

Robust	Python
Write	Clean	and	Maintainable	Code

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the
author’s	raw	and	unedited	content	as	they	write—so	you	can	take	advantage
of	these	technologies	long	before	the	official	release	of	these	titles.

Patrick	Viafore

Robust	Python

by	Patrick	Viafore

Copyright	©	2022	Kudzera,	LLC.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,
Sebastopol,	CA	95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional
use.	Online	editions	are	also	available	for	most	titles	(http://oreilly.com).	For
more	information,	contact	our	corporate/institutional	sales	department:	800-998-
9938	or	corporate@oreilly.com.

Acquisitions	Editor:	Amanda	Quinn

Development	Editor:	Sarah	Grey

Production	Editor:

Copyeditor:

Proofreader:

Indexer:

Interior	Designer:	David	Futato

Cover	Designer:	Karen	Montgomery

Illustrator:

February	2022:	First	Edition

Revision	History	for	the	Early	Release

2020-11-06:	First	Release

2020-12-03:	Second	Release

http://oreilly.com

2021-01-19:	Third	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781098100667	for	release
details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	Robust
Python,	the	cover	image,	and	related	trade	dress	are	trademarks	of	O’Reilly
Media,	Inc.

The	views	expressed	in	this	work	are	those	of	the	author,	and	do	not	represent
the	publisher’s	views.	While	the	publisher	and	the	author	have	used	good	faith
efforts	to	ensure	that	the	information	and	instructions	contained	in	this	work	are
accurate,	the	publisher	and	the	author	disclaim	all	responsibility	for	errors	or
omissions,	including	without	limitation	responsibility	for	damages	resulting
from	the	use	of	or	reliance	on	this	work.	Use	of	the	information	and	instructions
contained	in	this	work	is	at	your	own	risk.	If	any	code	samples	or	other
technology	this	work	contains	or	describes	is	subject	to	open	source	licenses	or
the	intellectual	property	rights	of	others,	it	is	your	responsibility	to	ensure	that
your	use	thereof	complies	with	such	licenses	and/or	rights.

978-1-098-10066-7

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781098100667

Chapter	1.	Introduction	to	Robust
Python

A	NOTE	FOR	EARLY	RELEASE	READERS

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the
author’s	raw	and	unedited	content	as	they	write—so	you	can	take	advantage
of	these	technologies	long	before	the	official	release	of	these	titles.

This	will	be	the	1st	chapter	of	the	final	book.	Please	note	that	the	GitHub
repo	will	be	made	active	later	on.

If	you	have	comments	about	how	we	might	improve	the	content	and/or
examples	in	this	book,	or	if	you	notice	missing	material	within	this	chapter,
please	reach	out	to	the	author	at	pat@kudzera.com.

This	book	is	all	about	making	your	Python	better.	To	help	you	manage	your
codebase,	no	matter	how	large	it	is.	To	provide	a	toolbox	of	tips,	tricks	and
strategies	to	build	maintainable	code.	This	book	will	guide	you	towards	less
bugs	and	happier	developers.	You’ll	be	taking	a	hard	look	at	how	you	write
code,	and	learn	the	implications	of	your	decisions.	When	discussing	how	code	is
written,	I	am	reminded	of	these	wise	words	from	C.A.R.	Hoare:

There	are	two	ways	of	constructing	a	software	design:	One	way	is	to	make	it
so	simple	that	there	are	obviously	no	deficiencies,	and	the	other	way	is	to
make	it	so	complicated	that	there	are	no	obvious	deficiencies.	The	first
method	is	far	more	difficult.

This	book	is	about	developing	systems	the	first	way.	It	will	be	more	difficult,
yes,	but	have	no	fear.	I	will	be	your	guide	on	your	journey	to	leveling	up	your
Python	game	such	that,	as	C.A.R.	Hoare	says	above,	there	are	obviously	no
deficiencies	in	your	code.	Ultimately,	this	is	a	book	all	about	writing	robust
Python.

In	this	chapter	I’m	going	to	cover	what	robustness	means	and	why	you	should

1

care	about	it.	I’ll	go	through	how	your	communication	method	implies	certain
benefits	and	drawbacks,	and	how	best	to	represent	your	intentions.	The	Zen	of
Python	states	that	there	should	be	one--	and	preferably	only	one — obvious	way
to	do	it.	You’ll	learn	how	to	evaluate	if	your	code	is	the	obvious	way	or	not,	and
what	you	can	do	to	fix	it.	First,	I	need	to	talk	basics.	What	is	robustness	in	the
first	place?

Robustness

What	Does	“Robust”	Mean?
Every	book	needs	at	least	one	dictionary	definition,	so	I’ll	get	this	out	of	the	way
nice	and	early	in	the	book.	Merriam-Webster	offers	many	definitions	for
robustness	 :

1.	 having	or	exhibiting	strength	or	vigorous	health

2.	 having	or	showing	vigor,	strength,	or	firmness

3.	 strongly	formed	or	constructed

4.	 capable	of	performing	without	failure	under	a	wide	range	of	conditions

These	are	fantastic	descriptions	of	what	we	are	aiming	for.	We	want	a	healthy
system,	one	that	stays	bug-free	for	years.	We	want	our	software	to	exhibit
strength;	it	should	be	obvious	that	this	code	will	stand	the	test	of	time.	We	want
a	strongly	constructed	system,	one	that	is	built	upon	solid	foundations.	Crucially,
we	want	a	system	that	is	capable	of	performing	without	failure;	we	don’t	want
the	system	to	be	fragile	or	brittle	as	conditions	change.

It	is	common	to	think	of	a	software	like	a	skyscraper,	some	grand	structure	that
stands	as	a	bulwark	against	all	change	and	a	paragon	of	immortality.	The	truth	is,
unfortuately	messier.	Software	systems	constantly	evolve.	Bugs	are	fixed,	user
interfaces	get	tweaked,	features	are	added,	removed,	and	then	re-added.
Frameworks	shift,	components	go	out	of	date,	security	bugs	arise.	Software
changes.	It	is	more	akin	to	handling	sprawl	with	city	planning	than	it	is	building
a	static	building.	With	ever	changing	codebases,	how	can	you	make	your	code
robust?	How	can	you	build	a	strong	foundation	that	is	resilient	to	bugs?

2

https://www.python.org/dev/peps/pep-0020/

The	truth	is,	you	have	to	accept	the	change.	Your	code	will	be	split	apart,
stitched	together	and	reworked.	New	use	cases	will	alter	huge	swaths	of	code.
And	that’s	okay.	Embrace	it.	Understand	that	it’s	not	enough	that	your	code	can
easily	be	changed;	it	might	be	best	for	it	to	be	deleted	and	rewritten	as	it	goes	out
of	date.	That	doesn’t	diminish	its	value;	it	will	still	have	a	long	life	in	primetime.
Your	job	is	to	make	it	easy	to	rewrite	parts	of	the	system.	Once	you	start	to
accept	the	ephemeral	nature	of	your	code,	you	start	to	realize	that	it’s	not	enough
to	write	bug-free	code	for	the	present;	you	need	to	enable	the	codebase’s	future
owners	to	be	able	to	change	your	code	with	confidence.	That	is	what	this	book	is
about.

You	are	going	to	learn	to	build	strong	systems.	This	strength	doesn’t	come	from
rigidity,	like	a	bar	of	iron.	It	instead	comes	from	flexibility.	Your	code	needs	to
be	strong	like	a	tall	willow	tree,	swaying	in	the	wind,	flexing,	but	not	breaking.
Your	software	will	need	to	handle	situations	you	would	never	dream	of.	Your
codebase	needs	to	be	able	to	adapt	to	new	circumstances,	and	it	won’t	always	be
you	maintaining	it.	Those	future	maintainers	need	to	know	they	are	working	in	a
healthy	codebase.	Your	codebase	needs	to	communicate	it’s	strength.	You	must
write	Python	code	in	a	way	that	reduces	failure,	even	as	future	maintainers	tear	it
apart	and	reconstruct	it.

Writing	robust	code	means	deliberately	thinking	about	the	future.	You	want
future	maintainers	to	look	at	your	code	and	understand	your	intentions	easily,
not	curse	your	name	during	late	night	debugging	sessions.	You	must	convey
your	thoughts,	your	reasoning,	and	cautions.	Future	Developers	need	to	bend
your	code	into	new	shapes,	and	do	it	without	worrying	that	each	change	knocks
over	a	teetering	house	of	cards.

Put	simply,	you	don’t	want	your	systems	to	fail,	especially	when	the	unexpected
happens.	Testing	and	quality	assurance	are	huge	parts	of	this,	but	neither	of
those	bake	quality	completely	in.	They	are	more	suited	to	illuminating	gaps	in
expectations	and	offering	a	safety	net.	Instead,	you	must	make	your	software
stand	the	test	of	time.	In	orrder	to	do	that,	you	must	write	clean	and
maintainable	code.

Clean	code	expresses	its	intent	clearly	and	concisely,	in	that	order.	When	you
look	at	a	line	of	code	and	say	to	yourself	“ah,	that	makes	complete	sense”,	that’s
an	indicator	of	clean	code.	The	more	you	have	to	step	through	a	debugger,	the
more	you	have	to	look	at	a	lot	of	other	code	to	figure	out	what’s	happening,	the

more	you	have	to	look	at	a	lot	of	other	code	to	figure	out	what’s	happening,	the
more	you	have	to	stop	and	stare	at	the	code,	the	less	clean	it	will	be.	Clean	code
does	not	favor	clever	tricks	if	it	makes	the	code	unreadable	to	other	developers.
Just	like	C.A.R.	Hoare	said	earlier,	you	do	not	want	to	make	your	code	so	obtuse
that	it	will	be	difficult	to	visually	inspect	it	to	understand	it.

Maintainable	code	is	code	that,	well,	can	be	easily	maintained.	Maintenance
starts	immediately	after	the	first	commit	and	continues	until	there	is	not	a	single
developer	looking	at	the	project	anymore.	Developers	will	be	fixing	bugs,
adding	features,	reading	code,	extracting	code	for	use	in	other	libraries,	etc.
Maintainable	code	makes	these	tasks	frictionless.	Software	lives	for	years,	if	not
decades,	so	you	need	to	focus	on	maintainability	today.

You	don’t	want	to	be	the	reason	systems	fail,	whether	you	are	actively	working
on	them	or	not.	You	need	to	be	proactive	in	making	your	system	stand	the	test	of
time.	You	need	a	testing	strategy	to	be	your	safety	net,	but	you	also	need	to	be
able	to	avoid	falling	in	the	first	place.	So	with	all	that	in	mind,	I	offer	my
definition	of	robustness	in	terms	of	software:

Robust	software	is	resilient	and	error-free,	in	spite	of	constant	change

Why	Does	Robustness	Matter?
A	lot	of	energy	goes	into	making	software	do	what	it	is	supposed	to.
Development	milestones	are	not	easily	predicted.	It	doesn’t	help	that	you	build
something	brand-new	just	about	every	time.	Human	factors	such	as	UX,
accessibility	and	documentation	only	increase	the	complexity.	Now	add	in
testing	to	ensure	that	you’ve	covered	a	slice	of	known	and	unknown	behaviors,
and	you	are	looking	at	lengthy	cycles.

The	purpose	of	software	is	to	provide	value.	It	is	in	stakeholder’s	interests	to
deliver	that	full	value	as	early	as	possible.	Given	the	uncertainty	around	some
development	schedules,	there	is	often	extra	pressure	to	meet	expectations.	We’ve
all	been	on	the	wrong	end	of	an	unrealistic	schedule	or	deadline.	Unfortunately,
many	of	the	tools	to	make	software	incredibly	robust	only	add	onto	our
development	cycle.

This	does	not	mean	that	robust	code	is	unimportant	or	“not	worth	it”.	It’s	true
that	there	is	an	inherent	tension	between	immediate	delivery	of	value	and
making	code	robust.	If	your	software	is	“good	enough”,	why	add	even	more

making	code	robust.	If	your	software	is	“good	enough”,	why	add	even	more
complexity?	To	answer	that,	consider	how	often	that	piece	of	software	will	be
iterated	upon.	Delivering	software	value	is	typically	not	a	static	exercise;	it’s
rare	that	a	system	provides	value	and	is	never	modified	again.	Software	is	ever-
evolving	by	its	very	nature.	The	codebase	needs	to	be	prepared	to	deliver	value
frequently,	and	for	long	periods	of	time.	This	is	where	robust	software
engineering	practices	come	into	play.	If	you	can’t	painlessly	deliver	features
quickly	and	without	compromising	quality),	you	need	to	re-evaluate	techniques
to	make	your	code	more	maintainable.

If	you	deliver	your	system	late,	or	broken,	there	are	real-time	costs	that	are
incurred.	Think	through	your	codebase.	Ask	yourself	what	happens	if	your	code
breaks	a	year	from	now	because	someone	wasn’t	able	to	understand	your	code.
How	much	value	do	you	lose?	Your	value	might	be	measured	in	money,	time,	or
even	lives.	Ask	yourself	what	happens	if	the	value	isn’t	delivered	on	time?	What
are	the	repercussions?	If	the	answers	to	these	questions	are	scary,	good	news,	the
work	you’re	doing	is	valuable.	But	it	also	underscores	why	it’s	so	important	to
eliminate	future	errors.

You	need	to	consider	future	developers.	Multiple	developers	work	on	the	same
codebase	simlutaneously.	Many	software	projects	will	outlast	most	of	those
developers.	You	need	to	find	a	way	to	communicate	to	the	present	and	future
developers,	without	having	the	benefit	of	being	there	in	person	to	explain.	Future
developers	will	be	building	off	of	your	decisions.	Every	false	trail,	every	rabbit
hole,	and	every	yak-shaving 	adventure	will	slow	them	down,	which	impedes
value.	You	need	empathy	for	those	who	come	after	you.	You	need	to	step	into
your	shoes.	This	book	is	your	gateway	to	thinking	about	your	collaborators	and
maintainers.	You	need	to	write	code	that	lasts.	The	first	step	to	making	code	that
lasts	is	being	able	to	communicate	through	your	code.	You	need	to	make	sure
future	developers	understand	your	intent.

What’s	Your	Intent?
Why	should	you	strive	to	write	clean	code?	Why	should	you	care	so	much	about
robustness?	The	heart	of	these	answers	lies	in	communication.	You’re	not
delivering	static	systems;	software	evolves	and	grows	over	time.	Maintainers
change	over	time.	Your	goal,	when	writing	code,	is	to	deliver	value,	but	it’s	also
to	write	your	code	in	such	a	way	that	other	developers	can	deliver	value	just	as

3

to	write	your	code	in	such	a	way	that	other	developers	can	deliver	value	just	as
quickly.	In	order	to	do	that,	you	need	to	be	able	to	communicate	reasoning	and
intent	without	ever	meeting	your	future	maintainers.

Let’s	take	a	look	at	a	code	block	found	in	a	hypothetical	legacy	system.	I	want
you	to	estimate	how	long	it	takes	for	you	to	understand	waht	this	code	is	doing.
It’s	okay	if	you’re	not	familiar	with	all	the	concepts	here,	or	if	you	feel	like	this
code	is	convoluted	(it	intentionally	is!).

#	Take	a	meal	recipe	and	change	the	number	of	servings

#	by	adjusting	each	ingredient

#	A	recipe's	first	element	is	the	number	of	servings,	and	the	

remainder

#	of	elements	is	(name,	amount,	unit),	such	as	("flour",	1.5,	"cup")

def	adjust_recipe(recipe,	servings):

				new_recipe	=	[servings]

				old_servings	=	recipe[0]

				factor	=	servings	/	old_servings

				recipe.pop(0)

				while	recipe:

								ingredient,	amount,	unit	=	recipe.pop(0)

								#	please	only	use	numbers	that	will	be	easily	measurable

								new_recipe.append((ingredient,	amount	*	factor,	unit))

				return	new_recipe

This	function	takes	a	recipe,	and	adjusts	every	ingredient	to	handle	a	new
number	of	servings.	however,	this	code	breeds	many	questions.

What	is	the	pop	for?

What	does	recipe[0]	signify?	Why	is	that	the	old	servings?

Why	do	I	need	a	comment	for	numbers	that	will	be	easily	measurable?

This	is	a	bit	of	questionable	python,	for	sure.	I	won’t	blame	you	if	you	feel	the
need	to	rewrite	it.	It	looks	much	nicer	if	it	were	something	like	this:

def	adjust_recipe(recipe,	servings):

				old_servings	=	recipe.pop(0)

				factor	=	servings	/	old_servings

				return	({"servings":	servings}	|

												{ingredient:	(amount*factor,	unit)})

												for	ingredient,	amount,	unit	in	recipe

Those	who	favor	clean	code	probably	prefer	the	second	version	(I	certainly	do).

Those	who	favor	clean	code	probably	prefer	the	second	version	(I	certainly	do).
No	raw	loops.	Variables	do	not	mutate.	I’m	returning	a	dictionary	instead	of	a
list	of	tuples.	All	these	changes	can	be	seen	as	positive,	depending	on	the
circumstances.	But	I	may	have	just	introduced	three	subtle	bugs.

1.	 In	the	first	example,	I	was	clearing	the	original	recipe	out.	Even	if	it’s
just	one	area	of	calling	code	that	is	relying	on	this	behavior,	I	broke
assumptions.

2.	 By	returning	a	dictionary,	I	have	removed	the	ability	to	have	duplicate
ingredients	in	a	list.	This	might	have	an	effect	on	recipes	that	have
multiple	parts	(such	as	a	main	dish	and	a	sauce)	that	both	use	the	same
ingredient.

3.	 If	any	of	the	ingredients	are	named	“servings”	you’ve	just	introduced	a
collision	with	naming.

Whether	these	are	bugs	or	not	depends	on	two	inter-related	things:	the	author’s
intent	and	calling	code.	The	author	intended	to	solve	a	problem,	but	I	am	unsure
of	why	they	wrote	the	code	the	way	they	did.	Why	are	they	popping	elements?
Why	is	servings	a	tuple	inside	the	list?	Why	is	a	list	used?	Presumably,	the
author	knew	why,	and	communicated	it	locally	to	their	peers.	Their	peers	wrote
calling	code	based	on	those	assumptions,	but	as	time	wore	on,	that	intent	became
lost.	Without	communication	to	the	future,	I	am	left	with	two	options	of
maintaining	this	code:

1.	 Look	at	all	calling	code	and	confirm	that	this	behavior	is	not	relied	upon
before	implementing.	Good	luck	if	this	is	a	public	API	for	a	library	with
external	callers.	I	spend	a	lot	of	time	doing	this,	which	frustrates	me.

2.	 Make	the	change	and	wait	to	see	what	the	fallout	is	(customer
complaints,	broken	tests,	etc.).	If	I’m	lucky,	nothing	bad	will	happen.	If
I’m	not,	I	spend	a	lot	of	time,	which	frustrates	me.

Neither	option	feels	good	in	a	maintenance	setting	(especially	if	I	have	to	modify
this	code).	I	don’t	want	to	waste	time;	I	want	to	deal	with	my	current	task
quickly	and	move	on	to	the	next	one.	It	gets	worse	if	I	consider	how	to	call	this
code.	Think	about	how	you	interact	with	previously	unseen	code.	You	might	see
other	examples	of	calling	code,	copy	them	to	fit	your	use	case,	and	never	realize
that	you	needed	to	pass	a	specific	string	called	servings	as	your	first	element	of

that	you	needed	to	pass	a	specific	string	called	servings	as	your	first	element	of
your	list.

These	are	the	sort	of	decisions	that	will	make	you	scratch	your	head.	We’ve	all
seen	them	in	larger	codebases.	They	aren’t	written	maliciously,	but	organically
over	time	with	the	best	intentions.	Functions	start	simple,	but	as	use	cases	grow
and	multiple	developers	contribute,	that	code	tends	to	morph	and	obscure
original	intent.	This	is	a	sure	sign	that	maintainability	is	suffering.	You	need	to
express	intent	in	your	code	upfront.

So	what	if	the	original	author	made	use	of	better	naming	patterns	and	better	type
usage?	What	would	that	code	look	like?

#	Take	a	meal	recipe	and	change	the	number	of	servings

#	recipe	should	be	a	Recipe	class

def	adjust_recipe(recipe,	servings):

				new_ingredients	=	list(recipe.ingredients)

				recipe.clear_ingredients()

				for	ingredient	in	new_ingredients:

												ingredient.adjust_propoprtion(Fraction(servings,	

recipe.servings))

				return	Recipe(servings,	new_ingredients)

This	looks	much	better,	and	expresses	original	intent	clearly.	The	original
developer	encoded	their	ideas	directly	into	the	code.	From	this	snippet,	you
know	the	following	is	true:

I	am	using	a	Recipe	class.	This	allows	me	to	abstract	away	certain
operations.	Presumably,	inside	the	class	itself,	there	is	an	invariant	that
allows	for	duplicate	ingredients.	(I’ll	talk	more	about	classes	and
invariants	in	Chapter	5.)	This	provides	a	common	vocabulary	that
makes	the	function’s	behavior	more	explicit.

Servings	are	now	an	explicit	part	of	a	recipe	class,	rather	than	needing
to	be	the	first	element	of	the	list,	which	was	handled	as	a	special	case.
This	greatly	simplifies	calling	code,	and	prevents	inadvertent	collisions.

It	is	very	apparent	that	I	want	to	clear	out	ingredients	on	the	old	recipe.
No	ambiguous	reason	for	why	I	needed	to	do	a	.pop(0).

Ingredients	are	a	separate	class,	and	handle	fractions	rather	than	an

explicit	float.	It’s	clearer	for	all	involved	that	I	am	dealing	with
fractional	units,	and	can	easily	do	things	such	as
limit_denominator(),	which	can	be	called	when	people	want	to
restrict	measuring	units	(instead	of	relying	on	a	comment)

I’ve	replaced	fields	with	types,	such	as	a	recipe	type	and	an	ingredient	type.	I’ve
also	defined	operations	(clear_ingredients,	adjust_proportion)	to
communicate	my	intent.	By	making	these	changes,	I’ve	made	the	code’s
behavior	crystal	clear	to	future	readers.	They	no	longer	have	to	come	talk	to	me
to	understand	the	code.	Instead,	they	comprehend	what	I’m	doing	without	ever
talking	to	me.	This	is	asynchronous	communication	at	its	finest.

Asynchronous	Communication
It’s	weird	talking	about	asynchronous	communication	in	a	Python	book	without
mentioning	async	and	await.	But	I’m	afraid	I	have	to	talk	about
asynchronous	communication	in	a	much	more	complex	place:	the	real	world.

Asynchronous	communication	means	that	producing	information	and	consuming
that	information	are	independent	of	each	other.	There	is	a	time	gap	between	the
production	and	consumption.	It	might	be	a	few	hours,	as	is	the	case	of
collaborators	in	different	time	zones.	Or	it	might	be	years,	as	future	maintainers
try	to	do	a	deep	dive	into	the	inner	workings	of	code.	You	can’t	predict	when
somebody	will	need	to	understand	your	logic.	You	might	not	even	be	working
on	that	codebase	(or	for	that	company)	by	the	time	they	consume	the	information
you	produced.

Contrast	that	with	synchronous	communication.	Synchronous	communication	is
when	people	talk	face-to-face	(in-person	or	otherwise)	and	share	knowledge.
This	form	of	direct	communication	is	one	of	the	best	ways	to	express	your
thoughts,	but	unfortunately,	it	doesn’t	scale,	and	you	won’t	always	be	around	to
answer	questions.

In	order	to	evaluate	how	appropriate	each	method	of	communication	is	when
trying	to	understand	intentions,	I’ll	look	at	two	axes:	proximity	and	cost.

Proximity	is	how	close	in	time	the	communicators	need	to	be	in	order	for	that
communication	to	be	fruitful.	Some	methods	of	communication	excel	with	real-
time	transfer	of	information.	Other	methods	of	communication	excel	at

communicating	years	later.

Cost	is	the	measure	of	effort	to	communicate.	You	must	weigh	the	time	and
money	expended	to	communicate	with	the	value	provided.	Your	future
consumers	then	have	to	weigh	the	cost	of	consuming	the	information	with	the
value	they	are	trying	to	deliver.	Writing	code	and	not	providing	any	other
communication	channels	is	your	baseline;	you	have	to	do	this	to	produce	value.
To	evaluate	additional	communication	channel’s	cost,	here	is	what	I	factor	in:

Discoverability:	How	easy	was	it	to	find	this	information	outside	of	a
normal	workflow?	How	ephemeral	is	the	knowledge?	Is	it	easy	to
search	for	information?

Maintenance	Cost:	How	accurate	is	the	information?	How	often	does	it
need	to	be	updated?	What	goes	wrong	if	this	information	is	out	of	date?

Production	Cost:	How	much	time	and	money	went	into	producing	the
communication?

In	Figure	1-1,	I	plotted	some	common	communication	methods’	cost	and
proximity	required.

Figure	1-1.	Plotting	Cost	and	Proximity	of	Communcation	Methods

There	are	4	quadrants	that	make	up	the	cost/proximity	graph.

Low	Cost,	High	Proximity	Required

These	are	cheap	to	produce	and	consume,	but	are	not	scalable	across	time.
Direct	communication	and	instant	messaging	are	great	examples	of	these
methods.	Treat	these	as	snapshots	of	information	in	time;	they	are	only
valuable	when	the	user	is	actively	listening.	Don’t	rely	on	these	methods	to
communicate	to	the	future.

High-cost,	High	Proximity	Required

These	are	costly	events,	and	often	only	happen	once	(such	as	meetings	or
conferences).	There	should	be	a	lot	of	value	delivered	through	these	events	at
the	time	of	communication,	because	they	do	not	provide	much	value	to	the
future.	How	many	times	have	you	been	to	a	meeting	that	felt	like	a	waste	of
time?	This	is	direct	loss	of	value	you	are	feeling.	Talks	require	a
multiplicative	cost	for	each	attendee	(time	spent,	hosting	space,	logistics,
etc.).	Code	reviews	are	rarely	looked	at	once	they	are	done.

High	Cost,	Low	Proximity	Required

These	are	costly,	but	that	cost	can	be	paid	back	over	time	in	value	delivered,
due	to	the	low	proximity	needed.	Emails	and	agile	boards	contain	a	wealth	of
information,	but	are	not	discoverable	by	others.	These	are	great	for	bigger
concepts	that	don’t	need	frequent	updates.	It	becomes	a	nightmare	to	try	and
sift	through	all	the	noise	just	to	find	the	nugget	of	information	you	are
looking	for.	Video	recordings	and	design	documentation	are	great	for
understanding	snapshots	in	time,	but	are	costly	to	keep	updated.	Don’t	rely
on	these	communication	methods	to	understand	day-to-day	decisions.

Low	Cost,	Low	Proximity	Required

These	are	cheap	to	create,	and	are	easily	consumable.	Code	comments,
version	control	history	and	project	READMES	all	fall	into	this	category,
since	they	are	adjacent	to	the	source	code	we	write.	Users	can	view	this
communication	years	after	it	was	produced.	Anything	that	is	in	a	developer’s
workflow	will	become	easily	discoverable.	These	communication	methods
are	a	natural	fit	for	the	first	place	someone	will	look	after	the	source	code.

are	a	natural	fit	for	the	first	place	someone	will	look	after	the	source	code.
However,	your	code	is	one	of	your	best	documentation	tools,	as	it	is	the
living	record	and	single	source	of	truth	for	your	system.

DISCUSSION	TOPIC
This	plot	was	created	based	on	generalized	use	cases	-	think	about	the	communication	paths
you	and	your	organization	uses.	Where	would	you	plot	them	on	the	graph?	How	easy	is	it	to
consume	accurate	information?	How	costly	is	it	to	produce	information?	Your	answers	to	these
questions	may	result	in	a	slightly	different	graph,	but	the	single	source	of	truth	will	be	in	the
executable	software	you	deliver.

Low	cost,	low	proximity	communication	methods	are	the	best	tool	for
communicating	to	the	future.	You	should	strive	to	minimize	the	cost	of
production	and	of	consumption	of	communication.	You	have	to	write	software	to
deliver	value	anyway,	so	the	lowest	cost	option	is	making	your	code	your
primary	communication	tool.	Your	codebase	becomes	the	best	possible	option
for	expressing	your	decisions,	opinions,	and	workarounds	clearly.

However,	for	this	assertion	to	hold	true,	the	code	has	to	be	cheap	to	consume	as
well.	Your	intent	has	to	come	across	clearly	in	your	code.	Your	goal	is	to
minimize	the	time	needed	for	a	reader	of	your	code	to	understand	it.	Ideally,	a
reader	does	not	need	to	read	your	implementation,	but	just	your	function
signature.	Through	the	use	of	good	types,	comments	and	variable	names,	it
should	be	crystal	clear	what	your	code	does.

SELF-DOCUMENTING	CODE

The	wrong	response	to	this	plot	is	“Self-documenting	code	is	all	I	need!”
Every	communication	path	provides	value	that	code	alone	won’t	be	able	to.
Version	control	will	give	you	a	history	of	changes.	Design	Documents
discuss	sweeping	ideals	that	are	not	local	to	any	one	code	file.	Meetings
(when	done	right)	can	be	an	important	event	for	synchronizing	plan
execution.	You	should	absolutely	strive	for	code	to	be	self-documenting,	but
realize	that	just	handles	what	the	code	is	doing.	Don’t	disparage	any	other
communication	path.

The	other	quadrants	of	communication	are	still	valuable.	Design

The	other	quadrants	of	communication	are	still	valuable.	Design
documentation	absolutely	has	a	place	for	big	picture	decisions.	Talks	are	an
incredibly	effective	way	of	sharing	your	ideas	across	large	audiences.
Meetings	(when	done	effectively)	are	essential	to	act	as	a	sync	point	between
interconnected	teams.	Do	not	discount	these	methods,	but	understand	that
each	communication	method	is	tailored	for	specific	use	cases.	This	book
focuses	on	what	you	can	do	in	your	code,	but	do	not	rely	on	just	code	to
communicate	your	intent.

