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Preface
Python Feature Engineering Cookbook covers well-demonstrated recipes focused on solutions
that will assist machine learning teams in identifying and extracting features to develop
highly optimized and enriched machine learning models. This book includes recipes to
extract and transform features from structured datasets, time series, transactions data and
text. It includes recipes concerned with automating the feature engineering process, along
with the widest arsenal of tools for categorical variable encoding, missing data imputation
and variable discretization. Further, it provides different strategies of feature
transformation, such as Box-Cox transform and other mathematical operations and
includes the use of decision trees to combine existing features into new ones. Each of these
recipes is demonstrated in practical terms with the help of NumPy, SciPy, pandas, scikit-
learn, Featuretools and Feature-engine in Python.

Throughout this book, you will be practicing feature generation, feature extraction and
transformation, leveraging the power of scikit-learn’s feature engineering arsenal,
Featuretools and Feature-engine using Python and its powerful libraries.

Who this book is for
This book is intended for machine learning professionals, AI engineers, and data scientists
who want to optimize and enrich their machine learning models with the best features.
Prior knowledge of machine learning and Python coding is expected.

What this book covers
Chapter 1, Foreseeing Variable Problems in Building ML Models, covers how to identify the
different problems that variables may present and that challenge machine learning
algorithm performance. We'll learn how to identify missing data in variables, quantify the
cardinality of the variable, and much more besides.

Chapter 2, Imputing Missing Data, explains how to engineer variables that show missing
information for some observations. In a typical dataset, variables will display values for
certain observations, while values will be missing for other observations. We'll introduce
various techniques to fill those missing values with some additional values, and the code to
execute the techniques.
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Chapter 3, Encoding Categorical Variables, introduces various classical and widely used
techniques to transform categorical variables into numerical variables and also
demonstrates a technique for reducing the dimension of highly cardinal variables as well as
how to tackle infrequent values. This chapter also includes more complex techniques for
encoding categorical variables, as described and used in the 2009 KDD competition.

Chapter 4, Transforming Numerical Variables, uses various recipes to transform numerical
variables, typically non-Gaussian, into variables that follow a more Gaussian-like
distribution by applying multiple mathematical functions.

Chapter 5, Performing Variable Discretization, covers how to create bins and distribute the
values of the variables across them. The aim of this technique is to improve the spread of
values across a range. It also includes well established and frequently used techniques like
equal width and equal frequency discretization and more complex processes like
discretization with decision trees and many more.

Chapter 6, Working with Outliers, teaches a few mainstream techniques to remove outliers
from the variables in the dataset. We'll also learn how to cap outliers at a given arbitrary
minimum/maximum value.

Chapter 7, Deriving Features from Dates and Time Variables, describes how to create features
from dates and time variables. Date variables can't be used as such to build machine
learning models for multiple reasons. We'll learn how to combine information from
multiple time variables, like calculating time elapsed between variables and also,
importantly, working with variables in different time zones.

Chapter 8, Performing Feature Scaling, covers the methods that we can use to put the
variables within the same scale. We'll also learn how to standardize variables, how to scale
to minimum and maximum value, how to do mean normalization or scale to vector norm,
among other techniques.

Chapter 9, Applying Mathematical Computations to Features, explains how to create new
variables from existing ones by utilizing different mathematical computations. We'll
learn how to create new features through the addition/difference/multiplication/division of
existing variables and more. We will also learn how to expand the feature space with
polynomial expansion and how to combine features using decision trees.

Chapter 10, Creating Features with Transactional and Time Series Data, covers how to create
static features from transactional information, so that we obtain a static view of a customer,
or client, at any point in time. We'll learn how to combine features using math operations,
across transactions, in specific time windows and capture time between transactions. We'll
also discuss how to determine time between special events. We'll briefly dive into signal
processing and learn how to determine and quantify local maxima and local minima.
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Chapter 11, Extracting Features from Text Variables, explains how to derive features from text
variables. We'll learn to create new features through the addition of existing variables. We
will learn how to capture the complexity of the text by capturing the number of characters,
words, sentences, the vocabulary and the lexical variety. We will also learn how to create
Bag of Words and how to implement TF-IDF with and without n-grams

To get the most out of this book
Python Feature Engineering Cookbook will help machine learning practitioners improve their
data preprocessing and manipulation skills, empowering them to modify existing variables
or create new features from existing data. You will learn how to implement many feature
engineering techniques with multiple open source tools, streamlining and simplifying code
while adhering to coding best practices. Thus, to make the most of this book, you are
expected to have an understanding of machine learning and machine learning algorithms,
some previous experience with data processing, and a degree of familiarity with datasets.
In addition, working knowledge of Python and some familiarity with Python numerical
computing libraries such as NumPy, pandas, Matplotlib, and scikit-learn will be beneficial.
You are required to be experienced in the use of Python through Jupyter Notebooks, in
iterative Python through a Python console or Command Prompt, or have experience using
a dedicated Python IDE, such as PyCharm or Spyder.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
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Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Python- Feature- Engineering- Cookbook. In case there's an update to the
code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /static. packt- cdn. com/downloads/
9781789806311_ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The nunique() method ignores missing values by default."

A block of code is set as follows:

import pandas as pd
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import PolynomialFeatures

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

X_train['A7'] = np.where(X_train['A7'].isin(frequent_cat), X_train['A7'],
'Rare')
X_test['A7'] = np.where(X_test['A7'].isin(frequent_cat), X_test['A7'],
'Rare')

https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
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Any command-line input or output is written as follows:

$ pip install feature-engine

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Click the Download button."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.
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There's more…
This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/


1
Foreseeing Variable Problems

When Building ML Models
A variable is a characteristic, number, or quantity that can be measured or counted. Most
variables in a dataset are either numerical or categorical. Numerical variables take numbers
as values and can be discrete or continuous, whereas for categorical variables, the values
are selected from a group of categories, also called labels.

Variables in their original, raw format are not suitable to train machine learning algorithms.
In fact, we need to consider many aspects of a variable to build powerful machine learning
models. These aspects include variable type, missing data, cardinality and category
frequency, variable distribution and its relationship with the target, outliers, and feature
magnitude.

Why do we need to consider all these aspects? For multiple reasons. First, scikit-learn, the
open source Python library for machine learning, does not support missing values or
strings (the categories) as inputs for machine learning algorithms, so we need to convert
those values into numbers. Second, the number of missing values or the distributions of the
strings in categorical variables (known as cardinality and frequency) may affect model
performance or inform the technique we should implement to replace them by numbers.
Third, some machine learning algorithms make assumptions about the distributions of the
variables and their relationship with the target. Finally, variable distribution, outliers, and
feature magnitude may also affect machine learning model performance. Therefore, it is
important to understand, identify, and quantify all these aspects of a variable to be able to
choose the appropriate feature engineering technique. In this chapter, we will learn how to
identify and quantify these variable characteristics.

This chapter will cover the following recipes:

Identifying numerical and categorical variables
Quantifying missing data
Determining cardinality in categorical variables
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Pinpointing rare categories in categorical variables
Identifying a linear relationship
Identifying a normal distribution
Distinguishing variable distribution
Highlighting outliers
Comparing feature magnitude

Technical requirements
Throughout this book, we will use many open source Python libraries for numerical
computing. I recommend installing the free Anaconda Python distribution (https:/ /www.
anaconda.com/distribution/ ), which contains most of these packages. To install the
Anaconda distribution, follow these steps:

Visit the Anaconda website: https:/ / www.anaconda. com/ distribution/ .1.
Click the Download button.2.
Download the latest Python 3 distribution that's appropriate for your operating3.
system.
Double-click the downloaded installer and follow the instructions that are4.
provided.

The recipes in this book were written in Python 3.7. However, they should
work in Python 3.5 and above. Check that you are using similar or higher
versions of the numerical libraries we'll be using, that is, NumPy, pandas,
scikit-learn, and others. The versions of these libraries are indicated in the
requirement.txt file in the accompanying GitHub repository (https:/ /
github. com/ PacktPublishing/ Python- Feature- Engineering- Cookbook).

In this chapter, we will use pandas, NumPy, Matplotlib, seaborn, SciPy, and scikit-learn.
pandas provides high-performance analysis tools. NumPy provides support for large,
multi-dimensional arrays and matrices and contains a large collection of mathematical
functions to operate over these arrays and over pandas dataframes. Matplotlib and seaborn
are the standard libraries for plotting and visualization. SciPy is the standard library for
statistics and scientific computing, while scikit-learn is the standard library for machine
learning.
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To run the recipes in this chapter, I used Jupyter Notebooks since they are great for
visualization and data analysis and make it easy to examine the output of each line of code.
I recommend that you follow along with Jupyter Notebooks as well, although you can
execute the recipes in other interfaces.

The recipe commands can be run using a .py script from a command
prompt (such as the Anaconda Prompt or the Mac Terminal) using an IDE
such as Spyder or PyCharm or from Jupyter Notebooks, as in the
accompanying GitHub repository (https:/ /github. com/
PacktPublishing/ Python- Feature- Engineering- Cookbook).

In this chapter, we will use two public datasets: the KDD-CUP-98 dataset and the Car
Evaluation dataset. Both of these are available at the UCI Machine Learning Repository.

Dua, D. and Graff, C. (2019). UCI Machine Learning Repository (http:/ /
archive. ics. uci. edu/ ml). Irvine, CA: University of California, School of
Information and Computer Science.

To download the KDD-CUP-98 dataset, follow these steps:

Visit the following website: https:/ / archive. ics. uci. edu/ ml/machine-1.
learning- databases/ kddcup98- mld/ epsilon_ mirror/ .
Click the cup98lrn.zip link to begin the download:2.

Unzip the file and save cup98LRN.txt in the same folder where you'll run the3.
commands of the recipes.
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To download the Car Evaluation dataset, follow these steps:

Go to the UCI website: https:/ /archive. ics. uci. edu/ ml/machine- learning-1.
databases/ car/ .
Download the car.data file:2.

Save the file in the same folder where you'll run the commands of the recipes.3.

We will also use the Titanic dataset that's available at http:/ /www. openML. org. To
download and prepare the Titanic dataset, open a Jupyter Notebook and run the following
commands:

import numpy as np
import pandas as pd

def get_first_cabin(row):
    try:
        return row.split()[0]
    except:
        return np.nan

url = "https://www.openml.org/data/get_csv/16826755/phpMYEkMl"
data = pd.read_csv(url)
data = data.replace('?', np.nan)
data['cabin'] = data['cabin'].apply(get_first_cabin)
data.to_csv('titanic.csv', index=False)

The preceding code block will download a copy of the data from http:/ / www.openML. org
and store it as a titanic.csv file in the same directory from where you execute the
commands.
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There is a Jupyter Notebook with instructions on how to download and
prepare the titanic dataset in the accompanying GitHub
repository: https:/ / github. com/ PacktPublishing/ Python- Feature-
Engineering- Cookbook/ blob/ master/ Chapter01/ DataPrep_ Titanic.
ipynb.

Identifying numerical and categorical
variables
Numerical variables can be discrete or continuous. Discrete variables are those where the
pool of possible values is finite and are generally whole numbers, such as 1, 2, and 3.
Examples of discrete variables include the number of children, number of pets, or
the number of bank accounts. Continuous variables are those whose values may take any
number within a range. Examples of continuous variables include the price of a product,
income, house price, or interest rate. Categorical variables are values that are selected from
a group of categories, also called labels. Examples of categorical variables include gender,
which takes values of male and female, or country of birth, which takes values
of Argentina, Germany, and so on.

In this recipe, we will learn how to identify continuous, discrete, and categorical variables
by inspecting their values and the data type that they are stored and loaded with in pandas.

Getting ready
Discrete variables are usually of the int type, continuous variables are usually of the
float type, and categorical variables are usually of the object type when they're stored in
pandas. However, discrete variables can also be cast as floats, while numerical variables can
be cast as objects. Therefore, to correctly identify variable types, we need to look at the data
type and inspect their values as well. Make sure you have the correct library versions
installed and that you've downloaded a copy of the Titanic dataset, as described in the
Technical requirements section.
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How to do it...
First, let's import the necessary Python libraries:

Load the libraries that are required for this recipe:1.

import pandas as pd
import matplotlib.pyplot as plt

Load the Titanic dataset and inspect the variable types:2.

data = pd.read_csv('titanic.csv')
data.dtypes

The variable types are as follows:

pclass         int64
survived       int64
name          object
sex           object
age          float64
sibsp          int64
parch          int64
ticket        object
fare         float64
cabin         object
embarked      object
boat          object
body         float64
home.dest     object
dtype: object

In many datasets, integer variables are cast as float. So, after inspecting
the data type of the variable, even if you get float as output, go ahead
and check the unique values to make sure that those variables are discrete
and not continuous.

Inspect the distinct values of the sibsp discrete variable:3.

data['sibsp'].unique()

The possible values that sibsp can take can be seen in the following code:

array([0, 1, 2, 3, 4, 5, 8], dtype=int64)
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Now, let's inspect the first 20 distinct values of the continuous variable fare:4.

data['fare'].unique()[0:20]

The following code block identifies the unique values of fare and displays the first 20:

array([211.3375, 151.55  ,  26.55  ,  77.9583,   0.    ,  51.4792,
        49.5042, 227.525 ,  69.3   ,  78.85  ,  30.    ,  25.925 ,
       247.5208,  76.2917,  75.2417,  52.5542, 221.7792,  26.    ,
        91.0792, 135.6333])

Go ahead and inspect the values of the embarked and cabin variables by using the
command we used in step 3 and step 4.

The embarked variable contains strings as values, which means it's
categorical, whereas cabin contains a mix of letters and numbers, which
means it can be classified as a mixed type of variable.

How it works...
In this recipe, we identified the variable data types of a publicly available dataset by
inspecting the data type in which the variables are cast and the distinct values they take.
First, we used pandas read_csv() to load the data from a CSV file into a dataframe. Next,
we used pandas dtypes to display the data types in which the variables are cast, which can
be float for continuous variables, int for integers, and object for strings. We observed
that the continuous variable fare was cast as float, the discrete variable sibsp was cast
as int, and the categorical variable embarked was cast as an object. Finally, we
identified the distinct values of a variable with the unique() method from pandas. We
used unique() together with a range, [0:20], to output the first 20 unique values for
fare, since this variable shows a lot of distinct values.

There's more...
To understand whether a variable is continuous or discrete, we can also make a histogram:

Let's make a histogram for the sibsp variable by dividing the variable value1.
range into 20 intervals:

data['sibsp'].hist(bins=20)
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The output of the preceding code is as follows:

Note how the histogram of a discrete variable has a broken, discrete shape.

Now, let's make a histogram of the fare variable by sorting the values into 502.
contiguous intervals:

data['fare'].hist(bins=50)

The output of the preceding code is as follows:

The histogram of continuous variables shows values throughout the variable value range.
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See also
For more details on pandas and variable types, check out https:/ /pandas. pydata. org/
pandas-docs/stable/ getting_ started/ basics. html#basics- dtypes.

For details on other variables in the Titanic dataset, check the accompanying Jupyter
Notebook in this book's GitHub repository (https:/ /github. com/ PacktPublishing/
Python-Feature-Engineering- Cookbook).

Quantifying missing data
Missing data refers to the absence of a value for observations and is a common occurrence
in most datasets. Scikit-learn, the open source Python library for machine learning, does not
support missing values as input for machine learning models, so we need to convert these
values into numbers. To select the missing data imputation technique, it is important to
know about the amount of missing information in our variables. In this recipe, we will
learn how to identify and quantify missing data using pandas and how to make plots with
the percentages of missing data per variable.

Getting ready
In this recipe, we will use the KDD-CUP-98 dataset from the UCI Machine Learning
Repository. To download this dataset, follow the instructions in the Technical requirements
section of this chapter.

How to do it...
First, let's import the necessary Python libraries:

Import the required Python libraries:1.

import pandas as pd
import matplotlib.pyplot as plt

Let's load a few variables from the dataset into a pandas dataframe and inspect2.
the first five rows:

cols = ['AGE', 'NUMCHLD', 'INCOME', 'WEALTH1', 'MBCRAFT',
'MBGARDEN', 'MBBOOKS', 'MBCOLECT', 'MAGFAML','MAGFEM', 'MAGMALE']

https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes
https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes
https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes
https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes
https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes
https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes
https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes
https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes
https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes
https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes
https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes
https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes
https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes
https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes
https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes
https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes
https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes
https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes
https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes
https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes
https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes
https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes
https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes
https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook


Foreseeing Variable Problems When Building ML Models Chapter 1

[ 16 ]

data = pd.read_csv('cup98LRN.txt', usecols=cols)
data.head()

After loading the dataset, this is how the output of head() looks like when we
run it from a Jupyter Notebook:

Let's calculate the number of missing values in each variable:3.

data.isnull().sum()

The number of missing values per variable can be seen in the following output:

AGE         23665
NUMCHLD     83026
INCOME      21286
WEALTH1     44732
MBCRAFT     52854
MBGARDEN    52854
MBBOOKS     52854
MBCOLECT    52914
MAGFAML     52854
MAGFEM      52854
MAGMALE     52854
dtype: int64

Let's quantify the percentage of missing values in each variable:4.

data.isnull().mean()

The percentages of missing values per variable can be seen in the following
output, expressed as decimals:

AGE         0.248030
NUMCHLD     0.870184
INCOME      0.223096
WEALTH1     0.468830
MBCRAFT     0.553955
MBGARDEN    0.553955
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MBBOOKS     0.553955
MBCOLECT    0.554584
MAGFAML     0.553955
MAGFEM      0.553955
MAGMALE 0.553955
dtype: float64

Finally, let's make a bar plot with the percentage of missing values per variable:5.

data.isnull().mean().plot.bar(figsize=(12,6))
plt.ylabel('Percentage of missing values')
plt.xlabel('Variables')
plt.title('Quantifying missing data')

The bar plot that's returned by the preceding code block displays the percentage of missing
data per variable:

We can change the figure size using the figsize argument within pandas
plot.bar() and we can add x and y labels and a title with the
plt.xlabel(), plt.ylabel(), and plt.title() methods from
Matplotlib to enhance the aesthetics of the plot.
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How it works...
In this recipe, we quantified and displayed the amount and percentage of missing data of a
publicly available dataset.

To load data from the txt file into a dataframe, we used the pandas read_csv() method.
To load only certain columns from the original data, we created a list with the column 
names and passed this list to the usecols argument of read_csv(). Then, we used the
head() method to display the top five rows of the dataframe, along with the variable
names and some of their values.

To identify missing observations, we used pandas isnull(). This created a boolean vector
per variable, with each vector indicating whether the value was missing (True) or not
(False) for each row of the dataset. Then, we used the pandas sum() and mean()
methods to operate over these boolean vectors and calculate the total number or the
percentage of missing values, respectively. The sum() method sums the True values of the
boolean vectors to find the total number of missing values, whereas the mean() method
takes the average of these values and returns the percentage of missing data, expressed as
decimals.

To display the percentages of the missing values in a bar plot, we used pandas isnull()
and mean(), followed by plot.bar(), and modified the plot by adding axis legends and a
title with the xlabel(), ylabel(), and title() Matplotlib methods.

Determining cardinality in categorical
variables
The number of unique categories in a variable is called cardinality. For example, the 
cardinality of the Gender variable, which takes values of female and male, is 2, whereas
the cardinality of the Civil status variable, which takes values of married, divorced,
singled, and widowed, is 4. In this recipe, we will learn how to quantify and create plots
of the cardinality of categorical variables using pandas and Matplotlib.

Getting ready
In this recipe, we will use the KDD-CUP-98 dataset from the UCI Machine Learning
Repository. To download this dataset, follow the instructions in the Technical requirements
section of this chapter.
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How to do it...
Let's begin by importing the necessary Python libraries:

Import the required Python libraries:1.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

Let's load a few categorical variables from the dataset:2.

cols = ['GENDER', 'RFA_2', 'MDMAUD_A', 'RFA_2', 'DOMAIN', 'RFA_15']
data = pd.read_csv('cup98LRN.txt', usecols=cols)

 Let's replace the empty strings with NaN values and inspect the first five rows of3.
the data:

data = data.replace(' ', np.nan)
data.head()

After loading the data, this is what the output of head() looks like when we run
it from a Jupyter Notebook:

Now, let's determine the number of unique categories in each variable:4.

data.nunique()

The output of the preceding code shows the number of distinct categories per
variable, that is, the cardinality:

DOMAIN      16
GENDER       6
RFA_2       14
RFA_15      33
MDMAUD_A     5
dtype: int64
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The nunique() method ignores missing values by default. If we want to
consider missing values as an additional category, we should set the
dropna argument to False: data.nunique(dropna=False).

Now, let's print out the unique categories of the GENDER variable:5.

data['GENDER'].unique()

We can see the distinct values of GENDER in the following output:

array(['F', 'M', nan, 'C', 'U', 'J', 'A'], dtype=object)

pandas nunique() can be used in the entire dataframe. pandas
unique(), on the other hand, works only on a pandas Series. Thus, we
need to specify the column name that we want to return the unique values
for.

Let's make a plot with the cardinality of each variable:6.

data.nunique().plot.bar(figsize=(12,6))
plt.ylabel('Number of unique categories')
plt.xlabel('Variables')
plt.title('Cardinality')

The following is the output of the preceding code block:
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We can change the figure size with the figsize argument and also add x
and y labels and a title with plt.xlabel(), plt.ylabel(), and
plt.title() to enhance the aesthetics of the plot.

How it works...
In this recipe, we quantified and plotted the cardinality of the categorical variables of a
publicly available dataset.

To load the categorical columns from the dataset, we captured the variable names in a list.
Next, we used pandas read_csv() to load the data from a txt file onto a dataframe and
passed the list with variable names to the usecols argument.

Many variables from the KDD-CUP-98 dataset contained empty strings which are, in
essence, missing values. Thus, we replaced the empty strings with the NumPy
representation of missing values, np.nan, by utilizing the pandas replace() method.
With the head() method, we displayed the top five rows of the dataframe. 

To quantify cardinality, we used the nunique() method from pandas, which finds and
then counts the number of distinct values per variable. Next, we used the unique()
method to output the distinct categories in the GENDER variable.

To plot the variable cardinality, we used pandas nunique(), followed by pandas
plot.bar(), to make a bar plot with the variable cardinality, and added axis labels and a
figure title by utilizing the Matplotlib xlabel(), ylabel(), and title() methods.

There's more...
The nunique() method determines the number of unique values for categorical and
numerical variables. In this recipe, we only used nunique() on categorical variables to
explore the concept of cardinality. However, we could also use nunique() to evaluate
numerical variables.

We can also evaluate the cardinality of a subset of the variables in a dataset by slicing the
dataframe:

data[['RFA_2', 'MDMAUD_A', 'RFA_2']].nunique()
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The following is the output of the preceding code:

RFA_2       14
MDMAUD_A     5
RFA_2       14
dtype: int64

In the preceding output, we can see the number of distinct values each of these variables
can take.

Pinpointing rare categories in categorical
variables
Different labels appear in a variable with different frequencies. Some categories of a
variable appear a lot, that is, they are very common among the observations, whereas other
categories appear only in a few observations. In fact, categorical variables often contain a
few dominant labels that account for the majority of the observations and a large number of
labels that appear only seldom. Categories that appear in a tiny proportion of the
observations are rare. Typically, we consider a label to be rare when it appears in less than
5% or 1% of the population. In this recipe, we will learn how to identify infrequent labels in
a categorical variable.

Getting ready
To follow along with this recipe, download the Car Evaluation dataset from the UCI
Machine Learning Repository by following the instructions in the Technical requirements
section of this chapter.

How to do it...
Let's begin by importing the necessary libraries and getting the data ready:

Import the required Python libraries:1.

import pandas as pd
import matplotlib.pyplot as plt
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Let's load the Car Evaluation dataset, add the column names, and display the2.
first five rows:

data = pd.read_csv('car.data', header=None)
data.columns = ['buying', 'maint', 'doors', 'persons', 'lug_boot',
'safety', 'class']
data.head()

We get the following output when the code is executed from a Jupyter Notebook:

By default, pandas read_csv() uses the first row of the data as the
column names. If the column names are not part of the raw data, we need
to specifically tell pandas not to assign the column names by adding the
header = None argument.

Let's display the unique categories of the variable class:3.

data['class'].unique()

We can see the unique values of class in the following output:

array(['unacc', 'acc', 'vgood', 'good'], dtype=object)

Let's calculate the number of cars per category of the class variable and then4.
divide them by the total number of cars in the dataset to obtain the percentage of
cars per category. Then, we'll print the result:

label_freq = data['class'].value_counts() / len(data)
print(label_freq)
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The output of the preceding code block is a pandas Series, with the percentage of
cars per category expressed as decimals:

unacc    0.700231
acc      0.222222
good     0.039931
vgood    0.037616
Name: class, dtype: float64

Let's make a bar plot showing the frequency of each category and highlight the5.
5% mark with a red line:

fig = label_freq.sort_values(ascending=False).plot.bar()
fig.axhline(y=0.05, color='red')
fig.set_ylabel('percentage of cars within each category')
fig.set_xlabel('Variable: class')
fig.set_title('Identifying Rare Categories')
plt.show()

The following is the output of the preceding block code:

The good and vgood categories are present in less than 5% of cars, as indicated by the red
line in the preceding plot.
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How it works...
In this recipe, we quantified and plotted the percentage of observations per category, that
is, the category frequency in a categorical variable of a publicly available dataset.

To load the data, we used pandas read_csv() and set the header argument to None, since
the column names were not part of the raw data. Next, we added the column names
manually by passing the variable names as a list to the columns attribute of the dataframe.

To determine the frequency of each category in the class variable, we counted the number
of cars per category using pandas value_counts() and divided the result by the total cars
in the dataset, which is determined with the Python built-in len method. Python's len
method counted the number of rows in the dataframe. We captured the returned
percentage of cars per category, expressed as decimals, in the label_freq variable.

To make a plot of the category frequency, we sorted the categories in label_freq from
that of most cars to that of the fewest cars using the pandas sort_values() method. Next,
we used plot.bar() to produce a bar plot. With axhline(), from Matplotlib, we added a
horizontal red line at the height of 0.05 to indicate the 5% percentage limit, under which we
considered a category as rare. We added x and y labels and a title with plt.xlabel(),
plt.ylabel(), and plt.title() from Matplotlib.

Identifying a linear relationship
Linear models assume that the independent variables, X, take a linear relationship with the
dependent variable, Y. This relationship can be dictated by the following equation:

Here, X specifies the independent variables and β are the coefficients that indicate a unit
change in Y per unit change in X. Failure to meet this assumption may result in poor model
performance.

Linear relationships can be evaluated by scatter plots and residual plots. Scatter plots
output the relationship of the independent variable X and the target Y. Residuals are the
difference between the linear estimation of Y using X and the real target:
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If the relationship is linear, the residuals should follow a normal distribution centered at
zero, while the values should vary homogeneously along the values of the independent
variable. In this recipe, we will evaluate the linear relationship using both scatter and
residual plots in a toy dataset.

How to do it...
Let's begin by importing the necessary libraries:

Import the required Python libraries and a linear regression class:1.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression

To proceed with this recipe, let's create a toy dataframe with an x variable that
follows a normal distribution and shows a linear relationship with a y variable.

Create an x variable with 200 observations that are normally distributed:2.

np.random.seed(29)
x = np.random.randn(200)

Setting the seed for reproducibility using np.random.seed() will help
you get the outputs shown in this recipe.

Create a y variable that is linearly related to x with some added random noise:3.

y = x * 10 + np.random.randn(200) * 2

Create a dataframe with the x and y variables:4.

data = pd.DataFrame([x, y]).T
data.columns = ['x', 'y']
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Plot a scatter plot to visualize the linear relationship:5.

sns.lmplot(x="x", y="y", data=data, order=1)
plt.ylabel('Target')
plt.xlabel('Independent variable')

The preceding code results in the following output:

To evaluate the linear relationship using residual plots, we need to carry out a
few more steps.

Build a linear regression model between x and y:6.

linreg = LinearRegression()
linreg.fit(data['x'].to_frame(), data['y'])

Scikit-learn predictor classes do not take pandas Series as arguments.
Because data['x'] is a pandas Series, we need to convert it into a
dataframe using to_frame().

Now, we need to calculate the residuals.
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Make predictions of y using the fitted linear model:7.

predictions = linreg.predict(data['x'].to_frame())

Calculate the residuals, that is, the difference between the predictions and the8.
real outcome, y:

residuals = data['y'] - predictions

Make a scatter plot of the independent variable x and the residuals:9.

plt.scatter(y=residuals, x=data['x'])
plt.ylabel('Residuals')
plt.xlabel('Independent variable x')

The output of the preceding code is as follows:

Finally, let's evaluate the distribution of the residuals:10.

sns.distplot(residuals, bins=30)
plt.xlabel('Residuals')
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In the following output, we can see that the residuals are normally distributed and centered
around zero:

Check the accompanying Jupyter Notebook for examples of scatter and
residual plots in variables from a real dataset which can be found at
https:/ /github. com/ PacktPublishing/ Python- Feature- Engineering-
Cookbook/ blob/ master/ Chapter01/ Recipe- 5-Identifying- a-linear-
relationship. ipynb.

How it works...
In this recipe, we identified a linear relationship between an independent and a dependent
variable using scatter and residual plots. To proceed with this recipe, we created a toy
dataframe with an independent variable x that is normally distributed and linearly related
to a dependent variable y. Next, we created a scatter plot between x and y, built a linear
regression model between x and y, and obtained the predictions. Finally, we calculated the
residuals and plotted the residuals versus the variable and the residuals histogram.

To generate the toy dataframe, we created an independent variable x that is normally
distributed using NumPy's random.randn(), which extracts values at random from a
normal distribution. Then, we created the dependent variable y by multiplying x 10 times
and added random noise using NumPy's random.randn(). After, we captured x and y in
a pandas dataframe using the pandas DataFrame() method and transposed it using the
T method to return a 200 row x 2 column dataframe. We added the column names by
passing them in a list to the columns dataframe attribute.
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To create the scatter plot between x and y, we used the seaborn lmplot() method, which
allows us to plot the data and fit and display a linear model on top of it. We specified the
independent variable by setting x='x', the dependent variable by setting y='y', and the
dataset by setting data=data. We created a model of order 1 that is a linear model, by
setting the order argument to 1.

Seaborn lmplot() allows you to fit many polynomial models. You can
indicate the order of the model by utilizing the order argument. In this
recipe, we fit a linear model, so we indicated order=1. 

Next, we created a linear regression model between x and y using the
LinearRegression() class from scikit-learn. We instantiated the model into a variable
called linreg and then fitted the model with the fit() method with x and y as
arguments. Because data['x'] was a pandas Series, we converted it into a dataframe with
the to_frame() method. Next, we obtained the predictions of the linear model with the
predict() method.

To make the residual plots, we calculated the residuals by subtracting the predictions from
y. We evaluated the distribution of the residuals using seaborn's distplot(). Finally, we
plotted the residuals against the values of x using Matplotlib scatter() and added the
axis labels by utilizing Matplotlib's xlabel() and ylabel() methods.

There's more...
In the GitHub repository of this book (https:/ / github. com/ PacktPublishing/ Python-
Feature-Engineering- Cookbook), there are additional demonstrations that use variables
from a real dataset. In the Jupyter Notebook, you will find the example plots of variables
that follow a linear relationship with the target, variables that are not linearly related.

See also
For more details on how to modify seaborn's scatter and distplot, take a look at the
following links:

distplot(): https:/ / seaborn. pydata. org/ generated/ seaborn. distplot. html

lmplot(): https:/ / seaborn. pydata. org/ generated/ seaborn. lmplot. html

For more details about the scikit-learn linear regression algorithm, visit: https:/ / scikit-
learn.org/stable/ modules/ generated/ sklearn. linear_ model. LinearRegression. html.
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Identifying a normal distribution
Linear models assume that the independent variables are normally distributed. Failure to
meet this assumption may produce algorithms that perform poorly. We can determine
whether a variable is normally distributed with histograms and Q-Q plots. In a Q-Q plot,
the quantiles of the independent variable are plotted against the expected quantiles of the
normal distribution. If the variable is normally distributed, the dots in the Q-Q plot should
fall along a 45 degree diagonal. In this recipe, we will learn how to evaluate normal
distributions using histograms and Q-Q plots.

How to do it...
Let's begin by importing the necessary libraries:

Import the required Python libraries and modules:1.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import scipy.stats as stats

To proceed with this recipe, let's create a toy dataframe with a single variable, x,
that follows a normal distribution.

Create a variable, x, with 200 observations that are normally distributed:2.

np.random.seed(29)
x = np.random.randn(200)

Setting the seed for reproducibility using np.random.seed() will help
you get the outputs shown in this recipe.

Create a dataframe with the x variable:3.

data = pd.DataFrame([x]).T
data.columns = ['x']
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Make a histogram and a density plot of the variable distribution: 4.

sns.distplot(data['x'], bins=30)

The output of the preceding code is as follows:

We can also create a histogram using the pandas hist() method, that
is, data['x'].hist(bins=30).

Create and display a Q-Q plot to assess a normal distribution:5.

stats.probplot(data['x'], dist="norm", plot=plt)
plt.show()
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The output of the preceding code is as follows:

Since the variable is normally distributed, its values follow the theoretical quantiles and
thus lie along the 45-degree diagonal.

How it works...
In this recipe, we determined whether a variable is normally distributed with a histogram
and a Q-Q plot. To do so, we created a toy dataframe with a single independent variable, x,
that is normally distributed, and then created a histogram and a Q-Q plot.

For the toy dataframe, we created a normally distributed variable, x, using the NumPy
random.randn() method, which extracted 200 random values from a normal distribution.
Next, we captured x in a dataframe using the pandas DataFrame() method and
transposed it using the T method to return a 200 row x 1 column dataframe. Finally, we
added the column name as a list to the dataframe's columns attribute.
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To display the variable distribution as a histogram and density plot, we used
seaborn's distplot() method. By setting the bins argument to 30, we created 30
contiguous intervals for the histogram. To create the Q-Q plot, we used
stats.probplot() from SciPy, which generated a plot of the quantiles for our x variable
in the y-axis versus the quantiles of a theoretical normal distribution, which we indicated
by setting the dist argument to norm, in the x-axis. We used Matplotlib to display the plot
by setting the plot argument to plt. Since x was normally distributed, its quantiles
followed the quantiles of the theoretical distribution, so that the dots of the variable values
fell along the 45-degree line.

There's more...
For examples of Q-Q plots using real data, visit the Jupyter Notebook in this book's GitHub
repository (https:/ / github. com/ PacktPublishing/ Python- Feature- Engineering-
Cookbook/blob/master/ Chapter01/ Recipe- 6-Identifying- a-normal- distribution.
ipynb).

See also
For more details about seaborn's distplot or SciPy's Q-Q plots, take a look at the
following links:

distplot(): https:/ / seaborn. pydata. org/ generated/ seaborn. distplot. html

stats.probplot(): https:/ / docs. scipy. org/ doc/ scipy/ reference/
generated/ scipy. stats. probplot. html

Distinguishing variable distribution
A probability distribution is a function that describes the likelihood of obtaining the
possible values of a variable. There are many well-described variable distributions, such as
the normal, binomial, or Poisson distributions. Some machine learning algorithms assume
that the independent variables are normally distributed. Other models make no
assumptions about the distribution of the variables, but a better spread of these values may
improve their performance. In this recipe, we will learn how to create plots to distinguish
the variable distributions in the entire dataset by using the Boston House Prices dataset
from scikit-learn.
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Getting ready
In this recipe, we will learn how to visualize the distributions of the variables in a dataset
using histograms. For more details about different probability distributions, visit the
following gallery: https:/ /www. itl. nist. gov/ div898/ handbook/ eda/ section3/ eda366.
htm.

How to do it...
Let's begin by importing the necessary libraries:

Import the required Python libraries and modules:1.

import pandas as pd
import matplotlib.pyplot as plt

Load the Boston House Prices dataset from scikit-learn:2.

from sklearn.datasets import load_boston
boston_dataset = load_boston()
boston = pd.DataFrame(boston_dataset.data,
        columns=boston_dataset.feature_names)

Visualize the variable distribution with histograms: 3.

boston.hist(bins=30, figsize=(12,12), density=True)
plt.show()
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The output of the preceding code is shown in the following screenshot:

Most of the numerical variables in the dataset are skewed.
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How it works...
In this recipe, we used pandas hist() to plot the distribution of all the numerical variables
in the Boston House Prices dataset from scikit-learn. To load the data, we imported the
dataset from scikit-learn datasets and then used load_boston() to load the data. Next,
we captured the data into a dataframe using pandas DataFrame(), indicating that the data
is stored in the data attribute and the variable names in the feature_names attribute.

To display the histograms of all the numerical variables, we used pandas hist(), which
calls matplotlib.pyplot.hist() on each variable in the dataframe, resulting in one
histogram per variable. We indicated the number of intervals for the histograms using
the bins argument, adjusted the figure size with figsize, and normalized the histogram
by setting density to True. If the histogram is normalized, the sum of the area under the
curve is 1.

See also
For more details on how to modify a pandas histogram, visit https:/ /pandas. pydata. org/
pandas-docs/stable/ reference/ api/ pandas. DataFrame. hist. html.

Highlighting outliers
An outlier is a data point that is significantly different from the remaining data. On
occasions, outliers are very informative; for example, when looking for credit card
transactions, an outlier may be an indication of fraud. In other cases, outliers are rare
observations that do not add any additional information. These cases may also affect the
performance of some machine learning models.

"An outlier is an observation which deviates so much from the other observations as to
arouse suspicions that it was generated by a different mechanism." [D. Hawkins.
Identification of Outliers, Chapman and Hall, 1980.]
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Getting ready
In this recipe, we will learn how to identify outliers using boxplots and the inter-quartile
range (IQR) proximity rule. According to the IQR proximity rule, a value is an outlier if it
falls outside these boundaries:

Upper boundary = 75th quantile + (IQR * 1.5)

Lower boundary = 25th quantile - (IQR * 1.5)

Here, IQR is given by the following equation:

IQR = 75th quantile - 25th quantile

Typically, we calculate the IQR proximity rule boundaries by multiplying
the IQR by 1.5. However, it is also common practice to find extreme
values by multiplying the IQR by 3.

How to do it...
Let's begin by importing the necessary libraries and preparing the dataset:

Import the required Python libraries and the dataset:1.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_boston

Load the Boston House Prices dataset from scikit-learn and retain three of its2.
variables in a dataframe:

boston_dataset = load_boston()
boston = pd.DataFrame(boston_dataset.data,
columns=boston_dataset.feature_names)[['RM', 'LSTAT', 'CRIM']]

Make a boxplot for the RM variable: 3.

sns.boxplot(y=boston['RM'])
plt.title('Boxplot')
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The output of the preceding code is as follows:

We can change the final size of the plot using the figure() method from
Matplotlib. We need to call this command before making the plot with
seaborn:
plt.figure(figsize=(3,6))
sns.boxplot(y=boston['RM'])
plt.title('Boxplot')

To find the outliers in a variable, we need to find the distribution boundaries
according to the IQR proximity rule, which we discussed in the Getting ready
section of this recipe.

Create a function that takes a dataframe, a variable name, and the factor to use in4.
the IQR calculation and returns the IQR proximity rule boundaries:

def find_boundaries(df, variable, distance):

    IQR = df[variable].quantile(0.75) - df[variable].quantile(0.25)

    lower_boundary = df[variable].quantile(0.25) - (IQR * distance)
    upper_boundary = df[variable].quantile(0.75) + (IQR * distance)

    return upper_boundary, lower_boundary
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Calculate and then display the IQR proximity rule boundaries for the RM variable:5.

upper_boundary, lower_boundary = find_boundaries(boston, 'RM', 1.5)
upper_boundary, lower_boundary

The find_boundaries() function returns the values above and below which we
can consider a value to be an outlier, as shown here:

(7.730499999999999, 4.778500000000001)

If you want to find very extreme values, you can use 3 as the distance of
find_boundaries() instead of 1.5.

Now, we need to find the outliers in the dataframe.

Create a boolean vector to flag observations outside the boundaries we6.
determined in step 5:

outliers = np.where(boston['RM'] > upper_boundary, True,
            np.where(boston['RM'] < lower_boundary, True, False))

Create a new dataframe with the outlier values and then display the top five7.
rows:

outliers_df = boston.loc[outliers, 'RM']
outliers_df.head()

We can see the top five outliers in the RM variable in the following output:

97     8.069
98     7.820
162    7.802
163    8.375
166    7.929
Name: RM, dtype: float64

To remove the outliers from the dataset, execute boston.loc[~outliers, 'RM'].
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How it works...
In this recipe, we identified outliers in the numerical variables of the Boston House Prices
dataset from scikit-learn using boxplots and the IQR proximity rule. To proceed with this
recipe, we loaded the dataset from scikit-learn and created a boxplot for one of its
numerical variables as an example. Next, we created a function to identify the boundaries
using the IQR proximity rule and used the function to determine the boundaries of the
numerical RM variable. Finally, we identified the values of RM that were higher or lower
than those boundaries, that is, the outliers.

To load the data, we imported the dataset from sklearn.datasets and used
load_boston(). Next, we captured the data in a dataframe using pandas DataFrame(),
indicating that the data was stored in the data attribute and that the variable names were
stored in the feature_names attribute. To retain only the RM, LSTAT, and CRIM variables,
we passed the column names in double brackets [[]] at the back of pandas DataFrame().

To display the boxplot, we used seaborn's boxplot() method and passed the pandas
Series with the RM variable as an argument. In the boxplot displayed after step 3, the IQR is
delimited by the rectangle, and the upper and lower boundaries corresponding to either,
the 75th quantile plus 1.5 times the IQR, or the 25th quantile minus 1.5 times the IQR. This
is indicated by the whiskers. The outliers are the asterisks lying outside the whiskers.

To identify those outliers in our dataframe, in step 4, we created a function to find the
boundaries according to the IQR proximity rule. The function took the dataframe and the
variable as arguments and calculated the IQR and the boundaries using the formula
described in the Getting ready section of this recipe. With the pandas quantile()
method, we calculated the values for the 25th (0.25) and 75th quantiles (0.75). The function
returned the upper and lower boundaries for the RM variable.

To find the outliers of RM, we used NumPy's where() method, which produced a boolean
vector with True if the value was an outlier. Briefly, where() scanned the rows of the RM
variable, and if the value was bigger than the upper boundary, it assigned True, whereas if
the value was smaller, the second where() nested inside the first one and checked whether
the value was smaller than the lower boundary, in which case it also assigned True,
otherwise False. Finally, we used the loc[] method from pandas to capture only those
values in the RM variable that were outliers in a new dataframe.



Foreseeing Variable Problems When Building ML Models Chapter 1

[ 42 ]

Comparing feature magnitude
Many machine learning algorithms are sensitive to the scale of the features. For example,
the coefficients of linear models are directly informed by the scale of the feature. In
addition, features with bigger value ranges tend to dominate over features with smaller
ranges. Having features within a similar scale also helps algorithms converge faster, thus
improving performance and training times. In this recipe, we will explore and compare
feature magnitude by looking at statistical parameters such as the mean, median, standard
deviation, and maximum and minimum values by leveraging the power of pandas.

Getting ready
For this recipe, you need to be familiar with common statistical parameters such as mean,
quantiles, maximum and minimum values, and standard deviation. We will use the Boston
House Prices dataset included in scikit-learn to do this.

How to do it...
Let's begin by importing the necessary libraries and loading the dataset:

Import the required Python libraries and classes:1.

import pandas as pd
from sklearn.datasets import load_boston

Load the Boston House Prices dataset from scikit-learn into a dataframe:2.

boston_dataset = load_boston()
data = pd.DataFrame(boston_dataset.data,
columns=boston_dataset.feature_names)

Print the main statistics for each variable in the dataset, that is, the mean, count,3.
standard deviation, median, quantiles, and minimum and maximum values:

data.describe()
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The following is the output of the preceding code when we run it from a Jupyter
Notebook:

Calculate the value range of each variable, that is, the difference between the4.
maximum and minimum value:

data.max() - data.min()

The following output shows the value ranges of the different variables:

CRIM        88.96988
ZN         100.00000
INDUS       27.28000
CHAS         1.00000
NOX          0.48600
RM           5.21900
AGE         97.10000
DIS         10.99690
RAD         23.00000
TAX        524.00000
PTRATIO      9.40000
B          396.58000
LSTAT       36.24000
dtype: float64

The value ranges of the variables are quite different.
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How it works...
In this recipe, we used the describe() method from pandas to return the main statistical
parameters of a distribution, namely, the mean, standard deviation, minimum and
maximum values, 25th, 50th, and 75th quantiles, and the number of observations (count).

We can also calculate these parameters individually using the
pandas mean(), count(), min(), max(), std(), and
quantile() methods.

Finally, we calculated the value range by subtracting the minimum from the maximum
value in each variable using the pandas max() and min() methods.



2
Imputing Missing Data

Missing data refers to the absence of values for certain observations and is an unavoidable
problem in most data sources. Scikit-learn does not support missing values as input, so we
need to remove observations with missing data or transform them into permitted values.
The act of replacing missing data with statistical estimates of missing values is
called imputation. The goal of any imputation technique is to produce a complete
dataset that can be used to train machine learning models. There are multiple imputation
techniques we can apply to our data. The choice of imputation technique we use will
depend on whether the data is missing at random, the number of missing values, and the
machine learning model we intend to use. In this chapter, we will discuss several missing
data imputation techniques.

This chapter will cover the following recipes:

Removing observations with missing data
Performing mean or median imputation
Implementing mode or frequent category imputation
Replacing missing values with an arbitrary number
Capturing missing values in a bespoke category
Replacing missing values with a value at the end of the distribution
Implementing random sample imputation
Adding a missing value indicator variable
Performing multivariate imputation by chained equations
Assembling an imputation pipeline with scikit-learn
Assembling an imputation pipeline with Feature-engine
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Technical requirements
In this chapter, we will use the Python libraries: pandas, NumPy and scikit-learn. I
recommend installing the free Anaconda Python distribution (https:/ /www. anaconda. com/
distribution/), which contains all these packages.

For details on how to install the Python Anaconda distribution, visit the
Technical requirements section in Chapter 1, Foreseeing Variable Problems
When Building ML Models.

We will also use the open source Python library called Feature-engine, which I created and
can be installed using pip:

pip install feature-engine

To learn more about Feature-engine, visit the following sites:

Home page: www.trainindata.com/feature-engine
Docs: https:/ / feature- engine. readthedocs. io

GitHub: https:/ / github. com/ solegalli/ feature_ engine/ 

Check that you have installed the right versions of the numerical Python
libraries, which you can find in the requirement.txt file in the
accompanying GitHub repository: https:/ /github. com/
PacktPublishing/ Python- Feature- Engineering- Cookbook.

We will also use the Credit Approval Data Set, which is available in the UCI Machine
Learning Repository (https:/ /archive. ics.uci. edu/ ml/datasets/ credit+approval).

Dua, D. and Graff, C. (2019). UCI Machine Learning Repository [http:/ /
archive. ics. uci. edu/ ml]. Irvine, CA: University of California, School of
Information and Computer Science.

To prepare the dataset, follow these steps:

Visit http:/ /archive. ics. uci. edu/ml/ machine- learning- databases/ credit-1.
screening/ .
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Click on crx.data to download the data:2.

Save crx.data to the folder where you will run the following commands.3.

After you've downloaded the dataset, open a Jupyter Notebook or a Python IDE
and run the following commands.

Import the required Python libraries:4.

import random
import pandas as pd
import numpy as np

Load the data with the following command:5.

data = pd.read_csv('crx.data', header=None)

Create a list with variable names:6.

varnames = ['A'+str(s) for s in range(1,17)]

Add the variable names to the dataframe:7.

data.columns = varnames

Replace the question marks (?) in the dataset with NumPy NaN values:8.

data = data.replace('?', np.nan)

Recast the numerical variables as float data types:9.

data['A2'] = data['A2'].astype('float')
data['A14'] = data['A14'].astype('float')
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Recode the target variable as binary:10.

data['A16'] = data['A16'].map({'+':1, '-':0})

To demonstrate the recipes in this chapter, we will introduce missing data at
random in four additional variables in this dataset.

Add some missing values at random positions in four variables:11.

random.seed(9001)
values = set([random.randint(0, len(data)) for p in range(0, 100)])
for var in ['A3', 'A8', 'A9', 'A10']:
   data.loc[values, var] = np.nan

With random.randint(), we extracted random digits between 0 and the number
of observations in the dataset, which is given by len(data), and used these
digits as the indices of the dataframe where we introduce the NumPy NaN
values.

Setting the seed, as specified in step 11, should allow you to obtain the
results provided by the recipes in this chapter.

Save your prepared data:12.

data.to_csv('creditApprovalUCI.csv', index=False)

Now, you are ready to carry on with the recipes in this chapter.

Removing observations with missing data
Complete Case Analysis (CCA), also called list-wise deletion of cases, consists
of discarding those observations where the values in any of the variables are missing. CCA
can be applied to categorical and numerical variables. CCA is quick and easy to implement
and has the advantage that it preserves the distribution of the variables, provided the data
is missing at random and only a small proportion of the data is missing. However, if data is
missing across many variables, CCA may lead to the removal of a big portion of the
dataset.
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How to do it...
Let's begin by loading pandas and the dataset:

First, we'll import the pandas library:1.

import pandas as pd

Let's load the Credit Approval Data Set:2.

data = pd.read_csv('creditApprovalUCI.csv')

Let's calculate the percentage of missing values for each variable and sort them in3.
ascending order:

data.isnull().mean().sort_values(ascending=True)

 The output of the preceding code is as follows:

A11    0.000000
A12    0.000000
A13    0.000000
A15    0.000000
A16    0.000000
A4     0.008696
A5     0.008696
A6     0.013043
A7     0.013043
A1     0.017391
A2     0.017391
A14    0.018841
A3     0.133333
A8     0.133333
A9     0.133333
A10    0.133333
dtype: float64

Now, we'll remove the observations with missing data in any of the variables:4.

data_cca = data.dropna()

To remove observations where data is missing in a subset of variables, we
can execute data.dropna(subset=['A3', 'A4']). To remove
observations if data is missing in all the variables, we can execute
data.dropna(how='all').
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Let's print and compare the size of the original and complete case datasets:5.

print('Number of total observations: {}'.format(len(data)))
print('Number of observations with complete cases:
{}'.format(len(data_cca)))

Here, we removed more than 100 observations with missing data, as shown in the
following output:

Number of total observations: 690
Number of observations with complete cases: 564

We can use the code from step 3 to corroborate the absence of missing data in the complete
case dataset.

How it works...
In this recipe, we determined the percentage of missing data for each variable in the Credit
Approval Data Set and removed all observations with missing information to create a
complete case dataset.

First, we loaded the data from a CSV file into a dataframe with the pandas read_csv()
method. Next, we used the pandas isnull() and mean() methods to determine the
percentage of missing observations for each variable. We discussed these methods in
the Quantifying missing data recipe in Chapter 1, Foreseeing Variable Problems When Building
ML Models. With pandas sort_values(), we ordered the variables from the one with the
fewest missing values to the one with the most.

To remove observations with missing values in any of the variables, we used the pandas
dropna() method, thereby obtaining a complete case dataset. Finally, we calculated the
number of observations we removed using the Python built-in method len, which returned
the number of rows in the original and complete case datasets. Using format, we included
the len output within the {} in the print statement, thereby displaying the number of
missing observations next to the text.

See also
To learn more about dropna(), go to https:/ /pandas. pydata. org/ pandas- docs/ stable/
reference/api/pandas. DataFrame. dropna. html.
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Performing mean or median imputation
Mean or median imputation consists of replacing missing values with the variable mean or
median. This can only be performed in numerical variables. The mean or the median is
calculated using a train set, and these values are used to impute missing data in train and
test sets, as well as in future data we intend to score with the machine learning model.
Therefore, we need to store these mean and median values. Scikit-learn and Feature-engine
transformers learn the parameters from the train set and store these parameters for future
use. So, in this recipe, we will learn how to perform mean or median imputation using the
scikit-learn and Feature-engine libraries and pandas for comparison.

Use mean imputation if variables are normally distributed and median
imputation otherwise. Mean and median imputation may distort the
distribution of the original variables if there is a high percentage of
missing data.

How to do it...
Let's begin this recipe:

First, we'll import pandas and the required functions and classes from scikit-1.
learn and Feature-engine:

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer
from feature_engine.missing_data_imputers import MeanMedianImputer

Let's load the dataset:2.

data = pd.read_csv('creditApprovalUCI.csv')

In mean and median imputation, the mean or median values should be3.
calculated using the variables in the train set; therefore, let's separate the data
into train and test sets and their respective targets:

X_train, X_test, y_train, y_test = train_test_split(
    data.drop('A16', axis=1), data['A16'], test_size=0.3,
    random_state=0)
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You can check the size of the returned datasets using pandas' shape:
X_train.shape, X_test.shape.

