will	remain	the	same:

def function_that_changes_input(a):

 print("Before, a = "+str(a))

94 Python for Professionals

 a = a * 2

 print("After, a = "+str(a))

a = 10

print(function_that_changes_input(a))

print("Outside, a = " + str(a))

Before, a = 10

After, a = 20

None

Outside, a = 10

If you think about it, this makes perfect sense. Imagine that we passed the value 1
to the function_that_changes_a_value function. Would the value of 1 now be
2 throughout the system? That wouldn't make a great deal of sense, and Python
strives to always make sense.

If	the	parameter	can	change	what	it	refers	to,	however,	the	output	is	quite	different:
def add_a_value(list_to_add_to, value):

list_to_add_to.append(value)

return list_to_add_to

x = []

print(add_a_value(x, 12))

print(x)

This, not surprisingly, returns:

[12]

[12]

Once again, this makes sense, since an array is a pointer to a block of memory. You
can't change the memory address itself, but you can easily change what that memory
address contains.

As mentioned, you cannot change a simple variable inside of a function directly. But
you	can	return	a	value	and	assign	that	value	to	the	variable:

def set_x_times_2(x):

return x*2

x = 1.0

The Nuts and Bolts 95

x = set_x_times_2(x)

print(x)

Required vs optional arguments
Remember that we said that you can't do function overloading in Python, because
creating	two	functions	of	the	same	name	simply	overwrites	the	first	function	with	
the	second.	It	is	untrue,	however,	that	you	can't	have	a	function	that	takes	differing	
numbers of arguments, and the method to accomplish this is with required and
optional parameters.

A required parameter is one that has no default value. An optional parameter is one
that is given a default value in the function header, and can either be set or not set by
the	caller	of	the	function.	Let's	look	at	an	example:
def a_function_that_takes_variable_arguments(a, b='hello', c=2.0):

 s = b + ' ' + str(c) + ' ' + str(a)

 return s

Once	we	have	this	function	defined,	you	will	notice	that	one	argument	('a') does not
have a value assigned to it, while the other two ('b' and 'c') have values. These values
are called default values, and will be assigned to the variables if the caller does not
specify	them.	We	can	now	call	this	function	three	different	ways.
print(a_function_that_takes_variable_arguments(9))

print(a_function_that_takes_variable_arguments(10, 'goodbye'))

print(a_function_that_takes_variable_arguments(11, 'why', 3.0))

The	output	from	these	three	calls	is:
hello 2.0 9

goodbye 2.0 10

why 3.0 11

This shows that our default arguments were set properly, and that we can override
those defaults if we want to. The a parameter is called required, because you must
specify a value for it. The other parameters are optional, because if you do not specify
values for them, the interpreter will use the default values.

Keyword arguments
Python allows something that most other languages do not. For the majority of
programming	languages,	when	you	define	a	function	with	three	arguments;	a,b,c
you have to pass in the values in that order for them to match up within the function
code. In Python, you can pass arguments that way, but you have another option. You

96			 Python for Professionals

can also pass them by the name they have in the function, and when you do, you can
pass	them	in	any	order	you	like.	For	example:

def print_name_and_address(name, address, city, state, zip):

 print("Name: " + name)

 print("Address: " + address)

 print("City, State, Zip: {0}, {1}, {2}".format(city, state, zip))

Now, if we want to call this function, we can call it with the arguments in the order
they	are	defined:

print("Calling it in order:")

print_name_and_address('Matt Telles', '1313 Mockingbird Lane', 'New
York', 'NY', '10012')

But,	there	is	another	way	to	do	it:
my_name = "Matt Telles"

my_address = "1212 Fleming Circle"

my_city = "Trenton"

my_state = "NJ"

my_zip = "20123"

print_name_and_address(address=my_address, name=my_name, zip=my_zip,
city=my_city)

Note	that	the	order	we	are	passing	the	arguments	in	is	completely	different	from	the	
order	that	the	function	defines,	yet	we	are	getting	the	correct	output:
Name: Matt Telles

Address: 1212 Fleming Circle

City, State, Zip: Trenton, NJ, 20123

How	is	this	possible?	The	answer	lies	in	the	way	that	Python	actually	uses	parameters.	
For all Python functions, the arguments are passed as a dictionary, which is unpacked
to pass the arguments in order. If you specify names for the parameters, those names
go into the dictionary in the correct positions, and then the unpacking proceeds as
expected. It is actually somewhat safer to pass values by name, because no matter
how	the	function	is	modified	to	add	new	parameters,	your	arguments	will	remain	
the same.

Variable length arguments
Way back in the early days of C and C++, macros were used to introduce the concept
of variable length argument lists. You could allow the user to pass one, two, or a

The Nuts and Bolts 97

multitude of arguments to your function. Originally, this was designed for things
like the print function in Python, a way of outputting a random number of things at
once. It was much nicer to be able to write a printf statement like printf("%d, %d =
%s\n", 1, 2, "This is a test") rather than having to output each piece of it as
once. As people realized the advantages of variable lists, it became a more common
(some would say it became too common) way of manipulating lists of information.
Python supports variable numbers of arguments via the *<argument>	syntax:
def variable_length_argument_function(fixed_string, *list_of_args):

 print("The fixed string is " + fixed_string)

 for var in list_of_args:

 print"Argument: " + str(var))

There is no set requirement for the types of the variable arguments, as you can see
from	this	function	call	and	its	result:
variable_length_argument_function ('This is a fixed string', 1, 2.0, 'an
optional string', complex(2, 3))

The fixed string is This is a fixed string

Argument: 1

Argument: 2.0

Argument: an optional string

Argument: (2+3j)

Now, you might be asking yourself, is it possible to combine the variable arguments
with	the	keyword	arguments	and	have	a	variable	list	of	keywords	and	values?	Hey,	
this is Python, your wish is the language's desire. The functionality you are looking
for is encapsulated in the **kwargs	parameter:
def keyword_variable_arguments(**kwargs):

 for kw, kv in kwargs.items():

 print("Keyword {0} = {1}".format(kw, kv))

keyword_variable_arguments(a=1, f=2.0, c='Hello world')

Keyword a = 1

Keyword c = Hello world

Keyword f = 2.0

Lambdas
Lambda functions are fairly new to most of the programming world. Java has had
them	 for	 a	 few	years;	C#	 and	C++	have	 added	 them	 in	 very	 recent	 versions.	 In	

98 Python for Professionals

Python, however, lambdas have been there since Python 2.x. A lambda function is
an anonymous function that is a function that has no name. A lambda is normally
implemented in a single line of code. Lambda functions can accept arguments, and
return values. They really are just functions, but allow for some interesting shortcuts
in Python.

There is absolutely nothing that you can do in a lambda that you cannot do in a
function, although there is some syntactic sugar that makes it easier to do strange
and complicated things with lambdas. On the other hand, there are severe restrictions
on what you can do in a lambda. You cannot have multiple statements. You cannot
define	variables,	and	the	return	value	of	the	lambda	is	always	implicit.	With	all	of	
that said, let's look at why you would want to use a lambda, and what other use
cases there might be.

The basic form of a lambda is lambda (args): (manipulation) where args is a
set of variable names to use as arguments to the thing, and manipulation is a single
line that somehow manipulates the arguments. The return value from the lambda is
the last evaluated value within it. Python always sets the value of the last evaluation
on the stack, so essentially this is just popping the stack. It is important to note that
your lambda manipulation must result in a value, so you can't use it for printing or
other non-value manipulations.

Here	is	the	world's	simplest	lamda	function:
lambda x,y: x+y

This	 lambda	does	nothing	except	to	add	the	two	arguments.	However,	creating	a	
lambda like this doesn't make it possible to use it. It is an anonymous function, after
all. So, how do we use lambdas?

There	are	two	direct	ways	to	use	a	lambda	function.	The	first	is	to	use	it	as	an	argument	
to a function call. We saw an example of this when we looked the sorted() function
last chapter. This chapter allows you to assign a lambda value to the key argument of
the function. The second way is that we can assign a variable to the lambda. Because
functions,	and	thus	lambdas,	are	first	class	citizens	in	Python,	you	can	use	it	as	if	it	
were another kind of variable
foo = lambda x,y: x+y

print(foo(1,2))

You can then use the foo variable anywhere you would use a function, as shown in
the print statement.

To be fair, lambdas are generally not worth the time. They are hard to read, confusing to
debug,	and	difficult	to	maintain	and	document.	With	that	said,	they	do	serve	a	purpose,	
such as with the sorted() function example. If you need to do anything beyond very
simple manipulations, however, writing your own function is the way to go almost
every time. A function can be plugged in wherever you have a lambda anyway.

The Nuts and Bolts 99

Classes
Python is an object oriented language. By this we mean that we think in terms
of modeling the real world using code based objects. These objects are usually
implemented in the form of a class, and Python is no exception. You are certainly
familiar with the object oriented paradigm by now, with its focus on encapsulation
and extension. The Python class is an excellent example of how to do object-oriented
programming (OOP) well. Let's take a look at how Python classes work, how to use
them, and how to extend them.

First	of	all,	a	class	definition	looks	like	this:
class <className>:

def <method>:

From	a	syntactical	point	of	view,	that's	about	it.	Anything	defined	between	the	class	
name	 and	 any	 given	 defined	method	 is	 called	 a	 class level variable. Most OOP
languages have some form of the class level variable, as well as local and global
variables. We'll take a look at the options you have in Python in a little bit when we
talk about scoping.

Classes generally have two important methods that the system needs to know about,
the	initialization	and	finalization	(sometimes	called	a	destructor	in	C++)	methods.	
Python has these as well. The initialization method, not surprisingly, is called __
init__ while	the	finalization	or	destructor	method	is	called	__del__. In general,
the rules for naming of Python methods are to use a double underscore character
for internal (not intended for direct access by the outside world) methods. There
are no true private methods in Python classes, but convention says that a method
that begins with a single underscore is considered private, and a double underscore
indicates it is internal, only to be used by the system.

In C++ and Java, the object that you are operating upon in a class method is referred
to by the this name. In Python, the this name is replaced by self. In fact, for an
object method, self	is	always	the	first	parameter	passed	to	the	method.	That	is	to	
say, when you have an object called foo of class Foo,	like	this:

foo=Foo()

And the class Foo	has	a	method	called	bar,	which	you	call	like	this:

foo.bar()

This statement indicates that your object foo is calling the class method bar. The
actual	implementation	of	the	bar	method	looks	like	this:

class Foo:

 .. some other methods ..

 def bar(self):

100 Python for Professionals

 .. do something with the object via the self parameter.

If your method takes parameters, you just add them after the self parameter, as you
would	with	any	other	function:

def bar_with_parameters(self, a, b, c):

 .. do something with the object and parameters ..

In most programming languages, like C++ or Java, you have two sections to your
class.	First,	you	have	a	definition	of	the	class	variables.	In	Java,	you	might	write	this:

class Car {

 private int wheels;

 private float max_speed_mph

};

Likewise, in C++, you might have something like this:

class Car {

private:

 Int wheels;

 Float max_speed_mph;

};

Python	has	a	similar	concept,	but	does	it	in	a	different	way.	You	can	actually	define	
class	variables	the	same	way	if	you	want	to:

class Foo:

wheels = 3

 max_speed_mph = 75.0

 def __init__(self):

 pass

 def printme(self):

 print(self.wheels)

print(self.max_speed_mph)

In	this	example,	we	are	defining	two	class	variables,	called	wheels and max_speed_
mph which represent the number of wheels and the maximum speed in miles per
hour, respectively. We are assigning them starting values of 3 and 75.0, again
respectively.	We	have	defined	two	methods,	the	initialization	method	and	a	method	

The Nuts and Bolts 101

to print out the values within the Foo object. Clearly, a Foo is some kind of motorized
vehicle. Bet you always wondered about that.

Note the use of the self.wheels syntax to access the variable within the method. If
we write code to create a Foo,	and	call	the	method,	we	see	the	following:

foo = Foo()

foo.printme()

3

75.0

Note	in	the	class	definition,	we	implement	the	constructor,	or	initialization	function,	
__init__, but the only statement in the method is the noop statement, pass. It is
conventional to implement the __init__ method even if you aren't doing anything
with it, and if you don't want a method to do anything, the pass statement is ideal.
As mentioned, though, it is not normal to implement the variables in this way. Why?
Well,	to	understand	what	the	two	variables	really	are,	let's	do	this:

print Foo.max_speed_mph

75.0

Note that the Foo in this case is the class Foo, not the instance. This is where the
scope	of	the	variable	lies,	at	the	class.	However,	these	are	not	quite	like	static	class	
variables	in	C++	or	Java.	For	example:

foo = Foo()

foo.printme()

foo2 = Foo()

foo2.max_speed_mph = 80

foo.printme()

foo2.printme()

3

75.0

3

80

As you can see, the max_speed_mph	is	set	for	a	specific	instance	of	the	object,	and	
only	that	object	picks	up	the	new	value.	If	we	print	it	out	again	at	the	class	level:

print Foo.max_speed_mph

75.0

102 Python for Professionals

We see that the value of the class variable hasn't changed. This is due to the way in
which Python manages class and object variables. They are stored in a dictionary
associated with the object, while class level items are in a separate dictionary
associated with the class. If you don't assign the value in the class, it will inherit the
class level value.

It is worth mentioning that in Python, class variables are normally called attributes.

We can actually look at the dictionary for a given class, it is stored in the __dict__
internal variable for the class. You can alsolook at __dict__ for an instance of the
class (object):

print Foo.__dict__

{'__module__': '__main__', 'printme': <function printme at 0x10b8e6410>,
'wheels': 3, 'max_speed_mph': 75.0, '__doc__': None, '__init__': <function
__init__ at 0x10b8e6398>}

 print foo.__dict__

{}

print foo2.__dict__

{'max_speed_mph': 80}

Why does the foo2 instance have a dictionary entry while the foo instance does
not? Looking at the code, you will realize that there is never anything assigned to
the foo instance. It only inherits the settings at the class level. The foo2 also inherits
the values from the class level, such as wheels, but overrides one of them, so it is
set in the instance. Understanding how the internals works makes it possible to use
Python	much	more	efficiently,	and	to	understand	why	things	happen	the	way	they	
do.

What if you don't want the variables set at the class level, but rather to have each
instance have its complete own set of them? This is what the self value is all about. If
you assign a variable at the self level, it is set for that instance and that instance only.
Let's	look	at	an	example:

class Foo2:

 def __init__(self):

 self.wheels = 3

 self.max_speed_mph = 75.0

 def set_wheels(self, w):

 self.wheels = w

 return elf

The Nuts and Bolts 103

 def set_max_speed_mph(self, mx):

 self.max_speed_mph = mx

 return self

 def get_wheels(self):

 return self.wheels

 def get_max_speed_mph(self):

 return self.max_speed_mph

 def printme(self):

 print(self.wheels)

 print(self.get_max_speed_mph())

As you can see, we are assigning to the self variable within both the construction/
initializer and the various attribute setting methods of the class. Notice also how we
return self	from	the	set	methods.	This	allows	us	to	chain	calls:

f = Foo2()

f.set_max_speed_mph(99.0).set_wheels(5)

f2 = Foo2()

f.printme()

f2.printme()

5

99.0

3

75.0

The chaining thing allows you to do more in a single line and with less typing.
It	 is	 also	 clearer	 that	we	 are	 assigning	 to	 a	 specific	 instance.	Also	notice	 that	 the	
initialization	and	set	functions	both	assign	to	the	self	variable	attributes.	As	a	result:

print(f.__dict__)

print(f2.__dict__)

{'wheels': 5, 'max_speed_mph': 99.0}

{'wheels': 3, 'max_speed_mph': 75.0}

This shows you that each instance has its own complete copy of the variables. We
can	prove	this	even	further:

104 Python for Professionals

print(Foo2.__dict__)

{'get_wheels': <function get_wheels at 0x10475a320>, '__module__': '__
main__', 'set_max_speed_mph': <function set_max_speed_mph at 0x10475a2a8>,
'printme': <function printme at 0x10475a410>, 'set_wheels': <function
set_wheels at 0x10475a1b8>, 'get_max_speed_mph': <function get_max_speed_
mph at 0x10475a398>, '__doc__': None, '__init__': <function __init__ at
0x104758f50>}

As	you	can	see,	there	are	no	attributes	defined	at	the	class	level	for	the	Foo2 class,
they are all at the instance level. This is the more Pythonic way of doing things and
the way we will do things from this point out in the book.

A few more things about classes, some of which you should never really use. First
of all, because attributes are simply dictionary entries, you can remove an attribute
from an instance by using the del	operator:

del f2.max_speed_mph

print(f2.__dict__)

{'get_wheels': <function get_wheels at 0x10a44b320>, '__module__': '__
main__', 'set_max_speed_mph': <function set_max_speed_mph at 0x10a44b2a8>,
'printme': <function printme at 0x10a44b410>, 'set_wheels': <function
set_wheels at 0x10a44b1b8>, 'get_max_speed_mph': <function get_max_speed_
mph at 0x10a44b398>, '__doc__': None, '__init__': <function __init__ at
0x10a449f50>}

{'wheels': 3}

This is a very dangerous operation, and one you probably should never do. Why?
Consider that the methods that access this property are still there. Depending on the
order you call them, you might or might not get an error, but you will certainly not
get	what	you	expect:

del f2.max_speed_mph

print(f2.__dict__)

print(f2.get_max_speed_mph())

func_test.py", line 19, in get_max_speed_mph

 return self.max_speed_mph

AttributeError: Foo2 instance has no attribute 'max_speed_mph'

On the other hand, if you called the set method, all would be good, because you
Python attributes are dynamic. You can add one at any time, retrieving one that
doesn't exist is an error, because there is no dictionary entry for it.

Simple	rule	of	thumb:	Don't	delete	attributes	from	classes.

You	can	also	delete	objects,	just	as	you	can	in	C++,	using	the	del	operator:

The Nuts and Bolts 105

del f2

This will remove the instance of the Foo2 class called f2 from the system. Referring
to it will be an error and all memory for the object will be reclaimed. Using del is
not normally necessary, because Python is a garbage collected language. This means
that the interpreter periodically goes through and cleans up memory. It looks at all
variables that no longer have anything accessing them and reclaims their memory.
Deleting an object in C++ is a necessity, in Python and Java it is generally over-kill.

Finally, all attributes (sometimes called properties) in Python are public. That is, in
the	Foo2	example,	we	can	do	either	of	these	and	it	will	result	in	the	same	thing:

f2.max_speed_mph = 75.0

f2.printme()

f2.set_max_speed_mph(80.0)

f2.printme()

3

75.0

3

80.0

Scoping
In Python, variables have scope. Scope is the level at which the variable exists and
when it disappears (or goes out of scope, in programming parlance). The scope of a
variable	is	defined	as	the	region	of	code	space	in	which	the	name	space	requested	is	
directly available. Basically, it means that the scope of a variable is where it can be
found by the interpreter, and the programmer.

Python realistically has two levels of scope, those inside a function or method
definition	and	those	outside	of	it.	There	is	a	third	level,	which	is	a	class	level	variable,	
as we've seen before.

Local	variables	are	those	defined	within	a	method	or	function.	These	variables	are	
only valid between the beginning and end of the method, and cannot be accessed
outside the method.

Global	variables	are	those	defined	completely	outside	of	a	class	or	function.	Global	
variables	can	be	accessed	from	anywhere	in	scope	they	are	defined.	For	example,	
without importing another namespace, a global variable is accessible anywhere
within	the	file	in	which	it	appears.

Class variables, of course, are accessible by themselves only within the class. They
can be reached externally by prepending them with the name of the class, and then
become a specialized form of the global variable.

106			 Python for Professionals

Let's look at any example, because that makes things easier.

x = 3 # X is a global variable, accessible anywhere within this file

class Foo :

 def __init__(self):

 self.x = 10 # Class attribute x

 def print_stuff(self):

 print("Class X = {0}".format(self.x))

 print("Global x = {0}", x)

 def local_stuff(self):

 x = 5

 print("In local_stuff, x = {0}".format(x))

def function_1():

 print("In function, x = {0}".format(x))

 x = 10

 print("But locally it is: {0}".format(x))

print(x)

f = Foo()

f.print_stuff()

function_1()

Going by the rules we have established, what would you expect to see printed out?
First, we are printing out the global variable x, so we'd see a 3. Next, we print out
the class attribute x and the global x in the print_stuff method of the Foo class. So,
we'll see the class value, which is 10, followed by the global variable, which again
is 3.

Next up, we print out values within the function, function_1. You would expect
to see it print the global variable x, which is 3, followed by the local value we just
assigned, which is 10. When we run this little program we don't quite get what we
expect:

3

The Nuts and Bolts 107

Traceback (most recent call last):

Class X = 10

Global x = 3

 File "/Users/mtelles/PycharmProjects/html/scope.py", line 26, in
<module>

 function_1()

 File "/Users/mtelles/PycharmProjects/html/scope.py", line 19, in
function_1

 print("In function, x = {0}".format(x))

UnboundLocalError: local variable 'x' referenced before assignment

Why the error? Python is smarter than we give it credit for. It realizes that x is
defined	in	function	function_1	and	won't	let	you	print	it	out	until	you	have	assigned	
it a value, which happens after the global print statement. Does this mean that the
global variable is not accessible within a function that uses the same name? Actually,
it	doesn't	mean	that.	You	just	have	to	be	a	little	sneaky	when	you	use	it.	Here's	how	
you	do	it:

def function_1():

 print("In function, x = {0}".format(globals()['x']))

 x = 10

 print("But locally it is: {0}".format(x))

Running	the	program	again,	we	see:

3

Class X = 10

Global x = 3

In function, x = 3

But locally it is: 10

What does that globals() thing mean? It is the method you use to access program
global objects, returning a reference to the dictionary of all global entries. You can
print	it	out:

print(globals())

{'f': <__main__.Foo instance at 0x107c3e488>, '__builtins__': <module
'__builtin__' (built-in)>, '__file__': '/Users/mtelles/PycharmProjects/
html/scope.py', 'function_1': <function function_1 at 0x107c3aed8>, '__
package__': None, 'x': 3, '__name__': '__main__', 'Foo': <class __main__.
Foo at 0x107bc3c18>, '__doc__': None}

108 Python for Professionals

Most of those things are housekeeping objects maintained by the Python interpreter,
but you can see our x variable is in there too!

That's really all there is to scoping. If you are interested, there is a locals() function
that	returns	all	local	variables	as	well.	For	a	single	file,	it	will	essentially	be	the	same	
as globals().

Objects
An object is an instance of a class. You can think of it this way, as you would in any
OOPs language, a class is a template for building something, like a blueprint. An
object is the think you built using that template.

To	see	the	difference,	use	the	type()	function	in	Python:

f = Foo()

print(type(f))

print(type(Foo))

<type 'instance'>

<type 'classobj'>

If you want to know if a given object is of a certain type, you can use the is instance
function	in	Python:

class Foo:

def __init__(self):

 self.var = 1

class Foo2:

 def __init__(self):

 self.var_2 = 2

f=Foo()

if isinstance(f, Foo2):

 print("f is a Foo2")

elif isinstance(f, Foo):

 print("f is a Foo")

else:

 print("I don't know what f is")

The Nuts and Bolts 109

Not	surprisingly,	the	output	is:

f is a Foo

That sums up classes in Python. We'll talk a little more about it when we talk about
OOP later in the book, where you'll learn about things like inheritance, but for now
you have enough knowledge to be dangerous.

Conclusion
In this chapter, you learned a lot about the nuts and bolts of Python, including the
syntax of the language, a summary of the types of statements and constructs that
can be created, and some of the functionality of the language itself. By now, you
should be able to easily read a Python script, and write a simple script for yourself.
In	our	next	chapter,	we	will	look	at	how	to	organize	Python	files	into	applications	
and packages.

Questions
1.	 What	is	the	difference	between	a	for	loop	and	a	while	loop?

2.	 How	does	indentation	work	in	Python?	

3.	 What	is	the	difference	between	a	class	and	an	instance?

4.	 How	would	I	implement	a	set	of	conditional	statements	to	check	if	a	number	
was between 1 and 10, or 11 and 20, or 21 and 30?

Chapter 4
Organizational

Skills

Introduction
In a minor departure from the learning of the individual pieces of Python, let’s take
a	chapter	off	and	look	at	some	of	the	things	you	are	going	to	need	to	be	able	to	write	
Python programs. This isn’t really about code, per se, it is about organization and
tools that you will be using in the Python development model. Python has some
very	definite	ideas	about	how	things	should	be	structured	and	used,	and	provides	
some very nice tools that are great if you do things right. To be a true Pythonista, you
want to do things right. So, let’s go!

Structure
•	 Immediate	mode
•	 Modules
•	 Packages
•	 Importing
•	 Paths
•	 Requirements
•	 Dot	notation	in	naming

112 Python for Professionals

Objectives
By the end of this chapter you should understand how to construct a Python
application, how to use existing packages and create your own, and how to import
existing packages and projects into your own application.

You should be able to write code in immediate mode, which we will look at, and
how to create a simple module of your own.

Immediate mode
Let’s talk about immediate mode. Immediate mode is the actual interaction directly
with the Python interpreter. The immediate mode of Python allows you to either
enter single lines and run them to test them, or to load (or enter, if you are a masochist)
Python	files	and	run	them.	It	isn’t	a	good	substitute	for	a	debugger	or	IDE,	but	there	
are some nice advantages to using it.

To begin with, to launch the interpreter in immediate mode slightly varies by the
operating system you are using, but in general, just type python3 at your version of
the Terminal/Command Prompt. You should see the Python interpreter running as
in Figure 4.1:

Figure 4.1: The Python Interpreter in Immediate Mode

Organizational Skills 113

You	can	type	any	valid	Python	statement	at	the	prompt.	For	example,	try	typing:

>>> print(1+2+3)

6

Of course, the interpreter is capable of considerably more than this. You can enter an
entire	function	into	the	interpreter:

>>> def func(x):

... return x*x

...

In this case, the interpreter knows that your function isn’t complete until you hit a
blank line, so it shows the continuation prompt‘.... If you make a mistake, you do
have to go back and type the whole thing again, but on most systems, you can use
the up and down arrows you bring up the lines you typed before and edit them
if necessary. Then hit the return or enter key to re-add them to the memory of the
interpreter.

Once you have entered the above function with no errors, you can call it in immediate
mode:

>>> def func(x):

... return x*x

...

>>> func(5)

25

>>>

As you can see, the interpreter prints out the last return value from the current
expression.	To	see	how	this	works,	try	just	typing	in	an	assignment	statement:

>>> x = 10

>>>

>>> x

10

>>>

We’ve already looked at one of the Easter eggs in the Python interpreter, typing
import	 this	 into	 the	 interpreter	 and	 hitting	 return.	 That	 one	 displays	 the	 Zen	 of	
Python. There’s another one that’s almost as fun. Type import antigravity and hit
return. Rather than spoil the surprise, just try it. You do need to be connected to the
Internet for it to work, though.

114 Python for Professionals

And one more. You can type import __hello	into	the	interpreter,	but	only	once:

>>> import __hello__

Hello world!

>>> import __hello__

One	more	thing	you	can	do	in	the	interpreter	which	really	marks	Python	as	different	
from all other languages. If you are trying to move from one version to another, or
worry about the changes that are coming with a certain feature, there is a module
called __future__ that allows you to experiment with new things without breaking
your	code	by	upgrading.	For	example,	type	the	following	into	your	interpreter:
>>> from __future__ import annotations

>>> def func(x:'int') -> 'int':

... return x*x

For	Python	3.7,	which	 is	what	 this	book	 is	written	using,	 the	only	 future	 feature	
available is annotations. Annotations are a future feature that may or may not be in
the next release. They allow you to give hints about the arguments and return values
for functions. In our example above, you see that the parameter x is hinted to be
an integer, as is the return of the function. Note that the interpreter doesn’t enforce
these	hints.	You	can	do	something	like	this	right	after	the	above:
>>> print(func(5.2))

27.040000000000003

The point is to give the programmer an idea of what is expected, since Python by
default	does	not	have	type	information	in	function	definitions.

The Python interpreter immediately executes code as it is written (aside from
function	or	class	definitions)	as	well	as	when	it	is	loaded	into	the	interpreter.	You	can	
load	a	given	Python	file	into	the	interpreter	to	experiment	with	it	using	the	import
statement.

Create	a	simple	file	called	test3.py	and	place	the	following	lines	into	it:
print("This is a new file")

x = "Hello"

y = "world"

print(x + ' ' + y)

Now,	launch	the	interpreter	and	type:
>>> import test3

This is a new file

Hello world

Organizational Skills 115

Note	that	the	code	in	the	file	is	immediately	executed.	If	we	modify	the	file	to	contain	
a	function:

def my_function(x):

 print(x[1:])

Then	we	can	load	the	file	into	the	interpreter	and	run	the	function:
>>> import test3

This is a new file

Hello world

>>> test3.my_function("This is a test")

his is a test

Notice	that	we	have	to	prefix	the	function	name	with	the	name	of	the	module.	This	
is the result of Python name space resolution. This prevents you from having issues
if	you	have	multiple	files	that	contain	a	function	with	the	same	name.

Modules
In general, when you read module in Python, you can substitute file. A module is
usually	a	file	with	a	Python	extension	(.py) that contains code that you want to use
in your application. A module can be the main entry point, or it can be a repository
for code that you want to use, utilities and such. Aside from operating system
limitations, there are no naming restrictions for a Python module.

A module can be reused in your code via the import statement. There’s a lot you can
do with importing, which we’ll explore in just a moment, but for now, let’s look at
the	basic	form	of	the	import	statement	with	regards	to	using	a	file	as	a	module.
import <namespace>.<module>

You don’t use the .py	part	of	the	file	name	when	you	are	importing	it	into	another	
file,	 Python	figures	 that	 out	 on	 its	 own.	Let’s	 create	 two	 separate	files.	We’ll	 call	
them main.py and utilities.py.	The	main	file	will	contain	our	main	application,	
and the utilities	file	will	contain	some	useful	functionality	that	we	need	in	our	
application.

1.	 First,	create	a	new	file	in	your	favorite	editor	or	IDE	called	main.py.
2. Add the following code to your main.py:

import utilities

Input some data from the user, store each set in a dictionary.

done = False

116			 Python for Professionals

d = {}

while not done:

 key = raw_input("Enter a key value: ")

 if len(key) == 0:

 done = True

 else:

value = raw_input("Enter a value for the key: ")

 if len(value):

 value = utilities.reverse_a_string(value)

 d[key] = value

utilities.print_a_dictionary(d)

3.	 Create	a	new	file	called	utilities.py,	and	add	the	following	code	to	it:

def print_a_dictionary(d):

 for k, v in d.items():

 print"Key: {0} = {1}".format(k, v))

def reverse_a_string(s):

 return s[::-1]

4. You have created a new Python project!

The	important	things	to	take	away	from	a	cursory	inspection	of	the	two	files	are	as	
follows. The main.py	file	contains	all	of	the	immediate	execution	code.	Immediate	
code is code that the interpreter will run as soon as it encounters it. The utilities.py
file,	on	the	other	hand,	contains	no	immediate	execution	code.	All	of	the	code	in	the	
utilities	file	is	functions,	which	aren’t	executed	until	they	are	called	in	normal	code.

The main.py code is made up of three sections. First, we have a loop that processes
all of the user input until the user is done. This is done via the while loop. Next, we
have the user input section, which reads some data from the user using the raw_
input function. This section adds the data input from the user into our dictionary
after running it through our reverse_a_string function, which we imported in the
import	line	at	the	top	of	the	file.	Finally,	we	print	out	the	dictionary	via	the	utilities
class print_a_dictionary function also found in the imported utilities	file.

This sort of layout is quite common in the Python world. You will have one or more
files	 that	contain	modules	of	code	 that	 is	 intended	 to	be	executed	as	 it	 is	 loaded.	

Organizational Skills 117

Normally,	this	is	a	single	file,	but	it	isn’t	required	to	be.	Then	you	will	have	one	or	
more	files	that	contain	functionality	that	is	needed	by	the	application.	This	might	be	
a set of functions, or classes, or a combination of the two. The main	file	will	import	
these	files,	and	then	use	the	functionality	in	them	to	accomplish	its	tasks,	whatever	
they might be.

The next thing to notice is that once we have imported the utilities	file,	we	then	
have	to	preface	all	of	the	functionality	in	the	file	with	the	name	of	the	module.	This	
is called the namespace of the functionality. The reason that it exists is simple, if you
had	multiple	files	with	functions	that	had	the	same	name,	which	is	easy	to	do	with	
very	simple	names,	you	would	have	name	collision.	If	I	have	two	files:
file1:

 Function_to_call

file2:

 Function_to_call

Now, in my main	file,	I	do	this:
import file1

import file2

Function_to_call()

Which	one	of	the	functions	will	the	interpreter	call?	It	can’t	be	the	first	one,	since	
that’s	non-deterministic.	What	 if	 someone	comes	along	and	flips	 the	 two	import
statements around. It can’t exactly ask, since this is a run-time decision. So, you as
the programmer are required to tell the interpreter which one of the functions you
want.	This	is	done	via	the	namespace.	So,	we	could	call:
file1.Function_to_call()

#Or

File2.Function_to_call()

This	indicates	clearly	to	the	interpreter	which	one	of	the	files	you	want	to	call	the	
function out of, and the proper mapping is done to call it.

You	might	ask,	what	happens	if	your	directory	structure	is	not	flat?	For	example,	
consider	the	following	setup	for	files:

Main.py

util:

 Utilities.py

Formatting:

 Formatting.py

118 Python for Professionals

If you created this structure, and still used the utilities.reverse_a_string
function,	you	would	find	that	it	created	an	error.	In	fact,	the	import	statement	itself	
would	fail:
Traceback (most recent call last):

 File "/Users/mtelles/PycharmProjects/html/main.py", line 1, in <module>

 from utilities import utilities

ImportError: No module named utilities

Why do we receive the above error? Because there is no module named utilities
in	 the	 same	directory	as	 the	main	file.	You	can	fix	 this	by	modifying	 the	import
statement:
from util import utilities

Now, the interpreter knows that it should be looking in the util subdirectory for the
utilities	file.	There	are	more	complex	scenarios	here	that	we	will	talk	about	when	
we discuss things like packages and writing your own in Python.

You might wonder whether you can reuse modules that are stored in other places
on your system. The answer is, yes, you can. In most systems, the Python interpreter
uses an environment variable named PYTHONPATH to locate modules. So, if you had a
previous project that stored all of its data in /users/me/myprojects/project1, and
you were in ../project2, you could add the path to project1 in your PYTHONPATH
and reuse the code in the previous project without having to move things around.
Python is all about simplicity, remember?

Reuse is an important aspect of Python. Don’t reinvent the wheel is the hallmark of a
Python programmer, so once you have written something, it is important to make it
generic enough to reuse in other projects. This is one reason that Python, unlike Java
or C++ does not have the concept of a namespace directive, which often causes issues
in	multiple	projects	due	to	collisions	and	long	identification	strings.

Oh,	finally,	a	module	can	contain	more	than	just	code,	whether	it	is	a	function	or	a	
class. It can also contain data. So, for example, suppose that we wanted to include
a module in our code that contained all of our test data in a series of dictionaries.
That’s very easy to do in Python.

Let’s create a module in the utils directory that contains our test data and call it
test_dictionaries.py,	the	file	will	contain	the	following	entries:

test1 = {

 "data_value_1": "test",

 "data_value_2": "my name",

 "data_value_3": "my address"

}

Organizational Skills 119

test2 = {

 "data_value_1": "test2",

 "data_value_2": "my name 2",

 "data_value_3": "my address 2"

}

test3 = {

 "data_value_1": "test3",

 "data_value_2": "my name 3",

 "data_value_3": "my address 3"

}

Now,	let’s	modify	our	main	file,	main.py,	to	read	as	follows:
from util import utilities

Input some data from the user, store each set in a dictionary.

done = False

d = {}

while not done:

 key = raw_input("Enter a key value: ")

 if en(key) == 0:

 done = True

 else:

 value = raw_input("Enter a value for the key: ")

 if len(value):

 value = utilities.reverse_a_string(value)

 d[key] = value

utilities.print_a_dictionary(d)

from util import test_dictionaries

for k, v in test_dictionaries.test1.items():

 if k in d:

 print("You used test data!")

120 Python for Professionals

If we run this code, and enter the correct data, we’ll see that it properly checks the
test	data	from	the	other	module:
Enter a key value: data_value_1

Enter a value for the key: fred

Enter a key value:

Key: data_value_1 = derf

You used test data!

A few things worth noting about this example. First of all, notice that you can
place	an	import	statement	anywhere	in	your	file	and	use	things	from	it	from	that	
point downward. You cannot use something that is imported before your import
statement.

Secondly, notice that we are using data from the imported module, rather than code.
This can be very useful for using internationalized strings or, as we do here, test
data.

You	might	wonder	how	you	can	find	out	what	 functions	and	classes	exist	within	
a module, if you are trying to use it in your own code. Documentation, after all,
is something of an anathema to most developers, so the chances that they wrote
extensive documentation for the modules they wrote, particularly in house, are
small. Fortunately, Python comes to the rescue with the dir() function.

For our utilities package, for example, we could do this in the interactive mode
(or	in	our	application	code):
Python 3.7.2 (v3.7.2:9a3ffc0492, Dec 24 2018, 02:44:43)

[Clang 6.0 (clang-600.0.57)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> from util import utilities

>>> dir(utilities)

['__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__
name__', '__package__', '__spec__', 'print_a_dictionary', 'reverse_a_
string']

We	 can	 see	 that	 there	 are	 the	 usual	 system	definitions,	 like	 name,	 package,	 doc,	
file	and	such,	but	also	our	two	functions,	print_a_dictionary and reverse_a_
string.

A	word	about	those	other	system	definitions.	Let’s	take	a	look	at	what	values	are	
stored in them. For example, let’s look at the __file__ variable:
>>> print(utilities.__file__)

<project-director>/util/utilities.py

Organizational Skills 121

In this case, <project-directory> isn’t what you would see, that’s simply where
the	file	is	stored	on	my	system.	On	yours	it	will	be	the	base	directory	of	the	project	
in which you stored the source code for this project. Likewise, we can look at the
__name__	variable:

>>> print(utilities.__name__)

util.utilities

This is the actual namespace name of the imported module. If we wanted to print
out error messages based on the name, we could do so in our code. Now, what about
__package__?

>>> print(utilities.__package__)

util

We are going to talk about packages next, but you can see that even though we
haven’t	 specifically	 made	 any	 statements	 about	 the	 utilities code being in a
package, it is given one when it is loaded.

You	might	wonder	if	you	can	print	out	information	about	the	file	you	are	working	in,	
such as to log errors and the like. The answer is, of course you can! The information
shown for the utilities	package	above	is	defined	for	every	module	in	Python.	So,	
for example, place these lines at the top of the main.py	file:
print(__file__)

print(__package__)

The	output	will	be	something	like:
<project-dir>/main.py

None

The packages name is displayed as none because it isn’t in a package directory of
its	own.	We’ll	see	how	you	accomplish	defining	and	using	packages	right	now.	The	
important	thing	to	remember	about	modules,	for	right	now,	is	that	if	your	files	are	in	
the	same	directory,	use	the	syntax:

import <file>

Whereas	 if	 the	 file	 is	 in	 a	 subdirectory,	 or	 another	 directory	 loaded	 in	 via	 the	
PYTHONPATH	environment	variable,	use	the	syntax:

from <package-name> import <file>

Packages
A	package	in	Python	is	simply	a	directory	that	contains	files,	and	potentially	other	
subdirectories (and thus packages) of its own. The name of the package is the

122 Python for Professionals

name of the subdirectory in which the code lives. Unlike modules, packages can be
bundled together and distributed for use by other developers as full-blown entities,
not	simply	files	to	be	added	to	a	project.

The	single	biggest	difference	between	a	package	and	a	module	is	that	a	package	is	
in	a	subdirectory	and	contains	a	file	called	__init__.py.	This	file,	which	must	have	
that	exact	name,	defines	the	directory	as	containing	a	package.	The	file	does	not	have	
to contain anything, although it can contain things like global data or initialization
for the package.

If the __init__.py	file	is	not	empty,	it	may	contain	one	special	variable,	which	is	
the __all__ variable. This variable contains a list of all symbols within the directory
that are exported, which means they are available for use by other applications. If
there is an __all__ variable, and it does not contain the name of a module found in
that	directory,	that	module	will	not	be	available	via	the	import	statement:
__all__ = ["bar"]

If you are accustomed to working with libraries in Java or C++, packages will seem
a little strange, but the concepts are exactly the same.

Let’s	begin	by	building	a	package.	Our	package	is	going	to	contain	three	files.	First,	
there will be the __init__.py	 file	 which	 defines	 our	 directory	 as	 containing	 a	
package.	Next,	we’ll	create	a	file	called	funcs.py that will contain a few functions
we can use in our application. Finally, we’ll have a classes.py	file	that	contains	the	
classes we are going to create. This will be a very simple package, so there will only
be a couple of functions and a single class.

Our	class,	for	this	package,	will	be	a	Card,	which	models	a	playing	card:

class PlayingCard :

 def __init__(self):

 self.suit = 0

 self.card_value = 0

 def set_suit(self, s):

 self.suit = s

 return self

 def set_rank(self, r):

 self.card_value = r

 return self

Organizational Skills 123

 def suit_name(self):

 suits = ['spades', 'hearts', 'clubs', 'diamonds']

 return suits[self.suit]

 def display(self):

 if self.card_value > 1 and self.card_value <= 10:

 print("the {0} of ".format(self.card_value))

 elif self.card_value == 1:

 print("the ace of ")

 elif self.card_value == 11:

 print("the jack of ")

 elif self.card_value == 12:

 print("the queen of ")

 elif self.card_value == 13:

 print("the king of ")

 print(self.suit_name())

There is nothing mysterious or magical here. Our class models a playing card with
a suit (spades, hearts, diamonds, or clubs), and a rank. The rank models the number
on the card, or for face cards, the value of the jack, queen, king, or ace.

Our funcs.py	file,	on	the	other	hand,	will	contain	a	single	function,	which	generates	
an	unshuffled	deck	of	cards.	Place	the	following	code	in	the	funcs.py	file:

import classes

def generate_deck():

 deck = []

 for i in range(0,4):

 for j in range(1,14):

 c = classes.PlayingCard()

 c.set_suit(i)

 c.set_rank(j)

deck.append(c)

 return deck

124 Python for Professionals

Again,	nothing	surprising.	We	just	generate	a	deck	of	fifty-two	cards,	with	thirteen	
per suit. If you happen to enjoy playing cards with fewer cards, feel free to modify
the code, but your users may not thank you for it.

Now,	create	a	file	at	the	root	level	of	your	project	called	card_game.py. Place the
following	code	in	the	file:

from cards import funcs

deck = funcs.generate_deck()

for card in deck:

 card.display()

Running	this	main	program	will	result	in	a	display	that	looks	like	this:

the ace of

spades

the 2 of

spades

the 3 of

Spades

<omitted for space>

the jack of

diamonds

the queen of

diamonds

the king of

diamonds

As you can see, we have successfully created a new package, imported it into our
application, and used it to create a very basic card game!

One last comment about packages. You will notice that in the card_game.py	file,	we	
import the funcs from the package. We might have to import numerous modules
from the package and it can be tedious to write each one on its own line. There is a
solution	to	this.	We	can	put	them	all	on	a	single	line	(up	until	we	hit	79	characters!):

from cards import funcs, classes

Organizational Skills 125

Note that when importing from a module, rather than a package, we can import all
of	the	functionality	in	that	file	by	writing:

from my_module import *

This, however, is frowned upon by Pythonistas, as it clutters up the code and isn’t
clear about what you are trying to load. Finally, it is slightly memory wasteful.

Finally, a module is just a set of Python scripts. Within a module directory, you
can have executable scripts and run them, just like they were anywhere else in any
other	file.	So,	for	example,	it	is	often	desirable	to	have	a	test	driver	in	your	package	
directory to test your code.

Python has a module caching system for loading modules. You rarely need to
know	about	it,	but	it	is	important	when	trying	to	optimize	code.	The	first	thing	the	
interpreter does when it encounters any sort of import request is to look at the sys.
modules list. This list is updated as new modules and packages are imported. If the
module or package was previously imported, it will be found in the cache and can
be very quickly loaded back in for execution.

If	a	module	is	not	found	in	the	cache,	the	Python	finders	are	used	to	discover	where	
a	given	module	might	be	found.	The	finder	system	is	not	quite	as	simple	as	looking	
through the paths and directories in the PYTHONPATH environment variable. In fact,
the	system	will	first	look	through	the	sys.modules	list,	and	then	through	the	sys.
meta_paths list. This is the functionality that was originally used to create virtual
environments.	Because	the	finder	system	is	quite	extensible,	it	is	possible	to	write	
your	own	finder	which	returns	enough	information	for	the	loader	system	to	retrieve	
the code and parse it.

Writing a custom module loader is well beyond the scope of this book, but knowing
that it exists can often aid you in creating extensible programs.

Importing
Importing	a	package	or	module	makes	it	available	for	use	in	the	file	into	which	it	
is	imported.	Import	a	file	specific,	you	cannot	import	something	globally except by
importing something that imports something else. For example, consider the card
example that we used earlier. In the card_game.py	file,	we	imported	funcs from
our card	package.	Yet,	we	have	code	that	looks	like	this:

for card in deck:

 card.display()

The display method of the Card	 class	 isn’t	 defined	 in	 the	 funcs.py	 file	 in	 the	
package. So how does Python know about it? The answer is that funcs.py knows
about it because it imports the classes.py	file	at	the	top:

126			 Python for Professionals

import classes

def generate_deck():

Importing	a	file	essentially	copies	that	file	and	all	of	the	file	included	by	that	file	into	
your	own	source	code	file	(this	isn’t	what	happens,	but	you	can	think	of	it	that	way).	
That means that you get the advantage of having all of the code that was needed by
whatever you called.

You can actually duplicate what the Python interpreter is doing when it imports a
module in your own code. After all, Python is just Python, and there’s not much in
the interpreter that you can’t call. In this case, there is a special package in Python
3.x called importlib.

Take	a	look	at	this	snippet	of	code	first,	then	we	can	break	it	down	to	understand	
what	is	going	on.	This	is	fairly	advanced	stuff,	and	not	something	you	are	likely	to	
do on a daily basis, but as a professional, you want to understand what is going on
without blindly accepting it.

import importlib

module_obj = importlib.import_module('cards.classes', 'cards')

cls = getattr(module_obj, 'Card')

c = cls()

c.set_suit(1)

c.set_rank(10)

c.display()

the 10 of

Hearts

Let’s take this apart, piece by piece to understand it. First, we import the importlib
module. This module is part of the Python system library, so no additional work
needs	to	be	done	to	tell	the	interpreter	where	to	find	things.

Next up, we call the import_module method of the importlib package to retrieve
an object representing the module itself. You can think of this as a handle to the cards
package,	and	specifically	to	the	classes module within that package.

The getattr function retrieves an object based on a string and a handle to the module
in	which	that	object	definition	resides.	 In	 this	case,	we	are	using	the	dynamically	
loaded	handle	to	the	user-defined	packages	cards.classes.	The	specific	class	we	
want to instantiate is called Card, which is found in the classes module. The return
from this function call is an object. We can’t call it a Card object in the code, because
Python doesn’t really know what a Card object is here. It is just a class object.

Organizational Skills 127

Next	up,	we	instantiate	a	specific	instance	of	the	class	with	the	line	that	reads	c =
cls(). This calls the constructor (__init__) for the class. For our Card class, there
are no arguments needed, but if there were, you would pass them in the cls() call.
At this point, we have a Card object and can call Card methods on it.

The next three calls are to the Card class and simply set some internal pieces and
then invoke the display() method to show the output to the user.

A note here. If you are viewing this code within an IDE, it may or may not accept the
lines	that	call	specific	parts	of	the	Card	class.	This	is	because	the	IDE	doesn’t	know	
what the object is until runtime. The interpreter, however, will have no problem with
it and it will work properly.

This	really	shows	off	the	power	of	the	Python	environment	and	the	sorts	of	things	
that you can do with it. In this case, we could retrieve an object from a given package
name,	and	create	an	object	of	a	specific	class	name,	all	without	putting	the	names	
into the module we are writing. It is all done dynamically!

Paths
As we have mentioned, the python interpreter looks for things using environment
variables. There are really three variables that matter when you are working with
Python.

First, we have the PYTHONPATH variable. This is the environment variable that is
used	 by	 the	 Python	 interpreter	 to	 find	modules	 for	 the	 project	 you	 are	working	
with. The PYTHONPATH	variable	can	be	set	to	different	places	for	different	projects.	
The standard is to set it to the root of the project, but you can also pull in modules
from	different	places	by	appending	your	paths	to	the	environment	variable.	You	can	
actually modify this from within your own code, if you like, as we’ll see shortly.

Python packages, on the other hand, follow a slightly more complicated path to
locating for Python. In its simplest form, Python imports packages by following the
value stored in the sys.path variable. You can look at the current value of sys.path
using	the	following	simple	code:

>>> import sys

>>> print(sys.path())

Running this code will show you something that probably looks a lot like your
system	path	(for	Windows)	or	profile	path	(for	Mac/Linux).	In	addition	to	the	basic	
stuff	in	your	path,	however,	you’ll	see	things	like:

'/Library/Frameworks/Python.framework/Versions/3.7/lib/python37.zip',
'/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7',
'/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/lib-dynload',
'/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages']

128 Python for Professionals

These paths are added to the location path during the installation of Python, or by
the virtual environment system when it is started up. As mentioned, though, we
can change this at runtime if we want to. Let’s imagine that you want to change
the	path	 to	 include	some	 third-party	directory	 that	we	read	 from	a	configuration	
file.	We	won’t	go	through	the	work	of	reading	the	configuration	file	here,	let’s	just	
assume that it has been read and stored in the additional_path variable. We can
now	modify	the	system	path	by	doing	this:
import sys

additional_path='/usr/local/bin'

print(sys.path)

sys.path.append(additional_path)

print(sys.path)

In this example, we are printing out the path before and after appending to it. Your
output	will	vary,	but	will	look	something	like	this:
['/System/Library/Frameworks/Python.framework/Versions/2.7/lib/
python2.7', '/System/Library/Frameworks/Python.framework/Versions/2.7/
lib/python2.7/plat-darwin', '/System/Library/Frameworks/Python.
framework/Versions/2.7/lib/python2.7/lib-tk', '/System/Library/
Frameworks/Python.framework/Versions/2.7/lib/python2.7/plat-mac', '/
System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/
plat-mac/lib-scriptpackages', '/Users/mtelles/PycharmProjects/html/venv/
lib/python2.7/site-packages']

['/System/Library/Frameworks/Python.framework/Versions/2.7/lib/
python2.7', '/System/Library/Frameworks/Python.framework/Versions/2.7/
lib/python2.7/plat-darwin', '/System/Library/Frameworks/Python.
framework/Versions/2.7/lib/python2.7/lib-tk', '/System/Library/
Frameworks/Python.framework/Versions/2.7/lib/python2.7/plat-mac', '/
System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/
plat-mac/lib-scriptpackages', '/Users/mtelles/PycharmProjects/html/venv/
lib/python2.7/site-packages', '/usr/local/bin']

As you can see, we’ve added to the path, and it will be followed by the interpreter
when trying to load packages. It is very important to note that modifying the path
will	only	affect	the	current	run	of	the	program.	Once	you	exit	your	current	Python	
script, that path will revert back to what it was beforehand. In addition, if you
launch a separate Python program from your own (we’ll look at how to do this using
exec()) it will not pick up these changes.