Examples	of	Intent	In	Python
Now	that	I’ve	talked	through	what	intent	is	and	how	it	matters,	let’s	look	at
examples	through	a	Python	lens.	How	can	you	make	sure	that	you	are	correctly
expressing	your	intentions?	Consider	some	common	mistakes	you	come	across
when	reading	Python	code?

Collections
When	you	pick	a	collection,	you	are	communicating	specific	information.	You
must	pick	the	right	collection	for	the	task	at	hand.	Otherwise,	maintainers	will
infer	the	wrong	intention	from	your	code.

Consider	this	code	that	takes	a	list	of	cookbooks	and	provides	a	count	of	how
many	times	an	author	shows	up:

def	create_author_count(cookbooks:	List[Cookbook]):

				counter	=	{}

				for	cookbook	in	cookbooks:

								if	cookbook.author	not	in	counter:

												counter[cookbook.author]	=	0

								counter[cookbook.author]	+=	1

				return	counter

What	does	my	use	of	collections	tell	you?	Why	am	I	not	passing	a	dictionary	or
a	set?	Why	am	I	not	returning	a	list?	Based	on	my	current	usage	of	collections,
here’s	what	you	can	assert:

I	pass	in	a	list	of	cookbooks.	There	can	be	duplicate	cookbooks	in	this
list	(I	might	be	counting	a	shelf	of	cookbooks	in	a	store	with	multiple

copies).

I	am	returning	a	dictionary.	Users	can	look	up	a	specific	author,	or
iterate	over	the	entire	dictionary.	I	do	not	have	to	worry	about	duplicate
authors	in	the	returned	collection.

What	if	I	wanted	no	duplicates	in	the	list?	A	list	communicates	the	wrong
intention.	Instead,	I	should	have	chosen	a	set	to	communicate	that	this	code
absolutely	will	not	handle	duplicates.

Choosing	a	collection	tells	readers	about	your	specific	intentions.	Here’s	a	list	of
common	collection	types,	and	the	intentions	they	convey:

List

This	is	a	collection	to	be	iterated	over.	It	is	mutable:	able	to	be	changed	at
any	time.	Very	rarely	do	you	expect	to	be	retrieving	specific	elements	from
the	middle	of	the	list	(using	a	static	list	index).	There	may	be	duplicate
elements.	The	cookbooks	on	a	shelf	might	be	stored	in	a	list.

String

An	immutable	collection	of	characters.	The	name	of	a	cookbook	would	be	a
string.

Generators

A	collection	to	be	iterated	over,	and	never	indexed	into.	Each	element	access
is	performed	lazily,	so	it	may	take	time	and/or	resources	through	each	loop
iteration.	They	are	great	for	computationally	expensive	or	infinite
collections.	An	online	database	of	recipes	might	be	returned	as	a	generator;
you	don’t	want	to	fetch	all	the	recipes	in	the	world	when	the	user	is	only
going	to	look	at	the	first	ten	results	of	a	search.

Tuple

Tuples	are	immutable	collections.	You	do	not	expect	it	to	change,	so	it	is
more	likely	to	extract	specific	elements	from	the	middle	of	the	tuple	(either
through	indices	or	unpacking).	It	is	very	rarely	iterated	over.	The	information
about	a	specific	cookbook	might	be	represented	as	a	tuple,	such	as
(cookbook_name,	author,	pagecount)

Set

An	iterable	collection	that	contains	no	duplicates.	You	cannot	rely	on
ordering	of	elements.	The	ingredients	in	a	cookbook	might	be	stored	as	a	set.

Dictionary

A	mapping	from	keys	to	values.	Keys	are	unique	across	the	dictionary.
Dictionaries	are	typically	iterated	over,	or	indexed	into	using	dynamic	keys.
A	cookbook’s	index	is	a	great	example	of	a	key	to	value	mapping	(from
topic	to	page	number.)

Do	not	use	the	wrong	collection	for	your	purposes.	Too	many	times	have	I	come
across	a	list	that	should	not	have	had	duplicates	or	a	dictionary	that	wasn’t
actually	being	used	to	map	keys	to	values.	Everytime	there	is	a	disconnect
between	what	you	intend	and	what	is	in	code,	you	create	a	maintenance	burden.
Maintainers	must	pause,	work	out	what	you	really	meant,	and	then	work	around
their	faulty	assumptions.

DYNAMIC	VS.	STATIC	INDEXING

Depending	on	the	collection	type	you	are	using,	you	may	or	may	not	want	to
use	a	static	index.	A	static	index	is	when	you	always	have	the	same	index
into	the	collection,	regardless	of	collection,	such	as	my_list[4]	or
my_dict["Python"].	In	general,	lists,	and	dictionaries	will	not	often
need	a	use	case	for	this.	You	have	no	guarantee	that	the	collection	has	the
element	you	are	looking	for	at	that	index,	due	to	their	dynamic	nature.	If	you
are	looking	for	specific	fields	in	these	types	of	collections,	this	is	a	good	sign
that	you	need	a	user-defined	type	(explored	in	later	sections).	It	is	safe	to	use
a	static	index	into	tuples,	since	they	are	fixed	size.	Sets	and	generators	are
never	indexed	into.

Exceptions	to	this	rule	include:

Getting	the	first	or	last	element	of	a	sequence	(my_list[0]	or
my_list[-1])

Using	a	dictionary	as	an	intermediate	data	type	such	as	reading

JSON	or	YAML

Operations	on	a	sequence	that	specifically	deal	with	fixed	chunks	(
such	as	always	splitting	after	the	third	element,	or	checking	for	a
specific	character	in	a	fixed-format	string)

Performance	reasons	for	a	specific	collection	type

In	contrast,	dynamic	indexing	is	whenever	you	index	into	a	collection	with	a
variable	that	is	not	known	until	runtime.	This	is	the	most	appropriate	choice
for	lists,	and	dictionaries.	You’ll	see	this	when	iterating	over	collections	or
searching	for	a	specific	element	with	a	index()	function..

These	are	basic	collections,	but	there	are	more	ways	to	express	intent.	Here	are
some	special	collection	types	that	are	even	more	expressive	in	communicating	to
the	future:

frozenset

a	set	that	is	immutable.

OrderedDict

a	dictionary	that	preserves	order	of	elements	based	on	insertion	time

defaultdict

A	dictionary	that	provides	a	default	value	if	the	key	is	missing.	For	example,
I	could	rewrite	my	earlier	example	as	follows:

from	collections	import	defaultdict

def	create_author_count(cookbooks:	List[Cookbook]):

				counter	=	defaultdict(lambda:	0)

				for	cookbook	in	cookbooks:

								counter[cookbook.author]	+=	1

				return	counter

This	introduces	a	new	behavior	for	end	users	-	if	they	query	the

dictionary	for	a	value	that	doesn't	exist,	they	will	receive	a	0.	This

might	be	beneficial	in	some	use	cases,	but	if	it	not,	you	just	return

`dict(counter)`	instead.

Counter

a	special	type	of	dictionary	used	for	counting	how	many	times	an	element
appears.	This	greatly	simplifies	our	above	code	to	the	following:

from	collections	import	Counter

def	create_author_count(cookbooks:	List[Cookbook]):

				return	Counter(book.author	for	book	in	cookbooks)

NOTE
Built-in	dictionaries	are	also	ordered	from	CPython	3.6	and	Python	3.7	onwards.

Take	a	minute	to	reflect	on	that	last	example.	Notice	how	using	a	Counter	gives
us	much	more	concise	code	without	sacrificing	readability.	If	your	readers	are
familiar	with	Counter,	the	meaning	of	this	function	(and	how	the	implementation
works)	is	immediately	apparent.	This	is	a	great	example	of	communicating	intent
to	the	future	through	better	selection	of	collection	types.	I’ll	continue	to	explore
collections	further	in	Chapter	5.

There	are	plenty	more	types	to	explore,	such	as	array,	bytes,	ranges	and	more.
Whenever	you	come	across	a	new	collection	type,	built-in	or	otherwise,	ask
yourself	how	it	differs	from	other	collections	and	what	it	conveys	to	future
readers.

Iteration
Iteration	is	another	example	where	the	abstraction	you	choose	dictates	the	intent
you	convey.

How	many	times	have	you	seen	code	like	this?

text	=	"This	is	some	generic	text"

index	=	0

while	index	<	len(text):

				print(text[index])

				index	+=	1

This	simple	code	prints	each	character	on	a	separate	line.	This	is	perfectly	fine

for	a	first	pass	at	Python	for	this	problem,	but	the	solution	quickly	evolves	into
the	more	Pythonic:

for	character	in	text:

				print(character)

or	even	more	simply:

print("\n".join(text))

Take	a	moment	and	reflect	on	why	these	last	two	options	are	preferable.	In	the
join()	case,	it	is	because	I	am	using	a	named	abstraction	of	a	loop	(which
again,	communicates	intent	clearly).	But	even	the	for	loop	is	clearer	than	the
while	loop.	It’s	because	the	for	loop	is	the	more	appropriate	choice	for	my	use
case.	Just	like	collection	types,	the	looping	construct	you	select	explicitly
communicates	different	concepts.	Here’s	a	list	of	looping	constructs	and	what
they	convey:

For-loops

For	loops	are	used	for	iterating	over	each	element	in	a	collection	or	range
and	performing	an	action/side	effect

While-loops

While	loops	are	used	for	iterating	until	a	certain	condition	occurs

Comprehensions

Comprehensions	are	used	for	transforming	one	collection	into	another
(normally	does	not	have	side	effects,	especially	if	the	comprehension	is	lazy)

Recursion

Recursion	is	used	when	the	sub-structure	of	a	collection	is	identical	to	the
structure	of	a	collection	(for	example,	each	child	of	a	tree	is	also	a	tree).

You	want	each	line	of	your	codebase	to	deliver	value.	Furthermore,	you	want
each	line	to	clearly	communicate	what	that	value	is	to	future	developers.	This
drives	a	need	to	minimize	any	amount	of	boilerplate,	scaffolding,	and
superfluous	code.	In	the	example	above,	I	am	iterating	over	each	element	and

superfluous	code.	In	the	example	above,	I	am	iterating	over	each	element	and
performing	a	side-effect	(printing	an	element),	which	makes	the	for	loop	an
ideal	looping	construct.	I	am	not	wasting	code.	In	contrast,	the	while	loop
requires	us	to	explicitly	track	looping	until	a	certain	condition	occurs.	In	other
words,	I	need	to	track	a	specific	condition,	and	mutate	a	variable	every	iteration.
This	distracts	from	the	value	the	loop	provides,	and	provides	unwanted	cognitive
burden.

Law	of	Least	Surprise
Distractions	from	intent	are	bad,	but	there’s	a	class	of	communication	that	is
even	worse:	when	code	actively	surprises	your	future	collaborators.	You	want	to
adhere	to	the	Law	of	Least	Surprise.	When	someone	reads	through	the	codebase,
they	should	almost	never	be	surprised	at	behavior	or	implementation	(and	when
they	are	surprised,	there	should	be	a	great	comment	near	the	code	to	explain	why
it	is	that	way).	This	is	why	communicating	intent	is	paramount.	Clear	and	clean
code	lowers	chances	for	miscommunication.

NOTE
The	Law	Of	Least	Surprise,	also	known	as	the	Law	of	Least	Astonishment	states	that	a	program
should	always	respond	to	the	user	in	the	way	that	astonishes	them	the	least .	Surprising
behavior	leads	to	confusion.	Confusion	leads	to	misplaced	assumptions.	Misplaced
assumptions	lead	to	bugs.	And	that	is	how	you	get	unreliable	software.

Bear	in	mind,	you	can	write	completely	correct	code	and	still	surprise	someone
in	the	future.	There	was	one	nasty	bug	I	was	chasing	early	in	my	career	that
crashed	due	to	corrupted	memory.	Putting	the	code	under	a	debugger	or	putting
too	many	print	statements	in	affected	timing	such	that	the	bug	would	not
manifest	(a	true	“heisenbug “).	There	were	literally	thousands	of	lines	of	code
that	related	to	this	bug.

So	I	had	to	do	a	manual	bisect,	splitting	the	code	in	half,	see	which	half	actually
had	the	crash	by	removing	the	other	half,	and	then	do	it	all	over	again	in	that
code	half.	After	two	weeks	of	tearing	my	hair	out,	I	finally	decided	to	inspect	an
innocuous	sounding	function	called	getEvent.	It	turns	out	that	this	function	was
actually	setting	an	event	with	invalid	data.	Needless	to	say,	I	was	very	surprised.

4

5

The	function	was	completely	correct	in	what	it	was	doing,	but	because	I	missed
the	intent	of	the	code,	I	overlooked	the	bug	for	at	least	three	days.	Surprising
your	readers	will	cost	their	time.

A	lot	of	this	surprise	ends	up	coming	from	complexity.	There	are	two	types	of
complexity:	necessary	complexity	and	accidental	complexity.	Necessary
complexity	is	the	complexity	inherent	in	your	domain.	Deep	learning	models	are
necessarily	complex	-	they	are	not	something	you	browse	through	the	inner
workings	of	and	understand	in	a	few	minutes.	Optimizing	Object-Relational
Mapping	is	necessarily	complex	-	there	is	a	large	variety	of	possible	user	inputs
that	have	to	be	accounted	for.	You	won’t	be	able	to	remove	necessary
complexity,	so	your	best	bet	is	to	make	sure	it	doesn’t	sprawl	across	your
codebase.

In	contrast,	accidental	complexity	is	the	complexity	that	produces	superfluous,
wasteful	or	confusing	statements	in	code.	It’s	what	happens	when	a	system
evolves	over	time	and	developers	are	jamming	features	in	without	re-evaluating
old	code	to	see	if	their	original	assertions	hold	true.	I	once	worked	on	a	project
where	adding	a	single	command	line	option	(and	associated	means	of
programmatically	setting	it)	touched	no	fewer	than	10	files.	Why	would	adding
one	simple	value	ever	need	to	require	changes	all	over	the	codebase?

You	know	you	have	accidental	complexity	if	you’ve	ever	experienced	the
following:

Things	that	sound	simple	(adding	users,	changing	a	UI	control,	etc.)	are
non-trivial	to	implement

Difficulty	onboarding	new	developers	into	understanding	your
codebase.	New	developers	on	a	project	are	your	best	indicators	of	how
maintainable	your	code	is	right	now	-	no	need	to	wait	years.

Estimates	for	adding	functionality	are	always	high,	and	you	slip	the
schedule	anyway.

Remove	accidental	complexity	and	isolate	your	necessary	complexity	wherever
possible.	Those	will	be	the	stumbling	blocks	for	your	future	collaborators.	These
sources	of	complexity	compound	miscommunication,	as	they	obscure	and
diffuse	intent	throughout	the	codebase.

DISCUSSION	TOPIC
What	accidental	complexities	do	you	have	in	your	codebase?	How	challenging	would	it	be	to
understand	simple	concepts	if	you	were	dropped	into	the	codebase	with	no	communication	to
other	developers?	What	can	you	do	to	simplify	those	complexities	(especially	if	they	are	in
often-changing	code)?

Throughout	the	rest	of	the	book,	I	will	look	at	different	techniques	in	Python	to
make	our	systems	more	robust.	This	book	is	broken	up	into	4	parts

Part	1

I’ll	start	with	types	in	Python.	Types	are	fundamental	to	the	language,	but	are
not	often	delved	into.	The	types	you	choose	matter,	as	these	convey	a	very
specific	intent.	I’ll	talk	about	type	annotations	and	what	specific	annotations
communicate	to	the	developer.	I’l	also	go	over	typecheckers	and	how	those
help	catch	bugs	early.

Part	2

After	talking	about	how	to	think	about	Python’s	types,	I’ll	focus	on	how	to
create	your	own	types.	I’ll	talk	about	enumerations,	dataclasses	and	classes
in	depth.	I’ll	explore	how	making	certain	design	choices	in	designing	a	type
can	increase	or	decrease	the	robustness	of	your	code.

Part	3

Now	that	you’ve	learned	how	to	communicate	your	intentions,	I’ll	focus	on
how	to	enable	users	to	change	your	code	effortlessly.	You	will	learn	how	to
take	that	strong	foundation,	and	let	others	build	with	confidence.	I’ll	cover
extensibility,	dependencies,	and	architectural	patterns	that	allow	you	to
modify	your	system	with	minimal	impact.

Part	4

Lastly,	I’ll	explore	about	how	to	build	a	safety	net,	so	that	you	can	gently
catch	your	future	collaborators	when	they	do	fall.	Their	confidence	will
increase,	knowing	that	they	have	a	strong,	robust	system	that	they	can
fearlessly	adapt	to	their	use	case.	I’ll	cover	a	variety	of	static	analysis	and
testing	tools	that	will	help	you	catch	rogue	behavior.

testing	tools	that	will	help	you	catch	rogue	behavior.

Wrap-up
Robust	code	matters.	Clean	code	matters.	Your	code	needs	to	be	maintainable
for	the	entire	lifetime	of	the	codebase,	and	in	order	to	do	that,	you	need	to	put
active	foresight	into	what	you	are	communicating	and	how.	You	need	to	clearly
embody	your	knowledge	as	close	to	the	code	as	possible.	It	will	feel	like	a
burden	to	continuously	look	forward,	but	with	practice	it	becomes	natural,	and
you	start	reaping	the	gains	as	you	work	in	your	own	codebase.

Every	abstraction,	every	line,	and	every	choice	in	a	codebase	communicates
something,	whether	intentional	or	not.	I	encourage	you	to	think	about	each	line
of	code	you	are	writing	and	ask	yourself	“What	will	a	future	developer	learn
from	this?”.	You	owe	it	to	future	maintainers	to	be	able	to	deliver	value	at	the
same	speed	that	you	can	today.	Otherwise,	your	codebase	will	get	bloated,
schedules	will	slip,	and	complexity	will	grow.	It	is	your	job	as	a	developer	to
mitigate	that	risk.

Look	for	potential	hotspots,	such	as	incorrect	abstractions	(such	as	collections	or
iteration)	or	accidental	complexity.	These	are	prime	areas	where	communication
can	break	down	over	time.	If	these	are	areas	that	change	often,	these	are	a
priority	to	address	now.

In	the	next	chapter,	you’re	going	to	take	what	you	learned	from	this	chapter,	and
apply	it	to	a	fundamental	Python	concept:	types.	The	types	you	choose	express
your	intent	to	future	developers,	and	picking	the	correct	type	is	just	as	important
as	picking	the	correct	abstraction.

1 	1980	Turing	Award	Lecture	“The	Emperor’s	Old	Clothes”

2 	https://www.merriam-webster.com/dictionary/robust

3 	Yak-Shaving	describes	the	situation	where	you	frequently	have	to	solve	unrelated	problems	before
you	can	even	begin	to	tackle	the	original	problem	to	solve.	You	can	learn	about	the	origins	of	the
term	at	https://seths.blog/2005/03/dont_shave_that/

4 	Geoffry	James,	The	Tao	of	Programming

5 	A	bug	that	displays	different	behavior	when	being	observed.	SIGSOFT	’83:	Proceedings	of	the
ACM	SIGSOFT/SIGPLAN	software	engineering	symposium	on	High-level	debugging

https://www.merriam-webster.com/dictionary/robust
https://seths.blog/2005/03/dont_shave_that/

Chapter	2.	Introduction	to	Python
Types

A	NOTE	FOR	EARLY	RELEASE	READERS

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the
author’s	raw	and	unedited	content	as	they	write—so	you	can	take	advantage
of	these	technologies	long	before	the	official	release	of	these	titles.

This	will	be	the	2nd	chapter	of	the	final	book.	Please	note	that	the	GitHub
repo	will	be	made	active	later	on.

If	you	have	comments	about	how	we	might	improve	the	content	and/or
examples	in	this	book,	or	if	you	notice	missing	material	within	this	chapter,
please	reach	out	to	the	author	at	pat@kudzera.com.

Welcome	to	Part	1,	where	I	will	focus	on	types	in	Python.	Types	model	behavior
of	your	program.	Beginner	programmers	understand	that	there	are	different	types
in	Python,	such	as	float	or	string.	But	what	is	a	type?	How	does	mastering	types
make	your	codebase	stronger?	Types	are	a	fundamental	underpinning	of	any
programming	language,	but,	unfortunately,	most	introductory	texts	gloss	over
just	how	types	benefit	your	codebase	(or	if	misused,	those	same	types	increase
complexity).

Tell	me	if	you’ve	seen	this	before:

>>>type(3.14)

<class	'float'>

>>>type("This	is	another	boring	example")

<class	'str'>

>>>	type(["Even",	"more",	"boring",	"examples"])

<class	'list'>

This	could	be	pulled	from	almost	any	beginner’s	guide	to	Python.	You	learn
about	ints,	strings,	floats,	bools,	and	all	sorts	of	things	the	language	offers.	And

about	ints,	strings,	floats,	bools,	and	all	sorts	of	things	the	language	offers.	And
then,	boom,	you	move	on,	because	let’s	face	it,	this	Python	is	not	flashy.	You
want	to	dive	into	the	cool	stuff,	like	functions	and	loops	and	dictionaries,	and	I
don’t	blame	you.	But	it’s	a	shame	that	many	tutorials	never	revisit	types	and
give	them	their	proper	due.	As	users	dig	deeper,	they	may	discover	type
annotations	(which	I	cover	in	the	next	chapter)	or	start	writing	classes,	but	often
miss	out	on	the	fundamental	discussion	about	when	to	use	types	appropriately.

That’s	where	I’ll	start.	To	write	maintainable	Python,	you	must	be	aware	of	the
nature	of	types	and	be	deliberate	about	using	them.	I’ll	start	by	talking	about
what	a	type	actually	is	and	why	that	matters.	I’ll	then	move	on	to	how	the
Python	language’s	decisions	about	its	type	system	affects	the	robustness	of	your
codebase.

What’s	In	a	Type?
I	want	you	to	pause	and	answer	a	question:	Without	mentioning	numbers,
strings,	text,	or	booleans,	how	would	you	explain	what	a	type	is?

It’s	not	a	simple	answer	for	everyone.	It’s	even	harder	to	explain	what	the
benefits	are,	especially	in	a	language	like	Python	where	you	do	not	have	to
explicitly	declare	types	of	variables.

I	consider	a	type	to	have	a	very	simple	definition:	a	communication	method.
Types	convey	information.	They	provide	a	representation	that	users	and
computers	can	reason	about.	I	break	the	representation	down	into	two	different
facets:

Mechanical	Representation

Types	communicate	behaviors	and	constraints	to	the	Python	language	itself

Semantic	Representation

Types	communicate	behaviors	and	constraints	to	other	developers

Let’s	go	learn	a	little	more	about	each	representation:

Mechanical	Representation
At	its	core,	computers	are	all	about	binary	code.	Your	processor	doesn’t	speak

At	its	core,	computers	are	all	about	binary	code.	Your	processor	doesn’t	speak
Python,	all	it	sees	are	the	presence	or	absence	of	electrical	current	on	circuits
going	through	it.	Same	goes	for	what’s	in	your	computer	memory.

Suppose	your	memory	looked	like	the	following

001100101000100100010100100100010010001000001010100101

010101010000001111111100100101001111101001001010010001

0010100`010100000100000101010100``101001001001000101010001010010
010101010010010010010000111101010110101101001010111`

Looks	like	a	bunch	of	gibberish.	Let’s	zoom	in	on	the	part	that	I’ve	bolded:

01010000	01000001	01010100

There	is	no	way	to	tell	exactly	what	this	number	means	by	itself.	Depending	on
computer	architecture	it	is	plausible	that	this	could	represent	the	number
5259604	or	5521744.	It	could	also	be	the	string	“PAT”.	Without	any	sort	of
context,	you	can’t	know	for	certain.	This	is	why	computers	need	types.	Type
information	gives	Python	what	it	needs	to	know	to	make	sense	of	all	the	ones
and	zeroes.	Let’s	see	it	in	action:

from	ctypes	import	string_at

from	sys	import	getsizeof

from	binascii	import	hexlify

a	=	0b01010000_01000001_01010100

print(a)

>>>	5259604

#	prints	out	the	memory	of	the	variable

print(hexlify(string_at(id(a),	getsizeof(a))))

>>>	b'0100000000000000607c054995550000010000000000000054415000'

text	=	"PAT"

print(hexlify(string_at(id(text),	getsizeof(text))))

>>>b'0100000000000000a00f0649955500000300000000000000375c9f1f02acdbe4e

5379218b77f0000000000000000000050415400

NOTE
I	am	running	CPython	3.9.0	on	a	little-endian	machine,	so	if	you	see	different	results,	don’t
worry,	there	are	subtle	things	that	can	change	your	answers.	(This	code	is	not	guaranteed	to	run
on	other	Python	implementations	such	as	Jython	or	PyPy).

These	hex-strings	display	the	actual	memory	of	a	Python	object.	You’ll	find
pointers	to	the	next	and	previous	object	in	a	linked	list	(for	garbage	collection
purposes),	a	reference	count,	a	type,	and	the	actual	data	itself.	You	can	see	the
bytes	at	the	end	of	each	returned	value	to	see	the	number	or	string	(look	for	the
bytes	0x544150	or	0x504154).	The	important	part	of	this	is	that	there	is	a	type
encoded	into	that	memory.	When	Python	looks	at	a	variable,	it	knows	exactly
what	type	everything	is	at	runtime	(such	as	when	you	use	the	type()	function.)

It’s	easy	to	think	that	this	is	the	only	reason	for	types	-	the	computer	needs	to
know	how	to	interpret	various	blobs	of	memory.	It	is	important	to	be	aware	of
how	Python	uses	types,	as	it	has	some	implications	for	writing	robust	code,	but
even	more	important	is	the	second	representation:	semantic	representation.

Semantic	Representation
While	the	first	definition	of	types	is	great	for	lower-level	programming,	it’s	the
second	definition	that	applies	to	every	developer.	Types,	in	addition	to	having	a
mechanical	representation,	also	manifest	a	semantic	representation.	A	semantic
representation	is	a	communication	tool;	the	types	you	choose	communicate
information	across	time	and	space	to	a	future	developer.

Types	tell	a	user	what	behaviors	they	can	expect	about	that	entity.	These
behaviors	are	the	operations	that	you	associate	with	that	type	(plus	any	pre-
conditions	or	post-conditions).	They	are	the	boundaries,	constraints,	and
freedoms	that	a	user	interacts	with	whenever	they	use	that	type.	Types	used
correctly	have	low	barriers	to	understanding;	they	become	natural	to	use.
Conversely,	types	used	poorly	are	a	hindrance.

Consider	the	lowly	int.	Take	a	minute	to	think	about	what	behaviors	an	integer
has	in	Python.	Here’s	a	quick	(non-comprehensive)	list	I	came	up	with:

Constructible	from	integers,	floats,	or	strings

Mathematical	operations	such	as	addition,	subtraction,	division,
multiplication,	exponentiation	and	negation

Relational	comparison	such	as	<,	>,	==,	and	!=

Bitwise	operations	(manipulating	individual	bits	of	a	number)	such	as
&,	|,	^,	~,	and	shifting

Convertible	to	a	string	using	str	or	repr	functions

Able	to	be	rounded	through	ceil,	floor,	round	methods	(even	though
these	return	the	integer	itself,	these	are	supported	methods).

An	int	has	many	behaviors.	You	can	view	the	full	list	if	you	if	you	type
help(int)	into	your	REPL.

Now	consider	a	datetime:

>>>import	datetime

>>>datetime.datetime.now()

datetime.datetime(2020,	9,	8,	22,	19,	28,	838667)

A	datetime	is	not	that	different	from	an	int.	Typically	it’s	represented	as	a
number	of	seconds	or	milliseconds	from	some	epoch	of	time	(such	as	January
1st,	1970).	But	think	about	the	behaviors	a	datetime	has:

Constructible	from	a	string,	or	a	set	of	integers	representing
day/month/year/etc

Mathematical	Operations	such	as	addition	and	subtraction	of	Time
Deltas

Relational	comparison

No	bitwise	operations	available

Convertible	to	a	string	using	str	or	repr	functions

Is	not	able	to	be	rounded	through	ceil,	floor,	round	methods

Datetimes	support	addition	and	subtraction,	but	not	of	other	datetimes.	We	only
add	time	deltas	(such	as	adding	a	day	or	subtracting	a	year).	Multiplying	and
dividing	really	don’t	make	sense	for	a	datetime.	Similarly,	rounding	dates	is	not
a	supported	operation	in	the	standard	library.	However,	datetimes	do	offer
comparison	and	string	formatting	operations	with	similar	semantics	to	an
integer.	So	even	though	datetime	is	at	heart	an	integer,	it	contains	a	constrained
subset	of	operations.

subset	of	operations.

NOTE
Semantics	refers	to	the	meaning	of	an	operation.	While	str(int)	and
str(datetime.datetime.now())	will	return	different	formatted	strings,	the	meaning
is	the	same:	I	am	creating	a	string	from	a	value.

Datetimes	also	support	their	own	behaviors,	to	further	distinguish	them	from
integers.	These	include

Changing	values	based	on	time	zones

Being	able	to	control	the	format	of	strings

Finding	what	weekday	it	is

Again,	if	you’d	like	a	full	list	of	behaviors,	type	import	datetime;
help(datetime.datetime)	into	your	REPL.

Datetimes	are	more	specific	than	an	integer.	They	convey	a	more	specific	use
case	than	just	a	plain	old	number.	When	you	choose	to	use	a	more	specific	type,
you	are	telling	future	contributors	that	there	are	operations	that	are	possible	and
constraints	to	be	aware	of	that	aren’t	present	in	the	less	specific	type.