Let's check the percentage of missing values in the train set:4.

X_train.isnull().mean()

The following output shows the percentage of missing values for each variable:

A1   0.008282
A2   0.022774
A3   0.140787
A4   0.008282
A5   0.008282
A6   0.008282
A7   0.008282
A8   0.140787
A9   0.140787
A10  0.140787
A11  0.000000
A12  0.000000
A13  0.000000
A14  0.014493
A15  0.000000
dtype: float64

Let's replace the missing values with the median in five numerical variables5.
using pandas:

for var in ['A2', 'A3', 'A8', 'A11', 'A15']:
    value = X_train[var].median()
    X_train[var] = X_train[var].fillna(value)
    X_test[var] = X_test[var].fillna(value)

Note how we calculate the median using the train set and then use this value to
replace the missing data in the train and test sets.

To impute missing data with the mean, we use pandas' mean():value =
X_train[var].mean().

If you run the code in step 4 after imputation, the percentage of missing values for
the A2, A3, A8, A11, and A15 variables should be 0.
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The pandas' fillna() returns a new dataset with imputed values by
default. We can set the inplace argument to True to replace missing data
in the original dataframe: X_train[var].fillna(inplace=True).

Now, let's impute missing values by the median using scikit-learn so that we can
store learned parameters.

To do this, let's separate the original dataset into train and test sets, keeping only6.
the numerical variables:

X_train, X_test, y_train, y_test = train_test_split(
    data[['A2', 'A3', 'A8', 'A11', 'A15']], data['A16'],
    test_size=0.3, random_state=0)

SimpleImputer() from scikit-learn will impute all variables in the
dataset. Therefore, if we use mean or median imputation and the dataset
contains categorical variables, we will get an error. 

Let's create a median imputation transformer using SimpleImputer() from7.
scikit-learn:

imputer = SimpleImputer(strategy='median')

To perform mean imputation, we should set the strategy to mean:
imputer = SimpleImputer(strategy = 'mean').

Let's fit the SimpleImputer() to the train set so that it learns the median values8.
of the variables:

imputer.fit(X_train)

Let's inspect the learned median values:9.

imputer.statistics_

The imputer stores median values in the statistics_ attribute, as shown in the
following output:

array([28.835,  2.75 ,  1.   ,  0.   ,  6.   ])



Imputing Missing Data Chapter 2

[ 54 ]

Let's replace missing values with medians:10.

X_train = imputer.transform(X_train)
X_test = imputer.transform(X_test)

SimpleImputer() returns NumPy arrays. We can transform the array
into a dataframe using pd.DataFrame(X_train, columns = ['A2',
'A3', 'A8', 'A11', 'A15']). Be mindful of the order of the
variables.

Finally, let's perform median imputation using MeanMedianImputer() from
Feature-engine. First, we need to load and divide the dataset, just like we did in
step 2 and step 3. Next, we need to create an imputation transformer.

Let's set up a median imputation transformer using MeanMedianImputer()11.
from Feature-engine specifying the variables to impute:

median_imputer = MeanMedianImputer(imputation_method='median',
                     variables=['A2', 'A3', 'A8', 'A11', 'A15'])

To perform mean imputation, change the imputation method, as follows:
MeanMedianImputer(imputation_method='mean').

Let's fit the median imputer so that it learns the median values for each of the12.
specified variables:

median_imputer.fit(X_train)

Let's inspect the learned medians:13.

median_imputer.imputer_dict_

With the previous command, we can visualize the median values stored in a
dictionary in the imputer_dict_ attribute:

{'A2': 28.835, 'A3': 2.75, 'A8': 1.0, 'A11': 0.0, 'A15': 6.0}

Finally, let's replace the missing values with the median:14.

X_train = median_imputer.transform(X_train)
X_test = median_imputer.transform(X_test)
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Feature-engine's MeanMedianImputer() returns a dataframe. You can check that the 
imputed variables do not contain missing values using X_train[['A2','A3', 'A8',
'A11', 'A15']].isnull().mean().

How it works...
We replaced the missing values in the Credit Approval Data Set with the median estimates
of the variables using pandas, scikit-learn, and Feature-engine. Since the mean or median
values should be learned from the train set variables, we divided the dataset into train and
test sets. To do so, in step 3, we used scikit-learn's train_test_split() function, which
takes the dataset with predictor variables, the target, the percentage of observations to
retain in the test set, and a random_state value for reproducibility as arguments. To
obtain a dataset with predictor variables only, we used pandas drop() with the target
variable A16 as an argument. To obtain the target, we sliced the dataframe on the target
column, A16. By doing this, we obtained a train set with 70% of the original observations
and a test set with 30% of the original observations.

We calculated the percentage of missing data for each variable using pandas isnull(),
followed by pandas mean(), which we described in the Quantifying missing data recipe
in Chapter 1, Foreseeing Variable Problems When Building ML Models. To impute missing data
with pandas in multiple numerical variables, in step 5 we created a for loop over the A2,
A3, A8, A11, and A15 variables. For each variable, we calculated the median with
pandas' median() in the train set and used this value to replace the missing values with
pandas' fillna() in the train and test sets.

To replace the missing values using scikit-learn, we divided the Credit Approval data into
train and test sets, keeping only the numerical variables. Next, we created an imputation
transformer using SimpleImputer() and set the strategy argument to median. With the
fit() method, SimpleImputer() learned the median of each variable in the train set and
stored them in its statistics_ attribute. Finally, we replaced the missing values using the
transform() method of SimpleImputer() in the train and test sets.

To replace missing values via Feature-engine, we set up MeanMedianImputer() with
imputation_method set to median and passed the names of the variables to impute in a
list to the variables argument. With the fit() method, the transformer learned and
stored the median values of the specified variables in a dictionary in its
imputer_dict_ attribute. With the transform() method, the missing values were
replaced by the median in the train and test sets.
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SimpleImputer() from scikit-learn operates on the entire dataframe and
returns NumPy arrays. In contrast, MeanMedianImputer() from Feature-
engine can take an entire dataframe as input and yet it will only impute
the specified variables, returning a pandas dataframe.

There's more...
Scikit-learn's SimpleImputer() imputes all the variables in the dataset but, with scikit-
learn's ColumnTransformer(), we can select specific variables we want to impute. For
details on how to use ColumnTransformer() with SimpleImputer(), see the
Assembling an imputation pipeline with scikit-learn recipe or check out the Jupyter Notebook
for this recipe in the accompanying GitHub repository: https:/ /github. com/
PacktPublishing/Python- Feature- Engineering- Cookbook.

See also
To learn more about scikit-learn transformers, take a look at the following websites:

SimpleImputer(): https:/ / scikit- learn. org/ stable/ modules/ generated/
sklearn. impute. SimpleImputer. html#sklearn. impute. SimpleImputer

ColumnTransformer(): https:/ /scikit- learn. org/ stable/ modules/
generated/ sklearn. compose. ColumnTransformer. html

Stackoverflow: https://stackoverflow.com/questions/54160370/how-to-us
e-sklearn-column-transformer

To learn more about mean or median imputation with Feature-engine, go to https:/ /
feature-engine.readthedocs. io/ en/ latest/ imputers/ MeanMedianImputer. html.

Implementing mode or frequent category
imputation
Mode imputation consists of replacing missing values with the mode. We normally use this
procedure in categorical variables, hence the frequent category imputation name. Frequent
categories are estimated using the train set and then used to impute values in train, test,
and future datasets. Thus, we need to learn and store these parameters, which we can do
using scikit-learn and Feature-engine's transformers; in the following recipe, we will learn
how to do so.
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If the percentage of missing values is high, frequent category imputation
may distort the original distribution of categories.

How to do it...
To begin, let's make a few imports and prepare the data:

Let's import pandas and the required functions and classes from scikit-learn and1.
Feature-engine:

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer
from feature_engine.missing_data_imputers import
FrequentCategoryImputer

Let's load the dataset:2.

data = pd.read_csv('creditApprovalUCI.csv')

Frequent categories should be calculated using the train set variables, so let's 3.
separate the data into train and test sets and their respective targets:

X_train, X_test, y_train, y_test = train_test_split(
    data.drop('A16', axis=1), data['A16'], test_size=0.3,
    random_state=0)

Remember that you can check the percentage of missing values in the
train set with X_train.isnull().mean().

Let's replace missing values with the frequent category, that is, the mode, in four4.
categorical variables:

for var in ['A4', 'A5', 'A6', 'A7']:
    value = X_train[var].mode()[0]
    X_train[var] = X_train[var].fillna(value)
    X_test[var] = X_test[var].fillna(value)

Note how we calculate the mode in the train set and use that value to replace the
missing data in the train and test sets.
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The pandas' fillna() returns a new dataset with imputed values by
default. Instead of doing this, we can replace missing data in the original
dataframe by executing X_train[var].fillna(inplace=True).

Now, let's impute missing values by the most frequent category using scikit-learn.

First, let's separate the original dataset into train and test sets and only retain the5.
categorical variables:

X_train, X_test, y_train, y_test = train_test_split(
    data[['A4', 'A5', 'A6', 'A7']], data['A16'], test_size=0.3,
    random_state=0)

Let's create a frequent category imputer with SimpleImputer() from scikit-6.
learn:

imputer = SimpleImputer(strategy='most_frequent')

 SimpleImputer() from scikit-learn will learn the mode for numerical
and categorical variables alike. But in practice, mode imputation is done
for categorical variables only.

Let's fit the imputer to the train set so that it learns the most frequent values:7.

imputer.fit(X_train)

Let's inspect the most frequent values learned by the imputer:8.

imputer.statistics_

The most frequent values are stored in the statistics_ attribute of the imputer,
as follows:

array(['u', 'g', 'c', 'v'], dtype=object)

Let's replace missing values with frequent categories:9.

X_train = imputer.transform(X_train)
X_test = imputer.transform(X_test)

Note that SimpleImputer() will return a NumPy array and not a pandas
dataframe.
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Finally, let's impute missing values using Feature-engine. First, we need to load
and separate the data into train and test sets, just like we did in step 2 and step 3 in
this recipe.

Next, let's create a frequent category imputer with10.
FrequentCategoryImputer() from Feature-engine, specifying the categorical
variables that should have missing data removed:

mode_imputer = FrequentCategoryImputer(variables=['A4', 'A5', 'A6',
'A7'])

FrequentCategoryImputer() will select all categorical variables in the
train set by default; that is, unless we pass a list of variables to impute.

Let's fit the imputation transformer to the train set so that it learns the most11.
frequent categories:

mode_imputer.fit(X_train)

Let's inspect the learned frequent categories:12.

mode_imputer.imputer_dict_

We can see the dictionary with the most frequent values in the following output:

{'A4': 'u', 'A5': 'g', 'A6': 'c', 'A7': 'v'}

Finally, let's replace the missing values with frequent categories:13.

X_train = mode_imputer.transform(X_train)
X_test = mode_imputer.transform(X_test)

FrequentCategoryImputer() returns a pandas dataframe with the imputed
values.

Remember that you can check that the categorical variables do not contain
missing values by using X_train[['A4', 'A5', 'A6',
'A7']].isnull().mean().
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How it works...
In this recipe, we replaced the missing values of the categorical variables in the Credit
Approval Data Set with the most frequent categories using pandas, scikit-learn, and
Feature-engine. Frequent categories should be learned from the train set, so we divided the
dataset into train and test sets using train_test_split() from scikit-learn, as described
in the Performing mean or median imputation recipe.

To impute missing data with pandas in multiple categorical variables, in step 4 we created a
for loop over the categorical variables A4 to A7, and for each variable, we calculated the
most frequent value using the pandas mode() method in the train set. Then, we used this
value to replace the missing values with pandas fillna() in the train and test sets. Pandas
fillna() returned a pandas Series without missing values, which we reassigned to the
original variable in the dataframe.

To replace missing values using scikit-learn, we divided the data into train and test sets but
only kept categorical variables. Next, we set up SimpleImputer() and
specified most_frequent as the imputation method in the strategy. With the fit()
method, imputer learned and stored frequent categories in its statistics_ attribute.
With the transform() method, the missing values in the train and test sets were replaced
with the learned statistics, returning NumPy arrays.

Finally, to replace the missing values via Feature-engine, we set up
FrequentCategoryImputer(), specifying the variables to impute in a list. With fit(),
the FrequentCategoryImputer() learned and stored frequent categories in a dictionary
in the imputer_dict_ attribute. With the transform() method, missing values in the
train and test sets were replaced with stored parameters, which allowed us to obtain
pandas dataframes without missing data.

Note that, unlike SimpleImputer() from scikit-learn,
FrequentCategoryImputer() will only impute categorical variables
and ignores numerical ones.

See also
To learn more about scikit-learn's SimpleImputer() go to https:/ /scikit- learn. org/
stable/modules/generated/ sklearn. impute. SimpleImputer. html#sklearn. impute.
SimpleImputer.
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To learn more about Feature-engine's FrequentCategoryImputer(), go to https:/ /
feature-engine.readthedocs. io/ en/ latest/ imputers/ FrequentCategoryImputer. html.

Replacing missing values with an arbitrary
number
Arbitrary number imputation consists of replacing missing values with an arbitrary value.
Some commonly used values include 999, 9999, or -1 for positive distributions. This method
is suitable for numerical variables. A similar method for categorical variables will be
discussed in the Capturing missing values in a bespoke category recipe.

When replacing missing values with an arbitrary number, we need to be careful not to
select a value close to the mean or the median, or any other common value of the
distribution.

Arbitrary number imputation can be used when data is not missing at
random, when we are building non-linear models, and when the
percentage of missing data is high. This imputation technique distorts the
original variable distribution.

In this recipe, we will impute missing data by arbitrary numbers using pandas, scikit-learn,
and Feature-engine.

How to do it...
Let's begin by importing the necessary tools and loading and preparing the data:

Import pandas and the required functions and classes from scikit-learn and1.
Feature-engine:

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer
from feature_engine.missing_data_imputers import
ArbitraryNumberImputer

Let's load the dataset:2.

data = pd.read_csv('creditApprovalUCI.csv')
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Let's separate the data into train and test sets:3.

X_train, X_test, y_train, y_test = train_test_split(
    data.drop('A16', axis=1), data['A16'], test_size=0.3,
    random_state=0)

Normally, we select arbitrary values that are bigger than the maximum value of
the distribution.

Let's find the maximum value of four numerical variables:4.

X_train[['A2','A3', 'A8', 'A11']].max()

The following is the output of the preceding code block:

A2     76.750
A3     26.335
A8     20.000
A11    67.000
dtype: float64

Let's replace the missing values with 99 in the numerical variables that we5.
specified in step 4:

for var in ['A2','A3', 'A8', 'A11']:
    X_train[var].fillna(99, inplace=True)
    X_test[var].fillna(99, inplace=True)

We chose 99 as the arbitrary value because it is bigger than the maximum
value of these variables.

We can check the percentage of missing values using X_train[['A2','A3',
'A8', 'A11']].isnull().mean(), which should be 0 after step 5.

Now, we'll impute missing values with an arbitrary number using scikit-learn
instead.

First, let's separate the data into train and test sets while keeping only the6.
numerical variables:

X_train, X_test, y_train, y_test = train_test_split(
    data[['A2', 'A3', 'A8', 'A11']], data['A16'], test_size=0.3,
    random_state=0)
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Let's set up SimpleImputer() so that it replaces any missing values with 99:7.

imputer = SimpleImputer(strategy='constant', fill_value=99)

If your dataset contains categorical variables, SimpleImputer() will add
99 to those variables as well if any values are missing.

Let's fit the imputer to the train set:8.

imputer.fit(X_train)

Let's replace the missing values with 99:9.

X_train = imputer.transform(X_train)
X_test = imputer.transform(X_test)

Note that SimpleImputer() will return a NumPy array. Be mindful of
the order of the variables if you're transforming the array back into a
dataframe.

To finish, let's impute missing values using Feature-engine. First, we need to load
the data and separate it into train and test sets, just like we did in step 2 and step 3.

Next, let's create an imputation transformer with Feature-engine's10.
ArbitraryNumberImputer() in order to replace any missing values with
99 and specify the variables from which missing data should be imputed:

imputer = ArbitraryNumberImputer(arbitrary_number=99,
                        variables=['A2','A3', 'A8', 'A11'])

ArbitraryNumberImputer() will automatically select all numerical
variables in the train set; that is, unless we specify which variables to
impute in a list.
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Let's fit the arbitrary number imputer to the train set:11.

imputer.fit(X_train)

Finally, let's replace the missing values with 99:12.

X_train = imputer.transform(X_train)
X_test = imputer.transform(X_test)

The variables specified in step 10 should now have missing data replaced with the number
99.

How it works...
In this recipe, we replaced missing values in numerical variables in the Credit Approval
Data Set with an arbitrary number, 99, using pandas, scikit-learn, and Feature-engine. We
loaded the data and divided it into train and test sets using train_test_split() from
scikit-learn, as described in the Performing mean or median imputation recipe.

To determine which arbitrary value to use, we inspected the maximum values of four
numerical variables using the pandas max() method. Next, we chose a value, 99, that was
bigger than the maximum values of the selected variables. In step 5, we used a for loop
over the numerical variables to replace any missing data with the pandas fillna()
method while passing 99 as an argument and setting the inplace argument to True in
order to replace the values in the original dataframe.

To replace missing values using scikit-learn, we called SimpleImputer(), set strategy to
constant, and specified 99 as the arbitrary value in the fill_value argument. Next, we
fitted the imputer to the train set with the fit() method and replaced missing values using
the transform() method in the train and test sets. SimpleImputer() returned a NumPy
array with the missing data replaced by 99. 

Finally, we replaced missing values with ArbitraryValueImputer() from Feature-
engine, specifying a value, 99, in the arbitrary_number argument. We also included the
variables to impute in a list to the variables argument. Next, we applied the fit()
method. ArbitraryNumberimputer() checked that the selected variables were numerical
after applying the fit() method. With the transform() method, the missing values in
the train and test sets were replaced with 99, thus returning dataframes without missing
values in selected variables.
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There's more...
Scikit-learn released the ColumnTransformer() object, which allows us to select specific
variables so that we can apply a certain imputation method. To learn how to use
ColumnTransformer(), check out the Assembling an imputation pipeline with scikit-
learn recipe.

See also
To learn more about Feature-engine's ArbitraryValueImputer(), go to https:/ /
feature-engine.readthedocs. io/ en/ latest/ imputers/ ArbitraryValueImputer. html.

Capturing missing values in a bespoke
category
Missing data in categorical variables can be treated as a different category, so it is common
to replace missing values with the Missing string. In this recipe, we will learn how to do so
using pandas, scikit-learn, and Feature-engine.

How to do it...
To proceed with the recipe, let's import the required tools and prepare the dataset:

Import pandas and the required functions and classes from scikit-learn and1.
Feature-engine:

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer
from feature_engine.missing_data_imputers import
CategoricalVariableImputer

Let's load the dataset:2.

data = pd.read_csv('creditApprovalUCI.csv')
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Let's separate the data into train and test sets:3.

X_train, X_test, y_train, y_test = train_test_split(
    data.drop('A16', axis=1), data['A16'], test_size=0.3,
    random_state=0)

Let's replace missing values in four categorical variables by using4.
the Missing string:

for var in ['A4', 'A5', 'A6', 'A7']:
    X_train[var].fillna('Missing', inplace=True)
    X_test[var].fillna('Missing', inplace=True)

Alternatively, we can replace missing values with the Missing string using scikit-
learn as follows.

First, let's separate the data into train and test sets while keeping only categorical5.
variables:

X_train, X_test, y_train, y_test = train_test_split(
    data[['A4', 'A5', 'A6', 'A7']], data['A16'], test_size=0.3,
random_state=0)

Let's set up SimpleImputer() so that it replaces missing data with the Missing6.
string and fit it to the train set:

imputer = SimpleImputer(strategy='constant', fill_value='Missing')
imputer.fit(X_train)

SimpleImputer() from scikit-learn will replace missing values
with Missing in both numerical and categorical variables. Be careful of
this behavior or you will end up accidentally casting your numerical
variables as objects.

Let's replace the missing values:7.

X_train = imputer.transform(X_train)
X_test = imputer.transform(X_test)

Remember that SimpleImputer() returns a NumPy array, which you
can transform into a dataframe using pd.DataFrame(X_train,
columns = ['A4', 'A5', 'A6', 'A7']).

To finish, let's impute missing values using Feature-engine. First, we need to
separate the dataset, just like we did in step 3 of this recipe. 
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Next, let's set up the CategoricalVariableImputer() from Feature-engine,8.
which replaces missing values with the Missing string, specifying the
categorical variables to impute, and then fit the transformer to the train set:

imputer = CategoricalVariableImputer(variables=['A4', 'A5', 'A6',
'A7'])
imputer.fit(X_train)

If we don't pass a list with categorical variables,
FrequentCategoryImputer() will select all categorical variables in the
train set.

Finally, let's replace the missing values:9.

X_train = imputer.transform(X_train)
X_test = imputer.transform(X_test)

Remember that you can check that missing values have been replaced with
pandas' isnull(), followed by sum().

How it works...
In this recipe, we replaced the missing values in categorical variables in the Credit
Approval Data Set by using the Missing string using pandas, scikit-learn, and Feature-
engine. First, we loaded the data and divided it into train and test sets using
train_test_split(), as described in the Performing mean or median imputation recipe. To
impute missing data with pandas, we used the fillna() method, passed the
Missing string as an argument and set inplace=True to replace the values directly in the
original dataframe.

To replace missing values using scikit-learn, we called SimpleImputer(), set strategy to
constant, and added the Missing string to the fill_value argument. Next, we fitted the
imputer to the train set and replaced missing values using the transform() method in the
train and test sets, which returned NumPy arrays.

Finally, we replaced missing values with FrequentCategoryImputer() from Feature-
engine, specifying the variables to impute in a list. With the fit() method,
FrequentCategoryImputer() checked that the variables were categorical, and with
transform() missing values were replaced with the Missing string in both train and test
sets, thereby returning pandas dataframes.



Imputing Missing Data Chapter 2

[ 68 ]

Note that, unlike SimpleImputer(), CategoricalVariableImputer()
will not impute numerical variables.

See also
To learn more about Feature-engine's CategoricalVariableImputer(), go to https:/ /
feature-engine.readthedocs. io/ en/ latest/ imputers/ CategoricalVariableImputer.
html.

Replacing missing values with a value at the
end of the distribution
Replacing missing values with a value at the end of the variable distribution is equivalent
to replacing them with an arbitrary value, but instead of identifying the arbitrary values
manually, these values are automatically selected as those at the very end of the variable
distribution. The values that are used to replace missing information are estimated using
the mean plus or minus three times the standard deviation if the variable is normally
distributed, or the inter-quartile range (IQR) proximity rule otherwise. According to the
IQR proximity rule, missing values will be replaced with the 75th quantile + (IQR * 1.5) at
the right tail or by the 25th quantile - (IQR * 1.5) at the left tail. The IQR is given by the 75th
quantile - the 25th quantile.

Some users will also identify the minimum or maximum values of the
variable and replace missing data as a factor of these values, for example,
three times the maximum value.

The value that's used to replace missing information should be learned from the train set
and stored to impute train, test, and future data. Feature-engine offers this functionality. In
this recipe, we will implement end-of-tail imputation using pandas and Feature-engine.

End-of-tail imputation may distort the distribution of the original
variables, so it may not be suitable for linear models.
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How to do it...
To complete this recipe, we need to import the necessary tools and load the data:

Let's import pandas, the train_test_split function from scikit-learn, and the1.
EndTailImputer function from Feature-engine:

import pandas as pd
from sklearn.model_selection import train_test_split
from feature_engine.missing_data_imputers import EndTailImputer

Let's load the dataset:2.

data = pd.read_csv('creditApprovalUCI.csv')

The values at the end of the distribution should be calculated from the variables
in the train set.

Let's separate the data into train and test sets:3.

X_train, X_test, y_train, y_test = train_test_split(
    data.drop('A16', axis=1), data['A16'], test_size=0.3,
    random_state=0)

Remember that you can check the percentage of missing values
using X_train.isnull().mean().

Let’s loop over five numerical variables, calculate the IQR, determine the value of4.
the 75th quantile plus 1.5 times the IQR, and replace the missing observations in
the train and test sets with that value:

for var in ['A2', 'A3', 'A8', 'A11', 'A15']:

    IQR = X_train[var].quantile(0.75) - X_train[var].quantile(0.25)
    value = X_train[var].quantile(0.75) + 1.5 * IQR

    X_train[var] = X_train[var].fillna(value)
    X_test[var] = X_test[var].fillna(value)
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If we want to use the Gaussian approximation instead of the IQR
proximity rule, we can calculate the value to replace missing data using
value = X_train[var].mean() + 3*X_train[var].std(). Some
users also calculate the value as X_train[var].max()*3.

Note how we calculated the value to impute the missing data using the variables
in the train set and then used this to impute train and test sets.

We can also place replace missing data with values at the left tail of the
distribution using value = X_train[var].quantile(0.25) - 1.5 *
IQR or value = X_train[var].mean() - 3*X_train[var].std().

To finish, let's impute missing values using Feature-engine. First, we need to load
and separate the data into train and test sets, just like in step 2 and step 3 of this
recipe.

Next, let's set up EndTailImputer() so that we can estimate a value at the right5.
tail using the IQR proximity rule and specify the variables we wish to impute:

imputer = EndTailImputer(distribution='skewed', tail='right',
                      variables=['A2', 'A3', 'A8', 'A11', 'A15'])

To use mean and standard deviation to calculate the replacement values,
we need to set distribution='gaussian'. We can use 'left' or
'right' in the tail argument to specify the side of the distribution
where we'll place the missing values.

Let's fit the EndTailImputer() to the train set so that it learns the parameters:6.

imputer.fit(X_train)

Let's inspect the learned values:7.

imputer.imputer_dict_

We can see a dictionary with the values in the following output:

{'A2': 88.18,
 'A3': 27.31,
 'A8': 11.504999999999999,
 'A11': 12.0,
 'A15': 1800.0}
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Finally, let's replace the missing values:8.

X_train = imputer.transform(X_train)
X_test = imputer.transform(X_test)

Remember that you can corroborate that the missing values were replaced after step 4 and
step 8 by using X_train[['A2','A3', 'A8', 'A11', 'A15']].isnull().mean().

How it works...
In this recipe, we replaced the missing values in numerical variables with a value at the end
of the distribution using pandas and Feature-engine. These values were calculated using
the IQR proximity rule or the mean and standard deviation. First, we loaded the data and
divided it into train and test sets using train_test_split(), as described in the
Performing mean or median imputation recipe.

To impute missing data with pandas, we calculated the values at the end of the
distributions using the IQR proximity rule or the mean and standard deviation according to
the formulas we described in the introduction to this recipe. We determined the quantiles
using pandas quantile() and the mean and standard deviation using pandas mean() and
std(). Next, we used pandas' fillna() to replace the missing values.

We can set the inplace argument of fillna() to True to replace
missing values in the original dataframe, or leave it as False to return a
new Series with the imputed values.

Finally, we replaced missing values with EndTailImputer() from Feature-engine. We set
the distribution to 'skewed' to calculate the values with the IQR proximity rule and
the tail to 'right' to place values at the right tail. We also specified the variables to
impute in a list to the variables argument.

If we don't specify a list of numerical variables in the argument variables,
EndTailImputer() will select all numerical variables in the train set.

With the fit() method, imputer learned and stored the values in a dictionary in the
imputer_dict_ attribute. With the transform() method, the missing values were
replaced, returning dataframes.
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See also
To learn more about Feature-engine's EndTailImputer(), go to https:/ /feature-
engine.readthedocs. io/ en/ latest/ imputers/ EndTailImputer. html.

Implementing random sample imputation
Random sampling imputation consists of extracting random observations from the pool of
available values in the variable. Random sampling imputation preserves the original
distribution, which differs from the other imputation techniques we've discussed in this
chapter and is suitable for numerical and categorical variables alike. In this recipe, we will
implement random sample imputation with pandas and Feature-engine.

How to do it...
Let's begin by importing the required libraries and tools and preparing the dataset:

Let's import pandas, the train_test_split function from scikit-learn,1.
and RandomSampleImputer from Feature-engine:

import pandas as pd
from sklearn.model_selection import train_test_split
from feature_engine.missing_data_imputers import
RandomSampleImputer

Let's load the dataset:2.

data = pd.read_csv('creditApprovalUCI.csv')

The random values that will be used to replace missing data should be extracted3.
from the train set, so let's separate the data into train and test sets:

X_train, X_test, y_train, y_test = train_test_split(
    data.drop('A16', axis=1), data['A16'], test_size=0.3,
    random_state=0)

First, we will run the commands line by line to understand their output. Then, we
will execute them in a loop to impute several variables. In random sample
imputation, we extract as many random values as there is missing data in the
variable.
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Let's calculate the number of missing values in the A2 variable:4.

number_na = X_train['A2'].isnull().sum()

If you print the number_na variable, you will obtain 11 as output, which is the5.
number of missing values in A2. Thus, let's extract 11 values at random from A2
for the imputation:

random_sample_train = X_train['A2'].dropna().sample(number_na,
                            random_state=0)

We can only use one pandas Series to replace values in another pandas Series if6.
their indexes are identical, so let's re-index the extracted random values so that
they match the index of the missing values in the original dataframe:

random_sample_train.index = X_train[X_train['A2'].isnull()].index

Now, let's replace the missing values in the original dataset with randomly7.
extracted values:

X_train.loc[X_train['A2'].isnull(), 'A2'] = random_sample_train

Now, let's combine step 4 to step 7 in a loop to replace the missing data in the8.
variables in various train and test sets:

for var in ['A1', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8']:

    # extract a random sample
    random_sample_train = X_train[var].dropna().sample(
        X_train[var].isnull().sum(), random_state=0)

    random_sample_test = X_train[var].dropna().sample(
        X_test[var].isnull().sum(), random_state=0)

    # re-index the randomly extracted sample
    random_sample_train.index = X_train[
            X_train[var].isnull()].index
    random_sample_test.index = X_test[X_test[var].isnull()].index

    # replace the NA
    X_train.loc[X_train[var].isnull(), var] = random_sample_train
    X_test.loc[X_test[var].isnull(), var] = random_sample_test
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Note how we always extract values from the train set, but we calculate the
number of missing values and the index using the train or test sets,
respectively.

To finish, let's impute missing values using Feature-engine. First, we need to
separate the data into train and test, just like we did in step 3 of this recipe.

Next, let's set up RandomSamplemputer() and fit it to the train set:9.

imputer = RandomSampleImputer()
imputer.fit(X_train)

RandomSampleImputer() will replace the values in all variables in the
dataset by default.

We can specify the variables to impute by passing variable names in a list
to the imputer using imputer = RandomSampleImputer(variables =
['A2', 'A3']).

Finally, let's replace the missing values:10.

X_train = imputer.transform(X_train)
X_test = imputer.transform(X_test)

To obtain reproducibility between code runs, we can set the
random_state to a number when we initialize the
RandomSampleImputer(). It will use the random_state at each run of
the transform() method.

How it works...
In this recipe, we replaced missing values in the numerical and categorical variables of the
Credit Approval Data Set with values extracted at random from the same variables using
pandas and Feature-engine. First, we loaded the data and divided it into train and test
sets using train_test_split(), as described in the Performing mean or median
imputation recipe.
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To perform random sample imputation using pandas, we calculated the number of missing
values in the variable using pandas isnull(), followed by sum(). Next, we used pandas
dropna() to drop missing information from the original variable in the train set so that we
extracted values from observations with data using pandas sample(). We extracted as
many observations as there was missing data in the variable to impute. Next, we re-indexed
the pandas Series with the randomly extracted values so that we could assign those to the
missing observations in the original dataframe. Finally, we replaced the missing values
with values extracted at random using pandas' loc, which takes the location of the rows
with missing data and the name of the column to which the new values are to be assigned
as arguments.

We also carried out random sample imputation with RandomSampleImputer() from
Feature-engine. With the fit() method, the RandomSampleImputer() stores a copy of
the train set. With transform(), the imputer extracts values at random from the stored
dataset and replaces the missing information with them, thereby returning complete
pandas dataframes.

See also
To learn more about Feature-engine's RandomSampleImputer(), go to https:/ /feature-
engine.readthedocs. io/ en/ latest/ imputers/ RandomSampleImputer. html.  Pay particular
attention to the different ways in which you can set the seed to ensure reproducibility.

Adding a missing value indicator variable
A missing indicator is a binary variable that specifies whether a value was missing for an
observation (1) or not (0). It is common practice to replace missing observations by the
mean, median, or mode while flagging those missing observations with a missing
indicator, thus covering two angles: if the data was missing at random, this would be
contemplated by the mean, median, or mode imputation, and if it wasn't, this would be
captured by the missing indicator. In this recipe, we will learn how to add missing
indicators using NumPy, scikit-learn, and Feature-engine.

https://feature-engine.readthedocs.io/en/latest/imputers/RandomSampleImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/RandomSampleImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/RandomSampleImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/RandomSampleImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/RandomSampleImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/RandomSampleImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/RandomSampleImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/RandomSampleImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/RandomSampleImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/RandomSampleImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/RandomSampleImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/RandomSampleImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/RandomSampleImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/RandomSampleImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/RandomSampleImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/RandomSampleImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/RandomSampleImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/RandomSampleImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/RandomSampleImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/RandomSampleImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/RandomSampleImputer.html


Imputing Missing Data Chapter 2

[ 76 ]

Getting ready
For an example of the implementation of missing indicators, along with mean imputation,
check out the Winning the KDD Cup Orange Challenge with Ensemble Selection article, which
was the winning solution in the KDD 2009 cup: http:/ /www. mtome. com/ Publications/
CiML/CiML-v3-book. pdf.

How to do it...
Let's begin by importing the required packages and preparing the data:

Let's import the required libraries, functions and classes:1.

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.impute import MissingIndicator
from feature_engine.missing_data_imputers import
AddNaNBinaryImputer

Let's load the dataset:2.

data = pd.read_csv('creditApprovalUCI.csv')

Let's separate the data into train and test sets:3.

X_train, X_test, y_train, y_test = train_test_split(
    data.drop('A16', axis=1), data['A16'], test_size=0.3,
    random_state=0)

Using NumPy, we'll add a missing indicator to the numerical and categorical4.
variables in a loop:

for var in ['A1', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8']:
    X_train[var + '_NA'] = np.where(X_train[var].isnull(), 1, 0)
    X_test[var + '_NA'] = np.where(X_test[var].isnull(), 1, 0)

Note how we name the new missing indicators using the original variable
name, plus _NA.
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Let's inspect the result of the preceding code block:5.

X_train.head()

We can see the newly added variables at the end of the dataframe:

The mean of the new variables and the percentage of missing values in the
original variables should be the same, which you can corroborate by
executing X_train['A3'].isnull().mean(),
X_train['A3_NA'].mean().

Now, let's add missing indicators using Feature-engine instead. First, we need to
load and divide the data, just like we did in step 2 and step 3 of this recipe.

Next, let's set up a transformer that will add binary indicators to all the variables6.
in the dataset using AddNaNBinaryImputer() from Feature-engine:

imputer = AddNaNBinaryImputer()

We can specify the variables which should have missing indicators by
passing the variable names in a list: imputer =
AddNaNBinaryImputer(variables = ['A2', 'A3']). Alternatively,
the imputer will add indicators to all the variables.

Let's fit AddNaNBinaryImputer() to the train set:7.

imputer.fit(X_train)

Finally, let's add the missing indicators:8.

X_train = imputer.transform(X_train)
X_test = imputer.transform(X_test)

We can inspect the result using X_train.head(); it should be similar to
the output of step 5 in this recipe.
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We can also add missing indicators using scikit-learn's MissingIndicator()
class. To do this, we need to load and divide the dataset, just like we did in step 2
and step 3.

Next, we'll set up a MissingIndicator(). Here, we will add indicators only to9.
variables with missing data:

indicator = MissingIndicator(features='missing-only')

Let's fit the transformer so that it finds the variables with missing data in the10.
train set:

indicator.fit(X_train)

Now, we can concatenate the missing indicators that were created by
MissingIndicator() to the train set.

First, let's create a column name for each of the new missing indicators with a list11.
comprehension:

indicator_cols = [c+'_NA' for c in
X_train.columns[indicator.features_]]

The features_ attribute contains the indices of the features for which
missing indicators will be added. If we pass these indices to the train set
column array, we can get the variable names.

Next, let's concatenate the original train set with the missing indicators, which12.
we obtain using the transform method:

X_train = pd.concat([
    X_train.reset_index(),
    pd.DataFrame(indicator.transform(X_train),
                 columns = indicator_cols)], axis=1)

Scikit-learn transformers return NumPy arrays, so to concatenate them
into a dataframe, we must cast it as a dataframe using pandas
DataFrame().

The result of the preceding code block should contain the original variables, plus the
indicators.
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How it works...
In this recipe, we added missing value indicators to categorical and numerical variables in
the Credit Approval Data Set using NumPy, scikit-learn, and Feature-engine. To add
missing indicators using NumPy, we used the where() method, which created a new
vector after scanning all the observations in a variable, assigning the value of 1 if there was
a missing observation or 0 otherwise. We captured the indicators in columns with the name
of the original variable, plus _NA.

To add a missing indicator with Feature-engine, we created an instance of
AddNaNBinaryImputer() and fitted it to the train set. Then, we used the transform()
method to add missing indicators to the train and test sets. Finally, to add missing
indicators with scikit-learn, we created an instance of MissingIndicator() so that we
only added indicators to variables with missing data. With the fit() method, the
transformer identified variables with missing values. With transform(), it returned a
NumPy array with binary indicators, which we captured in a dataframe and then 
concatenated to the original dataframe.

There's more...
We can add missing indicators using scikit-learn's SimpleImputer() by setting the
add_indicator argument to True. For example, imputer =
SimpleImputer(strategy=’mean’, add_indicator=True) will return a NumPy array
with missing indicators, plus the missing values in the original variables were replaced by
the mean after using the fit() and transform() methods.

See also
To learn more about the transformers that were discussed in this recipe, take a look at the 
following links:

Scikit-learn's MissingIndicator(): https:/ /scikit- learn. org/ stable/
modules/ generated/ sklearn. impute. MissingIndicator. html

Scikit-learn's SimpleImputer(): https:/ /scikit- learn. org/ stable/ modules/
generated/ sklearn. impute. SimpleImputer. html

Feature-engine's AddNaNBinaryImputer(): https:/ /feature- engine.
readthedocs. io/ en/ latest/ imputers/ AddNaNBinaryImputer. html
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Performing multivariate imputation by
chained equations
Multivariate imputation methods, as opposed to univariate imputation, use the entire set of
variables to estimate the missing values. In other words, the missing values of a variable are
modeled based on the other variables in the dataset. Multivariate imputation by chained
equations (MICE) is a multiple imputation technique that models each variable with
missing values as a function of the remaining variables and uses that estimate for
imputation. MICE has the following basic steps:

A simple univariate imputation is performed for every variable with missing1.
data, for example, median imputation.
One specific variable is selected, say, var_1, and the missing values are set back2.
to missing.
A model that's used to predict var_1 is built based on the remaining variables in3.
the dataset.
The missing values of var_1 are replaced with the new estimates.4.
Repeat step 2 to step 4 for each of the remaining variables.5.

Once all the variables have been modeled based on the rest, a cycle of imputation is
concluded. Step 2 to step 4 are performed multiple times, typically 10 times, and the
imputation values after each round are retained. The idea is that, by the end of the cycles,
the distribution of the imputation parameters should have converged.

Each variable with missing data can be modeled based on the remaining
variable by using multiple approaches, for example, linear regression,
Bayes, decision trees, k-nearest neighbors, and random forests.

In this recipe, we will implement MICE using scikit-learn.

Getting ready
To learn more about MICE, take a look at the following links:

A multivariate technique for multiplying imputing missing values using a sequence of
regression models: http:/ /citeseerx. ist.psu. edu/ viewdoc/ download? doi= 10. 1.
1.405. 4540 rep= rep1 type= pdf
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Multiple Imputation by Chained Equations: What is it and how does it work?: https:/ /
www.ncbi. nlm. nih. gov/ pmc/ articles/ PMC3074241/ 

Scikit-learn: https:/ / scikit- learn. org/ stable/ modules/ impute. html

In this recipe, we will perform MICE imputation using IterativeImputer() from scikit-
learn: https://scikit- learn. org/ stable/ modules/ generated/ sklearn. impute.
IterativeImputer.html#sklearn. impute. IterativeImputer.

To follow along with this recipe, prepare the Credit Approval Data Set, as specified in the
Technical requirements section of this chapter.

For this recipe, make sure you are using scikit-learn version 0.21.2 or
above.

How to do it...
To complete this recipe, let's import the required libraries and load the data:

 Let's import the required Python libraries and classes:1.

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import BayesianRidge
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer

Let's load the dataset with some numerical variables:2.

variables = ['A2','A3','A8', 'A11', 'A14', 'A15', 'A16']
data = pd.read_csv('creditApprovalUCI.csv', usecols=variables)

The models that will be used to estimate missing values should be built on the
train data and used to impute values in the train, test, and future data:

Let's divide the data into train and test sets:3.

X_train, X_test, y_train, y_test = train_test_split(
    data.drop('A16', axis=1),data['A16' ], test_size=0.3,
    random_state=0)
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Let's create a MICE imputer using Bayes regression as an estimator,4.
specifying the number of iteration cycles and setting random_state for
reproducibility:

imputer = IterativeImputer(estimator = BayesianRidge(),
max_iter=10, random_state=0)

IterativeImputer() contains other useful arguments. For example, we
can specify the first imputation strategy using the initial_strategy
parameter and specify how we want to cycle over the variables either
randomly, or from the one with the fewest missing values to the one with
the most.

Let's fit IterativeImputer() to the train set so that it trains the estimators to5.
predict the missing values in each variable:

imputer.fit(X_train)

Finally, let's fill in missing values in both train and test set:6.

X_train = imputer.transform(X_train)
X_test = imputer.transform(X_test)

Remember that scikit-learn returns NumPy arrays and not dataframes.

How it works...
In this recipe, we performed MICE using IterativeImputer() from scikit-learn. First, we
loaded data using pandas read_csv() and separated it into train and test sets using scikit-
learn's train_test_split(). Next, we created a multivariate imputation object using the
IterativeImputer() from scikit-learn. We specified that we wanted to estimate missing
values using Bayes regression and that we wanted to carry out 10 rounds of imputation
over the entire dataset. We fitted IterativeImputer() to the train set so that each
variable was modeled based on the remaining variables in the dataset. Next, we
transformed the train and test sets with the transform() method in order to replace
missing data with their estimates.
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There's more...
Using IterativeImputer() from scikit-learn, we can model variables using multiple
algorithms, such as Bayes, k-nearest neighbors, decision trees, and random forests. Perform
the following steps to do so:

Import the required Python libraries and classes:1.

import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import BayesianRidge
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.neighbors import KNeighborsRegressor

Load the data and separate it into train and test sets:2.

variables = ['A2','A3','A8', 'A11', 'A14', 'A15', 'A16']
data = pd.read_csv('creditApprovalUCI.csv', usecols=variables)

X_train, X_test, y_train, y_test = train_test_split(
    data.drop('A16', axis=1), data['A16'], test_size=0.3,
        random_state=0)

Build MICE imputers using different modeling strategies:3.

imputer_bayes = IterativeImputer(
    estimator=BayesianRidge(),
    max_iter=10,
    random_state=0)

imputer_knn = IterativeImputer(
    estimator=KNeighborsRegressor(n_neighbors=5),
    max_iter=10,
    random_state=0)

imputer_nonLin = IterativeImputer(
    estimator=DecisionTreeRegressor(
        max_features='sqrt', random_state=0),
    max_iter=10,
    random_state=0)

imputer_missForest = IterativeImputer(
    estimator=ExtraTreesRegressor(
        n_estimators=10, random_state=0),
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    max_iter=10,
    random_state=0)

Note how, in the preceding code block, we create four different MICE imputers,
each with a different machine learning algorithm which will be used to model
every variable based on the remaining variables in the dataset.

Fit the MICE imputers to the train set:4.

imputer_bayes.fit(X_train)
imputer_knn.fit(X_train)
imputer_nonLin.fit(X_train)
imputer_missForest.fit(X_train)

Impute missing values in the train set:5.

X_train_bayes = imputer_bayes.transform(X_train)
X_train_knn = imputer_knn.transform(X_train)
X_train_nonLin = imputer_nonLin.transform(X_train)
X_train_missForest = imputer_missForest.transform(X_train)

Remember that scikit-learn transformers return NumPy arrays.

Convert the NumPy arrays into dataframes:6.

predictors = [var for var in variables if var !='A16']
X_train_bayes = pd.DataFrame(X_train_bayes, columns = predictors)
X_train_knn = pd.DataFrame(X_train_knn, columns = predictors)
X_train_nonLin = pd.DataFrame(X_train_nonLin, columns = predictors)
X_train_missForest = pd.DataFrame(X_train_missForest, columns =
predictors)

Plot and compare the results:7.

fig = plt.figure()
ax = fig.add_subplot(111)

X_train['A3'].plot(kind='kde', ax=ax, color='blue')
X_train_bayes['A3'].plot(kind='kde', ax=ax, color='green')
X_train_knn['A3'].plot(kind='kde', ax=ax, color='red')
X_train_nonLin['A3'].plot(kind='kde', ax=ax, color='black')
X_train_missForest['A3'].plot(kind='kde', ax=ax, color='orange')

# add legends
lines, labels = ax.get_legend_handles_labels()
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labels = ['A3 original', 'A3 bayes', 'A3 knn', 'A3 Trees', 'A3
missForest']
ax.legend(lines, labels, loc='best')
plt.show()

The output of the preceding code is as follows:

In the preceding plot, we can see that the different algorithms return slightly different
distributions of the original variable.

Assembling an imputation pipeline with
scikit-learn
Datasets often contain a mix of numerical and categorical variables. In addition, some 
variables may contain a few missing data points, while others will contain quite a big
proportion. The mechanisms by which data is missing may also vary among variables.
Thus, we may wish to perform different imputation procedures for different variables. In
this recipe, we will learn how to perform different imputation procedures for different
feature subsets using scikit-learn.
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How to do it...
To proceed with the recipe, let's import the required libraries and classes and prepare the
dataset:

Let's import pandas and the required classes from scikit-learn:1.

import pandas as pd
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.model_selection import train_test_split

Let's load the dataset:2.

data = pd.read_csv('creditApprovalUCI.csv')

Let's divide the data into train and test sets:3.

X_train, X_test, y_train, y_test = train_test_split(
    data.drop('A16', axis=1), data['A16'], test_size=0.3,
        random_state=0)

Let's group a subset of columns to which we want to apply different imputation4.
techniques in lists:

features_num_arbitrary = ['A3', 'A8']
features_num_median = ['A2', 'A14']
features_cat_frequent = ['A4', 'A5', 'A6', 'A7']
features_cat_missing = ['A1', 'A9', 'A10']

Let's create different imputation transformers using SimpleImputer() within5.
the scikit-learn pipeline:

imputer_num_arbitrary = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='constant', fill_value=99)),
])
imputer_num_median = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='median')),
])
imputer_cat_frequent = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='most_frequent')),
])
imputer_cat_missing = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='constant',
fill_value='Missing')),
])
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We have covered all these imputation strategies in dedicated recipes
throughout this chapter.

Now, let's assemble the pipelines with the imputers within6.
ColumnTransformer() and assign them to the different feature subsets we
created in step 4:

preprocessor = ColumnTransformer(transformers=[
    ('imp_num_arbitrary', imputer_num_arbitrary,
                        features_num_arbitrary),
    ('imp_num_median', imputer_num_median, features_num_median),
    ('imp_cat_frequent', imputer_cat_frequent,
features_cat_frequent),
    ('imp_cat_missing', imputer_cat_missing, features_cat_missing),
    ], remainder='passthrough')

Next, we need to fit the preprocessor to the train set so that the imputation7.
parameters are learned:

preprocessor.fit(X_train)

Finally, let's replace the missing values in the train and test sets:8.

X_train = preprocessor.transform(X_train)
X_test = preprocessor.transform(X_test)

Remember that scikit-learn transformers return NumPy arrays. The beauty of this
procedure is that we can save the preprocessor in one object to perpetuate all the
parameters that are learned by the different transformers.

How it works...
In this recipe, we carried out different imputation techniques over different variable groups
using scikit-learn's SimpleImputer() and ColumnTransformer().

After loading and dividing the dataset, we created four lists of features. The first list
contained numerical variables to impute with an arbitrary value. The second list contained
numerical variables to impute by the median. The third list contained categorical variables
to impute by a frequent category. Finally, the fourth list contained categorical variables to
impute with the Missing string.
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Next, we created multiple imputation objects using SimpleImputer() in a scikit-learn
pipeline. To assemble each Pipeline(), we gave each step a name with a string. In our
example, we used imputer. Next to this, we created the imputation object with
SimpleImputer(), varying the strategy for the different imputation techniques.

Next, we arranged pipelines with different imputation strategies within
ColumnTransformer(). To set up ColumnTransformer(), we gave each step a name
with a string. Then, we added one of the created pipelines and the list with the features
which should be imputed with said pipeline.

Next, we fitted ColumnTransformer() to the train set, where the imputers learned the
values to be used to replace missing data from the train set. Finally, we imputed the
missing values in the train and test sets, using the transform() method of
ColumnTransformer() to obtain complete NumPy arrays.

See also
To learn more about scikit-learn transformers and how to use them, take a look at the
following links:

SimpleImputer(): https:/ / scikit- learn. org/ stable/ modules/ generated/
sklearn. impute. SimpleImputer. html#sklearn. impute. SimpleImputer

ColumnTransformer(): https:/ /scikit- learn. org/ stable/ modules/
generated/ sklearn. compose. ColumnTransformer. html

Stack
Overflow: https://stackoverflow.com/questions/54160370/how-to-use-skle
arn-column-transformer

Assembling an imputation pipeline with
Feature-engine
Feature-engine is an open source Python library that allows us to easily implement
different imputation techniques for different feature subsets. Often, our datasets contain a
mix of numerical and categorical variables, with few or many missing values. Therefore, we
normally perform different imputation techniques on different variables, depending on the
nature of the variable and the machine learning algorithm we want to build. With Feature-
engine, we can assemble multiple imputation techniques in a single step, and in this recipe,
we will learn how to do this.
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How to do it...
Let's begin by importing the necessary Python libraries and preparing the data:

Let's import pandas and the required function and class from scikit-learn, and1.
the missing data imputation module from Feature-engine:

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
import feature_engine.missing_data_imputers as mdi

Let's load the dataset:2.

data = pd.read_csv('creditApprovalUCI.csv')

Let's divide the data into train and test sets:3.

X_train, X_test, y_train, y_test = train_test_split(
    data.drop('A16', axis=1), data['A16'], test_size=0.3,
            random_state=0)

Let's create lists with the names of the variables that we want to apply specific4.
imputation techniques to:

features_num_arbitrary = ['A3', 'A8']
features_num_median = ['A2', 'A14']
features_cat_frequent = ['A4', 'A5', 'A6', 'A7']
features_cat_missing = ['A1', 'A9', 'A10']

Let's assemble an arbitrary value imputer, a median imputer, a frequent category5.
imputer, and an imputer to replace any missing values with the Missing string
within a scikit-learn pipeline:

pipe = Pipeline(steps=[
    ('imp_num_arbitrary', mdi.ArbitraryNumberImputer(
        variables = features_num_arbitrary)),
    ('imp_num_median', mdi.MeanMedianImputer(
        imputation_method = 'median',
variables=features_num_median)),
    ('imp_cat_frequent', mdi.FrequentCategoryImputer(
        variables = features_cat_frequent)),
    ('imp_cat_missing', mdi.CategoricalVariableImputer(
        variables=features_cat_missing))
  ])
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Note how we pass the feature lists we created in step 4 to the imputers.

Let's fit the pipeline to the train set so that each imputer learns and stores the6.
imputation parameters:

pipe.fit(X_train)

Finally, let's replace missing values in the train and test sets:7.

X_train = pipe.transform(X_train)
X_test = pipe.transform(X_test)

We can store the pipeline after fitting it as an object to perpetuate the use of the learned
parameters.

How it works...
In this recipe, we performed different imputation techniques on different variable groups
from the Credit Approval Data Set by utilizing Feature-engine within a single scikit-learn
pipeline.

