

SOFT COMPUTING AND MACHINE
LEARNING WITH PYTHON

SOFT COMPUTING AND MACHINE
LEARNING WITH PYTHON

Edited by:

Zoran Gacovski

www.arclerpress.com

ARCLER
P r e s s

Soft Computing and Machine Learning with Python
Zoran Gacovski

Arcler Press
2010 Winston Park Drive,
2nd Floor
Oakville, ON L6H 5R7
Canada
www.arclerpress.com
Tel: 001-289-291-7705
 001-905-616-2116
Fax: 001-289-291-7601
Email: orders@arclereducation.com

e-book Edition 2019

ISBN: 978-1-77361-623-0 (e-book)

This book contains information obtained from highly regarded resources. Reprinted material
sources are indicated. Copyright for individual articles remains with the authors as indicated and
published under Creative Commons License. A Wide variety of references are listed. Reasonable
efforts have been made to publish reliable data and views articulated in the chapters are those
of the individual contributors, and not necessarily those of the editors or publishers. Editors or
publishers are not responsible for the accuracy of the information in the published chapters or
consequences of their use. The publisher assumes no responsibility for any damage or griev-
ance to the persons or property arising out of the use of any materials, instructions, methods or
thoughts in the book. The editors and the publisher have attempted to trace the copyright holders
of all material reproduced in this publication and apologize to copyright holders if permission has
not been obtained. If any copyright holder has not been acknowledged, please write to us so we
may rectify.

Notice: Registered trademark of products or corporate names are used only for explanation and
identification without intent of infringement.

Arcler Press publishes wide variety of books and eBooks. For more information about
Arcler Press and its products, visit our website at www.arclerpress.com

© 2019 Arcler Press

ISBN: 978-1-77361-500-4 (Hardcover)

Some content or chapters in this book are open access copyright free
published research work, which is published under Creative Commons
License and are indicated with the citation. We are thankful to the
publishers and authors of the content and chapters as without them this
book wouldn’t have been possible.

DECLARATION

Dr. Zoran Gacovski has earned his PhD degree at Faculty of Electrical
engineering, Skopje. His research interests include Intelligent systems and
Software engineering, fuzzy systems, graphical models (Petri, Neural and
Bayesian networks), and IT security. He has published over 50 journal and
conference papers, and he has been reviewer of renowned Journals.
In his career he was awarded by Fulbright postdoctoral fellowship (2002)
for research stay at Rutgers University, USA. He has also earned best-paper
award at the Baltic Olympiad for Automation control (2002), US NSF grant
for conducting a specific research in the field of human-computer interaction
at Rutgers University, USA (2003), and DAAD grant for research stay at
University of Bremen, Germany (2008).
Currently, he is a professor in Computer Engineering at European University,
Skopje, Macedonia.

ABOUT THE EDITOR

 List of Contributors ...xv

 List of Abbreviations .. xxi

 Preface..xxiii

SECTION I SOFT COMPUTING THEORY

Chapter 1 Machine Learning Overview ... 3

Machine Learning Overview .. 3

References ... 14

Chapter 2 Types of Machine Learning Algorithms ... 19

Machine Learning: Algorithms Types .. 19

References ... 52

Chapter 3 Data Mining With Skewed Data .. 57

Introduction ... 58

Data Preparation .. 58

Data Skewness ... 61

Derived Characteristics .. 62

Categorisation (Grouping) .. 63

Sampling ... 66

Characteristics Selection .. 67

Objective Functions ... 67

Bottom Line Expected Prediction ... 68

Limited Resource Situation .. 68

Parametric Optimisation .. 69

Robustness of Parameters ... 70

Model Stability .. 73

Final Remarks .. 75

TABLE OF CONTENTS

x

References ... 76

SECTION II MACHINE LEARNING TECHNIQUES AND APPLICATIONS

Chapter 4 Survey of Machine Learning Algorithms For Disease Diagnostic 81

Abstract ... 81

Introduction ... 82

Diagnosis of Diseases by Using Different Machine Learning
Algorithms ... 85

Discussions And Analysis Of Machine Learning Techniques 97

Conclusion .. 98

References ... 100

Chapter 5 Bankruptcy Prediction Using Machine Learning 103

Abstract ... 103

Introduction ... 104

Motivation ... 105

Related Work ... 106

Model Description ... 107

Experimental Result ... 112

Conclusions ... 113

References ... 117

Chapter 6 Prediction of Solar Irradiation Using Quantum Support Vector
Machine Learning Algorithm ... 119

Abstract ... 119

Introduction ... 120

Background Information .. 121

Implementation ... 124

Results And Discussion .. 125

Conclusions ... 126

References ... 129

Chapter 7 Predicting Academic Achievement of High-School Students
Using Machine Learning .. 131

Abstract ... 131

Introduction ... 132

xi

Method .. 138

Results ... 143

Discussion ... 145

Conclusion .. 148

Acknowledgements ... 148

References ... 149

SECTION III PYTHON LANGUAGE DETAILS

Chapter 8 A Python 2.7 Programming Tutorial .. 155

Introduction ... 155

Python’s Numeric Types ... 156

Character String Basics .. 165

Sequence Types ... 181

Dictionaries ... 193

Branching .. 199

How To Write A Self-Executing Python Script ... 209

Using Python Modules ... 217

Input And Output .. 224

Introduction To Object-Oriented Programming 229

Chapter 9 Pattern For Python .. 247

Abstract ... 247

Introduction ... 248

Package Overview ... 249

Example Script ... 250

Case Study ... 251

Documentation .. 251

Source Code .. 251

Acknowledgments ... 252

References ... 253

Chapter 10 Pystruct - Learning Structured Prediction In Python 255

Abstract ... 255

Structured Prediction And Casting It Into Software 256

Usage Example: Semantic Image Segmentation 258

xii

Experiments ... 259

Conclusion .. 260

Acknowledgments ... 260

References ... 261

SECTION IV MACHINE LEARNING WITH PYTHON

Chapter 11 Python Environment For Bayesian Learning: Inferring The Structure
of Bayesian Networks From Knowledge And Data 265

Abstract ... 265

Introduction ... 266

PEBL Features .. 266

PEBL Development .. 269

Related Software .. 269

Conclusion And Future Work ... 269

Acknowledgments ... 269

References ... 270

Chapter 12 Scikit-Learn: Machine Learning In Python ... 271

Abstract ... 272

Introduction ... 272

Project Vision ... 273

Underlying Technologies ... 273

Code Design .. 274

High-Level Yet Efficient: Some Trade Offs ... 275

Conclusion .. 276

References ... 277

Chapter 13 An Efficient Platform For The Automatic Extraction of Patterns
in Native Code .. 279

Abstract ... 279

Introduction ... 280

Motivating Example ... 282

Platform Architecture ... 284

Evaluation .. 296

Related Work ... 306

Conclusions ... 307

xiii

Acknowledgments ... 308

References ... 309

Chapter 14 Polyglot Programming In Applications Used For
Genetic Data Analysis ... 313

Abstract ... 313

Background ... 314

Results ... 315

Discussion ... 324

Conclusion .. 324

Acknowledgments ... 325

References ... 326

Chapter 15 Classifying Multigraph Models Of Secondary RNA Structure Using
Graph-Theoretic Descriptors .. 329

Abstract ... 329

Introduction ... 330

Graph-Theoretic Measures For The Dual Graphs 334

Assessing The Graph-Theoretic Measures as Descriptors of
RNA Topology .. 336

Results ... 338

Conclusion .. 346

References ... 348

 Index ... 351

xv

LIST OF CONTRIBUTORS

Taiwo Oladipupo Ayodele
University of Portsmouth United Kingdom

Manoel Fernando Alonso Gadi
Milton Keynes United Kingdom

Alair Pereira do Lago
Depart. de Ciencia de Computacao, Inst. de Matematica e Estatistica
Universidade de Sao Paulo Brazil

Jorn Mehnen
Decision Engineering Centre, Cranfield University Cranfield, Bedfordshire
MK43 0AL United Kingdom

Meherwar Fatima
Institute of CS & IT, The Women University Multan, Multan, Pakistan

Maruf Pasha
Department of Information Technology, Bahauddin Zakariya University,
Multan, Pakistan

Nanxi Wang
Shanghai Starriver Bilingual School, Shanghai, China

Makhamisa Senekane
Faculty of Computing, Botho University-Maseru Campus, Maseru, Lesotho

Benedict Molibeli Taele
Department of Physics and Electronics, National University of Lesotho, Roma,
Lesotho

Hudson F. Golino
Núcleo de Pós-Graduação, Pesquisa e Extensão, Faculdade Independente do
Nordeste, Vitória da Conquista, Brazil

xvi

Cristiano Mauro Assis Gomes
Department of Psychology, Universidade Federal de Minas Gerais, Belo
Horizonte, Brazil

Diego Andrade
Department of Psychology, Universidade Federal de Minas Gerais, Belo
Horizonte, Brazil

John W. Shipman

Tom De Smedt
CLiPS Computational Linguistics Group University of Antwerp 2000 Antwerp,
Belgium

Walter Daelemans
CLiPS Computational Linguistics Group University of Antwerp 2000 Antwerp,
Belgium

Andreas C. M¨uller
Institute of Computer Science, Department VI University of Bonn Bonn,
Germany

Sven Behnke
Institute of Computer Science, Department VI University of Bonn Bonn,
Germany

Abhik Shah
Department of Chemical Engineering 3320 G.G. Brown Ann Arbor, MI 48103,
USA

Peter Woolf
Department of Chemical Engineering 3320 G.G. Brown Ann Arbor, MI 48103,
USA

Fabian Pedregosa
Parietal, INRIA Saclay Neurospin, Bat 145, CEA Saclay ˆ 91191 Gif sur Yvette
– France

xvii

Gael Varoquaux
Parietal, INRIA Saclay Neurospin, Bat 145, CEA Saclay ˆ 91191 Gif sur Yvette
– France

Alexandre Gramfort
Parietal, INRIA Saclay Neurospin, Bat 145, CEA Saclay ˆ 91191 Gif sur Yvette
– France

Vincent Michel
Parietal, INRIA Saclay Neurospin, Bat 145, CEA Saclay ˆ 91191 Gif sur Yvette
– France

Bertrand Thirion
Parietal, INRIA Saclay Neurospin, Bat 145, CEA Saclay ˆ 91191 Gif sur Yvette
– France

Olivier Grisel
Nuxeo 20 rue Soleillet 75 020 Paris – France

Mathieu Blondel
Kobe University 1-1 Rokkodai, Nada Kobe 657-8501 – Japan

Peter Prettenhofer
Bauhaus-Universitat Weimar ¨ Bauhausstr. 11 99421 Weimar – Germany

Ron Weiss
Google Inc 76 Ninth Avenue New York, NY 10011 – USA

Vincent Dubourg
Clermont Universite, IFMA, EA 3867, LaMI ´ BP 10448, 63000 Clermont-
Ferrand – France

Jake Vanderplas
Astronomy Department University of Washington, Box 351580 Seattle, WA
98195 – USA

Alexandre Passos
IESL Lab UMass Amherst Amherst MA 01002 – USA

xviii

David Cournapeau
Enthought 21 J.J. Thompson Avenue Cambridge, CB3 0FA – UK

Matthieu Brucher
Total SA, CSTJF avenue Larribau 64000 Pau – France

Matthieu Perrot
LNAO Neurospin, Bat 145, CEA Saclay ˆ 91191 Gif sur Yvette – France

Edouard Duchesnay
LNAO Neurospin, Bat 145, CEA Saclay ˆ 91191 Gif sur Yvette – France

Javier Escalada
Computer Science Department, University of Oviedo, Calvo Sotelo s/n, 33007
Oviedo, Spain

Francisco Ortin
Computer Science Department, University of Oviedo, Calvo Sotelo s/n, 33007
Oviedo, Spain

Ted Scully
Cork Institute of Technology, Computer Science Department, Rossa Avenue,
Bishopstown, Cork, Ireland

Robert M. Nowak
Institute of Electronic Systems, Warsaw University of Technology, Nowowiejska
15/19, 00-665 Warsaw, Poland

Debra Knisley
Institute for Quantitative Biology, East Tennessee State University, Johnson
City, TN 37614-0663, USA
Department of Mathematics and Statistics, East Tennessee State University,
Johnson City, TN 37614-0663, USA

Jeff Knisley
Institute for Quantitative Biology, East Tennessee State University, Johnson
City, TN 37614-0663, USA
Department of Mathematics and Statistics, East Tennessee State University,
Johnson City, TN 37614-0663, USA

xix

Chelsea Ross
Department of Mathematics and Statistics, East Tennessee State University,
Johnson City, TN 37614-0663, USA

Alissa Rockney
Department of Mathematics and Statistics, East Tennessee State University,
Johnson City, TN 37614-0663, USA

LIST OF ABBREVIATIONS

 AST Abstract Syntax Tree
 AIS Artificial Immune Systems
 ANN Artificial Neural Network
 BN Bayesian Networks
 CLES Common language effect size
 CAD Computer Aided Diagnosis
 CRF Conditional Random Fields
 DT Decision Trees
 DTG Digital Technology Group
 DBN Dynamic Bayesian Networks
 ERDF European Regional Development Funds
 FEP Function entry points
 GA Genetic Algorithm
 GIL Global Interpreter Lock
 GUI Graphical user interface
 GPU Graphics processing unit
 ILP Inductive logic procedures
 TDRI Inductive Reasoning Developmental Test
 JSON JavaScript Object Notation
 KS Kolmogorov Smirnov
 MIS Management Information Systems
 MAE Mean absolute error
 MSE Mean squared error
 TCM Metacognitive Control Test
 MFNN Multilayer feed-forward neural network
 MLP Multilayer Perceptrons

xxii

 NLP Natural language processing
 NN Neural Networks
 OOT Out-Of-Time sample
 PEBL Python Environment for Bayesian Learning
 QIP Quantum Information Processing
 QML Quantum machine learning
 ROC Receiver Operating Characteristic
 RMSE Root mean squared error
 SVC Support vector classify
 SVM Support Vector Machine

A definition states that the machine learning is a discipline that allows the
computers to learn without explicit programming. The challenge in machine
learning is how to accurately (algorithmic) describe some kinds of tasks that
people can easily solve (for example face recognition, speech recognition etc.).
Such algorithms can be defined for certain types of tasks, but they are very
complex and / or require large knowledge base (e.g. machine translation-MT).
In many of the areas - data are continuously collected in order to get “some
knowledge out of them”; for example - in medicine (patient data and therapy),
in marketing (the users / customers and what they buy, what are they interested
in, how products are rated etc.).
Data analysis of this scale requires approaches that will allow you to discover
patterns and dependences among the data, that are neither known, nor obvious,
but can be useful (data mining).

• Information retrieval - IR, is finding existing information as quickly as
possible. For example, web browser - finds page within the (large) set of
the entire WWW.

• Machine Learning - ML, is a set of techniques that generalize existing
knowledge of the new information, as precisely as possible. An example
is the speech recognition.

• Data mining - DM, primarily relates to the disclosure of something hidden
within the data, some new dependence, which have not previously been
known. Example is CRM - the customer analysis.

Python is high-level programming language that is very suitable for web
development, programming of games, and data manipulation / machine learning
applications. It is object-oriented language and interpreter as well, allowing the
source code to execute directly (without compiling).
This edition covers machine learning theory and applications with Python,
and includes chapters for soft computing theory, machine learning techniques/
applications, Python language details, and machine learning examples with
Python.

PREFACE

xxiv

Section 1 focuses on soft computing theory, describing machine learning
overview, types of machine learning algorithms, and data mining with skewed
data.
Section 2 focuses on machine learning techniques and applications, describing
machine learning algorithms for disease diagnostic, bankruptcy prediction
using machine learning, prediction of solar irradiation using quantum support
vector machine and predicting academic achievement of high-school students.
Section 3 focuses on Python language details, describing Python 2.7 programming
tutorial, pattern for Python, Pystruct - learning structured prediction in Python.
Section 4 focuses on machine learning with Python use cases, describing
Python environment for Bayesian learning: inferring the structure of Bayesian
Networks from knowledge and data, Scikit-learn: Machine Learning in
Python, Efficient Platform for the Automatic Extraction of Patterns in native
code, polyglot programming in applications used for genetic data analysis,
and classifying multigraph models of secondary RNA structure using graph-
theoretic descriptors.

SECTION I
SOFT COMPUTING

THEORY

MACHINE LEARNING
OVERVIEW

CHAPTER

1

Taiwo Oladipupo Ayodele

University of Portsmouth United Kingdom

MACHINE LEARNING OVERVIEW
Machine Learning according to Michie et al (D. Michie, 1994) is generally
taken to encompass automatic computing procedures based on logical or
binary operations that learn a task from a series of examples. Here we are
just concerned with classification, and it is arguable what should come
under the Machine Learning umbrella. Attention has focussed on decision-
tree approaches, in which classification results from a sequence of logical
steps. These are capable of representing the most complex problem given
sufficient data (but this may mean an enormous amount!). Other techniques,
such as genetic algorithms and inductive logic procedures (ILP), are
currently under active development and in principle would allow us to
deal with more general types of data, including cases where the number
and type of attributes may vary, and where additional layers of learning are

Citation: Taiwo Oladipupo Ayodele (February 1st 2010). “Machine Learning Over-
view”, New Advances in Machine Learning Yagang Zhang, IntechOpen, DOI:
10.5772/9374.
Copyright: © 2010 by authors and Intech. This paper is an open access article distrib-
uted under a Creative Commons Attribution 3.0 License

Soft Computing and Machine Learning with Python4

superimposed, with hierarchical structure of attributes and classes and so on.
Machine Learning aims to generate classifying expressions simple enough
to be understood easily by the human. They must mimic human reasoning
sufficiently to provide insight into the decision process. Like statistical
approaches, background knowledge may be exploited in development, but
operation is assumed without human intervention.

To learn is:
• to gain knowledge, comprehension, or mastery of through

experience or study or to gain knowledge (of something) or
acquire skill in (some art or practice)

• to acquire experience of or an ability or a skill in
• to memorize (something), to gain by experience, example, or

practice.
Machine Learning can be defines as a process of building computer

systems that automatically improve with experience, and implement a
learning process. Machine Learning can still be defined as learning the
theory automatically from the data, through a process of inference, model
fitting, or learning from examples:

• Automated extraction of useful information from a body of data
by building good probabilistic models.

• Ideally suited for areas with lots of data in the absence of a general
theory.

A major focus of machine learning research is to automatically produce
models and a model is a pattern, plan, representation, or description designed
to show the main working of a system, or concept, such as rules determinate
rule for performing a mathematical operation and obtaining a certain result,
a function from sets of formulae to formulae, and patterns (model which
can be used to generate things or parts of a thing from data.

Learning is a MANY-FACETED PHENOMENON as described by Jaime
et al (Jaime G. Carbonell, 1983) and also stated that Learning processes
include the acquisition of new declarative knowledge, the development of
motor and cognitive skills through instruction or practice, the organization
of new knowledge into general, effective representations, and the discovery
of new facts and theories through observation and experimentation. The
study and computer modelling of learning processes in their multiple
manifestations constitutes the subject matter of machine learning. Although
machine learning has been a central concern in artificial intelligence since

Machine Learning Overview 5

the early days when the idea of “self-organizing systems” was popular, the
limitations inherent in the early neural network approaches led to a temporary
decline in research volume. More recently, new symbolic methods and
knowledge-intensive techniques have yielded promising results and these in
turn have led to the current, revival in machine learning research. This book
examines some basic methodological issues, existing techniques, proposes
a classification of machine learning techniques, and provides a historical
review of the major research directions.

Machine Learning according to Michie et al (D. Michie, 1994) is
generally taken to encompass automatic computing procedures based on
logical or binary operations that learn a task from a series of examples. Here
we are just concerned with classification, and it is arguable what should
come under the Machine Learning umbrella. Attention has focussed on
decision-tree approaches, in which classification results from a sequence of
logical steps. These are capable of representing the most complex problem
given sufficient data (but this may mean an enormous amount!). Other
techniques, such as genetic algorithms and inductive logic procedures (ILP),
are currently under active development and in principle would allow us to
deal with more general types of data, including cases where the number
and type of attributes may vary, and where additional layers of learning are
superimposed, with hierarchical structure of attributes and classes and so on.
Machine Learning aims to generate classifying expressions simple enough
to be understood easily by the human. They must mimic human reasoning
sufficiently to provide insight into the decision process. Like statistical
approaches, background knowledge may be exploited in development, but
operation is assumed without human intervention. Machine learning has
always been an integral part of artificial intelligence according to Jaime
et al (Jaime G. Carbonell, 1983), and its methodology has evolved in
concert, with the major concerns of the field. In response to the difficulties
of encoding ever increasing volumes of knowledge in model AI systems,
many researchers have recently turned their attention to machine learning
as a means to overcome the knowledge acquisition bottleneck. This book
presents a taxonomic analysis of machine learning organized primarily
by learning strategies and secondarily by knowledge representation and
application areas. A historical survey out lining the development of various
approaches to machine learning is presented from early neural networks to
present knowledge-intensive techniques.

Soft Computing and Machine Learning with Python6

The Aim of Machine Learning
The field of machine learning can be organized around three primary
research Areas:

• Task-Oriented Studies: The development and analysis of learning
systems oriented toward solving a predetermined set, of tasks
(also known as the “engineering approach”).

• Cognitive Simulation: The investigation and computer simulation
of human learning processes (also known as the “cognitive
modelling approach”)

• Theoretical Analysis: the theoretical exploration of the space of
possible learning methods and algorithms independent application
domain.

Although many research efforts strive primarily towards one of these
objectives, progress in on objective often lends to progress in another. For
example, in order to investigate the space of possible learning methods, a
reasonable starting point may be to consider the only known example of
robust learning behaviour, namely humans (and perhaps other biological
systems) Similarly, psychological investigations of human learning may
held by theoretical analysis that may suggest various possible learning
models. The need to acquire a particular form of knowledge in stone
task-oriented study may itself spawn new theoretical analysis or pose the
question: “how do humans acquire this specific skill (or knowledge)?” The
existence of these mutually supportive objectives reflects the entire field of
artificial intelligence where expert system research, cognitive simulation,
and theoretical studies provide some (cross-fertilization of problems and
ideas (Jaime G. Carbonell, 1983).

Applied Learning Systems
At, present, instructing a computer or a computer-controlled robot, to
perform a task requires one to define a complete and correct, algorithm for
that task, and then laboriously program the algorithm into a computer. These
activities typically involve a tedious and time-consuming effort by specially
trained personnel. Present-day computer systems cannot truly learn to
perform a task through examples or by analogy to a similar, previous-solved
task. Nor can they improve significantly on the basis of past, mistakes or
acquire new abilities by observing and imitating experts. Machine learning
research strives to open the possibility of instructing computers in such

Machine Learning Overview 7

new ways, and thereby promises to ease the burden of hand-programming
growing volumes of increasingly complex information into the computers of
tomorrow. The rapid expansion of application and availability of computers
today makes this possibility even more attractive and desirable.

Knowledge Acquisition
When approaching a task-oriented knowledge acquisition task, one must be
aware that, the resultant computer system must interact with humans, and
therefore should closely parallel human abilities. The traditional argument that
an engineering approach need not reflect human or biological performance
and is not, truly applicable to machine learning. Since airplane, a successful
result on an almost pure engineering approach, better little resemblance
to their biological counterparts, one may argue that applied knowledge
acquisition systems could be equally divorced from any consideration of
human capabilities. This argument does not apply here because airplanes
need not interact, with or understand birds Learning machines, on the other
hand, will have to interact, with the people who make use of them, and
consequently the concept and skills they acquire- if not necessarily their
internal mechanism and must be understandable to human.

Machine Learning as a Science
The clear contender for a cognitive invariant in human is the learning
mechanism which is the ability facts, skills and more abstractive concepts.
Therefore understanding human learning well enough to reproduce aspect
of that learning behaviour in a computer system is, in itself, a worthy
scientific goal. Moreover, the computer can render substantial assistance
to cognitive psychology, in that it may be used to test the consistency and
completeness of learning theories and enforce a commitment to the fine-
structure processlevel detail that precludes meaningless tautological or
untestable theories (Bishop, 2006).

The study of human learning processes is also of considerable practical
significance. Gaining insights into the principles underlying human learning
abilities is likely to lead to more effective educational techniques. Machine
learning research is all about developing intelligent computer assistant or
a computer tutoring systems and many of these goals are shared within the
machine learning fields. According to Jaime et al (Jaime G. Carbonell, 1983)
who stated computer tutoring are starting to incorporate abilities to infer
models of student competence from observed performance. Inferring the

Soft Computing and Machine Learning with Python8

scope of a student’s knowledge and skills in a particular area allows much
more effective and individualized tutoring of the student (Sleeman, 1983).

The basic scientific objective of machine learning is the exploration
of possible learning mechanisms, including the discovery of different
induction algorithms, the scope of theoretical limitations of certain method
seems to be the information that must be available to the learner, the issue of
coping with imperfect training data and the creation of general techniques
applicable in many task domains. There is not reason to believe that human
learning methods are the only possible mean of acquiring knowledge and
skills. In fact, common sense suggests that human learning represents just
one point in an uncharted space of possible learning methods- a point that
through the evolutionary process is particularly well suited to cope with the
general physical environment in which we exist. Most theoretical work in
machine learning are centred on creation, characterization and analysis of
general learning methods, with the major emphasis on analyzing generality
and performance rather than psychological plausibility.

Whereas theoretical analysis provides a means of exploring the space of
possible learning methods, the task-oriented approach provides a vehicle to
test and improve the performance of functional learning systems and testing
applied learning systems, one can determine the cost-effectiveness trade-offs
and limitations of particular approaches to learning. In this way, individual
data points in the space possible learning systems are explored and the space
itself becomes better understood.
Knowledge Acquisition and Skill Refinement: There are two basic form of
learning:

1) Knowledge Acquisition
2) Skill refinement
When it is said that someone learned mathematics, it means that this

person acquired concepts of mathematics, understood the meaning and
their relationship to each other as well as to the world. The importance of
learning in this case is acquisition of knowledge, including the description
and models of physical systems and their behaviours, incorporating a variety
of representations from simple intrusive mental model models, examples
and images to completely test mathematical equations and physical laws. A
person is said to have learned more if this knowledge explains a broader scope
of situations, is more accurate, and is better able to predict the behaviour
of the typical world (Allix, 2003). This form of learning is typically to a
large variety of situations and is generally learned knowledge acquisition.

Machine Learning Overview 9

Therefore, knowledge acquisition is defined as learning a new task coupled
with the ability to apply the information in the effective manner.

The second form of learning is the gradual improvement of motor and
cognitive skills through practice- Learning by practice. Learning such as:

• Learning to drive a car
• Learning to play keyboard
• Learning to ride a bicycle
• Learning to play piano
If one acquire all textbook knowledge on how to perform these

aforementioned activities, this represent the initial phase in developing
the required skills. So, the major part of the learning process consists of
taming the acquired skill, and improving the mental or motor coordination
or learning coordination by repeated practice and correction of deviations
from desired behaviour. This form of learning often called skill taming.
This differs in many ways from knowledge acquisition. Where knowledge
acquisition may be a conscious process whose result is the creation of new
representative knowledge structures and mental models, and skill taming is
learning from example or learning from repeated practice without concerted
conscious effort. Jamie (Jaime G. Carbonell, 1983) explained that most
human learning appears to be a mixture of both activities, with intellectual
endeavours favouring the former and motor coordination tasks favouring
the latter. Present machine learning research focuses on the knowledge
acquisition aspect, although some investigations, specifically those concerned
with learning in problem-solving and transforming declarative instructions
into effective actions, touch on aspects of both types of learning. Whereas
knowledge acquisition clearly belongs in the realm of artificial intelligence
research, a case could be made that skill refinement comes closer to non-
symbolic processes such as those studied in adaptative control system.
Hence, perhaps both forms of learning- (knowledge based and refinement
learning) can be captured in artificial intelligence models.

Classification of Machine Learning
There are several areas of machine learning that could be exploited to
solve the problems of email management and our approach implemented
unsupervised machine learning method. Uunsupervised learning is a method
of machine learning whereby the algorithm is presented with examples

Soft Computing and Machine Learning with Python10

from the input space only and a model is fit to these observations. For
example, a clustering algorithm would be a form of unsupervised learning.
“Unsupervised learning is a method of machine learning where a model is
fit to observations. It is distinguished from supervised learning by the fact
that there is no a priori output. In unsupervised learning, a data set of input
objects is gathered. Unsupervised learning then typically treats input objects
as a set of random variables. A joint density model is then built for the data
set. The problem of unsupervised learning involved learning patterns in the
input when no specific output values are supplied” according to Russell
(Russell, 2003).

In the unsupervised learning problem, we observe only the features
and have no measurements of the outcome. Our task is rather to describe
how the data are organized or clustered”. Hastie (Trevor Hastie, 2001)
explained that “In unsupervised learning or clustering there is no explicit
teacher, and the system forms clusters or “natural groupings” of the input
patterns. “Natural” is always defined explicitly or implicitly in the clustering
system itself; and given a particular set of patterns or cost function, different
clustering algorithms lead to different clusters. Often the user will set the
hypothesized number of different clusters ahead of time, but how should
this be done? How do we avoid inappropriate representations?” according
to Duda (Richard O. Duda, 2000).

There are various categories in the field of artificial intelligence. The
classifications of machine learning systems are:

• Supervised Machine Learning: Supervised learning is a machine
learning technique for learning a function from training data. The
training data consist of pairs of input objects (typically vectors),
and desired outputs. The output of the function can be a continuous
value (called regression), or can predict a class label of the input
object (called classification). The task of the supervised learner is
to predict the value of the function for any valid input object after
having seen a number of training examples (i.e. pairs of input and
target output). To achieve this, the learner has to generalize from
the presented data to unseen situations in a “reasonable” way (see
inductive bias). (Compare with unsupervised learning.)

Supervised learning is a machine learning technique whereby the
algorithm is first presented with training data which consists of examples
which include both the inputs and the desired outputs; thus enabling it to learn
a function. The learner should then be able to generalize from the presented

Machine Learning Overview 11

data to unseen examples.” by Mitchell (Mitchell, 2006). Supervised learning
also implies we are given a training set of (X, Y) pairs by a “teacher”. We
know (sometimes only approximately) the values of f for the m samples in
the training set, ≡ we assume that if we can find a hypothesis, h, that closely
agrees with f for the members of ≡ then this hypothesis will be a good guess
for f especially if ≡ is large. Curvefitting is a simple example of supervised
learning of a function. Suppose we are given the values of a two-dimensional
function. f, at the four sample points shown by the solid circles in Figure 9.
We want to fit these four points with a function, h, drawn from the set,
H, of second-degree functions. We show there a two-dimensional parabolic
surface above the x1 . x2 , plane that fits the points. This parabolic function,
h, is our hypothesis about the function f, which produced the four samples.
In this case, h = f at the four samples, but we need not have required exact
matches. Read more in section 3.1.

• Unsupervised Machine Learning: Unsupervised learning is a type
of machine learning where manual labels of inputs are not used.
It is distinguished from supervised learning approaches which
learn how to perform a task, such as classification or regression,
using a set of human prepared examples. .Unsupervised learning
means we are only given the Xs and some (ultimate) feedback
function on our performance. We simply have a training set of
vectors without function values of them. The problem in this
case, typically, is to partition the training set into subsets, ≡1 …. ≡
R , in some appropriate way.

Classification of Machine Learning
Classification of machine learning system could be implemented along
many different dimensions and we have chosen these two dimensions:

• Inference Learning: This is a form of classification on the basis of
underlying strategy that is involved. These strategies will depend
on the amount of inference the learning system performs on the
information provided to the system.

Now learning strategies are distinguished by the amount of inference
the learner performs on the information provided. So, if a computer system
performs email classification for example, it knowledge increases but this
may not perform any inference on the new information, this means all
cognitive efforts is on the part of the analyst or programmer. But if the
machine learning classifier independently discovers new theories or adopt

Soft Computing and Machine Learning with Python12

new concepts, this will perform a very substantial inference. This is what is
called deriving knowledge from example or experiments or by observation.
An example is: When a student wants to solve statistical problems in a text
book – this is a process that involves inference but the solution is not to
discover a brand new formula without guidance from a teacher or text book.
So, as the amount of inference that the learner is capable of performing
increases, the burdens placed on the teacher or on external environ decreases.
According to Jaime (Jaime G. Carbonell, 1983) , (Anil Mathur, 1999) who
stated that it is much more difficult to teach a person by explaining each steps
in a complex task than by showing that person the way that similar tasks are
usually done. It more difficult yet to programme a computer to perform a
complex task than to instruct a person to perform the task; as programming
requires explicit specification of all prerequisite details, whereas a person
receiving instruction can use prior knowledge and common sense to fill in
most mundane details.

• Knowledge Representation: This is a form of skill acquire by the
learner on the basis of the type of representation of the knowledge.

Existing Learning Systems
There are many other existing learning systems that employ multiple
strategies and knowledge representations and some have been applied
to more than one. In the knowledge based machine learning method, no
inference is used but the learner display the transformation of knowledge in
varieties of ways:

• Learning by being programmed: When an algorithm or code
is written to perform specific task. E.g. a code is written as a
guessing game for the type of animal. Such a programme could
be modified by external entity.

• Learning by memorisation: This is by memorising given facts or
data with no inference drawn from the incoming information or
data.

• Learning from examples: This is a special case of inductive
learning. Given a set of examples and counterexamples of
a concept, the learner induces a general concept description
that describes all of the positive examples and none of the
counterexamples. Learning from examples is a method has been
heavily investigated in artificial intelligence field. The amount of
inference perform by the learner is much greater than in learning

Machine Learning Overview 13

from instructions, (Anil Mathur, 1999), (Jaime G. Carbonell,
1983).

• Learning from Observation: This is an unsupervised learning
approach and is a very general form of inductive learning
that includes discovery systems, theory formation tasks, the
creation of classification criteria to form taxonomic hierarchies
and similar task to be performed without benefit of an external
teacher. Unsupervised learning requires the learner to perform
more inference than any approach as previously explained. The
learner is not provided with a set if data or instance of a particular
concept. The above classification of learning strategies should
help one to compare various learning systems in terms of their
underlying mechanisms, in terms of the available external source
of information and in terms of the degree to which they reply on
preorganised knowledge. Read more in section 3.2.

Machine Learning Applications
The other aspect for classifying learning systems is the area of application
which gives a new dimension for machine learning. Below are areas to
which various existing learning systems have been applied. They are:

1) Computer Programming
2) Game playing (chess, poker, and so on)
3) Image recognition, Speech recognition
4) Medical diagnosis
5) Agriculture, Physics
6) Email management, Robotics
7) Music
8) Mathematics
9) Natural Language Processing and many more.

Soft Computing and Machine Learning with Python14

REFERENCES
1. Allix, N. M. (2003, April). Epistemology And Knowledge Management

Concepts And Practices. Journal of Knowledge Management Practice .
2. Alpaydin, E. (2004). Introduction to Machine Learning. Massachusetts,

USA: MIT Press.
3. Anderson, J. R. (1995). Learning and Memory. Wiley, New York, USA.
4. Anil Mathur, G. P. (1999). Socialization influences on preparation for

later life. Journal of Marketing Practice: Applied Marketing Science ,
5 (6,7,8), 163 - 176.

5. Ashby, W. R. (1960). Design of a Brain, The Origin of Adaptive
Behaviour. John Wiley and Son.

6. Batista, G. &. (2003). An Analysis of Four Missing Data Treatment
Methods for Suppervised Learning. Applied Artificial Intelligence , 17,
519-533.

7. Bishop, C. M. (1995). Neural Networks for Pattern Recognition.
Oxford, England: Oxford University Press.

8. Bishop, C. M. (2006). Pattern Recognition and Machine Learning
(Information Science and Statistics). New York, New York: Springer
Science and Business Media.

9. Block H, D. (1961). The Perceptron: A Model of Brian Functioning.
34 (1), 123-135.

10. Carling, A. (1992). Introducing Neural Networks . Wilmslow, UK:
Sigma Press.

11. D. Michie, D. J. (1994). Machine Learning, Neural and Statistical
Classification. Prentice Hall Inc.

12. Fausett, L. (19994). Fundamentals of Neural Networks. New York:
Prentice Hall.

13. Forsyth, R. S. (1990). The strange story of the Perceptron. Artificial
Intelligence Review , 4 (2), 147-155.

14. Friedberg, R. M. (1958). A learning machine: Part, 1. IBM Journal ,
2-13.

15. Ghahramani, Z. (2008). Unsupervised learning algorithms are designed
to extract structure from data. 178, pp. 1-8. IOS Press.

16. Gillies, D. (1996). Artificial Intelligence and Scientific Method. OUP
Oxford.

17. Haykin, S. (19994). Neural Networks: A Comprehensive Foundation.

Machine Learning Overview 15

New York: Macmillan Publishing.
18. Hodge, V. A. (2004). A Survey of Outlier Detection Methodologies.

Artificial Intelligence Review, 22 (2), 85-126.
19. Holland, J. (1980). Adaptive Algorithms for Discovering and Using

General Patterns in Growing Knowledge Bases Policy Analysis
and Information Systems. 4 (3). Hunt, E. B. (1966). Experiment in
Induction.

20. Ian H. Witten, E. F. (2005). Data Mining Practical Machine Learning
and Techniques (Second edition ed.). Morgan Kaufmann.

21. Jaime G. Carbonell, R. S. (1983). Machine Learning: A Historical
and Methodological Analysis. Association for the Advancement of
Artificial Intelligence , 4 (3), 1-10.

22. Kohonen, T. (1997). Self-Organizating Maps.
23. Luis Gonz, l. A. (2005). Unified dual for bi-class SVM approaches.

Pattern Recognition , 38 (10), 1772-1774.
24. McCulloch, W. S. (1943). A logical calculus of the ideas immanent in

nervous activity. Bull. Math. Biophysics , 115-133.
25. Mitchell, T. M. (2006). The Discipline of Machine Learning. Machine

Learning Department technical report CMU-ML-06-108, Carnegie
Mellon University.

26. Mooney, R. J. (2000). Learning Language in Logic. In L. N. Science,
Learning for Semantic Interpretation: Scaling Up without Dumbing
Down (pp. 219-234). Springer Berlin / Heidelberg.

27. Mostow, D. (1983). Transforming declarative advice into effective
procedures: a heuristic search cxamplc In I?. S. Michalski,. Tioga Press.

28. Nilsson, N. J. (1982). Principles of Artificial Intelligence (Symbolic
Computation / Artificial Intelligence). Springer.

29. Oltean, M. (2005). Evolving Evolutionary Algorithms Using Linear
Genetic Programming. 13 (3), 387 - 410 .

30. Orlitsky, A., Santhanam, N., Viswanathan, K., & Zhang, J. (2005).
Convergence of profile based estimators. Proceedings of International
Symposium on Information Theory. Proceedings. International
Symposium on, pp. 1843 - 1847. Adelaide, Australia: IEEE.

31. Patterson, D. (19996). Artificial Neural Networks. Singapore: Prentice
Hall. R. S. Michalski, T. J. (1983). Learning from Observation:
Conceptual Clustering. TIOGA Publishing Co.

Soft Computing and Machine Learning with Python16

32. Rajesh P. N. Rao, B. A. (2002). Probabilistic Models of the Brain. MIT
Press.

33. Rashevsky, N. (1948). Mathematical Biophysics:Physico-Mathematical
Foundations of Biology. Chicago: Univ. of Chicago Press.

34. Richard O. Duda, P. E. (2000). Pattern Classification (2nd Edition ed.).
35. Richard S. Sutton, A. G. (1998). Reinforcement Learning. MIT Press.
36. Ripley, B. (1996). Pattern Recognition and Neural Networks.

Cambridge University Press.
37. Rosenblatt, F. (1958). The perceptron: a probabilistic model for

information storage and organization in the brain . Psychological
Review , 65 (6), 386-408.

38. Russell, S. J. (2003). Artificial Intelligence: A Modern Approach (2nd
Edition ed.). Upper Saddle River, NJ, NJ, USA: Prentice Hall.

39. Ryszard S. Michalski, J. G. (1955). Machine Learning: An Artificial
Intelligence Approach (Volume I). Morgan Kaufmann .

40. Ryszard S. Michalski, J. G. (1955). Machine Learning: An Artificial
Intelligence Approach.

41. Selfridge, O. G. (1959). Pandemonium: a paradigm for learning. In
The mechanisation of thought processes. H.M.S.O., London. London.

42. Sleeman, D. H. (1983). Inferring Student Models for Intelligent CAI.
Machine Learning. Tioga Press.

43. Tapas Kanungo, D. M. (2002). A local search approximation algorithm
for k-means clustering. Proceedings of the eighteenth annual
symposium on Computational geometry (pp. 10-18). Barcelona, Spain
: ACM Press.

44. Timothy Jason Shepard, P. J. (1998). Decision Fusion Using a Multi-
Linear Classifier . In Proceedings of the International Conference on
Multisource-Multisensor Information Fusion.

45. Tom, M. (1997). Machibe Learning. Machine Learning, Tom Mitchell,
McGraw Hill, 1997: McGraw Hill.

46. Trevor Hastie, R. T. (2001). The Elements of Statistical Learning. New
york, NY, USA: Springer Science and Business Media.

47. Widrow, B. W. (2007). Adaptive Inverse Control: A Signal Processing
Approach. Wiley-IEEE Press.

Machine Learning Overview 17

48. Y. Chali, S. R. (2009). Complex Question Answering: Unsupervised
Learning Approaches and Experiments. Journal of Artificial Intelligent
Research , 1-47.

49. Yu, L. L. (2004, October). Efficient feature Selection via Analysis of
Relevance and Redundacy. JMLR , 1205-1224.

50. Zhang, S. Z. (2002). Data Preparation for Data Mining. Applied
Artificial Intelligence. 17, 375 - 381.

TYPES OF MACHINE
LEARNING ALGORITHMS

CHAPTER

2

Taiwo Oladipupo Ayodele

University of Portsmouth United Kingdom

MACHINE LEARNING: ALGORITHMS TYPES
Machine learning algorithms are organized into taxonomy, based on the de-
sired outcome of the algorithm. Common algorithm types include:

• Supervised learning --- where the algorithm generates a function
that maps inputs to desired outputs. One standard formulation
of the supervised learning task is the classification problem:
the learner is required to learn (to approximate the behavior of)
a function which maps a vector into one of several classes by
looking at several input-output examples of the function.

• Unsupervised learning --- which models a set of inputs: labeled
examples are not available.

Citation: Taiwo Oladipupo Ayodele (February 1st 2010). “Types of Machine Learning
Algorithms”, New Advances in Machine Learning Yagang Zhang, IntechOpen, DOI:
10.5772/9385.
Copyright: © 2010 by authors and Intech. This paper is an open access article distrib-
uted under a Creative Commons Attribution 3.0 License

Soft Computing and Machine Learning with Python20

• Semi-supervised learning --- which combines both labeled
and unlabeled examples to generate an appropriate function or
classifier.

• Reinforcement learning --- where the algorithm learns a policy of
how to act given an observation of the world. Every action has
some impact in the environment, and the environment provides
feedback that guides the learning algorithm.

• Transduction --- similar to supervised learning, but does not
explicitly construct a function: instead, tries to predict new
outputs based on training inputs, training outputs, and new inputs.

• Learning to learn --- where the algorithm learns its own inductive
bias based on previous experience.

The performance and computational analysis of machine learning
algorithms is a branch of statistics known as computational learning theory.

Machine learning is about designing algorithms that allow a computer
to learn. Learning is not necessarily involves consciousness but learning is
a matter of finding statistical regularities or other patterns in the data. Thus,
many machine learning algorithms will barely resemble how human might
approach a learning task. However, learning algorithms can give insight into
the relative difficulty of learning in different environments.

Supervised Learning Approach
Supervised learning is fairly common in classification problems because the
goal is often to get the computer to learn a classification system that we have
created. Digit recognition, once again, is a common example of classification
learning. More generally, classification learning is appropriate for any
problem where deducing a classification is useful and the classification is
easy to determine. In some cases, it might not even be necessary to give
predetermined classifications to every instance of a problem if the agent
can work out the classifications for itself. This would be an example of
unsupervised learning in a classification context.

Supervised learning often leaves the probability for inputs undefined.
This model is not needed as long as the inputs are available, but if some
of the input values are missing, it is not possible to infer anything about
the outputs. Unsupervised learning, all the observations are assumed to be
caused by latent variables, that is, the observations is assumed to be at the
end of the causal chain. Examples of supervised learning and unsupervised
learning are shown in the figure 1 below:

Types of Machine Learning Algorithms 21

Figure 1: Examples of Supervised and Unsupervised Learning.

Supervised learning is the most common technique for training neural
networks and decision trees. Both of these techniques are highly dependent
on the information given by the pre-determined classifications. In the case
of neural networks, the classification is used to determine the error of the
network and then adjust the network to minimize it, and in decision trees,
the classifications are used to determine what attributes provide the most
information that can be used to solve the classification puzzle. We’ll look at
both of these in more detail, but for now, it should be sufficient to know that
both of these examples thrive on having some “supervision” in the form of
pre-determined classifications.

Inductive machine learning is the process of learning a set of rules
from instances (examples in a training set), or more generally speaking,
creating a classifier that can be used to generalize from new instances. The
process of applying supervised ML to a realworld problem is described
in Figure F. The first step is collecting the dataset. If a requisite expert is
available, then s/he could suggest which fields (attributes, features) are
the most informative. If not, then the simplest method is that of “brute-
force,” which means measuring everything available in the hope that the
right (informative, relevant) features can be isolated. However, a dataset
collected by the “brute-force” method is not directly suitable for induction.
It contains in most cases noise and missing feature values, and therefore
requires significant pre-processing according to Zhang et al (Zhang, 2002).

The second step is the data preparation and data pre-processing.
Depending on the circumstances, researchers have a number of methods
to choose from to handle missing data (Batista, 2003). Hodge et al (Hodge,
2004) , have recently introduced a survey of contemporary techniques for
outlier (noise) detection. These researchers have identified the techniques’

Soft Computing and Machine Learning with Python22

advantages and disadvantages. Instance selection is not only used to handle
noise but to cope with the infeasibility of learning from very large datasets.
Instance selection in these datasets is an optimization problem that attempts
to maintain the mining quality while minimizing the sample size. It reduces
data and enables a data mining algorithm to function and work effectively
with very large datasets. There is a variety of procedures for sampling
instances from a large dataset. See figure 2 below.

Feature subset selection is the process of identifying and removing as
many irrelevant and redundant features as possible (Yu, 2004) . This reduces
the dimensionality of the data and enables data mining algorithms to operate
faster and more effectively. The fact that many features depend on one
another often unduly influences the accuracy of supervised ML classification
models. This problem can be addressed by constructing new features
from the basic feature set. This technique is called feature construction/
transformation. These newly generated features may lead to the creation
of more concise and accurate classifiers. In addition, the discovery of
meaningful features contributes to better comprehensibility of the produced
classifier, and a better understanding of the learned concept.Speech
recognition using hidden Markov models and Bayesian networks relies on
some elements of supervision as well in order to adjust parameters to, as
usual, minimize the error on the given inputs.Notice something important
here: in the classification problem, the goal of the learning algorithm is
to minimize the error with respect to the given inputs. These inputs, often
called the “training set”, are the examples from which the agent tries to
learn. But learning the training set well is not necessarily the best thing to
do. For instance, if I tried to teach you exclusive-or, but only showed you
combinations consisting of one true and one false, but never both false or
both true, you might learn the rule that the answer is always true. Similarly,
with machine learning algorithms, a common problem is over-fitting the
data and essentially memorizing the training set rather than learning a more
general classification technique. As you might imagine, not all training sets
have the inputs classified correctly. This can lead to problems if the algorithm
used is powerful enough to memorize even the apparently “special cases”
that don’t fit the more general principles. This, too, can lead to over fitting,
and it is a challenge to find algorithms that are both powerful enough to
learn complex functions and robust enough to produce generalisable results.

Types of Machine Learning Algorithms 23

Figure 2: Machine Learning Supervise Process.

Unsupervised Learning
Unsupervised learning seems much harder: the goal is to have the computer
learn how to do something that we don’t tell it how to do! There are actually
two approaches to unsupervised learning. The first approach is to teach
the agent not by giving explicit categorizations, but by using some sort
of reward system to indicate success. Note that this type of training will
generally fit into the decision problem framework because the goal is not
to produce a classification but to make decisions that maximize rewards.
This approach nicely generalizes to the real world, where agents might be
rewarded for doing certain actions and punished for doing others. Often,
a form of reinforcement learning can be used for unsupervised learning,
where the agent bases its actions on the previous rewards and punishments
without necessarily even learning any information about the exact ways that
its actions affect the world. In a way, all of this information is unnecessary
because by learning a reward function, the agent simply knows what to

Soft Computing and Machine Learning with Python24

do without any processing because it knows the exact reward it expects to
achieve for each action it could take. This can be extremely beneficial in
cases where calculating every possibility is very time consuming (even if
all of the transition probabilities between world states were known). On
the other hand, it can be very time consuming to learn by, essentially, trial
and error. But this kind of learning can be powerful because it assumes no
pre-discovered classification of examples. In some cases, for example, our
classifications may not be the best possible. One striking exmaple is that the
conventional wisdom about the game of backgammon was turned on its head
when a series of computer programs (neuro-gammon and TD-gammon) that
learned through unsupervised learning became stronger than the best human
chess players merely by playing themselves over and over. These programs
discovered some principles that surprised the backgammon experts and
performed better than backgammon programs trained on pre-classified
examples. A second type of unsupervised learning is called clustering. In this
type of learning, the goal is not to maximize a utility function, but simply to
find similarities in the training data. The assumption is often that the clusters
discovered will match reasonably well with an intuitive classification. For
instance, clustering individuals based on demographics might result in a
clustering of the wealthy in one group and the poor in another. Although
the algorithm won’t have names to assign to these clusters, it can produce
them and then use those clusters to assign new examples into one or the
other of the clusters. This is a data-driven approach that can work well when
there is sufficient data; for instance, social information filtering algorithms,
such as those that Amazon.com use to recommend books, are based on
the principle of finding similar groups of people and then assigning new
users to groups. In some cases, such as with social information filtering,
the information about other members of a cluster (such as what books they
read) can be sufficient for the algorithm to produce meaningful results. In
other cases, it may be the case that the clusters are merely a useful tool for a
human analyst. Unfortunately, even unsupervised learning suffers from the
problem of overfitting the training data. There’s no silver bullet to avoiding
the problem because any algorithm that can learn from its inputs needs to be
quite powerful.

Unsupervised learning algorithms according to Ghahramani
(Ghahramani, 2008) are designed to extract structure from data samples.
The quality of a structure is measured by a cost function which is usually
minimized to infer optimal parameters characterizing the hidden structure
in the data. Reliable and robust inference requires a guarantee that extracted

Types of Machine Learning Algorithms 25

structures are typical for the data source, i.e., similar structures have to
be extracted from a second sample set of the same data source. Lack of
robustness is known as over fitting from the statistics and the machine
learning literature. In this talk I characterize the over fitting phenomenon
for a class of histogram clustering models which play a prominent role in
information retrieval, linguistic and computer vision applications. Learning
algorithms with robustness to sample fluctuations are derived from large
deviation results and the maximum entropy principle for the learning process.

Unsupervised learning has produced many successes, such as world-
champion calibre backgammon programs and even machines capable of
driving cars! It can be a powerful technique when there is an easy way to
assign values to actions. Clustering can be useful when there is enough data
to form clusters (though this turns out to be difficult at times) and especially
when additional data about members of a cluster can be used to produce
further results due to dependencies in the data. Classification learning is
powerful when the classifications are known to be correct (for instance,
when dealing with diseases, it’s generally straight-forward to determine the
design after the fact by an autopsy), or when the classifications are simply
arbitrary things that we would like the computer to be able to recognize for
us. Classification learning is often necessary when the decisions made by the
algorithm will be required as input somewhere else. Otherwise, it wouldn’t
be easy for whoever requires that input to figure out what it means. Both
techniques can be valuable and which one you choose should depend on
the circumstances--what kind of problem is being solved, how much time
is allotted to solving it (supervised learning or clustering is often faster than
reinforcement learning techniques), and whether supervised learning is even
possible.

Algorithm Types
In the area of supervised learning which deals much with classification.
These are the algorithms types:

• Linear Classifiers
– Logical Regression
– Naïve Bayes Classifier
– Perceptron

Soft Computing and Machine Learning with Python26

– Support Vector Machine
• Quadratic Classifiers
• K-Means Clustering
• Boosting
• Decision Tree

– Random Forest
• Neural networks
• Bayesian Networks
Linear Classifiers: In machine learning, the goal of classification is

to group items that have similar feature values, into groups. Timothy et al
(Timothy Jason Shepard, 1998) stated that a linear classifier achieves this by
making a classification decision based on the value of the linear combination
of the features. If the input feature vector to the classifier is a real vector x

, then the output score is

() ,j j
j

y f w x f w x

= ⋅ =

∑

where w
 is a real vector of weights and f is a function that converts the dot

product of the two vectors into the desired output. The weight vector w
 is

learned from a set of labelled training samples. Often f is a simple function
that maps all values above a certain threshold to the first class and all other
values to the second class. A more complex f might give the probability that
an item belongs to a certain class.

For a two-class classification problem, one can visualize the operation
of a linear classifier as splitting a high-dimensional input space with a
hyperplane: all points on one side of the hyper plane are classified as “yes”,
while the others are classified as “no”. A linear classifier is often used in
situations where the speed of classification is an issue, since it is often the
fastest classifier, especially when x

 is sparse. However, decision trees can
be faster. Also, linear classifiers often work very well when the number of
dimensions in x

 is large, as in document classification, where each element in
x
 is typically the number of counts of a word in a document (see document-

term matrix). In such cases, the classifier should be wellregularized.
• Support Vector Machine: A Support Vector Machine as stated

by Luis et al (Luis Gonz, 2005) (SVM) performs classification
by constructing an Ndimensional hyper plane that optimally

Types of Machine Learning Algorithms 27

separates the data into two categories. SVM models are closely
related to neural networks. In fact, a SVM model using a sigmoid
kernel function is equivalent to a twolayer, perceptron neural
network.

Support Vector Machine (SVM) models are a close cousin to classical
multilayer perceptron neural networks. Using a kernel function, SVM’s are
an alternative training method for polynomial, radial basis function and
multi-layer perceptron classifiers in which the weights of the network are
found by solving a quadratic programming problem with linear constraints,
rather than by solving a non-convex, unconstrained minimization problem
as in standard neural network training.

In the parlance of SVM literature, a predictor variable is called an
attribute, and a transformed attribute that is used to define the hyper plane
is called a feature. The task of choosing the most suitable representation is
known as feature selection. A set of features that describes one case (i.e., a
row of predictor values) is called a vector. So the goal of SVM modelling
is to find the optimal hyper plane that separates clusters of vector in such a
way that cases with one category of the target variable are on one side of the
plane and cases with the other category are on the other size of the plane.
The vectors near the hyper plane are the support vectors. The figure below
presents an overview of the SVM process.

A Two-Dimensional Example
Before considering N-dimensional hyper planes, let’s look at a simple
2-dimensional example. Assume we wish to perform a classification, and
our data has a categorical target variable with two categories. Also assume

Soft Computing and Machine Learning with Python28

that there are two predictor variables with continuous values. If we plot
the data points using the value of one predictor on the X axis and the other
on the Y axis we might end up with an image such as shown below. One
category of the target variable is represented by rectangles while the other
category is represented by ovals.

In this idealized example, the cases with one category are in the lower
left corner and the cases with the other category are in the upper right
corner; the cases are completely separated. The SVM analysis attempts to
find a 1-dimensional hyper plane (i.e. a line) that separates the cases based
on their target categories. There are an infinite number of possible lines; two
candidate lines are shown above. The question is which line is better, and
how do we define the optimal line.

The dashed lines drawn parallel to the separating line mark the distance
between the dividing line and the closest vectors to the line. The distance
between the dashed lines is called the margin. The vectors (points) that
constrain the width of the margin are the support vectors. The following
figure illustrates this.

Types of Machine Learning Algorithms 29

An SVM analysis (Luis Gonz, 2005) finds the line (or, in general, hyper
plane) that is oriented so that the margin between the support vectors is
maximized. In the figure above, the line in the right panel is superior to the
line in the left panel.

If all analyses consisted of two-category target variables with two
predictor variables, and the cluster of points could be divided by a straight
line, life would be easy. Unfortunately, this is not generally the case, so
SVM must deal with (a) more than two predictor variables, (b) separating
the points with non-linear curves, (c) handling the cases where clusters
cannot be completely separated, and (d) handling classifications with more
than two categories.

In this chapter, we shall explain three main machine learning techniques
with their examples and how they perform in reality. These are:

• K-Means Clustering
• Neural Network
• Self Organised Map

K-Means Clustering
The basic step of k-means clustering is uncomplicated. In the beginning we
determine number of cluster K and we assume the centre of these clusters.
We can take any random objects as the initial centre or the first K objects in
sequence can also serve as the initial centre. Then the K means algorithm
will do the three steps below until convergence.

Iterate until stable (= no object move group):
1. Determine the centre coordinate
2. Determine the distance of each object to the centre
3. Group the object based on minimum distance

The Figure 3 shows a K- means flow diagram

Soft Computing and Machine Learning with Python30

Figure 3: K-means iteration.

K-means (Bishop C. M., 1995) and (Tapas Kanungo, 2002) is one of
the simplest unsupervised learning algorithms that solve the well known
clustering problem. The procedure follows a simple and easy way to classify
a given data set through a certain number of clusters (assume k clusters)
fixed a priori. The main idea is to define k centroids, one for each cluster.
These centroids shoud be placed in a cunning way because of different
location causes different result. So, the better choice is to place them as
much as possible far away from each other. The next step is to take each
point belonging to a given data set and associate it to the nearest centroid.
When no point is pending, the first step is completed and an early groupage
is done. At this point we need to re-calculate k new centroids as barycenters
of the clusters resulting from the previous step. After we have these k new
centroids, a new binding has to be done between the same data set points and
the nearest new centroid. A loop has been generated. As a result of this loop
we may notice that the k centroids change their location step by step until
no more changes are done. In other words centroids do not move any more.

Finally, this algorithm aims at minimizing an objective function, in this
case a squared error function. The objective function

2
()

1 1

k n
j

i j
j i

±
− −

= −∑∑

Types of Machine Learning Algorithms 31

where
2()j

i jx c− is a chosen distance measure between a data point ()j
ix and the

cluster centre cj, is an indicator of the distance of the n data points from their
respective cluster centres.

The algorithm in figure 4 is composed of the following steps:

Although it can be proved that the procedure will always terminate, the
k-means algorithm does not necessarily find the most optimal configuration,
corresponding to the global objective function minimum. The algorithm is
also significantly sensitive to the initial randomly selected cluster centres.
The k-means algorithm can be run multiple times to reduce this effect.
K-means is a simple algorithm that has been adapted to many problem
domains. As we are going to see, it is a good candidate for extension to work
with fuzzy feature vectors.

An example
Suppose that we have n sample feature vectors x1, x2, ..., xn all from the same
class, and we know that they fall into k compact clusters, k < n. Let mi be the
mean of the vectors in cluster i. If the clusters are well separated, we can use
a minimum-distance classifier to separate them. That is, we can say that x is
in cluster i if || x - mi || is the minimum of all the k distances. This suggests
the following procedure for finding the k means:

• Make initial guesses for the means m1, m2, ..., mk
• Until there are no changes in any mean

Soft Computing and Machine Learning with Python32

• Use the estimated means to classify the samples into clusters
• For i from 1 to k
• Replace mi with the mean of all of the samples for cluster i
• end_for
• end_until
Here is an example showing how the means m1 and m2 move into the

centers of two clusters.

This is a simple version of the k-means procedure. It can be viewed as
a greedy algorithm for partitioning the n samples into k clusters so as to
minimize the sum of the squared distances to the cluster centers. It does
have some weaknesses:

• The way to initialize the means was not specified. One popular
way to start is to randomly choose k of the samples.

• The results produced depend on the initial values for the means,
and it frequently happens that suboptimal partitions are found.
The standard solution is to try a number of different starting
points.

• It can happen that the set of samples closest to mi is empty, so that
mi cannot be updated. This is an annoyance that must be handled
in an implementation, but that we shall ignore.

• The results depend on the metric used to measure || x - mi ||. A
popular solution is to normalize each variable by its standard

Types of Machine Learning Algorithms 33

deviation, though this is not always desirable.
• The results depend on the value of k.
This last problem is particularly troublesome, since we often have no

way of knowing how many clusters exist. In the example shown above, the
same algorithm applied to the same data produces the following 3-means
clustering. Is it better or worse than the 2-means clustering?

Unfortunately there is no general theoretical solution to find the optimal
number of clusters for any given data set. A simple approach is to compare
the results of multiple runs with different k classes and choose the best one
according to a given criterion

Neural Network
Neural networks (Bishop C. M., 1995) can actually perform a number of
regression and/or classification tasks at once, although commonly each
network performs only one. In the vast majority of cases, therefore, the
network will have a single output variable, although in the case of many-
state classification problems, this may correspond to a number of output
units (the post-processing stage takes care of the mapping from output units
to output variables). If you do define a single network with multiple output
variables, it may suffer from cross-talk (the hidden neurons experience
difficulty learning, as they are attempting to model at least two functions at
once). The best solution is usually to train separate networks for each output,
then to combine them into an ensemble so that they can be run as a unit.
Neural methods are:

Soft Computing and Machine Learning with Python34

• Multilayer Perceptrons: This is perhaps the most popular
network architecture in use today, due originally to Rumelhart
and McClelland (1986) and discussed at length in most neural
network textbooks (e.g., Bishop, 1995). This is the type of network
discussed briefly in previous sections: the units each perform a
biased weighted sum of their inputs and pass this activation level
through a transfer function to produce their output, and the units
are arranged in a layered feed forward topology. The network
thus has a simple interpretation as a form of inputoutput model,
with the weights and thresholds (biases) the free parameters of
the model. Such networks can model functions of almost arbitrary
complexity, with the number of layers, and the number of units in
each layer, determining the function complexity. Important issues
in Multilayer Perceptrons (MLP) design include specification of
the number of hidden layers and the number of units in these
layers (Bishop C. M., 1995), (D. Michie, 1994).

The number of input and output units is defined by the problem (there
may be some uncertainty about precisely which inputs to use, a point to
which we will return later. However, for the moment we will assume that the
input variables are intuitively selected and are all meaningful). The number
of hidden units to use is far from clear. As good a starting point as any is to
use one hidden layer, with the number of units equal to half the sum of the
number of input and output units. Again, we will discuss how to choose a
sensible number later.