Let’s	dive	into	hhow	this	ties	into	robust	code.	Say	you	inherit	a	codebase	that
handles	the	opening	and	closing	of	an	completely	automated	kitchen.	You	need
to	add	in	functionality	to	extend	a	kitchen’s	hours	on	holidays.

def	close_kitchen_if_past_cutoff_time(point_in_time):

				if	point_in_time	>=	closing_time():

								close_kitchen()

								log_time_closed(point_in_time)

You	know	you	need	to	be	operating	on	point_in_time,	but	how	do	you	get
started?	What	type	are	you	even	dealing	with?	Is	it	a	string,	integer,	datetime,	or
some	custom	class?	What	operations	are	you	allowed	to	perform	on
point_in_time?	You	didn’t	write	this	code,	and	you	have	no	history	with	it.
The	same	problems	exist	if	you	want	to	call	the	code	as	well.	You	have	no	idea
what	is	legal	to	pass	into	this	function.

If	you	make	a	wrong	assumption	one	way	or	the	other,	and	that	code	makes	it	to

If	you	make	a	wrong	assumption	one	way	or	the	other,	and	that	code	makes	it	to
production,	you’ve	made	the	code	less	robust.	Maybe	that	code	doesn’t	lie	on	a
codepath	that	is	executed	often.	Maybe	some	other	bug	is	hiding	this	code	from
being	run.	Maybe	there	aren’t	a	whole	lot	of	tests	around	this	piece	of	code,	and
it	becomes	a	runtime	error	later	on.	No	matter	what,	there	is	a	bug	lurking	in	the
code,	and	you’ve	decreased	maintainability.

Responsible	developers	do	their	best	to	not	have	bugs	hit	production.	They	will
search	for	tests,	documentation	(with	a	grain	of	salt,	of	course — documentation
can	go	out	of	date	quickly),	or	calling	code.	They	will	look	at
closing_time()	and	log_time_closed()	to	see	what	types	they	expect
or	provide,	and	plan	accordingly.	This	is	a	correct	path	in	this	case,	but	I	still
consider	it	a	suboptimal	path.	While	an	error	won’t	reach	production,	they	are
still	expending	time	in	looking	through	the	code,	which	prevents	value	from
being	delivered	as	quickly.	With	such	a	small	example,	you	would	be	forgiven
for	thinking	that	this	isn’t	that	big	a	problem	if	it	happens	once.	But	beware	of
“death	by	a	thousand	cuts”:	any	one	slice	isn’t	too	detrimental	on	its	own,	but
thousands	piled	up	and	strewn	across	a	codebase	will	leave	you	limping	along,
trying	to	deliver	code.

The	root	cause	is	that	the	semantic	representation	was	not	clear	for	the
parameter.	So	as	you	write	code,	do	what	you	can	to	express	your	intent	through
types.	You	can	do	it	as	a	comment	where	needed,	but	I	recommend	using	type
annotations	(supported	in	Python	3.5+)	to	explain	parts	of	your	code.

def	close_kitchen_if_past_cutoff_time(point_in_time:	

datetime.datetime):

				if	point_in_time	>=	closing_time():

								close_kitchen()

								log_time_closed(point_in_time)

All	I	need	to	do	is	put	in	a	:	<type>	after	my	variables	in	the	function
signature.	Most	of	my	code	examples	in	this	book	will	annotate	the	types	to
make	it	clear	what	type	I’m	expecting.

Now,	as	developers	come	across	this	code,	they	will	know	what’s	expected	of
point_in_time.	They	don’t	have	to	look	through	other	methods,	tests	or
documentation	to	know	how	to	manipulate	the	variable.	They	have	a	crystal-
clear	clue	on	what	to	do,	and	they	can	get	right	to	work	performing	the

modifications	they	need	to	do.	You	are	conveying	semantic	representation	to
future	developers,	without	ever	directly	talking	to	them.

Furthermore,	as	developers	use	a	type	more	and	more,	they	become	familiar	with
it.	They	won’t	need	to	look	up	documentation	or	help()	to	use	that	type	when
they	come	across	it.	You	begin	to	create	a	vocabulary	of	well-known	types
across	your	codebase.	This	lessens	the	burden	of	maintenance.	When	a
developer	is	modifying	existing	code,	they	want	to	focus	on	the	changes	they
need	to	make,	without	getting	bogged	down.

Semantic	representation	of	a	type	is	extremely	important,	and	the	rest	of	Part	1
of	this	book	will	be	dedicated	to	covering	how	you	can	use	types	to	your
advantage.	Before	I	move	on	though,	I	need	to	talk	about	some	fundamental
choices	Python	has	made	as	a	language,	and	how	they	impact	codebase
robustness.

DISCUSSION	TOPIC
Think	about	types	used	in	your	codebase.	Pick	a	few	and	ask	yourself	what	their	semantic
representations	are.	Enumerate	their	constraints,	use	cases	and	behaviors.	Could	you	be	using
these	types	in	more	places?	Are	there	places	where	you	are	misusing	types?

Typing	Systems
As	discussed	earlier	in	the	chapter,	a	type	system	aims	to	give	a	user	some	way
to	model	the	behaviors	and	constraints	in	the	language.	Programming	languages
set	expectations	about	how	their	specific	type	system	works,	both	during	code
construction	and	runtime.

Strong	vs.	Weak
Typing	systems	are	classified	on	a	spectrum	from	weak	to	strong.

Languages	towards	the	stronger	side	of	the	spectrum	tend	to	restrict	the	use	of
operations	to	the	types	that	support	them.	In	other	words,	if	you	break	the
semantic	representation	of	the	type,	you	are	told	(sometimes	quite	loudly)
through	a	compiler	error	or	a	runtime	error.	Languages	such	as	Haskell,
TypeScript,	Rust	are	all	considered	strongly	typed.	Proponents	advocate	strongly

TypeScript,	Rust	are	all	considered	strongly	typed.	Proponents	advocate	strongly
typed	languages	because	errors	are	more	apparent	when	building	or	running
code.

In	contrast,	languages	towards	the	weaker	side	of	the	spectrum	will	not	restrict
the	use	of	operations	to	the	types	that	support	them.	Types	are	often	coerced	into
a	different	type	to	make	sense	of	an	operation.	Languages	such	as	JavaScript,
Perl,	and	older	versions	of	C	are	weakly	typed.	Proponents	advocate	the	speed	in
which	it	takes	to	quickly	iterate	on	code,	without	fighting	language	along	the
way.

Python	falls	towards	the	stronger	side	of	the	spectrum.	There	are	very	few
implicit	conversions	that	happen	between	types.	It	is	noticeable	when	you
perform	illegal	operations:

>>>[]	+	{}

TypeError:	can	only	concatenate	list	(not	"dict")	to	list

	

>>>	{}	+	[]

TypeError:	unsupported	operand	type(s)	for	+:	'dict'	and	list

Contrast	that	with	a	weakly	typed	language,	such	as	JavaScript:

>>>	[]	+	{}

"[object	Object]"

	

>>>	{}	+	[]

0

In	terms	of	robustness,	a	strongly	typed	language	such	as	Python	certainly	helps
us	out.	While	errors	still	will	show	up	at	runtime	instead	of	at	development	time,
they	still	will	show	up	in	a	very	obvious	TypeError	exception.	This	reduces
the	time	taken	to	debug	issues	significantly,	again	allowing	you	to	deliver
incremental	value	quicker.

ARE	WEAKLY-TYPED	LANGUAGES	INHERENTLY	NOT
ROBUST?

Codebases	in	weakly-typed	languages	can	absolutely	be	robust;	by	no	means
am	I	dumping	on	those	languages.	Consider	the	sheer	amount	of	production-
grade	JavaScript	that	the	world	runs	on.	However,	a	weakly	typed	language

requires	extra	care	to	be	robust.	Developers	come	to	rely	very	heavily	on
linters,	tests,	and	other	tools	to	improve	maintainability.	I’ll	talk	more	about
this	in	Part	4	of	this	book,	Building	a	Safety	Net.

Dynamic	vs.	Static
There	is	another	typing	spectrum	I	need	to	discuss:	static	vs	dynamic	typing.
This	is	fundamentally	a	difference	in	handling	mechanical	representation	of
types.

Languages	that	offer	static	typing	embed	their	typing	information	in	variables
during	build	time.	Developers	may	explicitly	add	type	information	to	variables
or	some	tool	such	as	a	compiler	infers	types	for	the	developer.	Variables	do	not
change	their	type	at	runtime	(hence	the	name	static.)	Proponents	of	static	typing
tout	the	ability	to	write	safe	code	out	of	the	gate	and	to	benefit	from	a	strong
safety	net.

Dynamic	typing,	on	the	other	hand,	embeds	type	information	with	the	value	or
variable	itself.	Variables	can	change	types	at	runtime	quite	easily,	because	there
is	no	type	information	tied	to	that	variable.	Proponents	of	dynamic	typing
advocate	the	flexibility	and	speed	that	it	takes	to	develop;	there’s	nowhere	near
as	much	fighting	with	compilers.

Python	is	a	dynamically	typed	language.	As	you	saw	during	the	discussion	about
mechanical	representation,	you	saw	that	there	was	type	information	embedded
inside	the	values	of	a	variable.	Python	has	no	qualms	about	changing	the	type	of
a	variable	at	runtime:

>>>a	=	5

>>>a	=	"string"

>>>a

"string"

>>>a	=	tuple()

()

Unfortunately,	the	ability	to	change	types	at	runtime	is	a	hindrance	to	robust
code	in	many	cases.	You	cannot	make	strong	assumptions	about	a	variable
throughout	its	lifetime.	As	assumptions	are	broken,	it’s	easy	to	write	unstable
assumptions	on	top	of	them,	leading	to	a	ticking	logic	bomb	in	your	code.

assumptions	on	top	of	them,	leading	to	a	ticking	logic	bomb	in	your	code.

ARE	DYNAMICALLY-TYPED	LANGUAGES	INHERENTLY
NOT	ROBUST?

Just	like	weakly	typed	languages,	it	is	still	absolutely	possible	to	write	robust
code	in	a	dynamically	typed	language.	You	just	have	to	work	a	little	harder
for	it.	You	will	have	to	make	more	deliberate	decisions	to	make	your
codebase	more	maintainable.	On	the	flip	side,	being	statically	typed	doesn’t
guarantee	robustness	either;	one	can	do	the	bare	minimum	with	types	and
see	little	benefit.

To	make	things	worse,	the	type	annotations	I	showed	earlier	have	no	effect	on
this	behavior	at	runtime:

>>>a:	int	=	5

>>>a	=	"string"

>>>a

"string"

No	errors,	no	warnings,	no	anything.	But	hope	is	not	lost,	and	you	have	plenty	of
strategies	to	make	code	more	robust.	(Otherwise,	this	would	be	quite	the	short
book).	We	will	discuss	one	last	thing	as	a	contributor	to	robust	code,	and	then
start	diving	into	the	meat	of	improving	our	codebase

Duck	Typing
I	feel	like	it	is	some	unwritten	law	that	whenever	someone	mentions	duck
typing,	someone	must	reply	with:

_If	it	walks	like	a	duck	and	it	quacks	like	a	duck,	then	it	must	be	a

duck._

My	problem	with	this	saying	is	that	I	find	it	completely	unhelpful	for	explaining
what	duck	typing	actually	is.	It’s	catchy,	concise,	and	crucially,	only
comprehensible	to	those	who	already	understand	duck	typing.	When	I	was
younger,	I	just	nodded	politely,	afraid	that	I	was	missing	something	profound	by
this	simple	phrase.	It	wasn’t	until	later	on	that	I	truly	understood	the	power	of
duck	typing.

duck	typing.

Duck	typing	is	the	ability	to	use	objects	and	entities	in	a	programming	language
as	long	as	it	adheres	to	some	interface.	It	is	a	wonderful	thing	in	Python,	and
most	people	use	it	without	even	knowing	it.	Let’s	look	at	a	simple	example	to
illustrate	what	I’m	talking	about.

def	print_items(items):

				for	item	in	items:

								print(item)

print_items([1,2,3])

print_items({4,	5,	6})

print_items({"A":	1,	"B":	2,	"C":	3})

In	all	three	invocations	of	print_items,	we	loop	through	the	collection	and
print	each	item.	Think	about	how	this	works.	print_items	has	absolutely	no
knowledge	of	what	type	it	will	receive.	It	just	receives	a	type	at	run-time	and
operates	upon	it.	It’s	not	introspecting	each	argument	and	deciding	to	do
different	things	based	on	the	type.	The	truth	is	much	simpler.	Instead,	all
print_items	is	doing	is	checking	that	whatever	is	passed	in	can	be	iterated	upon
(by	calling	an	__iter__	method).	If	the	attribute	__iter__	exists,	it’s	called
and	the	returned	iterator	is	looped	over.

We	can	verify	this	with	a	simple	code	example:

>>>for	x	in	5:

>>>				print(x)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

TypeError:	'int'	object	is	not	iterable

Duck	typing	is	what	makes	this	possible.	As	long	as	a	type	supports	the	variables
and	methods	expected	by	a	function	(based	on	what’s	actually	used),	you	can	use
that	type	in	that	function	freely.

Here’s	another	example:

>>>def	double_value(value):

>>>				return	value	+	value

>>>double_value(5)

10

>>>double_value("abc")

"abcabc"

It	doesn’t	matter	that	we’re	passing	an	integer	in	one	place	or	a	string	in	another;
both	support	the	+	operator,	so	either	will	work	just	fine.	Any	object	that
supports	the	+	operator	can	be	passed	in.	We	can	even	do	it	with	a	list:

>>>double_value([1,	2,	3])

[1,	2,	3,	1,	2,	3]

So	how	does	this	play	into	robustness?	It	turns	out	that	duck	typing	is	a	double-
edged	sword.	It	can	increase	robustness	because	it	increases	composability
(we’ll	learn	more	about	composability	in	XREF	HERE).	Building	up	a	library	of
solid	abstractions	able	to	handle	a	multitude	of	types	lessens	the	need	for
complex	special	cases.	However,	if	duck	typing	is	overused,	you	start	to	break
down	assumptions	that	a	developer	can	rely	upon.	When	updating	code,	it’s	not
simple	enough	to	just	make	the	changes;	you	must	look	at	all	calling	code	and
make	sure	that	the	types	passed	into	your	function	satisfy	your	new	changes	as
well.

With	all	this	in	mind,	it	might	be	best	to	reword	the	idiom	at	the	beginning	of
this	chapter	as	such:

If	it	walks	like	a	duck,	and	quacks	like	a	duck,	and	you	are	looking	for	things
that	walk	and	quack	like	ducks,	then	you	can	treat	it	as	if	it	were	a	duck

Doesn’t	quite	roll	off	the	tongue	as	well,	does	it?

DISCUSSION	TOPIC
Do	you	use	duck	typing	in	your	codebase?	Are	there	places	where	you	can	pass	in	types	that
don’t	match	what	the	code	is	looking	for,	but	things	still	work?	Do	you	think	these	increase	or
decrease	robustness	for	your	use	cases?

Wrap-up
Types	are	a	pillar	of	clean,	maintainable	code	and	serve	as	a	communication	tool
to	other	developers.	If	you	take	care	with	types,	you	communicate	a	great	deal,

to	other	developers.	If	you	take	care	with	types,	you	communicate	a	great	deal,
creating	less	burden	for	future	maintainers.	The	rest	of	Part	1	will	show	you	how
to	use	types	to	enhance	a	codebase’s	robustness.

Remember,	Python	is	dynamically	and	strongly	typed.	The	strongly	typed	nature
will	be	a	boon	for	us;	Python	will	notify	us	about	errors	when	we	use
incompatible	types.	But	its	dynamically	typed	nature	is	something	we	will	have
to	overcome	in	order	to	write	better	types.	These	language	choices	shape	how
Python	code	is	written,	and	we’ll	be	referring	back	often	to	them	throughout	the
book.

In	the	next	chapter,	we’re	going	to	talk	about	type	annotations,	which	is	how	we
can	be	explicit	about	the	type	we	use.	Type	annotations	serve	a	crucial	role:	our
primary	commmunication	method	of	behvaiors	to	future	developers.	They	help
overcome	the	limitations	of	a	dynamically-typed	language	and	allow	you	to
enforce	intentions	throughout	a	codebase.

Chapter	3.	Type	Annotations

A	NOTE	FOR	EARLY	RELEASE	READERS

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the
author’s	raw	and	unedited	content	as	they	write—so	you	can	take	advantage
of	these	technologies	long	before	the	official	release	of	these	titles.

This	will	be	the	3rd	chapter	of	the	final	book.	Please	note	that	the	GitHub
repo	will	be	made	active	later	on.

If	you	have	comments	about	how	we	might	improve	the	content	and/or
examples	in	this	book,	or	if	you	notice	missing	material	within	this	chapter,
please	reach	out	to	the	author	at	pat@kudzera.com.

Python	is	a	dynamically-typed	language;	types	can	be	changed	at	runtime..	This
is	an	obstacle	when	trying	to	write	robust	code.	Since	types	are	embedded	in	the
value	itself,	developers	have	a	very	tough	time	knowing	what	type	they	are
working	with.	Sure,	that	name	looks	likes	a	string	today,	but	what	happens	if
someone	makes	it	bytes?	Assumptions	about	types	are	built	on	shaky	grounds
with	dynamically	typed	languages.	Hope	is	not	lost,	though.	In	Python	3.5,	a
brand-new	feature	was	introduced:	type	annotations.

Type	annotations	brings	your	ability	to	write	robust	code	to	a	whole	new	level.
Guido	van	Rossum,	creator	of	Python,	says	it	best

I’ve	learned	a	painful	lesson	that	for	small	programs	dynamic	typing	is	great.
For	large	programs	you	have	to	have	a	more	disciplined	approach	and	it
helps	if	the	language	actually	gives	you	that	discipline,	rather	than	telling	you
“Well,	you	can	do	whatever	you	want”

Type	annotations	are	the	more	disciplined	approach,	the	extra	bit	of	care	you
need	to	wrangle	larger	codebases.	In	this	chapter,	you’ll	learn	how	to	use	type
annotations,	why	they	are	so	important,	and	how	to	utilize	a	tool	called	a
typechekcer	to	enforce	your	intentions	throughout	your	codebase.

1

Type	Annotations
In	Chapter	2,	you	got	your	first	glance	at	a	type	annotation:

def	close_kitchen_if_past_close(point_in_time:	datetime.datetime):	

				if	point_in_time	>=	closing_time():

								close_kitchen()

								log_time_closed(point_in_time)

The	type	annotation	here	is	:	datetime.datetime

Type	annotations	are	an	additional	syntax	notifying	the	user	of	an	expected	type
of	your	variables.	These	annotations	serve	as	type	hints;	they	provide	hints	to	the
reader,	but	they	are	not	actually	used	by	the	Python	language.	In	fact,	you	are
completely	free	to	ignore	the	hints:

#	CustomDateTime	offers	all	the	same	functionality	with

#	datetime.datetime.	I'm	using	it	here	for	it's	better

#	logging	facilities

close_kitchen_if_past_close(CustomDateTime("now"))	#	no	error

WARNING
It	should	be	a	rare	case	where	you	go	against	a	type	hint.	The	author	very	clearly	intended	a
specific	use	case.	If	you	go	against	that	use	case,	and	the	code	changes,	you	don’t	have	any
protections	that	you	can	work	with	the	changed	method.

Python	will	not	throw	any	error	at	runtime	in	this	scenario.	As	a	matter	of	fact,	it
won’t	use	the	type	annotations	at	all	during	runtime.	There	is	no	checking	or	cost
for	using	these	when	Python	executes.	These	type	annotations	still	serve	a
crucial	purpose:	informing	your	readers	of	the	expected	type.	Maintainers	of
code	will	know	what	types	they	are	allowed	to	use	when	changing	your
implementation.	Calling	code	will	also	benefit,	as	developers	will	know	exactly
what	type	to	pass	in.	By	implementing	type	annotations,	you	reduce	friction.

Put	yourself	in	your	future	maintainer’s	shoes.	Wouldn’t	it	be	nice	to	come
across	code	that	is	intuitive	to	use?	You	wouldn’t	have	to	dig	through	function
after	function	to	determine	usage.	You	wouldn’t	assume	a	wrong	type	and	then
need	to	deal	with	fallout	of	exceptions	and	wrong	behavior.

need	to	deal	with	fallout	of	exceptions	and	wrong	behavior.

Consider	a	piece	of	code	that	takes	in	employee’s	availability	and	a	restaurant’s
opening	time,	and	then	schedules	available	workers	for	that	day.	You	want	to
use	this	piece	of	code,	and	you	see	the	following:

def	schedule_restaurant_open(open_time,	workers_needed):

Let’s	ignore	the	implementation	for	a	minute,	because	I	want	to	focus	on	first
impressions.	What	do	you	think	can	get	passed	into	this?	Stop,	close	your	eyes,
and	ask	yourself	what	are	reasonable	types	that	can	be	passed	in	before	reading
on.	Is	open_time	a	datetime,	the	number	of	seconds	since	epoch,	or	maybe	a
string	containing	an	hour?	Is	workers_needed	a	list	of	names,	a	list	of
Worker	objects,	or	something	else?	If	you	guess	wrong,	or	aren’t	sure,	you
need	to	go	look	at	either	the	implementation	or	calling	code,	which	I’ve
established	takes	time	and	is	frustrating.

Let	me	provide	an	implementation	and	you	can	see	how	close	you	were.

import	datetime

import	random

def	schedule_restaurant_open(open_time:	datetime.datetime,

		workers_needed:	int):

				workers	=	find_workers_available_for_time(open_time)

				#	use	random.sample	to	pick	X	available	workers

				#	where	X	is	the	number	of	workers	needed.

				for	worker	in	random.sample(workers,	workers_needed):

								worker.schedule(open_time)

You	probably	guessed	that	open_time	is	a	datetime,	but	did	you	consider	that
workers_needed	could	have	been	an	int?	As	soon	as	you	see	the	type
annotations,	you	get	a	much	better	picture	of	what’s	happening.	This	reduces
cognitive	overhead	and	reduces	friction	for	maintainers.

WARNING
This	is	certainly	a	step	in	the	right	direction,	but	don’t	stop	here.	If	you	see	code	like	this,
consider	renaming	the	variable	to	number_of_workers_needed	to	reflect	just	what	the
integer	means.	In	the	next	chapter,	I’ll	also	explore	type	aliases,	which	provides	an	alternate
way	of	expressing	yourself..

So	far,	all	the	examples	I’ve	shown	have	focused	on	parameters,	but	you’re	also
allowed	to	annotate	return	types.

Consider	the	schedule_restaurant_open	function.	In	the	middle	of	that
snippet,	I	called	find_workers_available_for_time.	This	returns	to	a
variable	named	workers.	Suppose	you	want	to	change	the	code	to	pick
workers	who	have	gone	the	longest	without	working,	rather	than	random
sampling?	Do	you	have	any	indication	what	type	workers	is?

If	you	were	to	just	look	at	the	function	signature,	you	would	see	the	following:

def	find_workers_available_for_time(open_time:	datetime.datetime):

Nothing	in	here	helps	us	do	your	job	quicker.	You	could	guess	and	the	tests
would	tell	us,	right?	Maybe	it’s	a	list	of	names?	Instead	of	letting	the	tests	fail,
maybe	you	should	go	look	through	the	implementation.

def	find_workers_available_for_time(open_time:	datetime.datetime):

				workers	=	worker_database.get_all_workers()

				available_workers	=	[worker	for	worker	in	workers

																											if	is_available(worker)]

				if	available_workers:

								return	available_workers

				#	fall	back	to	workers	who	listed	they	are	available	in

				#	in	an	emergency

				emergency_workers	=	[worker	for	worker	in	get_emergency_workers()

																											if	is_available(worker)]

				if	emergency_workers:

								return	emergency_workers

				#	Schedule	the	owner	to	open,	they	will	find	someone	else

				return	[OWNER]

Oh	no,	there’s	nothing	in	here	that	tells	you	what	type	you	should	be	expecting.
There	are	three	different	return	statements	throughout	this	code,	and	you	hope
that	they	all	return	the	same	type	(surely	every	if	statement	is	tested	through	unit
tests	to	make	sure	they	are	consistent,	right?	Right?)	You	need	to	dig	deeper.
You	need	to	look	at	worker_database.	You	need	to	look	at
is_available	and	get_emergency_workers.	You	need	to	look	at	the

OWNER	variable.	Every	one	of	these	needs	to	be	consistent,	or	else	you’ll	need	to
handle	special	cases	in	your	original	code.

And	what	if	these	functions	also	don’t	tell	you	exactly	what	you	need?	What	if
you	have	to	go	deeper	through	multiple	function	calls?	Every	layer	you	have	to
go	through	is	another	layer	of	abstraction	you	need	to	keep	in	your	brain.	Every
piece	of	information	contributes	to	cognitive	overload.	The	more	cognitive
overload	you	are	burdened	with,	the	more	likely	a	mistake	will	happen.

All	of	this	is	avoided	by	annotating	a	return	type.	Return	types	are	annotated	by
putting	->	<type>	at	the	end	of	the	function	declaration.	If	you	came	across
this	function	signature:

def	find_workers_available_for_time(open_time:	datetime.datetime)	->	

list[str]:

You	now	know	that	you	should	indeed	treat	workers	as	a	list	of	strings.	No
digging	through	databases,	function	calls	or	modules	needed.

Finally,	you	can	annotate	variables	when	needed.

workers:	list[str]	=	find_workers_available_for_time(open_time)

numbers:	list[int]	=	[]

ratio:	float	=	get_ratio(5,3)

Most	of	the	time,	I	won’t	bother	annotating	variables,	unless	there	is	something
specific	I	want	to	convey	in	my	code	(such	as	a	type	that	is	different	from
expected).	I	don’t	want	to	get	too	into	the	realm	of	putting	type	annotations	on
literally	everything	-	the	lack	of	verbosity	is	what	drew	many	developers	to
Python	in	the	first	place.	The	types	can	clutter	your	code,	especially	when	it	is
blindingly	obvious	what	the	type	is.

number:	int	=	0

text:	str	=	"useless"

values:	list[float]	=	[1.2,	3.4,	6.0]

worker:	Worker	=	Worker()

None	of	these	type	annotations	provide	useful	value	than	what	is	already
provided	by	Python	itself.	Readers	of	this	code	know	that	"useless"	is	a
string.	Remember,	type	annotations	are	used	for	type	hinting;	you	are	providing

notes	for	the	future	to	improve	communication.	You	don’t	need	to	state	the
obvious	everywhere.

TYPE	ANNOTATIONS	BEFORE	PYTHON	3.5

If	you	have	the	misfortune	of	not	being	able	to	use	a	later	version	of	Python,
hope	is	not	lost.	There	is	an	alternative	syntax	for	type	annotations,	even	for
Python	2.7.

To	write	the	annotations,	you	need	to	do	so	in	a	comment:

ratio	=	get_ratio(5,3)	#	type:	float

def	get_workers(open):	#	type:	(datetime.datetime)	->	List[str]

This	is	easier	to	miss,	as	the	types	are	not	visually	close	to	the	variable	itself.
If	you	have	the	ability	to	upgrade	to	Python	3.5,	consider	doing	so	and	using
the	newer	method	of	type	annotations.

Benefits
As	with	every	decision	you	make,	you	need	to	weigh	the	costs	and	benefits.
Thinking	about	types	up	front	helps	your	deliberate	design	process,	but	are	there
other	benefits	type	annotations	provide?	I’ll	show	you	how	type	annotations
really	pull	their	weight	through	tooling.

Autocomplete
I’ve	mainly	talked	about	communication	to	other	developers,	but	your	Python
environment	benefits	from	type	annotations	as	well.	Since	Python	is
dynamically-typed,	it	is	difficult	to	know	what	operations	are	available.	With
type	annotations,	many	Python-aware	code	editors	will	autocomplete	your
variable’s	operations.

In	Figure	3-1,	you’ll	see	a	screenshot	that	illustrates	VSCode	detecting	a
datetime	and	offering	to	autocomplete	my	variables.

Figure	3-1.	An	IDE	showing	autocompletion

Typecheckers
Throughout	this	book,	I’ve	been	talking	about	how	types	communicate	intent,
but	have	been	leaving	out	one	key	detail:	No	programmer	has	to	honor	these
type	annotations	if	they	don’t	want	to.	If	your	code	contradicts	a	type	annotation,

type	annotations	if	they	don’t	want	to.	If	your	code	contradicts	a	type	annotation,
it	is	probably	an	error,	and	you’re	still	relying	on	humans	to	catch	bugs.	I	want	to
do	better.	I	want	a	computer	to	find	these	sorts	of	bugs	for	me.

I	showed	this	snippet	when	talking	about	dynamic	typing	back	in	Chapter	2:

a:	int	=	5

a	=	"string"

a

>>>	"string"

Herein	lies	the	challenge:	How	do	type	annotations	make	your	codebase	robust,
when	you	can’t	trust	that	develoeprs	will	follow	their	guidance?	In	order	to	be
robust,	you	want	your	code	to	stand	the	test	of	time.	To	do	that,	you	need	some
sort	of	tool	that	can	check	all	your	type	annotations	and	flags	if	anything	is
amiss.	That	tool	is	called	a	typechecker.

Typecheckers	are	what	allow	the	type	annotations	to	transcend	from
communication	method	to	a	safety	net.	It	is	a	form	of	static	analysis.	Static
analysis	tools	are	tools	that	run	on	your	source	code,	and	don’t	impact	your
runtime	at	all.	You’ll	learn	more	about	static	analysis	tools	in	XREF	HERE,	but
for	now,	I	will	just	explain	typecheckers.