After loading and dividing the dataset, we created four lists of features. The first list
contained numerical variables to impute with an arbitrary value. The second list contained
numerical variables to impute by the median. The third list contained categorical variables
to impute with a frequent category. Finally, the fourth list contained categorical variables to
impute with the Missing string.

Next, we assembled the different Feature-engine imputers within a single scikit-learn
pipeline. With ArbitraryNumberImputer(), we imputed missing values with the number
999; with MeanMedianImputer(), we performed median imputation; with
FrequentCategoryImputer(), we replaced the missing values with the mode; and with
CategoricalVariableImputer(), we replaced the missing values with the
Missing string. We specified a list of features to impute within each imputer.
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When assembling a scikit-learn pipeline, we gave each step a name using
a string, and next to it we set up each of the Feature-engine imputers,
specifying the feature subset within each imputer.

With the fit() method, the imputers learned and stored parameters and with
transform() the missing values were replaced, returning complete pandas dataframes.

We can store the scikit-learn pipeline with Feature-engine's transformers
as one object in order to perpetuate the learned parameters.

See also
To learn more about Feature-engine, take a look at the following links:

Feature-engine: www.trainindata.com/feature-engine
Docs: https:/ / feature- engine. readthedocs. io/ en/latest/ 

GitHub repository: https:/ / github. com/ solegalli/ feature_ engine/ 
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3
Encoding Categorical Variables

Categorical variables are those values which are selected from a group of categories or
labels. For example, the variable Gender with the values of male or female is categorical,
and so is the variable marital status with the values of never married, married, divorced,
or widowed. In some categorical variables, the labels have an intrinsic order, for example,
in the variable Student's grade, the values of A, B, C, or Fail are ordered, A being the
highest grade and Fail the lowest. These are called ordinal categorical variables. Variables
in which the categories do not have an intrinsic order are called nominal categorical
variables, such as the variable City, with the values of London, Manchester, Bristol, and so
on.

The values of categorical variables are often encoded as strings. Scikit-learn, the open
source Python library for machine learning, does not support strings as values, therefore,
we need to transform those strings into numbers. The act of replacing strings with numbers
is called categorical encoding. In this chapter, we will discuss multiple categorical
encoding techniques.

This chapter will cover the following recipes:

Creating binary variables through one-hot encoding
Performing one-hot encoding of frequent categories
Replacing categories with ordinal numbers
Replacing categories with counts or frequency of observations
Encoding with integers in an ordered manner
Encoding with the mean of the target
Encoding with the Weight of Evidence
Grouping rare or infrequent categories
Performing binary encoding
Performing feature hashing
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Technical requirements
In this chapter, we will use the following Python libraries: pandas, NumPy, Matplotlib, and
scikit-learn. I recommend installing the free Anaconda Python distribution, which contains
all of these packages.

For details on how to install the Anaconda Python distribution, visit the
Technical requirements section in Chapter 1, Foreseeing Variable Problems in
Building ML Models. 

We will also use the open source Python library's feature-engine and category encoders,
which can be installed using pip:

pip install feature-engine
pip install category_encoders

To learn more about Feature-engine, visit the following sites:

Home page: https:/ / www. trainindata. com/ feature- engine

GitHub: https:/ / github. com/ solegalli/ feature_ engine/ 

Documentation: https:/ / feature- engine. readthedocs. io

To learn more about category encoders, visit the following:

Documentation: https:/ / contrib. scikit- learn. org/ categorical- encoding/ 

To run the recipes successfully, check that you have the same or higher
versions of the Python libraries indicated in the requirement.txt file in
the accompanying GitHub repository at https:/ / github. com/
PacktPublishing/ Python- Feature- Engineering- Cookbook.

We will use the Credit Approval Dataset available in the UCI Machine Learning
Repository, available at https:/ /archive. ics.uci. edu/ ml/ datasets/ credit+approval.

Dua, D. and Graff, C. (2019). UCI Machine Learning Repository [http:/ /
archive. ics. uci. edu/ ml]. Irvine, CA: University of California,
School of Information and Computer Science.
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To prepare the dataset, follow these steps:

Visit http:/ /archive. ics. uci. edu/ml/ machine- learning- databases/ credit-1.
screening/ .
Click on crx.data to download the data:2.

Save crx.data to the folder from which you will run the following commands.3.

After downloading the data, open up a Jupyter Notebook or a Python IDE and
run the following commands.

Import the required libraries:4.

import random
import pandas as pd
import numpy as np

Load the data:5.

data = pd.read_csv('crx.data', header=None)

Create a list with the variable names:6.

varnames = ['A'+str(s) for s in range(1,17)]

Add the variable names to the dataframe:7.

data.columns = varnames

Replace the question marks in the dataset with NumPy NaN values:8.

data = data.replace('?', np.nan)
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Re-cast numerical variables to float types:9.

data['A2'] = data['A2'].astype('float')
data['A14'] = data['A14'].astype('float')

Re-code the target variable as binary:10.

data['A16'] = data['A16'].map({'+':1, '-':0})

Make lists with categorical and numerical variables:11.

cat_cols = [c for c in data.columns if data[c].dtypes=='O']
num_cols = [c for c in data.columns if data[c].dtypes!='O']

Fill in the missing data:12.

data[num_cols] = data[num_cols].fillna(0)
data[cat_cols] = data[cat_cols].fillna('Missing')

Save the prepared data:13.

data.to_csv('creditApprovalUCI.csv', index=False)

You can find a Jupyter Notebook with these commands in the accompanying GitHub
repository at https:/ /github. com/ PacktPublishing/ Python- Feature- Engineering-
Cookbook.

Creating binary variables through one-hot
encoding
In one-hot encoding, we represent a categorical variable as a group of binary variables,
where each binary variable represents one category. The binary variable indicates whether
the category is present in an observation (1) or not (0). The following table shows the one-
hot encoded representation of the Gender variable with the categories of Male and Female:

Gender Female Male
Female 1 0
Male 0 1
Male 0 1

Female 1 0
Female 1 0
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As shown in the table, from the Gender variable, we can derive the binary variable
of Female, which shows the value of 1 for females, or the binary variable of Male, which
takes the value of 1 for the males in the dataset.

For the categorical variable of Color with the values of red, blue, and green, we can create
three variables called red, blue, and green. These variables will take the value of 1 if the
observation is red, blue, or green, respectively, or 0 otherwise.

A categorical variable with k unique categories can be encoded in k-1 binary variables. For
Gender, k is 2 as it contains two labels (male and female), therefore, we need to create only
one binary variable (k - 1 = 1) to capture all of the information. For the color variable, which
has three categories (k=3; red, blue, and green), we need to create two (k - 1 = 2) binary
variables to capture all the information, so that the following occurs:

If the observation is red, it will be captured by the variable red (red = 1, blue = 0).
If the observation is blue, it will be captured by the variable blue (red = 0, blue =
1).
If the observation is green, it will be captured by the combination
of red and blue (red = 0, blue = 0).

There are a few occasions in which we may prefer to encode the categorical variables with k
binary variables:

When training decision trees, as they do not evaluate the entire feature space at
the same time
When selecting features recursively
When determining the importance of each category within a variable

In this recipe, we will learn how to perform one-hot encoding using pandas, scikit-learn,
and Feature-engine.

Getting ready
To run the recipe in our example dataset, download and prepare the dataset as indicated in
the Technical requirements section. Alternatively, you can try the recipe on any dataset you
like. Make sure that you have already imputed missing data with any of the recipes from
Chapter 2, Imputing Missing Data.
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The parameters to use in the categorical encoding should be learned from
the train set and then used to encode the test set. Therefore, in all our
recipes, we will first divide the dataset into train and test sets.

How to do it...
Let's first make the necessary imports and get the data ready:

Import pandas and the required function and class from scikit-learn:1.

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder

Let's load the Credit Approval dataset:2.

data = pd.read_csv('creditApprovalUCI.csv')

Let's separate the data into train and test sets:3.

X_train, X_test, y_train, y_test = train_test_split(
 data.drop(labels=['A16'], axis=1), data['A16'], test_size=0.3,
    random_state=0)

Let's inspect the unique categories of the A4 variable:4.

X_train['A4'].unique()

We see the unique values of A4 in the output of the preceding step:

array(['u', 'y', 'Missing', 'l'], dtype=object)

Let's encode A4 into k-1 binary variables using pandas and then inspect the first5.
five rows of the resulting dataframe:

tmp = pd.get_dummies(X_train['A4'], drop_first=True)
tmp.head()

The pandas' get_dummies() function ignores missing data, unless we
specifically indicate otherwise, in which case, it will return missing data as
an additional category: tmp = pd.get_dummies(X_train['A4'],
drop_first=True, dummy_na=True). To encode the variable into k
binaries, use instead drop_first=False.
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We can see the output of step 5, where each label is now a binary variable:

     l  u  y
596  0  1  0
303  0  1  0
204  0  0  1
351  0  0  1
118  0  1  0

To encode all categorical variables at the same time, let's first make a list with6.
their names:

vars_categorical = ['A1', 'A4', 'A5', 'A6', 'A7', 'A9', 'A10',
'A12', 'A13']

Now, let's encode all of the categorical variables into k-1 binaries each, capturing7.
the result in a new dataframe:

X_train_enc = pd.get_dummies(X_train[vars_categorical],
drop_first=True)
X_test_enc = pd.get_dummies(X_test[vars_categorical],
drop_first=True)

Let's inspect the first five rows of the binary variables created from the train set:8.

X_train_enc.head()

The pandas' get_dummies() function captures the variable name,
say, A1, and places an underscore followed by the category name to
identify the resulting binary variables.

We can see the binary variables in the output of the preceding code block:

    A1_a  A1_b  A4_l  A4_u  A4_y  A5_g  A5_gg  A5_p  A6_aa  A6_c
...  A7_j  \
596     1     0     0     1     0     1      0     0      0     1
...     0
303     1     0     0     1     0     1      0     0      0     0
...     0
204     0     1     0     0     1     0      0     1      0     0
...     0
351     0     1     0     0     1     0      0     1      0     0
...     0
118     0     1     0     1     0     1      0     0      0     0
...     0

     A7_n  A7_o  A7_v  A7_z  A9_t  A10_t  A12_t  A13_p  A13_s
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596     0     0     1     0     1      1      1      0      0
303     0     0     1     0     0      0      0      0      0
204     0     0     1     0     1      1      0      0      0
351     0     0     0     0     0      0      0      0      0
118     0     0     1     0     1      1      1      0      0

The pandas' get_dummies() function will create one binary variable per
found category. Hence, if there are more categories in the train set than in
the test set, get_dummies() will return more columns in the transformed
train set than in the transformed test set.

Now, let's do one-hot encoding using scikit-learn.

Let's create a OneHotEncoder transformer that encodes into k-1 binary variables9.
and returns a NumPy array:

encoder = OneHotEncoder(categories='auto', drop='first',
    sparse=False)

Let's fit the encoder to a slice of the train set with the categorical variables so it10.
identifies the categories to encode:

encoder.fit(X_train[vars_categorical])

Scikit-learn's OneHotEncoder() function will only encode the categories
learned from the train set. If there are new categories in the test set, we
can instruct the encoder to ignore them or to return an error with the
handle_unknown='ignore' argument or
the handle_unknown='error' argument, respectively.

Now, let's create the NumPy arrays with the binary variables for train and test11.
sets:

X_train_enc = encoder.transform(X_train[vars_categorical])
X_test_enc = encoder.transform(X_test[vars_categorical])

Unfortunately, the feature names are not preserved in the NumPy array,
therefore, identifying which feature was derived from which variable is
not straightforward.
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How it works...
In this recipe, we performed a one-hot encoding of categorical variables using pandas and
scikit-learn.

We loaded the dataset and separated it into train and test sets using scikit-learn's
train_test_split() function. Next, we used pandas' get_dummies() function on
the A4 variable, setting drop_first=True to drop the first binary variable and hence
obtain k-1 binary variables. Next, we used get_dummies() on all of the categorical
variables of the dataset, which returned a dataframe with binary variables representing the
categories of the different features.

One-hot encoding expands the feature space. We created, from 9 original
categorical variables, 36 binary ones.

Finally, we performed one-hot encoding using OneHotEncoder() from scikit-learn, setting
the categories='auto' argument so that the transformer learns the categories to encode
from the train set; drop='first' so that the transformer drops the first binary variable,
returning k-1 binary features per categorical variable; and sparse=False so that the
transformer returns a NumPy array (the default is to return a sparse matrix). With the
fit() method, OneHotEncoder() learned the categories to encode from the train set and
with the transform() method, it returned the binary variables in a NumPy array.

The beauty of pandas' get_dummies() function is that it returns feature names that clearly
indicate which variable and which category each feature represents. On the downside,
get_dummies() does not persist the information learned from the train set to the test set.
Contrarily, scikit-learn's OneHotEncoder() function can persist the information from the
train set, but it returns a NumPy array, where the information about the meaning of the
features is lost.

Scikit-learn's OneHotEncoder() function will create binary indicators
from all variables in the dataset, so be mindful not to pass numerical
variables when fitting or transforming your datasets.
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There's more...
We can also implement one-hot encoding with Feature-engine. Feature-engine has multiple
advantages: first, it allows us to select the variables to encode directly in the transformer.
Second, it returns a pandas dataframe with clear variable names, and third, it preserves the
information learned from the train set, therefore returning the same number of columns in
both train and test sets. With that, Feature-engine overcomes the limitations of
pandas' get_dummies() method and scikit-learn's OneHotEncoder() class.

To perform one-hot encoding with Feature-engine, we import pandas, then load and divide
the data into train and test as we did in step 1 to step 3 of the main recipe. Next, follow these
steps:

Let's import OneHotCategoricalEncoder() from Feature-engine:1.

from feature_engine.categorical_encoders import
OneHotCategoricalEncoder

Next, let's set up the encoder to return k-1 binary variables:2.

ohe_enc = OneHotCategoricalEncoder(top_categories=None,
        drop_last=True)

With top_categories=None, we indicate that we want to encode all of the
categories present in the categorical variables. 

Feature-engine detects the categorical variables automatically. To encode
only a subset of the categorical variables, we can pass the variable names
in a list: ohe_enc = OneHotCategoricalEncoder(variables=['A1',
'A4']).

Let's fit the encoder to the train set so that it learns the categories and variables to3.
encode:

ohe_enc.fit(X_train)
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Let's encode the categorical variables in train and test sets, and display the first4.
five rows of the encoded train set:

X_train_enc = ohe_enc.transform(X_train)
X_test_enc = ohe_enc.transform(X_test)
X_train.head()

Feature-engine's OneHotCategoricalEncoder() returns the binary
variables and removes the original categorical variable from the dataset.

We can inspect the result of the preceding code block in the following screenshot: 

Note how the categorical variable A4 was replaced by A4_u, A4_y, and so on.

See also
To learn more about the classes and transformers discussed in this recipe, follow these
links:

pandas get_dummies(): https:/ /pandas. pydata. org/pandas- docs/ stable/
reference/ api/ pandas. get_ dummies. html

Scikit-learn's OneHotEncoder(): https:/ /scikit- learn. org/ stable/ modules/
generated/ sklearn. preprocessing. OneHotEncoder. html

Feature-Engine's OneHotCategoricalEncoder(): https:/ / feature- engine.
readthedocs. io/ en/ latest/ encoders/ OneHotCategoricalEncoder. html

See also OneHotEncoder from the Category Encoders package: https:/ /contrib. scikit-
learn.org/categorical- encoding/ onehot. html.
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Performing one-hot encoding of frequent
categories
One-hot encoding represents each category of a categorical variable with a binary variable.
Hence, one-hot encoding of highly cardinal variables or datasets with multiple categorical
features can expand the feature space dramatically. To reduce the number of binary
variables, we can perform one-hot encoding of the most frequent categories only. One-hot
encoding of top categories is equivalent to treating the remaining, less frequent categories
as a single, unique category, which we will discuss in the Grouping rare or infrequent
categories recipe toward the end of this chapter.

For more details on variable cardinality and frequency, visit the
Determining cardinality in categorical variables recipe and the Pinpointing rare
categories in categorical variables recipe in Chapter 1, Foreseeing Variable
Problems in Building ML Models.

In this recipe, we will learn how to implement one-hot encoding of the most popular
categories using pandas and Feature-engine.

Getting ready
In the winning solution of the KDD 2009 cup, http:/ /www. mtome. com/ Publications/ CiML/
CiML-v3-book.pdf, the authors limit one-hot encoding to the 10 most frequent categories of
each variable. Check the Winning the KDD Cup Orange Challenge with Ensemble
Selection article for more details. The number of top categories to encode is arbitrarily set by
the user. In this recipe, we will encode the five most frequent categories.

How to do it...
Let's first import the necessary Python libraries and get the dataset ready:

Import the required Python libraries, functions, and classes:1.

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from feature_engine.categorical_encoders import
OneHotCategoricalEncoder
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Let's load the dataset and divide into train and test sets:2.

data = pd.read_csv('creditApprovalUCI.csv')

X_train, X_test, y_train, y_test = train_test_split(
    data.drop(labels=['A16'], axis=1), # predictors
    data['A16'], # target
    test_size=0.3, # percentage of observations in test set
    random_state=0) # seed to ensure reproducibility

The most frequent categories need to be determined in the train set. As
with any machine learning algorithm, this is to avoid overfitting and
information leakage.

Let's inspect the unique categories of the A6 variable:3.

X_train['A6'].unique()

The unique values of A6 are displayed in the following output:

array(['c', 'q', 'w', 'ff', 'm', 'i', 'e', 'cc', 'x', 'd', 'k',
'j', 'Missing, 'aa', 'r'], dtype=object)

Let's count the number of observations per category of A6, sort them in4.
decreasing order, and then display the five most frequent categories:

X_train['A6'].value_counts().sort_values(ascending=False).head(5)

We can see the five most frequent categories and the number of observations per
category in the output of step 4:

c     93
q     56
w     48
i     41
ff    38

Now, let's capture the most frequent categories of A6 in a list using the code in5.
step 4 inside a list comprehension:

top_5 = [cat for cat in X_train['A6'].value_counts().sort_values(
        ascending=False).head(5).index]
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Now, let's add a binary variable per top category in the train and test sets:6.

for category in top_5:
    X_train['A6' + '_' + category] = np.where(X_train['A6'] ==
category, 1, 0)
    X_test['A6' + '_' + category] = np.where(X_test['A6'] ==
category, 1, 0)

Let's output the top 10 rows of the original and encoded variable, A6, in the train7.
set:

print(X_train[['A6'] + ['A6'+'_'+c for c in top_5]].head(10))

We can see, in the output of step 7, the original A6 variable, followed by the new
binary variables and some of their values:

     A6  A6_c  A6_q  A6_w  A6_i  A6_ff
596   c     1     0     0     0      0
303   q     0     1     0     0      0
204   w     0     0     1     0      0
351  ff     0     0     0     0      1
118   m     0     0     0     0      0
247   q     0     1     0     0      0
652   i     0     0     0     1      0
513   e     0     0     0     0      0
230  cc     0     0     0     0      0
250   e     0     0     0     0      0

We can simplify this procedure, that is, the one-hot encoding of frequent
categories, with Feature-engine. First, let's load and divide the dataset as we did
in step 2.

Let's set up the one-hot encoder to encode the five most frequent categories of the8.
variables A6 and A7:

ohe_enc = OneHotCategoricalEncoder(top_categories=5,
variables=['A6', 'A7'], drop_last=False)

Feature-engine's OneHotCategoricalEncoder() will encode all of the
categorical variables in the dataset by default, unless we specify the
variables to encode as in step 8.
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Let's fit the encoder to the train set so that it learns and stores the most frequent9.
categories of A6 and A7:

ohe_enc.fit(X_train)

Finally, let's encode A6 and A7 in the train and test sets:10.

X_train_enc = ohe_enc.transform(X_train)
X_test_enc = ohe_enc.transform(X_test)

You can see the new binary variables in the dataframe executing X_train_enc.head().
You can also find the top five categories learned by the encoder executing
ohe_enc.encoder_dict_.

Feature-engine replaces the original variable with the binary ones
returned by one-hot encoding, leaving the dataset ready to use in machine
learning.

How it works...
In this recipe, we performed one-hot encoding of the five most popular categories using
pandas, NumPy and Feature-engine.

First, we loaded the data and, with train_test_split(), we separated the dataset into
train and test sets, indicating the predictors by dropping the target from the dataset with
pandas' drop(), and the target, A16, as a pandas Series. We also set the percentage of
observations for the test set and set random_state for reproducibility.

In the first part of the recipe, we worked with the categorical A6 variable. We first displayed
its unique categories with pandas' unique() method and observed that it contained
multiple categories. Next, we counted the number of observations in the train set, per
category of A6 using pandas' value_counts() method and sorted the categories from the
one with most observations to the one with the least using pandas' sort_values()
method, and captured the five most popular categories in a list using list comprehension
syntax. Finally, we looped over each top category, and with NumPy's where() method,
created binary variables by placing a 1 if the observation showed the category, or 0
otherwise. We named the new variables using the original variable name, A6, plus an
underscore followed by the category name.
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To perform a one-hot encoding of the five most popular categories of variables A6 and A7
with Feature-engine, we used OneHotCategoricalEncoder(), indicating 5 in the
top_categories argument, and passing the variable names in a list to the variables
argument. With fit(), the encoder learned the top categories from the train set and stored
them in its attribute encoder_dict_, and then with transform(),
OneHotCategoricalEncoder() replaced the original variables with the set of binary
ones.

There's more...
You can also perform one-hot encoding of the five most popular categories using scikit-
learn's OneHotEncoder() function. To do this, you need to pass a list of lists or an array of
values to the categories argument where each list or each row of the array holds the top
five categories expected in the relevant variable. You can find more details on the scikit-
learn website at https:/ / scikit- learn. org/stable/ modules/ generated/ sklearn.
preprocessing.OneHotEncoder. html.

Replacing categories with ordinal numbers
Ordinal encoding consists of replacing the categories with digits from 1 to k (or 0 to k-1,
depending on the implementation), where k is the number of distinct categories of the
variable. The numbers are assigned arbitrarily. Ordinal encoding is better suited for non-
linear machine learning models, which can navigate through the arbitrarily assigned digits
to try and find patterns that relate to the target.

In this recipe, we will perform ordinal encoding using pandas, scikit-learn, and Feature-
engine.

How to do it...
Let's first import the necessary Python libraries and prepare the dataset:

Import pandas and the required function and classes:1.

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OrdinalEncoder
from feature_engine.categorical_encoders import
OrdinalCategoricalEncoder
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Let's load the dataset and divide it into train and test sets:2.

data = pd.read_csv('creditApprovalUCI.csv')

X_train, X_test, y_train, y_test = train_test_split(
    data.drop(labels=['A16'], axis=1), data['A16'],test_size=0.3,
        random_state=0)

Let's encode the A7 variable for this demonstration. First, let's make a dictionary3.
of category to integer pairs and then display the result:

ordinal_mapping = {k: i for i, k in enumerate(
    X_train['A7'].unique(), 0) }
ordinal_mapping

We can see the digits that will replace each unique category in the following
output:

{'v': 0,
 'ff': 1,
 'h': 2,
 'dd': 3,
 'z': 4,
 'bb': 5,
 'j': 6,
 'Missing': 7,
 'n': 8,
 'o': 9}

Now, let's replace the categories with numbers in the original variables:4.

X_train['A7'] = X_train['A7'].map(ordinal_mapping)
X_test['A7'] = X_test['A7'].map(ordinal_mapping)

With print(X_train['A7'].head(10)), we can display the result of the
preceding operation:

596    0
303    0
204    0
351    1
118    0
247    2
652    0
513    3
230    0
250    4
Name: A7, dtype: int64
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First, we  need to divide the data into train and test sets as we did in step 2. Next
we do the following:.

First, let's make a list with the categorical variables to encode:5.

vars_categorical = ['A1', 'A4', 'A5', 'A6', 'A7', 'A9', 'A10',
'A12', 'A13']

Let's start the ordinal encoder:6.

le = OrdinalEncoder()

Let's fit the encoder to the slice of the train set with the categorical variables so7.
that it creates and stores representations of categories to digits:

le.fit(X_train[vars_categorical])

Scikit-learn's OrdinalEncoder() function will encode the entire dataset.
To encode only a selection of variables, we need to slice the dataframe as
we did in step 7. Alternatively, we can use scikit-learn's
ColumnTransformer(). You can find more details in the See also section.

Now let's encode the categorical variables in the train and test sets:8.

X_train_enc = le.transform(X_train[vars_categorical])
X_test_enc = le.transform(X_test[vars_categorical])

Remember that scikit-learn returns a NumPy array.

Now let's do ordinal encoding with Feature-engine. First, let's load and divide the
dataset as we did in step 2.

Let's create an ordinal encoder that replaces categories with numbers arbitrarily9.
and encodes the categorical variables specified in step 5:

ordinal_enc = OrdinalCategoricalEncoder(
        encoding_method='arbitrary', variables=vars_categorical)

Let's fit the encoder to the train set so that it learns and stores the category-to-10.
digit mappings:

ordinal_enc.fit(X_train)
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The category to digit mappings are stored in the encoder_dict_
attribute and can be accessed by executing
ordinal_enc.encoder_dict_.

Finally, let's encode the categorical variables in the train and test sets:11.

X_train = ordinal_enc.transform(X_train)
X_test = ordinal_enc.transform(X_test)

Feature-engine returns pandas dataframes where the values of the original variables are
replaced with numbers, leaving the dataframe ready to use in machine learning models.

How it works...
In this recipe, we replaced each category in a categorical variable with an integer, assigned
arbitrarily, using pandas, scikit-learn, or Feature-engine.

We loaded the dataset and divided it into train and test sets as described in the previous
recipe. We worked first with the categorical A7 variable. With pandas unique(), we
displayed the unique values of A7 and using Python's list comprehension syntax, we
created a dictionary of key-value pairs, where each key was one of the unique categories,
and each value was a digit that would replace the category. Finally, we used
pandas' map() method to replace the strings in A7 with the integers indicated in the
dictionary.

To carry out ordinal encoding with scikit-learn, we used OrdinalEncoder() function.
With the fit() method, the transformer assigned an integer to each category of each
variable in the train set. With the transform() method, the categories were replaced with
integers, returning a NumPy array.

To perform ordinal encoding with Feature-engine, we used
OrdinalCategoricalEncoder() and indicated that the numbers should be assigned
arbitrarily in encoding_method. We indicated the variables to encode in the list of the
variables argument. With the fit() method, the encoder assigned integers to categories,
which were stored in the encoder_dict_ attribute. These mappings were then used
during the transform() method, to replace categories with numbers in the train and test
sets, returning dataframes.
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There's more...
We can smooth the implementation of step 3 and step 4 of the main recipe across multiple
variables:

To do so, we capture step 3 and step 4 into functions, and apply those functions to1.
every categorical variable, as follows:

def find_category_mappings(df, variable):
    return {k: i for i, k in enumerate(df[variable].unique(), 0)}

def integer_encode(train, test, variable, ordinal_mapping):
    X_train[variable] = X_train[variable].map(ordinal_mapping)
    X_test[variable] = X_test[variable].map(ordinal_mapping)

for variable in vars_categorical:
        mappings = find_category_mappings(X_train, variable)
        integer_encode(X_train, X_test, variable, mappings)

The preceding code block replaces strings in all categorical variables with integers, leaving
the data ready for use with machine learning models.

See also
We can also perform ordinal encoding with the Category Encoders package: https:/ /
contrib.scikit-learn. org/ categorical- encoding/ ordinal. html.

Scikit-learn's transformers operate over the entire dataset, but we can select columns using
ColumnTransformer(): https:/ / scikit- learn. org/ stable/ modules/ generated/
sklearn.compose. ColumnTransformer. html.

With scikit-learn, we can also perform ordinal encoding one variable at a time using
LabelEncoder(): https:/ / scikit- learn. org/ stable/ modules/ generated/ sklearn.
preprocessing.LabelEncoder. html.

Finally, you can find more details and example outputs of the various steps of the recipe in
the accompanying GitHub repository: https:/ / github. com/ PacktPublishing/ Python-
Feature-Engineering- Cookbook.
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Replacing categories with counts or
frequency of observations
In count or frequency encoding, we replace the categories with the count or the percentage
of observations with that category. That is, if 10 out of 100 observations show the category
blue for the variable color, we would replace blue with 10 when doing count encoding, or
by 0.1 if performing frequency encoding. These techniques, which capture the
representation of each label in a dataset, are very popular in data science competitions. The
assumption is that the number of observations per category is somewhat predictive of the
target.

Note that if two different categories are present in the same percentage of
observations, they will be replaced by the same value, which may lead to
information loss.

In this recipe, we will perform count and frequency encoding using pandas and Feature-
engine.

How to do it...
Let's begin with the recipe by making some imports and preparing the data:

Import pandas and the required functions and classes:1.

import pandas as pd
from sklearn.model_selection import train_test_split
from feature_engine.categorical_encoders import
CountFrequencyCategoricalEncoder

Let's load the dataset and divide it into train and test sets:2.

data = pd.read_csv('creditApprovalUCI.csv')

X_train, X_test, y_train, y_test = train_test_split(
    data.drop(labels=['A16'], axis=1), data['A16'],test_size=0.3,
        random_state=0)
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Let's count the number of observations per category of the A7 variable and3.
capture it in a dictionary:

count_map = X_train['A7'].value_counts().to_dict()

To replace by frequency instead of count, we should divide the count per
category by the total number of observations before creating the
dictionary: frequency_map = (X_train['A6'].value_counts() /
len(X_train) ).to_dict().

If we print the dictionary executing print(count_map), we observe the count of
observations per category:

{'v': 277,
 'h': 101,
 'ff': 41,
 'bb': 39,
 'z': 7,
 'dd': 5,
 'j': 5,
 'n': 3,
 'o': 1}

Let's replace the categories in A7 with the counts:4.

X_train['A7'] = X_train['A7'].map(count_map)
X_test['A7'] = X_test['A7'].map(count_map)

Go ahead and inspect the data executing X_train.head() to corroborate
that the categories have been replaced by the counts.

Now, let's do count encoding using Feature-engine. First, let's load and divide the
dataset as we did in step 2.

Let's create an encoder that replaces categories in all categorical variables by the5.
count of observations:

count_enc = CountFrequencyCategoricalEncoder(
        encoding_method='count', variables=None)
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CountFrequencyCategoricalEncoder() will automatically detect and
encode all categorical variables in the train set. To encode only a subset of
the categorical variables, we can pass the variable names in a list to
the variables argument.

To replace the categories by frequency instead, we need to change
encoding_method to 'frequency'.

Let's fit the encoder to the train set so that it counts and stores the number of6.
observations per category per variable:

count_enc.fit(X_train)

The dictionaries with the category-to-counts pairs are stored in the
encoder_dict_ attribute and can be displayed by
executing count_enc.encoder_dict_.

Finally, let's replace the categories with counts in the train and test sets:7.

X_train_enc = count_enc.transform(X_train)
X_test_enc = count_enc.transform(X_test)

If there are categories in the test set that were not present in the train set,
the transformer will replace those with np.nan and return a warning to
make you aware. A good idea to prevent this behavior is to group
infrequent labels as we describe in the Grouping rare or infrequent categories
recipe.

The encoder returns pandas dataframes with the strings of the categorical variables
replaced with the counts of observations, leaving the variables ready to use in machine
learning models.

How it works...
In this recipe, we replaced categories by the number of observations per category using
pandas and Feature-engine.
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First, we loaded the dataset and divided it into train and test sets. Using
pandas' value_counts() method, we determined the number of observations per
category of the A7 variable, and with pandas' to_dict() method, we captured these
values in a dictionary, where each key is a unique category, and each value the number of
observations for that category. With pandas' map() method and this dictionary, we
replaced the categories with counts in both train and test sets.

To perform count encoding with Feature-engine, we called
CountFrequencyCategoricalEncoder() and set the encoding_method argument to
'count'. We left the variables argument as None so that the encoder automatically finds
all of the categorical variables in the dataset. With the fit() method, the transformer
found the categorical variables and learned and stored the category to count pairs per
variable as dictionaries in the encoder_dict_ attribute. With the transform() method,
the transformer replaced the categories with the counts in both the train and test sets,
returning pandas dataframes.

There's more...
We can smooth the implementation of step 3 and step 4 of the main recipe across multiple
variables. To do so, we capture step 3 and step 4 in functions, and next, we apply the
functions to every categorical variable, as follows:

def count_mappings(df, variable):
    return df[variable].value_counts().to_dict()

def frequency_mappings(df, variable):
    return (df[variable].value_counts() / len(df)).to_dict()

def encode(train, test, variable, mapping):
    X_train[variable] = X_train[variable].map(mapping)
    X_test[variable] = X_test[variable].map(mapping)

vars_categorical = [
    'A1', 'A4', 'A5', 'A6', 'A7', 'A9', 'A10', 'A12', 'A13']

for variable in vars_categorical:
    mappings = count_mappings(X_train, variable)
    encode(X_train, X_test, variable, mappings)

The preceding code block replaces strings in all categorical variables by the observation
counts, leaving the data ready for use with machine learning models.
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Encoding with integers in an ordered
manner
In the Replacing categories with ordinal numbers recipe, we replaced categories with integers,
which were assigned arbitrarily. This encoding works well with non-linear machine
learning algorithms that can navigate through the arbitrarily assigned digits to try and find
patterns that relate them to the target. However, this encoding method may not work so
well with linear models.

We can instead assign integers to the categories given the target values. To do this, we do
the following:

Calculate the mean value of the target per category.1.
Order the categories from the one with the lowest to the one with the highest2.
target mean value.
Assign digits to the ordered categories, starting with 0 to the first category all of3.
the way up to k-1 to the last category, where k is the number of distinct
categories.

This encoding technique creates a monotonic relationship between the categorical variable
and the response and therefore makes the variables more adequate for use in linear models.

In this recipe, we will encode categories following the target value using pandas and
Feature-engine.

How to do it...
Let's first import the necessary Python libraries and get the dataset ready:

Import the required Python libraries, functions, and classes:1.

import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from feature_engine.categorical_encoders import
OrdinalCategoricalEncoder
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Let's load the dataset and divide it into train and test sets:2.

data = pd.read_csv('creditApprovalUCI.csv')

X_train, X_test, y_train, y_test = train_test_split(data,
        data['A16'], test_size=0.3, random_state=0)

Note that to encode with integers based on the target with pandas, we
need to keep the target in the X_train and X_test datasets.

To better understand the monotonic relationship concept, let's plot the
relationship of the categories of the A7 variable with the target before and after
the encoding.

Let's plot the mean target response per category of the A7 variable:3.

X_train.groupby(['A7'])['A16'].mean().plot()
plt.title('Relationship between A7 and the target')
plt.ylabel('Mean of target')
plt.show()

We can see the non-monotonic relationship between categories of A7 and
the target, A16, in the following screenshot:
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Now, let's calculate the mean target value per category in A7, then let's sort the4.
categories from that with the lowest to that with the highest target value, and
finally, let's retain the ordered category names:

ordered_labels =
X_train.groupby(['A7'])['A16'].mean().sort_values().index

To better understand the preceding line of code, execute the pandas
methods one at a time in a Jupyter Notebook and familiarize yourself with
the output. You can also see the output of each individual method in the
Jupyter Notebook in the accompanying GitHub repository at https:/ /
github. com/ PacktPublishing/ Python- Feature- Engineering- Cookbook.

To display the output of the preceding line of code, we can execute
print(ordered_labels): 

Index(['o', 'ff', 'j', 'dd', 'v', 'bb', 'h', 'n', 'z', 'Missing'],
dtype='object', name='A7')

Let's create a dictionary of category to integer pairs, using the ordered list we5.
created in step 4:

ordinal_mapping = {k: i for i, k in enumerate(ordered_labels, 0)}

We can visualize the result of the preceding code executing
print(ordinal_mapping):

{'o': 0,
 'ff': 1,
 'j': 2,
 'dd': 3,
 'v': 4,
 'bb': 5,
 'h': 6,
 'n': 7,
 'z': 8,
 'Missing': 9}

Let's use the dictionary created in step 5 to replace the categories in A7 in the train6.
and test sets:

X_train['A7'] = X_train['A7'].map(ordinal_mapping)
X_test['A7'] = X_test['A7'].map(ordinal_mapping)
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Note that if the test set contains a category not present in the train set, the
preceding code will introduce np.nan.

Let's plot the mean target value per category in the encoded variable:7.

X_train.groupby(['A7'])['A16'].mean().plot()
plt.title('Relationship between A7 and the target')
plt.ylabel('Mean of target')
plt.show()

The encoded variable shows a monotonic relationship with the target—the higher
the mean target value, the higher the digit assigned to the category:

Now, let's perform ordered ordinal encoding using Feature-engine.

First, let's load and divide the dataset into train and test:8.

X_train, X_test, y_train, y_test = train_test_split(
    data.drop(labels=['A16'], axis=1), data['A16'], test_size=0.3,
        random_state=0)

Note that to encode with integers based on the target with Feature-engine,
we don't need to keep the target in the X_train and X_test datasets.
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Next, let's create an encoder that assigns digits to categories according to the9.
target mean value, and encodes all categorical variables in the dataset:

ordinal_enc = OrdinalCategoricalEncoder(encoding_method='ordered',
    variables=None)

OrdinalCategoricalEncoder() will detect and encode all categorical
variables automatically. Alternatively, we can indicate which variables to
encode by passing their names in a list to the variables argument.

Let's fit the encoder to the train set so that it finds the categorical variables, and10.
then it creates and stores the category and digit pairs for each categorical feature:

ordinal_enc.fit(X_train, y_train)

When fitting the encoder, we need to pass the train set and the target, like
with many scikit-learn predictor classes.

Finally, let's replace the categories with numbers in the train and test sets:11.

X_train_enc = ordinal_enc.transform(X_train)
X_test_enc = ordinal_enc.transform(X_test)

A list of the categorical variables is stored in the variables attribute of
OrdinalCategoricalEncoder() and the dictionaries with the category-
to-digit mappings in the encoder_dict_ attribute.

Go ahead and check the monotonic relationship between other encoded categorical
variables and the target using the code in step 7 and changing the variable name in the
groupby() method.

How it works...
In this recipe, we replaced the categories with integers according to the target mean value
using pandas and Feature-engine.
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We first loaded the dataset and divided it into train and test sets. In the first part of the
recipe, we worked with the categorical A7 variable. We plotted the mean target value per
A7 category. With pandas' groupby() method, we grouped the data per category of A7,
and next with pandas' mean() method, we determined the mean value of the target, A16,
for each of the categories of A7. We followed up with pandas' plot() method to create a
plot of category versus target mean value. We added a title and y labels with Matplotlib's
title() and ylabel() methods.

To perform the encoding, we first determined the mean target value per category of A7,
using pandas' groupby() method followed by pandas' mean() method, as described in the
preceding paragraph. Next, we ordered the categories with
pandas' sort_values() method from the one with the lowest to the one with the highest
target mean response. The output of this operation was a pandas Series, with the categories
as indices and the target mean as values. With pandas' index, we captured the ordered
categories in an array, and next, with a Python dictionary comprehension, we created a
dictionary of category-to-integer pairs. Finally, we used this dictionary to replace the
category by integers using pandas' map() method in train and test sets.

To perform the encoding with Feature-engine, we called
OrdinalCategoricalEncoder() and indicated 'ordered' in the encoding_method
argument, and left the argument variables as None, so that the encoder automatically
detects all categorical variables in the dataset. With the fit() method, the encoder found
and stored the categorical variables to encode, and next, assigned digits to their categories,
according to the target mean value. Variables to encode and dictionaries with category-to-
digit pairs were stored in the variables and encoder_dict_ attributes, respectively.
Finally, using the transform() method, the transformer replaced the categories with
digits in the train and test sets, returning pandas dataframes.

See also
For more details on Feature-engine's OrdinalCategoricalEncoder(), visit https:/ /
feature-engine.readthedocs. io/ en/ latest/ encoders/ OrdinalCategoricalEncoder.
html.
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Encoding with the mean of the target
Mean encoding or target encoding implies replacing the categories with the average target
value for that category. For example, if we have a City variable, with the categories
of London, Manchester, and Bristol, and we want to predict the default rate; if the default
rate for London is 30%, we replace London with 0.3; if the default rate for Manchester is
20%, we replace Manchester with 0.2; and so on. The same can be done with a continuous
target.

As with any machine learning algorithm, the parameters for target
encoding, that is, the mean target value per category, need to be learned
from the train set only and used to replace categories in the train and test
sets.

In this recipe, we will perform mean encoding using pandas and Feature-engine.

How to do it...
Let's first import the necessary Python libraries and get the dataset ready:

Import pandas and the required functions and classes:1.

import pandas as pd
from sklearn.model_selection import train_test_split
from feature_engine.categorical_encoders import
MeanCategoricalEncoder

Let's load the dataset and divide it into train and test sets:2.

data = pd.read_csv('creditApprovalUCI.csv')

X_train, X_test, y_train, y_test = train_test_split(
        data, data['A16'], test_size=0.3, random_state=0)

Note that, to encode with integers based on the target with pandas, we
need to keep the target in the X_train and X_test datasets.
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Let's determine the mean target value per category of the A7 variable and then3.
store them in a dictionary:

ordered_labels = X_train.groupby(['A7'])['A16'].mean().to_dict()

We can display the content of the dictionary by executing
print(ordered_labels):

{'Missing': 1.0,
 'bb': 0.5128205128205128,
 'dd': 0.4,
 'ff': 0.14634146341463414,
 'h': 0.6039603960396039,
 'j': 0.2,
 'n': 0.6666666666666666,
 'o': 0.0,
 'v': 0.4187725631768953,
 'z': 0.7142857142857143}

Let's replace the categories with the mean target value using the dictionary4.
created in step 3 in the train and test sets:

X_train['A7'] = X_train['A7'].map(ordered_labels)
X_test['A7'] = X_test['A7'].map(ordered_labels)

Go ahead and inspect the new values of A7 by executing
X_train['A7'].head(). 

Now, let's perform target encoding with Feature-engine.

First, let's load and divide the dataset into train and test sets:5.

X_train, X_test, y_train, y_test = train_test_split(
    data.drop(labels=['A16'], axis=1), data['A16'],
    test_size=0.3, random_state=0)

Note that, to encode with integers based on the target with Feature-
engine, we don't need to keep the target in the X_train and X_test
datasets.

Let's now create a target mean encoder to encode all categorical variables:6.

mean_enc = MeanCategoricalEncoder(variables=None)
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MeanCategoricalEncoder() will find and encode all categorical
variables by default. Alternatively, we can indicate the variables to encode
passing their names in a list to the variables argument.

 Let's fit the transformer to the train set so that it learns and stores the mean7.
target value per category per variable:

mean_enc.fit(X_train, y_train)

To fit MeanCategoricalEncoder(), we need to pass both the train set
and the target, as we do with many scikit-learn predictor classes.

Finally, let's encode the train and test sets:8.

X_train_enc = mean_enc.transform(X_train)
X_test_enc = mean_enc.transform(X_test)

The category-to-number pairs are stored as a dictionary of dictionaries in
the encoder_dict_ attribute. To display the stored parameters,
execute mean_enc.encoder_dict_.

Feature-engine returns pandas dataframes with the categorical variables ready to use in
machine learning models.

How it works...
In this recipe, we replaced the categories with the mean target value using pandas and
Feature-engine.

We first loaded the dataset and divided it into train and test sets. Next, we calculated the
mean of the target per category. With pandas' groupby() method over the categorical
A7 variable, followed by pandas' mean() method over the target A16 variable, we created a
pandas Series with the categories as indices and the target mean as values. With
pandas' to_dict() method, we converted this Series into a dictionary. Finally, we used
this dictionary to replace the categories in the train and test sets using pandas' map()
method.
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To perform the encoding with Feature-engine, we called
OrdinalCategoricalEncoder() and set encoding_method to 'ordered'. With
the fit() method, the transformer found and stored the categorical variables, and then
learned and stored the category to mean target value pairs, as a dictionary of dictionaries in
its encoder_dict_ attribute. Finally, with the transform() method, categories were
replaced with numbers in train and test sets, returning pandas dataframes.

See also
You can find a different implementation of target encoding in the Category Encoders
Python package: https:/ /contrib. scikit- learn. org/ categorical- encoding/
targetencoder.html.

To learn more about Feature-engine's MeanCategoricalEncoder(), visit: https:/ /
feature-engine.readthedocs. io/ en/ latest/ encoders/ MeanCategoricalEncoder. html.

Finally, you can find more details of the intermediate outputs of the steps in the recipe in
the Jupyter Notebook in the accompanying GitHub repository: https:/ /github. com/
PacktPublishing/Python- Feature- Engineering- Cookbook.

Encoding with the Weight of Evidence
The Weight of Evidence (WoE) was developed primarily for credit and financial industries
to facilitate variable screening and exploratory analysis and to build more predictive linear
models to evaluate the risk of loan default; that is, to predict how likely money lent to a
person or institution is to be lost.

The WoE is computed from the basic odds ratio:

Here, p(Y=1) is the probability of an event occurring. Therefore, the WoE takes the
following values:

WoE = 0 if p(1) / p(0) = 1, that is, if the outcome is random
WoE > 0 if p(1) > p(0)
WoE < 0 if p(0) > p(1)
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This allows for a direct visualization of the predictive power of the category in the variable:
the higher the WoE, the more likely the event will occur, and in fact, if the W0E is positive,
the event is likely to occur.

Logistic regression models a binary response, Y, based off X predictor variables, assuming
that there is a linear relationship between X and the log of odds of Y:

Here, log (p(Y=1)/p(Y=0)) is the log of odds. As you can see, the WoE encodes the categories
in the same scale, that is, the log of odds, as the outcome of the logistic regression.
Therefore, by using WoE, the predictors are prepared and coded in the same scale, and the
parameters in the logistic regression, that is, the coefficients, can be directly compared.

In this recipe, we will perform WoE encoding using pandas and Feature-engine.

How to do it...
Let's begin with the recipe by making some imports and preparing the data:

Import pandas and the required functions and classes:1.

import pandas as pd
from sklearn.model_selection import train_test_split
from feature_engine.categorical_encoders import
WoERatioCategoricalEncoder

Let's load the dataset and divide it into train and test sets:2.

data = pd.read_csv('creditApprovalUCI.csv')

X_train, X_test, y_train, y_test = train_test_split(
        data, data['A16'],test_size=0.3, random_state=0)

Let's create a pandas Series with the probability of the target being 1, that is, p(1),3.
for each category in A1:

p1 = X_train.groupby(['A1'])['A16'].mean()
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 Let's create a pandas Series with the probability of the target being 0, that is, p(0),4.
for each category in A1:

 p0 = 1 - p1

By definition, the probability of the target being 1 plus the probability of
the target being 0 is 1.

Now, let's create a dictionary with the WoE per category:5.

woe = dict(np.log(p1 / p0))

We can display the dictionary with the category to WoE pairs executing
print(woe):

{'Missing': 0.0, 'a': -0.11122563511022437, 'b':
-0.24600937605121306}

Finally, let's replace the categories of A1 by the WoE:6.

X_train['A1'] = X_train['A1'].map(woe)
X_test['A1'] = X_test['A1'].map(woe)

Now, let's perform WoE encoding using Feature-engine.

First, let's load and divide the dataset into train and test sets:7.

X_train, X_test, y_train, y_test = train_test_split(
    data.drop(labels=['A16'], axis=1), data['A16'],
    test_size=0.3, random_state=0)

Next, let's create a WoE encoder to encode three categorical variables, A1, A10,8.
and A12:

woe_enc = WoERatioCategoricalEncoder(encoding_method='woe',
        variables=['A1', 'A10', 'A12'])

Feature-engine's WoERatioCategoricalEncoder() will return an error
if p(0) = 0 for any category because the division by 0 is not defined. To
avoid this error, group infrequent categories, as we discuss in
the Grouping rare or infrequent categories recipe.
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Let's fit the transformer to the train set so that it learns and stores the WoE of the9.
different categories:

woe_enc.fit(X_train, y_train)

We can display the dictionaries with the categories to WoE pairs by
executing woe_enc.encoder_dict_.

Finally, let's encode the three categorical variables in the train and test sets:10.

X_train_enc = woe_enc.transform(X_train)
X_test_enc = woe_enc.transform(X_test)

The Feature-engine transformer returns pandas dataframes with the encoded categorical
variables ready to use in machine learning models.

How it works...
In this recipe, we replaced the categories with the WoE using pandas and Feature-engine.

We first loaded the dataset and divided it into train and test sets. Next, we calculated the
mean target value per category using pandas' groupby() method over the categorical
A1 variable and pandas' mean() method over the target A16 variable. This is equivalent to
the probability of the target being 1, that is, p(1), per category. The output of these
operations was a pandas Series with the categories as indices and the target mean as values.
Next, we subtracted this pandas Series from 1 to create another pandas Series with the
probability of the target being 0, that is, p(0), per category. Next, we created a third pandas
Series with the logarithm of the ratio of the first and the second pandas Series, that is, the
logarithm of the ratio of p(1) and p(0) per category. With the built-in Python dict()
method, we captured the category-to-WoE value pairs in a dictionary. Finally, we used this
dictionary to replace the categories in the train and test sets using pandas' map() method.

To perform WoE encoding with Feature-engine, we used
WoERatioCategoricalEncoder() and indicated 'woe' in encoding_method. We also
passed a list with categorical variables to encode to the variables argument. With the
fit() method, the transformer learned and stored the category to WoE pairs. Finally, with
transform(), the categories of the three selected variables were replaced by the WoE
values, returning pandas dataframes.
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See also
You can find an alternative implementation of the WoE in the Category Encoders
package: https://contrib. scikit- learn. org/ categorical- encoding/ woe. html.

To learn more about Feature-engine's WoERatioCategoricalEncoder(), visit: https:/ /
feature-engine.readthedocs. io/ en/ latest/ encoders/ WoERatioCategoricalEncoder.
html.

Grouping rare or infrequent categories
Rare values are those categories that are present only in a small percentage of the
observations. There is no rule of thumb to determine how small is a small percentage, but
typically, any value below 5 % can be considered rare. Infrequent labels often appear only
on the train set or only on the test set, therefore making the algorithms prone to overfitting
or unable to score an observation. To avoid these complications, we can group infrequent
categories into a new category called Rare or Other.

For details on how to identify rare labels, visit the Pinpointing rare
categories in categorical variables recipe in Chapter 1, Foreseeing Variable
Problems in Building ML Models.

In this recipe, we will group infrequent categories using pandas and Feature-engine.

How to do it...
Let's first import the necessary Python libraries and get the dataset ready:

Import the required Python libraries, functions, and classes:1.

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from feature_engine.categorical_encoders import
RareLabelCategoricalEncoder

https://contrib.scikit-learn.org/categorical-encoding/woe.html
https://contrib.scikit-learn.org/categorical-encoding/woe.html
https://contrib.scikit-learn.org/categorical-encoding/woe.html
https://contrib.scikit-learn.org/categorical-encoding/woe.html
https://contrib.scikit-learn.org/categorical-encoding/woe.html
https://contrib.scikit-learn.org/categorical-encoding/woe.html
https://contrib.scikit-learn.org/categorical-encoding/woe.html
https://contrib.scikit-learn.org/categorical-encoding/woe.html
https://contrib.scikit-learn.org/categorical-encoding/woe.html
https://contrib.scikit-learn.org/categorical-encoding/woe.html
https://contrib.scikit-learn.org/categorical-encoding/woe.html
https://contrib.scikit-learn.org/categorical-encoding/woe.html
https://contrib.scikit-learn.org/categorical-encoding/woe.html
https://contrib.scikit-learn.org/categorical-encoding/woe.html
https://contrib.scikit-learn.org/categorical-encoding/woe.html
https://contrib.scikit-learn.org/categorical-encoding/woe.html
https://contrib.scikit-learn.org/categorical-encoding/woe.html
https://contrib.scikit-learn.org/categorical-encoding/woe.html
https://contrib.scikit-learn.org/categorical-encoding/woe.html
https://feature-engine.readthedocs.io/en/latest/encoders/WoERatioCategoricalEncoder.html
https://feature-engine.readthedocs.io/en/latest/encoders/WoERatioCategoricalEncoder.html
https://feature-engine.readthedocs.io/en/latest/encoders/WoERatioCategoricalEncoder.html
https://feature-engine.readthedocs.io/en/latest/encoders/WoERatioCategoricalEncoder.html
https://feature-engine.readthedocs.io/en/latest/encoders/WoERatioCategoricalEncoder.html
https://feature-engine.readthedocs.io/en/latest/encoders/WoERatioCategoricalEncoder.html
https://feature-engine.readthedocs.io/en/latest/encoders/WoERatioCategoricalEncoder.html
https://feature-engine.readthedocs.io/en/latest/encoders/WoERatioCategoricalEncoder.html
https://feature-engine.readthedocs.io/en/latest/encoders/WoERatioCategoricalEncoder.html
https://feature-engine.readthedocs.io/en/latest/encoders/WoERatioCategoricalEncoder.html
https://feature-engine.readthedocs.io/en/latest/encoders/WoERatioCategoricalEncoder.html
https://feature-engine.readthedocs.io/en/latest/encoders/WoERatioCategoricalEncoder.html
https://feature-engine.readthedocs.io/en/latest/encoders/WoERatioCategoricalEncoder.html
https://feature-engine.readthedocs.io/en/latest/encoders/WoERatioCategoricalEncoder.html
https://feature-engine.readthedocs.io/en/latest/encoders/WoERatioCategoricalEncoder.html
https://feature-engine.readthedocs.io/en/latest/encoders/WoERatioCategoricalEncoder.html
https://feature-engine.readthedocs.io/en/latest/encoders/WoERatioCategoricalEncoder.html
https://feature-engine.readthedocs.io/en/latest/encoders/WoERatioCategoricalEncoder.html
https://feature-engine.readthedocs.io/en/latest/encoders/WoERatioCategoricalEncoder.html


Encoding Categorical Variables Chapter 3

[ 130 ]

Let's load the dataset and divide it into train and test sets:2.

data = pd.read_csv('creditApprovalUCI.csv')

X_train, X_test, y_train, y_test = train_test_split(
    data.drop(labels=['A16'], axis=1), data['A16'],test_size=0.3,
    random_state=0)

Let's determine the percentage of observations per category in the A7 variable:3.