• Training Multilayer Perceptrons: Once the number of layers,
and number of units in each layer, has been selected, the
network’s weights and thresholds must be set so as to minimize
the prediction error made by the network. This is the role of the
training algorithms. The historical cases that you have gathered
are used to automatically adjust the weights and thresholds
in order to minimize this error. This process is equivalent to
fitting the model represented by the network to the training data
available. The error of a particular configuration of the network
can be determined by running all the training cases through the
network, comparing the actual output generated with the desired
or target outputs. The differences are combined together by an
error function to give the network error. The most common
error functions are the sum squared error (used for regression
problems), where the individual errors of output units on each

Types of Machine Learning Algorithms 35

case are squared and summed together, and the cross entropy
functions (used for maximum likelihood classification).

In traditional modeling approaches (e.g., linear modeling) it is possible
to algorithmically determine the model configuration that absolutely
minimizes this error. The price paid for the greater (non-linear) modeling
power of neural networks is that although we can adjust a network to lower
its error, we can never be sure that the error could not be lower still.

A helpful concept here is the error surface. Each of the N weights and
thresholds of the network (i.e., the free parameters of the model) is taken
to be a dimension in space. The N+1th dimension is the network error. For
any possible configuration of weights the error can be plotted in the N+1th
dimension, forming an error surface. The objective of network training is to
find the lowest point in this many-dimensional surface.

In a linear model with sum squared error function, this error surface is
a parabola (a quadratic), which means that it is a smooth bowl-shape with a
single minimum. It is therefore “easy” to locate the minimum.

Neural network error surfaces are much more complex, and are
characterized by a number of unhelpful features, such as local minima (which
are lower than the surrounding terrain, but above the global minimum), flat-
spots and plateaus, saddle-points, and long narrow ravines.

It is not possible to analytically determine where the global minimum
of the error surface is, and so neural network training is essentially an
exploration of the error surface. From an initially random configuration
of weights and thresholds (i.e., a random point on the error surface), the
training algorithms incrementally seek for the global minimum. Typically,
the gradient (slope) of the error surface is calculated at the current point,
and used to make a downhill move. Eventually, the algorithm stops in a low
point, which may be a local minimum (but hopefully is the global minimum).

• The Back Propagation Algorithm: The best-known example
of a neural network training algorithm is back propagation
(Haykin, 19994), (Patterson, 19996), (Fausett, 19994). Modern
second-order algorithms such as conjugate gradient descent
and Levenberg-Marquardt (see Bishop, 1995; Shepherd, 1997)
(both included in ST Neural Networks) are substantially faster
(e.g., an order of magnitude faster) for many problems, but back
propagation still has advantages in some circumstances, and is the
easiest algorithm to understand. We will introduce this now, and
discuss the more advanced algorithms later. In back propagation,

Soft Computing and Machine Learning with Python36

the gradient vector of the error surface is calculated. This vector
points along the line of steepest descent from the current point,
so we know that if we move along it a “short” distance, we will
decrease the error. A sequence of such moves (slowing as we near
the bottom) will eventually find a minimum of some sort. The
difficult part is to decide how large the steps should be.

Large steps may converge more quickly, but may also overstep the
solution or (if the error surface is very eccentric) go off in the wrong direction.
A classic example of this in neural network training is where the algorithm
progresses very slowly along a steep, narrow, valley, bouncing from one
side across to the other. In contrast, very small steps may go in the correct
direction, but they also require a large number of iterations. In practice, the
step size is proportional to the slope (so that the algorithm settles down in
a minimum) and to a special constant: the learning rate. The correct setting
for the learning rate is application-dependent, and is typically chosen by
experiment; it may also be time-varying, getting smaller as the algorithm
progresses.

The algorithm is also usually modified by inclusion of a momentum
term: this encourages movement in a fixed direction, so that if several steps
are taken in the same direction, the algorithm “picks up speed”, which gives
it the ability to (sometimes) escape local minimum, and also to move rapidly
over flat spots and plateaus.

The algorithm therefore progresses iteratively, through a number of
epochs. On each epoch, the training cases are each submitted in turn to the
network, and target and actual outputs compared and the error calculated.
This error, together with the error surface gradient, is used to adjust the
weights, and then the process repeats. The initial network configuration is
random, and training stops when a given number of epochs elapses, or when
the error reaches an acceptable level, or when the error stops improving (you
can select which of these stopping conditions to use).

• Over-learning and Generalization: One major problem with
the approach outlined above is that it doesn’t actually minimize
the error that we are really interested in - which is the expected
error the network will make when new cases are submitted to
it. In other words, the most desirable property of a network is
its ability to generalize to new cases. In reality, the network is
trained to minimize the error on the training set, and short of
having a perfect and infinitely large training set, this is not the

Types of Machine Learning Algorithms 37

same thing as minimizing the error on the real error surface - the
error surface of the underlying and unknown model (Bishop C.
M., 1995).

The most important manifestation of this distinction is the problem of
over-learning, or over-fitting. It is easiest to demonstrate this concept using
polynomial curve fitting rather than neural networks, but the concept is
precisely the same.

A polynomial is an equation with terms containing only constants and
powers of the variables. For example:

Different polynomials have different shapes, with larger powers (and
therefore larger numbers of terms) having steadily more eccentric shapes.
Given a set of data, we may want to fit a polynomial curve (i.e., a model)
to explain the data. The data is probably noisy, so we don’t necessarily
expect the best model to pass exactly through all the points. A low-order
polynomial may not be sufficiently flexible to fit close to the points, whereas
a high-order polynomial is actually too flexible, fitting the data exactly by
adopting a highly eccentric shape that is actually unrelated to the underlying
function. See figure 4 below.

Figure 4: High-order polynomial sample.

Neural networks have precisely the same problem. A network with
more weights models a more complex function, and is therefore prone to
over-fitting. A network with less weight may not be sufficiently powerful
to model the underlying function. For example, a network with no hidden
layers actually models a simple linear function. How then can we select
the right complexity of network? A larger network will almost invariably
achieve a lower error eventually, but this may indicate over-fitting rather
than good modeling.

Soft Computing and Machine Learning with Python38

The answer is to check progress against an independent data set, the
selection set. Some of the cases are reserved, and not actually used for
training in the back propagation algorithm. Instead, they are used to keep an
independent check on the progress of the algorithm. It is invariably the case
that the initial performance of the network on training and selection sets is
the same (if it is not at least approximately the same, the division of cases
between the two sets is probably biased). As training progresses, the training
error naturally drops, and providing training is minimizing the true error
function, the selection error drops too. However, if the selection error stops
dropping, or indeed starts to rise, this indicates that the network is starting to
overfit the data, and training should cease. When over-fitting occurs during
the training process like this, it is called over-learning. In this case, it is
usually advisable to decrease the number of hidden units and/or hidden
layers, as the network is over-powerful for the problem at hand. In contrast,
if the network is not sufficiently powerful to model the underlying function,
over-learning is not likely to occur, and neither training nor selection errors
will drop to a satisfactory level.

The problems associated with local minima, and decisions over the
size of network to use, imply that using a neural network typically involves
experimenting with a large number of different networks, probably training
each one a number of times (to avoid being fooled by local minima), and
observing individual performances. The key guide to performance here is
the selection error. However, following the standard scientific precept that,
all else being equal, a simple model is always preferable to a complex model,
you can also select a smaller network in preference to a larger one with a
negligible improvement in selection error.

A problem with this approach of repeated experimentation is that the
selection set plays a key role in selecting the model, which means that it is
actually part of the training process. Its reliability as an independent guide
to performance of the model is therefore compromised - with sufficient
experiments, you may just hit upon a lucky network that happens to perform
well on the selection set. To add confidence in the performance of the final
model, it is therefore normal practice (at least where the volume of training
data allows it) to reserve a third set of cases - the test set. The final model
is tested with the test set data, to ensure that the results on the selection and
training set are real, and not artifacts of the training process. Of course,
to fulfill this role properly the test set should be used only once - if it is in
turn used to adjust and reiterate the training process, it effectively becomes
selection data!

Types of Machine Learning Algorithms 39

This division into multiple subsets is very unfortunate, given that we
usually have less data than we would ideally desire even for a single subset.
We can get around this problem by resampling. Experiments can be conducted
using different divisions of the available data into training, selection, and
test sets. There are a number of approaches to this subset, including random
(monte-carlo) resampling, cross-validation, and bootstrap. If we make
design decisions, such as the best configuration of neural network to use,
based upon a number of experiments with different subset examples, the
results will be much more reliable. We can then either use those experiments
solely to guide the decision as to which network types to use, and train such
networks from scratch with new samples (this removes any sampling bias);
or, we can retain the best networks found during the sampling process, but
average their results in an ensemble, which at least mitigates the sampling
bias.

To summarize, network design (once the input variables have been
selected) follows a number of stages:

• Select an initial configuration (typically, one hidden layer with
the number of hidden units set to half the sum of the number of
input and output units).

• Iteratively conduct a number of experiments with each
configuration, retaining the best network (in terms of selection
error) found. A number of experiments are required with each
configuration to avoid being fooled if training locates a local
minimum, and it is also best to resample.

• On each experiment, if under-learning occurs (the network
doesn’t achieve an acceptable performance level) try adding more
neurons to the hidden layer(s). If this doesn’t help, try adding an
extra hidden layer.

• If over-learning occurs (selection error starts to rise) try removing
hidden units (and possibly layers).

• Once you have experimentally determined an effective
configuration for your networks, resample and generate new
networks with that configuration.

• Data Selection: All the above stages rely on a key assumption.
Specifically, the training, verification and test data must be
representative of the underlying model (and, further, the three sets
must be independently representative). The old computer science
adage “garbage in, garbage out” could not apply more strongly

Soft Computing and Machine Learning with Python40

than in neural modeling. If training data is not representative,
then the model’s worth is at best compromised. At worst, it may
be useless. It is worth spelling out the kind of problems which can
corrupt a training set:

The future is not the past. Training data is typically historical. If
circumstances have changed, relationships which held in the past may no
longer hold. All eventualities must be covered. A neural network can only
learn from cases that are present. If people with incomes over $100,000
per year are a bad credit risk, and your training data includes nobody over
$40,000 per year, you cannot expect it to make a correct decision when it
encounters one of the previously-unseen cases. Extrapolation is dangerous
with any model, but some types of neural network may make particularly
poor predictions in such circumstances.

A network learns the easiest features it can. A classic (possibly
apocryphal) illustration of this is a vision project designed to automatically
recognize tanks. A network is trained on a hundred pictures including tanks,
and a hundred not. It achieves a perfect 100% score. When tested on new
data, it proves hopeless. The reason? The pictures of tanks are taken on
dark, rainy days; the pictures without on sunny days. The network learns
to distinguish the (trivial matter of) differences in overall light intensity.
To work, the network would need training cases including all weather and
lighting conditions under which it is expected to operate - not to mention all
types of terrain, angles of shot, distances...

Unbalanced data sets. Since a network minimizes an overall error, the
proportion of types of data in the set is critical. A network trained on a data
set with 900 good cases and 100 bad will bias its decision towards good
cases, as this allows the algorithm to lower the overall error (which is much
more heavily influenced by the good cases). If the representation of good
and bad cases is different in the real population, the network’s decisions
may be wrong. A good example would be disease diagnosis. Perhaps 90%
of patients routinely tested are clear of a disease. A network is trained on an
available data set with a 90/10 split. It is then used in diagnosis on patients
complaining of specific problems, where the likelihood of disease is 50/50.
The network will react over-cautiously and fail to recognize disease in
some unhealthy patients. In contrast, if trained on the “complainants” data,
and then tested on “routine” data, the network may raise a high number of
false positives. In such circumstances, the data set may need to be crafted
to take account of the distribution of data (e.g., you could replicate the less
numerous cases, or remove some of the numerous cases), or the network’s

Types of Machine Learning Algorithms 41

decisions modified by the inclusion of a loss matrix (Bishop C. M., 1995).
Often, the best approach is to ensure even representation of different cases,
then to interpret the network’s decisions accordingly.

Self Organised Map
Self Organizing Feature Map (SOFM, or Kohonen) networks are used
quite differently to the other networks. Whereas all the other networks
are designed for supervised learning tasks, SOFM networks are designed
primarily for unsupervised learning (Haykin, 19994), (Patterson, 19996),
(Fausett, 19994) (Whereas in supervised learning the training data set
contains cases featuring input variables together with the associated outputs
(and the network must infer a mapping from the inputs to the outputs), in
unsupervised learning the training data set contains only input variables. At
first glance this may seem strange. Without outputs, what can the network
learn? The answer is that the SOFM network attempts to learn the structure
of the data.

Also Kohonen (Kohonen, 1997) explained one possible use is therefore
in exploratory data analysis. The SOFM network can learn to recognize
clusters of data, and can also relate similar classes to each other. The user can
build up an understanding of the data, which is used to refine the network.
As classes of data are recognized, they can be labelled, so that the network
becomes capable of classification tasks. SOFM networks can also be used for
classification when output classes are immediately available - the advantage
in this case is their ability to highlight similarities between classes.

A second possible use is in novelty detection. SOFM networks can learn
to recognize clusters in the training data, and respond to it. If new data,
unlike previous cases, is encountered, the network fails to recognize it and
this indicates novelty.

A SOFM network has only two layers: the input layer, and an output
layer of radial units (also known as the topological map layer). The units in
the topological map layer are laid out in space - typically in two dimensions
(although ST Neural Networks also supports onedimensional Kohonen
networks).

SOFM networks (Patterson, 19996) are trained using an iterative
algorithm. Starting with an initially-random set of radial centres, the
algorithm gradually adjusts them to reflect the clustering of the training data.
At one level, this compares with the sub-sampling and KMeans algorithms
used to assign centres in SOM network and indeed the SOFM algorithm

Soft Computing and Machine Learning with Python42

can be used to assign centres for these types of networks. However, the
algorithm also acts on a different level.

The iterative training procedure also arranges the network so that units
representing centres close together in the input space are also situated close
together on the topological map. You can think of the network’s topological
layer as a crude two-dimensional grid, which must be folded and distorted
into the N-dimensional input space, so as to preserve as far as possible the
original structure. Clearly any attempt to represent an N-dimensional space
in two dimensions will result in loss of detail; however, the technique can be
worthwhile in allowing the user to visualize data which might otherwise be
impossible to understand.

The basic iterative Kohonen algorithm simply runs through a number
of epochs, on each epoch executing each training case and applying the
following algorithm:

• Select the winning neuron (the one who’s centre is nearest to the
input case);

• Adjust the winning neuron to be more like the input case (a
weighted sum of the old neuron centre and the training case).

The algorithm uses a time-decaying learning rate, which is used to
perform the weighted sum and ensures that the alterations become more
subtle as the epochs pass. This ensures that the centres settle down to a
compromise representation of the cases which cause that neuron to win.
The topological ordering property is achieved by adding the concept of a
neighbourhood to the algorithm. The neighbourhood is a set of neurons
surrounding the winning neuron. The neighbourhood, like the learning rate,
decays over time, so that initially quite a large number of neurons belong to
the neighbourhood (perhaps almost the entire topological map); in the latter
stages the neighbourhood will be zero (i.e., consists solely of the winning
neuron itself). In the Kohonen algorithm, the adjustment of neurons is
actually applied not just to the winning neuron, but to all the members of the
current neighbourhood.

The effect of this neighbourhood update is that initially quite large
areas of the network are “dragged towards” training cases - and dragged
quite substantially. The network develops a crude topological ordering,
with similar cases activating clumps of neurons in the topological map. As
epochs pass the learning rate and neighbourhood both decrease, so that finer
distinctions within areas of the map can be drawn, ultimately resulting in
finetuning of individual neurons. Often, training is deliberately conducted

Types of Machine Learning Algorithms 43

in two distinct phases: a relatively short phase with high learning rates and
neighbourhood, and a long phase with low learning rate and zero or near-
zero neighbourhoods.

Once the network has been trained to recognize structure in the data, it
can be used as a visualization tool to examine the data. The Win Frequencies
Datasheet (counts of the number of times each neuron wins when training
cases are executed) can be examined to see if distinct clusters have formed
on the map. Individual cases are executed and the topological map observed,
to see if some meaning can be assigned to the clusters (this usually involves
referring back to the original application area, so that the relationship
between clustered cases can be established). Once clusters are identified,
neurons in the topological map are labelled to indicate their meaning
(sometimes individual cases may be labelled, too). Once the topological map
has been built up in this way, new cases can be submitted to the network.
If the winning neuron has been labelled with a class name, the network can
perform classification. If not, the network is regarded as undecided.

SOFM networks also make use of the accept threshold, when performing
classification. Since the activation level of a neuron in a SOFM network is
the distance of the neuron from the input case, the accept threshold acts as
a maximum recognized distance. If the activation of the winning neuron
is greater than this distance, the SOFM network is regarded as undecided.
Thus, by labelling all neurons and setting the accept threshold appropriately,
a SOFM network can act as a novelty detector (it reports undecided only if
the input case is sufficiently dissimilar to all radial units).

SOFM networks as expressed by Kohonen (Kohonen, 1997) are inspired
by some known properties of the brain. The cerebral cortex is actually a large
flat sheet (about 0.5m squared; it is folded up into the familiar convoluted
shape only for convenience in fitting into the skull!) with known topological
properties (for example, the area corresponding to the hand is next to the
arm, and a distorted human frame can be topologically mapped out in two
dimensions on its surface).

Grouping Data Using Self Organise Map
The first part of a SOM is the data. Above are some examples of 3 dimensional
data which are commonly used when experimenting with SOMs. Here the
colours are represented in three dimensions (red, blue, and green.) The idea
of the self-organizing maps is to project the n-dimensional data (here it

Soft Computing and Machine Learning with Python44

would be colour and would be 3 dimensions) into something that be better
understood visually (in this case it would be a 2 dimensional image map).

Figure 5: Sample Data.

In this case one would expect the dark blue and the greys to end up near
each other on a good map and yellow close to both the red and the green.
The second components to SOMs are the weight vectors. Each weight
vector has two components to them which I have here attempted to show
in the image below. The first part of a weight vector is its data. This is of
the same dimensions as the sample vectors and the second part of a weight
vector is its natural location. The good thing about colour is that the data can
be shown by displaying the color, so in this case the color is the data, and the
location is the x,y position of the pixel on the screen.

Figure 6: 2D Array Weight of Vector.

In this example, 2D array of weight vectors was used and would look
like figure 5 above. This picture is a skewed view of a grid where you have
the n-dimensional array for each weight and each weight has its own unique
location in the grid. Weight vectors don’t necessarily have to be arranged in
2 dimensions, a lot of work has been done using SOMs of 1 dimension, but
the data part of the weight must be of the same dimensions as the sample
vectors.Weights are sometimes referred to as neurons since SOMs are
actually neural networks. SOM Algorithm. The way that SOMs go about

Types of Machine Learning Algorithms 45

organizing themselves is by competeting for representation of the samples.
Neurons are also allowed to change themselves by learning to become more
like samples in hopes of winning the next competition. It is this selection
and learning process that makes the weights organize themselves into a map
representing similarities.

So with these two components (the sample and weight vectors), how
can one order the weight vectors in such a way that they will represent the
similarities of the sample vectors? This is accomplished by using the very
simple algorithm shown here.

Figure 7: A Sample SOM Algorithm.

The first step in constructing a SOM is to initialize the weight vectors.
From there you select a sample vector randomly and search the map of
weight vectors to find which weight best represents that sample. Since each
weight vector has a location, it also has neighbouring weights that are close
to it. The weight that is chosen is rewarded by being able to become more
like that randomly selected sample vector. In addition to this reward, the
neighbours of that weight are also rewarded by being able to become more
like the chosen sample vector. From this step we increase t some small
amount because the number of neighbours and how much each weight
can learn decreases over time. This whole process is then repeated a large
number of times, usually more than 1000 times.

In the case of colours, the program would first select a color from the
array of samples such as green, then search the weights for the location
containing the greenest color. From there, the colour surrounding that weight
are then made more green. Then another color is chosen, such as red, and the
process continues. They processes are:

Soft Computing and Machine Learning with Python46

A. Initializing the Weights
Here are screen shots of the three different ways which decided to

initialize the weight vector map. We should first mention the palette here.
In the java program below there are 6 intensities of red, blue, and green
displayed, it really does not take away from the visual experience. The
actual values for the weights are floats, so they have a bigger range than the
six values that are shown in figure 7 below.

Figure 8: Weight Values.

There are a number of ways to initialize the weight vectors. The first you
can see is just give each weight vector random values for its data. A screen
of pixels with random red, blue, and green values is shown above on the left.
Unfortunately calculating SOMs according to Kohonen (Kohonen, 1997) is
very computationally expensive, so there are some variants of initializing
the weights so that samples that you know for a fact are not similar start off
far away. This way you need less iteration to produce a good map and can
save yourself some time.

Here we made two other ways to initialize the weights in addition to the
random one. This one is just putting red, blue, green, and black at all four
corners and having them slowly fade toward the center. This other one is
having red, green, and blue equally distant from one another and from the
center.

Types of Machine Learning Algorithms 47

B. Get Best Matching Unit
This is a very simple step, just go through all the weight vectors and
calculate the distance from each weight to the chosen sample vector. The
weight with the shortest distance is the winner. If there are more than one
with the same distance, then the winning weight is chosen randomly among
the weights with the shortest distance. There are a number of different ways
for determining what distance actually means mathematically. The most
common method is to use the Euclidean distance:

2

0

n

i
i

x
=
∑

where x[i] is the data value at the ith data member of a sample and n is the
number of dimensions to the sample vectors.

In the case of colour, if we can think of them as 3D points, each
component being an axis. If we have chosen green which is of the value
(0,6,0), the color light green (3,6,3) will be closer to green than red at (6,0,0).

So light green is now the best matching unit, but this operation of
calculating distances and comparing them is done over the entire map and
the wieght with the shortest distance to the sample vector is the winner and
the BMU. The square root is not computed in the java program for speed
optimization for this section.

C. Scale Neighbors

1. Determining Neighbors
There are actually two parts to scaling the neighboring weights: determining
which weights are considered as neighbors and how much each weight can
become more like the sample vector. The neighbors of a winning weight can
be determined using a number of different methods. Some use concentric
squares, others hexagons, I opted to use a gaussian function where every
point with a value above zero is considered a neighbor.

As mentioned previously, the amount of neighbors decreases over time.
This is done so samples can first move to an area where they will probably
be, then they jockey for position. This process is similar to coarse adjustment

Soft Computing and Machine Learning with Python48

followed by fine tuning. The function used to decrease the radius of influence
does not really matter as long as it decreases, we just used a linear function.

Figure 9: A graph of SOM Neighbour’s determination.

Figure 8 above shows a plot of the function used. As the time progresses,
the base goes towards the centre, so there are less neighbours as time
progresses. The initial radius is set really high, some value near the width or
height of the map.

2. Learning
The second part to scaling the neighbours is the learning function. The
winning weight is rewarded with becoming more like the sample vector. The
neighbours also become more like the sample vector. An attribute of this
learning process is that the farther away the neighbour is from the winning
vector, the less it learns. The rate at which the amount a weight can learn
decreases and can also be set to whatever you want. I chose to use a gaussian
function. This function will return a value ranging between 0 and 1, where
each neighbor is then changed using the parametric equation. The new color
is:

So in the first iteration, the best matching unit will get a t of 1 for its
learning function, so the weight will then come out of this process with the
same exact values as the randomly selected sample.

Types of Machine Learning Algorithms 49

Just as the amount of neighbors a weight has falls off, the amount a
weight can learn also decreases with time. On the first iteration, the winning
weight becomes the sample vector since t has a full range of from 0 to 1.
Then as time progresses, the winning weight becomes slightly more like
the sample where the maximum value of t decreases. The rate at which the
amount a weight can learn falls of linearly. To depict this visually, in the
previous plot, the amount a weight can learn is equivalent to how high the
bump is at their location. As time progresses, the height of the bump will
decrease. Adding this function to the neighbourhood function will result in
the height of the bump going down while the base of the bump shrinks.

So once a weight is determined the winner, the neighbours of that weight
is found and each of those neighbours in addition to the winning weight
change to become more like the sample vector.

Determining the Quality of SOMs
Below is another example of a SOM generated by the program using 500
iterations in figure 9. At first glance you will notice that similar colour is all
grouped together yet again. However, this is not always the case as you can
see that there are some colour who are surrounded by colour that are nothing
like them at all. It may be easy to point this out with colour since this is
something that we are familiar with, but if we were using more abstract data,
how would we know that since two entities are close to each other means
that they are similar and not that they are just there because of bad luck?

Figure 10: SOM Iteration.

There is a very simple method for displaying where similarities lie and
where they do not. In order to compute this we go through all the weights

Soft Computing and Machine Learning with Python50

and determine how similar the neighbors are. This is done by calculating
the distance that the weight vectors make between the each weight and each
of its neighbors. With an average of these distances a color is then assigned
to that location. This procedure is located in Screen.java and named public
void update_bw().

If the average distance were high, then the surrounding weights are
very different and a dark color is assigned to the location of the weight. If
the average distance is low, a lighter color is assigned. So in areas of the
center of the blobs the colour are the same, so it should be white since all
the neighbors are the same color. In areas between blobs where there are
similarities it should be not white, but a light grey. Areas where the blobs
are physically close to each other, but are not similar at all there should be
black. See Figure 8 below

Figure 11: A sample allocation of Weight in Colour.

As shown above, the ravines of black show where the colour may be
physically close to each other on the map, but are very different from each
other when it comes to the actual values of the weights. Areas where there
is a light grey between the blobs represent a true similarity. In the pictures
above, in the bottom right there is black surrounded by colour which are
not very similar to it. When looking at the black and white similarity SOM,
it shows that black is not similar to the other colour because there are lines
of black representing no similarity between those two colour. Also in the
top corner there is pink and nearby is a light green which are not very near
each other in reality, but near each other on the colored SOM. Looking at
the black and white SOM, it clearly shows that the two not very similar by
having black in between the two colour.

With these average distances used to make the black and white map, we
can actually assign each SOM a value that determines how good the image
represents the similarities of the samples by simply adding these averages.

Types of Machine Learning Algorithms 51

Advantages and Disadvantages of SOM
Self organise map has the following advantages:

• Probably the best thing about SOMs that they are very easy
to understand. It’s very simple, if they are close together and
there is grey connecting them, then they are similar. If there is
a black ravine between them, then they are different. Unlike
Multidimensional Scaling or N-land, people can quickly pick up
on how to use them in an effective manner.

• Another great thing is that they work very well. As I have shown
you they classify data well and then are easily evaluate for their
own quality so you can actually calculated how good a map is and
how strong the similarities between objects are.

These are the disadvantages:
• One major problem with SOMs is getting the right data.

Unfortunately you need a value for each dimension of each
member of samples in order to generate a map. Sometimes this
simply is not possible and often it is very difficult to acquire all
of this data so this is a limiting feature to the use of SOMs often
referred to as missing data.

• Another problem is that every SOM is different and finds
different similarities among the sample vectors. SOMs organize
sample data so that in the final product, the samples are usually
surrounded by similar samples, however similar samples are not
always near each other. If you have a lot of shades of purple, not
always will you get one big group with all the purples in that
cluster, sometimes the clusters will get split and there will be
two groups of purple. Using colour we could tell that those two
groups in reality are similar and that they just got split, but with
most data, those two clusters will look totally unrelated. So a lot
of maps need to be constructed in order to get one final good map.

• The final major problem with SOMs is that they are very
computationally expensive which is a major drawback since as the
dimensions of the data increases, dimension reduction visualization
techniques become more important, but unfortunately then time
to compute them also increases. For calculating that black and
white similarity map, the more neighbours you use to calculate the
distance the better similarity map you will get, but the number of
distances the algorithm needs to compute increases exponentially.

Soft Computing and Machine Learning with Python52

REFERENCES
1. Allix, N. M. (2003, April). Epistemology And Knowledge Management

Concepts And Practices. Journal of Knowledge Management Practice .
2. Alpaydin, E. (2004). Introduction to Machine Learning. Massachusetts,

USA: MIT Press.
3. Anderson, J. R. (1995). Learning and Memory. Wiley, New York, USA.
4. Anil Mathur, G. P. (1999). Socialization influences on preparation for

later life. Journal of Marketing Practice: Applied Marketing Science ,
5 (6,7,8), 163 - 176.

5. Ashby, W. R. (1960). Design of a Brain, The Origin of Adaptive
Behaviour. John Wiley and Son.

6. Batista, G. &. (2003). An Analysis of Four Missing Data Treatment
Methods for Suppervised Learning. Applied Artificial Intelligence , 17,
519-533.

7. Bishop, C. M. (1995). Neural Networks for Pattern Recognition.
Oxford, England: Oxford University Press.

8. Bishop, C. M. (2006). Pattern Recognition and Machine Learning
(Information Science and Statistics). New York, New York: Springer
Science and Business Media.

9. Block H, D. (1961). The Perceptron: A Model of Brian Functioning.
34 (1), 123-135.

10. Carling, A. (1992). Introducing Neural Networks . Wilmslow, UK:
Sigma Press.

11. D. Michie, D. J. (1994). Machine Learning, Neural and Statistical
Classification. Prentice Hall Inc.

12. Fausett, L. (19994). Fundamentals of Neural Networks. New York:
Prentice Hall.

13. Forsyth, R. S. (1990). The strange story of the Perceptron. Artificial
Intelligence Review , 4 (2), 147-155.

14. Friedberg, R. M. (1958). A learning machine: Part, 1. IBM Journal ,
2-13.

15. Ghahramani, Z. (2008). Unsupervised learning algorithms are designed
to extract structure from data. 178, pp. 1-8. IOS Press.

16. Gillies, D. (1996). Artificial Intelligence and Scientific Method. OUP
Oxford.

Types of Machine Learning Algorithms 53

17. Haykin, S. (19994). Neural Networks: A Comprehensive Foundation.
New York: Macmillan Publishing.

18. Hodge, V. A. (2004). A Survey of Outlier Detection Methodologies.
Artificial Intelligence Review , 22 (2), 85-126.

19. Holland, J. (1980). Adaptive Algorithms for Discovering and Using
General Patterns in Growing Knowledge Bases Policy Analysis and
Information Systems. 4 (3).

20. Hunt, E. B. (1966). Experiment in Induction.
21. Ian H. Witten, E. F. (2005). Data Mining Practical Machine Learning

and Techniques (Second edition ed.). Morgan Kaufmann.
22. Jaime G. Carbonell, R. S. (1983). Machine Learning: A Historical

and Methodological Analysis. Association for the Advancement of
Artificial Intelligence , 4 (3), 1-10.

23. Kohonen, T. (1997). Self-Organizating Maps.
24. Luis Gonz, l. A. (2005). Unified dual for bi-class SVM approaches.

Pattern Recognition , 38 (10), 1772-1774.
25. McCulloch, W. S. (1943). A logical calculus of the ideas immanent in

nervous activity. Bull. Math. Biophysics , 115-133.
26. Mitchell, T. M. (2006). The Discipline of Machine Learning. Machine

Learning Department technical report CMU-ML-06-108, Carnegie
Mellon University.

27. Mooney, R. J. (2000). Learning Language in Logic. In L. N. Science,
Learning for Semantic Interpretation: Scaling Up without Dumbing
Down (pp. 219-234). Springer Berlin / Heidelberg.

28. Mostow, D. (1983). Transforming declarative advice into effective
procedures: a heuristic search cxamplc In I?. S. Michalski,. Tioga Press.

29. Nilsson, N. J. (1982). Principles of Artificial Intelligence (Symbolic
Computation / Artificial Intelligence). Springer.

30. Oltean, M. (2005). Evolving Evolutionary Algorithms Using Linear
Genetic Programming. 13 (3), 387 - 410 .

31. Orlitsky, A., Santhanam, N., Viswanathan, K., & Zhang, J. (2005).
Convergence of profile based estimators. Proceedings of International
Symposium on Information Theory. Proceedings. International
Symposium on, pp. 1843 - 1847. Adelaide, Australia: IEEE.

32. Patterson, D. (19996). Artificial Neural Networks. Singapore: Prentice
Hall.

Soft Computing and Machine Learning with Python54

33. R. S. Michalski, T. J. (1983). Learning from Observation: Conceptual
Clustering. TIOGA Publishing Co.

34. Rajesh P. N. Rao, B. A. (2002). Probabilistic Models of the Brain. MIT
Press.

35. Rashevsky, N. (1948). Mathematical Biophysics:Physico-Mathematical
Foundations of Biology. Chicago: Univ. of Chicago Press.

36. Richard O. Duda, P. E. (2000). Pattern Classification (2nd Edition ed.).
37. Richard S. Sutton, A. G. (1998). Reinforcement Learning. MIT Press.
38. Ripley, B. (1996). Pattern Recognition and Neural Networks.

Cambridge University Press.
39. Rosenblatt, F. (1958). The perceptron: a probabilistic model for

information storage and organization in the brain . Psychological
Review , 65 (6), 386-408.

40. Russell, S. J. (2003). Artificial Intelligence: A Modern Approach (2nd
Edition ed.). Upper Saddle River, NJ, NJ, USA: Prentice Hall.

41. Ryszard S. Michalski, J. G. (1955). Machine Learning: An Artificial
Intelligence Approach (Volume I). Morgan Kaufmann .

42. Ryszard S. Michalski, J. G. (1955). Machine Learning: An Artificial
Intelligence Approach.

43. Selfridge, O. G. (1959). Pandemonium: a paradigm for learning. In
The mechanisation of thought processes. H.M.S.O., London. London.

44. Sleeman, D. H. (1983). Inferring Student Models for Intelligent CAI.
Machine Learning. Tioga Press. s : ACM Press.

45. Timothy Jason Shepard, P. J. (1998). Decision Fusion Using a Multi-
Linear Classifier . In Proceedings of the International Conference on
Multisource-Multisensor Information Fusion.

46. Tom, M. (1997). Machibe Learning. Machine Learning, Tom Mitchell,
McGraw Hill, 1997: McGraw Hill.

47. Trevor Hastie, R. T. (2001). The Elements of Statistical Learning. New
york, NY, USA: Springer Science and Business Media.

48. Widrow, B. W. (2007). Adaptive Inverse Control: A Signal Processing
Approach. Wiley-IEEE Press.

49. Y. Chali, S. R. (2009). Complex Question Answering: Unsupervised
Learning Approaches and Experiments. Journal of Artificial Intelligent
Research , 1-47.

Types of Machine Learning Algorithms 55

50. Yu, L. L. (2004, October). Efficient feature Selection via Analysis of
Relevance and Redundacy. JMLR , 1205-1224.

51. Zhang, S. Z. (2002). Data Preparation for Data Mining. Applied
Artificial Intelligence. 17, 375 - 381.

DATA MINING WITH SKEWED
DATA

CHAPTER

3

Manoel Fernando Alonso Gadi1, Alair Pereira do Lago2 , and Jorn
Mehnen3

1Milton Keynes United Kingdom
2Depart. de Ciencia de Computacao, Inst. de Matematica e Estatistica Universidade de Sao
Paulo Brazil
3Decision Engineering Centre, Cranfield University Cranfield, Bedfordshire MK43 0AL
United Kingdom

In this chapter, we explore difficulties one often encounters when applying
machine learning techniques to real-world data, which frequently show
skewness properties. A typical example from industry where skewed data
is an intrinsic problem is fraud detection in finance data. In the following
we provide examples, where appropriate, to facilitate the understanding
of data mining of skewed data. The topics explored include but are not
limited to: data preparation, data cleansing, missing values, characteristics

Citation: Manoel Fernando Alonso Gadi, Alair Pereira do Lago and Jorn Mehnen (Feb-
ruary 1st 2010). “Data Mining with Skewed Data”, New Advances in Machine Learn-
ing Yagang Zhang, IntechOpen, DOI: 10.5772/9382.
Copyright: © 2010 by authors and Intech. This paper is an open access article distrib-
uted under a Creative Commons Attribution 3.0 License

Soft Computing and Machine Learning with Python58

construction, variable selection, data skewness, objective functions, bottom
line expected prediction, limited resource situation, parametric optimisation,
model robustness and model stability.

INTRODUCTION
In many contexts like in a new e-commerce website, fraud experts start
investigation procedures only after a user makes a claim. Rather than
working reactively, it would be better for the fraud expert to act proactively
before a fraud takes place. In this e-commerce example, we are interested in
classifying sellers into legal customers or fraudsters. If a seller is involved
in a fraudulent transaction, his/her license to sell can be revoked by the
e-business. Such a decision requires a degree of certainty, which comes
with experience. In general, it is only after a fraud detection expert has
dealt with enough complains and enough data that he/she acquired a global
understanding of the fraud problem. Quite often, he/she is exposed to a huge
number of cases in a short period of time. This is when automatic procedures,
commonly computer based, can step in trying to reproduce expert procedures
thus giving experts more time to deal with harder cases. Hence, one can
learn from fraud experts and build a model for fraud. Such a model requires
fraud evidences that are commonly present in fraudulent behavior. One of
the difficulties of fraud detection is that fraudsters try to conceal themselves
under a “normal” behavior. Moreover, fraudsters rapidly change their modus
operandi once it is discovered. Many fraud evidences are illegal and justify
a more drastic measure against the fraudster. However, a single observed
indicator is often not strong enough to be considered a proof and needs to
be evaluated as one variable among others. All variables taken together can
indicate high probability of fraud. Many times, these variables appear in
the literature by the name of characteristics or features. The design of these
characteristics to be used in a model is called characteristics extraction or
feature extraction.

DATA PREPARATION

Characteristics Extraction
One of the most important tasks on data preparation is the conception of
characteristics. Unfortunately, this depends very much on the application
(See also the discussions in Section 4 and 5). For fraud modelling for
instance, one starts from fraud expert experience, determine significant

Data Mining with Skewed Data 59

characteristics as fraud indicators, and evaluates them. In this evaluation,
one is interested in measuring how well these characteristics:

• covers (is present in) the true fraud cases;
• and how clearly they discriminate fraud from non-fraud behavior.
In order to cover as many fraud cases as possible, one may verify how

many of them are covered by the characteristics set. The discrimination
power of any of these characteristics can be evaluated by their odds ratio. If
the probability of the event (new characteristics) in each of two compared
classes (fraud and non-fraud in our case) are pf (first class) and pn (second
class), then the odds ratio is:

An odds ratio equals to 1 describes the characteristics as equally probable
in both classes (fraud and non-fraud). The more this ratio is greater/less than
1, the more likely this characteristic is in the first/second class than in the
other one.

Data Cleansing
In many manuals on best practice in model development, a chapter on data
consistency checks, or data cleansing, is present. The main reason for this
is to avoid waisting all the effort applied in the model development stage,
because of data inconsistency invalidating the dataset in use.

Here we understand data consistency checks as being a set of expert
rules to check whether a characteristic follows an expected behaviour.
These expert rules can be based on expert knowledge or common sense. For
example, a common error when filling in the date-of-birth section in a credit
card application form is to put the current year instead of the year the person
was actually born. In most countries an under sixteen year old can not have
a credit card. Therefore, an easy way of checking this inconsistency is to
simply calculate the applicant’s age and check if it falls within a valid range.
With more information available, more complex checks can be applied,
such as, e.g. matching name with gender or street name with post code. In
some cases the model developer has access to reports stored in Management
Information Systems (MIS). If that is the case, it is a highly recommended
idea to calculate key population indicators and compare these to portfolio

Soft Computing and Machine Learning with Python60

reports. For example, in a credit card industry environment one can check the
volume of applications; accept rate, decline rate and take-up rate and others.
It can also be useful to check the univariate distribution of each variable
including the percentage of outliers, missing and miscellaneous values.

Having identified the characteristics that contain errors, the next step is to
somehow fix the inconsistencies or minimise their impact in the final model.
Here we list, in the form of questions, some good practices in data cleansing
used by the industry that can sometimes improve model performance,
increase generalisation power and finally, but no less important, make
models less vulnerable to fraud and faults.

1. Is it possible to fix the errors by running some codes on the
dataset? Sometimes wrong values have a one-to-one mapping
to the correct values. Therefore, the best strategy is to make
the change in the development dataset and to carry on with the
development. It is important that these errors are fixed for the
population the model will be applied to as well. This is because
both developing and applying populations must be consistent,
otherwise fixing the inconsistency would worsen the model
performance rather than improving it;

2. Is a small number of attributes1 (less than 5%) impacting only
few rows (less than 5%)? In this case, one can do a bivariate
analysis to determine if it is possible to separate these values into
a default (or fault) group. Another option is to drop the rows.
However, this tactic might turn out to be risky (see section about
missing values);

3. Is the information value of the problematic attribute(s) greater
than for the other attributes combined? Consider dropping this
characteristic and demand fixing;

4. Is it possible to allow outliers? Simply dropping them might be
valid if there are few or there are invalid values. Change their values
to the appropriate boundary could also be valid. For example, if an
acceptable range for yearly income is [1,000;100,000] MU2 and
an applicant has a yearly income of 200,000 MU then it should
be changed to 100,000 MU. This approach is often referred to as
truncated or censored modelling Schneider (1986).

5. Finally, in an industry environment, when an MIS is available,
one can check for the acceptance rate or number of rows to
be similar to the reports? It is very common for datasets to be

Data Mining with Skewed Data 61

corrupted after transferring them from a Mainframe to Unix or
Windows machines.

DATA SKEWNESS
A dataset for modelling is perfectly balanced when the percentage of
occurrence of each class is 100/n, where n is the number of classes. If one or
more classes differ significantly from the others, this dataset is called skewed
or unbalanced. Dealing with skewed data can be very tricky. In the following
sections we explore, based on our experiments and literature reviews, some
problems that can appear when dealing with skewed data. Among other
things, the following sections will explain the need for stratified sampling,
how to handle missing values carefully and how to define an objective
function that takes the different costs for each class into account.

Missing Values
Missing values are of little importance when dealing with balanced data,
but can become extremely harmful or beneficial when dealing with skewed
data. See how the example below looks harmful at first glance, but indeed
exposes a very powerful characteristic.

Table 1 shows an example of a characteristic called Transaction Amount.
By looking at the first line of the table one may conclude that the number of
missing values is small (1.98%) and decide not to investigate any further.
Breaking it down into fraudulent and legitimate transactions, one can see
that 269 (32.5%) data items whose values are missings are frauds, which is
nearly 9 times bigger than the overall fraud rate in our dataset (1,559/41,707
= 3.74% see Table 2).

Table 1: Fraud/legitimate distribution

Investigating even further, by analysing the fraud rates by ranges as
shown in table 2, one can see that the characteristic being analysed really
helps to predict fraud; on the top of this, missing values seem to be the most
powerful attribute for this characteristic.

Soft Computing and Machine Learning with Python62

Table 2: Transaction amount bivariate

When developing models with balanced data, in most cases one can
argue that it is good practice to avoid giving prediction to missing values
(as a separate attribute or dummy), especially, if this attribute ends up
with dominating the model. However, when it comes to unbalanced data,
especially with fraud data, some specific value may have been intentionally
used by the fraudster in order to bypass the system’s protection. In this case,
one possible explanation could be a system failure, where all international
transaction are not being correctly currency converted when passed to the
fraud prevention system. This loophole may have been found by some
fraudster and exploited. Of course, this error would have passed unnoticed
had one not paid attention to any missing or common values in the dataset.

DERIVED CHARACTERISTICS
New or derived characteristics construction is one of, if not the, most
important part of modelling. Some important phenomena mapped in nature
are easily explained using derived variables. For example, in elementary
physics speed is a derived variable of space over time. In data mining, it
is common to transform date of birth into age or, e.g., year of study into
primary, secondary, degree, master, or doctorate. Myriad ways exist to
generate derived characteristics. In the following we give three typical
examples:

1. Transformed characteristics: transform characteristics to gain
either simplicity or generalisation power. For example, date of
birth into age, date of starting a relationship with a company into
time on books, and years of education into education level;

2. Time series characteristics: a new characteristic built based on
a group of historical months of a given characteristic. Examples

Data Mining with Skewed Data 63

are average balance of a bank account within the last 6 months,
minimum balance of a bank account within the last 12 months,
and maximum days in arrears3 over the last 3 months;

3. Interaction: variable combining two or more different
characteristics (of any type) in order to map interesting phenomena.
For example, average credit limit utilization = average utilization
/ credit limit.

CATEGORISATION (GROUPING)
Categorisation (discretising, binning or grouping) is any process that can be
applied to a characteristic in order to turn it into categorical values Witten &
Franku (2005). For example, let us suppose that the variable age ranges from
0 to 99 and all values within this interval are possible. A valid categorisation
in this case could be:

1. category 1: if age is between 1 and 17;
2. category 2: if age is between 18 and 30;
3. category 3: if age is between 31 and 50;
4. category 4: if age is between 51 and 99.
Among others, there are three main reasons for categorising a

characteristic: firstly, to increase generalisation power; secondly, to be
able to apply certain types of methods, such as, e.g. a Generalised Linear
Model4 (GLM) Witten & Franku (2005), or a logistic regression using
Weight of Evidence5 (WoE) formulations Agterberg et al. (1993); thirdly,
to add stability to the model by getting rid of small variations causing noise.
Categorisation methods include:

1. Equal width: corresponds to breaking a characteristic into groups
of equal width. In the age example we easily break age into 5
groups of 20 decimals in each: 0-19, 20-39, 40-59, 60-79, 80-99.

2. Percentile: this method corresponds to breaking the characteristic
into groups of equal volume, or percentage, of occurrences. Note
that in this case groups will have different widths. In some cases
breaking a characteristic into many groups may not be possible
because occurrences are concentrated. A possible algorithm in
pseudo code to create percentile groups is:

Soft Computing and Machine Learning with Python64

3. Bivariate grouping: this method corresponds to using the target
variable to find good breaking points for the ranges of each group.
It is expected that, in doing so, groups created using a bivariate
process have a lower drop in information value, whilst it can
improve the generalisation by reducing the number of attributes.
One can do this in a spreadsheet by recalculating the odds and
information value every time one collapses neighbouring groups
with either similar odds, non-monotonic odds or a too small
population percentage.

Next, we present one possible process of grouping the characteristic age
using a bivariate grouping analysis. For visual simplicity the process starts
with groups of equal width, each containing 10 units (see Table 3). The
process consists of eliminating intervals without monotonic odds, grouping
similar odds and guaranteeing a minimal percentage of individuals in each
group.

Table 3: Age bivariate step 1/4

Data Mining with Skewed Data 65

Table 4: Age bivariate step 2/4

The result of the first step, eliminating intervals without monotonic odds
can be seen in Table 4. Here bands 50-59 (odds of 3.00), 60-69 (odds of
4.00) and 70-79 (odds of 3.75) have been merged, as shown in boldface.
One may notice that merging bands 50-59 and 60-69 would result in a group
with odds of 3.28; hence resulting in the need to merge with band 70-79 to
yield monotonic odds.

Table 5: Age bivariate step 3/4

By using, for example, 0.20 as the minimum allowed odds difference,
Table 5 presents the result of step two where bands 30-39 (odds of 5.30)
and 40-49 (odds of 5.18) have been merged. This is done to increase model
stability. One may notice that odds retrieved from the development become
expected odds in a future application of the model. Therefore, these values
will vary around the expectation. By grouping these two close odds, one
tries to avoid that a reversal in odds may happen by pure random variation.

Soft Computing and Machine Learning with Python66

Table 6: Age bivariate step 4/4

For the final step, if we assume 2% to be be the minimum allowed
percentage of the population in each group. This forces band 0-9 (1.83% of
total) to be merged with one of its neighbours; in this particular case, there
is only the option to merge with band 10-19. Table 6 shows the final result
of the bivariate grouping process after all steps are finished.

SAMPLING
As computers become more and more powerful, sampling, to reduce the
sample size for model development, seems to be losing attention and
importance. However, when dealing with skewed data, sampling methods
remain extremely important Chawla et al. (2004); Elkan (2001). Here we
present two reasons to support this argument.

First, to help to ensure that no over-fitting happens in the development
data, a sampling method can be used to break the original dataset into
training and holdout samples. Furthermore, a stratified sampling can help
guarantying that a desirable factor has similar percentage in both training
and holdout samples. In our work Gadi et al. (2008b), for example, we
executed a random sampling process to select multiple splits of 70% and
30%, as training and holdout samples. However, after evaluating the output
datasets we decided to redo the sampling process using stratified sampling
by fraud/legitimate flag.

Second, to improve the model prediction, one may apply an over- or
under- sampling process to take the different cost between classes into
account. Cost-sensitive procedure Elkan (2001) replicates (oversampling)
the minority (fraud) class according to its cost in order to balance different
costs for false positives and false negatives. In Gadi et al. (2008a) we
achieved interesting results by applying a cost-sensitive procedure.

Data Mining with Skewed Data 67

Two advantages of a good implementation of a cost-sensitive procedure
are: first, it can enable changes in cut-off to the optimal cut-off, For example,
in fraud detection, if the cost tells one, a cost-sensitive procedure will consider
a transaction with as little as 8% of probability of fraud as a potential fraud
to be investigated; second, if the cost-sensitive procedure considers cost
per transaction, such an algorithm may be able to optimise decisions by
considering the product [probability of event] x [value at risk], and decide
on investigating those transactions in which this product is bigger.

CHARACTERISTICS SELECTION
Characteristics selection, also known as feature selection, variable selection,
feature reduction, attribute selection or variable subset selection, is
commonly used in machine learning and statistical techniques to select a
subset of relevant characteristics for the building of more robust models
Witten & Franku (2005).

Decision trees do characteristics selection as part of their training
process when selecting only the most powerful characteristics in each
subpopulation, leaving out all weak or highly correlated characteristics.
Bayesian nets link different characteristics by cause and effect rules, leaving
out non-correlated characteristics Charniak (1991). Logistic Regression does
not use any intrinsic strategy for removing weak characteristics; however, in
most implementations methods such as forward, backward and stepwise are
always available. In our tests, we have applied a common approach in the
bank industry that is to consider only those characteristics with information
value greater than a given percentage threshold.

OBJECTIVE FUNCTIONS
When defining an objective function, in order to compare different models,
we found in our experiments that two facts are especially important:

1. We have noticed that academia and industry speak in different
languages. In the academic world, measures such as Kolmogorov
Smirnov (KS) Chakravarti et al. (1967) or Receiver Operating
Characteristic (ROC curve) Green & Swets (1966) are the most
common; in industry, on the other hand, rates are more commonly
used. In the fraud detection area for example it is common to find
measures such as hit rate (confidence) and detection rate (cover).
Hit rate and detection rate are two different dimensions and they

Soft Computing and Machine Learning with Python68

are not canonical. To optimise a problem with an objective having
two outcomes is not a simple task Trautmann & Mehnen (2009).
In our work in fraud detection we avoided this two-objective
function by calculating one single outcome value: the total cost
of fraud;

2. In an unbalanced environment it is common to find that not only
the proportion between classes differs, but also the cost between
classes. For example, in the fraud detection environment, the loss
by fraud when a transaction is fraudulent is much bigger than the
cost to call a customer to confirm whether he/she did or did not
do the transaction.

BOTTOM LINE EXPECTED PREDICTION
The problem of finding the best model can be computationally expensive,
as there are many parameters involved in such a search. For this reason,
it is very common for model developers to get satisfied with suboptimal
models. A question equally difficult to answer, in general, is how far we are
from an optimum. We do not intend to respond to this question here; what
we want to address is a list of ways to help the model developer to estimate
a minimum acceptable performance before getting close to the end of the
model development. In our fraud analysis we found two good options for
estimating a bottom line for expected suboptimal cost: a first option could
be the cost resulting from a Na¨ıve Bayes model. It is important to notice
that Na¨ıve Bayes does not need any grouping, characteristics selection or
parameter tuning; a second option could be to consider the cost from a first
“quick and dirty” model developed using the method chosen by the model
developer.

LIMITED RESOURCE SITUATION
Many real-world application present limited resource problems. This can
make the decision of what is the best model different compared to a model
without restrictions. In a hospital, for example, there may be a limited
number of beds for patients; in a telephone costumer service facility, there
may be a limited number of attendants; in the fraud detection world the
number of people available to handle manual transactions is in general
fixed; and the number of transactions each member of fraud detection can
handle per day is also fixed due to practical reasons. In such applications,
being aware of the capacity rate becomes very important. It is also extremely

Data Mining with Skewed Data 69

important for the model outcome to indicate the probability6 of the event
rather than providing a simple yes/no response. By having the outcome as
a probability, models can be compared using for example, cutoffs that keep
the selecting rate equal to the capacity rate. In fraud detection, comparing
models detection rate and hit rate fixing for example 1000 transaction to be
investigated.

PARAMETRIC OPTIMISATION
Once we have the data and the optimisation criteria, the following questions
have to be answered:

Which classification method is recommended for producing the best
model for any given application?

Which parameter set should be used?
For instance, we can apply classification methods such as: Neural

Networks (NN), Bayesian Networks (BN), Na¨ıve Bayes (NB), Artificial
Immune Systems (AIS) and Decision Trees (DT), Support Vector
Machines (SVM), Logistic Regression and others. In fact, there is not a
final and unique answer to this first question. Support Vector Machines, for
instance, is known to be very effective for data with a very large number of
characteristics and is reported to perform well in categorisation problems in
Information Retrieval. However, our experience with SVM on fraud data
did not meet our expectations. For many parameter sets, the method did not
even converge to a final model and this behaviour for unbalanced data is
reported to not be uncommon.

In order to assess methods many factors can be used including the chosen
optimisation criteria, scalability, time for classification and time spent in
training, and sometimes more abstract criteria as time to understand how the
method works. Most of the time, when a method is published, or when an
implementation is done, the method depends on parameter choices that may
influence the final results significantly. Default parameters, in general, are a
good start. However, most of the time, they are far from producing the best
model. This comprises with our experience with many methods in many
different areas of Computer Science. This is particular true for classification
problems with skewed data.

Quite often we see comparisons against known methods where the
comparison is done by applying a special parameter variation strategy
(sometimes a parameter optimisation) for the chosen method while not

Soft Computing and Machine Learning with Python70

fairly conducing the same procedure for the other methods. In general, for
the other methods, default parameters, or a parameter set published in some
previous work is used. Therefore, it is not a surprise that the new proposed
method wins. At a first glance, the usage of the default parameter set may
seem to be fair and this bias is often reproduced in publications. However,
using default sets can be biased by the original training set and, thus, not be
fair.

Parameter optmisation takes time and is rarely conduced. For a fair
comparison, we argue that one has to fine tune the parameters for all compared
method. This can be done, for instance, via an exhaustive search of the
parameter space if this search is affordable, or some kind of sampling like in
Genetic Algorithm (GA) (see Figure 1). Notice, that the final parameter set
cannot be claimed to be optimal in this case.

Unfortunately, this sampling procedure is not as easy as one may
suppose. There is not a single best universal optimisation algorithm for all
problems (No Free Lunch theorem - Wolpert and Macready 1997 Wolpert &
Macready (1997)). Even the genetic algorithm scheme as shown in Figure
1 might require parameter adjustment. According to our experience, we
verified that a simple mistake in the probability distribution computation
may drive the results to completely different and/or misleading results. A
good genetic algorithm requires expertise, knowledge about the problem
that should be optimised by the GA, an intelligent design, and resources.
The more, the better. These considerations also imply that comparisons
involving methods with suboptimal parameter sets depend very much on
how well each parameter space sampling was conduced.

ROBUSTNESS OF PARAMETERS
After the parameter optimisation has been conducted, it can be advantageous
or desirable to have the optimised parameters independent from the training
set, i.e. they can be applied to different datasets of the same problem. In this
case we can call this parameter set robust.

When the parameter are not robust, the optimisation process is not as
strong as expected since the obtained optimised parameter set has no or
little generalisation power. In this case, in our experiments, we found that
it is a good approach to sacrifice some prediction power in order to gain
robustness in the parameter set. Note that a procedure using n-fold cross
validation could lead to a parameter set that is more independent from a

Data Mining with Skewed Data 71

dataset. However, we choose to present a different approach which also
generates robust parameter sets with more control of what is happening
during the process. This procedure is based on repeated sampling from the
development dataset into training and holdout samples. Then, we applied
parameter optimisation and choose the set of parameters which is the best in
average over all splits at the same time.

Figure 1: Genetic Algorithm for parameters optimisation. We start with an ini-
tial pool of e.g. 50 random individuals having a certain fitness, followed by
e.g. 20 Genetic Algorithm (GA) generations. Each GA generation combines
two randomly selected candidates among the best e.g. 15 from previous gen-
eration. This combination performs: crossover, mutation, random change or no
action for each parameter independently. As the generation goes by, the chance
of no action increases. In the end, one may perform a local search around the
optimised founded by GA optimisation. Retrieved from Gadi et al. Gadi et al.
(2008b).

In our work, in order to rewrite the optimisation function that should
be used in a GA algorithm, we have used a visualization procedure with
computed costs for many equally spaced parameter sets in the parameter
space. After having defined a good optimisation function, due to time
constraints, we did not proceed with another GA optimisation, but we
reused our initial runs used in the visualization, with the following kind of
multiresolution optimisation Kim & Zeigler (1996) (see Figure 2):

Soft Computing and Machine Learning with Python72

• we identified those parameters that have not changed, and we
frozen these values for these respective parameters;

• with any other parameter, we screened the 20 best parameter sets
for every split and identified a reasonable range;

• for all non-robust parameters, we chose an integer step s so the
search space did not explode;

Figure 2: An example of the multiresolution optimisation that was applied in
order to find robust parameters. In this example one can see two parameters in
the search space and three steps of this multiresolution optimisation. For the
parameter represented in horizontal line, the search space in first step ranges
from 10 to 90 with step size 20 and the minimum was found for 30. In the
second step, the scale ranges from 10 to 50 with step size 5 and the minimum
was found for 40. In third step, it ranges from 35 to 45, with step size 1, which
is equivalent to a local exhaustive search in this neighborhood. Retrieved from
Gadi et al. Gadi et al. (2008a).

• we evaluated the costs for all possible combinations according
to the search space defined above and found the parameter set
P that brings the minimum average cost among all the different
used splits;

• if the parameter set P was at the border of the search space, we
shifted this search space by one step in the direction of this border
and repeated last step until we found this minimum P in the inner
area of the search space;

Data Mining with Skewed Data 73

• we zoomed the screening in on the neighborhood of P, refined
steps s, and repeated the process from then on until no refinement
was possible.

MODEL STABILITY
In industry, generally the aim of modelling is to apply a model to a real
situation and to generate profit, either by automating decision making where
a model was not previously available or replacing old models by a new and
improved one. For doing so, most model development processes rely on
past information for their training. Therefore, it is very important to be able
to assess whether or not a model is still fit for propose when it is in use,
and to have a set of actions to expand the model’s life span. In this section
we explore advantages of using out-oftime samples, monitoring reports,
stability by vintage, vintage selection and how to deal with different scales
over time.

Out-of-time
An Out-Of-Time sample (OOT) is any sample of the same phenomena used
in the model development that is not in the development window8 , historic
vintages or observation point selected for development. In most cases in
reality a simple split of the development sample into training and testing
data cannot identify a real over-fitting of the model Sobehart et al. (2000).
Therefore, the most appropriated approach to identify this change is either
to select a vintage or observation point posterior to the development window
or select this previously to the development window. The second approach
gives the extra advantage of using the most up-to-date information for the
development.

Monitoring reports
The previous action, OOT, should be best done before the actual model
implementation; after that, it becomes important to evaluate whether the
implemented model still delivers a good prediction. For this purpose, it is
crucial to create a set of period based monitoring reports to track the model’s
performance and stability over time.

Soft Computing and Machine Learning with Python74

Stability by Vintage
Stability by vintage corresponds to breaking the development sample
down by time within the development window and evaluate the model’s
performance in all of the different periods within the data. For example,
if one has information collected from January 08 to December 08, a good
stability by vintage analysis would be to evaluate the model’s performance
over each month of 2008. This tends to increase the chance of a model to be
stable after its implementation.

Vintage Selection
Many phenomena found in nature, and even in human behaviour, repeat
themselves year after year in a recurrent manner; this is known as seasonality.
Choosing a development window from a very atypical month of the year can
be very misleading; in credit cards, for example, choosing only December
as the development time window can lead to overestimation of expected
losses since this is the busiest time of the year. Two approaches intend to
mitigate this problem. Both approaches are based on selecting the broadest
development window possible. One common window size is 12 months,
allowing the window to cover the whole year. Please notice, there is no need
to fix the start of the window to any particular month. The first approach
corresponds to simply develop the model with this pool of observation
points; it is expected for the model to be an average model that will work
throughout the year. A second approach is to introduce a characteristic
indicating the “month of the year” the information was collected from, or
any good combination of it, and then to develop the model. As a result, one
would expect a model that adjusts better to each observation point in the
development window.

Different Scale over Time
Another common problem applies to the situation where characteristic
values fall outside the training sample boundaries or some unknown
attributes occur. To reduce the impact of this problem, one can always leave
the groups with the smallest and biggest boundaries as negative infinite and
positive infinite, respectively, for example, changing [0,10];[11,20];[21,30]
to]−∞,10];[11,20];[21,+∞[. Furthermore, undefined values could always be
assigned to a default group. For example, if for a numeric characteristic a
non-numeric value ocurrs it could be assigned to a default group.

Data Mining with Skewed Data 75

FINAL REMARKS
This work provided a brief introduction to pratical problem solving for
machine learning with skewed data sets. Classification methods are generally
not designed to cope with skewed data, thus, various action have to be taken
when dealing with imbalanced data sets. For a reader looking for more
information about the field we can recommend a nice editorial by Chawla
et al. ? and three conference proceedings Chawla et al. (2003); Dietterich
et al. (2000); Japkowicz (2000). In addition, good algorithm examples can
be found in Weka Witten & Franku (2005) and SAS Delwiche & Slaughter
(2008).

Perhaps, most solutions that deal with skewed data do some sort of
sampling (e.g: with undersampling, oversampling, cost sensitive training
Elkan (2001), etc.). These contributions are effective Gadi et al. (2008a)
and quite well known nowadays. This text provides recommendations for
practitioners who are facing data mining problems due to skewed data.

Details on the experiments can be found at Gadi et al. (2008b) and Gadi
et al. (2008a), which presents an application of Artificial Immune Systems
on credit card fraud detection. Finally, another subject explored in this
work was the importance of parametric optimization for chosing a good
classification method for skewed data. We also suggested a proceedure for
parametric optimization.

Soft Computing and Machine Learning with Python76

REFERENCES
1. Agterberg, F. P., Bonham-Carter, G. F., Cheng, Q. & Wright, D. F.