Dot notation in naming
As you may have noticed, Python has a consistent strategy for naming imports. You
have the directory structure in front of the module that you want. So, if you have a
directory	structure	that	looks	like	this:

Organizational Skills 129

A

|_ B

 |_C

 |_ module.py

Then the way that you reference this in Python, presuming that the A directory is
within	your	Python	path	is	to	use:

A.B.C.module

If you keep this in mind going forward, things will be considerably easier. This is
really not unlike the Java directory structure, where you have your project followed
by src and company names underneath. C# and C++ don’t have such things, they
refer to their modules using an include path.

Installing packages using pip
You have probably heard, or read, that one of the main reasons that programmers
flock	to	Python	is	the	wide	array	of	pre-built	packages	and	libraries	that	can	be	used	
with the language to accomplish an ever growing list of tasks. From text processing
to	big	data	 to	artificial	 intelligence	 to	 installing	systems	 in	 the	cloud,	Python	has	
functionality to do almost anything you might need. This makes it ideal for creating
corporate applications with little investment into the core functionality and more
investment	 into	 the	design	and	flow	of	 the	system	for	corporate	needs.	The	most	
likely question to ask yourself is, how does all of this functionality get found and
incorporated into my applications. The answer lies in two pieces, the pip program
and the PyPI website and services. Let’s look at them in somewhat reverse order.

In your browser, you can visit https://pypi.org/, as shown in Figure 4.2.	Here,	you	
will	find	all	of	 the	packages	 that	have	been	developed	and	shared	by	the	Python	
community. These packages all are available for download and use in your programs,
many with no costs associated at all. Python is very community oriented, and most
packages	are	distributed	in	an	open-source	licensing	model.	To	find	a	package	you	
are interested in, use the search bar in the middle of the page to enter search terms,
or the name of the package you want. For example, you may have found a package
in	an	online	discussion	board	that	does	what	you	need,	and	want	to	find	out	more	

130 Python for Professionals

about it. Let’s say, for argument’s sake, that you are interested in a package you
found called requests,	which	does	HTTP	gets	and	posts	easily:

Figure 4.2: The PyPI website

Entering the search term requests will return a result list like that one shown in
Figure 4.2. This result list may contain things other than what you are looking for, the
search	terms	you	use	will	determine	how	specific	the	results	are,	as	with	any	search	
system.	In	this	case,	looking	at	the	figure	below,	you’ll	see	that	there	are	two	that	are	
likely candidates, requests 2.2 and requests 2.1.6.	Your	own	specific	results	
may	vary;	these	packages	are	updated	all	of	the	time.

Figure 4.3: Result list for requests package

Organizational Skills 131

If	you	click	on	one	of	 the	 results,	 say	 the	first	one,	you	will	be	 taken	 to	a	details	
page which will tell you things about that package. On the left hand side of that
page are two bits of information you should carefully check out. First, the license
agreement for the package. In the case of requests, the license package is the OSI
Apache Software License. The details can be found online, but in general, this means
you can use the product freely in your own applications so long as you don’t try to
sell it by itself.

The second bit of information is a little lower down on the left-hand side, and tells
you what versions of Python the package supports. In general, Python will be
backwardly compatible with most versions. Exceptions are when the package uses
something in a newer version, or when a breaking change (such as changing print
to a function instead of a statement) are made in the language. This doesn’t happen
often.

Of course, once you have the name of your package and the version you want (if it is
other than the default version), you need to somehow get that package installed on
your system so that you can use it. This is where the PIP program comes into play.

Scanning further down the description page, you will run across a section called
Installation. All packages in the PyPI.org system contain an installation section,
although the vast majority of the time, you will only need to know the name, and
perhaps the version, of the package you want installed.

The pip program does all the hard work of installing packages on your Python
system.	The	general	usage	of	the	pip	program	is	as	follows:
pip <command><package-name>

Where:
•	 command is the thing you want to accomplish. Normally, this is one of list,

install or uninstall, although there are a few others we’ll talk about in a few
moments.

•	 package-name is the name of the package you want to install on your system.
In the case of the requests package we looked at above, that would be requests.
As	a	note,	if	you	wish	to	install	a	specific	version	of	the	package,	as	when	
you might want to try a beta release, or perhaps need an older version to get
around a bug, you can specify it as well.

•	 pip install requests==2.22.0,	 for	 example,	 will	 install	 the	 specific	
version 2.22.0. You can also specify a minimum and maximum version,
just in case you want to make sure that the release is at least up to date, or
perhaps anything before one that is causing you problems. To do this, use the
syntax:

 pip install package >= version for a version of the package that is at
least version level and pip install package <= version to make sure you don’t
get one beyond a certain level.

132 Python for Professionals

Oh, one more note here. For Python versions 3.x and above, pip normally ships with
the	entire	environment.	However,	 for	older	versions	of	Python,	you	may	need	 to	
manually	install	it.	To	do	so,	follow	these	instructions:

•	 On	the	Mac,	use	sudo easy_install pip, or brew install pip if you use
Homebrew.

•	 On	Linux,	use	sudo apt-get install python-pip or sudo yum install
python-pip.

•	 On	Windows,	most	Python	installations	have	a	pip	installer,	or	you	can	use	
the get-pip.py script.

If you just want to upgrade your version of pip, such as on the Mac which ships
with	a	much	older	version,	you	can	use	this	command:

pip install –U pip

If you are wondering what packages you already have installed, use the pip list
command	to	find	out:
pip list

DEPRECATION: Python 2.7 will reach the end of its life on January 1st,
2020. Please upgrade your Python as Python 2.7 won't be maintained after
that date. A future version of pip will drop support for Python 2.7.

Package Version

---------------------- ---------

asn1crypto 0.24.0

certifi 2019.6.16

cffi 1.11.5

chardet 3.0.4

Click 7.0

cryptography 2.4.2

decorator 4.4.0

EasyProcess 0.2.7

enum34 1.1.6

Flask 1.0.3

gevent 1.4.0

greenlet 0.4.15

hashids 1.2.0

idna 2.6

Organizational Skills 133

ipaddress 1.0.22

itsdangerous 1.1.0

<list abbreviated for space>

Don’t	have	a	browser	handy,	and	want	 to	find	packages	without	having	 to	go	 to	
PyPI.org? Use the pip search	command:
pip search requests

DEPRECATION: Python 2.7 will reach the end of its life on January 1st,
2020. Please upgrade your Python as Python 2.7 won't be maintained after
that date. A future version of pip will drop support for Python 2.7.

requests-hawk (1.0.0) - requests-hawk

requests-dump (0.1.3) - `requests-dump` provides hook functions
 for requests.

pydantic-requests (0.1.2) - A pydantic integration with requests.

requests-foauth (0.1.1) - Requests TransportAdapter for foauth.
 org!

requests-aws4auth (0.9) - AWS4 authentication for Requests

requests-auth (4.0.1) - Easy Authentication for Requests

Requests-OpenTracing (0.0.1) - OpenTracing support for Requests

yamlsettings-requests (1.0.0) - YamlSettings Request Extension

If you want to see information about a given package, use the pip show command.
Note that this command will also show you information about packages you have
installed	that	require	the	package	you	are	inquiring	about:
pip show requests

DEPRECATION: Python 2.7 will reach the end of its life on January 1st,
2020. Please upgrade your Python as Python 2.7 won't be maintained after
that date. A future version of pip will drop support for Python 2.7.

Name: requests

Version: 2.18.4

Summary: Python HTTP for Humans.

Home-page: http://python-requests.org

Author: Kenneth Reitz

Author-email: me@kennethreitz.org

License: Apache 2.0

Location: /usr/local/lib/python2.7/site-packages

134 Python for Professionals

Requires: idna, urllib3, certifi, chardet

Required-by: locustio

In this example, you see that the requests package is required by locustio, something
that is installed on my system. You also see that requests itself has requirements,
the urllib3, chardet, idna, and certifi packages, all of which are part of the
standard Python install.

To remove a package, type pip uninstall <package-name>. Note that if other
packages were installed as prerequisites for the package

Finally, if you are feeling brave, and want to join the latest and greatest tools users,
you can use pipenv instead of pip.	 The	 differences	 are	 minor,	 but	 the	 pipenv
application will also automatically create a virtual environment and show you a
graph of all of the dependencies for your project. It is not a standard yet, but it is
definitely	getting	 there,	and	 learning	about	 it	can	be	useful.	You	can	use	pip	and	
pipenv on the same system, so you can test it if you want.

To install pipenv,	just	use	Homebrew	on	Mac:	brew install pipenv. For Windows,
consult the up to date documentation on https://docs.pipenv.org/.

One more important aspect of pip which we have to talk about before moving on to
the next chapter, and that is setting up project requirements and installing a basic set
of packages for a project.

Insuring requirements with pip
One of the more annoying things about multi-person projects is keeping everything
in sync. As experienced developers, you’ve probably used tools like Git and Visual
Studio	to	define	projects	and	keep	the	source	code	up	to	date	for	multiple	developers.	
In Java, for example, keeping track of all of the libraries that are used by your project
can be a nightmare, even with tools like maven and the like. One of the strengths of
Python is just how well it works with multi-developer projects. One of the reasons
for this strength is the pip application.

How,	 then,	 do	 you	 keep	 all	 of	 the	 package	 requirements	 in	 sync	when	multiple	
developers may be using multiple packages in their pieces of the pie? The answer
lies, again, in pip.	 This	 time,	 there	 are	 two	 commands	 that	 you	will	 find	useful;	
freeze and install –r.

The pip freeze command is used in two ways. First of all, it can show you exactly
what packages you are using a given machine. In this, it is a lot like the pip list
command.	However,	 the	 freeze	command	goes	a	 little	bit	 further.	 It	 is	 capable	of	
having	 its	 output	 redirected,	 so	 that	 you	 can	 store	 it	 in	 a	file.	 The	 convention	 in	
pip is to use a requirements.txt	file	which	can	then	be	loaded	by	pip	on	another	
machine. The pipfreeze command exports the list in the exact format that the
installer	uses	to	re-load	them.	Here’s	how	it	works.

Organizational Skills 135

pip freeze > requirements.txt

This	exports	the	requirements	for	the	system	into	a	text	file	called	requirements.
txt. You can use pip freeze to create it, or you can make one by hand, Python
and the pip module	do	not	care.	As	an	example,	here’s	one	for	a	project:

cat requirements.txt

requests==2.18.4

pyvirtualdisplay==0.2.1

retry==0.9.2

unittest-xml-reporting==2.2.0

psycopg2-binary==2.7.4

selenium==3.11.0

paramiko==2.4.2

sshtunnel==0.1.3

websocket-client==0.53.0

As	you	can	see,	 the	 format	of	 the	file	 is	a	package	and	 the	version	 (minimum	or	
exact)	that	you	are	using.	Typically,	this	file	is	then	updated	as	you	add	packages,	
and is stored in a source code control system such as Git.

Now, a new developer on the project can retrieve all of the source code for the project
from	GitHub	or	whatever	private	Git	repository	you	are	using.	They	can	look	at	the	
source, and install all of the required packages using the following command with
the requirements.txt	file	listed	above:

pip install –r requirements.txt

Assuming	that	everything	was	done	correctly,	and	that	the	requirements	file	was	kept	
up to date, the new developer will have a working environment in a few moments. A
note, this is particularly important to do when using CI/CD (continuous integration/
continuous development) environments like Jenkins or Team City, since you cannot
in any way assume that the packages are installed on a build environment.

User installs vs system installs
For	the	majority	of	hobby	developers,	installing	using	pip	works	fine	right	out	of	the	
box. For professionals working in regulated environments, the IT department often
locks down what can be installed on the system. You may need permission, for
example, to install a new IDE or a new system library. When it comes to installing
packages, by default they are installed at the system level. This can lead to some very
frustrating experiences for corporate developers. For this reason, the Python creators
realized that being able to install things locally at the user level was important.

136			 Python for Professionals

The pip application supports installing at either the system or the local (user) level.
For	 system	 packages,	 you	 will	 normally	 find	 them	 under	 the	 Python	 install
directory. In Linux/Mac, this is found in /usr/local/lib/python-<Version>/
site-packages. If you are using a virtual environment, you are already set, since
things will be installed in the site-packages directory within your virtual environment
directory.	However,	if	you	do	not	use	venv or one of its ilks, you may need to install
things	locally.	To	do	this,	use	the	following	syntax	for	pip:
pip install –-user <package name>

This will install new packages into your user directory, rather than the system
directory, which will eliminate the problem of having to go beg the IT department
for permission to put new things in the system directory. It will also minimize the
effort	in	finding	new	packages	that	have	been	installed	in	your	system.

So, there you are a whirlwind tour of the Python packaging system and organizational
structure. From this point on, we’ll assume that you have things organized the way
that you want them on your system.

Conclusion
At this point, you should feel comfortable with the notions of modules and packages.
You should have learned about installing packages and importing them. You should
have	learned	how	to	find	out	what	is	already	installed	on	your	system	and	how	to	
install it in either the full operating system or your local environment.

Finally, you should have learned how to create your own packages, and to set it up
so that Python recognizes it as an addition to the system.

Questions
1. What is immediate mode in Python and how do I use it?

2.	 What	is	the	difference	between	a	package	and	a	module?

3.	 How	do	I	import	an	existing	system	package	into	my	module?

4.	 What	file	is	necessary	to	define	a	new	package?

5. What program do I use to install new packages?

Introduction
The idea of object-oriented programming isn’t new, although it was when the
original Python language was introduced in 1985. Today, we take object-oriented
programming(OOP), for granted, and rarely talk about what it is and what it
means to us as developers. In this chapter, we will explore the world of OOP, the
foundational ideas upon which it was based and how those ideas are exposed in the
Python programming language.

Structure
•	 Classes	and	inheritance
•	 Polymorphism,	the	Python	way
•	 Overloading	of	methods
•	 Overloading	of	operators
•	 Chaining	of	operations
•	 Initialization
•	 Document	strings

Chapter 5
Object-Oriented

Programming

138 Python for Professionals

Objective
By the end of this chapter, you should understand the foundational concepts of object
oriented programming and how they are implemented in the Python programming
language. You’ll get an idea of classes, along with methods and operators, and the
lifecycle of an object in Python. You’ll get a peek at how to do class inheritance, how
to document your classes, and how to set up rational defaults within your code.

Object-oriented programming with Python
To a certain age of programming, object-oriented programming was all the rage.
It was all about object this and method that. Object oriented programming, often
shortened to OOP, is all about four major pieces of design and development, which
are	usually	referred	to	as	the	pillars	of	OOP.	These	pillars	consist	of:

•	 Abstraction
•	 Encapsulation
•	 Inheritance
•	 Polymorphism

We	 aren’t	 going	 to	 go	 into	 great	 detail	 about	 these;	 you	 can	 pick	 up	 any	decent	
book on OOP and learn them to your delight. Instead, let’s focus on how Python
implements the various pillars of OOP and how you can take advantage of them in
your own programming exploration.

Abstraction
In OOP parlance, abstraction just means modeling of the underlying data into real
world constructs. The Python class is the only real abstraction type you get in the
language but is very similar to that of C++ or Java, as you have seen in the previous
chapter.

Encapsulation
Encapsulation is a combination of binding data and methods together, as well as
data hiding. To be fair, Python does a very poor job of the latter. You can’t easily hide
data in Python by building accessors to it within the class structure. The interpreter
will allow you to mark a class data element as internal by prefacing it with the double
underscore	prefix.

Here’s	a	sample	of	how	you	can	do	this:

class InternalTest:

Object-Oriented Programming 139

 def __init__(self, x):

 self.__internal_variable = x

 def get_x(self):

 return self.__internal_variable

 def set_x(self, x):

 self.__internal_variable = x

 return self

it = InternalTest(4)

print(it.get_x())

print(it.__internal_variable)

If	you	run	this	little	program	in	Python,	you’ll	see	the	following	output:

4

Traceback (most recent call last):

 File "G:/Projects/DataGenSvc/numpy/internal.py", line 15, in <module>

 print(it.__internal_variable)

AttributeError: 'InternalTest' object has no attribute '__internal_
variable'

This shows you that the interpreter will not allow you to retrieve that variable. This
is somewhat equivalent to the C++ or Java private access declaration, but not exactly.
As we will see when we talk about inheritance, derived classes do not inherit access
to these private variables.

The example above, however, does illustrate some of the ways in which Python
helps you to do the OOP concept of abstraction. By binding the data (in this case, the
internal variable) together with the methods (the get and set methods of the class)
we abstract away the user from worrying about how the underlying data structure is
built. Python takes the idea of abstraction and trusts the end developer a bit to worry
about how it is done. They don’t have to ignore that they can see the data structure
within the class they are using but it is the Pythonic way to do so. Trust those that
went before you.

Inheritance
Inheritance is the process of creating a new class from the basics of an existing class.
Like genetics, the new class inherits all of its innate abilities from its parent but also
adds its own unique abilities and attributes.

140 Python for Professionals

Python	classes	may	be	slightly	different	from	the	ones	you’ve	used	in	other	languages	
but the basic concepts are there. You create an instance of a class using the name of
the class as if it were a function that generated an object. For our InternalTest class
above,	we	created	an	instance	of	it	by	using:
it = InternalTest(4)

As you see, there is a constructor, alas Java or C++, called __init__. There is a
destructor __del__ as well, although it is not usually implemented for the majority
of Python code. Memory management is all done by the Python interpreter, freeing
the developer to worry more about the implementation of features and less about
the	underlying	OS.	This	also	makes	Python	more	flexible	and	portable.

Most OOP languages have some sort of inheritance methodology. Basically, you can
create a class that is based upon another class, which inherits the functionality of that
class.	In	Python,	you	do	this	in	the	class	declaration	part	of	the	system:

As an example, let’s take our internal class above and derive something from it.

class DerivedInternalTest(InternalTest):

 def __init__(self):

 self.set_x(10)

Instantiating a DerivedInternalTest object automatically inherits all the
functionality	of	the	base	class:

dit = DerivedInternalTest()

print(dit.get_x())

Note that we didn’t write the get_x method for our derived class, it was picked
up from the base InternalTest class. Besides, we didn’t set the internal variable
in our call to the constructor of the base class, instead that was done in the derived
constructor.	Now,	the	difference	between	Python	and	other	languages	is	this.	If	we	
modify	the	derived	class	constructor	to	look	like	this:
class DerivedInternalTest(InternalTest):

 def __init__(self):

 self.__internal_variable = 10

it	doesn’t	work,	and	the	interpreter	generates	an	error:
Traceback (most recent call last):

 File "internal.py", line 22, in <module>

 print(dit.get_x())

 File "internal.py", line 7, in get_x

Object-Oriented Programming 141

 return self.__internal_variable

AttributeError: 'DerivedInternalTest' object has no attribute '_
InternalTest__internal_variable'

To Python, internal means internal always. Not just to anything derived from that
class. You are stuck with it as if it were a private variable in C++ or Java. There is no
notion	of	protected	in	Python.	However,	if	you	have	a	variable	defined	in	the	base	
class,	you	can	use	it	in	the	derived	class.	Let’s	modify	our	system	to	show	this:

class DerivedInternalTest(InternalTest):

 def __init__(self):

 self.set_x(10)

 self.a_variable = 20

class DerivedInternalTest2(DerivedInternalTest):

 def __init__(self):

 DerivedInternalTest.__init__(self)

 self.b_variable = self.a_variable * 2

 def printme(self):

 print(self.b_variable)

dit2 = DerivedInternalTest2()

dit2.printme()

40

Let’s	check	this	out	a	little	bit	at	a	time.	First	of	all,	we	have	the	definition	of	the	base	
class before this, called InternalClass. This is our class with an internal attribute.
Next, we derive a class from this, called DerivedInternalClass. This class adds a
new variable and sets both it and the internal variable (via the accessor) to values.
Finally, we have the DerivedInternalTest2 class. This is really where all the action
is in this example. Deriving is done by enclosing the name of the class from which
we are deriving in the parentheses after the class name. This looks like the following
line:

class DerivedInternalTest2(DerivedInternalTest):

Within the constructor (__init__ method), we want to be able to multiply the
inherited attribute a_variable by two and set our own attribute equal to that result.

142 Python for Professionals

If you simply try to refer to the a_variable	within	the	class,	you’ll	find	it	doesn’t	
work. Let’s see what is going on here.

Modify	the	code	as	follows,	just	for	the	moment,	so	we	can	see	what	happens:

class DerivedInternalTest2(DerivedInternalTest):

 def __init__(self):

 #DerivedInternalTest.__init__(self)

 self.b_variable = self.a_variable * 2

 def printme(self):

 print(self.b_variable)

dit2 = DerivedInternalTest2()

dit2.printme()

The	output	looks	like	this:
File "internal.py", line 34, in <module>

 dit2 = DerivedInternalTest2()

File "internal.py", line 23, in __init__

 self.b_variable = self.a_variable * 2

AttributeError: 'DerivedInternalTest2' object has no attribute 'a_
variable'

Why do you suppose that is? If you’ve been working in Java, C++, or C# this would
appear to make no sense. After all, you’ve inherited from the class that contains the
proper	attribute	definition	for	a_variable. You instantiated an object of the right
class, so why didn’t it work?

The answer lies in the simplicity of Python. When you call a Python class method
that creates any change to the object state, such as adding a new attribute in the
__init__ method, you are modifying the dictionary that holds all the methods and
attributes for that object. In other languages that you are most likely accustomed to,
the constructor for the base class is automatically called when you call the constructor
for the derived class. This isn’t true in Python.

By adding this single line in the constructor for our derived class
DerivedInternalTest2:
DerivedInternalTest.__init__(self)

we	fix	this	error	shown	above	about	a	missing	attribute.	Why?	Let’s	look	at	what	
happens here. In the constructor for the DerivedInternalTest class, we accept one

Object-Oriented Programming 143

argument, the selfargument. As mentioned earlier, this is the actual object pointer
that is used for this variable. The constructor for DerivedInternalTest then sets the
base class for itself (InternalTest) private attribute x, to a value, and it adds its own
variable to the dictionary for the object. By passing our own self to this method,
we allow it to add the variable to our own dictionary, and thus it is available in the
derived	subclass:

Now when we uncomment that line and run the code, we get
40

This output is correct since we set a_variable to 20 in the DerivedInternalTest
class, and then we retrieved that value and multiplied it by two to get 40 in the
DerivedInternalTest2 class object. Unlike most object oriented programming
languages, Python is amazingly straightforward in how it works. If you are interested,
C++ works in a very similar fashion by creating blocks of data and function pointers
that represent each level of inheritance.

To get an idea of what the inheritance looks like in Python, please look at Figure 5.1:

Figure 5.1: Inheritance tree in Python

Multiple inheritance
There is something of a debate in the programming world about the concept of
multiple inheritance. Some languages, such as C# have decided that it is a terrible
idea because it leads to all sorts of unexpected consequences that can cause some
grief for the programmer. The Python answer is if you want to do it and you believe
you know what you are doing, knock yourself out.

144 Python for Professionals

The basic concept of multiple inheritance is that you have two or more classes from
which	a	subclass	inherits.	Here’s	a	simple	example:

class A:

 def __init__(self):

 self.x = 10

 def multiply_me(self, value):

 return value * self.x

 def set_x(self, value):

 self.x = value

 return self

 def get_x(self):

 return self.x

class B:

 def __init__(self):

 self.y = 20

 def multiply_me(self, value):

 return value * self.y

 def set_y(self, value):

 self.y = value

 return self

 def get_y(self):

 return self.y

class MyClass(A, B):

 def __init__(self):

 A.__init__(self)

 B.__init__(self)

 def do_a_a_thing(self, v):

Object-Oriented Programming 145

 return self.multiply_me(v)

def do_a_b_thing(self, v):

 return self.multiply_me(v)

mc = MyClass()

print(mc.do_a_a_thing(5))

print(mc.do_a_b_thing(6))

The above program will give the following output:

50

60

The diagram for this class structure is shown in Figure 5.2:

Figure 5.2: Class diagram for multiple inheritance.

In this example, we have two base classes, A and B, and a derived class MyClass
which derives from both A and B. A has its attribute X, while B has its attribute Y.
What we want to do here is have two methods in MyClass that call the individual A
or B methods of the same name, multiply_me. So, we create two methods and call
the derived method. Does it work?

50

60

The answer is no, we get only the A method. Why is this? Python has a multiple
inheritance rule called the method resolution order. It says that when a method of
the same name exists in multiple places, look in the current class. If it is not found
there,	look	in	the	parent	classes	left	to	right	as	defined	in	the	class	line.	In	our	case,	
that’s A to B,	because	the	class	definition	says	that	MyClass is derived in that order.

146			 Python for Professionals

So, can we call the correct methods in the derived class? Well, of course,we can. It
isn’t quite as clean as straightforward inheritance, but it will work. You have to tell
Python	specifically	which	one	you	want	to	call:

class MyClass(A, B):

 def __init__(self):

 A.__init__(self)

 B.__init__(self)

 def do_a_a_thing(self, v):

 return A.multiply_me(self, v)

def do_a_b_thing(self, v):

 return B.multiply_me(self, v)

mc = MyClass()

print(mc.do_a_a_thing(5))

print(mc.do_a_b_thing(6))

The output here is:

50

120

This	output,	as	you	can	see,	is	correct.	Here’s	a	final	note	on	inheritance	in	Python.	
Back in the DerivedInternalInstance2 class, we had a constructor that looked
like	this:

class DerivedInternalTest2(DerivedInternalTest):

 def __init__(self):

 DerivedInternalTest.__init__(self)

 self.b_variable = self.a_variable * 2

Python provides a simpler method for initializing and calling methods of a single
derived class, using the super()	method.	We	could	re-write	the	constructor	as	follows:

def __init__(self):

 super().__init__()

 self.b_variable = self.a_variable * 2

Object-Oriented Programming 147

There’s	nothing	different	here,	the	super() method acts as if you were calling the
parent class with the self variable as its argument, otherwise it is the same. Most
prefer the super() syntax but others like the directness of naming the class. The
advantage to super() is that you don’t have to worry about what happens if you
rename the base class or change it.

Polymorphism, the Python way
Polymorphism comes from the Greek, with poly meaning many and morph meaning
change. In the object oriented world, it refers to a single class or object being able to
take many forms or be used in many ways. In traditional object oriented languages
such as C++, polymorphism is obtained through virtual functions and method
overloading. Python, obviously, has no such concept as virtual functions, at least not
directly. It does, as we will see shortly, have a form of method overloading. But that’s
not really polymorphism. Instead, Python implements this pillar of the methodology
through duck-typing.

The	notion	of	duck	typing	dates	back	quite	some	time.	In	fact,	it	was	first	mentioned	
in a Marx Brothers movie in the 1930s. Groucho Marx says, If it walks like a duck and
talks like a duck, it must be a duck. Python uses a similar concept. If something has a
method that you call and that method accepts the argument that you call it with,
then it really doesn’t matter whether it is of type A or B, as long as it works. This is
a	slightly	different	concept	of	polymorphism	than	you	might	be	accustomed	to,	but	
you	will	find	that	it	works	out	quite	well	overall.	If	you	are	accustomed	to	C#	or	Java	
and its idea of interfaces, you will probably see how Python does what it does. The
mechanism isn’t the same, but the functional equivalency is there.

Let’s take a look at how ducktyping works. The odds are, this example will confuse
you	at	first,	but	we’ll	explain	it	after	you	look	through	the	code:

class Vehicle:

 def __init__(self):

 pass

def move(self):

 print("Basic vehicle move")

class Car(Vehicle):

def __init__(self):

 pass

148 Python for Professionals

def move(self):

 print("Car moving!")

class Motorcycle(Vehicle):

def __init__(self):

 pass

def move(self):

 print("Motorcycle go vroom vroom")

class Person:

def __init__(self):

 pass

def move(self):

 print("people walk")

def func_move_it(o):

 o.move()

car = Car()

motorcycle=Motorcycle()

person=Person()

func_move_it(car)

func_move_it(motorcycle)

func_move_it(person)

func_move_it(Vehicle())

The	output	from	this	little	program	is	not	unexpected:

Car moving!

Motorcycle go vroom vroom

people walk

Basic vehicle move

Object-Oriented Programming 149

The	first	thing	you	should	notice	is	that	while	the	Car and Motorcycle classes derive
from the base Vehicle class, the Person class does not. Yet, each one of the classes
contains a move method. When we invoke the func_move_it function, it expects
to be passed some sort of thing that contains a move method. It doesn’t care that
it might be derived from the Vehicle class. This is what duck typing is all about.
We can overload the methods in derived classes to accomplish the task, or we can
simply implement a pseudo-interface that contains the methods we want to invoke
on the object.

What if we wanted to only call the move method for objects that are derived from
the Vehicle class? In this case, Python provides a way to accomplish this task as
well. We can re-write the func_move_it	function	like	this:

def func_move_it(o):

 if isinstance(o, Vehicle):

 o.move()

else:

 print("You didn't give me a vehicle!")

car = Car()

motorcycle = Motorcycle()

person = Person()

func_move_it(car)

func_move_it(motorcycle)

func_move_it(person)

func_move_it(Vehicle())

The	output	here	is:
Car moving!

Motorcycle go vroom vroom

You didn't give me a vehicle!

Basic vehicle move

As you can see, the isinstance function will determine whether or not a given object
is of the type or a type derived from the type that is passed to it. If we are looking at
anything that is somehow derived from a Vehicle, the move method is called.

Another thing to note is the use of the pass statement in the constructors for the base
and derived classes. We want to have a constructor so that you can create an instance
of the class, but we don’t need to do anything in that constructor.

150 Python for Professionals

Finally, note that overloading in Python works exactly the way you would expect
it to. For a derived class that implements a method of the same name as the base
class, the derived class method is called, even if you don’t know what the type of
the object is.

What happens if you don’t implement the method move in your derived class?

class DeadVehicle(Vehicle):

 def __init__(self):

 pass

func_move_it(DeadVehicle())

The	output	from	this	function	call	is,	not	surprisingly:

Basic vehicle move

because the base move method is called for the DeadVehicle class.

One	final	thing	to	note	here,	you	see	in	the	calls	to	the	method	func_move_it that
we can either pass an object of the type we want, or simply invoke the constructor
for the class (that is,Vehicle()	in	the	example)	to	create	an	object	on	the	fly	and	then	
pass it to the method. If we do this and modify the object within the function, what
happens?

The	answer	 is	nothing.	The	object	 that	 is	passed	 to	 the	 function	 is	modified	and	
returned but since it isn’t used again, it simply goes out of scope and disappears. The
memory allocated by that object is reclaimed by the garbage processor in Python
and it is as if it never existed.

Overloading of methods
In the above example, we showed how you can overload a method from a base
class to a derived class. In languages like C++, C#, and Java, you can create multiple
methods	with	 the	 same	 name	 and	 different	 signatures.	 For	 example,	 in	C#,	 you	
might	do	something	like	this:

class Foo {

 string name;

 Foo() {

 }

 void initialize() {

 name = "";

 }

Object-Oriented Programming 151

 void initialize(Foo& aCopy)

 {

name = aCopy.name;

 }

 void initialize(n)

 {

 name = n;

 }

}

In	this	case,	we	have	three	different	versions	of	the	initialize	method	that	take	three	
different	argument	sets	or	signatures.	Python	does	not	support	this	sort	of	construct.	
If	you	were	to	implement	the	same	thing	using	valid	Python	syntax,	you’d	find	that	
it	does	not	complain	in	the	interpreter,	but	that	only	the	final	version	of	the	method	
is stored within the class.

Instead, Python allows you to implement overloaded methods by default arguments.
For example, let’s imagine that we wanted to implement the same sort of initialize
method	that	is	shown	in	the	above	C#	code.	We	might	do	something	like	this:

class Foo:

 def __init__(self):

 self.name = ""

 def initialize(self, aCopy=None, name=None):

 if aCopy != None:

 self.name = aCopy.name

if name != None:

 self.name = name

return self

 def get_name(self):

 return self.name

152 Python for Professionals

f1 = Foo()

f1.initialize('matt')

f2 = Foo()

f2.initialize(f1)

f3 = Foo()

f3.initialize()

print("F1 name = {0}".format(f1.get_name()))

print("F2 name = {0}".format(f2.get_name()))

print("F3 name = {0}".format(f3.get_name()))

You would think that this would work, wouldn’t you? It would check if the aCopy
is there, if not, it’ll check if the name was there, and if not, it would simply use its
default	value.	This	doesn’t	work,	as	you	can	see	when	you	run	the	code:
Traceback (most recent call last):

 File "overload.py", line 20, in <module>

 f1.initialize('matt')

 File "overload.py", line 9, in initialize

 self.name = aCopy.name

AttributeError: 'str' object has no attribute 'name'

Why is this? Remember that Python has no notion of specifying the type of an
argument that is passed into a method or function. All types are equal to Python,
so it simply assumes that the order of the objects matches up to the order of the
arguments	in	the	method.	We	can	fix	this	in	this	way	by	being	specific	about	what	
our	arguments	mean:

f1 = Foo()

f1.initialize(name='matt')

f2 = Foo()

f2.initialize(aCopy=f1)

f3 = Foo()

f3.initialize()

print("F1 name = {0}".format(f1.get_name()))

print("F2 name = {0}".format(f2.get_name()))

Object-Oriented Programming 153

print("F3 name = {0}".format(f3.get_name()))

You	might	think	that	we	could	simply	check	the	type	of	the	values	passed	in:
def initialize(self, aCopy=None, name=None):

 if aCopy != None and isinstance(aCopy, Foo):

 self.name = aCopy.name

if name != None:

 self.name = name

 return self

This doesn’t work and the reason isn’t shocking at all. Remember that Python is
passing arguments in the order they are expected. So when we pass in a string to the
function, it doesn’t just skip over the Foo object argument, it becomes the Foo object
argument.	We	are	doing	the	equivalent	of	this:

f1 = Foo()

f1.initialize(matt', None)

f2 = Foo()

f2.initialize(aCopy, None)

f3 = Foo()

f3.initialize(None, None)

You should get accustomed to passing arguments by keyword (often called the
kwarg or keyword argument) in Python, as this is the Pythonic way of doing things.

Overloading of operators
If you are used to programming in languages like C++ or C#, you have undoubtedly
tried	your	hands	at	overloading	operators.	The	thrill	of	being	able	to	write	code	like:
Foo f1 = new Foo()

Foo f2 = new Foo()

Foo f3 = f1 + f2

is somewhat overwhelming to the new developer to do operator overloading. There
are certainly valid cases for operator overloading. In the case of writing your own
mathematical functionality, such as matrices or complex variable types, it is almost
expected that you be able to use the standard math operators for the class. In C#,

154 Python for Professionals

for example, you can overload any operator except for the dot operator (.) which is
reserved by the system. Programmers do often go a bit overboard writing overloaded
operators but it is something the professional expects to be able to do.

Python supports overloading operators as well. It might not seem as natural as some
of the other languages but it is most certainly there. One of the most common things
to do in Python is to overload the string representation operator, str(). It is often
nice to be able to print out your complex class as a string, for reporting or logging or
just to provide information to the end user. It is also quite common to use the str()
function for debugging.

In Python, you overload the string representation by implementing the __str__
method	in	your	class.	Let’s	take	a	look	at	a	very	simple	example:

class MyClass:

 def __init__(self):

 self.x = 1

 selfy = 2.5

 self.z = "This is a test"

 def set_x(self, x):

 self.x = x

 return self

 def set_y(self, y):

 self.y = y

 return self

 def set_z(self, z):

 self.z = z

 return self

 def __str__(self):

 s = "X = {0}, Y = {1}, Z = '{2}'".format(self.x, self.y, self.z)

 return

mc = MyClass()

Object-Oriented Programming 155

mc.set_x(45)

print(mc)

If	you	run	this	little	program,	you’ll	see	an	output	that	looks	like	this:

X = 45, Y = 2.5, Z = 'This is a test'

This is because the print statement automatically invokes the str() for any object
that is passed to it. What if we didn’t have the __str__ method overloaded? You’d
see	this:

<__main__.MyClass instance at 0x101834488>

This is not very user friendly, which is why we implement the string overload. It is
important to note that the goal of __str__ is to be readable for a human. There are
no restrictions placed on the method, and you can print out pretty much anything
you want. Python does have a function called repr() which will do the same thing
in most cases. The repr() function calls the overloaded __repr__ method within
your class.

The __repr__ method will be used for str() if you override it, but the __str__
method will not be used for repr() if you override it. In a practical sense, and in
keeping with the Python approach, you shouldn’t be overriding __repr__. Do so
at your own peril as too many things rely on it. If you want to change the way your
code displays an object when it is printed, use the __str__ override instead.

Suppose	that	you	had	a	class	like	this:

class Receipt:

 def __init__(self, t, p):

 self.title = t

 selfprice = p

 def get_title(self):

 return self.title

 def get_price(self):

 return self.price

def set_title(self, t):

 self.title = t

return self

156			 Python for Professionals

 def set_price(self, p):

 selfprice = p

 return self

r1 = Receipt('Candy', 1.45)

r2 = Receipt('Dinner', 45.67)

r3 = Receipt('Breakfast', 12.12)

Clearly, we are trying to model some sort of expense receipt here, with a title and an
amount. It would be nice to be able to sum up the total expenses easily. Python has
a wonderful sum() function that accepts a list of values and returns the total or sum
of	those	values:

print(sum([1.0, 2.0, 3.0]))

This prints out the value 6.0,	which	is	the	sum	of	the	three	floating	point	numbers.	
Wouldn’t it be nice to be able to write the following line?

print(sum([r1, r2, r3]))

Sadly,	if	we	try	to	do	this,	we	get	an	error:

 File "overload_operator.py", line 55, in <module>

 print(sum([r1, r2, r3]))

TypeError: unsupported operand type(s) for +: 'int' and 'instance'

Here’s	where	things	get	a	little	strange	when	working	with	Python.	Python	has	a	
__add__ operator, which adds two values together. You can implement it for the
Receipt	class	by	adding	this	to	your	class:

def __add__(self, other):

 return self.price + other.price

That	should	fix	our	problem,	right?	Adding	this	to	the	class	and	re-running	the	code	
results	in	this:
Traceback (most recent call last):

 File "overload_operator.py", line 58, in <module>

 print(sum([r1, r2, r3]))

TypeError: unsupported operand type(s) for +: 'int' and 'instance'

Wait that makes no sense! We added the add operator, right? Take another look at the
error, though. It is saying that it couldn’t add an int and an object instance. Why is
this? Well, the sum function initializes its result to zero and then adds each element

Object-Oriented Programming 157

in	the	iterable	to	that	value.	We	aren’t	adding	two	Receiptitems;	we	are	adding	zero	
to a Receipt item! No wonder it doesn’t work. But we can tell Python how to do
this by taking advantage of something called the commutative property of addition.
In math, we know that 1+2 is the same as 2+1. In Python, the sum	function	will	first	
attempt to add the two values using the __add__	method	of	the	first	argument,	in	
this	 case,	 an	 integer.	However,	 if	 that	 fails,	 it	will	 attempt	 to	 add	 the	 two	values	
calling reverse add or __radd__	of	the	second	value	passing	in	the	first	argument	as	
the	value	to	add.	We	can	implement	this	in	our	Receipt	class:
def __radd__(self, other):

 return self.price + other

Once	we	do	that,	we	can	view	the	output	properly:
print(sum([r1, r2, r3]))

59.24

To see what is being called what, let’s modify the two operators to tell us which one
is	being	called	when:

def __add__(self, other):

 print("Add called")

 return self.price + other.price

def __radd__(self, other):

 print("rAdd called")

 return elf.price + other

Now, we’ll try them both, using both the sum()	function	and	standard	addition:

rAdd called

rAdd called

rAdd called

59.24

Add called

rAdd called

59.24

Note that for our total, we call both add and rAdd. Why? Because the result of the
first	rAdd is a number and that gets added to the object, so it is just like calling the
sum() function.

158 Python for Professionals

Comparisons and overloading
Most, if not all, functions and operations in a modern programming language rely on
being able to compare two values. Sorting, searching, and like operations all need to
be able to compare two values in order to properly work. Naturally, we can overload
the comparison operators so that we can use the standard functions.

Let’s see how this works. Add the following code to our Receipt	class:
def __str__(self):

 s = "Title: {0} Price: {1}".format(self.title, self.price)

 return s

def __lt__(self, other):

 return self.price < other

def ___le__(self, other):

 return self.price <= other

def __eq__(self, other):

 return self.price == other

def __ne__(self, other):

 return self.price != other

def __gt__(self, other):

 return self.price > other

def __ge__(self, other):

 return self.price >= other

We	can	test	this	easily	enough:
if r1 > r2:

 print("Receipt 1 ({0}) is greater than Receipt 2 ({1})".format(r1, r2))

else:

 print("Receipt 1 ({0}) is less than or equal to Receipt 2 ({1})".
format(str(r1), str(r2)))

Object-Oriented Programming 159

The	output	from	this	call	is:
Receipt 1 (Title: Candy Price: 1.45) is less than or equal to Receipt 2
(Title: Dinner Price: 45.67)

Since we are comparing the price element of the class to the input value, even this
will	work:
if r1 > 12.0:

 print("Greater than 12!")

else:

 print("Less than 12")

This	might	seem	to	work:
if 12.0 < r2:

 print("Greater than 12")

The fact is, however, it does not. What we are comparing here is the memory address
of r2	 to	 the	floating	point	value	12.0.	How	can	we	fix	this?	Well,	remember	that	
we can test what sort of value a given input is. So, for example, we can modify the
__le__	overloaded	method	to	read:

def __le__(self, other):

 if isinstance(other, Receipt):

 return self.price <= other.price

elif isinstance(other, (int, float)):

 return self.price <= other

else:

 return None

Here,	you	will	also	notice	a	nice	feature	of	the	isinstance() function. If you pass it
a list of possible values, it will test each one of them. So we can compare our price to
either	an	integer	or	a	floating	point	value.	Now,	when	we	do	this:

if 12.0 < r1:

 print("Greater than 12")

else:

 print("Less than 12")

if 12.0 < r2:

 print("Greater than 12")

160			 Python for Professionals

else:

 print("Less than 12")

the output from this little code snippet will be as expected, as we see in Figure 5.3:

Figure 5.3: Output from code run

In addition, of course, there is a method to override to return True or False when
comparing the object to a Boolean value. This one is called __bool__.

Read-only attributes
One of the very nicest features in modern programming languages is the ability to
have attributes that are readable, writeable or both. In most languages, there is a
get() and set() function for each attribute or property that allows you to control,
for example, the validation of data. You might want to allow a value only to be
within a certain range, or perhaps you don’t want to allow them to set the value at
all. You might have an internal representation of a state that you don’t want to be
modified	from	outside	the	class.	Python	does	allow	such	things	but	it	isn’t	quite	as	
clear as you might think or want.

Deep in the bowels of the Python interpreter, the setting and getting of attribute
values within a class is done by the setattr and getattr functions. For class objects,
these functions call an internal class method called __setattr__ and __getattr__
which is probably intuitive, given the rest of the internal methods of the classes.
We can overload these methods, if we like, to modify the behavior of the class. It is
slightly dangerous to do this since you are playing with the internals of the system.
The __getattr__ method, particularly, is expected to return certain values, and you
can’t	simply	return	nothing	at	all.	However,	for	setting	a	value,	we	can	do	a	lot	of	
things. For example, we can make a value read-only. Let’s see how this works. First,
let’s	just	create	a	normal	class:

class ReadOnlyAttributes:

 def __init__(self):

 self.write_or_read = 1.0

 self.read_only = 2.0

 def printme(self):

 print"Write or Read: {0}".format(self.write_or_read))

 print("Read Only: {0}".format(self.read_only))

Object-Oriented Programming 161

Now,	we	can	call	this	class	the	usual	way:
roa = ReadOnlyAttributes()

roa.read_only = 5

roa.printme()

Write or Read: 1.0

Read Only: 5

Notice	that	the	value	has	been	modified	in	the	class	when	we	change	the	attribute	
and print it out. Now, let’s make that impossible. Add the following code to your
class:
def __setattr__(self, attr, value):

 print(f'Setting {attr}...')

 if attr != 'read_only' or value == 2.0:

 super().__setattr__(attr, value)

Why do we need to check for the value? Well, if you don’t, the set_attribute
method won’t ever set the value, and the attribute will never be set in the object. Try
it	out.	Do	this:
def __setattr__(self, attr, value):

 print(f'Setting {attr}...')

 if attr != 'read_only':

 super().__setattr__(attr, value)

Running	the	same	code	will	result	in:

 File "overload_operator.py", line 132, in <module>

 roa.printme()

 File "overload_operator.py", line 123, in printme

 print("Read Only: {0}".format(self.read_only))

AttributeError: 'ReadOnlyAttributes' object has no attribute 'read_only'

This is due to the fact that setattr is called from within our code when we do
the assignment in the __init__ method. But suppose we wanted to validate data
instead of just making it read only. We could easily do that with the __setattr__
method	of	our	class:
def __setattr__(self, attr, value):

 print(f'Setting {attr}...')

 if attr != 'read_only':

162			 Python for Professionals

 super().__setattr__(attr, value)

else:

 if value > 1.0 and value < 10.0:

 super().__setattr__(attr, value)

Now,	try	setting	the	value:

roa = ReadOnlyAttributes()

roa.read_only = 5

roa.printme()

roa.read_only = 12

roa.printme()

Setting read_only...

Write or Read: 1.0

Read Only: 5

Setting read_only...

Write or Read: 1.0

Read Only: 5

You will notice that our validation	method	worked	fine	and	wouldn’t	allow	you	
to assign a value outside the allowed range of 1 to 10 non-inclusive. You could even
write	a	more	generic	validation	function	to	use	in	corporate	code:

def _validate(self, attr, value):

 if attr != 'read_only':

 return True

if value > 1.0 and value < 10.0:

 return True

return False

def __setattr__(self, attr, value):

print(f'Setting {attr}...')

if self._validate(attr, value):

 super().__setattr__(attr, value)

You could extend this easily by creating a list of validation objects which looked at
the name of the attribute and the allowed range, and use this generically in your own

Object-Oriented Programming 163

code. Python allows for amazing customization without relying on the syntactical
sugar that most languages use. This will work for most normal access. You can still
bypass the setattr method by understanding how things are stored in a Python class.
For	example,	consider	this:
roa = ReadOnlyAttributes()

roa.read_only = 5

roa.printme()

roa.read_only = 12

roa.printme()

roa.__dict__['read_only'] = 12

roa.printme()

Setting read_only...

Write or Read: 1.0

Read Only: 5

Write or Read: 1.0

Read Only: 12

Values in a Python object are stored in an internal dictionary, just like everything else.
So if you bypass the class mechanism and simply assign values to the dictionary, you
will	find	that	your	validation	code	doesn’t	work.	Fortunately,	doing	things	like	this	
is not only non-Pythonic, it is also a very bad idea. If the internals ever change, your
code would break badly, and nobody would have any sympathy for you.

The __new__operator
Do you wonder how Python creates new instances of a class? The interpreter does
all the work of allocating a block of memory, and the __init__ function does the
job of initializing the data for a new object. But what is responsible for making sure
it all works together? The answer falls in the __new__ class operator. This operator
is called by the interpreter for a given class, which then determines whether or not
to create a brand new object, initialize it, and return it to the user. Used normally,
the __new__ operator simply returns a new allocated class which is initialized by
the __init__ method. Every object which is instantiated for a given class will have
its own unique memory address and values. But what if you didn’t want to do this?
To	see	what	is	going	on,	let’s	start	with	a	simple	class:

class SingletonClass(object):

 def __init__(self):

 print("Init called")

164			 Python for Professionals

e1 = SingletonClass()

e2 = SingletonClass()

print(e1)

print(e2)

The	output	here	is:
Init called

Init called

<__main__.SingletonClass object at 0x7fa59001aa58>

<__main__.SingletonClass object at 0x7fa59001aa90>

The actual values will change for your system, of course, but you will notice that the
two	addresses	are	different.	What	if	we	wanted	our	class	to	have	a	single	object?	This	
might be used for something like interfacing to a given resource in the system. You
only want one accessor at a time, because otherwise, you’d end up with potential
resource	locking	issues.	You	could	do	this	to	solve	this	problem:
class SingletonClass(object):

 def __init__(self):

 print("Init called")

def __new__(cls,*args, **kwargs):

 if not hasattr(cls,'_instance'):

 cls._instance = super(SingletonClass, cls).__new__(cls)

return cls._instance

e1 = SingletonClass()

e2 = SingletonClass()

print(e1)

print(e2)

Now,	if	you	run	the	little	application,	you’ll	see	a	very	different	output:
Init called

Init called

<__main__.SingletonClass object at 0x7f9f0009db38>

<__main__.SingletonClass object at 0x7f9f0009db38>

Notice that in this case, the two objects are pointing to the same memory address and,
in fact, are the same object. It is very rare to override __new__ and very dangerous.

Object-Oriented Programming 165

But there are times when you need it, and for those times, Python provides a good
answer.

Classes and Iteratables
We spent some time in the previous chapter talking about iterables. Iterables, of
course, are collection-like things that you can iterate over. For example, we can have
a	list:
x= [1,2,3,4]

We can use the Python iterator syntax to step through the individual elements of the
list:
for ele in x:

 print(ele)

You might wonder how this is implemented under the covers. In fact, the list, tuple
and	so	forth	implement	a	very	specific	set	of	methods	(an	interface,	as	we	would	say	
in C# or Java) to accomplish the ability to return the individual elements. There’s
nothing magical about it being elements as you could do virtually anything that
stepped through an interable container using the same approach. In fact, let’s go
ahead and implement a class that is iterable and is not a collection.

In this example, we’ll look at a class that returns values that are powers of 10. Yes,
you could easily do this in a simple loop, but this way, you don’t have to track where
you are on the list. All you need to do is call the iterable interface and you’ll get back
a new one. To implement an iterable, however, you need a stopping point, or you are
basically	creating	an	infinite	loop.	We’ll	address	that	too.

The two methods that are of concern to us in this example are the __iter__ method
and the __next__ method.The former returns a pointer to something that can be
used in the iterator you choose, such as a for loop. The latter returns each step in the
iteration.	Here’s	the	whole	class,	take	a	look	at	it	and	then	we	can	talk	about	how	to	
use it and how it works.

class PowerOfTen:

 def __init__(self, mi = 0):

 self.maximum_iterators = mi

def __iter__(self):

 self.counter = 0

return self

 def __next__(self):

166			 Python for Professionals

 if self.counter <= self.maximum_iterators:

 result = 10 ** self.counter

self.counter += 1

return result

else:

 raise StopIteration

You	would	use	 this	 the	 same	way	 that	 you’d	use	 any	 iterator.Here’s	 one	way	of	
using a simple for	loop:
pt = PowerOfTen(5)

for power in pt:

 print(power)

The process is as follows. First, you initialize an iterator. In our case, creating the
object itself will provide an iterable thing. Then, the for loop calls the __iter__
method to retrieve an interface to the actual iterable portion of the object. We just
have our object itself, but you could return an iterator in a class that iterated over
something else as well. The for...in syntax calls the __next__ method of the
iterable until an exception (StopIteration) is raised by the code. That terminates the
loop and ends the printing.