X_train['A7'].value_counts() / len(X_train)

We can see the percentage of observations per category of A7, expressed as
decimals, in the following output:

v          0.573499
h          0.209110
ff         0.084886
bb         0.080745
z          0.014493
dd         0.010352
j          0.010352
Missing    0.008282
n          0.006211
o          0.002070
Name: A7, dtype: float64

If we consider as rare those labels present in less than 5% of the observations, then
z, dd, j, Missing, n, and o are rare categories.

Let's create a function that takes a dataframe and variable name, determines the4.
percentage of observations per category, and then retains those categories where
the percentage is above a minimum value:

def find_frequent_labels(df, variable, tolerance):
    temp = df[variable].value_counts()  / len(df)
    frequent = [x for x in temp.loc[temp>tolerance].index.values]
    return frequent

Let's find the categories in A7 present in more than 5% of the observations, using5.
the function created in step 4:

frequent_cat = find_frequent_labels(X_train, 'A7', 0.05)

If we execute print(frequent_cat), we will see the frequent categories of A7:

['v', 'h', 'ff', 'bb']
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Let's replace rare labels, that is, those present in <= 5% of the observations, with6.
the Rare string:

X_train['A7'] = np.where(X_train['A7'].isin(frequent_cat),
    X_train['A7'], 'Rare')
X_test['A7'] = np.where(X_test['A7'].isin(frequent_cat),
    X_test['A7'], 'Rare')

Let's determine the percentage of observations in the encoded variable:7.

X_train['A7'].value_counts() / len(X_train)

We can see that the infrequent labels have now been re-grouped in the
Rare category:

v       0.573499
h       0.209110
ff      0.084886
bb      0.080745
Rare    0.051760
Name: A7, dtype: float64

Now, let's group rare labels using Feature-engine. First, we load and divide the
dataset into train and test sets as we did in step 2.

Let's create a rare label encoder that groups categories present in less than 5% of8.
the observations, provided that the categorical variable has more than four
distinct values:

rare_encoder = RareLabelCategoricalEncoder(tol=0.05,
    n_categories=4)

Let's fit the encoder so that it finds the categorical variables and then learns their9.
most frequent categories:

rare_encoder.fit(X_train)

We can display the frequent categories per variable by
executing rare_encoder.encoder_dict_.
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Finally, let's group rare labels in train and test sets:10.

X_train_enc = rare_encoder.transform(X_train)
X_test_enc = rare_encoder.transform(X_test)

Now that we have grouped rare labels, we are ready to encode the categorical variables as
we describe in the other recipes in this chapter.

How it works...
In this recipe, we grouped infrequent categories using pandas and Feature-engine. 

We first loaded the dataset and divided it into train and test sets. Next, we determined the
percentage of observations per category of the A7 variable. With pandas' value_counts()
method, we counted the observations per category of A7 and then divided these values by
the total number of observations, determined using Python's built-in len method, to obtain
the percentage of observations per category.

Next, we created a function that took as arguments a dataframe, a categorical variable, and
a tolerance, which is the minimum frequency for a category not to be considered rare. In
the function, we used pandas' value_counts() method and Python's len() function to
create a pandas Series with the categories in the index and the frequency of observations as
values. Next, with a list comprehension over the preceding pandas Series, we captured the
categories with a frequency higher than the indicated tolerance. In the list comprehension,
we first sliced the Series selecting only the categories above the indicated tolerance with
pandas' loc method, and next, using pandas' index, we retained the category names in a
list.

With the preceding function, we captured the frequent categories of A7 in a list and then,
using NumPy's where() method, we searched each row of A7, and if the observation was
one of the frequent categories in the list, which we checked using pandas' isin() method,
it was kept; otherwise, its original value was replaced with 'Rare'.

We automated the preceding steps for multiple categorical variables using Feature-engine.
To do this, we called Feature-engine's RareLabelCategoricalEncoder() categorical
encoder, and indicated first the minimum frequency to retain a category by setting tol to
0.05, and second, that we only wanted to group rare labels if the variable had at least four
different categories by setting n_categories to 4. With the fit() method, the
transformer identified the categorical variables and then it learned and stored the frequent
categories per variable. With the transform() method, we replaced categories not present
in those lists with the string, Rare.
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See also
To learn more about Feature-engine's RareLabelcategoricalEncoder() categorical
encoder, visit: https:/ /feature- engine. readthedocs. io/en/ latest/ encoders/
RareLabelCategoricalEncoder. html. 

Performing binary encoding
Binary encoding is an alternative categorical encoding technique that uses binary code, that
is, a sequence of zeroes and ones, to represent the different categories of the variable. How
does it work? First, the categories are arbitrarily replaced by ordinal numbers, as shown in
the intermediate step of the following table. Then, those numbers are converted into binary
code. For example, the integer 1 can be represented as the sequence 01, the integer 2 as 10,
the integer 3 as 00, and 4 as 11. The digits in the two positions of the binary string become
the columns, which are the encoded representation of the original variable:

Color Intermediate step 1st 2nd
Blue 1 0 1
Red 2 1 0

Green 3 0 0
Yellow 4 1 1

Binary encoding encodes the data in fewer dimensions than one-hot encoding. In our
example, the color variable would be encoded into k-1 categories, that is, three variables by
one-hot encoding, but with binary encoding, we can represent the variable with only two
variables. More generally, we determine the number of binary features needed to encode a
variable as log2(number of distinct categories); in our example, log2(4) = 2 binary features.
Also, the derived features are binary, which is suitable for linear models. But, the derived
features lack human interpretability, therefore, the use of this technique in organizations is
questionable.

In this recipe, we will learn how to perform binary encoding using the Category
Encoders Python package.

Getting ready
In this recipe, we will implement binary encoding using the open source package, Category
Encoders, which you can install with pip as described in the Technical requirements section.
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How to do it...
Let's first import the necessary Python libraries and get the dataset ready:

Import the required Python library, function, and class:1.

import pandas as pd
from sklearn.model_selection import train_test_split
from category_encoders import BinaryEncoder

Let's load the dataset and divide it into train and test sets:2.

data = pd.read_csv('creditApprovalUCI.csv')

X_train, X_test, y_train, y_test = train_test_split(
    data.drop(labels=['A16'], axis=1), data['A16'],test_size=0.3,
    random_state=0)

Let's inspect the unique categories in A7:3.

X_train['A7'].unique()

We can see in the output of the preceding code block that A7 has 10 different
categories:

array(['v', 'ff', 'h', 'dd', 'z', 'bb', 'j', 'Missing', 'n', 'o'],
dtype=object)

Let's create a binary encoder to encode A7:4.

encoder = BinaryEncoder(cols=['A7'], drop_invariant=True)

BinaryEncoder(), as well as other encoders from the Category
Encoders package, allow us to select the variables to encode. We simply
pass the column names in a list to the cols argument.

Let's fit the transformer to the train set so that it calculates how many binary5.
variables it needs and creates the variable to binary code representations:

encoder.fit(X_train)

Finally, let's encode A7 in the train and test sets:6.

X_train_enc = encoder.transform(X_train)
X_test_enc = encoder.transform(X_test)
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We can display the top rows of the transformed train set by
executing print(X_train_enc.head()), which returns the following output:

    A1     A2     A3 A4 A5  A6  A7_1  A7_2  A7_3  A7_4      A8 A9 A10  A11
\
596  a  46.08  3.000  u  g   c     0     0     0     1   2.375  t   t    8
303  a  15.92  2.875  u  g   q     0     0     0     1   0.085  f   f    0
204  b  36.33  2.125  y  p   w     0     0     0     1   0.085  t   t    1
351  b  22.17  0.585  y  p  ff     0     0     1     0   0.000  f   f    0
118  b  57.83  7.040  u  g   m     0     0     0     1  14.000  t   t    6

    A12 A13    A14   A15  A16
596   t   g  396.0  4159    1
303   f   g  120.0     0    0
204   f   g   50.0  1187    1
351   f   g  100.0     0    0
118   t   g  360.0  1332    1

Binary encoding returned four binary variables for A7, which are A7_1, A7_2, A7_3, and
A7_4, instead of the nine that would have been returned by one-hot encoding.

How it works...
In this recipe, we performed binary encoding using the Category Encoders package. We
first loaded the dataset and divided it into train and test sets using train_test_split()
from scikit-learn. Next, we used BinaryEncoder() to encode the A7 variable. With the
fit() method, BinaryEncoder() created a mapping from category to set of binary
columns, and with the transform() method, the encoder encoded the A7 variable in both
the train and test sets.

With one-hot encoding, we would have created nine binary variables (k-1
= 10 unique categories - 1 = 9) to encode all of the information in A7. With
binary encoding instead, we can represent the variable in less dimensions:
log2(10)=3.3, that is, we need only four binary variables.
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See also
For more information about BinaryEncoder(), visit: https:/ /contrib. scikit- learn.
org/categorical-encoding/ binary. html.

For a nice example of the output of binary encoding, check out the following https:/ /
stats.stackexchange. com/ questions/ 325263/ binary- encoding- vs-one- hot- encoding.

For a comparative study of categorical encoding techniques for neural networks classifiers,
visit: https://www. researchgate. net/ publication/ 320465713_ A_ Comparative_ Study_ of_
Categorical_Variable_ Encoding_ Techniques_ for_ Neural_ Network_ Classifiers.

Performing feature hashing
With feature hashing, the categories of a variable are converted into a series of binary
vectors using a hashing function. How does this work? First, we determine, arbitrarily, the
number of binary vectors to represent the category. For example, let's say we would like to
use five vectors. Next, we need a hash function that will take a category and return a
number between 0 and n-1, where n is the number of binary vectors. In our example, the
hash function should return a value between 0 and 4. Let's say our hash function returns
the value of 3 for the category blue. That means that our category blue will be represented
by a 0 in the vectors 0, 1, 2, and 4 and 1 in the vector 3: [0,0,0,1,0]. Any hash function can be
used as long as it returns a number between 0 and n-1.

An example of a hash function is the module or remainder. In our
example, it would be the remainder of 5.

In this recipe, we will perform feature hashing using the open source package, Category
Encoders.

For more details on feature hashing, visit any of the recommended reads
in the See also section at the end of this recipe.
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Getting ready
In this recipe, we will implement feature hashing using the open source package, Category
Encoders, which you can install with pip as described in the Technical requirements section.

How to do it...
Let's first import the necessary Python libraries and get the dataset ready:

Import the required Python library, function, and class:1.

import pandas as pd
from sklearn.model_selection import train_test_split
from category_encoders import HashingEncoder

Let's load the dataset and divide it into train and test sets:2.

data = pd.read_csv('creditApprovalUCI.csv')

X_train, X_test, y_train, y_test = train_test_split(
    data.drop(labels=['A16'], axis=1), data['A16'],test_size=0.3,
random_state=0)

Let's inspect the unique categories in A7:3.

X_train['A7'].unique()

We can see in the output of the preceding code block that A7 has 10 different
categories:

array(['v', 'ff', 'h', 'dd', 'z', 'bb', 'j', 'Missing', 'n', 'o'],
dtype=object)

Let's create a hashing encoder to encode A7 into four binary vectors:4.

encoder = HashingEncoder(cols=['A7'], n_components=4)

Let's fit the encoder to the train set so that it creates and stores the category to5.
vectors mappings:

encoder.fit(X_train)

Finally, let's now encode A7 in the train and test sets:6.

X_train_enc = encoder.transform(X_train)
X_test_enc = encoder.transform(X_test)
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We can display the top rows of the transformed train set by
executing print(X_train_enc.head()), which returns the following output:

     col_0  col_1  col_2  col_3 A1     A2     A3 A4 A5  A6      A8 A9 A10
\
596      0      0      1      0  a  46.08  3.000  u  g   c   2.375  t   t
303      0      0      1      0  a  15.92  2.875  u  g   q   0.085  f   f
204      0      0      1      0  b  36.33  2.125  y  p   w   0.085  t   t
351      0      1      0      0  b  22.17  0.585  y  p  ff   0.000  f   f
118      0      0      1      0  b  57.83  7.040  u  g   m  14.000  t   t

     A11 A12 A13    A14   A15  A16
596    8   t   g  396.0  4159    1
303    0   f   g  120.0     0    0
204    1   f   g   50.0  1187    1
351    0   f   g  100.0     0    0
118    6   t   g  360.0  1332    1

Note how the encoded variable is returned as four binary vectors at the beginning of the
dataframe (cols_0 to col_3), and the original A7 variable is removed.

Feature hashing can return the same encoding for different categories. To
minimize this behavior, you can try and encode the variable in more
components.

How it works...
In this recipe, we performed feature hashing using the Category Encoders package. We first
loaded the dataset and divided it into train and test sets using train_test_split() from
scikit-learn. Next, we set up HashingEncoder() to encode the A7 variable into four
components. With the fit() method, HashingEncoder() created a mapping from the
category to a set of binary vectors and with the transform() method, the encoder encoded
the A7 variable in both the train and test sets.

With one-hot encoding, we would have needed nine binary variables to
encode A7. With feature hashing, we can represent the variable in a
smaller feature space, that is, with fewer derived features. The number of
features is determined by the user.
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See also
For more information about HashingEncoder(), visit: https:/ /contrib. scikit- learn.
org/categorical-encoding/ hashing. html.

For more details on feature hashing, visit the following: 

https:// alex. smola. org/ papers/ 2009/ Weinbergeretal09. pdf

https:// towardsdatascience. com/understanding- feature- engineering- part-
2-categorical- data- f54324193e63 (recommended read)
http://www. willmcginnis. com/ 2016/ 01/16/ even- further- beyond- one- hot-
hashing/ 

https:// www. quora. com/ Can- you-explain- feature- hashing- in- an-easily-
understandable- way

https://contrib.scikit-learn.org/categorical-encoding/hashing.html
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4
Transforming Numerical

Variables
Linear and logistic regression assume that the variables are normally distributed. If they are
not, we can often apply a mathematical transformation to change their distribution into
Gaussian, and sometimes even unmask linear relationships between variables and their
targets. This means that transforming variables may improve the performance of linear
machine learning models. Commonly used mathematical transformations include the
logarithm, reciprocal, power, square and cube root transformations, as well as the Box-Cox
and Yeo-Johnson transformations. In this chapter, we will learn how to implement all of
these operations on the variables in our dataset using the NumPy, SciPy, scikit-learn, and
Feature-engine libraries.

This chapter will cover the following recipes:

Transforming variables with the logarithm
Transforming variables with the reciprocal function
Using square and cube root to transform variables
Using power transformations on numerical variables
Performing Box-Cox transformation on numerical variables
Performing Yeo-Johnson transformation on numerical variables

Technical requirements
In this chapter, we will use the pandas, NumPy, Matplotlib, SciPy and scikit-learn Python
libraries. These libraries are bundled in the free Anaconda Python distribution (https:/ /
www.anaconda.com/ distribution/ ), which you can install as described in the Technical
Requirements section of Chapter 1, Foreseeing Variable Problems when Building ML Models. 

https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
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https://www.anaconda.com/distribution/
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https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
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We will also use the open source Python library Feature-engine, which can be installed
using pip:

pip install feature-engine

We will use the Boston House Prices dataset from scikit-learn, which contains no missing
data. When trying the recipes in your own dataset, make sure you impute the missing
values with any of the techniques we covered in Chapter 2, Imputing Missing Data. 

Transforming variables with the logarithm
The logarithm function is commonly used to transform variables. It has a strong effect on
the shape of the variable distribution and can only be applied to positive variables. In this
recipe, we will learn how to perform logarithmic transformation using NumPy, scikit-learn,
and Feature-engine. We will also create a diagnostic plot function to evaluate the effect of
the transformation on the variable distribution.

How to do it...
Let's begin by importing the libraries and classes we need and getting the dataset ready:

Import the required Python libraries, classes, and functions:1.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.stats as stats
from sklearn.datasets import load_boston
from sklearn.preprocessing import FunctionTransformer
from feature_engine.variable_transformers import LogTransformer

Let's load the Boston House Prices dataset into a pandas dataframe:2.

boston_dataset = load_boston()
data = pd.DataFrame(boston_dataset.data,
columns=boston_dataset.feature_names)
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To evaluate the effect of the transformation on the variable distribution, we'll3.
create a function that takes a dataframe and a variable name as inputs and plots a
histogram next to a Q-Q plot:

def diagnostic_plots(df, variable):
    plt.figure(figsize=(15,6))
    plt.subplot(1, 2, 1)
    df[variable].hist(bins=30)
    plt.subplot(1, 2, 2)
    stats.probplot(df[variable], dist="norm", plot=plt)
    plt.show()

For more details on Q-Q plots, take a look at the Identifying a normal
distribution recipe of Chapter 1, Foreseeing Variable Problems when Building
ML Models.

Now, let's plot the distribution of the LSTAT variable:4.

diagnostic_plots(data, 'LSTAT')

The following output shows that LSTAT is not normally distributed:

Now, let's transform the data with the logarithm.
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First, let's make a copy of the original dataframe using pandas copy():5.

data_tf = data.copy()

We've created a copy so that we can modify the values in the copy and not in the 
original dataframe, which we need for the rest of the recipe.

If we execute data_tf = data instead of using pandas copy(),
data_tf will not be a copy of the dataframe; instead, it will be another
view of the same data. Therefore, changes that are made in data_tf will
be reflected in data as well.

Let's apply the logarithmic transformation with NumPy to a subset of positive6.
variables to capture the transformed variables in the new dataframe:

data_tf[['LSTAT', 'NOX', 'DIS', 'RM']] = np.log(data[['LSTAT',
'NOX', 'DIS', 'RM']])

Let's check the distribution of LSTAT after the transformation with the diagnostic7.
function we created in step 3:

diagnostic_plots(data_tf, 'LSTAT')

We can see the effect of the transformation in the following output:

Now, let's apply the logarithmic transformation with scikit-learn.
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Let's create a transformer using the FunctionTransformer() from scikit-learn:8.

transformer = FunctionTransformer(np.log)

FunctionTransformer() doesn't need to be fit before transforming the
data since there are no parameters to be learned from the train set.

Let's transform a subset of positive variables:9.

data_tf = transformer.transform(data[['LSTAT', 'NOX', 'DIS',
'RM']])

Note that data_tf is a NumPy array with only the transformed variables.

We can transform the NumPy array into a pandas dataframe by executing
data_tf = pd.DataFrame(data_tf, columns = ['LSTAT',

'NOX', 'DIS', 'RM']) and then check that the transformation was
successful with the diagnostic function of step 3.

Now, let's do logarithm transformation with Feature-engine.

Let's create a transformer using LogTransformer() and fit it to the dataset:10.

lt = LogTransformer(variables = ['LSTAT', 'NOX', 'DIS', 'RM'])
lt.fit(data)

If the variables argument is left as None, LogTransformer() identifies
and applies the logarithm to all the numerical variables in the dataset.
Alternatively, we can indicate which variables we want to transform, just
like we did in step 10.

Finally, let's transform the data:11.

data_tf = lt.transform(data)

The transformer will only transform the variables indicated in step 10. Note that data_tf is
a pandas dataframe that contains all of the original variables, where only the LSTAT, NOX,
DIS, and RM variables were transformed by the logarithm.
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How it works...
In this recipe, we applied the logarithm transformation to a subset of positive variables in
the Boston House Prices using NumPy, scikit-learn, and Feature-engine. For details on how
to load the dataset, take a look at the Distinguishing variable distributions recipe of Chapter 1,
Foreseeing Variable Problems When Building ML Models.

To compare the effect of the transformation on the variable distribution, we created a
diagnostic function to plot a histogram next to a Q-Q plot using the probplot() method
from scipy.stats and pandas hist(), which we described in the Identifying a normal
distribution recipe of Chapter 1, Foreseeing Variable Problems when Building ML Models. With
plt.figure() and figsize, we adjusted the size of the figure and, with plt.subplot(),
we organized the two plots in 1 row with 2 columns, that is, one plot next to the other. The
number in the third position within plt.subpot() indicated the place of the plot: the
histogram in position 1 and the Q-Q plot in position 2, that is, left and right, respectively.

We plotted a histogram and a Q-Q plot for the LSTAT variable before the transformation
and observed that LSTAT was not normally distributed: most observations were at the left
of the histogram and the values deviated from the 45-degree line in the Q-Q plot at both
ends of the distribution.

To apply the logarithm using NumPy, we used the log() method on a slice of the
dataframe with four positive variables. To corroborate that the transformation worked, we 
plotted a histogram and Q-Q plot of the transformed LSTAT. We observed that the values
were more centered in the histogram and that, in the Q-Q plot, they only deviated from the
45-degree line toward the higher values.

Next, we used the FunctionTransformer() from scikit-learn, which applies any user-
defined function to a dataset and returns the result of the operation in a NumPy array. We
passed NumPy's log() as an argument to FunctionTransfomer() and, with the
transform() method, we transformed a slice of the dataframe with the positive variables.

Finally, we used Feature-engine's LogTransformer() to apply the logarithmic
transformation, indicating the variables to transform into a list as an argument. The fit()
method of the transformer checked that the variables were numerical and the
transform() method called NumPy's log() to transform the indicated variables.
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See also
For more details about the methods and transformers that were used in this recipe, take a
look at the following links:

NumPy's log(): https:/ / docs. scipy. org/doc/ numpy/ reference/ generated/
numpy.log. html

Scikit-learn's FunctionTransformer(): https:/ /scikit- learn. org/ stable/
modules/ generated/ sklearn. preprocessing. FunctionTransformer. html.
Feature-engine's LogTransformer(): https:/ /feature- engine. readthedocs.
io/en/ latest/ vartransformers/ LogTransformer. html

Transforming variables with the reciprocal
function
The reciprocal function, defined as 1/x, is a strong transformation with a very drastic effect
on the variable distribution. It isn't defined for the value 0, but it can be applied to negative
numbers. In this recipe, we will implement the reciprocal transformation using NumPy,
scikit-learn, and Feature-engine and compare its effect with a diagnostic function.

How to do it...
Let's begin by importing the libraries and getting the dataset ready:

Import the required Python libraries, methods, and classes:1.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.stats as stats
from sklearn.datasets import load_boston
from sklearn.preprocessing import FunctionTransformer
from feature_engine.variable_transformers import
ReciprocalTransformer
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Let's load the Boston House Prices dataset:2.

boston_dataset = load_boston()
data = pd.DataFrame(boston_dataset.data,
columns=boston_dataset.feature_names)

To evaluate the effect of the transformation on the variable distribution, we'll3.
create a function that takes a dataframe and a variable name as inputs and plots a
histogram next to a Q-Q plot:

def diagnostic_plots(df, variable):
    plt.figure(figsize=(15,6))
    plt.subplot(1, 2, 1)
    df[variable].hist(bins=30)
    plt.subplot(1, 2, 2)
    stats.probplot(df[variable], dist="norm", plot=plt)
    plt.show()

Now, let's plot the distribution of the DIS variable:4.

diagnostic_plots(data, 'DIS')

DIS is not normally distributed, as shown in the following output:

Now, let's apply the reciprocal transformation with NumPy.
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First, let's make a copy of the original dataframe using pandas copy() so that we5.
can modify the values in the copy and not in the original dataframe, which we 
need for the rest of this recipe:

data_tf = data.copy()

Remember that executing data_tf = data, instead of using pandas
copy(), creates an additional view of the same data. Therefore, changes
that are made in data_tf will be reflected in the data as well.

Using NumPy, we'll apply the reciprocal transformation to a group of variables:6.

data_tf[['LSTAT', 'NOX', 'DIS', 'RM']] =
np.reciprocal(data[['LSTAT', 'NOX', 'DIS', 'RM']])

Let's check the distribution of the DIS variable after the transformation with the7.
diagnostic function we created in step 3:

diagnostic_plots(data_tf, 'DIS')

The transformed DIS distribution can be seen in the plots that are returned by the
preceding code block:

Now, let's apply reciprocal transformation with scikit-learn.
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Let's create a transformer using FunctionTransformer() by passing8.
np.reciprocal as an argument:

transformer = FunctionTransformer(np.reciprocal)

FunctionTransformer() doesn't need to be fit before transforming the
data since there are no parameters to be learned from the train set.

Now, let's transform a group of variables from the dataset:9.

data_tf = transformer.transform(data[['LSTAT', 'NOX', 'DIS',
'RM']])

Note that data_tf is a NumPy array with only the transformed variables.

If we want to retain the original variables in the final output, we can
create a copy of the original dataframe, like we did in step 5, and then
execute data_tf[['LSTAT', 'NOX', 'DIS', 'RM']] =
transformer.transform(data[['LSTAT', 'NOX', 'DIS',

'RM']]).

Now, let's apply the reciprocal transformation with Feature-engine.

Here, we'll call ReciprocalTransformer(), indicate the variables to transform,10.
and then fit it to the dataset:

rt = ReciprocalTransformer(variables = ['LSTAT', 'NOX', 'DIS',
'RM'])
rt.fit(data)

If the variables argument is None, the transformer identifies and applies
the reciprocal function to all the numerical variables in the dataset. If
some of the variables contain the value zero, this will return an error.

Let's transform the selected variables in our dataset:11.

data_tf = rt.transform(data)

ReciprocalTransformer() will return a pandas dataframe with the original variables,
where the variables indicated in 10 are transformed with the reciprocal function.
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How it works...
In this recipe, we applied the reciprocal transformation to a group of variables using
NumPy, scikit-learn, and Feature-engine. To determine the effect of the transformation, we
created a diagnostic function to plot a histogram next to a Q-Q plot for a given variable. For
more details on step 1 to step 3, check out the Transforming variables with the logarithm
recipe, earlier in this chapter.

Utilizing the diagnostic plot function, we plotted the histogram and Q-Q plot of the DIS
variable and observed that it wasn't normally distributed: most of its values were at the left
of the histogram and they deviated from the 45-degree line at both ends of the distribution
in the Q-Q plot.

To apply the reciprocal transformation with NumPy, we used the reciprocal()
method on a slice of the dataset with the variables to be transformed. Then, we utilized the
diagnostic plot function to plot the histogram and Q-Q plot of the transformed DIS
variable. We observed that the transformed DIS was not normally distributed, but there
was an improvement in the value spread across a greater range: more values were now
toward the center of the histogram and deviated from the 45-degree red line toward the
higher values of the distribution in the Q-Q plot.

To apply the reciprocal transformation using scikit-learn's FunctionTransformer(), we
called the transformer and passed NumPy's reciprocal() as an argument. The
transform() method returned in a NumPy array only the transformed variables.

Finally, we used Feature-engine's ReciprocalTransformer() and specified the variables
to transform in a list. The fit() method checked that the variables were numerical, while
the transform() method called NumPy reciprocal() to transform the variables,
returning a pandas dataframe. The returned dataframe contained all the variables in the
original data, where the variables indicated in the list that were transformed with the
reciprocal function.
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See also
For more details about the methods and transformers that were used in this recipe, take a
look at the following links:

NumPy's reciprocal(): https:/ /docs. scipy. org/doc/ numpy/ reference/
generated/ numpy. reciprocal. html

Scikit-learn's FunctionTransformer(): https:/ /scikit- learn. org/ stable/
modules/ generated/ sklearn. preprocessing. FunctionTransformer. html

Feature-engine's ReciprocalTransformer(): https:/ /feature- engine.
readthedocs. io/ en/ latest/ vartransformers/ ReciprocalTransformer. html

Using square and cube root to transform
variables
The square and cube root transformations are two specific forms of power transformations
where the exponents are 1/2 and 1/3, respectively. In this recipe, we will implement square
and cube root transformations using NumPy and scikit-learn.

The square root transformation is not defined for negative values, so make
sure you only transform those variables whose values are >=0; otherwise,
you will introduce NaN or receive an error message.

How to do it...
Let's begin by importing the necessary libraries and getting the dataset ready:

Import the required Python libraries and classes:1.

import numpy as np
import pandas as pd
from sklearn.datasets import load_boston
from sklearn.preprocessing import FunctionTransformer
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Let's load the Boston House Prices dataset into a pandas dataframe:2.

boston_dataset = load_boston()
data = pd.DataFrame(boston_dataset.data,
columns=boston_dataset.feature_names)

Now, let's make a square root transformation using NumPy.

First, let's make a copy of the original dataframe using pandas copy():3.

data_tf = data.copy()

Let's apply the square root transformation with NumPy to a group of variables4.
and capture it in the new dataframe:

data_tf[['LSTAT', 'NOX', 'DIS', 'RM']] = np.sqrt(data[['LSTAT',
'NOX', 'DIS', 'RM']])

If we want to apply the cube root transformation instead, we can do so with5.
NumPy's cbrt(), like so :

data_tf[['LSTAT', 'NOX', 'DIS', 'RM']] = np.cbrt(data[['LSTAT',
'NOX', 'DIS', 'RM']])

We can check the effect of the variable transformation by using the
diagnostic plot function that we described in step 3 of the Transforming
variables with the logarithm recipe in this chapter.

Now, let's apply the square root transformation with scikit-learn.

Let's create a transformer by passing NumPy's sqrt() as an argument:6.

transformer = FunctionTransformer(np.sqrt)

If we want to perform the cube root transformation, we need to set up the
transformer using transformer = FunctionTransformer(np.cbrt).

Now, let's transform a subset of variables from the dataset:7.

data_tf = transformer.transform(data[['LSTAT', 'NOX', 'DIS',
'RM']])



Transforming Numerical Variables Chapter 4

[ 153 ]

To transform the returned NumPy array into a pandas dataframe, we can
use the data_tf = pd.DataFrame(data_tf, columns=[LSTAT',
'NOX', 'DIS', 'RM']) command.

If we want to capture the transformed variables within the original dataset, we8.
can do so as follows:

data_tf = data.copy()
data_tf[['LSTAT', 'NOX', 'DIS', 'RM']] =
transformer.transform(data[['LSTAT', 'NOX', 'DIS', 'RM']])

The preceding code block returns a pandas dataframe with the original variables. However,
the LSTAT, NOX, DIS, and RM variables are transformed with the square root.

How it works...
In this recipe, we applied the square and cube root transformations to variables in the
Boston House Prices dataset using NumPy and scikit-learn.

To apply the square or cube root transformations with NumPy, we created a copy of the
original dataframe with pandas copy() and then used sqrt() or cbrt() on a slice of the
dataset with the variables to be transformed. This procedure returned a pandas dataframe
with the original variables, while LSTAT, NOX, DIS, and RM were transformed with the
square root.

To apply the square root transformation with scikit-learn, we used
FunctionTransformer(), which applies a user-defined function – in this case, np.sqrt –
to a dataset and returns the result in a NumPy array. The transform() method applied
np.sqrt() to a slice of the dataset and returned the transformed variables in a NumPy
array.

There's more...
To perform square root or cube root transformations with Feature-engine, we can follow
the steps that were provided in the next, Using power transformations on numerical variables
recipe, and define the exponents as 1/2 or 1/3, respectively. There is also an example of its
application in the Jupyter Notebook for this recipe, in the accompanying GitHub
repository: https:/ /github. com/ PacktPublishing/ Python- Feature- Engineering-
Cookbook/blob/master/ Chapter04/ Recipe- 3-square- cube- root. ipynb.
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Using power transformations on numerical
variables
Exponential or power functions are mathematical transformations that follow ,
where lambda can be any exponent. The square and cube root transformations are special
cases of power transformations where lambda is 1/2 or 1/3, respectively. In practice, we try
different lambdas to determine which one offers the best transformation. In this recipe, we
will carry out power transformations using NumPy, scikit-learn, and Feature-engine.

How to do it...
Let's begin by importing the libraries and getting the dataset ready:

Import the required Python libraries and classes:1.

import numpy as np
import pandas as pd
from sklearn.datasets import load_boston
from sklearn.preprocessing import FunctionTransformer
from feature_engine.variable_transformers import PowerTransformer

Let's load the Boston House Prices dataset into a pandas dataframe:2.

boston_dataset = load_boston()
data = pd.DataFrame(boston_dataset.data,
columns=boston_dataset.feature_names)

Now, we need to perform power transformations using NumPy.

First, let's make a copy of the original dataframe using pandas copy() so that we3.
can modify the values in the copy and not in the original dataframe, which we
need for the rest of this recipe:

data_tf = data.copy()

Remember that executing data_tf = data, instead of using pandas
copy(), creates an additional view of the same data. Therefore, changes
that are made in data_tf will be reflected in the data as well.
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Let's apply a power transformation with NumPy, where the exponent is 0.3:4.

data_tf[['LSTAT', 'NOX', 'DIS', 'RM']] = np.power(data[['LSTAT',
'NOX', 'DIS', 'RM']], 0.3)

With np.power(), we can apply any exponential transformation by
changing the value of the exponent in the second position of the method.

Now, let's apply a power transformation with scikit-learn.

Let's call FunctionTransformer() while passing a power of 0.3 using5.
np.power within a lambda function:

transformer = FunctionTransformer(lambda x: np.power(x, 0.3))

FunctionTransformer() from scikit-learn doesn't need to be fit to the
data since there are no parameters that need to be learned.

Now, let's transform a group of variables:6.

data_tf = transformer.transform(data[['LSTAT', 'NOX', 'DIS',
'RM']])

PowerTransformer() returns an NumPy array with only the transformed
variables.

Finally, let's perform an exponential transformation with Feature-engine.

Let's start PowerTransformer() with the exponent 0.3 and the variables to7.
transform. Then, we'll fit it to the data:

et = PowerTransformer(variables = ['LSTAT', 'NOX', 'DIS', 'RM'],
exp=0.3)
et.fit(data)

If we don't define the variables to transform, PowerTransformer() will
select all the numerical variables in the dataframe.
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Finally, let's transform the variables in our dataset:8.

data_tf = et.transform(data)

The transformer returns a dataframe with the original variables, and the four variables
specified in step 7 are transformed with the power function.

How it works...
In this recipe, we applied power transformations using NumPy, scikit-learn, and Feature-
engine while using the Boston House Prices dataset from scikit-learn.

To apply exponential functions with NumPy, we created a copy of the original dataframe
with pandas copy(). Next, we used the power() method on a slice of the dataset with the
variables to transform and captured the transformed variables in the new dataframe. This
procedure returned a pandas dataframe with the original variables, and LSTAT, NOX, DIS,
and RM were transformed with a power of 0.3.

To apply an exponential transformation with scikit-learn, we used
FunctionTransformer(), which applies a user-defined function. We started the
transformer with np.power() within a lambda function using 0.3 as the exponent. The
transform() method applied the power transformation to a slice of the dataset and
returned the transformed variables in a NumPy array.

Finally, we used Feature-engine's PowerTransformer(). We started the transformer with
a list of the variables to be transformed and the exponent 0.3. The fit() method checked
that the indicated variables were numerical while the transform() method applied the
transformation, returning a dataframe with the transformed variables among the original
variables in the dataset.

There's more...
For an example of how to apply different power transformations to different group of
variables using Feature-engine within a single pipeline, take a look at the Jupyter Notebook
for this recipe in the accompanying GitHub repository: https:/ /github. com/
PacktPublishing/Python- Feature- Engineering- Cookbook/ blob/ master/ Chapter04/
Recipe-4-power-transformation. ipynb.
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See also
For more details on the classes and methods that were used in this recipe, take a look at the
following links:

NumPy's power(): https:/ / docs.scipy. org/doc/ numpy/ reference/
generated/ numpy. power. html

Feature-engine's PowerTransformer(): https:/ /feature- engine.
readthedocs. io/ en/ latest/ vartransformers/ PowerTransformer. html

Performing Box-Cox transformation on
numerical variables
The Box-Cox transformation belongs to the power family of functions and is defined by 

 if X > 0 or log(X) if X = 0, where X is the variable and λ is the transformation
parameter. In the Box-Cox transformation, several values of λ are considered and the λ that
returns the best transformation is selected. In this recipe, we will perform Box-Cox
transformation using SciPy, scikit-learn, and Feature-engine.

The Box-Cox transformation can only be used on positive variables. If
your variables have negative values, try the Yeo-Johnson transformation,
which is described in the next recipe, Performing Yeo-Johnson transformation
on numerical variables.

How to do it...
Let's begin by importing the necessary libraries and getting the dataset ready:

Import the required Python libraries and classes:1.

import numpy as np
import pandas as pd
import scipy.stats as stats
from sklearn.datasets import load_boston
from sklearn.preprocessing import PowerTransformer
from feature_engine.variable_transformers import BoxCoxTransformer
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Let's load the Boston House Prices dataset into a pandas dataframe:2.

boston_dataset = load_boston()
data = pd.DataFrame(boston_dataset.data,
columns=boston_dataset.feature_names)

Now, let's perform the Box-Cox transformation using scipy.stats.

First, let's make a copy of the original dataframe using pandas copy() so that we3.
can modify the values in the copy and not in the original dataframe:

data_tf = data.copy()

Let's apply the Box-Cox transformation with SciPy to the LSTAT variable:4.

data_tf['LSTAT'], param = stats.boxcox(data['LSTAT'])

scipy.stats.boxcox() can only be applied to one-dimensional data,
and returns two parameters: the transformed variable and the optimal
lambda for the transformation, which we capture in the param variable. 

Let's print the optimal lambda that we identified for the Box-Cox transformation5.
of LSTAT:

print('Optimal λ: ', param)

The following output shows the best lambda for this:

Optimal λ:  0.22776736744327938

We can check the effect of the variable transformation by using the
diagnostic plot function that we described in step 3 of the Transforming
variables with the logarithm recipe of this chapter.

Now, let's apply the Box-Cox transformation using scikit-learn.

Let's start PowerTransformer() by specifying Box-Cox as an argument:6.

transformer = PowerTransformer(method='box-cox', standardize=False)
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Let's create a list with the variables we want to transform and then fit the 7.
transformer to the slice of the dataset that contains these variables:

cols = ['LSTAT', 'NOX', 'DIS', 'RM']
transformer.fit(data[cols])

Remember that the parameters need to be learned from the train set and
used to transform the train and test sets. Due to this, you should divide
your data into train and test sets before fitting PowerTransformer().

Now, let's transform the dataset:8.

data_tf = transformer.transform(data[cols])

Scikit-learn returns a NumPy array with the transformed variables, which we can
convert into a pandas dataframe by executing data_tf =
pd.DataFrame(data_tf, columns=cols).

Scikit-learn's PowerTransformer() stores the learned lambdas in its
lambdas_ attribute, which you can display by executing
transformer.lambdas_.

Now, let's implement the Box-Cox transformation with Feature-engine.

Let's start BoxCoxTransformer() by specifying the variables to transform in a9.
list and then fit it to the dataset:

bct = BoxCoxTransformer(variables = ['LSTAT', 'NOX', 'DIS', 'RM'])
bct.fit(data)

Now, we'll transform the indicated variables in our data:10.

data_tf = bct.transform(data)

Note that, compared to PowerTransformer() from scikit-learn,
BoxCoxTransformer() from Feature-engine can take the entire
dataframe as input, but it will only transform the variables that are
specified when we start the transformer.

Feature-engine's transformer returns a dataframe with the original variables
where those indicated in step 9 were transformed by Box-Cox.
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The optimal lambdas for each variable are stored in the lambda_dict_ attribute.11.
Let's inspect them:

bct.lambda_dict_

The output of the precedent line of code is as follows:

{'LSTAT': 0.22776736744327938,
 'NOX': -0.9156121057973192,
 'DIS': -0.1556058423249141,
 'RM': 0.44895976107977725}

Now, you've learned how to implement the Box-Cox transformation with three different
Python libraries.

How it works...
In this recipe, we applied the Box-Cox transformation using SciPy, scikit-learn, and Feature-
engine to a subset of variables of the Boston House Prices dataset. To transform the
variables with SciPy, we applied the stats.boxcox() method to the LSTAT variable and
obtained the transformed variable and the optimal lambda for the transformation.

The stats.boxcox() method operates on one-dimensional data, so we
need to transform each variable individually.

To apply the Box-Cox transformation with scikit-learn, we used PowerTransformer().
Scikit-learn's PowerTransformer() can apply both Box-Cox and Yeo-Johnson
transformations, so we needed to specify the method when we created the transformer. In
this case, we passed the box-cox string. The standardize argument allowed us to
determine whether we wanted to standardize (scale) the transformed values. Next, we fit
the transformer to the slice of the dataframe that contained the variables to be transformed
so that the transformer learned the optimal lambdas for each variable.
PowerTransformer() stored the learned lambdas in its lambdas_ attribute. Finally, we
used the transform() method on the slice of the dataset to return the transformed
variables in a NumPy array.
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Finally, we applied the Box-Cox transformation using Feature-engine. We initialized
BoxCoxTransformer() and specified the variables to be transformed into a list. We fit the
transformer to the data so that it learned the optimal lambdas per variable, which were
stored in the lambda_dict_, and transformed the desired variables using the
transform() method. Feature-engine's BoxCoxTransformer() can take the entire
dataframe as input, but it will only transform the indicated variables, returning the entire
dataframe with the subset of the variables that were transformed.

See also
For more details on the classes and methods that were used in this recipe, take a look at the
following links:

scipy.stats.boxcox(): https:/ /docs. scipy. org/ doc/ scipy/ reference/
generated/ scipy. stats. boxcox. html

Scikit-learn's PowerTransformer(): https:/ /scikit- learn. org/ stable/
modules/ generated/ sklearn. preprocessing. PowerTransformer. html.
Feature-engine's BoxCoxTransformer(): https:/ /feature- engine.
readthedocs. io/ en/ latest/ vartransformers/ BoxCoxTransformer. html

Performing Yeo-Johnson transformation on
numerical variables
The Yeo-Johnson transformation is an extension of the Box-Cox transformation and can be
used on variables with zero and negative values, as well as positive values. These
transformations can be defined as follows:

; if λ is not 0 and X >= zero
ln(X + 1 ); if λ is zero and X >= zero

; if λ is not 2 and X is negative
-ln(-X + 1); if λ is 2 and X is negative

In this recipe, we will perform the Yeo-Johnson transformation using SciPy, scikit-learn,
and Feature-engine.
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How to do it...
Let's begin by importing the necessary libraries and getting the dataset ready:

Import the required Python libraries and classes:1.

import numpy as np
import pandas as pd
import scipy.stats as stats
from sklearn.datasets import load_boston
from sklearn.preprocessing import PowerTransformer
from feature_engine.variable_transformers import
YeoJohnsonTransformer

Let's load the Boston House Prices dataset into a pandas dataframe:2.

boston_dataset = load_boston()
data = pd.DataFrame(boston_dataset.data,
columns=boston_dataset.feature_names)

Now, let's apply the Yeo-Johnson transformation using SciPy.

First, let's make a copy of the original dataframe with pandas copy() so that we3.
can modify the values in the copy and not in the original dataframe:

data_tf = data.copy()

Let's apply the Yeo-Johnson transformation using SciPy to the LSTAT variable:4.

data_tf['LSTAT'], param = stats.yeojohnson(data['LSTAT'])

scipy.stats.yeojohnson() can only be applied to one-dimensional
data and returns two parameters: the transformed variable and the
optimal lambda for the transformation, which we capture in the
param variable.

Let's inspect the optimal lambda for the transformation:5.

print('Optimal λ: ', param)
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The output of the preceding code is as follows:

Optimal λ:  0.15370552301825943

We can check the effect of the variable transformation with the diagnostic
function that we described in step 3 of the Transforming variables with the
logarithm recipe.

Now, let's apply the Yeo-Johnson transformation with scikit-learn.

Let's initialize PowerTransformer() by passing the yeo-johnson string in the6.
method:

transformer = PowerTransformer(method='yeo-johnson')

Let's create a list with the variables we want to transform and then fit the7.
transformer to the slice of the dataset that contains these variables:

cols = ['LSTAT', 'NOX', 'DIS', 'RM']
transformer.fit(data[cols])

Remember that the parameters for the Yeo-Johnson transformation should
only be learned using the train set, so you must divide your dataset into
train and test sets before fitting the transformer.

Now, let's transform the dataset to return a NumPy array with the transformed8.
variables:

data_tf = transformer.transform(data[cols])

PowerTransformer() stores the learned parameters in its attribute
lambda, which you can return by executing transformer.lambda_.

Finally, let's implement the Yeo-Johnson transformation with Feature-engine.
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We'll initialize YeoJohnsonTransformer() by specifying which variables to9.
transform and then fit it to the dataset:

yjt = YeoJohnsonTransformer(variables = ['LSTAT', 'NOX', 'DIS',
'RM'])
yjt.fit(data)

If the variables argument is left as None, the transformer selects and
transforms all the numerical variables in the dataset.

Note that, compared to PowerTransformer() from scikit-learn, the
Feature-engine's transformer can take the entire dataframe as an argument
of the fit() method.

Let's transform the specified variables in our data:10.

data_tf = yjt.transform(data)

YeoJohnsonTrasnformer() stores the best parameters per variable in its11.
lambda_dict_ attribute, which we can print as follows:

yjt.lambda_dict_

The preceding code outputs the following dictionary:

{'LSTAT': 0.15370552301825943,
 'NOX': -3.9737110448770623,
 'DIS': -0.4488719212889845,
 'RM': 0.3329865194470187}

Now, you've learned how to implement the Yeo-Johnson transformation with three
different libraries: SciPy, scikit-learn, and Feature-engine.

How it works...
In this recipe, we applied the Yeo-Johnson transformation using SciPy, scikit-learn, and
Feature-engine to a subset of variables of the Boston House Prices dataset. To transform the
variables with SciPy, we applied the stats.yeojohnson() method to the LSTAT
variable and obtained both the transformed variable and the optimal lambda for the
transformation.
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The statsyeojohnson() method operates on one-dimensional data, so
we need to transform each variable individually.

To apply the Yeo-Johsnon transformation with scikit-learn, we used
PowerTransformer(). Scikit-learn's PowerTransformer() can apply both Box-Cox and
Yeo-Johnson transformations, so we specified the transformation with the yeo-
johnson string. The standardize argument allowed us to determine whether we wanted
to standardize (scale) the transformed values. Next, we fit the transformer to the slice of the
dataframe that contained the variables to be transformed so that the transformer learned
the optimal lambdas for each variable. PowerTransformer() stored the learned lambdas
in its lambdas_ attribute. Finally, we used the transform() method on the slice of the
dataset to return the transformed variables in a NumPy array.

Finally, we applied the Yeo-Johnson transformation using Feature-engine. We initialized
YeoJohnsonTransformer() and specified the variables to be transformed into a list. We
fit the transformer to the data so that it learned the optimal lambdas per variable, which
were stored in lambda_dict_, and finally transformed the desired variables using the
transform() method. Feature-engine's YeoJohnnsonTransformer() can take the entire
dataframe as input, but it will only transform the specified variables, thus returning the
entire dataframe with the variables transformed.

See also
For more details on the classes and methods that were used in this recipe, take a look at the
following links:

scipy.stats.yeojohnson(): https:/ /docs. scipy. org/ doc/ scipy/
reference/ generated/ scipy. stats. yeojohnson. html

Scikit-learn's PowerTransformer(): https:/ /scikit- learn. org/ stable/
modules/ generated/ sklearn. preprocessing. PowerTransformer. html.
Feature-engine's YeoJohnsonTransformer(): https:/ /feature- engine.
readthedocs. io/ en/ latest/ vartransformers/ YeoJohnsonTransformer. html
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5
Performing Variable

Discretization
Discretization, or binning, is the process of transforming continuous variables into discrete
variables by creating a set of contiguous intervals, also called bins, that span the range of
the variable values. Discretization is used to change the distribution of skewed variables
and to minimize the influence of outliers, and hence improve the performance of some
machine learning models.

How does discretization minimize the effect of outliers? Discretization places outliers into
the lower or higher intervals, together with the remaining inlier values of the distribution.
Hence, these outlier observations no longer differ from the rest of the values at the tails of
the distribution, as they are now all together in the same interval or bin. Also, if sorting
observations across bins with equal frequency, discretization spreads the values of a
skewed variable more homogeneously across the value range.

In this chapter, we will discuss supervised and unsupervised approaches to transform
continuous variables into discrete ones. Unsupervised discretization methods do not use
any information, other than the variable distribution, to create the contiguous bins.
Supervised methods, on the other hand, use target information to create the intervals.

This chapter will cover the following recipes:

Dividing the variable into intervals of equal width
Sorting the variable values in intervals of equal frequency
Performing discretization followed by categorical encoding
Allocating the variable values in arbitrary intervals
Performing discretization with k-means clustering
Using decision trees for discretization
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Technical requirements
We will use the following Python libraries: pandas, NumPy, Matplotlib, scikit-learn, and
Feature-engine. In the Technical requirements section of Chapter 1, Foreseeing Variable
Problems in Building ML Models, you will find instructions on how to install these
libraries. To install Feature-engine, you can use pip: pip install feature-engine.
Throughout the recipes, we will use the Boston House Prices dataset from scikit-learn,
which contains no missing data.

To perform discretization in your own datasets, make sure you impute
missing data with any of the techniques covered in Chapter 2, Imputing
Missing Data.

Dividing the variable into intervals of equal
width
In equal-width discretization, the variable values are sorted into intervals of the same
width. The number of intervals is decided arbitrarily and the width is determined by the
range of values of the variable and the number of bins to create, so for the variable X, the
interval width is given as follows: 

 

For example, if the values of the variable vary between 0 and 100, we can create five bins
like this: width = (100-0) / 5 = 20; the bins will be 0-20, 20-40, 40-60, 80-100. The first and final
bins (0-20 and 80-100) can be expanded to accommodate outliers, that is, values under 0 or
greater than 100 would be placed in those bins as well, by extending the limits to minus
and plus infinity.

In this recipe, we will carry out equal-width discretization using pandas, scikit-learn, and
Feature-engine.
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How to do it...
Let's first import the necessary Python libraries and get the dataset ready:

Import the required Python libraries and classes:1.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import KBinsDiscretizer
from feature_engine.discretisers import EqualWidthDiscretiser

Let's load the predictor and target variables of the Boston House Prices dataset in2.
a dataframe:

boston_dataset = load_boston()
data = pd.DataFrame(boston_dataset.data,
columns=boston_dataset.feature_names)
data['MEDV'] = boston_dataset.target

The boundaries for the intervals should be learned using variables in the train set
only, and then used to discretize the variables in train and test sets.

Let's divide the data into train and test sets and their targets:3.

X_train, X_test, y_train, y_test = train_test_split(
   data.drop('MEDV', axis=1), data['MEDV'], test_size=0.3,
    random_state=0)

We will divide the LSTAT continuous variable into 10 intervals. The width of the
intervals is given by the value range divided by the number of intervals.

Let's calculate the range of the LSTAT variable, that is, the difference between its4.
maximum and minimum values:

lstat_range = X_train['LSTAT'].max() - X_train['LSTAT'].min()
lstat_range

The preceding code outputs the range of LSTAT:

35.25
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Let's determine the interval width, which is the variable's value range divided by5.
the number of bins:

inter_width = int(lstat_range / 10)

The value of lstat_range divided by ten is 3.525. With int(), we capture the
integer part of the number, which is 3. 

Let's capture in new variables, the rounded minimum and maximum values of6.
LSTAT:

min_value = int(np.floor( X_train['LSTAT'].min()))
max_value = int(np.ceil( X_train['LSTAT'].max()))

Let's print the minimum and maximum values and the interval width captured7.
in step 5 and step 6:

print(min_value, max_value, inter_width)

The output of the preceding code block is as follows:

(1, 37, 3)

To divide a pandas Series into intervals, we will use pandas' cut() method,
which takes as arguments the limits of the intervals. 