(1993). Weights of evidence modeling and weighted logistic regression
for mineral potential mapping, pp. 13–32.

2. Chakravarti, I. M., Laha, R. G. & Roy, J. (1967). Handbook of Methods
of Applied Statistics, Vol. I, John Wiley and Sons, USE.

3. Charniak, E. (1991). Bayesians networks without tears, AI Magazine
pp. 50 – 63.

4. Chawla, N. V., Japkowicz, N. & Kotcz, A. (2004). Special issue on
learning from imbalanced data sets, SIGKDD Explorations 6(1): 1–6.

5. Chawla, N. V., Japkowicz, N. & Kotcz, A. (eds) (2003). Proceedings
of the ICML’2003 Workshop on Learning from Imbalanced Data Sets.

6. Delwiche, L. & Slaughter, S. (2008). The Little SAS Book: A Primer,
SAS Publishing.

7. Dietterich, T., Margineantu, D., Provost, F. & Turney, P. (eds) (2000).
Proceedings of the ICML’2000 Workshop on Cost-Sensitive Learning.

8. Elkan, C. (2001). The foundations of cost-sensitive learning, IJCAI,
pp. 973–978. URL: citeseer.ist.psu.edu/elkan01foundations.html

9. Gadi, M. F. A., Wang, X. & Lago, A. P. d. (2008a). Comparison with
parametric optimization in credit card fraud detection, ICMLA ’08:
Proceedings of the 2008 Seventh International Conference on Machine
Learning and Applications, IEEE Computer Society, Washington, DC,
USA, pp. 279–285.

10. Gadi, M. F., Wang, X. & Lago, A. P. (2008b). Credit card fraud
detection with artificial immune system, ICARIS ’08: Proceedings
of the 7th international conference on Artificial Immune Systems,
Springer-Verlag, Berlin, Heidelberg, pp. 119–131.

11. Green, D. M. & Swets, J. A. (1966). Signal Detection Theory and
Psychophysics, John Wiley and Sons. URL: http://www.amazon.co.uk/
exec/obidos/ASIN/B000WSLQ76/citeulike00-21

12. Japkowicz, N. (ed.) (2000). Proceedings of the AAAI’2000 Workshop
on Learning from Imbalanced Data Sets. AAAI Tech Report WS-00-
05.

13. Kim, J. & Zeigler, B. P. (1996). A framework for multiresolution
optimization in a parallel/distributed environment: simulation of
hierarchical gas, J. Parallel Distrib. Comput. 32(1): 90–102.

Data Mining with Skewed Data 77

14. Schneider, H. (1986). Truncated and censored samples from normal
populations, Marcel Dekker, Inc., New York, NY, USA.

15. Sobehart, J., Keenan, S. & Stein, R. (2000). Validation methodologies
for default risk models, pp. 51–56.

16. URL: http://www.moodyskmv.com/research/files/wp/p51p56.pdf
17. Trautmann, H. & Mehnen, J. (2009). Preference-based pareto

optimization in certain and noisy environments, Engineering
Optimization 41: 23–38.

18. Witten, I. H. & Franku, E. (2005). Data Mining: Practical Machine
Learning Tools and Techniques (Second Edition), Elsevier.

19. Wolpert, D. H. & Macready, W. G. (1997). No free lunch theorems for
optimization, Evolutionary Computation, IEEE Transactions on 1(1):
67–82. URL: http://dx.doi.org/10.1109/4235.585893

SECTION II
MACHINE LEARNING

TECHNIQUES AND
APPLICATIONS

SURVEY OF MACHINE
LEARNING ALGORITHMS FOR

DISEASE DIAGNOSTIC

CHAPTER

4

Meherwar Fatima1, Maruf Pasha2

1Institute of CS & IT, The Women University Multan, Multan, Pakistan
2Department of Information Technology, Bahauddin Zakariya University, Multan, Pakistan

ABSTRACT
In medical imaging, Computer Aided Diagnosis (CAD) is a rapidly growing
dynamic area of research. In recent years, significant attempts are made for
the enhancement of computer aided diagnosis applications because errors
in medical diagnostic systems can result in seriously misleading medical
treatments. Machine learning is important in Computer Aided Diagnosis.
After using an easy equation, objects such as organs may not be indicated
accurately. So, pattern recognition fundamentally involves learning from
examples. In the field of bio-medical, pattern recognition and machine

Citation: Fatima, M. and Pasha, M. (2017), “Survey of Machine Learning Algorithms
for Disease Diagnostic”. Journal of Intelligent Learning Systems and Applications, 9,
1-16. doi: 10.4236/jilsa.2017.91001.
Copyright: © 2017 by authors and Scientific Research Publishing Inc. This work is li-
censed under the Creative Commons Attribution International License (CC BY). http://
creativecommons.org/licenses/by/4.0

Soft Computing and Machine Learning with Python82

learning promise the improved accuracy of perception and diagnosis of
disease. They also promote the objectivity of decision-making process.
For the analysis of high-dimensional and multimodal bio-medical data,
machine learning offers a worthy approach for making classy and automatic
algorithms. This survey paper provides the comparative analysis of different
machine learning algorithms for diagnosis of different diseases such as heart
disease, diabetes disease, liver disease, dengue disease and hepatitis disease.
It brings attention towards the suite of machine learning algorithms and
tools that are used for the analysis of diseases and decision-making process
accordingly.

Keywords: Machine Learning, Artificial Intelligence, Machine Learning
Techniques

INTRODUCTION
Artificial Intelligence can enable the computer to think. Computer is
made much more intelligent by AI. Machine learning is the subfield of AI
study. Various researchers think that without learning, intelligence cannot
be developed. There are many types of Machine Learning Techniques
that are shown in Figure 1. Supervised, Unsupervised, Semi Supervised,
Reinforcement, Evolutionary Learning and Deep Learning are the types of
machine learning techniques.

Figure 1. Types of machine learning techniques.

Survey of Machine Learning Algorithms for Disease Diagnostic 83

These techniques are used to classify the data set.
1) Supervised learning: Offered a training set of examples with

suitable targets and on the basis of this training set, algorithms
respond correctly to all feasible inputs. Learning from exemplars
is another name of Supervised Learning. Classification and
regression are the types of Supervised Learning.

Classification: It gives the prediction of Yes or No, for example, “Is this
tumor cancerous?”, “Does this cookie meet our quality standards?”

Regression: It gives the answer of “How much” and “How many”.
2) Unsupervised learning: Correct responses or targets are not

provided. Unsupervised learning technique tries to find out the
similarities between the input data and based on these similarities,
un-supervised learning technique classify the data. This is also
known as density estimation. Unsupervised learning contains
clustering [1] .

Clustering: it makes clusters on the basis of similarity.
3) Semi supervised learning: Semi supervised learning technique

is a class of supervised learning techniques. This learning also
used unlabeled data for training purpose (generally a minimum
amount of labeled-data with a huge amount of unlabeled-data).
Semi-supervised learning lies between unsupervised-learning
(unlabeled-data) and supervised learning (labeled-data).

4) Reinforcement learning: This learning is encouraged by
behaviorist psychology. Algorithm is informed when the answer
is wrong, but does not inform that how to correct it. It has to
explore and test various possibilities until it finds the right answer.
It is also known as learning with a critic. It does not recommend
improvements. Reinforcement learning is different from
supervised learning in the sense that accurate input and output
sets are not offered, nor sub- optimal actions clearly précised.
Moreover, it focuses on on-line performance.

5) Evolutionary Learning: This biological evolution learning can
be considered as a learning process: biological organisms are
adapted to make progress in their survival rates and chance of
having off springs. By using the idea of fitness, to check how
accurate the solution is, we can use this model in a computer [1] .

Soft Computing and Machine Learning with Python84

6) Deep learning: This branch of machine learning is based on set
of algorithms. In data, these learning algorithms model high-level
abstraction. It uses deep graph with various processing layer,
made up of many linear and nonlinear transformation.

Pattern recognition process and data classification are valuable for
a long time. Humans have very strong skill for sensing the environment.
They take action against what they perceive from environment [2] . Big
data turns into Chunks due to multidisciplinary combined effort of machine
learning, databases and statistics. Today, in medical sciences disease
diagnostic test is a serious task. It is very important to understand the exact
diagnosis of patients by clinical examination and assessment. For effective
diagnosis and cost effective management, decision support systems that are
based upon computer may play a vital role. Health care field generates big
data about clinical assessment, report regarding patient, cure, follow-ups,
medication etc. It is complex to arrange in a suitable way. Quality of the data
organization has been affected due to inappropriate management of the data.
Enhancement in the amount of data needs some proper means to extract
and process data effectively and efficiently [3] . One of the many machine-
learning applications is employed to build such classifier that can divide the
data on the basis of their attributes. Data set is divided into two or more than
two classes. Such classifiers are used for medical data analysis and disease
detection.

Initially, algorithms of ML were designed and employed to observe
medical data sets. Today, for efficient analysis of data, ML recommended
various tools. Especially in the last few years, digital revolution has offered
comparatively low- cost and obtainable means for collection and storage of
data. Machines for data collection and examination are placed in new and
modern hospitals to make them capable for collection and sharing data in big
information systems. Technologies of ML are very effective for the analysis
of medical data and great work is done regarding diagnostic problems.
Correct diagnostic data are presented as a medical record or reports in
modern hospitals or their particular data section. To run an algorithm, correct
diagnostic patient record is entered in a computer as an input. Results can
be automatically obtained from the previous solved cases. Physicians take

Survey of Machine Learning Algorithms for Disease Diagnostic 85

assistance from this derived classifier while diagnosing novel patient at high
speed and enhanced accuracy. These classifiers can be used to train non-
specialists or students to diagnose the problem [4] .

In past, ML has offered self-driving cars, speech detection, efficient web
search, and improved perception of the human generation. Today machine
learning is present everywhere so that without knowing it, one can possibly
use it many times a day. A lot of researchers consider it as the excellent way
in moving towards human level. The machine learning techniques discovers
electronic health record that generally contains high dimensional patterns
and multiple data sets. Pattern recognition is the theme of MLT that offers
support to predict and make decisions for diagnosis and to plan treatment.
Machine learning algorithms are capable to manage huge number of data,
to combine data from dissimilar resources, and to integrate the background
information in the study [3] .

DIAGNOSIS OF DISEASES BY USING DIFFERENT
MACHINE LEARNING ALGORITHMS
Many researchers have worked on different machine learning algorithms for
disease diagnosis. Researchers have been accepted that machine-learning
algorithms work well in diagnosis of different diseases. Figurative approach
of diseases diagnosed by Machine Learning Techniques is shown in Figure
2. In this survey paper diseases diagnosed by MLT are heart, diabetes, liver,
dengue and hepatitis.

Heart Disease
Otoom et al. [5] presented a system for the purpose of analysis and
monitoring. Coronary artery disease is detected and monitored by this
proposed system. Cleveland heart data set is taken from UCI. This data set
consists of 303 cases and 76 attributes/features. 13 features are used out
of 76 features. Two tests with three algorithms Bayes Net, Support vector
machine, and Functional Trees FT are performed for detection purpose.
WEKA tool is used for detection. After experimenting Holdout test, 88.3%
accuracy is attained by using SVM technique.

Soft Computing and Machine Learning with Python86

Figure 2: Diseases diagnosed by MLT.

In Cross Validation test, Both SVM and Bayes net provide the accuracy
of 83.8%. 81.5% accuracy is attained after using FT. 7 best features are
picked up by using Best First selection algorithm. For validation Cross
Validation test are used. By applying the test on 7 best selected features,
Bayes Net attained 84.5% of correctness, SVM provides 85.1% accuracy
and FT classify 84.5% correctly.

Vembandasamy et al. [6] performed a work, to diagnose heart disease
by using Naive Bayes algorithm. Bayes theorem is used in Naive Bayes.
Therefore, Naive Bayes have powerful independence assumption. The
employed data-set are obtained from one of the leading diabetic research
institute in Chennai. Data set consists of 500 patients. Weka is used as a tool
and executes classification by using 70% of Percentage Split. Naive Bayes
offers 86.419% of accuracy.

Use of data mining approaches has been suggested by Chaurasia and
Pal [7] for heart disease detection. WEKA data mining tool is used that
contains a set of machine learning algorithms for mining purpose. Naive

Survey of Machine Learning Algorithms for Disease Diagnostic 87

Bayes, J48 and bagging are used for this perspective. UCI machine learning
laboratory provide heart disease data set that consists of 76 attributes. Only
11 attributes are employed for prediction. Naive bayes provides 82.31%
accuracy. J48 gives 84.35% of correctness. 85.03% of accuracy is achieved
by Bagging. Bagging offers better classification rate on this data set.

Parthiban and Srivatsa [8] put their effort for diagnosis of heart disease
in diabetic patients by using the methods of machine learning. Algorithms of
Naive Bayes and SVM are applied by using WEKA. Data set of 500 patients
is used that are collected from Research Institute of Chennai. Patients that
have the disease are 142 and disease is missing in 358 patients. By using
Naive Bayes Algorithm 74% of accuracy is obtained. SVM provide the
highest accuracy of 94.60.

Tan et al. [9] proposed hybrid technique in which two machine-learning
algorithms named Genetic Algorithm (G.A) and Support Vector Machine
(SVM) are joined effectively by using wrapper approach. LIBSVM and
WEKA data mining tool are used in this analysis. Five data sets (Iris,
Diabetes disease, disease of breast Cancer, Heart and Hepatitis disease) are
picked up from UC Irvine machine learning repository for this experiment.
After applying GA and SVM hybrid approach, 84.07% accuracy is attained
for heart disease. For data set of diabetes 78.26% accuracy is achieved.
Accuracy for Breast cancer is 76.20%. Correctness of 86.12% is resulting
for hepatitis disease. Graphical representation of Accuracy according to
time for detection of heart disease is shown in Figure 3.

Analysis:
In existing literature, SVM offers highest accuracy of 94.60% in 2012 as
in Table 1. In many application areas, SVM shows good performance result.
Attribute or features used by Parthiban and Srivatsa in 2012 are correctly
responded by SVM. In 2015, Otoom et al. used SVM variant called SMO. It
also uses FS technique to find best features. SVM responds to these features
and offers the accuracy of 85.1% but it is comparatively low as in 2012.
Training and testing set of both data sets are different, as well as, data types
are different.

Soft Computing and Machine Learning with Python88

Figure 3: Machine learning algorithm’s accuracy to detect heart disease.

Table 1: Comprehensive view of machine learning techniques for heart disease
diagnosis

Machine Learning
Techniques

Author Year Disease Resources of
Data Set

Tool Accuracy

Bayes Net Otoom et al. 2015 CAD (Coro-
nary artery
disease)

UCI WEKA 84.5%

SVM 85.1%

FT 84.5%

Naive Bayes Vembandasamy
et al.

2015 Heart Disease Diabetic
Research
Institute in
Chennai

WEKA 86.419%

Naive Bayes Chaurasia and
Pal

2013 Heart Disease UCI WEKA 82.31%

J48 84.35%

Bagging 85.03%

SVM Parthiban and
Srivatsa

2012 Heart disease Research
institute in
Chennai

WEKA 94.60%

Naive Bayes 74%

Hybrid Technique
(GA + SVM)

Tan et al. 2009 Heart disease UCI LIBSVM and
WEKA

84.07%

Advantages and Disadvantages of SVM:
Advantages: Construct correct classifiers and fewer over fitting, robust

to noise.
Disadvantages: It is a binary classifier. For the classification of multi-

class, it can use pair wise classification. Its Computational cost is high, so it
runs slow [10] .

Survey of Machine Learning Algorithms for Disease Diagnostic 89

Diabetes Disease
Iyer et al. [11] has performed a work to predict diabetes disease by using
decision tree and Naive Bayes. Diseases occur when production of insulin
is insufficient or there is improper use of insulin. Data set used in this work
is Pima Indian diabetes data set. Various tests were performed using WEKA
data mining tool. In this data-set percentage split (70:30) predict better than
cross validation. J48 shows 74.8698% and 76.9565% accuracy by using
Cross Validation and Percentage Split Respectively. Naive Bayes presents
79.5652% correctness by using PS. Algorithms shows highest accuracy by
utilizing percentage split test.

Meta learning algorithms for diabetes disease diagnosis has been discussed
by Sen and Dash [12] . The employed data set is Pima Indians diabetes
that is received from UCI Machine Learning laboratory. WEKA is used for
analysis. CART, Adaboost, Logiboost and grading learning algorithms are
used to predict that patient has diabetes or not. Experimental results are
compared on the behalf of correct or incorrect classification. CART offers
78.646% accuracy. The Adaboost obtains 77.864% exactness. Logiboost
offers the correctness of 77.479%. Grading has correct classification rate of
66.406%. CART offers highest accuracy of 78.646% and misclassification
Rate of 21.354%, which is smaller as compared to other techniques.

An experimental work to predict diabetes disease is done by the Kumari
and Chitra [13] . Machine learning technique that is used by the scientist
in this experiment is SVM. RBF kernel is used in SVM for the purpose of
classification. Pima Indian diabetes data set is provided by machine learning
laboratory at University of California, Irvine. MATLAB 2010a are used to
conduct experiment. SVM offers 78% accuracy.

Sarwar and Sharma [14] have suggested the work on Naive Bayes to
predict diabetes Type-2. Diabetes disease has 3 types. First type is Type-1
diabetes, Type-2 diabetes is the second type and third type is gestational
diabetes. Type-2 diabetes comes from the growth of Insulin resistance. Data
set consists of 415 cases and for purpose of variety; data are gathered from
dissimilar sectors of society in India. MATLAB with SQL server is used for
development of model. 95% correct prediction is achieved by Naive Bayes.

Ephzibah [15] has constructed a model for diabetes diagnosis. Proposed
model joins the GA and fuzzy logic. It is used for the selection of best
subset of features and also for the enhancement of classification accuracy.
For experiment, dataset is picked up from UCI Machine learning laboratory

Soft Computing and Machine Learning with Python90

that has 8 attributes and 769 cases. MATLAB is used for implementation.
By using genetic algorithm only three best features/attributes are selected.
These three attributes are used by fuzzy logic classifier and provide 87%
accuracy. Around 50% cost is less than the original cost. Table 2provides the
Comprehensive view of Machine learning Techniques for diabetes disease
diagnosis.

Analysis:
Naive Bayes based system is helpful for diagnosis of Diabetes disease.

Naive Bayes offers highest accuracy of 95% in 2012. The results show
that this system can do good prediction with minimum error and also this
technique is important to diagnose diabetes disease. But in 2015, accuracy
offered by Naive Bayes is low. It presents 79.5652% or 79.57% accuracy.
This proposed model for detection of Diabetes disease would require more
training data for creation and testing. Figure 4shows the Accuracy graph of
Algorithms for the diagnosis of Diabetes disease according to time.

Advantages and Disadvantages of Naive Bayes:
Advantages: It enhances the classification performance by eliminating

the unrelated features. Its performance is good. It takes less computational
time.

Table 2: Comprehensive view of machine learning techniques for diabetes dis-
ease diagnosis

Machine Learning
Techniques

Author Year Disease Resource of Data Set Tool Accuracy

Naive Bayes Iyer et al. 2015 Diabetes
Disease

Pima Indian Diabetes
dataset

WEKA 79.5652%

J48 76.9565%

CART Sen and Dash 2014 Diabetes
Disease

Pima Indian Diabetes
dataset from UCI

WEKA 78.646%

Adaboost 77.864%

Logiboost 77.479%

Grading 66.406%

SVM Kumari and
Chitra

2013 Diabetes
Disease

UCI MATLAB
2010a

78%

Naive Bayes Sarwar and
Sharma

2012 Diabetes
type-2

Different Sectors of
Society in India

MATLAB
with SQL
Server

95%

GA + Fuzzy
Logic

Ephzibah 2011 Diabetes
disease

UCI MATLAB 87%

Survey of Machine Learning Algorithms for Disease Diagnostic 91

Figure 4: Accuracy of machine learning algorithms to detect diabetes disease.

Disadvantages: This algorithm needs large amount of data to attain good
outcomes. It is lazy as they store entire the training examples [16] .

Liver Disease
Vijayarani and Dhayanand [17] predict the liver disease by using Support
vector machine and Naive bayes Classification algorithms. ILPD data set is
obtained from UCI. Data set comprises of 560 instances and 10 attributes.
Comparison is made on the basis of accuracy and time execution. Naive
bayes shows 61.28% correctness in 1670.00 ms. 79.66% accuracy is
attained in 3210.00 ms by SVM. For implementation, MATLAB is used.
SVM shows highest accuracy as compared to the Naive bayes for liver
disease prediction. In terms of time execution, Naives bayes takes less time
as compared to the SVM.

A study on intelligent techniques to classify the liver patients is
performed by the Gulia et al. [18] . Used data set is picked up from UCI.
WEKA data mining tool and five intelligent techniques J48, MLP, Random
Forest, SVM and Bayesian Network classifiers are used in this experiment.
In first step, all algorithms are applied on the original data set and get
the percentage of correctness. In second step, feature selection method is
applied on whole data-set to get the significant subset of liver patients and
all these algorithms are used to test the subset of whole data-set. In third step
they take comparison of outcomes before and after feature selection. After
FS, algorithms provide highest accuracy as J48 presents 70.669% accuracy,
70.8405% exactness is achieved by the MLP algorithm, SVM provides
71.3551% accuracy, 71.8696% accuracy is offered by Random forest and
Bayes Net shows 69.1252% accuracy.

Soft Computing and Machine Learning with Python92

Rajeswari and Reena [19] used the data mining algorithms of Naive
Bayes, K star and FT tree to analyze the liver disease. Data set is taken from
UCI that comprises of 345 instances and 7 attributes. 10 cross validation test
are applied by using WEKA tool. Naive Bayes provide 96.52% Correctness
in 0 sec. 97.10% accuracy is achieved by using FT tree in 0.2 sec. K star
algorithm classify the instances about 83.47% accurately in 0 sec. On the
basis of outcomes, highest classification accuracy is offered by FT tree on
liver disease dataset as compared to other data mining algorithms. Table
3 presents the comprehensive view of algorithms for the detection of liver
disease.

Analysis:
To diagnose liver disease, FT Tree Algorithm provides the highest result

as compare to the other algorithms. When FT tree algorithm is applied on
the dataset of liver disease, time taken for result or building the model is
fast as compared to other algorithms. According to its attribute, it shows
the improved performance. This algorithm fully classified the attributes
and offers 97.10% correctness. From the results, this Algorithm plays an
important role in determining enhanced classification accuracy of data set.
Accuracy graph of algorithms are shown in Figure 5.

Advantages and Disadvantages of FT:
Advantage: Easy to interpret and understand; Fast prediction.
Disadvantage: Calculations are complex mainly if values are uncertain

or if several outcomes are linked.

Dengue Disease
Tarmizi et al. [20] performed a work for Malaysia Dengue Outbreak
Detection by using the Models of Data Mining.

Table 3: Comprehensive view of machine learning techniques for liver disease
diagnosis

Machine Learning
Techniques

Author Year Disease Resource of Data
Set

Tool Accuracy

SVM Vijayarani and
Dhayanand

2015 Liver
Disease

ILPD from UCI MATLAB 79.66%

Naive Bayes 61.28%

Survey of Machine Learning Algorithms for Disease Diagnostic 93

J48 Gulia et al. 2014 Liver
Disease

UCI WEKA 70.669%

MLP 70.8405%

Random Forest 71.8696%

SVM 71.3551%

Bayesian Network 69.1252%

Naive Bayes Rajeswari and
Reena

2010 Liver
Disease

UCI WEKA 96.52%

K Star 83.47%

FT tree 97.10%

Figure 5: Accuracy of machine learning algorithms to detect liver disease.

Dengue is becoming a severe contagious disease. It creates trouble in
those countries where weather is humid for example Thailand, Indonesia
and Malaysia. Decision Tree (DT), Artificial Neural Network (ANN), and
Rough Set Theory (RS) are the classification algorithms that are used in
this study to predict dengue disease. Data set are taken from Public Health
Department of Selangor State. WEKA data mining tool with two tests (10
Cross-fold Validation and Percentage split) is used. By using 10-Cross fold
validation DT offers 99.95% accuracy, ANN presents 99.98% of Correctness
and RS shows 100% accuracy. After using PS, Both Decision tree and
Artificial Neural Network gives 99.92% of correctness. RS achieves 99.72%
accuracy.

Fathima and Manimeglai [21] performed a work to predict Arbovirus-
Dengue disease. Data mining algorithm that are used by these researchers
are Support Vector Machine. Data set for analysis is obtained from King

Soft Computing and Machine Learning with Python94

Institute of Preventive Medicine and surveys of many hospitals and
laboratories of Chennai and Tirunelveli from India. It contains 29 attributes
and 5000 samples. Data is examined by R project version 2.12.2. Accuracy
that is achieved by SVM is 0.9042.

Ibrahim et al. [22] suggested a system in which Artificial neural network
is used for forecasting the defervescence day of fever in patients of dengue
disease. Only clinical signs and symptoms are used by the proposed system
for detection. The data are gathered from 252 hospitalized patients, in which
4 patients are having DF (Dengue fever) and 248 patients are having DHF
(dengue hemorrhagic fever). MATLAB’s neural network toolbox is used.
Algorithm of Multilayer feed-forward neural network (MFNN) is used in
this experiment. Day of defervescence of fever is accurately predicted by
MFNN in DF and DHF with 90% correctness.

Figure 6 shows the accuracy graph of all algorithms for the diagnosis of
Dengue disease.

Analysis:
Different Machine learning techniques are used to diagnose dengue

disease. Dengue disease is one of the serious contagious diseases. As
in Table 4, for detection of dengue disease, RS theory shows the highest
result as compared to the other algorithms.

Figure 6: Accuracy of machine learning algorithms for dengue disease.

Survey of Machine Learning Algorithms for Disease Diagnostic 95

Table 4: Analysis of machine learning techniques for dengue disease detection

Machine Learning Techniques Author Year Disease Resource of Data Set Tool Accuracy

DT Tarmizi
et al.

2013 Dengue
Disease

Public Health Depart-
ment of Selangor State

WEKA 99.95%

ANN 99.98%

RS 100%

SVM Fathima
and Ma-
nimeg-
lai

2012 Arbovirus-
Dengue
disease

King Institute of
Preventive Medicine
and surveys of many
hospitals and labora-
tories of Chennai and
Tirunelveli from India

R project
Version
2.12.2

90.42%

MFNN Ibrahim
et al.

2005 Dengue
disease

From 252 hospitalized
patients

MAT-
LAB
neural
network
Tool box

90%

In 2005 and 2012, researchers used different algorithms but did not
attain highest result and improvements. In 2013, accuracy is improved by
using RS. It is capable to manage uncertainty, noise and missing data. For
the purpose of classification, Developed RS classifier is based on the Rough
set theory. Selection of attribute empowers the classifier to surpass the
other models. RS is a promising rule based method that offers meaningful
information. RS is also best from neural network in term of time. NN takes
much time to build model. DT is complex as well as costly algorithm. RS
does not need any initial and additional information about data but Decision
tree needs information.

Advantages and Disadvantages of RS:
Advantages: It is very easy to understand and provides direct

understanding of attained result. It evaluates data significance. It is
appropriate for both qualitative and quantitative data. It discovers the hidden
patterns. It also finds minimal set of data. It can find relationship that cannot
be identified by statistical methods.

Disadvantages: It has not so many limitations still it is not widely used.

Hepatitis Disease
Ba-Alwi and Hintaya [23] suggested a comparative analysis. Data mining
algorithms that are used for hepatitis disease diagnosis are Naive Bayes,
Naive Bayes updatable, FT Tree, K Star, J48, LMT, and NN. Hepatitis disease
data set was taken from UCI Machine Learning repository. Classification

Soft Computing and Machine Learning with Python96

results are measured in terms of accuracy and time. Comparative Analysis
is taken by using neural connections and WEKA: data mining tool. Results
that are taken by using neural connection are low than the algorithms used
in WEKA. In this Analysis of Hepatitis disease diagnosis, second technique
that is used is rough set theory, by using WEKA. Performance of Rough set
procedure is better than NN specially in case of medical data analysis. Naive
Bayes gives the accuracy of 96.52% in 0 sec. 84% Accuracy is attained by
the Naive Bayes Updateable algorithm in 0 sec. In 0.2 sec FT Tree presents
the accuracy of 87.10%. K star offers 83.47% Correctness. Time taken for
K star algorithm is 0 sec. Correctness of 83% is achieved by J48 and time
that J48 takes to classify is 0.03 sec. LMT provides 83.6% accuracy 0.6
sec. Neural network shows 70.41% of correctness. Naive Bayes is best
classification algorithm used in the rough set technique. It offers high
accuracy in minimum time.

Karlik [24] shows a comparative analysis of Naive Bayes and back
propagation classifiers to diagnose hepatitis disease. Key advantage of using
these classifiers is that they require small amount of data for categorization.
Types of hepatitis are “A, B, C, D and E”. These are generated by different
viruses of hepatitis. Rapid Miner open source software is used in this
analysis. Hepatitis data set is taken from UCI. Data set include 20 features
and 155 instances. 15 attributes are used in this experiment. Naive Bayes
classifier gives 97% accuracy. Three-layered feed- forward NN are used and
trained with Back propagation algorithm 155 instances are used for training.
Correctness of 98% is attained.

Sathyadevi [25] employed C4.5, ID3 and CART algorithms for
diagnosing the disease of hepatitis. This study uses the UCI hepatitis
patient data set. WEKA, tool is used in this analysis. CART has offered
great performance handling of missing values. So, CART algorithm shows
a highest classification accuracy of 83.2%. ID3 Algorithm offers 64.8% of
accuracy. 71.4% is attained by C4.5 algorithm. Binary decision tree (DT)
that is generated by CART algorithm has only two or no child. DT that is
formed by the C4.5 and ID3 can have two or more children. CART algorithm
performs well in terms of Accuracy and time complexity.

Analysis:
Many algorithms have been used for diagnosis of different diseases. Table

5 gives the comprehensive view. For the detection of Hepatitis disease, Feed
forward neural network with back propagation shows highest accuracy of
98%. Because in this model, three layered feed forward neural network is

Survey of Machine Learning Algorithms for Disease Diagnostic 97

trained with error back propagation algorithm. Back propagation training
with the rule of delta learning is an iterative gradient algorithm planned
to lessen the RMSE “root mean square error” between the real output of a
multilayered feed-forward neural networks and a desired output. Every layer
is connected to preceding layer and having no other connection. Second best
result is offered by Naive Bayes. But in terms of time to build model, Naive
Bayes runs fast as compare to neural network. Figurative approach for the
detection of hepatitis is shown in Figure 7.

Advantages and Disadvantages of NN:
Advantages: Adaptive Learning, Self-Organization, Real Time Operation

Fault Tolerance via Redundant Information Coding.
Disadvantages: Less over fitting needs great computational effort.

Sample Size must be large. It’s time consuming. Engineering Judgment
does not develop the relations between input and output variables so that the
model behaves like a black box [26] .

DISCUSSIONS AND ANALYSIS OF MACHINE
LEARNING TECHNIQUES
For diagnosis of Heart, Diabetes, Liver, Dengue and Hepatitis diseases,
several machine-learning algorithms perform very well. From existing
literature, it is observed that Naive Bayes Algorithm and SVM are widely
used algorithms for detection of diseases.

Table 5: Comprehensive view of machine learning techniques for hepatitis dis-
ease

Machine Learning
Techniques

Author Year Disease Resource
of Data Set

Tool Accuracy

Naive Bayes Ba-Alwi and
Hintaya,

2013 Hepatitis Disease UCI WEKA 96.52%

Naive Bayes update-
able

84%

FT 87.10%

K Star 83.47%

J48 83%

LMT 83.6%

NN 70.41%

Soft Computing and Machine Learning with Python98

Naive Bayes Karlik 2011 Hepatitis Disease UCI Rapid
Miner

97%

Feed forward NN
with Back propaga-
tion

98%

C4.5 Sathyadevi 2011 Hepatitis Disease UCI WEKA 71.4%

ID3 64.8%

CART 83.2%

Figure 7: Machine learning algorithm’s accuracy to detect hepatitis disease.

Both algorithms offer the better accuracy as compare to other algorithms.
Artificial Neural network is also very useful for prediction. It also shows the
maximum output but it takes more time as compared to other algorithms.
Trees algorithm are also used but they did not attain wide acceptance due
to its complexity. They also shows enhanced accuracy when it responded
correctly to the attributes of data set. RS theory is not widely used but it
presents maximum output.

CONCLUSION
Statistical models for estimation that are not capable to produce good
performance results have flooded the assessment area. Statistical models
are unsuccessful to hold categorical data, deal with missing values and
large data points. All these reasons arise the importance of MLT. ML
plays a vital role in many applications, e.g. image detection, data mining,
natural language processing, and disease diagnostics. In all these domains,
ML offers possible solutions. This paper provides the survey of different

Survey of Machine Learning Algorithms for Disease Diagnostic 99

machine learning techniques for diagnosis of different diseases such as heart
disease, diabetes disease, liver disease, dengue and hepatitis disease. Many
algorithms have shown good results because they identify the attribute
accurately. From previous study, it is observed that for the detection of heart
disease, SVM provides improved accuracy of 94.60%. Diabetes disease is
accurately diagnosed by Naive Bayes. It offers the highest classification
accuracy of 95%. FT provides 97.10% of correctness for the liver disease
diagnosis. For dengue disease detection, 100% accuracy is achieved by
RS theory. The feed forward neural network correctly classifies hepatitis
disease as it provides 98% accuracy. Survey highlights the advantages and
disadvantages of these algorithms. Improvement graphs of machine learning
algorithms for prediction of diseases are presented in detail. From analysis,
it can be clearly observed that these algorithms provide enhanced accuracy
on different diseases. This survey paper also provides a suite of tools that are
developed in community of AI. These tools are very useful for the analysis
of such problems and also provide opportunity for the improved decision
making process.

Soft Computing and Machine Learning with Python100

REFERENCES
1. Marshland, S. (2009) Machine Learning an Algorithmic Perspective.

CRC Press, New Zealand, 6-7.
2. Sharma, P. and Kaur, M. (2013) Classification in Pattern Recognition:

A Review. International Journal of Advanced Research in Computer
Science and Software Engineering, 3, 298.

3. Rambhajani, M., Deepanker, W. and Pathak, N. (2015) A Survey on
Implementation of Machine Learning Techniques for Dermatology
Diseases Classification. International Journal of Advances in
Engineering & Technology, 8, 194-195.

4. Kononenko, I. (2001) Machine Learning for Medical Diagnosis:
History, State of the Art and Perspective. Journal of Artificial
Intelligence in Medicine, 1, 89-109.

5. Otoom, A.F., Abdallah, E.E., Kilani, Y., Kefaye, A. and Ashour,
M. (2015) Effective Diagnosis and Monitoring of Heart Disease.
International Journal of Software Engineering and Its Applications. 9,
143-156.

6. Vembandasamy, K., Sasipriya, R. and Deepa, E. (2015) Heart Diseases
Detection Using Naive Bayes Algorithm. IJISET-International Journal
of Innovative Science, Engineering & Technology, 2, 441-444.

7. Chaurasia, V. and Pal, S. (2013) Data Mining Approach to Detect Heart
Disease. International Journal of Advanced Computer Science and
Information Technology (IJACSIT), 2, 56-66.

8. Parthiban, G. and Srivatsa, S.K. (2012) Applying Machine Learning
Methods in Diagnosing Heart Disease for Diabetic Patients.
International Journal of Applied Information Systems (IJAIS), 3, 25-
30.

9. Tan, K.C., Teoh, E.J., Yu, Q. and Goh, K.C. (2009) A Hybrid
Evolutionary Algorithm for Attribute Selection in Data Mining.
Journal of Expert System with Applications, 36, 8616-8630. https://
doi.org/10.1016/j.eswa.2008.10.013

10. Karamizadeh, S., Abdullah, S.M., Halimi, M., Shayan, J. and Rajabi,
M.J. (2014) Advantage and Drawback of Support Vector Machine
Functionality. 2014 IEEE International Conference on Computer,
Communication and Control Technology (I4CT), Langkawi, 2-4
September 2014, 64-65. https://doi.org/10.1109/i4ct.2014.6914146

11. Iyer, A., Jeyalatha, S. and Sumbaly, R. (2015) Diagnosis of Diabetes

Survey of Machine Learning Algorithms for Disease Diagnostic 101

Using Classification Mining Techniques. International Journal of Data
Mining & Knowledge Management Process (IJDKP), 5, 1-14. https://
doi.org/10.5121/ijdkp.2015.5101

12. Sen, S.K. and Dash, S. (2014) Application of Meta Learning Algorithms
for the Prediction of Diabetes Disease. International Journal of Advance
Research in Computer Science and Management Studies, 2, 396-401.

13. Kumari, V.A. and Chitra, R. (2013) Classification of Diabetes Disease
Using Support Vector Machine. International Journal of Engineering
Research and Applications (IJERA), 3, 1797-1801.

14. Sarwar, A. and Sharma, V. (2012) Intelligent Naive Bayes Approach
to Diagnose Diabetes Type-2. Special Issue of International Journal
of Computer Applications (0975-8887) on Issues and Challenges in
Networking, Intelligence and Computing Technologies-ICNICT 2012,
3, 14-16.

15. Ephzibah, E.P. (2011) Cost Effective Approach on Feature Selection
using Genetic Algorithms and Fuzzy Logic for Diabetes Diagnosis.
International Journal on Soft Computing (IJSC), 2, 1-10. https://doi.
org/10.5121/ijsc.2011.2101

16. Archana, S. and DR Elangovan, K. (2014) Survey of Classification
Techniques in Data Mining. International Journal of Computer Science
and Mobile Applications, 2, 65-71

17. Vijayarani, S. and Dhayanand, S. (2015) Liver Disease Prediction
using SVM and Naive Bayes Algorithms. International Journal of
Science, Engineering and Technology Research (IJSETR), 4, 816-820.

18. Gulia, A., Vohra, R. and Rani, P. (2014) Liver Patient Classification
Using Intelligent Techniques. (IJCSIT) International Journal of
Computer Science and Information Technologies, 5, 5110-5115.

19. Rajeswari, P. and Reena,G.S. (2010) Analysis of Liver Disorder Using
Data Mining Algorithm. Global Journal of Computer Science and
Technology, 10, 48-52.

20. Tarmizi, N.D.A., Jamaluddin, F., Abu Bakar, A., Othman, Z.A.,
Zainudin, S. and Hamdan, A.R. (2013) Malaysia Dengue Outbreak
Detection Using Data Mining Models. Journal of Next Generation
Information Technology (JNIT), 4, 96-107.

21. Fathima, A.S. and Manimeglai, D. (2012) Predictive Analysis for the
Arbovirus-Dengue using SVM Classification. International Journal of
Engineering and Technology, 2, 521-527.

Soft Computing and Machine Learning with Python102

22. Ibrahim, F., Taib, M.N., Abas, W.A.B.W., Guan, C.C. and Sulaiman, S.
(2005) A Novel Dengue Fever (DF) and Dengue Haemorrhagic Fever
(DHF) Analysis Using Artificial Neural Network (ANN). Computer
Methods and Programs in Biomedicine, 79, 273-281. https://doi.
org/10.1016/j.cmpb.2005.04.002

23. Ba-Alwi, F.M. and Hintaya, H.M. (2013) Comparative Study for
Analysis the Prognostic in Hepatitis Data: Data Mining Approach.
International Journal of Scientific & Engineering Research, 4, 680-685.

24. Karlik, B. (2011) Hepatitis Disease Diagnosis Using Back Propagation
and the Naive Bayes Classifiers. Journal of Science and Technology,
1, 49-62.

25. Sathyadevi, G. (2011) Application of CART Algorithm in Hepatitis
Disease Diagnosis. IEEE International Conference on Recent Trends
in Information Technology (ICRTIT), MIT, Anna University, Chennai,
3-5 June 2011, 1283-1287.

26. Singh, Y., Bhatia, P.K., and Sangwan, O. (2007) A Review of Studies
on Machine Learning Techniques. International Journal of Computer
Science and Security, 1, 70-84.

BANKRUPTCY PREDICTION
USING MACHINE LEARNING

CHAPTER

5

Nanxi Wang

Shanghai Starriver Bilingual School, Shanghai, China

ABSTRACT
With improved machine learning models, studies on bankruptcy prediction
show improved accuracy. This paper proposes three relatively newly-
developed methods for predicting bankruptcy based on real-life data. The
result shows among the methods (support vector machine, neural network
with dropout, autoencoder), neural network with added layers with dropout
has the highest accuracy. And a comparison with the former methods (logistic
regression, genetic algorithm, inductive learning) shows higher accuracy.

Citation: Wang, N. (2017), “Bankruptcy Prediction Using Machine Learning”. Journal
of Mathematical Finance, 7, 908-918. doi: 10.4236/jmf.2017.74049.
Copyright: © 2017 by authors and Scientific Research Publishing Inc. This work is li-
censed under the Creative Commons Attribution International License (CC BY). http://
creativecommons.org/licenses/by/4.0

Soft Computing and Machine Learning with Python104

Keywords: Support Vector Machine, Autoencoder, Neural Network, Bank-
ruptcy, Machine Learning

INTRODUCTION
Machine learning is a subfield of computer science. It allows computers
to build analytical models of data and find hidden insights automatically,
without being unequivocally coded. It has been applied to a variety of aspects
in modern society, ranging from DNA sequences classification, credit card
fraud detection, robot locomotion, to natural language processing. It can
be used to solve many types of tasks such as classification. Bankruptcy
prediction is a typical example of classification problems.

Machine learning was born from pattern recognition. Earlier works
of the same topic (machine learning in bankruptcy) use models including
logistic regression, genetic algorithm, and inductive learning.

Logistic regression is a statistical method allowing researchers to
build predictive function based on a sample. This model is best used for
understanding how several independent variables influence a single outcome
variable [1] . Though useful in some ways, logistic regression is also limited.

Genetic algorithm is based on natural selection and evolution. It can be
used to extract rules in propositional and first-order logic, and to choose the
appropriate sets of if-then rules for complicated classification problems [2] .

Inductive learning’s main category is decision tree algorithm. It identifies
training data or earlier knowledge patterns and then extracts generalized
rules which are then used in problem solving [2] .

To see if the accuracy of bankruptcy prediction can be further improved,
we propose three latest models―support vector machine (SVM), neural
network, and autoencoder.

Support vector machine is a supervised learning method which is
especially effective in cases of high dimensions, and is memory efficient
because it uses a subset of training points in the decision function. Also, it
specifies kernel functions according to the decision function [3] . Its nice
math property guarantees a simple convex optimization problem to converge
to a single global problem.

Neural networks, unlike conventional computers, are expressive models
that learn by examples. They contain multiple hidden layers, thus are capable
of learning very complicated relationships between inputs and outputs. And
they operate significantly faster than conventional techniques. However,

Bankruptcy Prediction Using Machine Learning 105

due to limited training data, overfitting will affect the ultimate accuracy.
To prevent this, a technique called dropout―temporarily and randomly
removes units (hidden and visible)―to the neural network [4] .

Autoencoder, also known as Diabolo network, is an unsupervised
learning algorithm that sets the target values to be equal to the inputs. By
doing this, it suppresses the computation of representing a few functions,
which improves accuracy. Also, the amount of training data required to learn
these functions is reduced [5] .

This paper is structured as follows. Section 2 describes the motivation
for this idea. Section 3 describes relevant previous work. Section 4 formally
describes the three models. In Section 5 we present our experimental results
where we do a parallel comparison within the three models we choose and
a longitudinal comparison with the three older models. Section 6 is the
conclusion. Section 7 is the reference.

MOTIVATION
The three models we choose (SVM, neural network, autoencoder) are
relatively newly-developed but have already been applied to many fields.

SVM has been used successfully in many real-world problems such as text
categorization, object tracking, and bioinformatics (Protein classification,
Cancer classification). Text categorization is especially helpful in daily
life―web searching and email filtering provide huge convenience and work
efficiency.

Neural networks learn by examples instead of algorithms, thus, they
have been widely applied to problems where it is hard or impossible to apply
algorithmic methods [6] . For instance, finger print recognition is an exciting
application. People can now use their unique fingerprints as keys to unlock
their phones and payment accounts, free from the troubling, long passwords.

Autoencoders are especially successful in solving difficult tasks
like natural language processing (NLP). They have been used to solve
the previous seemingly intractable problems in NLP, including word
embeddings, machine translation, document clustering, sentiment analysis,
and paraphrase detection.

However, the usage of the three models in economics or finance is
comparatively hard to find. So, we aim to find out if they still work well
in economical field by running them with real-life data in a predicting
bankruptcy task.

Soft Computing and Machine Learning with Python106

Another motivation is finding out if the accuracy of this particular
problem (bankruptcy prediction) can be improved after reading previous
works―The discovery of experts’ decision rules from qualitative bankruptcy
data using genetic algorithms [2] , and Predicting Bankruptcy with Robust
Logistic Regression [1] ―which uses older models. Thus, a comparison of
the models and results is included in this paper.

RELATED WORK
Machine learning enables computers to find insights from data automatically.
The idea of using machine learning to predict bankruptcy has previously
been used in the context of Predicting Bankruptcy with Robust Logistic
Regression by Richard P. Hauser and David Booth [1] . This paper uses
robust logistic regression which finds the maximum trimmed correlation
between the samples remained after removing the overly large samples
and the estimated model using logistic regression [1] . This model has its
limitation. The value of this technique relies heavily on researchers’ abilities
to include the correct independent variables. In other words, if researchers
fail to identify all the relevant independent variables, logistic regression will
have little predictive value [7] . Its overall accuracy is 75.69% in the training
set and 69.44% in testing set.

Another work, the discovery of experts’ decision rules from qualitative
bankruptcy data using genetic algorithms, in 2003 by Myoung-Jong Kim
and Ingoo Han uses the same dataset as we do. They apply older models―
inductive learning algorithms (decision tree), genetic algorithms, and neural
networks without dropout. Since the length of genomes in GA is fixed, a
given problem cannot easily be encoded. And GA gives no guarantee of
finding the global maxima. The problem of inductive learning is with the
one-step-ahead node splitting without backtracking, which may generate a
suboptimal tree. Also, decision trees can be unstable because small variations
in the data might result in a completely different tree being generated [3]
. And the absence of dropout in the neural network model increases the
possibility of overfitting which affects accuracy. The overall accuracies are
89.7%, 94.0%, and 90.3% respectively.

The models we choose either contain a newly developed technique,
like dropout, or completely new models that have hardly been utilized in
bankruptcy prediction.

Bankruptcy Prediction Using Machine Learning 107

MODEL DESCRIPTION
This section describes the proposed three models.

Support Vector Machine
Specifically, we use support vector classify (SVC), a subcategory of SVM,
in this task. It constructs a hyper-plane, as shown in Figure 1, in a high
dimensional space which is used for classification. Generally, a good
separation represented by the solid line in Figure 1 means the distance(the
space between the dotted lines) to the nearest training data points (the red
and blue dots) of any class (represented by the color red and blue) is the
largest. This is also known as functional margin [3] .

With training vectors in two classes and a vector,

respectively, SVM aims at solving the problem:

subject to

Its dual is

subject to

where e is a common vector, C>0 is upper bound, Q is n by n positive
semidefinite matrix, is the
kernel.

Soft Computing and Machine Learning with Python108

Figure 1: SVM model [3] .

Here the function implicitly maps the training vectors into a higher
dimensional space.

The decision function is:

 [3]

Neural Network with Dropout
Neural networks’ inputs are modelled as layers of neurons. Its structure is
shown in the following figure.

As shown in Figure 1, the formal neuron uses n inputs x1,x2,⋯,xn to
classify the signals coming from dendrites, and are then synoptically weighted
correspondingly with w1,w2,⋯,wn that measure their permeabilities. Then,
the excitation level of the neuron is calculated as the weighted sum of input
values:

Bankruptcy Prediction Using Machine Learning 109

f in Figure 2 represents activation function.
When the value of excitation level x reaches the threshold h, the output y

(state) of the neuron is induced. This simulates the electric impulse generated
by axon [8] .

Dropout is a technique that further improves neural network’s accuracy.
In Figure 3, let L be the number of hidden layers, l∈{1,⋯,L}l∈{1,⋯,L} the
hidden layers of the neural network, z(l)z(l) and y(l)y(l) the vectors of inputs
and outputs of layer ll , respectively. W(l)W(l) and b(l)b(l) are the weights
and biases at layer ll . For l∈{0,⋯,L−1}l∈{0,⋯,L−1} and any hidden unit i,
the network then can be described as:

Figure 2: Neural network model.

Soft Computing and Machine Learning with Python110

Figure 3: Artificial neural network.

where f is any activation function.
With dropout, the feed-forward operation becomes:

r(l)-Bernoulli(p), j

 [4] .

Autoencoder
Consider an n/p/n autoencoder.

In Figure 4, let F and G denote sets, n and p be positive integers where
0 < p < n, and B be a class of functions from Fn to Gp.

Define X={x1,⋯,xm} as a set of training vectors in Fn. When there are
external targets, letY={y1,⋯,ym} denote the corresponding set of target
vectors in Fn. And ∆ is a distortion function (e.g. Lp norm, Hamming
distance) defined over Fn.

Bankruptcy Prediction Using Machine Learning 111

For any A A and B B, the input vector x Fn becomes output vector
A ◦ B(x) Fn through the autoencoder. The goal is to find A A and B B
that minimize the overall distortion function:

 [10] .

Decision Tree

Given training vectors and a label vector , a
decision tree groups the sample according to the same labels.

Let Q represents the data at node m. The tree partitions the data θ=(j,tm)

Figure 4: An n/p/n Autoencoder Architecture [Pierre Baldi, 2012].

The impurity function H( ) is used to calculate the impurity at m,
the choice of which depends on the task being solved (classification or
regression)

Choose the parameters that minimises the impurity

Soft Computing and Machine Learning with Python112

Then recur for subsets until reaching the maximum
possible depth, [3] .

EXPERIMENTAL RESULT
The data we used shown in Table 1, called Qualitative Bankruptcy database,
is created by Martin. A, Uthayakumar. j, and Nadarajan. m in February
2014 [10] . The attributes include industrial risk, management risk, financial
flexibility, credibility, competitiveness, and operating risk.

Parallel Comparison

SVM (Linear Kernel)
As shown in Table 2, the accuracy increases when truncate increases in a
SVM model.

Neural Network (Activation = Softmax, Num_Classes = 2, Op-
timiser = Adam, Loss = Categorical _Crossentropy, Metrics =
Accuracy)
As shown in Table 3, when other things in the model hold the same, dropout
rate of 0.5 yields the highest accuracy.

Table 1: Dataset Description

Data set Dimensionality Instances Training Set Test Set Validation

Bankruptcy 6 times1 250 80% 10% 10%

Table 2: Accuracy of Neural Network Model with Truncate 50 or 100

variation accuracy
truncate = 50 0.9899
truncate = 100 0.9933

Table 3: Accuracy of Neural Network Model with and without Dropout

variation accuracy
without dropout 0.9867 with loss 0.0462

Bankruptcy Prediction Using Machine Learning 113

with dropout (dropout rate = 0.1) 0.9867 with loss 0.0292
with dropout (dropout rate = 0.3) 0.9933 with loss 0.0300
with dropout (dropout rate = 0.4) 0.9933 with loss 0.0401
with dropout (dropout rate = 0.5) 0.9933 with loss 0.0278
with dropout (dropout rate = 0.7) 0.9933 with loss 0.0428
with dropout (dropout rate = 0.8) 0.9867 with loss 0.0318

As shown in Table 4 and Table 5, we can conclude that adding layers
increases accuracy. Figure 5and Figure 6 depict Table 5.

Autoencoder (Encoding_Dim = 2, Activation = “Relu”, Optimiz-
er = “Adam”, Lose = “Mse”)
As shown in Table 6, autoencoder with decision tree yields higher accuracy.

Longitudinal Comparison
As shown in Table 7, neural network with truncate = 100 with added layers
with dropout has the highest accuracy. And all the new models have higher
accuracy than the old ones.

CONCLUSIONS
Support vector machine, neural network with dropout, and autoencoder are
three relatively new models applied in bankruptcy prediction problems.
Their accuracies outperform those of the three older models (robust logistic
regression, inductive learning algorithms, genetic algorithms). The improved
aspects include the control for overfitting, the improved probability of finding
the global maxima, and the ability to handle large feature spaces. This paper
compared and concluded the progress of machine leaning models regarding
bankruptcy prediction, and checked to see the performance of relatively new
models in the context of bankruptcy prediction that have rarely been applied
in that field.

However, the three models also have drawbacks. SVM does not directly
give probability estimates, but uses an expensive five-fold cross-validation
instead.

Soft Computing and Machine Learning with Python114

Table 4: Accuracy of Neural Network Model with Two, Three, and Four Layer

variation accuracy

two layer with dropout (dropout rate = 0.5) 0.9933 with loss 0.0278

three layer (added layer with dense 200) with dropout
(dropout rate = 0.5)

0.9933 with loss 0.0221

four layer (added layer with dense 16) with dropout
(dropout rate = 0.5)

1.0000 with loss 0.0004

Table 5: Accuracy of Neural Network Model with Truncate 50 or 100 and With
Four Layers

variation accuracy

truncate = 50 with four layers (added layer dense
16,200) with dropout rate 0.5

0.9950 with loss 0.0389

truncate = 100 with four layers (added layer dense
16,200) with dropout rate 0.5

1.0000 with loss 0.0004

Table 6: Accuracy of Neural Network Model with SVM or With Decision Tree

variation accuracy

with SVM 0.9867

with decision tree 0.9933

Table 7: Accuracy of Neural Network Model with Different models

model accuracy

Robust logistic regression 0.6944

inductive learning algorithms (decision tree) 0.897

genetic algorithms 0.94

Bankruptcy Prediction Using Machine Learning 115

neural networks without dropout 0.903

SVM truncate = 100 0.9933

Truncate = 100 with four layers (added layer dense
16,200) with dropout rate 0.5

1.0000 with loss 0.0004

autoencoder (with decision tree) 0.9933

Also, if the data sample is not big enough, especially when outnumbered
by the number of features, SVM is likely to give bad performance [4] . With
dropout, the time to train the neural network will be 2 to 3 times longer
than training a standard neural network. An autoencoder captures as much
information as possible, not necessarily the relevant information. And this
can be a problem when the most relevant information only makes up a small
percent of the input.

Figure 5: Neural network-loss.

Soft Computing and Machine Learning with Python116

Figure 6: Neural network-accuracy.

The solutions to overcome these drawbacks are yet to be found.

Bankruptcy Prediction Using Machine Learning 117

REFERENCES
1. Hauser, R.P. and Booth, D. (2011) Predicting Bankruptcy with Robust

Logistic Regression. Journal of Data Science, 9, 565-584.
2. Kim, M.-J. and Han, I. (2003) The Discovery of Experts’ Decision

Ruels from Qualitative Bankruptcy Data Using Genetic Algorithms.
Expert Systems with Application, 25, 637-646,

3. Pedregosa, et al. (2011) Scikit-Learn: Machine Learning in Python.
Journal of Machine Learning Research, 12, 2825-2830.

4. Sirvastava, N., et al. (2014) Dropout: A Simple Way to Prevent Neural
Networks from Overfitting. Journal of Machine Learning Research,
15, 1929-1958.

5. Dev, D. (2017) Deep Learning with Hadoop. Packet Publishing,
Birmingham, 52.

6. Nielsen, F. (2001) Neural Networks—Algorithms and Applications.
https://www.mendeley.com/research-papers/neural-networks-
algorithms-applications-5/

7. Robinson, N. (n.d.) The Disadvantages of Logistic Regression. http://
classroom.synonym.com/disadvantages-logistic-regression-8574447.
html

8. Sima, J. (1998) Introduction to Neural Networks. Technical Report No.
755.

9. Baldi, P. (2012) Autoencoders, Unsupervised Learning, and Deep
Architectures. Journal of Machine Learning Research, 27, 37-50.

10. Martin, A., Uthayakumar, J. and Nadarajan, M. (2014) Qualitative
Bankruptcy Data Set, UCI. https://archive.ics.uci.edu/ml/datasets/
qualitative_bankruptcy

PREDICTION OF SOLAR
IRRADIATION USING

QUANTUM SUPPORT VECTOR
MACHINE LEARNING

ALGORITHM

CHAPTER

6

Makhamisa Senekane1, Benedict Molibeli Taele2

1Faculty of Computing, Botho University-Maseru Campus, Maseru, Lesotho
2Department of Physics and Electronics, National University of Lesotho, Roma, Lesotho

ABSTRACT
Classical machine learning, which is at the intersection of artificial intel-
ligence and statistics, investigates and formulates algorithms which can be
used to discover patterns in the given data and also make some forecasts
based on the given data. Classical machine learning has its quantum part,
which is known as quantum machine learning (QML). QML, which is a

Citation: Senekane, M. and Taele, B. (2016), “Prediction of Solar Irradiation Using
Quantum Support Vector Machine Learning Algorithm”. Smart Grid and Renewable
Energy, 7, 293-301. doi: 10.4236/sgre.2016.712022.
Copyright: © 2016 by authors and Scientific Research Publishing Inc. This work is li-
censed under the Creative Commons Attribution International License (CC BY). http://
creativecommons.org/licenses/by/4.0

Soft Computing and Machine Learning with Python120

field of quantum computing, uses some of the quantum mechanical prin-
ciples and concepts which include superposition, entanglement and quan-
tum adiabatic theorem to assess the data and make some forecasts based on
the data. At the present moment, research in QML has taken two main ap-
proaches. The first approach involves implementing the computationally ex-
pensive subroutines of classical machine learning algorithms on a quantum
computer. The second approach concerns using classical machine learning
algorithms on a quantum information, to speed up performance of the algo-
rithms. The work presented in this manuscript proposes a quantum support
vector algorithm that can be used to forecast solar irradiation. The novelty
of this work is in using quantum mechanical principles for application in
machine learning. Python programming language was used to simulate the
performance of the proposed algorithm on a classical computer. Simulation
results that were obtained show the usefulness of this algorithm for predict-
ing solar irradiation.

Keywords: Quantum, Quantum Machine Learning, Machine Learning,
Support Vector Machine, Quantum Support Vector Machine, Energy, Solar
Irradiation

INTRODUCTION
Machine learning is a subfield of artificial intelligence. It is a set of
techniques that are used to analyze and find patterns in input data to make
predictions/inferences [1] - [10] . It has applications in areas such as image
recognition, natural language processing, robotics, spam filtering, drug
discovery, medical diagnosis, financial analysis, bioinformatics, marketing
and even politics [10] [11] [12] .

There are various classical machine learning algorithms, and these
include Bayesian networks, artificial neural networks, deep learning,
clustering and Support Vector Machine (SVM) to name but a few. The main
focus of this paper is on the quantum version of SVM algorithm, which
was introduced by Vapnik in the 1990s [13] . Machine learning algorithms
can be divided into three major categories, namely supervised learning,
unsupervised learning and reinforcement learning, depending on the type of
data to be used for predictive analytics [1] [3] [10] [13] .

The field of Quantum Information Processing (QIP) exploits quantum
mechanical concepts such as superposition, entanglement and tunneling
for computation and communication tasks [14] . Recently, there has been

Prediction of Solar Irradiation Using Quantum Support Vector ... 121

a concerted effort to explore the benefits of using QIP for machine learning
applications. This results in the field of Quantum Machine Learning (QML).
It has also been demonstrated that QML techniques provide a performance
speedup compared to their classical counterparts [11] [15] . This speedup is
the major motivation for exploring QML algorithms.

There are two basic approaches to QML [9] . The first approach uses the
classical data as input, and transforms it into quantum data so that it could
be processed on a quantum computer. In essence, this approach implements
classical machine learning algorithms on a quantum computer. The second
approach involves making use of quantum mechanical principles in order
to design machine learning algorithms for classical computers. In the work
reported in this paper, we used the first approach to model solar power using
quantum SVM.

The remainder of this paper is structured as follows. The next section
provides background information on machine learning, QIP and QML. This
is followed by Section 3, which discusses the design and implementation
of the sun power prediction model reported in this Manuscript. Section
4 provides the results and discusses the results obtained. Finally, the last
section concludes this paper.

BACKGROUND INFORMATION
Machine learning, which is used interchangeably with predictive analytics,
is a sub-field of artificial intelligence which is concerned with building
algorithms that make use of input data to make predictions [1] [2] [3] [4] .
There are three main categories of machine learning, and they are [1] [10] :

-Supervised learning: makes use of both training data and data label
to make predictions about future points. Examples of supervised learning
algorithms are logistic regression, artificial neural networks and support
vector machines.

- Unsupervised learning: makes use of training data only to make
a model that maps inputs to output. As opposed to supervised
learning, unsupervised learning does not make use of data label.
Examples of unsupervised learning are clustering and anomaly
detection algorithms.

- Reinforcement learning: uses reinforcement in the form of reward
or punishment. If the algorithm succeeds in making correct
predictions, it is rewarded. However, if it fails, it is punished.

Soft Computing and Machine Learning with Python122

Reinforcement learning is used mainly in robotics and computer
games.

Support Vector Machines
Support vector machine learning is the most commonly used “off-the-
shelf” supervised learning algorithm [1] . SVM solves problems in both
classification and regression. It uses the principle of maximum margin
classifier to separate data. For a d- dimensional data, SVM uses a d ? 1
hyperplane for data separation. For instance, if data are supplied on a plane
(two dimensions), SVM would use a line (one dimension) for classification.
The principle of maximum margin classification ensures that there is a
maximum separation between positive results (y = 1) and negative results (y
= −1). The margin in this case is the distance between the decision boundary
and the support vectors, where support vectors are data points closest to the
decision boun- dary.

One of the key advantages of support vector machines is that unlike other
supervised learning algorithms, its loss function is a global optimization
problem, hence it is not prone to local optima [4] . Additionally, SVM is
robust against over-fitting, hence it is suitable for making generalizations
even with a small dataset. Lastly, by using a technique known as kernel
trick, SVM can separate data which is not linearly separable in its input
space. This technique enables SVM to transform input data into higher-
dimen- sional space, where a separating linear hyperplane can be found.

Quantum Information Processing
In stark contrast to classical computers, which use a binary digit (bit) as a
unit of information, quantum computers use a quantum bit (qubit) as a unit
of information. Mathematically, a qubit is given as [14] [16]

 (1)
where α and β are probability amplitudes. These amplitudes satisfy the
condition

 (2)
It is worth noting that a qubit, which is a unit of information for a two-

state system, can be generalized to any arbitrary d-state. Such a generalized

Prediction of Solar Irradiation Using Quantum Support Vector ... 123

unit of information is known as a quantum digit (qudit) [16] . Just like a
classical computer, which use gates for computation, quantum computers
also use quantum gates to perform operations on qudits. Essentially, a

quantum gate operation on a quantum state (which is represented as
a column vector) is a linear operation. Therefore, mathematically speaking,
quantum information processing makes use of vectors, matrices and tensors,
hence it involves linear transformations.