Note that the object itself is responsible for maintaining its state. Each time we call
the __next__ method, the object will check if the internal index has reached the
maximum allowable number of elements. If so, it raises the exception and the loop
terminates.

You might wonder how the for loop is implemented. Let’s look at what happens by
writing some very trivial for-like	code:
it = iter(PowerOfTen(10000))

print(next(it))

The iter function will return an iterator based on the input object. It calls the __
iter__ method of the object. If the object does not implement __iter__, an error
would	be	generated:

class NonIterable:

 def __init__(self):

 pass

def __next__(self):

 return 0

Object-Oriented Programming 167

it2 = iter(NonIterable)

print(next(it2))

 File "overload_operator.py", line 201, in <module>

 it2 = iter(NonIterable)

TypeError: 'type' object is not iterable

Once the iterable has validly been returned, the next() function will return the next
element in the iterable each time it is called. If no exception is raised, calling the
next()	function	will	continually	result	in	an	infinite	loop,	much	like	while	(True).

The real advantage of using an iterable is that we don’t have to save all that data
in the memory. We can simply generate it on demand and return it to the calling
program. You can use this same methodology to generate random numbers or
Fibonacci series numbers, prime values, or pretty much anything else you like.

Chaining of operations
One thing that we have used but not really mentioned is the notion of chaining
operations. This isn’t so much a Python feature as it is a design consideration
when writing classes or functions in Python. In general, a chaining operation looks
something	like	this:
result = SomeObj().someMethod1().someMethod2().someMethod3()

This	syntax	may	seem	confusing	at	first,	but	it	is	actually	very	straightforward	and	
often makes like much easier for the end user of your code. In many cases, all that
the developer using your code really wants to do is to make a series of calls. They
don’t particularly need to know the internal state of your objects or what each little
piece	does,	they	simply	understand	the	flow	they	want	to	implement.	Implementing	
chaining requires that you return the proper things from your methods.

First of all, why do we do this? The answer lies in simplicity and transparency. By
allowing	the	chaining	of	method	calls,	we	show	the	developer	the	flow	from	one	area	
to another and allow them to specify in a single place what they want to happen. In
addition, we identify, in one place, what can possibly go wrong.

What are the issues with doing this? There aren’t a lot of problems with chaining
of operations. The biggest one is that if something goes wrong somewhere in the
middle	 of	 the	 flow,	 the	 process	will	 be	 aborted	 and	 it	may	 be	 unclear	what	 got	
done and what did not. Besides, chaining of operations is mostly used for setting
information in an object.Returning data from an object normally does not permit the
thing	to	be	chained,	unless	what	is	returned	can	be	modified.

Let’s look at how you chain operations in Python.

168			 Python for Professionals

In a normal class, you might have accessor methods for your attributes that look
something	like	this:

class House:

 def __init__(self):

 self.street = ""

 self.city = ""

 self.number = -1

 self.state = ""

 self.zip_code = ""

 def set_street(self, street_name):

 self.street = street_name

 def set_city(self, city_name):

 self.city = city_name

 def set_street_number(self, street_number):

 self.number = street_number

 def set_state(self, state_abbrev):

 self.state = state_abbrev

 def set_zip_code(self, zip_code_number):

 self.zip_code = zip_code_number

You	would	likely	then	create	a	new	House	object	and	set	all	the	pieces	like	this:

house = House()

house.set_state(1313)

house.set_street("Mockingbird Lane")

house.set_city("Petaluma")

house.set_street("CA")

house.set_zip_code("94930")

Wouldn’t it be nicer to be able to do it all in a single line, where it is clear what you
are trying to do?

house = House().set_state(1313).set_street("Mockingbird Lane")

Object-Oriented Programming 169

.set_city("Petaluma").set_street("CA").set_zip_code("94930")

Note that the backslash at the end of the line is simply a continuation so that
the line doesn’t get too long, it doesn’t break anything up.

This	is	very	easy	to	accomplish.	We	simply	modify	our	class	to	look	like	this:

class House:

 def __init__(self):

 self.street = ""

 self.city = ""

 self.number = -1

 self.state = ""

self.zip_code = ""

 def set_street(self, street_name):

 self.street = street_name

 return self

 def set_city(self, city_name):

 self.city = city_name

 return self

 def set_street_number(self, street_number):

 self.number = street_number

 return self

 def set_state(self, state_abbrev):

 self.state = state_abbrev

 return self

 def set_zip_code(self, zip_code_number):

 self.zip_code = zip_code_number

 return self

You might be asking yourself, how does this work? Let’s look at one little piece of it
to get the idea. When you instantiate a House	object	via:
house = House()

170			 Python for Professionals

The	return	from	this	statement	is	a	House	object.	You	could	then	call:
house.set_street("Mockingbird Lane")

Realizing that the return from the constructor (or __init__ method) is a House
object	already,	though,	we	can	call	methods	on	that	returned	object:

House().set_street("Mockingbird Lane")

Python then looks at what got returned from that accessor call. Since our set methods
all return self,	we	 are	 returning	 a	House	 object,	which	 can	be	 called	 again	 and	
again.	So	long	as	the	return	from	each	of	the	intermediary	method	calls	is	a	House	
object (or anything else that can be used to call methods) you can reuse it to call a
method.

Now, suppose we had another kind of object involved. For example, let’s abstract
out the address of the house into its own class.

class Address:

 def __init__(self):

 self.street = ""

 self.city = ""

 self.number = -1

 self.state = ""

 self.zip_code = ""

 def set_street(self, street_name):

 self.street = street_name

 return self

 def set_city(self, city_name):

 self.city = city_name

 return self

 def set_street_number(self, street_number):

 self.number = street_number

 return self

 def set_state(self, state_abbrev):

 self.state = state_abbrev

Object-Oriented Programming 171

 return self

 def set_zip_code(self, zip_code_number):

 self.zip_code = zip_code_number

 return self

class NewHouse :

 def __init__(self):

 self.address = None

 self.color = "White"

 def set_address(self, address_object):

 self.address = address_object

 return self

 def set_color(self, the_color):

 self.color = the_color

 return self

Thanks to method chaining, we can modify our assignment of all of the attributes
very	simply:

house = NewHouse().set_address(Address().set_state(1313).set_
street("Mockingbird Lane") \

 .set_city("Petaluma").set_street("CA").set_zip_code("94930")).set_
color("Blue")

What’s going on here?

We	can	break	this	statement	into	two	separate	lines	to	make	it	a	little	easier	to	look	at:

Address().set_state(1313).set_street("Mockingbird Lane") \

 .set_city("Petaluma").set_street("CA").set_zip_code("94930")).set_
color("Blue")

And
house = NewHouse().set_address(Address()

Hopefully,	you	can	understand	what	is	going	on.	We	first	create	a	new	anonymous
Address	object	to	which	we	assign	the	pieces	that	we	need:	city,	state,	street	number,	
and so forth. Then we take that address object and assign it to the NewHouse object as

172			 Python for Professionals

the Address object for it. Finally, taking the result of the address assignment, which
is our Houseobject, we assign a color to it. This can be a little confusing, so break
down the line into smaller pieces until you get it.

This is an important part of the abstraction and encapsulation concepts of object
oriented programming. By breaking down all our objects into their component
pieces and making those pieces into independent classes, we take the responsibility
away from the main object. A House, for example, does not really care about how its
address is composed, nor should it be responsible for validating the information in
the address. The Address class does that work. You should try to do similar things
in your own code for readability and maintainability. This way, we can use the
Address class for other things without having to copy and paste the code from our
House	class.

Initialization
We’ve spent a fair amount of time discussing initialization in a class using the __
init__ method, but there are a few issues worth bringing up at this stage. One thing
that you must remember is that the only place that you should be creating attributes
in a class is in the __init__ method. You can assign values to an attribute anywhere,
but	the	very	first	time	the	attribute	name	is	encountered,	it	is	created.	Thus,	we	can	
create	attributes	this	way:

class AttributesTest:

 my_list = [] # This is bad

 def __init__(self):

 self.my_list_2 = [] # This is good

def some_method(self):

 self.my_list_3 = [] # This is bad

In the example above, my_list is actually a class level variable. It is shared among
all instances of the AttributesTest	class.	If	this	is	what	you	intended,	that’s	fine,	
but it is generally a good idea to document this so that some other programmer
doesn’t come along and think you made a mistake and move it into the __init__
method.

The my_list_2 attribute is set, as it should be, in the __init__ method. This is
normal, and the my_list_2 attribute will be available to anyone in any method
in the class, regardless of the order in which the methods are called. This is proper
behavior.

Object-Oriented Programming 173

The my_list attribute is set in a random method. It is an instance level attribute,
as it was intended to be (you can tell by the self part), but it may or may not be
available to a calling function depending on the order in which the calls are made.
For example, suppose we had two other methods, method_1 and method_2:

def method_2(self):

 for m in self.my_list_3:

 print(m)

def method_3(self):

self.some_method()

self.method_2()

If we call the method_3	 entry	 first,	 everything	works	 exactly	 as	we	 expected.	 If,	
on the other hand, we call method_2, it won’t work. Let’s try it out and see what
happens:

at = AttributesTest()

at.method_2()

ile "attributes.py", line 21, in <module>

 at.method_2()

 File "attributes.py", line 13, in method_2

 for m in self.my_list_3:

AttributeError: 'AttributesTest' object has no attribute 'my_list_3'

Why does this happen? Because my_list_3 doesn’t exist yet, Python has no idea
what	you	are	talking	about.	It	doesn’t	read	the	entire	class	and	find	all	the	assignments	
of	attributes,	it	simply	adds	them	as	the	code	defines	them.	If	we	change	our	code	to:

at = AttributesTest()

at.method_3()

everything works properly. The my_list3 attribute is assigned, thanks to the call to
some_method	at	the	start	of	method_3. Thus, it exists when method_2 is called to
iterate through the list and no error is generated. If we move all of the assignments
into the __init__ methods, we won’t ever have this problem.

This can’t be stressed enough. Because Python allows you to do things, it doesn’t
mean	you	should.	Unlike	C#,	C++,	or	 Java,	you	can	create	 things	on	 the	fly	 in	a	
Python class. Don’t take this as a license to allow yourself to do so in your production
code.
Document strings

174			 Python for Professionals

Python is one of the very few languages to not only take documentation seriously
but to provide a built-in method for creating and using it. Python’s docstrings are a
simple way to document either a function or a class. The docstring is a simple string
at the top of the class or function and is incorporated as a part of the object itself. For
example, let’s document our AttributesTest	class	as	shown	below:

class AttributesTest:

 """

 AttributesTest shows how to do things right, and wrong, in assigning

attributes ina class.

You should always assign attributes in the __init__ method and not

randomly createthem inthe other methods.Note in method_2, you will

get an error if you call it without calling some_method first!

 """

<remainder of class removed for brevity>

Now, if you run the class, you will notice that it continues to be interpreted and run
fine.	 The	documentation	doesn’t	 appear	 to	 do	 anything.	However,	 that’s	 not	 the	
case.	Try	running	this	bit	of	code:
print(at.__doc__)

You	should	see	the	following	display	on	your	Python	console:
 AttributesTest shows how to do things right, and wrong, in assigning
attributes in a class.

 You should always assign attributes in the __init__ method and not
randomly create them in

 the other methods.

 Note in method_2, you will get an error if you call it without calling
some_method first!

Okay, I can hear you saying, that’s nice. But how does that really help anyone? Well,
Python has a built-in help module. You can use it on any built-in method, function
or class, as well as on any of your own classes. By default, it will spit out information
that it deciphers from the code and signatures of your classes and methods. But it
also	will	include	docstrings:

help(AttributesTest)

Help on class AttributesTest in module __main__:

class AttributesTest(builtins.object)

Object-Oriented Programming 175

| AttributesTest shows how to do things right, and wrong, in assigning
attributes in a class.

| You should always assign attributes in the __init__ method and not
randomly create them in

| the other methods.

| Note in method_2, you will get an error if you call it without calling
some_method first!

|

| Methods defined here:

|

| __init__(self)

| Initialize self. See help(type(self)) for accurate signature.

|

| method_2(self)

|

| method_3(self)

|

| some_method(self)

|

| --

| Data descriptors defined here:

|

| __dict__

| dictionary for instance variables (if defined)

|

|		__weakref__

| list of weak references to the object (if defined)

|

| --

| Data and other attributes defined here:

|

| my_list = []

176			 Python for Professionals

That’s pretty cool, isn’t it? As mentioned earlier, Python takes documentation
seriously, and so should you. You can also add a doc string to each method or
function:

def __init__(self):

 """

 This is the initialization method for the AttributesTest class

 """

 self.my_list_2 = [] # This is good

As you can see, the documentation shows us exactly how to use the code. By using
the documentation string feature, we make it easy for the next developer to use the
code properly.

Conclusion
In this section, we explored the wide world of object oriented programming. We
looked at how the four pillars of OOP are implemented in Python, and how you can
use	them	to	make	your	code	more	efficient	and	easier	to	read.

We explored inheritance and how you can group related functionality into inherited
classes. We explored the idea of multiple inheritance, which is the ability to get
functionality from multiple base classes. Finally, we looked at how to internally
document your code so that the code and documentation would never get separated
and become inconsistent.

Questions
1. What are the four pillars of OOP?
2.	 How	does	Python	handle	method	overloading?
3.	 How	do	we	call	base	class	methods	in	Python?
4. What are docstrings and what purpose do they serve?

Introduction
In our previous chapters, we've looked at the basic building blocks of Python, most
of which can be found in virtually any object oriented language. Now it is time to
look at some of the things that make Python unique, or at least more unique. It is
probably surprising to you, if you've worked in other languages like Java or C#
that many of the new constructs in those languages came from Python. The notion
of	 generators,	 lambdas,	 functions	 as	 first	 class	members	were	 all	 in	 Python	 long	
before the other modern programming languages had them. It often seems as if the
standards committees for some of these languages look to Python for next steps.
Maybe that's the way it should be.

Structure
●	 List	comprehensions
●	 Building	a	string	from	a	list
●	 Searching	a	list
●	 Using	a	set	of	function	names	to	create	an	extensible	state	machine
●	 Set	comprehensions
●	 Dictionary	comprehensions

Chapter 6
Advanced

Manipulations

.

.

.

178			 Python for Professionals

●	 Generators
●	 Filtering	vs	removing
●	 Slicing	(for	example,	reversing	a	string	in	one	line)
●	 Modifying	values	in	a	list	(copying	vs	creating	new	lists)
●	 Lambda	expressions
●	 The	splat	operator	and	unpacking

Objectives
By the end of this chapter, you should understand how to work with lists, sets, and
dictionaries	in	order	to	write	complex	Python	programs.	You	will	learn	the	difference	
between iterators and enumerators, and how to use lambda functions to customize
your own functions.

List comprehensions
In this chapter, we'll look at a number of things, but primarily we'll be focusing on
the various comprehensions in Python. A comprehension seems confusing until you
get it, then you wonder how you lived without it. While there is a lot to learn in
comprehensions, the basic gist of it is simple. Comprehensions are constructs that
allow you to create a sequence from a given sequence and a set of rules.

Comprehensions	are	made	up	of	a	few	basic	pieces:
●	 An	input	sequence.
●	 An	output	sequence.
●	 An	optional	predicate	that	modifies	individual	components	of	the	input	list	

to produce the output list.
●	 An	output	expression	that	provides	members	of	the	output	list.

Before we discuss this in depth, let's look at a valid use case for a comprehension,
and	then	the	pieces	that	get	us	there:

Let's	imagine	that	you	want	to	create	a	list	consisting	of	five	elements,	all	integers.	
You	could	write	a	simple	function,	like	this:

def create_a_list(n):

 ret_list = []

 for i in range(0, n):

ret_list.append(i)

return ret_list

Advanced Manipulations 179

This function simply creates a list of integers, given an input range. As a
comprehension, however, we can reduce the number of lines and the complexity of
the	code	by	writing	this:
number_of_values = 5

[n for n in range(0,number_of_values)])

Suppose	 we	 then	 print	 out	 the	 results	 of	 both	 the	 function,	 calling	 it	 with	 five	
elements,	and	the	comprehension,	also	using	five	elements.	The	result	is	the	same:
[0, 1, 2, 3, 4]

[0, 1, 2, 3, 4]

So,	what	is	going	on	in	this	comprehension?	The	basic	form	looks	like	this	for	lists:	
a_list	=	[element	for	element	in	range(range)]

Where:
●	 a_list is the returned list that is generated by the comprehension.
●	 element is an index into some sort of predicate that produces a sequence. In

this case, a for loop.
●	 range is simply the way in which we create the elements for our output list.

Admittedly, this is a simple example and doesn't seem terribly useful. Let's spice it
up just a little bit. Suppose that we want to generate the squares of a range of values.
We	could	write:
for I in range(0,5):

 print(I*I)

This would produce a list of squares. If we want to add them to a list, we'd have to
change	our	loop	a	little:
squares = []

for I in range(0,5):

 squares.append(I*I)

Using	a	list	comprehension,	however,	we	can	do	this	much	more	easily:
squares = [n*n for n in range(0,5)]

print(squares)

[0, 1, 4, 9, 16]

Now, this is all well and good, but really it just replaces a loop. We can do so much
more with list comprehensions. Let's look at a very simple extension, squaring only
the	odd	values	in	a	range:
list_of_numbers = [0,1,2,3,4,5,6,7,8,9,10]

list_of_odds = [o*o for o in list_of_numbers if o % 2 != 0]

180 Python for Professionals

print("odd numbers: ")

print(list_of_odds)

odd numbers: [1, 9, 25, 49, 81]

As you can see, we can add conditionals to our processing, still keeping it to a single
processing line. More importantly, that single line can easily be optimized by the
interpreter. The inside of the brackets [] is called the generator expression because
without the brackets, it is really a Python generator. The brackets mean that Python
will take whatever is in the generator and generate the results as a list. As we'll see
in a little bit, we aren't restricted to lists, we can create dictionaries and sets this way
too.

Suppose we wanted to create a list from a string. We've looked at the opposite of
this, which is using the join() function of a string to turn a list into a string. Now,
let	us	go	the	opposite	direction:
string = "Lets Make A List Out Of A Sentence"

list = [c for c in string]

print(list)

['L', 'e', 't', 's', '', 'M', 'a', 'k', 'e', '', 'A', '', 'L', 'i', 's',
't', '', 'O', 'u', 't', '', 'O', 'f', '', 'A', '', 'S', 'e', 'n', 't',
'e', 'n', 'c', 'e']

Of course, we can do more than this. Imagine, for example, that you not only
want to turn a list into a string, but make it a list of only capital letters, converting
anything in the string that is lower case to upper case. Again, this is trivial with a list
comprehension:

upper_list = [c.upper() for c in string]

print(upper_list)

print(string)

['L', 'E', 'T', 'S', '', 'M', 'A', 'K', 'E', '', 'A', '', 'L', 'I', 'S',
'T', '', 'O', 'U', 'T', '', 'O', 'F', '', 'A', '', 'S', 'E', 'N', 'T',
'E', 'N', 'C', 'E']

Once again, we see that we have the pieces in our list comprehension. The output
expression is c.upper(). This is used to create each element in the output list. The
variable	for	our	list	is	the	for	c	in	string	part.	This	defines	each	iteration	of	the	loop	to	
produce the output list. We don't have a predicate in this example, but we did in the
odd numbers one above, which was of o %2 == 0. This predicate is applied to each
element of the list as it is iterated over, and, in this case, is used to screen out values.
What sorts of things can we do with the predicate? Let's imagine that you have
are	reading	in	code	from	a	file.	You	have	a	list	of	each	of	the	lines	of	the	file,	and	
want to get rid of the comments. In Python, of course, a comment line begins with

Advanced Manipulations 181

a pound sign (#). We'll just screen out every line that starts with a comment using a
list	comprehension:
list_of_strings = [

 "# This is a comment",

 "This is a line of code",

 "This is another line of code",

 "# Another comment",

"# A Third Comment",

 "Nothing but code"

]

code_lines = [line for line in list_of_strings if line[0] != '#']

print(code_lines)

['This is a line of code', 'This is another line of code', 'Nothing but
code']

As you can see, our output list contains only those lines that don't begin with a
comment. It is also worth noting that the list comprehension does not impact the
original list. If we looked at list_of_strings, we would see that it contained all
of the original strings, including the comment lines. This is important, as we often
wish to manipulate a list to produce a new list, but need to keep the original around.

Speaking of lists of strings, suppose that we wanted to take an input list of strings
and	reverse	them?	We	can	do	this	easily	with	a	list	comprehension:

list_of_strings2 = [

 "This is a test",

 "This is another test",

 "Test 3"

]

reversed_lines = [line[::-1] for line in list_of_strings2]

print(reversed_lines)

['tset a si sihT', 'tset rehtona si sihT', '3 tseT']

Of course, lists aren't restricted to a single dimension, and neither are list
comprehensions. In linear algebra, for example, we have the concept of an identity
matrix. This is a two-dimensional matrix that has zeroes in all elements except where
the	row	is	equal	to	the	column.	An	identity	matrix	looks	like	this	physically:

182 Python for Professionals

[

[1, 0, 0],

[0,1,0],

[0,0,1]

]

We	can	create	one	of	these	with	a	very	simple	two-dimensional	list	comprehension:
Identity matrix

id_matrix = [[1 if item_idx == row_idx else 0 for item_idx in range(0,
3)] for row_idx in range(0, 3)]

print(id_matrix)

[[1, 0, 0], [0, 1, 0], [0, 0, 1]]

Likewise, we can create an empty matrix via the comprehension mechanism, and it
is	even	simpler:
Empty matrix

empty_matrix = [[0 for i in range(0, 3)] for j in range(0, 3)]

print(empty_matrix)

[[0, 0, 0], [0, 0, 0], [0, 0, 0]]

Finally, there's no restriction on the number of list elements you can create with
a list comprehension. Suppose that we want to create a list some mathematical
computation	of	the	various	indices	of	the	lists.	We	can	do	that	easily:

print([x+y+z for x in range(1,5) for y in range(1,5) for z in range(2,6)])

[4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10, 5, 6, 7, 8, 6, 7, 8, 9,
7, 8, 9, 10, 8, 9, 10, 11, 6, 7, 8, 9, 7, 8, 9, 10, 8, 9, 10, 11, 9, 10,
11, 12, 7, 8, 9, 10, 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13]

Notice how the output in this case is a single list with the total of three ranges of
values in it. This produces a long list.

What	 if	 we	wanted	 to	 do	 different	 things	 based	 on	 the	 input	 values	 in	 the	 list?	 List	
comprehensions do support the if...else construct as well. First, let's look at a simple
example:
l = [1,2,3,4,5,6,7,8,9,10]

print([x if x % 2 == 0 else x+1 for x in l])

[2, 2, 4, 4, 6, 6, 8, 8, 10, 10]

Next, consider the if...elif...else case. You can't actually does this in a list
comprehension, at least not directly. The comprehension syntax uses the ternary

Advanced Manipulations 183

form of the if statement. Basically, this means if this, then that, else something else.
But the something else part can be another if...else statement as well. Consider
this example, where we want to print odd or even based on the numbers, except for
0:
print(['zero' if v == 0 else 'odd' if v % 2 == 0 else 'even' for v in
range(0,5)])

['zero', 'even', 'odd', 'even', 'odd']

Here,	we	first	test	to	see	if	the	value	is	zero,	and	if	so,	we	print	that	fact.	Otherwise,	
we then examine each element and determine if it is odd or even and print the result.
You have to think inside out to write these kinds of statements. Work your way out
from the initial statement, where the value is 0.	That	takes	in	the	entire	first	part	of	
the statement ('zero' if v == 0). Next, we look at the case where the value is odd
('odd' if v % 2 == 0).	If	neither	of	those	pieces	are	true,	the	final	else is called.
This	is	the	equivalent	of	the	following	single	lines:

if v == 0:

x = 'zero'

elif x % 2 == 0:

x = 'odd'

else:

x = 'even'

Dictionary comprehensions
The notion of comprehensions isn't restricted to lists in Pythons. Most of the
higher constructs permit it. The dictionary, for example, can be created via the
comprehension mechanism. In general, a dictionary comprehension allows you to
modify an existing iterable in some fashion to create a dictionary of keys and values.
The	iterable	can	be	a	list,	for	example:

list_of_words = ['the','cat','is','on','the','roof']

dict_from_list = {k:v for k,v in enumerate(list_of_words) }

print(dict_from_list)

{0: 'the', 1: 'cat', 2: 'is', 3: 'on', 4: 'the', 5: 'roof'}

So, what's going on here? First of all, the syntax for a dictionary comprehension is
as	follows:

{k:v <expression generating key and value}

In this case, we assign the key to the index of the list via the enumerate function,
and	use	the	list	value	as	the	value	for	the	key.	This	way,	we	have	a	unique	identifier	

184 Python for Professionals

for the key as an index. What if we did it the other way? Notice that we have two
values of the in our list of words. Dictionaries must be unique. So, what happens if
we create the dictionary with the value as the key?
dict_from_list_2 = {k:v for v,k in enumerate(list_of_words) }

print(dict_from_list_2)

You might guess that this would produce an error since you are adding two keys
with	the	same	value.	However,	Python	is	nicer	 (or	perhaps	more	confusing)	 than	
that.	Instead,	the	output	is:
{'the': 4, 'on': 3, 'is': 2, 'roof': 5, 'cat': 1}

Notice	two	things	here.	First,	we	get	the	second	value	of	'the'	rather	than	the	first.	You	
can tell this because the index is four, rather than zero. Secondly, notice that the keys
are not sorted in the order we would expect. A dictionary does not guarantee sort
order	of	the	keys;	things	are	stored	in	the	order	of	the	hash	of	that	key.	Finally,	notice	
that we have only one the, rather than two. Python is kind and doesn't generate an
error during the comprehension execution, it just replaces the duplicate value with
the latest key-value pair.

To	look	at	what	is	actually	happening;	realize	that	this	is	exactly	the	same	process	as	
we saw in the list comprehension. The key and value are generated by the generator
expression, which in this case is the for loop over the set of tuples generated by the
enumerate function. Basically, the for loop	is	creating	a	new	list	of	tuples:
('the', 0)

('cat', 1)

And so forth and so on.

Each	of	these	tuples	is	then	flattened	into	two	values,	the	key	and	value.	In	the	first	
example of dictionary comprehension, the two values are assigned to the k and v
variables, so that they knew key becomes the index and the new value becomes the
word from the list. These are then assigned back to the new k and v variables for the
dictionary comprehension, which are used to create an entry in our new dictionary.

You can do quite a bit with dictionary comprehensions. For the most part, any for
loop can be expanded out to become a dictionary. You can also use the if statement
within the for	loop.	This	is	slightly	different	syntax	than	the	list	comprehension:
dict_of_odds = {k:k for k in range(0,6) if k % 2 != 0 }

print(dict_of_odds)

{1: 1, 3: 3, 5: 5}

It is important to realize that the names of the variables all have to match up. That is,
we	use	k	as	both	the	key	and	the	value	(which	is	fine,	you	can	use	anything	you	like	
as the key and value variables). The k has to come from somewhere. If, for example,
we	wrote	this:

Advanced Manipulations 185

dict_of_odds = {k:k for i in range(0,6) if i % 2 != 0 }

print(dict_of_odds)

Then	the	Python	interpreter	would	generate	an	error	when	we	tried	to	run	this	code:

 File "dictcomp.py", line 27, in <dictcomp>

 dict_of_odds = {k:k for i in range(0,6) if i % 2 != 0 }

NameError: name 'k' is not defined

This is because we use the i variable in the loop, but used the k variable in the
comprehension.

You can nest if	statements	as	well:
dict_of_odds = {k:k for k in range(0,6) if k % 2 != 0 if k != 3}

print(dict_of_odds)

Again,	this	is	different	than	the	for loop and the list comprehension. In dictionary
comprehensions, the if statements are just stacked one after another.

Here's	one	more	example	of	using	a	list	and	a	conditional	to	create	a	dictionary.	In	
this case, we are going to imagine that we have a class that contains methods we
want to map to a dictionary of commands. This particular example will have a class
with	methods	that	convert	a	given	input	value	into	a	specified	type.	Here's	the	class:
class Comparer:

 def __init__(self):

 self.value = "123"

 def return_as_string(self):

 return self.value

 def return_as_int(self):

 return int(self.value)

 def return_as_float(self):

 return float(self.value)

Nothing fancy here, just a class with three methods that we care about (we'll never
call the __init__	method	directly	of	course).	How	are	we	going	to	add	the	various	
methods	to	a	dictionary?	We	could	do	something	like	this:
d = {}

c = Comparer()

d['string'] =c.return_as_string

186			 Python for Professionals

And then repeat this for each method. As you may remember, Python treats methods
as	a	first	class	citizens,	so	we	can	assign	them	to	things,	like	dictionary	entries.You	
may	 remember	 that	we	 looked	 at	 a	 function	 defined	 in	 Python	 called	 dir. This
function returns a list of all of the methods and attributes of a given class. We could
use the combination of dictionary comprehension along with the dir() function
and	accomplish	our	task	much	more	easily:

print(dir(Comparer()))

dict = {v[10:]:v for v in dir(Comparer()) if v.startswith('return_as')}

print(dict)

The output of this little snippet of code is:

{'float': 'return_as_float', 'int': 'return_as_int', 'string': 'return_as_
string'}

This is exactly what we wanted.

Nested dictionary comprehensions
You can nest dictionaries, by making a dictionary the value of a given key in another
dictionary.	For	example,	we	might	do	this:

dict_nested = {

'production': {

'url': 'http://prod.com',

'user': 'matt',

'password': 'pwd'

 },

'qa': {

'url': 'http://qa.com',

'user': 'qamatt',

'password': 'pwd'

 },

'staging': {

'url': 'http://staging.com',

'user': 'fred',

'password': 'pwd1'

 }

}

Advanced Manipulations 187

In this case, we have a dictionary called dict_nested. This dictionary is made
up	of	three	keys,	which	represent	different	environments	for	testing.	We	have	the	
production environment, the qa environment, and the staging environment. Each
of these has three keys, the url of the environment, the user and password to use
when connecting to that environment.

We can use the dictionary comprehension method to extract out only the dictionary
we	want:
qa = {k:v for k,v in dict_nested.items() if k == 'qa'}

print(qa)

{'qa': {'user': 'qamatt', 'password': 'pwd', 'url': 'http://qa.com'}}

Further, we can extract out only the piece of the inner dictionary that we want by
using	something	like	this	dictionary	comprehension:
data = {

 outer_k: {inner_k: inner_v}

 for outer_k, outer_v in dict_nested.items()

 for inner_k, inner_v in outer_v.items()

 if inner_k == 'url'

}

print(data)

Note that the whitespace that has been inserted is simply for readability, there is no
need to put things on a separate line if you don't want to.

Applying functions
We've looked at going through dictionaries using comprehensions that return pieces
of the dictionary as data in order to produce a new dictionary. We can, however,
apply	user	defined	functions	to	the	pieces	if	we	want	to.

def func(x):

 return x * x

dict_func = { k: func(k) for k in range(0,5)}

print(dict_func)

In this example, we are taking a list of integer values in the range of zero to four and
using	our	user-defined	function	to	square	them.	The	key	for	the	generated	dictionary	
is the number in the range (for example,0 to 4) while the value of each key should be
the	square	of	that	number.	Running	this	little	snippet	results	in:

188 Python for Professionals

{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

This is exactly what we expected. As you can see, dictionary comprehensions are
a very powerful tool in Python. Of course, any dictionary comprehension can be
replaced by a loop or set of loops in your code. If your comprehension gets too
complicated, as the url example above, you might consider breaking it out into
simple code, or even a function in your code.

Restrictions on dictionary comprehensions
●	 You can't modify an existing one, only create a new one.
 This might not be obvious, but you can't modify an existing dictionary. You

can only make a new dictionary, and put values into it that are somehow
derived from the values in the original one. You can add additional keys or
values to the dictionary in your code, but cannot change the dictionary that
you start with. Of course, you can always assign the result to the original
variable that holds the dictionary, but you aren't modifying it you are
resetting it. This is an important distinction in Python.

●	 You can't check existing keys in the new dictionary during creation.
 You might wonder if it is possible to check the new dictionary values during

the generation of the dictionary. The answer is no, because it doesn't really
exist until the time that your generator code is executed. You can check the
existing	dictionary;	of	course,	since	 it	 is	already	in	place	by	the	time	your	
comprehension	is	called,	but	the	one	that	is	being	created	cannot	be	modified	
or checked at run-time.

Set comprehensions
At this point, it can't be at all surprising to know that Python also allows for set
comprehensions. As expected, you can't modify an existing set with a comprehension,
only create a new one. Likewise, of course, the comprehension must result in a valid
set. A set cannot contain multiple entries of the same value. Like the dictionary,
Python is polite about this. If you try to add values to the set that are already there,
it will replace the old one with the new one.

Set comprehensions using the {} syntax only exist in Python 3. Before that, you'll
have to use the set() function to create and work with sets.

You might guess, therefore, that one of the best uses of a set is to eliminate duplicates.
In fact, this is one of the most basic forms of the set comprehension. Given a list, we
can	duplicate	it	as	a	list	with	a	simple	list	comprehension	like	this:
list_copy = [x for x in original_list]

It shouldn't surprise you, therefore, that if we change the list comprehension to a set
comprehension,	we	get	the	same	result,	but	as	a	set:

Advanced Manipulations 189

my_list_with_dupes = [1,2,1,2,3,4,1,2,3,4,5,6,7,1,2,3]

my_set_without_dupes = {x for x in my_list_with_dupes}

print(my_set_without_dupes)

{1, 2, 3, 4, 5, 6, 7}

Notice that the set notation {} is used just the way that list notation [] is used for
list	comprehensions.	Of	course,	the	only	difference	between	a	set	and	a	dictionary,	
which use the same {} notation, is that dictionaries are unique keys with non-unique
values assigned to them.

Naturally, you can modify the entries in the set while you are building it. For
example, suppose that we take the output from the set we just created, and form a
new	set	that	is	made	up	of	the	squared	values	of	each	entry:
squared_set = {x*x for x in my_set_without_dupes}

print(squared_set)

{1, 4, 36, 9, 16, 49, 25}

As with list and dictionary comprehensions, the original set (my_set_without_
dupes)	is	not	modified	by	the	comprehension.	For	all	comprehensions,	the	only	way	
to modify the existing construct is to assign it to the result of the comprehension,
since it creates a new object.

It is important to note that the default comparisons are used for whatever type you
are placing into your new set. For example, consider this list of strings converted to
a	string:
my_string_list = ['This', 'is', 'a', 'test', 'of', 'A', 'Capital', 'TEST']

print({x for x in my_string_list})

The	output	from	this	snippet	is	what	you	would	expect:
{'This', 'Capital', 'of', 'is', 'TEST', 'A', 'a', 'test'}

Remember, though, that a set must be made up of unique entries. So, if we were to
take	the	string	list	above	and	add	only	the	lower	case	version	of	each	string	like	this:
print({x.lower() for x in my_string_list})

In	this	case,	the	output	is	quite	different	from	the	previous	example.	Each	string	is	
converted	to	its	lower	case	equivalent	and	then	added	to	the	output	set:
{'is', 'of', 'this', 'test', 'a', 'capital'}

It is often useful to convert a string to a base form when adding to sets so that you
don't	have	issues	with	the	same	words	occurring	over	and	over,	differentiated	only	
by case. If we are counting the distinct words in a sentence, for example, we don't
care if you enter This, this, and THIS, they are all the same word and should only
be counted once.

190 Python for Professionals

The standard example for set manipulation is the Sieve of Erathotenes,	which	finds	all	
prime	numbers	within	a	given	range.	The	algorithm	here	is	simple;	you	begin	with	
the prime number 2, and generate a set of all multiples of that prime. Then you work
your way up to the value you care about adding the multiples of each number to
the collection. Once you have gone through all of the values, you then simply step
through list and see whether the number you care about is in there. You don't add
the starting point (2,3,4, and more) unless that value is generated by a multiple. So,
for example, if we were looking for all primes between 1 and 9, we would generate
these	values:
4, 6, 8

6, 9

8, 12, 16

10, 15, 20

12

14

16

We would then walk through the list looking for values that aren't there which
would result in the values 2, 3, 5, and 7. To do this in Python, we follow the exact
same	process,	but	we	use	the	set	comprehension	to	simplify	the	exercise:
def erathostenes(maximum):

 # First, generate a list of non-primes up to the maximum we care about

 non_primes = {j for i in range(2, maximum) for j in range(i * 2, maximum, i)}

 # Now, generate a set of values in the maximum range, so long as each value

 # is not found in the non-prime list.

 return {i for i in range(2, maximum) if i not in non_primes}

If you've ever tried writing this algorithm in a more modern language like Java or
C++, you end up writing recursive loops to speed up things, or have loops of loops.
Python makes this so much easier. If you run this on our input value, 9,	we	will	see:
{2, 3, 5, 7}

As a side note, this also illustrates that you can use all comprehensions within
functions, and pass in variables rather than hard-coded names, to process data. Set
comprehensions are pretty much exactly like list or dictionary comprehensions, aside
from	slightly	different	syntax.	You	can	use	the	if	statement	within	a	comprehension:
set_of_odds = {x for x in range(0,10) if x % 2 != 0}

print(set_of_odds)

Advanced Manipulations 191

{1, 3, 5, 7, 9}

As	a	final	example	for	set	comprehensions,	let's	combine	most	of	what	we	learned	
in this chapter with comprehensions to do something semi-useful. Imagine that
you want to take some input text and produce a list of important words within the
sentence to attempt to comprehend the purpose of the sentence. An important word
is	defined	as	one	that	isn't	in	a	screening	list	of	trivial	words	like	a, and, the and the
like. In most languages, this would be a fairly complex bit of code, but in Python, it
is	easy	and	readable:
unimportant_words = ['the', 'and', 'i', 'or', 'this', 'of', 'to', 'if']

sentence = "This is a test of the emergency broadcast system which tests
to see if the world has broken down"

word_list = sentence.split('')

important_word_list = {w.lower() for w in word_list if w not in unimportant_
words}

print(important_word_list)

The	output	from	this	snippet	is:

{'which', 'world', 'test', 'tests', 'is', 'a', 'system', 'emergency',
'see', 'broken', 'down', 'broadcast', 'this', 'has'}

Let's	take	a	look	at	what	is	going	on	in	this	example.	First,	we	define	our	unimportant
words in a simple list of strings. Then we split up our input sentence into words,
using the split function of the string class. Now comes the comprehension part, as we
iterate over the words in the list, looking for anything that isn't in the unimportant
list. Those words are converted to lower case and added to the set. Notice the use of
the not in construct to determine if a word is not in the list of words to screen out.
If we used the in construct, we would only be adding the unimportant words to the
list.
Comprehensions are an important part of Python, and something that it is really
worth getting to know, if only to read other people's code. You don't have to use
them, Python will accept for loops and if statements and function that replace them,
of course, but they are something that most professionals use, so it is worth learning
how they work and using them. While we are on the subject, though, let's talk a
little bit about generators which are very much like comprehensions, but are also a
valuable tool in and of themselves.

Generators
The	 basic	 syntax	 of	 a	 generator	 expression	 is:	 (some	 expression).	 Unlike	
comprehensions, however, generators do not return a collection such as a list or
dictionary, but rather return a generator object. A generator object is an instance of a
class that is very similar to an interator, without the need to implement the __next__

192 Python for Professionals

and __iter__ methods. For this reason, the complete piece is usually referred to as
a generator expression, to contrast it with the notion of a comprehension. Let's
look at a very simple generator, which returns the odd numbers between 0and 10.
odd_generator = (x for x in range(0,10) if x % 2 != 0)

Note	the	difference	between	this	and	the	list	comprehension	that	we	looked	at	earlier	
in	the	chapter.	When	written	this	way:
odd_comprehension = [x for x in range(0,10) if x % 2 != 0]

print(odd_comprehension)

Here,	we	are	creating	a	comprehension	that	returns	a	list	of	odd	numbers	between	
the values of 0and 10,	not	inclusive.	The	output	from	this	is:
[1, 3, 5, 7, 9]

When we create a generator object, such as the odd_generator above, and print it
out,	we	get	something	very	different:
<generator object <genexpr> at 0x7fd5b80299a8>

If	you	 run	your	own	copy	of	 the	 code,	you'll	 see	a	different	memory	address,	of	
course, at the end of the print line, but you'll see the same beginning, <generator
object <genexpr> at. What does this mean? It means that we have created a new
object, rather than some syntactical short-hand for a loop. We invoke the generator
object using the next()	function:
print(next(odd_generator))

1

This	doesn't	seem	terribly	exciting,	all	we	did	was	get	the	first	odd	number	after	0.	
But	it	becomes	a	bit	more	exciting	when	we	call	it	again:
print(next(odd_generator))

3

In fact, we can call this multiple times. Suppose, for example, we just keep calling
next()	on	our	generator	object:
while(True):

 print(next(odd_generator))

We	have	 talked	about	 infinite	 loops	and	how	 they	will	never	 exit,	 so	you	would	
assume that this would just continually print out odd numbers until the end of the
world.	However,	something	very	different	happens	when	you	run	the	script:
Traceback (most recent call last):

<generator object <genexpr> at 0x7fc9280199a8>

 File "generator.py", line 5, in <module>

Advanced Manipulations 193

 print(next(odd_generator))

StopIteration

1

3

5

7

9

This seems odd, doesn't it? Why didn't the while(True) loop continue to execute,
and what is that Traceback thing at the top of the output? The answer lies in the
generator object. When we created it, we established a range for it to generate odd
numbers for, in this case the value of 10. When you call the next() function, each
time it retrieves the next value in the condition we established when we wrote the
generator	code.	In	this	case,	we	will	first	get	the	value	zero,	then	one,	then	two,	and	
so forth and so on, until we hit ten. Each of these values is checked to see if it is
odd, and if so, that value is then returned. Once the value is returned, the generator
object then pauses, waiting for the next next() function call. When the loop in the
generator is exhausted (in other words, when the value hits 10), the generator knows
that it is done. Calling the next() function one more time will raise an exception, in
this case the StopIteration exception.
Now,	try	calling	the	function	in	a	slightly	different	kind	of	loop:

for v in odd_generator:

 print(v)

Now, you would think this would raise the same exception and print it out on the
command	line,	but	you	would	be	wrong.	In	fact,	the	output	is:
1
3
5
7
9

Once all of the values have been printed, the for loop terminates and no error is
displayed. This is due to the fact that thefor loop knows about the StopIteration
exception, and uses it to end the loop. The code hasn't changed, the error hasn't
changed, but the behavior has changed. This is some behind the scenes magic for
Python.

Generators do not have to be simple expressions. You can actually create a full
generator function. The behind the scenes magic of returning a single item at a time

194 Python for Professionals

is performed by the yield statement. Let's look at how you might use such a function
in	your	own	code.	In	our	first	example,	we'll	just	handle	a	specific	number	of	entries:
def an_integer_generator(max):

 for i in range(0, max):

 if i % 2 != 0:

 yield i

Obviously, this is simply a function that returns the odd numbers between zero and
the	maximum	range	provided	by	 the	 caller.	The	only	difference	 is	 the	use	of	 the	
yield statement. The yield statement, which takes an argument, returns that value
to	the	caller	and	waits	for	the	next	invocation	by	the	caller.	We	can	call	it	directly:
gen = an_integer_generator(10)

print(next(gen))

1

Not surprisingly, calling it with a single next() function invocation produces the
first	odd	number,	which	 is	one.	 If	we	call	 it	again,	we'll	get	 the	next	 in	 the	series	
(3,5,7, and more).

Alternatively,	we	can	call	it	in	a	loop:

gen = an_integer_generator(10)

for g in gen:

 print(g)

1

3

5

7

9

Equally unsurprisingly, we get the list of odd numbers between 0and 10. You might
wonder	what	happens	if	we	combine	the	two	uses	of	the	generator	object:

gen = an_integer_generator(10)

print("First odd: {0}".format(next(gen)))

for g in gen:

 print("Odd: {0}".format(g))

The	output	from	this	little	snippet	might	surprise	you	a	little	bit.	It	looks	like	this:

First odd: 1

Advanced Manipulations 195

Odd: 3

Odd: 5

Odd: 7

Odd: 9

The important thing to notice here is that the generator object maintains its own
state. When we call it with the next() function, we are moving the internal state
pointer	 from	 the	first	 element	 to	 the	 second	element.	 From	 that	point	on,	 calling	
next()	or	using	the	gen	object	in	a	loop	will	move	forward	from	the	first	position	
onward. The generator function is a form of iterator. For example, suppose that we
wanted to write a class that implements the same functionality, but as a true iterator.
We	might	do	something	like	this:

class Odds:

 def __init__(self, max = 0):

 self.max = max

def __iter__(self):

self.n = 0

 return self

 def __next__(self):

 if self.n >= self.max:

 raise StopIteration

while True:

 if self.n % 2 != 0:

 r = self.n

 self.n = self.n + 1

 return r

else:

if self.n >= self.max:

raise StopIteration

else:

self.n = self.n + 1

o = Odds(10)

for odd in o:

 print(odd)

196			 Python for Professionals

1

3

5

7

9

That's a pretty unwieldy class! But this is what is necessary to implement a true
iterator in Python, we have to worry about the initialization (__iter__) method, as
well as the class initialization (__init__) and the next method (__next__).

All	of	this	to	replace	our	little	four	line	function!	Hopefully,	you	can	see	the	power	of	
generator functions and generator expressions and will use them in your own code.
Please note that like all other things Pythonic, it is very easy to abuse the generator
expressions and functions, so use them only when they really make sense.

That sums up, excuse the pun, the comprehensions and generators in Python. You can
do a lot with a little code, which really is what Python is all about. In addition, if you
follow the rules properly, using the yield statement or the __iter__ and __next__
method overloading, the interpreter will do most of the behind the scenes magic for
you to make your code easy for the next developer to use. Always remember, the
next developer to use your code just might be you!

Building a string from a list
One of the most common programming problems is to assemble strings. We might
have a list of numbers or words or letters that we want to output. For example,
imagine	a	non-homogeneous	list	like	this:
list_of_values = [1.0, 'this is a test', 2, 'c', 'hello world']

We	could	output	these	to	the	user	like	this:

for v in list_of_values:

 print(v)

If	we	do	this,	the	user	will	see	the	following:
1.0

this is a test

2

c

hello world

That's not really what we want. We want to be able to output them as a single string,
for	example,	to	a	log	file.	It	turns	out	that	Python	3	has	an	argument	to	the	print
statement	that	will	allow	you	to	do	something	like	this:

Advanced Manipulations 197

for v in list_of_values:

 print(v, end = '')

1.0 this is a test 2 c hello world

This doesn't really solve our problem though, since the print() statement is only
good for writing to the console output. What we want is a way to convert the list of
entries	into	a	single	string	that	can	then	be	written	to	a	file	using	Python's	file	input/
output functions which we will look at soon. We've previously looked at the string
join()	function,	which	looks	like	it	might	work:

s = ''.join(list_of_values)

print(s)

Sadly,	trying	to	do	this	produces	an	error:

 File "stringoutput.py", line 3, in <module>

 s = ''.join(list_of_values)

TypeError: sequence item 0: expected str instance, float found

The join() method of the string class expects an iterable that contains strings. But
the join() method is still the best choice for producing an output string from a
string iterable, so how can we convert our list of non-strings into strings. The answer,
as you might have guessed from the question being in the comprehensions chapter,
is	to	use	a	list	comprehension:

s = ''.join([str(l) for l in list_of_values])

print(s)

1.0 this is a test 2 c hello world

Why do we prefer the join() method over rolling our own function to accomplish the
same thing? There are a few reasons. One is that being Pythonic means following
the Don't Repeat Yourself (DRY) principle. Some people also call it don't reinvent
the wheel, but DRTW doesn't have the same ring to it. The functionality already
exists	within	the	language;	there	is	no	reason	to	reproduce	that	functionality	in	your	
own code. Other Python programmers will be used to seeing the join() method, as
well as the list comprehension, and should be able to immediately grasp your usage
without having to dig into your code to see how it works. In addition, of course, the
Python implementation has been rigorously tested by thousands of programmers,
whereas yours might have been tried by yourself and a few of your co-workers.
Does it right, use the existing functionality.

Another reason for doing it this way is that we can take advantage of the hours
of design that went into the join method. For example, the join() method has
a wonderful property. The string that is used to join with is reproduced for each
element	in	the	iterable.	So,	we	could	do	this:

198 Python for Professionals

s = '|'.join([str(l) for l in list_of_values])

print(s)

This produces the following output, which is absolutely perfect for writing to a
character	delimited	log:
1.0|this is a test|2|c|hello world

Speaking of logging things, one of the problems you may run into when doing so is
that	log	files	expect	special characterslike quotation marks and slashes to be escaped.
This	means	that	rather	than	writing	a	string	like	that's	to	the	file,	you	would	output	
that\'sso that the log parser can split the words properly. This is very common in
programming, and you've likely seen in previously when working with outputs to
files	in	other	language.	Python	makes	it	very	easy	to	get	around	this	in	our	scenario	
above, and all we need to do is write the small function to do the string manipulation
while still doing all of the rest of the work. We can implement a screening function
like	this:
def convert_string(s):

 ret = ""

 for c in s:

 if c in '\\\'"':

 ret = ret + '\\' + c

else:

 ret = ret + c

return ret

In our example function above, you can simply add any other characters that you
need to be escaped into the string that is checked with the if c in portion, and your
code will continue to properly escape output strings. To use this in our join function,
we just replace the call to str	with:
s = '|'.join([convert_string(str(l)) for l in list_of_values])

Now, if we have a list of elements in which there are strings that contain characters
that	need	to	be	escaped	before	output,	it	will	be	done	for	us	automatically:
list_of_values = [1.0, 'that\'s a test of the \"emergency broadcast
system\"', 2, 'c', 'hello world']

s = '|'.join([convert_string(str(l)) for l in list_of_values])

print(s)

1.0|that\'s a test of the \"emergency broadcast system\"|2|c|hello world

Notice that we still have to cast the object in the list to a string to make sure we
get the right outputs. This string is then passed through our convert_string

Advanced Manipulations 199

function, which does the special character processing and the result is output to
the log, or console, or whatever. Python makes it easy to do the jobs that professional
programmers are accustomed to having to do as parts of their job.