Let's create a list with the interval limits using list comprehension and print out8.
the limits:

intervals = [i for i in range(min_value, max_value + inter_width,
inter_width)]
intervals

The output of the preceding block provides the limits that we need to pass to
pandas' cut() method:

[1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37]

Let's discretize LSTAT and capture the discretized variable in a new column in9.
the dataframe:

X_train['lstat_disc'] = pd.cut(x=X_train['LSTAT'], bins=intervals,
include_lowest=True)
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We set include_lowest=True to include the lowest value in the first
interval.

Let's print the top 10 observations of the discretized and original variable, side by10.
side:

print(X_train[['LSTAT', 'lstat_disc']].head(10))

We can see in the output that the 34.41 value was allocated to the interval 34-37,
the 7.73 value was allocated to the interval 7-10, and so on:

     LSTAT    lstat_disc
141  34.41  (34.0, 37.0]
272   7.73   (7.0, 10.0]
135  16.96  (16.0, 19.0]
298   4.97    (4.0, 7.0]
122  17.93  (16.0, 19.0]
22   18.72  (16.0, 19.0]
68   13.09  (13.0, 16.0]
20   21.02  (19.0, 22.0]
437  26.45  (25.0, 28.0]
14   10.26  (10.0, 13.0]

In equal-width discretization, there is usually a different number of observations
per interval.

Let's calculate the number of observations per interval:11.

X_train.groupby('lstat_disc')['LSTAT'].count()

In the output of the preceding code, we can see that different intervals have a
different number of observations:

(4.0, 7.0]      67
(7.0, 10.0]     63
(10.0, 13.0]    49
(16.0, 19.0]    45
(13.0, 16.0]    44
(0.999, 4.0]    28
(19.0, 22.0]    21
(22.0, 25.0]    17
(28.0, 31.0]     9
(25.0, 28.0]     7
(34.0, 37.0]     4
(31.0, 34.0]     0
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Now, let's discretize LSTAT in the test set using pandas' cut() method:12.

X_test['lstat_disc'] = pd.cut(x=X_test['LSTAT'], bins=intervals,
include_lowest=True)

If the variable distribution in the train and test sets are similar, we should expect a
similar proportion of observations across the LSTAT intervals in the train and test
sets.

Let's plot the proportion of observations across LSTAT intervals in the train and13.
test sets:

t1 = X_train['lstat_disc'].value_counts() / len(X_train)
t2 = X_test['lstat_disc'].value_counts() / len(X_test)

tmp = pd.concat([t1, t2], axis=1)
tmp.columns = ['train', 'test']
tmp.plot.bar()
plt.xticks(rotation=45)
plt.ylabel('Number of observations per bin')

We can see in the output that the proportion of observations per interval is
approximately the same in the train and test sets:

With Feature-engine, we can perform equal-width discretization in fewer lines of
code and for many variables at a time. Let's first divide the data into train and test
sets, as in step 3. Next, let's set up a discretizer.
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Let's create an equal-width discretizer to sort 3 continuous variables into 1014.
intervals:

disc = EqualWidthDiscretiser(bins=10, variables = ['LSTAT', 'DIS',
'RM'])

Let's fit the discretizer to the train set so that the transformer learns the interval15.
limits for each variable:

disc.fit(X_train)

We can inspect the limits of the intervals in the
disc.binner_dict_ attribute.

Let's transform the variables in the train and test sets, that is, let's sort their16.
values into bins:

train_t = disc.transform(X_train)
test_t = disc.transform(X_test)

EqualWidthDiscretiser() returns a dataframe where the indicated variables
are discretized.

EqualWidthDiscretiser() returns a digit indicating whether the value
was sorted in the first, second, or tenth bin. If we want to return the bins
as an object, we need to indicate return_object=True when we set up
the discretizer in step 14.

Let's now do equal-width discretization with scikit-learn. First, let's divide the
original data into train and test sets, as in step 3. Next, we set up a discretizer.

Let's create an equal-width discretizer with scikit-learn by setting its strategy17.
to uniform:

disc = KBinsDiscretizer(n_bins=10, encode='ordinal',
strategy='uniform')
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Let's fit the discretizer to the train set so that the transformer learns the interval18.
limits for each variable:

disc.fit(X_train[['LSTAT', 'DIS', 'RM']])

Scikit-learn's KBinsDiscretiser() will discretize all of the variables in
the dataset, so we need to use the transformer only on the slice of the
dataframe that contains the variables to discretize.

Finally, let's transform the train and test sets:19.

train_t = disc.transform(X_train[['LSTAT', 'DIS', 'RM']])
test_t = disc.transform(X_test[['LSTAT', 'DIS', 'RM']])

We can inspect the bin boundaries learned by the transformer by
executing disc.bin_edges_.

Remember that scikit-learn returns NumPy arrays. To convert the array into a pandas
dataframe, we can execute train_t = pd.DataFrame(train_t, columns =
['LSTAT', 'DIS', 'RM']). 

How it works...
In this recipe, we performed equal-width discretization, that is, we sorted the variable
values into equidistant intervals. We arbitrarily defined the number of bins as 10 and then 
calculated the difference between the maximum and minimum value of the LSTAT variable,
using the pandas max() and min() methods. With NumPy's floor() and ceil()
methods, we obtained the rounded-down or rounded-up minimum and maximum values,
respectively. We then estimated the interval length by dividing the value range, that is, the
maximum minus the minimum values, by the number of bins. Finally, we captured the
interval limits in a list, utilizing the minimum and maximum values, and the interval width
within a list comprehension.

To discretize the LSTAT variable, we used the pandas cut() method and the interval limits
that we created with the list comprehension, to allocate the variable values into each
interval. We then used pandas' value_counts() method to count the number of
observations per interval.
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To compare the distribution of observations in the equal-width intervals in train and test
sets, we produced a bar plot with the percentage of observations per interval in each
dataset. To create this plot, we used pandas' value_counts() method to count the number
of observations per interval and divided these counts by the total number of observations
in the train or test sets, which we calculated using Python's built-in len() method, to
determine the percentage of observations per interval. To plot these proportions, we first
concatenated the train and test series using pandas' concat() in a temporary dataframe,
and then we assigned the column names of train and test to it. Finally, we used pandas'
plot.bar() to display a bar plot. We rotated the labels with Matplotlib's xticks()
method and added the y legend with ylabel().

To perform equal-width discretization with Feature-engine, we used
EqualWidthDiscretiser() and indicated the number of bins and the variables to
discretize as arguments. Using the fit() method and passing the train set as an argument,
the discretizer learned the interval limits for each variable. With the transform() method,
the discretizer sorted the values to each bin. The discretized variable values were digits,
representing the bins to which the original values were allocated.

Finally, we discretized three continuous variables into equal-width bins with
KBinsDiscretizer() from scikit-learn, indicating the number of bins as an argument and
setting strategy to uniform. With the fit() method and the train set as an argument,
the transformer learned the limits of the intervals for each variable in the dataframe, and
with the transform() method, the transformer sorted the values into each interval,
returning a NumPy array with the discretized variables. The values of the discretized
variables are also digits representing the intervals.

See also
You can learn more about discretization with scikit-learn on the following web pages:

https:// scikit- learn. org/ stable/ modules/ generated/ sklearn.
preprocessing. KBinsDiscretizer. html

http://scikit- learn. org/ stable/ auto_ examples/ preprocessing/ plot_
discretization. html

To learn more about Feature-engine's discretizer, visit https:/ /feature- engine.
readthedocs.io/en/ latest/ discretisers/ EqualWidthDiscretiser. html.
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Sorting the variable values in intervals of
equal frequency
Equal-frequency discretization divides the values of the variable into intervals that carry
the same proportion of observations. The interval width is determined by quantiles, and
therefore different intervals may have different widths. In summary, equal-frequency
discretization using quantiles consists of dividing the continuous variable into N quantiles,
with N to be defined by the user. This discretization technique is particularly useful for
skewed variables as it spreads the observations over the different bins equally. In this
recipe, we will perform equal-frequency discretization using pandas, scikit-learn, and
Feature-engine.

How to do it...
Let's first import the necessary Python libraries and get the dataset ready:

Import the required Python libraries and classes:1.

import pandas as pd
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import KBinsDiscretizer
from feature_engine.discretisers import EqualFrequencyDiscretiser

Let's load the predictor and target variables of the Boston House Prices dataset2.
into a dataframe:

boston_dataset = load_boston()
data = pd.DataFrame(boston_dataset.data,
columns=boston_dataset.feature_names)
data['MEDV'] = boston_dataset.target

The boundaries for the intervals, that is, the quantiles, should be learned using
variables in the train set, and then used to discretize the variables in train and test
sets.

Let's divide the data into train and test sets:3.

X_train, X_test, y_train, y_test = train_test_split(
    data.drop('MEDV', axis=1), data['MEDV'], test_size=0.3,
    random_state=0)
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To divide the LSTAT variable into 10 quantiles, we use pandas qcut(), which4.
returns both the discretized variable and the quantile limits, which we capture as
a column of the dataframe and an individual variable, respectively:

X_train['lstat_disc'], intervals = pd.qcut(X_train['LSTAT'], 10,
labels=None, retbins=True)

If we print the values of intervals with the print(intervals) command, we
obtain the following output:

array([ 1.73 ,  4.623,  6.202,  7.528,  9.5  , 11.16 , 13.26 ,
15.565, 18.06 , 22.453, 36.98 ])

Let's print the top 10 observations of the discretized and original variable, side by5.
side:

print(X_train[['LSTAT', 'lstat_disc']].head(10))

We can see in the output that the 34.41 value was allocated to the interval 22-36,
the 7.73 value was allocated to the interval 7.5-9.5, and so on:

     LSTAT       lstat_disc
141  34.41  (22.453, 36.98]
272   7.73     (7.528, 9.5]
135  16.96  (15.565, 18.06]
298   4.97   (4.623, 6.202]
122  17.93  (15.565, 18.06]
22   18.72  (18.06, 22.453]
68   13.09   (11.16, 13.26]
20   21.02  (18.06, 22.453]
437  26.45  (22.453, 36.98]
14   10.26     (9.5, 11.16]

Let's determine the proportion of observations per bin:6.

X_train['lstat_disc'].value_counts() / len(X_train)

Note how different intervals have a similar proportion of observations in the
output of the preceding code block:

(7.528, 9.5]       0.104520
(22.453, 36.98]    0.101695
(15.565, 18.06]    0.101695
(13.26, 15.565]    0.101695
(1.729, 4.623]     0.101695
(11.16, 13.26]     0.098870
(6.202, 7.528]     0.098870
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(4.623, 6.202]     0.098870
(18.06, 22.453]    0.096045
(9.5, 11.16]       0.096045

Now, let's discretize LSTAT in the test set, using pandas' cut() method and the7.
interval limits determined in step 4:

X_test['lstat_disc'] = pd.cut(x = X_test['LSTAT'], bins=intervals)

We can compare the distribution of observations in the discretized
variables of the train and test sets, as we did in step 13 of the Dividing the
variable into intervals of equal width recipe.

With Feature-engine, we can perform equal-frequency discretization in fewer
steps and for many variables at the time. Let's first divide the data into train and
test sets like in step 3. Next, let's set up a discretizer.

Let's create an equal-frequency discretizer to sort the values of three continuous8.
variables into 10 quantiles:

disc = EqualFrequencyDiscretiser(q=10, variables = ['LSTAT', 'DIS',
'RM'])

Let's fit the discretizer to the train set so that it learns the quantile limits for each9.
variable:

disc.fit(X_train)

The transformer stores the limits of the intervals for each variable in a
dictionary in its disc.binner_dict_ attribute.

Let's transform the variables in the train and test sets:10.

train_t = disc.transform(X_train)
test_t = disc.transform(X_test)

EqualFrequencyDiscretiser() returns a digit indicating whether the
value was sorted in the first, second, or tenth bin. If we want to return the
bins as an object, we should indicate return_object=True when we set
up the discretizer in step 8.

Let's now do equal-frequency discretization with scikit-learn. First, let's divide the
original data into train and test sets, as in step 3. Next, we set up a discretizer:
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Let's create an equal-frequency discretizer by setting strategy to quantile and11.
the number of bins to 10:

disc = KBinsDiscretizer(n_bins=10, encode='ordinal',
strategy='quantile')

Let's fit the discretizer to the train set so that it learns the interval limits:12.

disc.fit(X_train[['LSTAT', 'DIS', 'RM']])

Scikit-learn's KBinsDiscretiser() will discretize all of the variables in
the dataset, so we need to use the transformer only in the slice of the
dataframe that contains the variables of interest.

Finally, let's transform the train and test sets:13.

train_t = disc.transform(X_train[['LSTAT', 'DIS', 'RM']])
test_t = disc.transform(X_test[['LSTAT', 'DIS', 'RM']])

We can inspect the bin edges with disc.bin_edges_. 

Remember that scikit-learn returns a NumPy array, which we can convert in a pandas
dataframe with this command: train_t = pd.DataFrame(train_t, columns =
['LSTAT', 'DIS', 'RM']). 

How it works...
With equal-frequency discretization, we sorted the variable values into intervals with a
similar proportion of observations. The interval limits were determined by the quantiles.
First, we arbitrarily defined the number of bins as 10. Next, we used
pandas' qcut() method to determine the limits of the intervals and sort the LSTAT variable
in the train set into those intervals. Next, using pandas' cut() method and the interval
limits determined with pandas' qcut() method, we discretized LSTAT in the test set.

Finally, we used pandas value_counts() to count the number of observations per
interval and divided it by the total number of observations, obtained with the built-
in Python len() method, to determine the proportion of observations per interval.
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To perform equal-frequency discretization with Feature-engine, we used
EqualFrequencyDiscretiser() and indicated the number of quantiles and the variables
to discretize as arguments. With the fit() method applied to the train set, the discretizer
learned and stored the interval limits for each of the indicated variables in
its binner_dict_ attribute. With the transform() method, the variable values were
allocated to the bins. The values of the discretized variables are digits, representing the 1st,
2nd, 3rd and so on bins.

Finally, we discretized variables with KBinsDiscretizer() from scikit-learn, indicating
10 as the number of bins and setting strategy to quantile. With the fit() method, the
transformer learned and stored the limits of the intervals in its bin_edges_ attribute, and 
with the transform() method, the discretizer sorted the values of the variables to each
interval. Note that, differently from Feature-engine's EqualFrequencyDiscteriser(),
KBinsDiscretizer() will transform all of the variables in the dataset.

Performing discretization followed by
categorical encoding
After discretization, the intervals of the variable can be treated as a discrete numerical
variable, or as categories in a categorical variable. If treated as categorical, we can follow up
the discretization by reordering the intervals according to the target value, as we did in the
Encoding with integers in an ordered manner recipe in Chapter 3, Encoding Categorical
Variables, to create a monotonic relationship between the intervals and the target. In this
recipe, we will combine these two feature engineering techniques using Feature-engine and
the Boston House Prices dataset from scikit-learn.

How to do it...
To perform equal-frequency discretization followed by ordering the intervals according to
the target mean, we need to import from Feature-engine
the EqualFrequencyDiscretiser() and the OrdinalCategoricalEncoder(), among
other Python libraries and classes:

Import the required Python libraries and classes:1.

import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
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from feature_engine.discretisers import EqualFrequencyDiscretiser
from feature_engine.categorical_encoders import
OrdinalCategoricalEncoder

Let's load the predictor variables and target from the Boston House Prices2.
dataset:

boston_dataset = load_boston()
data = pd.DataFrame(boston_dataset.data,
columns=boston_dataset.feature_names)
data['MEDV'] = boston_dataset.target

The interval limits and order should be learned from the train set, and then used
to transform variables in both train and test sets.

Let's divide the data into train and test sets:3.

X_train, X_test, y_train, y_test = train_test_split(
    data.drop('MEDV', axis=1), data['MEDV'], test_size=0.3,
    random_state=0)

Let's create an equal-frequency discretizer using Feature-engine to divide three4.
continuous variables into 10 quantiles:

disc = EqualFrequencyDiscretiser(q=10, variables = ['LSTAT', 'DIS',
'RM'], return_object=True)

With return_object set to True, the transformer will return the
discretized variables cast as an object, which is needed to follow up with
the ordinal encoder.

Let's fit the discretizer to the train set so that it learns the interval limits:5.

disc.fit(X_train)

Let's discretize the variables in the train and test sets:6.

train_t = disc.transform(X_train)
test_t = disc.transform(X_test)

Let's explore whether the discretized LSTAT variable shows a monotonic
relationship with the target.
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Let's concatenate the transformed train set with the target, and plot the target7.
mean per interval of the variable DIS:

pd.concat([train_t, y_train],
axis=1).groupby('DIS')['MEDV'].mean().plot()
plt.ylabel('mean of survived')
plt.show()

In the output of the preceding code block, we can see that the relationship
between DIS intervals and the target MEDV is not monotonic:

Let's now re-arrange the interval order following the target mean to create a
monotonic relationship:

Let's create an ordinal encoder using Feature-engine:8.

enc = OrdinalCategoricalEncoder(encoding_method = 'ordered')

Feature-engine's OrdinalCategoricalEncoder() only works with
variables cast as an object.

Let's fit the encoder to the train set with the discretized variables:9.

enc.fit(train_t, y_train)
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With the fit() method, the encoder will order the intervals according to the
mean target value per interval. 

OrdinalCategoricalEncoder() will automatically identify the
discretized variables as categorical variables and encode them if we leave
the variables argument set to None when initializing the transformer in
step 8.

Let's encode the discretized variables:10.

train_t = enc.transform(train_t)
test_t = enc.transform(test_t)

We can execute the code in step 7 to re-plot the discretized variable DIS versus the target
and visualize the monotonic relationship, as shown in the following screenshot:

You have now learned how to combine two techniques to make variables more suitable for
linear models.

How it works...
In this recipe, we first divided three variables into 10 equal-frequency intervals and then re-
arranged the order of these intervals so that they displayed a monotonic relationship with
the target.
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To divide the variable into 10 equal-frequency intervals, we used
EqualFrequencyDiscretiser() from Feature-engine. We passed a list of the variables to
discretize, and set return_object to True, to return the discretized variables cast as an
object. Then, we used fit() to let the transformer learn the interval boundaries and
transform() to sort the variable values into the intervals.

To re-arrange the intervals so that they follow a monotonic relationship with the target, we
used OrdinalCategoricalEncoder() from Feature-engine, which we described
extensively in the Encoding with integers in an ordered manner recipe in Chapter 3, Encoding
Categorical Variables. With the fit() method and passing the train set with the discrete
variables and the target as arguments, the transformer learned the order of the intervals
and stored it in a dictionary. With transform(), the transformer re-assigned the integer
numbers to the intervals so that they showed a monotonic relationship with the target.

To visualize the monotonic relationship, after step 6 and step 10, we calculated the mean of
the target MEDV per interval of the discretized variable DIS and output a line plot utilizing
pandas' plot() method.

See also
To learn more about Feature-engine's transformers, visit the following:

EqualFrequencyDiscretiser(): https:/ /feature- engine. readthedocs. io/
en/latest/ discretisers/ EqualFrequencyDiscretiser. html

OrdinalCategoricalEncoder(): https:/ /feature- engine. readthedocs. io/
en/latest/ encoders/ OrdinalCategoricalEncoder. html

Allocating the variable values in arbitrary
intervals
In previous recipes, we have seen how to create intervals based on variable values and
distribution. Sometimes, however, we want to divide the variables into intervals, the
boundaries of which are arbitrarily determined by the user. In this recipe, we will learn
how to discretize a variable into user pre-defined intervals using pandas and the Boston
House Prices dataset from scikit-learn.
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How to do it...
Let's first import the necessary Python libraries and get the dataset ready:

Import the required Python libraries and classes:1.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split

Let's load the predictor and target variables from the Boston House Prices2.
dataset:

boston_dataset = load_boston()
data = pd.DataFrame(boston_dataset.data,
columns=boston_dataset.feature_names)
data['MEDV'] = boston_dataset.target

Let's divide the data into train and test sets:3.

X_train, X_test, y_train, y_test = train_test_split(
    data.drop('MEDV', axis=1), data['MEDV'], test_size=0.3,
random_state=0)

Let's plot a histogram of the LSTAT variable to find out its value range:4.

data['LSTAT'].hist(bins=30)
plt.show()

LSTAT values vary from 0 to approximately 40:
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Let's create a list with the arbitrary interval limits, setting the upper limit to5.
infinity to accommodate bigger values:

intervals = [0, 10, 20, 30, np.Inf]

Let's create a list with the interval limits as labels, that is, strings:6.

labels = ['0-10', '10-20', '20-30', '>30']

Let's discretize the LSTAT variable into the pre-defined limits we determined in7.
step 5, and capture it in a new variable that takes the label names we created in
step 6 as values:

data['lstat_labels'] = pd.cut(data['LSTAT'], bins=intervals,
labels=labels, include_lowest=True)

Now, let's discretize the LSTAT variable into the pre-defined intervals and8.
capture it in a new variable that takes the interval limits as values:

data['lstat_intervals'] = pd.cut(data['LSTAT'], bins=intervals,
labels=None, include_lowest=True)

The difference between step 7 and step 8 is that the discretized variable in
step 7 will take the label names as values, where the discretized variable in
step 8 will take the interval limits as values.

Let's inspect the first five rows of the original and discretized variables:9.

data[['LSTAT','lstat_labels', 'lstat_intervals']].head()

In the last two columns of the dataframe, we see the discretized variables; the first
one with the strings we created in step 6 as values, and the second one with the
interval limits as returned by pandas' cut() method:

   LSTAT lstat_labels lstat_intervals
0   4.98         0-10  (-0.001, 10.0]
1   9.14         0-10  (-0.001, 10.0]
2   4.03         0-10  (-0.001, 10.0]
3   2.94         0-10  (-0.001, 10.0]
4   5.33         0-10  (-0.001, 10.0]

Finally, we can count the number of observations within each arbitrarily created10.
interval:

data['lstat_intervals'].value_counts()
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The number of observations per interval varies:

(-0.001, 10.0]    219
(10.0, 20.0]      213
(20.0, 30.0]       62
(30.0, inf]        12
Name: lstat_intervals, dtype: int64

You have now learned how to sort the values of a variable into user-defined intervals.

How it works...
We sorted the values of a variable into user-defined intervals using the Boston House Prices
dataset. We first plotted a histogram of the LSTAT variable, to get an idea of the range of
values of the variable. Next, we arbitrarily determined and captured the limits of the
intervals in a list: we created intervals that vary from 0-10, 10-20, 20-30, and more than 30,
by setting the upper limit to infinite with np.Inf. Next, we created a list with the interval
names as strings.

Using pandas' cut() method and passing the list with the interval limits, we sorted the
variable values into the pre-defined bins. We executed the command twice; in the first run,
we set the labels argument to the list that contained the label names as strings, and in the
second run, we set the labels argument to None. We captured the returned output in two
variables, the first one displaying the interval limits as values and the second one with
interval names as values. Finally, we counted the number of observations per variable
using the pandas value_counts() method.

Performing discretization with k-means
clustering
In discretization using k-means clustering, the intervals are the clusters identified by the k-
means algorithm. The number of clusters (k) is defined by the user. The k-means clustering
algorithm has two main steps. In the initialization step, k observations are chosen randomly
as the initial centers of the k clusters, and the remaining data points are assigned to the
closest cluster. In the iteration step, the centers of the clusters are re-computed as the
average points of all of the observations within the cluster, and the observations are
reassigned to the newly created closest cluster. The iteration step continues until the
optimal k centers are found. In this recipe, we will perform k-means discretization with
scikit-learn, using the Boston House Prices dataset.
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How to do it...
Let's first import the necessary Python libraries and get the dataset ready:

Import the required Python libraries and classes:1.

import pandas as pd
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import KBinsDiscretizer

Let's load the Boston House Prices dataset into a pandas dataframe:2.

boston_dataset = load_boston()
data = pd.DataFrame(boston_dataset.data,
columns=boston_dataset.feature_names)
data['MEDV'] = boston_dataset.target

The k-means optimal clusters should be determined using the train set, so let's3.
divide the data into train and test sets:

X_train, X_test, y_train, y_test = train_test_split(
    data.drop('MEDV', axis=1), data['MEDV'], test_size=0.3,
random_state=0)

Let's create a discretizer that uses k-means clustering to create 10 intervals by4.
setting strategy to kmeans:

disc = KBinsDiscretizer(n_bins=10, encode='ordinal',
strategy='kmeans')

Let's fit the discretizer to the slice of the dataframe that contains the variables to5.
discretize, so that the transformer finds the optimal clusters for each variable:

disc.fit(X_train[['LSTAT', 'DIS', 'RM']])

Let's inspect the limits of each interval or cluster:6.

disc.bin_edges_



Performing Variable Discretization Chapter 5

[ 188 ]

Each array contains the limits for the 10 clusters for each of the 3 variables, LSTAT,
DIS, and RM:

array([array([ 1.73, 5.45330009,  8.65519753, 12.03266667,
       15.46755102, 18.89709647, 22.15778075, 25.54037815,
       28.75339286, 32.6525,36.98]),
       array([ 1.1742, 2.26301884, 3.30153104, 4.48057886,
       5.60712611, 6.6482802, 7.56131797, 8.45406587, 9.7820881,
       11.37686667, 12.1265]),
       array([3.561, 3.987125, 4.73948864, 5.32155682,
       5.77190824, 6.14016449, 6.50284566, 6.91447956,
       7.43717157, 8.1095049, 8.78])], dtype=object)

Let's discretize the variables in the train set and then capture the returned7.
NumPy array in a dataframe:

train_t = disc.transform(X_train[['LSTAT', 'DIS', 'RM']])
train_t = pd.DataFrame(train_t, columns = ['LSTAT', 'DIS', 'RM'])

With print(train_t.head()), we can inspect the first five rows of the returned
dataframe, where we can see the number assigned to the different intervals or
clusters:

LSTAT  DIS   RM
0    9.0  0.0  2.0
1    1.0  2.0  6.0
2    4.0  0.0  5.0
3    0.0  6.0  5.0
4    4.0  0.0  4.0

Let's discretize the variables in the test set and then capture the returned NumPy8.
array in a dataframe:

test_t = disc.transform(X_test[['LSTAT', 'DIS', 'RM']])
test_t = pd.DataFrame(test_t, columns = ['LSTAT', 'DIS', 'RM'])

We can compare the distribution of observations in the discretized
variables of the train and test sets as we did in step 13 of the Dividing the
variable into intervals of equal width recipe.
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How it works...
To perform k-means discretization, we used KBinsDiscretizer() from scikit-learn,
setting strategy to kmeans and the number of clusters to 10 in the n_bins argument.
With the fit() method, the transformer learned the cluster boundaries using the k-means
algorithm. With the transform() method, the discretizer sorted the values of the variable
to their corresponding cluster, returning a NumPy array with the discretized variables,
which we converted into a dataframe.

Using decision trees for discretization
Discretization with decision trees consists of using a decision tree to identify the optimal
bins in which to sort the variable values. The decision tree is built using the variable to
discretize, and the target. When a decision tree makes a prediction, it assigns an
observation to one of N end leaves, therefore, any decision tree will generate a discrete
output, the values of which are the predictions at each of its N leaves. Discretization with
decision trees creates a monotonic relationship between the bins and the target. In this
recipe, we will perform decision tree-based discretization using scikit-learn and then
automate the procedure with Feature-engine.

Getting ready
Discretization using decision trees was introduced by the winners of the KDD 2009 data
science competition. You can find more details about this procedure in the Winning the
KDD Cup Orange Challenge with Ensemble Selection article, on page 27 of the article series, The
2009 Knowledge Discovery in Data Competition, available at http:/ /www. mtome. com/
Publications/CiML/ CiML- v3- book. pdf.

How to do it...
We will use the Boston House Prices dataset from scikit-learn. The target in this dataset is
continuous, therefore, we will train a decision tree for regression with
DecisionTreeRegressor() from scikit-learn:

Let's import the required Python libraries, classes and dataset:1.

import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_boston
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from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
from feature_engine.discretisers import DecisionTreeDiscretiser

Let's load the Boston House Prices dataset into a pandas dataframe:2.

boston_dataset = load_boston()
data = pd.DataFrame(boston_dataset.data,
columns=boston_dataset.feature_names)
data['MEDV'] = boston_dataset.target

Let's divide the data into train and test sets:3.

X_train, X_test, y_train, y_test = train_test_split(
    data.drop('MEDV', axis=1), data['MEDV'], test_size=0.3,
random_state=0)

Let's assemble a decision tree to predict the MEDV target, setting the maximum4.
depth to 3 and random_state for reproducibility:

tree_model = DecisionTreeRegressor(max_depth=3, random_state=0)

For binary classification, we would use DecisionTreeClassifier()
instead.

Let's fit the decision tree using the LSTAT variable to predict the MEDV target:5.

tree_model.fit(X_train['LSTAT'].to_frame(), y_train)

Scikit-learn predictors take dataframes as inputs. A single variable is a
pandas Series, so we need to use the to_frame() method to transform it
into a dataframe and make it compatible with scikit-learn.



Performing Variable Discretization Chapter 5

[ 191 ]

Let's now predict MEDV from LSTAT and capture the output in a new variable in6.
the train set:

X_train['lstat_tree'] =
tree_model.predict(X_train['LSTAT'].to_frame())

If we created a classification tree, we would use predict_proba() and
retain the second column of the array, which is the probability of the
target being 1; hence, we would
execute tree_model.predict_proba(X_train['LSTAT'].to_frame(
))[:,1] .

Let's explore the end leaves, that is, bins, the tree created:7.

X_train['lstat_tree'].unique()

The decision tree produced eight different distinct predictions for all of the
observations of the LSTAT variable:

array([12.91724138, 27.15384615, 16.36181818, 32.04285714, 20.555,
34.88333333, 23.71388889, 41.80740741])

Let's now discretize the LSTAT variable in the test set:8.

X_test['lstat_tree'] =
tree_model.predict(X_test['LSTAT'].to_frame())

Let's concatenate the test set with the target to plot the predictions versus the9.
mean of the MEDV target per bin:

pd.concat([X_test, y_test],
axis=1).groupby(['lstat_tree'])['MEDV'].mean().plot()
plt.title('Monotonic relationship between discretised LSTAT and
target')
plt.ylabel('MEDV')
plt.show()
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We can observe the monotonic relationship between the tree-derived intervals
and the MEDV target in the output of the preceding code block:

We can compare the distribution of observations in the discretized
variables of train and test sets as we did in step 13 of the Dividing the
variable into intervals of equal width recipe.

Now let's implement decision tree discretization with Feature-engine. With
Feature-engine, we can discretize multiple variables in just a few lines of code.
First, we need to divide the dataset into train and test sets as we did in step 3.

Now, let's create a decision tree discretizer, which will optimize the maximum10.
depth of the tree based on the negative mean square error metric using 10-fold
cross-validation, for the LSTAT, RM, and DIS variables:

treeDisc = DecisionTreeDiscretiser(cv=10,
scoring='neg_mean_squared_error',variables=['LSTAT', 'RM', 'DIS'],
regression=True, param_grid={'max_depth': [1,2,3,4]})

If we were setting up a classification tree, we would use
DecisionTreeClassifier() instead and set regression to False. We
would also have to use metrics for classification such as roc_auc_score.
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Let's fit() the discretizer using the train set and the target so that the discretizer11.
finds the best decision trees, utilizing the provided grid of parameters for each of
the variables indicated in the list:

treeDisc.fit(X_train, y_train)

Let's inspect the best parameters for the tree trained for the LSTAT variable:12.

 treeDisc.binner_dict['LSTAT'].best_params_

The output of the preceding code shows that the optimal depth for the decision
tree is 3: 

{'max_depth': 3}

Let's transform the variables in the train and test sets:13.

train_t = treeDisc.transform(X_train)
test_t = treeDisc.transform(X_test)

We can compare the distribution of observations in the discretized
variables of the train and test sets as we did in step 13 of the Dividing the
variable into intervals of equal width recipe.

How it works...
To perform discretization with decision trees, we first loaded the dataset and divided it into
train and test sets using the scikit-learn train_test_split() function. Next, we chose a
variable, LSTAT, and fit a decision tree for regression using DecisionTreeRegressor()
from scikit-learn. We used to_frame() to transform the pandas Series with the variable
into a dataframe and make the data compatible with scikit-learn predictors. We used the
fit() method to make the tree learn how to predict the MEDV target from LSTAT. With the
predict() method, the tree estimated the target from LSTAT in the train and test sets. The
decision tree returned eight distinct values, which were its predictions. These outputs
represented the bins of the discretized variable.

To visualize the monotonic relationship between tree outputs and target, we created a plot
of the bins predicted by the tree versus the mean target value for each of these bins. We first
concatenated the test set and the target using pandas' concat() method. Next, we used
pandas' groupby() method to group the observations per bin and then calculated the
mean of MEDV in each bin. With pandas' plot() method, we plotted the relationship
between the bins and MEDV.
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To perform decision tree discretization using Feature-engine, we used
DecisionTreeDiscretiser(); indicated the cross-validation fold to use for the
optimization, the metric to evaluate the decision tree performance; set regression to True
to indicate that our target was continuous; and passed a dictionary with the parameters to
optimize in each tree. Next, we used the fit() method so that the discretizer fit the best
tree for each of the variables. And with the transform() method, we obtained the
discretized variables in the train and test sets.

There's more...
We can perform decision tree discretization with scikit-learn within a grid search to find the
optimal parameters to determine the most predictive decision tree. To do so, we first do the
imports, as in step 1 of the main recipe, and we add one additional import:

Let's import the grid search from scikit-learn:1.

from sklearn.model_selection import GridSearchCV

Next, let's load the dataset and divide it into train and test sets, as in step 2 and
step 3 of the main recipe, and now let's set up a parameter search grid.

Let's set up a dictionary with the parameters we would like to test, in this case,2.
four different tree depths:

param_grid = {'max_depth': [1,2,3,4]}

Let's now set up the decision tree inside a grid search with 5-fold cross-validation3.
and the negative mean squared error as a metric to optimize:

tree_model = GridSearchCV(DecisionTreeRegressor(random_state=0),
                          cv = 5,
                          scoring = 'neg_mean_squared_error',
                          param_grid = param_grid)

Let's fit the tree to the LSTAT variable and the target:4.

tree_model.fit(X_train['LSTAT'].to_frame(), y_train)

Finally, let's transform the variables with the best decision tree:5.

X_train['lstat_tree'] =
tree_model.predict(X_train['LSTAT'].to_frame())
X_test['lstat_tree'] =
tree_model.predict(X_test['LSTAT'].to_frame())
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See also
For more details on how to perform a grid search with cross-validation with scikit-learn,
follow https:// scikit- learn. org/ stable/ modules/ generated/ sklearn. model_
selection.GridSearchCV. html.

For more details about the parameters of a decision tree, visit the related documentation:

DecisionTreeRegressor(): http:/ / scikit- learn. org/ stable/ modules/
generated/ sklearn. tree. DecisionTreeRegressor. html

DecisionTreeClassifier(): http:/ / scikit- learn. org/ stable/ modules/
generated/ sklearn. tree. DecisionTreeClassifier. html

For details of the metrics, you can use to optimize the trees, visit scikit-learn's metrics web
page at https:// scikit- learn. org/ stable/ modules/ model_ evaluation. html#the-
scoring-parameter- defining- model- evaluation- rules.

To visualize the structure of the tree we fit in the recipe with its various intermediate and
Terminal leaves, visit the Jupyter Notebook in the accompanying GitHub repository,
at https://github. com/ PacktPublishing/ Python- Feature- Engineering- Cookbook/ blob/
master/Chapter05/ Recipe- 6- Discretisation- with- decision- trees. ipynb.
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6
Working with Outliers

An outlier is a data point that is significantly different from the remaining data. Statistical
parameters such as the mean and variance are sensitive to outliers. Outliers may also affect
the performance of some machine learning models, such as linear regression or AdaBoost.
Therefore, we may want to remove or engineer the outliers in the variables of our dataset. 

How can we engineer outliers? One way to handle outliers is to perform variable
discretization with any of the techniques we covered in Chapter 5, Performing Variable
Discretization. With discretization, the outliers will fall in the lower or upper intervals and,
therefore, will be treated as the remaining lower or higher values of the variable. An
alternative way to handle outliers is to assume that the information is missing, treat the
outliers together with the remaining missing data, and carry out any of the missing
imputation techniques described in Chapter 2, Imputing Missing Data. We can also remove
observations with outliers from the dataset, or cap the maximum and minimum values of
the variables, as we will discuss throughout this chapter.

In this chapter, we will discuss how to identify and remove outliers from a dataset, a
process called trimming, and how to replace outliers by maximum or minimum values. We
will also discuss how to use the mean and standard deviation for normally distributed
variables or the inter-quartile range for skewed features or using percentiles, in a process 
commonly known as winsorization.

This chapter will cover the following recipes:

Trimming outliers from the dataset
Performing winsorization
Capping the variable at arbitrary maximum and minimum values
Performing zero-coding – capping the variable values at zero
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Technical requirements
In this chapter, we will use the following Python libraries: pandas, NumPy, SciPy, and
scikit-learn. I recommend installing the free Anaconda Python distribution (https:/ /www.
anaconda.com/distribution/ ), which contains all of these packages. For details on how to
install the Python Anaconda distribution, visit the Technical requirements section in
Chapter 1, Foreseeing Variable Problems in Building ML Models. 

In this chapter, we will also use the open source Python library, Feature-engine, which I
created and can be installed using pip:

pip install feature-engine

To find out more about Feature-engine, visit its documentation at https:/ /feature-
engine.readthedocs. io.

Trimming outliers from the dataset
Trimming, or truncating, is the process of removing observations that show outliers in one
or more variables in the dataset. There are three commonly used methods to set the
boundaries beyond which a value can be considered an outlier. If the variable is normally
distributed, the boundaries are given by the mean plus or minus three times the standard
deviation, as approximately 99% of the data will be distributed between those limits. For
normally, as well as not normally, distributed variables, we can determine the limits using
the inter-quartile range proximity rules or by directly setting the limits to the 5th and 95th

quantiles. We covered the formula for the inter-quartile range proximity rule in the Getting
ready section of the Highlighting outliers recipe in Chapter 1, Foreseeing Variable Problems in
Building ML Models. In this recipe, we are going to use all three measures to identify and
then remove outliers in the Boston House Prices dataset from scikit-learn, using pandas and
NumPy.

How to do it...
Let's first import the necessary Python libraries:

Import the required Python libraries:1.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
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https://www.anaconda.com/distribution/
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import seaborn as sns
from sklearn.datasets import load_boston

Let's load the Boston House Prices dataset from scikit-learn:2.

boston_dataset = load_boston()

Let's capture three of the variables, RM, LSTAT, and CRIM, in a pandas dataframe:3.

boston = pd.DataFrame(boston_dataset.data,
columns=boston_dataset.feature_names)[['RM', 'LSTAT', 'CRIM']]

You can visualize the loaded data using boston.head().

Let's make a boxplot of the RM variable to visualize outliers:4.

sns.distplot(boston['RM'], bins=30)

The outliers are the asterisks sitting outside the whiskers, which delimit the inter-
quartile range proximity rule boundaries:
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Let's create a function to find the boundaries of a variable distribution, using the5.
inter-quartile range proximity rule:

def find_boundaries(df, variable, distance):
   IQR = df[variable].quantile(0.75) - df[variable].quantile(0.25)
    lower_boundary = df[variable].quantile(0.25) - (IQR * distance)
    upper_boundary = df[variable].quantile(0.75) + (IQR * distance)
    return upper_boundary, lower_boundary

We can replace the code in the preceding function to instead find the
boundaries using the mean and the standard deviation or the quantiles.
For code on how to do this, visit the There's more... section at the end of
this recipe.

Let's use the function from step 5 to determine the limits of the RM variable:6.

RM_upper_limit, RM_lower_limit = find_boundaries(boston, 'RM', 1.5)

Let's print those limits beyond which we will consider a value an outlier:7.

RM_upper_limit, RM_lower_limit

The output of the preceding code is as follows:

(7.730499999999999, 4.778500000000001)

Let's create a Boolean vector to flag the outliers in RM:8.

outliers_RM = np.where(boston['RM'] > RM_upper_limit, True,
                    np.where(boston['RM'] < RM_lower_limit, True,
                    False)

Finally, let's remove the outliers from the dataset:9.

boston_trimmed = boston.loc[~(outliers_RM]

With the code in step 4, you can visualize the distribution of the trimmed
variable and see whether there are outliers remaining. If there are, you can
adjust the boundaries and trim the data again, or try a different way of
finding the boundaries, as shown in the There's more... section of this
recipe.
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How it works...
In this recipe, we removed the outliers of a variable of the Boston House Prices dataset from
scikit-learn. To remove the outliers, we first identified those values visually through a
boxplot. Next, we created a function to find the limits within which we found the majority
of the values of the variable. Next, we created a Boolean vector to flag the values of the
variable that sit beyond those boundaries, and, finally, we removed those observations
from the dataset.

To load the data, we first imported the dataset from sklearn.datasets and then
used load_boston(). Next, we captured the data in a dataframe using
pandas' DataFrame(), indicating that the data is stored in boston_dataset.data and the
variable names in boston_dataset.feature_names. To retain only the RM, LSTAT, and
CRIM variables, we passed the column names in double square brackets ([['RM',
'LSTAT', 'CRIM']]) at the back of pandas' DataFrame().

To identify outliers in our dataframe, we created a function to find the inter-quartile range
proximity rule boundaries. The function takes the dataframe and the variable as arguments
and calculates the inter-quartile range and the boundaries using the formula described in
the Getting ready section of the Highlighting outliers recipe in Chapter 1, Foreseeing Variable
Problems in Building ML Models. With the pandas' quantile() method, we can calculate the
values for the 25th (0.25) and 75th quantiles (0.75). We then used this function to return the
upper and lower boundaries for the RM variable.

To find the outliers of RM, we used np.where(), which produced a Boolean vector with
True if the value was an outlier, that is, if the value was bigger or smaller than the upper or
lower boundaries determined for RM.

Briefly, np.where() scanned the rows of the RM variable, and if the value was bigger than
the upper boundary, it assigned True; whereas if the value was smaller, the second
NumPy's where() method, nested in the first one, checked whether the value was smaller
than the lower boundary, in which case, it also assigned True; otherwise, it
assigned False. 

Finally, we used the loc[] method from pandas to remove the observations that contained
outliers for RM. The ~ symbol used with the pandas' loc[] method removes from the
dataframe the outliers captured in the Boolean vector, outliers_RM.
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There's more...
If instead of using the inter-quartile range proximity rule, we want to use the mean and
standard deviation to find the limits, we need to replace the code in the function in step 5:

Find the outlier boundaries using the mean and standard deviation:1.

def find_boundaries(df, variable, distance):
    lower_boundary = df[variable].mean() - (df[variable].std() *
distance)
    upper_boundary = df[variable].mean() + (df[variable].std() *
distance)
    return upper_boundary, lower_boundary

To calculate the boundaries for the RM variable with the preceding function, we
run the following code.

Calculate the boundaries for RM:2.

RM_upper_limit, RM_lower_limit = find_boundaries(boston, 'RM', 3)

Alternatively, if we want to use quantiles to calculate the limits, we should write
the function like in the next step.

Find the outlier boundaries using quantiles:3.

def find_boundaries(df, variable):
    lower_boundary = df[variable].quantile(0.05)
    upper_boundary = df[variable].quantile(0.95)
    return upper_boundary, lower_boundary

And we calculate the boundaries for RM with the preceding function like in the
next step.

Calculate the boundaries for RM:4.

RM_upper_limit, RM_lower_limit = find_boundaries(boston, 'RM')

The rest of the procedure is identical to the one described in step 8 and step 9, in
the How to do it... section of the recipe.

We can also remove outliers across multiple variables. To do this, we need to first
run step 1 to step 5 described in the How to do it... section of the recipe, and
then find the boundaries for multiple variables.
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Let's calculate the boundaries for the RM, LSTAT, and CRIM variables:5.

RM_upper_limit, RM_lower_limit = find_boundaries(boston, 'RM', 1.5)
LSTAT_upper_limit, LSTAT_lower_limit = find_boundaries(boston,
'LSTAT', 1.5)
CRIM_upper_limit, CRIM_lower_limit = find_boundaries(boston,
'CRIM', 1.5)

Let's create Boolean vectors that flag the outliers for each one of RM, LSTAT, and6.
CRIM:

outliers_RM = np.where(boston['RM'] > RM_upper_limit, True,
              np.where(boston['RM'] < RM_lower_limit, True, False))

outliers_LSTAT = np.where(boston['LSTAT'] > LSTAT_upper_limit,
                 True,
                 np.where(boston['LSTAT'] < LSTAT_lower_limit,
True,
                 False))

outliers_CRIM = np.where(boston['CRIM'] > CRIM_upper_limit, True,
                np.where(boston['CRIM'] < CRIM_lower_limit, True,
                False))

Finally, let's remove the observations with outliers in any of the variables:7.

boston_trimmed = boston.loc[~(outliers_RM + outliers_LSTAT +
outliers_CRIM)]

With the code in step 4 in the How to do it... section, you can visualize the outliers in the
trimmed dataset.

Performing winsorization
Winsorization, or winsorizing, is the process of transforming the data by limiting the
extreme values, that is, the outliers, to a certain arbitrary value, closer to the mean of the
distribution. Winsorizing is different from trimming because the extreme values are not
removed, but are instead replaced by other values. A typical strategy involves setting
outliers to a specified percentile.
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For example, with 90% winsorization, we set all data below the 5th percentile to the value at
the 5th percentile and all data above the 95th percentile to the value at the 95th percentile.
Winsorization is symmetric; therefore, the winsorized mean of a symmetric distribution
provides an unbiased representation of the distribution of the variable. In this recipe, we
will perform winsorization using pandas, NumPy, and Feature-engine.

How to do it...
Let's first import the necessary Python libraries:

Import the required Python libraries:1.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_boston

Let's load the Boston House Prices dataset from scikit-learn:2.

boston_dataset = load_boston()

Let's capture three of the variables, RM, LSTAT, and CRIM, in a pandas dataframe:3.

boston = pd.DataFrame(boston_dataset.data,
columns=boston_dataset.feature_names)[['RM', 'LSTAT', 'CRIM']]

You can visualize the loaded data using boston.head().

Let's make a function to winsorize a variable to arbitrary upper and lower limits:4.

def winsorize(df, variable, upper_limit, lower_limit):
    return np.where(df[variable] > upper_limit, upper_limit,
                np.where(df[variable] < lower_limit, lower_limit,
df[variable]))

Let's winsorize the RM variable:5.

boston['RM']= winsorize(boston, 'RM', boston['RM'].quantile(0.95),
boston['RM'].quantile(0.05))
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If you make a Q-Q plot and a boxplot of the RM variable before and after
the winsorization, you can easily see how the extreme values get replaced
by the percentiles. You can find the code to make these plots in the
corresponding recipe in the accompanying GitHub repository.

How it works...
In this recipe, we replaced the outliers of one variable of the Boston House Prices dataset
from scikit-learn, by the 5th and 95th percentiles. We first loaded the data as described in the
How it works section of the Trimming outliers from the dataset recipe in this chapter. To replace
the outliers, we created a function, that takes the dataframe, the variable name, and the
5th and 95th percentiles and uses Numpy's where() to replace the values bigger or smaller
than those percentiles by the values of those percentiles.

NumPy's where() scans each observation and if the value is bigger than the 95th percentile,
it replaces it with the 95th percentile; otherwise, it evaluates whether the value is smaller
than the 5th percentile, in which case, it replaces it with the 5th percentile. If not, it keeps the
original value. Finally, we used the function to replace the extreme values in the RM
variable.

There's more...
We can winsorize many variables at the time by utilizing the open source package, Feature-
engine. To do this, we need to load the libraries and the data as we did in step 1 and step 2
of the recipe in the How to do it... section. Next, we need to import Feature-engine:

Import Winsorizer from Feature-engine:1.

from feature_engine.outlier_removers import Winsorizer

Set up a Feature-engine Winsorizer indicating which variables we want to2.
winsorize:

windsorizer = Winsorizer(distribution='quantiles', tail='both',
variables=['RM', 'LSTAT', 'CRIM'])

With Winsorizer from Feature-engine, we can replace the values by the
percentiles at the left and right tails or only at one of the tails by setting
the argument tail to either both, left, or right.
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Fit windsorizer to the data so that it learns the percentiles:3.

windsorizer.fit(boston)

Winsorize the RM, LSTAT, and CRIM variables:4.

boston_t = windsorizer.transform(boston)

Remember that it is good practice to separate the data into training and
testing sets and train Winsorizer on the train set. This way, the
transformer will use the percentiles learned from the train set to cap the
variables in train, test, and all future data.

We can inspect the 5th percentiles learned by winsorizer like in the next step.

Inspect the learned 5th percentiles:5.

windsorizer.left_tail_caps_

The output of the preceding code is as follows:

{'RM': 5.314, 'LSTAT': 3.7075000000000005, 'CRIM':
0.027909999999999997}

And we can inspect the 95th percentiles learned by windsorizer like in the next
step.

Inspect the learned 95th percentiles:6.

windsorizer.right_tail_caps_

The output of the preceding code is as follows:

{'RM': 7.5875, 'LSTAT': 26.8075, 'CRIM': 15.78915}

In the dictionary, we can see the values that the transformer will use to replace the outliers
in each variable.

See also
In the accompanying GitHub repository, https:/ /github. com/ PacktPublishing/ Python-
Feature-Engineering- Cookbook, you will find code to create histograms, Q-Q plots, and
boxplots, and compare the effect of winsorization in normal and skewed variables.

https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook


Working with Outliers Chapter 6

[ 206 ]

You can also find out more about handling outliers with Feature-engine in its
documentation at https:/ / feature- engine. readthedocs. io/en/ latest/ outliercappers/
Winsorizer.html.

To learn more about the pros and cons of winsorization, visit this blog: https:/ / blogs.
sas.com/content/ iml/ 2017/ 02/ 08/ winsorization- good- bad- and- ugly. html.

Capping the variable at arbitrary maximum
and minimum values
Similarly to winsorization, we can replace the extreme values by values closer to other
values in the variable, by determining the maximum and minimum boundaries with the
mean plus or minus the standard deviation, or the inter-quartile range proximity rule. This
procedure is also called bottom and top coding, censoring, or capping. We can cap both
extremes of the distribution or just one of the tails, depending on where we find the outliers
in the variable. In this recipe, we will replace extreme values by the mean and standard
deviation or the inter-quartile range proximity rule, using pandas, NumPy, and Feature-
engine, and using the Boston House Prices dataset from scikit-learn.

How to do it...
Let's first import the necessary Python libraries:

Import the required Python libraries:1.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_boston

Let's load the Boston House Prices dataset from scikit-learn:2.

boston_dataset = load_boston()

Let's capture three of the variables, RM, LSTAT, and CRIM, in a pandas dataframe:3.

boston = pd.DataFrame(boston_dataset.data,
columns=boston_dataset.feature_names)[['RM', 'LSTAT', 'CRIM']]
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You can visualize the loaded data using boston.head().

Let's make a function to find the limits using the inter-quartile range proximity4.
rule:

def find_skewed_boundaries(df, variable, distance):
    IQR = df[variable].quantile(0.75) - df[variable].quantile(0.25)
    lower_boundary = df[variable].quantile(0.25) - (IQR * distance)
    upper_boundary = df[variable].quantile(0.75) + (IQR * distance)
    return upper_boundary, lower_boundary

If, instead, we wanted to find the boundaries with the mean and standard
deviation, we can rewrite our function as follows.

Let's make a function to find the limits using the mean and the standard5.
deviation:

def find_normal_boundaries(df, variable, distance):
    upper_boundary = df[variable].mean() + distance *
df[variable].std()
    lower_boundary = df[variable].mean() - distance *
df[variable].std()
    return upper_boundary, lower_boundary

Once we have created the functions, we can go ahead and find the limits using
either the mean and standard deviation with the function from step 5 or the inter-
quartile range with the function in step 4. In this recipe, I will continue by finding
the limits using the mean and standard deviation.

If the variable is not normally distributed, it may be more useful to use the
inter-quartile range proximity rule to find the outliers.

Let's find the boundaries for the RM, LSTAT, and CRIM variables:6.

RM_upper_limit, RM_lower_limit = \
find_normal_boundaries(boston, 'RM', 3)
LSTAT_upper_limit, LSTAT_lower_limit = \
find_normal_boundaries(boston, 'LSTAT', 3)
CRIM_upper_limit, CRIM_lower_limit = \
find_normal_boundaries(boston, 'CRIM', 3)
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Next, we can go ahead and replace extreme values by those boundaries.