Quantum Machine Learning
Machine learning generally represents data in vector and matrix form. This
is also the case with QIP, hence why QIP concepts find applications in
machine learning. This results in the new field of research called quantum
machine learning. Quantum machine learning can take two forms: where
classical machine learning algorithms are transformed into their quantum
counterparts; to be implemented on a quantum information processor, or
taking some of the computationally expensive classical machine learning
sub-routines and implementing them on the quantum computer.

Model Evaluation and Validation
Different measures are used to evaluate and validate models. These measures
include mean squared error (MSE), Root mean squared error (RMSE), mean
absolute error (MAE), and R2 error.

Mean Squared Error
Mean squared error is one of the measures of the goodness of fit. It
measures the closeness of a data line to the data points. For n as the number

of predictions, as the vector of predicted values, and Y as the vector of
observations, MSE is given as

 (3)

Root Mean Squared Error
Root mean squared error, which is also a measure of goodness of fit, is the
average Euclidean distance of the line from the data points. It is given as

Soft Computing and Machine Learning with Python124

 (4)

where n is the number of predictions, is the vector of predicted values,
and Y is the vector of observations.

Mean Absolute Error
Mean absolute error measures the closeness of predicted results to the
observations. It is given as

 (5)

R2 Error
R2 error is also known as coefficient of determination. It is the measure of
degree of variance. It is given as

 (6)

where, for a mean of observations , SStot is given as

 (7)
and

 (8)

IMPLEMENTATION
In this work, quantum support vector machine was implemented using a
recorded data from Digital Technology Group (DTG) Weather Station in
Cambridge University1. The dataset consists of forty nine instances, which
are the training examples. These instances represent the measurements that
were recorded at DTG, with a time interval of thirty minutes. Additionally,
this dataset consists of three features, namely temperature, humidity and
wind speed.

Prediction of Solar Irradiation Using Quantum Support Vector ... 125

The recorded classical information is converted to quantum state such

that for a training example and number of training examples N:

 (9)
This is then followed by optimizing the quantum support vector

hyperplane parameters, as articulated in [17] . The optimization is done by
reducing this optimization problem into a system of linear equations, and
then using a quantum algorithm for solving a system of linear equations,
which uses matrix inversion. This quantum algorithm is known to have an
exponential speedup over its classical counterpart.

The quantum support vector machine was implemented using Python
programming language.

Python machine learning package used for this task was Scikit-
learn version 0.18.0 [5] . The graphical user interface (GUI) part of the
implementation was realized using Orange data mining software package,
release number 3.3.82. This GUI helped visualize the input dataset and the
plots for the results obtained from this implementation. It also supports other
python packages such as scikit-learn.

The results were then recorded and errors calculated. The following
errors were calculated, for different training sizes:
_mean square error (MSE),
_root mean square error (RMSE),
_mean absolute error (MAE),
_coefficient of determination, R2.

RESULTS AND DISCUSSION
The dataset was broken down into different portions, with some part being
used for training data, and the other part being used for cross-validation. Table
1 shows different calculated errors for different training data sizes. From the
table, it can be observed that the best results are obtained when the training
size is 70% of the dataset. Therefore, the training size of 70% was chosen
for this implementation.

The next step was to analyze the correlation of the three features used
(temperature, humidity and wind speed). Figure 1 and Figure 2 show the
scatter plots of these correlations. Since the graphs in the figures are not

Soft Computing and Machine Learning with Python126

linear, it implies that the features were not correlated, hence they were
independent. Finally, Sieve diagrams were plotted, and are shown in Figure
3 and Figure 4. These results underline the robustness of the proposed
algorithm.

CONCLUSIONS
We have reported an algorithm for solar power prediction using quantum
support vector machine learning algorithm. The algorithm is a quantum
counterpart of a classical support vector machine, which is known to have a
unique solution, and hence it converges to a global optimum.

Table 1: Calculated errors for different dataset training sizes

Figure 1: This figure shows the relationship between temperature (in degrees
Celsius) and humidity. The non-linearity of the data points implies that the two
features are not correlated.

Prediction of Solar Irradiation Using Quantum Support Vector ... 127

Figure 2: This figure shows the relationship between temperature (in degrees
Celsius) and wind speed (in knots). Since the data point portray non-linearity, it
can be observed that these two features are independent.

Figure 3: A sieve diagram for temperature and humidity attributes.

Soft Computing and Machine Learning with Python128

Figure 4: A sieve diagram for temperature and wind speed attributes.

This is in contrast to other machine learning algorithms such as neural
networks, which can converge to local optima, since they may not have
unique solutions.

In the work reported in this paper, the quantum support vector algorithm
was simulated using Python programming language. A dataset with forty
nine instances and three features (temperature, humidity and windspeed) was
used for this simulation. The results obtained from the simulation underline
the utility of the proposed quantum support vector algorithm for solar power
prediction. However, it should be noted that in the implementation, a generic
optimization algorithm was used for implementing quantum SVM. Future
work should explore the feasibility.

Prediction of Solar Irradiation Using Quantum Support Vector ... 129

REFERENCES
1. Russell, S.J., Norvig, P., Canny, J.F., Malik, J.M. and Edwards, D.D.

(2010) Artificial Intelligence: A Modern Approach. Prentice Hall, New
York.

2. Rogers, S. and Girolami, M. (2015) A First Course in Machine
Learning. CRC Press, London.

3. Sugiyama, M. (2015) Introduction to Statistical Machine Learning.
Morgan Kaufmann, Amsterdam.

4. Bishop, C.M., et al. (2006) Pattern Recognition and Machine Learning.
Springer, New York.

5. Garreta, R. and Moncecchi, G. (2013) Learning Scikit-Learn: Machine
Learning in Python. Packt Publishing Ltd., Birmingham.

6. Raschka, S. (2015) Python Machine Learning. Packt Publishing Ltd.,
Birmingham.

7. Ivezic, Z., Connolly, A., Vanderplas, J. and Gray, A. (2014) Statistics,
Data Mining and Machine Learning in Astronomy. Princeton University
Press, Princeton, New Jersey.

8. Lantz, B. (2013) Machine learning with R. Packt Publishing Ltd.,
Birmingham.

9. Wittek, P. (2014) Quantum Machine Learning: What Quantum
Computing Means to Data Mining. Academic Press, Cambridge,
Massachusetts.

10. Schuld, M., Sinayskiy, I. and Petruccione, F. (2015) An Introduction
to Quantum Machine Learning. Contemporary Physics, 56, 172-185.

11. Cai, X.D., Wu, D., Su, Z.E., Chen, M.C., Wang, X.L., Li, L., Liu, N.L.,
Lu, C.Y. and Pan, J.W. (2015) Entanglement-Based Machine Learning
on a Quantum Computer. Physical Review Letters, 114, 110504. https://
doi.org/10.1103/PhysRevLett.114.110504

12. Siegel, E. (2013) Predictive Analytics: The Power to Predict Who Will
Click, Buy, Lie, or Die. John Wiley & Sons, Hoboken, New Jersey.

13. Marsland, S. (2015) Machine Learning: An Algorithmic Perspective.
CRC Press, Boca Raton, Florida.

14. Nielsen, M.A. and Chuang, I.L. (2010) Quantum Computation and
Quantum Information. Cambridge University Press, Cambridge,
UK. https://doi.org/10.1017/CBO9780511976667

Soft Computing and Machine Learning with Python130

15. Lloyd, S., Mohseni, M. and Rebentrost, P. (2013) Quantum Algorithms
for Supervised and Unsupervised Machine Learning. arXiv:1307.0411

16. Wilde, M.M. (2013) Quantum Information Theory. Cambridge
University Press, Cambridge, UK. https://doi.org/10.1017/
CBO9781139525343

17. Li, Z., Liu, X., Xu, N. and Du, J. (2015) Experimental Realization
of a Quantum Support Vector Machine. Physical Review Letters, 114,
140504. https://doi.org/10.1103/PhysRevLett.114.140504

PREDICTING ACADEMIC
ACHIEVEMENT OF

HIGH-SCHOOL STUDENTS
USING MACHINE LEARNING

CHAPTER

7

Hudson F. Golino1, Cristiano Mauro Assis Gomes2, Diego
Andrade2

1Núcleo de Pós-Graduação, Pesquisa e Extensão, Faculdade Independente do Nordeste,
Vitória da Conquista, Brazil
2Department of Psychology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

ABSTRACT
The present paper presents a relatively new non-linear method to predict
academic achievement of high school students, integrating the fields of
psychometrics and machine learning. A sample composed by 135 high-
school students (10th grade, 50.34% boys), aged between 14 and 19 years
old (M = 15.44, DP = 1.09), answered to three psychological instruments:

Citation: Golino, H. , Gomes, C. & Andrade, D. (2014). “Predicting Academic Achieve-
ment of High-School Students Using Machine Learning”. Psychology, 5, 2046-2057.
doi: 10.4236/psych.2014.518207.
Copyright: © 2014 by authors and Scientific Research Publishing Inc. This work is li-
censed under the Creative Commons Attribution International License (CC BY). http://
creativecommons.org/licenses/by/4.0

Soft Computing and Machine Learning with Python132

the Inductive Reasoning Developmental Test (TDRI), the Metacognitive
Control Test (TCM) and the Brazilian Learning Approaches Scale (BLAS-
Deep Approach). The first two tests have a self-appraisal scale attached, so
we have five independent variables. The students’ responses to each test/
scale were analyzed using the Rasch model. A subset of the original sample
was created in order to separate the students in two balanced classes, high
achievement (n = 41) and low achievement (n = 47), using grades from nine
school subjects. In order to predict the class membership a machine learning
non-linear model named Random Forest was used. The subset with the two
classes was randomly split into two sets (training and testing) for cross
validation. The result of the Random Forest showed a general accuracy of
75%, a specificity of 73.69% and a sensitivity of 68% in the training set.
In the testing set, the general accuracy was 68.18%, with a specificity of
63.63% and with a sensitivity of 72.72%. The most important variable in the
prediction was the TDRI. Finally, implications of the present study to the
field of educational psychology were discussed.

Keywords: Machine Learning, Assessment, Prediction, Intelligence, Learn-
ing Approaches, Metacognition

INTRODUCTION
Machine learning is a relatively new science field composed by a broad class
of computational and statistical methods to make predictions, inferences,
and to discover new relations in data (Flach, 2012; Hastie, Tibshirani, &
Friedman, 2009) . There are two main areas within the machine learning
field. The unsupervised learning focuses in the discovery and detection of
new relationships, patterns and trends in data. The supervised learning area,
by the other side, focuses in the prediction of an outcome using a given set
of predictors. If the outcome is categorical, then the task to be accomplished
is named classification, if it is numeric then the task is called regression.

There are several types of algorithms to perform classification and
regression (Hastie et al., 2009) . Among these algorithms, the tree based
models are supervised learning techniques of special interest to the
psychology and to the education research field. It can be used to discover
which variable, or combination of variables, better predicts a given outcome,
e.g. high or low academic achievement. It can identify the cutoff points for
each variable that maximally predict the outcome, and can also be applied
to study the non-linear interaction effects of the independent variables

Predicting Academic Achievement of High-School Students Using ... 133

and its relation to the quality of the prediction (Golino & Gomes, 2014) .
Within psychology, there are a growing number of applications of the
tree-based models in different areas, from ADHA diagnosis(Eloyan et al.,
2012; Skogli et al., 2013) to perceived stress (Scott, Jackson, & Bergeman,
2011) , suicidal behavior (Baca-Garcia et al., 2007; Kuroki & Tilley, 2012) ,
adaptive depression assessment (Gibbons et al., 2013) , emotions (Tian et
al., 2014; van der Wal & Kowalczyk, 2013)and education (Blanch & Aluja,
2013; Cortez & Silva, 2008; Golino & Gomes, 2014; Hardman, Paucar-
Caceres, & Fielding, 2013) .

The main benefit of using the tree-based models in psychology is that
they do not make any assumption regarding normality, linearity of the relation
between variables, homoscedasticity, collinearity or independency (Geurts,
Irrthum, & Wehenkel, 2009) . The tree-based models also do not demand a
high sample-to-predictor ratio and are more suitable to interaction effects
(especially non-linearity) than the classical techniques, such as linear and
logistic regression, ANOVA, MANOVA, structural equation modelling and
so on. Finally, the tree- based models, especially the ensemble techniques,
can lead to high prediction accuracy, since they are known as the state-of-
the-art methods in terms of prediction accuracy (Flach, 2012; Geurts et
al., 2009) . The current paper focuses on the methodological aspects of the
classification tree (Breiman, Friedman, Olshen, & Stone, 1984) and its most
famous ensemble technique, Random Forest (Breiman, 2001a) . To illustrate
the use of tree-based models in educational psychology, the Random
Forest algorithm will be used to predict levels of academic achievement
of high school students (low vs. high). Finally, we will discuss the limits
and possibilities of this new predictive method to the field of educational
psychology.

Recursive Partitioning and Ensemble Techniques
A classification tree partitions the feature space into several distinct mutually
exclusive regions (non-overlap- ping). Each region is fitted with a specific
model that designates one of the classes to that particular space. The class is
assigned to the region of the feature space by identifying the majority class
in that region. In order to arrive in a solution that best separates the entire
feature space into more pure nodes (regions), recursive binary partition is
used. A node is considered pure when 100% of the cases are of the same
class, for example, low academic achievement. A node with 90% of low
achievement and 10% of high achievement students is more “pure” then a
node with 50% of each. Recursive binary partitions work as follows. The

Soft Computing and Machine Learning with Python134

feature space is split into two regions using a specific cutoff from the variable
of the feature space (predictor) that leads to the most purity configuration.
Then, each region of the tree is modeled accordingly to the majority class.
One or two original nodes are also split into more nodes, using some of
the given predictors that provide the best fit possible. This splitting process
continues until the feature space achieves the most purity configuration
possible, with Rm regions or nodes classified with a distinct Ck class. If
more than one predictor is given, then the selection of each variable used to
split the nodes will be given by the variable that splits the feature space into
the most purity configuration. In a classification tree, the first split indicates
the most important variable, or feature, in the prediction. Let’s take a look
in Figure 1 to see how a classification tree looks like.

Figure 1 shows the classification tree presented by Golino and Gomes
(2014) with three predictors of the academic achievement (high and low) of
medicine students: The Metacognitive Control Test (TCM), Deep Learning
Approach (DeepAp) and the Self-Appraisal of the Inductive Reasoning
Developmental Test (SA_ TDRI). The most important variable in the
prediction was TCM, since it was the predictor located at the first split of the
classification tree.

Figure 1: A classification tree from Golino and Gomes (2014) .

The first split indicates the variable that separates the feature space into
two purest nodes. In the case shown in Figure 1, 52.50% of the sample
used to grow the tree had a TCM score smaller than −1.295, and were
classified as having a low academic achievement. The remaining 47.5% had

Predicting Academic Achievement of High-School Students Using ... 135

a TCM score greater than −1.295, and were classified in the low or in the
high achievement class accordingly their scores on the DeepAp and on the
SA_TDRI. Those with a TCM score greater than −1.295 and a DeepAp
score greater than .545 were classified as belonging to the high achievement
class. The same occurred to those with a TCM score greater than −1.295,
a DeepAp score lower than .545 and a SA_TDRI score greater than 2.26.
Finally, the participants with a TCM score greater than −1.295, a DeepAp
score lower than .545 but with a SA_TDRI score smaller than 2.26 were
classified as belonging to the low achievement group. This classification
tree presented a total accuracy of 72.50%, with a sensitivity of 57.89% and
a specificity of 85.71%(Golino & Gomes, 2014) .

Geurts, Irrthum and Wehenkel (2009) argue that learning trees are among
the most popular algorithms of machine learning due to its interpretability,
flexibility and ease of use. Interpretability referrers to its easiness of
understanding. It means that the model constructed to map the feature space
(predictors) into the output space (dependent variable) is easy to understand,
since it is a roadmap of if-then rules. The description of Figure 1 above
shows exactly that. James, Witten, Hastie and Tibshirani (2013) points that
the tree models are easier to explain to people than linear regression, since
it mirrors more the human decision-making then other predictive models.
Flexibility means that the tree techniques are applicable to a wide range of
problems, handles different kind of variables (including nominal, ordinal,
interval and ratio scales), are non-parametric techniques and does not make
any assumption regarding normality, linearity or independency(Geurts et al.,
2009) . Furthermore, it is sensible to the impact of additional variables to
the model, being especially relevant to the study of incremental validity.
It also assesses which variable or combination of them, better predicts a
given outcome, as well as calculates which cutoff values are maximally
predictive of it. Finally, the ease of use means that the tree based techniques
are computationally simple, yet powerful.

In spite of the qualities of the learning trees, it suffers from two related
limitations. The first one is known as the overfitting issue. Since the feature
space is linked to the output space by recursive binary partitions, the tree
models can learn too much from data, modeling it in such a way that may
turn out a sample dependent model. Being sample dependent, in the sense
that the partitioning is too suitable to the data set in hand, it will tend to
behave poorly in new data sets.Golino and Gomes (2014) showed that in
spite of having a total accuracy of 72.50% in the training sample, the tree
presented in Figure 1 behaved poorly in a testing set, with a total accuracy

Soft Computing and Machine Learning with Python136

of 64.86%. The difference between the two data sets is due to the overfit of
the tree to the training set.

The second issue is exactly a consequence of the overfitting, and is
known as the variance issue. The predictive error in a training set, a set
of features and outputs used to grown a classification tree for the first
time, may be very different from the predictive error in a new test set. In
the presence of overfitting, the errors will present a large variance from
the training set to the test set used, as shown by the results of Golino and
Gomes (2014) . Additionally, the classification tree does not have the same
predictive accuracy as other classical machine learning approaches (James
et al., 2013) . In order to prevent overfitting, the variance issue and also to
increase the prediction accuracy of the classification trees, a strategy named
ensemble trees can be used.

The ensemble trees are simply the junction of several models to perform
the classification task based on the prediction made by every single tree.
The most famous ensemble tree algorithm is the Random Forest (Breiman,
2001a) , that is used to increase the prediction accuracy, decrease the variance
between data sets and to avoid overfitting.

The procedure takes a random subsample of the original data set (with
replacement) and of the feature space to grow the trees. The number of the
selected features (variables) is smaller than the number of total elements of
the feature space. Each tree assigns a single class to the each region of the
feature space for every observation. Then, each class of each region of every
tree grown is recorded and the majority vote is taken (Hastie et al., 2009;
James et al., 2013) . The majority vote is simply the most commonly occurring
class over all trees. As the Random Forest does not use the entire observations
(only a subsample of it, usually 2/3), the remaining observations (known as
out-of-bag, or OOB) is used to verify the accuracy of the prediction. The
out-of-bag error can be computed as a “valid estimate of the test error for
the bagged model, since the response for each observation is predicted using
only the trees that were not fit using that observation” (James et al., 2013:
p. 323) .

As pointed by Breiman (2001a) , the number of selected variables is
held constant during the entire procedure for growing the forest, and usually
is set to square-root of the total number of variables. Since the Random
Forest subsamples the original sample and the predictors, it is considered

Predicting Academic Achievement of High-School Students Using ... 137

an improvement over other ensemble trees, as the bootstrap aggregating
technique (Breiman, 2001b), or simply bagging. Bagging is similar to
Random Forest, except for the fact that does not subsample the predictors.
Thus, bagging creates correlated trees (Hastie et al., 2009) , which may affect
the quality of the prediction. The Random Forest algorithm decorrelates the
trees grown, and as a consequence it also decorrelates the errors made by
each tree, yielding a more accurate prediction.

Why decorrelating the trees is so important? Following the example
created by James et al. (2013), imagine that we have a very strong predictor
in our feature space, together with other moderately strong predictors. In the
bagging procedure, the strong predictor will be in the top split of most of the
trees, since it is the variable that better separates the classes available in our
data. By consequence, the bagged trees will be very similar to each other,
making the predictions and the errors highly correlated. This may not lead to
a decrease in the variance if compared to a single tree. The Random Forest
procedure, on the other hand, forces each split to consider only a subset of
the features, opening chances for the other variables to do their job. The
strong predictor will be left out of the bag in a number of situations, making
the trees very different from each other. Therefore, the resulting trees will
present less variance in the classification error and in the OOB error, leading
to a more reliable prediction. In sum, the Random Forest is an ensemble of
trees that improves the prediction accuracy, decreases variance and avoids
overfitting by using only a subsample of the observations and a subsample
of predictors. It has two main tuning parameters. The first is the size of the
subsample of features used in each split (mtry), which is mandatory to be
smaller than the total number of features, and is usually set as the square
root of the total number of predictors. The second tuning parameter is the
number of trees to grow (ntree).

The present paper investigates the prediction of academic achievement
of high-school students (high achieve- ment vs. low achievement) using
two psychological tests and one educational scale: the Inductive Reasoning
Developmental Test (TDRI), the Metacognitive Control Test (TCM) and
the Brazilian Learning Approaches Scale (BLAS-Deep approach). The first
two tests have a self-appraisal scale attached, so we have five independent
variables. In the next section will be presented the participants, instruments
used and the data analysis procedures.

Soft Computing and Machine Learning with Python138

METHOD

Participants
The sample is composed by 135 high-school students (10th grade, 50.34%
boys), aged between 14 and 19 years old (M = 15.44, DP = 1.09), from a
public high-school from [omitted as required by the review process]. The
sample was selected by convenience, and represents approximately 90%
of the students of the 10th grade. The students received a letter inviting
them to be part of the study. Those who agreed in participating signed a
inform consent, and confirmed they would be present in the schedule days
to answer all the instruments.

Measures and Procedures

The Inductive Reasoning Developmental Test (TDRI) and Its
Self-Appraisal Scale (SA_TDRI)
The Inductive Reasoning Developmental Test (TDRI) was developed
by Gomes and Golino (2009)and by Golino and Gomes (2012) to assess
developmental stages of reasoning based on Common’s Hierarchical
Complexity Model (Commons, 2008; Commons & Pekker, 2008; Commons
& Richards, 1984) and on Fischer’s Dynamic Skill Theory (Fischer, 1980;
Fischer & Yan, 2002) . This is a pencil-and-paper test composed by 56
items, with a time limit of 100 minutes. Each item presents five letters or
set of letters (see Figure 2), being four with the same rule and one with a
different rule. The task is to identify which letter or set of letters have the
different rule.

Golino and Gomes (2012) evaluated the structural validity of the TDRI
using responses from 1459 Brazilian people (52.5% women) aged between
5 to 86 years (M = 15.75, SD = 12.21). The results showed a good fit to the
Rasch model (INFIT mean = .96; SD = .17) with a high separation reliability
for items (1.00) and a moderately high for people (.82). The item’s difficulty
distribution formed a seven cluster structure with gaps between them,
presenting statistically significant differences in the 95% C.I. level (t-test).
The CFA showed an adequate data fit for a model with seven first-order
factors and one general factor [χ2 (61) = 8832.594, p = .000, CFI = .96,
RMSEA = .059]. The latent class analysis showed that the best model is
the one with seven latent classes (AIC: 263.380; BIC: 303.887; Loglik:
−111.690). The TDRI test has a self-appraisal scale attached to each one

Predicting Academic Achievement of High-School Students Using ... 139

of the 56 items. In this scale, the participants are asked to appraise their
achievement on the TDRI items, by reporting if he/she passed or failed
the item. The scoring procedure of the TDRI self-appraisal scale works
as follows. The participant receive a score of 1 in two situations: 1) if the
participant passed the ith item and reported that he/she passed the item, and
2) if the participant failed the ith item and reported that he/she failed the
item. On the other hand, the participant receives a score of 0 if his appraisal
does not match his performance on the ith item: 1) he/ she passed the item,
but reported that failed it, and 2) he/she failed the item, but reported that
passed it.

The Metacognitive Control Test (TCM) and Its Self-Appraisal
Scale (SA_TCM)
The Metacognitive Control Test (TCM) was developed by Golino and
Gomes (2013) to assess the ability of people to control intuitive answers
to logical-mathematical tasks. The test is based on Shane Frederick’s
Cognitive Reflection Test (Frederick, 2005) , and is composed by 15 items.
The structural validity of the test was assessed by Golino and Gomes
(2013) using responses from 908 Brazilian people (54.8% women) aged
between 9 to 86 years (M = 27.70, SD = 11.90). The results showed a good
fit to the Rasch model (INFIT mean = 1.00; SD = .13) with a high separation
reliability for items (.99) and a moderately high for people (.81). The TCM
also has a self-appraisal scale attached to each one of its 15 items. The TCM
self-appraisal scale is scored exactly as the TDRI self-appraisal scale: an
incorrect appraisal receives a score of 0, and a correct appraisal receives a
score of 1.

The Brazilian Learning Approaches Scale (EABAP)
The Brazilian Learning Approaches Scale (EABAP) is a self-report
questionnaire composed by 17 items, developed by Gomes and
colleagues (Gomes, 2010; Gomes, Golino, Pinheiro, Miranda, & Soares,
2011) . Nine items were elaborated to measure deep learning approaches, and
eight items measure surface learning approaches. Each item has a statement
that refers to a student’s behavior while learning. The student considers how
much of the behavior described is present in his life, using a Likert-like scale
ranging from (1) not at all, to (5) entirely present. BLAS presents reliability,
factorial structure validity, predictive validity and incremental validity as
good marker of learning approaches. These psychometrical proprieties are

Soft Computing and Machine Learning with Python140

described respectively in Gomes et al. (2011), Gomes (2010) , and Gomes
and Golino (2012) . In the present study only the deep learning approach
items (DeepAp) were used. We will analyze only the nine deep approach
items using the partial credit Rasch model.

Figure 2: Example of TDRI’s item 1 (from the first developmental stage as-
sessed).

Data Analysis

Estimating the Students’ Ability in Each Test/Scale
The student’s ability estimates on the inductive reasoning developmental
test, on the metacognitive control test, on the Brazilian learning approaches
scale, and on the self-appraisal scales were computed using the original
data set of each test/scale, through the software Winsteps (Linacre, 2012) .
This procedure was followed in order to achieve reliable estimates, since
only 135 students answered the tests. The mixture of the original data set
from each test to the high-school students’ answers did not significantly
change the reliability or fit to the models used. A summary of the separation
reliability and fit of the items, the separation reliability of the sample (after
adding the data from the high-school students) and the statistical model used
is provided in Table 1.

Defining the Achievement Classes (High vs. Low)
The final grade in the following nine school subjects was provided by the
school at the end of the academic year: arts, philosophy, physics, history,
informatics, math, chemistry, sociology and Brazilian Portuguese. The final
grades ranged from 0 to 10, and the students were considered approved in
the academic year in each school subject only if he/she had a grade equal
to or above seven. Students with grades lower than seven in a particular
school subject are submitted to an additional assessment. Finally, those with
an average grade of seven or more are considered able to proceed to the

Predicting Academic Achievement of High-School Students Using ... 141

next school grade (11th grade). Otherwise, the students need to re-do the
current grade (10th grade). From the total sample, only 65.18% (n = 88)
were considered able to proceed to the next school year and 34.81% (n =
47) were requested to re-do the 10th grade. These two groups could be used
to compose the high and the low achievement classes. However, since the
tree-based models require balanced classes (i.e., classes with approximately
the same number of cases) we needed to subset the high achievement
class (those who proceeded to the next school grade) in order to obtain a
subsample closer to the low achievement class size (those who would need
to re-do the 10th grade). Therefore, we computed the mean final grade over
all nine grades for every student, and verified the mean of each group of
students. Those who passed to the next school grade had a mean final grade
of 7.69 (SD = .48), while those who would need to re-do the 10th grade had
a mean final grade of 6.06 (SD = 1.20). We select every student with a mean
final grade equals to or higher than 7.69 (n = 41) and called them the “high
achievement” group. The 47 students that would need to re- do the 10th
grade formed the “low achievement” group. Finally, we had 88 students
divided in two balanced classes.

Machine Learning Procedures
The sample was randomly split in two sets with equal sizes, training and
testing, for cross-validation. The training set is used to grow the trees, to
verify the quality of the prediction in an exploratory fashion, and to adjust
the tuning parameters. Each model created using the training set is applied
in the testing set to verify how it performs on a new data set.

Since the single trees usually lead to overiftting and to high variance
between datasets, we used only the Random Forest algorithm through
the random Forest package (Liaw & Wiener, 2012) of the R software (R
Development Core Team, 2011). As pointed in the introduction, the Random
Forest has two main tuning parameters: the number of trees (ntree) and the
number of variables used (mtry). We set mtry as two, because is the integer
closest to the square root of the total number of predictors (5), and ntree as
10,000. In order to verify the quality of the prediction both in the training
(modeling phase) and in the testing set (cross-validation phase), the total
accuracy, the sensitivity and specificity were used.

Soft Computing and Machine Learning with Python142

Table 1: Item reliability, item fit, person reliability, person fit and model used
by instrument

Test Item
reli-
ability

Item INFIT
(mean, SD)

Person
reliabil-
ity

Person INFIT
(mean, SD)

Model

Inductive reasoning develop-
mental test (TDRI)

1.00 .98, .17 .85 .98, .91 Dichotomous Rasch Model

TDRI’s self-appraisal scale
(SA_TDRI)

.98 .98, .11 .79 .97, .31 Dichotomous Rasch Model

Metacognitive control test
(TCM)

.99 1.00, .13 .80 .99, .31 Dichotomous Rasch Model

TCM’s self-appraisal scale
(SA_TCM)

.98 1.02, .26 .74 .98, .20 Dichotomous Rasch Model

Brazilian learning approaches
scale― Deep learning items
(DeepAp)

.99 1.00, .08 .80 1.01, .69 Partial Credit Rasch Model

Inductive reasoning develop-
mental test (TDRI)

1.00 .98, .17 .85 .98, .91 Dichotomous Rasch Model

Total accuracy is the proportion of observations correctly classified:

where is the number of observations in the testing set. In spite of being
an important indicator of the general prediction’s quality, the total accuracy
is not an informative measure of the errors in each class. For example, a
general accuracy of 80% can represent an error-free prediction for the C1
class, and an error of 40% for the C2 class. In the educational scenario, it
is preferable to have lower error in the prediction of the low achievement
class, since students at risk of academic failure compose this class. So,
the sensitivity will be preferred over general accuracy and specificity. The
sensitivity is the rate of observations correctly classified in a target class,
e.g. C1 = low achievement, over the number of observations that belong to
that class:

Specificity, on the other hand, is the rate of correctly classified
observations of the non-target class, e.g. C2 = high achievement, over the
number of observations that belong to that class:

Predicting Academic Achievement of High-School Students Using ... 143

Finally, the model construct in the training set will be applied in the
testing set for cross-validation. Since the Random Forest is a black box
technique―i.e. there is only a prediction based on majority vote and no
“typical tree” to look at the partitions―to determine which variable is
important in the prediction one importance measure will be used: the
mean decrease of accuracy. It indicates how much in average the accuracy
decreases on the out-of-bag samples when a given variable is excluded from
the model (James et al., 2013).

Descriptive Analysis Procedures
After estimating the student’s ability in each test or scale the Shapiro-Wilk
test of normality will be conducted in order to discover which variables
presented a normal distribution. To verify if there is any statistically
significant difference between the students’ groups (high achievement vs.
low achievement) the two-sample T test will be conducted in the normally
distributed variables and the Wilcoxon Sum-Rank test in the non-normal
variables, both at the .05 significance level. In order to estimate the effect
sizes of the differences, the R’s compute.es package (Del Re, 2013) is
used. This package computes the effect sizes, along with their variances,
confidence intervals, p-values and the common language effect size (CLES)
indicator using the p-values of the significance testing. McGraw and Wong
(1992) developed the CLES indicator as a more intuitive tool than the other
effect size indicators. It converts an effect into a probability that a score
taken at random from one distribution will be greater than a score taken at
random from another distribution(McGraw & Wong, 1992) . In other words,
it expresses how much (in %) the score from one population is greater than
the score of the other population if both are randomly selected (Del Re,
2013) .

RESULTS

Descriptive
The Brazilian Learning Approaches Scale (Deep Learning) presented
a normal distribution (W = .99, p-value = .64), while all the other four
variables presented a p-value smaller than .001. There was a statistically

Soft Computing and Machine Learning with Python144

significant difference at the 99% level between the high and the low
achievement groups in the median Rasch score of the Inductive Reasoning

Developmental (High = 2.14, σ2 = 5.80, Low = −1.47, σ2
Low = 15.52, W =

1359, p < .01), in the median Rasch score of the Metacognitive Control Test

(High = −1.03, σ2 = 7.29, Low = −3.40, σ2
Low = 4.37, W = 928, p < .01),

in the median Rasch score of the TDRI’s self-appraisal scale (High = 2.03,

σ2 = 3.01, Low= 1.16, σ2
Low = 4.66, W = 1152, p < .001), in the median

Rasch score of the TCM’s self-appraisal scale (High = 1.07, σ2 = 4.18,
Low = −1.08, σ2

Low = 2.45, W = 954, p < .01) and in the mean Rasch score of
the Brazilian learning approaches scale-deep approach (High = 1.13, σ2 =
.80, Low = .50, σ2

Low = .61, t(37) = 3.32, p < .01). The effect sizes, its 95%
confidence intervals, variance, significance and common language effect
sizes are described in Table 2.

According to Cohen (1988) , the effect size is considered small when
it is between .20 and .49, moderate between .50 and .79 and large when
values are over .80. Only the difference in the Rasch score of the inductive
reasoning developmental test presented a large effect size (d = .88, p < .05).

As pointed before, the common language effect size indicates how often
a score sampled from one distribution is greater than the score sampled
from the other distribution if both are randomly selected (McGraw & Wong,
1992) . Then, considering the common language effect size, the probability
that a TDRI score taken at random from the high achievement group is
greater than a TDRI score taken at random of the low achievement group is
73.41%. It means that out of 100 TDRI scores from the high achievement
group, 73.41 will be greater than the TDRI scores of the low achievement
group. The Rasch scores of the other tests have moderate effect sizes. Their
common language effect size varied from 64.92% to 70.10%, meaning that
the probability of a score taken at random at the high achievement group be
greater than a score taken at random in the low achievement group is at least
64.92% and at most 70.10%. Figure 3 shows the mean score for each test
and its 95% confidence interval by both classes (low and high).

Machine Learning Results
The result of the Random Forest model with 10,000 trees showed an out-of-
bag error rate of .29, a total accuracy of 75.00%, a sensitivity of 68.00% and

Predicting Academic Achievement of High-School Students Using ... 145

a specificity of 73.69%. The mean decrease accuracy showed the inductive
reasoning developmental stage (TDRI) as the most important variable
in the prediction, since when it is left out of the prediction the accuracy
decreases 66.22% in average. The second most important variable is the
deep learning approach, which is associated with a mean decrease accuracy
of 28.45% when is not included in the predictive model. In third place is
the metacognitive control test (19.68%); in the fourth position is the TDRI
self-appraisal scale (19.50%), followed by the TCM self-appraisal scale
(5.78%). Figure 4 shows the high achievement prediction error (green line),
the out-of-bag error (red line) and the low achievement prediction error
(black line) per tree. The errors become more stable with approximately
more than 1700 trees.

The predictive model constructed in the training set was applied in the
testing set for cross-validation. It presented a total accuracy of 68.18%, a
sensitivity of 72.72% and a specificity of 63.63%. There was a difference
of 6.82% in the total accuracy, of 2.28% in the sensitivity, and of 10.06% in
the specificity.

DISCUSSION
The present paper briefly introduced the concept of recursive partitioning
used in the tree-based models of machine learning. The tree-based models
are very useful to study the role of psychological and educational constructs
in the prediction of academic achievement. Unlike the most classical
approaches, such as linear and logistic regression, as well as the structural
equation modeling, the tree-based models do not make assumptions about the
normality of data, the linearity of the relation between the variables, neither
requires homoscedasticity, collinearity or independence (Geurts, Irrthum,
& Wehenkel, 2009) . A high predictor-to-sample ratio can be used without
harm to the quality of the prediction, and missingness is well handled by the
prediction algorithms.

Table 2: Tests, effect sizes and common language effect size (CLES)

Test Effect size of
the difference
(d)

95% C.I. (d) σ2 (d) p-value
(d)

CLES

Inductive reasoning developmental
test (TDRI)

.88 .43, 1.34 .05 .00 73.41%

Metacognitive control test (TCM) .59 .11, 1.06 .06 .02 66.05%

Soft Computing and Machine Learning with Python146

TDRI’ self-appraisal scale (SA_
TDRI)

.54 .10, .99 .05 .02 64.92%

TCM’ self-appraisal scale (SA_
TCM)

.65 .17, 1.12 .06 .01 67.62%

EABAP (DeepAp) .75 .27, 1.22 .06 .00 70.10%

Figure 3: Score means and its 95% confidence intervals for each test, by class
(high vs. low academic achievement).

Figure 4: Random Forest’s out-of-bag error (red), high achievement prediction
error (green) and low achievement predic- tion error (blue).

Predicting Academic Achievement of High-School Students Using ... 147

he tree-based models are also more suitable to non-linear interaction
effects than the classical techniques. When several trees are ensemble to
perform a prediction it generally leads to a high accuracy (Flach, 2012;
Geurts et al., 2009) , decreasing the chance of overfitting and diminishing the
variance between datasets. The focus of the current paper was the application
of this relatively new predictive method in the educational psychology field.

Psychology is taking advantage of the tree-based models in a broad set
of applications (Baca-Garcia et al., 2007; Eloyan et al., 2012; Gibbons et
al., 2013; Kuroki & Tilley, 2012; Scott, Jackson, & Bergeman, 2011; Skogli
et al., 2013; Tian et al., 2014; van der Wal & Kowalczyk, 2013) . Within
education, Blanch and Aluja (2013) , Cortes and Silva (2008) and Golino
and Gomes (2014) applied the tree-based models to predict the academic
achievement of students from the secondary and tertiary levels using a
set of psychological and socio-demographic variables as predictors. The
discussion of their methods and results are beyond the scope of the current
paper, since we focused on the methodological aspects of machine learning,
and how it can be applied in the educational psychology field.

In the present paper we showed the Rasch scores of the tests and scales used
significantly differentiated the high achievement from the low achievement
10th grade students. Inductive reasoning presented a large effect size, while the
deep learning approach, metacognitive control and self-appraisals presented
moderate effect sizes. The random forest prediction lead to a total accuracy
of 75%, a sensitivity of 68% and a specificity of 73.69% in the training set.
The testing set result was a little bit worse, with a total accuracy of 68.18%,
a sensitivity of 72.72% and a specificity of 63.63%. The most important
variable in the prediction was the inductive reasoning that was associated
with a mean decrease accuracy of 66.22% when left out of the prediction
bag. The deep learning approach was the second most important variable
(mean decrease accuracy of 28.45%), followed by metacognitive control
(19.68%), TDRI self-appraisal (19.50%) and TCM self-appraisal (5.78%).
This result reinforces previous findings that showed incremental validity of
the learning approaches in the explanation of academic performance beyond
intelligence, using traditional techniques (Chamorro-Premuzic & Furnham;
2008; Furnham Monsen, & Ahmetoglu, 2009; Gomes & Golino, 2012). It
also reinforces the incremental validity of metacognition, over intelligence,
in the explanation of academic achievement (van der Stel & Veenman, 2008;
Veenman & Beishuizen, 2004).

Soft Computing and Machine Learning with Python148

CONCLUSION
The application of machine learning models in the prediction of academic
achievement/performance, especially the tree-based models, represents
an innovative complement to the traditional techniques such as linear
and logistic regression, as well as structural equation modelling (Blanch
& Aluja, 2013) . More than the advantages pointed earlier, the tree-based
models can help us to understand the non-linear interactions between
psycho- educational variables in the prediction of academic outcomes.
These machine learning models not only represent an advance in terms of
prediction accuracy, but also represent an advance in terms of inference.
Future studies could benefit from employing a larger and broader sample,
involving students from different schools. It would also be interesting to
investigate, in the future, the impact of varying the tuning parameters of the
random forest model in the accuracy, sensitivity, specificity and variability
of the prediction.

ACKNOWLEDGEMENTS
Hudson F. Golino, Cristiano Mauro Assis Gomes, Diego Andrade
(FAPEMIG) to the authors. The authors also receive grants provided by
the Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira
(INEP) and by the Conselho Nacional de Desenvolvimento Científico e
Tecnológico (CNPq) of the Brazil’s Ministry of Science, Technology and
Innovation.

Predicting Academic Achievement of High-School Students Using ... 149

REFERENCES
1. Baca-Garcia , E., Perez-Rodriguez, M., Saiz-Gonzalez, D., Basurte-

Villamor, I., Saiz-Ruiz, J., Leiva-Murillo, J. M., & de Leon, J. (2007).
Variables Associated with Familial Suicide Attempts in a Sample
of Suicide Attempters. Progress in Neuro-Psychopharmacology &
Biological Psychiatry, 31, 1312-1316. http://dx.doi.org/10.1016/j.
pnpbp.2007.05.019

2. Blanch, A., & Aluja, A. (2013). A Regression Tree of the Aptitudes,
Personality, and Academic Performance Relationship. Personality
and Individual Differences, 54, 703-708. http://dx.doi.org/10.1016/j.
paid.2012.11.032

3. Breiman , L. (2001a). Random Forests. Machine Learning, 1,
5-32. http://dx.doi.org/10.1023/A:1010933404324

4. Breiman, L. (2001b). Bagging Predictors. Machine Learning, 24, 123-
140. http://dx.doi.org/10.1007/BF00058655

5. Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification
and Regression Trees. New York: Chapman & Hall.

6. Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences
(2nd ed.), Hillsdale, NJ: Lawrence Erlbaum Associates.

7. Commons, M. L., & Richards, F. A. (1984). Applying the General
Stage Model. In M. L. Commons, F. A. Richards, & C. Armon (Eds.),
Beyond Formal Operations. Late Adolescent and Adult Cognitive
Development: Late Adolescent and Adult Cognitive Development
(Vol. 1, pp. 141-157). New York: Praeger.

8. Commons, M. L. (2008). Introduction to the Model of Hierarchical
Complexity and Its Relationship to Postformal Action. World Futures,
64, 305-320. http://dx.doi.org/10.1080/02604020802301105

9. Commons, M. L., & Pekker, A. (2008). Presenting the Formal Theory
of Hierarchical Complexity. World Futures, 64, 375- 382. http://dx.doi.
org/10.1080/02604020802301204

10. Cortez, P., & Silva, A. M. G. (2008). Using Data Mining to Predict
Secondary School Student Performance. In A. Brito, & J. Teixeira
(Eds.), Proceedings of 5th Annual Future Business Technology
Conference, Porto, 5-12.

11. Del Re, A. C. (2013). compute.es: Compute Effect Sizes. R Package
Version 0.2-2. http://cran.r-project.org/web/packages/compute.es

Soft Computing and Machine Learning with Python150

12. Eloyan, A., Muschelli, J., Nebel, M., Liu, H., Han, F., Zhao, T., Caffo,
B. et al. (2012). Automated Diagnoses of Attention Deficit Hyperactive
Disorder Using Magnetic Resonance Imaging. Frontiers in Systems
Neuroscience, 6, 61. http://dx.doi.org/10.3389/fnsys.2012.00061

13. Fischer, K. W. (1980). A Theory of Cognitive Development: The
Control and Construction of Hierarchies of Skills. Psychological
Review, 87, 477-531. http://dx.doi.org/10.1037/0033-295X.87.6.477

14. Fischer, K. W., & Yan, Z. (2002). The Development of Dynamic
Skill Theory. In R. Lickliter, & D. Lewkowicz (Eds.), Conceptions of
Development: Lessons from the Laboratory. Hove: Psychology Press.

15. Flach, P. (2012). Machine Learning: The Art and Science of Algorithms
That Make Sense of Data. Cambridge: Cambridge University
Press. http://dx.doi.org/10.1017/CBO9780511973000

16. Frederick, S. (2005). Cognitive Reflection and Decision Making.
Journal of Economic Perspectives, 19, 25-42. http://dx.doi.
org/10.1257/089533005775196732

17. Geurts, P., Irrthum, A., & Wehenkel, L. (2009). Supervised Learning
with Decision Tree-Based Methods in Computational and Systems
Biology. Molecular BioSystems, 5, 1593-1605. http://dx.doi.
org/10.1039/b907946g

18. Gibbons, R. D., Hooker, G., Finkelman, M. D., Weiss, D. J., Pilkonis,
P. A., Frank, E., Moore, T., & Kupfer, D. J. (2013). The Computerized
Adaptive Diagnostic Test for Major Depressive Disorder (CAD-MDD):
A Screening Tool for Depression. Journal of Clinical Psychiatry, 74,
669-674. http://dx.doi.org/10.4088/JCP.12m08338

19. Golino, H. F., & Gomes, C. M. A. (2012). The Structural Validity of
the Inductive Reasoning Developmental Test for the Measurement of
Developmental Stages. In K. Stålne (Chair), Adult Development: Past,
Present and New Agendas of Research, Symposium Conducted at the
Meeting of the European Society for Research on Adult Development,
Coimbra, 7-8 July 2012.

20. Golino, H. F., & Gomes, C. M. A. (2013). Controlando pensamentos
intuitivos: O que o pão de queijo e o café podem dizer sobre a
forma como pensamos. In C. M. A. Gomes (Chair), Neuroeconomia
e Neuromarketing, Symposium conducted at the VII Simpósio
de Neurociências da Universidade Federal de Minas Gerais, Belo
Horizonte.

Predicting Academic Achievement of High-School Students Using ... 151

21. Golino, H. F., & Gomes, C. M. A. (2014). Four Machine Learning
Methods to Predict Academic Achievement of College Students: A
Comparison Study. Revista E-PSI, 4, 68-101.

22. Gomes, C. M. A., & Golino, H. F. (2009). Estudo exploratório sobre
o Teste de Desenvolvimento do Raciocinio Indutivo (TDRI). In D.
Colinvaux (Ed.), Anais do VII Congresso Brasileiro de Psicologia
do Desenvolvimento: Desenvolvimento e Direitos Humananos
(pp. 77-79). Rio de Janeiro: UERJ. http://www.abpd.psc.br/files/
congressosAnteriores/AnaisVIICBPD.pdf

23. Gomes, C. M. A. (2010). Perfis de estudantes e a relação entre
abordagens de aprendizagem e rendimento Escolar. Psico, 41, 503-509.

24. Gomes, C. M. A., & Golino, H. F. (2012). Validade incremental da
Escala de Abordagens de Aprendizagem. Psicologia: Reflexão e Crítica,
25, 623-633. http://dx.doi.org/10.1590/S0102-79722012000400001

25. Gomes, C. M. A., Golino, H. F., Pinheiro, C. A. R., Miranda, G. R.,
& Soares, J. M. T. (2011). Validação da Escala de Abordagens de
Aprendizagem (EABAP) em uma amostra brasileira. Psicologia:
Reflexão e Crítica, 24, 19-27. http://dx.doi.org/10.1590/S0102-
79722011000100004

26. Hardman , J., Paucar-Caceres, A., & Fielding, A. (2013). Predicting
Students’ Progression in Higher Education by Using the Random
Forest Algorithm. Systems Research and Behavioral Science, 30, 194-
203. http://dx.doi.org/10.1002/sres.2130

27. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of
Statistical Learning: Data Mining, Inference and Prediction (2nd ed.).
New York: Springer. http://dx.doi.org/10.1007/978-0-387-84858-7

28. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An
Introduction to Statistical Learning with Applications in R. New York:
Springer. http://dx.doi.org/10.1007/978-1-4614-7138-7

29. Kuroki, Y., & Tilley, J. L. (2012). Recursive Partitioning Analysis
of Lifetime Suicidal Behaviors in Asian Americans. Asian American
Journal of Psychology, 3, 17-28. http://dx.doi.org/10.1037/a0026586

30. Liaw, A., & Wiener, M. (2012). Random Forest: Breiman and Cutler’s
Random Forests for Classification and Regression. R Package Version
4.6-7. http://cran.r-project.org/web/packages/randomForest/

31. Linacre, J. M. (2012). Winsteps® Rasch Measurement Computer
Program. Beaverton, OR: Winsteps.com.

Soft Computing and Machine Learning with Python152

32. McGraw, K. O., & Wong, S. P. (1992). A Common Language Effect
Size Statistic. Psychological Bulletin, 111, 361-365. http://dx.doi.
org/10.1037/0033-2909.111.2.361

33. Scott, S. B., Jackson, B. R., & Bergeman, C. S. (2011). What Contributes
to Perceived Stress in Later Life? A Recursive Partitioning Approach.
Psychology and Aging, 26, 830-843. http://dx.doi.org/10.1037/
a0023180

34. Skogli, E., Teicher, M. H., Andersen, P., Hovik, K., & Øie, M. (2013).
ADHD in Girls and Boys―Gender Differences in Co-Existing
Symptoms and Executive Function Measures. BMC Psychiatry, 13,
298. http://dx.doi.org/10.1186/1471-244X-13-298

35. Tian, F., Gao, P., Li, L., Zhang, W., Liang, H., Qian, Y., & Zhao, R.
(2014). Recognizing and Regulating e-Learners’ Emotions Based on
Interactive Chinese Texts in e-Learning Systems. Knowledge-Based
Systems, 55, 148-164. http://dx.doi.org/10.1016/j.knosys.2013.10.019

36. van der Wal, C., & Kowalczyk, W. (2013). Detecting Changing Emotions
in Human Speech by Machine and Humans. Applied Intelligence, 39,
675-691. http://dx.doi.org/10.1007/s10489-013-0449-1

SECTION III
PYTHON LANGUAGE

DETAILS

A PYTHON 2.7 PROGRAMMING
TUTORIAL

CHAPTER

8

John W. Shipman

INTRODUCTION
This document contains some tutorials for the Python programming
language, as of Python version 2.7. These tutorials accompany the free
Python classes taught by the New Mexico Tech Computer Center. Another
good tutorial is at the Python website.

Starting Python in Conversational Mode
This tutorial makes heavy use of Python’s conversational mode. When you
start Python in this way, you will see an initial greeting message, followed
by the prompt “>>>”.

• On a TCC workstation in Windows, from the Start menu, select
All Programs → Python 2.7 → IDLE (Python GUI). You will see
something like this:

Citation: John W. Shipman, “A Python 2.7 Programming Tutorial”, New Mexico Tech,
2007, online tutorial, accesses on April 25, 2018.
Copyright: © 2007 by Author and New Mexico Tech. This paper is an open access
article distributed under a Creative Commons Attribution 3.0 License

Soft Computing and Machine Learning with Python156

• For Linux or MacOS, from a shell prompt (such as “$” for the
bash shell), type:

• python
You will see something like this:

$ python
Python 2.7.1 (r271:86832, Apr 12 2011, 16:15:16)
[GCC 4.6.0 20110331 (Red Hat 4.6.0-2)] on linux2
Type “help”, “copyright”, “credits” or “license” for more information.
>>>

When you see the “>>>” prompt, you can type a Python expression, and
Python will show you the result of that expression. This makes Python useful
as a desk calculator. (That’s why we sometimes refer to conversational mode
as “calculator mode”.) For example:

>>> 1+1
2
>>>

Each section of this tutorial introduces a group of related Python features.

PYTHON’S NUMERIC TYPES
Pretty much all programs need to do numeric calculations. Python has
several ways of representing numbers, and an assortment of operators to
operate on numbers.

Basic Numeric Operations
To do numeric calculations in Python, you can write expressions that look
more or less like algebraic expressions in many other common languages.
The “+” operator is addition; “-” is subtraction; use “*” to multiply; and use
“/” to divide. Here are some examples:

A Python 2.7 Programming Tutorial 157

>>> 99 + 1
100
>>> 1 - 99
-98
>>> 7 * 5
35
>>> 81 / 9
9

The examples in this document will often use a lot of extra space between
the parts of the expression, just to make things easier to read. However,
these spaces are not required:
>>> 99+1
100
>>> 1-99
-98

When an expression contains more than one operation, Python defines
the usual order of operations, so that higher-precedence operations like
multiplication and division are done before addition and subtraction. In this
example, even though the multiplication comes after the addition, it is done
first.

>>> 2 + 3 * 4
14

If you want to override the usual precedence of Python operators, use
parentheses:

>>> (2+3)*4
20

Here’s a result you may not expect:

>>> 1 / 5
0

You might expect a result of 0.2, not zero. However, Python has different
kinds of numbers. Any number without a decimal point is considered an

Soft Computing and Machine Learning with Python158

integer, a whole number. If any of the numbers involved contain a decimal
point, the computation is done using floating point type:

>>> 1.0 / 4.0
0.25
>>> 1.0 / 3.0
0.33333333333333331

That second example above may also surprise you. Why is the last digit
a one? In Python (and in pretty much all other contemporary programming
languages), many real numbers cannot be represented exactly. The
representation of 1.0/3.0 has a slight error in the seventeenth decimal place.
This behavior may be slightly annoying, but in conversational mode, Python
doesn’t know how much precision you want, so you get a ridiculous amount
of precision, and this shows up the fact that some values are approximations.

You can use Python’s print statement to display values without quite so
much precision:

>>> print 1.0/3.0
0.333333333333

It’s okay to mix integer and floating point numbers in the same expression.
Any integer values are coerced to their floating point equivalents.

>>> print 1.0/5
0.2
>>> print 1/5.0
0.2

Later we will learn about Python’s string format method , which allows
you to specify exactly how much precision to use when displaying numbers.
For now, let’s move on to some more of the operators on numbers.

The “%” operator between two numbers gives you the modulo. That is,
the expression “x % y” returns the remainder when x is divided by y.

>>> 13 % 5
3
>>> 5.72 % 0.5

A Python 2.7 Programming Tutorial 159

0.21999999999999975
>>> print 5.72 % 0.5
0.22

Exponentiation is expressed as “x ** y”, meaning x to the y power.

>>> 2 ** 8
256
>>> 2 ** 30
1073741824
>>> 2.0 ** 0.5
1.4142135623730951
>>> 10.0 ** 5.2
158489.31924611141
>>> 2.0 ** 100
1.2676506002282294e+30

That last number, 1.2676506002282294e+30, is an example of
exponential or scientific notation. This number is read as “1.26765... times
ten to the 30th power”. Similarly, a number like 1.66e-24 is read as “1.66
times ten to the minus 24th power”.

So far we have seen examples of the integer type, which is called int
in Python, and the floating-point type, called the float type in Python.
Python guarantees that int type supports values between -2,147,483,648 and
2,147,483,647 (inclusive).

There is another type called long, that can represent much larger integer
values. Python automatically switches to this type whenever an expression
has values outside the range of int values. You will see letter “L” appear at
the end of such values, but they act just like regular integers.

>>> 2 ** 50
1125899906842624L
>>> 2 ** 100
1267650600228229401496703205376L
>>> 2 ** 1000
107150860718626732094842504906000181056140481170553360744375
038837035105112
493612249319837881569585812759467291755314682518714528569231

Soft Computing and Machine Learning with Python160

404359845775746
985748039345677748242309854210746050623711418779541821530464
749835819412673
987675591655439460770629145711964776865421676604298316526243
868372056680693
76L

The Assignment Statement
So far we have worked only with numeric constants and operators. You

can attach a name to a value, and that value will stay around for the rest of
your conversational Python session.

Python names must start with a letter or the underbar (_) character; the
rest of the name may consist of letters, underbars, or digits. Names are case-
sensitive: the name Count is a different name than count.

For example, suppose you wanted to answer the question, “how many
days is a million seconds?” We can start by attaching the name sec to a value
of a million:
>>> sec = 1e6
>>> sec
1000000.0

A statement of this type is called an assignment statement. To compute
the number of minutes in a million seconds, we divide by 60. To convert
minutes to hours, we divide by 60 again. To convert hours to days, divide by
24, and that is the final answer.
>>> minutes = sec / 60.0
>>> minutes
16666.666666666668
>>> hours=minutes/60
>>> hours
277.77777777777777
>>> days=hours/24.
>>> days
11.574074074074074
>>> print days, hours, minutes, sec

A Python 2.7 Programming Tutorial 161

11.5740740741 277.777777778 16666.6666667 1000000.0
You can attach more than one name to a value. Use a series of names, sepa-
rated by equal signs, like this.
>>> total = remaining = 50
>>> print total, remaining
50 50

The general form of an assignment statement looks like this:
name1 = name2 = ... = expression

Here are the rules for evaluating an assignment statement:
• Each namei is some Python variable name. Variable names

must start with either a letter or the underbar (_) character, and
the remaining characters must be letters, digits, or underbar
characters. Examples: skateKey; _x47; sum_of_all_fears.

• The expression is any Python expression.
• When the statement is evaluated, first the expression is evaluated

so that it is a single value. For example, if the expression is
“(2+3)*4”, the resulting single value is the integer 20.

Then all the names namei are bound to that value.
What does it mean for a name to be bound to a value? When you are

using Python in conversational mode, the names and value you define are
stored in an area called the global namespace. This area is like a two-column
table, with names on the left and values on the right.

Here is an example. Suppose you start with a brand new Python session,
and type this line:
>>> i = 5100

Here is what the global namespace looks like after the execution of this
assignment statement.

Soft Computing and Machine Learning with Python162

In this diagram, the value appearing on the right shows its type, int
(integer), and the value, 5100.

In Python, values have types, but names are not associated with any
type. A name can be bound to a value of any type at any time. So, a Python
name is like a luggage tag: it identifies a value, and lets you retrieve it later.

Here is another assignment statement, and a diagram showing how the
global namespace appears after the statement is executed.
>>> j = foo = i + 1

The expression “i + 1” is equivalent to “5100 + 1”, since variable i is
bound to the integer 5100. This expression reduces to the integer value 5101,
and then the names j and foo are both bound to that value. You might think
of this situation as being like one piece of baggage with two tags tied to it.
Let’s examine the global namespace after the execution of this assignment
statement:
>>> foo = foo + 1

Because foo starts out bound to the integer value 5101, the expression
“foo + 1” simplifies to the value 5102. Obviously, foo = foo + 1 doesn’t
make sense in algebra! However, it is a common way for programmers to
add one to a value.

Note that name j is still bound to its old value, 5101.

A Python 2.7 Programming Tutorial 163

More Mathematical Operations
Python has a number of built-in functions. To call a function in Python, use
this general form:
f(arg1, arg2, ...)

That is, use the function name, followed by an open parenthesis “(”,
followed by zero or more arguments separated by commas, followed by a
closing parenthesis “)”.

For example, the round function takes one numeric argument, and
returns the nearest whole number (as a float number). Examples:
>>> round (4.1)
4.0
>>> round(4.9)
5.0
>>> round(4.5)
5.0

The result of that last case is somewhat arbitrary, since 4.5 is equidistant
from 4.0 and 5.0. However, as in most other modern programming languages,
the value chosen is the one further from zero. More examples:
>>> round (-4.1)
-4.0
>>> round (-4.9)
-5.0
>>> round (-4.5)
-5.0

For historical reasons, trigonometric and transcendental functions are
not built-in to Python. If you want to do calculations of those kinds, you will
need to tell Python that you want to use the math package. Type this line:
>>> from math import *

Once you have done this, you will be able to use a number of mathematical
functions. For example, sqrt(x) computes the square root of x:
>>> sqrt(4.0)
2.0
>>> sqrt(81)

Soft Computing and Machine Learning with Python164

9.0
>>> sqrt(100000)
316.22776601683796

Importing the math module also adds two predefined variables, pi (as in
π) and e, the base of natural logarithms:
>>> print pi, e
3.14159265359 2.71828182846

Here’s an example of a function that takes more than argument. The
function atan2(dy , dx) returns the arctangent of a line whose slope is dy/dx.
>>> atan2 (1.0, 0.0)
1.5707963267948966
>>> atan2(0.0, 1.0)
0.0
>>> atan2(1.0, 1.0)
0.78539816339744828
>>> print pi/4
0.785398163397

For a complete list of all the facilities in the math module, see the Python
quick reference. Here are some more examples; log is the natural logarithm,
and log10 is the common logarithm:
>>> log(e)
1.0
>>> log10(e)
0.43429448190325182
>>> exp (1.0)
2.7182818284590451
>>> sin (pi / 2)
1.0
>>> cos(pi/2)
6.1230317691118863e-17

A Python 2.7 Programming Tutorial 165

Mathematically, cos(π/2) should be zero. However, like pretty much all
other modern programming languages, transcendental functions like this
use approximations. 6.12×10-17 is, after all, pretty close to zero.

Two math functions that you may find useful in certain situations:
• floor(x) returns the largest whole number that is less than or equal

to x.
• ceil(x) returns the smallest whole number that is greater than or

equal to x.
>>> floor(4.9)
4.0
>>> floor(4.1)
4.0
>>> floor(-4.1)
-5.0
>>> floor(-4.9)
-5.0
>>> ceil(4.9)
5.0
>>> ceil(4.1)
5.0
>>> ceil(-4.1)
-4.0
>>> ceil(-4.9)
-4.0

Note that the floor function always moves toward -∞ (minus infinity),
and ceil always moves toward +∞.

CHARACTER STRING BASICS
Python has extensive features for handling strings of characters. There are
two types:

• A str value is a string of zero or more 8-bit characters. The
common characters you see on North American keyboards all
use 8-bit characters. The official name for this character set is
ASCII, for American Standard Code for Information Interchange.

Soft Computing and Machine Learning with Python166

This character set has one surprising property: all capital letters are
considered less than all lowercase letters, so the string “Z” sorts before
string “a”.

• A unicode value is a string of zero or more 32-bit Unicode
characters. The Unicode character set covers just about every
written language and almost every special character ever invented.

We’ll mainly talk about working with str values, but most unicode
operations are similar or identical, except that Unicode literals are preceded
with the letter u: for example, «abc” is type str, but u”abc” is type unicode.

String Literals
In Python, you can enclose string constants in either single-quote (‘...’) or
double-quote (“...”) characters.
>>> cloneName = ‘Clem’
>>> cloneName
‘Clem’
>>> print cloneName
Clem
>>> fairName = “Future Fair”
>>> print fairName
Future Fair
>>> fairName
‘Future Fair’

When you display a string value in conversational mode, Python will
usually use single-quote characters. Internally, the values are the same
regardless of which kind of quotes you use. Note also that the print statement
shows only the content of a string, without any quotes around it.