First,	I	need	to	install	one.	I’ll	use	mypy,	a	very	popular	typechecker.

pip	install	mypy

Now	I’ll	create	a	file	named	invalid_type.py	with	incorrect	behavior:

a:	int	=	5

a	=	"string"

If	I	run	mypy	on	the	command	line	against	that	file,	I	will	get	an	error:

mypy	invalid_type.py

	

chapter3/invalid_type.py:2:	error:	Incompatible	types	in	assignment

(expression	has	type	"str",	variable	has	type	"int")

Found	1	error	in	1	file	(checked	1	source	file)

And	just	like	that,	my	type	annotations	become	a	first	line	of	defense	against
errors.	Anytime	you	make	a	mistake	and	go	against	the	author’s	intent,	a	type
checker	will	find	out	and	alert	you.	In	fact,	in	most	development	environments,

checker	will	find	out	and	alert	you.	In	fact,	in	most	development	environments,
it’s	possible	to	get	this	analysis	in	real-time,	notifying	you	of	errors	as	you	type.
(Without	reading	your	mind,	this	is	about	as	early	as	a	tool	can	catch	errors,
which	is	pretty	great.)

Exercise:	Spot	the	Bug
Here	are	some	more	examples	of	mypy	catching	errors	in	my	code.	I	want	you	to
look	for	the	error	in	each	code	snippet	and	time	how	long	it	takes	you	to	find	the
bug	or	give	up,	and	then	check	the	output	listed	below	the	snippet	to	see	if	you
got	it	right.

def	read_file_and_reverse_it(filename:	str)	->	str:

				with	open(filename)	as	f:

								#	Convert	bytes	back	into	str

												return	f.read().encode("utf-8")[::-1]

mypy	chapter3/invalid_example1.py

chapter3/invalid_example1.py:3:	error:	Incompatible	return	value	type

(got	"bytes",	expected	"str")

Found	1	error	in	1	file	(checked	1	source	file)

Whoops,	I’m	returning	bytes,	not	a	string.	I	made	a	call	to	encode	instead	of
decode,	and	got	my	return	type	all	mixed	up.I	can’t	even	tell	you	how	many
times	I	made	this	mistake	moving	Python	2.7	code	to	Python	3.	Thank	goodness
for	typecheckers.

Here’s	another	example:

from	typing	import	List

#	takes	a	list	and	adds	the	doubled	values

#	to	the	end

#	[1,2,3]	=>	[1,2,3,2,4,6]

def	add_doubled_values(my_list:	List[int]):

				my_list.update([x*2	for	x	in	my_list])

add_doubled_values([1,2,3])

mypy	chapter3/invalid_example2.py

chapter3/invalid_example2.py:6:	error:	"List[int]"	has	no	attribute

"update"

Found	1	error	in	1	file	(checked	1	source	file)

Another	innocent	mistake	I	made	by	calling	update	on	a	list	instead	of
extend.	These	sort	of	mistakes	can	happen	quite	easily	when	moving	between
collection	types	(in	this	case	from	a	set,	which	does	offer	an	update	method,
to	a	list,	which	doesn’t)

One	more	example	to	wrap	it	up:

#	The	restaurant	is	named	differently	in	different

#	in	different	parts	of	the	world

def	get_restaurant_name(city:	str)	->	str:

				if	city	in	ITALY_CITIES:

												return		"Trattoria	Viafore"

				if	city	in	GERMANY_CITIES:

												return	"Pat's	Kantine"

				if	city	in	US_CITIES:

												return	"Pat's	Place"

				return	None

if	get_restaurant_name('Boston'):

				print("Location	Found")

chapter3/invalid_example3.py:14:	error:	Incompatible	return	value	type

(got	"None",	expected	"str")

Found	1	error	in	1	file	(checked	1	source	file)

This	one	is	subtle.	I’m	returning	None	when	a	string	value	is	expected.	If	all	the
code	is	just	checking	conditionally	for	the	restaurant	name	to	make	decisions,
like	I	do	above,	tests	will	pass,	and	nothing	will	be	amiss.	This	is	true	even	for
the	negative	case,	because	None	is	absolutely	fine	to	check	for	in	if	statements
(it	is	false-y).	This	is	an	example	of	Python’s	dynamic	typing	coming	back	to
bite	us.

However,	a	few	months	from	now,	some	developer	will	start	trying	to	use	this
return	value	as	a	string,	and	as	soon	as	a	new	city	needs	to	be	added,	the	code
starts	trying	to	operate	on	None	values,	which	causes	exceptions	to	be	raised.
This	is	not	very	robust;	there	is	a	latent	code	bug	just	waiting	to	happen.	But
with	typecheckers,	you	can	stop	worrying	about	this,	and	catch	these	mistakes
early.

WARNING

With	typechecker	available,	do	you	even	need	tests?	You	certainly	do.	Typecheckers	catch	a
specific	class	of	errors	-	those	of	incompatible	types.	There	are	plenty	of	other	classes	of	errors
that	you	still	need	to	test	for.	Treat	typecheckers	as	just	one	tool	in	your	arsenal	of	finding
bugs.

In	all	of	these	examples,	typecheckers	found	a	bug	just	waiting	to	happen.	It
doesn’t	matter	if	the	bug	would	have	been	caught	by	tests,	or	by	code	review,	or
by	customers;	typecheckers	catch	it	earlier,	which	saves	time	and	money.
Typecheckers	start	giving	us	the	benefit	of	a	statically-typed	language,	while	still
allowing	the	Python	runtime	to	remain	dynamically-typed.	This	truly	is	the	best
of	both	worlds.

At	the	beginning	of	the	chapter,	you’ll	find	a	quote	from	Guido	van	Rossum.
Guido	van	Rossum	is	the	creator	of	the	Python	programming	language.	While
working	at	Dropbox	he	found	that	large	codebases	struggled	without	having	a
safety	net.	He	became	a	huge	proponent	for	driving	type	hinting	into	the
language.	If	you	want	your	code	to	communicate	intent	and	catch	errors,	start
adopting	type	annotations	and	typechecking	today.

DISCUSSION	TOPIC
Has	your	codebase	had	an	error	slip	through	that	could	have	been	caught	by	typecheckers?
How	much	do	those	errors	cost	you?	How	many	times	has	it	been	a	code	review	or	an
integration	test	that	caught	the	bug?	How	about	bugs	that	made	it	to	production?

When	To	Use
Now,	before	you	go	adding	types	to	everything,	I	need	to	talk	about	the	cost.
Adding	types	is	simple,	but	can	be	overdone.	As	users	try	to	test	and	play	around
with	code,	they	may	start	fighting	the	typechecker	because	they	feel	bogged
down	when	writing	all	the	type	annotations.	There	is	an	adoption	cost	for	users
who	are	just	getting	started	with	type	hinting.	I	also	mentioned	that	I	don’t	type
annotate	everything.	I	won’t	annotate	all	my	variables,	especially	if	the	type	is
obvious.	I	also	won’t	typically	type	annotate	parameters	for	every	small	private
method	in	a	class.

When	should	you	use	typecheckers?

When	should	you	use	typecheckers?

Functions	that	you	expect	other	modules	or	users	to	call	(e.g.	public
API,	library	entry	points,	etc.)

Code	that	you	want	to	highlight	where	a	type	is	complicated	(e.g.	a
dictionary	of	strings	mapped	to	lists	of	objects)	or	unintuitive.

Areas	where	mypy	complains	that	you	need	a	type	(typically	when
assigning	to	an	empty	collection	-	it’s	easier	to	go	along	with	the	tool
than	against	it.)

Typecheckers	will	infer	types	for	any	value	that	it	can,	so	even	if	you	don’t	fill
in	all	types,	you	still	reap	the	benefits.

Wrap-up
There	was	consternation	in	the	Python	community	when	type	hinting	was
introduced.	Developers	were	afraid	that	Python	was	becoming	a	statically	typed
language	like	Java	or	C++.	Developers	felt	that	adding	types	everywhere	would
slow	them	down	and	destroy	the	benefits	of	the	dynamically	typed	language	they
fell	in	love	with.

However,	type	hints	are	just	that:	hints.	They	are	completely	optional.	I	don’t
recommend	them	for	small	scripts,	or	any	piece	of	code	that	isn’t	going	to	live	a
very	long	time.	But	if	your	code	needs	to	be	maintainable	for	the	long	term,	type
hints	are	invaluable.	They	serve	as	a	communication	method,	make	your
environment	smarter,	and	detect	errors	when	combined	with	typecheckers.	They
protect	the	original	author’s	intent.	When	annotating	types,	you	decrease	the
burden	a	reader	has	in	understanding	your	code.	You	reduce	the	need	to	read	the
implementation	of	a	function	to	know	what	its	doing.	Code	is	complicated,	and
you	should	be	minimizing	how	much	code	a	developer	needs	to	read.	By	using
well	thought	out	types,	you	reduce	surprise	and	increase	reading	comprehension.

The	typechecker	is	also	a	confidence	builder.	Remember,	in	order	for	your	code
to	be	robust	it	has	to	be	easy	to	change,	rewrite	and	delete	if	needed.	The
typechecker	can	allow	developers	to	do	that	with	less	trepidation.	If	something
was	relying	on	a	type	or	field	that	got	changed	or	deleted,	the	typechecker	will
flag	the	offending	code	as	incompatible.	Automated	tooling	makes	you	and	your
future	collaborator’s	jobs	simpler;	less	bugs	will	make	it	to	production	and

future	collaborator’s	jobs	simpler;	less	bugs	will	make	it	to	production	and
features	will	get	delivered	quicker.

In	the	next	chapter,	you’re	going	to	go	beyond	basic	type	annotations	and	learn
how	to	build	a	vocabulary	of	all	new	types.	These	types	will	help	you	constrain
behavior	in	your	codebase,	limiting	the	ways	things	can	go	wrong.	I’ve	only
scratched	the	surface	of	how	useful	type	annotations	can	be.

1 	A	Language	Creators’	Conversation,	PuPPy	Annual	Benefit	2019,	https://www.youtube.com/watch?
v=csL8DLXGNlU

https://www.youtube.com/watch?v=csL8DLXGNlU

Chapter	4.	Constraining	Types

A	NOTE	FOR	EARLY	RELEASE	READERS

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the
author’s	raw	and	unedited	content	as	they	write—so	you	can	take	advantage
of	these	technologies	long	before	the	official	release	of	these	titles.

This	will	be	the	4th	chapter	of	the	final	book.	Please	note	that	the	GitHub
repo	will	be	made	active	later	on.

If	you	have	comments	about	how	we	might	improve	the	content	and/or
examples	in	this	book,	or	if	you	notice	missing	material	within	this	chapter,
please	reach	out	to	the	author	at	pat@kudzera.com.

Many	developers	learn	the	basic	type	annotations	and	call	it	a	day.	But	I’m	far
from	done.	There	is	a	wealth	of	advanced	type	annotations	that	are	invaluable.
These	advanced	type	annotations	allow	you	to	constrain	types,	further	restricting
what	they	can	represent.	Your	goal	is	to	make	illegal	states	unrepresentable.
Developers	should	physically	not	be	able	to	create	types	that	are	contradictory	or
otherwise	invalid	in	your	system.	You	can’t	have	errors	in	your	code	if	it’s
impossible	to	create	the	error	in	the	first	place.	You	can	use	type	annotations	to
achieve	this	very	goal,	saving	time	and	money.	In	this	chapter	I’ll	teach	you	six
different	techniques:

Optional

Use	to	replace	null	references	in	your	codebase

Union

Use	to	present	a	selection	of	types

Literal

Use	to	restrict	developers	to	very	specific	values

Annotated

Annotated

Use	to	provide	additional	description	of	your	types

NewType

Use	to	restrict	a	type	to	a	specific	context

Final

Use	to	prevent	variables	from	being	rebound	to	a	new	value.

Let’s	start	with	handling	null	references	with	Optional	types.

Optional	Type
Null	references	is	often	referred	to	as	the	“billion	dollar	mistake”,	coined	by
C.A.R.	Hoare:

I	call	it	my	billion-dollar	mistake.	It	was	the	invention	of	the	null	reference	in
1965.	At	that	time,	I	was	designing	the	first	comprehensive	type	system	for
references	in	an	object	oriented	language.	My	goal	was	to	ensure	that	all	use
of	references	should	be	absolutely	safe,	with	checking	performed
automatically	by	the	compiler.	But	I	couldn’t	resist	the	temptation	to	put	in	a
null	reference,	simply	because	it	was	so	easy	to	implement.	This	has	led	to
innumerable	errors,	vulnerabilities,	and	system	crashes,	which	have	probably
caused	a	billion	dollars	of	pain	and	damage	in	the	last	forty	years.	

While	null	references	started	in	Algol,	they	would	pervade	countless	other
languages.	C	and	C++	are	often	derided	for	null	pointer	dereference	(which
produces	a	segmentation	fault	or	other	program-halting	crash).	Java	was	well-
known	for	having	to	catch	NullPointerException	throughout	your	code.
It’s	not	a	stretch	to	say	that	these	sorts	of	bugs	have	a	price	tag	measured	in	the
billions	-	think	of	the	developer	time,	customer	loss,	and	system	failures	due	to
accidental	null	pointers	or	references.

So,	why	does	this	matter	in	Python?	C.A.R	Hoare’s	quote	is	about	object
oriented	compiled	languages	back	in	the	60s;	Python	must	be	better	by	now,
right?.	I	regret	to	inform	you	that	this	billion-mistake	is	in	Python	as	well.	It
appears	to	us	under	a	different	name:	None.	I	will	show	you	a	way	to	avoid	the

1

costly	None	mistake,	but	first,	let’s	talk	about	why	None	is	so	bad.

NOTE
It	is	especially	illuminating	that	C.A.R.	Hoare	admitted	that	null	references	were	born	out	of
convenience.	It	goes	to	show	you	how	taking	the	quicker	path	can	lead	to	all	sorts	of	pain	later
in	your	development	lifecycle.	Think	how	your	short-term	decisions	today	will	adversely
affect	your	maintenance	tomorrow.

Let’s	consider	some	code	that	runs	an	automated	hot	dog	stand.	I	want	my
system	to	take	a	bun,	put	the	hotdog	in	the	bun,	and	then	squirt	ketchup	and
mustard	through	automtaed	dispensers,	as	described	in	Figure	4-1.	What	could
go	wrong?

Figure	4-1.	Workflow	for	the	automated	hot	dog	stand

def	create_hot_dog():

				bun	=	dispense_bun()

				hotdog	=	dispense_hotdog()

				hotdog.place_in_bun(bun)

				ketchup	=	dispense_ketchup()

				mustard	=	dispense_mustard()

				hotdog.add_condiments(ketchup,	mustard)

				return	hotdog

Pretty	straightforward,	no?	Unfortunately,	there’s	no	way	to	really	tell.	It’s	easy
to	think	through	the	happy	path,	or	the	control	flow	of	the	program	when
everything	goes	right,	but	when	talking	about	robust	code,	you	need	to	consider
error	conditions.	If	this	were	an	automated	stand	with	no	manual	intervention,
what	errors	can	you	think	of?

Here’s	my	non-comprehensive	list	of	errors	I	can	think	of:

Out	of	ingredients	(buns,	hotdog,	or	ketchup/mustard)

Order	cancelled	mid-process.

Condiments	get	jammed

Power	gets	interrupted

Customer	doesn’t	want	ketchup	or	mustard,	and	tries	to	move	the	bun
mid-process

Rival	vendor	switches	the	ketchup	out	with	catsup.	Chaos	ensues.

Now,	your	system	is	state-of-the-art	and	will	detect	all	of	these	conditions,	but	it
does	so	by	returning	None	when	any	one	ingredient	fails.	What	does	this	mean
for	this	code?	You	start	seeing	errors	like	the	following:

Traceback	(most	recent	call	last):

	File	"<stdin>",	line	1,	in	<module>

AttributeError:	'NoneType'	object	has	no	attribute	'place_hotdog'

	

Traceback	(most	recent	call	last):

	File	"<stdin>",	line	1,	in	<module>

AttributeError:	'NoneType'	object	has	no	attribute	'add_condiments'

It	would	be	catastrophic	if	these	errors	bubbled	up	to	your	customers;	you	pride
yourself	on	a	clean	UI	and	don’t	want	ugly	tracebacks	defiling	your	interface.	To
address	this,	you	start	to	code	defensively,	or	coding	in	such	a	way	that	you	try	to
foresee	every	possible	error	case	and	account	for	it.	Defensive	programming	is	a
good	thing,	but	it	leads	to	code	like	this:

def	create_hot_dog():

				bun	=	dispense_bun()

				if	bun	is	None:

								print_error_code("Bun	unavailable.	Check	for	bun")

								return	None

				hotdog	=	dispense_hotdog()

				if	hotdog	is	None:

								print_error_code("Hotdog	unavailable.	Check	for	hotdog")

								return	None

				hotdog.place_in_bun(bun)

				ketchup	=	dispense_ketchup()

				mustard	=	dispense_mustard()

				if	ketchup	is	None	or	mustard	is	None:

								print_error_code("Check	for	invalid	catsup")

								return	None

				hotdog.add_condiments(ketchup,	mustard)

				return	HotDog

This	feels,	well,	tedious.	Because	any	value	can	be	None	in	Python,	it	seems
like	you	need	to	engage	in	defensive	programming	and	do	an	is	None	check
before	every	dereference.	This	is	overkill;	most	developers	will	trace	through	the
call	stack	and	ensure	that	no	None	values	are	returned	to	the	caller.	That	leaves
calls	to	external	systems	and	maybe	a	scant	few	calls	in	your	codebase	that	you
always	have	to	wrap	with	None	checking.	This	is	error-prone;	you	cannot
expect	every	developer	to	ever	touch	your	codebase	to	know	instinctively	where
to	check	for	None.	Furthermore,	the	original	assumptions	you’ve	made	when
writing	(e.g.	this	function	will	never	return	None)	can	be	broken	in	the	future,
and	now	your	code	has	a	bug.	And	herein	lies	your	problem:	counting	on	manual
intervention	to	catch	error	cases	is	unreliable.

EXCEPTIONS

A	valiant	attempt	at	solving	the	billion-dollar	problem	is	exceptions.
Anytime	something	goes	wrong	in	your	system,	throw	an	exception!	When
an	exception	is	thrown,	that	function	stops	executing	and	the	exception	gets
passed	up	the	call	chain,	until	either	a)	some	code	catches	it	in	an	appropriate
except	block,	or	b)	nobody	catches	it	and	it	terminates	the	program.	This	will
not	help	your	robustness	problems.	You	still	rely	on	manual	intervention	to
catch	errors	(by	someone	writing	an	appropriate	except	block).	If	that
manual	intervention	isn’t	applied,	the	program	crashes	and	the	user	will	have
a	bad	time.

This	should	not	come	as	a	surprise;	dereferencing	None	values	throws	an
exception,	so	it’s	the	exact	same	behavior.	In	order	to	be	able	to	detect
exceptions	through	static	analysis,	you	typically	need	support	in	the
language	for	checked	exceptions:	exceptions	that	are	part	of	your	type
signature	that	tell	your	static	analysis	tools	what	exceptions	to	expect.
Python	does	not	support	any	sort	of	checked	exception	at	the	time	of	this
writing	and	I	am	doubtful	it	ever	will,	due	to	the	verbosity	and	viral	nature	of
checked	exceptions.

The	reason	this	is	so	tricky	(and	so	costly)	is	that	None	is	treated	as	a	special
case.	It	exists	outside	the	normal	type	hierarchy.	Every	variable	can	be	assigned
to	None.	In	order	to	combat	this,	you	need	to	find	a	way	of	representing	None

inside	your	type	hierarchy.	You	need	Optional	types.

Optional	types	offer	you	two	choices:	either	you	have	a	value	or	you	don’t.	In
other	words,	it	is	optional	to	set	the	variable	to	a	value.

from	typing	import	Optional

maybe_a_string:	Optional[str]	=	"abcdef"	#	This	has	a	value

maybe_a_string:	Optional[str]	=	None					#	This	is	the	absence	of	a	

value

This	code	indicates	that	the	variable	maybe_a_string	may	optionally
contain	a	string.	That	code	typechecks	just	fine,	whether	there	is	a	string	value
bound	to	maybe_a_string	or	a	None	value.

At	first	glance,	it’s	not	apparent	what	this	buys	you.	You	still	need	to	use	None
to	represent	the	absence	of	a	value.	I	have	good	news	for	you,	though.	There	are
three	benefits	I	associate	with	Optional	types.

First,	you	communicate	your	intent	more	clearly.	If	a	developer	sees	an
Optional	type	in	a	type	signature,	they	view	that	as	a	big	red	flag	that	they
should	expect	None	as	a	possibility.

def	dispense_bun()	->	Optional[Bun]:

#	...

If	you	notice	a	function	returning	an	Optional	value,	take	heed	and	check	for
None	Values.

Secondly,	you	are	able	to	further	distinguish	the	absence	of	value	from	an	empty
value.	Consider	the	innocuous	list.	What	happens	if	you	make	a	function	call	and
receive	an	empty	list?	Was	it	just	that	no	results	were	provided	back	to	you?	Or
was	it	that	an	error	occurred	and	you	need	to	take	explicit	action?	If	you	are
receiving	a	raw	list,	you	don’t	know	without	trawling	through	source	code.
However,	if	you	use	an	Optional,	you	are	conveying	one	of	three
possibilities:

A	list	with	elements	-	valid	data	to	be	operated	on

A	list	with	no	elements	-	no	error	occurred,	but	no	data	was	available
(provided	that	no	data	is	not	an	error	condition)

None	-	An	error	occurred	that	you	need	to	handle

Finally,	typecheckers	can	detect	Optional	types	and	make	sure	that	you	aren’t
letting	None	values	slip	through.

Consider:

def	dispense_bun()	->	Bun:

				return	Bun('Wheat')

Let’s	add	some	error	cases	to	this	code:

def	dispense_bun()	->	Bun:

				if	not	are_buns_available():

								return	None

				return	Bun('Wheat')

When	run	with	a	typechecker,	you	get	the	following	error:

code_examples/chapter4/invalid/dispense_bun.py:12:	error:	Incompatible

return	value	type	(got	"None",	expected	"Bun")

Excellent!	The	typechecker	will	not	allow	you	to	return	a	None	value	by	default.
By	changing	the	return	type	from	Bun	to	Optional[Bun],	the	code	will
typecheck	successfully.	This	will	give	developers	hints	that	they	should	not
return	None	without	encoding	information	in	the	return	type.	You	can	catch	a
common	mistake	and	make	my	code	more	robust.	But	what	about	the	calling
code?

It	turns	out	that	the	calling	code	benefits	from	this	as	well.	Consider:

def	create_hot_dog():

				bun	=	dispense_bun()

				hotdog	=	dispense_hotdog()

				hotdog.place_in_bun(bun)

				ketchup	=	dispense_ketchup()

				mustard	=	dispense_mustard()

				hotdog.add_condiments(ketchup,	mustard)

				return	hotdog

If	dispense_bun	returns	an	Optional	this	code	will	not	typecheck.	It	will
complain	with	the	following	error:

complain	with	the	following	error:

code_examples/chapter4/invalid/hotdog_invalid.py:27:	error:	Item

"None"	of	"Optional[Bun]"	has	no	attribute	"place_hotdog"

WARNING
Depending	on	your	typechecker,	you	may	specifically	need	to	enable	an	option	to	catch	these
sort	of	errors.	Always	look	through	your	typechecker’s	documentation	to	learn	what	options
are	available.	If	there	is	an	error	you	absolutely	want	to	catch,	you	should	test	that	your
typechecker	does	indeed	catch	the	error	(I	highly	recommend	testing	out	Optionals
specifically.	For	the	version	of	mypy	I	am	running,	I	have	to	use	--strict-optional	as	a
command	line	flag	to	catch	this	error.

If	you	are	interested	in	silencing	the	typechecker,	you	need	to	check	for	None
explicitly	and	handle	the	None	value,	or	assert	that	the	value	cannot	be	None.
The	following	code	typechecks	successfully.

def	create_hot_dog():

				bun	=	dispense_bun()

				if	bun	is	None:

								print("Bun	could	not	be	dispensed")

								return

				hotdog	=	dispense_hotdog()

				hotdog.place_in_bun(bun)

				ketchup	=	dispense_ketchup()

				mustard	=	dispense_mustard()

				hotdog.add_condiments(ketchup,	mustard)

				return	hotdog

None	values	truly	are	a	billion	dollar	mistake.	If	they	slip	through,	programs	can
crash,	users	are	frustrated,	and	money	is	lost.	Use	Optional	types	to	tell	other
developers	to	beware	of	None,	and	benefit	from	the	automated	checking	of	your
tools.

DISCUSSION	TOPIC
How	often	do	developers	deal	with	None	in	your	codebase?	How	confident	are	you	that	every
possible	None	value	is	handled	correctly?	Look	through	bugs	and	failing	tests	to	see	how
many	times	you’ve	been	bitten	by	incorrect	None	handling.	Discuss	how	Optional	types
will	help	your	codebase.

Union	Types
Optional	types	are	great,	but	what	if	you	want	to	communicate	error
messages	with	specific	information	attached?

def	dispense_hotdog()	->	HotDog:

				if	not	are_ingredients_available():

								throw	RuntimeError("Not	all	ingredients	available")

				if	order_interrupted():

								throw	RuntimeError("Order	interrupted")

				return	create_hot_dog()

If	I	convert	this	code	to	use	Optional,	I	lose	information:	the	error	messages
are	no	longer	returned.	In	these	situations.	Instead	of	an	Optional,	I	can
instead	use	a	Union.	Unions	are	versatile.	If	Optional	lets	you	choose
between	a	type	and	None,	Union	allows	you	to	choose	between	any	two	types.

In	the	example	above,	I	choose	to	return	a	HotDog	or	a	string	instead	of
throwing	an	exception.

from	typing	import	Union

def	dispense_hotdog()	->	Union[HotDog,	str]:

				if	not	are_ingredients_available():

								return	"Not	all	ingredients	available"

				if	order_interrupted():

								return	"Order	interrupted"

				return	create_hot_dog()

NOTE
Optional	is	just	a	specialized	version	of	a	Union.	Optional[int]	is	the	same	exact
thing	as	Union[int,	None].

Unions	can	be	used	for	more	than	error	handling	as	well.	If	you	can	return
more	than	one	type,	you	can	indicate	that	with	a	Union	as	well.	Suppose	you
want	your	hot	dog	stand	to	get	into	the	lucrative	pretzel	business	too.	Instead	of
trying	to	deal	with	weird	class	inheritance	(we’ll	cover	more	about	inheritance	in
Part	2)	that	don’t	belong	between	hot	dogs	and	pretzels,	you	simply	can	return	a
Union	of	the	two	(plus	a	string	for	catching	errors).

from	typing	import	Union

def	dispense_snack(user_input:	str)	->	Union[HotDog,	Pretzel,	str]:

				if	user_input	==	"Hotdog":

								return	dispense_hotdog()

				elif	user_input	==	"Pretzel":

								return	dispense_pretzel()

				return	"ERROR:	Invalid	User	Input"

You	will	find	Unions	very	useful	in	a	variety	of	situations:

Handling	disparate	types	returned	based	on	user	input	(as	above)

Handling	error	return	types	a	la	Optionals,	but	with	more	information,
such	as	a	string	or	error	code.

Handling	different	user	input	(such	as	if	a	user	is	able	to	supply	a	list	or
a	string.)

Returning	different	types,	say	for	backwards	compatibility	(returning	an
old	version	of	an	object	or	a	new	version	of	an	object	depending	on
requested	operation)

And	any	other	case	where	you	may	legitimately	have	more	than	one
value	represented.

Using	a	Union	offers	much	of	the	same	benefit	as	an	Optional.	First,	you
reap	the	same	communication	advantages.	A	developer	encountering	a	Union
knows	that	they	must	be	able	to	handle	more	than	one	type	in	their	calling	code.
Furthermore,	a	typechecker	is	just	as	aware	of	Union	as	it	is	Optional.

Suppose	you	had	code	that	called	the	dispense_snack	function	but	were
only	expecting	a	Hotdog	or	a	string	to	be	returned:

from	typing	import	Optional,	Union

def	place_order()	->	Optional[HotDog]:

				order	=	get_order()

				result	=	dispense_snack(order.name)

				if	isinstance(result,	str):

								print("An	error	occurred"	+	result)

								return	None

				#	Return	our	HotDog

				return	result

As	soon	as	dispense_snack	starts	returning	Pretzels,	this	code	fails	to
typecheck.

code_examples/chapter4/invalid/union_hotdog.py:22:	error:	Incompatible

return	value	type	(got	"Union[HotDog,	Pretzel]",	expected

"Optional[HotDog]")

The	fact	that	your	typechecker	errors	out	in	this	case	is	fantastic.	If	any	function
you	depend	on	changes	to	return	a	new	type,	their	return	signature	must	be
updated	to	Union	a	new	type,	which	forces	you	to	update	your	code	to	handle
the	new	type.	This	means	that	your	code	will	be	flagged	when	your
depenendencies	change	in	a	way	that	contradicts	your	assumptions.	With	the
decisions	you	make	today,	you	can	catch	errors	in	the	future.	This	is	the	mark	of
robust	code;	you	are	making	it	increasingly	harder	for	developers	to	make
mistakes,	which	reduces	their	error	rates,	which	reduces	the	number	of	bugs
users	will	experience.

There	is	one	more	fundamental	benefit	of	using	a	Union,	but	to	explain	it,	I
need	to	teach	you	a	smidge	of	type	theory,	which	is	a	branch	of	mathematics
around	type	systems.

Product	and	Sum	Types
Unions	are	beneficial	because	they	help	constrain	representable	state	space.
Representable	state	space	is	the	set	of	all	possible	combinations	an	object	can
take.

Take	this	dataclass:

from	dataclasses	import	dataclass

from	typing	import	Set

#	If	you	aren't	familiar	with	dataclasses,	you'll	learn	more	in	

chapter	10

#	but	for	now,	treat	this	as	four	fields	grouped	together	and	what	

types	they	are

@dataclass

class	Snack:

				name:	str

				condiments:	Set[str]

				error_code:	int

				disposed_of:	bool

Snack("Hotdog",	{"Mustard",	"Ketchup"},	5,	False)

I	have	a	name,	the	condiments	that	can	go	on	top,	an	error	code	in	case
something	goes	wrong,	and	if	something	does	go	wrong,	a	boolean	to	track	if	I
have	disposed	of	the	item	correctly	or	not.	How	many	different	combinations	of
values	can	be	put	into	this	dictionary?	Potentially	infinite	right?	The	name	alone
could	be	anything	from	valid	values	(“hotdog”,	“pretzel”)	to	invalid	values
(“samosa”,	“kimchi”,	“poutine”)	to	absurd	(“12345”,	“”,	“(╯°□°)╯︵	┻━┻”).
Condiments	has	a	similar	problem.	As	it	stands,	there	is	no	way	to	compute	the
possible	options.

For	the	sake	of	simplicity,	I	will	artificially	constrain	this	type:

The	name	can	be	one	of	three	values:	hotdog,	pretzel	or	veggie	burger

The	condiments	can	be	empty,	mustard,	ketchup	or	both

There	are	6	error	codes	(0-6)	(0	indicates	success)

disposed_of	is	only	true	or	false

Now	how	many	different	values	can	be	represented	in	this	combination	of
fields?	The	answer	is	144,	which	is	a	grossly	large	number.	I	achieve	this	by	the
following:

3	possible	types	for	name	*	4	possible	types	for	condiments	*	6	error	codes	*	2
boolean	values	for	if	the	entry	has	been	disposed	of	=	3*4*6*2	=	144.	If	you
were	to	accept	that	any	of	these	values	could	be	None,	the	total	balloons	to	280.
While	you	should	always	think	about	None	while	coding	(see	earlier	in	this
chapter	about	Optional),	for	this	thought	exercise,	I’m	going	to	ignore	None
values.

This	sort	of	operation	is	known	as	a	product	type;	the	number	of	representable
states	is	determined	by	the	product	of	possible	values.	The	problem	is,	not	all	of
these	states	are	valid.	The	variable	disposed_of	should	only	be	set	to	True
if	an	error	code	is	set	to	non-zero.	Developers	will	make	this	assumption,	and
trust	that	the	illegal	state	never	shows	up.	However,	one	innocent	mistake	can
bring	your	whole	system	crashing	to	a	halt.	Consider	the	following	code:

def	serve(snack):

				#	if	something	went	wrong,	return	early

				if	snack.disposed_of:

								return

				#	...

In	this	case,	a	developer	is	checking	disposed_of	without	checking	for	the
non-zero	error	code	first.	This	is	a	logic	bomb	waiting	to	happen.	This	code	will
work	completely	fine	as	long	as	disposed_of	is	true	and	the	error	code	is
non-zero.	If	a	valid	snack	ever	sets	the	disposed_of	flag	to	True
erroneously,	this	code	will	start	producing	invalid	results.	This	can	be	hard	to
find,	as	there’s	no	reason	for	a	developer	who	is	creating	the	snack	to	check	this
code.	As	it	stands,	you	have	no	way	of	catching	this	sort	of	error	other	than
manually	inspecting	every	use	case,	which	is	intractable	for	large	code	bases.	By
allowing	an	illegal	state	to	be	representable,	you	open	the	door	to	fragile	code.

To	rememdy	this,	I	need	to	make	this	illegal	state	unrepresentable.	To	do	that,
I’ll	rework	my	example	and	use	a	Union:

from	dataclasses	import	dataclass

from	typing	import	Union,	Set

@dataclass

class	Error:

				error_code:	int

				disposed_of:	bool

@dataclass

class	Snack:

				name:	str

				condiments:	Set[str]

snack:	Union[Snack,	Error]	=	Snack("Hotdog",	{"Mustard",	"Ketchup"})

snack	=	Error(5,	True)

In	this	case,	snack	can	be	either	a	Snack	(which	is	just	a	name	and
condiments)	or	an	Error	(which	is	just	a	number	and	a	boolean).	With	the	use
of	a	Union,	how	many	representable	states	are	there	now?

For	Snack,	there	are	3	names	and	4	possible	list	values,	which	is	a	total	of	12
representable	states.	For	ErrorCode,	I	can	remove	the	0	error	code	(since	that
was	only	for	success)	which	gives	me	5	values	for	the	error	code	and	2	values

for	the	boolean	for	a	total	of	10	representable	states.	Since	the	Union	is	an
either/or	construct,	I	can	either	have	12	representable	states	in	one	case	or	10	in
the	other,	for	a	total	of	22.	This	is	an	example	of	a	sum	type,	since	I’m	adding
the	number	of	representable	states	together	rather	than	multiplying.

22	total	representable	states.	Compare	that	with	the	144	states	when	all	the	fields
were	lumped	in	a	single	entity.	I’ve	reduced	my	representable	state	space	by
almost	85%.	I’ve	made	it	impossible	to	mix	and	match	fields	that	are
incompatible	with	each	other.	It	becomes	much	harder	to	make	a	mistake,	and
there	are	far	fewer	combinations	to	test.	Anytime	you	use	a	sum	type,	such	as	a
Union,	you	are	dramatically	decreasing	the	number	of	possible	representable
states.

Literal	Types
When	calculating	the	number	of	representable	states,	I	made	some	assumptions
in	the	last	section.	I	limited	the	number	of	values	that	were	possible,	but	that’s	a
bit	of	a	cheat,	isn’t	it?	As	I	said	before,	there	are	almost	an	infinite	number	of
values	possible.	Fortunately,	there	is	a	way	to	limit	the	values	through	Python:
Literals.	Literal	types	allow	you	to	restrict	the	variable	to	a	very	specific
set	of	values.

I’ll	change	my	earlier	Snack	class	to	employ	Literal	values:

from	typing	import	Literal,	Set

@dataclass

class	Error:

				error_code:	Literal[1,2,3,4,5]

				disposed_of:	bool

@dataclass

class	Snack:

				name:	Literal["Pretzel",	"Hotdog"]

				condiments:	Set[Literal["Mustard",	"Ketchup"]]

Now,	if	I	try	to	instantiate	these	dataclasses	with	wrong	values:

Error(0,	False)

Snack("Not	Valid",	set())

Snack("Pretzel",	{"Mustard",	"Relish"})

I	receive	the	following	typechecker	errors:

code_examples/chapter4/invalid/literals.py:14:	error:	Argument	1	to

"Error"	has	incompatible	type	"Literal[0]";	expected

"Union[Literal[1],	Literal[2],	Literal[3],	Literal[4],	Literal[5]]"

	

code_examples/chapter4/invalid/literals.py:15:	error:	Argument	1	to

"Snack"	has	incompatible	type	"Literal['Not	Valid']";	expected

"Union[Literal['Pretzel'],	Literal['Hotdog']]"

	

code_examples/chapter4/invalid/literals.py:16:	error:	Argument	2	to

<set>	has	incompatible	type	"Literal['Relish']";	expected

"Union[Literal['Mustard'],	Literal['Ketchup']]"

Literals	were	introduced	in	Python	3.8,	and	they	are	an	invaluable	way	of
restricting	possible	values	of	a	variable.

Annotated	Types
What	if	I	wanted	to	get	even	deeper	and	specify	more	complex	constraints?	It
would	be	tedious	to	write	hundreds	of	literals,	and	some	constraints	aren’t	able
to	be	modelled	by	Literal	types.	There’s	no	way	with	a	literal	to	constrain	a
string	to	a	certain	size	or	to	match	a	specific	regex.	This	is	where	Annotated
comes	in.	With	Annotated,	you	can	specify	arbitrary	metadata	alongside	your
type	annotation.

x:	Annotated[int,	ValueRange(3,5)]

y:	Annotated[str,	MatchesRegex('[0-9]{4}')]

Unfortunately,	the	above	code	will	not	run,	as	ValueRange	and	MatchesRegex
are	not	built-in	types;	they	are	arbitrary	expressions.	You	will	need	to	write	your
own	metadata	as	part	of	an	Annotated	variable.	Secondly,	there	are	no	tools
that	will	typecheck	this	for	you.	The	best	you	can	do	until	such	a	tool	exists	is
write	dummy	annotations	or	use	strings	to	describe	your	constraints.	At	this
point,	Annotated	is	best	served	as	a	communication	method.

NewType

While	waiting	for	tooling	to	support	Annotated,	there	is	another	way	to	represent
more	complicated	constraints:	NewType.	NewType	allows	you	to,	well,	create
a	new	type.

Suppose	I	want	to	separate	my	hot-dog	stand	code	to	handle	two	separate	cases	:
a	hotdog	in	its	unprepared	form,	and	a	hotdog	that	is	ready	to	be	served	(a
prepared	hotdog).	However,	some	functions	should	only	be	operating	on	the	hot
dog	in	one	case	or	the	other.

For	example:

An	unprepared	hot	dog	needs	to	be	put	into	a	bun	and	can	have
condiments	dispensed	on	top	of	it.

A	prepared	hot	dog	needs	to	be	put	on	a	plate,	given	napkins,	and
served	to	a	customer.

For	example,	our	plating	function	might	look	something	like	this:

class	HotDog:

				#	...	snip	hot	dog	class	implementation	...

def	place_on_plate(hotdog:	HotDog):

				#	note,	this	should	only	accept	prepared	hot	dogs.

				#	...

However,	nothing	in	the	language	prevents	us	from	passing	in	an	unprepared	hot
dog.	If	a	developer	makes	a	mistake	and	passes	an	unprepared	hot	dog	to	this
function,	customers	will	be	quite	surprised	to	just	see	their	order	with	no	bun	or
condiments	come	out	of	the	machine.

Rather	than	relying	on	developers	to	catch	these	errors	whenever	they	happen,
you	need	a	way	for	your	typechecker	to	catch	this.	To	do	that,	you	can	use
NewType

from	typing	import	NewType

class	HotDog:

				'''	Used	to	represent	an	unprepared	hot	dog'''

				#	...	snip	hot	dog	class	implementation	...

PreparedHotDog	=	NewType(HotDog)

def	place_on_plate(hotdog:	PreparedHotDog):

				#	...

A	NewType	takes	an	existing	type	and	creates	a	brand	new	type	that	has	all	the
same	fields	and	methods	as	the	existing	type.	In	this	case,	I	am	creating	a	type
PreparedHotDog	that	is	distinct	from	HotDog;	they	are	not	interchangeable.
What’s	beautiful	about	this	is	that	this	type	restricts	implicit	type	conversions.
You	cannot	use	a	HotDog	anywhere	you	are	expecting	a	PreparedHotDog
(you	can	use	a	PreparedHotDog	in	place	of	HotDog,	though).	In	the	above
example,	I	am	restricting	place_on_plate	to	only	take	PreparedHotDog
values	as	an	argument.	This	prevents	developers	from	invalidating	assumptions.
If	a	developer	were	to	pass	a	HotDog	to	this	method,	the	typechecker	will	yell
at	them:

code_examples/chapter4/invalid/newtype.py:10:	error:	Argument	1	to

"place_on_plate"	has	incompatible	type	"HotDog";	expected

"PreparedHotDog"

It	is	important	to	stress	the	one-way	nature	of	this	type	conversion.	As	a
developer,	you	can	control	when	your	old	type	becomes	your	new	type.

For	example,	I’ll	modify	a	function	from	earlier	in	the	chapter:

def	create_hot_dog()	->	PreparedHotDog:

				bun	=	dispense_bun()

				if	bun	is	None:

								print("Bun	could	not	be	dispensed")

								return

				hotdog	=	dispense_hotdog()

				hotdog.place_in_bun(bun)

				ketchup	=	dispense_ketchup()

				mustard	=	dispense_mustard()

				hotdog.add_condiments(ketchup,	mustard)

				return	PreparedHotDog(hotdog)

Notice	how	I’m	explicitly	returning	a	PreparedHotDog	instead	of	a	normal
hotdog.	This	acts	as	a	“blessed”	function;	it	is	the	only	sanctioned	way	that	I
want	developers	to	create	a	PreparedHotDog.	Any	user	trying	to	use	a
method	that	takes	a	PreparedHotDog	needs	to	create	a	hot	dog	using

create_hot_dog	first.

It	is	important	to	notify	users	that	the	only	way	to	create	your	new	type	is
through	a	set	of	“blessed”	functions.	You	don’t	want	users	creating	your	new
type	in	any	circumstance	other	than	a	predetermined	method,	as	that	defeats	the
purpose.

def	make_snack():

				place_on_place(PreparedHotDog(HotDog))

Unfortunately,	Python	has	no	great	way	of	telling	users	this,	other	than	a
comment.

from	typing	import	NewType

#	NOTE:	Only	create	PreparedHotDog	using	create_hot_dog	method.

PreparedHotDog	=	NewType(HotDog)

Still,	NewType	is	applicable	to	many	real-world	scenarios.	For	example,	these
are	all	scenarios	that	I’ve	run	into	that	a	NewType	would	solve.

Separating	a	str	from	a	SanitizedString,	to	catch	bugs	like	SQL
injection	vulnerabilities.	By	making	SanitizedString	a
NewType,	I	made	sure	that	only	properly	sanitized	strings	were
operated	upon,	eliminating	the	chance	of	SQL	injection.

Tracking	a	User	object	and	LoggedInUser	separately.	By
restricting	Users	with	NewType	from	LoggedInUser,	I	wrote
functions	that	only	applicable	to	users	that	were	logged	in.

Tracking	an	integer	that	should	represent	a	valid	User	ID.	By	restricting
the	User	ID	to	a	NewType,	I	could	make	sure	that	some	functions	were
only	operating	on	IDs	that	were	valid,	without	having	to	check	if
statements.

In	XREF	HERE,	you’ll	see	how	you	can	use	classes	and	invariants	to	do
something	very	similar,	with	a	much	stronger	guarantee	of	avoiding	illegal
states.	However,	NewType	is	still	a	useful	pattern	to	be	aware	of,	and	is	much
more	lightweight	than	a	full-blown	class.

TYPE	ALIASES

NewType	is	not	the	same	as	a	type	alias.	A	type	alias	just	provides	another
name	for	a	type	and	is	completely	interchangeable	with	the	old	type.

For	example

IdOrName	=	Union[str,	int]

If	a	function	expects	IDOrName,	it	can	take	either	an	IDOrName,	or	a
Union[str,int]`	and	it	will	typecheck	just	fine,	where	a	NewType
will	only	work	if	a	IDOrName	is	passed	in.

I	have	found	type	aliases	to	be	very	helpful	when	I	start	nesting	complex
types,such	as	Union[Dict[int,	User],	List[Dict[str,
User]].	It’s	much	easier	to	give	it	a	conceptual	name,	such	as
IDOrNameLookup,	to	simplify	types.

Final	Types
Finally	(pun	intended),	you	may	want	to	restrict	a	type	from	changing	it’s	value.
That’s	where	Final	comes	in.	Final,	introduced	in	Python	3.8,	indicates	to	a
typechecker	that	a	variable	cannot	be	bound	to	another	value.	For	instance,	I
want	to	start	franchising	out	my	hot	dog	stand,	but	I	don’t	want	the	name	to	be
changed	by	accident.

VENDOR_NAME:	Final	=	"Viafore's	Auto-Dog"

If	a	developer	accidentally	changed	the	name	later	on,	they	would	see	an	error.

def	display_vendor_information():

				vendor_info	=	"Auto-Dog	v1.0"

				#	whoops,	copy-paste	error,	this	code	should	be	vendor_info	+=	

VENDOR_NAME

				VENDOR_NAME	+=	VENDOR_NAME

				print(vendor_info)

code_examples/chapter4/invalid/final.py:3:	error:	Cannot	assign	to

final	name	"VENDOR_NAME"

Found	1	error	in	1	file	(checked	1	source	file)

In	general,	Final	is	best	used	when	the	variable’s	scope	spans	a	large	amount
of	code,	such	as	a	module.	It	is	difficult	for	developers	to	keep	track	of	all	the
uses	of	a	variable	in	such	large	scopes;	letting	the	typechecker	catch
immutability	guarantees	is	a	boon	in	these	cases.

WARNING
Final	will	not	error	out	when	mutating	an	object	through	a	function.	It	only	prevents	the
variable	from	being	rebound	(set	to	a	new	value)

Wrap-up
You’ve	learned	about	many	different	ways	to	constrain	your	types	in	this
chapter.	All	of	them	serve	a	specific	purpose,	from	handling	None	with
Optional	to	restricting	to	specific	values	with	Literal	to	preventing	a
varible	from	being	rebound	with	Final.	By	using	these	techniques,	you’ll	be
able	to	encode	assumptions	and	restrictions	directly	into	your	codebase,
preventing	future	readers	from	needing	to	guess	about	your	logic.	Typecheckers
will	use	these	advanced	type	annotations	to	provide	you	with	stricter	guarantees
about	your	code,	which	will	give	maintainers	confidence	when	working	in	your
codebase.	With	this	confidence,	they	will	make	less	mistakes,	and	your	codebase
will	become	more	robust	because	of	it.

In	the	next	chapter,	you’ll	move	on	from	type	annotating	single	values,	and	learn
how	to	properly	annotate	collection	types.	Collection	types	pervade	most	of
Python;	you	must	take	care	to	express	your	intentions	for	them	as	well.	You
need	to	be	well	versed	in	all	the	ways	you	can	represent	a	collection,	including	in
cases	where	you	must	create	your	own.

1 	Null	References:	The	Billion	Dollar	Mistake	(QCon	London	2009)

Chapter	5.	Collection	Types

A	NOTE	FOR	EARLY	RELEASE	READERS

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the
author’s	raw	and	unedited	content	as	they	write—so	you	can	take	advantage
of	these	technologies	long	before	the	official	release	of	these	titles.

This	will	be	the	5th	chapter	of	the	final	book.	Please	note	that	the	GitHub
repo	will	be	made	active	later	on.

If	you	have	comments	about	how	we	might	improve	the	content	and/or
examples	in	this	book,	or	if	you	notice	missing	material	within	this	chapter,
please	reach	out	to	the	author	at	pat@kudzera.com.

You	can’t	go	very	far	in	Python	without	encountering	collection	types.
Collection	types	store	a	grouping	of	data,	such	as	a	list	of	users,	or	a	lookup
between	restaurant	or	address.	Whereas	other	types	(ints,	floats,	bools)	may
focus	on	a	single	value,	collections	may	store	any	arbitrary	amount	of	data.	In
Python,	you	will	encounter	common	collection	types	such	as	dictionaries,	lists,
and	sets	(oh,	my!).	Even	a	string	is	a	type	of	collection;	it	contains	a	sequence	of
characters.	However,	collections	can	be	difficult	to	reason	about	when	reading
about	new	code.	Different	collection	types	have	different	behaviors.

Back	in	Chapter	1,	I	went	over	some	of	the	differences	between	the	collections,
where	I	talked	about	mutability,	iterability,	and	indexing	requirements.
However,	picking	the	right	collection	is	just	the	first	step.	You	must	understand
the	implications	your	collection	implies,	and	ensure	that	users	can	reason	about
it.	You	also	need	to	recognize	when	the	standard	collection	types	aren’t	cutting
it,	and	you	need	to	roll	your	own.	But	the	first	step,	is	knowing	how	to
communicate	your	collection	choices	to	the	future.	For	that,	I’ll	turn	to	my	old
friend:	type	annotations.

Annotating	Collections

I’ve	covered	type	annotations	for	non-collection	types,	and	now	you	need	to
know	how	to	annotate	collection	types.	Fortunately,	these	annotations	don’t
differ	too	much	from	the	annotations	you’ve	already	learned.

To	illustrate	this,	suppose	I’m	building	a	digital	cookbook	app.	I	want	to
organize	all	my	cookbooks	digitally	so	I	can	search	them	by	cuisine,	ingredient
or	author.	One	of	the	questions	I	might	have	about	a	cookbook	collection	is	how
many	books	from	each	author	I	have:

def	count_authors(cookbooks:	list)	->	dict:

				counter	=	defaultdict(lambda:	0)

				for	book	in	cookbooks:

								counter[book.author]	+=	1

				return	counter

This	function	has	been	annotated;	it	takes	in	a	list	of	cookbooks	and	will	return	a
dictionary.	Unfortunately,	while	this	tells	me	what	collections	to	expect,	it
doesn’t	tell	me	how	to	use	the	collections	at	all.	There	is	nothing	telling	me	what
the	elements	inside	the	collection	are.	For	instance,	how	do	I	know	what	type	the
cookbook	is?	If	you	were	reviewing	this	code,	how	do	you	know	that	the	use	of
book.author	is	legitimate?	Even	if	you	do	the	digging	to	make	sure
book.author	is	right,	this	code	is	not	future-proof.	If	the	underlying	type
changes,	such	as	removing	the	author	field,	this	code	will	break.	I	need	a	way
to	catch	this	with	my	typechecker.

I’ll	do	this	by	encoding	more	information	with	my	types	by	using	bracket	syntax
to	indicate	information	about	the	types	inside	the	collection.

AuthorToCountMapping	=	dict[str,	int]

def	count_authors(cookbooks:	list[Cookbook])	->	AuthorToCountMapping:

				counter	=	defaultdict(lambda:	0)

				for	book	in	cookbooks:

								counter[book.author]	+=	1

				return	counter

WARNING
In	Python	3.8	and	earlier,	built-in	collection	types	such	as	list,	dict	and	set	did	not	allow
this	bracket	syntax,	such	as	list[Cookbook]	or	dict[str,int].	Instead,	you	needed
to	use	type	annotations	from	the	typing	module:

from	typing	import	Dict,List
AuthorToCountMapping	=	Dict[str,	int]
def	count_authors(cookbooks:	List[Cookbook])	->	
AuthorToCountMapping:
				#	...

I	can	indicate	the	exact	types	expected	in	the	collection.	The	cookbooks	list
contains	Cookbook	objects	and	the	return	value	of	the	function	is	returning	a
dictionary	mapping	strings	(keys)	to	ints	(values).	Note	that	I’m	using	a	type
alias	to	give	more	meaning	to	my	return	value.	Mapping	from	a	string	to	an	int
does	not	tell	the	user	the	context	of	the	type.	Instead,	I	create	a	type	alias	named
AuthorToCountMapping	to	make	it	clear	how	this	dictionary	relates	to	the
problem	domain.

You	need	to	think	through	what	types	are	contained	in	collection	in	order	to	be
effective	in	type	hinting	it.	In	order	to	do	that,	you	need	to	think	about
homogeneous	and	heterogeneous	collections.

Homogeneous	vs.	Heterogeneous	Collections
Homogeneous	collections	are	collections	where	every	value	in	the	collection	has
the	same	type.	In	contrast,	heterogeneous	collections	have	values	that	may	have
different	types	within	them.	From	a	usability	standpoint,	your	lists,	sets	and
dictionaries	should	nearly	always	be	homogenous.	Users	need	a	way	to	reason
about	your	collections,	and	they	can’t	if	they	don’t	have	the	guarantee	that	every
value	is	the	same	type.	If	you	make	a	list,	set	or	dictionary	a	heterogeneous
collection,	you	are	indicating	to	the	user	that	they	need	to	take	care	to	handle
special	cases.	Suppose	I	want	to	resurrect	an	example	from	Chapter	1	for
adjusting	recipes	for	my	cookbook	app.

#	Take	a	meal	recipe	and	change	the	number	of	servings

#	by	adjusting	each	ingredient

#	A	recipe's	first	element	is	the	number	of	servings,	and	the	

remainder

#	of	elements	is	(name,	amount,	unit),	such	as	("flour",	1.5,	"cup")

def	adjust_recipe(recipe,	servings):

				new_recipe	=	[servings]

				old_servings	=	recipe[0]

				factor	=	servings	/	old_servings

				recipe.pop(0)

				while	recipe:

												ingredient,	amount,	unit	=	recipe.pop(0)

												#	please	only	use	numbers	that	will	be	easily	measurable

												new_recipe.append((ingredient,	amount	*	factor,	unit))

				return	new_recipe

At	the	time,	I	mentioned	how	parts	of	this	code	were	ugly,	and	one	of	the	things
made	this	tough	to	work	with	was	the	fact	that	the	first	element	of	the	recipe	list
was	a	special	case:	an	integer	representing	the	servings.	This	contrasts	from	the
rest	of	the	list	elements	which	are	tuples	representing	actual	ingredients,	such	as
("flour",	1.5,	"cup").	This	highlights	the	troubles	of	a	heterogeneous
collection.	For	every	use	of	your	collection,	the	user	needs	to	remember	to
handle	the	special	case.	This	is	predicated	on	the	assumption	that	the	developer
even	knew	about	the	special	case	in	the	first	place.	There’s	no	way	in	the	type
system	to	represent	that	a	specific	element	needs	to	be	handled	differently.
Therefore,	a	typechecker	will	not	catch	when	a	developer	forgets.	This	leads	to
brittle	code	down	the	road.

When	talking	about	homogeneity,	it’s	important	to	talk	about	what	a	single	type
means.	When	I	mention	single	type,	I’m	not	necessarily	referring	to	a	concrete
type	in	Python;	rather,	I’m	referring	to	a	set	of	behaviors	that	define	that	type.	A
single	type	indicates	that	a	consumer	must	operate	on	every	value	of	that	type	in
the	exact	same	way.	For	the	cookbook	list,	the	single	type	is	a	Cookbook.	For
the	dictionary	example,	the	key’s	single	type	is	a	string	and	the	value’s	single
type	is	an	integer.	For	heterogeneous	collections,	this	will	not	always	be	the
case.	What	do	you	do	if	you	must	have	different	types	in	your	collection	and
there	is	no	relation	between	them?

Consider	what	my	ugly	code	from	Chapter	1	communicates:

#	Take	a	meal	recipe	and	change	the	number	of	servings

#	by	adjusting	each	ingredient

#	A	recipe's	first	element	is	the	number	of	servings,	and	the	

remainder

#	of	elements	is	(name,	amount,	unit),	such	as	("flour",	1.5,	"cup")

def	adjust_recipe(recipe,	servings):

				#	...

There	is	a	lot	of	information	in	the	comment,	but	comments	have	no	guarantee

of	being	correct.	They	also	won’t	protect	developers	if	they	accidentally	break
assumptions.	This	code	does	not	communicate	intention	adequately	to	future
collaborators.	Those	future	collaborators	won’t	be	able	to	reason	about	your
code.	The	last	thing	you	want	to	burden	them	with	is	having	to	go	through	the
codebase,	looking	for	invocations	and	implementations	to	work	out	how	to	use
your	collection.	Ultimately,	you	need	a	way	to	reconcile	the	first	element	(an
integer)	with	the	remainder	of	the	elements,	which	are	tuples?	To	answer	this,
I’ll	use	a	Union	(and	some	type	aliases	to	make	the	code	more	readable).

Ingredient	=	tuple[str,	int,	str]	#	(name,	quantity,	units)

Recipe	=	list[Union[int,	Ingredient]]	#	the	list	can	be	servings	or	

ingredients

def	adjust_recipe(recipe:	Recipe,	servings):

				#	...

This	takes	a	heterogeneous	collection	(items	could	be	a	integer	or	an	ingredient)
and	allows	developers	to	reason	about	the	collection	as	if	it	were	homogeneous.
The	developer	needs	to	treat	every	single	value	as	the	same:	it	is	either	an	integer
or	an	Ingredient	before	operating	on	it.	While	needing	more	code	to	handle	the
typechecks,	you	can	rest	easier	knowing	that	your	typechecker	will	catch	users
not	checking	for	special	cases.	Bear	in	mind,	this	is	not	perfect	by	any	means;
it’d	be	better	if	there	was	no	special	case	in	the	first	place	and	that	servings	was
passed	to	the	function	another	way.	But	for	the	cases	where	you	absolutely	must
handle	special	cases,	represent	them	as	a	type	so	that	the	typechecker	benefits
you.

This	can	go	too	far,	though.	The	more	special	cases	of	types	you	handle,	the
more	code	a	developer	has	to	write	every	time	they	use	that	type,	and	the	more
unwieldy	the	codebase	becomes.

At	the	far	end	of	the	spectrum	lies	the	Any	type.	Any	can	be	used	to	indicate
that	all	types	are	valid	in	this	context.	This	sounds	appealing	to	get	around
special	cases,	but	it	also	means	that	the	consumers	of	your	collection	have	no
clue	what	to	do	with	the	values	in	the	collection,	defeating	the	purpose	of	type
annotations	in	the	first	place.

WARNING
Developers	working	in	a	statically	typed	language	don’t	need	to	put	in	as	much	care	to	ensure

Developers	working	in	a	statically	typed	language	don’t	need	to	put	in	as	much	care	to	ensure
collections	are	homogeneous;	the	static	type	system	does	that	for	them	already.	The	challenge
in	Python	is	due	to	Python’s	dynamically	typed	nature.	It	is	much	easier	for	a	developer	to
create	a	heterogeneous	collection	without	any	warnings	from	the	language	itself.

Heterogeneous	collection	types	still	have	a	lot	of	uses;	don’t	assume	that	you
should	use	homogeneity	for	every	collection	type	because	it	is	easier	to	reason
about.	Tuples,	for	example,	are	often	heterogeneous.

Suppose	that	I	represent	a	Cookbook	as	a	tuple.

Cookbook	=	tuple[str,	int]	#	name,	page	count

I	am	describing	specific	fields	for	this	tuple:	name	and	page	count.	This	is	a
prime	example	of	an	heterogeneous	collection:

Each	field	(name	and	page	count)	will	always	be	in	the	same	order

All	names	are	strings;	all	page	counts	are	integers.

Iterating	over	the	tuple	is	rare,	since	I	won’t	treat	both	types	the	same

Name	and	page	count	are	fundamentally	different	types,	and	should	not
be	treated	as	equivalent.

When	accessing	a	tuple,	you	will	typically	index	to	the	specific	field	you	want:

food_lab:	Cookbook	=	("The	Food	Lab",	958)

odd_bits:	Cookbook	("Odd	Bits",	248)

print(food_lab[0])

>>>	"The	Food	Lab"

print(odd_bits[1])

>>>	248

However,	in	many	codebases,	tuples	like	these	soon	become	burdensome.
Developers	tire	of	writing	cookbook[0]	whenever	they	want	a	name.	A	better
thing	to	do	would	be	to	find	some	way	to	name	these	fields.	A	first	choice	might
be	a	dictionary.

food_lab	=	{

				"name":	"The	Food	Lab",

				"page_count":	958

}

Now,	they	can	refer	to	fields	as	food_lab['name']	and
food_lab['page_count'].	The	problem	is,	dictionaries	are	typically
meant	to	be	a	homogeneous	mapping	from	key	to	a	value.	However,	when
dictionaries	are	used	to	represent	data	that	is	heterogeneous,	you	run	into	similar
problems	as	above	when	writing	a	valid	type	annotation.	I	cannot	write	a
meaningful	type	to	represent	this	data.	If	I	wanted	to	try	to	use	a	type	system	to
represent	this	dictionary,	I	end	up	with	the	following:

def	print_cookbook(cookbook:	dict[str,	Union[str,int]])

				#	...

This	approach	has	the	following	problems:

Large	dictionaries	may	have	many	different	types	of	values.	Writing	a
Union	is	quite	cumbersome.

It	is	tedious	for	a	user	to	handle	every	case	for	every	dictionary	access
(since	I	indicate	that	the	dictionary	is	homogeneous,	I	convey	to
developers	that	they	need	to	treat	every	value	as	the	same	type,	meaning
typechecks	for	every	value	access.	I	know	that	the	name	is	always	a
string	and	the	page_count	is	always	an	int,	but	a	consumer	of
this	type	would	not	know	that.

Developers	do	not	have	any	indication	what	keys	are	available	in	the
dictionary.	They	must	search	all	the	code	from	dictionary	creation	time
to	the	current	access	to	see	what	fields	have	been	added.

As	the	dictionary	grows,	developers	have	a	tendency	to	use	Any	as	the
type	of	the	value.	Using	Any	defeats	the	purpose	of	the	typechecker	in
this	case.

NOTE
Any	can	be	used	for	valid	type	annotations;	it	merely	indicates	that	you	are	making	zero
assumptions	what	the	type	is.	For	instance,	if	you	wanted	to	copy	a	list,	the	type	signature

would	be	def	copy(coll:	list[Any])	->	list[Any].	Of	course,	you	could	also
do	def	copy(coll:	list)	->	list	as	well,	and	it	means	the	same	thing.

These	problems	all	stem	from	heterogeneous	data	in	homogeneous	data
collections.	You	either	pass	the	burden	onto	the	caller,	or	abandon	type
annotations	completely.	In	some	cases,	you	want	the	caller	to	explicitly	check
each	type	on	each	value	access,	but	in	other	cases,	this	is	overcomplicated	and
tedious.	So,	how	can	you	explain	your	reasoning	with	heterogeneous	types,
especially	in	cases	where	keeping	data	in	a	dictionary	is	natural,	such	as	API
interactions	or	user-configurable	data.	For	these	cases,	you	should	use	a
TypedDict.

TypedDict
TypedDict,	introduced	in	Python	3.8,	is	for	the	scenarios	where	you
absolutely	must	store	heterogeneous	data	in	a	dictionary.	These	scenarios	are
typically	ar	e	when	you	can’t	avoid	heterogeneous	data.	JSON	APIs,	YAML,
TOML,	XML	and	CSVs	all	have	easy-to-use	Python	modules	that	convert	these
data	formats	into	a	dictionary	and	are	naturally	hetereogeneous.	Which	means
the	data	that	gets	returned	has	all	the	same	problems	as	listed	in	the	previous
section.	Your	typechecker	won’t	help	out	much	and	users	won’t	know	what	keys
and	values	are	available.

TIP
If	you	have	full	control	of	the	dictionary,	meaning	you	create	it	in	code	you	own	and	handle	it
in	code	you	own,	you	should	consider	using	a	dataclass	or	a	class	instead.

For	example,	suppose	I	want	to	augment	my	digital	cookbook	app	to	provide
nutritional	information	for	the	recipes	listed.	I	decide	to	use	the	Spoonacular
API 	and	write	some	code	to	get	nutritional	information:

nutrition_information	=	get_nutrition_from_spoonacular(recipe_name)

#	print	grams	of	fat	in	recipe

print(nutrition_information["fat"]["value"])

1

If	you	were	reviewing	the	code,	how	would	you	know	that	this	code	is	right?	If
you	wanted	to	also	print	out	the	calories,	how	do	you	access	the	data?	What
guarantees	do	you	have	about	the	fields	inside	of	this	dictionary?	To	answer
these	questions,	you	have	two	options:

Look	up	the	API	documentation	(if	any)	and	confirm	that	the	right
fields	are	being	used.	In	this	option,	you	hope	that	the	documentation	is
actually	complete	and	correct.

Run	the	code	and	print	out	the	returned	dictionary.	In	this	option,	you
hope	that	test	responses	are	pretty	identical	to	production	responses.

The	problem	is	that	you	are	requiring	every	reader,	reviewer	and	maintainer	to
do	one	of	these	two	steps	in	order	to	understand	the	code.	If	they	don’t,	you	will
not	get	good	code	review	feedback	and	developers	will	run	the	risk	of	using	the
response	incorrectly.	This	leads	to	incorrect	assumptions	and	brittle	code.
TypedDict	allows	you	to	encode	what	you’ve	learned	about	that	API	directly
into	your	type	system.

from	typing	import	TypedDict

class	Range(TypedDict):

				min:	float

				max:	float

class	NutritionInformation(TypedDict):

				value:	int

				unit:	str

				confidenceRange95Percent:	Range

				standardDeviation:	float

class	RecipeNutritionInformation(TypedDict):

				recipes_used:	int

				calories:	NutritionInformation

				fat:	NutritionInformation

				protein:	NutritionInformation

				carbs:	NutritionInformation

nutrition_information:RecipeNutritionInformation	=	

get_nutrition_from_spoonacular(recipe_name)

Now	it	is	incredibly	apparent	exactly	what	data	types	you	can	rely	upon.	If	the
API	ever	changes,	a	developer	can	update	all	the	TypedDict	classes	and	let

the	typechecker	catch	any	incongruities.	Your	typechecker	now	completely
understands	your	dictionary,	and	readers	of	your	code	can	reason	about
responses	without	having	to	do	any	external	searching.	Even	better,	these
TypedDict	collections	can	be	as	arbitrarily	complex	as	you	need	them	to	be.
You’ll	see	that	I	nested	TypedDict	instances	for	reusability	purposes,	but	you
can	also	embed	your	own	custom	types,	Unions	and	Optionals	to	reflect	the
possibilities	that	an	API	can	return.	And	while	I’ve	mostly	been	talking	about
API,	remember	that	these	benefits	apply	to	any	heterogeneous	dictionary,	such
as	when	reading	JSON	or	YAML.

NOTE
TypedDict	is	only	for	the	type-checker’s	benefit.	There	is	no	run-time	validation	at	all;	the
run-time	type	is	just	a	dictionary.

So	far,	I’ve	been	teaching	you	how	to	deal	with	built-in	collection	types:
lists/sets/dictionaries	for	homogeneous	collections	and	tuples/TypedDict	for
heterogenous	collections.	What	if	these	types	don’t	do	everything	that	you	want?
What	if	you	want	to	create	new	collections	for	your	using?	To	do	that,	you’ll
need	a	new	set	of	tools.

Creating	New	Collections
When	writing	a	new	collection,	you	should	ask	yourself:	Are	you	trying	to	write
a	new	collection	that	isn’t	representable	by	another	collection,	or	are	you	trying
to	modify	an	existing	collection	to	provide	some	new	behavior?	Depending	on
the	answer,	you	may	need	to	employ	different	techniques	to	achieve	your	goal.

If	you	write	a	collection	type	that	isn’t	representable	by	another	collection	type,
you	are	bound	to	come	across	generics	at	some	point.

Generics
A	generic	type	indicates	that	you	don’t	care	what	type	you	are	using.	However,	it
helps	restrict	users	from	mixing	types	where	inappropriate.

Consider	the	innocuous	reverse	list	function:

Consider	the	innocuous	reverse	list	function:

def	reverse(coll:	list)	->	list:

				return	coll[::-1]

To	achieve	this,	I	use	a	generic,	which	is	done	with	a	TypeVar	in	Python.

from	typing	import	TypeVar

T	=	TypeVar('T')

def	reverse(coll:	list[T])	->	list[T]:

				return	coll[::-1]

This	says	that	for	a	type	“T”,	reverse	takes	in	a	list	of	elements	of	type	“T”,	and
returns	a	list	of	elements	of	type	“T”.	I	can’t	mix	types:	a	list	of	integers	will
never	be	able	to	become	a	list	of	strings	if	those	lists	aren’t	using	the	same
TypeVar.

I	can	use	this	sort	of	pattern	to	define	entire	classes.	Suppose	I	want	to	integrate
a	cookbook	recommender	service	into	the	cookbook	collection	app.	I	want	to	be
able	to	recommend	cookbooks	or	recipes	based	on	your	ratings.	To	do	this,	I
want	to	store	each	of	these	information	into	a	graph.	A	graph	is	a	data	structure
that	contains	a	series	of	entities	known	as	nodes,	and	tracks	relationships
between	those	nodes,	known	as	edges.	However,	I	don’t	want	to	write	separate
code	for	a	cookbook	graph	and	a	recipe	graph.	So	I	define	a	graph	class	that	can
be	used	for	generic	types.	In	my	example,	I’ll	use	T	for	my	node	type	and	W	for
my	edges.

from	collections	import	defualtdict

from	typing	import	Generic,	TypeVar

T	=	TypeVar("T")

W	=	TypeVar("W")

#	directed	graph

class	Graph(Generic[T,	W]):

				def	__init__(self):

								self.edges:	dict[T,	list[W]]	=	defaultdict(list)

				def	add_relation(self,	node:	T,	to:	W):

								self.edges[node].append(to)

				def	get_relations(self,	node:	T)	->	list[W]:

								return	self.edges[node]

With	this	code,	I	can	define	all	sorts	of	graphs	and	still	have	them	typecheck
successfully.

cookbooks:	Graph[Cookbook,	Cookbook]	=	Graph()

recipes:	Graph[Recipe,	Recipe]	=	Graph()

cookbook_recipes:	Graph[Cookbook,	Recipe]	=	Graph()

recipes.add_relation(Recipe('Pasta	Bolognese'),

																					Recipe('Pasta	with	Sausage	and	Basil'))

cookbook_recipes.add_relation(Cookbook('The	Food	Lab'),

																														Recipe('Pasta	Bolognese'))

While	this	code	does	not	typecheck:

cookbooks.add_relation(Recipe('Cheeseburger'),	Recipe('Hamburger'))

code_examples/chapter5/invalid/graph.py:25:	error:	Argument	1	to

"add_relation"	of	"Graph"	has	incompatible	type	"Recipe";	expected

"Cookbook"

Using	generics	can	help	you	write	collections	that	use	types	consistently
throughout	their	lifetime.	This	reduces	the	amount	of	duplication	in	your
codebase,	which	minimizes	the	chances	of	bugs	and	reduces	cognitive	burden.

OTHER	USES	FOR	GENERICS

While	often	used	for	collections,	you	can	technically	use	generics	for	any
type.	For	example,	suppose	you	want	to	simplify	your	API	error	handling.
You’ve	already	forced	your	code	to	return	a	Union	of	the	response	type	and
an	error	type	like	so:

def	get_nutrition_info(recipe:	str)	->	Union[NutritionInfo,	

APIErrorResponse]:

				#	...

def	get_ingredients(recipe:	str)	->	Union[list[Ingredient],	

APIErrorResponse]:

				#...

def	get_restaurants_serving(recipe:	str)	->	

Union[list[Restaurant],	APIErrorResponse]:

				#	...

But	this	is	unneccessarily	duplicated	code.	You	have	to	specficy	a
Union[X,	APIErrorResponse	each	time,	where	only	X	changes.
What	if	you	wanted	to	change	the	error	response	class,	or	force	users	to
handle	different	types	of	errors	separately?	Generics	can	help	with
deduplicating	these	types:

T	=	TypeVar("T")

APIResponse	=	Union[T,	APIErrorResponse]

def	get_nutrition_info(recipe:	str)	->	APIResponse[NutritionInfo]:

				#	...

def	get_ingredients(recipe:	str)	->	APIResponse[list[Ingredient]]:

				#...

def	get_restaurants_serving(recipe:	str)	->	

APIResponse[list[Restaurant]]:

				#	...

Now	you	have	a	single	place	to	control	all	of	your	API	error	handling.	If	you
were	to	change	it,	you	can	rely	on	your	typechecker	to	catch	all	the	places
needing	change.

Modifying	Existing	Types
Generics	are	nice	for	creating	your	own	collection	types,	but	what	if	you	just
want	to	tweak	some	behavior	of	an	existing	collection,	such	as	a	list	or
dictionary.	Having	to	completely	rewrite	all	the	semantics	of	a	collection	would
be	tedious	and	error-prone.	Thankfully,	methods	exist	to	make	this	a	snap.	Let’s
go	back	to	our	cookbook	app.	I’ve	written	code	earlier	that	grabs	nutrtition
information,	but	now	I	want	to	store	all	that	nutrition	information	in	a	dictionary.
However,	I	hit	a	problem:	the	same	inredient	has	very	different	names	depending
on	where	you’re	from.	Take	a	dark	leafy	green,	common	in	salads.	While	a	U.S.
chef	might	call	it	“arugula”,	a	European	might	call	it	“rocket”.	This	doesn’t	even
begin	to	cover	the	names	in	languages	other	than	English.d	To	combat	this,	I
want	to	create	a	dictionary-like	object	that	automatically	handles	these	aliases:

nutrition	=	NutritionalInformation()

nutrition["arugula"]	=	get_nutrition_information("arugula")

print(nutrition["rocket"])	#	arugula	==	rocket

So	how	can	I	write	NutritionalInformation	to	act	like	a	dict?

A	lot	of	developer’s	first	instinct	is	to	sub-class	dictionaries.	No	worries	if	you
aren’t	awesome	at	subclassing,	I’ll	be	going	much	more	in	depth	in	a	later
chapter.	For	now,	just	treat	sub-classing	as	a	way	of	saying	“I	want	my	subclass
to	behave	exactly	like	the	parent	class”.

class	NutritionalInformation(dict):	

				def	__getitem__(self,	key):	

								try:

												return	super().__getitem__(key)	

								except	KeyError:

												pass

								for	alias	in	get_aliases(key):

												try:	

																return	super().__getitem__(alias)

												except	KeyError:

																pass

								raise	KeyError(f"Could	not	find	{key}	or	any	of	its	aliases")	

The	(dict)	syntax	indicates	that	we	are	subclassing	from	dictionaries

__getitem__	is	what	gets	called	when	you	use	brackets	to	check	a	key	in
a	dictionary.	(nutrition["rocket"])	calls
__getitem__(nutrition,	"rocket")

If	a	key	is	found,	use	the	parent	dictionaries	key	check.
For	every	alias,	check	if	it	is	in	the	dictionary
Throw	a	KeyError	if	no	key	is	found,	either	with	what’s	passed	in	or	any	of
its	aliases.

We	are	overriding	the	__getitem__	function,	and	this	works!

If	I	try	to	access	nutrition["rocket"]	in	that	snippet	above,	I	get	the
same	nutritional	information	as	nutrition["arugula"].	Huzzah!	So	you
deploy	it	in	production	and	call	it	a	day.

But	(and	there’s	always	a	but),	as	time	goes	on,	a	developer	comes	to	you	and
complains	that	sometimes,	the	dictionary	doesn’t	work.	You	spend	some	time

complains	that	sometimes,	the	dictionary	doesn’t	work.	You	spend	some	time
debugging,	and	it	always	works	for	you.	You	look	for	race	conditions,	threading,
API	tomfoolery	or	any	other	nondeterminism,	and	come	up	with	absolutely	zero
potential	bugs.	Finally,	you	get	some	time	where	you	can	sit	with	the	other
developer	and	see	what	they	are	doing.

And	sitting	at	their	terminal	is	the	following	line:

#	arugula	==	rocket

nutrition	=	NutritionalInformation()

nutrition["arugula"]	=	get_nutrition_information("arugula")

print(nutrition.get("rocket",	"No	Ingredient	Found"))

The	get	function	on	a	dictionary	tries	to	get	the	key,	and	if	not	found,	will	return
the	second	argument	(in	this	case	“No	Ingredient	Found”.	And	whenever	this
line	is	executed,	you	see	just	that:	“No	Ingredient	Found”.	And	herein	lies	the
problem:	When	subclassing	from	a	dictionary	and	overriding	methods,	you	have
no	guarantee	that	those	methods	are	called	from	every	other	method	in	the
dictionary.	Built-in	collection	types	are	built	with	performance	in	mind;	many	of
methods	use	inlined	code	to	go	fast.	This	means	that	overriding	one	method,
such	as	__getitem__,	will	not	be	used	in	most	dictionary	methods.	This
certainly	violates	the	Law	of	Least	Surprise,	which	we	talked	about	in	Chapter	1.

NOTE
It	is	okay	to	subclass	from	the	built-in	collection	if	you	are	only	adding	methods,	but	because
future	modifications	may	make	this	same	mistake,	I	still	prefer	to	use	one	of	the	other	methods
of	building	custom	collections.

So	overriding	dict	is	out.	Instead	I’l	use	types	from	the	collections	module.	For
this	case,	there	is	a	handy	type	called	UserDict.	UserDict	fits	the	exact	use
case	that	I	need:	I	can	subclass	from	UserDict,	override	key	methods,	and	get
the	behavior	I	expect.

from	collections	import	UserDict

class	NutritionalInformation(UserDict):

				def	__getitem__(self,	key):

								try:

												return	self.data[key]

								except	KeyError:

												pass

								for	alias	in	get_aliases(key):

												try:

																return	self.data[alias]

												except	KeyError:

																pass

								raise	KeyError(f"Could	not	find	{key}	or	any	of	its	aliases")

This	fits	your	use	case	exactly.	You	subclass	from	UserDict	instead	of	dict,
and	then	use	self.data	to	access	the	underlying	dictionary.

You	go	run	your	teammate’s	code	again:

#	arugula	==	rocket

print(nutrition.get("rocket",	"No	Ingredient	Found"))

And	you	get	the	nutrition	information	for	arugula.

UserDict	isn’t	the	only	collection	type	that	you	can	override	in	this	case.
There	also	is	a	UserString	and	a	UserList	in	the	collections	model.
Anytime	you	want	to	tweak	a	dictionary,	string	or	list,	these	are	the	collections
you	want	to	use.

WARNING
Inheriting	from	these	classes	does	incur	a	performance	cost.	Built-in	collections	make	some
assumptions	in	order	to	achieve	performance.	With	UserDict,	UserString,	and
UserList,	methods	can’t	be	inlined,	since	you	might	override	them.	If	you	need	to	use	these
constructs	in	performance-critical	code,	make	sure	you	benchmark	and	measure	your	code	to
find	potential	problems.

You’ll	notice	that	I	talked	about	dictionaries,	lists	and	strings	above,	but	left	out
one	big	built-in:	sets.	There	exists	no	UserSet	in	the	collections	module.
I’ll	have	to	select	a	different	abstraction	from	the	collections	module.	More
specifically,	I	need	abstract	base	classes	(or	collections.abc.)

As	Easy	as	ABC

Abstract	Base	Classes	in	the	collections.abc	module	provide	another
grouping	of	classes	that	you	can	override	to	create	your	own	collections.	These
Abstarct	Base	Classes	(or	ABCs)	is	a	class	that	is	intended	to	be	subclassed,	and
require	the	subclass	to	implement	very	specific	functions.	For	the
collections.abc,	these	ABCs	are	all	centered	on	custom	collections.	In
order	to	create	a	custom	collection,	you	must	override	specific	functions,
depending	on	the	type	you	want	to	emulate.	You	can	find	a	full	list	of	required
functions	to	implement	at	the	collections.abc's	module	documentation.
	Once	you	implement	these	required	functions	though,	the	ABC	fills	in	other
functions	automatically.

NOTE
In	contrast	to	the	User*	classes,	there	is	no	built	in	storage,	such	as	self.data,	inside	these
classes.	You	must	provide	your	own	storage

Let’s	look	at	a	collections.abc.Set,	since	there	is	no	UserSet
elsewhere	in	collections.	I	want	to	create	a	custom	set	that	automatically	handles
aliases	of	ingredients	(such	as	rocket	and	arugula).	In	order	to	create	this	custom
set,	I	need	to	implement	three	methods:

__contains__:	This	is	for	membership	checks:	"arugula"	in
ingredients.

__iter__:	This	is	for	iterating:	for	ingredient	in
ingredients

__len__:	This	is	for	checking	the	length:	len(ingredients)

Once	these	three	methods	are	defined,	methods	like	relational	operations,
equality	operations	and	set	operations	(union,intersection,difference,disjoint)
will	just	work.	That’s	the	beauty	of	collections.abc.	Once	you	define	a
select	few	methods,	the	rest	come	for	free.	Here	it	is	in	action:

import	collections

class	AliasedIngredients(collections.abc.Set):

				def	__init__(self,	ingredients:	set[str]):

								self.ingredients	=	ingredients

2

				def	__contains__(self,	value:	str):

								return	value	in	self.ingredients	or	any(alias	in	

self.ingredients	for	alias	in	get_aliases(value))

				def	__iter__(self):

								return	iter(self.ingredients)

				def	__len__(self):

								return	len(self.ingredients)

ingredients	=	AliasedIngredients({'arugula',	'eggplant',	'pepper'})

for	ingredient	in	ingredients:

				print(ingredient)

>>>	'arugula'

'eggplant'

'pepper'

print(len(ingredients))

>>>	3

print('arugula'	in	ingredients)

>>>	True

print('rocket'	in	ingredients)

>>>	True

list(ingredients	|	AliasedIngredients({'garlic'}))

>>>['pepper',	'arugula',	'eggplant',	'garlic']

That’s	not	the	only	cool	thing	about	collections.abc,	though.	Using
collections.abc	in	type	annotations	can	help	you	write	more	generic	code.
Take	this	code	from	all	the	way	back	in	Chapter	2:

def	print_items(items):

				for	item	in	items:

												print(item)

print_items([1,2,3])

print_items({4,	5,	6})

print_items({"A":	1,	"B":	2,	"C":	3})

I	talked	about	how	duck	typing	can	be	both	a	boon	and	a	curse	for	robst	code.
It’s	great	that	I	can	write	a	single	function	that	can	take	so	many	different	types,
but	communicating	intent	through	type	annotations	becomes	challenging.
Fortunately,	I	can	use	the	collections.abc	classes	to	provide	type	hints:

def	print_items(items:	collections.abc.Iterable):

				for	item	in	items:

												print(item)

In	this	case,	I	am	indicating	that	items	are	simply	iterable	through	the
Iterable	ABC.	As	long	as	the	parameter	supports	an	__iter__	method
(and	most	collections	do),	this	code	will	typecheck.

As	of	Python	3.9,	there	are	25	different	ABCs	for	you	to	use.	Check	them	all	out
in	the	Python	documentation .

Wrap-up
You	can’t	go	far	without	running	into	collections	in	Python.	Lists,	dictionaries,
and	sets	are	commonplace,	and	it’s	imperative	that	you	provide	hints	to	the
future	about	what	collection	types	you’re	working	with.	Consider	if	your
collections	are	homogeneous	or	heterogeneous,	and	what	that	tells	future
readers.	For	the	cases	where	you	do	use	heterogeneous	collections,	provide
enough	information	for	other	developers	to	reason	about	them,	such	as	a
TypedDict.	Once	you	learn	the	techniques	to	allow	other	developers	to	reason
about	your	collections,	your	codebase	becomes	so	much	more	understandable.

Always	think	through	your	options	when	creating	new	collections:

If	you	are	just	extending	a	type,	such	as	adding	new	methods,	you	can
subclass	directly	from	collections	such	as	list	or	dictionary.	However,
beware	the	rough	edges,	as	there	is	some	surprising	Python	behavior	if	a
user	ever	overrides	a	built-in	method.

If	you	are	looking	to	change	out	a	small	part	of	a	list,	dictionary	or
string,	use	collections.UserList,
collections.UserDict,	or	collections.UserString,
respectively.	Remember	to	reference	self.data	to	access	the	storage
of	the	respective	type.

If	you	need	to	write	a	more	complicated	class	with	the	interface	of
another	collection	type,	use	collections.abc.	You	will	need	to

3

provide	your	own	storage	for	the	data	inside	the	class	and	implement	all
required	methods,	but	once	you	do,	you	can	customize	that	collection	to
your	heart’s	content.

DISCUSSION	TOPIC
Look	through	your	use	of	collections	and	generics	in	your	codebase,	and	assess	how	much
information	is	conveyed	to	future	developers.	How	many	custom	collection	types	are	in	your
codebase?	What	can	a	new	developer	tell	about	the	collection	types	by	just	looking	at	type
signatures	and	names?	Are	there	collections	you	could	be	defining	more	generically?	What
about	other	types	using	generics?

Now,	type	annotations	don’t	reach	their	full	potential	without	the	aid	of	a
typechecker.	In	the	next	chapter,	I’m	going	to	focus	on	the	typechecker
itself.You’ll	learn	how	to	effectivly	configure	a	typechecker,	generate	reports,
and	evaluate	different	checkers.	The	more	you	know	about	a	tool,	the	more
effectively	you	can	wield	it.	This	is	especially	true	for	your	typechecker.

1 	https://rapidapi.com/spoonacular/api/recipe-food-nutrition?endpoint=59b3d500e4b0b0cacf7c5aaa

2 	https://docs.python.org/3/library/collections.abc.html#module-collections.abc

3 	https://docs.python.org/3/library/collections.abc.html#module-collections.abc

https://rapidapi.com/spoonacular/api/recipe-food-nutrition?endpoint=59b3d500e4b0b0cacf7c5aaa
https://docs.python.org/3/library/collections.abc.html#module-collections.abc
https://docs.python.org/3/library/collections.abc.html#module-collections.abc

Chapter	6.	Customizing	Your
Typechecker

A	NOTE	FOR	EARLY	RELEASE	READERS

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the
author’s	raw	and	unedited	content	as	they	write—so	you	can	take	advantage
of	these	technologies	long	before	the	official	release	of	these	titles.

This	will	be	the	6th	chapter	of	the	final	book.	Please	note	that	the	GitHub
repo	will	be	made	active	later	on.

If	you	have	comments	about	how	we	might	improve	the	content	and/or
examples	in	this	book,	or	if	you	notice	missing	material	within	this	chapter,
please	reach	out	to	the	author	at	pat@kudzera.com.

Typecheckers	are	one	of	your	best	resources	for	building	robust	codebases.
Jukka	Lehtosalo,	the	lead	developer	of	mypy,	offers	a	beautifully	concise
definition	of	typecheckers:	In	essence,	[a	typechecker]	provides	verified
documentation. 	Type	annotations	provide	documentation	about	your	codebase,
allowing	other	developers	the	ability	to	reason	about	your	intentions.	And
typecheckers	use	those	annotations	to	verify	that	the	documentation	matches	the
behavior.

As	such,	a	typechecker	is	invaluable.	The	wise	sage	Confucius	once	said	The
mechanic,	who	wishes	to	do	his	work	well,	must	first	sharpen	his	tools.	 	This
chapter	is	all	about	sharpening	your	typechecker	usage.	Great	coding	techniques
can	get	you	far,	but	its	your	surrounding	tooling	that	takes	you	to	the	next	level.
Don’t	stop	with	just	learning	your	editor,	compiler,	or	operating	system.	Learn
your	typechecker	too.	I	will	show	you	some	of	the	more	useful	options	to	get	the
most	out	of	your	tools.

Configuring	Your	Typechecker

1

2

I	will	focus	on	one	of	the	most	popular	typecheckers	out	there:	mypy.	Mypy
offers	quite	a	few	configuration	options	to	control	the	typechecker’s	strictness,
or	amount	of	errors	reported.	The	stricter	you	make	your	typechecker,	the	more
type	annotations	you	need	to	write,	providing	better	documentation	and	creating
fewer	bugs.	However,	make	the	typechecker	too	strict,	and	you	will	find	the
minimum	bar	for	developing	code	too	high,	incurring	high	costs	to	make
changes.	Mypy	configuration	options	are	what	controls	these	strictness	levels.
I’ll	go	through	the	different	options	available	to	you,	and	you	can	decide	where
that	bar	lies	for	you	and	your	codebase.

First,	you	need	to	install	mypy	(if	you	haven’t	already).	The	easiest	way	is
through	pip	on	the	commandline:

pip	install	mypy

Once	you	have	mypy	installed,	you	you	can	control	configuration	through	one	of
three	ways:

Command	Line

When	instantiating	mypy	from	a	terminal,	you	can	pass	various	options	to
configure	behavior.	This	is	great	for	exploring	new	checks	in	your	codebase

Inline	Configuration

You	can	specify	configuration	values	at	the	top	of	a	file	to	indicate	any
options	you	may	want	to	set.	For	example:

				#	mypy:	disallow-any-generics`

at	the	top	of	your	file	will	tell	mypy	to	explicitly	look	for	Any	values	in	a
generics	and	fail	if	it	finds	any.

Configuration	File

You	can	set	up	a	configuration	file	to	use	the	same	options	every	time	mypy
runs.	This	is	extremely	useful	when	needing	to	share	the	same	options	across
a	team.	This	file	is	typically	stored	in	version	control	alongside	the	code.

Configuring	Mypy

When	running	mypy,	mypy	looks	in	your	current	directory	for	a	configuration
file	named	mypy.`ini.	This	file	will	define	which	options	you	have	set	up	for
the	project.	Some	options	will	be	global,	applied	to	every	file,	and	other	options
will	be	per-module.	A	sample	mypy.ini	file	might	look	as	follows:

#	Global	options:

	

[mypy]

python_version	=	3.9

warn_return_any	=	True

	

#	Per-module	options:

	

[mypy-mycode.foo.*]

disallow_untyped_defs	=	True

	

[mypy-mycode.bar]

warn_return_any	=	False

	

[mypy-somelibrary]

ignore_missing_imports	=	True

TIP
You	can	use	the	--config-file	command	line	option	to	specify	config	files	in	different
places.	Also,	mypy	will	look	for	configuration	files	in	specific	home	directories	if	it	can’t	find
a	local	config	file,	in	case	you	want	the	same	settings	across	multiple	projects.	For	more
information,	check	out	the	mypy	documentation.

I’ll	cover	some	of	the	important	options	that	you	need	to	be	aware	of;	they	will
help	you	control	the	behavior	you	want	out	of	your	typechecker.	As	a	note,	I
won’t	cover	too	much	more	about	the	configuration	file.	Most	options	that	I’ll
talk	about	work	in	both	a	configuration	file	and	on	the	command	line,	and	for	the
sake	of	simplicity,	I’ll	show	you	how	to	run	the	commands	on	mypy	invocations.

Catching	Dynamic	Behavior

As	mentioned	before,	Python’s	dynamically	typed	nature	will	make	maintenance
hard	on	long-living	code	bases.	When	dynamically	typed,	every	variable	is
essentially	an	Any	type.	Any	indicates	that	literally	any	type	would	work	for	the

https://mypy.readthedocs.io/en/stable/config_file.html#the-mypy-configuration-file

annotated	code.	There	is	not	much	value	to	be	had	in	most	of	these	cases;	the
typechecker	won’t	flag	any	problems,	and	you	aren’t	communicating	anything
special	to	future	developers.

Mypy	comes	with	a	set	of	flags	that	you	can	turn	on	to	flag	instances	of	the	Any
type.

For	instance,	you	can	turn	on	the	--disallow-any-expr	option	to	flag	any
expression	that	has	an	Any	type.	The	following	code	will	fail	with	that	option
turned	on:

from	typing	import	Any

x:	Any	=	1

y	=	x	+	1

test.py:4:	error:	Expression	has	type	"Any"

Found	1	error	in	1	file	(checked	1	source	file)

Another	option	I	like	for	disallowing	Any	in	type	declarations	such	as	in
collections	is	--disallow-any-generics.	This	catches	the	use	of	Any	for
anything	using	a	generic,	such	as	collection	types.	The	following	code	fails	to
typecheck	with	this	option	turned	on.

x:	list	=	[1,2,3,4]

You	would	need	to	use	list[int]	explicitly	to	get	this	code	to	work.

Check	out	all	the	ways	to	disable	the	use	of	Any	in	the	mypy	dynamic	typing
documentation.

Be	careful	with	disabling	Any	too	broadly,	though.	There	is	a	valid	use	case	of
Any	that	you	don’t	want	to	flag	erroneously.	Any	should	be	reserved	for	when
you	absolutely	don’t	care	what	type	something	is,	and	that	it	is	up	to	the	caller	to
verify	the	type.	A	prime	example	is	a	heterogeneous	key-value	store	(perhaps	a
general-purpose	cache).

Requiring	Types

An	expression	is	untyped	if	there	is	no	type	annotation.	In	these	cases,	mypy
treats	the	result	of	that	expression	as	an	Any	type	if	it	can’t	otherwise	infer	the

https://mypy.readthedocs.io/en/stable/config_file.html#disallow-dynamic-typing

type.	However,	the	above	checks	for	disallowing	Any	will	not	catch	where	a
function	is	left	untyped.	There	is	a	separate	set	of	flags	for	checking	for	untyped
functions.

This	code	will	not	error	out	in	a	typechecker	unless	the	--disallow-
untyped-defs	option	is	set.

def	plus_four(x):

				return	x	+	4

With	that	option	set,	you	receive	the	following	error:

test.py:4:	error:	Function	is	missing	a	type	annotation

If	this	is	too	severe	for	you,	you	might	want	to	check	out	--disallow-
incomplete-defs,	which	only	flags	functions	if	they	are	partly	annotated,	or
--disallow-untyped-calls,	which	only	flags	calls	from	annotated
functions	to	unannotated	functions.	You’ll	find	all	the	different	options
concerning	untyped	functions	in	the	mypy	documentation.

Handling	None/Optional

In	Chapter	4,	you	learned	how	easy	it	was	to	make	the	“billion-dollar	mistake”
when	using	None	values.	If	you	turn	on	no	other	options,	make	sure	that	you
have	--strict-optional	turned	on	in	your	typechecker	to	catch	these
costly	errors.	You	absolutely	want	to	be	checking	that	your	use	of	None	is	not
hiding	any	latent	bugs.

When	using	--strict-optional,	you	must	explicitly	perform	is	None
checks,	otherwise	your	code	will	fail	typechecking.

If	--strict-optional	is	set	(the	default	is	different	depending	on	the	mypy
version,	so	be	sure	to	double	check),	this	code	should	fail:

from	typing	import	Optional

x:	Optional[int]	=	None

print(x+5)

test.py:3:	error:	Unsupported	operand	types	for	+	("None"	and	"int")

test.py:3:	note:	Left	operand	is	of	type	"Optional[int]"

https://mypy.readthedocs.io/en/stable/command_line.html#untyped-definitions-and-calls

It’s	worth	noting	that	mypy	also	treats	None	values	as	Optionals	implicitly.	I
recommend	turning	this	off,	so	that	you	are	being	more	explicit	in	your	code.	For
example:

def	foo(x:	int	=	None)	->	None:

				print(x)

The	parameter	x	is	implicitly	converted	to	an	Optional[int],	since	None	is
a	valid	value	for	it.	If	you	were	to	do	any	integer	operations	upon	x,	the
typechecker	would	flag	it.	However,	it’s	better	to	be	more	explicit	and	express
that	a	value	can	be	None	(to	disambiguate	for	future	readers).

You	can	set	--no-implicit-optional	in	order	to	get	an	error,	forcing
you	to	specify	Optional.	If	you	were	to	typecheck	the	above	code	with	this
option	set,	you	would	see:

test.py:2:	error:	Incompatible	default	for	argument	"x"

										(default	has	type	"None",	argument	has	type	"int")

Mypy	Reporting
If	a	typechecker	fails	in	the	forest	and	nobody	is	around	to	see	it,	does	it	print	an
error	message?	How	do	you	know	that	mypy	is	actually	checking	your	files,	and
that	it	will	actually	catch	errors?	Thankfully,	mypy	comes	with	some	built-in
reporting	techniques.

First,	you	can	get	a	HTMl	report	about	how	many	lines	of	code	mypy	was	able
to	check	by	passing	in	--html-report	to	mypy.	This	produces	a	HTML	file
that	will	provide	a	table	that	looks	similar	to	Figure	6-1:

Figure	6-1.	HTML	report	from	running	mypy	on	the	mypy	source	code

TIP

TIP
If	you	want	a	plaintext	file,	you	can	use	--linecount-report	instead.

Mypy	also	allows	you	to	track	explicit	Any	expressions	to	understand	how	you
are	doing	on	a	line-by-line	basis.	When	using	the	--any-exprs-report
command	line	option,	mypy	will	create	a	text	file	enumerating	per-module
statistics	for	how	many	times	you	use	Any.	This	is	very	useful	for	seeing	how
explicit	your	type	annotations	are	across	a	codebase.	Here	are	the	first	few	lines
from	running	the	--any-exprs-report	option	on	the	mypy	codebase	itself.

																		Name			Anys				Exprs			Coverage

--

									mypy.__main__						0							29				100.00%

														mypy.api						0							57				100.00%

								mypy.applytype						0						169				100.00%

											mypy.argmap						0						394				100.00%

											mypy.binder						0						817				100.00%

							mypy.bogus_type						0							10				100.00%

												mypy.build					97					6257					98.45%

										mypy.checker					10				12914					99.92%

								mypy.checkexpr					18				10646					99.83%

						mypy.checkmember						6					2274					99.74%

			mypy.checkstrformat					53					2271					97.67%

				mypy.config_parser					16						737					97.83%

If	you’d	like	more	machine-readable	formats,	you	can	use	the	--junit-xml
option	to	create	an	XML	file	in	the	JUnit	format.	Most	Continuous	Integration
systems	can	parse	this	format,	making	it	ideal	for	automated	report	generation	as
part	of	your	build	system.	To	learn	about	all	the	different	reporting	options,
check	out	the	mypy	report-generation	documentation.

Speeding	up	Mypy
One	of	the	common	complaints	about	mypy	is	the	speed	in	which	it	takes	to
typecheck	large	codebases.	By	default,	mypy	incrementally	checks	files.	That	is,
it	uses	a	cache	(typically	a	.mypy_cache	folder,	but	this	is	also	configurable)	to
only	check	what	has	changed	since	last	typecheck.	This	does	speed	up
typechecking,	but	as	your	codebase	gets	larger,	your	typechecker	will	take
longer	to	run,	no	matter	what.	This	is	detrimental	for	fast	feedback	during

https://mypy.readthedocs.io/en/stable/command_line.html#report-generation

development	cycles.	The	longer	a	tool	takes	to	provide	useful	feedback	to
developers,	the	less	often	developers	will	run	the	tool,	thus	defeating	the
purpose.	It	is	in	everyone’s	interest	for	typecheckers	to	run	as	fast	as	possible,	so
that	developers	are	getting	type	errors	at	near	real-time.

In	order	to	speed	up	mypy	even	more,	you	may	want	to	consider	a	remote	cache.
A	remote	cache	provides	a	way	of	caching	your	mypy	typechecks	somewhere
accessible	to	your	entire	team.	This	way,	you	can	cache	results	based	on	specific
commit	IDs	in	your	version	control,	and	share	typechecker	information.	Building
this	system	is	outside	the	scope	of	this	book,	but	the	remote	cache
documentation	in	mypy	will	provide	a	solid	start.

You	also	want	to	consider	mypy	in	daemon	mode.	Daemon	mode	is	when	mypy
runs	as	a	standalone	process,	and	keeps	previous	mypy	state	in	memory	rather
than	on	a	file	system	(or	across	a	network	link).	You	can	start	a	mypy	daemon
by	running	dmypy	run	--	mypy-flags	<mypy-files>.	Once	the
daemon	is	running,	you	can	run	the	exact	same	command	to	check	the	files
again.

For	instance,	I	ran	mypy	on	the	mypy	source	code	itself.	My	initial	run	took	23
seconds.	Subsequent	typechecks	on	my	system	took	between	16	and	18	seconds.
This	is	technically	faster,	but	I	would	not	consider	it	fast.	When	I	use	the	mypy
daemon,	though,	my	subsequent	runs	ended	up	being	under	half	a	second.	With
times	like	that,	I	can	run	my	typechecker	much	more	often	to	get	feedback	faster.
Check	out	more	about	dmypy	in	the	mypy	daemon	mode	documentation.

Alternative	Typecheckers
Mypy	is	very	configurable,	and	it’s	wealth	of	options	will	let	you	decide	on	the
exact	behavior	you	are	looking	for,	but	it	won’t	meet	all	of	your	needs	all	the
time.	It	isn’t	the	only	typechecker	out	there.	I’d	like	to	introduce	two	other	type-
checkers	to	you:	pyre	(written	by	Facebook)	and	pyright	(written	by	Microsoft).

Pyre
You	can	install	Pyre	with	through	pip:

pip	install	pyre-check

https://mypy.readthedocs.io/en/stable/additional_features.html#remote-cache
https://mypy.readthedocs.io/en/stable/mypy_daemon.html#mypy-daemon

Pyre	runs	very	similarly	to	mypy’s	daemon	mode.	A	separate	process	will	run,
from	which	you	can	ask	for	typechecking	results.	To	typecheck	your	code,	you
need	to	set	up	pyre	(by	running	pyre	init)	in	your	project	directory,	and	then
run	pyre	to	start	the	daemon.	From	here,	the	information	you	receive	is	pretty
similar	to	mypy.	However,	there	are	two	features	that	set	Pyre	apart	from	other
typecheckers:	Codebase	querying	and	the	Python	Static	Analyzer	framework
(Pysa).

Codebase	Querying

Once	the	pyre	daemon	is	running,	there	are	a	lot	of	cool	queries	you	can	make	to
inspect	your	codebase.	I’ll	use	the	mypy	codebase	as	an	example	codebase	for
all	of	the	following	queries.

For	instance,	I	can	learn	about	the	attributes	of	any	class	in	my	codebase:

pyre	query	"attributes(mypy.errors.CompileError)"	

{

			"response":	{

							"attributes":	[

											{

															"name":	"__init__",	

															"annotation":	

"BoundMethod[typing.Callable(mypy.errors.CompileError.__init__)

[[Named(self,	mypy.errors.CompileError),	Named(messa

ges,	typing.List[str]),	Named(use_stdout,	bool,	default),	

Named(module_with_blocker,	typing.Optional[str],	default)],	None],	

mypy.errors.CompileE

rror]",

															"kind":	"regular",

															"final":	false

											},

											{

															"name":	"messages",	

															"annotation":	"typing.List[str]",

															"kind":	"regular",

															"final":	false

											},

											{

															"name":	"module_with_blocker",	

															"annotation":	"typing.Optional[str]",

															"kind":	"regular",

															"final":	false

											},

https://pyre-check.org/

											{

															"name":	"use_stdout",	

															"annotation":	"bool",

															"kind":	"regular",

															"final":	false

											}

]

			}

}

Pyre	query	for	attributes
Describing	the	constructor
A	list	of	strings	for	messages
An	Optional	String	describing	a	module	with	blocker
A	flag	indicating	printing	to	a	screen

Look	at	all	this	information	I	can	find	out	about	the	attributes	in	a	class.	I	can	see
their	type	annotations	to	understand	how	the	tool	sees	these	attributes.	This	is
incredibly	handy	in	exploring	classes	as	well.

Another	cool	query	is	the	callees	of	any	function.

pyre	query	"callees(mypy.errors.remove_path_prefix)"

{

			"response":	{

							"callees":	[

											{

															"kind":	"function",	

															"target":	"len"

											},

											{

															"kind":	"method",	

															"is_optional_class_attribute":	false,

															"direct_target":	"str.__getitem__",

															"class_name":	"str",

															"dispatch":	"dynamic"

											},

											{

															"kind":	"method",	

															"is_optional_class_attribute":	false,

															"direct_target":	"str.startswith",

															"class_name":	"str",

															"dispatch":	"dynamic"

											},

											{

															"kind":	"method",	

															"is_optional_class_attribute":	false,

															"direct_target":	"slice.__init__",

															"class_name":	"slice",

															"dispatch":	"static"

											}

]

			}

}

Calls	the	length	function
Calls	the	string.getitem	function	(such	as	str[0])

Calls	the	startswith	function	on	a	string

Initializes	a	list	slice	(such	as	str[3:8])

The	typechecker	needs	to	store	all	this	information	to	do	its	job.	It’s	a	huge
bonus	that	you	can	query	the	information	as	well.	I	could	write	a	whole	extra
book	on	what	you	can	do	with	this	information,	but	for	now,	check	out	the	pyre
query	documentation .	You	will	learn	about	different	queries	you	can	execute,
such	as	observing	class	hierarchies,	call	graphs,	and	more.	These	queries	allow
you	to	learn	more	about	your	codebase	or	to	build	new	tools	to	better	understand
your	codebase	(and	catch	other	types	of	errors	that	a	typechecker	can’t	-	such	as
temporal	dependencies,	which	I’ll	cover	in	Part	3).

Python	Static	Analyzer	(Pysa)

Pysa	(pronounced	like	the	Leaning	Tower	of	Pisa),	is	a	static	code	analyzer	built
into	Pyre.	Pysa	specializes	in	a	type	of	security	static	analysis	known	as	taint
analysis.	Taint	analysis	is	the	tracking	of	potentially	tainted	data,	such	as	user
supplied	input.	The	tainted	data	is	tracked	for	the	entire	lifecycle	of	the	data;
pyre	makes	sure	that	any	tainted	data	cannot	propagate	to	a	system	in	an	insecure
fashion.

Let	me	walk	through	the	process	to	catch	a	simple	security	flaw	(modified	from
the	Pyre	documentation.)	Consider	the	case	where	a	user	creates	a	new	recipe	in
a	filesystem.

3

https://pyre-check.org/docs/pysa-running

import	os

def	create_recipe():

			recipe	=	input("Enter	in	recipe")

			create_recipe_on_disk(recipe)

def	create_recipe_on_disk(recipe):

			command	=	"touch	~/food_data/{}.json".format(recipe)

			return	os.system(command)

This	looks	pretty	innocuous.	A	user	can	enter	in	carrots	to	create	the	file
~/food_data/carrots.json..	But	what	if	a	user	enters	in	carrots;
ls	~;?	If	this	were	entered,	it	would	print	out	the	entire	home	directory	(the
command	becomes	touch	~/food_data/carrots;	ls	~;.json)
Based	on	input,	a	malicious	user	could	enter	in	arbitrary	commands	on	your
server	(this	is	known	as	remote	code	execution,	or	RCE),	which	is	a	huge
security	risk.

Pysa	provides	tools	to	check	this.	I	can	specify	that	anything	coming	from
input()	is	potentially	tainted	data	(known	as	a	taint	source),	and	anything
passed	to	os.system	should	not	be	tainted	(known	as	a	taint	sink).	With	this
information,	I	need	to	build	a	taint	model,	which	is	a	set	of	rules	for	detecting
potential	security	holes.	First,	I	must	specify	a	taint.config	file:

{

		sources:	[

				{

						name:	"UserControlled",	

						comment:	"use	to	annotate	user	input"

				}

],

		sinks:	[

				{

						name:	"RemoteCodeExecution",	

						comment:	"use	to	annotate	execution	of	code"

				}

],

		features:	[],

		rules:	[

				{

						name:	"Possible	shell	injection",	

						code:	5001,

						sources:	["UserControlled"],

						sinks:	["RemoteCodeExecution"],

						message_format:	"Data	from	[{$sources}]	source(s)	may	reach	

[{$sinks}]	sink(s)"

				}

]

}

Specify	an	annotation	for	user	controlled	input
Specify	an	annotation	for	Remote	Code	Execution	flaws
Specify	a	rule	that	makes	any	tainted	data	from	UserControlled	sources	an
error	if	it	ends	up	in	a	RemoteCodeExecution	sink.

From	there,	I	must	specify	a	taint	model	to	annotate	these	sources	as	tainted.

#	stubs/taint/general.pysa

#	model	for	raw_input

def	input(__prompt	=	...)	->	TaintSource[UserControlled]:	...

#	model	for	os.system

def	os.system(command:	TaintSink[RemoteCodeExecution]):	...

These	stubs	tell	pysa	through	type	annotations	about	where	your	taint	sources
and	sinks	are	in	your	system.

Finally,	you	need	to	tell	pyre	to	detect	tainted	information	by	modifying	the
.pyre_configruation	to	add	in	your	directory:

"source_directories":	["."],

"taint_models_path":	["stubs/taint"]

Now,	when	I	run	pyre	analyze	on	that	code,	Pysa	flags	anerror.

[

				{

								"line":	9,

								"column":	26,

								"stop_line":	9,

								"stop_column":	32,

								"path":	"insecure.py",

								"code":	5001,

								"code":	5001,

								"name":	"Possible	shell	injection",

								"description":

												"Possible	shell	injection	[5001]:	Data	from

[UserControlled]	source(s)	may	reach	"	+

												"[RemoteCodeExecution]	sink(s)",

								"long_description":

												"Possible	shell	injection	[5001]:	Data	from

[UserControlled]	source(s)	may	reach	"	+

												"[RemoteCodeExecution]	sink(s)",

								"concise_description":

												"Possible	shell	injection	[5001]:	Data	from

[UserControlled]	source(s)	may	reach	"	+	"

												"[RemoteCodeExecution]	sink(s)",

								"inference":	null,

								"define":	"insecure.create_recipe"

				}

]

In	order	to	fix	this,	I	either	need	to	make	this	data	flow	impossible,	or	run	tainted
data	through	a	sanitizer	function.	Sanitize	functions	take	untrusted	data,	and
inspect/modify	them	so	that	they	can	be	trusted.	Pysa	allows	you	decorate
functions	with	@sanitize	to	specify	your	sanitizers.

This	was	admittedly	a	simple	example,	but	Pysa	allows	you	to	annotate	your
codebase	to	catch	more	complicated	problems	(such	as	SQL	injection	and	cookie
mismanagement).	To	learn	everything	that	Pysa	can	do	(as	well	as	built-in
common	security	flaws),	check	out	the	complete	documentation.

Pyright
Pyright	is	a	typechecker	designed	by	Microsoft.	I	have	found	it	to	be	the	most
configurable	of	typecheckers	I’ve	come	across.	If	you	would	like	more	control
than	your	current	typechecker,	explore	the	Pyre	configuration	documentation	for
all	that	you	can	do.	However,	Pyright	has	an	additional	awesome	feature	:	VS
Code	Integration.

VS	Code	(also	built	by	Microsoft)	is	an	immensely	popular	code	editor	for
developers.	Microsoft	leveraged	the	ownership	of	both	tools	to	create	a	VS	Code
extension	called	Pylance.	You	can	install	Pylance	from	your	VS	Code
Extensions	browser.	Pylance	is	built	upon	Pyright,	and	uses	type	annotations	to
provide	a	better	code	editing	experience.	Before,	I	mentioned	that	autocomplete
was	a	benefit	of	type	annotations	in	IDEs,	but	Pylance	takes	it	to	the	next	level.

4

https://pyre-check.org/docs/pysa-basics
https://github.com/microsoft/pyright
https://github.com/microsoft/pyright/blob/master/docs/configuration.md
https://marketplace.visualstudio.com/items?itemName=ms-python.vscode-pylance

Pylance	offers	the	following	features:

Automatic	insertion	of	imports,	based	on	your	types

Tooltips	with	full	type	annotations	based	on	signatures

Codebase	browsing	such	as	finding	references	or	browsing	a	call	graph

Real-time	diagnostic	checking

It’s	this	last	feature	that	sells	Pylance/Pyright	for	me.	Pylance	has	a	setting	that
allows	you	to	constantly	run	diagnostics	in	your	whole	workspace.	This	means
that	every	time	you	edit	a	file,	pyright	will	run	across	your	entire	workspace	(and
it	runs	fast,	too)	to	look	for	additional	areas	that	you	broke.	You	don’t	need	to
manually	run	any	commands;	it	happens	automatically.	As	someone	who	likes	to
refactor	often,	this	tool	is	invaluable	for	finding	breakages	early.	Remember,	you
want	to	find	your	errors	as	close	to	real-time	as	possible.

I’ve	pulled	up	the	mypy	source	codebase	again	and	have	Pylance	enabled	and	in
workplace	diagnostics	mode.	I	want	to	change	one	type	on	line	19	from	a
Sequence	to	a	Tuple	and	see	how	the	rest	of	the	workspace	responds	in
Figure	6-2

Figure	6-2.	Problems	in	VS	Code	before	editing

Notice	at	the	bottom	where	my	“Problems”	are	listed.	The	current	view	is

showing	issues	in	another	file	that	imports	and	uses	the	current	function	I’m
editing.	Once	I	change	the	paths	argument	from	Sequence	to	a	Tuple,	see	how
the	“Problems”	change	in	Figure	6-3.

Figure	6-3.	Problems	in	VS	Code	after	editing

Within	half	a	second	of	saving	my	file,	new	errors	have	shown	up	in	my
“Problems”	pane,	telling	me	that	I’ve	just	broken	assumptions	in	calling	code.	I
don’t	have	to	wait	to	run	a	typechecker	manually,	or	wait	for	a	CI	process	to	yell
at	me;	my	errors	show	up	right	in	my	editor.	If	that	doesn’t	lead	me	to	finding
errors	earlier,	I	don’t	know	what	will.

Wrap-up
There’s	a	wealth	of	options	at	your	disposal,	and	you	need	to	be	comfortable
with	advanced	configuration	to	get	the	most	out	of	your	tool.	You	can	control
severity	options,	reporting,	or	even	use	different	typecheckers	to	reap	benefits.
As	you	evaluate	tools	and	options,	ask	yourself	how	strict	you	want	your
typecheckers	to	be.	As	you	increase	the	scope	of	errors	that	can	be	caught,	you
will	increase	the	amount	of	time	and	effort	needed	to	make	your	codebase
compliant.	However,	the	more	informative	you	can	make	your	code,	the	more
robust	it	will	be	in	its	lifetime.

In	the	next	chapter,	I	will	talk	about	how	to	assess	the	trade-offs	between
benefits	and	costs.	You’ll	learn	how	to	identify	important	areas	to	typecheck	and
use	strategies	to	mitigate	your	pain.

1 	Our	journey	to	type	checking	4	million	lines	of	Python,	https://dropbox.tech/application/our-
journey-to-type-checking-4-million-lines-of-python

2 	The	Analects,	Confucius,	c.a.	500	BCE

3 	https://pyre-check.org/docs/querying-pyre

4 	You	can	learn	more	about	sanitizers	at	https://pyre-check.org/docs/pysa-basics#sanitizers

https://dropbox.tech/application/our-journey-to-type-checking-4-million-lines-of-python
https://pyre-check.org/docs/querying-pyre
https://pyre-check.org/docs/pysa-basics#sanitizers

Chapter	7.	Adopting
Typechecking	Practically

A	NOTE	FOR	EARLY	RELEASE	READERS

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the
author’s	raw	and	unedited	content	as	they	write—so	you	can	take	advantage
of	these	technologies	long	before	the	official	release	of	these	titles.

This	will	be	the	7th	chapter	of	the	final	book.	Please	note	that	the	GitHub
repo	will	be	made	active	later	on.

If	you	have	comments	about	how	we	might	improve	the	content	and/or
examples	in	this	book,	or	if	you	notice	missing	material	within	this	chapter,
please	reach	out	to	the	author	at	pat@kudzera.com.

Quite	a	few	developers	dream	of	the	days	where	they	can	work	in	a	completely
greenfield	project.	A	green-field	project	is	one	that	is	brand	new,	where	you
have	a	blank	slate	with	your	code’s	architecture,	design,	and	modularity.
However,	most	projects	soon	become	brown-field,	or	legacy	code.	These
projects	have	been	around	the	block	a	bit;	much	of	the	architecture	and	design
has	been	solidified.	Making	big	sweeping	changes	will	impact	real	users.
However,	the	word	brown-field	is	often	seen	as	derogatory,	especially	when	it
feels	like	you	are	slogging	through	a	big	ball	of	mud.

However,	not	all	brownfield	projects	are	a	punishment	to	work	in.	Michael
Feathers,	author	of	Working	Effectively	With	Legacy	Code	has	this	to	say:

In	a	well-maintained	system,	it	might	take	a	while	to	figure	out	how	to	make	a
change,	but	once	you	do,	the	change	is	usually	easy	and	you	feel	much	more
comfortable	with	the	system.	In	a	legacy	system,	it	can	take	a	long	time	to
figure	out	what	to	do,	and	the	change	is	difficult	also.

Brownfield	projects	can	absolutely	be	in	a	well-maintainted	state.	It’s	true	that
htey	are	complex	at	first,	but	once	you	get	past	the	initial	hurdle	of
understanding,	it	becomes	easy	to	change.	Unmaintainable	code	is	where	the	real

1

understanding,	it	becomes	easy	to	change.	Unmaintainable	code	is	where	the	real
problem	lies.	This	is	why	robustness	is	paramount.	Writing	robust	code	eases	the
transition	from	green-field	to	brown-field	through	maintainability.

Most	of	the	type	annotations	strategies	that	I’ve	shown	in	the	first	part	of	this
book	are	easier	to	adopt	when	a	project	is	new.	To	adopt	these	practices	in	a
mature	project	is	more	challenging.	It	is	not	impossible,	but	the	cost	may	be
higher.	This	is	the	heart	of	engineering:	making	smart	decisions	about	trade-offs.

Trade-offs
Every	decision	you	make	involves	a	trade-off.	Lots	of	developers	focus	on	the
classic	time	vs.	space	trade-off	in	algorithms.	But	there	are	plenty	of	other	trade-
offs,	often	involving	intangible	qualities.	I’ve	already	covered	the	benefits	of	a
typechecker	quite	extensively	throughout	this	first	part	of	the	book:	*	A
typechecker	increases	communication	and	reduce	the	chances	of	bugs.	*	A
typechecker	provide	a	safety	net	for	making	changes	and	increase	the	robustness
of	your	codebase.	*	A	typechecker	allows	you	to	deliver	functionality	faster,

But	what	are	the	costs?	Adopting	type	annotations	is	not	free,	and	they	only	get
worse	the	larger	your	codebase	is.	These	costs	include:

First	you	need	buy-in.	Depending	on	culture,	it	might	take	some	time
convincing	an	organization	to	adopt	typechecking

Once	you	have	buy-in	there	is	an	initial	cost	of	adoption.	Developers
don’t	start	type	annotating	their	code	overnight,	and	it	takes	time	before
they	grok	it.	They	need	to	learn	it	and	experiment	before	they	are	on
board.

It	takes	time	and	effort	to	adopt	tooling.	You	need	some	centralized
checking	of	some	fashion,	and	developers	need	to	familiarize
themselves	with	running	the	tooling	as	part	of	their	workflows.

It	will	take	time	to	write	type	annotations	in	your	codebase.

As	type	annotations	are	checked,	developers	will	have	to	get	used	to	the
slowdown	in	fighting	the	typechecker.	There	is	additional	cognitive
overload	in	thinking	about	types.

Developer	time	is	expensive,	and	it	is	easy	to	focus	on	what	else	those

Developer	time	is	expensive,	and	it	is	easy	to	focus	on	what	else	those
developers	could	be	doing.	Adopting	type	annotations	is	not	free.	Worse,	with	a
large	enough	codebase,	these	costs	can	easily	dwarf	the	initial	benefit	you	get
from	typechecking.	The	problem	is	fundamentally	a	chicken-and-egg
conundrum.	You	won’t	see	benefits	for	annotating	types	until	you	have	written
enough	types	in	your	codebase.	However,	it	is	tough	to	get	buy-in	for	writing
types	when	the	benefit	isn’t	there	early	on.	You	can	model	your	value	as	such:

Value	=	(Total	Benefits)	-	(Total	Costs)

Your	benefits	and	costs	will	follow	a	curve;	they	are	not	linear	functions.	I’ve
outlined	the	basic	shapes	of	the	curves	in	Figure	7-1.

Figure	7-1.	Cost	and	Benefit	Curves	Over	Time

I’ve	purposely	left	off	the	range,	because	the	scale	will	change	depending	on	the
size	of	your	codebase,	but	the	shapes	remain	the	same.	Your	costs	will	start	out
high,	but	get	easier	as	adoption	increases.	Your	benefits	will	start	off	low,	but	as
you	annotate	your	codebase,	you	will	see	more	value.	You	won’t	see	a	return	on
investment	until	these	two	curves	meet.	To	maximize	value,	you	need	to	reach
that	intersection	as	early	as	possible.

Breaking	Even	Earlier

To	maximize	the	benefits	of	type	annotations,	you	need	to	either	get	value
earlier,	or	decrease	your	costs	earlier.	The	intersection	of	these	two	curves	is	a
break-even	point;	this	is	where	the	amount	of	effort	that	you’re	expending	is
paid	back	by	the	value	you	are	receiving.	You	want	to	reach	this	point	as	fast	as
sustainably	possible	to	make	your	type	annotations	a	positive	impact.	Here	are
some	strategies	to	do	that.

Finding	Your	Pain	Points
One	of	the	best	ways	to	produce	value	is	to	reduce	the	pain	you	are	currently
experiencing.	Ask	yourself,	where	do	you	currently	lose	time	in	your	process?
Where	do	you	lose	money?	Take	a	look	at	your	test	failures	and	customer	bugs.
These	error	cases	incur	real	costs;	you	should	be	doing	root	cause	analysis.	If
you	find	that	a	common	root	cause	that	can	be	fixed	by	type	annotations,	you
have	a	solid	case	for	type	annotation	adoption.	Here	are	specific	bug	classes	you
need	to	keep	an	eye	out	for:

Any	error	surrounding	None

Invalid	attribute	access,	such	as	trying	to	access	variables	of	functions
on	the	wrong	type

Errors	surrounding	type	conversions	such	as	ints	vs	strings,	bytes	vs
strings,	or	lists	vs	tuples.

Also,	talk	to	the	people	who	have	to	work	in	the	codebase	itself.	Root	out	the
areas	that	are	a	constant	source	of	confusion.	If	developers	have	trouble	with
certain	parts	of	the	codebase	today,	it’s	very	likely	that	future	developers	will
struggle	too.	Don’t	forget	to	talk	to	those	who	are	invested	in	your	codebase,	but
maybe	don’t	directly	work	in	it,	such	as	your	tech	support,	product	management
and	QA.	They	often	have	a	unique	perspective	on	painful	areas	of	the	codebase
that	might	not	be	apparent	when	looking	through	the	code.	Try	to	put	these	costs
into	concrete	terms,	such	as	time	or	money.	This	will	be	invaluable	in	evaluating
where	type	annotations	will	be	of	benefit.

Target	Code	Strategically
You	may	want	to	focus	on	trying	to	receive	value	earlier.	Type	annotations	do
not	appear	overnight	in	a	large	codebase.	Instead,	you	will	need	to	identify

not	appear	overnight	in	a	large	codebase.	Instead,	you	will	need	to	identify
specific	and	strategic	areas	of	code	to	target	for	type	annotations.	The	beauty	of
type	annotaitons	is	that	they	are	completely	optional.	By	typechecking	just	these
areas,	you	very	quickly	see	benefits	without	a	huge	upfront	investment.	Here	are
some	strategies	that	you	might	employ	to	selectively	type	annotate	your	code.

Type	Annotate	New	Code	Only

Consider	leaving	your	current,	un-annotated	code	the	way	it	is	and	annotate	code
based	on	these	two	rules:

1.	 Annotate	any	new	code	that	you	write

2.	 Annotate	any	old	code	that	you	change

Throughout	time,	you’ll	build	out	your	type	annotations	in	all	code	except	code
that	hasn’t	been	changed	in	a	long	time.	Code	that	hasn’t	been	changing	is
relatively	stable,	and	is	probably	not	read	too	often.	Type	annotating	it	is	not
likely	to	gain	you	much	benefit.

Type	Annotate	From	The	Bottom	Up

Your	codebase	may	depend	on	common	areas	of	code.	These	are	your	core
libraries	and	utilities	that	serve	as	a	foundation	upon	which	everything	else	is
built	upon.	Type	annotating	these	parts	of	your	codebase	makes	your	benefit	less
about	depth	and	more	about	breadth.	Because	so	many	other	pieces	sit	atop	this
foundation,	they	will	all	reap	the	benefits	of	typechecking.	New	code	will	quite
often	depend	on	these	utilities	as	well,	so	your	new	code	will	have	an	extra	layer
of	protection.

Type	Annotate	Your	Moneymakers

In	some	codebases,	there	is	a	clear	separation	between	the	core	business	logic
and	all	the	rest	of	the	code	that	supports	your	business	logic.	Your	business	logic
is	the	area	of	your	system	that	is	most	responsible	for	delivering	value.	It	might
be	the	core	reservation	system	for	a	travel	agency,	an	ordering	system	in	a
restaurant,	or	a	recommendation	system	for	media	services.	All	of	the	rest	the
code	(such	as	logging,	messaging,	database	drivers	and	user	interface)	exists	to
support	your	business	logic.	By	type	annotating	your	business	logic,	you	are
protecting	a	core	part	of	your	codebase.	This	code	is	often	long-lived,	making	it

an	easy	win	for	long-lasting	value.

Type	Annotate	The	Churners

Some	parts	of	your	codebase	change.	Some	parts	of	your	codebases	change	way
more	often	than	the	others.	Everytime	a	piece	of	code	changes,	you	run	the	risk
of	an	incorrect	assumption	introducing	a	bug.	The	whole	point	of	robust	code	is
to	lessen	the	chance	of	introducing	errors,	so	what	better	place	to	protect	than	the
code	that	changes	the	most	often?	Look	for	your	code	that	has	many	different
commits	in	version	control,	or	analyze	which	files	have	the	most	lines	of	code
changed	over	a	time	period.	Also	take	a	look	at	which	files	have	the	most
committers;	this	is	a	great	indication	that	this	is	an	area	where	you	can	shore	up
type	annotations	for	communication	purposes.

NOTE
Discussion	Topic:	Which	of	these	strategies	would	benefit	your	codebase	the	most?	Why	does
that	strategy	work	best	for	you?	What	the	cost	would	be	to	implement	that	strategy.

Lean	On	Your	Tooling
There	are	things	that	computers	do	well,	and	there	are	things	that	humans	do
well.	This	section	is	about	the	former.	When	trying	to	adopt	type	annotations,
there	are	some	fantastic	things	that	automated	tooling	can	assist	with.	First,	let’s
talk	about	the	most	common	typechecker	out	there:	mypy.

I’ve	covered	the	configuration	of	mypy	quite	extensively	in	Chapter	6,	but
there’s	a	few	more	options	I’d	like	to	delve	into	that	will	help	you	adopt
typechecking.	One	of	the	biggest	problems	you	will	run	into	is	the	sheer	number
of	errors	that	mypy	will	report	the	first	time	you	run	it	upon	a	larger	codebase.
The	biggest	mistake	you	can	make	in	this	situation	is	to	keep	the	hundreds	(or
thousands)	of	errors	turned	on	and	hope	that	developers	whittle	away	at	the
errors	over	time.

These	errors	will	not	get	fixed	in	any	quick	fashion.	If	these	errors	are	always
turned	on,	you	will	not	see	the	benefits	of	a	typechecker,	because	it	will	be	near
impossible	to	detect	new	errors.	Any	new	issue	will	simply	be	lost	in	the	noise	of
the	multitude	of	other	issues.

With	mypy,	you	can	tell	the	typechecker	to	ignore	certain	classes	of	errors	or
modules	through	configuration.	Here’s	a	sample	mypy	file,	which	globally
warns	if	Any	types	are	returned,	and	sets	config	options	on	a	per	module	basis:

#	Global	options:

	

[mypy]

python_version	=	3.9

warn_return_any	=	True

	

#	Per-module	options:

	

[mypy-mycode.foo.*]

disallow_untyped_defs	=	True

	

[mypy-mycode.bar]

warn_return_any	=	False

	

[mypy-somelibrary]

ignore_missing_imports	=	True

Using	this	format,	you	can	pick	and	choose	which	errors	your	type	checker
tracks.	You	can	mask	all	of	your	existing	errors,	while	focusing	on	fixing	new
errors.	Be	as	specific	as	possible	in	defining	what	errors	get	ignored;	you	don’t
want	to	mask	new	errors	that	show	up	in	unrelated	parts	of	the	code.

To	be	even	more	specific,	mypy	will	ignore	any	line	commented	with	#	type:
ignore.

#	typechecks	just	fine

a:	int	=	"not	an	int"	#	type:	ignore

WARNING
#	type:	ignore	should	not	be	an	excuse	to	be	lazy!	When	writing	new	code,	don’t	ignore
type	errors	and	fix	them	as	you	go.

Your	first	goal	for	adopting	type	annotations	is	to	get	a	completely	clean	run	of
your	typechecker.	If	there	are	errors,	you	either	need	to	fix	them	with
annotations	(recommended),	or	accept	that	not	all	errors	can	be	fixed	soon,	and
ignore	them.

Over	time,	you	want	to	make	sure	the	number	of	ignored	sections	of	code
decrease.	You	can	track	the	number	of	lines	containing	#	type	:	ignore	or
the	number	of	configuration	file	sections	that	you	are	using;	no	matter	what,	you
want	to	strive	to	ignore	as	few	sections	as	you	can	(within	reasonable	sense,	of
course	-	there	is	a	law	of	diminishing	returns).

I	also	recommend	turning	the	warn_unused_ignores	flag	on	in	your
configuration,	which	will	warn	when	an	ignore	directive	is	no	longer	required.

Now,	none	of	this	helps	you	get	any	closer	to	actually	annotating	your	codebase,
it	just	gives	you	a	starting	point.	To	help	annotate	your	codebase	with	tooling,
you	will	need	something	that	can	automatically	insert	annotations.

MonkeyType

MonkeyType	is	a	tool	that	will	automatically	annotate	your	Python	code.	This	is
a	great	way	to	typecheck	a	large	amount	of	code	without	a	lot	of	effort.

First	install	monkey	type	with	pip:

pip	install	monkeytype

Suppose	your	codebase	controls	an	automatic	chef	with	robotic	arms	and	was
capable	of	cooking	perfect	food	every	time.	You	want	to	program	the	chef	with
my	family’s	favorite	recipe:	Pasta	With	Italian	Sausage:

#	Pasta	with	Sasuage	Automated	Maker		

italian_sausage	=	Ingredient('Italian	Sausage',	4,	'links')

olive_oil	=	Ingredient('Olive	Oil',	1,	'tablespoon')

plum_tomato	=	Ingredient('Plum	Tomato',	6,	'')

garlic	=	Ingredient('Garlic',	4,	'cloves')

black_pepper	=	Ingredient('Black	Pepper',	2,	'teaspoons')

basil	=	Ingredient('Basil	Leaves',	1,	'cup')

pasta	=	Ingredient('Rigatoni',	1,	'pound')

salt	=	Ingredient('Salt',	1,	'tablespoon')

water	=	Ingredient('Water',	6,	'quarts')

cheese	=	Ingredient('Pecorino	Romano',	2,	"ounces")

pasta_with_sausage	=	Recipe(6,	[italian_sausage,

																																olive_oil,

																																plum_tomato,

																																garlic,

																																black_pepper,

																																pasta,

https://github.com/Instagram/MonkeyType

																																salt,

																																water,

																																cheese,

																																basil])

def	make_pasta_with_sausage(servings):	

				sauté_pan	=	Receptacle('Sauté	Pan')

				pasta_pot	=	Receptacle('Stock	Pot')

				adjusted_recipe	=	adjust_recipe(pasta_with_sausage,	servings)

				print("Prepping	ingredients")	

				garlic_and_tomatoes	=	

recipe_maker.dice(adjusted_recipe.get_ingredient('Plum	Tomato'),

																																												

adjusted_recipe.get_ingredient('Garlic'))

				grated_cheese	=	

recipe_maker.grate(adjusted_recipe.get_ingredient('Pecorino	Romano'))

				sliced_basil	=	

recipe_maker.chiffonade(adjusted_recipe.get_ingredient('Basil	

Leaves'))

				print("Cooking	Pasta")	

				pasta_pot.add(adjusted_recipe.get_ingredient('Water'))

				pasta_pot.add(adjusted_recipe.get_ingredient('Salt'))

				recipe_maker.put_receptacle_on_stovetop(pasta_pot,	10)

				pasta_pot.add(adjusted_recipe.get_ingredient('Rigatoni'))

				recipe_maker.set_stir_mode(pasta_pot,	('every	minute'))

				print("Cooking	Sausage")

				sauté_pan.add(adjusted_recipe.get_ingredient('Olive	Oil'))

				medium	=	recipe_maker.HeatLevel.MEDIUM

				recipe_maker.put_receptacle_on_stovetop(sauté_pan,	medium)

				sauté_pan.add(adjusted_recipe.get_ingredient('Italian	Sausage'))

				recipe_maker.brown_on_all_sides('Italian	Sausage')

				cooked_sausage	=	sauté_pan.remove_ingredients(to_ignore=['Olive	

Oil'])

				sliced_sausage	=	recipe_maker.slice(cooked_sausage,	

thickness_in_inches=.25)

				print("Making	Sauce")

				sauté_pan.add(garlic_and_tomatoes)

				recipe_maker.set_stir_mode(sauté_pan,	('every	minute'))

				while	recipe_maker.is_not_cooked('Rigatoni'):

								time.sleep(30)

				cooked_pasta	=	pasta_pot.remove_ingredients(to_ignore=['Water',	

'Salt'])

				sauté_pan.add(sliced_sausage)

				while	recipe_maker.is_not_cooked('Italian	Sausage'):

								time.sleep(30)

				print("Mixing	ingredients	together")

				sauté_pan.add(sliced_basil)

				sauté_pan.add(cooked_pasta)

				recipe_maker.set_stir_mode(sauté_pan,	"once")

				print("Serving")	

				dishes	=	recipe_maker.divide(sauté_pan,	servings)

				recipe_maker.garnish(dishes,	grated_cheese)

				return	dishes

Definition	of	all	ingredients
Function	to	make	Pasta	With	Sausage
Prepping	instructions
Cooking	instructions
Serving	instructions

I’ve	left	out	a	lot	of	the	helper	functions	to	save	space,	but	this	gives	you	an	idea
of	what	I’m	trying	to	achieve.	You	can	see	the	full	example	in	the	GitHub	repo
that	goes	along	with	this	book.

Throughout	the	entire	example,	I	have	zero	type	annotations.	I	don’t	want	to
write	all	the	type	annotations	by	hand,	so	I’ll	use	monkeytype.	To	help,	I	can
generate	stub	files	to	create	type	annotations.	Stub	files	are	files	that	just	contain
function	signatures.

In	order	to	generate	the	stub	files,	you	have	to	run	your	code.	This	is	an
important	detail;	monkey	type	will	only	annotate	code	that	you	run	first.	You	can
run	specific	scripts	like	so:

monkeytype	run	code_examples/chapter7/main.py

This	will	generate	a	SQLite	database	that	stores	all	the	function	calls	made
throughout	the	execution	of	that	program.	You	should	try	to	run	as	many	parts	of
your	system	as	you	can	in	order	to	populate	this	database	Unit	tests,	Integration
tests,	and	test	programs	all	contribute	to	populating	the	database.

https://github.com/pviafore/RobustPython

TIP
Because	monkeytype	works	by	instrumenting	your	code	using	sys.setprofile,	other
instrumentation	such	as	code	coverage	and	profiling	will	not	work	at	the	same	time.	Any	tool
that	uses	instrumentation	will	need	to	be	run	separately.

Once	you	have	run	through	as	many	paths	of	your	code	as	you	want,	you	can
generate	the	stub	files:

monkeytype	stub	code_examples.chapter7.pasta_with_sausage.

This	will	output	the	stub	file	for	this	specific	module:

def	adjust_recipe(

				recipe:	Recipe,

				servings:	int

)	->	Recipe:	...

class	Receptacle:

				def	__init__(self,	name:	str)	->	None:	...

				def	add(self,	ingredient:	Ingredient)	->	None:	...

class	Recipe:

				def	clear_ingredients(self)	->	None:	...

				def	get_ingredient(self,	name:	str)	->	Ingredient:	...

It	won’t	annotate	everything,	but	it	will	certainly	give	you	more	than	enough	of	a
head	start	in	your	codebase.	Once	you	are	comfortable	with	the	suggestions,	you
can	apply	them	with	monkeytype	apply	<module-name>.	Once	these
annotations	have	been	generated,	search	through	the	codebase	for	any	use	of
Union.	A	Union	tells	you	that	more	than	one	type	has	been	passed	to	that
function	as	part	of	the	execution	of	your	code.	This	is	a	code	smell,	or	something
that	smells	a	little	funny,	even	if	it’s	not	totally	wrong	(yet).	In	this	case,	the	use
of	a	Union	may	indicate	unmaintainable	code;	you	code	is	receiving	different
types	and	might	not	be	equipped	to	handle	them.	If	wrong	types	are	passed	in	to
a	function,	that’s	a	sure	sign	that	assumptions	have	been	invalidated.

To	illustrate,	the	stubs	for	my	recipe_maker`contains	a	`Union	in
one	of	my	function	signatures:

def	put_receptacle_on_stovetop(

				receptacle:	Receptacle,

				heat_level:	Union[HeatLevel,	int]

)	->	None:	...

The	parameter	heat_level	has	taken	a	HeatLevel	in	some	cases,	and	an	integer	in
other	cases.	Looking	back	at	my	recipe,	I	see	the	following	lines	of	code:

recipe_maker.put_receptacle_on_stovetop(pasta_pot,	10)

#	...

medium	=	recipe_maker.HeatLevel.MEDIUM

recipe_maker.put_receptacle_on_stovetop(sauté_pan,	medium)

Whether	this	is	an	error	or	not	depends	on	the	implementation	of	the	function.	In
my	case,	I	want	to	be	consistent,	so	I	would	change	the	integer	usage	to	Enum
usage.	For	your	codebase,	you	will	need	to	determine	what	is	acceptable	and
what	is	not.

Pytype

One	of	the	problems	with	Monkeytype	is	that	it	only	annotates	code	it	sees	at
runtime.	If	there	are	branches	of	your	code	that	are	costly	or	unable	to	be	run,
monkeytype	will	not	help	you	that	much.	Fortunately,	a	tool	exists	to	fill	in	this
gap:,	pytype,	written	by	Google.	Pytype	is	completely	done	through	static
analysis,	which	means	it	does	not	need	to	run	your	code	to	figure	out	type
annotations.

To	run	pytpye,	install	it	with	pip:

pytype	code_examples/chapter7

This	will	generate	a	set	of	.pyi	files	in	a	.pytype	folder.	These	are	very	similar
to	the	stub	files	that	mypy	created.	They	contain	annotated	function	signatures
and	variables	that	you	can	then	copy	into	your	source	files.

Pytype	offers	other	intriguing	benefits	as	well.	Pytype	is	not	just	a	type
annotator;	it	is	a	full	linter	and	typechecker.	It	has	a	different	typechecking
philosophy	than	other	typecheckers	such	as	mypy,	pyright	and	pyre.

Pytype	will	use	inference	to	do	its	typechecking,	which	means	it	will	typecheck
your	code,	even	in	the	absence	of	type	annotations.	This	is	a	great	way	to	get	the
benefit	of	a	typechecker	without	having	to	write	types	throughout	your	codebase.

https://github.com/google/pytype

benefit	of	a	typechecker	without	having	to	write	types	throughout	your	codebase.

Pytype	is	a	also	little	more	lenient	on	types	changing	in	the	middle	of	their
lifetime.	This	is	a	boon	for	those	who	fully	embrace	Python’s	dynamically	typed
nature.	As	long	as	code	will	work	at	runtime,	pytype	is	happy.	For	instance:

+

				#	Run	in	Python	3.6

				from	typing	import	List

				def	get_pasta_dish_ingredients(ingredients:	List[Ingredient]

)	->	List[str]:

				names	=	ingredients

				#	make	sure	there	is	water	to	boil	the	pasta	in

				if	does_not_contain_water(ingredients)

								names.append("water")

				return	[str(i)	for	i	in	names]

+	In	this	case,	names	will	start	off	as	a	list	of	Ingredients.	If	there	is	no
water	in	the	ingredients,	I	add	the	string	“water”	to	the	list.	At	this	point,	the	list
is	heterogeneous;	it	contains	both	ingredients	and	strings.	If	you	were	to	annotate
names	as	a	List[Ingredient]`,	mypy	would	error	out	in	this	case.	I	would
typically	throw	a	red	flag	here	as	well;	heterogeneous	collections	are	harder	to
reason	about	in	the	absence	of	good	type	annotations.	However,	the	next	line
renders	both	mypy	and	my	objections	moot.	Everything	is	getting	converted	to	a
string	when	returned,	which	fulfills	the	annotation	of	the	expected	return	type.
Pytype	is	intelligent	enough	to	detect	this,	and	consider	this	code	to	have	no
issues.

Pytype’s	leniency	and	approach	to	typechecking	make	it	very	forgiving	for
adopting	into	existing	codebases.	You	don’t	need	any	type	annotations	in	order
to	see	the	value.	This	means	you	get	all	the	benefits	of	typechecker	with	very
minimal	work.	High	value,	but	low	cost?	Yes,	please.

However,	pytype	is	a	double-edged	sword	in	this	case.	Make	sure	you	don’t	use
pytype	as	a	crutch;	you	should	still	be	writing	type	annotations.	It	becomes
incredibly	easy	with	pytype	to	think	that	you	don’t	need	type	annotations	at	all.
However,	you	should	still	write	them	for	two	reasons:

1.	 Type	annotations	provide	a	documentation	benefit,	which	helps	your
code’s	readability

2.	 Pytype	will	be	able	to	make	even	more	intelligent	decisions	if	type
annotations	are	present.

Wrap-up
Type	annotations	are	incredibly	useful,	but	there	is	no	denying	their	cost.	The
larger	the	codebase,	the	higher	the	cost	will	be	for	practically	adopting	type
annotations.	Every	codebase	is	different;	you	need	to	evaluate	the	value	and	cost
of	type	annotations	for	your	specific	scenario.	If	type	annotations	are	too	costly
to	adopt,	consider	three	strategies	to	get	past	that	hurdle:

Find	Pain	Points

If	you	can	eliminate	entire	classes	of	pain	points	through	type	annotations,
such	as	errors,	broken	tests	or	unclear	code,	you	will	save	time	and	money.
You	target	the	areas	that	hurt	the	most,	and	by	lessening	that	pain,	you	are
making	it	easier	for	developers	to	deliver	value	over	time	(which	is	a	sure
sign	of	maintainable	code).

Target	Code	Strategically

If	you	can	eliminate	entire	classes	of	pain	points	through	type	annotations,
such	as	errors,	broken	tests	or	unclear	code,	you	will	save	time	and	money.
You	target	the	areas	that	hurt	the	most,	and	by	lessening	that	pain,	you	are
making	it	easier	for	developers	to	deliver	value	over	time	(which	is	a	sure
sign	of	maintainable	code)

Lean	On	Your	Tooling

Use	mypy	to	help	you	selectively	ignore	files	(and	make	sure	that	you	are
ignoring	fewer	lines	of	code	over	time).	Use	type	annotators	such	as
monkeytype	and	pytype	to	quickly	generate	types	throughout	your	code.
Don’t	discount	pytype	as	a	typechecker	either,	as	it’s	intelligence	can	find
bugs	lurking	in	your	code	with	minimal	setup.

This	wraps	up	Part	1	of	this	book.	It	has	focused	exclusively	on	type	annotations
and	typechecking.	Feel	free	to	mix	and	match	strategies	and	tools.	You	don’t
need	to	type	annotate	absolutely	everything,	as	type	annotations	can	constrain
expressiveness	if	too	strictly	applied.	But	you	should	strive	to	clarify	code	and

expressiveness	if	too	strictly	applied.	But	you	should	strive	to	clarify	code	and
make	it	harder	for	bugs	to	crop	up.	You	will	find	the	balance	over	time,	but	you
need	to	start	thinking	about	types	in	Python	and	how	you	can	express	them	to
other	developers.	Remember,	the	goal	is	a	maintainable	codebase.	People	need
to	understand	your	as	much	of	your	intentions	as	they	can	from	the	code	alone.

In	Part	2,	I’m	going	to	focus	on	creating	your	own	types.	You’ve	seen	a	little	of
this	with	building	your	own	collection	types,	but	you	can	go	so	much	further.
You’ll	learn	about	enumerations,	dataclasses	and	classes,	and	learn	why	you
should	pick	one	over	the	other.	You’ll	learn	how	to	craft	an	API,	subclass	types,
and	model	your	data.	You’ll	continue	to	build	a	vocabularly	that	improves
readability	in	your	codebase.

1 	Working	Effectively	With	Legacy	Code,	Michael	Feathers.	2004

About	the	Author

Patrick	Viafore	has	been	working	in	the	software	industry	for	13+	years,
working	on	mission	critical	software	systems,	including	in	lightning	detection,
telecommunications	and	operating	systems.	His	work	in	static	typed	languages
has	influenced	his	approach	to	dynamic	languages	and	how	we	can	make	them
safer	and	more	robust.	He	also	is	an	organizer	of	the	HSV.py	meetup,	where	he
can	observe	common	Python	obstacles	developers	face,	helping	both	beginners
and	experts	alike.	His	goal	is	to	make	computer	science/software	engineering
topics	more	approachable	to	the	developer	community.

Patrick	currently	works	at	Canonical,	developing	pipelines/tools	to	deploy
Ubuntu	images	to	public	cloud	providers.	He	also	does	software	consulting	and
contracting	through	his	business	Kudzera,	LLC.

1.	 1.	Introduction	to	Robust	Python

a.	 Robustness

i.	 What	Does	“Robust”	Mean?

ii.	 Why	Does	Robustness	Matter?

b.	 What’s	Your	Intent?

i.	 Asynchronous	Communication

c.	 Examples	of	Intent	In	Python

i.	 Collections

ii.	 Iteration

iii.	 Law	of	Least	Surprise

d.	 Wrap-up

2.	 2.	Introduction	to	Python	Types

a.	 What’s	In	a	Type?

i.	 Mechanical	Representation

ii.	 Semantic	Representation

b.	 Typing	Systems

i.	 Strong	vs.	Weak

ii.	 Dynamic	vs.	Static

iii.	 Duck	Typing

c.	 Wrap-up

3.	 3.	Type	Annotations

a.	 Type	Annotations

b.	 Benefits

i.	 Autocomplete

ii.	 Typecheckers

iii.	 Exercise:	Spot	the	Bug

c.	 When	To	Use

d.	 Wrap-up

4.	 4.	Constraining	Types

a.	 Optional	Type

b.	 Union	Types

i.	 Product	and	Sum	Types

c.	 Literal	Types

d.	 Annotated	Types

e.	 NewType

f.	 Final	Types

g.	 Wrap-up

5.	 5.	Collection	Types

a.	 Annotating	Collections

b.	 Homogeneous	vs.	Heterogeneous	Collections

c.	 TypedDict

d.	 Creating	New	Collections

i.	 Generics

ii.	 Modifying	Existing	Types

iii.	 As	Easy	as	ABC

e.	 Wrap-up

6.	 6.	Customizing	Your	Typechecker

a.	 Configuring	Your	Typechecker

i.	 Configuring	Mypy

ii.	 Mypy	Reporting

iii.	 Speeding	up	Mypy

b.	 Alternative	Typecheckers

i.	 Pyre

ii.	 Pyright

c.	 Wrap-up

7.	 7.	Adopting	Typechecking	Practically

a.	 Trade-offs

b.	 Breaking	Even	Earlier

i.	 Finding	Your	Pain	Points

ii.	 Target	Code	Strategically

iii.	 Lean	On	Your	Tooling

c.	 Wrap-up

	1. Introduction to Robust Python
	Robustness
	What Does “Robust” Mean?
	Why Does Robustness Matter?

	What’s Your Intent?
	Asynchronous Communication

	Examples of Intent In Python
	Collections
	Iteration
	Law of Least Surprise

	Wrap-up

	2. Introduction to Python Types
	What’s In a Type?
	Mechanical Representation
	Semantic Representation

	Typing Systems
	Strong vs. Weak
	Dynamic vs. Static
	Duck Typing

	Wrap-up

	3. Type Annotations
	Type Annotations
	Benefits
	Autocomplete
	Typecheckers
	Exercise: Spot the Bug

	When To Use
	Wrap-up

	4. Constraining Types
	Optional Type
	Union Types
	Product and Sum Types

	Literal Types
	Annotated Types
	NewType
	Final Types
	Wrap-up

	5. Collection Types
	Annotating Collections
	Homogeneous vs. Heterogeneous Collections
	TypedDict
	Creating New Collections
	Generics
	Modifying Existing Types
	As Easy as ABC

	Wrap-up

	6. Customizing Your Typechecker
	Configuring Your Typechecker
	Configuring Mypy
	Mypy Reporting
	Speeding up Mypy

	Alternative Typecheckers
	Pyre
	Pyright

	Wrap-up

	7. Adopting Typechecking Practically
	Trade-offs
	Breaking Even Earlier
	Finding Your Pain Points
	Target Code Strategically
	Lean On Your Tooling

	Wrap-up