Replace extreme values by the limits in RM:7.

boston['RM']= np.where(boston['RM'] > RM_upper_limit,
                RM_upper_limit,
              np.where(boston['RM'] < RM_lower_limit,
                RM_lower_limit, boston['RM']))

To replace the values in LSTAT and CRIM, you need to repeat step 7, changing the variable
name in the dataframe and the upper and lower limits.

To cap values only at the higher or lower end of the distribution, we can
change the code in step 7 to boston['RM']= np.where(boston['RM']
> RM_upper_limit, boston['RM']) to cap the right tail
or boston['RM']= np.where(boston['RM'] < RM_lower_limit,
RM_lower_limit, boston['RM']) to cap the left tail.

How it works...
In this recipe, we replaced the outliers of three variables in the Boston House Prices dataset
from scikit-learn. To replace the outliers, we first identified those values using the mean
and standard deviation and then replaced values beyond these boundaries with the values
at the boundaries.

We first loaded the data as described in the How it works... section of the Trimming outliers
from the dataset recipe in this chapter. To identify those outliers in our dataframe, in step 4
and step 5, we created a function to find boundaries using the inter-quartile range proximity
rule or the mean and standard deviation, respectively. The function in step 4 takes the
dataframe and the variable as arguments and calculates the inter-quartile range and the
boundaries using the formula described in the Getting ready section of the Highlighting
outliers recipe in Chapter 1, Foreseeing Variable Problems in Building ML Models. 

With the pandas' quantile() method, we can calculate the values for the 25th (0.25) and
75th quantiles (0.75). The function in step 5 takes the dataframe and the variable as
arguments and calculates the boundaries as the mean plus or minus a factor of the standard
deviation. The mean of the variable is determined using pandas' mean() and the standard
deviation using pandas' std(). The factor can be entered by the user utilizing the
distance argument and is usually 3.
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In the recipe, we continued using the function created in step 5 to calculate the limits in the
RM, LSTAT, and CRIM variables. Next, it replaced the outliers of RM with NumPy's where().
Briefly, NumPy's where() scanned each observation of the variable, and if the value was
bigger than the upper limit, it replaced it with the upper limit; otherwise, it evaluated
whether the value was smaller than the lower limit, in which case, it replaced it with the
lower limit. If not, it kept the original value.

There's more...
We can cap many variables at a time, utilizing the open source package, Feature-engine. To
do this, we need to load the libraries and the data as we did in step 1 and step 2 of the recipe
in the How to do it... section. Next, we need to import Feature-engine:

Import Winsorizer from Feature-engine:1.

from feature_engine.outlier_removers import Winsorizer

Set up a Feature-engine Winsorizer indicating which variables we want to2.
winsorize and that we want to use the mean and standard deviation to find the
limits:

windsorizer = Winsorizer(distribution='gaussian', tail='both',
fold=3, variables=['RM', 'LSTAT', 'CRIM'])

With Winsorizer from Feature-engine, we can replace the values by the
mean and standard deviation setting the argument distribution to
gaussian or the inter-quartile range proximity rule by setting the
distribution to skewed. We can also replace outliers at both ends of the
distributions or just the left or right tails, by setting the tail to both,
left, or right. The fold argument works as the distance argument in
the functions we created in step 4 and step 5 of the recipe.

Fit windsorizer to the data so that it learns the limits:3.

windsorizer.fit(boston)

Winsorize the RM, LSTAT, and CRIM variables:4.

boston_t = windsorizer.transform(boston)

We can inspect the lower boundaries learned by winsorizer like in the next step.
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Inspect the learned lower boundaries:5.

windsorizer.left_tail_caps_

The preceding code block outputs this:

{'RM': 4.176782957105816, 'LSTAT': -8.77012129293899, 'CRIM':
-22.19111175868521}

And we can inspect the upper limits learned by winsorizer like in the next step.

Inspect the learned upper boundaries:6.

windsorizer.right_tail_caps_

The preceding code block outputs this:

{'RM': 8.392485817597757, 'LSTAT': 34.07624777515244, 'CRIM':
29.418158873309714}

The dictionary stores the values that the transformer will use to replace the outliers in each
variable.

See also
To learn more about handling outliers with Feature-engine, refer to the documentation
at https://feature- engine. readthedocs. io/ en/latest/ outliercappers/ Winsorizer.
html.

Performing zero-coding – capping the
variable at zero
In econometrics and statistics, top-coding and bottom-coding refer to the act of censoring
data points, the values of which are above or below a certain number or threshold,
respectively. In essence, top and bottom coding is what we have covered in the previous
recipe, where we capped the minimum or maximum values of variables at a certain value,
which we determined with the mean and standard deviation, the inter-quartile range
proximity rule, or the percentiles. Zero-coding is a variant of bottom-coding and refers to
the process of capping, usually the lower value of the variable, at zero. It is commonly used
for variables that cannot take negative values, such as age or income. In this recipe, we will
learn how to implement zero-coding in a toy dataframe using pandas and Feature-engine.
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How to do it...
Let's begin the recipe by importing the necessary libraries:

Import the required Python libraries:1.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

To proceed with this recipe, let's create a toy dataframe with three variables called
x, y, and z, that follow a normal distribution and show a few negative values. To
create this toy dataframe, we need to follow these steps:

Create the x, y, and z variables with a normal distribution:2.

np.random.seed(29)
n = 200
x = np.random.randn(n) + 2
y = np.random.randn(n) * 2 + 4
z = np.random.randn(n) * 5 + 10

Setting the seed for reproducibility using np.random.seed() will help
you to get the outputs shown in this recipe.

Let's capture these variables in a dataframe and add the variable names:3.

data = pd.DataFrame([x, y, z]).T
data.columns = ['x', 'y', 'z']

Let's find out whether the variables have negative numbers by examining the4.
minimum values:

data.min()

All three variables contain negative values:

x   -1.505401
y   -0.901451
z   -1.552986
dtype: float64
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Let's plot the histograms of the variables:5.

data.hist(bins=30)
plt.show()

We can see the negative values of the variables in the created histograms:

Let's cap the minimum values at zero:6.

data.loc[data['x'] < 0, 'x'] = 0
data.loc[data['y'] < 0, 'y'] = 0
data.loc[data['z'] < 0, 'z'] = 0

If you run data.min() after capping, the minimum values for all
variables should be 0. You can also plot the histograms after capping, as
we did in step 5, and compare the change in the distribution. You will see
a small peak at 0, where the extreme values have been relocated with
zero-coding.

How it works...
In this recipe, we replaced negative values with zero. To proceed with the recipe, we first
created a toy dataframe with three independent variables that were normally distributed
and showed a few negative values. Next, we examined the presence of negative values in
the variables by looking at the minimum values and plotting the histograms. Finally, we
replaced the negative values with 0.
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To generate the toy dataframe, first, we created three independent variables, x, y, and
z, which are normally distributed. We used NumPy's random.randn(), which extracts
values at random from a normal distribution, and we multiplied the extracted values by a
factor and added a constant value, to make the variables slightly different. Next, we
captured the variables in a pandas dataframe using pd.DataFrame() and transposed it
using the T method to return a 200-row by 3-column dataframe. We added the column
names by passing them in a list to the pandas' columns attribute.

To examine whether the variables had negative numbers, we used pandas' min() to
display the minimum values of the variables, and we saw that all of the minimum values
were negative. Next, we used pandas' hist() to display the histograms of the three
variables. To replace the negative values by zero, we used pandas' loc[], which allowed
us to select a slice of the dataframe based on a condition. The conditions we used was that
the values of each variables were smaller than zero. With pandas' loc[] and the condition,
we reset the negative values of the variables to zero.

There's more...
We can perform zero-coding in multiple variables at a time, utilizing the open source
package, Feature-engine. To do this, we need to load the libraries and create the toy
dataframe as we did in step 1 to step 3 of the recipe in the How to do it... section. Next, we
need to import Feature-engine:

Import ArbitraryOutlierCapper from Feature-engine:1.

from feature_engine.outlier_removers import ArbitraryOutlierCapper

Set up the ArbitraryOutlierCapper from Feature-engine indicating which2.
variables we want to cap at zero:

windsorizer = ArbitraryOutlierCapper(max_capping_dict=None,
min_capping_dict={'x':0, 'y':0, 'z':0})

With Winsorizer from Feature-engine, we can replace the values by any
arbitrary value and at both ends of the distribution. We need only pass the
dictionary with the capping values for the right tail at the
max_capping_dict argument or with the capping values for the left tail
at the min_capping_dict argument.
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Fit windsorizer to the data:3.

windsorizer.fit(data)

Cap the variables at zero:4.

data_t = windsorizer.transform(data)

The transformed dataset, data_t, contains variables, the minimum values of which have
been capped or censored at zero.

See also
To learn more about the arbitrary capper from Feature-engine, visit https:/ /feature-
engine.readthedocs. io/ en/ latest/ outliercappers/ ArbitraryOutlierCapper. html.
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7
Deriving Features from Dates

and Time Variables
Date and time variables are those that contain information about dates, times, or date and
time. In programming, we refer to these variables as datetime variables. Examples of the
datetime variables are date of birth, time of the accident, and date of last payment. The
datetime variables usually contain a multitude of different labels corresponding to a
specific combination of date and time. We do not utilize the datetime variables in their
raw format when building machine learning models. Instead, we enrich the dataset
dramatically by deriving multiple features from these variables. In this chapter, we will
learn how to derive a variety of new features from date and time.

This chapter will cover the following recipes:

Extracting date and time parts from a datetime variable
Deriving representations of the year and month
Creating representations of day and week
Extracting time parts from a time variable
Capturing the elapsed time between datetime variables
Working with time in different time zones

Technical requirements
In this chapter, we will use the Python libraries, pandas and NumPy, and the built-in
Python library, datetime. Visit the requirements.txt file in the accompanying Jupyter
Notebook to check the library versions that we are using in the recipes.
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Extracting date and time parts from a
datetime variable
The datetime variables can take dates, time, or date and time as values. The datetime
variables are not used in their raw format to build machine learning algorithms. Instead, we
create additional features from them, and, in fact, we can enrich the dataset dramatically by
extracting information from the date and time.

The pandas Python library contains a lot of capabilities for working with date and time.
But to access this functionality, the variables should be cast in a data type that supports
these operations, such as datetime or timedelta. Often, the datetime variables are cast
as objects, particularly when the data is loaded from a CSV file. Pandas' dt, which is the
accessor object to the datetime properties of a pandas Series, works only with datetime
data types; therefore, to extract date and time parts, and, in fact, to derive any of the
features we will discuss throughout this chapter, it is necessary to recast the variables as
datetime.

In this recipe, we will learn how to separate the date and time parts of a datetime variable
using pandas, and how to recast objects into datetime data types.

How to do it...
To proceed with the recipe, let's first import pandas and create a toy dataframe for the
demonstration:

Import pandas:1.

import pandas as pd

Let's create 20 datetime values, with values beginning from 2019-03-05 at2.
midnight followed by increments of 1 minute. Then, let's capture the value range
in a dataframe and display the top five rows:

rng_ = pd.date_range('2019-03-05', periods=20, freq='T')
df = pd.DataFrame({'date': rng_})
df.head()
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Our variable contains both date and time information, as we can see in the output
of the preceding code block:

Let's display the data type of the variable we created:3.

df.dtypes

The variable is cast as datetime, the default output of pandas' date_range(), as
we can see in the following output:

date    datetime64[ns]
dtype: object

Let's capture the date part of the date variable in a new feature using pandas' dt4.
and then display the top five rows:

df['date_part'] = df['date'].dt.date
df['date_part'].head()

The newly created variable contains only the date part of the original values, as
we can see in the following output:

0 2019-03-05
1 2019-03-05
2 2019-03-05
3 2019-03-05
4 2019-03-05
Name: date_part, dtype: object

Let's now capture the time part of the datetime variable created in step 2 in a5.
new feature and display the top rows:

df['time_part'] = df['date'].dt.time
df['time_part'].head()



Deriving Features from Dates and Time Variables Chapter 7

[ 218 ]

The newly created variable contains only the time part of the original values, as
we can see in the following output:

0    00:00:00
1    00:01:00
2    00:02:00
3    00:03:00
4    00:04:00
Name: time_part, dtype: object

In the second part of the recipe, let's learn how to change the data type of a
variable into a datetime variable.

Let's first create a new dataframe where the datetime variable is cast as an6.
object and display the output:

df = pd.DataFrame({'date_var':['Jan-2015', 'Apr-2013', 'Jun-2014',
'Jan-2015']})
df

We can see the five values of our new dataframe in the following output:

  date_var
0 Jan-2015
1 Apr-2013
2 Jun-2014
3 Jan-2015

If you now execute the df.dtypes command, you will see that
the date_var variable is cast as an object.

Let's change the data type of the variable into datetime and display the7.
dataframe:

df['datetime_var'] = pd.to_datetime(df['date_var'])
df

We can see in the following output that both the original and newly created
variables are cast as object and datetime, respectively:

  date_var  datetime_var
0 Jan-2015  2015-01-01
1 Apr-2013  2013-04-01
2 Jun-2014  2014-06-01
3 Jan-2015  2015-01-01
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Go ahead and execute df.dtypes to corroborate the data type of the
variable we created in step 7.

Finally, let's extract the date and time part of the variable that was recast into8.
datetime:

df['date'] = df['datetime_var'].dt.date
df['time'] = df['datetime_var'].dt.time
df

We can see the final dataframe with the date and time parts in the following output:

Now that we know how to separate a datetime variable into date and time and how to
cast variables into the datetime format, we are ready to proceed with the rest of the
recipes in this chapter.

How it works...
In this recipe, we extracted the date and time parts of a datetime variable. We first created
a toy dataframe with a variable that contained both the date and time in its values. To
create the toy dataframe, we used the pandas date_range() method to create a range of
values starting from an arbitrary date and increasing this by intervals of 1 minute. With the
periods argument, we indicated the number of values to create in the range, that is, the
number of dates; and with the freq argument, we indicated the size of the steps between
the dates—we used T for minutes in our example. Finally, we transformed the date range
into a dataframe with the pandas DataFrame() method.
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With pandas' head(), we displayed the first five rows of our dataframe, and, with
pandas' dtypes, we determined the data type of the variables. To extract the date part, we 
utilized pandas' dt.date, and, to extract the time part, we used pandas' dt.time on the
datetime variable. These methods created two new datetime variables with the parts
specified, which we captured as new columns of the dataframe.

Finally, we changed the data type of a variable into datetime. We created a toy dataframe
where the variable was cast as an object. Pandas' dt only works with datetime values;
hence, to extract the date and time parts, we first recast the variable into the datetime
format using pandas' to_datetime(). Then, we used dt.date and dt.time as we did
before, to extract the date and time parts, respectively.

See also
To learn how to create different datetime ranges with pandas date_ranges(),
visit https://pandas. pydata. org/ pandas- docs/ stable/ user_ guide/ timeseries.
html#offset-aliases.

To learn more about pandas dt, visit https:/ /pandas. pydata. org/ pandas- docs/ stable/
reference/series. html#datetime- properties.

Deriving representations of the year and
month
Some events occur more often at certain times of the year, for example, recruitment rates
increase after Christmas and slow down toward the summer holidays in Europe.
Businesses and organizations want to evaluate performance and objectives at regular
intervals throughout the year, for example, at every quarter or every semester. Therefore,
deriving these features from a date variable is very useful for both data analysis and
machine learning. In this recipe, we will learn how to derive the year, month, quarter, and
semester from a datetime variable using pandas and NumPy.
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How to do it...
To proceed with the recipe, let's import the libraries and create a toy dataset:

Import pandas and NumPy:1.

import numpy as np
import pandas as pd

Let's create 20 datetime values, beginning from 2019-03-05 at midnight2.
followed by increments of 1 month. Then, let's capture the value range in a
dataframe and display the top five rows:

rng_ = pd.date_range('2019-03-05', periods=20, freq='M')
df = pd.DataFrame({'date': rng_})
df.head()

Note how the values increase by one month in the first five observations of the
variable we created:

Let's extract the year part of the date in a new column and display the top3.
five rows of the dataframe:

df['year'] = df['date'].dt.year
df.head()
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We can see the year in the new variable in the following screenshot:

Pandas' dt will raise a TypeError if the series does not contain datetime
values. To convert variables from object into datetime, visit the
Extracting date and time parts from a datetime variable recipe in this chapter.

Let's extract the month part of the date in a new column and display the top4.
five rows of the dataframe:

df['month'] = df['date'].dt.month
df.head()

 We can see the month in the newly created variable in the following screenshot:

Let's capture the quarter in a new column and display the dataframe's top5.
five rows:

df['quarter'] = df['date'].dt.quarter
df.head()
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 We can see the quarter in the following dataframe:

To familiarize yourself with the distinct values of the new variables, you
can use pandas' unique(), for example, df['quarter'].unique().

Finally, let's capture the corresponding semester in a new column and display6.
the dataframe's top rows:

df['semester'] = np.where(df['quarter'].isin([1,2]), 1, 2)
df.head()

We can see all of the derived features including the semester in the final view of the
dataframe, as shown in the following screenshot:

You have now learned how to create features from a datetime variable that represent the
most common and widely used year and month intervals. You can use those features in
machine learning models or for data analysis and visualization.
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How it works...
In this recipe, we created features that capture the year and month parts of a date variable.
We first created a toy dataframe with a variable that contained dates. We used the
pandas' date_range() method to create a range of 20 values starting from an arbitrary
date and increasing this by intervals of 1 month. With the periods argument, we indicated
the number of values we wanted to create, that is, the 20 dates and with the freq
argument, we indicated the size of the steps between dates; we used M for months in our
example. Finally, we transformed the date range into a dataframe with the
pandas' DataFrame() method.

To extract the different parts of the date, we used pandas dt to access the datetime
properties of a pandas Series, and then utilized the different properties required: year,
month, and quarter to capture the year, month, and quarter in new columns of the
dataframe, respectively. To find the semester, we used the where() method from NumPy
in combination with the newly created variable quarter. NumPy's where() method
scanned the values of the quarter variable. If they were 1 or 2, that is, for the first quarter,
it assigned the value 1. Otherwise, it assigned the value 2, representing the first and second
semester, respectively.

See also
To learn more about pandas dt and operations on time series, visit https:/ /pandas.
pydata.org/pandas- docs/ stable/ reference/ series. html#time- series- related.

Creating representations of day and week
Some events occur more often on certain days of the week, for example, loan applications
occur more likely during the week than over weekends, whereas others occur more often
during certain weeks of the year. Businesses and organizations may also want to track some
key performance metrics throughout the week. Therefore, deriving weeks and days from a
date variable is very useful to support organizations in meeting their objectives, and they
may also be predictive in machine learning. In this recipe, we will learn how to derive
different representations of days and weeks from a datetime variable using pandas and
NumPy.
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How to do it...
To proceed with the recipe, let's import the required libraries and create a toy dataset:

Let's import pandas and NumPy:1.

import numpy as np
import pandas as pd

Let's create 20 datetime observations, beginning from 2019-03-05 at midnight2.
followed by increments of 1 day. Then, let's capture the value range in a
dataframe and display the top five rows:

rng_ = pd.date_range('2019-03-05', periods=20, freq='D')
df = pd.DataFrame({'date': rng_})
df.head()

Note how the values increase by 1 day in the first five observations of the variable
we created:

Let's extract the day of the month, which can take values between 1 and 31, and3.
capture it in a new column. Then, let's display the top rows of the dataframe:

df['day_mo'] = df['date'].dt.day
df.head()
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 We can see the day of the month in the new variable:

Pandas' dt will raise a TypeError if the series does not contain datetime
values. To convert variables from object into datetime, visit the
Extracting date and time parts from a datetime variable recipe in this chapter.

Let's extract the day of the week, with values between 0 and 6, in a new column,4.
and then let's display the top rows:

df['day_week'] = df['date'].dt.dayofweek
df.head()

 We can see the day of the week in the new variable:

You can check the unique values of the newly created variables using
pandas unique(), for example, by executing
df['day_week'].unique().
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Now, let's extract the name of the day of the week, that is, Monday, Tuesday, and5.
so on, into a new column and output the top five rows of the dataframe:

df['day_week_name'] = df['date'].dt.weekday_name
df.head()

 We can see the names of the days in the new variable:

Next, let's create a binary variable that indicates whether the date was a weekend6.
and then display the dataframe's top rows:

df['is_weekend'] = np.where(df['day_week_name'].isin(['Sunday',
'Saturday']), 1, 0)
df.head()

 We can see the new is_weekend variable in the following screenshot:

Finally, let's capture the corresponding week of the year, which can take values7.
from 1 to 52, and display the dataframe's top rows:

df['week'] = df['date'].dt.week
df.head()
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We can see the week of the year, corresponding to the date as shown in the following
screenshot:

You have now learned how to capture different representations of days and weeks, which
can be quite handy for data analysis, visualization, and machine learning.

How it works...
In this recipe, we created features that capture representations of days and weeks from a
date. We first created a toy dataframe with a datetime variable. We used the pandas
date_range() method to create a range of 20 values starting from an arbitrary date and
increasing this by intervals of 1 day. With the periods argument, we indicated the number
of values to create, that is, 20 dates. And with the freq argument, we indicated the size of
the steps between the dates—we used D for days in our example. Finally, we transformed
the date range into a dataframe with the pandas DataFrame() method.

To extract the different representations of days and weeks, we used pandas dt to access the
datetime properties of the pandas Series, and then we utilized the different properties as
required: week, day, dayofweek, and weekday_name, capturing the features in new
columns. To create a binary variable indicating whether the date was a weekend, we used
the where() method from NumPy in combination with the newly created
day_week_name variable, which contained the name of each day. NumPy's where()
scanned the name of each day, and if they were Saturday or Sunday, it assigned the value
1, otherwise, it assigned the value 0. Like this, we created multiple features that we can use
for data analysis and machine learning.
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See also
To learn more about pandas dt, visit https:/ /pandas. pydata. org/ pandas- docs/ stable/
reference/series. html#datetime- properties.

Extracting time parts from a time variable
Some events occur more often at certain times of the day, for example, fraudulent activity
occurs more likely during the night or early morning. Also, occasionally, organizations
want to track whether an event occurred after another one, in a very short time window, for
example, if sales increased on the back of displaying a TV or online advertisement.
Therefore, deriving time features is extremely useful. In this recipe, we will extract different
time parts of a datetime variable utilizing pandas and NumPy.

How to do it...
To proceed with the recipe, let's import the libraries and create a toy dataset:

Let's import pandas and NumPy:1.

import numpy as np
import pandas as pd

Let's create 20 datetime observations, beginning from 2019-03-05 at midnight2.
followed by increments of 1 hour, 15 minutes, and 10 seconds. Then, let's capture
the range in a dataframe and display the top five rows:

rng_ = pd.date_range('2019-03-05', periods=20, freq='1h15min10s')
df = pd.DataFrame({'date': rng_})
df.head()
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In the following screenshot, we can see the variable we just created, with a date
and a time part, and the values increasing by intervals of 1 hour, 15 minutes, and
10 seconds:

Let's extract the hour, minute, and second parts of the time into three new3.
columns, and then let's display the dataframe's top five rows:

df['hour'] = df['date'].dt.hour
df['min'] = df['date'].dt.minute
df['sec'] = df['date'].dt.second
df.head()

 We can see the different time parts in the new columns of the dataframe:

Remember that pandas dt needs a datetime object to work. You can
change the data type of an object variable into datetime using
pandas' to_datetime().
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Let's perform the same operations that we did in step 3 but now in one line of4.
code:

df[['h','m','s']] = pd.DataFrame([(x.hour, x.minute, x.second) for
x in df['date']])
df.head()

 We can see the newly created variables in the following screenshot:

Remember that you can display the unique values of a variable with
pandas' unique() , for example, by executing df['hour'].unique().

Finally, let's create a binary variable that flags whether the event occurred in the5.
morning, between 6 AM. and 12 PM:

df['is_morning'] = np.where( (df['hour'] < 12) & (df['hour'] > 6),
1, 0 )
df.head()

 We can see the is_morning variable in the following screenshot:
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You have now learned how to extract different time parts from a datetime variable. These
features can be used for data analysis as well as to build machine learning models.

How it works...
In this recipe, we created features that capture representations of time. We first created a
toy dataframe with a datetime variable. We used the pandas' date_range() method to 
create a range of 20 values starting from an arbitrary date and increasing this by intervals of
1 hour, 15 minutes, and 20 seconds. We used the '1h15min10s' string as the frequency
term for the freq argument, to indicate the desired increments. Next, we transformed the
date range into a dataframe with the pandas DataFrame() method.

To extract the different time parts, we used pandas' dt to access the properties required:
hour, minute, and second, to extract the hour, minute, and second part of the time
variable, respectively. To create a binary variable to indicate whether time was in the
morning, we used the where() method from NumPy in combination with the hour
variable. NumPy's where() scanned the hour variable and if its values were smaller than
12 and bigger than 6, it assigned the value 1; otherwise, it assigned the value 0. With these
operations, we added several features to the dataframe that can be used for data analysis
and to train machine learning models.

Capturing the elapsed time between
datetime variables
The datetime variables offer value individually and they offer more value collectively
when used together with other datetime variables to derive important insights. The most
common example consists in deriving the age from the date of birth and today variable, or
the day the customer had an accident or requested a loan. Like these examples, we can
combine several datetime variables to derive the time that passed in between and create
more meaningful features. In this recipe, we will learn how to capture the time between
two datetime variables in different formats and the time between a datetime variable
and the current day, utilizing pandas, NumPy, and the datetime library.



Deriving Features from Dates and Time Variables Chapter 7

[ 233 ]

How to do it...
To proceed with the recipe, let's import the libraries and create a toy dataset:

Let's begin by importing pandas, numpy, and datetime:1.

import datetime
import numpy as np
import pandas as pd

Let's create 2 datetime variables with 20 values each, in which values start2.
from 2019-05-03 and increase in intervals of 1 hour or 1 month, respectively.
Then, let's capture the variables in a dataframe, add column names, and display
the top rows:

rng_hr = pd.date_range('2019-03-05', periods=20, freq='H')
rng_month = pd.date_range('2019-03-05', periods=20, freq='M')
df = pd.DataFrame({'date1': rng_hr, 'date2': rng_month})
df.head()

We can see the first five rows of the created variables in the following output:

Let's capture the difference in days between the two variables in a new feature,3.
and then display the dataframe's top rows:

df['elapsed_days'] = (df['date2'] - df['date1']).dt.days
df.head()
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 We can see the difference in days in the following output:

Remember that pandas dt needs a datetime object to work successfully.
For details on how to cast variables as datetime, visit the Extracting date
and time parts from a datetime variable recipe at the beginning of this
chapter.

Let's capture the difference in months between the two datetime variables in a4.
new feature and then display the dataframe's top rows:

df['months_passed'] = ((df['date2'] - df['date1']) /
np.timedelta64(1, 'M'))
df['months_passed'] = np.round(df['months_passed'],0)
df.head()

We can see the difference in months between the variables in the following
screenshot:

Now, let's calculate the time in between the variables in minutes and seconds and5.
then display the dataframe's top rows:

df['diff_seconds'] = (df['date2'] -
df['date1'])/np.timedelta64(1,'s')
df['diff_minutes'] = (df['date2'] -
df['date1'])/np.timedelta64(1,'m')
df.head()
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We can see the new variables in the following output:

Finally, let's calculate the difference between one variable and the current day,6.
and then display the first 5 rows of the dataframe:

df['to_today'] = (datetime.datetime.today() - df['date1'])
df.head()

We can see the new variable in the final column of the dataframe in the following
screenshot:

Note that the to_today variable on your computer will be different from
the one in this book, due to the difference between the current date (at the
time of writing) and when you execute the code.
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How it works...
In this recipe, we captured different representations of the time in between two variables.
To proceed with the recipe, we first created a toy dataframe with two variables, each one
with 20 dates starting at an arbitrary date. The first variable increased its values in intervals
of 1 hour and the second one in intervals of 1 month. We created the variables with
pandas' date_range(), which we covered extensively in the previous recipes in this
chapter.

To determine the difference between the variables, that is, to determine the time between
them, we directly subtracted one variable from the other, that is, one pandas Series from the
other. The difference of two pandas Series returns a new pandas Series. To capture the
difference in days, we used pandas dt followed by days. To convert the difference in days
into months, we used the timedelta() method from NumPy and indicated we wanted the
difference in months, passing M in the second argument of the method. Instead, to capture
the difference in seconds and minutes, we passed the s and m strings to timedelta().

NumPy's timedelta() method complements pandas datetime. The
arguments for NumPy's timedelta method are a number, 1, in our
examples, to represent the number of units, and a datetime unit, such as
(D)ay, (M)onth, (Y)ear, (h)ours, (m)inutes, or (s)econds.

Finally, we captured the difference from one datetime variable to today's date. We
obtained the date and time of today using the built-in Python library, datetime, with the
datetime.today() method. We subtracted one of the datetime variables from our
dataframe to today's date and captured the difference in days, hours, minutes, seconds, and
nanoseconds, which is the default value of the operation.

See also
To learn more about NumPy's timedelta, visit https:/ /numpy. org/ devdocs/ reference/
arrays.datetime. html#datetime- and- timedelta- arithmetic.
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Working with time in different time zones
Some organizations operate internationally; therefore, the information they collect about
events may be recorded together with the time zone of the area where the event took place.
To be able to compare events that occurred across different time zones, we first need to set
all of the variables within the same zone. In this recipe, we will learn how to unify the time
zones of a datetime variable and then learn how to reassign a variable to a different time
zone using pandas. 

How to do it...
To proceed with the recipe, let's import pandas and then create a toy dataframe with two
variables, each one containing a date and time in different time zones:

Import pandas:1.

import pandas as pd

Let's create a toy dataframe with one variable with values in different time zones:2.

df = pd.DataFrame()

df['time1'] = pd.concat([
    pd.Series(
        pd.date_range(
            start='2015-06-10 09:00', freq='H', periods=3,
            tz='Europe/Berlin')),
    pd.Series(
        pd.date_range(
            start='2015-09-10 09:00', freq='H', periods=3,
            tz='US/Central'))
    ], axis=0)

Now, let's add another datetime variable to the dataframe, which also contains3.
values in different time zones, and then display the resulting dataframe:

df['time2'] = pd.concat([
    pd.Series(
        pd.date_range(
            start='2015-07-01 09:00', freq='H', periods=3,
            tz='Europe/Berlin')),
    pd.Series(
        pd.date_range(
            start='2015-08-01 09:00', freq='H', periods=3,
            tz='US/Central'))
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    ], axis=0)

df

We can see the toy dataframe with the variables in the different time zones in the
following screenshot:

The time zone is indicated with the +02 and -05 values, respectively.

To work with different time zones, first, we unify the time zone to the central4.
zone setting, utc = True:

df['time1_utc'] = pd.to_datetime(df['time1'], utc=True)
df['time2_utc'] = pd.to_datetime(df['time2'], utc=True)
df

Note how, in the new variables, the UTC is zero, whereas, in the previous
variables it varies:
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Now, let's calculate the difference in days between the variables and then display5.
the dataframe:

df['elapsed_days'] = (df['time2_utc'] - df['time1_utc']).dt.days
df['elapsed_days'].head()

We can see the time between the values of the variables in the dataframe in the
following output:

0    21
1    21
2    21
0   -40
1   -40
Name: elapsed_days, dtype: int64

Finally, let's change the time zone of the datetime variables to alternative ones6.
and display the new variables:

df['time1_london'] = df['time1_utc'].dt.tz_convert('Europe/London')
df['time2_berlin'] = df['time1_utc'].dt.tz_convert('Europe/Berlin')

df[['time1_london', 'time2_berlin']]

 We can see the variables in their respective time zones in the following screenshot:

Note how, when changing time zones, not only the values of the zone changes—that is, the
+01 and +02 values in the preceding screenshot, but the value of the hour changes as well.
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How it works...
In this recipe, we changed the time zone of the variables and performed operations with
variables in different time zones. To begin, we created a dataframe with two variables, the
values of which started at an arbitrary date and increased hourly, and were set in different
time zones. To combine the different time zone variables in one column within the
dataframe, we concatenated the series returned by pandas' date_range(), utilizing the
pandas' concat() method. We set the axis argument to 0, to indicate we wanted to
concatenate the series vertically in one column. We covered the arguments
of pandas' date_range() extensively in former recipes in this chapter; see, for example,
the Deriving representations of the year and month recipe or Creating representations of day and
week recipe for more details.

To reset the time zone of the variables to the central zone, we used the pandas'
to_datetime() method and passed utc=True. To determine the time in between the
variables, we subtracted the two pandas Series, as described in the Capturing the elapsed time
between datetime variables recipe. To reassign a different time zone, we used the
pandas' tz_convert() method, indicating the new time zone as argument.

See also
To learn more about the pandas' to_datetime() method, visit: https:/ /pandas. pydata.
org/pandas-docs/ stable/ reference/ api/ pandas. to_ datetime. html.

To learn more about the pandas' tz_convert() method, visit https:/ /pandas. pydata.
org/pandas-docs/ stable/ reference/ api/ pandas. Series. dt. tz_ convert. html.
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8
Performing Feature Scaling

Many machine learning algorithms are sensitive to the scale and magnitude of the features.
In particular, the coefficients of the linear models depend on the scale of the feature, that is,
changing the feature scale will change the coefficients' value. In linear models, as well as
algorithms that depend on distance calculations, such as clustering and principal
component analysis, features with bigger value ranges tend to dominate over features with
smaller ranges. Thus, having features within a similar scale allows us to compare feature
importance, and also helps algorithms converge faster, thus improving performance and
training times. We discussed the effect of feature magnitude on algorithm performance in
more detail in the Comparing feature magnitude recipe of Chapter 1, Foreseeing Variable
Problems when Building ML Models. In this chapter, we will implement multiple techniques
in order to set numerical variables to similar value ranges.

This chapter will cover the following recipes:

Standardizing the features
Performing mean normalization
Scaling to the maximum and minimum values
Implementing maximum absolute scaling
Scaling with the median and quantiles
Scaling to vector unit length

Technical requirements
In this chapter, we will use the pandas, NumPy, and scikit-learn Python libraries. You can
get all of these libraries from the Python Anaconda distribution, which you can install by
following the steps described in the Technical requirements section of Chapter 1, Foreseeing
Variable Problems When Building ML Models. For the recipes in this chapter, we will use the
Boston House Prices dataset from scikit-learn. To abide by machine learning best practices,
we will begin each recipe by separating the data into train and test sets.
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For visualizations on how the scaling techniques described in this chapter
affect variable distribution, visit the accompanying Jupyter Notebooks in
the dedicated GitHub repository (https:/ / github. com/
PacktPublishing/ Python- Feature- Engineering- Cookbook).

Standardizing the features
Standardization is the process of centering the variable at zero and standardizing the
variance to 1. To standardize features, we subtract the mean from each observation and
then divide the result by the standard deviation:

The result of the preceding transformation is called the z-score and represents how many
standard deviations a given observation deviates from the mean. In this recipe, we will
implement standardization with scikit-learn.

How to do it...
To begin, we will import the required packages, load the dataset, and prepare the train and
test sets:

Import the required Python packages, classes and functions:1.

import pandas as pd
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

Let's load variables and target from the Boston House Prices dataset from scikit-2.
learn into a dataframe:

boston_dataset = load_boston()
data = pd.DataFrame(boston_dataset.data,
columns=boston_dataset.feature_names)
data['MEDV'] = boston_dataset.target
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Now, divide the data into train and test sets:3.

X_train, X_test, y_train, y_test = train_test_split(
    data.drop('MEDV', axis=1), data['MEDV'], test_size=0.3,
random_state=0)

Next, we'll set up a standard scaler transformer using StandardScaler()4.
from scikit-learn and fit it to the train set so that it learns each variable's mean
and standard deviation:

scaler = StandardScaler()
scaler.fit(X_train)

Now, let's standardize the train and test sets with the trained scaler; that is,5.
we'll remove each variable's mean and divide the result by the standard
deviation:

X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)

Scikit-learn scalers, just like any scikit-learn transformer, return NumPy
arrays. To convert the array into a dataframe, you need to
execute X_train_scaled = pd.DataFrame(X_train_scaled,
columns=X_train.columns).

StandardScaler() stores the mean and standard deviation that were learned 
from the train set variables in its mean_ and scale_ attributes. Let's visualize the
learned parameters.

First, we'll print the mean values that were learned by the scaler:6.

scaler.mean_

The mean values per variable can be seen in the following output:

array([3.35828432e+00, 1.18093220e+01, 1.10787571e+01,
       6.49717514e-02, 5.56098305e-01, 6.30842655e+00,
       6.89940678e+01, 3.76245876e+00, 9.35310734e+00,
       4.01782486e+02, 1.84734463e+01, 3.60601186e+02,
       1.24406497e+01])
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Now, let's print the standard deviation values that were learned by the scaler:7.

scaler.scale_

The standard deviation of each variable can be seen in the following output:

array([8.34141658e+00, 2.36196246e+01, 6.98393565e+00,
       2.46476009e-01, 1.15437239e-01, 7.01016354e-01,
       2.79987983e+01, 2.06473886e+00, 8.65974217e+00,
       1.70351284e+02, 2.22166426e+00, 8.55009244e+01,
       7.06848020e+00])

By doing this, you've learned how to standardize the variables in your datasets.

How it works...
In this recipe, we standardized the variables of the Boston House Prices dataset by utilizing
scikit-learn. To standardize these features, we needed to learn and store the mean and
standard deviation for each variable by utilizing the train set. Then, we used those
parameters to standardize the variables in the train and test sets. To do this, we used
StandardScaler() from scikit-learn, which can learn and store these parameters in its
attributes.

First, we loaded the dataset and divided it into train and test sets using the
train_test_split() function from scikit-learn. We passed the independent variables as
arguments. To do this, we dropped the target from the dataset with pandas' drop(). Next,
we passed the target as a pandas Series.  Then, we specified the percentage of observations
to be placed in the test set and set random_state to zero for reproducibility.

To standardize these features, we used StandardScaler() from scikit-learn with its
default parameters. Using the fit() method and by taking the train set as an argument,
the scaler learned each variable's mean and standard deviation and stored them in its
mean_ and scale_ attributes. Using the transform() method, the scaler standardized
the variables in the train and test sets, returning NumPy arrays.

See also
To learn more about StandardScaler() from scikit-learn, go to http:/ / scikit- learn.
org/stable/modules/ generated/ sklearn. preprocessing. StandardScaler. html.
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Performing mean normalization
In mean normalization, we center the variable at zero and rescale the distribution to the
value range. This procedure involves subtracting the mean from each observation and then
dividing the result by the difference between the minimum and maximum values:

This transformation results in a distribution centered at 0, with its minimum and maximum
values within the range of -1 to 1. In this recipe, we will implement mean normalization
with pandas and then with scikit-learn.

How to do it...
We'll begin by importing the required libraries, loading the dataset, and preparing the train
and test sets:

Import pandas and the required scikit-learn class and function:1.

import pandas as pd
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split

Let's load the Boston House Prices dataset from scikit-learn into a pandas2.
dataframe:

boston_dataset = load_boston()
data = pd.DataFrame(boston_dataset.data,
columns=boston_dataset.feature_names)
data['MEDV'] = boston_dataset.target

Let's divide the data into train and test sets:3.

X_train, X_test, y_train, y_test = train_test_split(
    data.drop('MEDV', axis=1), data['MEDV'], test_size=0.3,
random_state=0)

Let's learn the mean values from the variables in the train set using pandas and4.
print the output:

means = X_train.mean(axis=0)
means
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We set the axis to 0 to indicate we want the mean across all the rows,
that is, across all the observations, which is the mean of each variable. If
we set the axis to 1 instead, pandas will calculate the mean value per
observation, across all the columns.

We can see the learned mean values per variable in the following output:

CRIM         3.358284
ZN          11.809322
INDUS       11.078757
CHAS         0.064972
NOX          0.556098
RM           6.308427
AGE         68.994068
DIS          3.762459
RAD          9.353107
TAX        401.782486
PTRATIO     18.473446
B          360.601186
LSTAT       12.440650
dtype: float64

Now, let's capture the difference between the maximum and minimum values5.
per variable in the train set and then print them out:

ranges = X_train.max(axis=0)-X_train.min(axis=0)
ranges

We can see the value ranges per variable in the following output:

CRIM        88.96988
ZN         100.00000
INDUS       27.28000
CHAS         1.00000
NOX          0.48600
RM           5.21900
AGE         97.10000
DIS         10.95230
RAD         23.00000
TAX        524.00000
PTRATIO      9.40000
B          396.58000
LSTAT       35.25000
dtype: float64
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The pandas mean(), max(), and min() methods return a pandas Series.

Now, we'll implement the mean normalization of the train and test sets by6.
utilizing the learned parameters:

X_train_scaled = (X_train - means) / ranges
X_test_scaled = (X_test - means) / ranges

Note that this procedure returns pandas dataframes of the transformed train and test sets.

In order to score future data, you will need to store these parameters in a
.txt or .csv file.

How it works...
In this recipe, we standardized the numerical variables of the Boston House Prices dataset
from scikit-learn. To implement mean normalization, we learned and stored the mean,
maximum, and minimum values from the variables in the train set, which we used to
normalize the train and test sets.

We loaded the dataset and divided it into train and test sets using the
train_test_split() function from scikit-learn. More details on this operation can be
found in the Standardizing the features recipe of this chapter. To implement mean
normalization, we captured the mean values of the numerical variables in the train set
using the pandas mean() method. Next, we determined the difference between the
maximum and minimum values of the numerical variables in the train set by utilizing the
pandas max() and min() methods. Finally, we used the pandas Series with the mean
values and the value ranges to implement normalization. We subtracted the mean from
each observation in our train and test sets and divided the result by the value ranges. This
returned the normalized variables in a pandas dataframe.
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There's more...
There is no dedicated scikit-learn transformer to implement mean normalization, but we
can implement mean normalization by combining the use of two transformers. To do this,
we need to import pandas and load the data, just like we did in step 1 to step 3 in the How it
works... section of this recipe:

Next, let's import the scikit-learn transformers:1.

from sklearn.preprocessing import StandardScaler, RobustScaler

Let's set up the StandardScaler() from scikit-learn so that it learns and2.
subtracts the mean but does not divide the result by the standard deviation:

scaler_mean = StandardScaler(with_mean=True, with_std=False)

Now, let's set up the RobustScaler() from scikit-learn so that it does not3.
remove the median from the values but divides them by the value range, that is,
the difference between the maximum and minimum values:

scaler_minmax = RobustScaler(with_centering=False,
with_scaling=True, quantile_range=(0, 100))

To divide by the difference between the minimum and maximum values,
we need to specify (0, 100) in the quantile_range argument of
RobustScaler().

Let's fit the scalers to the train set so that they learn and store the mean,4.
maximum, and minimum values:

scaler_mean.fit(X_train)
scaler_minmax.fit(X_train)

Finally, let's apply mean normalization to the train and test sets:5.

X_train_scaled =
scaler_minmax.transform(scaler_mean.transform(X_train))
X_test_scaled =
scaler_minmax.transform(scaler_mean.transform(X_test))
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Note how we transform the data with StandardScaler() to remove the mean and then
transform the resulting NumPy array with RobustScaler() to divide the result by the
range between the minimum and maximum values. We described the functionality of
StandardScaler() in the Standardizing the features recipe of this chapter and will cover
RobustScaler() in the Scaling with the median and quantiles recipe of this chapter.

See also
To learn more about the scikit-learn scalers, take a look at the following links:

StandardScaler(): http:/ /scikit- learn. org/ stable/ modules/ generated/
sklearn. preprocessing. StandardScaler. html

RobustScaler(): http:/ /scikit- learn. org/ stable/ modules/ generated/
sklearn. preprocessing. RobustScaler. html

Scaling to the maximum and minimum
values
Scaling to the minimum and maximum values squeezes the values of the variables between
0 and 1. To implement this scaling technique, we need to subtract the minimum value from
all the observations and divide the result by the value range, that is, the difference between
the maximum and minimum values:

In this recipe, we will implement scaling on the minimum and maximum values by
utilizing scikit-learn.
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How to do it...
To begin, we will import the required packages, load the dataset, and prepare the train and
test sets:

Import pandas and the required scikit-learn classes and function:1.

import pandas as pd
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler

Let's load the Boston House Prices dataset from scikit-learn into a pandas2.
dataframe:

boston_dataset = load_boston()
data = pd.DataFrame(boston_dataset.data,
columns=boston_dataset.feature_names)
data['MEDV'] = boston_dataset.target

Let's divide the data into train and test sets:3.

X_train, X_test, y_train, y_test = train_test_split(
    data.drop('MEDV', axis=1), data['MEDV'], test_size=0.3,
random_state=0)

Let's set up a minimum and maximum value scaler utilizing scikit-learn and4.
then fit it to the train set so that it learns each variable's minimum and maximum:

scaler = MinMaxScaler()
scaler.fit(X_train)

Finally, let's scale the variables in the train and test sets with the trained scaler;5.
that is, we'll subtract the minimum and divide by the value range:

X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)

MinMaxScaler() stores the maximum and minimum values and the
value ranges in its data_max_, min_, and data_range_ attributes,
respectively.
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How it works...
In this recipe, we scaled the numerical variables of the Boston House Prices dataset that
comes with scikit-learn to their minimum and maximum values. In order to learn and
perpetuate these parameters, we used MinMaxScaler() from scikit-learn.

First, we loaded the dataset and divided it into train and test sets using the
train_test_split() function from scikit-learn. To scale these features, we created an
instance of MinMaxScaler() with its default parameters. Using the fit() method and by
taking the train set as an argument, scaler learned each variable's maximum and 
minimum values, along with their differences, and stored these parameters in its
data_max_, min_, and data_range attributes. With the transform() method, scaler
removed the minimum value from each variable in the train and test sets and divided the
result by the value range. This returned NumPy arrays.

See also
To learn more about MinMaxScaler() from scikit-learn, go to http:/ / scikit- learn. org/
stable/modules/generated/ sklearn. preprocessing. MinMaxScaler. html.

Implementing maximum absolute scaling
Maximum absolute scaling scales the data to its maximum value; that is, it divides every
observation by the maximum value of the variable:

The result of the preceding transformation is a distribution in which the values vary
approximately within the range of -1 to 1. In this recipe, we will implement maximum
absolute scaling with scikit-learn.

Scikit-learn recommends using this transformer on data that is centered at
zero or on sparse data.
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How to do it...
Let's begin by importing the required packages, loading the dataset, and preparing the train
and test sets:

Import pandas and the required scikit-learn classes and function:1.

import pandas as pd
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MaxAbsScaler

Let's load the Boston House Prices dataset from scikit-learn into a pandas2.
dataframe:

boston_dataset = load_boston()
data = pd.DataFrame(boston_dataset.data,
columns=boston_dataset.feature_names)
data['MEDV'] = boston_dataset.target

Let's divide the data into train and test sets:3.

X_train, X_test, y_train, y_test = train_test_split(
    data.drop('MEDV', axis=1), data['MEDV'], test_size=0.3,
random_state=0)

Let's set up the maximum absolute scaler from scikit-learn and fit it to the train4.
set so that it learns the variable's maximum values:

scaler = MaxAbsScaler()
scaler.fit(X_train)

Now, let's divide each variable in the train and test sets by their maximum values5.
by utilizing the trained scaler:

X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)

MaxScaler() stores the maximum values in its max_abs_ attribute.
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How it works...
In this recipe, we scaled the numerical variables of the Boston House Prices dataset to their
maximum values. To scale these features to their maximum value, we learned and stored
this parameter by utilizing MaxAbsScaler() from scikit-learn. First, we loaded the dataset
and divided it into train and test sets using the train_test_split() function from scikit-
learn. To scale the features, we created an instance of a scaler
calling MaxAbsScaler() with its default parameters. With the fit() method, and by
taking the train set as an argument, the scaler learned the maximum values for each
variable and stored them in its max_abs_ attribute. With the transform() method, the
scaler divided the variables in the train and test sets by their maximum values. This
returned NumPy arrays.

There's more...
We can center the variable distributions at 0 and then scale them to their absolute
maximum, as recommended by scikit-learn, by combining the use of two transformers. To
do this, we need to import the required packages and load the data, just like we did in step
1 to step 3 of this recipe:

Next, let's import the additional scikit-learn transformer:1.

from sklearn.preprocessing import StandardScaler

Let's set up StandardScaler() from scikit-learn so that it learns and subtracts2.
the mean but does not divide the result by the standard deviation:

scaler_mean = StandardScaler(with_mean=True, with_std=False)

Now, let's set up MaxAbsScaler() with its default parameters:3.

scaler_maxabs = MaxAbsScaler()

Let's fit the scalers to the train set so that they learn the required parameters:4.

scaler_mean.fit(X_train)
scaler_maxabs.fit(X_train)

Finally, let's transform the train and test sets:5.

X_train_scaled =
scaler_maxabs.transform(scaler_mean.transform(X_train))
X_test_scaled =
scaler_maxabs.transform(scaler_mean.transform(X_test))
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Note how we transform the datasets with StandardScaler() to remove the mean and
then transform the returned NumPy arrays with MaxAbsScaler() to scale the variables to
their maximum values.

See also
To learn more about scikit-learn scalers, take a look at the following links:

StandardScaler(): http:/ /scikit- learn. org/ stable/ modules/ generated/
sklearn. preprocessing. StandardScaler. html

MaxAbsScaler(): http:/ /scikit- learn. org/ stable/ modules/ generated/
sklearn. preprocessing. MaxAbsScaler. html

Scaling with the median and quantiles
When scaling variables to the median and quantiles, the median value is removed from the
observations and the result is divided by the inter-quartile range (IQR). The IQR is the 
range between the 1st quartile and the 3rd quartile, or, in other words, the range between
the 25th quantile and the 75th quantile:

This method is known as robust scaling because it produces more robust estimates for the
center and value range of the variable, and is recommended if the data contains outliers. In
this recipe, we will implement scaling with the median and IQR by utilizing scikit-learn.

How to do it...
To begin, we will import the required packages, load the dataset, and prepare the train and
test sets:

Import pandas and the required scikit-learn classes and function:1.

import pandas as pd
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import RobustScaler
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Let's load the Boston House Prices dataset from scikit-learn into a pandas2.
dataframe:

boston_dataset = load_boston()
data = pd.DataFrame(boston_dataset.data,
columns=boston_dataset.feature_names)
data['MEDV'] = boston_dataset.target

Let's divide the data into train and test sets:3.

X_train, X_test, y_train, y_test = train_test_split(
    data.drop('MEDV', axis=1), data['MEDV'], test_size=0.3,
random_state=0)

To perform scaling to the median and quantiles, we need to set4.
up RobustScaler() from scikit-learn and fit it to the train set so that it learns
and stores the median and IQR:

scaler = RobustScaler()
scaler.fit(X_train)

Finally, let's scale the variables in the train and test sets with the trained scaler:5.

X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)

Now, we can output the median values per variable that were learned and stored6.
by RobustScaler():

scaler.center_

The medians that are stored in the center_ attribute of RobustScaler() can be
seen in the following output:

array([2.62660e-01, 0.00000e+00, 8.56000e+00, 0.00000e+00,
       5.38000e-01, 6.21550e+00, 7.94500e+01, 3.21570e+00,
       5.00000e+00, 3.11000e+02, 1.91000e+01, 3.91605e+02,
       1.11600e+01])

Now, let's output the IQR stored in RobustScaler():7.

scaler.scale_
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We can see the IQR for each variable in the following output:

array([3.030275e+00, 2.000000e+01, 1.315000e+01, 1.000000e+00,
       1.792500e-01, 7.520000e-01, 4.857500e+01, 2.971650e+00,
       2.000000e+01, 3.900000e+02, 2.800000e+00, 1.963250e+01,
       9.982500e+00])

Remember that scikit-learn transformers return NumPy arrays.

How it works...
In this recipe, we scaled the numerical variables of the Boston House Prices dataset from
scikit-learn to the median and IQR. To learn and perpetuate the median and the IQR, we
used RobustScaler() from scikit-learn.

First, we loaded the dataset and divided it into train and test sets using the
train_test_split() function from scikit-learn. To scale the features, we created an
instance of RobustScaler() with its default parameters. With the fit() method and by
taking the train set as an argument, scaler learned the median and IQR for each variable.
With the transform() method, scaler subtracted the median from each variable in the 
train and test sets and divided the result by the IQR. Doing this returned NumPy arrays
with the scaled variables.

See also
To learn more about RobustScaler() from scikit-learn, go to http:/ / scikit- learn. org/
stable/modules/generated/ sklearn. preprocessing. RobustScaler. html.