To convert an integer (int type) value i to its string equivalent, use the
function “str(i)”:
>>> str(-497)
‘-497’
>>> str(000)
‘0’

A Python 2.7 Programming Tutorial 167

The inverse operation, converting a string s back into an integer, is
written as “int(s)”:
>>>
>>> int(“-497”)
-497
>>> int(“-0”)
0
>>> int (“012this ain’t no number”)

Traceback (most recent call last):
 File “<stdin>”, line 1, in ?

ValueError: invalid literal for int(): 012this ain’t no number
The last example above shows what happens when you try to convert a

string that isn’t a valid number.
To convert a string s containing a number in base B, use the form “int(s,

B)”:
>>> int (‘0F’, 16)
15
>>> int (“10101”, 2)
21
>>> int (“0177776”, 8)
65534

To obtain the 8-bit integer code contained in a one-character string s,
use the function “ord(s)”. The inverse function, to convert an integer i to the
character that has code i, use “chr(i)”. The numeric values of each character
are defined by the ASCIIcharacter set.
>>> chr(97)
‘a’
>>> ord(“a”)
97
>>> chr(65)
‘A’
>>> ord(‘A’)
65

Soft Computing and Machine Learning with Python168

In addition to the printable characters with codes in the range from 32
to 127 inclusive, a Python string can contain any of the other unprintable,
special characters as well. For example, the null character, whose official
name is NUL, is the character whose code is zero. One way to write such a
character is to use this form:
‘\xNN’
where NN is the character›s code in hexadecimal (base 16) notation.
>>> chr(0)
‘\x00’
>>> ord(‘\x00’)
0

Another special character you may need to deal with is the newline
character, whose official name is LF (for “line feed”). Use the special escape
sequence “\n” to produced this character.
>>> s = “Two-line\nstring.”
>>> s
‘Two-line\nstring.’
>>> print s
Two-line
string.

As you can see, when a newline character is displayed in conversational
mode, it appears as “\n”, but when you print it, the character that follows it
will appear on the next line. The code for this character is 10:
>>> ord(‘\n’)
10
>>> chr(10)
‘\n’

Python has several other of these escape sequences. The term “escape
sequence” refers to a convention where a special character, the “escape
character”, changes the meaning of the characters after it. Python’s escape
character is backslash (\).

Input Code Name Meaning
\b 8 BS backspace

A Python 2.7 Programming Tutorial 169

\t 9 HT tab
\” 34 “ Double quote
\’ 39 ‘ Single quote
\\ 92 \ Backslash

There is another handy way to get a string that contains newline
characters: enclose the string within three pairs of quotes, either single or
double quotes.
>>> multi = “””This string
... contains three
... lines.”””
>>> multi
‘This string\n contains three\n lines.’
>>> print multi

This string
 contains three
 lines.
>>> s2 = ‘’’
... xyz
... ‘’’
>>> s2
‘\nxyz\n’
>>> print s2

xyz

>>>
Notice that in Python’s conversational mode, when you press Enter at

the end of a line, and Python knows that your line is not finished, it displays
a “...” prompt instead of the usual “>>>” prompt.

Indexing Strings
To extract one or more characters from a string value, you have to know how
positions in a string are numbered.

Soft Computing and Machine Learning with Python170

Here, for example, is a diagram showing all the positions of the string
‘ijklm’.

In the diagram above, the numbers show the positions between characters.
Position 0 is the position before the first character; position 1 is the position
between the first and characters; and so on.

You may also refer to positions relative to the end of a string. Position -1
refers to the position before the last character; -2 is the position before the
next-to-last character; and so on.

To extract from a string s the character that occurs just after position n,
use an expression of this form:
s[n]
Examples:
>>> stuff = ‘ijklm’
>>> stuff[0]
‘i’
>>> stuff[1]
‘j’
>>> stuff[4]
‘m’
>>> stuff [-1]
‘m’
>>> stuff [-3]
‘k’
>>> stuff[5]
Traceback (most recent call last):
 File “<stdin>”, line 1, in ?

IndexError: string index out of range
The last example shows what happens when you specify a position after

all the characters in the string.
You can also extract multiple characters from a string; see Section 4.3,

“Slicing sequences”.

A Python 2.7 Programming Tutorial 171

String Methods
Many of the operations on strings are expressed as methods. A method is
sort of like a function that lives only inside values of a certain type. To call
a method, use this syntax:
expr.method(arg1, arg2, ...)
where each argi is an argument to the method, just like an argument to a
function.

For example, any string value has a method called center that produces
a new string with the old value centered, using extra spaces to pad the value
out to a given length. This method takes as an argument the desired new
length. Here’s an example:
>>> star = “*”
>>> star.center(5)
‘ * ‘

The following sections describe some of the more common and useful
string methods.
.center(): Center Some Text

Given some string value s, to produce a new string containing s centered
in a string of length n, use this method call:

s.center(n)
This method takes one argument n, the size of the result. Examples:

>>> k = “Ni”
>>> k.center(5)
‘ Ni ‘
>>> “<*>”.center(12)
‘ <*> ‘

Note that in the first example we are asking Python to center the string
“Ni” in a field of length 5. Clearly we can’t center a 2-character string in 5
characters, so Python arbitrarily adds the leftover space character before the
old value.

.ljust() and .rjust(): Pad to Length on the Left or Right
Another useful string method left-justifies a value in a field of a given length.
The general form:

Soft Computing and Machine Learning with Python172

s.ljust(n)
For any string expression s, this method returns a new string containing

the characters from s with enough spaces added after it to make a new string
of length n.
>>> “Ni”.ljust(4)
‘Ni ‘
>>> “Too long to fit”.ljust(4)
‘Too long to fit’

Note that the .ljust() method will never return a shorter string. If the
length isn’t enough, it just returns the original value.

There is a similar method that right-justifies a string value:
s.rjust(n)

This method returns a string with enough spaces added before the value
to make a string of length n. As with the .ljust() method, it will never return
a string shorter than the original.
>>> “Ni”.rjust(4)
‘ Ni’
>>> m = “floccinaucinihilipilification”
>>> m.rjust(4)
‘floccinaucinihilipilification’

.strip(), .lstrip(), and .rstrip(): Remove Leading and/or Trailing
Whitespace
Sometimes you want to remove whitespace (spaces, tabs, and newlines)
from a string. For a string s, use these methods to remove leading and trailing
whitespace:

• s.strip() returns s with any leading or trailing whitespace
characters removed.

• s.lstrip() removes only leading whitespace.
• s.rstrip() removes only trailing whitespace.

>>> spaceCase = ‘ \n \t Moon \t\t ‘
>>> spaceCase
‘ \n \t Moon \t\t ‘

A Python 2.7 Programming Tutorial 173

>>> spaceCase.strip()
‘Moon’
>>> spaceCase.lstrip()
‘Moon \t\t ‘
>>> spaceCase.rstrip()
‘ \n \t Moon’

.count(): How many occurrences?
The method s.count(t) searches string s to see how many times string t
occurs in it.
>>> chiq = “banana”
>>> chiq
‘banana’
>>> chiq.count(“a”)
3
>>> chiq.count(“b”)
1
>>> chiq.count(“x”)
0
>>> chiq.count(“an”)
2
>>> chiq.count(“ana”)
1

Note that this method does not count overlapping occurrences. Although
the string “ana” occurs twice in string “banana”, the occurrences overlap, so
“banana”.count(“ana”) returns only 1.

.find() and .rfind(): Locate a String within a Longer String
Use this method to search for a string t within a string s:
s.find(t)
If t matches any part of s, the method returns the position where the first
match begins; otherwise, it returns -1.

Soft Computing and Machine Learning with Python174

>>> chiq
‘banana’
>>> chiq.find (“b”)
0
>>> chiq.find (“a”)
1
>>> chiq.find (“x”)
-1
>>> chiq.find (“nan”)
2

If you need to find the last occurrence of a substring, use the similar
method s.rfind(t), which returns the position where the last match starts, or
-1 if there is no match.
>>> chiq.rfind(“a”)
5
>>> chiq[5]
‘a’
>>> chiq.rfind(“n”)
4
>>> chiq.rfind(“b”)
0
>>> chiq.rfind(“Waldo”)
-1

.startswith() and .endswith()
You can check to see if a string s starts with a string t using a method call
like this:
s.startswith(t)

This method returns True if s starts with a string that matches t; otherwise
it returns False.
>>> chiq
‘banana’
>>> chiq.startswith(“b”)
True

A Python 2.7 Programming Tutorial 175

>>> chiq.startswith(“ban”)
True
>>> chiq.startswith (‘Waldo’)
False
There is a similar method s.endswith(t) that tests whether string s ends with
t:
>>> chiq.endswith(“Waldo”)
False
>>> chiq.endswith(“a”)
True
>>> chiq.endswith(“nana”)
True
The special values True and False are discussed later in Section 6.1,
“Conditions and the bool type”.

.lower() and .upper(): Change the case of letters
The methods s.lower() and s.upper() are used to convert uppercase characters
to lowercase, and vice versa, respectively.
>>> poet = ‘E. E. Cummings’
>>> poet.upper()
‘E. E. CUMMINGS’
>>> poet.lower()
‘e. e. cummings’

Predicates for testing for kinds of characters
Use the string methods in this section to test whether a string contains certain
kinds of characters. Each of these methods is a predicate, that is, it asks a
question and returns a value of True or False.

• s.isalpha() tests whether all the characters of s are letters.
• s.isupper() tests whether all the letters of s are uppercase. (It

ignores any non-letter characters.)
• s.islower() tests whether all the letters of s are lowercase letters.

(This method also ignores non-letter characters.)

Soft Computing and Machine Learning with Python176

• s.isdigit() tests whether all the characters of s are digits.
>>> mixed = ‘abcDEFghi’
>>> mixed.isalpha()
True
>>> mixed.isupper()
False
>>> mixed.islower()
False
>>> “ABCDGOLDFISH”.isupper()
True
>>> “lmno goldfish”.islower()
True
>>> “abc $%&*(“.islower()
True
>>> “abC $%&*(“.islower()
False
>>> paradise = “87801”
>>> paradise.isalpha()
False
>>> paradise.isdigit()
True
>>> “abc123”.isdigit()
False

.split(): Break fields out of a string
The .split() method is used to break a string up into pieces wherever a certain
string called the delimiter is found; it returns a list of strings containing the
text between the delimiters. For example, suppose you have a string that
contains a series of numbers separated by whitespace. A call to the .split()
method on that string, with no arguments, returns a list of the parts of the
string that are surrounded by whitespace.
>>> line = “ 1.4 8.6 -23.49 “
>>> line.split()

A Python 2.7 Programming Tutorial 177

[‘1.4’, ‘8.6’, ‘-23.49’]
You can also specify a delimiter as the argument of the .split() method.

Examples:
>>> s = ‘farcical/aquatic/ceremony’
>>> s.split(‘/’)
[‘farcical’, ‘aquatic’, ‘ceremony’]
>>> “//a/b/”.split(‘/’)
[‘’, ‘’, ‘a’, ‘b’, ‘’]
>>> “Stilton; Wensleydale; Cheddar;Edam”.split(“; “)
[‘Stilton’, ‘Wensleydale’, ‘Cheddar;Edam’]
You may also provide a second argument that limits the number of pieces to
be split from the string.
>>> t = ‘a/b/c/d/e’
>>> t.split(‘/’)
[‘a’, ‘b’, ‘c’, ‘d’, ‘e’]
>>> t.split(‘/’, 1)
[‘a’, ‘b/c/d/e’]
>>> t.split(‘/’, 3)
[‘a’, ‘b’, ‘c’, ‘d/e’]

The String Format Method
One of the commonest string operations is to combine fixed text and variable
values into a single string. For example, maybe you have a variable named
nBananas that contains the number of bananas, and you want to format a
string something like «We have 27 bananas today». Here›s how you do it:
>>> nBananas = 54
>>> “We have {0} bananas today”.format(nBananas)
‘We have 54 bananas today’

Here is the general form of the string format operation:
S.format(p0, p1, ..., k0=e0, k1=e1, ...)

Soft Computing and Machine Learning with Python178

In this form:
• S is a format string that specifies the fixed parts of the desired text

and also tells where the variable parts are to go and how they are
to look.

• The .format() method takes zero or more positional arguments pi
followed by and zero or more keyword arguments ki=ei, where
each ki is any Python name and each ei is any Python expression.

• The format string contains a mixture of ordinary text and format
codes. Each of the format codes is enclosed in braces {...}. A
format code containing a number refers to the corresponding
positional argument, and a format code containing a name refers
to the corresponding keyword argument.

Examples:
>>> “We have {0} bananas.”.format(27)
‘We have 27 bananas.’
>>> “We have {0} cases of {1} today.”.format(42, ‘peaches’)
‘We have 42 cases of peaches today.’
>>> “You’ll have {count} new {thing}s by {date}”.format(
... count=27, date=”St. Swithin’s Day”, thing=”cooker”)
“You’ll have 27 new cookers by St. Swithin’s Day”
You can control the formatting of an item by using a format code of the form
“{N:type}”, where N is the number or name of the argument to the .format()
method, and type specifies the details of the formatting.
The type may be a single type code like s for string, d for integer, or f for
float.
>>> “{0:d}”.format(27)
‘27’
>>> “{0:f}”.format(27)
‘27.000000’
>>> “{animal:s}”.format(animal=”sheep”)
‘sheep’

You may also include a field size just before the type code. With float
values, you can also specify a precision after the field size by using a “.”
followed by the desired number of digits after the decimal.

A Python 2.7 Programming Tutorial 179

>>> “({bat:8s})”.format(bat=’fruit’)
‘(fruit)’
>>> “{0:8f}”.format(1.0/7.0)
‘0.142857’
>>> “{n:20.11f}”.format(n=1.0/7.0)
‘ 0.14285714286’
>>> “{silly:50.40f}”.format(silly=5.33333)
‘ 5.3333300000000001261923898709937930107117’

Notice in the last example above that it is possible for you to produce any
number of spurious digits beyond the precision used to specify the number
originally! Beware, because those extra digits are utter garbage.

When you specify a precision, the value is rounded to the nearest value
with that precision.
>>> “{0:.1f}”.format(0.999)
‘1.0’
>>> “{0:.1f}”.format(0.99)
‘1.0’
>>> “{0:.1f}”.format(0.9)
‘0.9’
>>> “{0:.1f}”.format(0.96)
‘1.0’
>>> “{0:.1f}”.format(0.9501)
‘1.0’
>>> “{0:.1f}”.format(0.9499999)
‘0.9’

The “e” type code forces exponential notation. You may also wish to
use the “g” (for general) type code, which selects either float or exponential
notation depending on the value.
>>> avo = 6.022e23
>>> “{0:e}”.format(avo)
‘6.022000e+23’
>>> “{0:.3e}”.format(avo)

Soft Computing and Machine Learning with Python180

‘6.022e+23’
>>> “{num:g}”.format(num=144)
‘144’
>>> “{num:g}”.format(num=avo)
‘6.022e+23’

By default, strings are left-justified within the field size and numbers are
right-justified. You can change this by placing an alignment code just after
the “:”: “<” to left-align the field, “^” to center it, and “>” to right-align it.
>>> “/{0:<6s}/”.format(‘git’)
‘/git /’
>>> “/{0:^6s}/”.format(‘git’)
‘/ git /’
>>> “/{0:>6s}/”.format(‘git’)
‘/ git/’
>>> ‘*{count:<8d}*’.format(count=13)
‘*13 *’

Normally, short values are padded to length with spaces. You can specify
a different padding character by placing it just after the “:”.
>>> “{0:08d}”.format(17)
‘00000017’
“{film:@>20s}”.format(film=’If’)
‘@@@@@@@@@@@@@@@@@@If’
>>> “{film:@^20s}”.format(film=’If’)
‘@@@@@@@@@If@@@@@@@@@’

If you need to produce any “{” or “}” characters in the result, you must
double them within the format code.
>>> “Set {0}: contents {{red, green, blue}}”.format(‘glory’)
‘Set glory: contents {red, green, blue}’

One thing we sometimes need to is to format something to a size that is
not known until the program is running. For example, suppose we want to
format a ticket number from a variable named ticket_no, with left zero fill,
and the width is given by a variable named how_wide. This would do the
job:
>>> how_wide = 8

A Python 2.7 Programming Tutorial 181

>>> ticket_no = 147
>>> “Ticket {num:0{w}d}”.format(num=ticket_no, w=how_wide)
‘Ticket 00000147’

Here, where the width is expected, “{w}” appears. Because there is
a keyword argument that is effectively w=8, the value “8” is used for the
width.

Note
The string .format() method has been available only since Python 2.6. If
you are looking at older code, you may see a different technique using the
“%” operator. For example, ‘Attila the %s’ % ‘Bun’ yields ‘Attila the bun’.
For an explanation, see the Python library documentation. However, the old
format operator is deprecated.

SEQUENCE TYPES
Mathematically, a sequence in Python represents an ordered set.

Sequences are an example of container classes: values that contain other
values inside them.

Type name Contains Examples Mutable?
str 8-bit characters “abc” ‘abc’ “” ‘’ ‘\n’ ‘\

x00’
No

unicode 32-bit characters u’abc’ u’\u000c’ No
list Any values [23, “Ruth”, 69.8] [] Yes
tuple Any values (23, “Ruth”, 69.8) () (44,) No

str and unicode are used to hold text, that is, strings of characters.
• list and tuple are used for sequences of zero or more values of

any type. Use a list if the contents of the sequence may change;
use a tuple if the contents will not change, and in certain places
where tuples are required. For example, the right-hand argument
of the string format operator (see Section 3.4, “The string format
method”) must be a tuple if you are formatting more than one
value.

• To create a list, use an expression of the form
• [expr1, expr1, ...]

with a list of zero or more values between square brackets, “[…]”.

Soft Computing and Machine Learning with Python182

• To create a tuple, use an expression of the form
• (expr1, expr1, ...)

with a list of zero or more values enclosed in parentheses, “(…”).
To create a tuple with only one element v, use the special syntax “(v,)”.

For example, (43+1,) is a one-element tuple containing the integer 44. The
trailing comma is used to distinguish this case from the expression “(43+1)”,
which yields the integer 44, not a tuple.

• Mutability: You can’t change part of an immutable value. For
example, you can›t change the first character of a string from ‹a›
to ‹b›. It is, however, easy to build a new string out of pieces of
other strings.

Here are some calculator-mode examples. First, we’ll create a string
named s, a list named L, and a tuple named t:
>>> s = “abcde”
>>> L = [0, 1, 2, 3, 4, 5]
>>> t = (‘x’, ‘y’)
>>> s
‘abcde’
>>> L
[0, 1, 2, 3, 4, 5]
>>> t
(‘x’, ‘y’)

Functions and Operators for Sequences
The built-in function len(S) returns the number of elements in a sequence S.
>>> print len(s), len(L), len(t)
5 6 2

Function max(S) returns the largest value in a sequence S, and function
min(S) returns the smallest value in a sequence S.
>>> max(L)
5
>>> min(L)
0

A Python 2.7 Programming Tutorial 183

>>> max(s)
‘e’
>>> min(s)
‘a’

To test for set membership, use the “in” operator. For a value v and a
sequence S, the expression v in S returns the Boolean value True if there is
at least one element of S that equals v; it returns Falseotherwise.
>>> 2 in L

True
>>> 77 in L
False

There is an inverse operator, v not in S, that returns True if v does not
equal any element of S, False otherwise.
>>> 2 not in L
False
>>> 77 not in L
True
The “+” operator is used to concatenate two sequences of the same type.
>>> s + “xyz”
‘abcdexyz’
>>> L + L
[0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5]
>>> t + (‘z’,)
(‘x’, ‘y’, ‘z’)
When the “*” operator occurs between a sequence S and an integer n, you
get a new sequence containing n repetitions of the elements of S.
>>> “x” * 5
‘xxxxx’
>>> “spam” * 8
‘spamspamspamspamspamspamspamspam’
>>> [0, 1] * 3
[0, 1, 0, 1, 0, 1]

Soft Computing and Machine Learning with Python184

Indexing the Positions in a Sequence
Positions in a sequence refer to locations between the values. Positions are
numbered from left to right starting at 0. You can also refer to positions in
a sequence using negative numbers to count from right to left: position -1
is the position before the last element, position -2 is the position before the
next-to-last element, and so on.

Here are all the positions of the string “ijklm”.

To extract a single element from a sequence, use an expression of the
form S[i], where S is a sequence, and i is an integer value that selects the
element just after that position.
>>> s[0]
‘a’
>>> s[4]
‘e’
>>> s[5]

Traceback (most recent call last):
 File “<stdin>”, line 1, in ?

IndexError: string index out of range
The last line is an error; there is nothing after position 5 in string s.

>>> L[0]
0
>>> t[0]
‘x’

Slicing Sequences
For a sequence S, and two positions B and E within that sequence, the
expression S [B : E] produces a new sequence containing the elements of S
between those two positions.
>>> L

A Python 2.7 Programming Tutorial 185

[0, 1, 2, 3, 4, 5]
>>> L[2]
2
>>> L[4]
4
>>> L[2:4]
[2, 3]
>>> s = ‘abcde’
>>> s[2]
‘c’
>>> s[4]
‘e’
>>> s[2:4]
‘cd’

Note in the example above that the elements are selected from position
2 to position 4, which does not include the element L[4].

You may omit the starting position to slice elements from at the
beginning of the sequence up to the specified position. You may omit the
ending position to specify a slice that extends to the end of the sequence.
You may even omit both in order to get a copy of the whole sequence.
>>> L[:4]
[0, 1, 2, 3]
>>> L[4:]
[4, 5]
>>> L[:]
[0, 1, 2, 3, 4, 5]

You can replace part of a list by using a slicing expression on the left-
hand side of the “=” in an assignment statement, and providing a list of
replacement elements on the right-hand side of the “=”. The elements
selected by the slice are deleted and replaced by the elements from the right-
hand side.

In slice assignment, it is not necessary that the number of replacement
elements is the same as the number of replaced elements. In this example,

Soft Computing and Machine Learning with Python186

the second and third elements of L are replaced by the five elements from
the list on the right-hand side.
>>> L
[0, 1, 2, 3, 4, 5]
>>> L[2:4]
[2, 3]
>>> L[2:4] = [93, 94, 95, 96, 97]
>>> L
[0, 1, 93, 94, 95, 96, 97, 4, 5]

You can even delete a slice from a sequence by assigning an an empty
sequence to a slice.
>>> L
[0, 1, 93, 94, 95, 96, 97, 4, 5]
>>> L[3]
94
>>> L[7]
4
>>> L[3:7] = []
>>> L
[0, 1, 93, 4, 5]

Similarly, you can insert elements into a sequence by using an empty
slice on the left-hand side.
>>> L
[0, 1, 93, 4, 5]
>>> L[2]
93
>>> L[2:2] = [41, 43, 47, 53]
>>> L
[0, 1, 41, 43, 47, 53, 93, 4, 5]

Another way to delete elements from a sequence is to use Python’s del
statement.
>>> L

A Python 2.7 Programming Tutorial 187

[0, 1, 41, 43, 47, 53, 93, 4, 5]
>>> L[3:6]
[43, 47, 53]
>>> del L[3:6]
>>> L
[0, 1, 41, 93, 4, 5]

Sequence Methods
To find the position of a value V in a sequence S, use this method:

S.index(V)
This method returns the position of the first element of S that equals V. If

no elements of S are equal, Python raises a ValueError exception.
>>> menu1
[‘beans’, ‘kale’, ‘tofu’, ‘trifle’, ‘sardines’]
>>> menu1.index(“kale”)
1
>>> menu1.index(“spam”)
Traceback (most recent call last):
 File “<stdin>”, line 1, in ?

ValueError: list.index(x): x not in list
The method S.count(V) method returns the number of elements of S that

are equal to V.
>>> menu1[2:2] = [‘spam’] * 3
>>> menu1
[‘beans’, ‘kale’, ‘spam’, ‘spam’, ‘spam’, ‘tofu’, ‘trifle’, ‘sardines’]
>>> menu1.count(‘gravy’)
0
>>> menu1.count(‘spam’)
3
>>> “abracadabra”.count(“a”)
5
>>> “abracadabra”.count(“ab”)

Soft Computing and Machine Learning with Python188

2
>>> (1, 6, 55, 6, 55, 55, 8).count(55)
3

List Methods
All list instances have methods for changing the values in the list. These
methods work only on lists. They do not work on the other sequence types
that are not mutable, that is, the values they contain may not be changed,
added, or deleted.

For example, for any list instance L, the .append(v) method appends a
new value v to that list.
>>> menu1 = [‘kale’, ‘tofu’]
>>> menu1
[‘kale’, ‘tofu’]
>>> menu1.append (‘sardines’)
>>> menu1
[‘kale’, ‘tofu’, ‘sardines’]
>>>

To insert a single new value V into a list L at an arbitrary position P, use
this method:
L.insert(P, V)
To continue the example above:
>>> menu1
[‘kale’, ‘tofu’, ‘sardines’]
>>> menu1.insert(0, ‘beans’)
>>> menu1
[‘beans’, ‘kale’, ‘tofu’, ‘sardines’]
>>> menu1[3]
‘sardines’
>>> menu1.insert(3, ‘trifle’)
>>> menu1
[‘beans’, ‘kale’, ‘tofu’, ‘trifle’, ‘sardines’]
The method L.remove(V) removes the first element of L that equals V, if there

A Python 2.7 Programming Tutorial 189

is one. If no elements equal V, the method raises a ValueError exception.
>>> menu1
[‘beans’, ‘kale’, ‘spam’, ‘spam’, ‘spam’, ‘tofu’, ‘trifle’, ‘sardines’]
>>> menu1.remove(‘spam’)
>>> menu1
[‘beans’, ‘kale’, ‘spam’, ‘spam’, ‘tofu’, ‘trifle’, ‘sardines’]
>>> menu1.remove(‘spam’)
>>> menu1
[‘beans’, ‘kale’, ‘spam’, ‘tofu’, ‘trifle’, ‘sardines’]
>>> menu1.remove(‘gravy’)
Traceback (most recent call last):
 File “<stdin>”, line 1, in ?
ValueError: list.remove(x): x not in list
The L.sort() method sorts the elements of a list into ascending order.
>>> menu1
[‘beans’, ‘kale’, ‘spam’, ‘tofu’, ‘trifle’, ‘sardines’]
>>> menu1.sort()
>>> menu1
[‘beans’, ‘kale’, ‘sardines’, ‘spam’, ‘tofu’, ‘trifle’]
Note that the .sort() method itself does not return a value; it sorts the values of
the list in place. A similar method is .reverse(), which reverses the elements
in place:
>>> menu1
[‘beans’, ‘kale’, ‘sardines’, ‘spam’, ‘tofu’, ‘trifle’]
>>> menu1.reverse()
>>> menu1
[‘trifle’, ‘tofu’, ‘spam’, ‘sardines’, ‘kale’, ‘beans’]

The range() function: Creating Arithmetic Progressions
The term arithmetic progression refers to a sequence of numbers such that
the difference between any two successive elements is the same. Examples:
[1, 2, 3, 4, 5]; [10, 20, 30, 40]; [88, 77, 66, 55, 44, 33].

Soft Computing and Machine Learning with Python190

Python’s built-in range() function returns a list containing an arithmetic
progression. There are three different ways to call this function.
To generate the sequence [0, 1, 2, ..., n-1], use the form range(n).
>>> range(6)
[0, 1, 2, 3, 4, 5]
>>> range(2)
[0, 1]
>>> range(0)
[]
Note that the sequence will never include the value of the argument n; it
stops one value short.
To generate a sequence [i, i+1, i+2, ..., n-1], use the form range(i, n):
>>> range(5,11)
[5, 6, 7, 8, 9, 10]
>>> range(1,5)
[1, 2, 3, 4]
To generate an arithmetic progression with a difference d between successive
values, use the three-argument form range(i, n, d). The resulting sequence
will be [i, i+d, i+2*d, ...], and will stop before it reaches a value equal to n.
>>> range (10, 100, 10)
[10, 20, 30, 40, 50, 60, 70, 80, 90]
>>> range (100, 0, -10)
[100, 90, 80, 70, 60, 50, 40, 30, 20, 10]
>>> range (8, -1, -1)
[8, 7, 6, 5, 4, 3, 2, 1, 0]

One Value can have Multiple Names
It is necessary to be careful when modifying mutable values such as lists
because there may be more than one name bound to that value. Here is a
demonstration.

We start by creating a list of two strings and binding two names to that
list.
>>> menu1 = menu2 = [‘kale’, ‘tofu’]

A Python 2.7 Programming Tutorial 191

>>> menu1
[‘kale’, ‘tofu’]
>>> menu2
[‘kale’, ‘tofu’]
Then we make a new list using a slice that selects all the elements of menu1:
>>> menu3 = menu1 [:]
>>> menu3
[‘kale’, ‘tofu’]

Now watch what happens when we modify menu1’s list:
>>> menu1.append (‘sardines’)
>>> menu1
[‘kale’, ‘tofu’, ‘sardines’]
>>> menu2
[‘kale’, ‘tofu’, ‘sardines’]
>>> menu3
[‘kale’, ‘tofu’]
If we appended a third string to menu1, why does that string also appear
in list menu2? The answer lies in the definition of Python’s assignment
statement:
To evaluate an assignment statement of the form
V1 = V2 = ... = expr
where each Vi is a variable, and expr is some expression, first reduce expr to
a single value, then bind each of the names vi to that value.
So let’s follow the example one line at a time, and see what the global
namespace looks like after each step. First we create a list instance and bind
two names to it:
>>> menu1=menu2=[‘kale’, ‘tofu’]

Soft Computing and Machine Learning with Python192

Two different names, menu1 and menu2, point to the same list. Next, we
create an element-by-element copy of that list and bind the name menu3 to
the copy.
>>> menu3 = menu1[:]
>>> menu3
[‘kale’, ‘tofu’]

So, when we add a third string to menu1’s list, the name menu2 is still
bound to that same list.
>>> menu1.append (‘sardines’)
>>> menu1
[‘kale’, ‘tofu’, ‘sardines’]
>>> menu2
[‘kale’, ‘tofu’, ‘sardines’]

A Python 2.7 Programming Tutorial 193

This behavior is seldom a problem in practice, but it is important to keep
in mind that two or more names can be bound to the same value.

If you are concerned about modifying a list when other names may
be bound to the same list, you can always make a copy using the slicing
expression “L[:]”.
>>> L1 = [‘bat’, ‘cat’]
>>> L2 = L1
>>> L3 = L1[:]
>>> L1.append(‘hat’)
>>> L2
[‘bat’, ‘cat’, ‘hat’]
>>> L3
[‘bat’, ‘cat’]

DICTIONARIES
Python’s dictionary type is useful for many applications involving table
lookups. In mathematical terms:
A Python dictionary is a set of zero or more ordered pairs (key, value) such
that:

• The value can be any type.
• Each key may occur only once in the dictionary.
• No key may be mutable. In particular, a key may not be a list or

dictionary, or a tuple containing a list or dictionary, and so on.

Soft Computing and Machine Learning with Python194

The idea is that you store values in a dictionary associated with some
key, so that later you can use that key to retrieve the associated value.

Operations on Dictionaries
The general form used to create a new dictionary in Python looks like this:
{k1: v1, k2: v2, ...}

To retrieve the value associated with key k from dictionary d, use an
expression of this form:
d[k]

Here are some conversational examples:
>>> numberNames = {0:’zero’, 1:’one’, 10:’ten’, 5:’five’}
>>> numberNames[10]
‘ten’
>>> numberNames[0]
‘zero’
>>> numberNames[999]
Traceback (most recent call last):
 File “<stdin>”, line 1, in ?
KeyError: 999

Note that when you try to retrieve the value for which no key exists in
the dictionary, Python raises a KeyError exception.

To add or replace the value for a key k in dictionary d, use an assignment
statement of this form:
d[k] = v
For example:
>>> numberNames[2] = “two”
>>> numberNames[2]
‘two’
>>> numberNames
{0: ‘zero’, 1: ‘one’, 10: ‘ten’, 2: ‘two’, 5: ‘five’}

A Python 2.7 Programming Tutorial 195

Note
The ordering of the pairs within a dictionary is undefined. Note that in the
example above, the pairs do not appear in the order they were added.
You can use strings, as well as many other values, as keys:
>>> nameNo={“one”:1, “two”:2, “forty-leven”:4011}
>>> nameNo[“forty-leven”]
4011
You can test to see whether a key k exists in a dictionary d with the “in”
operator, like this:
k in d
This operation returns True if k is a key in dictionary d, False otherwise.
The construct “k not in d” is the inverse test: it returns True if k is not a key
in d, False if it is a key.
>>> 1 in numberNames
True
>>> 99 in numberNames
False
>>> “forty-leven” in nameNo
True
>>> “eleventeen” in nameNo
False
>>> “forty-leven” not in nameNo
False
>>> “eleventeen” not in nameNo
True
Python’s del (delete) statement can be used to remove a key-value pair from
a dictionary.
>>> numberNames
{0: ‘zero’, 1: ‘one’, 10: ‘ten’, 2: ‘two’, 5: ‘five’}
>>> del numberNames[10]
>>> numberNames
{0: ‘zero’, 1: ‘one’, 2: ‘two’, 5: ‘five’}

Soft Computing and Machine Learning with Python196

>>> numberNames[10]
Traceback (most recent call last):
 File “<stdin>”, line 1, in ?
KeyError: 10

Dictionary Methods
A number of useful methods are defined on any Python dictionary. To test
whether a key k exists in a dictionary d, use this method:
d.has_key(k)
This is the equivalent of the expression “k in d”: it returns True if the key is
in the dictionary, False otherwise.
>>> numberNames
{0: ‘zero’, 1: ‘one’, 2: ‘two’, 5: ‘five’}
>>> numberNames.has_key(2)
True
>>> numberNames.has_key(10)
False
To get a list of all the keys in a dictionary d, use this expression:
d.keys()
To get a list of the values in a dictionary d , use this expression:
d.values()
You can get all the keys and all the values at the same time with this
expression, which returns a list of 2-element tuples, in which each tuple has
one key and one value as (k, v).
d.items()
Examples:
>>> numberNames
{0: ‘zero’, 1: ‘one’, 2: ‘two’, 5: ‘five’}
>>> numberNames.keys()
[0, 1, 2, 5]
>>> numberNames.values()
[‘zero’, ‘one’, ‘two’, ‘five’]
>>> numberNames.items()

A Python 2.7 Programming Tutorial 197

[(0, ‘zero’), (1, ‘one’), (2, ‘two’), (5, ‘five’)]
>>> nameNo
{‘forty-leven’: 4011, ‘two’: 2, ‘one’: 1}
>>> nameNo.keys()
[‘forty-leven’, ‘two’, ‘one’]
>>> nameNo.values()
[4011, 2, 1]
>>> nameNo.items()
[(‘forty-leven’, 4011), (‘two’, 2), (‘one’, 1)]
Here is another useful method:
d.get(k)
If k is a key in d, this method returns d[k]. However, if k is not a key, the
method returns the special value None. The advantage of this method is that
if the k is not a key in d, it is not considered an error.
>>> nameNo.get(“two”)
2
>>> nameNo.get(“eleventeen”)
>>> huh = nameNo.get(“eleventeen”)
>>> print huh
None
Note that when you are in conversational mode, and you type an expression
that results in the value None, nothing is printed. However, the print statement
will display the special value None visually as the example above shows.
There is another way to call the .get() method, with two arguments:
d.get(k, default)
In this form, if key k exists, the corresponding value is returned. However,
if k is not a key in d, it returns the default value.
>>> nameNo.get(“two”, “I have no idea.”)
2
>>> nameNo.get(“eleventeen”, “I have no idea.”)
‘I have no idea.’
Here is another useful dictionary method. This is similar to the two-argument

Soft Computing and Machine Learning with Python198

form of the .get() method, but it goes even further: if the key is not found, it
stores a default value in the dictionary.
d.setdefault(k, default)
If key k exists in dictionary d, this expression returns the value d[k]. If k is
not a key, it creates a new dictionary entry as if you had said “d[k] = default”.
>>> nameNo.setdefault(“two”, “Unknown”)
2
>>> nameNo[“two”]
2
>>> nameNo.setdefault(“three”, “Unknown”)
‘Unknown’
>>> nameNo[“three”]
‘Unknown’
To merge two dictionaries d1 and d2, use this method:
d1.update(d2)
This method adds all the key-value pairs from d2 to d1. For any keys that
exist in both dictionaries, the value after this operation will be the value
from d2.
>>> colors = { 1: “red”, 2: “green”, 3: “blue” }
>>> moreColors = { 3: “puce”, 4: “taupe”, 5: “puce” }
>>> colors.update (moreColors)
>>> colors
{1: ‘red’, 2: ‘green’, 3: ‘puce’, 4: ‘taupe’, 5: ‘puce’}
Note in the example above that key 3 was in both dictionaries, but after the
.update() method call, key 3 is related to the value from moreColors.

A Namespace is like a Dictionary
Back in Section 2.2, “The assignment statement”, we first encountered the
idea of a namespace. When you start up Python in conversational mode, the
variables and functions you define live in the “global namespace”.

We will see later on that Python has a number of different namespaces
in addition to the global namespace. Keep in mind that namespaces are very
similar to dictionaries:

A Python 2.7 Programming Tutorial 199

• The names are like the keys of a dictionary: each one is unique.
• The values bound to those names are like the values in a dictionary.

They can be any value of any type.
We can even use the same picture for a dictionary that we use to illustrate

a namespace. Here is a small dictionary and a picture of it:
d = { ‘name’: ‘Ben Jones’, ‘front9’: 33, ‘back9’: 31 }

BRANCHING
By default, statements in Python are executed sequentially. Branching
statements are used to break this sequential pattern.

• Sometimes you want to perform certain operations only in some
cases. This is called a conditional branch.

• Sometimes you need to perform some operations repeatedly. This
is called looping.

Before we look at how Python does conditional branching, we need to
look at Python’s Boolean type.

Conditions and the bool Type
Boolean algebra is the mathematics of true/false decisions. Python’s bool
type has only two values: True and False.

A typical use of Boolean algebra is in comparing two values. In Python,
the expression x < y is True if x is less than y, False otherwise.
>>> 2 < 5
True
>>> 2 < 2
False

Soft Computing and Machine Learning with Python200

>>> 2 < 0
False
Here are the six comparison operators:

Math symbol Python Meaning
< < Less than
≤ <= Less than or equal to
> > Greater than
≥ >= Greater than or equal to
≡ == Equal to
≠ != Not equal to

The operator that compares for equality is “==”. (The “=” symbol is not
an operator: it is used only in the assignment statement.)

Here are some more examples:
>>> 2 <= 5
True
>>> 2 <= 2
True
>>> 2 <= 0
False
>>> 4.9 > 5
False
>>> 4.9 > 4.8
True
>>> (2-1)==1
True
>>> 4*3 != 12
False

Python has a function cmp(x, y) that compares two values and returns:
• Zero, if x and y are equal.
• A negative number if x < y.
• A positive number if x > y.

>>> cmp(2,5)

A Python 2.7 Programming Tutorial 201

-1
>>> cmp(2,2)
0
>>> cmp(2,0)
1

The function bool(x) converts any value x to a Boolean value. The values
in this list are considered False; any other value is considered True:

• Any numeric zero: 0, 0L, or 0.0.
• Any empty sequence: “” (an empty string), [] (an empty list), ()

(an empty tuple).
• {} (an empty dictionary).
• The special unique value None.

>>> print bool(0), bool(0L), bool(0.0), bool(‘’), bool([]), bool(())
False False False False False False
>>> print bool({}), bool(None)
False False
>>> print bool(1), bool(98.6), bool(‘Ni!’), bool([43, “hike”])
True True True True

The if Statement
The purpose of an if statement is to perform certain actions only in certain
cases.

Here is the general form of a simple “one-branch” if statement. In this
case, if some condition C is true, we want to execute some sequence of
statements, but if C is not true, we don›t want to execute those statements.

if C:
 statement1

 statement2

 ...
Here is a picture showing the flow of control through a simple if

statement. Old-timers will recognize this as a flowchart.

Soft Computing and Machine Learning with Python202

There can be any number of statements after the if, but they must all
be indented, and all indented the same amount. This group of statements is
called a block.

When the if statement is executed, the condition C is evaluated, and
converted to a bool value (if it isn›t already Boolean). If that value is True,
the block is executed; if the value is False, the block is skipped.

Here’s an example:
>>> half = 0.5
>>> if half > 0:
... print “Half is better than none.”
... print “Burma!”
...

Half is better than none.
Burma!
Sometimes you want to do some action A when C is true, but perform

some different action B when C is false. The general form of this construct
is:
if C:
 block A
 ...
else:
 block B
 ...

A Python 2.7 Programming Tutorial 203

As with the single-branch if, the condition C is evaluated and converted
to Boolean. If the result is True, block A is executed; if False, block B is
executed instead.
>>> half = 0.5
>>> if half > 0:
... print “Half is more than none.”
... else:
... print “Half is not much.”
... print “Ni!”
...

Half is more than none.
Some people prefer a more “horizontal” style of coding, where more

items are put on the same line, so as to take up less vertical space. If you
prefer, you can put one or more statements on the same line as the if or else,
instead of placing them in an indented block. Use a semicolon “;” to separate
multiple statements. For example, the above example could be expressed on
only two lines:
>>> if half > 0: print “Half is more than none.”
... else: print “Half is not much.”; print “Ni!”
...

Half is more than none.
Sometimes you want to execute only one out of three or four or more

blocks, depending on several conditions. For this situation, Python allows
you to have any number of “elif clauses” after an if, and before the else
clause if there is one. Here is the most general form of a Python if statement:

Soft Computing and Machine Learning with Python204

if C1:
 block1

elif C2:
 block2

elif C3:
 block3

...
else:
 blockF

 ...

So, in general, an if statement can have zero or more elif clauses,
optionally followed by an else clause. Example:
>>> i = 2
>>> if i==1: print “One”
... elif i==2: print “Two”
... elif i==3: print “Three”
... else: print “Many”
...

A Python 2.7 Programming Tutorial 205

Two
You can have blocks within blocks. Here is an example:

>>> x = 3
>>> if x >= 0:
... if (x%2) == 0:
... print “x is even”
... else:
... print “x is odd”
... else:
... print “x is negative”
...
x is odd

A Word about Indenting Your Code
One of the most striking innovations of Python is the use of indentation to
show the structure of the blocks of code, as in the if statement. Not everyone
is thrilled by this feature. However, it is generally good practice to indent
subsidiary clauses; it makes the code more readable. Those who argue that
they should be allowed to violate this indenting practice are, in the author›s
opinion, arguing against what is generally regarded as a good practice.

The amount by which you indent each level is a matter of personal
preference. You can use a tab character for each level of indention; tab stops
are assumed to be every 8th character. Beware mixing tabs with spaces,
however; the resulting errors can be difficult to diagnose.

The for Statement: Looping
Use Python’s “for” construct to do some repetitive operation for each
member of a sequence. Here is the general form:
for variable in sequence:
 block
 ...

Soft Computing and Machine Learning with Python206

• The sequence can be any expression that evaluates to a sequence
value, such as a list or tuple. The range() function is often used
here to generate a sequence of integers.

• For each value in the sequence in turn, the variable is set to that
value, and the block is executed.

As with the if statement, the block consists of one or more statements,
indented the same amount relative to the if keyword.

This example prints the cubes of all numbers from 1 through 5.
>>> for n in range(1,6):
... print “The cube of {0} is {1}”.format(n, n**3)
...

The cube of 1 is 1
The cube of 2 is 8
The cube of 3 is 27
The cube of 4 is 64
The cube of 5 is 125
You may put the body of the loop—that is, the statements that will be

executed once for each item in the sequence—on the same line as the “for”
if you like. If there are multiple statements in the body, separate them with
semicolons.
>>> for n in range(1,6): print “{0}**3={1}”.format(n, n**3),

A Python 2.7 Programming Tutorial 207

...
1**3=1 2**3=8 3**3=27 4**3=64 5**3=125
>>> if 1 > 0: print “Yes”;print “One is still greater than zero”
...
Yes

One is still greater than zero
Here is an another example of iteration over a list of specific values.

>>> for s in (‘a’, ‘e’, ‘i’, ‘o’, ‘u’):
... word = “st” + s + “ck”
... print “Pick up the”, word
...
Pick up the stack
Pick up the steck
Pick up the stick
Pick up the stock
Pick up the stuck

The while Statement
Use this statement when you want to perform a block B as long as a condition
C is true:
while C:
 B
 ...

Here is how a while statement is executed.

Soft Computing and Machine Learning with Python208

• Evaluate C. If the result is true, go to step 2. If it is false, the loop
is done, and control passes to the statement after the end of B.

• Execute block B.
• Go back to step 1.
Here is an example of a simple while loop.

>>> i = 1
>>> while i < 100:
... print i,
... i = i * 2
...
1 2 4 8 16 32 64

This construct has the potential to turn into an infinite loop, that is, one
that never terminates. Be sure that the body of the loop does something that
will eventually make the loop terminate.

Special Branch Statements: break and continue
Sometimes you need to exit a for or while loop without waiting for the
normal termination. There are two special Python branch statements that do
this:

• If you execute a break statement anywhere inside a for or while
loop, control passes out of the loop and on to the statement after
the end of the loop.

• A continue statement inside a for loop transfers control back to
the top of the loop, and the variable is set to the next value from
the sequence if there is one. (If the loop was already using the last
value of the sequence, the effect of continue is the same as break.)

Here are examples of those statements.
>>> i = 0
>>> while i < 100:
... i = i + 3
... if (i % 5) == 0:
... break
... print i,
...

A Python 2.7 Programming Tutorial 209

3 6 9 12
In the example above, when the value of i reaches 15, which has a remainder
of 0 when divided by 5, the break statement exits the loop.
>>> for i in range(500, -1, -1):
... if (i % 100) != 0:
... continue
... print i,
...
500 400 300 200 100 0

HOW TO WRITE A SELF-EXECUTING PYTHON
SCRIPT
So far we have used Python’s conversational mode to demonstrate all the
features. Now it’s time to learn how to write a complete program.

Your program will live in a file called a script. To create your script, use
your favorite text editor (emacs, vi, Notepad, whatever), and just type your
Python statements into it.

How you make it executable depends on your operating system.
• On Windows platforms, be sure to give your script file a name

that ends in “.py”. If Python is installed, double-clicking on any
script with this ending will use Python to run the script.

• Under Linux and MacOS X, the first line of your script must look
like this:

• #!pythonpath
The pythonpath tells the operating system where to find Python. This

path will usually be “/usr/local/bin/python”, but you can use the “which”
shell command to find the path on your computer:
$ which python
/usr/local/bin/python

Once you have created your script, you must also use this command to
make it executable:
chmod +x your-script-name
Here is a complete script, set up for a typical Linux installation. This script,
powersof2, prints a table showing the values of 2n and 2-n for n in the range

Soft Computing and Machine Learning with Python210

1, 2, ..., 12.
#!/usr/local/bin/python
print “Table of powers of two”
print
print “{0:>10s} {1:>2s} {2:s}”.format(“2**n”, “n”, “2**(-n)”)
for n in range(13):
 print “{0:10d} {1:2d} {2:17.15f}”.format(2**n, n, 2.0**(-n))
Here we see the invocation of this script under the bash shell, and the output:
$./powersof2
Table of powers of two

 2**n n 2**(-n)
 1 0 1.000000000000000
 2 1 0.500000000000000
 4 2 0.250000000000000
 8 3 0.125000000000000
 16 4 0.062500000000000
 32 5 0.031250000000000
 64 6 0.015625000000000
 128 7 0.007812500000000
 256 8 0.003906250000000
 512 9 0.001953125000000
 1024 10 0.000976562500000
 2048 11 0.000488281250000
 4096 12 0.000244140625000

def: DEFINING FUNCTIONS
You can define your own functions in Python with the def statement.

• Python functions can act like mathematical functions such as
len(s), which computes the length of s. In this example, values
like s that are passed to the function are called parameters to the
function.

• However, more generally, a Python function is just a container for
some Python statements that do some task. A function can take
any number of parameters, even zero.

A Python 2.7 Programming Tutorial 211

Here is the general form of a Python function definition. It consists of a
def statement, followed by an indented block called the body of the function.
def name (arg0, arg1, ...):
 block

The parameters that a function expects are called arguments inside the
body of the function.

Here’s an example of a function that takes no arguments at all, and does
nothing but print some text.
>>> def pirateNoises():
... for arrCount in range(7):
... print “Arr!”,
...
>>>
To call this function:
>>> pirateNoises()
Arr! Arr! Arr! Arr! Arr! Arr! Arr!
>>>
To call a function in general, use an expression of this form:
name (param0, param1, ...)

• The name of the function is followed by a left parenthesis “(”, a
list of zero or more parameter values separated by commas, then
a right parenthesis “)”.

• The parameter values are substituted for the corresponding
arguments to the function. The value of parameter param0 is
substituted for argument arg0; param1 is substituted for arg1 ; and
so forth.

Here’s a simple example showing argument substitution.
>>> def grocer(nFruits, fruitKind):
... print “Stock: {0} cases of {1}”.format(nFruits, fruitKind)
...
>>> grocer (37, ‘kale’)
Stock: 37 cases of kale
>>> grocer(0,”bananas”)

Soft Computing and Machine Learning with Python212

Stock: 0 cases of bananas

return: Returning Values from a Function
So far we have seen some simple functions that take arguments or don’t take
arguments. How do we define functions like len() that return a value?

Anywhere in the body of your function, you can write a return statement
that terminates execution of the function and returns to the statement where
it was called.

Here is the general form of this statement:
return expression
The expression is evaluated, and its value is returned to the caller.

Here is an example of a function that returns a value:
>>> def square(x):
... return x**2
...
>>> square(9)
81
>>> square(2.5)
6.25
>>>

•	 You can omit the expression, and just use a statement of this form:
•	 return

In this case, the special placeholder value None is returned.
•	 If Python executes your function body and never encounters a return

statement, the effect is the same as a return with no value: the special
value None is returned.

Here is another example of a function that returns a value. This function
computes the factorial of a positive integer:
The factorial of n, denoted n!, is defined as the product of all the integers
from 1 to n inclusive.
For example, 4! = 1×2×3×4 = 24.
We can define the factorial function recursively like this:

•	 If n is 0 or 1, n! is 1.
•	 If n is greater than 1, n! = n × (n-1)!.

And here is a recursive Python function that computes the factorial, and a
few examples of its use.
>>> def fact(n):
... if n <= 1:

A Python 2.7 Programming Tutorial 213

... return 1

... else:

... return n * fact(n-1)

...
>>> for i in range(5):
... print i, fact(i)
...
0 1
1 1
2 2
3 6
4 24
>>> fact(44)
2658271574788448768043625811014615890319638528000000000L
>>>

Function Argument List Features
The general form of a def shown in Section 8, “def: Defining functions” is
over-simplified. In general, the argument list of a function is a sequence of
four kinds of arguments:

1. If the argument is just a name, it is called a positional argument.
There can be any number of positional arguments, including zero.

2. You can supply a default value for the argument by using the form
“name=value”. Such arguments are called keyword arguments. See
Section 8.3, “Keyword arguments”.

A function can have any number of keyword arguments, including zero.
All keyword arguments must follow any positional arguments in the

argument list.
3. Sometimes it is convenient to write a function that can accept any

number of positional arguments. To do this, use an argument of this
form:

4. * name
A function may have only one such argument, and it must follow any

positional or keyword arguments. For more information about this feature,
see Section 8.4, “Extra positional arguments”.

5. Sometimes it is also convenient to write a function that can accept
any number of keyword arguments, not just the specific keyword
arguments. To do this, use an argument of this form:

Soft Computing and Machine Learning with Python214

6. ** name
If a function has an argument of this form, it must be the last item in

the argument list. For more information about this feature, see Section 8.5,
“Extra keyword arguments”.

Keyword Arguments
If you want to make some of the arguments to your function optional, you must
supply a default value. In the argument list, this looks like “name=value”.

Here’s an example of a function with one argument that has a default
value. If you call it with no arguments, the name mood has the string value
‘bleah’ inside the function. If you call it with an argument, the name mood
has the value you supply.
>>> def report(mood=’bleah’):
... print “My mood today is”, mood
...
>>> report()
My mood today is bleah
>>> report(‘hyper’)
My mood today is hyper
>>>

If your function has multiple arguments, and the caller supplies multiple
parameters, here is how they are matched up:

•	 The function call must supply at least as many parameters as the
function has positional arguments.

•	 If the caller supplies more positional parameters than the function
has positional arguments, parameters are matched with keyword ar-
guments according to their position.

Here are some examples showing how this works.
>>> def f(a, b=”green”, c=3.5):
... print a, b, c
...
>>> f()
Traceback (most recent call last):
 File “<stdin>”, line 1, in ?
TypeError: f() takes at least 1 argument (0 given)
>>> f(47)
47 green 3.5
>>> f(47, 48)

A Python 2.7 Programming Tutorial 215

47 48 3.5
>>> f(47, 48, 49)
47 48 49
>>> f(47, 48, 49, 50)
Traceback (most recent call last):
 File “<stdin>”, line 1, in ?
TypeError: f() takes at most 3 arguments (4 given)
>>>

Here is another feature: the caller of a function can supply what are
called keyword parameters of the form “name=value”. If the function has
an argument with a matching keyword, that argument will be set to value.

•	 If a function’s caller supplies both positional and keyword parame-
ters, all positional parameters must precede all keyword parameters.

•	 Keyword parameters may occur in any order.
Here are some examples of calling a function with keyword parameters.

>>> def g(p0, p1, k0=”K-0”, k1=”K-1”):
... print p0, p1, k0, k1
...
>>> g(33,44)
33 44 K-0 K-1
>>> g(33,44,”K-9”,”beep”)
33 44 K-9 beep
>>> g(55,66,k1=”whirr”)
55 66 K-0 whirr
>>> g(7,8,k0=”click”,k1=”clank”)
7 8 click clank
>>>

Extra Positional Arguments
You can declare your function in such a way that it will accept any number
of positional parameters. To do this, use an argument of the form “*name”
in your argument list.

•	 If you use this special argument, it must follow all the positional and
keyword arguments in the list.

•	 When the function is called, this name will be bound to a tuple con-
taining any positional parameters that the caller supplied, over and
above parameters that corresponded to other parameters.

Soft Computing and Machine Learning with Python216

Here is an example of such a function.
>>> def h(i, j=99, *extras):
... print i, j, extras
...
>>> h(0)
0 99 ()
>>> h(1,2)
1 2 ()
>>> h(3,4,5,6,7,8,9)
3 4 (5, 6, 7, 8, 9)
>>>

Extra Keyword Arguments
You can declare your function in such a way that it can accept any number
of keyword parameters, in addition to any keyword arguments you declare.

To do this, place an argument of the form “**name” last in your argument
list.

When the function is called, that name is bound to a dictionary that
contains any keyword-type parameters that are passed in that have names
that don’t match your function’s keyword-type arguments. In that dictionary,
the keys are the names used by the caller, and the values are the values that
the caller passed.

Here’s an example.
>>> def k(p0, p1, nickname=’Noman’, *extras, **extraKeys):
... print p0, p1, nickname, extras, extraKeys
...
>>> k(1,2,3)
1 2 3 () {}
>>> k(4,5)
4 5 Noman () {}
>>> k(6, 7, hobby=’sleeping’, nickname=’Sleepy’, hatColor=’green’)
6 7 Sleepy () {‘hatColor’: ‘green’, ‘hobby’: ‘sleeping’}
>>> k(33, 44, 55, 66, 77, hometown=’McDonald’, eyes=’purple’)
33 44 55 (66, 77) {‘hometown’: ‘McDonald’, ‘eyes’: ‘purple’}
>>>

A Python 2.7 Programming Tutorial 217

Documenting Function Interfaces
Python has a preferred way to document the purpose and usage of your
functions. If the first line of a function body is a string constant, that string
constant is saved along with the function as the documentation string. This
string can be retrieved by using an expression of the form f.__doc__, where
f is the function name.

Here’s an example of a function with a documentation string.
>>> def pythag(a, b):
... “””Returns the hypotenuse of a right triangle with sides a and b.
... “””
... return (a*a + b*b)**0.5
...
>>> pythag(3,4)
5.0
>>> pythag(1,1)
1.4142135623730951
>>> print pythag.__doc__

Returns the hypotenuse of a right triangle with sides a and b.

>>>

USING PYTHON MODULES
Once you start building programs that are more than a few lines long, it’s
critical to apply this overarching principle to programming design:

Important
Divide and conquer.

In other words, rather than build your program as one large blob of
Python statements, divide it into logical pieces, and divide the pieces into
smaller pieces, until the pieces are each small enough to understand.

Python has many tools to help you divide and conquer. In Section 8, “def:
Defining functions”, we learned how to package up a group of statements
into a function, and how to call that function and retrieve the result.

Soft Computing and Machine Learning with Python218

Way back in Section 2.3, “More mathematical operations”, we got our
first look at another important tool, Python’s module system. Python does
not have a built-in function to compute square roots, but there is a built-
in module called math that includes a function sqrt() that computes square
roots.

In general, a module is a package of functions and variables that you
can import and use in your programs. Python comes with a large variety of
modules, and you can also create your own. Let’s look at Python’s module
system in detail.

• In Section 9.1, “Importing items from modules”, we learn to
import items from existing modules.

• Section 9.2, “Import entire modules” shows another way to use
items from modules.

• Section 9.4, “Build your own modules”.

Importing Items from Modules
Back in Section 2.2, “The assignment statement”, we learned that there is
an area called the “global namespace,” where Python keeps the names and
values of the variables you define.

The Python dir() function returns a list of all the names that are currently
defined in the global namespace. Here is a conversational example; suppose
you have just started up Python in conversational mode.
>>> dir()
[‘__builtins__’, ‘__doc__’, ‘__name__’]
>>> frankness = 0.79
>>> dir()
[‘__builtins__’, ‘__doc__’, ‘__name__’, ‘frankness’]
>>> def oi():
... print “Oi!”
...
>>> dir()
[‘__builtins__’, ‘__doc__’, ‘__name__’, ‘frankness’, ‘oi’]
>>> type(frankness)
<type ‘float’>

A Python 2.7 Programming Tutorial 219

>>> type(oi)
<type ‘function’>
>>>
When Python starts up, three variables are always defined: __builtins__, __
doc__, and __name__. These variables are for advanced work and needn’t
concern us now.
Note that when we define a variable (frankness), next time we call dir(), that
name is in the resulting list. When we define a function (oi), its name is also
added. Note also that you can use the type()function to find the type of any
currently defined name: frankness has type float, and oi has type function.
Now let’s see what happens when we import the contents of the math module
into the global namespace:
>>> from math import *
>>> dir()
[‘__builtins__’, ‘__doc__’, ‘__name__’, ‘acos’, ‘asin’, ‘atan’, ‘atan2’,
‘ceil’, ‘cos’, ‘cosh’, ‘degrees’, ‘e’, ‘exp’, ‘fabs’, ‘floor’, ‘fmod’, ‘frankness’,
‘frexp’, ‘hypot’, ‘ldexp’, ‘log’, ‘log10’, ‘modf’, ‘oi’, ‘pi’, ‘pow’, ‘radians’,
‘sin’, ‘sinh’, ‘sqrt’, ‘tan’, ‘tanh’]
>>> sqrt(64)
8.0
>>> pi*10.0
31.415926535897931
>>> cos(0.0)
1.0
>>>

As you can see, the names we have defined (oi and frankness) are still
there, but all of the variables and functions from the math module are now in
the namespace, and we can use its functions and variables like sqrt() and pi.

In general, an import statement of this form copies all the functions and
variables from the module into the current namespace:
from someModule import *

However, you can also be selective about which items you want to
import. Use a statement of this form:
from someModule import item1, item2, ...

Soft Computing and Machine Learning with Python220

where the keyword import is followed by a list of names, separated by
commas.

Here’s another example. Assume that you have just started a brand new
Python session, and you want to import only the sqrt() function and the
constant pi:
>>> dir()
[‘__builtins__’, ‘__doc__’, ‘__name__’]
>>> from math import sqrt, pi
>>> dir()
[‘__builtins__’, ‘__doc__’, ‘__name__’, ‘pi’, ‘sqrt’]
>>> sqrt(25.0)
5.0
>>> cos(0.0)
Traceback (most recent call last):
 File “<stdin>”, line 1, in <module>
NameError: name ‘cos’ is not defined
>>>

We didn’t ask for the cos() function to be imported, so it is not part of
the global namespace.

Import Entire Modules
Some modules have hundreds of different items in them. In cases like that,
you might not want to clutter up your global namespace with all those items.
There is another way to import a module. Here is the general form:
import moduleName

This statement adds only one name to the current namespace—the name
of the module itself. You can then refer to any item inside that module using
an expression of this form:
moduleName.itemName

Here is an example, again using the built-in math module. Assume that
you have just started up a new Python session and you have added nothing
to the namespace yet.
>>> dir()
[‘__builtins__’, ‘__doc__’, ‘__name__’]

A Python 2.7 Programming Tutorial 221

>>> import math
>>> dir()
[‘__builtins__’, ‘__doc__’, ‘__name__’, ‘math’]
>>> type(math)
<type ‘module’>
>>> math.sqrt(121.0)
11.0
>>> math.pi
3.1415926535897931
>>> math.cos(0.0)
1.0
>>>

As you can see, using this form of import adds only one name to the
namespace, and that name has type module.

There is one more additional feature of import we should mention. If
you want to import an entire module M1, but you want to refer to its contents
using a different name M2, use a statement of this form:
import M1 as M2
An example:
>>> dir()
[‘__builtins__’, ‘__doc__’, ‘__name__’]
>>> import math as crunch
>>> dir()
[‘__builtins__’, ‘__doc__’, ‘__name__’, ‘crunch’]
>>> type(crunch)
<type ‘module’>
>>> crunch.pi
3.1415926535897931
>>> crunch.sqrt(888.888)
29.81422479287362
>>>

You can apply Python’s built-in dir() function to a module object to find
out what names are defined inside it:
>>> import math
>>> dir()

Soft Computing and Machine Learning with Python222

[‘__builtins__’, ‘__doc__’, ‘__name__’, ‘math’]
>>> dir(math)
[‘__doc__’, ‘__file__’, ‘__name__’, ‘acos’, ‘asin’, ‘atan’, ‘atan2’, ‘ceil’,
‘cos’, ‘cosh’, ‘degrees’, ‘e’, ‘exp’, ‘fabs’, ‘floor’, ‘fmod’, ‘frexp’, ‘hypot’,
‘ldexp’, ‘log’, ‘log10’, ‘modf’, ‘pi’, ‘pow’, ‘radians’, ‘sin’, ‘sinh’, ‘sqrt’,
‘tan’, ‘tanh’]
>>>

A Module is a Namespace
Modules are yet another example of a Python namespace, just as we’ve
discussed in Section 2.2, “The assignment statement” and Section 5.3, “A
namespace is like a dictionary”.