Searching a string
Without a doubt, the most common programming problem is searching a given string
for one or more occurrences of a value. Python, of course, makes this reasonably
easy.	For	example,	we	can	tell	whether	something	is	found	within	another	string:

string_to_search = "This is a test of the emergency broadcast system. This
is not an error"

Case 1: Just find out if the string has "error" in it

print("String contains error: {0}".format('error' in string_to_search))

Case 2: Case sensitive search

print("String contains error: {0}".format('Error' in string_to_search))

Case 3: Doing conversion to do case insensitive search

print("String contains error: {0}".format('error' in string_to_search.
lower()))

These three cases illustrate the various ways one might search for a substring within
a	string.	The	first	two	search	for	a	given	string	with	a	given	case	of	letters	within	
the input string. The third example shows how to do the same search, but make it
case-insensitive. We've gone through most of this before, when discussing the string
class in Chapter Two. It is therefore not at all surprising to you that the output of these
three	calls	is:

String contains error: True

String contains error: False

String contains error: True

Clearly, the second example is False because the string does not contain a character
run	that	matches	the	Error	case:

Case 4: What if there are multiple occurrences?

string_to_search = "The error is that the error is no error"

print("String contains error: {0}".format('error' in string_to_search))

print("Position: {0}".format(string_to_search.find('error')))

200 Python for Professionals

Case 4: What if there are multiple occurrences?

string_to_search = "The error is that the error is no error"

print("String contains error: {0}".format('error' in string_to_search))

print("Position: {0}".format(string_to_search.find('error')))

It isn't unusual for a string to contain multiple copies of the same substring. If we
only want to verify that one is in there somewhere, we can use the find() method
of	the	string	class.	If	it	returns	anything	other	than	minus	one,	we	know	it	is	there:

Position: 4

Sometimes,	though,	we	want	to	find	more	than	the	first	occurrence	of	the	substring	
within the larger string. There are lots of ways to do this, from simply calling the
find	method	over	and	over	and	passing	in	a	new	string	formed	by	the	substring	of	
the original incremented past the position of the substring, to using self-built string
searching algorithms. What, though, if we just used the Python generator expression
concept to do this in a vastly easier way?

def find_value(string, value):

 pos = 0

 while pos != -1:

 p = string[pos:].find(value)

 if p == -1:

 raise StopIteration

 ret = pos + p

 pos = ret + 1

 yield ret

gen = find_value(string_to_search, "error")

With a generator expression function, we can just call the next() method on the
generator object and retrieve the pieces that match our substring. One approach
would	be	to	do	this:

p = next(gen)

print(string_to_search[p:])

p = next(gen)

print(string_to_search[p:])

p = next(gen)

print(string_to_search[p:])

Advanced Manipulations 201

Running code this way, we will see the following output (which is just showing the
string	starting	at	the	returned	position	of	the	substring):

error is that the error is no error

error is no error

error

Once	we	reach	the	final	entry	in	the	string,	the	StopIteration exception is raised,
so	we	can	just	use	a	loop	to	do	the	same	thing:

print("In loop version:")

gen = find_value(string_to_search, "error")

for p in gen:

 print(string_to_search[p:])

In loop version:

error is that the error is no error

error is no error

error

As you can see, the generator concept is quite powerful in Python and can be used
well beyond its expected applications.

Searching a collection
Beyond sorting, searching is the number one use case for a collection in any language.
There are multiple ways to search a collection, depending on a number of external
factors.	Before	deciding	upon	a	strategy	for	searching,	you	first	need	to	determine	
three things about your particular use case.

First, you need to know how often you are going to search for something. The
strategies	used	 for	 searching	 regularly	 are	different	 than	 those	 for	 searches	done	
only	once	in	a	blue	moon.	Whereas	in	the	first	case	you	want	to	structure	your	data	
specifically	for	searching,	the	second	case	often	has	you	considering	that	almost	as	
an afterthought.

Secondly, you need to know how fast your search needs to be. For example, if you
are replying to a search request at human readable speed, it probably isn't important
that your search be virtually instantaneous. On the other hand, if your search needs to
do lookups for real-time processing, the speed of the search becomes a fundamental
consideration in how you implement it.

Third,	 and	finally,	 the	 size	 of	 your	 collection	data	 set	 is	 important.	 Searches	 that	
work	 extremely	 quickly	 and	 efficiently	 for	 a	 small	 to	 medium	 data	 set	 will	 fail	
spectacularly in a Big Data environment.

202 Python for Professionals

In general we'll consider three searching mechanisms for Python. First, we'll look at
a simple brute force approach, and a slightly more elegant way of doing the same
thing. Let's imagine, for example, that we have a simple list of items. It might have a
few hundred items at worst, and is not guaranteed in any way to be in sorted order.
Also, the data in the collection is not guaranteed to be unique, which means that a
search could return any of a set of values.

First	of	all,	let's	create	a	function	that	will	generate	us	some	random	data:

from random import randint

A function to generate a list of random numbers in a given range

def generate_random_list(list_size, max_value):

 ret_list = []

 for i in range(0, list_size):

 r = randint(0, max_value)

 ret_list.append(r)

return ret_list

This function accepts two parameters, the size of the list to generate and the maximum
value to create within the list. The return from the function is a list of values. Once
we have the list of values, we can explore how to search it.

We	are	going	to	use	three	different	search	types.	First,	we'll	brute	force	search	the	list,	
running	through	it	until	we	find	a	value.	Next,	we'll	do	the	same	thing,	but	use	a	list	
comprehension method to search for our value. Finally, we'll explore the concept of
turning our list of values into a faster construct for searching, in this case a set. To
measure the speed of the algorithm, we will use a Python class called timeit, which
allows us to specify a function to run, and a number of iterations to run it, and returns
the number of seconds it takes to run the function that many times. Because of the
vagaries of computer processing, measuring a single call of one method vs another
is often incorrect. If something is going on in the background, your answers will
vary	radically.	By	calling	the	function	a	sufficient	number	of	times,	that	vagueness	
is smoothed out. We will run each approach a thousand times to get a solid number.

First,	the	brute	force	approach:

l = generate_random_list(20, 100)

value_to_search = l[-1]

First, just try a brute force search

def brute_force_search():

Advanced Manipulations 203

 for value in l:

 if value_to_search == value:

 return True

return False

t = timeit.timeit(brute_force_search, number=1000)

print(t)

Next, we will look at the list comprehension approach.

Next, see if a list comprehension is any different

def comprehension_search():

 r = [x for x in l if x == value_to_search]

 return len(r) > 0

t = timeit.timeit(comprehension_search, number=1000)

print(t)

Finally,	the	set	based	approach:

Finally, do a search based on a set

search_set = set()

def build_set():

 for value in l:

 search_set.add(value)

def find_in_set():

 return value_to_search in search_set

t = timeit.timeit(find_in_set, build_set, number=1000)

print(t)

For	our	final	approach,	you	may	notice	that	we	created	a	secondary	function	to	call	
to build the set. This is passed to the timeit function to be used as a setup function
for our system, so that it is included in the timing.

The	results	of	the	three	functions	are	as	follows:

Searching for value 91

204 Python for Professionals

List to search: [7, 34, 5, 67, 52, 50, 70, 1, 43, 2, 13, 16, 92, 8, 85,
91, 49, 37, 58, 91]

0.0008070309999999997

0.0012734850000000013

0.0001256420000000022

As you can see, the time to search a set is, not surprisingly, the fastest way to search
for	a	value.	This,	however,	does	require	that	you	set	up	the	set	in	the	first	place.	The	
time	to	build	a	set	is:

t = timeit.timeit(build_set, 1)

print(t)

3.167000000001835e-06

Hopefully,	you	can	see	that	the	overhead	of	creating	the	set	is	not	especially	high,	
particularly for smaller lists. For longer lists, the time to iterate through the entire
list is likely to be even longer. There is, of course, work involved in creating the list,
memory used to maintain the construct and so forth. If your data is changing, you
will need to rebuild the set each time you want to search it.

Using a set of functions to create an
extensible state machine
A state machine is a construct in computer science whereby an application transitions
from one 'state' to another based on a set of criteria. For example, you might think of
a	word	processor	as	a	state	machine.	The	initial	state	is	with	no	file	open.	A	command	
is	issued	to	open	a	file,	and	the	state	transitions	to	opened,	where	the	file	is	loaded	
from disk and displayed for the user. Once it is loaded, it might transition into the
edit	state,	whereby	the	user	can	modify	the	file.	This	could	go	to	the	saved	state	if	
the user elects to save his or her changes or the closed state if the user decides not to
edit	the	file	or	to	throw	away	their	changes.

State machines are often implemented using function pointers in many languages. In
Python,	we	can	use	the	fact	that	a	function	is	a	first-class	element	to	store	our	states	
as a dictionary of functions to handle each of the states. Let's take a look at how we
can do this in Python, and how such a construct works under the covers. First, here's
the	code	for	our	application.	You	can	store	it	in	a	file	called	state_machine.py (or
whatever	you	want	to	call	it)	or	load	it	from	the	files	for	this	book:

def initial_state(command):

 print("Initial state")

 if command == 'start':

Advanced Manipulations 205

 return 'started'

 return 'error'

def start_state(command):

 print("Started state")

if command == 'stop':

 return 'stopped'

if command == 'open':

return 'opened'

 if command == 'close':

 return "closed"

 return 'error'

def open_state(command):

 print("Opened state")

 if command == 'stop':

 return 'stopped'

 if command == 'close':

 return 'closed'

 if command == 'quit':

 return 'initial'

 return 'error'

def close_state(command):

 print("Closed state")

 if command == 'quit':

 return 'initial'

 return 'error'

def error_state(command):

 print("Command {0} resulted in error, resetting".format(command))

 return initial"

206			 Python for Professionals

def build_dictionary():

 dict = {}

 dict'initial'] = initial_state

 dict['started'] = start_state

 dict['opened'] = open_state

 dict['closed'] = close_state

 dict['error'] = error_state

 return dict

done = False

command_dictionary = build_dictionary()

current_state = 'initial'

while not done:

 print("Currently in the {0} state".format(current_state))

 command = input("Enter a command for this state: ")

 state_handler = command_dictionary[current_state]

 current_state = state_handler(command)

Let's	first	understand	what	is	happening	here.	Each	of	the	*_state functions simply
handles a given command while in the state that the function is named for. If a
command can't be processed for a given state, an error is return and the 'error state'
is set. We build our set of command handlers in the build_dictionary function,
which could easily be extended by adding new states and handlers. Our main loop,
at the bottom of the function doesn't do very exiting things. It prompts the user for a
command (using the input function, which we'll discuss at length in a forthcoming
chapter) and then tries to handle that command using the current state handler.
The state handler returns a new state, hopefully, and that is then used for future
processing of user commands.

Here's	what	it	looks	like	when	it	is	running:
Currently in the initial state

Enter a command for this stateopen

Initial state

Currently in the error state

Enter a command for this statereset

Command reset resulted in error, resetting

Currently in the initial state

Advanced Manipulations 207

Enter a command for this statestart

Initial state

Currently in the started state

Enter a command for this stateopen

Started state

Currently in the opened state

You will notice that the state handler never exits the look, since the done variable
is never set to true. This is probably the expected behavior in the real world. We
may want to add a new command called exit or quit to terminate the loop for
our purposes. This is left as an exercise to the reader, but it really shouldn't be very
difficult.

Filtering vs removing
We	often	talk	about	filtering	a	collection	as	if	we	were	removing	items	from	the	list,	
but	this	isn't	the	case.	Most	filtering	returns	a	copy	of	the	list,	rather	than	modifying	
the original list. Python provides the filter()	function	to	do	exactly	this:

from random import randint

list1 = [randint(0, 100) for x in range(0,10)]

print(list1)

def func_to_filter_with(x):

 if x > 10 and x < 50:

 return True

 return False

filtered_list = list(filter(func_to_filter_with, list1))

print(list1)

print(filtered_list)

For	a	randomly	generated	list,	we	get	something	like	this	as	output:

[51, 28, 25, 4, 55, 62, 18, 72, 95, 78]

[28, 25, 18]

Notice	that	our	filter	function	screens	out	everything	that	is	not	greater	than	ten	and	
less	than	fifty.	However,	the	returned	'filtered'	list	is	a	copy	of	the	original,	as	we	can	

208 Python for Professionals

see in the two output lines. The new list does not contain the values we requested to
be	filtered,	but	it	didn't	modify	our	original	list	either.	What	if	we	do	want	to	modify	
the original list? This is a little tricky. Python does provide the remove() method for
lists, as well as the del	statement	that	will	remove	an	item	from	a	list.	For	example:
list2 = [1,2,3,4,5,6]

print(list2)

list2.remove(3)

print(list2)

[1, 2, 3, 4, 5, 6]

[1, 2, 4, 5, 6]

It is important to know, however, that you cannot use remove in a loop for an input
list.	Let's	take	a	look	at	the	problem:
print("Remove example")

list1 = [1,51,8,52,9,53,2,57,3,4,55,56,57,8]

print(list1)

for x in list1:

 if x <= 50 or x >= 60:

 list1.remove(x)

Given the input list and the criteria for removal, you would expect to see an output
of:
[51,52,53,55,56,57]

However,	if	you	run	the	above	code,	you'll	see	the	output	is:
[51, 52, 53, 4, 56, 57, 8]

Why	is	 this?	This	 is	a	nasty	 little	problem	that	has	to	do	with	side-effects	of	 loop	
iteration and the remove operator. The for loop auto-increments to the next element
in the list when it is running, and the remove	operator	modifies	 the	actual	 list	 to	
be shorter. As a result, we skip over elements when we remove them. You should
never remove or insert into a list while you are iterating over it. Instead, do it as a
list	comprehension	and	assign	the	result	to	the	original	list	when	you	are	finished:

list1 = [x for x in list1 if x > 50 if x < 60]

print(list1)

[51, 52, 53, 57, 55, 56, 57]

In	 the	 list	 comprehension,	we	first	 generate	 a	 new	 list	 from	 the	 original	 list	 that	
contains only the values between 50 and 60. Then we assign this list to the original

Advanced Manipulations 209

variable. Note that the list1 variable now points to a completely new block of
memory!

Slicing
We've	looked	a	little	at	slicing	over	the	first	few	chapters	of	the	book,	now	it	is	time	to	
take a bit more of an in-depth look. Slicing, you may remember, is the ability to take
slices of an array or string. All languages support some form of slicing for arrays,
most of them allow you to get a single element. For example, given a string="Hello
world", virtually all languages treat the expression string[0]	 as	 'H'.	 In	Python,	
however, you can go a lot further than that with slices. Let's take a look at a few
examples of slicing in Python to understand what can be done with them.

Possibly the most classic example of slicing in Python is to reverse a string in a single
line	of	code.	Here's	how	you	do	it,	and	why	it	works.
string_1 = "this is a test"

rev_string_1 = string_1[::-1]

print(string_1)

print(rev_string_1)

this is a test

tset a si siht

The essence of the slice operator for lists is [start:stop:step] or the 'three s'
approach. The start is the position where you want to begin the slice. Omitting this
parameter will default it to the beginning of the list, or zero. The stop parameter
is the position where you want to end the slice. Omitting that parameter results in
the end of the string (also called the length of the string).	The	final	step	parameter	
tells Python how many entries in the list to skip between steps. A negative number
indicates that it should go backward in its iteration. So, using two defaults and a
minus one results in the string going from its end to its beginning, one character at a
time, resulting in the reversed string.

There's nothing magical about the string in this expression, you can do the exact
same	thing	with	a	list	of	integer	values	or	floats,	as	well:
array_of_integers = [1,2,3,4,5,6,7,8,9,10]

rev_array_of_integers = array_of_integers[::-1]

print(array_of_integers)

print(rev_array_of_integers)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

210 Python for Professionals

It might not be intuitively obvious, but the slice operator can be used to insert or
remove elements as well. For example, suppose that we have a string that we wish
to	remove	a	piece	of:
bad_string = "This is a string with a *bad* word in it"

idx = bad_string.find('*bad*')

good_string = bad_string[0:idx] + bad_string[idx+len('*bad*')+1:]

print(good_string)

This is a string with a word in it

For	that	matter,	suppose	that	we	want	to	replace	a	word	in	a	string:
better_string = bad_string[0:idx] + "good " + bad_string[idx+len('*bad*')+1:]

rint(better_string)

This is a string with a good word in it

You	can	do	the	same	for	lists	of	integers,	or	floats,	or	complex	values,	or	even	objects.	
We can use the step operator in a positive fashion as well. Suppose we have a sorted
list of integers and want all of the positive ones. We've looked at how to do this with
a	list	comprehension,	but	you	can	do	it	with	slicing	as	well:
all_numbers = [1,2,3,4,5,6,7,8]

even_numbers = all_numbers[1::2]

print(even_numbers)

[2, 4, 6, 8]

Naturally,	any	iterable	can	be	sliced.	For	example,	here's	a	non-homogenous	list:
tuple_1 = ('a', 1, 2.3, "This is a test")

print(tuple_1[0:3])

('a', 1, 2.3)

If the slicing syntax bothers you, which it really shouldn't, Python provides a slice
class	as	well,	that	can	be	used	anywhere	a	slice	syntax	can	be	used:
Use the slice object
array_of_stuff = [1,2,3,4,5,6,7,8,9]
s = slice(2,5)
print(array_of_stuff[s])
[3, 4, 5]

Finally, you can reverse just a small piece of an array, if you want to, rather than the
whole	thing	using	slicing	syntax:
print(array_of_stuff[5:2:-1])
[6, 5, 4]

Advanced Manipulations 211

You might wonder why we use the reverse order of elements in the last example. If
we	wrote:
print(array_of_stuff[2:5:-1])

The result would be

[]

When	 the	first	 two	parameters	are	omitted,	Python	 is	smart	 enough	 to	figure	out	
you want to go from either the beginning to the end, or the end to the beginning,
depending on the sign of the third parameter. When you do not omit the parameters,
Python naturally assumes you know what you are doing and tries to go from the
start to the end stepping by the step value. In the case of going from 2 to 5 by –1, you
get an empty set. You can also use a negative step operator that is not equal to one
and	everything	works	as	expected:
print(array_of_stuff[5:2:-2])

[6, 4]

Lambda expressions
The lambda expression is one of the most poorly understood, yet simple, concepts in
any programming language. A lambda expression is just a one-line function, subject
to a couple of simple rules that has no name. In most languages, such as C++, it is
referred to as an anonymous	function.	The	basic	syntax	of	a	lambda	expression	is:
lambda <arguments>: <code>

Normally, one assigns the lambda to a variable, which is then used exactly like a
function.	For	example,	here's	a	lambda	that	squares	a	number:
square = lambda x: x * x

two_squared = square(2)

print(two_squared)

There	are	two	basic	rules	for	a	lambda	expression:
●	 They	may	not	contain	anything	but	a	single	statement,	and	cannot	have	side-

effects.
●	 The	result	of	the	expression	is	the	return	value	from	the	lambda.

In Python 2, there was a third rule that no longer applies, which is that you cannot
use a statement that returns no value, such as print, in a lambda. You can do that in
Python	3,	if	you	really	want	to:

log = lambda x: print("logging value for {0}".format(x))

log(12)

212 Python for Professionals

As a matter of style, this is a very poor use for a lambda, but it will work in Python 3.
You can use lambdas for all sorts of things that you probably shouldn't use them for.
For	example,	consider	this	ability	to	generate	functions	using	lambdas:
def make_shifter(a_value_to_shift_by):

 return lambda x: x << a_value_to_shift_by

mult_2 = make_shifter(2)

val = mult_2(2)

print(val)

In this case, we are creating a new function in the make_shifter function via the
lambda statement. This function, which will now be called mult_2, shifts left the
value that is passed in by the value that was given to the make_shifter function. If
this doesn't make sense, and honestly, it doesn't to a lot of beginning Python users, it
is a good indication that you are abusing the language, rather than using it.

There are excellent reasons to use lambdas, such as in the sorted function. This
function accepts a parameter called key which will permit you to change the way in
which data is sorted. For example, let's create a list of a max of positive and negative
values:
my_list = range(-3,3)

print(my_list)

my_list = sorted(my_list, key=lambda x: x*x)

print(my_list)

If we just sort this list normally, we'll see that you get the numbers in the same order,
-3, -2, and more, to +3.	However,	by	specifying	a	sort	key	which	squares	the	value,	
we	get	back	the	list	in	sorted	order	without	regard	to	the	sign:
[0, -1, 1, -2, 2, -3]

We could, of course, create a function to do the same thing and pass the name of the
function	to	the	sorted	routine,	but	this	is	easier	and	more	efficient.	You	don't	have	to	
go	find	the	definition	of	the	function,	or	worry	about	someone	modifying	it	for	some	
other cause. It is right there in the call to sort and does exactly what you expect. The
(x*x) expression eliminates the sign of the value, since a negative number squared
is positive. It does not change the actual value, only the key used to sort the value.
You can write your own functions that accept things like this, and wouldn't even
know if someone passed you a lambda or a function.

The 'splat' operator and unpacking
Pity the poor asterisk. Not only is it used in English to indicate a footnote or other
demarcation, but it is also used in math to denote multiplication. Were this not

Advanced Manipulations 213

enough, we also have its use in Ruby, and Perl, as a list operator. Python doesn't
actually call the asterisk the splat operator, but most people have taken to referring
to	it	when	used	to	flatten	an	iterable.
Consider, for example, this code:

l1 = [1,2,3,4]

print(l1)

In this example, our output is:

[1, 2, 3, 4]

What if you didn't want the list output in list format? What if all you wanted was the
list of values to be written to the output console? You could write them using a loop
and	one	of	the	output	functions,	but	Python	prefers	an	easier	way:
print(*l1)

1 2 3 4

The splat operator is even more useful when applied to dictionaries, if you are
trying	to	print	out	just	the	keys:
d = {

'x': 1,

'y': 2.0,

'z': "Hello world"

}

print(d)

print(*d)

{'x': 1, 'y': 2.0, 'z': 'Hello world'}

x y z

You could accomplish the same thing in other ways, but the splat operator makes
it easier. One more variant of the splat operator might be called the double splat
operator. This one is very special and has limited applications, but when you need
it, you really need it. The double splat (**) operator, when applied to a dictionary,
turns a dictionary set of values into a key-value parameter list.

If	we	had	a	function	like	this,	and	called	it	as	such:
def func(x,y,z):

 return x + y + z

print(func(1,2,3))

You'd	see	the	result	as	6.	We	could	also	write	the	call	to	the	function	as:
print(func(x=1,y=2,z=3))

214 Python for Professionals

In	this	case,	we	would	get	exactly	the	same	result;	we	are	simply	passing	in	named
parameters which allow us to change the order of them if we want. But what if we
had all of these values bound up in a dictionary?
d = {

'x': 1,

'y': 2,

'z': 3

}

You can't call this function with the dictionary, the parameters don't match and you
get an error. But you can use the double-splat operator to convert the dictionary into
the	named	parameter	set:
print(func(**d))

This	prints	out	the	same	value.	This	really	shows	off	the	power	of	Python,	since	this	
is the methodology used by the interpreter to unpack values into a function. This
functionality has been exposed for the programmer to use as well.

Conclusion
That	finishes	up	our	 tour	of	 the	more	 advanced	 topics	 in	Python	manipulations.	
Hopefully,	by	this	point,	you	have	the	skills	you	need	to	start	putting	together	real	
applications in Python. From this point on, we will primarily be examining the tools
that	are	offered	with	Python,	beginning	with	file	manipulations	in	the	next	chapter.

Questions
1.	 How	do	you	convert	a	list	to	a	string	using	comprehensions?

2. What is a set comprehension and how do you write one?

3.	 What	is	the	difference	between	an	enumerator	and	a	generator?

4.	 How	can	you	use	a	slice	to	reverse	a	string?

5. What is a lambda expression and how do you write one?

Introduction
While learning the types and manipulators of a language is core to understanding
how to write code in that language, the most important parts are usually the pieces
that make up the core libraries and functions of the language. For Python, this is
as true as every other language. You may be able to slice strings and write lambda
functions	and	even	define	cool	new	classes,	but	until	you	can	do	things	like	reading	
and	writing	for	various	file	types,	you	aren't	going	to	be	producing	any	professional	
code.

Structure
•	 The	open	statement,	using	with
•	 JSON	parsing
•	 Reading	in	text	vs	reading	in	lines
•	 Output	formatting
•	 Pickling

Objectives
By	the	end	of	this	chapter,	you	should	be	able	to	read	and	write	files	using	Python.	
You	will	learn	about	text	file	manipulations	along	with	JSON	and	binary	formats.	

Chapter 7
File Input and

Output

216			 Python for Professionals

You	should	be	able	to	read	input	files	by	the	character	or	line,	and	output	files	in	
either unstructured or formatted ways. Finally, you will learn something about
pickling which is writing out complex data structures in a JSON format using a
standard Python library.

Files
The	ability	to	read	and	write	files	is	fundamental	to	any	programming	language.	For	
some languages, like basic, it was built into the core statements of the code itself.
For others, like Fortran, C, C++,and C# it was added to the language via libraries
written	 in	 low	 level	 languages.	 Input	 and	output	with	files	 are	 core	 to	 corporate	
programming,	be	it	logging	information,	reading	input	configurations,	or	producing	
reports. Python does not have classes per se to do input and output but it does have
a nice set of functions that do the job. Let's take a look at them in this chapter. Along
the way, we'll take a look at Python's generic interface to the operating system and
a little bit of serialization.

Working with files
The	process	of	working	with	files	is	the	same	in	all	languages.	First,	you	open	the	file	
in	a	specified	mode. This mode indicates whether you are going to read or write to
the	file.	Some	languages	only	support	read	and	write	mode.	Python,	as	we	will	see	
shortly, like C, C++, C#, and Java support a wider spread of options.

Table 7.1 shows a list of the options you can use with the open() statement and what
they	entail	to	your	application:

Symbol Meaning
r Read	only	mode.	Writing	to	the	file	is	prohibited.
w Write	mode.	Writing	to	the	file	is	permitted.
x Exclusive	mode.	If	anyone	else	has	the	file	open	for	reading,	this	mode	

will fail.
a Append	mode.	All	writes	will	go	to	the	end	of	the	file	if	there	is	anything	

in it. If it doesn't exist, it will be created.
t Text	mode.	Indicates	that	you	are	writing	to	the	file	as	a	text	file.	This	is	the	

default if no type is indicated in the open statement.
b Binary	mode.	 It	 allows	 you	 to	 write	 binary	 characters	 to	 the	 file.	 Not	

portable across operating systems.
+ This	is	the	equivalent	of	read+write.	You	can	read	or	write	to	the	file.

The	full	form	of	the	open	statement	is	as	follows,	although	the	full	version	is	rarely	used:
open(file, mode='r', buffering=-1, encoding=None, errors=None, newline=None,
closefd=True, opener=None)

File Input and Output 217

The	file	argument	indicates	the	name	of	the	file	with	which	you	wish	to	work.
•	 Mode	is	the	argument	from	the	table	above.
•	 Buffering	is	used	for	indicating	when	a	file	should	be	written	to	disk.	For	

binary	files,	this	is	in	chunks of a size defaulted to for the operating system.
For	text	files,	buffering	occurs	at	the	line	level.	When	a	buffer	is	filled,	the	
data	is	flushed	to	the	disk	file	from	memory.

•	 Encoding	is	the	type	of	encoding	to	be	used	for	the	text	in	the	file.	The	default	
is operating and environment dependent, but is normally UTF-8.

•	 The	errors argument is used to determine how encoding errors should be
handled. Some characters cannot be encoded in all encoding schemes and
generate an error. If you are concerned about this, set this parameter to strict.
If	you	are	not	worried	about	it	because	you	are	only	writing	text	files,	set	it	
to none.

•	 The	newline argument is used to control how the end of line character is
interpreted. You can set it to \r, \n, \r\n, or None. This character is used
to determine the end of line for reading and what to translate an end of
line character into for writing. Once again, if you aren't working in multiple
operating	systems	or	your	files	do	not	need	to	be	portable,	you	needn't	worry	
about this one.

•	 The	closed	parameter	is	used	to	indicate	whether	or	not	the	underlying	file	
descriptor	handle	for	the	operating	system	is	closed	when	the	file	is	closed.	
Unless	you	are	using	a	proprietary	or	special	file	system,	you	won't	use	this	
one ever.

•	 The	opener	parameter	is	an	optional	custom	file	opening	function.	This	is	an	
uncommon parameter used only when reading from a non-standard source.

Let's look at a few examples of using the open statement with various scenarios.
First,	let's	consider	an	existing	text	file	that	exists	on	your	local	system.
f=open('test.txt', 'r')

In	this	case,	we	are	opening	the	file	in	read	only	mode.	Any	attempt	to	write	to	the	
file	will	fail.	If	the	file	does	not	exist,	it	will	fail.	For	example,	let's	imagine	that	we	
are	trying	to	open	a	file	that	isn't	there:
f = open('filedoesnotexist.txt', 'r')

Traceback (most recent call last):

 File "fileio.py", line 6, in <module>

 f = open('filedoesnotexist.txt', 'r')

FileNotFoundError: [Errno 2] No such file or directory: 'filedoesnotexist.txt'

As	you	can	see,	 the	file	did	not	exist	 (as	we	might	have	guessed	from	the	name),	
so an error was generated. As we'll see in a little while, we can use the operating

218 Python for Professionals

system (OS) module	to	find	out	ahead	of	time	whether	or	not	a	file	exists	under	the	
name we are trying to open it as.

If,	on	the	other	hand,	we	use	this	statement:

f = open('filedoesnotexist.txt', 'a')

Now,	 if	 the	file	does	not	 exist,	 it	will	 be	 created	 as	 an	 empty	file.	The	difference	
between the a and the w forms of the open is that if you use the w form, it will
truncate	the	file	if	it	does	not	exist,	and	create	it	if	it	does.	The	a	form	will	create	it	
if	it	does	not	exist,	but	not	truncate	it	if	it	does.	If,	for	example,	we	had	a	file	called	
test.txt that contained a line like this is the first line and	we	ran	this	code:

f = open('test.txt', 'a')

f.write('this is a test')

f.close() # File still exists and contains two lines

f = open('test.txt', 'w') # File exists and contains no lines

The	comments	indicate	what	happens	here.	We	can	open	this	file	for	append	and	
add a line to it, and then close it. Once we do this, it will contain two lines of text.
After the second open, in write mode, it will contain no lines of text.

The return from the open statement is a file object. As you see in the example above,
the	file	object	can	be	written	to	using	the	write	statement	and	closed	using	the	close	
statement.	By	default,	the	Python	interpreter	will	close	a	file	object	when	it	goes	out	
of scope and is garbage collected. It is bad practice to rely on this, just as it is in C++
or	C#,	where	the	file	classes	often	clean	up	after	themselves.	If	you	try	to	re-open	a	
file	when	it	is	still	open	and	the	mode	has	changed,	you	may	get	strange	errors	that	
are	difficult	to	reproduce.

Note	that	Python	does	not	deal	with	files	the	way	it	does	with	the	console.	With	the	
console, when you use the print() statement to output something, it automatically
appends	a	new	line	to	the	end	of	the	text.	The	write	statement	in	the	file	class	does	
not	do	the	same.	For	example,	suppose	we	log	some	data	to	a	file:
f = open('test.txt', 'w')

import time

for i in range(0,5):

 f.write('{0}: This is test number {1}'.format(time.time(), i))

f.close()

You might expect this to write out lines containing the time and the text, one per line.
This	is	not	the	case.	Instead,	you	get:

cat test.txt

File Input and Output 219

1564663930.1802938: This is test number 01564663930.180316: This is test
number 11564663930.180319: This is test number21564663930.180321: This is
test number 31564663930.180322: This is test number 4

It	probably	isn't	clear	from	the	printed	text	but	this	is	one	long	line	in	the	text	file.	If	
you wanted to have the information printed one line at a time, you need to insert a
newline	character:

f = open('test.txt', 'w')

import time

for i in range(0,5):

 f.write('{0}: This is test number {1}\n'.format(time.time(), i))

f.close()

This	code	produces	the	output	you	were	expecting	in	the	first	place:
1564664163.536551: This is test number 0

1564664163.5365708: This is test number 1

1564664163.536574: This is test number 2

1564664163.536575: This is test number 3

1564664163.536577: This is test number 4

By the way, you might notice that in Python, unlike most programming languages,
you	can	do	direct	formatted	output	to	a	file.	This	is	because	the	file	write method is
accepting (in this case) a string, and the string formatting is modifying the string to
be in the format that the developer wishes it to be.

Using the with statement
As you may have noticed, there is a pattern to using the open and write statements.
You	generally	open	a	file,	write	something	to	the	file,	and	then	close	the	file.	This	
pattern is so prevalent in the programming world that Python has created a simple
way to accomplish it with a minimal amount of coding. This is the with statement. It
has other purposes, but for now, let's just look at how you can use the with statement
to avoid some of the coding overhead that is normally necessary and to avoid errors
in	your	applications:
from random import randint

warning_levels = ['info', 'warning', 'error', 'critical error']

with open('test.txt', 'a') as f:

 which = randint(0, len(warning_levels))

 f.write('{0}: This is a {1} at{2}\n' \

.format(warning_levels[which], warning_levels[which], time.time()))

220 Python for Professionals

This little code block will open a log	file	for	appending	to,	write	out	a	statement,	
and	then	close	the	file.	Don't	see	the	close statement? That's because it isn't written,
but it is there. The with statement sets the scope of the variable, in this case, f, to be
only within the indentation of the with. Once the with statement terminates, on the
line following the write, the object that is created in the with statement is destroyed,
thereby closing it.

You could easily encapsulate this little piece of code into a log class and use it within
your	own	code	to	quickly	open	the	log	file,	log	information,	and	close	the	log	file.

One	final	note	on	opening	a	file	in	Python,	the	path	to	the	file	is	operating	system	
dependent.	That	is,	you	could	write	the	following	in	a	Linux	or	Mac	environment:

open('/usr/local/logs/log.txt', 'a')

whereas the same file in Windows environments might be:

open('c:/Windows/Logs/log.txt', 'a')

Also remember that the backslash character, which is often used in the Windows
world as a directory separator, means something special in Python strings. You
can always use the forward slash or use the escaped version (\\) in your directory
names.

Reading fixed length data from files in
Python
In	the	programming	world,	most	files	consist	of	data	in	one	of	three	formats.	First,	
we	have	fixed	length	text	based	files.	This	is	usually	the	output	of	some	sort	of	older	
code or perhaps a text standard like FIX	(used	in	financial	environments).	Python	
does	a	lovely	job	of	reading	fixed	length	files,	as	we	can	see	in	this	simple	example.

Suppose	we	have	a	file	that	looks	like	this:

001This is a test ABCDE12345

002This is not a testBCDEF12345

003This is another teCDEFG12345

004This is a test 2 DEFGH12345

005This is thelast ABCDE12345

The	'documentation'	for	this	file	format	is	as	follows.

Each	line	consists	of	the	following	entries:
•	 The	line_code which is a three character value indicates the sequence of the

line	in	the	file.

File Input and Output 221

•	 The	description	which	is	an	eighteen	character	free-form	text	field	describes	
the data.

•	 The	alpha	code	which	is	a	five	character	code	represents	the	hashed	value	of	
the	input	field.

•	 The	final	code	is	a	check	field	to	indicate	whether	or	not	the	line	is	accepted	
by the system. A default value of' 12345 indicates the line is proper.

To	read	this	file,	we	can	do	one	of	two	things.	We	can	read	each	line	out	of	the	file	
and	then	parse	it	into	the	pieces	we	want	or	we	can	read	the	individual	fields	one	at	
a	time.	Let's	experiment	by	reading	in	each	field	within	our	code	one	at	a	time.	To	
read	the	file,	we'd	do	something	like	this:

Reading in fixed length strings from a file

with open('fixed_length.txt') as fixed:

 for i in range(0,4):

 line_code = fixed.read(3)

description = fixed.read(18)

alpha_code = fixed.read(5)

last_code = fixed.read(5)

spacing = fixed.read(1)

 print(line_code)

 print(description)

 print(alpha_code)

 print(last_code)

In	this	case,	we	are	only	reading	in	four	lines	from	the	file,	to	test	our	code	and	also	
because	we	do	not	currently	know	how	to	read	until	the	end	of	the	file.	If	we	run	this	
snippet	of	code,	we'll	see	the	following	results	printed	to	the	console:

001

This is a test

ABCDE

12345

002

This is not a test

BCDEF

12345

222 Python for Professionals

003

This is another te

CDEFG

12345

004

This is a test 2

DEFGH

12345

As	you	can	see,	we	have	properly	read	in	the	file.	Now,	how	did	we	accomplish	this?	
The read()	method	of	the	file	class	reads	in	a	specific	number	of	characters	from	the	
file.	When	dealing	with	ASCII	characters	(single	byte	characters)	this	will	be	the	same	
as	the	number	of	bytes	in	text.	For	a	binary	file,	this	would	be	the	absolute	number	of	
bytes.	For	encoded	files,	this	will	be	the	number	of	bytes	in	a	single	character.	Each	
piece	is	read	from	the	file.This	moves	the	file	pointer indicating where to read from
along with that number of positions. Each piece is read in and stored in the proper
string	field.

What	 if	we	wanted	 to	keep	reading	 in	 lines	until	we	reached	 the	end	of	 the	file?	
Python provides an easy way to tell if you've got what you expected when you do a
read. It returns a sentinel value, None, if the read didn't return the proper number of
bytes.	So,	when	we	read	our	first	chunk	indicating	the	number	line	number,	we	can	
check if we got the proper three characters. Modify our code loop at its top like this
to	fix	the	issue:
with open('fixed_length.txt') as fixed:

 done = False

 while not done:

line_code = fixed.read(3)

if len(line_code) != 3:

done = True

continue

Now,	if	you	run	the	snippet,	you	will	find	that	it	terminates	as	soon	as	the	last	line	
is completed.

We can write this in a more Pythonic way by using tuples to store our data dictionary
and	using	a	generator	to	read	in	the	file,	 in	a	way	that	could	easily	be	reused	for	
virtually	any	type	of	fixed	length	file:
Generator to read file

def read_block(file_obj, size):

File Input and Output 223

while True:

 data = file_obj.read(size)

 if not data:

 break

 yield data

Our data dictionary

fields = [

 ('line_code', 3),

 ('description', 18),

 ('alpha_code', 5),

('last_code', 5),

('spacer', 1)

]

Re-usable block to read a fixed length file

with open('fixed_length.txt') as fixed:

 done = False

 while not done:

 for field in fields:

 block = next(read_block(fixed, field[1]))

 if len(block) != field[1]:

 done = True

break

 print("Read block for {0} = {1}".format(field[0], block))

Obviously, if we wanted to make this truly reusable, we'd want to store the data
rather than print it, but that small piece is left as an exercise for you.

Reading a text file by lines in Python
Sometimes,	 we	 just	 have	 a	 text	 file	 that	 contains	 lines	 of	 text	 we	 want	 to	 read	
sequentially.	Python	provides	a	few	ways	to	read	such	a	file	into	your	application.	
Let's	look	at	two	of	them	and	the	differences	between	them.	First,	let's	create	a	simple	
text	file	in	your	favorite	editor	and	call	it	text_lines.txt.	Put	this	text	into	the	file:

224 Python for Professionals

This is line 1

This is line 2

 This is line 3 which is indented

This is line 5

This is a comment

This is after a blank line

Note that the line following the comment line is blank. In the same directory (so that
we	don't	have	to	deal	with	paths)	create	a	Python	file	and	place	the	following	code:

Read a text file by line

with open('text_lines.txt') as lines:

 done = False

 while not done:

 aline = lines.readline()

 if not len(aline):

 done = True

else:

aline = aline[0:len(aline) - 1]

print('['+aline+']')

You might be wondering about a few parts of this code, so let's examine it. First of
all,	of	course,	we	open	the	file	to	read	it	and	loop	through	the	lines	in	the	file.	Each	
line is read using the readline()	function	of	the	file	object.	This	function	reads	from	
the	file	until	an	end	of	line	character	(\n	or	\r	or	a	combination	of	the	two)	is	found	
in	the	file.	At	this	point,	it	stops	and	returns	the	text	that	was	read	to	the	caller.

We check the length of the input line and if it is 0, we stop the loop. Since the function
includes the trailing end of line character, even a blank line will contain something.
We	then	strip	off	the	newline	character	using	slicing	and	then	print	it	out	between	
square brackets, so that you can see what was read even if the string is now empty.
In	our	case,	we'll	see	this:

[This is line 1]

[This is line 2]

[This is line 3 which is indented]

[This is line 5]

[# This is a comment]

File Input and Output 225

[]

[This is after a blank line]

Notice that our blank line	 in	 the	 file	 translates	 into	 an	 empty	 string	 once	 the	
newline is removed, but is not considered an end of file marker.

As of Python 3, there is an easier way to write the above loop that works just as well
and	is	much	easier	to	read:

with open('text_lines.txt') as lines:

 for line in lines:

 line = line[0:len(line)-1]

 print(line)

This won't work before Python 3.4, as a warning, but it does work with later versions.
We	are	essentiallytreating	the	file	object	as	a	generator	of	 lines	of	text.	 It	 is	a	neat	
shortcut when you don't want to deal with the whole looping and checking.

If you aren't using Python 3, or simply don't like the generator syntax, you can use
the readlines()	method	of	the	file	object:
with open('text_lines.txt') as lines:

 for line in lines.readlines():

 line = line[0:len(line)-1]

 print('['+line+']')

It does exactly the same thing and produces the same result.

A readlines real-world example
If you have worked in the Linux/Unix world for any length of time, you've probably
encountered the tail program. The tail program prints out the last few lines of a
file,	so	that	you	can	see	what	is	going	on	with	it.	In	general,	it	is	used	for	viewing	
log	files.	Now,	the	tail	program	has	a	lot	of	fancy	options	and	is	capable	of	real-time	
displays, but do you ever wonder how it works at its core? Let's write a very simple
tail	program	that	simply	shows	a	fixed	number	of	 lines	 for	a	file.	Create	a	new	
Python	file	and	give	it	the	name	tailfile.py and	put	the	code:

number_of_lines = 5

file_name = 'tailfile.py'

Open the file and read in all of the lines

with open(file_name, 'r') as f:

226			 Python for Professionals

 lines = f.readlines()

 # Now, get the ones they want to see

 for i in lines[len(lines)-number_of_lines:len(lines)-1]:

 # Strip off trailing newline

 print(i[0:len(i)-1])

print('Done')

If you run this program, you'll see that it outputs the last three lines of the program
itself. Later on, we'll learn how to pass command line arguments to the program, so
you	can	print	out	any	file	and	any	number	of	lines.	Here's	the	output	you	should	see	
if	you've	done	everything	right:

 # Now, get the ones they want to see

 for i in lines[len(lines)-number_of_lines:len(lines)-1]:

 # Strip off trailing newline

 print(i[0:len(i)-1])

Done

So	far,	we	have	learned	how	to	read	in	text	files	and	process	them	in	our	own	way.	
What	happens	if	the	files	aren't	text	based	but	are	binary	instead?

Python and binary files
Sometimes,	you	want	to	work	with	a	file	that	isn't	in	textual	format.	Text	files	are	
lovely and easy to read and parse, but they are a bit slow and very easy to decipher
for	 a	 hacker.	 Sometimes,	 you	 want	 your	 data	 stored	 in	 a	 more	 efficient,	 more	
unreadable	format.	Unfortunately,	that	unreadability	comes	with	a	price;	it	is	much	
harder	to	deal	with	binary	files	than	it	is	with	textual	ones.	With	a	text	based	file,	
you	just	read	it	in,	figure	out	what	you	want	out	of	it,	parse	it	and	then	do	whatever	
you	like.	With	a	binary	file,	it	generally	means	you	have	to	know	what	the	format	of	
the	file	is	before	you	start.	In	the	corporate	programming	world,	it	isn't	unusual	to	
have proprietary formats. We store user data in binary format because it is safer. We
store	images	of	our	state	in	binary	files	so	that	we	can	load	them	directly	into	a	state	
system without having to do a lot of conversion and checking.

Python	supports	binary	files,	as	it	does	text	files,	through	the	underlying	file	object.	
This	isn't	surprising,	given	that	the	file	class	was	written	originally	in	C	and	it	uses	
the	same	functionality	you'd	find	in	the	standard	C	or	C++	libraries.	Working	with	
them isn't quite as straightforward as text, though.

To	write	a	binary	file,	you	first	have	to	open	the	file	in	binary	mode.	As	we	saw	in	
the	table	earlier	in	this	chapter,	that	means	using	the	b	argument.	However,	b	just	

File Input and Output 227

tells	Python	to	make	the	file	open	in	binary	mode.	It	does	not	tell	it	what	you	want	to	
do.	Thus,	we	have	to	specify	either	the	w	or	r	modifiers	to	tell	Python	that	we	want	
to	write	or	read	in	the	file.	For	example,	let's	say	we	want	to	write	a	binary	file	out	
and call it mybinary.b. The .b extension doesn't indicate anything to the operating
system;	it	is	solely	for	our	usage.	We	would	do	this:
with open('mybinary.b', 'wb') as binary:

Of	course,	once	we've	opened	the	file	for	write	mode,	we	need	to	write	to	it.	Writing	
to	a	binary	file	is	a	little	different	than	writing	to	a	text	file.	For	one	thing,	you	need	
to know what data is stored there, or you need to write some kind of signal value
that tells the reading program what the format of the data is. Let's assume, for this
example that we know what we are doing and we are going to write out something
that	we	can	later	read	in.	Here's	the	code	that	writes	out	our	data,	which	is	actually	
just	a	string.	We're	going	to	write	the	length	of	the	string	first,	so	that	the	reading	
program	can	then	determine	how	big	of	a	string	to	read	in	from	the	binary	file:
Write a binary file

with open('mybinary.b', 'wb') as binary:

 text = 'Hello world!'

 l = len(text)

 print("Length of text: {0}".format(l))

 byte_array = l.to_bytes(4, byteorder='big', signed=True)

 binary.write(byte_array)

 binary.write(text.encode('utf-8')) # from text to binary

You	can't	really	look	at	the	binary	file.	Typing	it	in	the	terminal	or	command	prompt	
will appear to show the string because the length byte isn't a visible character. Yet, it
is there, and if you have some sort of a hexdump program, you can see it. Let's try to
understand what is going on in this little exercise.

First of all, we are going to compute the length of the string using the len() operator
as we have done so many times before. But now, we have to write that string out.
This is done via the to_bytes() function that is a part of the int class. We specify
three arguments to the to_bytes() function. First, we tell it the size of the value
we	 are	 writing.	 Integers	 come	 in	 various	 sizes;	 we'll	 select	 four	 since	 that's	 the	
default int size on most systems. The next argument is the byte order. For most
systems, you don't care about this argument since it is used only for portability. This
argument tells the operating system whether you are writing a number bigendian
or smallendian,	which	means	whether	the	most	significant	byte	of	the	number	is	
the	first	or	second	part.	If	you	don't	understand	this,	don't	worry	about	it,	it	is	only	
needed	when	you	move	between	different	operating	systems	or	different	versions	
(32	bit	vs	64	bit,	for	example)	of	the	same	operating	system.	For	now,	just	use	big
and	you'll	be	fine.

228 Python for Professionals

The	final	argument	indicates	whether	the	data	we	are	writing	is	signed	or	not.	This	
makes	a	difference	in	how	the	highest	bit	(the	sign	bit)	of	the	data	is	interpreted.	For	
a signed integer, if the sign bit is on, the number is negative. For an unsigned integer,
it is just the highest value for that size of integer. In Python, we always use signed
integers.

Now,	we	write	out	the	length	of	the	string,	using	the	file	write	method	as	we	would	
in a non-binary case. Then we write out the string itself, encoding it into whatever
character scheme we would like to use. In this case, we chose UTF-8, which is
standard text allowing for extended ASCII characters

Once	the	file	is	written,	it	would	be	nice	to	know	how	to	get	it	back.	Let's	look	at	the	
code	that	reads	in	a	string	from	a	written	file.	First,	take	a	look	at	the	code	and	then	
we'll	discuss	it:

with open('mybinary.b', 'rb') as b2:

 data = b2.read(4)

 l = int.from_bytes(data, byteorder='big', signed=True)

 print("Length of string: {0}".format(l))

 data = b2.read(l)

 text = data.decode('utf-8') # from binary to text

 print(text)

As	you	can	see,	there	are	a	few	pieces	to	this.	Obviously,	we	open	the	file	in	binary	
mode and indicate that we want to read from it, rather than write to it. Next, we use
the read()	 function	of	the	file	class	to	read	in	a	chunk of data. For Python binary
files,	everything	 is	 simply	a	 stream	of	bytes.	 It	has	no	 idea	what	you	want	 to	do	
with it, or what it represents. This is a hangover from the underlying C code that
implemented	Python,	to	begin	with.	So,	knowing	that	the	file	contains	an	integer	of	
four	bytes,	we	read	in	a	chunk	of	four	bytes	from	the	file	and	then	convert	that	into	
the integer value using the from_bytes method of the int class. This is printed out
so we can verify that the input length of the string is the same as the length we wrote
out earlier.

Once we have the length, we read in that many bytes to another chunk	buffer.	Then	
we convert it into a Python string by calling the decode method of the object that
converts it from its binary representation to a textual representation that Python can
work with and understands.

In	general,	when	you	are	writing	binary	files,	you	should	do	it	in	three	parts	for	each	
element you are writing. First, you write a standard tag that indicates to the reader
what sort of data you are writing. Next, you write the length of that element so that
the reader can then read in the properly sized chunk. Finally, you read the element
itself and convert it into whatever the underlying data structure (integer, float,

File Input and Output 229

string,	and	more)	might	be.	In	this	way,	you	make	your	files	portable	and	usable	
by others who may not have access to your original source code.

JSON parsing
JSON	has	become	one	of	the	most	used	standards	in	files	in	the	software	industry	of	
late. JSON stands for JavaScript Object Notation. It is the serialization format used
by JavaScript for transferring information that is stored in objects from one program
to	another.	This	may	be	via	a	file,	via	a	REST	interface,	or	just	between	two	methods.

In	general,	a	JSON	entity	looks	like	this:

{

"name": "value",

"dictionary_name": {

"value1": "value"

 }

}

It can contain single elements (such as name), dictionaries, or arrays. You can have
dictionaries of dictionaries, arrays of dictionaries, arrays of entities, and arrays of
arrays.	Python	3	was	built	to	work	directly	with	JSON	files	and	types	and	it	translates	
them	directly	 into	Python	dictionaries.	For	example,	you	can	define	a	variable	 in	
JSON	within	a	Python	program:

json_variable = {

 "name": "value",

 "type": "a json variable",

 "dict": {

"value1": "a value",

 "value2": "another value"

 }

}

print(json_variable['name'])

print(json_variable['dict']['value1'])

This	snippet	will	output	the	expected	values:
value

a value

230 Python for Professionals

As you can see, the json	variable	itself	looks	like	a	valid	JSON	file.	In	fact,	we	could	
take	that	code	after	the	equals	sign,	place	it	in	a	JSON	file,	and	validate	it	with	any	
JSON	validator	on	the	web.	So,	let's	say	that	we	have	the	above	JSON	in	a	file.	How	
do we read it and parse it into a Python variable?

Obviously,	the	first	step	is	to	open	the	file.	 JSON	is	 just	text,	so	we	won't	have	to	
bother	with	binary	file	operations	here.	Then,	we	read	 the	 text	 into	a	variable	by	
simply	doing	a	read	on	the	entire	contents	of	the	file.	Then	we	parse	the	JSON	into	a	
usable	state.	JSON	isn't	particularly	difficult	to	parse	but	there	is	never	a	good	reason	
to reinvent the wheel when someone has already done the job for you. In our case,
the Python standard libraries contain JSON functionality, so we won't even need to
install any new packages.

In this case, the package name is, not surprisingly, json. The method that we want
to call within the json package is called loads for load from string. We could load
directly	from	the	file	but	we	are	trying	to	illustrate	how	json is the same as any other
textual	format.	If	you	want	to	load	it	from	the	file,	just	call	json.load('file-name.
json') where file-name.json	is	the	name	of	the	JSON	file,	including	the	path	that	
you want to read.

In	our	example,	we	took	the	JSON	and	stored	it	in	a	file	called	json_example.json.
It is typical to name json	files	with	a	.json	extension:

{

 "name": "value",

 "type": "a json variable",

 "dict": {

"value1": "a value",

"value2": "another value"

}

}

Note	that	the	JSON	text	in	the	file	looks	almost	exactly	like	our	code,	but	without	the	
variable name associate with it.

Then	we	write	the	code	to	process	it:

import json

with open('json_example.json') as json_file:

 json_data = json_file.read()

File Input and Output 231

parsed_data = json.loads(json_data)

print(parsed_data['name'])

print(parsed_data['dict']['value1'])

This little snippet of code prints out what you would expect:

value

a value

As mentioned, you can do the reading in a single line using the load statement of
the json	package	as	follows:

with open('json_example.json') as json_file:

 json_data = json.load(json_file)

print(json_data['name'])

print(json_data['dict']['value1'])

The	 difference	 is	 minimal,	 and	 you	 can	 choose	 which	 way	 works	 best	 for	 you.	
The main reason to use loads, rather than load, is that you can work with strings
input from the user, or the one stored within your own application. The json.load
requires	that	the	entire	file	be	in	standard	JSON	format,	so	if	your	file	contains	other	
information,	you	should	load	the	JSON	string	first	and	parse	it	with	loads,	rather	
than using load directly.

JSON writing
If	you	can	read	JSON	from	a	file,	you	will	want	to	be	able	to	write	JSON	to	a	file.	You	
may	have	noticed	that	a	JSON	file	is	an	exact	representation	of	a	Python	dictionary.	
As	a	result,	it	is	trivial	to	write	out	a	dictionary	to	JSON:

data = {

 'value1': 1,

 'value2': 2,

'a_dict_of_values' : {

'd1': 'hello',

'd2': 'world'

},

'value3': 1.234

}

with open('data.json', 'w', encoding='utf-8') as f:

 json.dump(data, f, ensure_ascii=False, indent=4)

232 Python for Professionals

The dump() function is used to write out json	to	a	file	assuming	that	the	data	is	in	
dictionary format. Notice the ensure_ascii	flag	that	allows	us	to	write	data	to	the	
file	even	if	it	is	not	in	pure	ASCII	format	(for	example,	extended	characters	in	the	
string).

The indent parameter to the write makes the output look prettier. If we examine the
output	file	produced	by	this	snippet	of	code,	we	will	see:

{

 "value3": 1.234,

 "value2": 2,

 "a_dict_of_values": {

"d1": "hello",

"d2": "world"

 },

 "value1": 1

}

Omitting	the	indent	parameter	produces	the	following	JSON	file:
{"value3": 1.234, "value1": 1, "a_dict_of_values": {"d1": "hello", "d2":
"world"}, "value2": 2}

This	file	 is	a	perfectly	 legitimate	JSON	and	can	be	read	by	your	programs	or	any	
other	programs	expecting	a	JSON	file	input,	but	as	you	can	see	it	 is	much	harder	
to read. Finally, you can use the dumps() method of the json package to produce a
string	instead	of	writing	to	a	file.	This	is	useful	for	storing	in	databases	or	log	files.

Serializing complex objects in JSON
If you have played with the code above a little, you must have discovered that it
works	just	fine.	You	can	write	out	a	dictionary	of	values	to	a	JSON	file	and	read	it	
back with ease. In the academic world or for toy projects, that's usually all you need
to do. Sadly, the professional programmer is usually stuck working with non-trivial
programs and problems. One of these is the fact that we like to do object oriented
programming, and as such, end up with many classes and objects. These classes
need to be serialized as well, and the methods we've looked at so far just don't work.
For example, consider the following simple Person	class:

import datetime

class Person:

File Input and Output 233

 def __init__(self, first, last, birthdate):

 self.first_name = first

self.last_name = last

self.birthdate = birthdate

Obviously, our real class would be more complex but this is the only part that matters
when we are discussing serialization of the class. If you try to dump an instance of
this object using the json dumps()	method,	you	will	find	that	it	doesn't	work:
p = Person('matt', 'telles', datetime.datetime(1991, 1, 6))

print(json.dumps(p))

Traceback (most recent call last):

a value

 File "json_test.py", line 20, in <module>

 print(json.dumps(p))

 File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/
json/__init__.py", line 231, in dumps

 return _default_encoder.encode(obj)

 File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/
json/encoder.py", line 199, in encode

 chunks = self.iterencode(o, _one_shot=True)

 File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/
json/encoder.py", line 257, in iterencode

 return _iterencode(o, 0)

 File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/
json/encoder.py", line 179, in default

 raise TypeError(f'Object of type {o.__class__.__name__} '

TypeError: Object of type Person is not JSON serializable

You might be asking why this is not serializable. The reason is that the basic JSON
functionality in Python is somewhat limited and only works with basic types. In a
while, we'll look at a solution to this with an external package but for now, let's focus
on solving the problem using the basic Python libraries and packages.

Fortunately for us, Python thought this through as it does with most problems.
There is a parameter that can be passed to the dumps (and dump) function that acts
as	an	'encoder'	for	the	specific	data	type	you	are	trying	to	convert	into	JSON	format.	
The parameter is called the default	parameter	and	it	is	used	like	this:

234 Python for Professionals

print(json.dumps(p, default=PersonEncoder))

So, all we need to do is to create a PersonEncoder function and it will be called
by the dumps() method to write the pieces out properly. As a note, you can also
implement a full blown class and override its default method (which is what this
argument is doing). Let's take a look at the class and see what it does with its input
and	the	output	it	produces:

def PersonEncoder(p):

 if isinstance(p, Person):

 dict = {

 "first_name": p.first_name,

"last_name": p.last_name,

"birthdate": p.birthdate.strftime("%d %b %y")

}

return dict

else

 type_name = p.__class__.__name__

raise TypeError("Unexpected type {0}".format(type_name))

When	we	run	the	snippet	of	code	now,	we	get:
{"first_name": "matt", "last_name": "telles", "birthdate": "06 Jan 91"}

This output is basically what we were trying to accomplish. We could modify this
output by adding the indent parameter to make it prettier or we could replace
the dumps() method call with a call to dumps()	and	write	 it	out	to	a	file,	but	the	
basics	are	here.	Now,	how	does	it	work?	First	of	all,	we	have	defined	a	function	that	
accepts a single parameter. For defensive purposes, we make sure the object that
the developer has passed to us is, in fact, a Person instance. We could check if each
one of the attributes existed in the object so that it worked with anything that was
Person-like, but that's generally frowned upon. Act on one thing and make sure that
it works is the Pythonic mantra.

Once we are sure we are working with a Person object, the next decision is what to
do to it to convert the output properly. JSON, as we have seen, is basically a Python
dictionary (or perhaps vice versa) so it makes sense to return a dictionary, but the
result returned can be any serializable object. Thus, a tuple, array, simple value,
dictionary or set can all be returned from this code.

To understand what is going on here, realize that the json dumps() method
instantiates an object of type JSONEncoder. This class understands all the basic
Python	types:	int, numbers (float and decimal), strings, booleans, arrays, and

File Input and Output 235

objects. For objects, the only one directly understood is the dictionary. For each
element passed to the dumps() method, the method does two things. First, it checks
if	 there	 is	 an	overloaded	default	method	defined	 in	 the	method	 call,	 as	we	have	
used. If there is, it calls this for each object. The second possible step is to see if
someone has implemented a full overload of the JSONEncoder class and passed it
into dumps() via the cls=<class> option. In that case, serialization is given to that
class to perform. If neither of these is true, the basic JSONEncoder class is called and
the	result	is	written	to	the	output	(string	or	file).

If	you	wanted	to	overload	the	entire	class,	you	could	do	that	as	well	easily:

class PersonEncoderClass(json.JSONEncoder):

 def default(self, obj):

 return PersonEncoder(obj)

print(json.dumps(p, cls=PersonEncoderClass))

This	uses	the	function	we	defined	earlier,	in	your	own	code;	you'd	probably	place	
that	code	within	the	specific	class	implementation.

Reading in text vs reading in lines
We	 talked	 briefly	 about	 the	readline and readlines methods of the File class,
but it is important to understand that each of these methods interprets a line very
specifically.	In	Python	2,	it	was	important	as	to	which	of	these	methods	you	selected.	
The readline() method would read a single line and return it. The readlines()
method	would	read	the	entire	file	and	then	parse	it	 into	single	lines	based	on	the	
newline	character.	For	Python3,	the	difference	is	really	semantics	and	intent.	If	you	
call readlines()	 on	 a	 very	 large	file,	 you	will	 read	 the	 entire	 file	 into	memory,	
which is not only memory intensive, but also very slow. In this case, and in cases
where you only need to read a few lines, you should use the single readline()
method instead.

Writing out lines
Clearly,	 if	 one	 can	 read	 in	multiple	 lines	 from	a	 text	 file,	 then	 one	 can	write	 out	
multiple	lines	to	a	file,	right?	Of	course,	and	Python	provides	two	ways	to	do	so,	
which	are	ever	so	slightly	different.	First,	there	is	the	writeline()	method	of	the	file	
class,	that	writes	out	a	single	line	to	a	file.	Alternatively,	there	is	the	writelines()
method	that	writes	out	a	block	of	lines	to	a	file	in	a	single	call.	Both	of	these	methods	
operate	similarly	but	differ	in	one	very	important	aspect.

If we want to write out a bunch of lines using the writeline() method and make
sure	that	we	can	have	each	line	end	up	on	its	own	line,	we	do	this:

236			 Python for Professionals

lines = ['When in the course of human events',

 'It becomes necessary for one people',

 'to dissolve the political bands which have connected them with
another',

 'and to assume among the powers of the earth, the separate and
equal station',

 'to which the Laws of Nature and of Nature's God entitle them,'

]

with open('thomas_jefferson.txt', 'w') as out_lines:

for line in lines:

 out_lines.writelines(line+'\n')

This	code	will	output	the	start	of	Thomas	Jefferson's	famous	quote	to	a	file	with	a	
newline appended to the end of each line.

There is also the writelines()	method,	 that	writes	 lines	 in	a	batch	 to	a	file	but	
does not append the new line to the end of the line so that they all run together in
the	file.	This	can	be	preferable,	depending	on	how	you	need	 the	data	structured,	
but it is certainly something to be considered. This is an area that often trips up
new Python programmers. The readline and readlines methods probably ought
to	be	strip	off	the	newline	from	input	lines	while	the	writeline and writelines
methods probably ought to append them, but neither does. You can create your
own method to do this, if that's your preference, and that's how Python rolls. If you
aren't happy with the way things are done by default, then inherit from the class you
want to modify and add the functionality you like. You get what you want, the rest
of the Python community sticks with what they are used to, or, if your solution is
wonderful, adopts it instead.

Output formatting
As much as we would love for the world to get away from the printed document and
move into a paperless society, it is probably never going to happen. As long as there
are printed documents, of course, there will be requirements that the documents be
pretty. In programming parlance, the term 'pretty' means well formatted. We've looked
a lot at output in this chapter but we haven't really focused at all on formatting the
output. Let's take a look at that now.

If you are from the C or C++ world, you are certainly familiar with the printf
function. This function is the core of formatted printing in those languages. In
fact, the function name itself comes from the print formatted concept. Java has the
String.format function which works in almost the same way. For Python, it is a
little more complicated since the data type is not known in all cases, but when we

File Input and Output 237

do know what we are printing, we can format it the way we like. Let's imagine that
we	have	a	set	of	data	representing	students	in	a	class.	This	data	contains	three	fields,	
the name, the overall grade in the class, and the number of days the student missed
class.	The	data	itself	looks	like	this:
data = [

 {

 'name': 'matt',

 'grade': 98.6,

 'days_missed': 4

},

{

 'name': 'teresa',

'grade' 99.9,

'days_missed': 0

},

{

 'name': 'sarah',

'grade': 92.0,

'days_missed': 12

},

{

 'name': 'rachel',

 'grade': 92.0,

 'days_missed': 4,

},

{

 'name': 'jenny',

 'grade': 89.0,

 'days_missed': 0

}

]

As you can see, we have a data structure which is an array of dictionaries, each of
which contains the same data. We could have implemented this as an array of class
objects but this is simpler and easier to see for this example. What we want is to
output this data in columnar format, so that each of the elements lines up vertically

238 Python for Professionals

and	properly	spaced	to	fit	a	given	number	of	spaces	in	the	output	report.	Our	first	
attempt	might	look	something	like	this:
for d in data:

 printd['name'], d['grade'], d['days_missed'])

You might think that this would properly create columnar output and you would be
right.	However,	when	we	look	at	the	output,	we	see	that	it	looks	like	this:
matt 98.6 4

teresa 99.9 0

sarah 92.0 12

rachel 92.0 4

jenny 89.0 0

This meets our criteria for output to be in columns but the columns are not aligned.
The	longer	names	push	the	grades	to	the	right.	We	can	fix	this,	but	to	do	so,	we	need	
to learn a little bit about formatting in Python.

The print statement in Python with arguments can be thought of in the following
generic	method:

print('<formatting statement>' % (values))

Where <formatting statement> is a printf style set of formats and the (values)
argument is a tuple containing the list of data elements to print. For example, for our
report	output	above,	we'd	have	something	like	this:

for d in data:

 print("<formatting statement" % (d['name'], d['grade'], d['days_
missed']))

The	 trickis	 figuring	 out	 what	 the	 formatting	 statement	 should	 look	 like.	 Each	
element	of	the	formatting	statement	looks	like	this:	%fw.pc where w is the width of
the output column, p is the precision to be used for the element, f is a set of potential
flags	to	use	when	outputting	the	column,	and	c	is	the	character	that	represents	the	
type of data we are writing.

From	the	Python	documentation,	the	possible	values	of	the	flag	part	are	shown	in	
Table 7.1:

Flag Meaning
Value uses alternative form.
0 Numeric values are zero padded.
- The	value	is	left	justified.

File Input and Output 239

(space) The value should be printed with a space leading.
+ Numbers should be printed with a leading +.

Table 7.1: Python formatting flags

The width argument, as well as the precision argument, are numbers that are used to
determine how wide the column should be and how many decimal places should be
used. For example, 7.2 say to format the number to 7 characters wide, with 2 digits
after the decimal place.

The c argument is a little more complex. It lists the type of data you wish to have
output. Once again, from the Python documentation, the list of possible values and
their meanings is shown in Table 7.2:

Conversion Meaning
d' Signed integer decimal
i' Signed integer decimal
o' Signed octal value
u' Obsolete type – it is identical to d
x' Signed hexadecimal (lowercase)
X' Signed hexadecimal (uppercase)
e' Floating point exponential format (lowercase)
E' Floating point exponential format (uppercase)
f' Floating point decimal format
F' Floating point decimal format
g' Floating point format. It uses lowercase exponential format if exponent

is less than -4 or not less than precision, it uses decimal format otherwise.
G' Floating point format. It uses uppercase exponential format if exponent

is less than -4 or not less than precision, it uses decimal format otherwise.
c' Single character (accepts integer or single character string)
r' String (converts any Python object using repr())
s' String (converts any Python object using str())
a' String (converts any Python object using ascii())
%' No argument is converted, results in a % character in the result.

Table 7.2: The conversion type list in Python formatting

So, given all this information, how do we output the data we want in columnar
format so that it looks'pretty'to the end user? The answer, anticlimactically, is pretty
simple:

240 Python for Professionals

for d in data:

 print("%-10s %5.2f %3d" % (d['name'], d['grade'], d['days_missed']))

We output the name as 10	characters,	 left	 justified.	The	grade	 is	output	 in	a	field	
of	five	characters,	with	two	digits	to	the	right	of	the	decimal	point	and	the	number	
of days missed is output as a whole number in three characters. In the case of the
numbers,	they	are	all	right	justified	so	that	decimal	points	and	such	line	up	properly.	
The	output	is:
matt 98.60 4

teresa 99.90 0

sarah 92.00 12

rachel 92.00 4

jenny 89.00 0

As	 you	 can	 see,	 everything	 works	 just	 as	 it	 should!	 Oh,	 finally,	 yes,	 this	 works	
perfectly	for	writing	to	a	file	as	well:

with open('formatted_data.txt', 'w') as formatted_output:

 for d in data:

 formatted_output.write("%-10s %5.2f %3d\n" % (d['name'], d['grade'], \

 d['days_missed']))

Pickling
Earlier in this chapter, we discussed serializing Python objects. We looked at how you
would specialize the JSON encoding of your own data structures. We had mentioned
that there are easier ways to do this than to override the JSON encoder in Python. As
our last topic in this chapter, let's look at that problem and how Python programmers
have solved it. For Python, serialization has a number of issues. First of all, the JSON
file	format	is	easily	read	and	isn't	safe	for	storing	sensitive	information.	In	addition,	
because it is a textual format, JSON is large and often unnecessarily complex. For this
reason, the Python programmers designed a system called pickling objects which
stores the data in a well-known binary format that can be sent to other applications
and unpickled	into	the	original	data.	Pickle	files	are	not	safe as you can dump them in
a hex program or other investigation, but they are compact, store the data in a logical
fashion, and can be trusted to always be deconstructed back into their original
formats.

Here's	how	you	do	pickling	in	Python:

import datetime

import pickle

File Input and Output 241

class Person:

 def __init__(self, first, last, birthdate):

 self.first_name = first

 self.last_name = last

 self.birthdate = birthdate

p = Person('matt', 'telles', datetime.datetime(1991, 1, 6))

with open('person.pickle', 'wb') as pickle_file:

 pickle.dump(p, pickle_file)

You	will	 note	 that	 the	pickle	file	 is	 in	 binary	 format.	 Pickle	does	 all	 the	work	of	
converting each of the elements of the object, a Person in this case, into a binary
format.	 It	also	keeps	 track	of	 the	 type	of	data	 in	 the	file.	Pickling	 is	awesome	for	
things	like	storing	configurations	for	systems,	or	game	save	data	or	any	other	use	
where you want to make sure you get back exactly what you wrote out.

Reading	a	pickle	file	is	equally	trivial:

with open('person.pickle', 'rb') as pickle_file:

 p2 = pickle.load(pickle_file)

print(p2.first_name, p2.last_name, p2.birthdate)

The pickle	library	does	all	the	work	of	loading	the	file,	parsing	out	each	element,	
and putting it into an object of the proper type.

There are a few things you need to understand about pickling. First, it is not hacker-
proof.	Pickle	files	can	be	modified,	sometimes	in	malicious	ways.	Thus,	only	use	this	
for internal purposes. Secondly, pickling does not handle versioning. If we modify
our class to add or remove an attribute, bad things will happen if we try to unpickle
the	file	into	an	instance	of	the	new	class.

That	wraps	up	all	of	the	basic	file	operations	in	Python.	At	this	point,	you	should	
be able to write programs of some reasonable size, if not in complexity. We will be
working on complexity in the next chapter.

242 Python for Professionals

Conclusion
In	this	chapter,	you	should	have	learned	about	working	with	files	in	Python.	Files	
are fairly simple collections of data that are essential to any professional program.
They require you to understand the use of the File class in Python and allow you
to	reuse	the	same	structure	to	write	binary,	unstructured,	and	structured	text	files.	
Hopefully,	you	learned	about	JSON	and	pickling,	and	how	they	can	be	used	to	store	
your application data.

Questions
1. What is the with statement and why would you use it in Python?

2.	 What	is	the	difference	between	standard	text	files	and	JSON	files?

3.	 How	do	you	write	to	a	binary	file	in	Python?

4. What is pickling and why would you use it?

Introduction
One of the areas that separate amateur programmers from professionals is the area
of reuse. Amateur programmers tend to reinvent the wheel with each new thing they
learn. Their code tends to be of the copypasta variety, with the same code appearing
over and over across modules. This is because they remember doing it that way
once, and just copy the code over and modify it slightly for a new use. Professional
programmers, of course, know better than to copy code. They will look at existing
code to see if it does what needs to be done and reuse or refactor it to make it work
more generically. This way, less code gets written, which means less code needs to
be maintained and debugged.

Structure
•	 Importing	modules
•	 Importing	packages
•	 Dynamic	imports
•	 Paths	and	setting
•	 Using	the	os	module	–	directories	and	file	information
•	 Listing	functions	in	a	module

Chapter 8
Imports and

Reuse

244 Python for Professionals

•	 Listing	Python	files	in	a	directory
•	 Reflection

Objectives
In this chapter, you will learn a lot more about Python packages and modules. You'll
learn how to import them from the external environment, how to create your own,
and how to dynamically import packages when you need them at runtime. We'll
explore a few packages built into Python to do things such as getting a list of the
modules	available	and	the	functions	within	them.	Finally,	we'll	explore	the	reflection	
module in Python to get information about your own packages and functions.

Import and reuse of code
In	Python,	the	basic	unit	of	reuse	is	the	package.	A	package	is	a	set	of	Python	files	
in	a	directory	structure.	The	name	of	the	directory	structure	defines	the	name	of	the	
package, and any subdirectories in the structure are subpackages. There are three
types	of	packages	in	Python:

•	 Cache package: First, we have the system package. These are packages we
have already looked at, such as os, sys, and json. These packages ship
with the Python install and are automatically available to you when you
start up the system.

•	 Third-party package: These are packages that are installed into your system
via the pip command. Examples of third-party packages might be flask or
requests;	we	will	look	at	both	in	a	future	chapter.

•	 Local package:	 These	 are	 packages	 that	 you	 define	 in	 your	 own	 code	 or	
projects, or copy over from other projects to use in your current project.
Local packages are structured the same way, as we will shortly see, and are
treated the same as if they were third-party of system packages. The beauty
of	Python	is	that	it	is	flexible	and	extensible,	but	also	that	it	treats	all	things	
the same way.

When you request a package, via an import or another method, Python uses a
specific	order	of	operations	 to	find	 it.	First,	 it	 searches	 the	modules	 cache,	which	
contains every package that has been loaded into the system during your session.
You can look at the system cache by examining the sys.modules	variable:

import sys

print(sys.modules)

For the version of Python being used in this book, this producesthe output shown
in Figure 8.1:

Imports and Reuse 245

Figure 8.1: The packages loaded in Python locally.

If the package is not found in the cache, Python then searches the built-in modules
and packages. These would be the packages like os, sys, and so forth.

Finally,	if	the	package	is	not	found	in	either	of	these	two	paths,	the	local	file	structure	
is examined and the package is either found, or a NameError is generated.

Why do we care about all this? We care about how Python loads packages because
we use a lot of packages when writing Python code. It is the Pythonic approach
to not reinvent the wheel, to not do work that others have done already, probably
better than us and certainly better tested. Python considers reuse to be so important
that	it	has	an	entire	website	(PyPi)	devoted	to	finding	and	storing	packages	that	are	
useful for Python developers.

It	is	important	to	understand	the	difference	between	a	module and a package in Python.
In most cases, the terms are used almost interchangeably, and for good reason. A
module	is	one	or	more	Python	files	that	can	be	imported	for	use	in	another	Python	
file.	A	package	is	a	special	form	of	a	module	that	contains	metadata	about	itself	via	
the __init__.py	file	that	must	be	present.	We'll	get	into	more	details	about	this	in	
a while, but for now, understand that all packages are modules but not all modules
are packages.

Importing
In Python, the import statement brings code into your module so that you can work
with it. If you don't import a module or package, trying to use it will result in an
error from the interpreter. Importing is closely related to scope in Python. Scope
determines which name Python associates with a given text string. For example, in
classes,	we	have:

246			 Python for Professionals

class Foo:

 my_name = "Foo"

 def __init__(self):

 self.x = 10

 def process_something(self):

 a_local_variable = self.x * 10

f = Foo()

In	this	tiny	bit	of	code,	we	have	four	different	levels	of	scope.	The	f variable, of type
Foo,	 is	defined	from	the	line	on	which	it	appears	all	the	way	to	the	bottom	of	the	
program	file.	However,	if	we	try	to	use	f	above	its	definition	(or	assignment,	which	
in Python is the same thing), we'd get an error.

Likewise, the Foo class is a scope unto itself. It is used by f,	so	it	has	to	be	defined	
before f is instantiated as a Foo object. This is similar to other languages like C++ or
Java,	where	you	must	define	or	include	a	class	before	you	can	use	it.

Within Foo, we have the my_name	 class	 variable.	 This	 variable	 is	 defined	 for	 the	
entire scope of the Foo class, and can be used outside of it by prefacing it with the
scope	name:
n = Foo.my_name

Within the __init__ method we see an object instance variable (or attribute) called
x, which is assigned the value of x. Since the __init__ method is called before any
other method in the class, you can safely use self.x in any method of the class, as
shown in the process_something method.

There is a local variable called a_local_variable in the process_something
method. Aside from the rather ridiculous name, it is important to realize that a_
local_variable is only valid within the process_something method. You can't
use it from outside the class, you can't use it in another method, and you can't use it
before it is assigned a value in the process_something method.

Scoping also applies to import statements. You cannot use something from a package
before you import it.

The import	statement	itself	has	two	variants:
import <package-or-module>

and
from <package or module> import <some symbol>

Imports	are	done	via	one	of	the	two	methods:
•	 The	first	version	imports	an	entire	package	and	anything	in	the	package	but	

requires that you scope the names of whatever you imported so that Python
can	figure	out	what	you	want.

Imports and Reuse 247

•	 The	second	version	imports	a	very	specific	symbol	from	the	package	specified	
and	then	scopes	it	to	be	within	the	current	file.

An example is probably useful here. Looking back at our printing of the system
modules, you will notice that we imported the entire sys package and then accessed
the modules variable from it using sys.modules. On the other hand, we could have
written	this	snippet	like	this:
from sys import modules

print(modules)

Notice that we are only importing the modules element from the sys package. If we
tried	to	use	something	else	from	sys:
print(sys.builtin_module_names)

It	generates	the	following	error	from	the	interpreter:
Traceback (most recent call last):

 File "html/package_test.py", line 6, in <module>

 print(sys.builtin_module_names)

NameError: name 'sys' is not defined

This seems a bit strange, given that we imported sys above, doesn't it? But in fact,
we did not import the package. We imported a single element of a package, the
element being modules.	To	fix	this,	we	can	either	import	the	entire	sys	module:
import sys

print(sys.builtin_module_names)

Or,	we	can	once	again	import	the	piece	we	want	and	remove	the	scope:
from sys import builtin_module_names

print(builtin_module_names)

From a Pythonic point of view, the second approach is usually preferred, as it
reduces	the	overhead.	However,	if	you	are	going	to	be	using	a	lot	of	the	module,	it	
probably makes sense to just import the whole thing, as we did in the past with the
json package.

One more word about Python imports and conventions— it is a commonly accepted
practice	to	import	packages	and/or	modules	in	the	following	order:

1. Standard library imports (sys, json, and more).
2. Third party imports (requests, flask, and more)
3. Local program imports (local packages or modules)

Now that we understand this, let's do a bit of importing!

248 Python for Professionals

Importing modules
If you come from the OOP world, as most of us do, you are most likely accustomed
to	breaking	up	your	code	into	pieces,	with	a	single	file	containing	each	class,	and	
files	that	might	contain	utility	functions	that	are	used	throughout	the	system.	Python	
helps you implementsuch structures easily. For example, let's say we have written
some	 functions	 that	we	are	extremelyproud	of.	We	place	 these	 functions	 in	a	file	
called imported_functions.py because we want the rest of the world to import
our functions and use them!

The imported_functions.py	file	looks	like	this:

def double_me(x):

 return x*2

def triple_me(y):

 return y*3

def reverse_a_number(n):

 s = str(n)

 s = s[::-1]

 return int(s)

These functions are not exactly the things that dreams are made of, with the possible
exception of the third one, which uses some cool Python coding to reverse a number,
rather	 than	a	 string.	Anyway,	we	shall	 assume	 that	 these	 functions	and	file	were	
written by programmer A. Now, a bit later, programmer B comes along and wants to
use the function reverse_a_number,	because	it	is	so	cool,	in	his	own	file	in	the	same	
project.	We'll	call	his	file,	main_import.py:

import imported_functions

print(imported_functions.reverse_a_number(456))

Of	course,	our	intrepid	programmer	B	could	also	write	this	in	a	more	efficient	way:

from imported_functions import reverse_a_number

print(reverse_a_number(456))

In	the	latter	case,	those	two	marvelous	other	functions	in	the	file	are	ignored,	but	the	
code is a little smaller. In both cases, however, we see that things work just the way
we	expect	them	to:
654

Imports and Reuse 249

When we are importing modules, this is all there is to it, with one exception. You can
create subdirectories where you place code that is alike. For example, we might have
a	directory	tree	that	looks	like	this:
<project>:

 main.py

 utils:

 utilities.py

Let's say that utilities.py contains a function, reverse_a_string:

def reverse_a_string(s):

 return s[::-1]

Returning	to	our	main	file,	we	now	want	to	import	this	function	into	our	code.	You	
might	think	we	could	do	something	like	this:

from utilities import reverse_a_string

print(reverse_a_string("Hello world"))

This	fails	with	an	error,	saying	that	you	can't	find	the	utilities	module:
Traceback (most recent call last):

File "main_import.py", line 5, in <module>

 from utilities import reverse_a_string

ModuleNotFoundError: No module named 'utilities'

Instead, you must do it this way:

from util.utilities import reverse_a_string

print(reverse_a_string("Hello world"))

The dot notation for	finding	things	is	probably	known	to	anyone	who	has	ever	used	
Linux	or	Unix.	For	Windows,	just	think	of	them	as	slashes	and	all	will	be	fine.	If	you	
wanted	to	import	all	 the	functions	in	the	file,	you	could	use	the	standard	import
statement:

import utils.utilities

print(utils.utilities.reverse_a_string("Hello world"))

Of course, you can have as many nesting of directories as you like, and to use them,
just import the directory list with dots (.). The import x.y.z.a.b.c.functions
would import a module called functions.py in the subdirectory tree x/y/z/a/b/c.

250 Python for Professionals

Importing packages
When you want to use a new package, you need to import it into your code base.
There is no way to globally import a package, so you have to import it where you need
it.	It	is	typical,	and	standard,	to	do	so	at	the	top	of	the	file	in	which	the	file	is	needed.	
As mentioned, if you are only using a single class or function from the package, it
is generally best to use the from <package> import <what-you-need> format.
Note that if you start importing a single element from a package and discover later
that you need to import more or even all the elements from that same package, you
have two options. You can change the import statement to bring in everything from
that	package	by	using:

from <package> import *

Alternatively, you can change your import to import <package>. There are some
advantages and disadvantages to the asterisk (*) approach that you should be aware
of before doing it this way.

Going back to our import example, we could change the import in our main_
import.py file	to	read:

from imported_functions import *

print(reverse_a_number(456))

In this case, we do not need to scope our function call to reverse_a_number, which
we would need to do if we simply imported imported_functions. There's a
downside to this i.e. you are pulling in a lot of other functions you may or may not
need. That doesn't really hurt things that much, they just occupy some memory. That
said, it does hurt you in namespace collision.

Suppose, you have two packages, pkg1 and pkg2,	that	have	a	single	file	in	them,	
utilities.py each. In pkg1's version of utilities, there is a function called
print_me	which	prints	out	a	specific	sort	of	data.	In	pkg2's version of utilities
there is another function called print_me	which	prints	out	a	very	different	sort	of	
data.

def print_me(s):

 print("Utilities print: {0}".format(s))

 Listing 1: pkg1/utilities.py

def print_me(s):

 print("Utilities 2 print: {0}".format(s))

 Listing 2: pkg2/utilities.py

Imports and Reuse 251

Neither	of	these	are	problems	unto	themselves.	But	let's	create	a	file	for	a	new	project	
and	include	both	of	these	projects	in	it:

from pkg2.utilities import *

from pkg1.utilities import *

print_me("This is a test")

Without running the code, try to guess at whether the print_me	function	in	the	first	
utilities package or the second utilities package is called. Then take a look at
this	snippet,	which	is	almost,	but	not	quite,	the	same:

from pkg1.utilities import *

from pkg2.utilities import *

print_me("This is a test")

Does	 it	 surprise	 you	 to	 know	 that	 these	 two	 snippets	 produce	 different	 results?	
Remember, when we talked about functions, you learned that Python does not
support overloading. If you create two functions of the same name, you get the latest
one that is processed. The same fact applies if these two functions are imported from
different	packages.

You	might	think	that	you	can	fix	this	by	doing	something	like	this:

pkg1.utilities.print_me("This is a test")

This doesn't work, and the reason is that pkg1 is being treated as a module, and not
a	package.	We	can	fix	this	by	making	it	into	a	true	package.	In	the	pkg1 directory,
create	a	file	called	__init__.py.

In	this	file,	place	a	single	line:
from . import utilities

This syntax is known as relative importing and only works within packages. You
cannot	 use	 the	 syntax	 in	 your	main	 program	 or	within	 a	 file	 outside	 a	 package	
definition.	Now,	you	can	change	your	main	program	to	read:

import pkg1

pkg1.utilities.print_me("This is a test")

If you do it this way, all works as expected. If you duplicate the same thing in the
pkg2	directory,	you	will	find	that	you	can	call	both	of	them	directly.

252 Python for Professionals

import pkg1

import pkg2

pkg1.utilities.print_me("This is a test")

pkg2.utilities.print_me("This is another test")

The output from this snippet is, as expected:

Utilities print: This is a test

Utilities 2 print: This is another test

Of course, you are required to fully scope the call within your main program. If you
do not do this and try to use the from <package> import utilities syntax, you
will	find	that	once	again,	you	are	stuck	with	the	last	in	wins	scenario.

Dynamic imports
So far, the import statement in Python probably looks very familiar. You can include
another package, similar to how the #include statement in C++ or the import
statement	in	Java	work.	However,	there	is	a	side	effect	for	Python	that	might	not	be	
intuitively obvious from the beginning. Because Python is an interpreted language,
unlike the statically compiled languages C++ and Java, you can do anything the
interpreter does. That’s because you are given access to all the functionality of the
language itself.

For Python, dynamic importing is a three-step process. First, you must locate and
load the module that contains the code that you want to import. Next, you must add
that	module	to	the	system	modules	list	so	that	the	interpreter	will	find	it	when	you	
want to use it. Finally, you must do something with the module that has now been
added to the system. There's a fourth, optional, step that allows you to set up the
path that is searched for the modules. Let's look at each piece separately.

First of all, we need to locate and load the module. For this example, we are going
to	assume	that	the	file	name	is	class.py	and	that	the	file	is	located	in	the	current	
directory. This may or may not match your case, but it is easy enough to modify. To
do	this,	follow	these	steps:

1.	 First,	we	load	the	module	that	contains	our	code:

import os

dir_path = os.path.dirname(os.path.realpath(__file__))

path = dir_path + "/class.py"

module_name = "Foo"

Imports and Reuse 253

import importlib.util

import sys

Load the module from the specified location

module_spec = importlib.util.spec_from_file_location(module_name,
path)

module = importlib.util.module_from_spec(module_spec)

2. Next, we add the module to the system modules list and load the module
into	the	interpreter:

Add the module to the system modules list

sys.modules[module_spec.name] = module

Load the module into the interpreter

module_spec.loader.exec_module(module)

3. Presumably, we know the name of the class we are trying to create, so we can
now	do	that:

Now, create the class from the module

c = module.Foo()

print("Foo.var = {0}".format(c.var))

4. Finally, we add the path (if it is not already there) to the system path for
Python	to	search	for	imports	and	resolution:

Set up the path so other things get processed properly

sys.path.append(dir_path)

You might wonder what if I don't happen to know the name of the class I want to
import. This can happen in the case where you are writing an extensible system.
Users	can	extend	it	by	writing	their	own	modules	that	conform	to	some	specification.	
So, you might know the name of the class, in a string, and the method that you want
to	call,	from	the	specification,	but	not	have	the	name	in	your	code.	Python	permits	
that	too.	Take	a	look	at	this	simple	code:

Create a class from a string instead

class_name = 'Foo'

class_ = getattr(module, class_name)

instance = class_()

print("Foo.var = {0}".format(instance.var))

254 Python for Professionals

Notice that we are passing the class name as a string Foo to the module to retrieve the
class	definition	from	the	module	using	the	getattr method. This method retrieves
information from the object dictionary, as discussed in previous chapters.

Finally, what if you don't know what the information you want to get out of the
dynamically created object might be? Suppose you are allowing the user to import
data from their own objects. They give you a class name and a variable within that
class and want you to load that data into your application. Not surprisingly, we can
use the getattr method to do this as well!

instance = class_()

var = getattr(instance, 'var')

print("Foo.var = {0}".format(var))

In each one of these cases, Python does all the heavy lifting for you, and you get back
exactly what you expect to from the dynamic class or object.

Working with the os module
You may have noticed the use of the os module in the example used in the previous
section where we retrieved the current working directory. The os module is a direct
wrapper around system information, but generalized in a way so that it works
equally well on a Linux system, on Mac, and a Windows box. It is worth taking
some time and space to investigate this very useful package in Python. We will skip
the operating system dependent methods in the module since they will just confuse
those	of	you	working	on	a	different	operating	system.

Working with the environment is done with the getenv and putenv methods.
These two methods return environment variable settings. In Windows, these can be
set for a given process or they can be set in the operating system via a GUI program.
In either case, the usage is the same. To retrieve a given environment variable setting,
you need to use the getenv	method:
setting = os.getenv('name-of-variable')

If the variable requested does not exist, then in typical Pythonic dictionary fashion,
it returns None. Similarly, there is a putenv method that will set the value of a given
environment	variable:
os.puteve('name-of-variable', value)

Python being Python, there is an unsetenv that will delete a given environment
variable. It is important to note, however, that environment variables are only set
for the current process (application run). Once your application terminates, the
environment will revert to its previous state.

Why would you use environment variables? Suppose that you need to store some
information globally to be available to all parts of your application. This might

Imports and Reuse 255

include the current user, or perhaps some information that other modules will need
while they are running, like the current directory name, or the role that the current
user	is	fulfilling	in	the	application.	In	your	startup	code,	you	might	have	something	
like	this:
if os.getenv('role') == None:

 os.putenv('role', 'Manager')

And then check the role environment variable later on in the program. Sadly, this
doesn't work in all cases and is not the preferred method for doing things. Getting
an environment variable via the getenv method is always a good thing to do, and
always	works.	However,	 the	putenv method is not always supported directly in
all operating systems. It will appear to work, but will not change the environment.
Instead, you should use the environ variable within the os module. Let's look at a
good	example	of	how	you	might	do	this:

import os

if os.getenv('user_role') == None:

 os.environ['user_role'] = 'Manager'

Now, somewhere else in the code

if os.getenv('user_role') == 'Manager':

 print("You are a manager")

Not surprisingly, if you run this code, you will get You are a manager printed to
the console.

Another set of matching methods that is very useful are the directory functions,
getcwd and chdir, which retrieve the current working directory and set it. Note
that the format of the directories is operating system dependent. These two functions
modify the environment directly, so you can set the currentworking directory via the
chdir (change directory) method, and then retrieve it later via getcwd (get current
working directory). If these methods look familiar to you, this is because they are
direct models of the Linux/Unix terminal functions.

Before	moving	on	to	directories	and	file	information	we’ll	discuss	one	more	useful	
function i.e. the tmpfil() method. The tmpfil()	method	creates	a	temporary	file	that	
you	can	use	as	a	file	object.	Thus,	you	can	write	to	it,	read	from	it,	and	so	forth.	The	
difference	between	this	and	the	usual	file	is	that	a	temporary	file	will	be	deleted	as	
soon	as	all	the	file	descriptors	pointing	to	it	(for	example,	anything	that	has	the	file	
open) are gone.

256			 Python for Professionals

Directory and file information
Python	makes	it	easy	to	work	with	both	directories	and	files.	You	can	list	directories,	
change	the	current	working	directory,	and	enumerate	the	files	within	a	directory.	To	
accomplish this, the os module provides a set of methods that help you out. Let's
look at a very simple example of this that allows you to list the directories at a given
level, and then allows the user to select one of those directories and prints out the
files	within	that	directory.

Get all the directories at the current level and print them out

files = [f for f in os.listdir(os.getcwd()) if not os.path.isfile(f) and f[0] != '.']

for idx, file in enumerate(files):

 print(idx, ':', file)

Get the directory selection from the user

selection = int(input('Select a directory by number: '))

print("Looking at files in {0}".format(files[selection]))

Print out the files in that directory

full_dir = os.getcwd() + '/' + files[selection]

files_1 = [f for f in os.listdir(full_dir)]

for file in files_1:

 print(file)

Depending	on	where	you	run	this	snippet	of	code	from,	you'll	see	a	different	output	
each time, so there is no point telling you what you should see. Note that the
listdir() method does not return things in any particular order, so you might see
a	different	list	each	time.	You	could,	of	course,	sort	the	results	and	always	give	them	
back in the same order. Note the purpose of the isfile() method of the os module
to	screen	out	things	that	don’t	appear	to	be	files	in	the	first	look.	This	is	so	that	we	
can	only	list	the	files	in	the	directory.	In	our	second	loop,	we	don't	use	it	so	that	we	
can print out everything in the directory for the user. Finally, note that we screen out
anything	that	begins	with	a	 '.'	since	Linux	and	Unix	treat	these	files	specially	and	
don't show them.

There is also a special method called os.walk() which will walk the directory tree
from	a	given	level	and	recursively	return	all	files	and	directories	within	that	tree.

Listing installed packages
If you have ever used pip to install packages, you will notice that it is capable (if
the package contains the proper metadata) of installing all the requirements for a

Imports and Reuse 257

package.	For	example,	 if	you	install	flask	authorization,	 it	knows that you need to
have	flask	installed.	Further,	it	will	check	if	you	have	the	package	flask	installed	on	
your	system	before	trying	to	install	it.	Have	you	ever	wondered	how	that	is	possible?	
The answer lies in the pkgutil module of Python.

The pkgutil module does a lot of the job that the pip command does. You can
run, for example, pip freeze	 to	 find	 out	 all	 the	 packages	 and	 their	 versions	
that are installed in a given environment, or virtual environment. We can use the
pkgutil package in our code to accomplish most of the same thing. For example,
let's look at all the installed packages on our system. Note that if you are using a
virtual environment for your project, it will pick up the system packages, as along
with all virtual environment packages that are installed. The code to do this isn't
complicated,	but	we	can	take	a	look	at	what	it	looks	like:

import pkgutil

for mi in pkgutil.iter_modules():

 if mi.ispkg:

 print(mi.name)

The pkgutil class has a method called iter_modules, which returns all installed
modules for the system at the point at which it is called. The return from the
method call is a list of module information objects. One of the pieces of the module
information object is whether or not the item is a package. We query that attribute
and, if it is set to True we print out the name of the package. Your mileage will vary
tremendously for this one, but when this was run against our example project, this
is	a	snippet	of	what	showed	up:
cards

pkg1

pkg2

util

This is wonderful until you realize that any good-sized set of Python projects on
your system is going to have potentially hundreds of packages loaded. What if we
just want to know about our own packages for one project? Well, there's an answer
in the pkgutil	package	for	this	too.	Try	this:
import os

pkgs = pkgutil.walk_packages([os.getcwd()])

for pkg in pkgs:

 if pkg.ispkg:

 print(pkg)

258 Python for Professionals

Running this within our little project directory will result in a display that looks
something	like	this:

ModuleInfo(module_finder=FileFinder('.'), name='cards', ispkg=True)

ModuleInfo(module_finder=FileFinder('.'), name='pkg1', ispkg=True)

ModuleInfo(module_finder=FileFinder('.'), name='pkg2', ispkg=True)

ModuleInfo(module_finder=FileFinder('.'), name='util', ispkg=True)

Your display will contain the path to the modules in the parentheses following the
FileFinder() part of the output. You can see that it shows us the various packages
that	we	have	defined	in	the	book	to	this	point.	We	could	then	look	at	each	one	if	we	
wanted	to,	to	get	more	information	about	them.	How	do	we	get	information	about	
specific	files	or	classes?	The	answer	lies	in	the	Python	reflection	system,	which	we	
will talk about next.

Reflection
Suppose you have a class in Python. This class contains things like attributes
(members), methods, and perhaps even a base class that it implements. Let's start
with	something	simple,	like	this	one	that	models	a	very	simple	person:
class Person:

 def __init__(self):

 self.name = ""

 self.age = -1

 def set_age(self, age):

 self.age = age

 return self

def get_age(self):

 return self.age

 def set_name(self, n):

 self.name = n

 return self

def get_name(self):

 return name

Imports and Reuse 259

The above code contains nothing complex, just an example class that we can use to
examine through our code. Suppose you want to write something that will display
the data for your classes in a command line program. You could feed it a given
Python	file	and	it	would	spit	out	a	definition	of	what	it	found	in	the	file.	You	could	
either use that as documentation or you could use it to see what signatureshave
changed	in	a	given	Python	file	over	time.	This	can	be	very	useful	for	testing	purposes	
since knowing what has changed lets you start a chain of tests that you have to run.
If method A of class B has changed, the only things you need to worry about testing
are the things that rely on method A. This could cut way back on your testing time,
which we know is a pretty big part of the release process in the real world.

In order to get the information about the class, we need to use all the things that
we've	learned	so	far	in	this	chapter.	We	need	to	dynamically	import	the	module	(file),	
load	the	classes	that	are	in	the	module,	and	finally,	examine	each	one	of	the	classes.	
The examination will consist of determining the methods that the class implements,
as well as the arguments to those methods. It will also detect all the class attributes
that	are	defined.	Let's	take	a	look	at	the	code	and	its	output,	and	then	we’ll	work	our	
way through the thing and understand it.

import inspect

def load_module(name):

 # Load the module file

 module = __import__(name)

 return module

def get_classes(module):

 class_names = []

 for name in dir(module):

 obj = getattr(module, name)

if inspect.isclass(obj):

 class_names.append(name)

return class_names

def describe_func(obj):

sig = inspect.signature(obj)

print(" Arguments: ")

260			 Python for Professionals

for s in sig.parameters:

 print(' {0}'.format(s))

def describe_classes(file_name):

 module = file_name.replace('.py', '').replace('/','.')

 mod = load_module(module)

 entries = get_classes(mod)

Go through them one at a time.

for e in entries:

 obj = getattr(mod, e)

 if inspect.isclass(obj):

 print("Class: {0}".format(e))

try:

 ins = obj()

 methods = inspect.getmembers(ins, predicate=inspect.ismethod)

 for mn, mv in methods:

 print(" Method: {0}".format(mn))

 describe_func(mv)

 print(" Attributes:")

 for name in ins.__dict__:

 print(' ' + name)

except Exception(e):

 print(e)

describe_classes('example_class.py')

If	we	run	this	program,	using	the	example	class	we	have	defined	above	in	Person,	
we	get	the	following	output	on	our	console:

Class: Person

 Method: __init__

 Arguments:

Method: get_age

 Arguments:

Imports and Reuse 261

Method: get_name

 Arguments:

Method: set_age

 Arguments:

 age

 Method: set_name

 Arguments:

 n

Attributes:

 name

 Age

This is all wonderful, of course, but you want to know how and why it works, which
is normal for a programmer. We don't care so much about what something does as
much as how it does it. The engineering mind is a lovely thing for a programmer. So
let's	take	a	look	at	it.	Here	are	the	steps	to	follow:

1. First, we need to load the module, which we do with the same code that we
have	looked	at	previously:

module = file_name.replace('.py', '').replace('/','.')

mod = load_module(module)
 Nothing new here, we just make sure that the module name doesn't contain

the .py extension and that any slashes in the directory name are converted
to dots so that they conform to the Python module naming conventions.

2. Next, we call the get_classes method, which extracts the names of each
class within the module. The code looks like this and really gets to the heart
of	how	inspection	and	reflection	work	within	the	Python	environment:

def get_classes(module):

 class_names = []

 for name in dir(module):

 obj = getattr(module, name)

if inspect.isclass(obj):

 class_names.append(name)

return class_names

 Note that we use the dir() method to grab all the symbols within the module.
The dir() method is moderately faster than some of the other alternatives

262			 Python for Professionals

and is supported in every version of Python that has been released. The line
which calls getattr is obtaining an object from the name in the returned
list. We can only interrogate objects, not strings. We call the inspect isclass
method to determine if this is, in fact, a class, and if so we return it in a list of
strings to the caller.

3.	 The	next	block	of	code	goes	through	that	list	back	in	the	main	calling	function:

 ns = obj()

 methods = inspect.getmembers(ins, predicate=inspect.ismethod)

 for mn, mv in methods:

 print(" Method: {0}".format(mn))

 describe_func(mv)

 print(" Attributes:")

 for name in ins.__dict__:

 print(' ' + name)

 We extract the name, which is easy enough, and then retrieve each class
attribute by interrogating its __dict__ member after instantiating a copy
of	the	class.	This	method	of	finding	the	members	accomplishes	two	things.	
Instantiating the object not only creates memory for it, but it also calls the __
init__ method. This adds all the attributes to the object that we care about.
We	also	get	any	class	level	variables	that	were	defined	when	the	object	itself	
was instantiated.

4. Finally, we describe each method by calling our own describe_func	function:

def describe_func(obj):

 sig = inspect.signature(obj)

 print(" Arguments: ")

 for s in sig.parameters:

 print(' {0}'.format(s))

The list of parameters sent to a function is called its signature and we retrieve it
using the signature method of the inspect class with the object we created earlier.
The signature method returns a SignatureInfo object that contains, among other
things, the list of parameters, which we print out.

Using Reflection
Now	 that	you	know	what	 reflection	 is,	 and	how	 it	works,	wouldn't	 it	 be	nice	 to	
understand how it can be used in real-world programs? Clearly, it is lovely to load a

Imports and Reuse 263

class and look at its attributes, but what if you wanted to call some of those methods
and retrieve some of those attributes in your work applications? Since this is what
the interpreter is doing under the covers, it should be clear that this is not only
possible	but	quite	realistic	as	well.	Here's	how	you	go	about	retrieving	an	attribute	
from a dynamic class in Python.

First, let's modify our describe_classes method so that it returns a list of the
classes	and	instances	of	those	classes	to	the	calling	program:

def describe_classes(file_name):

 module = file_name.replace('.py', '').replace('/','.')

 mod = load_module(module)

 entries = get_classes(mod)

obj_dict = {}

Go through them one at a time.

for e in entries:

 obj = getattr(mod, e)

if inspect.isclass(obj):

 print("Class: {0}".format(e))

try:

 ins = obj()

 methods = inspect.getmembers(ins, predicate=inspect.ismethod)

 for mn, mv in methods:

 print(" Method: {0}".format(mn))

 describe_func(mv)

 print(" Attributes:")

 for name in ins.__dict__:

 print(' ' + name)

except Exception(e):

 print(e)

obj_dict[e] = ins

return obj_dict

264			 Python for Professionals

At this point, when the describe_classes methods return, we have a dictionary
that contains the names of the classes along with the instances of those classes that
we can use. Let's imagine we want to retrieve the age of the person in the instance.
As you may remember, we initialized the age to be –1 in the __init__ method, so
that's what we would expect to see. Let's add some code to our main program to
retrieve it.

d = describe_classes('example_class.py')

Get the Person object out of the dictionary

person = d['Person']

Invoke the get_age method of the object

get_age = getattr(person, "get_age")

age = get_age()

print(age)

There are a number of interesting things here. First of all, of course, we get the object
of the Person class that was instantiated in the describe_classes function out
of the dictionary by its class name. Now, however, we want to retrieve a function
pointer (if you are of the C or C++ bent) within that object for the get_age method.
This is done, as has been done repeatedly, through the getattr method, which is
the generic way of retrieving information about an object in Python. The return from
this call is a function, which we can call. Notice that we don't have to pass the self
part since it was built into the returned pointed by the getattr call. We invoke the
method	and	print	out	the	age.	As	expected,	we	see	the	following	output:
-1

So,	the	function	call	works	and	all	 is	well	with	the	world.	However,	 it	 isn't	really	
useful	to	only	invoke	methods	that	take	no	parameters.	What	if	we	want	to	first	set	
the age in the object and then retrieve it? This is more like a real-world scenario. We
can	add	the	following	code	to	our	little	driver	program	to	accomplish	this	task:

set_age = getattr(person, "set_age")

set_age(29)

age = get_age()

print(age)

The output now is:

-1

29

Imports and Reuse 265

As you can see, both the set and get methods are properly invoked and the object
is	properly	modified	and	interrogated	in	our	code.	This,	again,	is	pretty	simple.	A	
single	parameter	is	easy	to	pass.	Even	multiple	parameters	are	easy	to	pass:

def a_function_with_parameters(a,b,c,d):

 x = a+b+c

 y = b+c+d

 z = c+d+a

 print(x,y,z)

a_function_with_parameters(1,2,3,4)

import sys

func_ptr = getattr(sys.modules[__name__], 'a_function_with_parameters')

func_ptr(1,2,3,4)

Now,	here's	an	interesting	question.	Suppose	you	have	the	function	defined	above	as	
a_function_with_parameters. Remember that Python allows us to call functions
with	parameters	that	are	named,	rather	than	in	the	order	they	are	defined.	So,	we	
could	call	this	method:

a_function_with_parameters(a=1, b=2, c=3, d=4)

You can see where this is going. Suppose we have a function (or method, the process
is the same) that takes a set of named parameters and we want to invoke it by name
instead	of	position.	This	happens	quite	often	when	you	have	a	user-defined	function	
and a list of parameters it can take, but you aren't quite sure what order the user
defined	them	in.	So	long	as	the	parameter	name	matches,	we	can	make	this	work.

The	first	thing	to	understand	is	that	a	list	of	named	parameters	can	be	represented	
by,	but	not	used	as,	a	dictionary.	We	can	think	of	the	parameters	above	as:

dict_params = {

 'a': 1,

 'b': 2,

 'c': 3,

 'd': 4

}

If	we	try	to	just	call	the	function	with	the	dictionary	of	parameters,	we	will	get	errors:

a_function_with_parameters(dict_params)

266			 Python for Professionals

Traceback (most recent call last):

 File "dump_class.py", line 88, in <module>

 func_ptr(dict_params)

TypeError: a_function_with_parameters() missing 3 required positional
arguments: 'b', 'c', and 'd'

This	happens	because	the	function	is	defined	to	take	four	parameters,	not	one.	Can	
we turn the dictionary into a list of parameters to pass? Yes, we can. Remember, a
while ago we discussed the splat and double-splat operators. We discussed how the
double	splat	operator	flattened	out	a	dictionary	into	a	list	of	elements	that	could	be	
printed.	Well,	that's	not	the	only	use	for	the	double-splat,	here's	another	one:

func_ptr(**dict_params)

This will output the exact same thing as if we passed each one of the elements
individually	on	the	function	call:

6 9 8

By	now	you	 should	 have	 a	 good	handle	 on	 reflection	 and	 inspection	 in	 Python.	
By this point in the book and your professional experience with the language, you
should feel comfortable writing basic Python code and understand enough of the
more	complicated	stuff	to	be	able	to	read	it.	As	we	move	forward,	we'll	be	looking	
more into what makes Python such a valuable language to professional developers.
We’ll also look at the third-party packages, the tools, and the tricks and tips that
make it great.

Conclusion
In this chapter, we learned about how packages and modules work in Python. We
explored	the	use	of	importing	and	loading	of	packages	and	the	difference	between	
loading an entire package and just a function from it. We looked at classes and
modules	in	packages	and	how	to	use	reflection	to	obtain	information	about	those	
bits of code.

In	our	next	chapter,	we'll	be	looking	at	a	variety	of	things	that	don't	fit	well	under	a	
single topic but are useful nonetheless.

Questions
1.	 What	is	the	difference	between	a	system	package	and	a	user-defined	package?

2.	 How	do	you	import	just	a	function	from	a	package?

3.	 How	do	we	list	the	files	in	a	directory	in	Python?

4.	 What	is	reflection	and	what	is	it	good	for?

Introduction
There	are	lots	of	bits	and	pieces	that	don't	fit	into	a	specific	niche	for	any	language,	
Python is no exception. In this chapter, we'll look at the pieces that may or may
not have been touched upon previously or are things that you would expect a
professional programming language to contain. We'll examine things like decorators
and variable arguments, metaclasses, and namespaces. Unlike most of the chapters,
this one probably doesn't have an overriding theme to hold it together, feel free to
leaf	through	the	pieces	you	find	interesting	or	need	to	know	about	at	any	given	time.

Structure
•	 Decorators
•	 Character	encoding
•	 Variable	arguments
•	 Keyword	arguments
•	 Properties
•	 Description	strings
•	 Namespaces
•	 Context	managers

Chapter 9
Miscellaneous

268			 Python for Professionals

•	 Metaclasses
•	 Dynamic	classes	and	functions
•	 Shallow	vs	deep	copying
•	 Exception	handling

Objectives
By	the	end	of	this	chapter,	you	should	have	learned	about	a	slew	of	different	pieces	
of Python, and you should be able to understand much more complex code than
before.	You	will	be	able	to	work	with	different	types	of	arguments	to	methods	and	
functions, implement properties, and work with metaclasses and namespaces.

Decorators
The	 first	 section	we’ll	 talk	 about	 is	 the	 Python	 decorator.	 Decorators	 are	 a	 form	
of metaprogramming, which is extending existing programming through external
devices. Basically, a decorator is a wrapper around a function that provides additional
functionality to that function. It maymodify the behavior of the function, such as
changing the return type, or it may simply add new abilitiesto the function that the
original writer never considered.

Decorators are another form of function pointers. They accept a function as an
argument, then either wrap the function and return a new function, or modify the
inputs or outputs to the function. A decorator cannot physically change the code of
a function unless it delves into the minutia of dynamic coding. This is one area we
will not discuss in this book, as it is a form of hacking and generally is up to no good.
Let's take a look at a very simple decorator.

Imagine that you have a function that prints out someone's name, which is passed to
it as an argument. There’s no particular reason for doing this, it is simply what the
function does. Now, you realize that you want the function to greet the person by
name.	You	could	modify	the	function.	Let's	say	it	looks	like	this:
def print_name():

 print("matt")

We	could	change	it	to	read:
def print_name():

 print("Hello matt")

Of course, we could have dozens of such functions, and we'd have to go in and
modify	each	one.	Yes,	this	is	a	contrived	example;	you	would	never	do	such	a	thing.
You'd refactor all of them down to a single function and modify it. Enter the decorator
function.	Let's	take	a	look	at	how	it	is	used,	and	then	we'll	see	how	it	works:

Miscellaneous 269

def hello(f):

 def wrapper():

 print("Hello ",end='')

 f()

 return wrapper

@hello

def print_name():

 print("matt")

print_name()

The	output	from	this	snippet	is:
Hello matt

Clearly, it does what we wanted it to do. But the real question is how is it accomplishing
this task? Magic is a very poor reason for code to work.

First of all, we have our regular function, print_name. All it is doing is outputting a
name to the console. Next, we have our decorator function, called hello. It accepts
a single argument, which is the functionthat needs to be wrapped. Note that it has
a	function	defined	inside	of	it.	Python	permits	you	to	create	functions	at	any	scope,	
so we can create them within functions, class methods, or anywhere else. They exist
from	a	 scoping	point	 of	 view	within	 that	 defined	 space.	Our	 subfunction,	 called	
wrapper takes no arguments because it inherits the data from its parent, hello().
As a result, we print out a string Hello without a new line, and then call the function
that	was	passed	to	us.	So,	the	final	output	is	Hello and the name in print_name.
Finally, we return the wrapper function pointer from the hello decorator. This is
what makes the magic happen.

Implementing the decorator is only half the battle, after implementing it we have
to use it. Notice the use of the @hello above the print_name method. This syntax
is Python shorthand to say that this function is wrapped by the decorator function
called hello. When the print_name function is called, Python takes the following
steps:

1. It locates the function in the cache.
2. It observes that the function is wrapped by a decorator (how this happens is

internal).
3. It instantiates a wrapper object and passes the hello function to it.
4. It runs the function in the wrapper object, which creates the subfunction

called wrapper.

270			 Python for Professionals

5. It retrieves the wrapper function as the output of the hello object.
6.	 It	invokes	the	wrapper	function,	which	prints	out	the	string.

Admittedly, from this viewpoint, it doesn't look very useful. For one thing, we are
always printing out the same name and only prepending the same string to it. As we
will see, however, decorators are much more powerful than this.

First of all, let's address the biggest issue in the above code. The print_name function
shouldn't	be	printing	a	hard-coded	name;	it	ought	to	be	printing	a	variable	passed	
into	it.	In	the	following	snippet	we	change	the	function	so	that	it	does	just	that:
@hello

def print_name(name):

 print(name)

Now, if we run the snippet again, we would expect it to greet the name we pass in,
right?	Not	quite,	as	you'll	see	in	this	example:
print_name('fred')

Traceback (most recent call last):

 File "decorator.py", line 72, in <module>

 print_name('fred')

TypeError: wrapper() takes 0 positional arguments but 1 was given

You might be wondering why the interpreter is complaining about the wrapper
function, and why it is not printing out the name we requested. The answer lies in
the function that Python is trying torun, which is wrapper. This is the function that
gets returned by the decorator and the one that will end up calling the print_name
function in the long run. So, we need to somehow pass through the name of the
person we want to greet.

We	could	fix	t1e	problem	by	simply	doing	this:
def hello(f):

 def wrapper(name):

 print("Hello ",end='')

f(name)

return wrapper

@hello

def print_name(name):

print(name)

print_name('fred')

Miscellaneous 271

This snippet results in the expected output with no errors. Sometimes, this is the right
way to do things, to simply insert the proper parameters to the wrapper function
and pass them along to the wrapped functions. The problem here is that decorators
are meant to be more generic than that. We expect them to work for any sort of
function that we wrap up and call with the right parameters, without us having to
know much about the underlying implementation of the function that is decorated.

We will look at this idea in a few moments when we talk about variable arguments.
For	now,	though,	let's	tackle	a	different	use	of	the	decorator.	Suppose	you	wanted	to	
validate	that	a	given	argument	to	a	method	is	of	a	specific	type.	For	example,	if	we	
want to square a value, it would be nice to know that the value we are squaring is a
valid integer type. We could do this in the function, but with decorators, there is a
much easier and generic approach.

Consider the code in the following snippet. The function print_int expects a single
argument, an integer value, which it is going to print out to the console. This is
obviously not a useful function, but it illustrates the core of what we are trying to do
without cluttering it up with a lot of extraneous code that doesn't show the decorator
function.

def check(typ):

 def checker(f):

 def checked_func(arg):

 if isinstance(arg, typ):

 return f(arg)

 else:

 raise TypeError

return checked_func

return checker

@check(int)

def print_int(val):

 print(val)

Notice	that	in	this	case,	we	first	accept	a	function	to	the	checker function. Because
our decorator itself must accept an argument, which is the type of the argument to
check, we must then have a function inside of it which accepts the argument that
we are looking to check. This function, the checker function, will return the final
function to be called by the Python interpreter. Within the checker function, we will
then write another function to check the argument that is passed to the function.
This function, called checked_func, simply validates that the argument is of the

272			 Python for Professionals

type	 that	was	requested	by	 the	developer	who	decorated	the	 function	 in	 the	first	
place. If it is, the original function (print_int, in this case) is called. If the argument
does not match, we raise an exception (we'll talk about later in this chapter) and fail
the program.

One of the most interesting uses of the decorator in Python is to emulate the C#
decorator. In C#, for example, you can mark a given unit test method as a test by
including the @test	decorator	above	it:

@test

void do_some_test() {

}

Python also supports unit tests, as we'll see in the next chapter, with the unittest
package.	However,	 thatpackage	 requires	 that	 you	 begin	 each	 test	 name	with	 the	
prefix	test_. Wouldn't it be nice to be able tomark tests to be run without having to
name them according to some arbitrary standard? Of course, it would. The decorator
construct	allows	us	to	do	this,	although	in	a	slightly	different	fashion.	One	of	the	
coolest Python features is that all classes and objects are mutable. That means we
can add or subtract attributes from those classes at run-time, something that is not
conceivable in a compiled language.

Suppose we create a decorator that marks a given method or function, with a
test attribute that indicates to the test runner that it should be run in a given test
environment.	Let's	see	what	that	decorator	would	look	like,	first,	and	then	examine	a	
very trivial test runner that will decide whether or not to run a given function based
on the test decorator.

First,	the	decorator:

def test():

 def decorator(func):

 func.is_test = True

 return func

return decorator

As you can see, the decorator accepts a function, as all decorators do. This one,
however, sets an attribute on the function. Since functions are just objects in Python,
like everything else, they can have their own attributes. As a result, we can then
test for that attribute using the Python hasattr function, which is a sibling of the
getattr and setattr functions. If you are uncomfortable setting an attribute that
doesn't already exist due to your previous exposure to compiled languages like C++
or Java, feel free to use the setattr	function	instead:

setattr(func, 'is_test', True)

Miscellaneous 273

This line does the same thing but looks like Pythonish and more compiled
language-y.

Our	next	step	is	to	figure	out	whether	a	given	function	is,	or	is	not,	a	test	based	on	
the attribute we have set. To do this, we'll implement a simple function that tests the
attribute presence and indicates to the caller whether or not it is there. This is better
than directly reading the attribute from the function object. Also, it is more Pythonic
since	it	allows	for	a	different	implementation	to	be	used	in	setting	the	test	attribute	
and	testing	for	it	later	on.	This	is	an	excellent	example	of	data	hiding	in	OOP:

def is_test(test):

 if hasattr(test, "is_test"):

 return True

return False

Let's implement two functions. One will be a test and be marked as such with the
test decorator. The other will be a normal	function	and	will	not	be	a	test:

@test()

def test_all_the_things():

 print("This is a test")

def not_a_test_function():

 print("This is not a test function")

Using our is_test method, we can see whether the decorator works properly in the
positive and negative sense. This is a pretty ideal test for a test decorator, isn’t it?
print("test_all_the_things is a test = {0}".format(is_test(test_all_the_
things)))

print("not_a_test_function is a test = {0}".format(is_test(not_a_test_
function)))

The	output	is	as	expected:
test_all_the_things is a test = True

not_a_test_function is a test = False

If	we	were	to	combine	the	reflection	with	the	directory	functions	of	the	os	module	
(both looked at in the previous chapter), we could implement ourselves a pretty
decent	unit	testing	module.	There	would	be	only	one	more	thing	we	would	need:	
a way to time the tests so that we could report on them. Guess what? We can use a
decorator to implement a timer!

import time

274			 Python for Professionals

def timer(func):

 def wrapper():

 t1 = time.time()

 res = func()

 t2 = time.time()

 wrapper.elapsed_time = t2-t1

 return res

return wrapper

@timer

def a_long_function():

time.sleep(2)

return 3

Examining this code, we see that the timer decorator accepts a function, as usual.
It also implements a wrapper which sets up a timer by checking the initial time
and	following	it	up	with	the	final	time	after	calling	the	function	for	which	it	wraps.	
Notice that it captures the result of the function and returns that result to the caller,
just	as	if	the	decorator	were	never	there	in	the	first	place.	The	idea	behind	decorators	
is to make their use as transparent as possible.

The function, when run, returns the value 3.	So,	if	we	call	this	thing:

f = a_long_function

print(f())

print(f.elapsed_time)

3

2.00405216217041

we will see that it calls the function and prints out the result, then prints the time that
it took to run the function. Notice that since we are just implementing a sleep in the
function before returning the value, we will mostly see the two second sleep in our
timing. This is done to make it apparent that a value was returned.

You might be wondering why we assign a value to the function object rather than
just calling it directly. This is so that we can extract the elapsed_time attribute from
the object. If we had chosen to return the elapsed time along with the return value of
the function in the return from the wrapper() function, we could just print them all
out	at	once.	Since	we	can't	do	this:

Miscellaneous 275

print(a_long_function().elapsed_time)

because the result of the function is an integer, and the integer does not have an
attribute elapsed_time associated with it, the result will be an error from the
interpreter.

Decorators are very useful and powerful tools in Python, but it is essential to
understand that they are not really necessary. You can accomplish the same thing
with function wrappers, assigning functions asobjects to other functions. This is a
bit of syntactic sugar that makes it easier and nicer to read but isn't something you
can’t live without.

Variable arguments
In the previous section, we looked at decorators that wrap a function that takes no
arguments. The reason for this is we really hadn't looked at how to pass a variable
list of arguments to a generic function like a decorator. Let's do that in this section
so that we can complete our discussion. As you know, there are two kinds of
parameters one can send to a method or function in Python. First, you can pass a list
of arguments in order. Conventionally, these are called arguments to the method or
function. Secondly, you can pass keyword arguments of the form key-value to the
function	or	method.	 In	 the	first	case,	 the	arguments	must	be	passed	 in	order.	For	
example,	if	we	have	a	method	like	this:

def compute_them(a,b,c):

 return a+b-c

and	we	call	it	with	the	following	arguments:

compute_them(1,2,3)

the result of this function call is 0 since 1+2 is 3 – 3 = 0. On the other hand, we
can	pass	arguments	by	keyword:
compute_them(a=1, c=3, b=2)

This is the equivalent of calling the method with 1,2, and 3 as arguments in order.

When we talk about passing arguments to a function or method in a variable list,
we have the same two possibilities. Let's say that we want to write a function that
accepts some variable number of arguments as integers and adds them to return the
sum	of	the	values.	We	could	call	it	like	this:

sum_it_up(1,2,3,4)

Or	we	could	call	it	like	this:

sum_it_up(1,2,3)

276			 Python for Professionals

The function sum_it_up needs to determine how many arguments are passed to it
and add each one of them together. The question, of course, is how do we do this? If
we	passed	in	a	list	of	integers,	we	could	write	something	like	this:

def sum_it_up(array_of_ints):

 total = 0;

 for I in array_of_ints:

 total = total + i

 return total

This	wouldn't	 quite	 fit	 the	way	we	want	 to	 call	 them	but	 it	 is	 close.	 Remember,	
however,	the	splat	operator.	It	takes	a	list	of	items	and	converts	them	into	a	flattened	
bunch of items. It turns out that in Python, not surprisingly, we can use the splat
operator in the signature of the function to accomplish the same process. Python
treats our variable length list of arguments into an array to send to the function or
method, and then it sends it to the function. So, we can re-write the above function
as:

def sum_it_up(*args):

 total = 0

 for i in args:

 total = total + i

return total

There is nothing special about the name args, you can use anything you want. What
is important is that you specify it with the splat (*) operator in the signature. The
other important thing to know is that you can have normal parameters to start the
function	signature	and	have	a	splat	argument	as	the	final	argument.	In	this	case,	you	
will use the normal arguments from call, followed by all other arguments tucked
into the variable part. For example, suppose we wanted to re-write the function so
that	you	passed	in	the	initial	total:

def sum_it_up(total, *iargs):

 for i in iargs:

 total = total + i

return total

Calling	the	function	this	way:
print(sum_it_up(1,2,3,4,5,6))

Does it surprise you that whether or not we use the total argument, we get the
same result? It really shouldn't, since we initialized total in this case to zero in
the	completely	variable	case	and	the	first	argument	in	the	second.	However,	if	we	

Miscellaneous 277

changed	the	meaning	of	the	first	argument,	making	it	a	string	to	print	out,	it	would	
definitely	change	the	results.

Now,	there	is	the	keyword	argument	case.	Keywords	are	not	implemented	with	the	
splat	operator	but	rather	with	the	double	splat	(**)	operator:

def sum_up_values(**kwargs)

We could now call it with something like sum_up_values(value1=1, value2=2,
...). Note that we would have to modify the code of the function to look at the
keyword argument list as well. The keyword arguments are expressed as tuples in
the kwargs.items()	return:

def sum_it_up(total, *iargs, **kwargs):

 for i in iargs:

 total = total + i

for ik in kwargs.items():

 total = total + ik[1]

return total

print(sum_it_up(1,2,3,4,5,6,value1=1, value2=2))

This function call prints out 24, as you would expect. You might ask, what happens
if I use the args and kwargs variables in the function signature, but do not pass any
keyword arguments (or arguments)?
print(sum_it_up(1,2,3,4,5,6))

21

Likewise,	we	could	call	the	function	with	no	arguments	and	only	keyword	arguments:
print(sum_it_up(1,value1=1, value2=2))

4

In this case, the only important thing is that we must pass at least one argument,
the total argument because it is neither variable nor default. Given all this, let's go
back to our decorator that acts as a timer for function calls. We can now modify it to
accept	both	variable	and	keyword	arguments:

import time

def timer(func):

 def wrapper(*arg, **kw):

 t1 = time.time()

 res = func(*arg, **kw)

278			 Python for Professionals

 t2 = time.time()

wrapper.elapsed_time = t2-t1

return res

return wrapper

So, now, we can use the timer	decorator	with	functions	that	take	arguments:

@timer

def a_long_function(value):

 time.sleep(2)

 return value

f = a_long_function

print(f(25))

print(f.elapsed_time)

The output for the above code snippet will be:

25

2.004503011703491

As you can see, we have combined decorators with variable argument lists and
timing functions to create something really useful. This should be your approach
when programming in Python professionally, use what is there, use what you have
built, use what you have learned, and create something beautiful and new out of it.

Character encoding
One	of	the	more	frustrating	things	in	modern	programming	is	having	files	encoded	
in various character sets. In the good old days,	a	file	was	either	ASCII	or	binary,	with	
no	 in	between.	Now,	with	JSON	files	containing	encoded	texts	or	files	written	by	
foreign	software	that	uses	a	different	character	set,	we	must	be	more	aware	of	the	
encoding	of	characters	in	our	files	and	user	interfaces.

As a professional, you are aware that there are encodings beyond that of simple
ASCII text. In Python, the default encoding is UTF-8. This is essentially extended
ASCII,	 allowing	 you	 to	 gather	 characters	 beyond	 the	 256	 byte	 limit	 imposed	 by	
that	standard.	ASCII,	as	you	may	or	may	not	remember,	only	defines	a	handful	of	
characters	beyond	 the	upper	and	 lower	case	 letters;	and	 the	numeric	and	shifted	
numeric values. Oddly, the remainder of the set is generally unprintable characters,
such as the newline and linefeed characters, the bell, tab, and others that were useful

Miscellaneous 279

back in the days of teletypes. We don't use these much anymore but they are all still
supported.

UTF-8	 is	 primarily	English	 and	other	Roman	based	 languages.	UTF-16,	which	 is	
quickly becoming the default for the more global Internet, is a double-byte character
set, allowing it to display and process other languages such as the Asian and Russian
Cyrillic	languages.	The	Python	string	class	properly	handles	both	UTF-8	and	UTF-16,	
and with the encode() and decode() functions of the class, it can handle virtually
any	character	set	defined	on	your	computer.	To	programmers,	this	is	mostly	hidden	
from us and rightfully so. We don't honestly care, except to be aware of the character
sets and that they may bepresent. If your particular application needs them, you'll
find	Python	more	than	capable	of	dealing	with	encoding	and	decoding	characters.

It	is	much	more	likely	that	you	will	need	the	ability	to	send	characters	in	a	different	
format.	For	example,	when	dealing	with	older	software	files,	you	may	need	to	be	
able to write octal as well as binary. You might need to be able to write hexadecimal
or binary, or convert from characters to integers and back again. For this, Python has
a rich set of functionality that will allow you to do what you need to do.

Table 9.1 shows	the	various	functions	that	are	useful	in	Python	and	what	they	do:

Function Purpose
asci Converts an input into an ASCII representation
Bin Converts an integerto a binary representation
Bytes Converts a string in a given encoding to a list of bytes
Chr Converts an integer into a character
Hex Converts an integer to a hexadecimal value
Int Converts a string to an integer
Oct Converts an integer to an octal representation
Ord Converts a character to its integer equivalent
Str Converts a number or other object to a string

Table 9.1: The Python encoding conversion functions.

To	give	you	an	idea	of	how	it	all	works	here's	a	very	simple	snippet	of	code:

s="This is a test"

print(ascii(s))

print(bin(5))

print(bytes(s, 'utf-8'))

print(chr(95))

print(hex(32))

280 Python for Professionals

print(int('1234'))

print(oct(12))

print(ord(s[0]))

print(str(1234))

And	here	is	the	output	of	the	said	snippet:

'This is a test'

0b101

b'This is a test'

_

0x20

1234

0o14

84

1234

When	you	need	the	above	functionality,	use	it,	but	most	of	the	time	you	will	find	that	
Python just does what you need it to do in its default behavior.

Properties
Properties	are	simply	attributes	of	classes	that	have	a	simplified	structure.	Developers	
do not like to call set and get methods when they can simply assign variables to
values. The issue is that we need to make sure those values are valid. Properties are
how we protect our data.

Throughout the book, we have discussed Python attributes for classes and have
written	code	like	this	to	deal	with	them:

class OldP:

 def __init__(self):

 self.x = 0

def get_x(self):

 return self.x

 def set_x(self, v):

 self.x = v

Miscellaneous 281

We do this to add data encapsulation to our classes. By using getter and setter
methods, we can enforce the ability to screen out bad values or to change the units
of our internal data before returning it to the calling application. This is considerably
better	than	the	bad	old	days	when	we	would	write	something	like:

class BadOldP:

def __init__():

 self.x = 0

Then the programmer would randomly modify the attribute in code, changing
the internal attribute x to be whatever their heart's desires were at that particular
moment. This is bad because if we change the internal usage of the 'x' variable or
the representation to something else, we cause the code to break. Imagineif a new
developer comes on board and says, x is a dumb name, we should use meaningful
variables names and changed all of the x variables to x_axis_value. Well-meaning
and deep down, we know theywould be right, but it breaks a lot of existing code.

Of course, creating setter and getter methods doesn't solve the problem. After all, if
we	have	a	setter	that	looks	like	this:

def set_x(v):

if v > 0 and v < 100:

 self.x = v

It would appear that this setter screens out all values in our class outside the range
of 1 to 99. This worksquite nicely, as long as all developers play by the rules we
have established and use the setter and getter methods to retrieve the values. If
one	developer	directly	modifies	the	property	in	his	code	and	sets	the	value	to	200,
for example, things will break. There has to be a better way, and the developers of
Python recognized this, thus with Python 3 theycreated properties.

This might seem to be out of line with the previous parts of this chapter, but it is not,
properties are implemented via the decorator approach in Python. For example, we
could	have	a	class	that	implements	a	property	called	x	and	screen	out	bad	values:

class P:

 def __init__(self,x):

 self.x = x

 @property

 def x(self):

 return self.__x

282 Python for Professionals

 @x.setter

 def x(self, v):

 if v > 0 and v < 1000:

self.__x = v

The property decorator consists of two parts, which is a little clunky but does work.
Let's	look	at	the	steps	necessary	to	convert	this	class	to	use	properties:

1.	 First,	we	define	the	property name we are going to implement. The name of
the property is the name of the method below it, in this case,x. The property
decorator makes this into the getter	 for	 the	 property	 and	 defines	 the	
property within the class. The property decorator creates an internal attribute
for the class, which is named __<attribute-name>. If you want to use the
actual	attribute,	you	need	to	use	the	__	version	of	it.

2. Once we have a property, we have a setter decorator that is applied to
the property name and becomes the setter method that assigns values (or
doesn't) to the attribute. The important part of this is that the getter and
setter	methods	are	hidden	from	the	user	of	the	class:

p = P(5)

p.x = 10

print(p.x)

p.x = 2000

print(p.x)

10

10

3. One of the nicest things about the property decorator is that we can create
read-only attributes if we want to, simply by omitting the setter decorator
for	a	given	attribute:

class P1:

 def __init__(self):

 self.__x = 0

@property

def x(self):

 return self.__x

Miscellaneous 283

4. Now, if you try to set the attribute x in an instance of the class P1, you will
get	an	error:

p = P1()

print(p.x)

p.x = 1000

print(p.x)

Traceback (most recent call last):

 File "properties.py", line 43, in <module>

 p.x = 1000

AttributeError: can't set attribute

Description strings
Python was designed for professional programmers. It was also designed for reuse,
and nothing spells reuse better than documentation. For this reason, the Python
language contains a built-in process for documenting a class, method or function,
called the docstring.	You	can	use	the	docstring	in	any	class	or	method:

class P1:

"""

 The P1 class shows how to implement read-only attributes

 """

 def __init__(self):

 self.__x = 0

 @property

 def x(self):

 return self.__x

 def print_x(self):

 """

 This method prints out the value of x

 It has no arguments

"""

284 Python for Professionals

print(self.__x)

p = P1()

print(p.__doc__)

print(p.print_x.__doc__)

This code displays the following output, as shown in Figure 9.1:

Figure 9.1: Output from the docstrings program

By providing doc strings we have built-in documentation that should always be up
to	date	for	the	current	code.	For	a	language	like	Python,	that	has	a	lot	of	different	
versions,	in	which	some	things	work	differently,	this	is	a	godsend	for	the	developer.	
You should always document your code, of course, and Python makes it easy. By the
way, the __doc__ attribute is a string and you can modify it. This may be the best
example	of	things	you	can	do	but	you	shouldn't,	in	Python:

p.__doc__ = p.__doc__ + " and I hate it."

print(p.__doc__)

Namespaces
Namespaces	in	Python	are	defined	as	dictionaries mapping groups of elements to names,
which is a fancy way of saying that they are ways to organize things. Namespaces
are needed because of name collisions. For example, imagine that you have two
packages, A and B, and both implement the foo() method. If I	write	this	code:

from A import *

from B import *

foo()

Which foo() will be called, the version from the A package or the B package? In
Python, the principle for importing is last in wins, so the B version of the foo function
will be called. What if you wanted to call the A version? The simple answer is, you
can't. If you import all names from a given namespace you overwrite the entries for
all previous package names. For this reason, Python provides the limited import
statement:

Miscellaneous 285

from A import func1, func2, func3

from B import foo

In this case, we can guarantee that foo() is only called from the B module. But wait,
you scream, what if I need both of them? Let's consider that case. Imagine, we have
two modules in our program, test_module_1:
def foo():

 print("This is test_module_1 foo")

and test_module_2:

def foo():

 print("This is test_module_2 foo")

Now,	we	have	a	third	file	in	which	we	need,	for	whatever	reason,	to	use	both	the	
test_module_1 and test_module_2 versions of the foo()	function.	If	we	try	this:
from test_module_1 import foo

from test_module_2 import foo

foo()

the	output	is:
This is test_module_2 foo

This is in keeping with the last in wins idea. But what if we want to use both? We
can actually do this, simply by taking advantage of the 'as' version of the import to
give	a	symbol	a	new	name:

from test_module_1 import foo as f1

from test_module_2 import foo as f2

f1()

f2()

This is test_module_1 foo

This is test_module_2 foo

As you can see, Python provides for most scenarios that you might envision. By
using the import statement carefully and managing your namespaces carefully, you
will	find	that	you	rarely	run	into	problems.

Context managers
In Python, a context manager is any class that implements the __enter__ and __
exit__ methods. It is called a context manager because it controls the context of

286			 Python for Professionals

the data within it. You've seen context managers before in the with statement for
opening	files:

with open('file.txt', 'r') as file:

 do_something_with_the_file(file)

This	is	the	equivalent	of	writing:
try:

 file = open('file.txt', r')

 do_something_with_the_file(file)

except:

finally:

 close(file)

The idea here is to make it as simple as possible to write code that might have to
handle exceptions and to deal with standard exceptions in a standard way, cleaning
up	after	yourself	as	you	go.	This	is	the	Pythonic	mantra;	always	leave	the	system	in	
a good state.

You can write your own context managers, of course, and you should for any resource
that needs to be cleaned up after you are done with it regardless of whether there is
a	problem	or	not.	However,	you	can	use	context	managers	in	another	way.	Suppose	
you want to make sure that a set of tags is always closed in an XML document. You
can	use	the	context	manager	methods	for	this:

class XmlTag:

 def __init__(self, tag):

 self.tag = tag

 def __enter__(self):

 print("<%s>" % self.tag)

 return self

 def __exit__(self, exc_type, exc_val, exc_tb):

 print("</%s>" % self.tag)

 return False

with XmlTag('head') as head:

 print("This is the body of the xml head")

Miscellaneous 287

The __enter__ method of our slightly absurd class prints out the opening tag for
the XML block we want to do. The __exit__ method prints out the closing tag. In
between, we can do whatever we want such as printing out the body. Note that the
__enter__ method should return the object that is being used.On the other hand,
the __exit__ method should return True if the interpreter should handle whatever
exception occurs and False if it should not. If we return True from the __exit__
method the exception will be bubbled up to the caller, otherwise, it will be handled
and eaten in our method.

Metaclasses
In today's world, meta means deep, although that's barely where the word came
from. In Python,meta means things that have a deep understanding of themselves
and the Python environment. Metaclasses are those that help to build and initialize
other classes. For example, when you create a new class and instantiate it, do you
know	that	deep	down;	you	are	invoking	methods	of	the	object	class?	It	is	true.	What	
is important to understand is that in Python, everything you encounter, whether it
is a class instance, a variable, or a function, is an object. Underlying the object is the
type, which means something in Python.

At the heart of the object class are metaclasses. The base metaclass is type. That isn't
a typo, it is actually called type. The type metaclass is responsible for creating and
initializing objects. It does this through two main methods, __new__ and __call__.
When you instantiate a new class, the base class __call__ method is invoked. If
you	don't	define	a	base	class,	object	 is	automatically	used	and	the	 typeversion	of	
__call__ is called. The __call__ method calls two other methods within thebase
class,	the	derived	class	or	the	metaclass.	The	first	is	__new__ which does the work
of constructing the type in memory. Once the __new__ method has been called, the
__init__	method	is	called,	as	we	have	seen	over	and	over	in	the	book.

We already know how to override __init__ and add new attributes and such to the
class. What we haven't looked at is overriding the __new__ and __call__ methods.
We can override any of these methods in a metaclass, what we need to understand
is what to override and when. Let's imagine, for a moment, that we want to add a
new attribute to every single object created of our class that contains the date and
time	the	object	was	created.	We	could	add	a	new	attribute	using	the	following	code:

import time

class Meta(type):

 def __new__(cls, name, bases, dict):

 dict['created_at'] = time.localtime()

288 Python for Professionals

 obj = super().__new__(cls, name, bases, dict)

 return obj

class MySubClass(metaclass=Meta):

 def __init__(self):

 self.name = "Hello"

for i in range(0,4):

 msc = MySubClass()

 t = msc.created_at

 s = time.strftime("%Y-%m-%d %H:%M:%S", t)

 print("The object was created at {}".format(s))

 time.sleep(2)

We place the sleep function call in there so that each object is created at slightly
different	times.	The	output	from	this	snippet	of	code	is	somewhat	surprising:
The object was created at 2019-08-12 13:20:07

The object was created at 2019-08-12 13:20:07

The object was created at 2019-08-12 13:20:07

The object was created at 2019-08-12 13:20:07

Why are all the created times the same? To understand this, we have to look at what
is going on here. The __new__ function accepts a class to instantiate. Anything that
is added to the object at this point is a class attribute. If we want to create a new
attribute for each instance of the class, we need to override the __call__ method
and	be	sure	to	do	it	after	the	initialization	has	taken	place:

import time

class Meta(type):

 def __call__(self, *args, **kwargs):

 obj = object.__new__(self, args, kwargs)

 obj.created_at = time.localtime()

 obj.__init__()

 return obj

Miscellaneous 289

If	we	do	it	this	way,	you	will	see	that	the	output	looks	like	this:
The object was created at 2019-08-13 08:47:17

The object was created at 2019-08-13 08:47:19

The object was created at 2019-08-13 08:47:21

The object was created at 2019-08-13 08:47:23

This indicates that the created attribute was set for each object, rather than the class.
It is worth mentioning that creating your own custom metaclasses is generally
frowned upon by the Python community because they introduce unnecessary
complexity and maintenance costs in your code. As with all other things Pythonic, it
is up to you to decide if the rewards make the risks worth it.

Dynamic classes and functions
If	 you	have	worked	 in	other	 languages,	you	know	 that	defining	a	new	class	 can	
be something of a chore. You have to write all the boilerplate code for each class,
including constructors, destructors, assessors and the like. What if you could
automate all of that? Well, certainly, some languages do contain utilities that can
generate classes for such things as database tables, forms and the like. Of course, you
have to generate them, compile them, and then link them into your application to
use them. What if you could do that in real time in your application?

Picture	this;your	user	wants	to	access	a	new	database	table.	You	call	one	function,	
and suddenly you have a class that wraps that database table. Sounds fantastic? No,
it sounds like Python. After all, the Python interpreter reads lines of text and turns
them into objects, so how hard can it be to use that same functionality in your own
programs? Turns out it isn't very hard at all.

The core of this functionality lies in the type() class. The type class, by its nature,
returns a new type. It is used by the interpreter to create new classes all the time, and
you can use the same functionality in your code. The constructor for the type class
looks	like	this:

type(class_name, base_class(es), attributes)

Where:
•	 class_name is the name of the class you want to create. This, obviously,

must conform to Python's naming conventions.
•	 base_class(es) is a list of classes from which to inherit. Normally, one uses

object here, but you could use your own classes if you wanted.
•	 attributes is a list of attributes to pass to the initialization of the class. This

is as if you were setting them in the __init__ method of the class.

Let's create a very simple function that will create a new class for us!

290 Python for Professionals

def create_class(class_name, base_class, **kwargs):

 return type(class_name, (base_class,),dict(**kwargs))

In this case, we are simply making the base class into a list and pushing the arguments
into a dictionary, which the type constructor requires. Does it work?

cls = create_class('MyClass', object, name = 'my_name', date = time.
localtime())

obj = cls()

print(obj.name,obj.date)

my_name time.struct_time(tm_year=2019, tm_mon=8, tm_mday=13, tm_hour=8,
tm_min=47, tm_sec=25, tm_wday=1, tm_yday=225, tm_isdst=1)

So far, so good. But is this really our class or just some random object?

print(repr(obj))

<__main__.MyClass object at 0x7fe4c0158e80>

Look at that! We have dynamically created a class. You can see where this would be
immensely useful for mapping database tables, interfacing to new resources, or just
storing	data	to	be	serialized	into	a	JSON	file	in	your	application.

Deep vs shallow copying
Before we wrap up this chapter, two remaining concepts need to be covered. In the
books for beginners, these two might warrant entire chapters of their own, but you've
seen	all	of	this	stuff	before	albeit	in	a	different	language	with	a	different	format.	The	
first	of	the	two	subjects	is	the	difference	between	deep	copying	and	shallow	copying.

A deep copymakes a complete copy of an object or data structure, traversing down
the sub-elements of the object. A shallow copy makes a new object but keeps the
same deep elements within it, as if it were just pointing at the original.

Let's	look	at	a	simple	example	to	understand	what	is	going	on:

class AnObject:

 def __init__(self):

 self.list_of_integers = [1,2,3,4]

 self.dictionary_element = {

'a': 1,

'b': 2

}

Miscellaneous 291

 def print_me(self):

 print(self.list_of_integers)

 print(self.dictionary_element)

a = AnObject()

a.list_of_integers.append(5)

a.print_me()

b = a

b.list_of_integers.append(6)

b.print_me()

a.print_me()

The	output	from	this	little	snippet	is:
[1, 2, 3, 4, 5]

{'a': 1, 'b': 2}

[1, 2, 3, 4, 5, 6]

{'a': 1, 'b': 2}

[1, 2, 3, 4, 5, 6]

{'a': 1, 'b': 2}

As you can see, the copy here is shallow. Changes made to the a object are also
reflected	in	the	b object. The Python library contains a class that makes this slightly
easier, it is called copy, which directly makes both shallow and deep copies. Let's
look	at	how	this	works:

print("Shallow copy")

import copy

c = copy.copy(a)

c.list_of_integers.append(7)

c.print_me()

a.print_me()

print("Deep copy")

d = copy.deepcopy(c)

d.list_of_integers.append(8)

292 Python for Professionals

d.print_me()

c.print_me()

This snippet produces the output shown in Figure 9.2:

Figure 9.2: Shallow vs deep copy output

If you have worked in C++ or Java, and implemented copy constructors, this should
almost be second nature to you, and you can see how valuable the copy module is.
You could easily write your own copy constructor, either by hand or by using the
copy module! This feature alone makes Python more valuable in many ways than
those so-called powerful compiled languages, as it will remove a large chunk of bugs
that would otherwise arise in your code.

Exception handling
Virtually every modern programming language has some form of exception
handling. Exceptions areexactly what they sound like, an exceptional problem.
As	with	C#,	C++,	or	Java,	you	shouldn't	use	an	exception	for	changing	the	flow	of	
your application, you should only use it when something really bad is happening.
Examples might include dividing by zero, running out of disk space or memory,
finding	a	corrupt	block	of	data	in	your	database	or	the	like.

The	basic	form	of	exception	handling	is	as	follows:

try:

<some code>

except <SomeException> as <Some Variable>

except:

<Generic error>

else:

Miscellaneous 293

<when no exception occurs>

finally:

<after all exception handling is processed or no error occurs>

Exception handling can be a bit of a surprise sometimes if you are trying to guess
what	went	wrong.	Consider,	for	example,	the	following	code:

try:

 x = y/0

except ZeroDivisionError as zde:

 print("You divided by zero!")

 print(zde)

except:

 print("Some other exception")

 print(e)

else:

 print("You didn't create an exception")

finally:

 print("All done now!")

Before you try running this snippet, try to guess the output. You might expect to see
You divided by zero! with the snippet terminating, but you would be wrong.
In fact, this code prints out, Some other exception followed by All done now.
The finally clause is always executed whether or not an exception occurs in the
try block. But why do we get the other exception? This is why it is important not to
generically catch	exceptions.	We	can	modify	the	code	as	follows:

try:

 x = y/0

except ZeroDivisionError as zde:

 print("You divided by zero!")

 print(zde)

except Exception as e:

 print("Some other exception")

 print(e)

else:

 print("You didn't create an exception")

294 Python for Professionals

finally:

 print("All done now!")

In this case, you'll see that the output is:

Some other exception

name 'y' is not defined

All done now!

Oh	dear!	We	forgot	to	define	the	y	variable	before	we	used	it,	which	actually	generated	
an exception we could catch. Unless you honestly don't care why something fails,
always check the exception you return.

You can raise your own exceptions with the raise	statement:

try:

 raise Exception("This is an exception")

except Exception as e:

 print(e)

 Exception: This is an exception

Finally, you might wonder if you can handle an exception and then pass it on to the
caller.	For	example,	consider	the	case	where	you	try	to	open	a	file	and	it	fails.	You	
might want to log this information, then let the caller decide if this is important or
not.	It	may	not	be	a	fatal	error,	perhaps	the	caller	just	needs	to	know	if	the	file	exists.	
This would be a very poor choice for exception handling since we can test to see if
the	file	exists	before	we	try	opening	it,	but	it	could	happen.	In	this	case,	we	can	use	
the empty raise	statement:

try:

 raise Exception("This is an exception")

except Exception as e:

 print(e)

 raise

This is an exception

Traceback (most recent call last):

 File "copy_example.py", line 49, in <module>

 raise Exception("This is an exception")

Exception: This is an exception

Miscellaneous 295

From this point, the exception is bubbled up as it is called in most programming
languages.	Handling	exceptions	is	a	basic	part	of	writing	solid	code,	so	make	sure	
that anything you call that can throw an exception is wrapped in an exception
handling block. Unlike most languages, exceptions in Python are not overly costly,
probably because as an interpreted language it is no slower than processing text, so
it is a good idea to handle what you can.

Conclusion
This chapter has been something of a grab bag of concepts and constructs that
professionals	tend	to	use	in	coding.	Hopefully,	now	you	have	a	good	understanding	
of the pieces that go into writing professional Python programs and can use them in
your	own	applications.	This	chapter	also	finishes	the	basic	language	instruction	for	
the book. From this point on, we'll be looking only at things that can help you write
more professional programs with minimum fuss.

In the next chapter, we will look at the various third party packages available for
Python	that	will	help	you	to	write	effective	code	without	reinventing	the	wheel.

Questions
1. What is a decorator and why would you want to use one?

2. What are the two ways to pass variable arguments in Python?

3. What is a property and how is it implemented in Python?

4. Why should you implement docstrings and how do you view them?

Introduction
As you have seen in the preceding chapters, Python is all about making it quick
and easy to develop powerful and professional applications that are easy to read
maintain. One of the reasons for this is the rich wealth of constructs designed not
for the esoteric language lawyer but for the professional programmer who wants
to get things done without having to write a ton of code. From list comprehensions
to developing classes and instances with minimal code, Python is all about writing
code quickly that isn’t ugly or obtuse.

Structure
•	 Itertools
•	 Flask
•	 Numpy
•	 Logging
•	 Unit	test
•	 Mocking
•	 Concurrency
•	 The	emoji	package

Chapter 10
Not Reinventing

the Wheel

298 Python for Professionals

•	 The	pprint	package
•	 The	requests	package

Objectives
In this chapter, we are going to explore the majority of the big packages for Python.
These are the packages that are used by virtually all Python programmers out there
to make things consistent and to ensure that code works well.

Not reinventing the wheel
You may have guessed that the ability to write concise and powerful code has led
to	 Python	 being	 used	 in	 a	 lot	 of	 different	 environments.	Of	 course,	 the	 fact	 that	
Python is one of the best among the write once, run anywhere languages doesn’t hurt.
Java may make the claim, but Python walks the walk in the portability arena. Most
Python packages and extensions are written in Python as well, so it makes it really
easy to port them to new environments. By encapsulating the operating system
functionality	in	its	own	package,	Python	also	makes	it	 trivial	to	work	in	different	
environments. All of this leads to a lot of people writing a lot of good Python code.

The Python community is all about being open source and sharing of ideas and code.
Much	of	that	code	has	been	put	together	in	specific	packages	that	solve	specific	needs.	
In this chapter, we are going to explore some of the most commonly used Python
third party packages, how you install them, how you work with them, and what
needs they solve for you. By reusing the code that others have put blood, sweat, and
tears into, you don’t reinvent the wheel!

In this chapter, we are going to explore a variety of packages for Python. By the end
of	the	chapter,	you	should	have	a	basic	understanding	of	the	following	areas:

•	 Itertools
•	 Flask
•	 Numpy
•	 Logging
•	 Unit	testing
•	 Mocking
•	 Concurrency
•	 The	emojis	package	
•	 Pprint
•	 Requests	for	http

Not Reinventing the Wheel 299

Itertools
The	first	package	we	are	going	to	look	at	is	the	itertools package. Unlike many
of the packages for Python, itertools does not have a cute name. The itertools
package works with iterators, extending them in new and useful ways. Itertools is a
part	of	the	Python	3	install;	you	don’t	need	to	do	anything	special	to	install	it.

The itertools package contains a wealth of iterators that provide you with easy
ways to do things that you would otherwise have to write a bunch of code to do.
For example, the package provides the count() function, which simply produces an
endless series of numbers from a given starting point, with an optional step index.
You	could	do	this	in	our	own	code	by	doing	something	like	this:

idx = 10

while (True):

if idx > 15:

 break

 Idx = idx + 1

The itertools count() function	makes	this	simpler:

for idx = count(10):

if idx > 15:

break

It is important to note that the count() method counts the iterations, not the ending
value. We can also use the normal Python tools available for iterables, such as
enumerate:

from itertools import count

for idx, val in enumerate(count(10)):

 if idx > 5:

 break

 print(val)

The itertools package contains functions you didn’t know you needed, until
you need them. Great examples of this are the cycle() and repeat() functions.
The cycle function simply cycles through a list or other iterable worth of values,
repeating them endlessly. The repeat function does the same thing for a single value,
except that you can indicate how many times to repeat this. The cycle function can
be	very	useful	for	testing	a	set	of	values	sent	through	a	given	function:

300 Python for Professionals

from itertools import cycle

notes = ['do', 'ri', 'mi', 'fa', 'sol']

for idx, n in enumerate(cycle(notes)):

 print(n)

 if idx > 8:

 break

This snippet displays the output shown in Figure 10.1:

Figure 10.1: Output from enumerate loop

The repeat function, on the other hand, is reminiscent of the yes command line
program in Unix, which simply sends y or yes to answer prompts in a script.

from itertools import repeat

for ans in repeat('yes', 3):

 print(ans)

yes

yes

yes

Let’s looks at one more example from itertools that should give you an idea of
the power that is stored in this package. If you are used to writing SQL code, you’ve
probably done the GROUPBY statement a fair amount. Given a list of data, the group
by statement will group it together so that they are under a given key. There are a
couple of ways we can use the groupby function in itertools. First, let’s look at a
very	simple	example	of	grouping	duplicate	values	in	a	list:

list = [1,2,1,3,1,4,2,3,4]

from itertools import groupby

for key, group in groupby(sorted(list), lambda x:x):

Not Reinventing the Wheel 301

 print("Group: " + str(key))

 for element in group:

 print(' ' + str(element))

The	output	from	this	little	snippet	is	a	grouped	list	of	the	values	in	the	array,	first	
sorted	and	then	broken	down	by	the	repeating	values:

Group: 1

 1

 1

 1

Group: 2

 2

 2

Group: 3

 3

 3

Group: 4

 4

 4

The groupby function is much more powerful than this, of course. We can use it on
more complex structures, just as we would for a database query. Imagine we have
a database of people with the city and state in which they reside. We want to break
them down by state, so we can do some numerical analysis on their other data.
Imagine	that	the	data	structure	looks	like	this:

darray = [

 {

 'name': 'matt',

'city': 'new york',

 'state': 'NY'

 },

 {

 'name': 'fred',

 'city': 'albany',

 'state': 'NY'

302 Python for Professionals

 },

 {

 'name': 'irving',

 'city': 'atlanta',

 'state': 'GA'

 },

 {

 'name': 'tony',

 'city': 'duluth',

 'state': 'MN'

 }]

Now, we want to break them down, so we’ll use the groupby function to break them
down	by	states:

for key, group in groupby(darray, lambda x : x['state']):

 print("Group: " + str(key))

 for element in group:

 print(' ' + str(element))

Group: NY

 {'name': 'matt', 'city': 'new york', 'state': 'NY'}

 {'name': 'fred', 'city': 'albany', 'state': 'NY'}

Group: GA

 {'name': 'irving', 'city': 'atlanta', 'state': 'GA'}

Group: MN

 {'name': 'tony', 'city': 'duluth', 'state': 'MN'}

Alternatively, we could do some sort of computation on the groups. For example,
suppose	we	just	want	to	know	how	many	people	are	there	in	each	group:

for key, group in groupby(darray, lambda x : x['state']):

 print("Group: {0} Count: {1} ".format(key, len(list(group))))

Group: NY Count: 2

Group: GA Count: 1

Group: MN Count: 1

Not Reinventing the Wheel 303

Note	that	we	have	to	first	convert	the	result	of	the	group	to	a	list	in	order	to	count	it,	
as it is a groupable object that has no count mechanism built-in. We could use this for
reporting, mass mailing, or whatever you want.

Itertools also contains some absolutely fantastic statistical functions, including
combinations, permutations, and Cartesian products from iterables. If you need any
sort of work generating sets of data, the itertools library should be a part of your
conversation to start with.