Scaling to vector unit length
When scaling to vector unit length, we transform the components of a feature vector so that
the transformed vector has a length of 1, or in other words, a norm of 1. Note that this
scaling technique scales the feature vector, as opposed to each individual variable,
compared to what we did in the other recipes in this chapter. A feature vector contains the
values of each variable for a single observation. When scaling to vector unit length, we
divide each feature vector by its norm.
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Scaling to the unit norm is achieved by dividing each observation vector by either the
Manhattan distance (l1 norm) or the Euclidean distance (l2 norm) of the vector. The
Manhattan distance is given by the sum of the absolute components of the vector:

l1(X) = |x1| + |x2| + ... + |xn|

On the other hand, the Euclidean distance is given by the square root of the square sum of
the component of the vector:

Here, x1, x2, and xn are the values of variables 1, 2, and n for each observation.

In this recipe, we will implement scaling to vector unit length using scikit-learn.

How to do it...
To begin, we'll import the required packages, load the dataset, and prepare the train and
test sets:

Import the required Python packages, classes, and function:1.

import numpy as np
import pandas as pd
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import Normalizer

Let's load the Boston House Prices dataset from scikit-learn into a pandas2.
dataframe:

boston_dataset = load_boston()
data = pd.DataFrame(boston_dataset.data,
columns=boston_dataset.feature_names)
data['MEDV'] = boston_dataset.target

Let's divide the data into train and test sets:3.

X_train, X_test, y_train, y_test = train_test_split(
    data.drop('MEDV', axis=1), data['MEDV'], test_size=0.3,
random_state=0)
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Let's set up the Normalizer() from scikit-learn to scale each observation to the4.
Manhattan distance or l1:

scaler = Normalizer(norm='l1')

To normalize utilizing the Euclidean distance, you need to set the norm to
l2 using scaler = Normalizer(norm='l2').

Let's fit scaler to the train set:5.

scaler.fit(X_train)

The fit() method of Normalizer() does nothing, as this normalization
procedure depends exclusively on the values of the features for each
observation. No parameters need to be learned from the train set.

Let's transform the train and test sets; that is, we'll divide each observation vector6.
by its norm:

X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)

We can calculate the length, that is, the Manhattan distance of each observation7.
vector, using linalg() from NumPy:

np.round( np.linalg.norm(X_train_scaled, ord=1, axis=1), 1)

You need to set ord=1 for the Manhattan distance or ord=2 for the
Euclidean distance as arguments of NumPy's linalg(), depending on
whether you scaled the features to the l1 or l2 norm.

We can see the normalized observation vectors in the following output:

array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
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       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])

As expected, the feature length for each observation is 1.

You can compare the output of step 7 with the distance of the unscaled
data by executing np.round( np.linalg.norm(X_train, ord=1,
axis=1), 1).

How it works...
In this recipe, we scaled the numerical variables of the Boston House Prices dataset from
scikit-learn to the vector unit norm by utilizing the Manhattan or Euclidean distance. First,
we loaded the dataset and divided it into train and test sets using the
train_test_split() function from scikit-learn. To scale the features, we created an
instance of the Normalizer() from scikit-learn and set the norm to l1 for the Manhattan
distance. For the Euclidean distance, we set the norm to l2. Then, we applied the fit()
method, although there were no parameters to be learned. Finally, with
the transform() method, scaler divided each observation by its norm. This returned a 
NumPy array with the scaled dataset.

See also
To learn more about Normalizer() from scikit-learn, go to http:/ / scikit- learn. org/
stable/modules/generated/ sklearn. preprocessing. Normalizer. html.
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9
Applying Mathematical

Computations to Features
New features can be created by combining two or more variables. Variables can be
combined automatically or by using domain knowledge of the data and the industry. For
example, in finance, we combine information about the income and the acquired debt to
determine the disposable income:

disposable income = income - total debt.

Similarly, if a client has debt across many financial products, for example, a car loan, a
mortgage, and credit cards, we can determine the total debt by adding all of those variables
up:

Total debt = car loan balance + credit card balance + mortgage balance

In the previous examples, the mathematical functions used to combine the existing
variables are derived via domain knowledge of the industry. We can also combine variables
automatically, by creating polynomial combinations of the existing variables in the dataset
or by using off-the-shelf algorithms such as decision trees and Principal Component
Analysis (PCA). In this chapter, we will create new features using multiple mathematical
functions and off-the-shelf algorithms with Python.

This chapter will cover the following recipes:

Combining multiple features with statistical operations
Combining pairs of features with mathematical functions
Performing polynomial expansion
Deriving new features with decision trees
Carrying out PCA
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Technical requirements
In this chapter, we will use the following Python libraries: pandas, NumPy, Matplotlib,
seaborn, and scikit-learn. You can get all of these libraries with the Python Anaconda
distribution, which you can install following the steps described in the Technical
requirements section in Chapter 1, Foreseeing Variable Problems in Building ML Models.

Combining multiple features with statistical
operations
New features can be created by performing mathematical and statistical operations over
existing variables. We previously mentioned that we can calculate the total debt by
summing up the debt across individual financial products:

Total debt = car loan debt + credit card debt + mortgage debt

We can also derive other insightful features using alternative statistical operations. For
example, we can determine the maximum debt of a customer across financial products, the
minimum time they spent surfing one page of our website, or the mean time they spent
reading an article of our magazine:

maximum debt = max(car loan balance, credit card balance, mortgage balance)

minimum time on page = min(time on homepage, time on about page, time on the contact us page)

mean time reading article = (time on article 1 + time on article 2 + time on article 3) / count(articles) 

We can, in principle, use any mathematical or statistical operation to create new features,
such as product, mean, standard deviation, or maximum or minimum values, to name a
few. In this recipe, we will implement these mathematical operations using pandas.
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Getting ready
In this recipe, we will use the Breast Cancer dataset that comes with scikit-learn, which
contains information about tumors and other medical abnormalities, and a target indicating
whether they are cancerous. To become familiar with the dataset, run the following
commands in a Jupyter Notebook or Python console:

from sklearn.datasets import load_breast_cancer
data = load_breast_cancer()
print(data.DESCR)

The preceding code block should print out the description of the dataset and an
interpretation of its variables.

How to do it...
In this recipe, we will create new features by combining information, that is, variables 
about tumors, using multiple mathematical operations:

Let's begin by loading pandas and the dataset from scikit-learn:1.

import pandas as pd
from sklearn.datasets import load_breast_cancer

Let's load the Breast Cancer dataset into a pandas dataframe:2.

data = load_breast_cancer()
df = pd.DataFrame(data.data, columns=data.feature_names)
df['target'] = data.target

Scikit-learn stores the data, feature names, and target in the data,
feature_names, and target attributes, respectively. So, we need to
reconstitute the dataset bit by bit.

In the following code lines, we will create new features using multiple
mathematical operations across a subset of the features in the dataset.
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Let's begin by creating a list with the subset of features to which we will apply3.
the different mathematical operations:

features = ['mean smoothness', 'mean compactness',
           'mean concavity', 'mean concave points',
           'mean symmetry']

Create a new feature with the sum of the selected variables:4.

df['added_features'] = df[features].sum(axis=1)

Derive a new feature using the product of the selected features:5.

df['prod_features'] = df[features].prod(axis=1)

Obtain a new feature corresponding to the mean value of the variables selected6.
in step 3:

df['mean_features'] = df[features].mean(axis=1)

Capture the standard deviation of the features in a new variable:7.

df['std_features'] = df[features].std(axis=1)

Find the maximum value across the selected variables:8.

df['max_features'] = df[features].max(axis=1)

Find the minimum value across the selected features:9.

df['min_features'] = df[features].min(axis=1)

We can perform step 4 to step 9 in one line of code using
the pandas' agg() method: df_t = df[features].agg(['sum',
'prod','mean','std', 'max', 'min'], axis='columns').

To find out more about the mathematical operations supported by pandas, follow this link:
https://pandas.pydata. org/ pandas- docs/ stable/ reference/ frame. html#computations-
descriptive-stats.
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How it works...
The pandas library has plenty of built-in operations to return the desired mathematical and
statistical computations over the indicated axis, that is, across the rows or the columns of a
dataframe. In this recipe, we leveraged the power of pandas to create new features from
existing ones. We loaded the Breast Cancer dataset from scikit-learn. Then, we made a list
of the features to combine with the multiple mathematical operations. We used the pandas
sum(), prod(), mean(), std(), max(), and min() methods to determine the sum,
product, mean, standard deviation, and maximum and minimum values of those features.

To perform these operations across the columns, that is, across the variables, we added the
axis=1 argument within the methods, and we captured the new features as new columns
of the dataframe. Finally, with the pandas' agg() method, we carried out all of the 
mathematical combinations in one line of code. Pandas' agg() takes, as arguments, a list of
strings corresponding to the methods to apply and the axis to which the operations should
be applied, which can be either columns or rows. It returns a pandas dataframe with the
feature combination as columns.

There's more...
With visualizations, we can easily understand whether new features provide valuable
information. In this section, we will create violin plots to visualize the distribution of one of
the newly created features. We will plot the distribution of the feature separately, for those
tumors that were cancerous and those that were not. To create the plot, we first need to
execute step 1 to step 4 from the How to do it... section of this recipe. Then, we can create a
violin plot of the resulting feature as follows:

Let's first import the visualization libraries:1.

import matplotlib.pyplot as plt
import seaborn as sns

Create a violin plot of the newly created feature:2.

sns.violinplot(x="target", y="added_features", data=df)
plt.title('Added Features')
plt.show()
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The preceding code block returns the following plot, where we can see that the distribution
of the newly created feature is different between cancerous and normal tumors:

You can check this and more plots, including those from the original variables, in the
Jupyter Notebook in the accompanying GitHub repository: https:/ /github. com/
PacktPublishing/Python- Feature- Engineering- Cookbook.

See also
To find out more about the mathematical operations supported by pandas, visit this link:
https://pandas.pydata. org/ pandas- docs/ stable/ reference/ frame. html#computations-
descriptive-stats.

To learn more about pandas aggregate, follow this link: https:/ /pandas. pydata. org/
pandas-docs/stable/ reference/ api/ pandas. DataFrame. aggregate. html.

https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#computations-descriptive-stats
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#computations-descriptive-stats
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#computations-descriptive-stats
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#computations-descriptive-stats
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#computations-descriptive-stats
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#computations-descriptive-stats
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#computations-descriptive-stats
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#computations-descriptive-stats
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#computations-descriptive-stats
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#computations-descriptive-stats
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#computations-descriptive-stats
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#computations-descriptive-stats
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#computations-descriptive-stats
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#computations-descriptive-stats
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#computations-descriptive-stats
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#computations-descriptive-stats
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#computations-descriptive-stats
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#computations-descriptive-stats
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#computations-descriptive-stats
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#computations-descriptive-stats
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#computations-descriptive-stats
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#computations-descriptive-stats
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#computations-descriptive-stats
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#computations-descriptive-stats
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.aggregate.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.aggregate.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.aggregate.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.aggregate.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.aggregate.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.aggregate.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.aggregate.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.aggregate.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.aggregate.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.aggregate.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.aggregate.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.aggregate.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.aggregate.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.aggregate.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.aggregate.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.aggregate.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.aggregate.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.aggregate.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.aggregate.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.aggregate.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.aggregate.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.aggregate.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.aggregate.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.aggregate.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.aggregate.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.aggregate.html


Applying Mathematical Computations to Features Chapter 9

[ 266 ]

Combining pairs of features with
mathematical functions
In the previous recipe, Combining multiple features with statistical operations, we created new
features by performing statistical operations across several variables. Some mathematical
operations, however, such as subtraction or division, make more sense when performed
between two features, or when considering multiple features against one reference variable.
These operations are very useful to derive ratios, such as the debt-to-income ratio:

debt-to-income ratio = total debt / total income

Or we can use them for differences, for example, the disposable income:

disposable income = income - total debt

In this recipe, we will learn how to derive new features by subtraction or division utilizing
pandas, and more generally, we will learn how to perform operations against one reference
variable.

Getting ready
We will use the Breast Cancer dataset that comes with scikit-learn. To learn more about this
dataset, follow the steps indicated in the Getting ready section of the Combining multiple
features with statistical operations recipe in this chapter.

How to do it...
Let's begin by loading the Python libraries and the Breast Cancer dataset from scikit-learn:

Load pandas and the dataset from scikit-learn:1.

import pandas as pd
from sklearn.datasets import load_breast_cancer

Let's load the Breast Cancer dataset into a pandas dataframe:2.

data = load_breast_cancer()
df = pd.DataFrame(data.data, columns=data.feature_names)
df['target'] = data.target
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Let's now capture the difference between two features in a new variable:3.

df['difference'] = df['worst compactness'].sub(df['mean
compactness'])

We can perform the same calculation with this command:
df['difference'] = df['worst compactness'] - (df['mean

compactness']).

Let's now create a new feature with the ratio between two variables:4.

df['quotient'] = df['worst radius'].div(df['mean radius'])

We can calculate the ratio with the alternative command:
df['quotient'] = df['worst radius'] / (df['mean radius']).

Next, we will compare a group of features to the aggregated view of another
subset of features. Let's begin by capturing these subsets of variables into lists.

Make a list of the features we want to compare:5.

features = ['mean smoothness', 'mean compactness', 'mean
concavity', 'mean concave points', 'mean symmetry']

Make a list of the features we want to aggregate:6.

worst_f = ['worst smoothness', 'worst compactness',
           'worst concavity', 'worst concave points',
           'worst symmetry']

Create a new feature with the sum of the features in step 6:7.

df['worst'] = df[worst_f].sum(axis=1)

We discussed the code in step 7 in the previous recipe, Combining multiple
features with statistical operations.

Let's obtain the ratio between each one of the features in step 5 and the feature8.
created in step 7:

df[features] = df[features].div(df['worst'], axis=0)
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The preceding code block divides each of the features in the list we created in step 5 by
the worst feature, which we created in step 7. You can output the first five rows of the
engineered features using df[features].head() to corroborate the result.

How it works...
The pandas library has plenty of built-in operations to compare one feature or a subset of
features to a single reference variable. In this recipe, we used the pandas sub() and div()
methods to determine the difference or the ratio between two variables or a subset of
variables and one reference feature.

First, we loaded the Breast Cancer dataset from scikit-learn. Next, we subtracted one
variable from another. To do this, we applied the sub() method to a pandas Series with the
first variable, passing the second pandas Series with the second variable within the method,
which returned a third pandas Series with the second variable subtracted from the first one.
To divide one variable from another, we used the div() method, which works identically,
that is, it divides the variable on the left by the variable passed as an argument of div().

Next, we divided several variables by a reference one. To do this, we first created a feature
corresponding to the sum of a group of features in the dataset, as explained in the
Combining multiple features with statistical operations recipe. Next, we called the div()
method over a dataframe with multiple variables, passing the reference variable, that is, a
pandas Series, as an argument. The div() method divided each variable in the dataframe
by the variable indicated within the method. The resulting variables were captured as
columns in the same dataframe.

There's more...
Plots and visualizations are useful to understand the distribution of the newly created
features and their relationship to the target. To learn how to do violin plots and have a look
at the distribution of the features we created in this recipe, visit the Jupyter Notebook in the
accompanying GitHub repository.

See also
To learn more about the binary operations supported by pandas, follow this link: https:/ /
pandas.pydata.org/ pandas- docs/ stable/ reference/ frame. html#binary- operator-
functions.
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Performing polynomial expansion
Existing variables can be combined to create new insightful features. We discussed how to
combine variables using common mathematical and statistical operations in the previous
two recipes, Combining multiple features with statistical operations and Combining pairs of
features with mathematical functions. A combination of one feature with itself, that is, a
polynomial combination of the same feature, can also be quite informative or increase the
predictive power of our algorithms. For example, in cases where the target follows a
quadratic relationship with a variable, creating a second degree polynomial of the feature
allows us to use it in a linear model, as shown in the following screenshot:

In the plot on the left, due to the quadratic relationship between the target, y, and the
variable, x, there is a poor linear fit. Yet, in the plot on the right, we appreciate how the
x_squared variable, which is a quadratic combination of x, shows a linear relationship with
the target, y, and therefore improves the performance of the linear model, which predicts y
from x_squared.

With similar logic, polynomial combinations of the same or different variables can return
new variables that convey additional information and capture feature interaction and can,
therefore, be better inputs for our machine learning algorithms, particularly for linear
models. We can create polynomial variables automatically using scikit-learn, and, in this
recipe, we will learn how to do so.
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Getting ready
Polynomial expansion serves to automate the creation of new features, to capture feature
interaction, and to capture potential non-linear relationships between the original variables
and the target. The user determines which features to combine and which polynomial
degree to use.

Keep in mind that high polynomial degrees or a large number of features
to combine will return an enormous number of new features.

The PolynomialFeatures() transformer from scikit-learn creates all polynomial
combinations of the features with a degree less than or equal to the specified degree,
automatically. To follow up easily with the recipe, let's first understand the output of the
PolynomialFeatures() transformer from scikit-learn, when used with second and third
degree in a dataset with three variables.

Second degree polynomial combinations of three variables—a, b, and c—return the
following new features:

[a, b, c]2 = 1, a, b, c, ab, ac, bc, a2, b2, c2, abc

Note how we have all possible interactions of degree, 1 and 2. The
PolynomialFeatures() transformer also returns the bias term 1.

Third degree polynomial combinations of the three variables—a, b, and c—return the
following new features:

[a, b, c]3 = 1, a, b, c, ab, ac, bc, abc, a2b, a2c, b2a, b2c, c2a, c2b, a3, b3, c3

Note how we have all possible interactions of degree 1, 2, and 3 and the bias term 1.

Now that we understand the output of the polynomial expansion, let's jump into the recipe.
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How to do it...
Let's begin by importing the required libraries and preparing the Boston House Prices
dataset from scikit-learn:

Import pandas and the required functions, classes, and datasets from scikit-learn:1.

import pandas as pd
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import PolynomialFeatures

Load the Boston House Prices dataset into a pandas dataframe:2.

boston_dataset = load_boston()
data = pd.DataFrame(boston_dataset.data,
columns=boston_dataset.feature_names)
data['MEDV'] = boston_dataset.target

Separate the dataset into training and testing sets:3.

X_train, X_test, y_train, y_test = train_test_split(
    data.drop('MEDV', axis=1), data['MEDV'], test_size=0.3,
random_state=0)

 Let's begin with the feature creation by polynomial expansion.

Let's set up the polynomial expansion transformer from scikit-learn, to create4.
features by polynomial combination of a degree less than or equal to 3:

poly = PolynomialFeatures(degree=3, interaction_only=False,
include_bias=False)

Let's fit the transformer to the train set so that it learns all of the possible5.
polynomial combinations of three of the variables:

poly.fit(X_train[['LSTAT', 'RM', 'NOX']])

Let's now create the new polynomial features in a new dataset:6.

train_t = poly.transform(X_train[['LSTAT', 'RM', 'NOX']])
test_t = poly.transform(X_test[['LSTAT', 'RM', 'NOX']])

Remember that scikit-learn returns NumPy arrays without the feature
names, hence train_t and test_t are NumPy arrays.
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Let's examine the names of the features created in step 6:7.

poly.get_feature_names(['LSTAT', 'RM', 'NOX'])

The preceding code returns a list with the names of each feature combination after
the polynomial expansion:

['LSTAT',
 'RM',
 'NOX',
 'LSTAT^2',
 'LSTAT RM',
 'LSTAT NOX',
 'RM^2',
 'RM NOX',
 'NOX^2',
 'LSTAT^3',
 'LSTAT^2 RM',
 'LSTAT^2 NOX',
 'LSTAT RM^2',
 'LSTAT RM NOX',
 'LSTAT NOX^2',
 'RM^3',
 'RM^2 NOX',
 'RM NOX^2',
 'NOX^3']

Compare the returned feature with the explanation in the Getting ready
section of this recipe to understand the output.

Finally, we can capture the arrays with the polynomial features in a dataframe as8.
follows:

test_t = pd.DataFrame(test_t)
test_t.columns = poly.get_feature_names(['LSTAT', 'RM', 'NOX'])

Remember to pass the list with the features to
poly.get_feature_names() in the same order as you did to
poly.fit(); otherwise, the feature names will not coincide with the
derived polynomial combinations.
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How it works...
In this recipe, we derived new features automatically by creating polynomial combinations
of three of the variables in our dataset. We first loaded the Boston House Prices dataset
from scikit-learn and divided it into train and test sets.

To create the polynomial features, we used the PolynomialFeatures() transformer from
scikit-learn, which generates a new feature matrix consisting of all polynomial
combinations of the indicated features with a degree less than or equal to the specified
degree. By setting degree to 3, we were able to create all possible polynomial combinations
of degree 3 or smaller. To retain all of the terms of the expansion, we set
interaction_only to False. And to avoid returning the bias term, we set the
include_bias parameter to False.

Setting the interaction_only term to True returns only the terms, that
is, the variables that contain combinations of two or more variables.

The fit() method learned all of the possible feature combinations based on the
parameters specified. At this stage, the transformer did not perform actual mathematical
computations. The transform() method performed the mathematical computations with
the features to create the new variables. With the get_feature_names() method, we
could identify the terms of the expansion, that is, how each new feature was calculated.

There's more...
Let's visualize the relationship of the polynomial variables with the target. First, let's run
the main recipe as indicated in step 1 to step 8. Then, let's import the Python visualization
library and make the plots:

Import Matplotlib:1.

import matplotlib.pyplot as plt

Let's create a function to make multiple subplots, each displaying one of the new2.
polynomial features in a scatter plot versus the target:

def plot_features(df, target):
    nb_rows = 5
    nb_cols = 4
    fig, axs = plt.subplots(nb_rows, nb_cols, figsize=(12, 12))
    plt.subplots_adjust(wspace=None, hspace=0.4)
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    n = 0
    for i in range(0, nb_rows):
        for j in range(0, nb_cols):
            if n!=19:
                axs[i, j].scatter(df[df.columns[n]], target)
                axs[i, j].set_title(df.columns[n])
                n += 1
    plt.show()

The function takes as argument the dataframe with the polynomial features and
returns a multiple subplot visualization, where each subplot displays a scatter
plot of a single polynomial feature against the target variable.

Run the function using the polynomial features derived from the test set:3.

plot_features(test_t, y_test)

We can see the output of the preceding code block in the following screenshot:
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The function we created in step 2 is tailored to our dataframe. If your
dataframe contains more or less polynomial features, you need to adjust
the number of rows and columns within the Matplotlib subplot:
plt.subplots(nb_rows, nb_cols, figsize=(12, 12)).

See also
To learn more about PolynomialFeatures() from scikit-learn, follow this link: https:/ /
scikit-learn.org/ stable/ modules/ generated/ sklearn. preprocessing.
PolynomialFeatures. html.

See also the Python gplearn package to automatically map out other relationships
between the variables and the target: https:/ /gplearn. readthedocs. io/ en/stable/
intro.html.

Deriving new features with decision trees
In the winning solution of the KDD competition in 2009, the authors created new features
by combining two or more variables using decision trees and then used those variables to
train the winning predictive model. This technique is particularly useful to derive features
that are monotonic with the target, which is convenient for linear models. The procedure
consists of building a decision tree using a subset of the features, typically two or three at a
time, and then using the prediction of the tree as a new feature.

Creating new features with decision trees not only creates monotonic
relationships between features and target, but it also captures feature
interactions, which is useful when building models that do not do so
automatically, such as linear models.

In this recipe, we will learn how to create new features with decision trees using pandas
and scikit-learn.

Getting ready
To learn more about the procedure implemented by the winners of the 2009 KDD data
competition, read the article that begins on page 21 of the following book: http:/ /www.
mtome.com/Publications/ CiML/ CiML- v3- book.pdf.
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In this recipe, we will work with the Boston House Prices dataset that comes within scikit-
learn.

How to do it...
Let's begin by importing the required libraries and getting the dataset ready:

Import pandas and the required functions, classes, and datasets from scikit-learn:1.

import pandas as pd
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
from sklearn.model_selection import GridSearchCV

Load the Boston House Prices dataset into a pandas dataframe:2.

boston_dataset = load_boston()
data = pd.DataFrame(boston_dataset.data,
columns=boston_dataset.feature_names)
data['MEDV'] = boston_dataset.target

Let's separate the dataset into train and test sets to conform to machine learning3.
best practices:

X_train, X_test, y_train, y_test = train_test_split(
    data.drop('MEDV', axis=1), data['MEDV'], test_size=0.3,
random_state=0)

Remember to set random_state, as indicated in step 3, for
reproducibility.

In the following lines, we are going to create a new feature from three existing
variables in the dataset using a decision tree. We are going to build this decision
tree within GridSearch() so that we can optimize one of its parameters.
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Let's create a dictionary with the parameter to optimize:4.

param_grid = {'max_depth': [3, 4, None]}

You can optimize as many parameters of the tree as you wish. To find out
which parameters you can optimize, follow this link: https:/ / scikit-
learn. org/ stable/ modules/ generated/ sklearn. tree.
DecisionTreeClassifier. html.

Let's set up the decision tree within a scikit-learn GridSearch() with 5-fold5.
cross-validation, adding the dictionary with the parameters to optimize created
in step 4, and indicating the metric we would like to optimize:

tree_model = GridSearchCV(DecisionTreeRegressor(random_state=0),
                          cv = 5,
                          scoring = 'neg_mean_squared_error',
                          param_grid = param_grid)

We use DecisionTreeRegressor() from scikit-learn because the target
in this dataset, MEDV, is continuous. If you have a binary target or are
performing classification, use DecisionTreeClassifier(), also from
scikit-learn. Note that you will have to change the scoring metric to those
permitted for classification.

Train the decision tree using three selected features from the dataset:6.

tree_model.fit(X_train[['LSTAT', 'RM', 'NOX']], y_train)

Derive the new feature using the decision tree in the train and test sets:7.

X_train['new_feat'] = tree_model.predict(X_train[['LSTAT', 'RM',
'NOX']])
X_test['new_feat'] = tree_model.predict(X_test[['LSTAT', 'RM',
'NOX']])

We have now created a new feature by combining the information of three existing features
using a decision tree.

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html


Applying Mathematical Computations to Features Chapter 9

[ 278 ]

How it works...
In this recipe, we combined the information of three variables from the Boston House Prices
dataset into a new variable utilizing a decision tree. We loaded the dataset from scikit-learn
and then separated the data into train and test sets using the train_test_split()
function. Next, we created a dictionary with the decision tree parameter to optimize as
keys, and a list of the values to examine as values.

Next, we created an instance of a decision tree for regression using
DecisionTreeRegressor() from scikit-learn inside GridSearch(), indicating the fold
cross-validation, the metric to optimize, and the dictionary with the parameters and values
to examine. Next, we fit the decision tree to the three variables of interest, and, finally, with
the predict() method, we obtained the predictions derived by the tree from those
three features, which we captured as a new feature in the dataframe.

There's more...
We can create visualizations to understand whether the derived feature shows the desired
monotonic relationship as well as its distribution. After we run all of the steps in the How to
do it... section of this recipe, we can create a simple scatter plot as follows:

Import the visualization library:1.

import matplotlib.pyplot as plt

Create a scatter plot with the derived decision tree feature and the target:2.

plt.scatter(X_test['new_feat'], y_test)
plt.ylabel('MEDV')
plt.xlabel('new_feat')
plt.title('Tree derived feature vs House Price')
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The preceding code block outputs the following plot, where you can see the monotonic
relationship between the newly created feature and the target:

In the scatter plot, we can see a fairly decent monotonic relationship between the new
feature and the target.

Carrying out PCA
PCA is a dimensionality reduction technique used to reduce a high dimensional dataset
into a smaller subset of Principal Components (PC), which explain most of the variability
observed in the original data. The first PC of the data is a vector along which the
observations vary the most, or in other words, a linear combination of the variables in the
dataset that maximizes the variance. Mathematically, the first PC minimizes the sum of the
squared distances between each observation and the PC. The second PC is again a linear
combination of the original variables, which captures the largest remaining variance and is
subject to the constraint that is perpendicular to the first PC.

In general, we can build as many PCs as variables in the dataset. Each PC is a linear
combination of the variables, orthogonal to the other components, and maximizes the
remaining variance, which is left unexplained by previous PCs. The way these PCs are built
means that it is often possible for a few of the first PCs to capture most of the information of
the original data, as well as most of its relationships to the target.

In this recipe, we will implement PCA to reduce the dimensions of our data and create new
features, the principal components, using scikit-learn.
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Getting ready
If you are not familiar with PCA or want to know more about the mathematics underlying
the functionality of this algorithm and how the components are built, these books are a
good resource:

An Introduction to Statistical Learning, by James G, Wittens D, Hastie T, and
Tibshirani R, Springer Ed
Elements of Statistical Learning, by Hastie T, Tibshirani R and J. Friedman,
Springer Ed

The first book is better to get some intuition about the functionality of PCA, and the second
book is better for mathematics. Both books are freely available online.

In this recipe, we are going to perform PCA using scikit-learn, that is, we are going to find
the PCs of the Boston House Prices dataset that comes with scikit-learn and then identify
the minimum number of components that capture most of the variance of the data.

How to do it...
Let's begin by importing the required libraries and preparing the Boston House Prices
dataset from scikit-learn:

Import pandas and the required functions, classes, and data from scikit-learn:1.

import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.decomposition import PCA

Load the Boston House Prices dataset into a pandas dataframe:2.

boston_dataset = load_boston()
data = pd.DataFrame(boston_dataset.data,
columns=boston_dataset.feature_names)
data['MEDV'] = boston_dataset.target
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Separate the dataset into train and test sets:3.

X_train, X_test, y_train, y_test = train_test_split(
    data.drop('MEDV', axis=1), data['MEDV'], test_size=0.3,
random_state=0)

We are now going to obtain the principal components:

Let's set up the PCA transformer from scikit-learn to return all possible4.
components:

pca = PCA(n_components=None)

Let's find the principal components in the train set:5.

pca.fit(X_train)

Let's obtain the components for both train and test sets:6.

train_t = pca.transform(X_train)
test_t = pca.transform(X_test)

Remember that scikit-learn returns NumPy arrays, hence train_t and
test_t are NumPy arrays.

When creating principal components, a few of the components will capture most
of the variability of the original data. To identify how many components capture
most of the variability in the Boston House Prices dataset, we can plot the
percentage of variance explained (by each component) versus the component
number.

Plot the percentage of the total variance explained by each component:7.

plt.plot(pca.explained_variance_ratio_)
plt.title('Percentage of Variance Explained')
plt.xlabel('Number of Components')
plt.ylabel('Percentage of Variance Explained')

Fortunately, the percentage of variance explained is captured and stored
within scikit-learn's PCA object, so that we can easily retrieve it to identify
the number of components that capture most of the variance.
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The preceding code returns the following plot, where we can see that the first
two components capture most of the variability of the data:

The preceding plot indicates that we can use the first two components to train our machine
learning models using a linear model.

PCA is sensitive to the scale of the features; therefore, it is advisable, if not
compulsory to have features within a similar scale before fitting the PCA
object from scikit-learn. You can rescale your features with the methods
covered in Chapter 8, Performing Feature Scaling, of this book.

How it works...
In this recipe, we derived the principal components of the Boston House Prices dataset and
then identified the minimum number of components that explain most of the variability
observed in the data, using scikit-learn. We loaded the dataset from scikit-learn and then
separated the data into train and test sets using the train_test_split() function. Next,
we created an instance of a PCA transformer from scikit-learn, to derive all possible
principal components, which equal the number of original features in the dataset.
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By setting n_components to None, the transformer will return all of the
derived principal components, which are the same number as the number
of the original features in the dataset.

The fit() method from the PCA() transformer found the principal components in the
train set, that is, the linear combinations of the variables that maximize the variance
explained. The transform() method calculated the principal components for each
observation. Finally, we plotted the percentage of variance explained by each component
versus the component number to identify the minimum number of components that
capture most of the variability.

See also
To learn more about the PCA transformer from scikit-learn, you can refer to https:/ /
scikit-learn.org/ stable/ modules/ generated/ sklearn. decomposition. PCA. html.

To get an intuition into how PCA works, visit this thread on Stack Exchange: https:/ /
stats.stackexchange. com/ questions/ 2691/ making- sense- of-principal- component-
analysis-eigenvectors- eigenvalues.
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10
Creating Features with

Transactional and Time Series
Data

Throughout this book, we've discussed multiple feature engineering techniques that we can
use to engineer variables in tabular data, where each observation is independent and shows
only 1 value for each available variable. However, data can also contain multiple values
that are not independent for each entity. For example, there can be multiple records for
each customer with the details of the customer's transactions within our organization, such
as purchases, payments, claims, deposits, and withdrawals. In other cases, the values of the
variables may change daily, such as stock prices or energy consumption per household. The
first data sources are referred to as transactional data, whereas the second data sources are
time series. Time series and transactional data contain time-stamped observations, which
means they share a time dimension.

We often create features that aggregate or summarize the information from the historical
data points of time series or transactions. For example, we can create features that capture
the maximum amount that was spent by the customer in the last week, the number of
transactions they made, or the time between transactions. The number of features we can
create and the ways in which we can aggregate this information is enormous. In this
chapter, we will discuss the most common ways of creating aggregated views of historical
data by using pandas. Then, we will make a shallow dive into Featuretools, a library
designed to automate feature creation from transactional data. Finally, we will point you to
other Python libraries that have been devised specifically for analyzing signal complexity.
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In this chapter, we will cover the following recipes:

Aggregating transactions with mathematical operations
Aggregating transactions in a time window
Determining the number of local maxima and minima
Deriving time elapsed between time-stamped events
Creating features from transactions with Featuretools

Technical requirements
In this chapter, we will use the pandas, NumPy, SciPy, and Matplotlib Python libraries, all
of which can be installed using the free Anaconda Python distribution. To do this, follow
the instructions in the Technical requirements section of Chapter 1, Foreseeing Variable
Problems when Building ML Models.

We will also use the open source Python library Featuretools, which can be installed using
pip or conda. Follow the instructions in the following documentation: https:/ /docs.
featuretools.com/ en/ stable/ getting_ started/ install. html.

Throughout the recipes in this chapter, we will work with a mock customer transaction
dataset that comes with Featuretools and the Appliances energy prediction dataset,
available in the UCI Machine Learning Repository: http:/ /archive. ics. uci. edu/ ml/
datasets/Appliances+energy+prediction.

Dua, D. and Graff, C. (2019). UCI Machine Learning Repository [http:/ /
archive. ics. uci. edu/ ml]. Irvine, CA: University of California, School of
Information and Computer Science.

To download the Appliances energy prediction dataset, follow these steps:

Go to http:/ / archive. ics. uci. edu/ ml/machine- learning- databases/ 00374/ .1.
Click on energydata_complete.csv to download the data:2.
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Save energydata_complete.csv to the folder where you will run all the3.
commands in this chapter.

Make sure you install Featuretools and download the dataset from the UCI Machine
Learning repository before proceeding with this chapter, since we will be using both
throughout.

Aggregating transactions with mathematical
operations
Previously, we mentioned that we can aggregate information from historical data points
into single observations like the maximum amount spent on a transaction, the total number
of transactions, or the mean value of all transactions, to name a few examples. These
aggregations are made with basic mathematical operations, such as the maximum, mean,
and count. As you can see, mathematical operations are a simple yet powerful way to
obtain a summarized view of historical data.

In this recipe, we will create a flattened dataset by aggregating multiple transactions using
common mathematical operations. We will use pandas to do this.

In a flattened dataset, we remove the time-dimension from the transaction
data or time series to obtain a single observation per entity.

Getting ready
In this recipe, we will use the mock customer transaction dataset that comes with
Featuretools. This toy dataset contains information about transactions for five different
customers. This data contains a unique identifier to distinguish between the customers, a
unique identifier for each transaction, the transaction time, and the transaction amount, that
is, the purchase amount. We will derive features from the purchase amount variable by
performing mathematical operations with pandas.
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How to do it...
Let's begin by importing the libraries and getting the dataset ready:

Let's import the required Python libraries:1.

import pandas as pd
import featuretools as ft

Let's load the dataset from Featuretools:2.

data_dict = ft.demo.load_mock_customer()

Let's merge the three different tables from Featuretools' mock dataset into a3.
pandas dataframe:

data = data_dict["transactions"].merge(
             data_dict["sessions"]).merge(data_dict["customers"])

Now, we'll select the columns that identify each unique customer, each unique4.
transaction, the time of the transaction, and the amount spent per transaction:

data = data[['customer_id', 'transaction_id', 'transaction_time',
'amount']]

For the purpose of this demo, we'll ignore the sessions table. To take a
look at the data that's loaded after step 4, visit the accompanying Jupyter
Notebook in this book's GitHub repository, or execute data.head().

Now, we need to create a single view per customer that summarizes their
purchase activity. To do this, we will remove the time dimension of the 
transactions to capture the historical behavior in different variables, thus
obtaining one feature vector per customer.

Let's begin by making a list of the functions we will use to summarize the data:5.

operations = ['sum', 'max', 'min', 'mean', 'median', 'std',
'count']
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Now, let's create a list with meaningful names for the features we will create with6.
the preceding operations:

feature_names = [ 'total_amount', 'max_amount', 'min_amount',
                  'mean_amount', 'median_amount', std_amount',
                  'number of transactions']

Finally, we'll create a new dataframe with the features that capture the7.
aggregated view of the transactions for each customer and then display the
dataframe:

df = pd.DataFrame()
df[feature_names] =
data.groupby('customer_id')['amount'].agg(operations)
df

We can see the new features for each customer in the following screenshot:

Each feature captures a bit of the historical information.

How it works...
In this recipe, we summarized the information that's available for each customer in an
aggregated view that captures the main statistical parameters of the multiple transactions
by using an example dataset from Featuretools.

First, we loaded the mock dataset from Featuretools' demo module with the
load_mock_demo() method, which returns a dictionary with three main tables: the
customer information, the session information, and the transaction information. Each table
is a pandas dataframe and can be accessed individually by calling the dictionary and the
respective key. For example, data_dict["transactions"] returns a pandas dataframe
with the transactions table. With pandas merge(), we merged the three tables into one
dataframe.
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Pandas merge() automatically identified the columns those tables have in
common and merged them using these columns' values.

After loading the dataset, we retained four columns, which were the unique identifiers for
the customers and the transactions, the transaction time, and the amount spent per
transaction. With that, we had the dataframe ready to carry on with the recipe.

To create the new features from the transactions, we made a list with the names of the
mathematical operations to use to summarize the historical information. Next, we made a
list of names for the new features. Finally, we used pandas groupby() to create groups of
dataframes for each customer, and with pandas agg() and the list of the mathematical
operations, we applied each operation to the transaction amount variable for each
customer. This code returned a flattened view of the dataset without the time dimension,
where each row corresponds to one customer and each variable contains information that
summarizes their purchase behavior.

In this recipe, we aggregated the information in the entire dataset.
However, generally, it's more useful to aggregate information that occurs
in a temporal window prior to the event we want to predict. For details
on how to aggregate features in time windows, take a look at the
Aggregating transactions in a time window recipe of this chapter.

There's more...
We can also aggregate transactional data using the Featuretools library. To do that, let's
import the required libraries and load the dataset, just like we did in step 1 to step 4 of this
recipe. To work with Featuretools, we need to transform the dataframe into an entity set.
Let's get started:

Let's create an entity set and give it a representative name:1.

es = ft.EntitySet(id="customer_data")

For more details on entity sets, take a look at the Creating features from
transactions with Featuretools recipe of this chapter.
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Let's add the dataframe to the entity set by indicating that the transaction_id2.
is the unique transaction identifier and setting the transaction time as the time
index of the entity set:

es.entity_from_dataframe(entity_id='transactions',
 dataframe=data,
 index="transaction_id",
 time_index='transaction_time')

Featuretools needs to identify the time index and unique transaction index
to perform its operations.

To indicate that each customer is linked to certain transactions within the entity3.
set, we need to create a new entity using the normalize_entity() method,
give the entity a name—in this case, customers—and specify the unique
identifier for the customers:

es.normalize_entity(base_entity_id="transactions",
                    new_entity_id="customers",
                    index="customer_id")

Now, we have the entity set ready to perform the feature aggregations.

In this recipe, we create an entity set from a dataframe, since this is often
the format in which we have our data. However, we can load the data
from Featuretools directly as an entity. For more details, go to https:/ /
docs. featuretools. com/ en/stable/ automated_ feature_ engineering/
afe.html.

To create these features, we'll use Featuretools' dfs() transformer and specify4.
the entity over which the data should be aggregated, that is, the customers, and
then pass the list of mathematical operations that should be used to create the
new features (we created a list with mathematical operations in step 5 of the How
to do it... section of this recipe):

feature_matrix, features = ft.dfs(entityset=es,
                                  target_entity="customers",
                                  agg_primitives=operations,
                                  trans_primitives=[],
                                  verbose=True,
                                 )
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For details on how dfs() works, take a look at the Creating features from
transactions with Featuretools recipe of this chapter.

The dfs() method from Featuretools will aggregate the features and return them in a new
dataframe, which we can display by executing feature_matrix. The following output
shows the aggregated features in feature_matrix when it's run on a Jupyter Notebook:

Note that the values of this table are identical to those of the table in step 7 of the How to do
it... section of this recipe.

See also
In this recipe, we used Featuretools' dfs() with a list of mathematical functions to
aggregate the features. If we omit the mathematical functions, dfs() will automatically
perform a set of default operations to aggregate them. To discover the default feature
aggregations that are returned by Featuretools' dfs(), go to https:/ /docs. featuretools.
com/en/stable/generated/ featuretools. dfs.html#featuretools. dfs.

To learn more about Featuretools, check out its official documentation: https:/ /docs.
featuretools.com/ en/ stable/ index. html.

Aggregating transactions in a time window
When we want to predict an event at a certain point in time, often, transactions or values
closer to the event tend to be more relevant. Then, if we want to predict whether a customer
will churn next week, the information in the last weeks or months tends to be more
informative than the transactions of the customer in the past 5 years.
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We can use mathematical operations to summarize historical data, just like we did in the
previous recipe, but only for a certain temporal window. This way, we can create features
such as the maximum amount spent in the last week or the number of transactions in the
last month, to name a few examples. In this recipe, we will summarize time series data over
discrete time windows using pandas.

Getting ready
In this recipe, we will use the Appliances energy prediction dataset from the UCI Machine
Learning Repository. We will work with the Appliances and lights variables, which
contain records of the electricity that's consumed by appliances or lights in a single
household at intervals of 10 minutes for a period of 5 months. To become familiar with the
dataset, visit the Jupyter Notebook that accompanies this recipe in this book's GitHub
repository (https:/ / github. com/ PacktPublishing/ Python- Feature- Engineering-
Cookbook), where you will find visualizations so that you can understand the values,
seasonality, and trends of these time series.

How to do it...
Let's begin by importing the libraries and getting the dataset ready:

First, we'll import pandas:1.

import pandas as pd

Now, we'll load three variables from the Appliances energy prediction dataset:2.
the date and time in which the energy consumption was recorded and the energy
that's consumed by appliances and lights:

cols = ['date', 'Appliances', 'lights']
data = pd.read_csv('energydata_complete.csv', usecols=cols)

At the moment, the data type of the date variable is an object. Let's change it so3.
that it's a datetime:

data['date'] = pd.to_datetime(data['date'])
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Let's create some new features that capture the average energy consumption by4.
appliances and lights in the last 60 minutes, where six observations cover the 60
minutes and the aggregation is done over the date variable. Next, let's display
the top 10 rows of the result:

data_rolled = data.rolling(window=6, on='date').mean()
data_rolled.head(10)

The output of the preceding code shows the new features capturing the average
electricity consumption of the six rows:

We can create the same features by specifying the time window as a string
instead. We can do this using data_rolled =
data.rolling(window='60min', on='date',

min_periods=6).mean().

We can speed up the feature creation process by aggregating multiple operations
in each time window.

Let's begin by making a list of the functions we will use to summarize the data in5.
each time window:

operations = ['sum', 'max', 'min', 'mean', 'median', 'std']
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Now, we'll create a dictionary specifying which operation to apply to each6.
variable. In this case, we will apply all the operations to both variables and then
display the dictionary:

op_dict = {key: operations for key in ['Appliances', 'lights']}
op_dict

The output of the preceding block is the following dictionary:

{'Appliances': ['sum', 'max', 'min', 'mean', 'median', 'std'],
 'lights': ['sum', 'max', 'min', 'mean', 'median', 'std']}

Finally, we'll create a new dataframe with the new features that capture the7.
aggregated view of the energy consumption in the last hour. Then, we'll display
the top 10 rows:

data_rolled = data.set_index('date').rolling(
                             window='60min').agg(op_dict)
data_rolled.head(10)

We can see the summarized energy consumption pattern in the past hour, for every 10
minutes, in the following screenshot:

Note that each observation in the new dataframe is the average of the six
previous observations. This means they aren't independent and can be
very similar. The larger the temporal windows, the more similar the
resulting aggregations tend to be.
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How it works...
In this recipe, we created new features that summarize the information that occurred in a
certain temporal window by using the Appliances energy prediction time series dataset.

First, we loaded the columns with the date of the energy consumption record and the
energy that's consumed by appliances and lights into a pandas dataframe. The dataset
contained records of energy consumption at regular 10 minute intervals.

To determine the mean energy that was consumed in the previous hour, we used pandas
rolling(), followed by pandas mean(). The energy consumption is recorded every 10
minutes; this means that six observations span one hour of energy consumption. Thus, we 
specified six to the window argument of pandas rolling(). The pandas rolling()
method applied mean() to six consecutive observations and displayed it in the last of the
six observations it averaged.

The first five rows of the returned dataframe contain NaN values because
rolling() needed a minimum of six precedent values to return the
average. We can change this behavior by changing the default value of the
min_periods argument.

Alternatively, we set up pandas rolling() with the '60min' string and specified the
datetime variable to the on parameter.

Setting pandas rolling() with window=6 makes the method operate
over the six last available consecutive rows, whereas setting rolling()
with window='60min' makes the method specifically identify the last
available 60 minutes of data, thereby getting the time information from
the datetime variable.

The min_periods parameter from pandas rolling() specifies the minimum number of
observations that are needed to return the indicated average. When we set windows=6,
min_periods is automatically set to 6. This means that an average will only be displayed
for those observations for which there are five precedent rows of data available. When we
set window='60min', we need to specify min_periods=6; otherwise, the result will
contain the average of the last six rows if they exist or the average of the available
precedent rows.

Compare the result that's returned by data.rolling(window='60min',
on='date').mean() with that of data.rolling(window=6,
on='date').mean().
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Finally, we automated the creation of features in a time window by calculating multiple
mathematical operations simultaneously. First, we captured the name of the mathematical
operations in a list. Next, we made a dictionary with the name of the variables as keys and
the operations to apply to each variable as values. To create the features, we set the date 
columns as an index of the dataframe with pandas set_index() and used pandas
rolling() with a 60-minute window, followed by pandas agg() with the dictionary as an
argument. This operation returned a new dataframe with the date as an index and the
features with the mathematical computations as columns.

There's more...
In this recipe, we created new features that aggregate energy consumption with commonly
used mathematical computations, which are built into pandas. We can also apply user-
defined computations. In this section, we will create two functions to detect the number of
local maxima and minima in time series, and then calculate those values per day of energy
consumption.

To do this, we'll import pandas, load the data, and parse the date variable into datetime
format, just like we did in step 1 to step 3 of this recipe:

First, let's import a function to find the local maxima from SciPy's signal1.
module:

from scipy.signal import find_peaks

Let's create two functions to count the number of local maxima and minima in a2.
time series:

def find_no_peaks(x):
    peaks, _ = find_peaks(x)
    return len(peaks)

def find_no_valleys(x):
    valleys, _ = find_peaks(1/x)
    return len(valleys)

We'll discuss the preceding code in more detail in the Determining the
number of local maxima and minima recipe of this chapter.
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Now, we can apply the functions we created using pandas by rolling over a3.
window of 1 day:

data_rolled = data.set_index('date').rolling(
                    window='1d').agg([find_no_peaks,
find_no_valleys])

To discover the number of peaks per day, execute the following command, which4.
returns the value of the number of local minima and maxima every one day:

for row in range(144, 1440, 144):
    print(data_rolled.iloc[[row]])

You can view the output of this command in the accompanying Jupyter Notebook in this
book's GitHub repository (https:/ / github. com/ PacktPublishing/ Python- Feature-
Engineering-Cookbook).

Energy consumption is recorded every 10 minutes. This means that 144
rows contain the energy that's consumed in 1 day.

See also
Featuretools offers awesome functionality that we can use to aggregate features within a
temporal window prior to user-defined cut-off times. This is usually set up ahead of the
event we want to predict. To learn more about this functionality, take a look at the
following links:

https:// docs. featuretools. com/en/ stable/ automated_ feature_ engineering/
handling_ time. html#what- is- the-cutoff- time

https:// docs. featuretools. com/en/ stable/ automated_ feature_ engineering/
handling_ time. html#creating- and- flattening- a-feature- tensor

Another commonly used feature is the percentage change in value between the current and
the precedent observation, which we can create automatically with pandas pct_change().
You can find an example of how to use this command with the Appliances energy
prediction dataset in the accompanying Jupyter Notebook. For more information about this
method, take a look at the official documentation: https:/ /pandas. pydata. org/pandas-
docs/stable/reference/ api/ pandas. DataFrame. pct_ change. html.
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Finally, you can find out more about pandas rolling() in its official documentation:
https://pandas.pydata. org/ pandas- docs/ stable/ reference/ api/ pandas. DataFrame.
rolling.html.

Determining the number of local maxima
and minima
Time series can be regarded as a signal, such as sound or electrocardiograms, and thus we
can extract features that capture some of the complexity of the signal. Examples of signal
complexity include the maximum or mean values, as we discussed in the previous recipes.
We can also extract more complex features such as the number of local maxima or minima,
or even more complex ones, such as the coefficients of the courier transform.

In this recipe, we will determine the number of local maxima and minima manually using
the signal module from SciPy in combination with pandas. Then, we will point you to a
Python package that extracts these and other complex signal processing parameters
automatically that you can explore and use to expand your toolset.

Getting ready
Local maxima or local minima, also known as extrema, are the largest or smallest values of
a function either within a certain range or in the entire domain of the function. They signal
a change in the trend of the function. Here, local maxima come after an increase and prior
to a decrease in the values of the function, whereas local minima come after a decrease and
prior to an increase in the values of the function.

To find local extrema, we will use the find_peaks function from the signal module from
SciPy, which finds all the local maxima by performing a simple comparison of neighboring
values.

How to do it...
Let's begin by importing the libraries and getting the data set ready:

Let's import the required libraries and function:1.

import numpy as np
import pandas as pd
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import matplotlib.pyplot as plt
from scipy.signal import find_peaks

Let's load the Appliances energy prediction dataset:2.

data = pd.read_csv('energydata_complete.csv')

The data type of the date variable is object; let's change it to datetime:3.

data['date'] = pd.to_datetime(data['date'])

Now, we need to extract the day, month, and hour part from the datetime4.
variable into new columns:

data[['day', 'month', 'hr']] = pd.DataFrame([(x.day, x.month,
x.hour) for x in data['date']])

We discussed the code in the preceding step in the Deriving representations
of year and month and Extracting time parts from a time variable recipes
of Chapter 7, Deriving Features from Date and Time Variables.

Let's make a plot with the mean energy that's consumed by appliances per hour:5.

data.groupby('hr')['Appliances'].mean().plot()
plt.ylabel('Energy in Kh')
plt.title('Daily Cycle of Energy Consumption by Appliances')

The following plot shows the average energy that's consumed per hour
throughout the day, where the baseline energy consumption throughout the night
hours is below 60 Kh:
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Let's make a plot of the mean energy that's consumed by appliances per day6.
throughout the 5 months of data we have collected:

data.groupby(['month', 'day'])['Appliances'].mean().plot()
plt.ylabel('Energy in Kh')
plt.title('Mean daily Energy Consumption')

In the following plot, we can see that there are several local minima and maxima
in the average energy that have been consumed per day in our 5 months of
records:

Let's create a pandas Series with the mean energy that's been consumed by7.
appliances per day throughout the 5 months:

daily_ec = data.groupby(['month', 'day'])['Appliances'].mean()

Let's determine the local maxima in the preceding time series but with the8.
constraint that the local maxima can't show values below the 60Kh baseline
energy consumption:

peaks, _ = find_peaks(daily_ec, height=60)
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Now, let's create a plot like the one in step 6 and overlay red symbols on the local9.
maxima that we identified with the function in step 8, and create a line at the
baseline energy consumption level of 60 Kh:

plt.figure(figsize=(12, 4))
daily_ec.plot()
plt.plot(peaks, daily_ec.values[peaks], "o", color='red')
plt.plot(np.full_like(daily_ec, 60), "--", color="gray")
plt.show()

In the following output, we can see that the function in step 8 correctly identified
the days with maximum energy consumption throughout the 5 months of records
we have:

Now, let's find the local minima by using the same function from step 8 and the10.
inverse of the time series:

valleys, _ = find_peaks(1/daily_ec, height=(0, 1/60))

Now, let's create a plot like the one in step 6 and overlay green symbols on the11.
local minima that we identified with the function in step 10:

plt.figure(figsize=(12, 4))
daily_ec.plot()
plt.plot(valleys, daily_ec.values[valleys], "o", color='green')
plt.plot(np.full_like(daily_ec, 60), "--", color="gray")
plt.show()
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In the following plot, we can see the days of minimum energy consumption throughout the
5 months of records we have:

Note how the minima under the baseline energy consumption of 60 Kh
were omitted.