When you import a module using the form “import moduleName”, you
can refer to some name N inside that module using the period operator:
“moduleName.N”.

So, like any other namespace, a module is a container for a unique set of
names, and the values to which each name is connected.

Build Your Own Modules
If you have a common problem to solve, chances are very good that there
are modules already written that will reduce the amount of code you have
to write.

• Python comes with a large collection of built-in modules. See the
Python Library Reference.

• The python.org site also hosts a collection of thousands of third-
party modules: see the Python package index.

You can also build your own modules. A module is similar to a script
(see Section 7, “How to write a self-executing Python script”): it is basically
a text file containing the definitions of Python functions and variables.

To build your own module, use a common text editor to create a file with
a name of the form “moduleName.py”. The moduleName you choose must
be a valid Python name—it must start with a letter or underbar, and consist
entirely of letters, underbars, and digits.

Inside that file, place Python function definitions and ordinary assignment
statements.

Here is a very simple module containing one function and one variable.
It lives in a file named cuber.py.

A Python 2.7 Programming Tutorial 223

def cube(x):
 return x**3

cubeVersion = “1.9.33”
Here is an example interactive session that uses that module:
>>> dir()
[‘__builtins__’, ‘__doc__’, ‘__name__’]
>>> from cuber import *
>>> dir()
[‘__builtins__’, ‘__doc__’, ‘__name__’, ‘cube’, ‘cubeVersion’]
>>> cube(3)
27
>>> cubeVersion
‘1.9.33’
>>>

There is one more refinement we suggest for documenting the contents
of a module. If the first line of the module’s file is a string constant, it is
saved as the module’s “documentation string.” If you later import such a
module using the form “import moduleName”, you can retrieve the contents
of the documentation string using the expression “moduleName.__doc__”.

Here is an expanded version of our cuber.py with a documentation string:
“””cuber.py: Simple homemade Python module

 Contents:
 cube(x): Returns the cube of x
 cubeVersion: Current version number of this module
“””
def cube(x):
 return x**3

cubeVersion = “1.9.33”

Finally, an example of how to retrieve the documentation string:
>>> import cuber
>>> print cuber.__doc__

Soft Computing and Machine Learning with Python224

cuber.py: Simple homemade Python module

 Contents:
 cube(x): Returns the cube of x
 cubeVersion: Current version number of this module

>>> cuber.cube(10)
1000
>>>

INPUT AND OUTPUT
Python makes it easy to read and write files. To work with a file, you must
first open it using the built-in open() function. If you are going to read the
file, use the form “open(filename)”, which returns a file object. Once you
have a file object, you can use a variety of methods to perform operations
on the file.

Reading Files
For example, for a file object F, the method F.readline() attempts to read
and return the next line from that file. If there are no lines remaining, it
returns an empty string.
Let’s start with a small text file named trees containing just three lines:
yew
oak
alligator juniper
Suppose this file lives in your current directory. Here is how you might read
it one line at a time:
>>> treeFile = open (‘trees’)
>>> treeFile.readline()
‘yew\n’
>>> treeFile.readline()
‘oak\n’
>>> treeFile.readline()
‘alligator juniper\n’
>>> treeFile.readline()

A Python 2.7 Programming Tutorial 225

‘’
Note that the newline characters (‘\n’) are included in the return value. You
can use the string .rstrip() method to remove trailing newlines, but beware:
it also removes any other trailing whitespace.
>>> ‘alligator juniper\n’.rstrip()
‘alligator juniper’
>>> ‘eat all my trailing spaces \n’.rstrip()
‘eat all my trailing spaces’
To read all the lines in a file at once, use the .readlines() method. This returns
a list whose elements are strings, one per line.
>>> treeFile=open(“trees”)
>>> treeFile.readlines()
[‘yew\n’, ‘oak\n’, ‘alligator juniper\n’]
A more general method for reading files is the .read() method. Used without
any arguments, it reads the entire file and returns it to you as one string.
>>> treeFile = open (“trees”)
>>> treeFile.read()
‘yew\noak\nalligator juniper\n’
To read exactly N characters from a file F, use the method F.read(N). If N
characters remain in the file, you will get them back as an N-character string.
If fewer than N characters remain, you will get the remaining characters in
the file (if any).
>>> treeFile = open (“trees”)
>>> treeFile.read(1)
‘y’
>>> treeFile.read(5)
‘ew\noa’
>>> treeFile.read(50)
‘k\nalligator juniper\n’
>>> treeFile.read(80)
‘’
One of the easiest ways to read the lines from a file is to use a for statement.
Here is an example:

Soft Computing and Machine Learning with Python226

>>> >>> treeFile=open(‘trees’)
>>> for treeLine in treeFile:
... print treeLine.rstrip()
...
yew
oak
alligator juniper

As with the .readline() method, when you iterate over the lines of a
file in this way, the lines will contain the newline characters. If the above
example did not trim these lines with .rstrip(), each line of output would be
followed by a blank line, because the print statement adds a newline.

File Positioning for Random-access Devices
For random-access devices such as disk files, there are methods that let you
find your current position within a file, and move to a different position.

• F.tell() returns your current position in file F.
• F.seek(N) moves your current position to N, where a position of

zero is the beginning of the file.
• F.seek(N, 1) moves your current position by a distance of N

characters, where positive values of N move toward the end of
the file and negative values move toward the beginning.

For example, F.seek(80, 1) would move the file position 80 characters
further from the start of the file.

•	 F.seek(N, 2) moves to a position N characters relative to the end of
the file. For example, F.seek(0, 2) would move to the end of the file;
F.seek(-200, 2) would move your position to 200 bytes before the
end of the file.

>>> treeFile = open (“trees”)
>>> treeFile.tell()
0L
>>> treeFile.read(6)
‘yew\noa’
>>> treeFile.tell()
6L
>>> treeFile.seek(1)
>>> treeFile.tell()

A Python 2.7 Programming Tutorial 227

1L
>>> treeFile.read(5)
‘ew\noa’
>>> treeFile.tell()
6L
>>> treeFile.seek(1, 1)
>>> treeFile.tell()
7L
>>> treeFile.seek(-3, 1)
>>> treeFile.tell()
4L
>>> treeFile.seek(0, 2)
>>> treeFile.tell()
26L
>>> treeFile.seek(-3, 2)
>>> treeFile.tell()
23L
>>> treeFile.read()
‘er\n’

Writing Files
To create a disk file, open the file using a statement of this general form:

F = open (filename, “w”)
The second argument, “w”, specifies write access. If possible, Python

will create a new, empty file by that name. If there is an existing file by that
name, and if you have write permission to it, the existing file will be deleted.

To write some content to the file you are creating, use this method:
F.write(s)
where s is any string expression.

Warning
The data you have sent to a file with the .write() method may not actually
appear in the disk file until you close it by calling the .close() method on the
file.

This is due to a mechanism called buffering. Python accumulates the
data you have sent to the file, until a certain amount is present, and then it

Soft Computing and Machine Learning with Python228

“flushes” that data to the physical file by writing it. Python also flushes the
data to the file when you close it.

If you would like to make sure that the data you have written to the file
is actually physically present in the file without closing it, call the .flush()
method on the file object.
>>> sports = open (“sportfile”, “w”)
>>> sports.write (“tennis\nrugby\nquoits\n”)
>>> sports.close()
>>> sportFile = open (“sportfile”)
>>> sportFile.readline()
‘tennis\n’
>>> sportFile.readline()
‘rugby\n’
>>> sportFile.readline()
‘quoits\n’
>>> sportFile.readline()
‘’
Here is a lengthy example demonstrating the action of the .flush() method.
>>> sporting = open(‘sports’, ‘w’)
>>> sporting.write(‘golf\n’)
>>> echo = open(‘sports’)
>>> echo.read()
‘’
>>> echo.close()
>>> sporting.flush()
>>> echo = open(‘sports’)
>>> echo.read()
‘golf\n’
>>> echo.close()
>>> sporting.write(‘soccer’)
>>> sporting.close()
>>> open(‘sports’).read()
‘golf\nsoccer’
Note that you must explicitly provide newline characters in the arguments
to .write().

A Python 2.7 Programming Tutorial 229

INTRODUCTION TO OBJECT-ORIENTED
PROGRAMMING
So far we have used a number of Python’s built-in types such as int, float,
list, and file.

Now it is time to begin exploring some of the more serious power of
Python: the ability to create your own types.

This is a big step, so let’s start by reviewing some of the historical
development of computer language features.

A Brief History of Snail Racing Technology
An entrepreneur name Malek Ology would like to develop a service to run
snail races to help non-profit organizations raise funds. Here is the proposed
design for Malek’s snail-racing track:

At the start of the race, the snails, with their names written on their backs
in organic, biodegradable ink, are placed inside the starting line, and Malek
starts a timer. As each snail crosses the finish line, Malek records their times.

Malek wants to write a Python program to print the race results. We’ll
look at the evolution of such a program through the history of programming.
Let’s start around 1960.

Scalar Variables
Back around 1960, the hot language was FORTRAN. A lot of the work
in this language was done using scalar variables, that is, a set of variable
names, each of which held one number.

Soft Computing and Machine Learning with Python230

Suppose we’ve just had a snail race, and Judy finished in 87.3 minutes,
while Kyle finished in 96.6 minutes. We can create Python variables with
those values like this:
>>> judy = 87.3
>>> kyle = 96.6
To find the winner, we can use some if statements like this:
>>> if judy < kyle:
... print “Judy wins with a time of”, judy
... elif judy > kyle:
... print “Kyle wins with a time of”, kyle
... else:
... print “Judy and Kyle are tied with a time of”, judy
...
Judy wins with a time of 87.3
>>>

If Judy and Kyle are the only two snails, this program will work fine.
Malek puts this all into a script. After each race, he changes the first two
lines that give the finish times, and then runs the script.

This will work, but there are a number of objections:
• The person who prepares the race results has to know Python so

they can edit the script.
• It doesn’t really save any time. Any second-grader can look at the

times and figure out who won.
• The names of the snails are part of the program, so if different

snails are used, we have to write a new program.
• What if there are three snails? There are a lot more cases: three

cases where a snail clearly wins; three more possible two-way
ties; and a three-way tie. What if Malek wants to race ten snails
at once? Too complicated!

Snail-oriented Data Structures: Lists
Let’s consider the general problem of a race involving any number of
snails. Malek is considering diversifying into amoeba racing, so there might
be thousands of competitors in a race. So let’s not limit the number of
competitors in the program.

Also, to make it possible to use cheaper labor for production runs, let’s
write a general-purpose script that will read a file with the results for each

A Python 2.7 Programming Tutorial 231

race, so a relatively less skilled person can prepare that file, and then run a
script that will review the results.

We’ll use a very simple text file format to encode the race results. Here’s
an example file for that first race between Judy and Kyle:

87.3 Judy
96.6 Kyle
And here is a script that will process that file and report on the winning

time. The script is called snailist.py. First, reads a race results file named
results and stores the times into a list. The .split()method is used to break
each line into parts, with the first part containing the elapsed time.
#!/usr/local/bin/python
#==
============
snailist.py: First snail racing results script.
#--

#--
Create an empty list to hold the finish times.
#--
timeList = []

#--
Open the file containing the results.
#--
resultsFile = open (‘results’)

#--
Go through the lines of that file, storing each finish time.
#--
for resultsLine in resultsFile:
 #--
 # Create a list of the fields in the line, e.g., [‘87.3’, ‘Judy\n’].
 #--
 fieldList = resultsLine.split()

 #--
 # Convert the finish time into a float and append it to timeList.
 #--

Soft Computing and Machine Learning with Python232

 timeList.append (float (fieldList[0]))
At this point, timeList is a list of float values. We use the .sort() method to
sort the list into ascending order, so that the winning time will be in the first
element.
#--
Sort timeList into ascending order, then set ‘winningTime’ to
the best time.
#--
timeList.sort()
print “The winning time is”, timeList[0]
Try building the results file and the script yourself to verify that they work.
Try some cases where there are ties.
This script is fine as far as it goes. However, there is one major drawback: it
doesn’t tell you who won!

Snail-oriented Data Structures: A List of Tuples
To improve on the script above, let’s modify the script so that it keeps each
snail’s time and name together in a two-element tuple such as (87.3, ‘Judy’).

In the improved script, the timeList list is a list of these tuples, and not
just a list of times. We can then sort this list, using an interesting property of
tuples. If you compare two tuples, and their first elements are not equal, the
result is the same as if you compared their first elements. However, if the
first elements are equal, Python then compares the second elements of each
tuple, and so on until it either finds two unequal values, or finds that all the
elements are equal.

Here’s an example. Recall that the function cmp(a, b), function compares
two arbitrary values and returns a negative number if a comes before b, or
a positive number if a comes after b, or zero if they are considered equal:
>>> cmp(50,30)
1
>>> cmp(30,50)
-1
>>> cmp(50,50)
0
>>>

If you compare two tuples and the first elements are unequal, the result
is the same as if you compared the first two elements. For example:
>>> cmp ((50,30,30), (80,10,10))

A Python 2.7 Programming Tutorial 233

-1
>>>
If, however, the first elements are equal, Python then compares the second
elements, or the third elements, until it either finds two unequal elements, or
finds that all the elements are equal:
>>> cmp ((50,30,30), (80,10,10))
-1
>>> cmp ((50,30,30), (50,10,10))
1
>>> cmp ((50,30,30), (50,30,80))
-1
>>> cmp ((50,30,30), (50,30,30))
0
>>>
So, watch what happens when we sort a list of two-tuples containing snail
times and names:
>>> timeList = [(87.3, ‘Judy’), (96.6, ‘Kyle’), (63.0, ‘Lois’)]
>>> timeList.sort()
>>> timeList
[(63.0, ‘Lois’), (87.299999999999997, ‘Judy’), (96.599999999999994,
‘Kyle’)]
>>>
Now we have a list that is ordered the way the snails finished. Here is our
modified script:
#!/usr/local/bin/python
#==
============
snailtuples.py: Second snail racing results script.
#--

#--
Create an empty list to hold the result tuples.
#--
timeList = []

#--
Open the file containing the results.
#--
resultsFile = open (‘results’)

Soft Computing and Machine Learning with Python234

#--
Go through the lines of that file, storing each finish time.
Note that ‘resultsLine’ is set to each line of the file in
turn, including the terminating newline (‘\n’).
#--
for resultsLine in resultsFile:
 #--
 # Create a list of the fields in the line, e.g., [‘87.3’, ‘Judy\n’].
 # We use the second argument to .split() to limit the number
 # of fields to two maximum; the first argument (None) means
 # split the line wherever there is any whitespace.
 #--
 fieldList = resultsLine.split(None, 1)

 #--
 # Now create a tuple (time,name) and append it to fieldList.
 # Use .rstrip to remove the newline from the second field.
 #--
 snailTuple = (float(fieldList[0]), fieldList[1].rstrip())
 timeList.append (snailTuple)

#--
Sort timeList into ascending order.
#--
timeList.sort()

#--
Print the results.
#--
print “Finish Time Name”
print “------ ------ ----”
for position in range(len(timeList)):
 snailTuple = timeList[position]
 print “{0:4d} {1:6.1f} {2}”.format(position+1, snailTuple[0],
 snailTuple[1])
Here is a sample run with our original two-snail results file:
Finish Time Name
------ ------ ----

A Python 2.7 Programming Tutorial 235

 1 87.3 Judy
 2 96.6 Kyle
Let’s try a larger results file with some names that have spaces in them, just
to exercise the script. Here’s the input file:
93.3 Queen Elizabeth I
138.4 Erasmus
88.2 Jim Ryun
And the output for this run:
Finish Time Name
------ ------ ----
 1 88.2 Jim Ryun
 2 93.3 Queen Elizabeth I
 3 138.4 Erasmus

Abstract Data Types
The preceding section shows how you can use a Python tuple to combine
two simple values into a compound value. In this case, we use a 2-element
tuple whose first element is the snail’s time and the second element is its
name.

We might say that this tuple is an abstract data type, that is, a way
of combining Python’s basic types (such as floats and strings) into new
combinations.

The next step is to combine values and functions into an abstract data
type. Historically, this is how object-oriented programming arose. The
“objects” are packages containing simpler values inside them. However, in
general, these packages can also contain functions.

Before we start looking at how we build abstract data types in Python,
let’s define some import terms and look at some real-world examples.
class

When we try to represent in our program some items out in the real
world, we first look to see which items are similar, and group them into
classes. A class is defined by one or more things that share the same qualities.

For example, we could define the class of fountains by saying that they
are all permanent man-made structures, that they hold water, that they are
outdoors in a public place, and that they keep the water in a decorative way.

It should be easy to determine whether any item is a member of the
class or not, by applying these defining rules. For example, Trevi Fountain

Soft Computing and Machine Learning with Python236

in Rome fits all the rules: it is man-made, holds water, is outdoors, and is
decorative. Lake Geneva has water spraying out of it, but it’s not man-made,
so it’s not a fountain.
instance
One of the members of a class. For example, the class of airplanes includes
the Wright Biplane of 1903, and the Spirit of St. Louis that Charles Lindbergh
flew across the Atlantic.
An instance is always a single item. “Boeing 747” is not an instance, it is
a class. However, a specific Boeing 747, with a unique tail number like
N1701, is an instance.
attribute

Since the purpose of most computer applications is in record-keeping,
within a program, we must often track specific qualities of an instance,
which we call attributes.

For example, attributes of an airplane include its wingspan, its
manufacturer, and its current location, direction, and airspeed.

We can classify attributes into static and dynamic attributes, depending
on whether they change or not. For example, the wingspan and model
number of an airplane do not change, but its location and velocity can.
operations

Each class has characteristic operations that can be performed on
instances of the class. For example, operations on airplanes include:
manufacture; paint; take off; change course; land.

Here is a chart showing some classes, instances, attributes, and
operations.

Class Instance Attribute Operation
Airplane Wright Flyer Wingspan Take off
Mountain Socorro Peak Altitude Erupt
Clock Skeen Library Clock Amount slow per day Decorate

Important
You have now seen definitions for most of the important terms in object-
oriented programming. Python classes and instances are very similar to
these real-world classes and instances. Python instances have attributes too.

A Python 2.7 Programming Tutorial 237

For historical reasons, the term method is the object-oriented
programming equivalent of “operation.”

The term constructor method is the Python name for the operation that
creates a new instance.

So what is an object? This term is used in two different ways:
• An object is just an instance.
• Object-oriented programming means programming with classes.

Abstract Data Types in Python
We saw how you can use a two-element tuple to group a snail’s time and
name together. However, in the real world, we might need to track more than
two attributes of an instance.

Suppose Malek wants to keep track of more attributes of a snail, such as
its age in days, its weight in grams, its length in millimeters, and its color.
We could use a six-element tuple like this:

(87.3, ‘Judy’, 34, 1.66, 39, ‘tan’)
The problem with this approach is that we have to remember that for a

tuple T, the time is in T[0], the name in T[1], the age in T[2], and so on.
A cleaner, more natural way to keep track of attributes is to give them

names. We might encode those six attributes in a Python dictionary like this:
T = { ‘time’:87.3, ‘name’:’Judy’, ‘age’:34, ‘mass’:1.66,
 ‘length’:39, ‘color’:’tan’}

With this approach, we can retrieve the name as T[‘name] or the weight
as T[‘mass’]. However, now we have lost the ability to put several of these
dictionaries into a list and sort the list—how is Python supposed to know
which dictionary comes first? What we need is something like a dictionary,
but with more features. What we need is Python’s object-oriented features.

Now we’re to look at actual Python classes and instances in action.

class SnailRun: A Very Small Example Class
Let’s start building a snail-racing application for Malek the object-oriented
Python way. Let’s assume that all we’re tracking about a particular snail is
its name and its finishing time. We need to define a class named SnailRun,
whose instances track just these two attributes.

Soft Computing and Machine Learning with Python238

Here is the general form of a class declaration in Python:
class ClassName:
 def method1(self, ...):
 block1
 def method2(self, ...):
 block2
 ... etc.

A class declaration starts out with the keyword class, followed by the
name of the class you are defining, then a colon (:). The methods of the class
follow; each method starts with “def”, just as you use to define a function.

Before we look at the construction of the class, let’s see how it works in
practice. To create an instance in Python, you use the name of the class as if
it were a function call, followed by a list of arguments in parentheses. Our
SnailRun constructor method will need two arguments: the snail›s name and
its finish time. Once we have defined the class, we can build a new instance
like this:
judyRace9 = SnailRun (‘judy’, 87.3)

To get the snail’s name and time attributes from an instance, we use the
instance name, followed by a dot (.), followed by the attribute name:
>>> judyRace9.name
‘judy’
>>> print judyRace9.time
87.3

Our example class, SnailRun, will have just two methods:
• All classes have a constructor method named “__init__”. This

method is used to create a new instance.
• We’ll write a .show() method to format the contents of the

instance for display.
Continuing our example from above, here’s an example of the use of the

.show() method:
>>> print judyRace9.show()

Snail ‘judy’ finished in 87.3 minutes.
Here is the entire class definition:

class SnailRun:
 def __init__ (self, snailName, finishTime):

A Python 2.7 Programming Tutorial 239

 self.name = snailName
 self.time = finishTime

 def show (self):
 return (“Snail ‘{0}’ finished in {1:.1d} minutes.”.format(
 self.name, self.time)
Instantiation means the construction of a new instance. Here is how
instantiation works.

• Somewhere in a Python program, the programmer starts the
construction of a new instance by using the class’s name followed
by parentheses and a list of arguments. Let’s call the arguments
(a1, a2, ...).

• Python creates a new namespace that will hold the instance’s
attributes. Inside the constructor, this namespace is referred to
as self.

Important
The instance is basically a namespace, that is, a container for attribute
names and their definitions. For other examples of Python namespaces, see
Section 2.2, “The assignment statement”, Section 5.3, “A namespace is like
a dictionary”, and Section 9.3, “A module is a namespace”.

• The __init__() (constructor) method of the class is executed with
the argument list (self, a1, a2, ...).

Note that if the constructor takes N arguments, the caller passes only the
last N-1 arguments to it.

• When the constructor method finishes, the instance is returned to
the caller. From then one, the caller can refer to some attribute A
of the instance I as “A.I”.

Let’s look again in more detail at the constructor:
 def __init__ (self, snailName, finishTime):
 self.name = snailName
 self.time = finishTime

All the constructor does is to take the snail’s name and finish time and
store these values in the instance’s namespace under the names .name and
.time, respectively.

Soft Computing and Machine Learning with Python240

Note that the constructor method does not (and cannot) include a return
statement. The value of self is implicitly returned to the statement that called
the constructor.

As for the other methods of a class, their definitions also start with the
special argument self that contains the instance namespace. For any method
that takes N arguments, the caller passes only the last N-1arguments to it.

In our example class, the def for the .show() method has one argument
named self, but the caller invokes it with no arguments at all:
>>> kyleRace3=SnailRun(‘Kyle’, 96.6)
>>> kyleRace3.show()
“Snail ‘Kyle’ finished in 96.6 minutes.”

Life Cycle of An Instance
To really understand what is going on inside a running Python program, let’s
follow the creation of an instance of the SnailRun class from the preceding
section.
Just for review, let’s assume you are using conversational mode, and you
create a variable like this:
>>> badPi = 3.00

Whenever you start up Python, it creates the “global namespace” to hold
the names and values you define. After the statement above, here’s how it
looks.

Next, suppose you type in the class definition as above. As it happens,
a class is a namespace too—it is a container for methods. So the global
namespace now has two names in it: the variable badPi and the class
SnailRun. Here is a picture of the world after you define the class:

A Python 2.7 Programming Tutorial 241

Next, create an instance of class SnailRun like this:
>>> j1 = SnailRun (‘Judy’, 87.3)

Here is the sequence of operations:
1. Python creates a new instance namespace. This namespace is ini-

tially a copy of the class’s namespace: it contains the two methods
.__init__() and .show().

2. The constructor method starts execution with these arguments:
•	 The name self is bound to the instance namespace.
•	 The name snailName is bound to the string value ‹Judy›.
•	 The name finishTime is bound to the float value 87.3.

3. This statement in the constructor
4. self.name = snailName

creates a new attribute .name in the instance namespace, and assigns it the
value ‘Judy’.

5. The next statement in the constructor creates an attribute named
.time in the instance namespace, and binds it to the value 87.3.

6. The constructor completes, and back in conversational mode, in the
global namespace, variable j1 is bound to the instance namespace.

Here’s a picture of the world after all this:

Soft Computing and Machine Learning with Python242

Special Methods: Sorting Snail Race Data
Certain method names have special meaning to Python; each of these special
method names starts with two underbars, “__”.

A class’s constructor method, __init__(), is an example of a special
method. Whenever you use the class’s name as if it were a function, in an
expression like “SnailRun(‘Judy’, 67.3)”, Python executes the constructor
method to build the new instance.

There is a full list of all the Python special method names in the Python
quick reference. Next we will look at another special method, __cmp__, that
Python calls whenever you compare two instances of that class.

Going back to our snail-racing application, an instance of the SnailRun
class contains everything we need to know about one snail›s performance:
its name in the .name attribute and its finish time in the .timeattribute.

However, using the tuple representation back in Section 11.4, “Snail-
oriented data structures: A list of tuples”, we were able to put a collection of
these tuples into a list, and sort the list so that they were ordered by finish
time, with the winner first. Let’s see what we need to add to class SnailRun
so that we can sort a list of them into finish order by calling the .sort()
method on the list.

First, a bit of review. Back in Section 6.1, “Conditions and the bool type”,
we learned about the built-in Python function cmp(x, y), which returns:

• a negative number if x is less than y;
• a positive number if x is greater than y; or
• zero if x equals y.

A Python 2.7 Programming Tutorial 243

In a Python class, if you define a method named “__cmp__”, that method
is called whenever Python compares two instances of the class. It must return
a result using the same conventions as the built-in cmp()function: negative
for “<”, zero for “==”, positive for “>”.

In the case of “class SnailRun”, we want the snail with the better finishing
time to be considered less than the slower snail. So here is one way to define
the __cmp__ method for our class:
 def __cmp__ (self, other):
 “””Define how to compare two SnailRun instances.
 “””
 if self.time < other.time:
 return -1
 elif self.time > other.time:
 return 1
 else:
 return 0

When this method is called, self is an instance of class SnailRun, and
other should also be an instance of SnailRun.

However, this logic exactly duplicates what the built-in cmp() function
does to compare two float values, so we can simplify it like this:
 def __cmp__ (self, other):
 “””Define how to compare two SnailRun instances.
 “””
 return cmp(self.time, other.time)

Let’s look at another special method, __str__(). This one defines how
Python converts an instance of a class into a string. It is called, for example,
when you name an instance in a print statement, or when you pass an instance
to Python’s built-in str() function.

The __str__() method of a class returns a string value. It is up to the writer
of the class what string value gets returned. As usual for Python methods,
the self argument contains the instance. In the case of class SnailRun, we’ll
want to display the snail’s name (.name attribute) and finishing time (.time
attribute). Here’s one possible version:
 def __str__ (self):
 “””Return a string representation of self.
 “””
 return “{0:8.1f} {1}”.format(self.time, self.name)

Soft Computing and Machine Learning with Python244

This method will format the finishing time into an 8-character string, with
one digit after the decimal point, followed by one space, then the snail’s
name.
Let’s assume that the __cmp__() and __str__() methods have been added to
our snails.py module, and show their use in some conversational examples.
>>> from snails import *
>>> sally4 = SnailRun(‘Sally’, 88.8)
>>> jim4=SnailRun(‘Jim’, 76.5)
>>>
Now that we have two SnailRun instances, we can show how the __str__()
method formats them for printing:
>>> print sally4
 88.8 Sally
>>> print jim4
 76.5 Jim
>>>
We can also show the various ways that Python compares two instances us-
ing our new __cmp__() method.
>>> cmp(sally4,jim4)
1
>>> sally4 > jim4
True
>>> sally4 <= jim4
False
>>> sally4 < jim4
False
>>>
Now that we have defined how instances are to be ordered, we can sort a
list of them in order by finish time. First we throw them into the list in any
old order:
>>> judy4 = SnailRun (‘Judy’, 67.3)
>>> blake4 = SnailRun (‘Blake’, 181.4)
>>> race4 = [sally4, jim4, judy4, blake4]
>>> for run in race4:
... print run
...
 88.8 Sally
 76.5 Jim
 67.3 Judy

A Python 2.7 Programming Tutorial 245

 181.4 Blake
>>>

The .sort() method on a list uses Python’s cmp() function to compare
items when sorting them, and this in turn will call our class’s __cmp__()
method to sort them by finishing time.
>>> race4.sort()
>>> for run in race4:
... print run
...
 67.3 Judy
 76.5 Jim
 88.8 Sally
 181.4 Blake
>>>

For an extended example of a class that implements a number of special
methods, see rational.py: An example Python class. This example shows
how to define a new kind of numbers, and specify how operators such as “+”
and “*” operate on instances.

PATTERN FOR PYTHON

CHAPTER

9

Tom De Smedt and Walter Daelemans

CLiPS Computational Linguistics Group University of Antwerp 2000 Antwerp, Belgium

ABSTRACT
Pattern is a package for Python 2.4+ with functionality for web mining
(Google + Twitter + Wikipedia, web spider, HTML DOM parser), natural
language processing (tagger/chunker, n-gram search, sentiment analysis,
WordNet), machine learning (vector space model, k-means clustering, Naive
Bayes + k-NN + SVM classifiers) and network analysis (graph centrality
and visualization). It is well documented and bundled with 30+ examples
and 350+ unit tests. The source code is licensed under BSD and available
from http://www.clips.ua.ac.be/pages/pattern.

Keywords: Python, data mining, natural language processing, machine
learning, graph networks

Citation: Tom De Smedt, Walter Daelemans, “Pattern for Python”, Journal for Machine
Learning Research, Vol. 13 (Jun), pp. 2063−2067, 2012.
Copyright: © 2012 by authors and Journal on Machine Learning Research. This paper
is an open access article distributed under a Creative Commons Attribution 3.0 License

Soft Computing and Machine Learning with Python248

INTRODUCTION
The World Wide Web is an immense collection of linguistic information
that has in the last decade gathered attention as a valuable resource for tasks
such as machine translation, opinion mining and trend detection, that is,
“Web as Corpus” (Kilgarriff and Grefenstette, 2003). This use of the WWW
poses a challenge since the Web is interspersed with code (HTML markup)
and lacks metadata (language identification, part-of-speech tags, semantic
labels).

“Pattern” (BSD license) is a Python package for web mining, natural
language processing, machine learning and network analysis, with a focus
on ease-of-use. It offers a mash-up of tools often used when harnessing
the Web as a corpus, which usually requires several independent toolkits
chained together in a practical application. Several such toolkits with a user
interface exist in the scientific community, for example ORANGE (Demsar
et al., 2004) for machine learning and ˇ GEPHI (Bastian et al., 2009) for
graph visualization. By contrast, PATTERN is more related to toolkits
such as NLTK (Bird et al., 2009), PYBRAIN (Schaul et al., 2010) and
NETWORKX (Hagberg et al., 2008), in that it is geared towards integration
in the user’s own programs. Also, it does not specialize in one domain but
provides general cross-domain functionality.

The package aims to be useful to both a scientific and a non-scientific
audience. The syntax is straightforward. Function names and parameters were
so chosen as to make the commands selfexplanatory. The documentation
assumes no prior knowledge. We believe that PATTERN is valuable as a
learning environment for students, as a rapid development framework for
web developers, and in research projects with a short development cycle.

Figure 1: Example workflow. Text is mined from the web and searched by
syntax and semantics. Sentiment analysis (positive/negative) is performed on
matching phrases.

Pattern for Python 249

PACKAGE OVERVIEW
PATTERN is organized in separate modules that can be chained together, as
shown in Figure 1. For example, text from Wikipedia (pattern.web) can be
parsed for part-of-speech tags (pattern.en), queried by syntax and semantics
(pattern.search), and used to train a classifier (pattern.vector).
pattern.web Tools for web data mining, using a download mechanism
that supports caching, proxies, asynchronous requests and redirection.
A SearchEngine class provides a uniform API to multiple web services:
Google, Bing, Yahoo!, Twitter, Wikipedia, Flickr and news feeds using
FEED PARSER (packages.python.org/feedparser). The module includes
an HTML parser based on BEAUTIFUL SOUP (crummy.com/software/
beautifulsoup), a PDF parser based on PDFMINER (unixuser.org/ euske/
python/pdfminer), a web crawler, and a webmail interface.
pattern.en Fast, regular expressions-based shallow parser for English
(identifies sentence constituents, e.g., nouns, verbs), using a finite state part-
of-speech tagger (Brill, 1992) extended with a tokenizer, lemmatizer and
chunker. Accuracy for Brill’s tagger is 95% and up. A parser with higher
accuracy (MBSP) can be plugged in. The module has a Sentence class for
parse tree traversal, functions for singularization/pluralization (Conway,
1998), conjugation, modality and sentiment analysis. It comes bundled with
WORDNET3 (Fellbaum, 1998) and PYWORDNET.
pattern.nl Lightweight implementation of pattern.en for Dutch, using the
BRILL-NL language model (Geertzen, 2010). Contributors are encouraged
to read the developer documentation on how to add support for other
languages.
pattern.search N-gram pattern matching algorithm for Sentence objects. The
algorithm uses an approach similar to regular expressions. Search queries
can include a mixture of words, phrases, part-of-speech-tags, taxonomy
terms (e.g., pet = dog, cat or goldfish) and control characters (e.g., + =
multiple, * = any, () = optional) to extract relevant information.
pattern.vector Vector space model using a Document and a Corpus class.
Documents are lemmatized bag-of-words that can be grouped in a sparse
corpus to compute TF-IDF, distance metrics (cosine, Euclidean, Manhattan,
Hamming) and dimension reduction (Latent Semantic Analysis). The module
includes a hierarchical and a k-means clustering algorithm, optimized with
the kmeans++ initialization algorithm (Arthur and Vassilvitskii, 2007) and
triangle inequality (Elkan, 2003). A Naive Bayes, a k-NN, and a SVM
classifier using LIBSVM (Chang and Li, 2011) are included, with tools for

Soft Computing and Machine Learning with Python250

feature selection (information gain) and K-fold cross validation.
pattern.graph Graph data structure using Node, Edge and Graph classes,
useful (for example) for modeling semantic networks. The module has
algorithms for shortest path finding, subgraph partitioning, eigenvector
centrality and betweenness centrality (Brandes, 2001). Centrality algorithms
were ported from NETWORKX. The module has a force-based layout
algorithm that positions nodes in 2D space. Visualizations can be exported
to HTML and manipulated in a browser (using our canvas.js helper module
for the HTML5 Canvas2D element).
pattern.metrics Descriptive statistics functions. Evaluation metrics including
a code profiler, functions for accuracy, precision and recall, confusion
matrix, inter-rater agreement (Fleiss’ kappa), string similarity (Levenshtein,
Dice) and readability (Flesch).
pattern.db Wrappers for CSV files and SQLITE and MYSQL databases.

EXAMPLE SCRIPT
As an example, we chain together four PATTERN modules to train a k-NN
classifier on adjectives mined from Twitter. First, we mine 1,500 tweets with
the hashtag #win or #fail (our classes), for example: “$20 tip off a sweet
little old lady today #win”. We parse the part-of-speech tags for each tweet,
keeping adjectives. We group the adjective vectors in a corpus and use it to
train the classifier. It predicts “sweet” as WIN and “stupid” as FAIL. The
results may vary depending on what is currently buzzing on Twitter.

The source code is shown in Figure 2. Its size is representative for
many real-world scenarios, although a real-world classifier may need more
training data and more rigorous feature selection.

Pattern for Python 251

Figure 2: Example source code for a k-NN classifier trained on Twitter mes-
sages.

CASE STUDY
As a case study, we used PATTERN to create a Dutch sentiment lexicon (De
Smedt and Daelemans, 2012). We mined online Dutch book reviews and
extracted the 1,000 most frequent adjectives. These were manually annotated
with positivity, negativity, and subjectivity scores. We then enlarged the
lexicon using distributional expansion. From the TWNC corpus (Ordelman
et al., 2007) we extracted the most frequent nouns and the adjectives
preceding those nouns. This results in a vector space with approximately
5,750 adjective vectors with nouns as features. For each annotated adjective
we then computed k-NN and inherited its scores to neighbor adjectives. The
lexicon is bundled into PATTERN 2.3.

DOCUMENTATION
PATTERN comes bundled with examples and unit tests. The documentation
contains a quick overview, installation instructions, and for each module a
detailed page with the API reference, examples of use and a discussion of
the scientific principles. The documentation assumes no prior knowledge,
except for a background in Python programming. The unit test suite includes
a set of corpora for testing accuracy, for example POLARITY DATA SET
V2.0 (Pang and Lee, 2004).

SOURCE CODE
PATTERN is written in pure Python, meaning that we sacrifice performance
for development speed and readability (i.e., slow clustering algorithms). The
package runs on all platforms and has no dependencies, with the exception
of NumPy when LSA is used. The source code is annotated with developer

Soft Computing and Machine Learning with Python252

comments. It is hosted online on GitHub (github.com) using the Git revision
control system. Contributions are welcomed.

The source code is released under a BSD license, so it can be incorporated
into proprietary products or used in combination with other open source
packages such as SCRAPY (web mining), NLTK (natural language
processing), PYBRAIN and PYML (machine learning) and NETWORKX
(network analysis). We provide an interface to MBSP FOR PYTHON (De
Smedt et al., 2010), a robust, memory-based shallow parser built on the
TIMBL machine learning software. The API’s for the PATTERN parser and
MBSP are identical.

ACKNOWLEDGMENTS
Development was funded by the Industrial Research Fund (IOF) of the
University of Antwerp.

Pattern for Python 253

REFERENCES
1. David Arthur and Sergei Vassilvitskii. k-means++: the advantages of

careful seeding. Proceedingsof the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1027–1035,2007.

2. Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi:
An open source software forexploring and manipulating networks.
Proceedings of the Third International ICWSM Conference,2009.

3. Steven Bird, Ewan Klein, and Edward Loper. Natural Language
Processing with Python. O’ReillyMedia, 2009.

4. Ulrik Brandes. A faster algorithm for betweenness centrality. The
Journal of Mathematical Sociology,25(2):163–177, 2001.

5. Eric Brill. A simple rule-based part of speech tagger. Proceedings of
the Third Conference on Applied Natural Language Processing, pages
152–155, 1992.

6. Chih-Chung Chang and Chih-Jen Li. LIBSVM: A library for support
vector machines. ACM Transactions on Intelligent Systems and
Technology, 2(3), 2011.

7. Damian Conway. An algorithmic approach to english pluralization.
Proceedings of the Second Annual Perl Conference, 1998.

8. Tom De Smedt and Walter Daelemans. Vreselijk mooi! (terribly
beautiful): A subjectivity lexicon for dutch adjectives. Proceedings of
the 8th Language Resources and Evaluation Conference (LREC’12),
pages 3568—-3572, 2012.

9. Tom De Smedt, Vincent Van Asch, and Walter Daelemans. Memory-
based shallow parser for python. CLiPS Technical Report Series, 2,
2010.

10. Janez Demsar, Bla ˇ z Zupan, Gregor Leban, and Tomaz Curk. Orange:
From experimental ˇ machine learning to interactive data mining.
Knowledge Discovery in Databases, 3202:537–539, 2004.

11. Charles Elkan. Using the triangle inequality to accelerate k-means.
Proceedings of the Twentieth International Conference on Machine
Learning, pages 147–153, 2003.

12. Christiane Fellbaum. WordNet: An Electronic Lexical Database. MIT
Press, Cambridge, 1998.

13. Jeroen Geertzen. Jeroen geertzen :: software & demos : Brill-nl, June

Soft Computing and Machine Learning with Python254

2010. URL http: //cosmion.net/jeroen/software/brill_pos/.
14. Aric Hagberg, Daniel Schult, and Pieter Swart. Exploring network

structure, dynamics, and function using networkx. Proceedings of the
7th Python in Science Conference, pages 11–15, 2008.

15. Adam Kilgarriff and Gregory Grefenstette. Introduction to the special
issue on the web as corpus. Computational Linguistics, 29(3):333–347,
2003.

16. Roeland Ordelman, Franciska de Jong, Arjan van Hessen, and Hendri
Hondorp. TwNC: A multifaceted dutch news corpus. ELRA Newsletter,
12:3–4, 2007.

17. Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis
using subjectivity summarization based on minimum cuts. Proceedings
of the ACL, pages 271–278, 2004.

18. Tom Schaul, Justin Bayer, Daan Wierstra, Yi Sun, Martin Felder, Frank
Sehnke, Thomas Ruckstieß, ¨ and Jurgen Schmidhuber. Pybrain. ¨
Journal of Machine Learning Research, pages 743–746, 2010.

PYSTRUCT - LEARNING
STRUCTURED PREDICTION IN

PYTHON

CHAPTER

10

Andreas C. M¨uller and Sven Behnke

Institute of Computer Science, Department VI University of Bonn Bonn, Germany

ABSTRACT
Structured prediction methods have become a central tool for many machine
learning applications. While more and more algorithms are developed, only
very few implementations are available.

PyStruct aims at providing a general purpose implementation of standard
structured prediction methods, both for practitioners and as a baseline for
researchers. It is written in Python and adapts paradigms and types from the
scientific Python community for seamless integration with other projects.

Keywords: structured prediction, structural support vector machines, condi-
tional random fields, Python

Citation: A. C. Müller, S. Behnke, “PyStruct - Learning Structured Prediction in Py-
thon”, Journal for Machine Learning Research, Vol. 15 (Jun), pp. 2055−2060, 2014.
Copyright: © 2014 by authors and Journal on Machine Learning Research. This paper
is an open access article distributed under a Creative Commons Attribution 3.0 License

Soft Computing and Machine Learning with Python256

INTRODUCTION
In recent years there has been a wealth of research in methods for learning
structured prediction, as well as in their application in areas such as
natural language processing and computer vision. Unfortunately only few
implementations are publicly available—many applications are based on the
non-free implementation of Joachims et al. (2009).

PyStruct aims at providing a high-quality implementation with an easy-
to-use interface, in the high-level Python language. This allows practitioners
to efficiently test a range of models, as well as allowing researchers to
compare to baseline methods much more easily than this is possible with
current implementations. PyStruct is BSD-licensed, allowing modification
and redistribution of the code, as well as use in commercial applications.
By embracing paradigms established in the scientific Python community
and reusing the interface of the widely-used scikit-learn library (Pedregosa
et al., 2011), PyStruct can be used in existing projects, replacing standard
classifiers. The online documentation and examples help new users
understand the somewhat abstract ideas behind structured prediction.

STRUCTURED PREDICTION AND CASTING IT
INTO SOFTWARE
Structured prediction can be defined as making a prediction f(x) by
maximizing a compatibility function between an input x and the possible
labels y (Nowozin and Lampert, 2011). Most current approaches use linear
functions, leading to:

 (1)
Here, y is a structured label, Ψ is a joint feature function of x and y, and θ
are parameters of the model. Structured means that y is more complicated
than a single output class, for example a label for each word in a sentence
or a label for each pixel in an image. Learning structured prediction means
learning the parameters θ from training data.

Using the above formulation, learning can be broken down into three
sub-problems:

1. Optimizing the objective with respect to θ.
2. Encoding the structure of the problem in a joint feature function

Ψ.

PyStruct - Learning Structured Prediction in Python 257

3. Solving the maximization problem in Equation 1.
The later two problems are usually tightly coupled, as the maximization

in Equation 1 is usually only feasible by exploiting the structure of Ψ, while
the first is treated as independent. In fact, when 3. can not be done exactly,
learning θ strongly depends on the quality of the approximation. However,
treating approximate inference and learning as a joint optimization problem
is currently out of the scope of the package, and we implement a more
modular setup. PyStruct takes an object-oriented approach to decouple the
task-dependent implementation of 2. and 3. from the general algorithms
used to solve 1.

Estimating θ is done in learner classes, which currently support cutting
plane algorithms for structural support vector machines (SSVMs Joachims
et al. (2009)), subgradient methods for SSVMs Ratliff et al. (2007), Block-
coordinate Frank-Wolfe (BCFW) (LacosteJulien et al., 2012), the structured
perceptron and latent variable SSVMs (Yu and Joachims, 2009). The cutting
plane implementation uses the cvxopt package (Andersen et al., 2012)
for quadratic optimization. Encoding the structure of the problem is done
using model classes, which compute Ψ and encode the structure of the
problem. The structure of Ψ determines the hardness of the maximization in
Equation (1) and is a crucial factor in learning. PyStruct implements models
(corresponding to particular forms of Ψ) for many common cases, such as
multi-class and multi-label classification, conditional random fields with
constant or data-dependent pairwise potentials, and several latent variable
models. The maximization for finding y in Equation 1 is carried out using
external libraries, such as OpenGM (Kappes et al., 2013), LibDAI (Mooij,
2010) and others. This allows the user to choose from a wide range of
optimization algorithms, including (loopy) belief propagation, graph-cuts,
QPBO, dual subgradient, MPBP, TRWs, LP and many other algorithms.
For problems where exact inference is infeasible, PyStruct allows the use
of linear programming relaxations, and provides modified loss and feature
functions to work with the continuous labels. This approach, which was
outlined in Finley and Joachims (2008) allows for principled learning when
exact inference is intractable. When using approximate integral solvers,
learning may finish prematurely and results in this case depend on the
inference scheme and learning algorithm used.

Table 1 lists algorithms and models that are implemented in PyStruct and
compares them to other public structured prediction libraries: Dlib (King,
2009), SVMstruct (Joachims et al., 2009) and CRFsuite (Okazaki, 2007). We
also give the programming language and the project license.

Soft Computing and Machine Learning with Python258

Table 1: Comparison of structured prediction software packages. CP stands
for cutting plane optimization of SSVMs, SG for online subgradient optimiza-
tion of SSVMs, LV for latent variable SSVMs, ML for maximum likelihood
learning, Chain for chain-structured models with pairwise interactions, Graph
for arbitrary graphs with pairwise interactions, and LDCRF for latent dynamic
CRF (Morency et al., 2007). 1PyStruct itself is BSD licensed, but uses the GPL-
licensed package cvxopt for cuttingplane learning

USAGE EXAMPLE: SEMANTIC IMAGE SEGMEN-
TATION
Conditional random fields are an important tool for semantic image
segmentation. We demonstrate how to learn an n-slack support vector
machine (Tsochantaridis et al., 2006) on a superpixel-based CRF on the
popular Pascal data set. We use unary potentials generated using TextonBoost
from Kr¨ahenb¨uhl and Koltun (2012). The superpixels are generated using
SLIC (Achanta et al., 2012).1 Each sample (corresponding on one entry of
the list X) is represented as a tuple consisting of input features and a graph
representation.

Listing 1: Example of defining and learning a CRF model

The source code is shown in Listing 1. Lines 1-3 declare a model using
parametric edge potentials for arbitrary graphs. Here class weight re-weights
the hamming loss according to inverse class frequencies. The parametric
pairwise interactions have three features: a constant feature, color similarity,
and relative vertical position. The first two are declared to be symmetric with
respect to the direction of an edge, the last is antisymmetric. The inference

PyStruct - Learning Structured Prediction in Python 259

method used is QPBO-fusion moves. Line 5 creates a learner object that
will learn the parameters for the given model using the n-slack cutting plane
method, and line 6 performs the actual learning. Using this simple setup,
we achieve an accuracy of 30.3 on the validation set following the protocol
of Kr¨ahenb¨uhl and Koltun (2012), who report 30.2 using a more complex
approach. Training the structured model takes approximately 30 minutes
using a single i7 core.

Figure 1: Runtime comparison of PyStruct and SVMstruct for multi-class clas-
sification.

EXPERIMENTS
While PyStruct focuses on usability and covers a wide range of applications,
it is also important that the implemented learning algorithms run in acceptable
time. In this section, we compare our implementation of the 1-slack
cutting plane algorithm (Joachims et al., 2009) with the implementation
in SVMstruct. We compare performance of the CrammerSinger multi-class
SVM with respect to learning time and accuracy on the MNIST data set of
handwritten digits. While multi-class classification is not very interesting
from a structured prediction point of view, this problem is well-suited to
benchmark the cutting plane solvers with respect to accuracy and speed.

Results are shown in Figure 1. We report learning times and accuracy for
varying regularization parameter C. The MNIST data set has 60 000 training
examples, 784 features and 10 classes. The figure indicates that PyStruct has
competitive performance, while using a high-level interface in a dynamic
programming language.

Soft Computing and Machine Learning with Python260

CONCLUSION
This paper introduced PyStruct, a modular structured learning and prediction
library in Python. PyStruct is geared towards ease of use, while providing
efficient implementations. PyStruct integrates itself into the scientific
Python eco-system, making it easy to use with existing libraries and
applications. Currently, PyStruct focuses on max-margin and perceptron-
based approaches. In the future, we plan to integrate other paradigms,
such as sampling-based learning (Wick et al., 2011), surrogate objectives
(for example pseudo-likelihood), and approaches that allow for a better
integration of inference and learning (Meshi et al., 2010).

ACKNOWLEDGMENTS
The authors would like to thank Vlad Niculae and Forest Gregg for their
contributions to PyStruct and Andr´e Martins for his help in integrating
the AD3 solver with PyStruct. This work was partially funded by the B-IT
research school.

PyStruct - Learning Structured Prediction in Python 261

REFERENCES
1. Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi,

Pascal Fua, and Sabine S¨usstrunk. SLIC superpixels compared to
state-of-the-art superpixel methods. PAMI, 2012.

2. Martin S. Andersen, Joachin Dahl, and Lieven Vandenberghe.
CVXOPT: A Python package for convex optimization, version 1.1.5.
Available at http://cvxopt.org/, 2012.

3. Thomas Finley and Thorsten Joachims. Training structural SVMs
when exact inference is intractable. In ICML, 2008.

4. Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu. Cutting-
plane training of structural SVMs. JMLR, 77(1), 2009.

5. J¨org H Kappes, Bjoern Andres, Fred A Hamprecht, Christoph Schn¨orr,
Sebastian Nowozin, Dhruv Batra, Sungwoong Kim, Bernhard X
Kausler, Jan Lellmann, Nikos Komodakis, et al. A comparative study
of modern inference techniques for discrete energy minimization
problems. In CVPR, 2013.

6. Davis E. King. Dlib-ml: A machine learning toolkit. JMLR, 10, 2009.
7. Philipp Kr¨ahenb¨uhl and Vladlen Koltun. Efficient inference in fully

connected CRFs with Gaussian edge potentials. In NIPS, 2012.
8. Simon Lacoste-Julien, Mark Schmidt, and Francis Bach. A simpler

approach to obtaining an O(1/t) convergence rate for projected
stochastic subgradient descent. arXiv preprint arXiv:1212.2002, 2012.

9. Ofer Meshi, David Sontag, Tommi Jaakkola, and Amir Globerson.
Learning efficiently with approximate inference via dual losses. In
ICML, 2010.

10. Joris M. Mooij. libDAI: A free and open source C++ library for discrete
approximate inference in graphical models. JMLR, 2010.

11. L-P Morency, Ariadna Quattoni, and Trevor Darrell. Latent-dynamic
discriminative models for continuous gesture recognition. In CVPR,
2007.

12. Sebastian Nowozin and Christoph H. Lampert. Structured Learning
and Prediction in Computer Vision. Now Publishers Inc., 2011.

13. Naoaki Okazaki. CRFsuite: A fast implementation of conditional
random fields (CRFs), 2007. URL http://www.chokkan.org/software/
crfsuite/.

Soft Computing and Machine Learning with Python262

14. Fabian Pedregosa, Ga¨el Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter
Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine
learning in Python. JMLR, 2011.

15. Nathan Ratliff, J. Andrew (Drew) Bagnell, and Martin Zinkevich.
(Online) subgradient methods for structured prediction. In AISTATS,
2007.

16. Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, Yasemin
Altun, and Yoram Singer. Large margin methods for structured and
interdependent output variables. JMLR, 6(2), 2006.

17. Michael Wick, Khashayar Rohanimanesh, Kedar Bellare, Aron
Culotta, and Andrew McCallum. Samplerank: Training factor graphs
with atomic gradients. In ICML, 2011.

18. Chun-Nam John Yu and Thorsten Joachims. Learning structural SVMs
with latent variables. In ICML, 2009.

SECTION IV
MACHINE LEARNING

WITH PYTHON

PYTHON ENVIRONMENT
FOR BAYESIAN LEARNING:

INFERRING THE STRUCTURE
OF BAYESIAN NETWORKS

FROM KNOWLEDGE AND DATA

CHAPTER

11

Abhik Shah and Peter Woolf

Department of Chemical Engineering 3320 G.G. Brown Ann Arbor, MI 48103, USA

ABSTRACT
In this paper, we introduce PEBL, a Python library and application for
learning Bayesian network structure from data and prior knowledge that
provides features unmatched by alternative software packages: the ability to
use interventional data, flexible specification of structural priors, modeling

Citation: Abhik Shah, Peter Woolf; “Python Environment for Bayesian Learning:
Inferring the Structure of Bayesian Networks from Knowledge and Data”, vol. 10
(Feb):159--162, 2009.
Copyright: © 2009 by authors and Journal on Machine Learning Research. This paper
is an open access article distributed under a Creative Commons Attribution 3.0 License

Soft Computing and Machine Learning with Python266

with hidden variables and exploitation of parallel processing. PEBL is
released under the MIT open-source license, can be installed from the Python
Package Index and is available at http://pebl-project.googlecode.com.

Keywords: Bayesian networks, python, open source software

INTRODUCTION
Bayesian networks (BN) have become a popular methodology in many fields
because they can model nonlinear, multimodal relationships using noisy,
inconsistent data. Although learning the structure of BNs from data is now
common, there is still a great need for high-quality open-source software
that can meet the needs of various users. End users require software that is
easy to use; supports learning with different data types; can accommodate
missing values and hidden variables; and can take advantage of various
computational clusters and grids. Researchers require a framework for
developing and testing new algorithms and translating them into usable
software. We have developed the Python Environment for Bayesian Learning
(PEBL) to meet these needs.

PEBL FEATURES
PEBL provides many features for working with data and BNs; some of the
more notable ones are listed below.

Structure Learning
PEBL can load data from tab-delimited text files with continuous, discrete
and class variables and can perform maximum entropy discretization. Data
collected following an intervention is important for determining causality but
requires an altered scoring procedure (Pe’er et al., 2001; Sachs et al., 2002).
PEBL uses the BDe metric for scoring networks and handles interventional
data using the method described by Yoo et al. (2002).

Python Environment for Bayesian Learning: Inferring the Structure ... 267

Figure 1: Two ways of using PEBL: with a Python script and a configuration
file. Both methods create 10 greedy learners with default parameters and run
them on an Apple Xgid. The Python script can be typed in an interactive shell,
run as a script or included as part of a larger application.

PEBL can handle missing values and hidden variables using exact
marginalization and Gibbs sampling (Heckerman, 1998). The Gibbs sampler
can be resumed from a previously suspended state, allowing for interactive
inspection of preliminary results or a manual strategy for determining
satisfactory convergence.

A key strength of Bayesian analysis is the ability to use prior knowledge.
PEBL supports structural priors over edges specified as ’hard’ constraints or
’soft’ energy matrices (Imoto et al., 2003) and arbitrary constraints specified
as Python functions or lambda expressions.

PEBL includes greedy hill-climbing and simulated annealing learners
and makes writing custom learners easy. Efficient implementaion of learners
requires careful programming to eliminate redundant computation. PEBL
provides components to alter, score and rollback changes to BNs in a simple,
transactional manner and with these, efficient learners look remarkably
similar to pseudocode.

Convenience and Scalability
PEBL includes both a library and a command line application. It aims for a
balance between ease of use, extensibility and performance. The majority of
PEBL is written in Python, a dynamically-typed programming language that
runs on all major operating systems. Critical sections use the numpy library

Soft Computing and Machine Learning with Python268

(Ascher et al., 2001) for high-performance matrix operations and custom
extensions written in ANSI C for portability and speed.

PEBL’s use of Python makes it suitable for both programmers and
domain experts. Python provides interactive shells and notebook interfaces
and includes an extensive standard library and many third-party packages.
It has a strong presence in the scientific computing community (Oliphant,
2007). Figure 1 shows a script and configuration file example that showcase
the ease of using PEBL.

Table 1: Comparing the features of popular Bayesian network structure learn-
ing software

While many tasks related to Bayesian learning are embarrassingly
parallel in theory, few software packages take advantage of it. PEBL can
execute learning tasks in parallel over multiple processors or CPU cores, an
Apple Xgrid,1 an IPython cluster2 or the Amazon EC2 platform.3 The EC2
platform is especially attractive for scientists because it allows one to rent
processing power on an on-demand basis and execute PEBL tasks on them.

With appropriate configuration settings and the use of parallel execution,
PEBL can be used for large learning tasks. Although PEBL has been tested
successfully with data sets with 10000 variables and samples, BN structure
learning is a known NP-Hard problem (Chickering et al., 1994) and analysis
using data sets with more than a few hundred variables is likely to result in
poor results due to poor coverage of the search space.

Python Environment for Bayesian Learning: Inferring the Structure ... 269

PEBL DEVELOPMENT
The benefits of open source software derive not just from the freedoms
afforded by the software license but also from the open and collaborative
development model. PEBL’s source code repository and issue tracker are
hosted at Google Code and freely available to all. Additionally, PEBL
includes over 200 automated unit tests and mandates that every source code
submission and resolved error be accompanied with tests.

RELATED SOFTWARE
While there are many software tools for working with BNs, most focus on
parameter learning and inference rather than structure learning. Of the few
tools for structure learning, few are open-source and none provide the set
of features included in PEBL. As shown in Table 1, the ability to handle
interventional data, model with missing values and hidden variables, use
soft and arbitrary priors and exploit parallel platforms are unique to PEBL.
PEBL, however, does not currently provide any features for inference or
learning Dynamic Bayesian Networks (DBN). Despite its use of optimized
matrix libraries and custom C extension modules, PEBL can be an order of
magnitude or more slower than software written in Java or C/C++; the ability
to use a wider range of data and priors, the parallel processing features and
the ease-of-use, however, should make it an attractive option for many users.

CONCLUSION AND FUTURE WORK
We have developed a library and application for learning BNs from data
and prior knowledge. The set of features found in PEBL is unmatched by
alternative packages and we hope that our open development model will
convince others to use PEBL as a platform for BN algorithms research.

ACKNOWLEDGMENTS
We would like to acknowledge support for this project from the NIH grant
#U54 DA021519.

Soft Computing and Machine Learning with Python270

REFERENCES
1. D. Ascher, P. F. Dubois, K. Hinsen, J. Hugunin, and T. Oliphant. An

open source project: Numerical python. Technical Report UCRL-
MA-128569, Lawrence Livermore National Laboratory, September
2001.

2. D. M. Chickering, D. Geiger, and D. Heckerman. Learning bayesian
networks is np-hard. Technical Report MSR-TR-94-17, Microsoft
Research, November 1994.

3. D. Heckerman. A tutorial on learning with bayesian networks. In
Learning in Graphical Models, pages 301–354. The MIT Press, 1998.

4. S. Imoto, T. Higuchi, T. Goto, K. Tashiro, S. Kuhara, and S. Miyano.
Combining microarrays and biological knowledge for estimating gene
networks via bayesian networks. Bioinformatics Conference, 2003.
CSB 2003. Proceedings of the 2003 IEEE, pages 104–113, 2003.

5. T. E. Oliphant. Python for scientific computing. Computing in Science
& Engineering, pages 10–20, 2007.

6. D. Pe’er, A. Regev, G. Elidan, and N. Friedman. Inferring subnetworks
from perturbed expression profiles. Bioinformatics, 1(1):1–9, 2001.

7. K. Sachs, D. Gifford, T. Jaakkola, P. Sorger, and D. Lauffenburger.
Bayesian network approach to cell signaling pathway modeling.
Science’s STKE, 2002.

8. C. Yoo, V. Thorsson, and G. F. Cooper. Discovery of causal relationships
in a gene-regulation pathway from a mixture of experimental and
observational DNA microarray data. Pac Symp Biocomput, 7:498–
509, 2002.

SCIKIT-LEARN: MACHINE
LEARNING IN PYTHON

CHAPTER

12

Fabian Pedregosa1, Gael Varoquaux1, Alexandre Gramfort1, Vin-
cent Michel1, Bertrand Thirion1, Olivier Grisel2, Mathieu Blondel3,
Peter Prettenhofer4, Ron Weiss5, Vincent Dubourg6, Jake Vander-
plas7, Alexandre Passos8, David Cournapeau9, Matthieu Brucher10,
Matthieu Perrot11, and Edouard Duchesnay11

1Parietal, INRIA Saclay Neurospin, Bat 145, CEA Saclay ˆ 91191 Gif sur Yvette – France
2Nuxeo 20 rue Soleillet 75 020 Paris – France
3Kobe University 1-1 Rokkodai, Nada Kobe 657-8501 – Japan
4Bauhaus-Universitat Weimar ¨ Bauhausstr. 11 99421 Weimar – Germany
5Google Inc 76 Ninth Avenue New York, NY 10011 – USA
6Clermont Universite, IFMA, EA 3867, LaMI ́ BP 10448, 63000 Clermont-Ferrand – France
7Astronomy Department University of Washington, Box 351580 Seattle, WA 98195 – USA
8IESL Lab UMass Amherst Amherst MA 01002 – USA
9Enthought 21 J.J. Thompson Avenue Cambridge, CB3 0FA – UK

Citation: F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, E. Duchesnay; “Scikit-learn: Machine Learning in Py-
thon”, Journal for Machine Learning Research, vol. 12 (Oct): 2825−2830, 2011.
Copyright: © 2011 by authors and Journal on Machine Learning Research. This paper
is an open access article distributed under a Creative Commons Attribution 3.0 License

Soft Computing and Machine Learning with Python272

10Total SA, CSTJF avenue Larribau 64000 Pau – France
11LNAO Neurospin, Bat 145, CEA Saclay ˆ 91191 Gif sur Yvette – France

ABSTRACT
Scikit-learn is a Python module integrating a wide range of state-of-the-art
machine learning algorithms for medium-scale supervised and unsupervised
problems. This package focuses on bringing machine learning to non-
specialists using a general-purpose high-level language. Emphasis is put
on ease of use, performance, documentation, and API consistency. It has
minimal dependencies and is distributed under the simplified BSD license,
encouraging its use in both academic and commercial settings. Source code,
binaries, and documentation can be downloaded from http://scikit-learn.
sourceforge.net.