Flask
In today’s world, few things are as important in the software development world as
microservices.	These	small	HTTP	services	make	it	easy	for	websites	and	distributed	
applications	to	talk	to	each	other	and	to	handle	very	specific	pieces	of	a	bigger	system.	
In addition, microservices allow easy updates to each piece of a system, without
having monolithic systems that cannot be upgraded except by a single deployment.
Features can be added to a single microservice and tested in place without exposing
them	to	the	rest	of	 the	world.	 In	the	Python	world,	 the	HTTP	service	handling	 is	
done primarily by a package called Flask.

The	Flask	package	is	used	for	a	number	of	things,	including	writing	simple	HTTP	
servers and websites, but for this book, we are going to focus on the use of Flask as
a microservice library. To understand microservices, you must understand the verbs
used	in	HTTP	processing.	For	a	microservice,	there	are	two	bits	of	information	that	
need to be dealt with. First, there is a verb that indicates what sort of manipulation
you wish the service to accomplish for you. There are four verbs that are understood
by all services as shown in Table 10.1:

Verb Meaning
GET Retrieve information from the service.
POST Add new information to the service.
PUT Update new information on the service.
DELETE Remove information from the service.

Table 10.1: The HTTP verbs

The Flask package makes it remarkably easy to implement these verbs and to put
together a microservice in a few dozen lines of code. You will spend much more time
working on the data structures and storage of the information than on worrying
about how to get it in and out of the service.

First, you need to install the Flask system. We will use pip to install Flask and its
various components. Flask itself is a single package, but it has many additional
components and extensions that are used. In our case, we are going to install Flask
first:

304 Python for Professionals

pip install flask

This installs the basic package and the decorators that make it up. In addition, you
will want to install flask_httpauth, which handles basic authentication. Flask
itself contains the core of the code for the microservice architecture, but it is aided
by utilities like request, jsonify, and make_response, which is used in the
following example.

Create	a	new	file	to	store	your	microservice.	We’ll	call	our	one	flask_test.py, but
you	can	call	it	anything	you	like.	At	the	top	of	your	file	place	the	import	for	the	core	
flask	package:
from flask import Flask

Now,	add	the	following	lines	to	your	file:
app = Flask(__name__)

if __name__ == '__main__':

 app.run(debug=True)

Believe it or not, that’s all you need to do to have a microservice. It doesn’t do
anything yet, but we’ll get there. First, let’s create some data for our microservice to
serve	up:

addresses = [{

 'name': 'matt telles',

 'address': '1313 Mockingbird Lane',

 'city': 'New York',

 'state': 'NY',

 'zip_code': '10012'

}]

Our system will, clearly, serve up addresses to any callers. We’ll add methods to
retrieve the address information from the service, addnew addresses, and update
existing addresses. Naturally, to complete the CRUD (Create, Read, Update, Delete)
operations,	we’ll	add	the	ability	to	delete	existing	address	information.	Here	are	the	
steps	involved:

1. Let’s begin by adding a method to retrieve the current list of addresses.
It will be nothing fancy, just a GET operation that retrieves the entire list.
Pagination and such won’t be considered in this example, although it is
something you’d want in your own applications.

from flask import jsonify

@app.route('/api/v1/addresses', methods=['GET'])

Not Reinventing the Wheel 305

def get_addresses():

 return jsonify(addresses)

@app.route

2. This is a part of the Flask	package	that	is	used	to	define	a	route.	A	route	is	
the base URL (for testing purposes, this is always localhost, on port 5000),
followed by a path within the base URL. In this case, we are using the /api/
v1/addresses path. The /api/v1 is a pretty typical way of specifying that
this is not a website address. It isn’t a rule, per se, but it is a convention that
is followed by most application services. Following that piece is the name of
the service that we are using, in this case addresses, to indicate that this API
handles address information. You can obviously call this anything you want,
but it is best to be consistent.

3. Following the path, which is what you would enter into a web browser or
other method of getting information from the web, you have the methods=
section. Flask refers to the verbs as methods, so the method we are
implementing here is GET which means that you will retrieve information. It
is standard to use GET only for read purposes and not to allow updates.

4.	 Below	 the	 decorator	 is	 the	 actual	 function	 definition.	 This	 is	 standard	
Python;	 it	 just	defines	the	actual	 function	we	will	be	 implementing	in	our	
code to do the GET of information. Note that you can implement Flask
methods as Python methods or functions, within classes or without them. It
is completely up to you. Because a function is just an object in Python, there
is	no	functional	difference	to	Flask.

5. Within our method, we call the jsonify function, which is also imported
from Flask. This method does JSON serialization of the data it is called with
and	sends	 it	back	to	the	user.	Note	that	we	simply	return	the	data;	Flask
does	the	remaining	task	of	wrapping	it	up	in	an	HTTP	message	with	proper	
headers and such.

The next question, obviously, is how do we test this program? We can simply run
it using the python interpreter, and if you run it you should see something like this
displayed	in	your	IDE	or	command	window:

* Serving Flask app "flask_test" (lazy loading)

* Environment: production

 WARNING: This is a development server. Do not use it in a production deployment.

 Use a production WSGI server instead.

* Debug mode: on

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

* Restarting with stat

306			 Python for Professionals

* Debugger is active!

* Debugger PIN: 252-695-625

This is Flask telling us that it is running, that the service is accessible on port 5000
of localhost, and that it is running in debug mode. The debug mode is useful for
detecting errors in the code, as it will print in the response to requests and the
command line display of your application as well. Once you see this message, you
can hit the web service in any way you like.

Our testing tool of choice is curl. It is available on virtually any platform, works
from the command line, can be put in scripts, and is small and fast. You can use other
tools, from Postman to writing your own, to even using a web browser, but for now,
we’ll focus on the curl commands needed to test the service.

The curl command to retrieve data uses the default GET	verb	and	is	quite	simple:
curl -i http://localhost:5000/api/v1/addresses

We specify the address of the server using the -i option, and that’s all that is needed.
Curl knows how to do a get, and no other information is needed for this simple case.
The	response	looks	something	like	this:

HTTP/1.0 200 OK

Content-Type: application/json

Content-Length: 150

Server: Werkzeug/0.15.5 Python/3.7.2

Date: Thu, 15 Aug 2019 13:53:31 GMT

[

{

"address": "1313 Mockingbird Lane",

 "city": "New York",

 "name": "matt telles",

 "state": "NY",

 "zip_code": "10012"

 }

]

As you can see, our service is working and serving up the information that we
requested. You can call it as many times as you like, and it will serve up that single
address over and over. This isn’t very interesting, so maybe we should allow the
user to add new addresses to the little database we are storing things in.

Not Reinventing the Wheel 307

The verb, or method, used to add data to the system is POST. Therefore, the decorator
has	to	handle	the	POST	command	for	adding	new	data.	It	looks	like	this:
@app.route('/api/v1/addresses', methods=['POST'])

def save_address():

In Flask, information is passed on through the request object, which is a kind of
global	entity	to	your	application.	You	get	to	it	by	importing	the	request	component:
from flask import request

Let’s	look	at	the	implementation	of	the	post	handler:

from flask import make_response

def extract_address(json_data):

 address = {

 'name': json_data['name'],

 'address': json_data['address'],

 'city': json_data['city'],

 'state': json_data['state'],

 'zip_code': json_data['zip_code']

}

return address

def save_address():

 if request.json is None:

 return make_response(jsonify({'error': 'No content'}), 400)

 if not 'name' in request.json:

 return make_response(jsonify({'error': 'Missing key name'}), 400)

 addresses.append(extract_address(request.json))

 return jsonify({'status': 'ok', 'id': str(len(addresses))})

First of all, we have some new imports. The make_response component is just a
wrapper	that	allows	you	to	generate	an	HTTP	compatible	response	from	a	Python	
dictionary and an error code. The request component is what we receive from the
user. Note that Flask does not pass things through to the function, but rather makes
that information available through the Flask package methods.

The request object contains a variety of information. The raw data is stored in the
data attribute. If the data is sent as a JSON piece, the parsed JSON will be stored
in the request json attribute. In our case, we expect the data to be in JSON format,
so if it is not there (that is, response.json has nothing in it and is None), we will

308 Python for Professionals

just	return	an	error.	Errors	consist	of	two	parts,	an	HTTP	error	code	and	a	message.	
Our message, in this case, is just No content indicating we found nothing to add.
The	 error	 code	 is	 400,	which	 is	 just	 an	HTTP	 status	 saying	 that	 the	 request	was	
bad. Likewise, if the JSON content doesn’t look right to us (in this case we are just
verifying that the name piece is there), we will return an error as well.

We’ve added a utility function, extract_address to take the pieces of the address
out of the JSON content in the request and return it as an address dictionary object
so that we can reuse this functionality later on when we want to update things.
Presuming that all the extraction goes well, the data is then added to our database
of addresses and a response is sent back to the caller. The response consists of a
message ok and the id of the new address, which is just the number of entries in the
database.

Sending a POST message through curl is slightly more complicated. This book is
not intended as a tutorial on the curl program, it has its own help messages and
there is plenty of information available on the web, thus we’ll just present the basic
command:
curl -i -H 'Content-Type: application/json' -X POST -d '{ "name": "fred
mcmurray", "address": "1212 Main Street", "city": "Albany", "state":
"AL", "zip_code": "12345"}' http://localhost:5000/api/v1/addresses

The important aspects of this command are that we are using the POST command
(-xPOST) and we are passing data (-d followed by the JSON command). One note
here, if you are working in the Windows environment and using the standard
curl program that was built for Windows in a Command Prompt, you may have
issues sending things with double quotation marks, since Windows has a way of
interpreting	them	that	is	different	from	Linux,	Unix,	or	Mac.	You	can	try	triple	quotes	
if this happens or choose the Windows PowerShell window, which does things in a
more standard way.

Whatever the case, when you send the message to our updated service, you should
see	the	following	response:
HTTP/1.0 200 OK

Content-Type: application/json

Content-Length: 35

Server: Werkzeug/0.15.5 Python/3.7.2

Date: Thu, 15 Aug 2019 14:23:26 GMT

{

 "id": "2",

"status": "ok"

}

Not Reinventing the Wheel 309

Once we have the system running, the next step is to add some of the pieces that are
needed to make it of professional quality.

Adding authentication
If	you	are	just	playing	with	web	services,	it	is	fine	to	leave	them	open	to	the	world	
to get to. After all, if it is running on your local machine, not too many people across
the world will have access to the service. When you move your service to a more
global space, like in the cloud, however, it is important that you only allow those
who should have access to modify your data. For this reason, Flask allows you to
add authentication to your service quickly and easily. We are just going to use the
most basic and not too complex authentication to illustrate how it could be done.

First,	you	need	to	add	the	following	to	your	service	module:

from flask_httpauth import HTTPBasicAuth

auth = HTTPBasicAuth()

This imports the Flask basic authentication package from the system (you may
need to import it if you have not already) and creates a new authentication module.
The authentication module, auth, requires that you do a little bit of setup. Add the
following	function	to	your	module:

users = {

 'matt': 'mattpassword',

 'george': 'georgepassword',

}

@auth.get_password

def get_password(username):

 for user in users:

 return users[username]

return None

Notice the use of the decorator get_password assigned to the auth object. This tells
Flask to call this method to retrieve the password for the user and compare it to the
one	sent	in	the	HTTP	headers	for	authentication.	If	you	do	not	send	a	user	name	and	
password in your request for authenticated methods, you’ll see an error like this in
your curl	command:

HTTP/1.0 401 UNAUTHORIZED

Content-Type: text/html; charset=utf-8

Content-Length: 19

310 Python for Professionals

WWW-Authenticate: Basic realm="Authentication Required"

Server: Werkzeug/0.15.5 Python/3.7.2

Date: Thu, 15 Aug 2019 14:22:06 GMT

With curl,	to	send	the	authentication	information,	just	use	the	–u	flag.	It	looks	like	
–uuser:password where the user and password are the information you want to
send to Flask. This will be encoded and decoded on the backend side.

Not all Flask route handlers require authentication, nor is it on by default. To use
authentication for our POST	handler,	let’s	tell	Flask	to	require	it:

@app.route('/api/v1/addresses', methods=['POST'])

@auth.login_required

def save_address():

 if request.json is None:

 return make_response(jsonify({'error': 'No content'}), 400)

if not 'name' in request.json:

 return make_response(jsonify({'error': 'Missing key name'}), 400)

addresses.append(extract_address(request.json))

return jsonify({'status': 'ok', 'id': str(len(addresses))})

You can see that by adding the auth.login_required decorator to our method, it
automatically tells Flask to require the user to provide login information. Once you
have logged in, you’d receive a token back from the service that would be sent in all
additional requests. Alternatively, you can just send the user name and password
with each request, which is probably easier in our case.

After we add a new entry, we can then request the GET again to verify that the new
data	has	been	added	to	the	database:

curl -i http://localhost:5000/api/v1/addresses

HTTP/1.0 200 OK

Content-Type: application/json

Content-Length: 293

Server: Werkzeug/0.15.5 Python/3.7.2

Date: Thu, 15 Aug 2019 14:43:57 GMT

[

 {

 "address": "1313 Mockingbird Lane",

Not Reinventing the Wheel 311

 "city": "New York",

 "name": "matt telles",

 "state": "NY",

 "zip_code": "10012"

},

{

 "address": "1212 Main Street",

 "city": "Albany",

 "name": "fred mcmurray",

 "state": "AL",

 "zip_code": "12345"

 }

]

Here	we	see	that	the	new	address	was	added	and	is	retrieved	by	the	GET call. Finally,
let’s	round	out	our	Flask	exploration	by	adding	the	update	and	delete	functions:

@app.route('/api/v1/addresses/<int:address_id>', methods=['PUT'])

def update_address(address_id):

 addresses[address_id-1] = extract_address(request.json)

 return make_response(jsonify({'status': 'ok'}), 200)

@app.route('/api/v1/addresses/<int:address_id>', methods=['DELETE'])

def delete_address(address_id):

 del addresses[address_id-1]

 return make_response(jsonify({'status': 'ok'}), 200)

Obviously, if you were writing your own service, you would be storing data in a
legitimate database using much more stringent tests for the data coming in, checking
for duplicates, bad data and the like. That’s outside the scope of this exercise, which
was simply to illustrate how quick and easy it is to implement a microservice using
Flask.	Hopefully,	you’ve	seen	just	that!

Numpy
When	Python	was	first	 created,	 in	 the	mid-1980s,	 the	 focus	 of	 the	 language	was	
primarily on scientists. These folks needed to do complex analysis on data, primarily
mathematical data and didn’t want to take the time to learn compilers, IDE’s and

312 Python for Professionals

languages that required you to devote your life to them. Python was something of a
godsend to these scientists, who simply wanted to get their work done and publish
their results. What Python really lacked at that time was a good way to handle
some of the math that they were accustomed to using. At that time, the only solid
math package was MATLAB, which was, and still is, a somewhat arcane system for
manipulating mathematics, via matrices and general equations, using a proprietary
language and system. For all of its faults, MATLAB was astonishingly powerful,
allowing scientists to do an entire day’s worth of calculations with a few lines of
strange syntax.

The	Pythonistas	of	the	day	were	horrified	by	MATLAB	but	envious	of	its	power.	A	
man named Jim Hugunin, along with several other developers lending hands and
code, created a package called Numeric, which did a lot of matrix work and linear
algebra	algorithms.	This	was	built	off	work	done	by	Jim Fulton and was published
at MIT for use by Python programmers. A bit after Numeric came out, a competing
package called Numarray was created, which had better performance for large
arrays but poorer performance for smaller ones. Finally, in 2005, Travis Oliphant
came along and merged the two competing code bases into a single package with
the advantages of both called Numpy.

The Numpy package is primarily based around n-dimensional arrays, called
ndarrays. These arrays can be created, manipulated, added, multiplied and the like.
Numpy has a full linear algebra algorithm library and can quickly and easily work
with arrays of virtually any size. Unlike standard Python lists (which are really
arrays under the covers), Numpy arrays are typed, allowing developers to be careful
with their data.

Installing Numpy
There	are	two	methods	for	installing	Numpy.	Let’s	look	at	the	possible	steps:
•	 pip install numpy: With that said, if you are only going to use numpy

for its matrix and linear algebra capabilities this is all you have to do. If,
however,	you	want	to	use	the	system	for	scientific	programming,	as	it	was	
intended, you should install the full scipy package. This book is not about
full	scientific	programming,	so	we	won’t	be	digging	into	most	of	the	esoteric	
of	such	things,	but	you	can	install	 the	full	scientific	programming	pack	in	
Python by using the following command.

•	 pip install --user numpy scipy matplotlib ipython jupyter pandas
sympy nose: As you can see by the ordering, numpy is the basis for most of
the	scientific	programming	packages.	The	others,	scipy, pandas, and nose,
for	 example,	 are	 for	 specific	mathematical	manipulations.	Others,	 such	as	
matplotlib,	allow	you	to	do	graphic	plotting	of	your	data.	The	scientific	
community relies heavily on numpy and its related packages, and if you are
in that industry it behooves you to learn them.

Not Reinventing the Wheel 313

Getting started: The basic array
The numpy	array	class	is	just	a	Python	list	of	sorts.	The	difference	is	that	it	understands
the dimensions of the array and can work with it directly using matrix math. To
create a simple one-dimensional array in Numpy, which is the same as a Python list,
we	can	write	code	like	this:

import numpy

my_list = [1,2,3,4,5,6]

my_numpy_array = numpy.array(my_list)

print(my_numpy_array)

print(my_numpy_array.shape)

In this example, we are creating a simple Python list, called my_list. That list is then
passed to the Numpy array method, which creates a new Numpy array instance
from it. We then print out that array and look at its shape. The shape is a tuple that
represents the dimensions of the array. For example, if we run this code, we will see
the	following	output:
[1 2 3 4 5 6]

(6,)

This	indicates	that	Numpy	understands	this	to	be	a	one-dimensional	array	with	6	
elements	 in	 the	first	dimension.	 If	we	wanted	 to	 create	 a	 two-dimensional	 array,	
otherwise known as a simple matrix,	we	could	do	this:
row_1 = [1,2,3]

row_2 = [4,5,6]

row_3 = [7,8,9]

matrix = numpy.array([row_1, row_2, row_3])

print(matrix)

print(matrix.shape)

In this case, we have three rows with three columns of data in each. Note that we
pass the individual lists as a single array to Numpy. The array method only accepts
lists and knows how to parse them into rows and columns. The output from this little
snippet	is	as	follows:

[[1 2 3]

[4 5 6]

[7 8 9]]

(3, 3)

314 Python for Professionals

In this output, we see that Numpy knows this to have three rows of three columns.
The shape of the array, therefore, is a tuple of two elements, the rows and the columns.

You can also create standard matrices using Numpy. For example, the zeroes method
will create a matrix of a given size, setting all elements to 0:
zero_matrix = numpy.zeros((3,3))

print(zero_matrix)

[[0. 0. 0.]

[0. 0. 0.]

[0. 0. 0.]]

Likewise,	there	are	methods	called	ones,	which	create	a	matrix	of	a	given	shape	filled	
with	ones.	Then	we	have	full,	which	creates	a	matrix	of	a	given	shape	filled	with	a	
specified	value,	and	random,	which	creates	a	matrix	with	random	numbers	inserted.

Accessing Numpy Data
The Numpy array can be used much as if it were a two-dimensional list in Python,
but	with	a	few	differences.	For	example,	we	can	slice	a	Numpy	array:
sub_array = matrix[0:3, 1]

print(sub_array.shape)

print(sub_array)

Given	the	matrix	defined	above,	this	code	snippet	will	return	the	middle	column	of	
the data. Slicing is done via the row and column format, so we are telling Numpy
to give us back data starting with row zero and ending three rows into the array.
Likewise, it returns the middle column, since, like normal lists, Numpy arrays are
zero-based indexed.

Numpy supports a range of values, using the arange()	method:
five_columns = numpy.array(numpy.arange(0, 5))

print(five_columns)

This snippet produces a single dimension array with 5 elements, with the data stored
in	those	elements	the	list	of	the	range:
[0 1 2 3 4]

Data types
The Numpy library is typed, meaning that all the data stored in a given array must
be	heterogeneous,	but	also	meaning	that	each	element	is	stored	in	the	specific	type	
the	user	wishes.	The	default,	of	 course,	 is	 integer,	but	you	can	define	matrices	 in	
floating	point	math	as	well:

Not Reinventing the Wheel 315

float_matrix = numpy.array([[1.0,2.0,3.0],[4.0,5.0, 6.5],[1.5, 2.5, 3.5]],
dtype=numpy.float)

print(float_matrix.shape)

print(float_matrix)

print(float_matrix.dtype)

(3, 3)

[[1. 2. 3.]

[4. 5. 6.5]

[1.5 2.5 3.5]]

Float64

As you can see, Numpy knows what type the data is and can work with it in its native
format.	This	is	not	to	say	you	can’t	mix	matrices	of	different	types:
irow_1 = [1,2,3]

irow_2 = [4,5,6]

irow_3 = [7,8,9]

i_matrix = numpy.array([row_1, row_2, row_3], dtype=numpy.int)

frow_1 = [11.0,12.0,13.0]

frow_2 = [14.0,15.0,16.0]

frow_3 = [17.0,18.0,19.0]

f_matrix = numpy.array([frow_1, frow_2, frow_3], dtype=numpy.float)

print(i_matrix + f_matrix)

As you can see from the above, Numpy supports normal addition of matrices and
can	handle	matrices	of	different	types.	You	can	store	any	type	in	a	matrix,	and	it	will	
be processed if it is possible. We could, for example, create two matrices of complex
values:
cmp_1 = [(1+2j),(2+3j),(3+4j)]

cmp_2 = [(4+5j),(5+6j),(6+7j)]

cmplx_1 = numpy.array(cmp_1)

cmplx_2 = numpy.array(cmp_2)

print(cmplx_1+cmplx_2)

Needless	 to	 say,	 you	 can	 add	floating	point	 and	 integer	matrices,	 or	 integer	 and	
complex matrices, or any combination thereof. It also supports matrix multiplication,
both	with	scalar	(non-matrix)	values,	as	well	as	between	two	matrices:

316			 Python for Professionals

print(matrix)

print(matrix*2)

[[1 2 3]

[4 5 6]

[7 8 9]]

[[2 4 6]

[8 10 12]

[14 16 18]]

print(i_matrix*f_matrix)

[[11. 24. 39.]

[56. 75. 96.]

[119. 144. 171.]]

That covers the basics of creating arrays, but once you have one what do you do with
them?

Modifying arrays with Numpy
One of the most powerful aspects of the Numpy library is the ability to modify a
matrix so that it can be used in other ways. For example, suppose we take the 3x3
matrix	that	we	defined	above	and	‘flatten’	it	to	be	a	one-dimensional	array:
print(matrix)

print(matrix.reshape((1,9)))

[[1 2 3]

[4 5 6]

[7 8 9]]

[[1 2 3 4 5 6 7 8 9]]

Data	within	an	array	can	be	modified	in	place	if	you	like:
print(matrix)

matrix[1][1] = 99

print(matrix)

[[1 2 3]

[4 5 6]

[7 8 9]]

[[1 2 3]

Not Reinventing the Wheel 317

[4 99 6]

[7 8 9]]

Numpy mathematical functions
Having	 a	 matrix	 is	 all	 well	 and	 good,	 but	 unless	 you	 have	 all	 the	 supporting	
functionality to work with that matrix, it is just a pretty thing rather than a useful
one. Numpy has a lot of support for mathematical functions that can be applied
directly	to	a	matrix	or	multiple	matrices:

Trigonometric and hyperbolic functions are all supported, such as sin, cos, tan, sinh,
cosh, and tanh. There are also functions to convert degrees to radians and back. If
you need to know the functions, the numpy documentation page at docs.scipy.org
will show you all of these and many more. Unless you are into trigonometric work,
it’s likely you will never look at these.

More interesting to general programmers are the rounding functions, which permit
you	to	round	data	to	a	specified	number	of	decimal	places,	or	to	truncate	data	to	the	
next lowest or highest values. To get an idea of what they look like, let’s look at a
very	simple	example.	To	round	data	to	a	fixed	number	of	decimal	places,	we	use	the	
round method of numpy:

frow_1 = [11.234567,12.12345,13.454354]

frow_2 = [14.234234,15.765468,16.8974598]

frow_3 = [17.123123,18.1123123,19.83645]

f_matrix = numpy.array([frow_1, frow_2, frow_3], dtype=numpy.float)

print(numpy.round(f_matrix, 2))

[[11.23 12.12 13.45]

[14.23 15.77 16.9]

[17.12 18.11 19.84]]

The	floor	method,	similarly,	returns	a	matrix	that	consists	of	all	the	data	points	in	the	
matrix	rounded	down	to	the	next	lowest	integer	value	but	stored	as	the	floating	point	
value that was initially stored there. If you use the floor() method on an integer
matrix,	it	will	be	converted	into	a	floating	point	matrix,	but	the	values	obviously	will	
not	be	changed:
print(numpy.floor(f_matrix))

print(numpy.floor(matrix))

[[11. 12. 13.]

[14. 15. 16.]

[17. 18. 19.]]

318 Python for Professionals

[[1. 2. 3.]

[4. 99. 6.]

[7. 8. 9.]]

Please note that the floor() method does not round the values, it truncates them to
a lower value. Thus, our value of 15.765468 is simply truncated down to 15, not
rounded up to 16.

The converse of the floor() method is the ceil() method, which returns the integer
value which is greater than or equal to the value. The floor() method works, as does
the ceil() method, on an element wise process, examining and modifying each
element in the matrix across the rows and down the columns. The return, as always
is	a	matrix:
frow_1 = [11.234567,12.12345,13.454354]

frow_2 = [14.234234,15.765468,16.8974598]

frow_3 = [17.123123,18.1123123,19.83645]

f_matrix = numpy.array([frow_1, frow_2, frow_3], dtype=numpy.float)

print(numpy.ceil(f_matrix))

[[12. 13. 14.]

[15. 16. 17.]

[18. 19. 20.]]

Unsurprisingly,	floating	point	values	with	anything	non-zero	after	the	decimal	point	
will be rounded up to the next integer value, regardless of whether the decimal
portion is greater than one half or not. An important point about both the ceil and
floor methods is that both do not modify the existing matrix. They return a new
matrix	which	has	the	values	copied	and	modified:

print(numpy.ceil(f_matrix))

print(f_matrix)

[[12. 13. 14.]

[15. 16. 17.]

[18. 19. 20.]]

[[11.234567 12.12345 13.454354]

[14.234234 15.765468 16.8974598]

[17.123123 18.1123123 19.83645]]

The Numpy package supports matrix comparison in a variety of ways. For example,
we can take two matrices and create a third matrix which contains the greatest or
least	element	in	each	position	using	the	maximum	and	minimum	methods:

Not Reinventing the Wheel 319

frow_1 = [11.234567,12.12345,23.454354]

frow_2 = [14.234234,5.765468,16.8974598]

print(numpy.maximum(frow_1, frow_2))

[14.234234 12.12345 23.454354]

print(numpy.minimum(frow_1, frow_2))

[11.234567 5.765468 16.8974598]

All the matrix comparison and manipulation functions make certain assumptions
about the data they are working with. To add two matrices, for example, they must
each have the same number of rows and columns. Numpy doesn’t make you provide
two matrices in that formation, but it does require that they be convertible into that
formation. This conversion process is called broadcasting in Numpy parlance.
Broadcasting allows Numpy to reshape a given matrix into whatever it needs to
be to make an operation work. For example, let’s assume we have our matrix from
above:

[[1 2 3]

[4 99 6]

[7 8 9]]

Now, let’s say that you want to add to this an integer matrix of a single dimension.
In	 true	matrix	math,	you	can’t	do	 this;	you	have	 to	add	matrices	 that	have	equal	
dimensions	 (or	 shapes,	 as	Numpy	calls	 them).	However,	Numpy	will	 attempt	 to	
make your array into the proper shape to accomplish the task. For example, in our
above	code,	let’s	say	that	we	give	it	a	new	matrix	to	add	that	looks	like	this:
matrix_add = [1, 0, 1]

In order to add this matrix to our existing matrix, we would need to increase the
number	of	rows	in	the	array	to	three.	In	addition,	we	need	to	fill	those	rows	with	
something. Numpy assumes that what you really wanted to do was stack that row
three	times	as	if	it	were:
[[1,0,1],

 [1,0,1],

 [1,0,1]]

So,	when	we	write	code	like	this:
matrix_add = [1, 0, 1]

print(matrix+matrix_add)

we are really adding a 3x3 matrix to an existing 3x3 matrix. The result is what you
would have thought it would be, another 3x3 matrix with all the elements added in
the	proper	places	(row	and	columns):

320 Python for Professionals

[[2 2 4]

[5 99 7]

[8 8 10]]

If you are not happy with the way Numpy chooses to resize a matrix to do the work
you want, you can always use the reshape method to put it into the format you are
looking at.

Finally,	there	are	Numpy	methods	for	working	with	specific	axes	of	the	matrix.	The	
sum() method, for example, can sum up all the values in a given row or column,
depending on which axis you choose.
print(matrix)

print(matrix.sum(axis=0))

print(matrix.sum(axis=1))

[[1 2 3]

[4 99 6]

[7 8 9]]

[12 109 18]

[6 109 24]

You can see from the above code that the axis zero represents the columns, so the
sum() function called for axis zero adds all the values down the column and places
it in that column of the result matrix. It works its way across the rows, whereas using
axis one will add all the values across a row and down the columns to produce a
result.

There is a great deal more to working with Numpy than what we’ve discussed in
this basic introduction. If you are looking for any sort of mathematical work, from
matrices to linear algebra, please don’t roll your own. The Numpy library and more
all-encompassing SciPy distribution can do it all, and it is not only well designed but
also well tested by programmers using it for years.

Logging
If you have spent any time in the professional software development world,
you know about logging. From the early days of using some variety of the print
statement to debug code or just output information about the application that is
running,	to	full	blown	web	servers	and	services	that	log	all	their	configuration	and	
error information to a central data store for customer support, logging is central
to	 the	development	 effort.	 It	 should	be	no	 surprise	 then,	 that	Python	provides	 a	
complete logging module for your use in professional application development.

Not Reinventing the Wheel 321

The logging module is built into Python and can be accessed by importing logging.
There are two sorts of logging available, default and custom. The default logger is
the one you see when you get an error, such as an exception, in the running of your
code.	You	might	see	something	like	this	when	running	a	unit	test,	for	example:

INFO: Traceback (most recent call last):

 File "/System/Library/Frameworks/Python.framework/Versions/2.7/lib/
python2.7/unittest/suite.py", line 70, in __call__

 return self.run(*args, **kwds)

 File "/System/Library/Frameworks/Python.framework/Versions/2.7/lib/
python2.7/unittest/suite.py", line 108, in run

The	first	line,	with	the	Traceback	information,	shows	the	level	of	the	log	statement.	
In this case, it is INFO. You can use debug, info, warning, error, and critical as logging
levels in the Python logger. What these levels really mean is up to you, they are
simply output by the logger. The reasons for the levels are that the logger can be set
to	only	output	statements	of	a	certain	level.	For	example,	you	might	turn	off	debug	
output when you are running your application in a production environment, or
even	turn	off	info	and	warning	statements,	focusing	only	on	the	more	serious	errors.

For the default logger, all logging is done to the console. You can capture this in
various ways on variousoperating systems by redirecting the standard output to a
file,	a	device,	or	whatever	you	wish.	To	use	the	logging	system,	you’d	do	this:
import logging

logging.info("About to start the program")

logging.debug("The value of the configuration item is found in config.json")

logging.error("This is a spurious error that will likely drive people
nuts")

Now, you might think that this would output all three lines, but in fact, the output
varies	 by	 your	 system.	On	my	 system,	which	 is	 configured	 to	 output	 errors,	 the	
output	is:

ERROR:root:This is a spurious error that will likely drive people nuts

This shows me the error line, who was running (root, in this case), and the error
description.	If	we	wanted	to	see	all	the	outputs,	we	could	change	the	configuration	
of	the	default	logger:

import logging

logging.basicConfig(level=logging.DEBUG)

logging.info("About to start the program")

322 Python for Professionals

logging.debug("The value of the configuration item is found in config.json")

logging.error("This is a spurious error that will likely drive people nuts")

This will output all three lines to the console because it is set to output anything
greater than the DEBUG level of logging.

Sometimes, particularly if you are developing custom Python packages, you will
want to create your own logs, so that the information is displayed in the log in the
way you need it to debug people’s issues with your package. In this case, you can
use a custom log.

One of the biggest advantages of using a custom logger for your package is that you
can	send	the	log	output	to	a	specified	file	just	for	your	logger:

logger = logging.getLogger("MyCustomLogger")

fh = logging.FileHandler('mycustomlogger.log')

fh.setLevel(logging.DEBUG)

logger.addHandler(fh)

logger.error("This is an error")

For	example,	with	the	above	code,	if	we	add	a	standard	logging	statement:
logging.error("This is an error that doesn't go to the file")

you	would	find	that	the	file	mycustomlogger.log contains the line This is an
error but does not contain the line This is an error that doesn’t go to the file.

You can add exception handling to your log output quite simply in the logger
module. You simply add the exc_info = true	 flag	 to	 the	 log	 statement.	 If	 an	
exception occurs, it will be printed out without you having to track it down and
show	it:

try:

 this_isnt_going_to_work = 1 / 0

except Exception as e:

 logging.error("Exception occurred", exc_info=True)

ERROR:root:Exception occurred

Traceback (most recent call last):

 File "/Users/mtelles/PycharmProjects/html/logging_examples.py", line
17, in <module>

 this_isnt_going_to_work = 1 / 0

ZeroDivisionError: division by zero

Not Reinventing the Wheel 323

Finally, you can change the way the data is output by overriding the Formatter for
the	log:
import logging

logging.basicConfig(format='%(asctime)s-%(levelname)s-%(message)s',

level=logging.ERROR)

logging.error("This is another error")

This formatter prints out the date and time of the error, the level of the error, and the
message that was passed to it. In this case, we’ve also restricted the error level which
is	suppressed	to	be	anything	below	error.	This	will	print	out	the	following:
2019-08-20 09:03:03,305-ERROR-This is another error

Configuration	needs	to	be	done	before	you	do	any	logging	or	it	won’t	apply.	So,	if	
we	do	some	logs	and	then	configure	it,	we	won’t	see	the	date,	time,or	level.

Unit test
One	of	the	biggest	differences	between	the	entry	level	developer	and	the	professional	
programmer is in writing tests for one’s code. A unit test is a form of white box
testing.	This	means	that	you	can	look	into	the	code	and	figure	out	what	should	and	
shouldn’t	be	going	on.	For	example,	consider	the	following	code:
def div_it(v1, v2):

 return v1/v2

Clearly,	this	silly	function	takes	two	arguments	and	divides	the	first	by	the	second.	
The	number	of	issues	here	is	significant,	but	let’s	take	a	look	at	a	naïve	approach	to	
testing this function using the Python unit test package.

First of all, if you have used test packages of other languages, Python is a bit unique
in	that	naming	is	a	big	part	of	the	process.	Test	files	should	be	named	beginning	with	
test_ for the test runner to pick them up when running from the command line. In
addition,	you	must	name	all	your	tests	prefixed	with	test_ as well. The standard
unittest	package	does	not	have	a	way	to	mark	a	specific	class	method	as	a	 test	
otherwise.	Classes	are	used	in	Python	for	managing	tests;	they	must	derive	from	the	
unittest.TestCase class in order to be run as a test.

Let’s look at a very simple example of some tests for the above function, using the
Python unittest	package:
import unittest

class TestTheFunction(unittest.TestCase):

 def test_with_one(self):

324 Python for Professionals

 assert div_it(1,1) == 1

def test_with_zero(self):

 assert(div_it(0,0)) == 0

if __name__ == '__main__':

 unittest.main()

In	 our	 test	 file,	 we	 first	 import	 the	 unittest package into our project. This is
necessary	to	get	all	the	classes	and	methods	of	the	package.	Next,	we	define	our	test	
class. In this case, the class is called TestTheFunction, indicating that we are testing
the function div_it in our code. The div_it	function	is	also	included	in	this	file	so	
that	we	don’t	have	to	import	it;	it	has	been	omitted	from	the	listing	simply	to	save	
some space on the printed page.

Our class contains two test methods, test_with_one and test_with_zero. No,
they	aren’t	brilliant	bits	of	testing	code,	and	you’d	likely	be	fired	if	you	wrote	this	sort	
of test in your own production code, but they illustrate what is needed to implement
a test.

Notice	that	we	have	a	check	if	this	is	the	main	file,	and	if	so,	to	call	the	unittest.
main function at the bottom. This is needed because the unittest module has to
scan	 the	 file	 for	 test	 classes	 (those	 derived	 from	unittest.TestClass) and test
methods	within	those	classes.	If	you	run	this	file	from	the	command	line:

python3 test_funcs.py

You	will	see	the	following	output,	indicating	that	the	tests	have	run:

==

ERROR: test_with_zero (__main__.TestTheFunction)

--

Traceback (most recent call last):

 File "test_funcs.py", line 15, in test_with_zero

 assert(div_it(0,0)) == 0

 File "test_funcs.py", line 6, in div_it

 return v1/v2

ZeroDivisionError: division by zero

--

Ran 2 tests in 0.000s

Not Reinventing the Wheel 325

Wait.	What	is	this?	An	error?	How	can	that	possibly	be?	All	sarcasm	aside,	it	is	clear	
that our little function has some issues. Division by zero is the most obvious one. But
our	test	caught	the	problem,	so	we	can	fix	it.	Let’s	modify	the	function:
def div_it(v1, v2):

 if v2 == 0:

 return 0

return v1/v2

Now,	when	we	re-run	the	tests:

Python3 test_funcs.py

..

--

Ran 2 tests in 0.000s

OK

We	see	that	everything	passes.	It	is	a	best	practice	to	first	write	a	test,	and	then	write	
the code to make the test pass. Continue to do that until you have exhausted all the
requirements for your feature.

You may have noticed the assert statements in the test methods. You can use any
standard assert statement in the code, as well as a few special ones for testing as
shown in Table 10.2:

Function name Meaning
assertEqual(a,b) Validates that a equals b
assertNotEquals(a,b) Validates that a is not equal to b
assertTrue(a) Validates that a is truthy
asserFalse(a) Validates that a is not truthy
assertIs(a,b) Validates that a is ba
assertIn(a, list) Validate that a is in the iterable list
assertIsInstance(a, t) Validate that a is of type t

Table 10.2: The unittest package assert

Now that we have understood the basics of the unittest package, it is time to use
the package to do some testing.

326			 Python for Professionals

Setup and teardown
In many cases, your tests will require you to do some initialization before running.
For example, you might have to connect to a database or start up some process in
the background. Doing so at the start of each and every test produces a lot of copy/
paste of code. For this reason, the Python unittest package provides the setUp and
tearDown methods, which can be overridden within your test class. If you do so,
the setUp will be called before each test method, and the tearDown method will be
called after each test method.

Similarly, the unittest package has methods that are called once before any test is
run,	and	after	all	tests	have	been	run:
class Test(unittest.TestCase):

@classmethod

def setUpClass(cls):

Initialize things for all tests

@classmethod

def tearDownClass(cls):

 # Do things after all tests have run

Note that the setupClass and tearDownClass must be implemented as classmethod
methods since they are statically called.

There are lots of other rather cool things in the unittest package if you plan to use
it in your code and it is strongly recommended that you do. Also, you should take a
look	at	the	full	definition	of	the	module.

If you don’t like putting the unittest.main call at the bottom of each of your test
files,	you	can	run	them	using	the	unittest	module	using	the	following	syntax:
python3 -m unittest <filenames>

This invokes the unittest package, calling its main function and passes along the
list	of	filenames	that	you	have	specified.	The	unittest	package	will	scan	each	file	
for test classes and within them for test methods that need to be invoked. It will
produce a list of all failed tests as well.

Mocking
When you hear the word mock, two things might come to mind. If you are not
a software developer, the odds are good you’ll think of someone taunting you or
making fun of you. You might even thing of fakes, like mock turtle. For software
developers, however, mock means fake, or shim, or any of the other terms that have

Not Reinventing the Wheel 327

been used in the software world for replacements for existing code. A mock, in
Python, is a way to insert your own code in place of existing code. That code maybe
yours, it may be in a third-party package you use, or it might even be in the wrapper
for the operating system you are running upon.

The Python mock library is made considerably easier by the way in which Python
works. Because everything is an object and every object is just a dictionary of attributes
and functionality, mocking an object just means replacing the bits of functionality
you want. For example, if you wanted to mock an object that is retrieved by a given
function in order to observe the behavior of the function when those settings are
used, it is very trivial to do so. Let’s look at a couple of examples of mocking.

First of all, you need to include the mock library. Mock is not a standard part of the
Python distribution, so you will use pip to install it. As with all things pip, you can
either install it in the system as a whole or in your personal project. It is generally
better	to	install	things	locally:
pip install –-user mock

Note the use of a double dash before the user flag.

The next thing we need is something to mock. Mocking a simple function, or even
classis very simple. What becomes a little more complicated is when the thing you
want to mock isn’t directly within your control. For example, consider the following
code	snippet:

def is_this_a_leap_day():

 m = datetime.datetime.today().month

 d = datetime.datetime.today().day

 if (m == 2) and (d == 29):

 return True

 return False

def do_something_with_leap_days():

 if is_this_a_leap_day():

 print("Doing something with a leap day")

else:

 print("Not doing anything with leap days")

The code that we are interested in testing here is the do_something_with_leap_
days function. This function is easy to test most of the time, since it is not a leap day,

328 Python for Professionals

and we could easily verify that the path for not a leap day works properly. We could
individually test the other path, but that might obscure something that happens
when it is a leap day. We could mock the is_this_a_leap_day function, but that
might hide bugs within that code. It is better to actually mock the system datetime
call and let the function work naturally given a new date and time. In general, it is
best to mock things as far down the calling chain as possible, since that will permit
you to observe changes all the way through the system, rather than just at the point
where you are concerned about.

So, how do we go about mocking the system call to datetime?	Again,	 the	 first	
thing we need to do is to import the mock package so that we have access to all of
its functionality. The mock package contains a class called Mock, not surprisingly,
which	does	all	of	the	work	of	mocking	items:
import mock

import datetime

Next, we need to set up the portion of the code we want to mock. We can do this in
a variety of ways, but you usually want to mock the simplest and most discrete item
you	need	to	modify:
def get_mock_today():

 print("Mock called")

 m = mock.Mock()

 m.month = 2

 m.day = 29

 return m

datetime.datetime = mock.Mock()

datetime.datetime.today.return_value = get_mock_today()

Let’s take a look at what is going on here. First of all, we created a simple function
just so we can illustrate what happens and print out some information. You don’t
have	 to	do	 it	 this	way;	 you	 could	 actually	 just	 override	 the	 return.	 The	 function	
simply sets the portions of the mock object that we want to return. Mock objects are
like dynamic objects in C# or similar things in Java. They can have any attribute you
want to be assigned to them and will return themselves in the format of a standard
Python object.

Once	the	function	is	defined,	we	need	to	assign	it	to	something.	We	do	this	by	creating	
another mock object and assigning it to the system datetime class instance. From
here, we need to tell the mock to return the values we want to the calling application.
This is done via the mock return_value attribute. When the mock object is invoked,
the return_value attribute is returned to the caller.

Not Reinventing the Wheel 329

If we call the function before we set up the mock, presuming that it is not a leap day,
we	will	see	the	following	output:
Not doing anything with leap days

Now,	if	we	install	our	mock	object	and	call	the	function	again,	we	see	a	very	different	
output:
Mock called

Doing something with a leap day

As	you	can	see,	we	have	modified	the	behavior	of	the	system	without	modifying	our	
code at all. This is incredibly useful for testing and debugging systems and should
be considered an essential part of your programming arsenal in Python.

There is another aspect of mocking that is worth discussing. Sometimes, it isn’t that
you want to change the behavior of a function or method in your application. You
may want to simply verify that a given piece of code was called properly. In Java, we
often do this sort of testing to verify that a dynamically loaded module was called
when the system responds to a given message. Otherwise, it is really hard to tell if
something was done correctly or not. The Python mocking library also has a way to
do	this.	Consider	the	following	code:

def a_function_that_has_to_be_called(a, b, c):

 return a+b+c

def a_weird_function_to_test(b):

 if b == False:

 return a_function_that_has_to_be_called(1,2,3)

A contrived example, yes, but it illustrates a point. We want to be sure that our
function a_function_that_has_to_be_called is called when the system is
running.	Note	that	we	don’t	want	to	change	the	behavior	of	the	function;	we	just	
want	to	verify	its	call.	Here’s	how	you	do	it	using	the	mock	package	in	Python:

myMock = mock.Mock(spec=a_function_that_has_to_be_called)

a_function_that_has_to_be_called = myMock

myMock.assert_called_with(a=1, b=2, c=3)

The myMock object is not passed to anything nor is it inserted into the call chain.
Instead, we are setting it up to model a given function using the spec= parameter.
This parameter tells the mock to wrap that object. When we reassign our local
function to be the function, the outer function will invoke our mock instead. We can
then verify that our mock was called. Note that we are not returning anything from
our mock, so the return from the outer function is just our mock object. If you want to
make sure everything works properly, you need to return a proper value in the mock

330 Python for Professionals

return_value. If you run this code, you will see no output since we aren’t printing
anything	and	the	mock	assert	doesn’t	fail.	Try	running	it	this	way:

myMock.assert_called_with(a=3, b=2, c=1)

Traceback (most recent call last):

 File "/Users/mtelles/PycharmProjects/html/mock_example.py", line 43,
in <module>

 myMock.assert_called_with(a=1, b=2, c=3)

 File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/
site-packages/mock/mock.py", line 932, in assert_called_with

 raise AssertionError(error_message)

AssertionError: expected call not found.

Expected: mock(a=1, b=2, c=3)

Actual: not called.

There are many uses for mocks, but the important aspects are how you should not
use them. You should only mock things outside your control. Never mock something
that you can easily modify. Do not mock the pieces of the code that you want to test,
only those that you are sure of.

Concurrency
In the software world, concurrency and threading are a generally big deal. While
Python is not generally used at low levels that require such things, there are many
cases where you will want to know how to use the concurrency packages in your
own applications. It is important to note that, especially in Python, CPU bound
applications	will	not	benefit	well	from	threading,	whereas	I/O	bound	applications	
will	 benefit	 greatly.	 Your	mileage	will	 always	 vary;	 do	 not	 assume	 that	 a	 badly	
written program will suddenly become usable due to speed gains from threading.

Let’s	look	at	a	set	of	very	simple	functions:

def print_names(names):

 for name in names:

 print("Hello {0}".format(name))

 time.sleep(1)

def reverse_name(names):

 for name in names:

 print("Goodbye {0}".format(name[::-1]))

time.sleep(1)

Not Reinventing the Wheel 331

Obviously, these are contrived functions intended to illustrate the point and not to be
used in some sort of production system. The functions themselves aren’t important,
merely that they do a fair amount of output and do very little computation.

We	can	run	these	functions	and	collect	some	metrics	about	them:

names = ['Anita','Barry','Christian','Daniel','Edward','Fred','George']

t1 = time.time()

print_names(names)

reverse_name(names)

t2 = time.time()

print("Time: {0}".format(t2-t1))

Of course, in this example, the two functions are being called sequentially, so the
time to execute them will be the combined time to run each one. If we look at the
output of the running of this code, you’ll see that this is clearly true, and that the
order	is	very	well	defined	and	obvious:

Hello Anita

Hello Barry

Hello Christian

Hello Daniel

Hello Edward

Hello Fred

Hello George

Goodbye atinA

Goodbye yrraB

Goodbye naitsirhC

Goodbye leinaD

Goodbye drawdE

Goodbye derF

Goodbye egroeG

Time: 14.048261880874634

Now, suppose we run them in threads. In Python, threading is done with the
threading	package	using	the	Thread	object.	Using	it	is	quite	simple;	you	just	supply	
the	function	and	the	arguments	to	the	function	to	the	thread:

332 Python for Professionals

from threading import Thread

t1 = time.time()

thread_1 = Thread(target=print_names, args=(names,))

thread_2 = Thread(target=reverse_name, args=(names,))

thread_1.start()

thread_2.start()

thread_1.join()

thread_2.join()

t2 = time.time()

print("Time: {0}".format(t2-t1))

If	you	run	this	code,	you	will	see	the	following	output:
Hello Anita

Goodbye atinA

Hello Barry

Goodbye yrraB

Hello Christian

Goodbye naitsirhC

Goodbye leinaD

Hello Daniel

Goodbye drawdE

Hello Edward

Goodbye derF

Hello Fred

Goodbye egroeG

Hello George

Time: 7.0181310176849365

Two things should be apparent from the output. First of all, the time is much less
than	the	first	case,	about	half	as	much	time.	This	 indicates	 that	 the	two	functions	
are being run more or less in parallel, something you want when you are doing
threading. Secondly, and more importantly, you notice that the order of operations is
quite	different.	In	some	cases,	you	will	see	that	the	outputs	from	the	first	and	second	

Not Reinventing the Wheel 333

functions just alternate. In some cases, that is not the outcome. Threads that need to
synchronize	on	things,	especially	data,	must	use	a	lot	of	effort	to	make	sure	they	stay	
in synch.

A few notes on Python threading. First of all, you will notice that there are three
steps for using threads in Python.

1. Create a Thread object with the function you wish to run in a thread, passing
along any arguments that you wish to pass to the function. Note that the
arguments parameter is a tuple, so if you only have a single argument, you
must pass it with a trailing comma.

2. Call the start method of the thread object, which will start the thread. If this
is	a	background	thread,	and	you	don’t	really	care	when	it	finishes,	this	is	all	
you need to do. This is bad practice, however, as it can leave your program
hanging when you try to exit.

3.	 Call	the	thread	join	method	to	wait	for	it	to	finish.

That’s all there is to it! It should be noted that the Thread class in Python is not really
multi-threaded, but instead uses a manager to switch between threads. Python
supports all the usual thread classes, such as semaphores, locks, and timers. There is
also a barrier class, used to keep multiple threads in sync. All of this is well beyond
the scope of this book, as there could be entire books on multi-threading in any
language along with all the pitfalls and advantages involved.

The emoji package
Sometimes, you add features that are critical to your application. Sometimes, you
add a feature that is just pure fun so that the user can get some enjoyment out of
what is otherwise a dreary day. The emoji	package	is	definitely	of	the	latter	variety.	
Emojis started as text-based emoticons, a way of showing an expression such as a
smile or wry grin, with a few characters like a semi-colon and a parenthesis. The
prototypical	emoticon	is	:)	looking	like	a	sideways	smile.

As software expanded and operating systems became more and more graphical,
and with the rise of mobile phone software, emoticons grew into emojis, which
are graphical in nature. The emoji comes from Japan, as one might guess from the
name. They came from Japanese phone manufacturers, who were trying to keep up
with their users who loved graphics. Looking at the emoticon, which was originally
a set of characters, and later an expanded ASCII character set, they chose to use
embeddable test that would be rendered in a standard way.

Python supports emojis via the emoji package, which is a third-party package
available	on	PyPI.	You	install	it	in	the	standard	way:

pip install emoji

334 Python for Professionals

There isn’t a lot to say about using emojis, they work pretty much the way you would
expect. To render an emoji in your code, you use the emoji.emojize method, with
a textual code embedded in the string passed to it. The actual code varies depending
on	the	emoji	you	want	to	display.	Here’s	an	example	of	how	you	would	output	a	
couple	of	emojis	on	the	console	line:

import emoji

print("This is a test :thumbs_up:")

print(emoji.emojize("This is a test :thumbs_up:"))

print(emoji.emojize("That was really funny!:grinning_face_with_big_
eyes:"))

Note	that	the	first	line	outputs	a	simple	string	with	no	emojis,	while	the	remaining	
two illustrate two of the possible codes (thumbs up and grinning face with big eyes).
How	they	render	on	your	specific	system	varies,	but	the	idea	is	always	the	same.	If	
you	want	to	see	all	the	emoji	shortcuts,	you	can	use	this	code:

for k, v in emoji.UNICODE_EMOJI.items():

 print(v)

As you might expect, the emoji package is used quite heavily in social media
applications!

The pprint package
The pprint package is one of the utility packages that you don’t know you need
until you need it. The pprint package allows you to print things in an organized
fashion. If you are retrieving json data from a REST service, for example, it is painful
to look at the data when it is just spewed out onto the console. Consider, for example,
the	following:

dict = {

 "name": {

 "first": "matt",

"middle": "a",

 "last": "telles"

},

"address": {

 "city": "new york",

"state": "ny",

Not Reinventing the Wheel 335

"zip_code": "10012",

"street": "1313 Mockingbird Lane"

},

"age": "29"

}

print(dict)

Using	the	standard	print	function	results	in	the	amazingly	unhelpful	output	of:

{'name': {'first': 'matt', 'middle': 'a', 'last': 'telles'}, 'address':
{'city': 'new york', 'state': 'ny', 'zip_code': '10012', 'street': '1313
Mockingbird Lane'}, 'age': '29'}

What is a part of what here? Very hard to track down which element is a component
of which parent using this output. Using the pprint package, however, makes it
extremely	legible:

import pprint

pprint.pprint(dict)

{'address': {'city': 'new york',

 'state': 'ny',

 'street': '1313 Mockingbird Lane',

 'zip_code': '10012'},

'age': '29',

'name': {'first': 'matt', 'last': 'telles', 'middle': 'a'}}

Here,	we	can	see	exactly	what	we	are	trying	to	do,	with	the	address, age, and name
components lay out and their children inside them indented. You can do the same
with JSON strings or any other sort of structured data.

The requests package
Saving the best for last, we have the requests package. The requests package in
Python allows you to make REST calls to any service that talks REST out there in the
wild. It works with virtually any service, whether or not authentication is required,
with or without cookies, using any sort of encoding or processing.

REST calls break down into four ‘verbs’. The verbs represent the kind of functionality
you wish the service to implement. They are GET, PUT, POST, and DELETE. These

336			 Python for Professionals

four verbs roughly correspond to the four CRUD operations, GET is the same as
READ, POST is the same as CREATE, PUT is the same as UPDATE, and DELETE is the
same as its CRUD acronym piece.

To	use	the	requests	library,	you	need	to	install	it	into	your	Python	environment:
pip install requests

You	then	import	the	package,	as	usual,	with:
import requests

To	see	how	it	works,	let’s	grab	the	source	code	to	the	Google	search	home	page:
import requests

from pprint import pprint

req = requests.get('http://www.google.com')

print(req.content)

The output from this will be the same thing you would see if you did a view source
of	the	page	in	a	web	browser,	which	looks	something	like	this:
b'<!doctype html><html itemscope="" itemtype="http://schema.org/WebPage"
lang="en"><head><meta content="Search the world\'s information, including
webpages

Obviously, we’ve omitted a big chunk of it, but you can see that this is the head of
the page. The get()	method	retrieves	whatever	is	at	the	URL	specified	and	returns	
it.

We can retrieve data using parameters as well. For example, the well-known jsontest.
com site is used to test REST libraries. We can use this to test requests by making a
request	for	the	current	time	and	date:
Test getting the time and date from jsontest

req = requests.get('http://date.jsontest.com')

pprint(req.json())

This	snippet	will	output	the	current	date	and	time	in	JSON	format:
{'date': '08-26-2019',

'milliseconds_since_epoch': 1566831702564,

'time': '03:01:42 PM'}

Obviously,	your	output	will	be	different	based	on	the	time	you	make	the	request,	but	
you see the format of the returned JSON.

You can do POSTs in requests as well, quite easily. The aforementioned jsontest.com
site supports a service called validate, which will accept an input JSON string and

Not Reinventing the Wheel 337

tell you whether or not it is valid. Let’s try it with the string we got back from the
date request above, to see if they send us a valid date, shall we?

Test validatting json

json_data = req.json()

req = requests.post("http://validate.jsontest.com?json="+str(json_data))

print(req.content)

'{\n "size": 3,\n "parse_time_nanoseconds": 112803,\n "object_or_
array": "object",\n "validate": true,\n "empty": false\n}

Isn’t it nice to know that they return valid JSON?

You might wonder how you send data to a service that expects its information to be
packaged	into	the	body	of	the	request.	It	is	almost	as	easy	as	pie	in	requests:

def generalized_post(url, json_data):

 headers = {'content-type': 'application/json'}

 response1 = requests.post(url, json=json_data, headers=headers)

 return response1

This simple function wraps up all of the request post requirements into a single
callable unit. You pass it the JSON data you want to post and the URL to post to, and
it sets up the headers and sends the data. Note the use of the json parameter in the
POST command. This puts the data into the body of the request, rather than as part
of the URL. The headers parameter sets certain header values that you might need to
set. In this case, we are telling the service that we are sending data in JSON format.
You might also include things here like the user name, password, or a token used to
identify the caller to the system.

The headers parameter is set upon return as well, so that you can check for a CSRF
token, for example, when you do a login to a system. You can easily examine the
returned headers in the response object. Finally, if you need to set cookies, you use
the	cookies	parameter:

my_cookies = { "cookie_1": "some-cookie-value" }

response = requests.post(some_url, cookies=my_cookies)

The nicest part about the requests library is that it is amazingly simple to use for
simple	cases	and	makes	it	very	easy	to	implement	difficult	cases	as	well.	If	you	are	
using REST services in your environment at work, you should seriously consider
using the requests library to interact with and to test those services.

That concludes our somewhat whirlwind tour of some of the most popular Python
packages out there for use in your applications. Remember, do not reinvent the

338 Python for Professionals

wheel! First, consult PyPI to see if a package already exists to suit your needs, then
install it and use it rather than writing your own.

Conclusion
In this chapter, we’ve gone through many of the major packages for the Python
programming languages. These packages have extensive usage and have been well
defined	and	well	maintained	for	years.	You	should	try	very	hard	to	see	if	a	package	
exists before you decide to write your own. If you do so, not only will you have to
maintain your own code, but you will likely make the same mistakes that have been
made in the past!

In	our	final	chapter,	we’ll	explore	a	set	of	 tricks	and	tips	 that	will	help	you	write	
more professional Python.

Questions
1. Why should we use existing packages instead of writing our own?

2. What is the itertools package and why is it used?

3. Why use Flask instead of writing our own web server?

4.	 How	can	we	display	emojis	in	our	code	easily?

5. What package is used for more elegant displays of output?

Chapter 11
General Tips and

Tricks

Introduction
Sometimes the most important things you learn from a book are the little tips and
tricks that the experienced developers know that you haven’t yet encountered. In
this chapter, we’ll look at those things that will help you in your professional career.
From determining which version of Python you are using to determining the size of
your objects in memory for optimization, this chapter will help you in your work.

Structure
Here	are	the	things	you	will	learn	in	this	chapter:

●	 Implementing	a	switch	statement	using	dictionaries
●	 Remove	all	duplicates	from	a	list
●	 Determine	the	size	of	your	objects	in	memory
●	 Find	the	most	frequent	item	in	a	list
●	 Creating	an	enum in a class
●	 Detect	Python	version.
●	 Using	the	_	(underscore)	operator
●	 Discovering	where	a	module	is	imported	from	

340 Python for Professionals

●	 Swapping	two	values	without	an	intermediate	temporary
●	 Using	the	classmethod decorator to create static methods
●	 Using	the	**kwargs to pass a named list of parameters
●	 Type	hints
●	 Finding	the	day	of	the	week	using	the	calendar	module
●	 Working	with	regular	expressions

Objectives
By the end of this chapter, you should have picked up at least a few tips and tricks
that you will be using in your day to day programming in Python. You’ll understand
better the classmethod decorator, understand how to use type hints to tell other
developers the best way to use your code, and translate several concepts from your
previous languages, such as enum and switch statements, to Python.

Implementing a switch statement with
dictionaries
Switch statements exist in multiple other languages, and provide a way to avoid
detailed if...elsestatements.	We’ve	 briefly	discussed	 the	 issue	 of	 Python	not	
having the equivalent of a switch statement. In C#, or C++, or Java, you can write
code	like	this:
switch (some_value) {

case something1:

case something2:

}

Python has no such construct, which leads to some ugly code in your own applications
that	can	look	like:
if some_value == something1:

 # Do something

elseif some_value == something2:

 # Do something else

This may not appear too bad, but consider the case of an application that has
potentially dozens or more possible values to check. The if...elseif...else
statements quickly get out of hand and often lead to errors because problems are
introduced during maintenance coding. Someone might add an and, or an or to a if
statement and cause the whole house of cards to collapse.

General Tips and Tricks 341

We looked at one alternative, which is to use a dictionary of function pointers to solve
the problem. For example, consider the case of writing a text based game where the
end user types in a command and the application responds to it. We might have
code	that	looks	like	this:
done = False

def handle_north():

 print("Moving north")

def handle_south():

 print("Moving south")

def handle_east():

 print("Moving east")

def handle_west():

 print("Moving west")

def handle_quit():

 global done

 done = True

command_handlers = {

 'n': handle_north,

 'north': handle_north,

 's': handle_south,

 'south': handle_south,

 'e': handle_east,

 'east': handle_east,

 'w': handle_west,

 'west': handle_west,

 'quit': handle_quit,

 'q': handle_quit

}

def command_processor(cmd):

 cmd_func = command_handlers.get(cmd, None)

 if cmd_func == None:

 print("Invalid command: {0}".format(cmd))

342 Python for Professionals

 else:

 cmd_func()

while not done:

 cmd = input("Enter a command: ")

 command_processor(cmd)

Now, there is nothing wrong with this code. It works, it is reasonably Pythonic,
and it is fairly easy to read. We could make this a little nicer by wrapping the code
up	 into	 a	 class,	 so	 that	we	 could	 reuse	different	 command	handlers	 for	different	
programs, or even change the overall architecture of the command handler without
anyone	outside	the	class	seeing	the	difference.	This	is	an	important	aspect	of	Python	
OOP. Allow the user to get the job done without having to know the internals of the
system.	Let’s	see	what	a	class	based	approach	might	look	like:

class CommandProcessor:

 def __init__(self):

 self.done = False

def handle_north(self):

 print("Moving north")

 def handle_south(self):

 print("Moving south")

 def handle_east(self):

 print("Moving east")

 def handle_west(self):

 print("Moving west")

 def handle_quit(self):

 self.done = True

 def process(self):

 while not self.done:

 cmd = input("Enter a command: ")

Convert this into a method

attr_name = 'handle_' + cmd

method_handler = getattr(self, attr_name, None)

if method_handler == None:

General Tips and Tricks 343

 print("Invalid command: {0}".format(cmd))

else:

 method_handler()

Main program goes here

c = CommandProcessor()

c.process()

You can probably see that this is essentially the same code, just wrapped up in a
class. Rather than using a dictionary, we take advantage of the fact that we can get
method names as attributes within the class structure. We could have done this with
functions, but then we run the risk of picking up a completely unrelated function in
our system.

Of course, this being Python, there is always another alternative. In this case, let’s
borrow from our OOP programming language siblings and not worry about any
sort	of	Pythonic	magic	to	find	our	handlers.	We’ll	use	base	classes	with	a	single	class	
to	do	all	the	handling:

class CommandHandlerManager:

 command_handlers = {}

 def __init__(self):

 pass

 def register(self, command_type, class_handler):

 if command_type not in self.command_handlers:

 self.command_handlers[command_type] = class_handler

 return self

 def fetch_handler(self, command_type):

 if command_type in self.command_handlers:

 return self.command_handlers[command_type]

 return None

class BaseCommandHandler(object):

 def __init__(self):

 pass

 def handle_command(self):

 pass

class NorthCommandHandler(BaseCommandHandler):

 def __init__(self):

344 Python for Professionals

 super().__init__()

 CommandHandlerManager().register('north', self)

 CommandHandlerManager().register('n', self)

 def handle_command(self):

 print("Moving North")

 return False

class QuitCommandHandler(BaseCommandHandler):

 def __init__(self):

 super().__init__()

 CommandHandlerManager().register('quit', self)

 CommandHandlerManager().register('q', self)

 def handle_command(self):

 print("Quitting")

 return True

class Game:

 def __init__(self):

 NorthCommandHandler()

 QuitCommandHandler()

 def process(self):

 done = False

 while not done:

 cmd = input("Enter a command: ")

 hndlr = CommandHandlerManager().fetch_handler(cmd)

 if hndlr == None:

 print("Invalid command")

 else:

 done = hndlr.handle_command()

g = Game()

g.process()

What	is	different	in	this	case?	We	aren’t	using	any	magic	to	retrieve	our	handlers,	
rather they register themselves with a single manager class. There is a slight bit of
trickery here in that we use a static class variable to manage the handlers, this is so
that we cannot worry about keeping a singleton object around as we would have to
do in other languages.

General Tips and Tricks 345

The big advantage to this system is that we can extend it easily without any code
modifications.	If	we	wanted	to	handle	another	command,	we’d	simply	create	a	new	
class that handled whatever we wanted and register it with the command handler.
The remainder of the program would continue to work exactly the way it did. This is
a nice step up from the class wrapper, because we would have to add new methods
to	the	class	in	the	second	example	to	add	new	commands.	Here,	we	can	just	add	a	
brand new class that knows nothing about the others. In fact, we could use dynamic
programming	to	load	new	classes	from	external	files	if	we	really	wanted	to.

Remove duplicates from a list
It is inevitable, if you have a list of items that you are going to end up with duplicates.
Whether	the	list	is	of	emails	for	a	campaign,	or	account	identifiers	for	processing,	
there is always some danger in processing the same item twice. It may mean
annoying a customer, which is bad, or in double billing someone, which is really a
disaster. For this reason, de-duplicating a list is one of the most common things you
can do in programming. Naturally, Python makes it easy to do this, and provides
you with a vast set of ways to do it. Let’s look at a few options.

For	simplicity,	we	will	start	with	a	list	of	integer	values	that	contains	some	duplicates:
Given a list with duplicates

list_with_duplicates = [1,2,3,12,1,2,3,4,5,6,1,2,3,7,8,9]

The	first	approach	might	be	a	simple	brute	force	approach:
list_without_duplicates = []

for pd in list_with_duplicates:

 if pd not in list_without_duplicates:

 list_without_duplicates.append(pd)

print(list_without_duplicates)

[1, 2, 3, 12, 4, 5, 6, 7, 8, 9]

As you can see, this method works. It has some performance issues for large lists,
since you are essentially creating a full copy of the list. Surely we can do better than
that?	We	can,	in	fact,	do	somewhat	better	than	that.	Let’s	try	a	different	method,	this	
time	using	a	dictionary	to	hold	our	intermediary	values:

Convert the list to a dictionary

dictionary_without_duplicates = dict(zip(list_with_duplicates, list_
with_duplicates))

print(dictionary_without_duplicates)

{1: 1, 2: 2, 3: 3, 12: 12, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9}

346			 Python for Professionals

Once again, this works, and has the advantage of taking less space than duplicating
the entire list. Ofcourse, we still need to convert it back to a list when we are done,
which might be somewhat painful, since we must extract the keys and add them to
a list.

A third alternative is to use a set in place of a dictionary, since a set has the property
that	it	does	not	contain	duplicates	by	its	nature.	Knowing	this,	we	probably	should	
have started with a set rather than alist, but the presumption here is that the list
came from something that needed the duplicates at the time.
Convert to a set

list_without_duplicates = list(set(list_with_duplicates))

print(list_without_duplicates)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 12]

Again, this works and has the advantage of less memory and a more compact
format. There is an issue here, however, that might not be apparent. Looking at
the	first	output	compared	with	the	rest	of	them,	you’ll	see	a	glaring	difference.	The	
dictionary and set both fail to maintain the order of the elements. If you don’t care
about the order, that’s no big deal, but in many cases you do, such as when you are
processing	a	list	of	events.	Let’s	see	what	we	can	do	about	that:
interlist = {}

list_without_duplicates = [interlist.setdefault(x, x) for x in list_with_
duplicates if x not in interlist]

print(list_without_duplicates)

[1, 2, 3, 12, 4, 5, 6, 7, 8, 9]

Once again, this is pretty fast, since it uses a list comprehension to rebuild our list
into a dictionary which is then converted back into a list. There’s a fair amount of
overhead,	 and	 this	 isn’t	 really	 that	different	 from	 the	dictionary	 approach,	 but	 it	
does maintain order.

Finally, we can use a collection that was built to be optimized for exactly this purpose.
With Python 3.5 and above, the OrderedDict class was added, which is a dictionary
that maintains its order, as its name would suggest. We can use this to do the same
job:

from collections import OrderedDict

list_without_duplicates= list(OrderedDict.fromkeys(list_with_
duplicates))

print(list_without_duplicates)

[1, 2, 3, 12, 4, 5, 6, 7, 8, 9]

General Tips and Tricks 347

This approach is fast, it is relatively compact, and it maintains order. So, you can
select what works best for your situation, and doesn’t require you to reinvent the
wheel.

Determine the size of your objects in
memory
Sometimes, programming is not about the inputs from the user, or the outputs to
disk or even the processing of data. Sometimes, programming is about optimization
and worrying about memory and disk space usage. It isn’t a great idea to optimize
too much when you are working with Python, as the language itself just isn’t made
to	be	overly	memory	efficient.	To	get	an	idea	of	why	that	is,	let’s	look	at	the	size	of	
various simple objects in Python.

To determine the size of an object, you use the sys.getsizeof() method, after
importing the sys	package.	Let’s	look	at	a	few	to	get	a	feel	for	it:

import sys

print("An Integer:")

i = int(100)

print(sys.getsizeof(i))

print("Empty string:")

empty_string = ""

print(sys.getsizeof(empty_string))

print("A normal string")

s = "Hello world"

print(sys.getsizeof(s))

print("Increasing string:")

for i in range(0,5):

 empty_string = empty_string + chr(i)

 print(sys.getsizeof(empty_string))

348 Python for Professionals

The output from this code snippet is shown in Figure 11.1:

Figure 11.1: Printing the size of objects

There are some interesting things to take away from this. First of all, the size of an
integer is 28 bytes, which is considerably higher than any other language you might
work in. In C++, for example, even along integer is only about 8 bytes. Why the
massive overhead? Remember, that everything in Python is an object. Thus, every
object	has	all	of	the	stuff	that	goes	along	with	object.	It	has	a	name,	and	a	class,	and	
a dictionary of attributes. That adds up.

Next up is the string class, which you’ll see is even bigger. An empty string is 49
bytes. That’s rather large, and should make you think twice about creating multiple
strings to concatenate them together later. Admittedly, 50 bytes here or there is just
not that important in today’s multi-gigabyte environments, but they do add up
eventually. Notice also that each character added to the base empty string only adds
one byte (assuming a single-byte character set) to the overall total, so there is really
no harm to long strings.

General Tips and Tricks 349

Next up are dictionaries, which are one of the more fundamental types in Python.
Let’s	look	at	the	overhead	of	a	dictionary	that	is	empty,	and	one	with	keys:

print("Empty Dictionary:")

dict = {}

print(sys.getsizeof(dict))

print("Dictionary with key:")

dict['key1'] = 'value1'

print(sys.getsizeof(dict))

Empty Dictionary:

240

Dictionary with key:

240

Now that’s interesting, isn’t it? The size of a dictionary with a single key is the same as
an	empty	dictionary!	How	can	that	possibly	be?	The	answer	lies	in	how	dictionaries	
are implemented. Each dictionary has a hash table built into it to store keys and their
values. When a dictionary is initially created, that hash table is allocated for use so
that	 each	 additional	 key	does	 not	 add	 significant	 time	 to	 allocate	more	memory.	
Dictionaries are allocated in blocks, so until you exceed a single block, the size will
not change.

Sets	are	quite	similar,	having	a	base	size	that	is	expanded	as	you	add	to	them:

print("Set:")

set1 = set()

print(sys.getsizeof(set1))

Set:

224

Since everything is an object, you might be wondering what the overhead of creating
your	own	classes,	and	derived	classes	might	be.	Let’s	look:

print("Basic class:")

f = Foo()

print(sys.getsizeof(f))

class DerivedFoo(Foo):

350 Python for Professionals

 def __init__(self):

 super().__init__()

print("Derived Class")

df = DerivedFoo()

print(sys.getsizeof(df))

Basic class:

56

Derived Class

56

Likewise, you might think that a dictionary that contains another dictionary would
be much larger than a single dictionary, right?

print("Dictionary containing dictionary")

dict_with_dictionary = {}

dict_with_dictionary['test'] = {

 'a': 1,

 'b': 2

}

print(sys.getsizeof(dict_with_dictionary))

Dictionary containing dictionary

240

That doesn’t make sense, does it? In fact, it doesn’t make sense at all. But let’s keep
going	and	maybe	we	can	figure	out	what	might	be	going	on	here.

print("Decimal")

import decimal

d = decimal.Decimal()

print(sys.getsizeof(d))

Decimal

104

So decimals are larger than integers, since decimals contain more information, this
makes	sense:

General Tips and Tricks 351

print("List:")

l = [1,2,3,4,5,6]

print(sys.getsizeof(l))

print("List 2")

l2 = [decimal.Decimal(100), decimal.Decimal(200)]

print(sys.getsizeof(l2))

List:

112

List 2

80

Wait, we know that a Decimal object is fairly large, so why is a list of them smaller
than a list of integers? The answer lies in how getsizeof	works.	For	example:
list_1 = []

print("Empty list:")

print(sys.getsizeof(list_1))

Empty list:

64

So,	the	overhead	of	a	list	object	is	64	bytes.	Our	list	with	six	elements	in	it	has	112
byte, which is 48 bytes more than the empty list. The list with two Decimal elements
in it is 80, which is 16 bytes more than the empty list. That would mean the size of a
single Decimal is 8 bytes? That makes no sense, since we looked at Decimal and they
were well over 100 bytes. So why are we getting these silly answers? The getsizeof
method returns a shallow evaluation of the object passed to it. It does not traverse
the data structure to see how big each elements in it is, it treats each element in it (the
length of the structure) as containing only pointers. Each pointer in Python is eight
bytes, so you can see how the math works.

What	if	we	wanted	to	find	the	actual	size	taken	up	by	a	list?	We	could	do	something	
like	this:

size = sys.getsizeof([])

for li in l2:

 size = size + sys.getsizeof(li)

print("Size of list and elements: {0}".format(size))

Size of list and elements: 272

352 Python for Professionals

So, the size of our list of Decimal values is 288 bytes. Since the base list size is 64
bytes, and each Decimal object is 104 bytes, that means that the total stored in the
list is 64+104+104, which is 272, which is the correct value. This method won’t work
if the objects stored in the list are containers themselves, since again, you will only
get the size of the container plus the size of a pointer for each element, but it works
well to illustrate the point.

Find the most frequent item in a list
We’ve	all	been	there,	having	to	find	that	item	that	occurs	most	frequently	in	a	data	
structure. Maybe it is the most purchased item in your shopping site. Perhaps it is
the web page that gets hit the most often. If you are a tester, it could easily be the test
that has the most failures over the last year. Whatever it is, you want an easy way to
find	the	data	you	need,	and	Python	is	here	to	help	you.

The problem is, your data isn’t always something simple. Take a look at these two
simple	lists:
list_1 = [1,2,3,2,3,2]

list_2 = ['a', 'b', 'a', 'b', 'c']

Obviously, we can’t do simple math on the individual items, since the second list
contains	 characters.	 It	 could	 contain	 the	words	 of	 a	 book,	 and	 you	want	 to	 find	
the most commonly used word in the work. Maybe it is a list of UPC values for
commonly purchased items. Whatever it is, about all we canguarantee is that the
data is probably comparable, in that we can compare one of the items to another. Yet,
we	need	to	find	the	most	common	element	in	the	iterable.

Your	 first	 choice	 might	 be	 a	 simple	 brute	 force	 approach.	 It	 would	 likely	 look	
something	like	this:

def most_common_brute_force(l):

 # Find the counts of all elements

 dict_of_counts = {}

 for i in l:

 if i in dict_of_counts.keys():

 dict_of_counts[i] = dict_of_counts[i] + 1

else:

 dict_of_counts[i] = 1

 max_count = -1

 max_value = -1

General Tips and Tricks 353

 for k, v in dict_of_counts.items():

 if v > max_count:

 max_count = v

 max_value = k

 return max_value

print(most_common_brute_force(list_1))

print(most_common_brute_force(list_2))

2

A

As you can see, the brute force method works, but it is a bit ugly and not terribly
efficient.	We	reduce	the	full	list	to	a	dictionary,	which	as	we’ve	seen	is	considerably	
bigger in size but contains fewer elements. We then iterate over the dictionary
elements, meaning that we go through the entire list two times. Surely there is
something a bit more Pythonic?

In fact, we can use one of the packages we looked at last chapter, the itertools
package,	to	do	a	lot	of	the	work	for	us:

import itertools

def most_common_itertools(l):

 # First, sort the list

 sl = sorted(l)

 # Next, get all the groups

groups = itertools.groupby(sl)

 # Find the most common

 max_count = -1

 max_value = -1

for k,v in groups:

 count = sum(1 for _ in v)

if count > max_count:

 max_count = count

max_value = k

 return max_value

354 Python for Professionals

print(most_common_itertools(list_1))

print(most_common_itertools(list_2))

This	also	works,	and	produces	the	same	output.	It	is	slightly	more	efficient	and	a	bit	
more	Pythonic.	Also,	please	note	the	line	which	reads:
count = sum(1 for _ in v)

This	is	a	really	nice	and	efficient	way	to	retrieve	the	count	of	items	in	a	generator,	
presuming that the generator actually terminates (for example, a generator that
generates Fibonacci series values would not). It is quite Pythonic and easy to read.

Of course, all of these have the same problems, we are iterating over the items too
many times. The groupby method, while easy to use, isn’t always the best choice for
things like this, since it was designed to be a more general solution to grouping data.
So how should we best do this? It turns out that the designers of Python considered
this problem when they were designing Python 3, and added a new set of collections
to the language standard packages. One of these packages includes a class called
Counter	which	does	exactly	this:
from collections import Counter

def most_common_counter(lst):

 data = Counter(lst)

 return data.most_common(1)[0][0]

print(most_common_counter(list_1))

print(most_common_counter(list_2))

This	is	a	great	way	of	finding	the	most	common	element,	and	should	be	used	so	long	
as you have access to the Counter class. If you don’t, there’s another way to do it
that	is	almost	as	efficient,	if	a	little	harder	to	read:

def most_common_using_comprehension_and_max(l):

 return max(((item, l.count(item)) for item in set(l)), key=lambda val:
val[1])[0]

Whichever method you choose, please don’t brute force the solution unless there is
no other choice. That’s just reinventing the wheel.

Creating an enum in a class
Once upon a time, we used either strings or numeric values to represent values. We
might	have	had	something	like	this	in	C:

if (x == 0) { // State: Off

General Tips and Tricks 355

 Set_state(1); // State: Booting

}

This was ugly, it was confusing, and if someone changed the order of the state in
your system everything would break. The designers of C (and C++, and Java, and
C#)	decided	 that	 it	made	more	 sense	 to	 have	 a	 different	 sort	 of	 value,	 called	 an	
enumeration, not to be confused with enumerating the values in an iterable. An
enum	replaced	numeric	constants	with	human-readable	names:
enum {
 OFF = 0,
 BOOTING,
 RUNNING,
 SHUTDOWN
} State;

In the early editions of Python, there was no such thing as an enum, so we ended up
with the same ugly kinds of code that we had in the early days of C. With Python 3
(and later backported into Python 2) we have the new and shiny Enum class. It isn’t
quite the same as an enumeration in the other languages, but you can use it in a very
similar	fashion.	Here’s	how	you	do	it:

from enum import Enum

class MyClass:

 State = Enum('State','Off Booting Running ShutDown')

 def __init__(self):
 self.my_state = MyClass.State.Off

def set_state(self, state):
 if state in MyClass.State:
 self.my_state = state

 def get_state(self):
 return self.my_state

mc = MyClass()
print(mc.get_state())
mc.set_state(MyClass.State.Running)
print(mc.get_state())
print(mc.get_state().name)

356			 Python for Professionals

Note that Enum is a class that produces an enum-like structure. We can embed the
enum in our own class or create one as a public class that is derived from Enum that
can be used in multiple classes. Note that we assign the values of the State enum
class as strings, but they appear to be constants. This is Python magic but it makes
the code much easier to read. Also notice that we can check to see if a given value is
in an enumeration, since trying to set an enumerated value that isn’t there will cause
a KeyError exception. Finally, you can get the human-readable name to print out by
referencing the name portion of the class instance.

Detect Python version
Python	is	generally	agnostic	of	versions.	In	most	upgrades,	the	changes	are	either;	
extensions, adding new functionality or functions, or they are brand new, with
no ties to the past. There are, however, some things that require you to actually
know about the version of the system you are using. For example, if you are using
a language feature that only exists in a later version, you don’t want to call it in an
earlier version. While syntax issues, like the parentheses around a print() function
call	 generally	will	 not	work	 at	 all,	 some	 things	will	work	differently	 or	 produce	
strange results when called in a previous version. In order to make your code safe
for all versions, you need to be able to detect what version of the interpreter you are
using and adapt to them. In this tip, we’ll explore just how to do that.

For this example, we will take advantage of the fact that the integer division changed
between Python 2 and Python 3. In the earlier version, integer division returned the
truncated result. For example, dividing one into two gave you a result of zero, since
the result is a fraction less than one. Dividing three by two gave you one, since the
actual result was one and a half. In Python 3, however, the result was exactly what
you	would	expect,	 a	half	 in	 the	first	 case	 and	one	and	a	half	 in	 the	 second	 case.	
In order to get the same result in both cases, you needed to cast your integers to
floating	point	numbers.	How	do	you	know,	though,	to	do	this?	You	use	the	sys.
version information:

import sys

print(sys.version_info)
i_1 = 3
i_2 = 2
result = 0
if sys.version_info.major != 3:
 result = i_1 / i_2
else:
 result = i_1 / i_2

print(result)

General Tips and Tricks 357

If you run the above code in version 3, you’d see 1.5 as the output. If you ran the
above code in Python 2. you’d see 1.0. This isn’t really a safe change especially if
you	are	checking	the	result.	So,	to	be	safe,	we’d	modify	this	code	to	be:
if sys.version_info.major != 3:

 result = float(i_1) / float(i_2)

else:

 result = i_1 / i_2

As	a	side	note,	if	the	minor	version,	such	as	the	7	in	Python	3.7	or	the	4	in	Python	
3.4 matters to you, because of a package you are using, you can check the sys.
version_info.minor setting to know which one you are using.

Using the _ (underscore) operator
The underscore (_) operator in Python is used when you need a placeholder for
something,	but	don’t	really	care	about	what	it	gets	filled	in	with.	There	are	many	
examples of why you might want to use the underscore, such as not cluttering up
your code with variables that are never used, or avoiding warnings from some
interpreters and compilers about unused variables. One of the most common reasons
to use it, and one you should become accustomed to seeing is in a loop that processes
multiple	return	values.	Imagine	you	had	code	that	did	something	like	this:

def function_that_returns_multiple_values(x):

 return x*2, x*3, x+1

for i in range(0,5):
 square, cube, added_one = function_that_returns_multiple_values(i)
 print(square, cube)

Obviously, this code calls some function that returns three values for whatever
reason. We, however, only care about two of them. So, we have this variable called
added_one hanging out there for no purpose.

We	can	re-write	this	snippet	this	way,	to	avoid	that	added	variable:

def function_that_returns_multiple_values(x):

 return x*2, x*3, x+1

for i in range(0,5):
 square, cube, _ = function_that_returns_multiple_values(i)
 print(square, cube)

358 Python for Professionals

The code still works, and still does what it used to, but no longer has that messy
variable name that never gets used again. You might ask, if you are only using a
single piece of the returned variable list, can you use the underscore multiple times?
The answer is absolutely.
for i in range(0,5):

 square, _, _ = function_that_returns_multiple_values(i)

This is seen in a lot of existing Python code out there, so knowing what it is will help
you in a code interview or in a review of someone else’s application source.

Discovering where a module is imported
from
Although it is rarely needed when actually writing code, it can be very useful to
be able to track down where a given function or module is being imported from
when you are debugging applications. As this information often isn’t needed until
the program is written, it can be important to be able to document and list where
each	piece	of	your	code	comes	from.	This	helps	you	to	find	out	if	you	are	importing	
the wrong version of something, or if the module you have imported has changed
over time. Fortunately, since Python needs that information as well, it is very easy to
get at it for your own purposes.

For example, consider the idea of importing a piece of the requests package that we
looked at in the last chapter. We can see where it is being used by writing code like
this:

import requests

print(__name__)

import sys
d = sys.modules['requests']
print(d.__file__)

This will tell us the name of the current module (__name__) and then will look up
the requests module in the system modules list. This tells us exactly which one is
used, since it is the one that the Python interpreter will use. From there, we can print
out	the	actual	file	that	contains	the	package.	Note	that	since	we	are	looking	at	the	
package as whole, the name will be the __init__	file	that	is	set	up	for	the	package	
as we’ve done in the past.

What if you wanted to print out the same information for your own functions?
Support that you know that a function was imported from somewhere, but you

General Tips and Tricks 359

aren’t sure which place? This can happen when you have name collision, and want
to be sure you have the right version. Let’s create a simple utility function that does
this	for	you:

def print_information(a_func):

 print(a_func.__name__)

 name = a_func.__module__

 if name == '__main__': # Need to get the actual module name

f = sys.modules[a_func.__module__].__file__

print(f)

print_information(print_information)

As you can see, we have to check to see if the function is being called from the main
function in Python, since if it is, the module will always be called __main__. If so, we
find	the	module	for	the	function	itself	and	print	that	out.

Put	these	two	together,	and	you	will	see	something	like	the	following	output:
__main__

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-
packages/requests/__init__.py

print_information

where_module_imported.py

The last lines may vary slightly depending on what you called your module and
what version of Python you have installed.

Swapping two values without an
intermediate temporary
It seems like every book on programming has to contain a way to swap two values
without using an intermediary temporary variable. This seems silly, since it isn’t
really the sort of thing you would ever do in production code, but someone out there
is going to ask for it in an interview for Python, and every other language.

You	might	think	you	could	do	something	like	this:
i = 1
j = 2

print(i,j)

360			 Python for Professionals

i = i + j

j = i – j

i = i – j

print(i,j)

This	certainly	works,	as	long	as	the	two	variables	happen	to	be	integers,	or	floating	
point,	values.	However,	if	you	assign	Hello world	to	the	first	variable	and	Goodbye
cruel world	to	the	second,	you’ll	see	a	very	different	output:

Traceback (most recent call last):

 File "swap.py", line 7, in <module>

 j = i - j

TypeError: unsupported operand type(s) for -: 'str' and 'str'

We	can’t	subtract	strings,	so	 this	doesn’t	work.	How	can	we	 implement	a	way	to	
swap two values regardless of the types of the values? Well, when you think about
it, tuples will do this for us. We can swap the elements in a tuple easily enough, and
even	wrap	it	up	in	a	simple	function	that	will	work	for	any	data	type:
def swap(a, b):

 return b,a

i = "Hello world"

j = "Goodbye cruel world"

i, j = swap(i, j)

print(i)

print(j)

i = 1

j = 2

i, j = swap(i,j)

print(i)

print(j)

The	output	from	this	snippet	is:

Goodbye cruel world

Hello world

2

1

General Tips and Tricks 361

Show	that	off	at	your	next	Python	 interview,	and	you’ll	find	 that	not	only	will	 it	
work and get you a good review, but also it will show that you understand much
more about Python than the average programmer!

Using the classmethod decorator to create
static methods
One of the biggest problems that any professional developer has when moving
from one language to another is to cope with missing features, or features that work
remarkably	differently	from	their	old	language.	If	you	are	accustomed	to	C++	and	
use the static keyword when working with class methods so that you can use them
as utility methods, you may bemoan the fact that Python appears to have no such
keyword. It is true that Python has no static keyword, but that doesn’t mean you
can’t create static class methods in Python. In fact, depending on how you wish to
do it, there are two ways to do it, both using decorators.

Let’s look at how you use the decorators, and then we’ll take a moment to explain
the	differences	between	the	two:

class Name:

 def __init__(self, first, middle, last):

 self._name = first + ' ' + middle + ' ' + last

 def name(self):

 return self._name

 @classmethod

 def from_first_and_last(self, first, last):

 self._name = first + ' ' + last

 return self._name

 @staticmethod

 def from_first_and_middle(first, middle):

 return first + ' ' + middle + '.'

We	can	call	the	different	types	of	methods	like	this:
n1 = Name('matt', 'a', 'smith')

print('Standard: ' + n1.name())

print('Classmethod with Class: ' +Name.from_first_and_last('matt', 'smith'))

print('Class with object: ' +n1.from_first_and_last('matt', 'othersmith'))

362			 Python for Professionals

print('Object: ' +n1.name())

print('Static with class: ' +Name.from_first_and_middle('matt', 't'))

print('Static with object: ' +n1.from_first_and_middle('matt', 't'))

print('Object: ' +n1.name())

The @classmethod decorator makes the method a class-level method. That is, it is
called	with	the	class	(or	object,	depending	on	how	it	is	invoked)	as	the	first	argument.		
When	called	with	a	class	as	the	first	argument,	such	as	Name.from_first_and_last,
it acts as if it were working on the class itself, so that setting attributes in the class
level. These attributes can be overridden at the instance level, so the class method
that sets the _name attribute is actually setting the class variable, which won’t be the
one	returned	by	instance.	To	understand	this,	look	at	the	following	code:

n2 = Name('a', 'b', 'c')

n2.from_first_and_last('ralph', 'jones')

n3 = Name('a', 'b', 'c')

print(n2.name())

print(n3.name())

You would expect the n3 variable to contain the name a b c and it does, since that is
the	normal	way	that	it	is	set.	However,	you	would	think	that	the	n2 variable would
print out ralph jones, but it does not. If you look at the n2 variable in the debugger
(or using print) you will see that it does contain a b c as its _name attribute.

On	the	other	hand,	if	you	do	this:
print(Name._name)

The	output	here	is:
ralph jones

Static methods, on the other hand, do not take an instance or a class argument. A
static method is best used as a pure utility method, since you can’t change instance
variables with them. Class methods, on the other hand, are best used for the class as
a whole.

Using the **kwargs to pass a named list of
parameters
In previous chapters, we’ve looked at the keyword argument method of accepting
arguments into a function, so that a caller can provide arguments in any order they
would	like	to.	For	example:

import decimal

General Tips and Tricks 363

def function_with_kwargs(**kwargs):

 for k, v in kwargs.items():

 print("Key {0} = Value {1}".format(k,v))

function_with_kwargs(arg_1 = 10, arg_2 = 'Hello', arg_3 = decimal.
Decimal(1))

In this case, the user can provide the three arguments in any order they like so long
as the names match up to what the function is expecting. In this case, we don’t even
care	about	that,	we	just	print	out	whatever	we	find.

Suppose,	however,	you	had	a	function	that	looked	like	this:

def function_without_kwargs(arg1, arg2, arg3):

 print("Arg1 = {0}".format(arg1))

 print("Arg2 = {0}".format(arg2))

 print("Arg3 = {0}".format(arg3))

function_without_kwargs(1,2,3)

Obviously, calling the function with the proper arguments in the proper order works
just	fine.	Consider	for	a	moment,	however,	a	case	where	the	programmer	using	your	
function only knows the names of the arguments, and doesn’t know, or care, about
the order of them in the function prototype. Is there some way we can help that poor
programmer to call things properly anyway? In fact, Python does allow for such a
thing:

def build_dict(arg1, arg2, arg3):

 return {

 'arg1': arg1,

 'arg2': arg2,

 'arg3': arg3

}

function_without_kwargs(**build_dict(1,2,3))

In this case, the build_dict function is provided just to show that we are probably
doing	 this	 from	 something	 that	 knows	 nothing	 about	 your	 function	 in	 the	 first	
place. It simply produces a dictionary that is contains the keys which represents the
arguments and values that go with them to be passed to the function.

364			 Python for Professionals

There is one caution with this approach, however. If we had a dictionary with all of
our possible arguments and values and passed it to the function, we would get any
error:
def build_dict(arg1, arg2, arg3):

 return {

 'arg1': arg1,

 'arg2': arg2,

 'arg3': arg3,

 'arg4': 45

 }

function_without_kwargs(**build_dict(1,2,3))

TypeError: function_without_kwargs() got an unexpected keyword argument
'arg4'

We	could	use	what	we	have	learned	in	introspection	and	reflection	to	figure	out	just	
how many arguments we need and build the dictionary properly. Try to implement
such a thing, and you’ll learn just how easy it is.

Type hints
One	of	the	nicest	things	about	compiled	languages	is	that	they	have	well	defined	
types for functions or methods return values, as well as the individual parameters
that are sent to those functions or methods. For example, in C++, if we create a
function
int double_x(int x) {

 return x * 2;

}

And	try	to	call	that	function	with:
double_x("hello world")

We will get a compile time error indicating that the argument x is supposed to be
an integer and that we can’t do that. In Python, of course, we could easily do the
exact same thing. That’s okay, most of the time, and is the power of the language.
However,	 in	 complex	 functions	 or	 methods,	 it	 isn’t	 always	 clear	 what	 type	 the	
programmer that implemented the code intended something to be. What is often
worse	is	that	a	returned	value	isn’t	defined	as	well,	so	we	could	be	getting	back	just	
about anything. If you don’t know, you normally fall back upon the documentation
or,	 if	there	is	nothing	there,	to	finding	the	source	code	to	the	function.	Barring	all	

General Tips and Tricks 365

that, the developer is forced to rely on the debugger, checking the actual type of the
returned value to see what they got and what they can do with that.

The Python developers didn’t want to lose the ability to be dynamic and allow the
system to coerce things into the proper type when needed, but they also recognized
that	the	documentation	issue	is	a	serious	one.	For	this	reason,	Python	3.7	added	type
hints. Type hints are exactly what they sound like, hints as to the type of things. You
can use type hints for parameters to a function or method, as well as for the return
type for that method.

Let’s consider a very simple function that builds a greeting string for the user. The
code	looks	like	this:

def say_hello_to_user(user: str) -> str:

 say_hello = "Hi there " + user

 return say_hello

The type hints here indicate that they ‘user’ parameter is a string, by including the
type	of	the	variable	after	a	colon	and	the	variable	name	in	the	function	definition.	
The -> construct indicates the return type of the function or method.

This does two things. For one thing, when you request help, using the built-in
help() function in Python, you will get a useful message indicating what the
function	accepts	and	returns:
Help on function say_hello_to_user in module __main__:

say_hello_to_user(user: str) -> str

In addition, the __annotations__ attribute of the function contains the information
as	well:
{'user': <class 'str'>, 'return': <class 'str'>}

What is important here is that the type hints do not restrict you from calling the
function or method incorrectly. You can still call it with a non-string value and you
will get an error. There are other interpreters/compilers such as mypy which will
actually do the validation and check the inputs for you, but that’s a separate thing.
One last thing worth mentioning here, if you need to set a default value for your
parameter,	it	needs	to	follow	the	type	hint:

def say_hello_to_user(user: str = "guest") -> str:

 say_hello = "Hi there " + user

 return say_hello

print(say_hello_to_user('Matt'))

print(say_hello_to_user())

366			 Python for Professionals

Hi there Matt

Hi there guest

Finding the day of the week using the
calendar module
Here’s	a	tip	that	you	are	certain	to	use.	Sometimes,	you	need	to	know	what	day	it	is.	
Not because you’ve been working for a long time and have forgotten what day of
the week it is, but because you have to display the current day of the week, Monday,
Tuesday, and many more on a report or screen. You would think this sort of thing
would be included in every date library and package ever created, but it sadly is
not. We can use the calendar module from Python to get the information we want,
however.

from datetime import datetime

import calendar

dt = datetime.today()

dn = dt.weekday()

print("Today is day number: {0}".format(dn))

print("Today is a {0}".format(calendar.day_name[dn]))

This works and produces the proper day of the week, as well as the number of the
date.	It	does	not,	however,	feel	terribly	Pythonesque.	Let’s	spiff	it	up	a	little	bit,	make	
it	into	a	reusable	function	that	has	rational	defaults,	and	produces	the	same	data:

def DayOfWeek(d=None):

 if d == None:

 d = datetime.today()

 dn = d.weekday()

 return (dn, calendar.day_name[dn])

print(DayOfWeek())

d2 = datetime.today() + timedelta(1)

print(DayOfWeek(d2))

As you can see, this version not only properly calculates the day of the week as a
number and a string, but also returns them as a tuple that can be used for whatever
purpose the user wanted. You can easily include this in a utility library and never
worry about it again.

General Tips and Tricks 367

One note here, the timedelta class is used to add or subtract time periods from a
given date object. The timedelta allows you to add days, months, years and all
manner of time values. By default, all of the parameters to the method are zero, but
you	can	override	whatever	pieces	you	want.	The	first	argument	is	days,	so	we	are	
adding one day to day, producing tomorrow as a date.

Working with regular expressions
If there is a single area of computer software development that absolute divides
developers, it would be regular expressions. For some, they are a godsend. For
others, they are the devil incarnate. Whether you are in the former camp or the latter,
the reality is that sooner or later you are going to end up either using one yourself,
or	finding	one	in	an	application	code	base	that	you	have	to	maintain.	Python	has	an	
excellent regular expression class and library, and supports all standard expression
types for matching and searching.

Regular expressions have three basic uses in your code. First, you can match
specific	patterns	in	a	string,	returning	all	of	the	substrings	that	have	a	match	to	your	
expression.	Second,	you	can	search	for	a	specific	string	pattern,	and	find	out	where	
it exists within the string. Finally, you can search for and replace a string. Let’s look
at some very simple examples to help you understand how you can use regular
expressions (RE) in your code.

If you have ever used Cucumber or a similar testing product, you know that test
cases are written in pseudo-English. The engine uses a matching system to determine
whether or not something should be executed within the code and match it to the
code that needs to be run. Suppose that you wanted to implement such a thing in
your own code, or simply wanted to execute user commands of a given format.
Here’s	how	you	use	RE	to	accomplish	this:
import re

line = "Given that there is a user logged in"

matches = re.match(r'^Given', line, re.M | re.I)

if matches:

 print(matches.group(0))

else:

 print("No matches")

Notice that we use the re match function to check our input line. We are looking for
all lines that begin with Given since that’s the start of a test case in Cucumber. The
carat (^) matches	a	string	beginning	on	a	line.	So	this	will	find	us	all	matches	that	

368			 Python for Professionals

begin with Given. The re.M	flag	 indicates	 that	we	will	allow	multiple	 lines	and	
that any line in the string starting with the requested pattern will match. The re.I
flag	 indicates	 that	we	 ignore	case,	so	 it	will	match	Given, given, or even gIvEn
and return the match. The return from the match function is a match object, which
contains	 the	groups	of	 characters	 that	fit	our	 requested	pattern.	Match	 is	usually	
used	to	find	specific	string	patterns	within	blocks	of	text.

The next possibility is that you just want to know if a given pattern exists within a
string. You don’t care if there is one or more of them, simply that there is one or there
isn’t.	For	this,	there	is	the	search	function.	The	search	function	is	used	this	way:

See if the match line contains an account

matches = re.search(r'account', line, re.M | re.I)

if matches:

 print("An account search")

else:

 print("Not an account search")

Once	again,	you	can	use	any	 regular	 expression	 characters	 in	 the	first	 argument,	
which is the pattern to match. Search doesn’t modify the string, nor does it return
any other matches in the string.

The real purpose to the regular expression module, of course, is to match things
that don’t simply begin with a string or end with a string, but contain some set of
characters that we are interested in. For example, let’s imagine that we have a code
that is embedded in a string. We know that the code looks like a lower-case letter
followed by an upper case letter and then a number. We would like to extract these
codes	from	the	string.	We	can	easily	do	this	with	regular	expressions:

def match_lower_upper_number(s):

 groups = re.match(r'[a-z][A-Z][0-9]', s)

 return groups

print(match_lower_upper_number('aA0'))

print(match_lower_upper_number('Ba0'))

print(match_lower_upper_number('aA-'))

The [] expression indicates a character set that we are looking to match. This can be
a range of characters like a-z, indicating the lower case alphabet or A-Z which is the
upper case alphabet. It can be the number set 0-9. In addition, there are shortcuts
for most of these elements. For example, matching a single digit is represented by
\D which can replace [0-9]. For a complete list of the sets, please refer to the RE

General Tips and Tricks 369

module documentation. You can also match multiple characters using the * symbol
and a single character of any sort using the period ‘.’ symbol.

For our tip for this section consider the concept of validating a phone number. Phone
numbers	can	be	difficult,	since	they	can	be	in	a	lot	of	formats.	You	can	have	xxx-
xxx-xxxx or (xxx) xxx-xxxx or even xxxxxxx for your inputs. It is vastly easier
to validate a phone number if you are simply looking at the digits that make it up.
You have either seven or ten digits, it could be a phone number and you can apply
the	 rules	 that	 apply.	But	how	do	we	get	 rid	 of	 all	 the	 other	 stuff	 around	 it?	The	
answer, of course, lies in the power of regular expressions. Let’s write a function that
just	strips	out	anything	that	isn’t	a	number,	and	returns	the	result	to	us	as	a	string:
phone_no_1 = "303-555-1212"

phone_no_2 = "3035551212"

phone_no_3 = "(303) 555-1212"

def strip_all_but_numbers(s):

 ret = re.sub(r'\D', '', s)

 return ret

print(strip_all_but_numbers(phone_no_1))

print(strip_all_but_numbers(phone_no_2))

print(strip_all_but_numbers(phone_no_3))

The	output	from	this,	for	all	three	strange	phone	number	strings,	is:
3035551212

3035551212

3035551212

As you can see, the power of regular expressions is vast, but you can use only the
pieces you need or want.

That	completes	our	tips	and	tricks	for	Python.	Hopefully,	you	enjoyed	the	list,	and	
found a few that you can use in your own coding. Remember, Python is all about
not reinventing the wheel. If someone has already solved your problem, why not use
that	solution?	Imitation,	after	all,	is	the	sincerest	form	of	flattery!

Good luck and happy Pythoning!

Conclusion
In this chapter, we learned a bunch of nifty tricks and tips that can be used in
professional programs. You learned how to determine the largest pieces of your

370			 Python for Professionals

code so that you can optimize it. You learned about the regular expression package
in Python and how it can be used to make sure the values input from the user are
valid. You also learned about how to get the day of the week, something that is
guaranteed to be needed in any program that does reporting.

Questions
1. What are some methods for removing duplicates from a list?

2.	 What	class	contains	the	date	and	time	information	needed	to	find	out	the	day	
of the week?

3. What is the underscore operator and why would you use it?

4. What are keyword arguments and when can you use them?