We can count the number of local maxima and minima in a temporal window of the time
series to start getting insight into its complexity, just like we did in the There's more section
in the previous recipe, Aggregating transactions in a time window.

How it works...
In this recipe, we identified the local maxima and minima in the daily energy consumed by
house appliances. First, we loaded the Appliances energy prediction dataset from the UCI
Machine Learning Repository and extracted different parts of time, that is, day, month, and
hour, from the datetime variable, as we discussed in the Deriving representations of year and
month and Extracting time parts from a time variable recipes of Chapter 7, Deriving Features
from Date and Time Variables.

Next, we plotted the mean energy consumed per hour, or the mean energy consumed per
day and month, using pandas groupby(), pandas mean(), and pandas plot().
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Next, we created a pandas time series with the mean energy consumed by appliances per
day across the 5 months of data we have using pandas groupby(), followed by pandas
mean(). To determine the local maxima in this pandas Series, we used the find_peaks
function from the signal module from SciPy. The find_peaks function takes a time series
and, optionally, a threshold with the minimum height the peaks should have (we specified
60 to the height argument in this recipe), and returns a Numpy array with the indices of
the time series at which the local maxima were identified.

Next, we created a plot of the time series using pandas plot(). Then, using plt.plot(),
we overlaid red dots at the location of the local maxima. With the NumPy full_like()
method, we created an array with the length of the time series where all the values were the
number 60, which we then overlaid on the plot to signal the baseline energy consumption
of 60 Kh.

To determine the local minima, we used the find_peaks function over the inverse of the
mean energy consumed per day. In other words, we turned the time series upside down to
find the local maxima, which corresponds to the local minima of the original values. Then,
we laid the local minima over the time series plot, as we explained in the preceding
paragraph.

When we set up find_peaks with the inverse of the time series, we
ignored the local minima where the values were below the 60 Kh baseline
energy consumption by setting height=(0, 1/60).

There's more...
In this recipe, we identified the local maxima and minima in a time series for a single
household. But how could we determine the local maxima and minima for several houses?
We can combine the use of pandas groupby(), pandas agg(), and user-defined functions
to achieve this goal. To demonstrate how to do this, we will use the toy customer
transactions dataset from Featuretools. Let's get started:

For more details about the customer transactions dataset from
Featuretools, visit the Getting ready section of the Aggregating transactions
with mathematical operations recipe in this chapter.

Let's import the required libraries and data:1.

import numpy as np
import pandas as pd
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import matplotlib.pyplot as plt
from scipy.signal import find_peaks
import featuretools as ft

Let's load the mock customer transactions dataset while retaining four of the2.
columns:

data_dict = ft.demo.load_mock_customer()
data = data_dict["transactions"].merge(
data_dict["sessions"]).merge(data_dict["customers"])
data = data[['customer_id', 'transaction_id',  'transaction_time',
                'amount']]

Let's create a new feature with the hour of transaction time:3.

data['hr'] = data['transaction_time'].dt.hour

Let's create a function that takes a time series and identifies and counts the4.
number of local maxima:

def find_no_peaks(x):
    peaks, _ = find_peaks(x)
    return len(peaks)

Let's create a function that takes a time series and identifies and counts the5.
number of local minima:

def find_no_valleys(x):
    valleys, _ = find_peaks(1/x)
    return len(valleys)

Finally, let's use the functions in step 4 and step 5 to count the local maxima and6.
minima in the number of transactions per hour, per customer:

data.groupby(['customer_id', 'hr'])['amount'].mean().groupby(
    'customer_id').agg([find_no_peaks,find_no_valleys])
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The preceding code returns the following dataframe, which shows the number of local
maxima and minima in the mean transaction value per hour for each customer:

You can find some plots where the local extrema were laid over the time
series, and the code that was used to return them in the accompanying
Jupyter Notebook of this book's GitHub repository (https:/ /github. com/
PacktPublishing/ Python- Feature- Engineering- Cookbook).

See also
In the accompanying Jupyter Notebook, you will find more details about the output of each
individual line of code and method that was used throughout this recipe.

For more details about find_peaks from SciPy signal, check out the following links:

https:// docs. scipy. org/ doc/ scipy/ reference/ generated/ scipy. signal.
find_peaks. html

https:// stackoverflow. com/ questions/ 1713335/ peak- finding- algorithm-
for-python- scipy

For more information about the signal module from SciPy, go to https:/ /docs. scipy. org/
doc/scipy/reference/ signal. html.

The Python library tsfresh contains multiple functionalities that we can use to
automatically extract features that capture signal complexity. For more details, go
to https://tsfresh. readthedocs. io/ en/ latest/ .
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Deriving time elapsed between time-
stamped events
In the previous recipes, we performed mathematical operations over the values of the time
series to obtain new features that summarize information about the variable, such as the
mean and maximum values or the cumulative sum. It is also possible to perform these
mathematical operations over the time-stamp and obtain information about the time
between transactions or the time between specific events.

In this recipe, we will calculate the time between transactions, that is, the time between
successive records of the variable values. Then, we will determine the time between specific
events, such as the time between peaks of energy consumption, to demonstrate the power
of pandas when it comes to aggregating time series data.

How to do it...
Let's begin by importing the necessary libraries and getting the dataset ready:

Let's import the required libraries and function:1.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.signal import find_peaks

Let's load the Appliances energy prediction dataset:2.

data = pd.read_csv('energydata_complete.csv')

The data type of the date variable is object; let's change it to datetime:3.

data['date'] = pd.to_datetime(data['date'])
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First, let's calculate the time between transactions, that is, the time between each4.
energy record, expressed in minutes:

data['time_since_previous'] = data['date'].diff()
data['time_since_previous'] =
data['time_since_previous']/np.timedelta64(1,'m')

We discussed the code in step 4 in the Combining pairs of features with
mathematical functions recipe of Chapter 9, Applying Mathematical
Computations to Features, and the Capturing elapsed time between datetime
variables recipe of Chapter 7, Deriving features from Dates and Time
Variables.

Once we create the variable that captures time since previous
transactions, we can use the mathematical operations that we used in the
Aggregating transactions with mathematical operations recipe at the beginning
of this chapter to create new features from it.

In the remaining part of this recipe, we will determine the time between specific
events—in this case, the time between the local maxima in the daily mean energy
consumed by appliances.

Let's extract the day and month from the datetime variable and put them into5.
new variables:

data[['day', 'month']] = pd.DataFrame([(x.day, x.month) for x in
data['date']])

We discussed the code in the preceding step in the Deriving representations
of year and month recipe of Chapter 7, Deriving features from Date and Time
Variables.

Let's make the datetime variable the index of the series:6.

data.index = data['date']

Let's create a time series with the average electricity consumption by appliances7.
per day:

elec_pday = data.groupby(['month', 'day'])['Appliances'].mean()
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Let's find the indexes corresponding to the local maxima for the appliances'8.
energy consumption time series and display the results:

peaks, _ = find_peaks(elec_pday.values, height=60)
peaks

The array contains the indices of the series with the local maxima:

array([  3,   6,   9,  13,  15,  19,  21,  23,  26,  28,  32,  35,
        39,  42,  45,  49,  51,  53,  56,  59,  61,  63,  65,  68,
        72,  74,  77,  84,  88,  92,  96, 100, 102, 110, 116, 119,
       121, 123, 125, 128, 131, 134, 136], dtype=int64)

Now, let's create a dataframe with only the local maxima of the appliance's mean9.
energy consumption, reset its index to make month and day columns of the
dataframe, and add a variable with the year, and display the top rows:

tmp = pd.DataFrame(elec_pday[peaks]).reset_index(drop=False)
tmp['year'] = 2016
tmp.head()

The resulting dataframe contains the peaks of daily energy that were consumed
by appliances:

Now, let's reconstitute a datetime variable from the day, month, and year10.
variables of the previous dataframe:

tmp['date'] = pd.to_datetime(tmp[['year', 'month', 'day']])
tmp.head()
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We can see the additional datetime variable at the end of the dataframe:

To determine the distance in days between the local maxima, we need to11.
determine the distance between the rows, since each row in the previous
dataframe contains a local maxima:

tmp['peak_distance'] = tmp['date'].diff()
tmp['peak_distance'] = tmp['peak_distance'].dt.days
tmp.head()

We can see the number of days between the maximum values of energy consumption in the
last column of the dataframe:

To find out how to capture step 9 to step 12 in a function that can be
applied to any time series, or to determine the time that's elapsed between
the maxima and minima of a time series, take a look at the accompanying
Jupyter Notebook in this book's GitHub repository (https:/ / github. com/
PacktPublishing/ Python- Feature- Engineering- Cookbook).

How it works...
In this recipe, we determined the time between energy records and then the time between
specific events, such as the local maxima of a time series, using the Appliances energy
prediction dataset.
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We loaded the data and used pandas to_datetime() to change the format of the date
variable so that it was a datetime variable. Next, we used pandas diff() to determine the
difference in the datetime values between one row and its immediate precedent row,
which returned the time between energy records.

Next, we extracted the day and month from the datetime variable. By using pandas
groupby() over these features, followed by pandas mean(), we created a time series with
the mean energy consumed daily by appliances. Next, we used find_peaks() from the
signal module from SciPy to determine the local maxima in the time series. The output of
find_peaks() is a NumPy array with the indexes of the time series where the maxima are
located.

We discussed find_peaks() extensively in the Determining the number of
local maxima and minima recipe of this chapter.

Then, we used the indexes with the local maxima to slice the time series and obtain the
values with the peaks of energy consumption. With pandas DataFrame(), we converted
the series into a dataframe, retaining the day and month, which were in the index as
columns of the dataframe. Next, we added a column for the year so that we could
reconstitute the date from the day, month, and year variables using pandas
to_datetime(). With pandas diff(), followed by dt.days() over the datetime
variable, we determined the difference in days between one row and its previous row, that
is, the difference in days between one local maxima and its previous one.

There's more...
We can determine the mean value of the time between the local maxima and minima for
more than one entity. To demonstrate how to automate this procedure, we will use the
mock customer transaction dataset from Featuretools. Let's get started:

Let's import the required libraries:1.

import numpy as np
import pandas as pd
from scipy.signal import find_peaks
import featuretools as ft
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Let's load the customer transactions dataset into a pandas dataframe:2.

data_dict = ft.demo.load_mock_customer()
data = data_dict["transactions"].merge(
            data_dict["sessions"]).merge(data_dict["customers"])
data = data[['customer_id','transaction_id',
            'transaction_time','amount']]

Let's create a feature with the hour of the transaction:3.

data['hr'] = data['transaction_time'].dt.hour

Let's create a function to find the local maxima in a time series:4.

def find_no_peaks(x):
    peaks, _ = find_peaks(x)
    return peaks

Let's create a function to find the local minima in a time series:5.

def find_no_valleys(x):
    valleys, _ = find_peaks(1/x)
    return valleys

Let's create a function that concatenates and sorts the arrays by using the indices6.
of the local maxima and minima:

def concatenate_pav(x):
    ids = np.concatenate([find_no_peaks(x), find_no_valleys(x)])
    ids.sort()
    return ids

Let's create a function that slices a time series into the values with the local7.
maxima and minima and then determines the number of hours between them in
order to return the mean number of hours between the extrema for the entire
series:

def slice_and_measure(x):
    ids = concatenate_pav(x)
    tmp = pd.DataFrame(x.iloc[ids]).reset_index(drop=False)
    t = tmp['hr'].diff()
    return t.mean(skipna=True)
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Finally, let's determine the mean time between the local maxima and minima of8.
the mean purchase amount per hour, per customer:

data.groupby(['customer_id', 'hr'])['amount'].mean().groupby(
    'customer_id').apply(slice_and_measure)

We can see the returned Series in the following output:

customer_id
1    1.666667
2         NaN
3    1.000000
4    1.000000
5    3.000000
Name: amount, dtype: float64

The Series that was returned by step 8 contains the mean time between the extrema in days.
Customer 2 shows a NaN value, because there is only 1 maxima in its time series data, so it
isn't possible to determine any distances.

See also
In the accompanying Jupyter Notebook, which can be found in this book's GitHub
repository, you can find the output of the intermediate steps, along with some plots and
visualizations that will help you understand the code that was presented in this recipe.

Creating features from transactions with
Featuretools
Featuretools is an open source Python library that allows us to automatically create features
from time series and transactional databases with multiple transaction records for each
specific entity, such as customers. With Featuretools, we can automatically create features
at the transaction level. Such features include the day, month, and year from a datetime
variable, the time between transactions, or if the transaction occurred on a weekend, as well
as the cumulative sum or the difference in value between transactions.

Featuretools also aggregates existing and new features at the entity level—in our example,
at the customer level—using mathematical and statistical operations, such as the ones we
used in the Aggregating transactions with mathematical operations recipe of this chapter or by
using user-defined operations.
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In this recipe, we will create features at the transaction level and then aggregate both new
and existing features at the customer level by using Featuretool's automatic feature
extraction functionality.

How to do it...
Let's begin by importing the necessary libraries and getting the dataset ready:

Let's import pandas and Featuretools:1.

import pandas as pd
import featuretools as ft

Let's load the mock customer transactions dataset from Featuretools into a2.
dataframe:

data_dict = ft.demo.load_mock_customer()
data = data_dict["transactions"].merge(
         data_dict["sessions"]).merge(data_dict["customers"])
data = data[['customer_id', 'transaction_id',
        'transaction_time', 'amount']]

To work with Featuretools, we need to transform the dataframe into an entity set.3.
To do this, we'll create an entity set and give it a representative name:

es = ft.EntitySet(id="customer_data")

We'll add the dataframe to the entity set by specifying that transaction_id is4.
the unique transaction identifier, and by setting the transaction time as the time
index of the entity set:

es.entity_from_dataframe(entity_id='transactions',
 dataframe=data,
 index="transaction_id",
 time_index='transaction_time')
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Featuretools needs to identify the time index and unique transaction index
to perform its operations.

Let's specify that, within the entity set, each customer is linked to certain5.
transactions. To do this with Featuretools, we need to create a new entity using
the normalize_entity() method, give the entity a name—in this case,
customers—and specify the unique identifier for the customers:

es.normalize_entity(base_entity_id="transactions",
                    new_entity_id="customers",
                    index="customer_id")

Now that we have the entity set ready, we can start to build new features and
perform feature aggregations. Let's begin by creating new features at a transaction
level.

Let's make a list of the names of the operations we want to perform to create the6.
new features:

transf_operations = ['is_weekend', 'cum_sum',
'cum_count','time_since_previous']

Now, let's set up dfs() from Featuretools so that we can return the previous7.
features at the transaction level:

feature_matrix, features = ft.dfs(entityset=es,
                           target_entity="transactions",
                           agg_primitives=[],
                           trans_primitives = transf_operations,
                           verbose=True)

Note that we should leave agg_primitives as an empty list so that
Featuretools doesn't aggregate the data at the customer level as well.

To visualize these new features, execute feature_matrix.head().

In the rest of this recipe, we will aggregate new and existing features at the
customer level.
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Now, we will create a new feature at the transaction level that captures the time8.
between transactions and then aggregates this feature and the transaction
purchase amount at the customer level using the mean and maximum
mathematical operations:

feature_matrix, features = ft.dfs(entityset=es,
                      target_entity="customers",
                      agg_primitives=["mean", 'max'],
                      trans_primitives=['time_since_previous'],
                      verbose=True)

Execute feature_matrix to return the five-row dataframe, along with the aggregated
view of the features at the customer level.

How it works...
In this recipe, we automated the process of feature creation and aggregation using the open
source Featuretools library. To proceed with this recipe, we loaded the mock customer
transactions dataset as a pandas dataframe, which is the format we collect our data in the
most.

To work with Featuretools, we needed to transform the dataset into an entity set, which is
an object that specifies how the transactions are related to the different entities—in this
case, customers. To transform the dataframe into an entity set, we used the Featuretools
entity_from_dataframe() method and added the transaction_id as the unique
transaction identifier and the transaction time as the time index of the entity set. Next, we
created a new entity with the Featuretools normalize_entity() method and added
customer_id as the unique customer identifier, so that Featuretools understands which
transactions belong to which customer.

Feature creation with feature tools is done with the deep feature synthesis or dfs object. In
the dfs object, we can specify whether we want to derive new features at the transaction
level using the trans_primitives argument or aggregate features at the entity level using
the agg_primitives argument. Then, we can specify which entity to aggregate these
features over using the target_entity argument.
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To create features at the transaction level, we set target_entity to "transactions" and
passed a list with function names to the trans_primitives argument, leaving
agg_primitives as an empty list so that Featuretools doesn't perform aggregations as
well. The dfs object returned a pandas dataframe with the same number of rows as the
original dataframe and the newly created features.

Featuretools includes a default set of built-in operations that can
automatically create features at the transaction level. To find out about the
operations that are supported by this feature, go to https:/ /docs.
featuretools. com/ en/ stable/ api_ reference. html#transform-
primitives.

To create features at the customer level, we set target_entity to "customers" and
passed a list with the "time_since_previous" string so that Featuretools creates a new
feature with the time since the previous transaction, before making the aggregation. Then,
we passed a list with the mathematical operations to use to the aggregate features at the
customer level to the agg_primitives argument. The dfs object returned a pandas
dataframe with five rows, with each one corresponding to one customer, and the features
with the aggregated view of the transaction time and amount.

Featuretools includes a default set of built-in operations that can
automatically aggregate features at a higher entity level. To find out about
the operations that are supported by this feature, go to https:/ /docs.
featuretools. com/ en/ stable/ api_ reference. html#aggregation-
primitives.

In our mock dataset, there was only one numerical variable, which was the transaction
amount. If there were multiple numerical variables, Featuretools would apply the
aggregation functions to all of them automatically.

Featuretools applies some aggregations such as the mean, maximum, and
cumulative sum to all the numerical variables automatically. Other
aggregations, such as the count, are applied to integer variables, that is,
variables with unique identifiers. Finally, features that capture time
between events are applied automatically to the datetime variable. Thus,
when working with Featuretools, it is important to set the data types
correctly before feature creation.
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There's more...
With Featuretools, we can also create features at the transaction level or aggregate features
at a higher entity level with user-defined operations. Here, we will determine the number
of local maxima and minima per customer using Featuretools. Let's get started:

To implement user-defined aggregations with Featuretools, we need the1.
make_agg_primitive function and the Numeric object to identify the data type
of the variable that this function should be applied to. We also need the
find_peaks function to find the local maxima:

from featuretools.primitives import make_agg_primitive
from featuretools.variable_types import Numeric
from scipy.signal import find_peaks

Let's create a function that determines the number of local maxima and another2.
function that determines the number of local minima of a time series:

def find_no_peaks(column):
    peaks, _ = find_peaks(column)
    return len(peaks)

def find_no_valleys(column):
    valleys, _ = find_peaks(1 / column)
    return len(valleys)

We discussed the preceding functions extensively in the Determining the
number of local maxima and minima recipe of this chapter.

Now, we need to make the functions from step 2 aggregate the primitives of3.
Featuretools by specifying the data types over which they should automatically
operate and the data type they should return:

FindNoPeaks = make_agg_primitive(function=find_no_peaks,
                                 input_types=[Numeric],
                                 return_type=Numeric)

FindNoValleys = make_agg_primitive(function=find_no_valleys,
                                   input_types=[Numeric],
                                   return_type=Numeric)
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Finally, we can apply these functions to determine the mean and maximum4.
number of local maxima and minima of the transaction amount time series, as
well as the mean and maximum amount per transaction, per customer:

feature_matrix, features = ft.dfs(entityset=es,
                      target_entity="customers",
                      agg_primitives=[FindNoPeaks, FindNoValleys,
                                      'Mean', 'Max'],
                      trans_primitives=[],
                      verbose=True)

The returned feature_matrix dataframe contains five rows—one per customer—and the
mean and maximum number of local extrema and transaction amount.

See also
In this recipe, we just scratched the surface of what is possible with Featuretools. To learn
more about this amazing tool, take a look at the following links:

Demonstration of how to use Featuretools in a Kaggle dataset: https:/ /www.
kaggle.com/ willkoehrsen/ automated- feature- engineering- basics

Blog by a former Featuretools developer: https:/ /towardsdatascience. com/
automated- feature- engineering- in- python- 99baf11cc219

Demos of Featuretools on multiple datasets: https:/ / www.featuretools. com/
demos/

Featuretools documentation: https:/ /docs. featuretools. com/en/ stable/
index.html

To use Featuretools to create features in temporal windows, take a look at the following
links:

https:// docs. featuretools. com/en/ stable/ automated_ feature_ engineering/
handling_ time. html#what- is- the-cutoff- time

https:// docs. featuretools. com/en/ stable/ automated_ feature_ engineering/
handling_ time. html#creating- and- flattening- a-feature- tensor
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11
Extracting Features from Text

Variables
Text can be part of the variables in our datasets. For example, in insurance, some variables
that capture information about an incident may come from a free text field in a form. In
data from a website that collects customer reviews or feedback, we may also encounter
variables that contain short descriptions provided by text that has been entered manually
by the users. Text is unstructured, that is, it does not follow a pattern, like the tabular
pattern of the datasets we have worked with throughout this book. Text may also vary in
length and content, and the writing style may be different. How can we extract information
from text variables to inform our predictive models? This is the question we are going to
address in this chapter.

The techniques we will cover in this chapter belong to the realm of Natural Language
Processing (NLP). NLP is a subfield of linguistics and computer science, concerned with
the interactions between computer and human language, or, in other words, how to
program computers to understand human language. NLP includes a multitude of
techniques to understand the syntax, semantics, and discourse of text, and therefore to do
this field justice would require a book in itself.

In this chapter, instead, we will discuss those techniques that will allow us to quickly
extract features from short pieces of text, to complement our predictive models.
Specifically, we will discuss how to capture text complexity by looking at some statistical
parameters of the text such as the word length and count, the number of words and unique
words used, the number of sentences, and so on. We will use the pandas and scikit-
learn libraries, and we will make a shallow dive into a very useful Python NLP toolkit
called Natural Language Toolkit (NLTK).
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This chapter will cover the following recipes:

Counting characters, words, and vocabulary
Estimating text complexity by counting sentences
Creating features with bag-of-words and n-grams
Implementing term frequency-inverse document frequency
Cleaning and stemming text variables

Technical requirements
We will use the following Python libraries: pandas, Matplotlib, and scikit-learn, which you
can get by installing the Python Anaconda distribution, following the steps described in
the Technical requirements section in Chapter 1, Foreseeing Variable Problems in Building ML
Models.

We will also use NLTK from Python, a comprehensive library for NLP and text analysis.
You can find instructions to install NLTK here: http:/ / www.nltk. org/ install. html. If you
are using the Python Anaconda distribution, follow these instructions to install NLTK:
https://anaconda. org/ anaconda/ nltk.

After you install NLTK, open up a Python console and execute the following:

import nltk
nltk.download('punkt')
nltk.download('stopwords')

Those commands will download the necessary data to be able to run the recipes of this
chapter successfully.

If you haven't downloaded these or other data sources necessary for
NLTK functionality, NLTK will raise an error. Read the error message
carefully because it will direct you to download the data required to run
the command you are trying to execute.
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Counting characters, words, and vocabulary
One of the salient characteristics of text is its complexity. Long descriptions are more likely
to contain more information than short descriptions. Texts rich in different, unique words
are more likely to be richer in detail than texts that repeat the same words over and over. In
the same way, when we speak, we use many short words such as articles and prepositions
to build the sentence structure, yet the main concept is often derived by the nouns and
adjectives we use, which tend to be longer words. So, as you can see, even without reading
the text, we can start inferring how much information the text provides by determining the
number of words, the number of unique words, the lexical diversity, and the length of
those words. In this recipe, we will learn how to extract these features from a text variable
using pandas.

Getting ready
We are going to use the 20 Newsgroup dataset that comes with scikit-learn, which comprises
around 1,800 news posts on 20 different topics. More details about the dataset can be found
in these links:

Scikit-learn dataset website: https:/ / scikit- learn. org/ stable/ datasets/
index.html#newsgroups- dataset

Home page for the 20 Newsgroup dataset: http:/ /qwone. com/ ~jason/
20Newsgroups/ 

Before jumping into the recipe, let's become familiar with the features we are going to
derive from these text pieces. We mentioned that longer descriptions, more words in the
article, a greater variety of unique words, and longer words, tend to correlate with the
amount of information the article provides. Hence, we can capture text complexity by
extracting the following information:

The total number of characters in the text
The total number of words
The total number of unique words
Lexical diversity = total number of words / number of unique words
Word average length = number of characters / number of words

In this recipe, we will extract these numerical features using pandas, which is equipped
with multiple string processing functionality that can be accessed via the str attribute.
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How to do it...
Let's begin by loading pandas and getting the dataset ready to use:

Load pandas and the dataset from scikit-learn:1.

import pandas as pd
from sklearn.datasets import fetch_20newsgroups

Let's load the train set part of the 20 Newsgroup dataset into a pandas dataframe:2.

data = fetch_20newsgroups(subset='train')
df = pd.DataFrame(data.data, columns=['text'])

You can print out an example of a text variable in the dataframe by
executing print(df['text'][1]). Change the number between [] to
navigate through different texts. Note how every text description is a
single string composed of letters, numbers, punctuation, and spaces.

Now that we have the text in a pandas dataframe, we are ready to crack on with
the feature extraction.

Let's capture the number of characters in each string in a new column:3.

df['num_char'] = df['text'].str.len()

You can remove trailing whitespaces, including new lines, in a string
before counting the number of characters by adding the strip() method
before the len() method: df['num_char'] =
df['text'].str.strip().str.len().

Let's capture the number of words in each text in a new column:4.

df['num_words'] = df['text'].str.split().str.len()

Let's capture the number of unique words in each text in a new column:5.

df['num_vocab'] =
df['text'].str.lower().str.split().apply(set).str.len()

Python will interpret the same word as two different words if one has a
capital letter. To avoid this behavior, we introduce the lower()
method before the split() method.
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Let's create a feature that captures the lexical diversity, that is, the total number6.
of words to the number of unique words:

df['lexical_div'] = df['num_words'] / df['num_vocab']

Let's calculate the average word length by dividing the number of characters by7.
the number of words:

df['ave_word_length'] = df['num_char'] / df['num_words']

We have now extracted five different features that capture the text complexity, which we
can use as inputs to our machine learning algorithms. With df.head(), you can peek at the
values of the first five rows of the created features.

In this recipe, we have created new features straight away from the raw
data, without doing any data cleaning, removing punctuation, or even
stemming words. Note that these are usual steps performed ahead of most
NLP standard procedures. To learn more about this, visit the Cleaning and
stemming text variables recipe at the end of this chapter.

How it works...
In this recipe, we created five new features that capture text complexity utilizing the
pandas' str attribute to access built-in pandas functionality to work with strings. We 
worked with the text column of the train subset of the 20 Newsgroup dataset that comes
with scikit-learn. Each row in this dataset is composed of a string with text.

We used pandas' str followed by len() to count the number of characters in each string,
that is, the total number of letters, numbers, symbols, and spaces. We also combined
str.len() with str.strip() to remove trailing whitespaces at the beginning and end of
the string and in new lines, before counting the number of characters.

To count the number of words, we used pandas' str followed by split() to divide the
string into a list of words. The split() method creates a list of words by breaking the
string at the whitespaces between words. Next, we counted those words with pandas'
str.len(), obtaining the number of words per string.
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We can alter the behavior of str.split() by passing the string or
character at which we would like to have the strings divided. For
example, df['text'].str.split(';') divides a string at each
occurrence of ;.

To determine the number of unique words, we used pandas' str.split() to divide the
string into a list of words. Next, we applied the built-in Python method set() within
pandas' apply() to return a set of words; remember that a set contains unique occurrences
of the elements in a list, that is unique words. Next, we counted those words with pandas'
str.len() to return the vocabulary, or, in other words, the number of unique words in the
string. Python interprets as different words those that are written in uppercase from those
in lowercase; therefore, we introduced the pandas' lower() method to set all the characters
in lowercase before splitting the string and counting the number of unique words.

To create the lexical diversity and average word length features, we simply performed a
vectorized division of two pandas Series. And that is it: we created five new features with
information about the complexity of the text.

There's more...
We can go ahead and have a glimpse of the distribution of the newly created features in
each of the 20 different news topics present in the dataset, by introducing some simple
visualizations. To make histogram plots of the newly created features, after you run all of
the steps from the How it works... section of this recipe, follow these commands:

Import Matplotlib:1.

import matplotlib.pyplot as plt

Add the target with the news topics to the 20 Newsgroup dataframe:2.

df['target'] = data.target

Create a function to display a histogram of a feature of your choice for each one3.
of the news topics:

def plot_features(df, text_var):
    nb_rows = 5
    nb_cols = 4
    fig, axs = plt.subplots(nb_rows, nb_cols, figsize=(12, 12))
    plt.subplots_adjust(wspace=None, hspace=0.4)

    n = 0
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    for i in range(0, nb_rows):
        for j in range(0, nb_cols):
            axs[i, j].hist(df[df.target==n][text_var], bins=30)
            axs[i, j].set_title(text_var + ' | ' + str(n))
            n += 1
    plt.show()

Run the function for the number of words feature:4.

plot_features(df, 'num_words')

The preceding code block returns a plot where you can see the distribution of the number
of words in each one of the 20 news topics, numbered from 0 to 19 in the plot title:
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The number of words shows a different distribution depending on the news topics.
Therefore, this feature is likely useful in a classification algorithm to predict the topic of the
text.

See also
To learn more about the built-in string processing functionality from pandas' str, follow
this link: https:// pandas. pydata. org/ pandas- docs/ stable/ user_ guide/ text.
html#method-summary.

Estimating text complexity by counting
sentences
One aspect of a text we can capture in features is its complexity. Usually, longer
descriptions that contain multiple sentences spread over several paragraphs tend to
provide more information than descriptions with very few sentences. Therefore, capturing
the number of sentences may provide some insight into the amount of information
provided by the text. This process is called sentence tokenization. Tokenization is the
process of splitting a string into a list of pieces or tokens. In the previous Counting
characters, words, and vocabulary recipe, we did word tokenization, that is, we divided the
string into words. In this recipe, we will divide the string into sentences and then we will
count them. We will use the NLTK Python library, which provides this functionality.

Getting ready
In this recipe, we will use the NLTK Python library. Make sure you have installed NLTK
following the instructions for your operating system and then download the necessary data
as described in the Technical requirements section of this chapter.
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How to do it...
Let's begin with the recipe by importing the required libraries and dataset:

Load pandas, the sentence tokenizer from NLTK, and the dataset from scikit-1.
learn:

import pandas as pd
from nltk.tokenize import sent_tokenize
from sklearn.datasets import fetch_20newsgroups

To understand the functionality of the sentence tokenizer from NLTK, let's create2.
a variable that contains a string with multiple sentences:

text = """
The alarm rang at 7 in the morning as it usually did on Tuesdays.
She rolled over,
stretched her arm, and stumbled to the button till she finally
managed to switch it off.
Reluctantly, she got up and went for a shower. The water was cold
as the day before the engineers
did not manage to get the boiler working. Good thing it was still
summer.
Upstairs, her cat waited eagerly for his morning snack. Miaow! he
voiced with excitement
as he saw her climb the stairs.
"""

Let's now separate the string we created in step 2 into sentences using the NLTK3.
sentence tokenizer:

sent_tokenize(text)

The sentence tokenizer returns the list of sentences shown in the following
output:

['\nThe alarm rang at 7 in the morning as it usually did on
Tuesdays.',
 'She rolled over,\nstretched her arm, and stumbled to the button
till she finally managed to switch it off.',
 'Reluctantly, she got up and went for a shower.',
 'The water was cold as the day before the engineers\ndid not
manage to get the boiler working.',
 'Good thing it was still summer.',
 'Upstairs, her cat waited eagerly for his morning snack.',
 'Miaow!',
 'he voiced with excitement\nas he saw her climb the stairs.']
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The escape character followed by the letter \n, indicates a new line.

Let's count the number of sentences in the text variable:4.

len(sent_tokenize(text))

The code in the preceding line returns 7, which is the number of sentences in our
text variable. Now, let's determine the number of sentences in an entire
dataframe.

Let's load the train subset of the 20 Newsgroup dataset into a pandas dataframe:5.

data = fetch_20newsgroups(subset='train')
df = pd.DataFrame(data.data, columns=['text'])

To speed up the running of the following steps, let's work only with the first 106.
rows of the dataframe:

df = df.loc[1:10]

Let's also remove the first part of the text, which contains information about the7.
email sender, subject, and other details we are not interested in. Most of this
information comes before the word Lines followed by :, so let's split the string
at Lines: and capture the second part of the string:

df['text'] = df['text'].str.split('Lines:').apply(lambda x: x[1])

Finally, let's create a variable that captures the number of sentences per text8.
variable:

df['num_sent'] = df['text'].apply(sent_tokenize).apply(len)

With the df command, you can display the entire dataframe with the text variable and the
new feature containing the number of sentences per text. We can now use this new feature
in machine learning algorithms.

How it works...
In this recipe, we separated a string with text into sentences using sent_tokenizer from
the NLTK library. sent_tokenizer has been pre-trained to recognize capitalization and
different types of punctuation that signal the beginning and the end of a sentence.
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We first applied sent_tokenizer to a manually created string in order to become familiar
with its functionality. The tokenizer divided the text into a list of seven sentences. We
combined the tokenizer with the built-in Python method len() to count the number of
sentences in the string.

Next, we loaded a dataset with text and, to speed up the computation, we retained only the
first 10 rows of the dataframe using pandas' loc[]. Next, we removed the first part of the
text with information about the email sender and subject. To do this, we split the string at
Line: using pandas' str.split() returning a list with two elements, the strings before
and after Line:. Utilizing a lambda function within pandas' apply(), we retained the
second part of the text, that is, the second string in the list returned by pandas' split().

Finally, we applied sent_tokenizer to each row in the dataframe with the
pandas' apply() method, to separate the strings into sentences, and then subsequently
applied the built-in Python method len() to the list of sentences to return the number of
sentences per string. This way, we created a new feature that contains the number of
sentences per text.

There's more...
NLTK has functionality for word tokenization among other useful features, which we can
use instead of pandas to count and return the number of words. You can find more about
NLTK's functionality here:

Python 3 Text Processing with NLTK 3 Cookbook by Jacob Perkins, Packt Publishing
NLTK documentation: http:/ /www.nltk. org/ 

Creating features with bag-of-words and n-
grams
A bag-of-words (BoW), is a simplified representation of a text that captures the words that
are present in the text and the number of times each word appears in the text. So, for the
text string Dogs like cats, but cats do not like dogs, the derived BoW is as follows:

dogs like cats but do not

2 2 2 1 1 1

http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
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Here, each word becomes a variable, and the value of the variable represents the number of
times the word appears in the string. As you can see, BoW captures multiplicity but does
not retain word order or grammar. That is why it is a simple, yet useful, way of extracting
features and capturing some information about the texts we are working with.

To capture some syntax, BoW can be used together with n-grams. An n-gram is a
contiguous sequence of n items in a given text. Continuing with the sentence Dogs like cats,
but cats do not like dogs, the derived 2-grams are as follows:

Dogs like
like cats
cats but
but do
do not
like dogs

We can create, together with a BoW, a bag of n-grams, where the additional variables are
given by the 2-grams and the values for each 2-grams are the number of times they appear
in each string; for this particular example, the value is 1. So our final BoW with 2-grams
would look like this:

dogs like cats but do not dogs like like cats cats but but do do not like dogs

2 2 2 1 1 1 1 1 1 1 1 1

In this recipe, we will learn how to create BoWs with or without n-grams using scikit-learn.

Getting ready
Before jumping into the recipe, let's get familiar with some of the parameters of a BoW that
we can adjust to make the BoW more or less comprehensive. When creating a BoW over
several pieces of text, a new feature is created for each unique word that appears at least
once in any of the text pieces we are analyzing. If the word appears only in one piece of
text, it will show a value of 1 for that particular text and 0 for all of the others.

Therefore, BoWs tend to be sparse matrices, where most of the values are zeros. Also, the 
number of columns, that is, the number of words, can be quite large if we work with huge
text corpora, and even bigger if we also include n-grams. To limit the number of columns
created and the sparsity of the returned matrix, we can choose to retain words that appear
across multiple texts; or, in other words, we can retain words that appear in, at least, a
certain percentage of texts.



Extracting Features from Text Variables Chapter 11

[ 331 ]

To reduce the number of columns and sparsity of the BoW, we should also work with
words in the same case, for example, lowercase, as Python will identify words in a different
case as different words. We can also reduce the number of columns and sparsity by
removing stop words. Stop words are very frequently used words to make sentences flow,
but that, per se, do not carry any useful information. Examples of stop words are pronouns
such as I, you, and he, as well as prepositions and articles.

In this recipe, we will learn how to set words in lowercase, remove stop words, retain
words with a minimum acceptable frequency, and capture n-grams all together with one
single transformer from scikit-learn, CountVectorizer().

How to do it...
Let's begin by loading the libraries and getting the dataset ready:

Load pandas, CountVectorizer, and the dataset from scikit-learn:1.

import pandas as pd
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import CountVectorizer

Let's load the train set part of the 20 Newsgroup dataset into a pandas dataframe:2.

data = fetch_20newsgroups(subset='train')
df = pd.DataFrame(data.data, columns=['text'])

To make the interpretation of the results easier, let's remove punctuation and3.
numbers from the text variable:

df['text'] = df['text'].str.replace(
        '[^\w\s]','').str.replace('\d+', '')

Let's now set up CountVectorizer() so that, before creating the BoW, it puts4.
the text in lowercase, removes stop words, and retains words that appear at least
in 5% of the text pieces:

vectorizer = CountVectorizer(lowercase=True,
                             stop_words='english',
                             ngram_range=(1, 1),
                             min_df=0.05)
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To introduce n-grams as part of the returned columns, we can change the
value of ngrams_range to, for example, (1,2). The tuple provides the
lower and upper boundaries of the range of n-values for different n-grams
to be extracted. In the case of (1,2), CountVectorizer() will return
single words and arrays of two consecutive words.

Let's fit CountVectorizer() so that it learns which words should be used in the5.
BoW:

vectorizer.fit(df['text'])

Let's now create the BoW:6.

X = vectorizer.transform(df['text'])

Finally, let's capture the BoW in a dataframe with the corresponding feature7.
names:

bagofwords = pd.DataFrame(X.toarray(), columns =
vectorizer.get_feature_names())

We have now created a pandas dataframe that contains words as columns and the number
of times they appeared in each text as values. You can inspect the result by executing
bagofwords.head(). We can use the BoW as an input for a machine learning model.

How it works...
CountVectorizer() from scikit-learn converts a collection of text documents into a matrix
of token counts. The tokens can be individual words or arrays of two or more consecutive
words, that is, n-grams. In this recipe, we created a BoW from a text variable in a
dataframe.

We loaded the 20 Newsgroup text dataset from scikit-learn and, first, we removed
punctuation and numbers from the text rows using pandas' replace(), which can be 
accessed through pandas' str, to replace digits, '\d+', or symbols, '[^\w\s]', with 
empty strings, ''. Then, we used CountVectorizer() to create the BoW. We set the
lowercase parameter to True, to put the words in lowercase before extracting the BoW.
We set the stop_words argument to english to ignore stop words, that is, to avoid stop
words in the BoW. We set ngram_range to the (1,1) tuple to return only single words as
columns. Finally, we set min_df to 0.05 to return words that appear in at least 5 % of the
texts, or, in other words, in 5 % of the rows in the dataframe.
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After setting up the transformer, we used the fit() method to allow the transformer to
find the words that fulfill the preceding criteria. And with the transform() method, the
transformer returned an object containing the BoW with its feature names, which we
captured in a pandas dataframe.

See also
For more details about CountVectorizer(), visit the scikit-learn documentation
at https://scikit- learn. org/ stable/ modules/ generated/ sklearn. feature_
extraction.text. CountVectorizer. html.

Implementing term frequency-inverse
document frequency
Term Frequency-Inverse Document Frequency (TF-IDF) is a numerical statistic that
captures how relevant a word is in a document, with respect to the entire collection of
documents. What does this mean? Some words will appear a lot within a text document as
well as across documents, for example, the English words the, a, and is. These words
generally convey little information about the actual content of the document and don't
make it stand out of the crowd. TF-IDF provides a way to weigh the importance of a word,
by contemplating how many times it appears in a document, with respect to how often it
appears across documents. Hence, commonly occurring words such as the, a, and is will
have a low weight, and words more specific to a topic, such as leopard, will have a higher
weight.

TF-IDF is the product of two statistics, term frequency and inverse document frequency.
Term frequency is, in its simplest form, the count of the word in an individual text. So, for
term t, the term frequency is calculated as tf(t) = count(t) and is determined text by text.
The inverse document frequency is a measure of how common the word is across all
documents and is usually calculated on a logarithmic scale. A common implementation is
given by the following:
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Here, n is the total number of documents and df(t) the number of documents in which the
term t appears. The bigger the value of df(t), the lower the weighting for the term.

TF-IDF can be also used together with n-grams. Similarly, to weight an n-gram, we
compound the n-gram frequency in a certain document by the times the n-gram appears
across all documents.

In this recipe, we will learn how to extract features using TF-IDF with or without n-grams
using scikit-learn.

Getting ready
The scikit-learn implementation of the TF-IDF uses a slightly different way to calculate the
IDF statistic. For more details on the exact formula, visit the scikit-learn documentation:
https://scikit-learn. org/ stable/ modules/ feature_ extraction. html#tfidf- term-
weighting.

TF-IDF shares the characteristics of BoW when creating the term matrix, that is, high
feature space and sparsity. To reduce the number of features and sparsity, we can remove
stop words, set the characters to lowercase, and retain words that appear in a minimum
percentage of observations. If you are unfamiliar with these terms, visit the Creating features
with bag-of-words and n-grams recipe in this chapter for a recap.

In this recipe, we will learn how to set words in lowercase, remove stop words, retain
words with a minimum acceptable frequency, capture n-grams, and then return the TF-IDF
statistic of words, all using one single transformer from scikit-learn, TfidfVectorizer().

How to do it...
Let's begin by loading the libraries and getting the dataset ready:

Load pandas, TfidfVectorizer, and the dataset from scikit-learn:1.

import pandas as pd
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer

https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting


Extracting Features from Text Variables Chapter 11

[ 335 ]

Let's load the train set part of the 20 Newsgroup dataset into a pandas dataframe:2.

data = fetch_20newsgroups(subset='train')
df = pd.DataFrame(data.data, columns=['text'])

To make the interpretation of the results easier, let's remove punctuation and3.
numbers from the text variable:

df['text'] = df['text'].str.replace(
        '[^\w\s]','').str.replace('\d+', '')

Now, let's set up TfidfVectorizer() from scikit-learn so that, before creating4.
the TF-IDF metrics, it puts all text in lowercase, removes stop words, and retains
words that appear in at least 5% of the text pieces:

vectorizer = TfidfVectorizer(lowercase=True,
                             stop_words='english',
                             ngram_range=(1, 1),
                             min_df=0.05)

To introduce n-grams as part of the returned columns, we can change the
value of ngrams_range to, for example, (1,2). The tuple provides the
lower and upper boundaries of the range of n-values for different n-grams
to be extracted. In the case of (1,2), TfidfVectorizer() will return
single words and arrays of two consecutive words as columns.

Let's fit TfidfVectorizer() so that it learns which words should be introduced5.
as columns of the TF-IDF matrix:

vectorizer.fit(df['text'])

Let's now create the TF-IDF matrix:6.

X = vectorizer.transform(df['text'])

Finally, let's capture the TF-IDF matrix in a dataframe with the corresponding7.
feature names:

tfidf = pd.DataFrame(X.toarray(), columns =
vectorizer.get_feature_names())

We have now created a pandas dataframe that contains words as columns and the TF-IDF
as values. You can inspect the result by executing tfidf.head().
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How it works...
In this recipe, we extracted the TF-IDF values of words present in at least 5% of the
documents utilizing TfidfVectorizer() from scikit-learn.

We loaded the 20 Newsgroup text dataset from scikit-learn and then removed punctuation
and numbers from the text rows using pandas' replace(), which can be accessed through
pandas' str, to replace digits, '\d+', or symbols, '[^\w\s]', with empty strings, ''.
Then, we used TfidfVectorizer() to create TF-IDF statistics for words. We set the
lowercase parameter to True to put words in lowercase before making the calculations.
We set the stop_words argument to english to avoid stop words in the returned matrix.
We set ngram_range to the (1,1) tuple to return single words as features. Finally, we set
the min_df argument to 0.05 to return words that appear at least in 5 % of the texts or, in
other words, in 5 % of the rows.

After setting up the transformer, we applied the fit() method to let the transformer find
the words to retain in the final term matrix. With the transform() method, the
transformer returned an object with the words and with the words and their TF-IDF values,
which we then captured in a pandas dataframe with the appropriate feature names. We can
now use these features in machine learning algorithms.

See also
For more details on TfidfVectorizer(), visit the scikit-learn documentation at https:/ /
scikit-learn.org/ stable/ modules/ generated/ sklearn. feature_ extraction. text.
TfidfVectorizer.html.

Cleaning and stemming text variables
We mentioned previously that some variables in our dataset can be created based on free
text fields, which are manually completed by users. People have different writing styles,
and we use a variety of punctuation marks, capitalization patterns, and verb conjugation to
convey the content, as well as the emotion around it. We can extract information from text
without taking the trouble to read it by creating statistical parameters that summarize the
text complexity, keywords, and relevance of words in a document. We discussed these
methods in the preceding recipes of this chapter. Yet, to derive these statistics and
aggregated features, we should clean the text variables first.
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Text cleaning or text preprocessing involves punctuation removal, the elimination of stop
words, character case setting, and word stemming. Punctuation removal consists of
deleting characters that are not letters, numbers, or spaces, and, in some cases, we also
remove numbers. The elimination of stop words refers to removing common words that are
used in our language to allow for the sentence structure and flow, but that individually
convey little or no information. Examples of stop words are the articles, the and a, for the
English language, as well as pronouns such as I, you, and they, and commonly used verbs
in their various conjugations, such as the verbs to be and to have as well as the auxiliary
verbs would and do.

To allow computers to identify words correctly, it is also necessary to set all words in the
same case, as the word Toy and toy would be identified as different by a computer, due to
the capital T in the first one. Finally, to focus on the message of the text and not to count
them as different words that convey similar meaning if it weren't for their conjugation, we
may also want to introduce word stemming as part of the preprocessing pipeline. Word
stemming refers to reducing each word to its root or base so that the words playing, plays,
and played become play, which, in essence, convey the same or very similar meaning.

In this recipe, we will learn how to remove punctuation and stop words, set words in
lowercase, and perform word stemming with pandas and NLTK.

Getting ready
We are going to use the NLTK stem package to perform word stemming, which
incorporates different algorithms to stem words from English and other languages. Each
method differs in the algorithm it uses to find the root of the word; therefore, they may
output slightly different results. I recommend you read more about it, try different
methods, and choose the one that serves the project you are working on.

More information about NLTK stemmers can be found here: https:/ /www. nltk. org/api/
nltk.stem.html.

How to do it...
Let's begin by loading the libraries and getting the dataset ready:

Load pandas, stopwords, and SnowballStemmer from NLTK and the dataset1.
from scikit-learn:

import pandas as pd
from nltk.corpus import stopwords
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from nltk.stem.snowball import SnowballStemmer
from sklearn.datasets import fetch_20newsgroups

Let's load the train set part of the 20 Newsgroup dataset into a pandas dataframe:2.

data = fetch_20newsgroups(subset='train')
df = pd.DataFrame(data.data, columns=['text'])

Now, let's begin with the text cleaning.

Print an example text with this command, print(df['text'][10]),
right after the execution of each line of code in this recipe, so you visualize
straight away the changes introduced to the text.

First, let's remove the punctuation:3.

df["text"] = df['text'].str.replace('[^\w\s]','')

You can also remove the punctuation using the built-in string module
from Python. First, import the module by executing import string and
then execute df['text'] =
df['text'].str.replace('[{}]'.format(string.punctuation),

'').

We can also remove characters that are numbers, leaving only letters, as follows:4.

df['text'] = df['text'].str.replace('\d+', '')

Let's now set all cases in lowercase:5.

df['text'] = df['text'].str.lower()

Now, let's remove stop words.

Let's create a function that splits a string into a list of words, then removes the6.
stop words from the list if the words are within NLTK's English stop words list,
and finally concatenates the remaining words back into a string:

def remove_stopwords(text):
    stop = set(stopwords.words('english'))
    text = [word for word in text.split() if word not in stop]
    text = ' '.join(x for x in text)
    return text
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To be able to process the data with scikit-learn's CountVectorizer()
or TfidfVectorizer(), we need the text to be in string format.
Therefore, after removing the stop words, we need to return the words as
a single string.

We transform NLTK's stop words list into a set because sets are faster to
scan than lists. This improves the computation time.

Now, let's use the function we created in step 6 to remove stop words from the7.
text variable:

df['text'] = df['text'].apply(remove_stopwords)

Finally, let's stem the words in our data. We will use SnowballStemmer from
NLTK.

Let's create an instance of SnowballStemer for the English language:8.

stemmer = SnowballStemmer("english")

Try the stemmer in a single word to see how it works, for example,
run stemmer.stem('running'). You should see run as the result of that
command. Try different words!

Let's create a function that splits a string into a list of words, then applies9.
stemmer to each word, and finally concatenates the stemmed word list back into
a string:

 def stemm_words(text):
    text = [stemmer.stem(word) for word in text.split()]
    text = ' '.join(x for x in text)
    return text

Let's use the function we created in step 9 to stem the words in our data:10.

df['text'] = df['text'].apply(stemm_words)
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Now, our text is ready to create features based on character and word counts and to create
BoWs or TF-IDF matrices, as we described in previous recipes of this chapter.

Note that the only feature that needs to be derived before removing
punctuation is the count of the sentences, as punctuation and
capitalization are needed to define the boundaries of each sentence.

How it works...
In this recipe, we removed punctuation, numbers, and stop words from a text variable, then
we set the words in lowercase, and finally stemmed the words to their root. We removed
punctuation and numbers from the text variable using pandas' replace(), which can be
accessed through pandas' str, to replace digits, '\d+', or symbols, '[^\w\s]', with
empty strings, ''. Alternatively, we used the punctuation module from the built-in
package string.

Run string.punctuation in your Python console after importing
string to visualize the symbols that will be replaced by empty strings.

Next, utilizing pandas string processing functionality through str, we set all of the words
to lowercase with the lower() method. To remove stop words from the text, we used the
stopwords module from NLTK, which contains a list of words that are considered
frequent, that is, the stop words. We created a function that takes a string and splits it into a
list of words using pandas' str.split(), and then with a list comprehension, we looped
over the words in the list and retained the non-stop words. Finally, with the join()
method, we concatenated the retained words back into a string. We used the built-in
Python set() method over the NLTK stop words list to improve computation efficiency, as
it is faster to iterate over sets than over lists. Finally, with pandas' apply(), we applied the
function to each row of our text data.

Run stopwords.words('english') in your Python console after
importing stopwords from NLTK to visualize the list with the stop words
that will be removed.
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Finally, we stemmed the words using SnowballStemmer from NLTK. stemmer works one
word at a time. Therefore, we created a function that takes a string and splits it into a list of
words using pandas' str.split(). In a list comprehension, we applied stemmer word per
word, and then concatenated the list of stemmed words back into a string, using the
join() method. With pandas' apply(), we applied the function to stem words to each
row of the dataframe.

The cleaning steps performed in this recipe resulted in strings containing the original text,
without punctuation or numbers, in lowercase, without common words, and with the root
of the word instead of its conjugated form. The data, as it is returned, can be used to derive
features as described in the Counting characters, words, and vocabulary recipe or to create
BoWs and TI-IDF matrices as described in the Creating features with bag-of-words and n-
grams and Implementing term frequency-inverse document frequency recipes.
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