Keywords: Python, supervised learning, unsupervised learning, model
selection

INTRODUCTION
The Python programming language is establishing itself as one of the
most popular languages for scientific computing. Thanks to its high-level
interactive nature and its maturing ecosystem of scientific libraries, it is an
appealing choice for algorithmic development and exploratory data analysis
(Dubois, 2007; Milmann and Avaizis, 2011). Yet, as a general-purpose
language, it is increasingly used not only in academic settings but also in
industry.

Scikit-learn harnesses this rich environment to provide state-of-the-art
implementations of many well known machine learning algorithms, while
maintaining an easy-to-use interface tightly integrated with the Python
language. This answers the growing need for statistical data analysis by non-
specialists in the software and web industries, as well as in fields outside of
computer-science, such as biology or physics. Scikit-learn differs from other
machine learning toolboxes in Python for various reasons: i) it is distributed
under the BSD license ii) it incorporates compiled code for efficiency, unlike
MDP (Zito et al., 2008) and pybrain (Schaul et al., 2010), iii) it depends only
on numpy and scipy to facilitate easy distribution, unlike pymvpa (Hanke
et al., 2009) that has optional dependencies such as R and shogun, and iv) it
focuses on imperative programming, unlike pybrain which uses a data-flow

Scikit-learn: Machine Learning in Python 273

framework. While the package is mostly written in Python, it incorporates
the C++ libraries LibSVM (Chang and Lin, 2001) and LibLinear (Fan et
al., 2008) that provide reference implementations of SVMs and generalized
linear models with compatible licenses. Binary packages are available on a
rich set of platforms including Windows and any POSIX platforms.

Furthermore, thanks to its liberal license, it has been widely distributed
as part of major free software distributions such as Ubuntu, Debian,
Mandriva, NetBSD and Macports and in commercial distributions such as
the “Enthought Python Distribution”.

PROJECT VISION
Code quality: Rather than providing as many features as possible, the
project’s goal has been to provide solid implementations. Code quality is
ensured with unit tests—as of release 0.8, test coverage is 81%—and the use
of static analysis tools such as pyflakes and pep8. Finally, we strive to use
consistent naming for the functions and parameters used throughout a strict
adherence to the Python coding guidelines and numpy style documentation.

BSD licensing: Most of the Python ecosystem is licensed with non-
copyleft licenses. While such policy is beneficial for adoption of these tools
by commercial projects, it does impose some restrictions: we are unable to
use some existing scientific code, such as the GSL.

Bare-bone design and API: To lower the barrier of entry, we avoid
framework code and keep the number of different objects to a minimum,
relying on numpy arrays for data containers.

Community-driven development: We base our development on
collaborative tools such as git, github and public mailing lists. External
contributions are welcome and encouraged.

Documentation: Scikit-learn provides a ∼300 page user guide including
narrative documentation, class references, a tutorial, installation instructions,
as well as more than 60 examples, some featuring real-world applications.
We try to minimize the use of machine-learning jargon, while maintaining
precision with regards to the algorithms employed.

UNDERLYING TECHNOLOGIES
Numpy: the base data structure used for data and model parameters. Input
data is presented as numpy arrays, thus integrating seamlessly with other

Soft Computing and Machine Learning with Python274

scientific Python libraries. Numpy’s viewbased memory model limits
copies, even when binding with compiled code (Van der Walt et al., 2011).
It also provides basic arithmetic operations.

Scipy: efficient algorithms for linear algebra, sparse matrix representation,
special functions and basic statistical functions. Scipy has bindings for
many Fortran-based standard numerical packages, such as LAPACK. This
is important for ease of installation and portability, as providing libraries
around Fortran code can prove challenging on various platforms.

Cython: a language for combining C in Python. Cython makes it easy to
reach the performance of compiled languages with Python-like syntax and
high-level operations. It is also used to bind compiled libraries, eliminating
the boilerplate code of Python/C extensions.

CODE DESIGN
Objects specified by interface, not by inheritance: To facilitate the use of
external objects with scikit-learn, inheritance is not enforced; instead, code
conventions provide a consistent interface. The central object is an estimator,
that implements a fit method, accepting as arguments an input data array
and, optionally, an array of labels for supervised problems. Supervised
estimators, such as SVM classifiers, can implement a predict method.
Some estimators, that we call transformers, for example, PCA, implement
a transform method, returning modified input data. Estimators may also
provide a score method, which is an increasing evaluation of goodness of
fit: a loglikelihood, or a negated loss function.

Table 1: Time in seconds on the Madelon data set for various machine learning
libraries exposed in Python: MLPy (Albanese et al., 2008), PyBrain (Schaul et
al., 2010), pymvpa (Hanke et al., 2009), MDP (Zito et al., 2008) and Shogun
(Sonnenburg et al., 2010). For more benchmarks see http://github.com/scikit-
learn

Scikit-learn: Machine Learning in Python 275

The other important object is the cross-validation iterator, which provides
pairs of train and test indices to split input data, for example K-fold, leave
one out, or stratified cross-validation.

Model selection: Scikit-learn can evaluate an estimator’s performance
or select parameters using cross-validation, optionally distributing the
computation to several cores. This is accomplished by wrapping an estimator
in a GridSearchCV object, where the “CV” stands for “cross-validated”.
During the call to fit, it selects the parameters on a specified parameter
grid, maximizing a score (the score method of the underlying estimator).
predict, score, or transform are then delegated to the tuned estimator. This
object can therefore be used transparently as any other estimator. Cross
validation can be made more efficient for certain estimators by exploiting
specific properties, such as warm restarts or regularization paths (Friedman
et al., 2010). This is supported through special objects, such as the LassoCV.
Finally, a Pipeline object can combine several transformers and an estimator
to create a combined estimator to, for example, apply dimension reduction
before fitting. It behaves as a standard estimator, and GridSearchCV therefore
tune the parameters of all steps.

HIGH-LEVEL YET EFFICIENT: SOME TRADE
OFFS
While scikit-learn focuses on ease of use, and is mostly written in a high
level language, care has been taken to maximize computational efficiency.
In Table 1, we compare computation time for a few algorithms implemented
in the major machine learning toolkits accessible in Python. We use the
Madelon data set (Guyon et al., 2004), 4400 instances and 500 attributes,
The data set is quite large, but small enough for most algorithms to run.

SVM: While all of the packages compared call libsvm in the background,
the performance of scikitlearn can be explained by two factors. First, our
bindings avoid memory copies and have up to 40% less overhead than
the original libsvm Python bindings. Second, we patch libsvm to improve
efficiency on dense data, use a smaller memory footprint, and better use
memory alignment and pipelining capabilities of modern processors. This
patched version also provides unique features, such as setting weights for
individual samples.

LARS: Iteratively refining the residuals instead of recomputing them
gives performance gains of 2–10 times over the reference R implementation

Soft Computing and Machine Learning with Python276

(Hastie and Efron, 2004). Pymvpa uses this implementation via the Rpy R
bindings and pays a heavy price to memory copies.

Elastic Net: We benchmarked the scikit-learn coordinate descent
implementations of Elastic Net. It achieves the same order of performance
as the highly optimized Fortran version glmnet (Friedman et al., 2010) on
medium-scale problems, but performance on very large problems is limited
since we do not use the KKT conditions to define an active set.

kNN: The k-nearest neighbors classifier implementation constructs a
ball tree (Omohundro, 1989) of the samples, but uses a more efficient brute
force search in large dimensions.

PCA: For medium to large data sets, scikit-learn provides an
implementation of a truncated PCA based on random projections (Rokhlin
et al., 2009).

k-means: scikit-learn’s k-means algorithm is implemented in pure
Python. Its performance is limited by the fact that numpy’s array operations
take multiple passes over data.

CONCLUSION
Scikit-learn exposes a wide variety of machine learning algorithms, both
supervised and unsupervised, using a consistent, task-oriented interface,
thus enabling easy comparison of methods for a given application. Since
it relies on the scientific Python ecosystem, it can easily be integrated
into applications outside the traditional range of statistical data analysis.
Importantly, the algorithms, implemented in a high-level language, can be
used as building blocks for approaches specific to a use case, for example, in
medical imaging (Michel et al., 2011). Future work includes online learning,
to scale to large data sets.

Scikit-learn: Machine Learning in Python 277

REFERENCES
1. D. Albanese, G. Merler, S.and Jurman, and R. Visintainer. MLPy:

high-performance python package for predictive modeling. In NIPS,
MLOSS Workshop, 2008.

2. C.C. Chang and C.J. Lin. LIBSVM: a library for support vector
machines. http://www.csie. ntu.edu.tw/cjlin/libsvm, 2001.

3. P.F. Dubois, editor. Python: Batteries Included, volume 9 of Computing
in Science & Engineering. IEEE/AIP, May 2007.

4. R.E. Fan, K.W. Chang, C.J. Hsieh, X.R. Wang, and C.J. Lin.
LIBLINEAR: a library for large linear classification. The Journal of
Machine Learning Research, 9:1871–1874, 2008.

5. J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for
generalized linear models via coordinate descent. Journal of Statistical
Software, 33(1):1, 2010.

6. I Guyon, S. R. Gunn, A. Ben-Hur, and G. Dror. Result analysis of the
NIPS 2003 feature selection challenge, 2004.

7. M. Hanke, Y.O. Halchenko, P.B. Sederberg, S.J. Hanson, J.V. Haxby,
and S. Pollmann. PyMVPA: A Python toolbox for multivariate pattern
analysis of fMRI data. Neuroinformatics, 7(1):37–53, 2009.

8. T. Hastie and B. Efron. Least Angle Regression, Lasso and Forward
Stagewise. http://cran. r-project.org/web/packages/lars/lars.pdf, 2004.

9. V. Michel, A. Gramfort, G. Varoquaux, E. Eger, C. Keribin, and B.
Thirion. A supervised clustering approach for fMRI-based inference
of brain states. Patt Rec, page epub ahead of print, April 2011. doi:
10.1016/j.patcog.2011.04.006.

10. K.J. Milmann and M. Avaizis, editors. Scientific Python, volume 11 of
Computing in Science & Engineering. IEEE/AIP, March 2011.

11. S.M. Omohundro. Five balltree construction algorithms. ICSI Technical
Report TR-89-063, 1989.

12. V. Rokhlin, A. Szlam, and M. Tygert. A randomized algorithm for
principal component analysis. SIAM Journal on Matrix Analysis and
Applications, 31(3):1100–1124, 2009.

13. T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder, F. Sehnke, T.
Ruckstieß, and J. Schmidhuber. ¨ PyBrain. The Journal of Machine
Learning Research, 11:743–746, 2010.

Soft Computing and Machine Learning with Python278

14. S. Sonnenburg, G. Ratsch, S. Henschel, C. Widmer, J. Behr, A. Zien, F.
de Bona, A. Binder ¨ , C. Gehl, and V. Franc. The SHOGUN machine
learning toolbox. Journal of Machine Learning Research, 11:1799–
1802, 2010.

15. S. Van der Walt, S.C Colbert, and G. Varoquaux. The NumPy array: A
structure for efficient numerical computation. Computing in Science
and Engineering, 11, 2011.

16. T. Zito, N. Wilbert, L. Wiskott, and P. Berkes. Modular toolkit for data
processing (MDP): A Python data processing framework. Frontiers in
Neuroinformatics, 2, 2008.

AN EFFICIENT PLATFORM FOR
THE AUTOMATIC EXTRACTION
OF PATTERNS IN NATIVE CODE

CHAPTER

13

Javier Escalada1, Francisco Ortin1 , and Ted Scully2

1Computer Science Department, University of Oviedo, Calvo Sotelo s/n, 33007 Oviedo,
Spain
2Cork Institute of Technology, Computer Science Department, Rossa Avenue, Bishopstown,
Cork, Ireland

ABSTRACT
Different software tools, such as decompilers, code quality analyzers,
recognizers of packed executable files, authorship analyzers, and malware
detectors, search for patterns in binary code. The use of machine learning
algorithms, trained with programs taken from the huge number of
applications in the existing open source code repositories, allows finding
patterns not detected with the manual approach. To this end, we have

Citation: Javier Escalada, Francisco Ortin, and Ted Scully, “An Efficient Platform for
the Automatic Extraction of Patterns in Native Code,” Scientific Programming, vol.
2017, Article ID 3273891, 16 pages, 2017. doi:10.1155/2017/3273891.
Copyright: © 2017 Javier Escalada et al. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

Soft Computing and Machine Learning with Python280

created a versatile platform for the automatic extraction of patterns from
native code, capable of processing big binary files. Its implementation has
been parallelized, providing important runtime performance benefits for
multicore architectures. Compared to the single-processor execution, the
average performance improvement obtained with the best configuration is
3.5 factors over the maximum theoretical gain of 4 factors.

INTRODUCTION
Many software tools analyze programs, looking for specific patterns defined
beforehand. When a pattern is found, an action is then performed by the tool
(e.g., improve the quality, security, or performance of the input program).
Patterns are defined for both high-level and binary code. Different examples
of tools that analyze high-level patterns are refactoring tools, code quality
analyzers, or detectors of common programming mistakes. In the case of
binary code, examples are decompilers, packed executable file recognizers,
authorship analyzers, or malware detectors.

In the traditional approach, an expert identifies those patterns to be
found by the software tool. His or her expertise is used to define the code
patterns that should be searched (e.g., for improving the application). On the
contrary, a machine learning approach can be used to build models, which
can then be applied to large repositories of code to effectively search for
and identify specific patterns. This second approach allows the analysis of
huge amounts of programs, sometimes detecting patterns not found with
the traditional approach. Additionally, this approach could automatically
evaluate the accuracy of the patterns obtained.

An emerging research topic called big code has recently appeared
[1]. Big code is based on the idea that open source code repositories (e.g.,
GitHub, SourceForge, BitBucket, and CodePlex) can be used to create new
kinds of programming tools and services to improve software reliability and
construction, using machine learning and probabilistic reasoning. One of the
research lines included in big code is finding extrapolated patterns, detecting
software anomalies, or computing the cooccurrence of different patterns in
the same program [2].

One example (more real examples can be consulted in [2]) of detecting
patterns in programs is the vulnerability discovery method proposed by the
MLSEC research group [3]. It assists the security analyst during auditing
of source code, by extracting ASTs from the programs and determining
structural patterns in them. Given a known vulnerability, their patterns are

An Efficient Platform for the Automatic Extraction of Patterns in ... 281

identified and extrapolated to a code base, such that functions potentially
suffering from the same flaw can be suggested to the analyst. With that
method, they managed to identify 18 previously unknown vulnerabilities in
the source code of the Linux kernel.

The research context of finding code patterns using machine learning
algorithms is based on 3 ideas. First, machine learning techniques can be
used to build predictive models to identify patterns in data; besides, these
techniques do not require domain specific knowledge about the problem
domain [4]. Second, the existing open source code repositories create new
opportunities for gathering massive program repositories to be analyzed.
Third, the existing big data technologies and platforms facilitate the analysis
of large datasets.

When processing native code, a platform to extract binary patterns
should also be able to use the debug information (if any) generated by the
compiler. This information would be very valuable to extract those binary
patterns, which may later be used by a machine learning algorithm to create
predictive tools. A large number of patterns may be extracted from a small
binary program, since the number of assembly instructions is much higher
than in its source high-level program. Therefore, the need of processing
debug information, plus the potentially huge number of patterns to be
extracted, makes it critical to use highly parallelized and efficient tools for
extracting those patterns.

A platform capable of extracting patterns from programs should also
be highly parameterized. The individuals (rows in the dataset generated) to
be detected by the platform must be defined by the user. For instance, we
may be interested in finding patterns for functions, snippets, function entry
points, or specific regions of binary code. The same parameterization is also
required to specify the features of each individual (columns in the dataset).
For example, we may define the feature <mov> <generic ax>,<any> to
represent the occurrence of any assembly instruction that moves any value
to the accumulator register (ah, al, ax, eax or rax). If that pattern (feature or
column) occurs in one given region of binary code (individual or row), then
the corresponding value in the dataset (row and column) will be 1.

The traditional method to extract features from binary code is to
identify a syntactically fixed unit of code, such as functions or basic blocks,
and extract the binary code inside them [5]. However, pattern extraction
does not always follow this scheme. Sometimes, nonsequential patterns
such as subgraphs of control flow and data dependency graphs need to be

Soft Computing and Machine Learning with Python282

extracted. In these cases, a binary pattern extraction platform should allow
the association of patterns to pieces of code outside their basic blocks,
representing subgraph structures (Section 3.7). Another scenario where the
traditional method is not sufficient is the analysis of binary code between
two memory addresses, where the inconsistency overlapping problem
caused by the variable-length instruction set must be tackled [6]. This kind
of binary code analysis has been used for different purposes such as function
entry points detection [6], compiler recognition [7], authorship attribution
[8], and malware detection [9, 10]. Therefore, a generic platform for pattern
extraction must be flexible enough to support any binary pattern extraction
method (not just the traditional one) and reduce development and execution
times.

The main contribution of this paper is a platform for the automatic
extraction of patterns in native code. The platform is highly parameterized so
that it could be used in different scenarios. Its parallel implementation provides
important runtime performance benefits when multicore architectures are
used. It also uses the debug information that may be provided by a compiler.
The extracted patterns may be used by other tools for different purposes.
We present an evaluation of binary pattern extraction, measuring the
execution time of different configurations for a large number of programs.
The parallelization provides significant performance improvements, and its
efficiency is maintained for big volumes of programs.

The rest of this paper is structured as follows. Section 2 describes a
motivating example, and the platform is described in Section 3. Section 4
presents an evaluation of the platform and Section 5 discusses the related
work. The conclusions and future work are presented in Section 6.

MOTIVATING EXAMPLE
We use a motivating example to explain our platform. The example is the
extraction of patterns in native code that can be later used to improve the
information inferred by a decompiler. A decompiler extracts high-level
information from a native program, aimed at obtaining the original source
program used to generate the native code. Existing decompilers are able to
infer part of this information. However, some elements of the original high-
level source programs are not inferred by any decompiler.

Algorithm 1 shows a C function that returns a string (char in C). The
function returns a substring from the str parameter, starting in the beginth

An Efficient Platform for the Automatic Extraction of Patterns in ... 283

position of str up to the endth position. The values of begin and end could be
negative, following the slicing behavior of the Python [] operator.

Algorithm 1: Example high-level C program.

After compiling the str_slice function with Microsoft’s cl compiler, the
decompiled function generated by Hex-Ray 1.5 has the following signature:
 int __cdec1 sub_401780 (int al, int q2, int a3)

We can see how the original return type of the function (char) is not the
same as the one obtained by the decompiler (int). This is because, in native
machine code, there is no type difference between integers and pointers. The
difference between both might be obtained by analyzing how the programmer
uses the value returned by the function. In general, the programmer performs
indirections with pointers, but not with integers. Since this rule is not always
fulfilled, the decompiler does not tell the difference between these two types.

Soft Computing and Machine Learning with Python284

By analyzing the usage patterns of each variable, a decompiler may
infer the actual high-level type of the variables (and functions). Since this
is not a deterministic mechanism, the use of machine learning seems to be
appropriate for this kind of problems [11]. Some recognized limitations of
most decompilers include the following:(i)Types of variables, including
function arguments and return types (e.g., the example in Algorithm 1)
[12].(ii)Functions: the identification of function entry points is a complex
task, mainly due to indirect function invocations [6]. Similarly, detecting
the function body is an open challenge because its instructions may not be
contiguous, have multiple entry points, be in-line, or not be reachable [5].
(iii)Control flow structures: its recognition is commonly based on control
flow graph (CFG) analysis [12]. However, CFGs might not be completely
recovered by static analysis if indirect jumps appear, which are typically
generated for switch structures [13].(iv)Elements of a specific paradigm:
when another paradigm different to the structured one (e.g., object-
orientation or functional) is used, the specific elements of that paradigm
are barely recognized. For example, C++ decompilers commonly fail in the
reconstruction of polymorphic classes, class hierarchies, member functions,
and exception handling constructs [14].

The platform presented in this paper is being used to extract binary
patterns from native code, which are later used to improve certain high-
level information gathered by existing decompilers. Particularly, we face
the problem of detecting the type returned by a function. An excerpt of the
dataset generated by our platform for this particular case is shown in Table
2: individuals (rows) are functions in the module; features (columns) are
sequences of binary patterns found at the end of the function body (return
patterns) and after invoking the function (call post patterns); the target
column is the returned type. Please, notice that the work of this paper is the
platform itself, not in the algorithm for decompilation improvement.

PLATFORM ARCHITECTURE
This platform generates one dataset table to classify fragments of binary
code (individuals or rows in the dataset) by considering the occurrence of
a finite set of binary patterns (features or columns in the dataset). All the
individuals and patterns (features) are obtained from a collection of binary
programs, which are processed by the platform.

In our motivating example, the individuals in the dataset are functions;
and the features are the generalized assembly code patterns extracted by

An Efficient Platform for the Automatic Extraction of Patterns in ... 285

the platform. The classification variable (the target) is the return type (we
consider all the C built-in types; for compound types (structs, unions,
pointers, and arrays), we only consider the type constructor, e.g., int* and
char** are classified as pointers) of each function (individual). The generated
dataset may be used later to build a machine learning model that classifies
the return type depending on the patterns found in the binary code.

The platform has two working modes. The most versatile is the one
shown in Figure 1. The system receives the high-level source program that
will be used to generate the binary application. In this mode, the platform
allows instrumenting the high-level program and uses the debug information
produced by the compiler. When the high-level program is not available, we
provide another configuration to process binary files, described in Section
3.6.

Figure 1: Platform architecture, receiving high-level code.

Instrumentator
This module allows code instrumentation of the high-level input program.
The objective is to add information to the input program, so that it will be
easier to find the patterns in the corresponding binary code generated by the
compiler. It can also be used to delimitate those sections of the generated
binary code we want to extract patterns from (Section 3.2), ignoring the
rest of the program. Notice that once the machine learning model has
been trained with the dataset generated by the platform, the binary files
passed to the model will not include that instrumented code. Therefore, the
instrumentation module should not be used to extract patterns that cannot be
later recognized from stripped binaries.

Soft Computing and Machine Learning with Python286

This module traverses the Abstract Syntax Tree (AST) of the Source
Program and evaluates the Instrumentation Rules provided by the user.
Traversing the AST, if the precondition of one instrumentation rule is
fulfilled, its corresponding action is executed. The action will modify
the AST with the instrumented code, which will be the new input for the
compiler (next module in Figure 1).

In our motivating example, we have defined the instrumentation rule
shown in the pseudocode in Algorithm 2 (in Section 4.1 we describe how
they are implemented). For all the return statements in a program, the
rule adds a dummy label before the statement. This label has the function
identifier (𝑖𝑑𝑓𝑢𝑛𝑐) followed by a consecutive number (a function body may
have different return statements).This label will be searched later in the
binary code (using the debug information) to know the binary instructions
generated by the compiler for the return high-level statements. These binary
instructions will be used to identify the binary patterns (Section 3.2).

Algorithm 2: Instrumentation rule for return statements.

Algorithm 3 shows another example of one instrumentation rule.
Recall that the previous instrumentation rule was aimed at finding binary
instructions between a __RETURN_ label and a RET assembly instruction.
However, C functions returning void usually do not have an ending return
statement. Therefore, the instrumentation rule in Algorithm 3 adds both the
expected label and the return statement.

An Efficient Platform for the Automatic Extraction of Patterns in ... 287

Algorithm 3: Instrumentation rule for procedures.

Adding labels is an easy way to instrument code. However, more
sophisticated approaches can be used. For example, expressions may be
translated into dummy function invocations that are actually used as marks
to be identified in the pattern extraction phase (Section 3.2). Another typical
approach is adding innocuous sequences of assembly instructions (e.g.,
NOPs) to be found in the pattern extraction phase. The user must be careful
when selecting the instrumentation approach, checking that the instrumented
code does not produce unexpected changes to the generated binaries, or to
the patterns he/she wants to extract.

With the Instrumentation Rules, the source code is translated into
instrumented code. The instrumented code is then compiled, producing the
Instrumented Binary Code.

Binary Pattern Extractor
This module performs 3 tasks. First, it identifies the binary code fragments
representing the individuals (rows) in the generated dataset. Second, it
extracts the binary patterns (columns) detected for each individual. These
patterns are used as features to later classify the individuals. The third task
is to store the individuals and patterns in an Occurrence Table, which will be
later used to generate the final dataset. We now detail these 3 tasks.

The Individual Detector initially recognizes each individual in the binary
code. It must implement a function to collect all the individuals. Algorithm
4 shows the Individual Detector of our example, recognizing functions as
individuals. In the figure, is_function returns whether the parameter is the
first instruction in a function, using the debug information generated by the
compiler. Once one function is detected, its label is added to the individuals
list, the returned value.

Soft Computing and Machine Learning with Python288

Algorithm 4: Individual detector to recognize functions.

After identifying the individuals, we must extract the binary patterns
we are looking for. To this end, the user should provide a Pattern Detector,
which comprises a collection of predicate functions. These functions receive
one instruction of the instrumented binary program. In case that instruction
is not included in the expected pattern, null must be returned. If the pattern
is identified, a pair containing the individual and the range of instructions in
the pattern (another pair) is returned.

Algorithm 5 presents a Pattern Detector of our example. It recognizes
the return pattern added by theInstrumentator. If the instruction label is __
RETURN, the Pattern Detector recognizes the pattern. The corresponding
function is returned as the first element of the pair. The second one is the
range of instructions comprising the pattern: the first one (the one labeled
__RETURN) and the next instruction after the following RET.

Algorithm 5: Pattern detector rule to recognize RET patterns.

An Efficient Platform for the Automatic Extraction of Patterns in ... 289

Algorithm 6 shows another Pattern Detector used in our example. It
detects as a pattern the instructions after one CALL (we call it call post). In
this case, the individual associated with the pattern is not the function the
instruction belongs to, but the function being called. Similarly, we have also
specified a pattern with the instructions before CALL, called call pre, not
shown in the algorithm. The idea of these two patterns is that the usage of the
value returned by a function (call post) and the code to push its parameters
(call pre) may be valuable to infer the types of the function signature (return
and parameter types).

Algorithm 6: Pattern detector rule to recognize call post patterns.

At this point, the module has three types of extracted patterns: ret
patterns, including the assembly code of return statements, and call pre and
call post patterns, representing the code before and after invoking a function.
Each of these patterns may include a significant number of contiguous
binary instructions. However, we could be interested in a small portion
of contiguous instructions inside the bigger patterns. For this reason, the
Binary Extractor Pattern has been designed to divide the patterns found into
a collection of subpatterns (different partitions of the original pattern).

The algorithm to obtain the subpatterns is parameterized by the Max
Size and Max Offset parameters shown in Figure 1. This algorithm starts
with one-instruction length subpatterns (𝑠𝑖𝑧𝑒 = 1), increasing this value up
to Max Size contiguous instructions. Additionally, other subpatterns are
extracted leaving offset instructions between the instruction detected by the
Pattern Detector and the subpatterns. The algorithm described above (the
one that increases size) was for offset = 0. The same algorithm is applied
for offset = 1 and offset = −1 (i.e., the first instruction before and after the

Soft Computing and Machine Learning with Python290

detected instruction, which is not included in the subpattern). The absolute
value of offset is increased up to Max Offset.

Figure 2 shows 4 example subpatterns. From a call pre pattern the 𝑠𝑖𝑧𝑒
= 5 and offset = 0 and 𝑠𝑖𝑧𝑒 = 2 and offset = −2 are shown. From another call
post pattern, Figure 2 displays the 𝑠𝑖𝑧𝑒 = 3 and offset = 2 and 𝑠𝑖𝑧𝑒 = 3 and
offset = 1 subpatterns.

Figure 2: Example of 4 subpatterns extracted from 2 patterns.

The last task to be undertaken by the Pattern Detector is to associate the
individuals with their patterns and make this association explicit by writing
the Occurrences Table. This process is done generating as many table
rows as individuals found by the Individual Detector (in Algorithm 4), and
associating them with the rows representing each of the subpatterns found
for that individual by the Pattern Detector functions (Algorithms 5and 6).

Pattern Generalizator
Sometimes, the subpatterns found are too specific. For example, the MOV
eax,5 and MOV ax,1 subpatterns are recognized as two different ones.
However, for detecting whether a function is returning a value or not, they
may be considered as the same pattern, meaning that a literal has been
assigned to the accumulator register (i.e., a MOV <generic ax>,<literal>
pattern). To this end, the objective of the Pattern Generalizator module is to
allow the user to reduce the number of subpatterns, by generalizing them.

This necessity of generalizing (or normalizing) assembly instructions
for binary pattern extraction was already detected in previous works. In [6],

An Efficient Platform for the Automatic Extraction of Patterns in ... 291

the * wildcard matches any one instruction, and the absence of an operand
means any value. In further works, they also identify the necessity of eliding
memory addresses and literal values [7]. The generalization proposed by
Bao et al. uses regular expressions to generalize literal values and even
instruction mnemonics [5]. Another coarser normalization just ignores all
the operands of assembly instructions [15].

To identify the generalization requirements of a generic platform, we
analyzed the decompiler case scenario described in Section 2. Some examples
of those generalizations are shown in Table 1. First, the user should be able to
generalize instruction operands, including literals, registers, variables, and
memory addresses. Second, the platform should allow the generalization of
instructions with the same purpose. Finally, the user may need to generalize
variable-instruction-length subpatterns, such as function caller and callee
epilogues.

Table 1: Example generalization of subpatterns

  Example pattern Generalization

Operand mov 5,eax mov  <literal>,<generic ax>
mov [ecx],al mov [ecx],<register>
movsd xmm0,var_0 movsd xmm0,<var>
mov edx,[ebp+var_1] mov edx,[<var>]
call func1493 call <address>

Mnemonic movzx eax,al <mov>  <generic ax>,<any>
movss
[esp+54h+var_2],xmm0

<mov>[esp+54h+var_2],xmm0

movsd xmm0,var_3 <mov>  xmm0,<var>
mov edx,[ebp+var_4] <mov>  edx,[<var>]
movsx ecx,[ebp+var_5] <mov>  ecx,[<var>]

Instruction group pop esi; mov esp,ebp; pop
ebp; retn

<callee epilogue>

mov esp,ebp; pop ebp; retn <callee epilogue>
pop ebp; retn <callee epilogue>
call func123; add esp,8 <caller epilogue>
call func123 <caller epilogue>

Soft Computing and Machine Learning with Python292

Table 2: Example dataset generated to predict the returned type of functions

The analysis of the decompiler use case indicates that a highly expressive
generalization mechanism should be provided by a generic binary pattern
extraction platform. For instance, it should allow the generalization of
variable-length groups of instructions, not supported by the existing
approaches. Therefore, we propose a programmatic system that takes
advantage of the expressiveness of a full-fledged programming language to
describe those generalizations.

In our platform, generalizations are expressed as Pattern Generalization
Rules. As shown in Algorithm 7, those rules are implemented as functions
receiving one instruction and returning their generalized pattern (the current
instruction if no generalization is required) and the following instruction
to be analyzed. This second value allows the implementation of variable-
instruction-length generalizations. The rule in Algorithm 7generalizes the
move instructions that save into the accumulator register any value.

Algorithm 7: Pattern generalization rule of move instructions.

The generalized patterns and their associations with the individuals
are added to the existing Occurrence Tableproduced by the Binary Pattern
Extractor.

An Efficient Platform for the Automatic Extraction of Patterns in ... 293

Classifier
This module is aimed at computing the value of the classifier variable (i.e.,
the target or the dependent variable) for each individual. The input is a
representation of the high-level program; the output is a mapping between
each individual and the value of the classifier variable. These associations
are described by the user with theClassification Rules.

Algorithm 8 shows one Classification Rule for our example. We iterate
along the statements in the program. For each function, we associate its
identifier with the returned type, which is the classifier variable for our
problem (we predict the return type of functions).

Algorithm 8: Classification rule associating each function with its return type.

Dataset Generator
Finally, the Dataset Generator generates the dataset from the Occurrence
Table (Section 3.3) and the individual classification (Section 3.4): one row
per individual, one column per subpattern (generalized or not), and another
row for the classifier variable. Cells in the dataset are Boolean values
indicating the occurrence of the subpattern in the individual. Classifier or
target cells may have different values. Table 2 shows an example dataset.

Processing Binary Files
As mentioned, the platform has two working modes. Many times, we do not
have the high-level source program used to generate the native code, and we
are interested in finding patterns in binary files. Different examples of this
scenario include authorship, compiler, and malware detection.

Soft Computing and Machine Learning with Python294

In order to show this second working mode of our platform, we use
the research work done by Rosenblum et al. [6] as an example. They
extract patterns from stripped binary files to detect function entry points
(FEP), which existing dissemblers do not detect perfectly yet [5]. They
analyze consecutive bytes in binary files, representing them as 3 grams of
assembly instructions. Once the 3 grams are extracted, they formulate the
FEP identification problem as structured classification using Conditional
Random Fields (CRF) [16]. An initial flat model is later enriched with the
evidence that a call instruction indicates the existence of a FEP in the callee
address. The model obtained detects FEPs more accurately than GCC, ICC,
and MSVS compilers [6].

Figure 3 shows the changes to the platform architecture when we want
to process binary files, and the high-level program is not available. White
elements are the same as in the previous architecture. Blue elements are
modifications of the previous working mode. All the modules related to
processing high-level programs are not present.

Figure 3: Platform architecture to process binary code.

Although the behavior of the Binary Pattern Extractor is the same,
the rules for detecting individuals and patterns are different. The main
difference is that no instrumented code is added, since the source code is
not available. Depending on the case, debug information is not available
either (i.e., stripped binaries are used). Regarding the Classifier module, the
Classification Rules must consider a plain binary file instead of a high-level
program representation.

An Efficient Platform for the Automatic Extraction of Patterns in ... 295

In the example of FEP detection in binary files, this is how the platform
has been used to generate a dataset valid to create the CRF model. In the
output dataset, individuals (rows) are instruction offsets in the binary file;
one feature (column) will be created for each 1, 2, and 3 grams in the binary
code, indicating the occurrence of that pattern in each individual; another
call <offset> feature is added, associating that function invocation with
the <offset> individual. Finally, the classifier variable (target) is 1 if the
individual is a FEP and 0 otherwise (debug information is available).

In order to create the dataset described above, the Individual Detector
creates as many individuals as instruction offsets in the binary file. The
Pattern Detector extracts 1, 2, and 3 grams for each offset and a call feature for
each different function. In this second case, the feature is not associated with
the offset where the pattern is detected, but to the offset (memory address)
being called (as done in Algorithm 6). Pattern Generalization is done as the
normalization process described in [6]. Finally, the Classification Rules use
the debug information to set 1 to one individual identified as a FEP and 0
otherwise.

This platform configuration (and the previous one) to extract datasets
valid to create the CRF model proposed by Rosenblum et al. is available for
download at [17].

Representing Nonsequential Patterns
In the analysis of binary applications, it is common to require the detection
of nonsequential patterns, such as subgraphs of control flow and data
dependency graphs. The detection of these subgraphs can be used for many
different purposes, such as the FEP detection problem described in the
previous subsection.

Although the Binary Pattern Detector module of our platform (Figures
1 and 3) is aimed at extracting patterns made up of contiguous binary
instructions, the rest of the modules can be used to represent nonsequential
structures such as graphs. This functionality is provided by the versatile
way our platform considers the sequential patterns (features), permitting the
definition of different criteria to associate these features to the corresponding
individuals.

One example of this functionality is present in the decompiler scenario.
Algorithm 5 shows how RET features are associated with the function

Soft Computing and Machine Learning with Python296

(individual) where the pattern was detected. In Algorithm 5, this association
is represented by the first element in the tuple returned, which is the function
id the RET instruction belongs to. Thus, the output dataset will have 1 in the
cell corresponding to that function (row or individual) and pattern (column
or feature). However, CALL patterns are associated with individuals in a
different way. Algorithm 6shows how this type of feature is not associated
with the function where the pattern is detected, but to the function being
invoked. Therefore, a machine learning algorithm trained with the generated
dataset may associate nonsequential patterns (e.g., there must exist a RET
pattern inside the function and, in any part of the program, a CALL pattern
invoking the same function) to identify the type returned by a function.

Another example of this functionality is the FEP identification problem
described in Section 3.6. The dataset generated by out platform can be used to
create the proposed CRF model, which uses graphs for structural prediction
and classification [16]. Those graphs are obtained from the dataset by using
the versatile association of features to individuals already discussed. Its
implementation and a sample dataset can be consulted in [17].

EVALUATION

Platform Implementation
We have implemented the proposed platform and it is freely available at
http://www.reflection.uniovi.es/decompilation/download/2016/sp/. The
Instrumentator and Classifier modules have been implemented in C++,
since they use clang [18] to process the high-level representation of C
programs. The rest of the platform has been implemented in Python. For the
disassembly services we have used IDAPython [19].

The implementation is highly parallelized, providing important
performance benefits when multicore architectures are used. The
parallelization follows a pipeline scheme, where both data and task
parallelism are used. Figure 4 shows the concrete approach followed. These
have been the issues tackled to parallelize the platform implementation.

An Efficient Platform for the Automatic Extraction of Patterns in ... 297

Figure 4: Parallelization of the platform implementation.

(1) Data Parallelization. We identify each module in a program
(obj files in the compiler used) as a different portion of data to
work in parallel. This obj files can be combined in lib or exe
files to produce bigger modules. In the example in Figure 4, three
different modules are processed in parallel.

(2) Task Identification. The tasks to be parallelized are those identified
as modules in the platform architecture (Section 3). As shown in
Figure 4, an additional initialization task was defined to initialize
the database and create a temporary folder where the input files
are copied.

(3) Task Dependency. After identifying the tasks, we defined the
dependencies among them with a Directed Acyclic Graph (DAG).
These dependencies define when two tasks can run in parallel,
and when a task has to wait for others to end. As shown in Figure
4, the instrumentation, compilation, binary pattern extraction,
generalization, and classification tasks can run in parallel. For
the same piece of data, one has to wait for the previous one
to complete. The initialization (at the beginning) and dataset
generation (at the end) tasks cannot be parallelized. The last one
waits for all the classification tasks to process all the data.

(4) Task Implementation. Tasks should be mapped to threads
or processes. The current implementation uses the Python
programming language to combine all the different modules of the
architecture (implemented in Python itself or C++). Since most
implementations of Python use the Global Interpreter Lock (GIL)
to synchronize the execution of threads [20], we implemented

Soft Computing and Machine Learning with Python298

tasks as processes to obtain a better runtime performance
improvement with multicore architectures [21].

(5) Concurrent Workers. To parameterize the level of parallelization
of the platform, we configured its implementation to run with a
different number of worker processes (Section 4.2). A scheduler
analyzes the task DAG and tells each worker which is the following
task to be executed. In Figure 4, two workers are running in
parallel. Tasks 1, 2.1, and 2.2 have already been executed; Tasks
3.1 and 3.2 are run by Workers 1 and 2, respectively; and Task 2.3
is the following one to be executed, once one worker is free.

(6) Communication between Tasks. Since we implemented tasks
as processes, communication between them is costly. However,
the dependency between tasks shown in Figure 4 indicates that
the output of one task is taken as the input of the following one.
Therefore, this data communication was implemented through a
database, appropriately configured to obtain the expected runtime
performance.

(7) Task Synchronization. Workers should indicate when they
terminate executing one task, and the scheduler should tell them
which task should be executed next. To synchronize this process,
we used a Queue object in the multiprocessing module.

(8) Tool Parameterization. We configured the IDA disassembler
to allow the concurrent processing of the same input file. The
compilation task is represented with a Python class that can be
parameterized to use different compilers, package managers,
compiler options, and automating software. The external tools
used write information in the standard output (e.g., the C compiler).
We captured those messages and sent them to a concurrent logger,
adding additional information of the processes.

Methodology
The runtime performance of our platform depends on the following
variables:(i)Number or independent modules of compilation (or programs).
We may process different programs in parallel, or different modules of the
same program, to create a dataset.(ii)Number of workers: as mentioned, the
platform may run different tasks at the same time. A task is run by a worker.
Depending on the number of real processors, the number of workers may
produce an important benefit on runtime performance.(iii)The number of

An Efficient Platform for the Automatic Extraction of Patterns in ... 299

cores: we have run our platform with different multicore computers.(iv)The
size of each program (or module), according to the number of individuals it
may contain.(v)Subpattern extraction: as described in Section 3.2, different
subpatterns are automatically extracted from the patterns found. The Max
Size and Max Offset parameters have influence on the execution time.(vi)
The number of patterns: the proposed platform recognizes patterns by means
of the Pattern Detectorfunctions specified by the user. We analyze runtime
performance depending on the number of patterns defined.

We evaluate the influence of these variables on the runtime performance
of the platform, and how they are related to the parallelization level. In order
to evaluate that, we fix all the variables except one and measure the runtime
performance for different values of the free variable [22]. This process is
repeated for all the variables.

We evaluate the platform with the real example of predicting the return
type in binary programs, using their C source code (the first working scheme
of our system, shown in Figure 1). We extract return, call pre, and call post
patterns, divide them into different subpatterns, and perform a generalization
of the subpatterns found.

The programs used for the experiments were synthetically generated
by a C program generator. It was very helpful to generate a rich battery
of programs. Besides, we were able to generate different configurations of
the same program, changing the number of individuals (functions in our
example) per module. In this way, we do not introduce the bias of measuring
different programs.

In order to be able to change the number of cores, all the tests were
carried out on a Hyper-V virtual machine with 4 processors and 8 GB of
RAM, running an updated 64-bit version of Windows 8.1. The host computer
was a 3.60 GHz Intel Core i7-4790 system with 16 GB of RAM, running an
updated 64-bit version of Windows 10. The tests were executed after system
reboot, removing the extraneous load, and waiting for the operating system
to be loaded [23].

Increasing Number of Modules
In this first experiment, we increase the modules in a program from 1 to 8,
fixing the number of cores and workers to 4. For this experiment and the
following ones, the value of Max Size is 4 and Max Offset is 0. We also
extract return, call pre, and call post patterns.

Soft Computing and Machine Learning with Python300

The program to be analyzed has 10,000 functions (individuals), so we
have 1 module with 10,000 functions, 2 modules with 5,000 functions, and
so on, up to 8 modules with 1,250 functions. Therefore, all the configurations
have the same dataset with 10,000 functions, and the processed program is
the same.

Figure 5 shows the benefits of parallelization. The execution time of
processing the same program drops when the number of modules is increased
until 4 modules (the number of cores and workers). In that point, the platform
processes the program 3.33 times faster than the same program with one
module (i.e., the sequential implementation). According to Amdahl’s law,
the maximum theoretical performance benefit for that configuration is 4
factors [24].

Figure 5: Execution time for an increasing number of modules.

For more than 4 modules, there is no significant benefit, since there
are only 4 cores in this configuration. Besides, there is no penalty for 8
programs, showing that a number of programs higher that the number of
cores do not cause a significant penalty. The slight worsening for 5, 6, and 7
programs is caused by the selection of 4 workers and cores. After processing
4 programs in parallel, the processing of the fifth one makes the rest of the
workers wait for completion, causing a slight performance drop.

Increasing Number of Workers
In this case, the number of workers goes from 1 to 8, fixing the number of
cores and modules to 4. Each module has 2,500 functions (10,000 for the
whole program).

Figure 6 shows how execution time is reduced as the number of workers
increases. With 4 workers, the platform reaches the lowest value, 3.5 times
faster than the sequential execution. For 5 workers or more, there is no
benefit because those extra workers keep waiting for tasks to end.

An Efficient Platform for the Automatic Extraction of Patterns in ... 301

Figure 6: Execution time for an increasing number of workers.

Increasing Number of Cores
In this case we change the number of cores of the virtual machine
configuration. Fixing the configuration to 4 workers and modules, we
increase the number of cores from 1 to 4. We have not used more cores
because, in the computer used (see Section 4.2), the virtualization software
drops its performance with 5 cores or more. The number of individuals per
module is 2,500.

We can see in Figure 7 how our platform takes advantage of multicore
architectures. The computer with 4 cores runs 3.7 times faster than the one
with one single core. The benefit is close to the maximum theoretical one
[24].

Figure 7: Execution time for an increasing number of cores.

Soft Computing and Machine Learning with Python302

Increasing Number of Modules and Workers
This experiment increases two variables at the same time. It is intended
to represent a typical use case scenario. Assuming we have a multicore
computer (4 cores in our case), we set the number of workers equal to the
number of modules (or programs) to be processed. The idea is to try to
obtain the higher level of parallelization with a given computer. Therefore,
we increase the number of modules and workers from 1 to 16. The number
of functions is always 10,000, equally distributed over the different modules
of the program.

Figure 8 shows how execution time keeps reducing until 4 modules and
workers (3.5 factors of benefit). From 4 to 7, differences among the values
are lower than 1% (practically the same values). With 8 and beyond, the
figure displays a slight increase of execution time due to the cost of context
switching. Therefore, the results of the experiments seem to indicate that the
optimal value for workers and modules range from the number of cores to
twice this value.

Figure 8: Execution time for an increasing number of modules and workers.

Increasing Number of Functions
In order to see how the platform behaves for increasing sizes of programs, this
experiment increases the number of functions in the program from 1,000 to
15,000. We selected this maximum value because it was the biggest program
supported by the IDA disassembler. The number of cores and workers is 4.

Figure 9 shows the linear increase of runtime performance depending on
the number of functions (i.e., the size of the programs). Besides, it supports
the analysis of really big modules with 15,000 functions.

An Efficient Platform for the Automatic Extraction of Patterns in ... 303

Figure 9: Execution time for an increasing number of functions.

Figure 10 presents another view of the same data. That figure displays
the execution time performance per function, increasing the number of
functions in the program. For small programs, there is an initialization penalty
causing a higher execution time to process a low number of functions. When
the program size grows, this initialization cost becomes negligible. From
5,000 functions on, the execution time per function converges (the standard
deviation is lower than 3.4%), showing that the performance of the platform
is not decreased for big input programs.

Figure 10: Execution time per function, increasing the number of functions.

Increasing Max Offset and Max Size
We now modify the values of the Max Offset and Max Size parameters used
to obtain the binary subpatterns. We used 4 modules, each one implemented
with 750. Max Offset is incremented from 0 to 8, fixing Max Size in 4. We
apply the same method to analyze the influence of Max Size in runtime
performance, increasing its value from 1 to 8 and fixing Max Offset to 4.

Figure 11 shows both variables. We can see how Max Offset has a linear
influence on execution time. The regression line shown in Figure 11 has a

Soft Computing and Machine Learning with Python304

slope of 51, representing the cost in seconds of increasing one unit inMax
Offset. For Max Size, the best regression obtained is quadratic (Figure 11).
The user should be aware of that, meaning that choosing high values for
Max Size may involve much greater increases of the execution times.

Figure 11: Execution time for an increasing number of Max Offset and Max
Sizeparameters.

Increasing Types of Patterns
The last variable to be measured is the number of patterns to be recognized.
The patterns are specified withPattern Detection functions provided by the
user. In our decompiler example, we identified 3 patterns: return,call pre, and
call post. We measure runtime performance of the 7 different combinations
of these 3 patterns. Modules, workers, cores, Max Size, and Max Offset are
fixed to 4, and each module contains 750 functions (3,000 in total).

Figure 12 shows the results. The 3 first bars show the execution time
consumed to extract each pattern individually. The 3 next bars display
the execution time for two patterns in parallel, compared to the costs of
extracting them individually. We can see how the platform obtains an

An Efficient Platform for the Automatic Extraction of Patterns in ... 305

average benefit of 1.65 factors due to the parallelization. When the platform
extracts 3 patterns at the same time, this benefit increases to 2.1 factors.

Figure 12: Execution time when extracting different types of patterns.

Execution Time for a Real Case Scenario
We have also measured execution time for the particular scenario of inferring
the return type of a function. As mentioned, this is an existing problem of
existing decompilers. The purpose of this section is not to present how this
problem may be solved with machine learning, but to measure the execution
time required to extract the binary patterns and to build the model.
To predict the type returned by a function, we extract binary code patterns
before ret instructions and before and after function invocations. We found
out that the number of functions required to build an accurate model for this
problem is very high, so a huge program database would be needed. Instead,
we implemented a code generation tool that writes synthetic C functions
considering the language grammar and its type system. This way, we can
generate any number of random functions (and invocations to them) for all
the different types in the language (C built-in types plus type constructors
for compound types (structs, unions, pointers, and arrays)). These functions

Soft Computing and Machine Learning with Python306

are then passed to our platform to generate the output dataset. Then, the da-
taset is used to build a J48 classifier using Weka.

As mentioned, we can generate any number of C functions to be passed
to our platform. Therefore, we must work out the number of functions
necessary to build an accurate model. For this purpose, we used the following
method: we create 1000 functions for each C type; we extract the binary
patterns in that functions with our platform; and we use Weka with the
generated dataset to compute the accuracy rate using 10-fold stratified cross
validation. These steps are repeated in a loop, incrementing the number of
functions in 1000 for each type. We stop when the Coefficient of Variation
of the last 5 accuracy values is lower than 2%, representing that the increase
of functions (individuals) does not represent a significant improvement of
the accuracy. Finally, we build the J48 model with the dataset generated in
the last iteration.

Following the method described above, we created a dataset with
160,000 functions and 3,321 binary patterns (the dataset file was 998 MB).
The platform generated the dataset in 2 hours, 11 minutes, and 56 seconds (4
workers and CPUs). We also measured the sequential version, taking 7 hours
41 minutes and 46 seconds to generate the same dataset. For comparison
purposes, we also evaluated the execution time to build a J48 model with
the 160,000-function dataset, taking 11 hours, 55 minutes, and 15 seconds to
build the model. Notice that Weka builds the model sequentially, not taking
advantage of all the cores in the system.

RELATED WORK
There exist different works aimed at extracting assembly patterns from
existing applications. To the knowledge of the authors, none of them have
built a platform to extract those patterns automatically. They define custom
processes and, some of them, even manual procedures.

Rosenblum et al. extract every combination of 1, 2, and 3 consecutive
assembly instructions from a big set of executable files [6]. Then, they use
forward feature selection to filter the most significant patterns and later
train a Conditional Random Fields to detect the function entry points. The
same authors use this methodology to detect the compiler used to generate
the executables [7]. This research work was later extended to consider the
compiler options and programming language used in the source application
[8], to identify the programmer that coded the application [25], and to
identify the functions belonging to the operating system [26].

An Efficient Platform for the Automatic Extraction of Patterns in ... 307

BYTEWEIGHT provides another approach to find function entry points
[5]. They apply machine learning to recognize the patterns, so that different
compilers and optimization options may be used. Analyzing the training
binaries, an extraction process generates prefix trees from sequences of bytes
or normalized instructions. The prefix tree represents possible function start
sequences. Then, they assign a weight representing the likelihood that the
path from the root to the node is a function start in the training set. Finally,
the weighted prefix tree is used to classify the input binary file.

Apart from assembly patterns extraction, there are situations where other
parts of the binary files need to be processed. One example is the detection
of packed executable files [27]. To this end, it is necessary to recognize
not only assembly patterns, but also other types of information existing in
the binaries, such as header patterns, entropy values, and characteristics of
the file sections. Ugarte-Pedrero et al. propose a custom collective-learning-
based process to solve this problem, detecting packed executables upon
structural features, and heuristics [28].

Regarding decompilation, Cifuentes et al. identified the existing
limitations on recognizing high-level control structures [29]. They later
define a technique to recover jump tables and their target addresses and
incorporated it in the DCC decompiler [30]. The Phoenix decompiler uses
a structuring algorithm to detect control flow structures, being able to
decompile more structures than Hex-Rays [13]. Regarding decompilation
of high-level types, Mycroft proposes a constraint-based algorithm to
infer types from binary code [31]. Another type recovery approach is the
VSA algorithm based on value propagation [32]. Laika is a system that
uses Bayesian unsupervised learning to detect high-level data structures,
analyzing the process memory images [33].

CONCLUSIONS
We propose a platform for the automatic extraction of patterns in binary
files, capable of analyzing big executable files. The platform is highly
parameterized to be used in different scenarios. The extracted patterns can
be used to predict features in native code, when the high-level source code
and the debug information are not available.

The platform implementation has been parallelized to increase its runtime
performance on multicore architectures. Both data and task parallelization
schemes have been followed. We have evaluated its performance, obtaining
a performance benefit of 3.5 factors over the maximum theoretical value

Soft Computing and Machine Learning with Python308

of 4 factors. The evaluation presented also documents how the different
parameters of the platform should be used to obtain the best performance.

We are currently using the proposed platform to extract patterns that are
later used to improve the information inferred by existing decompilers. We
generate patterns of high-level type information to train a classifier using
different machine learning algorithms. We are currently focused on the
return types of functions, but we hope to apply it to parameters and local
and global variables.

We plan to use clustering algorithms to the dataset generated for a big
battery of programs taken from open source code repositories. The objective
is to obtain classifications of (sections of) applications depending on the
patterns found inside them. The classes obtained may be helpful to identify
the code that performs common input/output, network, and computing
intensive or multithreaded operations.

The platform implementation, its source code, the 3 different
configurations used in this article (return type, function or procedure
identification, and FEPs extraction in binary files), and all the examples used
in the evaluation are available for download at http://www.reflection.uniovi.
es/decompilation/download/2016/sp/.

ACKNOWLEDGMENTS
This work has been funded by the European Union, through the European
Regional Development Funds (ERDF), and the Principality of Asturias,
through its Science, Technology and Innovation Plan (Grant GRUPIN14-100).
The authors have also received funds from the Banco Santander through its
support to the Campus of International Excellence.

An Efficient Platform for the Automatic Extraction of Patterns in ... 309

REFERENCES
1. Defense Advanced Research Projects Agency, MUSE envisions

mining “big code” to improve software reliability and construction,
2014, http://www.darpa.mil/news-events/2014-03-06a.

2. F. Ortin, J. Escalada, and O. Rodriguez-Prieto, “Big code: new
opportunities for improving software construction,” Journal of
Software, vol. 11, no. 11, pp. 1083–1008, 2016.

3. F. Yamaguchi, M. Lottmann, and K. Rieck, “Generalized vulnerability
extrapolation using abstract syntax trees,” in Proceedings of the 28th
Annual Computer Security Applications Conference (ACSAC ‘12),
pp. 359–368, ACM, Los Angeles, Calif, USA, December 2012.

4. E. Alpaydin, Introduction to Machine Learning, The MIT Press, 2nd
edition, 2010.

5. T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley, “Byteweight:
learning to recognize functions in binary code,” in Proceedings of the
23rd USENIX Conference on Security Symposium (SEC ‘14), pp.
845–860, USENIX Association, San Diego, Calif, USA, August 2014.

6. N. Rosenblum, X. Zhu, B. Miller, and K. Hunt, “Learning to analyze
binary computer code,” in Proceedings of the 23rd National Conference
on Artificial Intelligence—Volume 2 (AAAI ‘08), pp. 798–804, AAAI
Press, 2008.

7. N. E. Rosenblum, B. P. Miller, and X. Zhu, “Extracting compiler
provenance from program binaries,” in Proceedings of the 9th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering (PASTE ‘10), pp. 21–28, ACM, Toronto,
Canada, June 2010.

8. N. Rosenblum, B. P. Miller, and X. Zhu, “Recovering the toolchain
provenance of binary code,” in Proceedings of the 20th International
Symposium on Software Testing and Analysis (ISSTA ‘11), pp. 100–
110, ACM, Ontario, Canada, July 2011.

9. I. Santos, Y. K. Penya, J. Devesa, and P. G. Bringas, “N-grams-based
file signatures for malware detection,” in Proceedings of the 11th
International Conference on Enterprise Information Systems (ICEIS
‘09), pp. 317–320, AIDSS, 2009.

10. C. Liangboonprakong and O. Sornil, “Classification of malware
families based on N-grams sequential pattern features,” in Proceedings
of the 8th IEEE Conference on Industrial Electronics and Applications

Soft Computing and Machine Learning with Python310

(ICIEA ‘13), pp. 777–782, June 2013.
11. V. Raychev, M. Vechev, and A. Krause, “Predicting program

properties from ‘big code’,” in Proceedings of the 42nd Annual
ACM SIGPLANSIGACT Symposium on Principles of Programming
Languages (POPL ‘15), pp. 111–124, 2015.

12. K. Troshina, A. Chernov, and Y. Derevenets, “C decompilation: is it
possible?” in Proceedings of the International Workshop on Program
Understanding (PSI ‘09), pp. 18–27, Altai Mountains, Russia, 2009.

13. E. J. Schwartz, J. Lee, M. Woo, and D. Brumley, “Native x86
decompilation using semantics-preserving structural analysis and
iterative control-flow structuring,” in Proceedings of the 22nd USENIX
Security Symposium, USENIX, pp. 353–368, Washington, DC, USA,
2013.

14. A. Fokin, E. Derevenetc, A. Chernov, and K. Troshina, “SmartDec:
approaching C++ decompilation,” in Proceedings of the 18th Working
Conference on Reverse Engineering (WCRE ‘11), pp. 347–356, IEEE,
October 2011.

15. Y. Fan, Y. Ye, and L. Chen, “Malicious sequential pattern mining for
automatic malware detection,” Expert Systems with Applications, vol.
52, pp. 16–25, 2016.

16. J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional random
fields: probabilistic models for segmenting and labeling sequence
data,” in Proceedings of the 18th International Conference on Machine
Learning (ICML ‘01), pp. 282–289, Morgan Kaufmann, 2001.

17. J. Escalada and F. Ortin, Source code for the article: An efficient
platform for the automatic extraction of patterns in native code, 2016,
http://www.reflection.uniovi.es/decompilation/download/2016/sp.

18. LLVM, clang: a C language family frontend for LLVM, 2016, http://
clang.llvm.org.

19. E. Bachaalany, GitHub: IDAPython, 2016, https://github.com/
idapython.

20. D. Beazley, “Understanding the python GIL,” in Proceedings of the
PyCON Python Conference, Atlanta, Ga, USA, February 2010.

21. D. Phillips, Python 3 Object-Oriented Programming, Packt Publishing
Ltd, Livery Place, Birmingham, UK, 2nd edition, 2015.

22. J. M. Redondo, F. Ortin, and J. M. C. Lovelle, “Optimizing reflective
primitives of dynamic languages,” International Journal of Software

An Efficient Platform for the Automatic Extraction of Patterns in ... 311

Engineering and Knowledge Engineering, vol. 18, no. 6, pp. 759–783,
2008.

23. F. Ortin, L. Vinuesa, and J. M. Felix, “The DSAW aspect-oriented
software development platform,” International Journal of Software
Engineering and Knowledge Engineering, vol. 21, no. 7, pp. 891–929,
2011.

24. G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proceedings of the Spring Joint
Computer Conference, pp. 483–485, Atlantic City, NJ, USA, April
1967.

25. N. Rosenblum, X. Zhu, and B. P. Miller, “Who wrote this code?
Identifying the authors of program binaries,” in Computer Security—
ESORICS 2011: 16th European Symposium on Research in Computer
Security, Leuven, Belgium, September 12–14,2011. Proceedings, vol.
6879 of Lecture Notes in Computer Science, pp. 172–189, Springer,
Berlin, Germany, 2011.

26. E. R. Jacobson, N. Rosenblum, and B. P. Miller, “Labeling library
functions in stripped binaries,” in Proceedings of the 10th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools (PASTE ‘11), pp. 1–8, ACM, Szeged, Hungary, September 2011.

27. I. Santos, X. Ugarte-Pedrero, B. Sanz, C. Laorden, and P. G. Bringas,
“Collective classification for packed executable identification,” in
Proceedings of the 8th Annual Collaboration, Electronic Messaging,
Anti-Abuse and Spam Conference (CEAS ‘11), pp. 23–30, Perth,
Australia, September 2011.

28. X. Ugarte-Pedrero, I. Santos, and P. G. Bringas, “Structural feature
based anomaly detection for packed executable identification,” in
Computational Intelligence in Security for Information Systems:
4th International Conference, CISIS 2011, Held at IWANN 2011,
Torremolinos-Málaga, Spain, June 8–10, 2011. Proceedings, vol. 6694
of Lecture Notes in Computer Science, pp. 230–237, Springer, Berlin,
Germany, 2011.

29. C. Cifuentes, D. Simon, and A. Fraboulet, “Assembly to high-level
language translation,” in Proceedings of the IEEE International
Conference on Software Maintenance (ICSM ‘98), pp. 228–237, IEEE,
Bethesda, Md, USA, November 1998.

Soft Computing and Machine Learning with Python312

30. C. Cifuentes and M. Van Emmerik, “Recovery of jump table case
statements from binary code,” Science of Computer Programming,
vol. 40, no. 2-3, pp. 171–188, 2001.

31. A. Mycroft, “Type-based decompilation,” in Proceedings of the
European Symposium on Programming (ESOP ‘99), pp. 208–223,
1999.

32. G. Balakrishnan and T. Reps, “Divine: discovering variables
in executables,” in Verification, Model Checking, and Abstract
Interpretation: 8th International Conference, VMCAI 2007, Nice,
France, January 14–16, 2007. Proceedings, vol. 4349 of Lecture Notes
in Computer Science, pp. 1–28, Springer, Berlin, Germany, 2007.

33. A. Cozzie, F. Stratton, H. Xue, and S. T. King, “Digging for data
structures,” in Proceedings of the 8th Conference on Operating
Systems Design and Implementation (OSDI ‘08), pp. 255–266, San
Diego, Calif, USA, December 2008.

POLYGLOT PROGRAMMING IN
APPLICATIONS USED FOR
GENETIC DATA ANALYSIS

CHAPTER

14

Robert M. Nowak

Institute of Electronic Systems, Warsaw University of Technology, Nowowiejska 15/19, 00-
665 Warsaw, Poland

ABSTRACT
Applications used for the analysis of genetic data process large volumes
of data with complex algorithms. High performance, flexibility, and a user
interface with a web browser are required by these solutions, which can
be achieved by using multiple programming languages. In this study, I
developed a freely available framework for building software to analyze
genetic data, which uses C++, Python, JavaScript, and several libraries. This
system was used to build a number of genetic data processing applications
and it reduced the time and costs of development.

Citation: Robert M. Nowak, “Polyglot Programming in Applications Used for Genetic
Data Analysis,” BioMed Research International, vol. 2014, Article ID 253013, 7 pages,
2014. doi:10.1155/2014/253013.
Copyright: © 2014 Robert M. Nowak. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided the original work is properly cited.

Soft Computing and Machine Learning with Python314

BACKGROUND
The number of computer programs for the analysis of genetic data is
increasing significantly, but it still needs to be improved greatly because
of the importance of result analysis with appropriate methods and the
exponential growth in the volume of genetic data.

Genetic data are typically represented by a set of strings [1], where
each string is a sequence of symbols from a given alphabet. The string
representation, called primary structure, reflects the fact that the molecules
storing genetic information (DNA and RNA) are biopolymers of nucleotides,
while proteins are polypeptide chains. The secondary, tertiary, and
quaternary structures need to be considered to understand the interactions
among nucleotides or amino acids, but they are used less frequently
in computer programs. The secondary structure includes the hydrogen
bonds between nucleotides in DNA and RNA and the hydrogen bonds
between peptide groups in proteins, where the molecules are represented
by graphs. The tertiary structure refers to the positions of atoms in three-
dimensional space, and the quaternary structure represents the higher level
of organization of molecules. The representations of molecules are extended
based on connections between sequences or subsequences, which denotes
similarity from various perspectives. Moreover, these data are supplemented
with human-readable descriptions, which facilitate an understanding of the
biological meanings of the sequence, that is, its function and/or its structure.

The large number of possible candidate solutions during the analysis of
genetic data means that the employed algorithms must be selected carefully
[2]. Exhaustive search algorithms must be supported by heuristics based
on biological properties of the modeled objects. Of particular importance
in this field are dynamic programming algorithms, which allow us to find
the optimal alignment of biological sequences (i.e., arranging the sequences
by inserting gaps to identify regions of similarity [1]) in polynomial time,
although the search space grows exponentially. Dynamic programming is
used to search for similarity (local or global), to generate a multisequence
representation (profile), and to examine sequences with hidden Markov
models. In addition, backtracking algorithms are used to search for
motifs (i.e., identifying meaningful patterns in genetic sequences), greedy
algorithms to detect genome rearrangements and to sort by reversals, divide-
and-conquer algorithms to perform space-efficient sequence alignments,
and graph algorithms for DNA assembly.

Polyglot Programming in Applications Used for Genetic Data Analysis 315

A characteristic feature of the computer programs applied to genetic data
is the necessity to analyze large amounts of data using complex algorithms,
which means that high performance is crucial. Different user and system
requirements mean that the flexibility of software is also important. Finally,
users prefer a graphical interface that is accessible from a web browser and
applications that update automatically.

Scientists are becoming increasingly involved in software development
[3]. They should use software engineering practices and tools to avoid
common mistakes and to speed up the development tasks [4]. The architecture
of working application with explanation of development decisions could help
in developing new computer programs. Biological and medical terminology
is simplified to invite developers to discuss the presented solutions.

In this study, I describe the bioweb framework, including application
architecture, the programming languages, libraries, and tools, used to develop
applications for processing genetic data. I propose a multilanguage platform
using C++, Python, and JavaScript. The use of appropriate and tested
architectures, libraries, and tools decreases the risk of failure in software
system development as well as reduces the costs and time requirements. The
use of appropriate systems also facilitates rapid prototyping, which allows
us to verify concepts by obtaining the requisite information from end users:
biologists and doctors.

RESULTS

Deployment Model
A three-layer software architecture was selected where the presentation
layer, data processing layer, and data storage layer were kept separate. The
use of a multilayered model makes computer programs flexible and reusable,
because applications have different responsibilities. Thus, it is beneficial to
segregate models into layers that communicate via well-defined interfaces.
Layers help to separate different subsystems, and the code is easier to
maintain, clean, and well structured.

Four possible deployment models were considered for the three-layer
architecture: the desktop, the database server, the thin client, and the web
application, as shown in Figure 1. The desktop architecture (Figure 1(a))
was rejected because the framework was designed to support multiuser
applications. Collaboration features were hard to implement in this
architecture because of the lack of central data server that could be accessed

Soft Computing and Machine Learning with Python316

by multiple users. The offline mode is rarely used because the Internet is
available almost everywhere and the transmission costs are negligible
compared with the costs of maintaining the system. Furthermore, sequence
databases are publicly available via the Internet, so an Internet connection is
essential for the analysis of genetic data.

Figure 1: Three-layer application deployment models: desktop application
(a), database server (b), thin client (c), and web application (d). This solution
supports the creation of applications using a web application architecture.

An application architecture with a shared database and data processing
modules deployed on client machine (Figure 1(b)) was rejected because of
the requirement for high client computer performance. Another problem is
the need to update the software on the client side when changes and additions

Polyglot Programming in Applications Used for Genetic Data Analysis 317

are made, which is time consuming and requires support for a wide range of
platforms so the development costs are high.

Deploying the calculation modules on a server machine allows the
execution of these modules by clients on different platforms, which
reduces the development costs. The computational power of the server is
important because it determines the computational time, which means that
poorly equipped client machines can be used. The optimum solutions are
a thin client architecture, as shown in Figure 1(c), and a web application
architecture, as shown in Figure 1(d).

Deploying the calculation modules on a server machine, as shown in
Figures 1(c) and 1(d), allows the use of many platforms on the client side,
which reduces the development costs. Importantly, the computational power
of the server is used, so the computational time can be relatively short, even
for poorly equipped client machines. These solutions simplify scalability
if the size of the problem or the number of clients grows, because only the
servers need to be upgraded.

Web applications have advantages compared with application produced
with a thin client architecture because the client contains a portion of the data
processing layer, which can handle activities such as output reformatting,
graph generation, and user input validation. Client-based processing reduces
the amount and frequency of client-server traffic, and it reduces the load on
the server while the reactions to user actions are faster. This solution uses
web browser plugins (such as Flash) or HTML5/JavaScript programs on the
client side. The client modules are downloaded during initialization, which
helps to avoid the issue of updating the software.

Architecture and Programming Languages
The software used by presented framework and the framework itself were
created with C++, Python, and JavaScript with HTML5. The use of multiple
languages in a single project is quite common and it is an alternative to
using PHP, NET, or Java. The set of used languages facilitates high
performance, versatility, customizable modules, and the production of a web
browser interface. The modules produced for a typical application based
on bioweb using these programming languages are shown in Figure 2.

Soft Computing and Machine Learning with Python318

Figure 2: Modules produced for a typical application based on the proposed
framework using various programming languages.

The algorithms are implemented in C++. The source code is translated
(compiled) into machine language, which makes algorithm execution more
efficient because the code is executed directly by the processor. The language
has higher-level abstractions missing in other languages translated into
binary code (C and Fortran). C++ supports object-oriented programming
by providing virtual functions and multibase inheritance and exceptions
and facilitates functional and genetic programming, including templates
and lambda functions. The standard C++ library is compact but it is well
tested and efficient. It includes support for inputs and outputs, strings and
string operations such as regular expressions, and sets of collections, such
as vectors, lists, sets, and associative arrays using trees and/or hash tables.
It should be mentioned that concurrency support mechanisms are included
in the C++11 standard (ISO/IEC 14882:2011), so the full capabilities of
modern computers with multiple processors and/or multiple cores can be
exploited. If an older C++ compiler that does not support C++11 is used, it
may be necessary to employ the Boost [5] libraries: Boost.Thread to create
portable multithread applications, Boost.Regex for regular expressions, and
Boost.Chrono for time utilities. In addition, vector calculations provided
by modern graphics processing unit (GPU) are available in C++ and the
OpenCL [6] standard is applied.

Polyglot Programming in Applications Used for Genetic Data Analysis 319

The server application uses the Python language in presented solution,
mainly because this type of development is faster compared with C++.
Modules that do not constitute a bottleneck during calculations should be
implemented in Python. Python is a scripting language, so it is small and has
a simple, regular syntax. This language is dynamically type-checked, uses a
uniform data model, and provides reference counting memory management,
so there is no problem with memory leaks. The Python repository of
software (PIP) https://pypi.python.org/pypi contains over 30,000 packages
and a number of ready-made solutions can be used, particularly the packages
for exchanging data and packages that support the creation of the web
applications I used. It should be noted that the Biopython library [7] provides
a set of tools for biological computation which are written in Python.

In bioweb the Boost.Python [5] library enables interoperability between
the C++ modules and the Python modules. Other solutions, such as using
C API from Python directly, code generation using Simplified Wrapper and
Interface Generator (SWIG), Py++, Pyrex, and cython, were considered to
be less useful because the interface was less convenient and there was a lack
of support for the techniques used in genetic data software development.
The Boost.Python uses C Python API and metaprogramming techniques,
which allows the exposure of C++ classes, functions, and objects to Python
and vice-versa, thereby supporting the use of Python facilities inside C++
code. Boost.Python allows the exposure of elements and the register of
conversions using a simple syntax and being easy to learn.

The use of a compiler and an interpreter makes the developed software
more flexible. The application customization requires the use of an
interpreter in any case, because changing the settings should not demand the
software rebuilding. The use of Python to store the user settings simplifies
the customization of applications greatly, because the settings do not need
to be lists of names and values, and the Python control instructions can be
used.

A client application request is sent to the standard port using the
HTTP protocol and it is retransmitted by the web server using interprocess
communication mechanisms (e.g., sockets and named pipes) to the server
application. Three web servers were investigated: Apache http://httpd.
apache.org, Lighttpd http://www.lighttpd.net, and Nginx http://nginx.org.
The Lighttpd configuration is known to be simple and its performance is very
good, so the presented solution only includes settings for this web server,
but bioweb is also able to use Apache and Nginx. So scripts available
on project website only include a setting for this web server. Lighttpd

Soft Computing and Machine Learning with Python320

retransmission uses mod_fastcgi and a socket mechanism. Three open source
Python libraries were considered: Flup from PIP, Web2py http://www.
web2py.com, and Django https://www.djangoproject.com. The libraries
support the Web Server Gateway Interface (WSGI), the Python standard
interface between web servers and applications.

Flup is a simple WSGI server but its library is small (256 kB), so the
facilities are limited to the python function call when an http request is
received from a client and the function results are sent back to the client
application using a web server. More advanced libraries are Web2Py (9 MB)
and Django (22 MB), where the facilities include parameter conversion,
authentication, authorization, and database support using object-relational
mapping. All Flup, Web2py, and Django were tested in the present study,
because the characteristics of Web2py and Django are similar. However,
Django is recommended because all of the available facilities are written
explicitly and this library has the best documentation. Django uses Flup
internally to cooperate with Lighttpd in current version of software; this
configuration works correctly under all popular modern operating systems
(Linux, Windows, iOS, etc.).

Bioweb provides two competitive solutions for client modules, where
the first is based on JavaScript with HTML5, and the second uses Apache
Flex and the Adobe Flash Player plugin. JavaScript with HTML5 web
applications uses the Ajax techniques available on modern web browsers,
mainly XMLHttpRequest objects, so client applications developed in
JavaScript can send and retrieve data in the background. The data are
interchanged using the JavaScript Object Notation (JSON), and the Python
standard library module supports JSON encoders and decoders. The HTML5
standard includes scalable vector graphics support, which improves the
graphical user interface. JavaScript is interpreted by a web browser and it
conforms to international standard ISO/IEC 16262:2011. The current version
uses Model View ViewModel (MVVM) client-side JavaScript framework
AngularJS [8].

Apache Flex is a freely available set of software development tools,
which support the construction of applications that use the Adobe Flash
Player plugin. This plugin, which is available for most web browsers,
allows the user to view multimedia, vector graphics, and animations. The
Apache Flex application is loaded from web server and executed on the
client side. Communication with the server uses the Action Message Format

Polyglot Programming in Applications Used for Genetic Data Analysis 321

(AMF), which is supported in Python by the pyAMF library. At present, this
technology is being replaced by HTML5, which is supported directly by
web browsers, so HTML5 and JavaScript are recommended for use in new
applications.

Parallel Service Requests
The framework was designed to create the software that serves multiple
users at the same time. The users communicate independently with the
server via the Internet and the framework includes a component with the
active object pattern [9] implementation to enhance concurrency and to
exploit the server resources fully. This component, which is part of bioweb,
is shown in Figure 3.

Figure 3: Active object implementation delivered by the framework. The client
requests are transformed into commands automatically, which are executed by
separate threads.

The execution of calculation tasks is decoupled from task invocation to
enhance concurrency and to simplify multithread usage, as shown in Figure 4.
Calculation requests sent from the client application are converted into C++
objects. These objects are commands (the command design pattern is used)
which contain specific parameters as well as algorithm and synchronization
mechanisms. Commands are stored in the task queue and executed by
separate execution threads from the thread pool. The command handlers are
accessible from Python, so the user can examine the current command state,
that is, tasks that are awaiting execution in the queue, executed tasks, and

Soft Computing and Machine Learning with Python322

completed tasks. This component uses an observer (from observer design
pattern), to support the command progress notification. The active object
module can be used independently of bioweb; it is supplied separately as a
C++ library, whose sources are available at http://mt4cpp.sourceforge.net.

Figure 4: Cooperation among active object participants. The client request is
converted into a command managed by the task manager on the Python side
and by the scheduler in C++. The command is stored in the queue, and it is
executed when an unoccupied thread is available. The client can request the
current command status and the command progress.

Testing
Software testing is an integral part of the development process. Thus, testing
techniques and libraries that support this process are specified in presented
framework. Three types of tests are considered: unit tests, integration tests,
and system tests. Unit testing checks individual functions, procedures,
and classes in isolation. Integration tests examine the communication
between modules, based on a consideration that they are created in different
programming languages. System tests examine the functions of a computer
program as a whole, without the knowledge of the internal structure of the
software.

Unit testing uses Boost.Test [5] for C++ modules, the standard Python
unittest package for Python code, and QUnit http://qunitjs.com for modules
written in JavaScript. C++ unit testing is performed in both environments:
g++ and msvc. Integration tests are implemented with the same tools and
libraries as unit tests, but the features of C++ modules exported to Python by
the Boost.Python library are tested in Python using unittest.

Polyglot Programming in Applications Used for Genetic Data Analysis 323

System testing uses the Python language and splinter http://splinter.
cobrateam.info library. This tool automates browser actions such as visiting
URLs, navigation, verifying page context, finding elements in the page,
testing mouse and keyboard events, reading the text properties of elements,
and other tasks. The system tests allow the automatic evaluation of test
scenarios, without any requirement for manual testers, which reduces the
time and the cost of the overall system examination.

The test quality measure is the source code coverage during unit,
integration, and system testing. This measure provides numerical data related
to the performance of test procedures, which helps to identify inadequately
tested parts of the software. The analytic tools used to evaluate coverage
in bioweb are gcov from the GNU Compiler Collection for C++ modules,
Coverage.py from Python Package Index (PIP) for Python modules, and
Blanket.js http://blanketjs.org/ for JavaScript code.

Tools
This section describes the programming tools used to create applications
in bioweb. It is important that the latest versions of the tools described are
used.

The C++ modules require a C++ compiler and it is recommended to
use at least two different compilers, particularly the g++ compiler from
the GNU Compiler Collection http://gcc.gnu.org and the Microsoft Visual
C++ Compiler (msvc) http://msdn.microsoft.com. The use of different
compilers increases the probability of capturing errors in the code and it
ensures that the code is portable. The C++ modules use the standard C++
library and the Boost http://www.boost.org libraries. The server uses the
Python interpreter, the Python standard library, and packages from the
Python repository (PIP). The client uses the JavaScript interpreter built-in
web and the AngularJS [8] framework, jQuery libraries http://jquery.com.
The Bower [10] automatically manages client-side package dependencies.
An alternative is to use the Apache Flex software developer’s kit http://flex.
apache.org. The Scons http://www.scons.org is used to create modules, for
testing, and to consolidate the whole system, while Redmine http://www.
redmine.org is used for project management, and mercurial http://mercurial.
selenic.com is used as the version control system.

Soft Computing and Machine Learning with Python324

DISCUSSION
To speed up the creation of new software, the developer can use a specialized
framework. The most popular, freely available frameworks are Bioconductor
[11], MEGA tool [12], and OpenMS [13]. On the other hand, the programmer
can use general-purpose programming language and specialized libraries,
for example, C++ with NCBI C++ Toolkit [14], Python with BioPython
[7], Java with BioJava [15], and BioWeka [16]. All these solutions impose
limitations connected with the usage of only one programming language
[17] and do not support the user interface in a web browser.

The polyglot environment is common among web software, that is,
software accessible from a web browser, because the client-side software
(JavaScript, HTML, and CSS) has different responsibilities compared to
server side. The ubiquity of mobile applications and the advent of big data
change the software development to use multiple languages [18]. Similar
trends are evident in the bioinformatics software and the examples are
GBrowse [19] or GEMBASSY [20]. Bioweb provides a framework for the
construction of such applications. There are many application development
frameworks that connect C++ with Python or Python with JavaScript.
Presented solution is similar but combines three programming languages.

The bioweb is small, but it can be extended, and it can use specialized
libraries. The heavyweight web-based genome analysis frameworks, such
as Galaxy [21], have a lot of ready-made modules and meet most of the
requirements for systems for the genetic data analysis. However, creating
custom modules and algorithms is not trivial. Presented framework allows
the user to create smaller and independent solutions, which are easier to
manage and to customize. It could be easily extended to use GPU and/or
computing clusters, which is required in production-scale analysis.

CONCLUSION
The bioweb framework is freely available from http://bioweb.sourceforge.
net under GNU Library or Lesser General Public License version 3.0
(LGPLv3). All of the libraries and applications used in bioweb are available
for free and they can be used in commercial software.

This framework was used to create several applications to analyze
genetic data: DNASynth application for synthesizing artificial
genes (i.e., completely synthetic double-stranded DNA molecules
coding peptide), theDNAMarkers application for analyzing DNA

Polyglot Programming in Applications Used for Genetic Data Analysis 325

mixtures, the CodonHmm application for protein back-translation,
the WebOmicsViewer application for storing and analyzing genomes,
the PETconn application to create scaffolds using paired-end tags, and
the DNAAssembler for assembling DNA using next-generation sequencing
data. The source code for these applications is available on the project
website. This genetic data analysis software development project was
performed in academia and it supports students who have a limited amount
of time available and who also lack experience in design and programming.
I found that agile methodologies [22] worked well in this project because
they support the transfer of biological and medical knowledge from the
users of the application. They let us avoid the duplication of information and
allowed minimal documentation production, so a task could be completed
relatively quickly by new users. In particular, the SCRUM [23] and the
extreme programming (XP) [24] techniques were used, that is, SCRUM roles
(product owner, development team, and scrum master), SCRUM iterations
(sprint planning meeting, end meetings), SCRUM task management and
prioritizing, XP test-driven development, and XP coding and documentation.

Presented framework is still being developed; the Guncorn [25] Python
HTTP Server is added to the upcoming version. This cancels the Flup on
Unix platforms and accelerates data transfer between client and server.

Availability and Requirements(i)project homepage: http://bioweb.
sourceforge.net;(ii)operating systems(s): OS Portable;(iii)programming
language: C++ and Python and JavaScript;(iv)license: GNU Library or Lesser
General Public License version 3.0 (LGPLv3);(v)getting started: to build a
“Hello World” application please download the latest version, extract the
files from the archive, install additional software as described in README_
EN (text file in main bioweb directory), and run scons command in the
directory where you placed the bioweb. To start the client and server locally
run scons r=1.

ACKNOWLEDGMENTS
This work was supported by the statutory research of Institute of Electronic
Systems of Warsaw University of Technology. The author would like to
thank the editor and anonymous reviewer for their constructive comments.
The author is grateful to the students of the Faculty of Electronics and
Information Technology of Warsaw University of Technology, who acted
as the early users of this software, and to Hanna Markiewicz for the
proofreading.

Soft Computing and Machine Learning with Python326

REFERENCES
1. R. Durbin, Biological Sequence Analysis: Probabilistic Models of

Proteins and Nucleic Acids, Cambridge University Press, Cambridge,
UK, 1998.

2. N. C. Jones and P. Pevzner, An Introduction to Bioinformatics
Algorithms, The MIT press, Cambridge, Mass, USA, 2004.

3. J. M. Osborne, M. O. Bernabeu, M. Bruna et al., “Ten simple rules
for effective computational research,” PLoS Biology, vol. 10, no. 3,
Article ID e1003506, 2014.

4. G. Wilson, D. Aruliah, C. T. Brown et al., “Best practices for scientific
computing,” PLoS Biology, vol. 12, no. 1, Article ID e1001745, 2014.

5. R. Nowak and A. Pajak, C++ Language: mechanisms, design patterns,
libraries, BTC, Le gionowo, Poland, 2010.

6. J. E. Stone, D. Gohara, and G. Shi, “OpenCL: a parallel programming
standard for heterogeneous computing systems,” Computing in Science
and Engineering, vol. 12, no. 3, Article ID 5457293, pp. 66–72, 2010.

7. P. J. A. Cock, T. Antao, J. T. Chang et al., “Biopython: freely
available python tools for computational molecular biology and
bioinformatics,” Bioinformatics, vol. 25, no. 11, pp. 1422–1423, 2009.

8. P. B. Darwin and P. Kozlowski, AngularJS Web Application
Development, Packt Publishing, Birmingham, UK, 2013.

9. R. G. Lavender and D. C. Schmidt, “Active object—an object
behavioral pattern for concurrent programming”.

10. Bower, a package manager for the web, http://bower.io/.
11. R. C. Gentleman, V. J. Carey, D. M. Bates et al., “Bioconductor:

open software development for computational biology and
bioinformatics,” Genome Biology, vol. 5, no. 10, p. R80, 2004.

12. S. Kumar, K. Tamura, and M. Nei, “MEGA3: integrated software
for molecular evolutionary genetics analysis and sequence
alignment,” Briefings in Bioinformatics, vol. 5, no. 2, pp. 150–163,
2004.

13. M. Sturm, A. Bertsch, C. Gröpl et al., “OpenMS—an open-source
software framework for mass spectrometry,” BMC Bioinformatics,
vol. 9, no. 1, article 163, 2008.

Polyglot Programming in Applications Used for Genetic Data Analysis 327

14. D. Vakatov, The NCBI C++ toolkit book, 2004.
15. R. C. G. Holland, T. A. Down, M. Pocock et al., “BioJava: an open-

source framework for bioinformatics,” Bioinformatics, vol. 24, no. 18,
pp. 2096–2097, 2008.

16. J. E. Gewehr, M. Szugat, and R. Zimmer, “BioWeka: extending the
Weka framework for bioinformatics,” Bioinformatics, vol. 23, no. 5,
pp. 651–653, 2007.

17. M. Fourment and M. R. Gillings, “A comparison of common
programming languages used in bioinformatics,” BMC Bioinformatics,
vol. 9, article 82, 2008.

18. A. Binstock, The quiet revolution in programming. Dr. Dobb’s ,
2013, http://www.drdobbs.com/architecture-and-design/the-quiet-
revolution-in-programming/240152206.

19. M. Wilkinson, “Gbrowse Moby: a Web-based browser for BioMoby
services,” Source Code for Biology and Medicine, vol. 1, no. 1, article
4, 2006.

20. H. Itaya, K. Oshita, K. Arakawa, and M. Tomita, “GEMBASSY: an
EMBOSS associated software package for comprehensive genome
analyses,” Source Code for Biology and Medicine, vol. 8, article 17,
2013.

21. J. Goecks, A. Nekrutenko, J. Taylor et al., “Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent
computational research in the life sciences,” Genome Biology, vol. 11,
no. 8, article R86, 2010.

22. M. Fowler and J. Highsmith, “The agile manifesto,” Software
Development, vol. 9, no. 8, pp. 28–35, 2001.

23. K. Schwaber, Agile Project Management with SCRUM, O’Reilly
Media, Sebastopol, Calif, USA, 2004.

24. K. Beck and C. Andres, Extreme Programming Explained: Embrace
Change, Addison-Wesley Professional, Boston, Mass, USA, 2004.

25. Gunicorn, Python WSGI HTTP server for UNIX, http://gunicorn.org/.

CLASSIFYING MULTIGRAPH
MODELS OF SECONDARY RNA

STRUCTURE USING
GRAPH-THEORETIC

DESCRIPTORS

CHAPTER

15

Debra Knisley1,2 , Jeff Knisley1,2 , Chelsea Ross2 , and Alissa
Rockney2

1Institute for Quantitative Biology, East Tennessee State University, Johnson City, TN
37614-0663, USA
2Department of Mathematics and Statistics, East Tennessee State University, Johnson City,
TN 37614-0663, USA

ABSTRACT
The prediction of secondary RNA folds from primary sequences continues
to be an important area of research given the significance of RNA molecules
in biological processes such as gene regulation. To facilitate this effort,

Citation: Debra Knisley, Jeff Knisley, Chelsea Ross, and Alissa Rockney, “Clas-
sifying Multigraph Models of Secondary RNA Structure Using Graph-Theoretic
Descriptors,” ISRN Bioinformatics, vol. 2012, Article ID 157135, 11 pages, 2012.
doi:10.5402/2012/157135.
Copyright: © 2012 Debra Knisley et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided the original work is properly cited.

Soft Computing and Machine Learning with Python330

graph models of secondary structure have been developed to quantify and
thereby characterize the topological properties of the secondary folds.
In this work we utilize a multigraph representation of a secondary RNA
structure to examine the ability of the existing graph-theoretic descriptors to
classify all possible topologies as either RNA-like or not RNA-like. We use
more than one hundred descriptors and several different machine learning
approaches, including nearest neighbor algorithms, one-class classifiers, and
several clustering techniques. We predict that many more topologies will be
identified as those representing RNA secondary structures than currently
predicted in the RAG (RNA-As-Graphs) database. The results also suggest
which descriptors and which algorithms are more informative in classifying
and exploring secondary RNA structures.

INTRODUCTION
The need for a more complete understanding of the structural characteristics
of RNA is evidenced by the increasing awareness of the significance of
RNA molecules in biological processes such as their role in gene regulatory
networks which guide the overall expressions of genes. Consequently, the
number of studies investigating the structure and function of RNA molecules
continues to rise and the characterization of the structural properties of
RNA remains a tremendous challenge in computational biology. RNA
molecules are seemingly more sensitive to their environment and have
greater degrees of backbone torsional freedom than proteins, resulting in
even greater structural diversity [1]. Although the tertiary structure is of
significant importance, it is much more difficult to predict than the tertiary
structure of proteins. Advances in molecular modeling have resulted in
accurate predictions of small RNAs. However, the structure prediction for
large RNAs with complex topologies is beyond the reach of the current ab
initio methods [2].

A coarse-grained model to refine tertiary RNA structure prediction
was developed by Ding et al. [2] to produce useful candidate structures
by integrating biochemical footprinting data with molecular dynamics.
Although the focus is on tertiary folds, their method uses information about
RNA base pairings from known secondary structures as a starting point.
This, coupled with the understanding that the RNA folding mechanisms
producing tertiary structure are believed to be hierarchical in nature, implies
that much can be achieved by discovering all possible secondary structural
RNA topologies.

Classifying Multigraph Models of Secondary RNA Structure Using... 331

Given the primary sequence of an RNA molecule, there are a number
of algorithms and tools available to predict the most likely set of resulting
secondary structures. The most widely used algorithms such as Zucker’s
Mfold [3] and Vienna RNAfold [4] typically base their predictions on the
minimum free energy paradigm. While these algorithms have been highly
beneficial, it is not always the case that the predicted structure with minimum
free energy is the correct one and consequently some suggest that the actual
RNA secondary structure may not have a minimum global free energy, only
local ones [5]. Other means of characterizing the topology of secondary
RNA structures are still an active avenue of pursuit.

The graph representations used in this work can be found in the database
RAG: RNA-As-Graphs [6]. Secondary RNA structure is modeled by two
graph-theoretic representations in the database resource RAG (see [6]
for additional details on the differences between the two). In one of these
representations, regions of the secondary structure that consist of unpaired
bases such as junctions, hairpins, and bulges are represented by vertices. The
connecting stems are represented quite naturally as connecting edges. The
resulting graph is a connected, acyclic graph, that is, a tree. One advantage
of this representation is the fact that trees have been highly studied in the
graph theory thereby providing a wealth of information about the model.
For instance it is known by the generating function developed by Harary
and Prins [7] exactly how many distinct trees can be constructed for a
given number of vertices. This allows the entire space, that is, all possible
configurations, to be considered. Unfortunately, secondary RNA structures
containing a pseudoknot cannot be represented as described above by
the tree model. If, however, the model is reversed and stem regions are
represented as vertices and connecting strings of unpaired bases as the edges,
all secondary RNA structures can be now be modeled, including those that
contain a pseudoknot. This representation is called the dual graph in the
RAG database. The resulting dual graph however is no longer a simple
graph; instead this method produces a multigraph. Unlike a simple graph, a
multigraph can have more than one edge connecting a pair of vertices. And,
unlike simple graphs, multigraphs have not been as highly studied in the
theoretical setting. In previous work [8], the authors of this paper, together
with Koessler et al., capitalize from the knowledge afforded by the graph
theory and exploit the tree representation of the secondary RNA structure
to build a predictive model that identifies whether a given tree structure is
RNA-like or not RNA-like. In this work, we now consider the dual graph
representation.

Soft Computing and Machine Learning with Python332

In particular, all possible dual graph representations of orders 2, 3, and 4
are given in the RAG database and the corresponding structures are classified
as either (a) representing a known structure or (b) not representing a known
structure. Those not representing a known structure are further classified
as either likely to represent a structure in the future, that is, having the
characteristics of RNA structure making it likely that such a structure will
be identified at some point, or not RNA-like in structure. For the dual graphs
of order 5, the database contains 18 structures that have been identified and
states that there are 108 possible dual graphs of order 5. This number was
determined by a graph growing algorithm. Eighteen of these 108 graphs
are verified as representing existing RNA structures and the remaining 90
structures are classified as either RNA-like or not RNA-like in the most
recent update for the database by Izzo et al. [9]. This update describes two
methods by which the unverified structures are classified. The Laplacian
eigenvalues for each structure were transformed using a linear regression to
obtain two values for each structure and then these values were applied in
two clustering algorithms, namely, a partitioning method called PAM and
a k-nearest neighbor algorithm [9]. They state that 63 are RNA-like and
36 are not and that 45 are RNA-like and 45 are not RNA-like by the two
methods, respectively. Since only 18 structures are provided in the database,
our objectives were to (1) combinatorially analyze the structures of the 90
dual graphs of order 5 not in the RAGs database and (2) predict which of
those 90 dual graphs of order 5 are RNA-like in structure via graph-theoretic
information from chemical graph theory and mathematical graph theory.

Our findings differ significantly from those of Izzo et al. [9]. We find
by using a combinatorial algorithm to construct all possible graphs with the
given constraints that there are 118 instead of 108 possible dual graphs of
order 5. Furthermore, we show that indeed almost all of the structures in
the database with 5 vertices are RNA-like instead of approximately half as
indicated in [9]. We feel that this is not too surprising. In the earlier version
(2004) of the database, for instance, 8 of the 30 possible tree graphs were
classified as not RNA-like, but in the updated version (2011), only 3 graphs
are listed as not RNA-like. We expect that the remaining 3 topologies will
be verified as RNA topologies as more RNA molecules are found. For
example, genome-wide mapping of conserved RNA secondary structures
reveals evidence for thousands of functional noncoding RNAs [10]. In the
following sections, we discuss the dual graph representation and the graph-
theoretic measures that we use. We then discuss the analysis and training
together with the results.

Classifying Multigraph Models of Secondary RNA Structure Using... 333

The Dual Graph Representation of Secondary RNA Structure
 Gan et al. [6] have used both tree graphs and the corresponding dual graphs
which results in a multigraph representation of RNA secondary structures.
Here, however, we will restrict our study to the multigraph representations
of RNA secondary structures. As mentioned previously, the dual graphs
can represent all types of RNA secondary structures, including the complex
pseudoknot structures. When representing an RNA structure with a dual
graphs, a vertex is used to represent stems (two or more complementary
base pairs), and circular edges are used to represent the RNA motifs (hairpin
loops, bulges, internal loops, and junctions). Dual graphs may contain
multiple edges and loops; however, neither of these structures is required.
Since a double-stranded RNA stem is connected to at most 2 strands on each
side, every vertex v must have at most degree four. In fact, all vertices are of
degree 4 except either (a) one of degree 2 or (b) two of degree 3. It follows
that dual graphs of order n are of size 2n-1 [6]. Given these constraints, we
use a constructive graph algorithm to enumerate the number of dual graphs
of order five. These 118 graphs may be found in Figure 6.

Previous Results for the Dual Graph Model
The dual graph representation with 4 or fewer vertices was used in a
previous work to train an artificial neural network (ANN) to recognize a
dual graph as having the structural properties of secondary RNA [11]. In
particular, we quantified the structures using graph invariants from graph
theory and molecular descriptors from chemical graph theory and then used
a multilayer perceptron artificial neural network to verify the findings in the
RAG database regarding the classification of the dual graphs of order four.
A set of ten structures that have been verified as RNA-like were chosen
randomly from the set of 11 RNA-like graphs of order four. These ten graphs,
in addition to the ten classified as not RNA-like, comprised the training set
for the ANN. All graphs that were classified to be RNA-like in the database
were predicted to be RNA-like by the neural network. However, one of the
graphs whose structure represents a known topology was predicted with
much lower probability than the other graphs in the set. Since this earlier
work, the RAG database has been updated and a dual graph considered to be
not RNA-like has since been changed to RNA verified [9]. This particular
structure is similar to the structure that the neural network predicted to be
RNA-like, but with lower probability. Given the updated information in

Soft Computing and Machine Learning with Python334

the RAG database, we can now remove the incorrectly predicted structure
from the training set and expect our results to confirm the new information.
Thus, even with incorrect information in the training set, the graph-based
measures were sufficient to characterize the topology of the RNA-like dual
graphs of order 4.

We extend these findings to the dual graphs of order five. For this work
we do not use the predicted classifications of the RAG database. We use
only the verified structures in the database of which there are 18 of order 5
as well as 17 of order 4. We refer to these verified structures as RNA graphs.
We consider the remaining 13 graphs of order 4 and 100 graphs of order 5
as unclassified structures.

GRAPH-THEORETIC MEASURES FOR THE DUAL
GRAPHS
As stated previously, the dual graph representation method of the RAG
database results in a multigraph. We began by writing a program in the
computer language Python which generates the 30 multigraphs of order 4
and the 118 multigraphs of order 5. This program realized edgeless graphs as
networkx [12] multigraph structures and then generated edges in accordance
with the secondary RNA structural constraints. Several algorithms to
calculate topological indices and graph invariants were also written in
Python based on the networkx graph object.

In order to draw upon the wealth of graph-theoretic measures to quantify
the topologies of the RNA model, we note that the majority of such measures
is defined for simple graphs, and simple graphs do not have multiple edges
nor do they have loops. Given that the dual graph representation has both,
we therefore determined the line graph of each of the dual graphs and we
use the line graph representation to determine the graphical measures of the
topologies such as the clique number (both edge and vertex), independence
number, and diameter and domination numbers. The line graph of a
graph G is defined as the graph whose vertex set is the edge set of G and two
vertices are adjacent in the line graph if the corresponding edges in G are
incident. Thus the vertices in the line graph correspond to the regions in
the RNA molecule with unpaired bases. Using the line graph of the dual
graph allows quantification of the structural properties of the RNA molecule
with graph-theoretic descriptors, even those containing pseudoknots. An
algorithm for generating the line graph of a multigraph was also written in

Classifying Multigraph Models of Secondary RNA Structure Using... 335

Python, and this algorithm was used to generate the 30 + 118 line graphs
of the multigraphs of orders 4 and 5. The multigraphs and line graphs were
verified by the authors via a comparison to the RAG database and by manual
inspection and reconstruction.

To calculate the graph-based measures, we used the GraphTheory
package in Maple, the networkx package in Python, and the network
analysis plugin in Cytoscape 2.8.2 [13]. Many invariants—such as diameter,
radius, and clique numbers—were calculated either in all 3 or in 2 of the
3. This allowed us to verify the results of each software tool or to identify
any variations in the graph invariant and/or topological index techniques.
Most but not all of the measures we used can be found in at least one of the
three tools mentioned above. In order to calculate a number of the measures,
especially the topological indices, we need to determine the distance matrix
of the graph. In a simple graph, the distance from a vertex u to itself is zero.
However, with the presence of a loop, we considered three possibilities.
One is the standard distance matrix with zeros down the diagonal. In the
second case, we place either a zero or a one, depending on whether the
vertex has a loop. In the third case, we not only modify the diagonal but
also if the shortest path traversal includes a vertex with a loop, we include
the loop in the edge count of edges encountered. Thus we are requiring any
traversal to include a loop when encountered. We also modified the Balaban
index, motivated by recent results using random walks on graphs. To find
the distance between two vertices u and v in a dual graph, observe that if u is
a vertex with a loop and if there are two edges between u and v, then the
following options arise:(i)one of the edges from u to v is traversed;(ii)the
other edge from u to v is traversed;(iii)the loop is traversed followed by a
traversal of one of the edges.

There are four possibilities, so each traversal is assigned an equal weight
of 1/4. The shortest route is the traversal of one edge which can happen in
two ways. Thus the distance from u to v is 1/2.

We subsequently calculated approximately 100 invariants and indices
of the multigraphs and line graphs using the 3 graph theoretic software
tools mentioned above, some with slight modifications to account for the
presence of loops and multiple edges. The invariants were normalized with
respect to the values of the graphs that are verified as representing a known
RNA secondary structure.

Soft Computing and Machine Learning with Python336

ASSESSING THE GRAPH-THEORETIC
MEASURES AS DESCRIPTORS OF RNA
TOPOLOGY
The total invariants were divided into 3 categories—topological indices,
graph-theoretic invariants, and measures on line graphs. In order to compare
the efficacy of an invariant or index in discriminating between the RNA
graphs and the remaining graphs, the invariants were normalized with
respect to the RNA graphs of orders 4 and 5, respectively. In particular,
for each invariant or index, we calculated the mean and standard deviation
of the RNA graphs of order 4, after which we used this mean and standard
deviation to normalize all the values for graphs of order 4 of the given
invariant or index according to the formula

 (1)
Figure 1 shows the 10% percentile to 90% percentile of each normalized

index/invariant in the topological indices collection as a rectangle. The mean
is zero and the standard deviation is one for the given index across the RNA
graphs of order 4. The values of the unverified graphs of order 4 are shown
as points, so that a point inside the given rectangle is between the 10% and
90% percentiles for that index. The dotted lines correspond to the numbers of
standard deviations from the mean. In general, if the values of the unverified
graphs are close to the values of the verified graphs (i.e., if the dots are all
on or inside the rectangle for a given invariant), then this invariant will not
be useful as a factor in a machine learning classifier. For example, invariants
12–18 are poor predictors of RNA-like versus not RNA-like simply because
there is not enough variation among the values for all the multigraphs of
order 4. A support vector machine, a neural network, and logistic regression
trained on the multigraphs of order 4 using invariants 12–18 were no better
classifiers than was the uniformly random assignment to different classes,
as evidence by the Receiver Operating Characteristic analysis in which the
area under the curve for each method was approximately 0.5.

Classifying Multigraph Models of Secondary RNA Structure Using... 337

Figure 1: Topological invariants for RNA multigraphs of order 4.

In contrast, invariants 2 through 7 in Figure 2 are variations on the
Balaban index for the graphs considered as simple graphs, and invariants
24–32 are variations on the Balaban index for the graphs considered as
multigraphs. Like invariants 11–19, there is insufficient discrimination in
each of the remaining topological indices, which includes eigenvalues of
the Laplacian, the clustering coefficient, variations on the Weiner index,
variations on the Randic index, variations on the Platt index, various measures
of centrality, associativity, and connectivity, topological coefficients, and
stress. Unfortunately, even though the Balaban indices and their variations
have better discriminatory ability, they alone do not characterize between
those graphs verified as RNA and those that are unclassified.

Figure 2: Variations on the Balaban index.

First, we find that variations on the clique number yield another factor
with the ability to discriminate between the RNA graphs and the unclassified
graphs. Observe invariants 4, 5, and 6 in Figure 2. Second, invariants and

Soft Computing and Machine Learning with Python338

indices based on the line graphs retain more of the information contained
in a multigraph than does a simple graph interpretation of a multigraph,
while additionally allowing standard algorithms to calculate the invariants.
For example, in Figure 3, invariants 7 through 12 are the chromatic index,
the chromatic number, the circular chromatic index, the circular chromatic
number, and the edge chromatic number, respectively, of line graphs of
order 4.

Figure 3: Line graph invariants.

Invariants 16 through 18 are variations on the clustering coefficient, and
invariant 33 is the network centrality of the line graphs. Invariant 21 is the
diameter, invariant 27 is the independence number, and invariant 28 is the
maximum degree of the line graphs. It is interesting to note that the Balaban
index of the line graphs, invariant 4, is not a good discriminator.

RESULTS
There are 18 multigraphs of order 5 that have been verified so far. The
consensus across several techniques—including clustering, machine
learning, and nearest neighbor analysis—and across several different
combinations of invariants and indices indicate that most, if not all, of the
unverified graphs are RNA-like.

For example, a simple machine learning scheme is that of choosing one
unverified graph to be in class 0 while the 18 verified are in class 1. The

Classifying Multigraph Models of Secondary RNA Structure Using... 339

neural network is then trained and the remaining unclassified RNA graphs
are tested. Overwhelmingly, most if not all were classified as being in the
same class as the 18 verified—that is, assuming only one non-RNA-like
graph confirmed that all the graphs are RNA-like independent of which
unverified graph was chosen to be RNA-like.

Regression, neural network, and support vector machine analysis
similarly confirm the observation above. Nearly all the graphs of order 5 are
predicted to be RNA-like in each run, and the ones that are predicted to be
not RNA-like change from one run to the next.

Subsequently, we applied several different classifier/clustering
techniques to graphs of order 5. Many different subsets of invariants and
indices were used, but the invariant set suggested by the analysis above—
as well as the one that produced the best results—was the following:(i)
Four to eight variations of the Balaban index for multigraphs;(ii)Clique
numbers;(iii)Chromatic numbers of the line graphs;(iv)Edge chromatic
number of a line graphs;(v)Clique numbers of the line graphs;(vi)Diameters
of the line graphs;(vii)Independence numbers of the line graphs;(viii)
Maximum degrees of the line graphs.

Likewise, many different partitions of the total data were used, including
the restriction to order 5 graphs known to be RNA-like. Results were
consistent across these variations.

In particular, clustering tended to group all unverified graphs of order 5
with the 18 verified to be RNA-like (see Figure 4). To further investigate,
we ranked the 100 unverified graphs using nearest neighbor analysis, and
then we clustered in two groups—the 50 closest to and the 50 furthest
from the 18 verified structures. The 50 closest to the 18 verified formed
a single cluster with the 18 (using biclustering and hierarchical clustering
in the statistical language R). The 50 furthest from those verified likewise
clustered with the 18, but in a somewhat interesting manner. Having
determined a 5-cluster scheme to be the best, we found that one cluster
contained only one of the 18 verified graphs of order 5, and this graph (105
in our numbering) was both a large distance from the other 17 and had no
more than an r=0.49645 correlation with any of the other verified graphs.

Soft Computing and Machine Learning with Python340

Figure 4: Clustering of the 50 graphs most distant from the 18 verified as RNA-
like (in red).

Moreover, this was a rather large cluster containing 14 graphs of order
5, and, likely, if there were any graphs of order 5 that are eventually deemed
to not be RNA-like, they would come from this cluster. However, the results
seem to further support an interpretation of all the graphs of order 5 being
RNA-like.

Data Domain Description
This interpretation motivated us to consider the problem to be a data domain
description problem, also known as a one-class classification problem. In
particular, rather than predict whether or not a graph is RNA-like, we instead
explore the degree to which the 18 verified graphs typify the entire class of
RNA-like graphs.

To do so, we use a “cognitive learning” approach in association with
an artificial neural network [14]. While this is typically performed with a
support vector machine [15, 16], our goal is to examine how the unverified
RNA multigraphs of order 5 are distributed about the 18 verified multigraphs.
In particular, the graded response of the neural network can be used to
implement a genetic algorithm for successively refining the learning set of
a neural network.

Suppose that we are given a training set P that contains examples from
only one class of data along with a test set S of unclassified data that may
or may not contain examples from another class. The method begins with
a prior assumption: patterns that are many standard deviations away from

Classifying Multigraph Models of Secondary RNA Structure Using... 341

any pattern in the training set form at least one other class of patterns. This
assumption is used to generate an initial “negative example set”, N, of large
σ patterns, after which the algorithm proceeds as follows.

(1) Train the neural network with P ∪ N.
(2) Classify the set S with the neural network. The classifications are

numbers in [0, 1].
(3) Use the Receiver Operating Characteristic (ROC) or similar

method to find the optimal threshold for distinguishing between
patterns in N and patterns in P.

(4) Choose some number n of the highest scored patterns in S to be
moved into P, being careful to stay above the threshold in step 3.

(5) Choose some number m of the lowest scored patterns in S to be
moved into N, being careful to stay below the threshold in step 3.

(6) Move the q patterns in N and the r patterns in P not correctly
classified into the set S.

(7) Eliminate the large sigma patterns (after the first iteration).
The algorithm proceeds either until S is empty, or through some set

number of iterations. In practice, changes to N, P, and S are based on upper
and lower thresholds based on the results of step 3.

Although the process is closely supervised in practice, the goal is to
mimic the cognitive learning process of regrouping via reinforcement.
Ideally, if there is more than one class in the initial P ∪ S set of patterns,
then a two-class classifier will emerge in the process. If there is only one
class in P ∪ S, then the algorithm will proceed until all (or in practice, most)
of the patterns initially in S are in P and all the patterns in N are large sigma
patterns. Moreover, the rate at which a pattern moves into P can be used as a
measure of how close those patterns are to those in P itself.

The algorithm was tested on several standardized data sets from various
sources and repositories. When there are two or more distinct classes, which
is to say that S contains one or more classes distinct from P initially, then the
algorithm stabilizes to a distinct non-P class containing N in each iteration.
When there is only one class overall, then the set N is eventually empty.
Within a domain description problem, the final set of patterns in N,by which
we denote Nf , is significant in that it differs the most in some sense from
the initial P class.

The latter was the case with the classification of the RNAlike multigraphs
of order 5. In each of 10 trials, the set N became empty after a relatively

Soft Computing and Machine Learning with Python342

few number of iterations. However, the final set Nf differed only slightly
between trials and is accurately represented by 9 graphs. The graphs in Nf
likewise were quite similar, in that each of the graphs contained a triangle
with at least one vertex of degree 4.

Moreover, as N began to lose graphs in the algorithm above, the graphs
that tended to remain the longest were those graphs containing triangles
with at least one vertex having degree 3 or 4, as illustrated in Figure 5.
Finally, the set Nf had no discernible relationship to the clustering or nearest
neighbor results discussed earlier, further suggesting that all the multigraphs
of order 5 are RNA-like.

Figure 5: Two graphs from Nf.

Classifying Multigraph Models of Secondary RNA Structure Using... 343

Soft Computing and Machine Learning with Python344

Classifying Multigraph Models of Secondary RNA Structure Using... 345

Soft Computing and Machine Learning with Python346

Figure 6: The 118 multigraphs of order 5.

CONCLUSION
The most reasonable conclusion of this extensive analysis is that all the
graphs of order 5 are likely to be verified as RNA structures. Indeed, across
several variations of nearest neighbor analysis, machine learning, and
clustering techniques using a variety of subsets of different graph invariants
and topological indices, we consistently found that more than 90% of the
unclassified graphs were closer to one of the 18 already verified as an RNA
structure than the 18 were to each other.

This result is not surprising. Initial classification of the graph structures
in the database RAG classified more than half of the dual graphs of order 4
as not RNA-like in structure. However, as more secondary RNA structures
were identified, an update to the RAG database now predicts only a third to
be not RNA-like in structure [9]. We predict that as the number of new motifs
continues to increase, eventually almost all structures will be classified as
RNA-like or verified as an RNA topology. Does this mean that the graph
model in the database is too coarse to be of value and therefore should not be
pursued as a model to characterize secondary RNA structure? No, not at all.
It does suggest however that the model needs to contain more information
in order to be discriminating. One way this can be achieved is by assigning
weights to the vertices and edges based on the number of nucleotides,
bases, and bonds in the respective stems and regions with unpaired bases.
Karklin et al. [17] developed a labeled dual graph representation and defined
a similarity measure using marginalized kernels. Using this measure they
train support vector machine classifiers to identify known families of

Classifying Multigraph Models of Secondary RNA Structure Using... 347

RNAs from random RNAs with similar statistics. They achieved better
than seventy percent accuracy using these biologically relevant vertex and
edge labels. Efforts to synthesize RNA molecules for various purposes such
as novel drug applications as well as efforts to develop efficient genome-
wide screens for RNA molecules from existing families may be aided by
the graph representation in the RAG database when coupled with vertex
and edge weighting schemes. Indeed, the authors have successfully used
vertex weighted graphs to characterize the residue structure of amino acids
in order to build a predictive model of binding affinity levels resulting from
single point mutations [18]. Future work naturally points to using vertex
weighted graphs for the characterization of a secondary RNA structure.
Information revealed by the labeled dual graph representation which shows
that a secondary RNA structure is not consistent with those known to be
found in nature can be considered a valuable resource for biotechnological
applications, automated discovery of uncharacterized RNA molecules, and
computationally efficient algorithms that can be used in conjunction with
other methods for RNA structure identification.

Soft Computing and Machine Learning with Python348

REFERENCES
1. S. C. Flores and R. B. Altman, “Turning limited experimental

information into 3D models of RNA,” RNA, vol. 16, no. 9, pp. 1769–
1778, 2010.

2. F. Ding, C. A. Lavender, and K. M. Weeks, “Three-dimensional RNA
structure renement by hydroxyl radical probing,” Nature Methods, vol.
9, pp. 603–608, 2012.

3. M. Zuker, “Mfold web server for nucleic acid folding and hybridization
prediction,” Nucleic Acids Research, vol. 31, no. 13, pp. 3406–3415,
2003.

4. I. L. Hofacker, “Vienna RNA secondary structure server,” Nucleic
Acids Research, vol. 31, no. 13, pp. 3429–3431, 2003.

5. J. P. Abrahams, M. van den Berg, E. van Batenburg, and C. Pleij,
“Prediction of RNA secondary structure, including pseudoknotting, by
computer simulation,” Nucleic Acids Research, vol. 18, no. 10, pp.
3035–3044, 1990.

6. H. H. Gan, D. Fera, J. Zorn et al., “RAG: RNA-As-Graphs database—
concepts, analysis, and features,” Bioinformatics, vol. 20, no. 8, pp.
1285–1291, 2004.

7. F. Harary and G. Prins, “The number of homeomorphically irreducible
trees, and other species,” Acta Mathematica, vol. 101, no. 1-2, pp.
141–162, 1959.

8. D. R. Koessler, D. J. Knisley, J. Knisley, and T. Haynes, “A predictive
model for secondary RNA structure using graph theory and a neural
network,” BMC Bioinformatics, vol. 11, no. 6, article 21, 2010.

9. J. A. Izzo, N. Kim, S. Elmetwaly, and T. Schlick, “RAG: an update to
the RNA-As-Graphs resource,” BMC Bioinformatics, vol. 12, article
219, 2011.

10. M. Guttman, I. Amit, M. Garber et al., “Chromatin signature reveals
over a thousand highly conserved large non-coding RNAs in
mammals,” Nature, vol. 458, no. 7235, pp. 223–227, 2009.

11. A. Rockney, predictive model which uses descriptors of RNA secondary
structures derived from graph theory [M.S. thesis], East Tennessee
State University, 2011, http://libraries.etsu.edu/record=b2339936~S1a.

12. A. Hagberg, A. Schult, and P. Swart, “Exploring network structure,
dynamics, and function using NetworkX,” in Proceedings of the 7th
Python in Science Conference (SciPy’08), G. Varoquaux, T. Vaught,

Classifying Multigraph Models of Secondary RNA Structure Using... 349

and J. Millman, Eds., p. 1115, Pasadena, Calif, USA, August 2008.
13. M. E. Smoot, K. Ono, J. Ruscheinski, P. L. Wang, and T. Ideker,

“Cytoscape 2.8: new features for data integration and network
visualization,” Bioinformatics, vol. 27, no. 3, Article ID btq675, pp.
431–432, 2011.

14. O. Boehm, D. Hardoon, and L. Manevitz, “Classifying cognitive states
of brain activity via one-class neural networks with feature selection
by genetic algorithms,” International Journal of Machine Learning and
Cybernetics, vol. 2, no. 3, pp. 125–134, 2011.

15. D. Tax and R. Duin, “Data domain description using support vectors,”
in Proceedings of the European Symposium on Articial Neural
Networks (ESANN’99), pp. 251–256, D-Facto Public, Brugge,
Belgium, April 1999.

16. C. Elkan and K. Noto, “Learning classiers from only positive and
unlabeled data,” in Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’08), pp.
213–220, ACM, New York, NY, USA, 2008.

17. Y. Karklin, R. F. Meraz, and S. R. Holbrook, “Classification of non-
coding RNA using graph representations of secondary structure,” Pacific
Symposium on Biocomputing, pp. 4–15, 2005.

18. D. Knisley and J. Knisley, “Predicting protein-protein interactions
using graph invariants and a neural network,” Computational Biology
and Chemistry, vol. 35, no. 2, pp. 108–113, 2011.

A

Abstract Syntax Tree (AST) 286
Allows code instrumentation 285
Alternative training method 27
Analysis of binary application 295
Application of machine learning

models 148
Artificial Immune Systems (AIS)

69
Artificial Intelligence 82, 100
Artificial Neural Network (ANN)

93, 102
Automatic computing procedure 3,

5
Automatic extraction 280, 282,

307, 310
Avoid common mistake 315
Avoid framework 273

B

Bankruptcy prediction 103, 104,
106, 113

Base data structure 273
Bayesian Networks (BN) 69, 266
Binary Pattern Extractor 287, 292,

294
Brazilian Learning Approaches

Scale 132, 137, 139, 143

C

Classical machine learning 119
Common language effect 143, 144,

145
Common language effect size

(CLES) 143, 145
Computer Aided Diagnosis (CAD)

81
Computer-controlled robot 6
Computer vision application 25
Conditional Random Fields (CRF)

INDEX

Soft Computing and Machine Learning with Python352

294
Confusion matrix 250
Correct diagnostic patient record

84
Cost effective management 84
Cost-effectiveness trade-offs 8

D

Data mining algorithm 95
Dataset for modelling 61
Decision Trees (DT) 69
Digital Technology Group (DTG)

124
Dimension reduction visualization

techniques 51
Domain description problem 340,

341
Dynamic Bayesian Networks

(DBN) 269
Dynamic programming language

259

E

European Regional Development
Funds (ERDF) 308

Evolutionary Learning and Deep
Learning 82

F

Free energy paradigm 331
Full-fledged programming language

292
Function entry points (FEP) 294
Function optional 214

G

Genetic Algorithm (GA) 70, 71
Global Interpreter Lock (GIL) 297

Global namespace 161, 162, 191,
198, 218, 219, 220, 240, 241

Graph growing algorithm 332
Graphical user interface (GUI) 125
Graphics processing unit (GPU)

318
Graph representation 331, 332, 349

H

Hierarchical structure 4, 5
High-quality implementation 256
Human analyst 24
human intervention 4, 5

I

Inductive logic procedures (ILP) 3,
5

Inductive Reasoning Developmen-
tal Test (TDRI) 132, 137, 138

J

JavaScript Object Notation (JSON)
320

K

Knowledge acquisition bottleneck
5

Kolmogorov Smirnov (KS) 67

L

Language grammar 305
Larger network 37
Layer software architecture 315
Learning mechanism 7
Learning process 25, 45, 48
Legitimate transaction 61
Linear function 37, 48
Linear programming relaxation 257
Linguistic information 248

Index 353

Logistic regression 103, 104, 106,
113, 114, 133, 145, 148

Lower probability 333
Low-order polynomial 37

M

Machine Learning 3, 4, 5, 6, 7, 9,
10, 11, 13, 14, 15, 16

Machine learning algorithm 19,
272, 276

Machine learning research 6, 7
Machine learning technique 10
Management Information Systems

(MIS) 59
Mathematical operation 4
Mean absolute error (MAE) 123,

125
Mean squared error (MSE) 123
Memory efficient 104
Metacognitive Control Test (TCM)

132, 134, 137, 139
Multilayer feed-forward neural

network (MFNN) 94
Multilayer Perceptrons (MLP) 34

N

Natural language processing 98,
247, 248, 252, 256

Natural language processing (NLP)
105

Neural networks 26, 33, 37
Normal termination 208

O

Operating system 209
Out-Of-Time sample (OOT) 73

P

Parallel platform 269

Pattern matching algorithm 249
Pattern recognition 104
Phenomena 62, 63, 73, 74
Predicting Bankruptcy with Robust

Logistic Regression 106, 117
Prediction accuracy 133, 136, 137,

148
Produce good performance 98
Python community 255, 256
Python Environment for Bayesian

Learning (PEBL) 266
Python function 210, 211, 212,

222, 242
Python programming language

120, 125, 128, 272, 297
Python repository of software 319

Q

Qualitative bankruptcy data 106
Qualitative Bankruptcy database

112
Quantum computing 120
Quantum Information Processing

(QIP) 120
Quantum machine learning (QML)

119

R

Random forest model 148
Receiver Operating Characteristic

67
Receiver Operating Characteristic

(ROC) 341
Reinforcement learning 83, 121
Right complexity of network 37
Root mean squared error (RMSE)

123

Soft Computing and Machine Learning with Python354

S

Scientific Python ecosystem 276
Separate network 33
Software tool 269
Software tools analyze program

280
Standard neural network training

27
Structural equation modeling 145
Structured prediction methods 255
Subfield of computer science 104
Suitable representation 27
Support vector classify (SVC) 107
Support vector machine 104, 113

Support vector machine learning
122

Support Vector Machine (SVM)
27, 87

Symbolic methods 5

T

Taxonomic analysis 5
Traditional approach 280
Transformation of knowledge 12

	Cover
	Half Title Page
	Title Page
	Copyright Page
	Declaration
	About the Editor
	Table of Contents
	List of Contributors���������������������������
	List of Abbreviations����������������������������
	Preface��������������
	SECTION I SOFT COMPUTING THEORY
	Chapter 1 Machine Learning Overview
	Machine Learning Overview��������������������������������
	References�����������������

	Chapter 2 Types of Machine Learning Algorithms���
	Machine Learning: Algorithms Types���
	References�����������������

	Chapter 3 Data Mining With Skewed Data���
	Introduction�������������������
	Data Preparation�����������������������
	Data Skewness��������������������
	Derived Characteristics������������������������������
	Categorisation (Grouping)
	Sampling���������������
	Characteristics Selection��������������������������������
	Objective Functions��������������������������
	Bottom Line Expected Prediction��������������������������������������
	Limited Resource Situation���������������������������������
	Parametric Optimisation������������������������������
	Robustness of Parameters�������������������������������
	Model Stability����������������������
	Final Remarks��������������������
	References�����������������

	SECTION II MACHINE LEARNING TECHNIQUES AND APPLICATIONS
	Chapter 4 Survey of Machine Learning Algorithms For Disease Diagnostic
	Abstract���������������
	Introduction�������������������
	Diagnosis of Diseases by Using Different Machine Learning Algorithms��
	Discussions And Analysis Of Machine Learning Techniques��
	Conclusion�����������������
	References�����������������

	Chapter 5 Bankruptcy Prediction Using Machine Learning���
	Abstract���������������
	Introduction�������������������
	Motivation�����������������
	Related Work�������������������
	Model Description������������������������
	Experimental Result��������������������������
	Conclusions������������������
	References�����������������

	Chapter 6 Prediction of Solar Irradiation Using Quantum Support Vector Machine Learning Algorithm
	Abstract���������������
	Introduction�������������������
	Background Information�����������������������������
	Implementation���������������������
	Results And Discussion�����������������������������
	Conclusions������������������
	References�����������������

	Chapter 7 Predicting Academic Achievement of High-School Students Using Machine Learning
	Abstract���������������
	Introduction�������������������
	Method�������������
	Results��������������
	Discussion�����������������
	Conclusion�����������������
	Acknowledgements�����������������������
	References�����������������

	SECTION III PYTHON LANGUAGE DETAILS
	Chapter 8 A Python 2.7 Programming Tutorial
	Introduction�������������������
	Python’s Numeric Types�����������������������������
	Character String Basics������������������������������
	Sequence Types���������������������
	Dictionaries�������������������
	Branching����������������
	How To Write A Self-Executing Python Script��
	Using Python Modules���������������������������
	Input And Output�����������������������
	Introduction To Object-Oriented Programming��

	Chapter 9 Pattern For Python�����������������������������������
	Abstract���������������
	Introduction�������������������
	Package Overview�����������������������
	Example Script���������������������
	Case Study�����������������
	Documentation��������������������
	Source Code������������������
	Acknowledgments����������������������
	References�����������������

	Chapter 10 Pystruct - Learning Structured Prediction In Python���
	Abstract���������������
	Structured Prediction And Casting It Into Software���
	Usage Example: Semantic Image Segmentation���
	Experiments������������������
	Conclusion�����������������
	Acknowledgments����������������������
	References�����������������

	SECTION IV MACHINE LEARNING WITH PYTHON
	Chapter 11 Python Environment For Bayesian Learning: Inferring The Structure of Bayesian Networks From Knowledge And Data
	Abstract���������������
	Introduction�������������������
	PEBL Features��������������������
	PEBL Development�����������������������
	Related Software�����������������������
	Conclusion And Future Work���������������������������������
	Acknowledgments����������������������
	References�����������������

	Chapter 12 Scikit-Learn: Machine Learning In Python��
	Abstract���������������
	Introduction�������������������
	Project Vision���������������������
	Underlying Technologies������������������������������
	Code Design������������������
	High-Level Yet Efficient: Some Trade Offs��
	Conclusion�����������������
	References�����������������

	Chapter 13 An Efficient Platform For The Automatic Extraction of Patterns in Native Code
	Abstract���������������
	Introduction�������������������
	Motivating Example�������������������������
	Platform Architecture����������������������������
	Evaluation�����������������
	Related Work�������������������
	Conclusions������������������
	Acknowledgments����������������������
	References�����������������

	Chapter 14 Polyglot Programming In Applications Used For Genetic Data Analysis
	Abstract���������������
	Background�����������������
	Results��������������
	Discussion�����������������
	Conclusion�����������������
	Acknowledgments����������������������
	References�����������������

	Chapter 15 Classifying Multigraph Models Of Secondary RNA Structure Using Graph-Theoretic Descriptors
	Abstract���������������
	Introduction�������������������
	Graph-Theoretic Measures For The Dual Graphs���
	Assessing The Graph-Theoretic Measures as Descriptors of RNA Topology
	Results��������������
	Conclusion�����������������
	References�����������������

	Index������������

