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A definition states that the machine learning is a discipline that allows the 
computers to learn without explicit programming. The challenge in machine 
learning is how to accurately (algorithmic) describe some kinds of tasks that 
people can easily solve (for example face recognition, speech recognition etc.).
Such algorithms can be defined for certain types of tasks, but they are very 
complex and / or require large knowledge base (e.g. machine translation-MT).
In many of the areas - data are continuously collected in order to get “some 
knowledge out of them”; for example - in medicine (patient data and therapy), 
in marketing (the users / customers and what they buy, what are they interested 
in, how products are rated etc.).
Data analysis of this scale requires approaches that will allow you to discover 
patterns and dependences among the data, that are neither known, nor obvious, 
but can be useful (data mining).

• Information retrieval - IR, is finding existing information as quickly as 
possible. For example, web browser - finds page within the (large) set of 
the entire WWW.

• Machine Learning - ML, is a set of techniques that generalize existing 
knowledge of the new information, as precisely as possible. An example 
is the speech recognition.

• Data mining - DM, primarily relates to the disclosure of something hidden 
within the data, some new dependence, which have not previously been 
known. Example is CRM - the customer analysis.

Python is high-level programming language that is very suitable for web 
development, programming of games, and data manipulation / machine learning 
applications. It is object-oriented language and interpreter as well, allowing the 
source code to execute directly (without compiling).
This edition covers machine learning theory and applications with Python, 
and includes chapters for soft computing theory, machine learning techniques/ 
applications, Python language details, and machine learning examples with 
Python.

PREFACE



xxiv

Section 1 focuses on soft computing theory, describing machine learning 
overview, types of machine learning algorithms, and data mining with skewed 
data.
Section 2 focuses on machine learning techniques and applications, describing 
machine learning algorithms for disease diagnostic, bankruptcy prediction 
using machine learning, prediction of solar irradiation using quantum support 
vector machine and predicting academic achievement of high-school students.
Section 3 focuses on Python language details, describing Python 2.7 programming 
tutorial, pattern for Python, Pystruct - learning structured prediction in Python.
Section 4 focuses on machine learning with Python use cases, describing 
Python environment for Bayesian learning: inferring the structure of Bayesian 
Networks from knowledge and data, Scikit-learn: Machine Learning in 
Python, Efficient Platform for the Automatic Extraction of Patterns in native 
code, polyglot programming in applications used for genetic data analysis, 
and classifying multigraph models of secondary RNA structure using graph-
theoretic descriptors.
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SOFT COMPUTING  

THEORY





MACHINE LEARNING  
OVERVIEW

CHAPTER

1

Taiwo Oladipupo Ayodele

University of Portsmouth United Kingdom

MACHINE LEARNING OVERVIEW
Machine Learning according to Michie et al (D. Michie, 1994) is generally 
taken to encompass automatic computing procedures based on logical or 
binary operations that learn a task from a series of examples. Here we are 
just concerned with classification, and it is arguable what should come 
under the Machine Learning umbrella. Attention has focussed on decision-
tree approaches, in which classification results from a sequence of logical 
steps. These are capable of representing the most complex problem given 
sufficient data (but this may mean an enormous amount!). Other techniques, 
such as genetic algorithms and inductive logic procedures (ILP), are 
currently under active development and in principle would allow us to 
deal with more general types of data, including cases where the number 
and type of attributes may vary, and where additional layers of learning are 

Citation: Taiwo Oladipupo Ayodele (February 1st 2010). “Machine Learning Over-
view”, New Advances in Machine Learning Yagang Zhang, IntechOpen, DOI: 
10.5772/9374. 
Copyright: © 2010 by authors and Intech. This paper is an open access article distrib-
uted under a Creative Commons Attribution 3.0 License
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superimposed, with hierarchical structure of attributes and classes and so on. 
Machine Learning aims to generate classifying expressions simple enough 
to be understood easily by the human. They must mimic human reasoning 
sufficiently to provide insight into the decision process. Like statistical 
approaches, background knowledge may be exploited in development, but 
operation is assumed without human intervention.

To learn is:
• to gain knowledge, comprehension, or mastery of through 

experience or study or to gain knowledge (of something) or 
acquire skill in (some art or practice) 

• to acquire experience of or an ability or a skill in 
• to memorize (something), to gain by experience, example, or 

practice.
Machine Learning can be defines as a process of building computer 

systems that automatically improve with experience, and implement a 
learning process. Machine Learning can still be defined as learning the 
theory automatically from the data, through a process of inference, model 
fitting, or learning from examples:

• Automated extraction of useful information from a body of data 
by building good probabilistic models. 

• Ideally suited for areas with lots of data in the absence of a general 
theory.

A major focus of machine learning research is to automatically produce 
models and a model is a pattern, plan, representation, or description designed 
to show the main working of a system, or concept, such as rules determinate 
rule for performing a mathematical operation and obtaining a certain result, 
a function from sets of formulae to formulae, and patterns ( model which 
can be used to generate things or parts of a thing from data.

Learning is a MANY-FACETED PHENOMENON as described by Jaime 
et al (Jaime G. Carbonell, 1983) and also stated that Learning processes 
include the acquisition of new declarative knowledge, the development of 
motor and cognitive skills through instruction or practice, the organization 
of new knowledge into general, effective representations, and the discovery 
of new facts and theories through observation and experimentation. The 
study and computer modelling of learning processes in their multiple 
manifestations constitutes the subject matter of machine learning. Although 
machine learning has been a central concern in artificial intelligence since 
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the early days when the idea of “self-organizing systems” was popular, the 
limitations inherent in the early neural network approaches led to a temporary 
decline in research volume. More recently, new symbolic methods and 
knowledge-intensive techniques have yielded promising results and these in 
turn have led to the current, revival in machine learning research. This book 
examines some basic methodological issues, existing techniques, proposes 
a classification of machine learning techniques, and provides a historical 
review of the major research directions.

Machine Learning according to Michie et al (D. Michie, 1994) is 
generally taken to encompass automatic computing procedures based on 
logical or binary operations that learn a task from a series of examples. Here 
we are just concerned with classification, and it is arguable what should 
come under the Machine Learning umbrella. Attention has focussed on 
decision-tree approaches, in which classification results from a sequence of 
logical steps. These are capable of representing the most complex problem 
given sufficient data (but this may mean an enormous amount!). Other 
techniques, such as genetic algorithms and inductive logic procedures (ILP), 
are currently under active development and in principle would allow us to 
deal with more general types of data, including cases where the number 
and type of attributes may vary, and where additional layers of learning are 
superimposed, with hierarchical structure of attributes and classes and so on. 
Machine Learning aims to generate classifying expressions simple enough 
to be understood easily by the human. They must mimic human reasoning 
sufficiently to provide insight into the decision process. Like statistical 
approaches, background knowledge may be exploited in development, but 
operation is assumed without human intervention. Machine learning has 
always been an integral part of artificial intelligence according to Jaime 
et al (Jaime G. Carbonell, 1983), and its methodology has evolved in 
concert, with the major concerns of the field. In response to the difficulties 
of encoding ever increasing volumes of knowledge in model AI systems, 
many researchers have recently turned their attention to machine learning 
as a means to overcome the knowledge acquisition bottleneck. This book 
presents a taxonomic analysis of machine learning organized primarily 
by learning strategies and secondarily by knowledge representation and 
application areas. A historical survey out lining the development of various 
approaches to machine learning is presented from early neural networks to 
present knowledge-intensive techniques.
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The Aim of Machine Learning
The field of machine learning can be organized around three primary 
research Areas:

•  Task-Oriented Studies: The development and analysis of learning 
systems oriented toward solving a predetermined set, of tasks 
(also known as the “engineering approach”). 

•  Cognitive Simulation: The investigation and computer simulation 
of human learning processes (also known as the “cognitive 
modelling approach”) 

•  Theoretical Analysis: the theoretical exploration of the space of 
possible learning methods and algorithms independent application 
domain.

Although many research efforts strive primarily towards one of these 
objectives, progress in on objective often lends to progress in another. For 
example, in order to investigate the space of possible learning methods, a 
reasonable starting point may be to consider the only known example of 
robust learning behaviour, namely humans (and perhaps other biological 
systems) Similarly, psychological investigations of human learning may 
held by theoretical analysis that may suggest various possible learning 
models. The need to acquire a particular form of knowledge in stone 
task-oriented study may itself spawn new theoretical analysis or pose the 
question: “how do humans acquire this specific skill (or knowledge)?” The 
existence of these mutually supportive objectives reflects the entire field of 
artificial intelligence where expert system research, cognitive simulation, 
and theoretical studies provide some (cross-fertilization of problems and 
ideas (Jaime G. Carbonell, 1983).

Applied Learning Systems
At, present, instructing a computer or a computer-controlled robot, to 
perform a task requires one to define a complete and correct, algorithm for 
that task, and then laboriously program the algorithm into a computer. These 
activities typically involve a tedious and time-consuming effort by specially 
trained personnel. Present-day computer systems cannot truly learn to 
perform a task through examples or by analogy to a similar, previous-solved 
task. Nor can they improve significantly on the basis of past, mistakes or 
acquire new abilities by observing and imitating experts. Machine learning 
research strives to open the possibility of instructing computers in such 
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new ways, and thereby promises to ease the burden of hand-programming 
growing volumes of increasingly complex information into the computers of 
tomorrow. The rapid expansion of application and availability of computers 
today makes this possibility even more attractive and desirable.

Knowledge Acquisition
When approaching a task-oriented knowledge acquisition task, one must be 
aware that, the resultant computer system must interact with humans, and 
therefore should closely parallel human abilities. The traditional argument that 
an engineering approach need not reflect human or biological performance 
and is not, truly applicable to machine learning. Since airplane, a successful 
result on an almost pure engineering approach, better little resemblance 
to their biological counterparts, one may argue that applied knowledge 
acquisition systems could be equally divorced from any consideration of 
human capabilities. This argument does not apply here because airplanes 
need not interact, with or understand birds Learning machines, on the other 
hand, will have to interact, with the people who make use of them, and 
consequently the concept and skills they acquire- if not necessarily their 
internal mechanism and must be understandable to human.

Machine Learning as a Science
The clear contender for a cognitive invariant in human is the learning 
mechanism which is the ability facts, skills and more abstractive concepts. 
Therefore understanding human learning well enough to reproduce aspect 
of that learning behaviour in a computer system is, in itself, a worthy 
scientific goal. Moreover, the computer can render substantial assistance 
to cognitive psychology, in that it may be used to test the consistency and 
completeness of learning theories and enforce a commitment to the fine-
structure processlevel detail that precludes meaningless tautological or 
untestable theories (Bishop, 2006).

The study of human learning processes is also of considerable practical 
significance. Gaining insights into the principles underlying human learning 
abilities is likely to lead to more effective educational techniques. Machine 
learning research is all about developing intelligent computer assistant or 
a computer tutoring systems and many of these goals are shared within the 
machine learning fields. According to Jaime et al (Jaime G. Carbonell, 1983) 
who stated computer tutoring are starting to incorporate abilities to infer 
models of student competence from observed performance. Inferring the 
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scope of a student’s knowledge and skills in a particular area allows much 
more effective and individualized tutoring of the student (Sleeman, 1983).

The basic scientific objective of machine learning is the exploration 
of possible learning mechanisms, including the discovery of different 
induction algorithms, the scope of theoretical limitations of certain method 
seems to be the information that must be available to the learner, the issue of 
coping with imperfect training data and the creation of general techniques 
applicable in many task domains. There is not reason to believe that human 
learning methods are the only possible mean of acquiring knowledge and 
skills. In fact, common sense suggests that human learning represents just 
one point in an uncharted space of possible learning methods- a point that 
through the evolutionary process is particularly well suited to cope with the 
general physical environment in which we exist. Most theoretical work in 
machine learning are centred on creation, characterization and analysis of 
general learning methods, with the major emphasis on analyzing generality 
and performance rather than psychological plausibility.

Whereas theoretical analysis provides a means of exploring the space of 
possible learning methods, the task-oriented approach provides a vehicle to 
test and improve the performance of functional learning systems and testing 
applied learning systems, one can determine the cost-effectiveness trade-offs 
and limitations of particular approaches to learning. In this way, individual 
data points in the space possible learning systems are explored and the space 
itself becomes better understood.
Knowledge Acquisition and Skill Refinement: There are two basic form of 
learning:

1)  Knowledge Acquisition 
2)  Skill refinement
When it is said that someone learned mathematics, it means that this 

person acquired concepts of mathematics, understood the meaning and 
their relationship to each other as well as to the world. The importance of 
learning in this case is acquisition of knowledge, including the description 
and models of physical systems and their behaviours, incorporating a variety 
of representations from simple intrusive mental model models, examples 
and images to completely test mathematical equations and physical laws. A 
person is said to have learned more if this knowledge explains a broader scope 
of situations, is more accurate, and is better able to predict the behaviour 
of the typical world (Allix, 2003). This form of learning is typically to a 
large variety of situations and is generally learned knowledge acquisition. 
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Therefore, knowledge acquisition is defined as learning a new task coupled 
with the ability to apply the information in the effective manner.

The second form of learning is the gradual improvement of motor and 
cognitive skills through practice- Learning by practice. Learning such as:

• Learning to drive a car 
• Learning to play keyboard 
• Learning to ride a bicycle 
• Learning to play piano
If one acquire all textbook knowledge on how to perform these 

aforementioned activities, this represent the initial phase in developing 
the required skills. So, the major part of the learning process consists of 
taming the acquired skill, and improving the mental or motor coordination 
or learning coordination by repeated practice and correction of deviations 
from desired behaviour. This form of learning often called skill taming. 
This differs in many ways from knowledge acquisition. Where knowledge 
acquisition may be a conscious process whose result is the creation of new 
representative knowledge structures and mental models, and skill taming is 
learning from example or learning from repeated practice without concerted 
conscious effort. Jamie (Jaime G. Carbonell, 1983) explained that most 
human learning appears to be a mixture of both activities, with intellectual 
endeavours favouring the former and motor coordination tasks favouring 
the latter. Present machine learning research focuses on the knowledge 
acquisition aspect, although some investigations, specifically those concerned 
with learning in problem-solving and transforming declarative instructions 
into effective actions, touch on aspects of both types of learning. Whereas 
knowledge acquisition clearly belongs in the realm of artificial intelligence 
research, a case could be made that skill refinement comes closer to non-
symbolic processes such as those studied in adaptative control system. 
Hence, perhaps both forms of learning- (knowledge based and refinement 
learning) can be captured in artificial intelligence models.

Classification of Machine Learning
There are several areas of machine learning that could be exploited to 
solve the problems of email management and our approach implemented 
unsupervised machine learning method. Uunsupervised learning is a method 
of machine learning whereby the algorithm is presented with examples 



Soft Computing and Machine Learning with Python10

from the input space only and a model is fit to these observations. For 
example, a clustering algorithm would be a form of unsupervised learning. 
“Unsupervised learning is a method of machine learning where a model is 
fit to observations. It is distinguished from supervised learning by the fact 
that there is no a priori output. In unsupervised learning, a data set of input 
objects is gathered. Unsupervised learning then typically treats input objects 
as a set of random variables. A joint density model is then built for the data 
set. The problem of unsupervised learning involved learning patterns in the 
input when no specific output values are supplied” according to Russell 
(Russell, 2003).

In the unsupervised learning problem, we observe only the features 
and have no measurements of the outcome. Our task is rather to describe 
how the data are organized or clustered”. Hastie (Trevor Hastie, 2001) 
explained that “In unsupervised learning or clustering there is no explicit 
teacher, and the system forms clusters or “natural groupings” of the input 
patterns. “Natural” is always defined explicitly or implicitly in the clustering 
system itself; and given a particular set of patterns or cost function, different 
clustering algorithms lead to different clusters. Often the user will set the 
hypothesized number of different clusters ahead of time, but how should 
this be done? How do we avoid inappropriate representations?” according 
to Duda (Richard O. Duda, 2000).

There are various categories in the field of artificial intelligence. The 
classifications of machine learning systems are:

•  Supervised Machine Learning: Supervised learning is a machine 
learning technique for learning a function from training data. The 
training data consist of pairs of input objects (typically vectors), 
and desired outputs. The output of the function can be a continuous 
value (called regression), or can predict a class label of the input 
object (called classification). The task of the supervised learner is 
to predict the value of the function for any valid input object after 
having seen a number of training examples (i.e. pairs of input and 
target output). To achieve this, the learner has to generalize from 
the presented data to unseen situations in a “reasonable” way (see 
inductive bias). (Compare with unsupervised learning.)

Supervised learning is a machine learning technique whereby the 
algorithm is first presented with training data which consists of examples 
which include both the inputs and the desired outputs; thus enabling it to learn 
a function. The learner should then be able to generalize from the presented 



Machine Learning Overview 11

data to unseen examples.” by Mitchell (Mitchell, 2006). Supervised learning 
also implies we are given a training set of (X, Y) pairs by a “teacher”. We 
know (sometimes only approximately) the values of f for the m samples in 
the training set, ≡ we assume that if we can find a hypothesis, h, that closely 
agrees with f for the members of ≡ then this hypothesis will be a good guess 
for f especially if ≡ is large. Curvefitting is a simple example of supervised 
learning of a function. Suppose we are given the values of a two-dimensional 
function. f, at the four sample points shown by the solid circles in Figure 9. 
We want to fit these four points with a function, h, drawn from the set, 
H, of second-degree functions. We show there a two-dimensional parabolic 
surface above the x1 . x2 , plane that fits the points. This parabolic function, 
h, is our hypothesis about the function f, which produced the four samples. 
In this case, h = f at the four samples, but we need not have required exact 
matches. Read more in section 3.1.

• Unsupervised Machine Learning: Unsupervised learning is a type 
of machine learning where manual labels of inputs are not used. 
It is distinguished from supervised learning approaches which 
learn how to perform a task, such as classification or regression, 
using a set of human prepared examples. .Unsupervised learning 
means we are only given the Xs and some (ultimate) feedback 
function on our performance. We simply have a training set of 
vectors without function values of them. The problem in this 
case, typically, is to partition the training set into subsets, ≡1 …. ≡ 
R , in some appropriate way.

Classification of Machine Learning
Classification of machine learning system could be implemented along 
many different dimensions and we have chosen these two dimensions:

•  Inference Learning: This is a form of classification on the basis of 
underlying strategy that is involved. These strategies will depend 
on the amount of inference the learning system performs on the 
information provided to the system.

Now learning strategies are distinguished by the amount of inference 
the learner performs on the information provided. So, if a computer system 
performs email classification for example, it knowledge increases but this 
may not perform any inference on the new information, this means all 
cognitive efforts is on the part of the analyst or programmer. But if the 
machine learning classifier independently discovers new theories or adopt 
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new concepts, this will perform a very substantial inference. This is what is 
called deriving knowledge from example or experiments or by observation. 
An example is: When a student wants to solve statistical problems in a text 
book – this is a process that involves inference but the solution is not to 
discover a brand new formula without guidance from a teacher or text book. 
So, as the amount of inference that the learner is capable of performing 
increases, the burdens placed on the teacher or on external environ decreases. 
According to Jaime (Jaime G. Carbonell, 1983) , (Anil Mathur, 1999) who 
stated that it is much more difficult to teach a person by explaining each steps 
in a complex task than by showing that person the way that similar tasks are 
usually done. It more difficult yet to programme a computer to perform a 
complex task than to instruct a person to perform the task; as programming 
requires explicit specification of all prerequisite details, whereas a person 
receiving instruction can use prior knowledge and common sense to fill in 
most mundane details.

•  Knowledge Representation: This is a form of skill acquire by the 
learner on the basis of the type of representation of the knowledge.

Existing Learning Systems
There are many other existing learning systems that employ multiple 
strategies and knowledge representations and some have been applied 
to more than one. In the knowledge based machine learning method, no 
inference is used but the learner display the transformation of knowledge in 
varieties of ways:

•  Learning by being programmed: When an algorithm or code 
is written to perform specific task. E.g. a code is written as a 
guessing game for the type of animal. Such a programme could 
be modified by external entity. 

•  Learning by memorisation: This is by memorising given facts or 
data with no inference drawn from the incoming information or 
data. 

•  Learning from examples: This is a special case of inductive 
learning. Given a set of examples and counterexamples of 
a concept, the learner induces a general concept description 
that describes all of the positive examples and none of the 
counterexamples. Learning from examples is a method has been 
heavily investigated in artificial intelligence field. The amount of 
inference perform by the learner is much greater than in learning 
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from instructions, (Anil Mathur, 1999), (Jaime G. Carbonell, 
1983). 

•  Learning from Observation: This is an unsupervised learning 
approach and is a very general form of inductive learning 
that includes discovery systems, theory formation tasks, the 
creation of classification criteria to form taxonomic hierarchies 
and similar task to be performed without benefit of an external 
teacher. Unsupervised learning requires the learner to perform 
more inference than any approach as previously explained. The 
learner is not provided with a set if data or instance of a particular 
concept. The above classification of learning strategies should 
help one to compare various learning systems in terms of their 
underlying mechanisms, in terms of the available external source 
of information and in terms of the degree to which they reply on 
preorganised knowledge. Read more in section 3.2.

Machine Learning Applications
The other aspect for classifying learning systems is the area of application 
which gives a new dimension for machine learning. Below are areas to 
which various existing learning systems have been applied. They are:

1)  Computer Programming
2)  Game playing (chess, poker, and so on)
3)  Image recognition, Speech recognition
4)  Medical diagnosis
5)  Agriculture, Physics
6)  Email management, Robotics
7)  Music
8)  Mathematics
9)  Natural Language Processing and many more.
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MACHINE LEARNING: ALGORITHMS TYPES
Machine learning algorithms are organized into taxonomy, based on the de-
sired outcome of the algorithm. Common algorithm types include:

•  Supervised learning --- where the algorithm generates a function 
that maps inputs to desired outputs. One standard formulation 
of the supervised learning task is the classification problem: 
the learner is required to learn (to approximate the behavior of) 
a function which maps a vector into one of several classes by 
looking at several input-output examples of the function. 

•  Unsupervised learning --- which models a set of inputs: labeled 
examples are not available. 
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•  Semi-supervised learning --- which combines both labeled 
and unlabeled examples to generate an appropriate function or 
classifier. 

•  Reinforcement learning --- where the algorithm learns a policy of 
how to act given an observation of the world. Every action has 
some impact in the environment, and the environment provides 
feedback that guides the learning algorithm. 

•  Transduction --- similar to supervised learning, but does not 
explicitly construct a function: instead, tries to predict new 
outputs based on training inputs, training outputs, and new inputs. 

•  Learning to learn --- where the algorithm learns its own inductive 
bias based on previous experience.

The performance and computational analysis of machine learning 
algorithms is a branch of statistics known as computational learning theory.

Machine learning is about designing algorithms that allow a computer 
to learn. Learning is not necessarily involves consciousness but learning is 
a matter of finding statistical regularities or other patterns in the data. Thus, 
many machine learning algorithms will barely resemble how human might 
approach a learning task. However, learning algorithms can give insight into 
the relative difficulty of learning in different environments.

Supervised Learning Approach
Supervised learning is fairly common in classification problems because the 
goal is often to get the computer to learn a classification system that we have 
created. Digit recognition, once again, is a common example of classification 
learning. More generally, classification learning is appropriate for any 
problem where deducing a classification is useful and the classification is 
easy to determine. In some cases, it might not even be necessary to give 
predetermined classifications to every instance of a problem if the agent 
can work out the classifications for itself. This would be an example of 
unsupervised learning in a classification context.

Supervised learning often leaves the probability for inputs undefined. 
This model is not needed as long as the inputs are available, but if some 
of the input values are missing, it is not possible to infer anything about 
the outputs. Unsupervised learning, all the observations are assumed to be 
caused by latent variables, that is, the observations is assumed to be at the 
end of the causal chain. Examples of supervised learning and unsupervised 
learning are shown in the figure 1 below:
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Figure 1: Examples of Supervised and Unsupervised Learning.

Supervised learning is the most common technique for training neural 
networks and decision trees. Both of these techniques are highly dependent 
on the information given by the pre-determined classifications. In the case 
of neural networks, the classification is used to determine the error of the 
network and then adjust the network to minimize it, and in decision trees, 
the classifications are used to determine what attributes provide the most 
information that can be used to solve the classification puzzle. We’ll look at 
both of these in more detail, but for now, it should be sufficient to know that 
both of these examples thrive on having some “supervision” in the form of 
pre-determined classifications.

Inductive machine learning is the process of learning a set of rules 
from instances (examples in a training set), or more generally speaking, 
creating a classifier that can be used to generalize from new instances. The 
process of applying supervised ML to a realworld problem is described 
in Figure F. The first step is collecting the dataset. If a requisite expert is 
available, then s/he could suggest which fields (attributes, features) are 
the most informative. If not, then the simplest method is that of “brute-
force,” which means measuring everything available in the hope that the 
right (informative, relevant) features can be isolated. However, a dataset 
collected by the “brute-force” method is not directly suitable for induction. 
It contains in most cases noise and missing feature values, and therefore 
requires significant pre-processing according to Zhang et al (Zhang, 2002).

The second step is the data preparation and data pre-processing. 
Depending on the circumstances, researchers have a number of methods 
to choose from to handle missing data (Batista, 2003). Hodge et al (Hodge, 
2004) , have recently introduced a survey of contemporary techniques for 
outlier (noise) detection. These researchers have identified the techniques’ 
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advantages and disadvantages. Instance selection is not only used to handle 
noise but to cope with the infeasibility of learning from very large datasets. 
Instance selection in these datasets is an optimization problem that attempts 
to maintain the mining quality while minimizing the sample size. It reduces 
data and enables a data mining algorithm to function and work effectively 
with very large datasets. There is a variety of procedures for sampling 
instances from a large dataset. See figure 2 below.

Feature subset selection is the process of identifying and removing as 
many irrelevant and redundant features as possible (Yu, 2004) . This reduces 
the dimensionality of the data and enables data mining algorithms to operate 
faster and more effectively. The fact that many features depend on one 
another often unduly influences the accuracy of supervised ML classification 
models. This problem can be addressed by constructing new features 
from the basic feature set. This technique is called feature construction/
transformation. These newly generated features may lead to the creation 
of more concise and accurate classifiers. In addition, the discovery of 
meaningful features contributes to better comprehensibility of the produced 
classifier, and a better understanding of the learned concept.Speech 
recognition using hidden Markov models and Bayesian networks relies on 
some elements of supervision as well in order to adjust parameters to, as 
usual, minimize the error on the given inputs.Notice something important 
here: in the classification problem, the goal of the learning algorithm is 
to minimize the error with respect to the given inputs. These inputs, often 
called the “training set”, are the examples from which the agent tries to 
learn. But learning the training set well is not necessarily the best thing to 
do. For instance, if I tried to teach you exclusive-or, but only showed you 
combinations consisting of one true and one false, but never both false or 
both true, you might learn the rule that the answer is always true. Similarly, 
with machine learning algorithms, a common problem is over-fitting the 
data and essentially memorizing the training set rather than learning a more 
general classification technique. As you might imagine, not all training sets 
have the inputs classified correctly. This can lead to problems if the algorithm 
used is powerful enough to memorize even the apparently “special cases” 
that don’t fit the more general principles. This, too, can lead to over fitting, 
and it is a challenge to find algorithms that are both powerful enough to 
learn complex functions and robust enough to produce generalisable results.
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Figure 2: Machine Learning Supervise Process.

Unsupervised Learning
Unsupervised learning seems much harder: the goal is to have the computer 
learn how to do something that we don’t tell it how to do! There are actually 
two approaches to unsupervised learning. The first approach is to teach 
the agent not by giving explicit categorizations, but by using some sort 
of reward system to indicate success. Note that this type of training will 
generally fit into the decision problem framework because the goal is not 
to produce a classification but to make decisions that maximize rewards. 
This approach nicely generalizes to the real world, where agents might be 
rewarded for doing certain actions and punished for doing others. Often, 
a form of reinforcement learning can be used for unsupervised learning, 
where the agent bases its actions on the previous rewards and punishments 
without necessarily even learning any information about the exact ways that 
its actions affect the world. In a way, all of this information is unnecessary 
because by learning a reward function, the agent simply knows what to 
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do without any processing because it knows the exact reward it expects to 
achieve for each action it could take. This can be extremely beneficial in 
cases where calculating every possibility is very time consuming (even if 
all of the transition probabilities between world states were known). On 
the other hand, it can be very time consuming to learn by, essentially, trial 
and error. But this kind of learning can be powerful because it assumes no 
pre-discovered classification of examples. In some cases, for example, our 
classifications may not be the best possible. One striking exmaple is that the 
conventional wisdom about the game of backgammon was turned on its head 
when a series of computer programs (neuro-gammon and TD-gammon) that 
learned through unsupervised learning became stronger than the best human 
chess players merely by playing themselves over and over. These programs 
discovered some principles that surprised the backgammon experts and 
performed better than backgammon programs trained on pre-classified 
examples. A second type of unsupervised learning is called clustering. In this 
type of learning, the goal is not to maximize a utility function, but simply to 
find similarities in the training data. The assumption is often that the clusters 
discovered will match reasonably well with an intuitive classification. For 
instance, clustering individuals based on demographics might result in a 
clustering of the wealthy in one group and the poor in another. Although 
the algorithm won’t have names to assign to these clusters, it can produce 
them and then use those clusters to assign new examples into one or the 
other of the clusters. This is a data-driven approach that can work well when 
there is sufficient data; for instance, social information filtering algorithms, 
such as those that Amazon.com use to recommend books, are based on 
the principle of finding similar groups of people and then assigning new 
users to groups. In some cases, such as with social information filtering, 
the information about other members of a cluster (such as what books they 
read) can be sufficient for the algorithm to produce meaningful results. In 
other cases, it may be the case that the clusters are merely a useful tool for a 
human analyst. Unfortunately, even unsupervised learning suffers from the 
problem of overfitting the training data. There’s no silver bullet to avoiding 
the problem because any algorithm that can learn from its inputs needs to be 
quite powerful.

Unsupervised learning algorithms according to Ghahramani 
(Ghahramani, 2008) are designed to extract structure from data samples. 
The quality of a structure is measured by a cost function which is usually 
minimized to infer optimal parameters characterizing the hidden structure 
in the data. Reliable and robust inference requires a guarantee that extracted 
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structures are typical for the data source, i.e., similar structures have to 
be extracted from a second sample set of the same data source. Lack of 
robustness is known as over fitting from the statistics and the machine 
learning literature. In this talk I characterize the over fitting phenomenon 
for a class of histogram clustering models which play a prominent role in 
information retrieval, linguistic and computer vision applications. Learning 
algorithms with robustness to sample fluctuations are derived from large 
deviation results and the maximum entropy principle for the learning process.

Unsupervised learning has produced many successes, such as world-
champion calibre backgammon programs and even machines capable of 
driving cars! It can be a powerful technique when there is an easy way to 
assign values to actions. Clustering can be useful when there is enough data 
to form clusters (though this turns out to be difficult at times) and especially 
when additional data about members of a cluster can be used to produce 
further results due to dependencies in the data. Classification learning is 
powerful when the classifications are known to be correct (for instance, 
when dealing with diseases, it’s generally straight-forward to determine the 
design after the fact by an autopsy), or when the classifications are simply 
arbitrary things that we would like the computer to be able to recognize for 
us. Classification learning is often necessary when the decisions made by the 
algorithm will be required as input somewhere else. Otherwise, it wouldn’t 
be easy for whoever requires that input to figure out what it means. Both 
techniques can be valuable and which one you choose should depend on 
the circumstances--what kind of problem is being solved, how much time 
is allotted to solving it (supervised learning or clustering is often faster than 
reinforcement learning techniques), and whether supervised learning is even 
possible.

Algorithm Types
In the area of supervised learning which deals much with classification. 
These are the algorithms types:

•  Linear Classifiers 
– Logical Regression 
– Naïve Bayes Classifier 
– Perceptron 
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– Support Vector Machine 
•  Quadratic Classifiers 
•  K-Means Clustering 
•  Boosting 
•  Decision Tree 

– Random Forest 
•  Neural networks 
•  Bayesian Networks
Linear Classifiers: In machine learning, the goal of classification is 

to group items that have similar feature values, into groups. Timothy et al 
(Timothy Jason Shepard, 1998) stated that a linear classifier achieves this by 
making a classification decision based on the value of the linear combination 
of the features. If the input feature vector to the classifier is a real vector x
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  is a real vector of weights and f is a function that converts the dot 

product of the two vectors into the desired output. The weight vector w
 is 

learned from a set of labelled training samples. Often f is a simple function 
that maps all values above a certain threshold to the first class and all other 
values to the second class. A more complex f might give the probability that 
an item belongs to a certain class.

For a two-class classification problem, one can visualize the operation 
of a linear classifier as splitting a high-dimensional input space with a 
hyperplane: all points on one side of the hyper plane are classified as “yes”, 
while the others are classified as “no”. A linear classifier is often used in 
situations where the speed of classification is an issue, since it is often the 
fastest classifier, especially when x

  is sparse. However, decision trees can 
be faster. Also, linear classifiers often work very well when the number of 
dimensions in x

  is large, as in document classification, where each element in
x
  is typically the number of counts of a word in a document (see document-

term matrix). In such cases, the classifier should be wellregularized.
•  Support Vector Machine: A Support Vector Machine as stated 

by Luis et al (Luis Gonz, 2005) (SVM) performs classification 
by constructing an Ndimensional hyper plane that optimally 
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separates the data into two categories. SVM models are closely 
related to neural networks. In fact, a SVM model using a sigmoid 
kernel function is equivalent to a twolayer, perceptron neural 
network.

Support Vector Machine (SVM) models are a close cousin to classical 
multilayer perceptron neural networks. Using a kernel function, SVM’s are 
an alternative training method for polynomial, radial basis function and 
multi-layer perceptron classifiers in which the weights of the network are 
found by solving a quadratic programming problem with linear constraints, 
rather than by solving a non-convex, unconstrained minimization problem 
as in standard neural network training.

In the parlance of SVM literature, a predictor variable is called an 
attribute, and a transformed attribute that is used to define the hyper plane 
is called a feature. The task of choosing the most suitable representation is 
known as feature selection. A set of features that describes one case (i.e., a 
row of predictor values) is called a vector. So the goal of SVM modelling 
is to find the optimal hyper plane that separates clusters of vector in such a 
way that cases with one category of the target variable are on one side of the 
plane and cases with the other category are on the other size of the plane. 
The vectors near the hyper plane are the support vectors. The figure below 
presents an overview of the SVM process.

A Two-Dimensional Example
Before considering N-dimensional hyper planes, let’s look at a simple 
2-dimensional example. Assume we wish to perform a classification, and 
our data has a categorical target variable with two categories. Also assume 
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that there are two predictor variables with continuous values. If we plot 
the data points using the value of one predictor on the X axis and the other 
on the Y axis we might end up with an image such as shown below. One 
category of the target variable is represented by rectangles while the other 
category is represented by ovals.

In this idealized example, the cases with one category are in the lower 
left corner and the cases with the other category are in the upper right 
corner; the cases are completely separated. The SVM analysis attempts to 
find a 1-dimensional hyper plane (i.e. a line) that separates the cases based 
on their target categories. There are an infinite number of possible lines; two 
candidate lines are shown above. The question is which line is better, and 
how do we define the optimal line.

The dashed lines drawn parallel to the separating line mark the distance 
between the dividing line and the closest vectors to the line. The distance 
between the dashed lines is called the margin. The vectors (points) that 
constrain the width of the margin are the support vectors. The following 
figure illustrates this.
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An SVM analysis (Luis Gonz, 2005) finds the line (or, in general, hyper 
plane) that is oriented so that the margin between the support vectors is 
maximized. In the figure above, the line in the right panel is superior to the 
line in the left panel.

If all analyses consisted of two-category target variables with two 
predictor variables, and the cluster of points could be divided by a straight 
line, life would be easy. Unfortunately, this is not generally the case, so 
SVM must deal with (a) more than two predictor variables, (b) separating 
the points with non-linear curves, (c) handling the cases where clusters 
cannot be completely separated, and (d) handling classifications with more 
than two categories.

In this chapter, we shall explain three main machine learning techniques 
with their examples and how they perform in reality. These are:

•  K-Means Clustering
•  Neural Network
•  Self Organised Map

K-Means Clustering
The basic step of k-means clustering is uncomplicated. In the beginning we 
determine number of cluster K and we assume the centre of these clusters. 
We can take any random objects as the initial centre or the first K objects in 
sequence can also serve as the initial centre. Then the K means algorithm 
will do the three steps below until convergence.

Iterate until stable (= no object move group):
1.  Determine the centre coordinate 
2.  Determine the distance of each object to the centre 
3.  Group the object based on minimum distance

The Figure 3 shows a K- means flow diagram
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Figure 3: K-means iteration.

K-means (Bishop C. M., 1995) and (Tapas Kanungo, 2002) is one of 
the simplest unsupervised learning algorithms that solve the well known 
clustering problem. The procedure follows a simple and easy way to classify 
a given data set through a certain number of clusters (assume k clusters) 
fixed a priori. The main idea is to define k centroids, one for each cluster. 
These centroids shoud be placed in a cunning way because of different 
location causes different result. So, the better choice is to place them as 
much as possible far away from each other. The next step is to take each 
point belonging to a given data set and associate it to the nearest centroid. 
When no point is pending, the first step is completed and an early groupage 
is done. At this point we need to re-calculate k new centroids as barycenters 
of the clusters resulting from the previous step. After we have these k new 
centroids, a new binding has to be done between the same data set points and 
the nearest new centroid. A loop has been generated. As a result of this loop 
we may notice that the k centroids change their location step by step until 
no more changes are done. In other words centroids do not move any more.

Finally, this algorithm aims at minimizing an objective function, in this 
case a squared error function. The objective function
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where 
2( )j

i jx c− is a chosen distance measure between a data point ( )j
ix and the 

cluster centre cj, is an indicator of the distance of the n data points from their 
respective cluster centres. 

The algorithm in figure 4 is composed of the following steps:

Although it can be proved that the procedure will always terminate, the 
k-means algorithm does not necessarily find the most optimal configuration, 
corresponding to the global objective function minimum. The algorithm is 
also significantly sensitive to the initial randomly selected cluster centres. 
The k-means algorithm can be run multiple times to reduce this effect. 
K-means is a simple algorithm that has been adapted to many problem 
domains. As we are going to see, it is a good candidate for extension to work 
with fuzzy feature vectors.

An example
Suppose that we have n sample feature vectors x1, x2, ..., xn all from the same 
class, and we know that they fall into k compact clusters, k < n. Let mi be the 
mean of the vectors in cluster i. If the clusters are well separated, we can use 
a minimum-distance classifier to separate them. That is, we can say that x is 
in cluster i if || x - mi || is the minimum of all the k distances. This suggests 
the following procedure for finding the k means:

•  Make initial guesses for the means m1, m2, ..., mk 
•  Until there are no changes in any mean 
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•  Use the estimated means to classify the samples into clusters 
•  For i from 1 to k
•  Replace mi with the mean of all of the samples for cluster i 
•  end_for 
•  end_until
Here is an example showing how the means m1 and m2 move into the 

centers of two clusters.

This is a simple version of the k-means procedure. It can be viewed as 
a greedy algorithm for partitioning the n samples into k clusters so as to 
minimize the sum of the squared distances to the cluster centers. It does 
have some weaknesses:

•  The way to initialize the means was not specified. One popular 
way to start is to randomly choose k of the samples. 

•  The results produced depend on the initial values for the means, 
and it frequently happens that suboptimal partitions are found. 
The standard solution is to try a number of different starting 
points. 

•  It can happen that the set of samples closest to mi is empty, so that 
mi cannot be updated. This is an annoyance that must be handled 
in an implementation, but that we shall ignore. 

•  The results depend on the metric used to measure || x - mi ||. A 
popular solution is to normalize each variable by its standard 
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deviation, though this is not always desirable. 
•  The results depend on the value of k.
This last problem is particularly troublesome, since we often have no 

way of knowing how many clusters exist. In the example shown above, the 
same algorithm applied to the same data produces the following 3-means 
clustering. Is it better or worse than the 2-means clustering?

Unfortunately there is no general theoretical solution to find the optimal 
number of clusters for any given data set. A simple approach is to compare 
the results of multiple runs with different k classes and choose the best one 
according to a given criterion

Neural Network
Neural networks (Bishop C. M., 1995) can actually perform a number of 
regression and/or classification tasks at once, although commonly each 
network performs only one. In the vast majority of cases, therefore, the 
network will have a single output variable, although in the case of many-
state classification problems, this may correspond to a number of output 
units (the post-processing stage takes care of the mapping from output units 
to output variables). If you do define a single network with multiple output 
variables, it may suffer from cross-talk (the hidden neurons experience 
difficulty learning, as they are attempting to model at least two functions at 
once). The best solution is usually to train separate networks for each output, 
then to combine them into an ensemble so that they can be run as a unit. 
Neural methods are:
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•  Multilayer Perceptrons: This is perhaps the most popular 
network architecture in use today, due originally to Rumelhart 
and McClelland (1986) and discussed at length in most neural 
network textbooks (e.g., Bishop, 1995). This is the type of network 
discussed briefly in previous sections: the units each perform a 
biased weighted sum of their inputs and pass this activation level 
through a transfer function to produce their output, and the units 
are arranged in a layered feed forward topology. The network 
thus has a simple interpretation as a form of inputoutput model, 
with the weights and thresholds (biases) the free parameters of 
the model. Such networks can model functions of almost arbitrary 
complexity, with the number of layers, and the number of units in 
each layer, determining the function complexity. Important issues 
in Multilayer Perceptrons (MLP) design include specification of 
the number of hidden layers and the number of units in these 
layers (Bishop C. M., 1995), (D. Michie, 1994).

The number of input and output units is defined by the problem (there 
may be some uncertainty about precisely which inputs to use, a point to 
which we will return later. However, for the moment we will assume that the 
input variables are intuitively selected and are all meaningful). The number 
of hidden units to use is far from clear. As good a starting point as any is to 
use one hidden layer, with the number of units equal to half the sum of the 
number of input and output units. Again, we will discuss how to choose a 
sensible number later.

•  Training Multilayer Perceptrons: Once the number of layers, 
and number of units in each layer, has been selected, the 
network’s weights and thresholds must be set so as to minimize 
the prediction error made by the network. This is the role of the 
training algorithms. The historical cases that you have gathered 
are used to automatically adjust the weights and thresholds 
in order to minimize this error. This process is equivalent to 
fitting the model represented by the network to the training data 
available. The error of a particular configuration of the network 
can be determined by running all the training cases through the 
network, comparing the actual output generated with the desired 
or target outputs. The differences are combined together by an 
error function to give the network error. The most common 
error functions are the sum squared error (used for regression 
problems), where the individual errors of output units on each 
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case are squared and summed together, and the cross entropy 
functions (used for maximum likelihood classification).

In traditional modeling approaches (e.g., linear modeling) it is possible 
to algorithmically determine the model configuration that absolutely 
minimizes this error. The price paid for the greater (non-linear) modeling 
power of neural networks is that although we can adjust a network to lower 
its error, we can never be sure that the error could not be lower still.

A helpful concept here is the error surface. Each of the N weights and 
thresholds of the network (i.e., the free parameters of the model) is taken 
to be a dimension in space. The N+1th dimension is the network error. For 
any possible configuration of weights the error can be plotted in the N+1th 
dimension, forming an error surface. The objective of network training is to 
find the lowest point in this many-dimensional surface.

In a linear model with sum squared error function, this error surface is 
a parabola (a quadratic), which means that it is a smooth bowl-shape with a 
single minimum. It is therefore “easy” to locate the minimum.

Neural network error surfaces are much more complex, and are 
characterized by a number of unhelpful features, such as local minima (which 
are lower than the surrounding terrain, but above the global minimum), flat-
spots and plateaus, saddle-points, and long narrow ravines.

It is not possible to analytically determine where the global minimum 
of the error surface is, and so neural network training is essentially an 
exploration of the error surface. From an initially random configuration 
of weights and thresholds (i.e., a random point on the error surface), the 
training algorithms incrementally seek for the global minimum. Typically, 
the gradient (slope) of the error surface is calculated at the current point, 
and used to make a downhill move. Eventually, the algorithm stops in a low 
point, which may be a local minimum (but hopefully is the global minimum).

•  The Back Propagation Algorithm: The best-known example 
of a neural network training algorithm is back propagation 
(Haykin, 19994), (Patterson, 19996), (Fausett, 19994). Modern 
second-order algorithms such as conjugate gradient descent 
and Levenberg-Marquardt (see Bishop, 1995; Shepherd, 1997) 
(both included in ST Neural Networks) are substantially faster 
(e.g., an order of magnitude faster) for many problems, but back 
propagation still has advantages in some circumstances, and is the 
easiest algorithm to understand. We will introduce this now, and 
discuss the more advanced algorithms later. In back propagation, 
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the gradient vector of the error surface is calculated. This vector 
points along the line of steepest descent from the current point, 
so we know that if we move along it a “short” distance, we will 
decrease the error. A sequence of such moves (slowing as we near 
the bottom) will eventually find a minimum of some sort. The 
difficult part is to decide how large the steps should be.

Large steps may converge more quickly, but may also overstep the 
solution or (if the error surface is very eccentric) go off in the wrong direction. 
A classic example of this in neural network training is where the algorithm 
progresses very slowly along a steep, narrow, valley, bouncing from one 
side across to the other. In contrast, very small steps may go in the correct 
direction, but they also require a large number of iterations. In practice, the 
step size is proportional to the slope (so that the algorithm settles down in 
a minimum) and to a special constant: the learning rate. The correct setting 
for the learning rate is application-dependent, and is typically chosen by 
experiment; it may also be time-varying, getting smaller as the algorithm 
progresses.

The algorithm is also usually modified by inclusion of a momentum 
term: this encourages movement in a fixed direction, so that if several steps 
are taken in the same direction, the algorithm “picks up speed”, which gives 
it the ability to (sometimes) escape local minimum, and also to move rapidly 
over flat spots and plateaus.

The algorithm therefore progresses iteratively, through a number of 
epochs. On each epoch, the training cases are each submitted in turn to the 
network, and target and actual outputs compared and the error calculated. 
This error, together with the error surface gradient, is used to adjust the 
weights, and then the process repeats. The initial network configuration is 
random, and training stops when a given number of epochs elapses, or when 
the error reaches an acceptable level, or when the error stops improving (you 
can select which of these stopping conditions to use).

•  Over-learning and Generalization: One major problem with 
the approach outlined above is that it doesn’t actually minimize 
the error that we are really interested in - which is the expected 
error the network will make when new cases are submitted to 
it. In other words, the most desirable property of a network is 
its ability to generalize to new cases. In reality, the network is 
trained to minimize the error on the training set, and short of 
having a perfect and infinitely large training set, this is not the 
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same thing as minimizing the error on the real error surface - the 
error surface of the underlying and unknown model (Bishop C. 
M., 1995).

The most important manifestation of this distinction is the problem of 
over-learning, or over-fitting. It is easiest to demonstrate this concept using 
polynomial curve fitting rather than neural networks, but the concept is 
precisely the same.

A polynomial is an equation with terms containing only constants and 
powers of the variables. For example:

Different polynomials have different shapes, with larger powers (and 
therefore larger numbers of terms) having steadily more eccentric shapes. 
Given a set of data, we may want to fit a polynomial curve (i.e., a model) 
to explain the data. The data is probably noisy, so we don’t necessarily 
expect the best model to pass exactly through all the points. A low-order 
polynomial may not be sufficiently flexible to fit close to the points, whereas 
a high-order polynomial is actually too flexible, fitting the data exactly by 
adopting a highly eccentric shape that is actually unrelated to the underlying 
function. See figure 4 below.

Figure 4: High-order polynomial sample.

Neural networks have precisely the same problem. A network with 
more weights models a more complex function, and is therefore prone to 
over-fitting. A network with less weight may not be sufficiently powerful 
to model the underlying function. For example, a network with no hidden 
layers actually models a simple linear function. How then can we select 
the right complexity of network? A larger network will almost invariably 
achieve a lower error eventually, but this may indicate over-fitting rather 
than good modeling.
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The answer is to check progress against an independent data set, the 
selection set. Some of the cases are reserved, and not actually used for 
training in the back propagation algorithm. Instead, they are used to keep an 
independent check on the progress of the algorithm. It is invariably the case 
that the initial performance of the network on training and selection sets is 
the same (if it is not at least approximately the same, the division of cases 
between the two sets is probably biased). As training progresses, the training 
error naturally drops, and providing training is minimizing the true error 
function, the selection error drops too. However, if the selection error stops 
dropping, or indeed starts to rise, this indicates that the network is starting to 
overfit the data, and training should cease. When over-fitting occurs during 
the training process like this, it is called over-learning. In this case, it is 
usually advisable to decrease the number of hidden units and/or hidden 
layers, as the network is over-powerful for the problem at hand. In contrast, 
if the network is not sufficiently powerful to model the underlying function, 
over-learning is not likely to occur, and neither training nor selection errors 
will drop to a satisfactory level.

The problems associated with local minima, and decisions over the 
size of network to use, imply that using a neural network typically involves 
experimenting with a large number of different networks, probably training 
each one a number of times (to avoid being fooled by local minima), and 
observing individual performances. The key guide to performance here is 
the selection error. However, following the standard scientific precept that, 
all else being equal, a simple model is always preferable to a complex model, 
you can also select a smaller network in preference to a larger one with a 
negligible improvement in selection error.

A problem with this approach of repeated experimentation is that the 
selection set plays a key role in selecting the model, which means that it is 
actually part of the training process. Its reliability as an independent guide 
to performance of the model is therefore compromised - with sufficient 
experiments, you may just hit upon a lucky network that happens to perform 
well on the selection set. To add confidence in the performance of the final 
model, it is therefore normal practice (at least where the volume of training 
data allows it) to reserve a third set of cases - the test set. The final model 
is tested with the test set data, to ensure that the results on the selection and 
training set are real, and not artifacts of the training process. Of course, 
to fulfill this role properly the test set should be used only once - if it is in 
turn used to adjust and reiterate the training process, it effectively becomes 
selection data!
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This division into multiple subsets is very unfortunate, given that we 
usually have less data than we would ideally desire even for a single subset. 
We can get around this problem by resampling. Experiments can be conducted 
using different divisions of the available data into training, selection, and 
test sets. There are a number of approaches to this subset, including random 
(monte-carlo) resampling, cross-validation, and bootstrap. If we make 
design decisions, such as the best configuration of neural network to use, 
based upon a number of experiments with different subset examples, the 
results will be much more reliable. We can then either use those experiments 
solely to guide the decision as to which network types to use, and train such 
networks from scratch with new samples (this removes any sampling bias); 
or, we can retain the best networks found during the sampling process, but 
average their results in an ensemble, which at least mitigates the sampling 
bias.

To summarize, network design (once the input variables have been 
selected) follows a number of stages:

•  Select an initial configuration (typically, one hidden layer with 
the number of hidden units set to half the sum of the number of 
input and output units). 

•  Iteratively conduct a number of experiments with each 
configuration, retaining the best network (in terms of selection 
error) found. A number of experiments are required with each 
configuration to avoid being fooled if training locates a local 
minimum, and it is also best to resample. 

•  On each experiment, if under-learning occurs (the network 
doesn’t achieve an acceptable performance level) try adding more 
neurons to the hidden layer(s). If this doesn’t help, try adding an 
extra hidden layer.

•  If over-learning occurs (selection error starts to rise) try removing 
hidden units (and possibly layers). 

•  Once you have experimentally determined an effective 
configuration for your networks, resample and generate new 
networks with that configuration.

•  Data Selection: All the above stages rely on a key assumption. 
Specifically, the training, verification and test data must be 
representative of the underlying model (and, further, the three sets 
must be independently representative). The old computer science 
adage “garbage in, garbage out” could not apply more strongly 
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than in neural modeling. If training data is not representative, 
then the model’s worth is at best compromised. At worst, it may 
be useless. It is worth spelling out the kind of problems which can 
corrupt a training set:

The future is not the past. Training data is typically historical. If 
circumstances have changed, relationships which held in the past may no 
longer hold. All eventualities must be covered. A neural network can only 
learn from cases that are present. If people with incomes over $100,000 
per year are a bad credit risk, and your training data includes nobody over 
$40,000 per year, you cannot expect it to make a correct decision when it 
encounters one of the previously-unseen cases. Extrapolation is dangerous 
with any model, but some types of neural network may make particularly 
poor predictions in such circumstances.

A network learns the easiest features it can. A classic (possibly 
apocryphal) illustration of this is a vision project designed to automatically 
recognize tanks. A network is trained on a hundred pictures including tanks, 
and a hundred not. It achieves a perfect 100% score. When tested on new 
data, it proves hopeless. The reason? The pictures of tanks are taken on 
dark, rainy days; the pictures without on sunny days. The network learns 
to distinguish the (trivial matter of) differences in overall light intensity. 
To work, the network would need training cases including all weather and 
lighting conditions under which it is expected to operate - not to mention all 
types of terrain, angles of shot, distances...

Unbalanced data sets. Since a network minimizes an overall error, the 
proportion of types of data in the set is critical. A network trained on a data 
set with 900 good cases and 100 bad will bias its decision towards good 
cases, as this allows the algorithm to lower the overall error (which is much 
more heavily influenced by the good cases). If the representation of good 
and bad cases is different in the real population, the network’s decisions 
may be wrong. A good example would be disease diagnosis. Perhaps 90% 
of patients routinely tested are clear of a disease. A network is trained on an 
available data set with a 90/10 split. It is then used in diagnosis on patients 
complaining of specific problems, where the likelihood of disease is 50/50. 
The network will react over-cautiously and fail to recognize disease in 
some unhealthy patients. In contrast, if trained on the “complainants” data, 
and then tested on “routine” data, the network may raise a high number of 
false positives. In such circumstances, the data set may need to be crafted 
to take account of the distribution of data (e.g., you could replicate the less 
numerous cases, or remove some of the numerous cases), or the network’s 
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decisions modified by the inclusion of a loss matrix (Bishop C. M., 1995). 
Often, the best approach is to ensure even representation of different cases, 
then to interpret the network’s decisions accordingly.

Self Organised Map
Self Organizing Feature Map (SOFM, or Kohonen) networks are used 
quite differently to the other networks. Whereas all the other networks 
are designed for supervised learning tasks, SOFM networks are designed 
primarily for unsupervised learning (Haykin, 19994), (Patterson, 19996), 
(Fausett, 19994) (Whereas in supervised learning the training data set 
contains cases featuring input variables together with the associated outputs 
(and the network must infer a mapping from the inputs to the outputs), in 
unsupervised learning the training data set contains only input variables. At 
first glance this may seem strange. Without outputs, what can the network 
learn? The answer is that the SOFM network attempts to learn the structure 
of the data.

Also Kohonen (Kohonen, 1997) explained one possible use is therefore 
in exploratory data analysis. The SOFM network can learn to recognize 
clusters of data, and can also relate similar classes to each other. The user can 
build up an understanding of the data, which is used to refine the network. 
As classes of data are recognized, they can be labelled, so that the network 
becomes capable of classification tasks. SOFM networks can also be used for 
classification when output classes are immediately available - the advantage 
in this case is their ability to highlight similarities between classes.

A second possible use is in novelty detection. SOFM networks can learn 
to recognize clusters in the training data, and respond to it. If new data, 
unlike previous cases, is encountered, the network fails to recognize it and 
this indicates novelty.

A SOFM network has only two layers: the input layer, and an output 
layer of radial units (also known as the topological map layer). The units in 
the topological map layer are laid out in space - typically in two dimensions 
(although ST Neural Networks also supports onedimensional Kohonen 
networks).

SOFM networks (Patterson, 19996) are trained using an iterative 
algorithm. Starting with an initially-random set of radial centres, the 
algorithm gradually adjusts them to reflect the clustering of the training data. 
At one level, this compares with the sub-sampling and KMeans algorithms 
used to assign centres in SOM network and indeed the SOFM algorithm 
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can be used to assign centres for these types of networks. However, the 
algorithm also acts on a different level.

The iterative training procedure also arranges the network so that units 
representing centres close together in the input space are also situated close 
together on the topological map. You can think of the network’s topological 
layer as a crude two-dimensional grid, which must be folded and distorted 
into the N-dimensional input space, so as to preserve as far as possible the 
original structure. Clearly any attempt to represent an N-dimensional space 
in two dimensions will result in loss of detail; however, the technique can be 
worthwhile in allowing the user to visualize data which might otherwise be 
impossible to understand.

The basic iterative Kohonen algorithm simply runs through a number 
of epochs, on each epoch executing each training case and applying the 
following algorithm:

•  Select the winning neuron (the one who’s centre is nearest to the 
input case); 

•  Adjust the winning neuron to be more like the input case (a 
weighted sum of the old neuron centre and the training case).

The algorithm uses a time-decaying learning rate, which is used to 
perform the weighted sum and ensures that the alterations become more 
subtle as the epochs pass. This ensures that the centres settle down to a 
compromise representation of the cases which cause that neuron to win. 
The topological ordering property is achieved by adding the concept of a 
neighbourhood to the algorithm. The neighbourhood is a set of neurons 
surrounding the winning neuron. The neighbourhood, like the learning rate, 
decays over time, so that initially quite a large number of neurons belong to 
the neighbourhood (perhaps almost the entire topological map); in the latter 
stages the neighbourhood will be zero (i.e., consists solely of the winning 
neuron itself). In the Kohonen algorithm, the adjustment of neurons is 
actually applied not just to the winning neuron, but to all the members of the 
current neighbourhood.

The effect of this neighbourhood update is that initially quite large 
areas of the network are “dragged towards” training cases - and dragged 
quite substantially. The network develops a crude topological ordering, 
with similar cases activating clumps of neurons in the topological map. As 
epochs pass the learning rate and neighbourhood both decrease, so that finer 
distinctions within areas of the map can be drawn, ultimately resulting in 
finetuning of individual neurons. Often, training is deliberately conducted 
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in two distinct phases: a relatively short phase with high learning rates and 
neighbourhood, and a long phase with low learning rate and zero or near-
zero neighbourhoods.

Once the network has been trained to recognize structure in the data, it 
can be used as a visualization tool to examine the data. The Win Frequencies 
Datasheet (counts of the number of times each neuron wins when training 
cases are executed) can be examined to see if distinct clusters have formed 
on the map. Individual cases are executed and the topological map observed, 
to see if some meaning can be assigned to the clusters (this usually involves 
referring back to the original application area, so that the relationship 
between clustered cases can be established). Once clusters are identified, 
neurons in the topological map are labelled to indicate their meaning 
(sometimes individual cases may be labelled, too). Once the topological map 
has been built up in this way, new cases can be submitted to the network. 
If the winning neuron has been labelled with a class name, the network can 
perform classification. If not, the network is regarded as undecided.

SOFM networks also make use of the accept threshold, when performing 
classification. Since the activation level of a neuron in a SOFM network is 
the distance of the neuron from the input case, the accept threshold acts as 
a maximum recognized distance. If the activation of the winning neuron 
is greater than this distance, the SOFM network is regarded as undecided. 
Thus, by labelling all neurons and setting the accept threshold appropriately, 
a SOFM network can act as a novelty detector (it reports undecided only if 
the input case is sufficiently dissimilar to all radial units).

SOFM networks as expressed by Kohonen (Kohonen, 1997) are inspired 
by some known properties of the brain. The cerebral cortex is actually a large 
flat sheet (about 0.5m squared; it is folded up into the familiar convoluted 
shape only for convenience in fitting into the skull!) with known topological 
properties (for example, the area corresponding to the hand is next to the 
arm, and a distorted human frame can be topologically mapped out in two 
dimensions on its surface).

Grouping Data Using Self Organise Map
The first part of a SOM is the data. Above are some examples of 3 dimensional 
data which are commonly used when experimenting with SOMs. Here the 
colours are represented in three dimensions (red, blue, and green.) The idea 
of the self-organizing maps is to project the n-dimensional data (here it 
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would be colour and would be 3 dimensions) into something that be better 
understood visually (in this case it would be a 2 dimensional image map).

Figure 5: Sample Data.

In this case one would expect the dark blue and the greys to end up near 
each other on a good map and yellow close to both the red and the green. 
The second components to SOMs are the weight vectors. Each weight 
vector has two components to them which I have here attempted to show 
in the image below. The first part of a weight vector is its data. This is of 
the same dimensions as the sample vectors and the second part of a weight 
vector is its natural location. The good thing about colour is that the data can 
be shown by displaying the color, so in this case the color is the data, and the 
location is the x,y position of the pixel on the screen.

Figure 6: 2D Array Weight of Vector.

In this example, 2D array of weight vectors was used and would look 
like figure 5 above. This picture is a skewed view of a grid where you have 
the n-dimensional array for each weight and each weight has its own unique 
location in the grid. Weight vectors don’t necessarily have to be arranged in 
2 dimensions, a lot of work has been done using SOMs of 1 dimension, but 
the data part of the weight must be of the same dimensions as the sample 
vectors.Weights are sometimes referred to as neurons since SOMs are 
actually neural networks. SOM Algorithm. The way that SOMs go about 
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organizing themselves is by competeting for representation of the samples. 
Neurons are also allowed to change themselves by learning to become more 
like samples in hopes of winning the next competition. It is this selection 
and learning process that makes the weights organize themselves into a map 
representing similarities.

So with these two components (the sample and weight vectors), how 
can one order the weight vectors in such a way that they will represent the 
similarities of the sample vectors? This is accomplished by using the very 
simple algorithm shown here.

Figure 7: A Sample SOM Algorithm.

The first step in constructing a SOM is to initialize the weight vectors. 
From there you select a sample vector randomly and search the map of 
weight vectors to find which weight best represents that sample. Since each 
weight vector has a location, it also has neighbouring weights that are close 
to it. The weight that is chosen is rewarded by being able to become more 
like that randomly selected sample vector. In addition to this reward, the 
neighbours of that weight are also rewarded by being able to become more 
like the chosen sample vector. From this step we increase t some small 
amount because the number of neighbours and how much each weight 
can learn decreases over time. This whole process is then repeated a large 
number of times, usually more than 1000 times.

In the case of colours, the program would first select a color from the 
array of samples such as green, then search the weights for the location 
containing the greenest color. From there, the colour surrounding that weight 
are then made more green. Then another color is chosen, such as red, and the 
process continues. They processes are:
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A. Initializing the Weights 
Here are screen shots of the three different ways which decided to 

initialize the weight vector map. We should first mention the palette here. 
In the java program below there are 6 intensities of red, blue, and green 
displayed, it really does not take away from the visual experience. The 
actual values for the weights are floats, so they have a bigger range than the 
six values that are shown in figure 7 below.

Figure 8: Weight Values.

There are a number of ways to initialize the weight vectors. The first you 
can see is just give each weight vector random values for its data. A screen 
of pixels with random red, blue, and green values is shown above on the left. 
Unfortunately calculating SOMs according to Kohonen (Kohonen, 1997) is 
very computationally expensive, so there are some variants of initializing 
the weights so that samples that you know for a fact are not similar start off 
far away. This way you need less iteration to produce a good map and can 
save yourself some time.

Here we made two other ways to initialize the weights in addition to the 
random one. This one is just putting red, blue, green, and black at all four 
corners and having them slowly fade toward the center. This other one is 
having red, green, and blue equally distant from one another and from the 
center.
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B. Get Best Matching Unit 
This is a very simple step, just go through all the weight vectors and 
calculate the distance from each weight to the chosen sample vector. The 
weight with the shortest distance is the winner. If there are more than one 
with the same distance, then the winning weight is chosen randomly among 
the weights with the shortest distance. There are a number of different ways 
for determining what distance actually means mathematically. The most 
common method is to use the Euclidean distance:

2

0

n

i
i
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∑

where x[i] is the data value at the ith data member of a sample and n is the 
number of dimensions to the sample vectors.

In the case of colour, if we can think of them as 3D points, each 
component being an axis. If we have chosen green which is of the value 
(0,6,0), the color light green (3,6,3) will be closer to green than red at (6,0,0).

So light green is now the best matching unit, but this operation of 
calculating distances and comparing them is done over the entire map and 
the wieght with the shortest distance to the sample vector is the winner and 
the BMU. The square root is not computed in the java program for speed 
optimization for this section.

C. Scale Neighbors

1. Determining Neighbors
There are actually two parts to scaling the neighboring weights: determining 
which weights are considered as neighbors and how much each weight can 
become more like the sample vector. The neighbors of a winning weight can 
be determined using a number of different methods. Some use concentric 
squares, others hexagons, I opted to use a gaussian function where every 
point with a value above zero is considered a neighbor.

As mentioned previously, the amount of neighbors decreases over time. 
This is done so samples can first move to an area where they will probably 
be, then they jockey for position. This process is similar to coarse adjustment 
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followed by fine tuning. The function used to decrease the radius of influence 
does not really matter as long as it decreases, we just used a linear function.

Figure 9: A graph of SOM Neighbour’s determination.

Figure 8 above shows a plot of the function used. As the time progresses, 
the base goes towards the centre, so there are less neighbours as time 
progresses. The initial radius is set really high, some value near the width or 
height of the map.

2. Learning
The second part to scaling the neighbours is the learning function. The 
winning weight is rewarded with becoming more like the sample vector. The 
neighbours also become more like the sample vector. An attribute of this 
learning process is that the farther away the neighbour is from the winning 
vector, the less it learns. The rate at which the amount a weight can learn 
decreases and can also be set to whatever you want. I chose to use a gaussian 
function. This function will return a value ranging between 0 and 1, where 
each neighbor is then changed using the parametric equation. The new color 
is:

So in the first iteration, the best matching unit will get a t of 1 for its 
learning function, so the weight will then come out of this process with the 
same exact values as the randomly selected sample.
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Just as the amount of neighbors a weight has falls off, the amount a 
weight can learn also decreases with time. On the first iteration, the winning 
weight becomes the sample vector since t has a full range of from 0 to 1. 
Then as time progresses, the winning weight becomes slightly more like 
the sample where the maximum value of t decreases. The rate at which the 
amount a weight can learn falls of linearly. To depict this visually, in the 
previous plot, the amount a weight can learn is equivalent to how high the 
bump is at their location. As time progresses, the height of the bump will 
decrease. Adding this function to the neighbourhood function will result in 
the height of the bump going down while the base of the bump shrinks.

So once a weight is determined the winner, the neighbours of that weight 
is found and each of those neighbours in addition to the winning weight 
change to become more like the sample vector.

Determining the Quality of SOMs
Below is another example of a SOM generated by the program using 500 
iterations in figure 9. At first glance you will notice that similar colour is all 
grouped together yet again. However, this is not always the case as you can 
see that there are some colour who are surrounded by colour that are nothing 
like them at all. It may be easy to point this out with colour since this is 
something that we are familiar with, but if we were using more abstract data, 
how would we know that since two entities are close to each other means 
that they are similar and not that they are just there because of bad luck?

Figure 10: SOM Iteration.

There is a very simple method for displaying where similarities lie and 
where they do not. In order to compute this we go through all the weights 
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and determine how similar the neighbors are. This is done by calculating 
the distance that the weight vectors make between the each weight and each 
of its neighbors. With an average of these distances a color is then assigned 
to that location. This procedure is located in Screen.java and named public 
void update_bw().

If the average distance were high, then the surrounding weights are 
very different and a dark color is assigned to the location of the weight. If 
the average distance is low, a lighter color is assigned. So in areas of the 
center of the blobs the colour are the same, so it should be white since all 
the neighbors are the same color. In areas between blobs where there are 
similarities it should be not white, but a light grey. Areas where the blobs 
are physically close to each other, but are not similar at all there should be 
black. See Figure 8 below

Figure 11: A sample allocation of Weight in Colour.

As shown above, the ravines of black show where the colour may be 
physically close to each other on the map, but are very different from each 
other when it comes to the actual values of the weights. Areas where there 
is a light grey between the blobs represent a true similarity. In the pictures 
above, in the bottom right there is black surrounded by colour which are 
not very similar to it. When looking at the black and white similarity SOM, 
it shows that black is not similar to the other colour because there are lines 
of black representing no similarity between those two colour. Also in the 
top corner there is pink and nearby is a light green which are not very near 
each other in reality, but near each other on the colored SOM. Looking at 
the black and white SOM, it clearly shows that the two not very similar by 
having black in between the two colour.

With these average distances used to make the black and white map, we 
can actually assign each SOM a value that determines how good the image 
represents the similarities of the samples by simply adding these averages.
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Advantages and Disadvantages of SOM
Self organise map has the following advantages:

•  Probably the best thing about SOMs that they are very easy 
to understand. It’s very simple, if they are close together and 
there is grey connecting them, then they are similar. If there is 
a black ravine between them, then they are different. Unlike 
Multidimensional Scaling or N-land, people can quickly pick up 
on how to use them in an effective manner. 

•  Another great thing is that they work very well. As I have shown 
you they classify data well and then are easily evaluate for their 
own quality so you can actually calculated how good a map is and 
how strong the similarities between objects are.

These are the disadvantages:
•  One major problem with SOMs is getting the right data. 

Unfortunately you need a value for each dimension of each 
member of samples in order to generate a map. Sometimes this 
simply is not possible and often it is very difficult to acquire all 
of this data so this is a limiting feature to the use of SOMs often 
referred to as missing data. 

•  Another problem is that every SOM is different and finds 
different similarities among the sample vectors. SOMs organize 
sample data so that in the final product, the samples are usually 
surrounded by similar samples, however similar samples are not 
always near each other. If you have a lot of shades of purple, not 
always will you get one big group with all the purples in that 
cluster, sometimes the clusters will get split and there will be 
two groups of purple. Using colour we could tell that those two 
groups in reality are similar and that they just got split, but with 
most data, those two clusters will look totally unrelated. So a lot 
of maps need to be constructed in order to get one final good map. 

•  The final major problem with SOMs is that they are very 
computationally expensive which is a major drawback since as the 
dimensions of the data increases, dimension reduction visualization 
techniques become more important, but unfortunately then time 
to compute them also increases. For calculating that black and 
white similarity map, the more neighbours you use to calculate the 
distance the better similarity map you will get, but the number of 
distances the algorithm needs to compute increases exponentially.
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In this chapter, we explore difficulties one often encounters when applying 
machine learning techniques to real-world data, which frequently show 
skewness properties. A typical example from industry where skewed data 
is an intrinsic problem is fraud detection in finance data. In the following 
we provide examples, where appropriate, to facilitate the understanding 
of data mining of skewed data. The topics explored include but are not 
limited to: data preparation, data cleansing, missing values, characteristics 
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construction, variable selection, data skewness, objective functions, bottom 
line expected prediction, limited resource situation, parametric optimisation, 
model robustness and model stability.

INTRODUCTION
In many contexts like in a new e-commerce website, fraud experts start 
investigation procedures only after a user makes a claim. Rather than 
working reactively, it would be better for the fraud expert to act proactively 
before a fraud takes place. In this e-commerce example, we are interested in 
classifying sellers into legal customers or fraudsters. If a seller is involved 
in a fraudulent transaction, his/her license to sell can be revoked by the 
e-business. Such a decision requires a degree of certainty, which comes 
with experience. In general, it is only after a fraud detection expert has 
dealt with enough complains and enough data that he/she acquired a global 
understanding of the fraud problem. Quite often, he/she is exposed to a huge 
number of cases in a short period of time. This is when automatic procedures, 
commonly computer based, can step in trying to reproduce expert procedures 
thus giving experts more time to deal with harder cases. Hence, one can 
learn from fraud experts and build a model for fraud. Such a model requires 
fraud evidences that are commonly present in fraudulent behavior. One of 
the difficulties of fraud detection is that fraudsters try to conceal themselves 
under a “normal” behavior. Moreover, fraudsters rapidly change their modus 
operandi once it is discovered. Many fraud evidences are illegal and justify 
a more drastic measure against the fraudster. However, a single observed 
indicator is often not strong enough to be considered a proof and needs to 
be evaluated as one variable among others. All variables taken together can 
indicate high probability of fraud. Many times, these variables appear in 
the literature by the name of characteristics or features. The design of these 
characteristics to be used in a model is called characteristics extraction or 
feature extraction.

DATA PREPARATION

Characteristics Extraction
One of the most important tasks on data preparation is the conception of 
characteristics. Unfortunately, this depends very much on the application 
(See also the discussions in Section 4 and 5). For fraud modelling for 
instance, one starts from fraud expert experience, determine significant 
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characteristics as fraud indicators, and evaluates them. In this evaluation, 
one is interested in measuring how well these characteristics:

• covers (is present in) the true fraud cases; 
• and how clearly they discriminate fraud from non-fraud behavior.
In order to cover as many fraud cases as possible, one may verify how 

many of them are covered by the characteristics set. The discrimination 
power of any of these characteristics can be evaluated by their odds ratio. If 
the probability of the event (new characteristics) in each of two compared 
classes (fraud and non-fraud in our case) are pf (first class) and pn (second 
class), then the odds ratio is:

An odds ratio equals to 1 describes the characteristics as equally probable 
in both classes (fraud and non-fraud). The more this ratio is greater/less than 
1, the more likely this characteristic is in the first/second class than in the 
other one.

Data Cleansing
In many manuals on best practice in model development, a chapter on data 
consistency checks, or data cleansing, is present. The main reason for this 
is to avoid waisting all the effort applied in the model development stage, 
because of data inconsistency invalidating the dataset in use.

Here we understand data consistency checks as being a set of expert 
rules to check whether a characteristic follows an expected behaviour. 
These expert rules can be based on expert knowledge or common sense. For 
example, a common error when filling in the date-of-birth section in a credit 
card application form is to put the current year instead of the year the person 
was actually born. In most countries an under sixteen year old can not have 
a credit card. Therefore, an easy way of checking this inconsistency is to 
simply calculate the applicant’s age and check if it falls within a valid range. 
With more information available, more complex checks can be applied, 
such as, e.g. matching name with gender or street name with post code. In 
some cases the model developer has access to reports stored in Management 
Information Systems (MIS). If that is the case, it is a highly recommended 
idea to calculate key population indicators and compare these to portfolio 
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reports. For example, in a credit card industry environment one can check the 
volume of applications; accept rate, decline rate and take-up rate and others. 
It can also be useful to check the univariate distribution of each variable 
including the percentage of outliers, missing and miscellaneous values.

Having identified the characteristics that contain errors, the next step is to 
somehow fix the inconsistencies or minimise their impact in the final model. 
Here we list, in the form of questions, some good practices in data cleansing 
used by the industry that can sometimes improve model performance, 
increase generalisation power and finally, but no less important, make 
models less vulnerable to fraud and faults.

1.  Is it possible to fix the errors by running some codes on the 
dataset? Sometimes wrong values have a one-to-one mapping 
to the correct values. Therefore, the best strategy is to make 
the change in the development dataset and to carry on with the 
development. It is important that these errors are fixed for the 
population the model will be applied to as well. This is because 
both developing and applying populations must be consistent, 
otherwise fixing the inconsistency would worsen the model 
performance rather than improving it;

2.  Is a small number of attributes1 (less than 5%) impacting only 
few rows (less than 5%)? In this case, one can do a bivariate 
analysis to determine if it is possible to separate these values into 
a default (or fault) group. Another option is to drop the rows. 
However, this tactic might turn out to be risky (see section about 
missing values);

3.  Is the information value of the problematic attribute(s) greater 
than for the other attributes combined? Consider dropping this 
characteristic and demand fixing;

4.  Is it possible to allow outliers? Simply dropping them might be 
valid if there are few or there are invalid values. Change their values 
to the appropriate boundary could also be valid. For example, if an 
acceptable range for yearly income is [1,000;100,000] MU2 and 
an applicant has a yearly income of 200,000 MU then it should 
be changed to 100,000 MU. This approach is often referred to as 
truncated or censored modelling Schneider (1986).

5.  Finally, in an industry environment, when an MIS is available, 
one can check for the acceptance rate or number of rows to 
be similar to the reports? It is very common for datasets to be 
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corrupted after transferring them from a Mainframe to Unix or 
Windows machines.

DATA SKEWNESS
A dataset for modelling is perfectly balanced when the percentage of 
occurrence of each class is 100/n, where n is the number of classes. If one or 
more classes differ significantly from the others, this dataset is called skewed 
or unbalanced. Dealing with skewed data can be very tricky. In the following 
sections we explore, based on our experiments and literature reviews, some 
problems that can appear when dealing with skewed data. Among other 
things, the following sections will explain the need for stratified sampling, 
how to handle missing values carefully and how to define an objective 
function that takes the different costs for each class into account.

Missing Values
Missing values are of little importance when dealing with balanced data, 
but can become extremely harmful or beneficial when dealing with skewed 
data. See how the example below looks harmful at first glance, but indeed 
exposes a very powerful characteristic.

Table 1 shows an example of a characteristic called Transaction Amount. 
By looking at the first line of the table one may conclude that the number of 
missing values is small (1.98%) and decide not to investigate any further. 
Breaking it down into fraudulent and legitimate transactions, one can see 
that 269 (32.5%) data items whose values are missings are frauds, which is 
nearly 9 times bigger than the overall fraud rate in our dataset (1,559/41,707 
= 3.74% see Table 2).

Table 1: Fraud/legitimate distribution

Investigating even further, by analysing the fraud rates by ranges as 
shown in table 2, one can see that the characteristic being analysed really 
helps to predict fraud; on the top of this, missing values seem to be the most 
powerful attribute for this characteristic.
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Table 2: Transaction amount bivariate

When developing models with balanced data, in most cases one can 
argue that it is good practice to avoid giving prediction to missing values 
(as a separate attribute or dummy), especially, if this attribute ends up 
with dominating the model. However, when it comes to unbalanced data, 
especially with fraud data, some specific value may have been intentionally 
used by the fraudster in order to bypass the system’s protection. In this case, 
one possible explanation could be a system failure, where all international 
transaction are not being correctly currency converted when passed to the 
fraud prevention system. This loophole may have been found by some 
fraudster and exploited. Of course, this error would have passed unnoticed 
had one not paid attention to any missing or common values in the dataset.

DERIVED CHARACTERISTICS
New or derived characteristics construction is one of, if not the, most 
important part of modelling. Some important phenomena mapped in nature 
are easily explained using derived variables. For example, in elementary 
physics speed is a derived variable of space over time. In data mining, it 
is common to transform date of birth into age or, e.g., year of study into 
primary, secondary, degree, master, or doctorate. Myriad ways exist to 
generate derived characteristics. In the following we give three typical 
examples:

1.  Transformed characteristics: transform characteristics to gain 
either simplicity or generalisation power. For example, date of 
birth into age, date of starting a relationship with a company into 
time on books, and years of education into education level; 

2.  Time series characteristics: a new characteristic built based on 
a group of historical months of a given characteristic. Examples 
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are average balance of a bank account within the last 6 months, 
minimum balance of a bank account within the last 12 months, 
and maximum days in arrears3 over the last 3 months; 

3.  Interaction: variable combining two or more different 
characteristics (of any type) in order to map interesting phenomena. 
For example, average credit limit utilization = average utilization 
/ credit limit.

CATEGORISATION (GROUPING)
Categorisation (discretising, binning or grouping) is any process that can be 
applied to a characteristic in order to turn it into categorical values Witten & 
Franku (2005). For example, let us suppose that the variable age ranges from 
0 to 99 and all values within this interval are possible. A valid categorisation 
in this case could be:

1.  category 1: if age is between 1 and 17;
2.  category 2: if age is between 18 and 30;
3.  category 3: if age is between 31 and 50;
4.  category 4: if age is between 51 and 99.
Among others, there are three main reasons for categorising a 

characteristic: firstly, to increase generalisation power; secondly, to be 
able to apply certain types of methods, such as, e.g. a Generalised Linear 
Model4 (GLM) Witten & Franku (2005), or a logistic regression using 
Weight of Evidence5 (WoE) formulations Agterberg et al. (1993); thirdly, 
to add stability to the model by getting rid of small variations causing noise. 
Categorisation methods include:

1.  Equal width: corresponds to breaking a characteristic into groups 
of equal width. In the age example we easily break age into 5 
groups of 20 decimals in each: 0-19, 20-39, 40-59, 60-79, 80-99. 

2.  Percentile: this method corresponds to breaking the characteristic 
into groups of equal volume, or percentage, of occurrences. Note 
that in this case groups will have different widths. In some cases 
breaking a characteristic into many groups may not be possible 
because occurrences are concentrated. A possible algorithm in 
pseudo code to create percentile groups is:
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3.  Bivariate grouping: this method corresponds to using the target 
variable to find good breaking points for the ranges of each group. 
It is expected that, in doing so, groups created using a bivariate 
process have a lower drop in information value, whilst it can 
improve the generalisation by reducing the number of attributes. 
One can do this in a spreadsheet by recalculating the odds and 
information value every time one collapses neighbouring groups 
with either similar odds, non-monotonic odds or a too small 
population percentage.

Next, we present one possible process of grouping the characteristic age 
using a bivariate grouping analysis. For visual simplicity the process starts 
with groups of equal width, each containing 10 units (see Table 3). The 
process consists of eliminating intervals without monotonic odds, grouping 
similar odds and guaranteeing a minimal percentage of individuals in each 
group.

Table 3: Age bivariate step 1/4
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Table 4: Age bivariate step 2/4

The result of the first step, eliminating intervals without monotonic odds 
can be seen in Table 4. Here bands 50-59 (odds of 3.00), 60-69 (odds of 
4.00) and 70-79 (odds of 3.75) have been merged, as shown in boldface. 
One may notice that merging bands 50-59 and 60-69 would result in a group 
with odds of 3.28; hence resulting in the need to merge with band 70-79 to 
yield monotonic odds.

Table 5: Age bivariate step 3/4

By using, for example, 0.20 as the minimum allowed odds difference, 
Table 5 presents the result of step two where bands 30-39 (odds of 5.30) 
and 40-49 (odds of 5.18) have been merged. This is done to increase model 
stability. One may notice that odds retrieved from the development become 
expected odds in a future application of the model. Therefore, these values 
will vary around the expectation. By grouping these two close odds, one 
tries to avoid that a reversal in odds may happen by pure random variation.
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Table 6: Age bivariate step 4/4

For the final step, if we assume 2% to be be the minimum allowed 
percentage of the population in each group. This forces band 0-9 (1.83% of 
total) to be merged with one of its neighbours; in this particular case, there 
is only the option to merge with band 10-19. Table 6 shows the final result 
of the bivariate grouping process after all steps are finished.

SAMPLING
As computers become more and more powerful, sampling, to reduce the 
sample size for model development, seems to be losing attention and 
importance. However, when dealing with skewed data, sampling methods 
remain extremely important Chawla et al. (2004); Elkan (2001). Here we 
present two reasons to support this argument.

First, to help to ensure that no over-fitting happens in the development 
data, a sampling method can be used to break the original dataset into 
training and holdout samples. Furthermore, a stratified sampling can help 
guarantying that a desirable factor has similar percentage in both training 
and holdout samples. In our work Gadi et al. (2008b), for example, we 
executed a random sampling process to select multiple splits of 70% and 
30%, as training and holdout samples. However, after evaluating the output 
datasets we decided to redo the sampling process using stratified sampling 
by fraud/legitimate flag.

Second, to improve the model prediction, one may apply an over- or 
under- sampling process to take the different cost between classes into 
account. Cost-sensitive procedure Elkan (2001) replicates (oversampling) 
the minority (fraud) class according to its cost in order to balance different 
costs for false positives and false negatives. In Gadi et al. (2008a) we 
achieved interesting results by applying a cost-sensitive procedure.
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Two advantages of a good implementation of a cost-sensitive procedure 
are: first, it can enable changes in cut-off to the optimal cut-off, For example, 
in fraud detection, if the cost tells one, a cost-sensitive procedure will consider 
a transaction with as little as 8% of probability of fraud as a potential fraud 
to be investigated; second, if the cost-sensitive procedure considers cost 
per transaction, such an algorithm may be able to optimise decisions by 
considering the product [probability of event] x [value at risk], and decide 
on investigating those transactions in which this product is bigger.

CHARACTERISTICS SELECTION
Characteristics selection, also known as feature selection, variable selection, 
feature reduction, attribute selection or variable subset selection, is 
commonly used in machine learning and statistical techniques to select a 
subset of relevant characteristics for the building of more robust models 
Witten & Franku (2005).

Decision trees do characteristics selection as part of their training 
process when selecting only the most powerful characteristics in each 
subpopulation, leaving out all weak or highly correlated characteristics. 
Bayesian nets link different characteristics by cause and effect rules, leaving 
out non-correlated characteristics Charniak (1991). Logistic Regression does 
not use any intrinsic strategy for removing weak characteristics; however, in 
most implementations methods such as forward, backward and stepwise are 
always available. In our tests, we have applied a common approach in the 
bank industry that is to consider only those characteristics with information 
value greater than a given percentage threshold.

OBJECTIVE FUNCTIONS
When defining an objective function, in order to compare different models, 
we found in our experiments that two facts are especially important:

1.  We have noticed that academia and industry speak in different 
languages. In the academic world, measures such as Kolmogorov 
Smirnov (KS) Chakravarti et al. (1967) or Receiver Operating 
Characteristic (ROC curve) Green & Swets (1966) are the most 
common; in industry, on the other hand, rates are more commonly 
used. In the fraud detection area for example it is common to find 
measures such as hit rate (confidence) and detection rate (cover). 
Hit rate and detection rate are two different dimensions and they 
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are not canonical. To optimise a problem with an objective having 
two outcomes is not a simple task Trautmann & Mehnen (2009). 
In our work in fraud detection we avoided this two-objective 
function by calculating one single outcome value: the total cost 
of fraud;

2.  In an unbalanced environment it is common to find that not only 
the proportion between classes differs, but also the cost between 
classes. For example, in the fraud detection environment, the loss 
by fraud when a transaction is fraudulent is much bigger than the 
cost to call a customer to confirm whether he/she did or did not 
do the transaction.

BOTTOM LINE EXPECTED PREDICTION
The problem of finding the best model can be computationally expensive, 
as there are many parameters involved in such a search. For this reason, 
it is very common for model developers to get satisfied with suboptimal 
models. A question equally difficult to answer, in general, is how far we are 
from an optimum. We do not intend to respond to this question here; what 
we want to address is a list of ways to help the model developer to estimate 
a minimum acceptable performance before getting close to the end of the 
model development. In our fraud analysis we found two good options for 
estimating a bottom line for expected suboptimal cost: a first option could 
be the cost resulting from a Na¨ıve Bayes model. It is important to notice 
that Na¨ıve Bayes does not need any grouping, characteristics selection or 
parameter tuning; a second option could be to consider the cost from a first 
“quick and dirty” model developed using the method chosen by the model 
developer.

LIMITED RESOURCE SITUATION
Many real-world application present limited resource problems. This can 
make the decision of what is the best model different compared to a model 
without restrictions. In a hospital, for example, there may be a limited 
number of beds for patients; in a telephone costumer service facility, there 
may be a limited number of attendants; in the fraud detection world the 
number of people available to handle manual transactions is in general 
fixed; and the number of transactions each member of fraud detection can 
handle per day is also fixed due to practical reasons. In such applications, 
being aware of the capacity rate becomes very important. It is also extremely 
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important for the model outcome to indicate the probability6 of the event 
rather than providing a simple yes/no response. By having the outcome as 
a probability, models can be compared using for example, cutoffs that keep 
the selecting rate equal to the capacity rate. In fraud detection, comparing 
models detection rate and hit rate fixing for example 1000 transaction to be 
investigated.

PARAMETRIC OPTIMISATION
Once we have the data and the optimisation criteria, the following questions 
have to be answered:

Which classification method is recommended for producing the best 
model for any given application? 

Which parameter set should be used?
For instance, we can apply classification methods such as: Neural 

Networks (NN), Bayesian Networks (BN), Na¨ıve Bayes (NB), Artificial 
Immune Systems (AIS) and Decision Trees (DT), Support Vector 
Machines (SVM), Logistic Regression and others. In fact, there is not a 
final and unique answer to this first question. Support Vector Machines, for 
instance, is known to be very effective for data with a very large number of 
characteristics and is reported to perform well in categorisation problems in 
Information Retrieval. However, our experience with SVM on fraud data 
did not meet our expectations. For many parameter sets, the method did not 
even converge to a final model and this behaviour for unbalanced data is 
reported to not be uncommon.

In order to assess methods many factors can be used including the chosen 
optimisation criteria, scalability, time for classification and time spent in 
training, and sometimes more abstract criteria as time to understand how the 
method works. Most of the time, when a method is published, or when an 
implementation is done, the method depends on parameter choices that may 
influence the final results significantly. Default parameters, in general, are a 
good start. However, most of the time, they are far from producing the best 
model. This comprises with our experience with many methods in many 
different areas of Computer Science. This is particular true for classification 
problems with skewed data.

Quite often we see comparisons against known methods where the 
comparison is done by applying a special parameter variation strategy 
(sometimes a parameter optimisation) for the chosen method while not 
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fairly conducing the same procedure for the other methods. In general, for 
the other methods, default parameters, or a parameter set published in some 
previous work is used. Therefore, it is not a surprise that the new proposed 
method wins. At a first glance, the usage of the default parameter set may 
seem to be fair and this bias is often reproduced in publications. However, 
using default sets can be biased by the original training set and, thus, not be 
fair.

Parameter optmisation takes time and is rarely conduced. For a fair 
comparison, we argue that one has to fine tune the parameters for all compared 
method. This can be done, for instance, via an exhaustive search of the 
parameter space if this search is affordable, or some kind of sampling like in 
Genetic Algorithm (GA) (see Figure 1). Notice, that the final parameter set 
cannot be claimed to be optimal in this case.

Unfortunately, this sampling procedure is not as easy as one may 
suppose. There is not a single best universal optimisation algorithm for all 
problems (No Free Lunch theorem - Wolpert and Macready 1997 Wolpert & 
Macready (1997)). Even the genetic algorithm scheme as shown in Figure 
1 might require parameter adjustment. According to our experience, we 
verified that a simple mistake in the probability distribution computation 
may drive the results to completely different and/or misleading results. A 
good genetic algorithm requires expertise, knowledge about the problem 
that should be optimised by the GA, an intelligent design, and resources. 
The more, the better. These considerations also imply that comparisons 
involving methods with suboptimal parameter sets depend very much on 
how well each parameter space sampling was conduced.

ROBUSTNESS OF PARAMETERS
After the parameter optimisation has been conducted, it can be advantageous 
or desirable to have the optimised parameters independent from the training 
set, i.e. they can be applied to different datasets of the same problem. In this 
case we can call this parameter set robust. 

When the parameter are not robust, the optimisation process is not as 
strong as expected since the obtained optimised parameter set has no or 
little generalisation power. In this case, in our experiments, we found that 
it is a good approach to sacrifice some prediction power in order to gain 
robustness in the parameter set. Note that a procedure using n-fold cross 
validation could lead to a parameter set that is more independent from a 



Data Mining with Skewed Data 71

dataset. However, we choose to present a different approach which also 
generates robust parameter sets with more control of what is happening 
during the process. This procedure is based on repeated sampling from the 
development dataset into training and holdout samples. Then, we applied 
parameter optimisation and choose the set of parameters which is the best in 
average over all splits at the same time.

Figure 1: Genetic Algorithm for parameters optimisation. We start with an ini-
tial pool of e.g. 50 random individuals having a certain fitness, followed by 
e.g. 20 Genetic Algorithm (GA) generations. Each GA generation combines 
two randomly selected candidates among the best e.g. 15 from previous gen-
eration. This combination performs: crossover, mutation, random change or no 
action for each parameter independently. As the generation goes by, the chance 
of no action increases. In the end, one may perform a local search around the 
optimised founded by GA optimisation. Retrieved from Gadi et al. Gadi et al. 
(2008b).

In our work, in order to rewrite the optimisation function that should 
be used in a GA algorithm, we have used a visualization procedure with 
computed costs for many equally spaced parameter sets in the parameter 
space. After having defined a good optimisation function, due to time 
constraints, we did not proceed with another GA optimisation, but we 
reused our initial runs used in the visualization, with the following kind of 
multiresolution optimisation Kim & Zeigler (1996) (see Figure 2):
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•  we identified those parameters that have not changed, and we 
frozen these values for these respective parameters; 

•  with any other parameter, we screened the 20 best parameter sets 
for every split and identified a reasonable range; 

•  for all non-robust parameters, we chose an integer step s so the 
search space did not explode;

Figure 2: An example of the multiresolution optimisation that was applied in 
order to find robust parameters. In this example one can see two parameters in 
the search space and three steps of this multiresolution optimisation. For the 
parameter represented in horizontal line, the search space in first step ranges 
from 10 to 90 with step size 20 and the minimum was found for 30. In the 
second step, the scale ranges from 10 to 50 with step size 5 and the minimum 
was found for 40. In third step, it ranges from 35 to 45, with step size 1, which 
is equivalent to a local exhaustive search in this neighborhood. Retrieved from 
Gadi et al. Gadi et al. (2008a).

• we evaluated the costs for all possible combinations according 
to the search space defined above and found the parameter set 
P that brings the minimum average cost among all the different 
used splits; 

• if the parameter set P was at the border of the search space, we 
shifted this search space by one step in the direction of this border 
and repeated last step until we found this minimum P in the inner 
area of the search space; 
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• we zoomed the screening in on the neighborhood of P, refined 
steps s, and repeated the process from then on until no refinement 
was possible.

MODEL STABILITY
In industry, generally the aim of modelling is to apply a model to a real 
situation and to generate profit, either by automating decision making where 
a model was not previously available or replacing old models by a new and 
improved one. For doing so, most model development processes rely on 
past information for their training. Therefore, it is very important to be able 
to assess whether or not a model is still fit for propose when it is in use, 
and to have a set of actions to expand the model’s life span. In this section 
we explore advantages of using out-oftime samples, monitoring reports, 
stability by vintage, vintage selection and how to deal with different scales 
over time.

Out-of-time
An Out-Of-Time sample (OOT) is any sample of the same phenomena used 
in the model development that is not in the development window8 , historic 
vintages or observation point selected for development. In most cases in 
reality a simple split of the development sample into training and testing 
data cannot identify a real over-fitting of the model Sobehart et al. (2000). 
Therefore, the most appropriated approach to identify this change is either 
to select a vintage or observation point posterior to the development window 
or select this previously to the development window. The second approach 
gives the extra advantage of using the most up-to-date information for the 
development.

Monitoring reports
The previous action, OOT, should be best done before the actual model 
implementation; after that, it becomes important to evaluate whether the 
implemented model still delivers a good prediction. For this purpose, it is 
crucial to create a set of period based monitoring reports to track the model’s 
performance and stability over time.
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Stability by Vintage
Stability by vintage corresponds to breaking the development sample 
down by time within the development window and evaluate the model’s 
performance in all of the different periods within the data. For example, 
if one has information collected from January 08 to December 08, a good 
stability by vintage analysis would be to evaluate the model’s performance 
over each month of 2008. This tends to increase the chance of a model to be 
stable after its implementation.

Vintage Selection
Many phenomena found in nature, and even in human behaviour, repeat 
themselves year after year in a recurrent manner; this is known as seasonality. 
Choosing a development window from a very atypical month of the year can 
be very misleading; in credit cards, for example, choosing only December 
as the development time window can lead to overestimation of expected 
losses since this is the busiest time of the year. Two approaches intend to 
mitigate this problem. Both approaches are based on selecting the broadest 
development window possible. One common window size is 12 months, 
allowing the window to cover the whole year. Please notice, there is no need 
to fix the start of the window to any particular month. The first approach 
corresponds to simply develop the model with this pool of observation 
points; it is expected for the model to be an average model that will work 
throughout the year. A second approach is to introduce a characteristic 
indicating the “month of the year” the information was collected from, or 
any good combination of it, and then to develop the model. As a result, one 
would expect a model that adjusts better to each observation point in the 
development window.

Different Scale over Time
Another common problem applies to the situation where characteristic 
values fall outside the training sample boundaries or some unknown 
attributes occur. To reduce the impact of this problem, one can always leave 
the groups with the smallest and biggest boundaries as negative infinite and 
positive infinite, respectively, for example, changing [0,10];[11,20];[21,30] 
to ]−∞,10];[11,20];[21,+∞[. Furthermore, undefined values could always be 
assigned to a default group. For example, if for a numeric characteristic a 
non-numeric value ocurrs it could be assigned to a default group.
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FINAL REMARKS
This work provided a brief introduction to pratical problem solving for 
machine learning with skewed data sets. Classification methods are generally 
not designed to cope with skewed data, thus, various action have to be taken 
when dealing with imbalanced data sets. For a reader looking for more 
information about the field we can recommend a nice editorial by Chawla 
et al. ? and three conference proceedings Chawla et al. (2003); Dietterich 
et al. (2000); Japkowicz (2000). In addition, good algorithm examples can 
be found in Weka Witten & Franku (2005) and SAS Delwiche & Slaughter 
(2008).

Perhaps, most solutions that deal with skewed data do some sort of 
sampling (e.g: with undersampling, oversampling, cost sensitive training 
Elkan (2001), etc.). These contributions are effective Gadi et al. (2008a) 
and quite well known nowadays. This text provides recommendations for 
practitioners who are facing data mining problems due to skewed data.

Details on the experiments can be found at Gadi et al. (2008b) and Gadi 
et al. (2008a), which presents an application of Artificial Immune Systems 
on credit card fraud detection. Finally, another subject explored in this 
work was the importance of parametric optimization for chosing a good 
classification method for skewed data. We also suggested a proceedure for 
parametric optimization.
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ABSTRACT
In medical imaging, Computer Aided Diagnosis (CAD) is a rapidly growing 
dynamic area of research. In recent years, significant attempts are made for 
the enhancement of computer aided diagnosis applications because errors 
in medical diagnostic systems can result in seriously misleading medical 
treatments. Machine learning is important in Computer Aided Diagnosis. 
After using an easy equation, objects such as organs may not be indicated 
accurately. So, pattern recognition fundamentally involves learning from 
examples. In the field of bio-medical, pattern recognition and machine 
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learning promise the improved accuracy of perception and diagnosis of 
disease. They also promote the objectivity of decision-making process. 
For the analysis of high-dimensional and multimodal bio-medical data, 
machine learning offers a worthy approach for making classy and automatic 
algorithms. This survey paper provides the comparative analysis of different 
machine learning algorithms for diagnosis of different diseases such as heart 
disease, diabetes disease, liver disease, dengue disease and hepatitis disease. 
It brings attention towards the suite of machine learning algorithms and 
tools that are used for the analysis of diseases and decision-making process 
accordingly.

Keywords: Machine Learning, Artificial Intelligence, Machine Learning 
Techniques

INTRODUCTION
Artificial Intelligence can enable the computer to think. Computer is 
made much more intelligent by AI. Machine learning is the subfield of AI 
study. Various researchers think that without learning, intelligence cannot 
be developed. There are many types of Machine Learning Techniques 
that are shown in Figure 1. Supervised, Unsupervised, Semi Supervised, 
Reinforcement, Evolutionary Learning and Deep Learning are the types of 
machine learning techniques.

Figure 1. Types of machine learning techniques.
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These techniques are used to classify the data set.
1)  Supervised learning: Offered a training set of examples with 

suitable targets and on the basis of this training set, algorithms 
respond correctly to all feasible inputs. Learning from exemplars 
is another name of Supervised Learning. Classification and 
regression are the types of Supervised Learning.

Classification: It gives the prediction of Yes or No, for example, “Is this 
tumor cancerous?”, “Does this cookie meet our quality standards?”

Regression: It gives the answer of “How much” and “How many”.
2)  Unsupervised learning: Correct responses or targets are not 

provided. Unsupervised learning technique tries to find out the 
similarities between the input data and based on these similarities, 
un-supervised learning technique classify the data. This is also 
known as density estimation. Unsupervised learning contains 
clustering [1] .

Clustering: it makes clusters on the basis of similarity.
3)  Semi supervised learning: Semi supervised learning technique 

is a class of supervised learning techniques. This learning also 
used unlabeled data for training purpose (generally a minimum 
amount of labeled-data with a huge amount of unlabeled-data). 
Semi-supervised learning lies between unsupervised-learning 
(unlabeled-data) and supervised learning (labeled-data).

4)  Reinforcement learning: This learning is encouraged by 
behaviorist psychology. Algorithm is informed when the answer 
is wrong, but does not inform that how to correct it. It has to 
explore and test various possibilities until it finds the right answer. 
It is also known as learning with a critic. It does not recommend 
improvements. Reinforcement learning is different from 
supervised learning in the sense that accurate input and output 
sets are not offered, nor sub- optimal actions clearly précised. 
Moreover, it focuses on on-line performance.

5)  Evolutionary Learning: This biological evolution learning can 
be considered as a learning process: biological organisms are 
adapted to make progress in their survival rates and chance of 
having off springs. By using the idea of fitness, to check how 
accurate the solution is, we can use this model in a computer [1] .
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6)  Deep learning: This branch of machine learning is based on set 
of algorithms. In data, these learning algorithms model high-level 
abstraction. It uses deep graph with various processing layer, 
made up of many linear and nonlinear transformation.

Pattern recognition process and data classification are valuable for 
a long time. Humans have very strong skill for sensing the environment. 
They take action against what they perceive from environment [2] . Big 
data turns into Chunks due to multidisciplinary combined effort of machine 
learning, databases and statistics. Today, in medical sciences disease 
diagnostic test is a serious task. It is very important to understand the exact 
diagnosis of patients by clinical examination and assessment. For effective 
diagnosis and cost effective management, decision support systems that are 
based upon computer may play a vital role. Health care field generates big 
data about clinical assessment, report regarding patient, cure, follow-ups, 
medication etc. It is complex to arrange in a suitable way. Quality of the data 
organization has been affected due to inappropriate management of the data. 
Enhancement in the amount of data needs some proper means to extract 
and process data effectively and efficiently [3] . One of the many machine-
learning applications is employed to build such classifier that can divide the 
data on the basis of their attributes. Data set is divided into two or more than 
two classes. Such classifiers are used for medical data analysis and disease 
detection.

Initially, algorithms of ML were designed and employed to observe 
medical data sets. Today, for efficient analysis of data, ML recommended 
various tools. Especially in the last few years, digital revolution has offered 
comparatively low- cost and obtainable means for collection and storage of 
data. Machines for data collection and examination are placed in new and 
modern hospitals to make them capable for collection and sharing data in big 
information systems. Technologies of ML are very effective for the analysis 
of medical data and great work is done regarding diagnostic problems. 
Correct diagnostic data are presented as a medical record or reports in 
modern hospitals or their particular data section. To run an algorithm, correct 
diagnostic patient record is entered in a computer as an input. Results can 
be automatically obtained from the previous solved cases. Physicians take 
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assistance from this derived classifier while diagnosing novel patient at high 
speed and enhanced accuracy. These classifiers can be used to train non- 
specialists or students to diagnose the problem [4] .

In past, ML has offered self-driving cars, speech detection, efficient web 
search, and improved perception of the human generation. Today machine 
learning is present everywhere so that without knowing it, one can possibly 
use it many times a day. A lot of researchers consider it as the excellent way 
in moving towards human level. The machine learning techniques discovers 
electronic health record that generally contains high dimensional patterns 
and multiple data sets. Pattern recognition is the theme of MLT that offers 
support to predict and make decisions for diagnosis and to plan treatment. 
Machine learning algorithms are capable to manage huge number of data, 
to combine data from dissimilar resources, and to integrate the background 
information in the study [3] .

DIAGNOSIS OF DISEASES BY USING DIFFERENT 
MACHINE LEARNING ALGORITHMS
Many researchers have worked on different machine learning algorithms for 
disease diagnosis. Researchers have been accepted that machine-learning 
algorithms work well in diagnosis of different diseases. Figurative approach 
of diseases diagnosed by Machine Learning Techniques is shown in Figure 
2. In this survey paper diseases diagnosed by MLT are heart, diabetes, liver, 
dengue and hepatitis.

Heart Disease
Otoom et al. [5] presented a system for the purpose of analysis and 
monitoring. Coronary artery disease is detected and monitored by this 
proposed system. Cleveland heart data set is taken from UCI. This data set 
consists of 303 cases and 76 attributes/features. 13 features are used out 
of 76 features. Two tests with three algorithms Bayes Net, Support vector 
machine, and Functional Trees FT are performed for detection purpose. 
WEKA tool is used for detection. After experimenting Holdout test, 88.3% 
accuracy is attained by using SVM technique.
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Figure 2: Diseases diagnosed by MLT.

In Cross Validation test, Both SVM and Bayes net provide the accuracy 
of 83.8%. 81.5% accuracy is attained after using FT. 7 best features are 
picked up by using Best First selection algorithm. For validation Cross 
Validation test are used. By applying the test on 7 best selected features, 
Bayes Net attained 84.5% of correctness, SVM provides 85.1% accuracy 
and FT classify 84.5% correctly.

Vembandasamy et al. [6] performed a work, to diagnose heart disease 
by using Naive Bayes algorithm. Bayes theorem is used in Naive Bayes. 
Therefore, Naive Bayes have powerful independence assumption. The 
employed data-set are obtained from one of the leading diabetic research 
institute in Chennai. Data set consists of 500 patients. Weka is used as a tool 
and executes classification by using 70% of Percentage Split. Naive Bayes 
offers 86.419% of accuracy.

Use of data mining approaches has been suggested by Chaurasia and 
Pal [7] for heart disease detection. WEKA data mining tool is used that 
contains a set of machine learning algorithms for mining purpose. Naive 
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Bayes, J48 and bagging are used for this perspective. UCI machine learning 
laboratory provide heart disease data set that consists of 76 attributes. Only 
11 attributes are employed for prediction. Naive bayes provides 82.31% 
accuracy. J48 gives 84.35% of correctness. 85.03% of accuracy is achieved 
by Bagging. Bagging offers better classification rate on this data set.

Parthiban and Srivatsa [8] put their effort for diagnosis of heart disease 
in diabetic patients by using the methods of machine learning. Algorithms of 
Naive Bayes and SVM are applied by using WEKA. Data set of 500 patients 
is used that are collected from Research Institute of Chennai. Patients that 
have the disease are 142 and disease is missing in 358 patients. By using 
Naive Bayes Algorithm 74% of accuracy is obtained. SVM provide the 
highest accuracy of 94.60.

Tan et al. [9] proposed hybrid technique in which two machine-learning 
algorithms named Genetic Algorithm (G.A) and Support Vector Machine 
(SVM) are joined effectively by using wrapper approach. LIBSVM and 
WEKA data mining tool are used in this analysis. Five data sets (Iris, 
Diabetes disease, disease of breast Cancer, Heart and Hepatitis disease) are 
picked up from UC Irvine machine learning repository for this experiment. 
After applying GA and SVM hybrid approach, 84.07% accuracy is attained 
for heart disease. For data set of diabetes 78.26% accuracy is achieved. 
Accuracy for Breast cancer is 76.20%. Correctness of 86.12% is resulting 
for hepatitis disease. Graphical representation of Accuracy according to 
time for detection of heart disease is shown in Figure 3.

Analysis:
In existing literature, SVM offers highest accuracy of 94.60% in 2012 as 
in Table 1. In many application areas, SVM shows good performance result. 
Attribute or features used by Parthiban and Srivatsa in 2012 are correctly 
responded by SVM. In 2015, Otoom et al. used SVM variant called SMO. It 
also uses FS technique to find best features. SVM responds to these features 
and offers the accuracy of 85.1% but it is comparatively low as in 2012. 
Training and testing set of both data sets are different, as well as, data types 
are different.
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Figure 3: Machine learning algorithm’s accuracy to detect heart disease.

Table 1: Comprehensive view of machine learning techniques for heart disease 
diagnosis

Machine Learning 
Techniques

Author Year Disease Resources of 
Data Set

Tool Accuracy

Bayes Net Otoom et al. 2015 CAD (Coro-
nary artery 
disease)

UCI WEKA 84.5%

SVM 85.1%

FT 84.5%

Naive Bayes Vembandasamy 
et al.

2015 Heart Disease Diabetic 
Research 
Institute in 
Chennai

WEKA 86.419%

Naive Bayes Chaurasia and 
Pal

2013 Heart Disease UCI WEKA 82.31%

J48 84.35%

Bagging 85.03%

SVM Parthiban and 
Srivatsa

2012 Heart disease Research 
institute in 
Chennai

WEKA 94.60%

Naive Bayes 74%

Hybrid Technique 
(GA + SVM)

Tan et al. 2009 Heart disease UCI LIBSVM and 
WEKA

84.07%

Advantages and Disadvantages of SVM:
Advantages: Construct correct classifiers and fewer over fitting, robust 

to noise.
Disadvantages: It is a binary classifier. For the classification of multi-

class, it can use pair wise classification. Its Computational cost is high, so it 
runs slow [10] .



Survey of Machine Learning Algorithms for Disease Diagnostic 89

Diabetes Disease
Iyer et al. [11] has performed a work to predict diabetes disease by using 
decision tree and Naive Bayes. Diseases occur when production of insulin 
is insufficient or there is improper use of insulin. Data set used in this work 
is Pima Indian diabetes data set. Various tests were performed using WEKA 
data mining tool. In this data-set percentage split (70:30) predict better than 
cross validation. J48 shows 74.8698% and 76.9565% accuracy by using 
Cross Validation and Percentage Split Respectively. Naive Bayes presents 
79.5652% correctness by using PS. Algorithms shows highest accuracy by 
utilizing percentage split test.

Meta learning algorithms for diabetes disease diagnosis has been discussed 
by Sen and Dash [12] . The employed data set is Pima Indians diabetes 
that is received from UCI Machine Learning laboratory. WEKA is used for 
analysis. CART, Adaboost, Logiboost and grading learning algorithms are 
used to predict that patient has diabetes or not. Experimental results are 
compared on the behalf of correct or incorrect classification. CART offers 
78.646% accuracy. The Adaboost obtains 77.864% exactness. Logiboost 
offers the correctness of 77.479%. Grading has correct classification rate of 
66.406%. CART offers highest accuracy of 78.646% and misclassification 
Rate of 21.354%, which is smaller as compared to other techniques.

An experimental work to predict diabetes disease is done by the Kumari 
and Chitra [13] . Machine learning technique that is used by the scientist 
in this experiment is SVM. RBF kernel is used in SVM for the purpose of 
classification. Pima Indian diabetes data set is provided by machine learning 
laboratory at University of California, Irvine. MATLAB 2010a are used to 
conduct experiment. SVM offers 78% accuracy.

Sarwar and Sharma [14] have suggested the work on Naive Bayes to 
predict diabetes Type-2. Diabetes disease has 3 types. First type is Type-1 
diabetes, Type-2 diabetes is the second type and third type is gestational 
diabetes. Type-2 diabetes comes from the growth of Insulin resistance. Data 
set consists of 415 cases and for purpose of variety; data are gathered from 
dissimilar sectors of society in India. MATLAB with SQL server is used for 
development of model. 95% correct prediction is achieved by Naive Bayes.

Ephzibah [15] has constructed a model for diabetes diagnosis. Proposed 
model joins the GA and fuzzy logic. It is used for the selection of best 
subset of features and also for the enhancement of classification accuracy. 
For experiment, dataset is picked up from UCI Machine learning laboratory 
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that has 8 attributes and 769 cases. MATLAB is used for implementation. 
By using genetic algorithm only three best features/attributes are selected. 
These three attributes are used by fuzzy logic classifier and provide 87% 
accuracy. Around 50% cost is less than the original cost. Table 2provides the 
Comprehensive view of Machine learning Techniques for diabetes disease 
diagnosis.

Analysis:
Naive Bayes based system is helpful for diagnosis of Diabetes disease. 

Naive Bayes offers highest accuracy of 95% in 2012. The results show 
that this system can do good prediction with minimum error and also this 
technique is important to diagnose diabetes disease. But in 2015, accuracy 
offered by Naive Bayes is low. It presents 79.5652% or 79.57% accuracy. 
This proposed model for detection of Diabetes disease would require more 
training data for creation and testing. Figure 4shows the Accuracy graph of 
Algorithms for the diagnosis of Diabetes disease according to time.

Advantages and Disadvantages of Naive Bayes:
Advantages: It enhances the classification performance by eliminating 

the unrelated features. Its performance is good. It takes less computational 
time.

Table 2: Comprehensive view of machine learning techniques for diabetes dis-
ease diagnosis

Machine Learning 
Techniques

Author Year Disease Resource of Data Set Tool Accuracy

Naive Bayes Iyer et al. 2015 Diabetes 
Disease

Pima Indian Diabetes 
dataset

WEKA 79.5652%

J48 76.9565%

CART Sen and Dash 2014 Diabetes 
Disease

Pima Indian Diabetes 
dataset from UCI

WEKA 78.646%

Adaboost 77.864%

Logiboost 77.479%

Grading 66.406%

SVM Kumari and 
Chitra

2013 Diabetes 
Disease

UCI MATLAB 
2010a

78%

Naive Bayes Sarwar and 
Sharma

2012 Diabetes 
type-2

Different Sectors of 
Society in India

MATLAB 
with SQL
Server

95%

GA + Fuzzy 
Logic

Ephzibah 2011 Diabetes 
disease

UCI MATLAB 87%
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Figure 4: Accuracy of machine learning algorithms to detect diabetes disease.

Disadvantages: This algorithm needs large amount of data to attain good 
outcomes. It is lazy as they store entire the training examples [16] .

Liver Disease
Vijayarani and Dhayanand [17] predict the liver disease by using Support 
vector machine and Naive bayes Classification algorithms. ILPD data set is 
obtained from UCI. Data set comprises of 560 instances and 10 attributes. 
Comparison is made on the basis of accuracy and time execution. Naive 
bayes shows 61.28% correctness in 1670.00 ms. 79.66% accuracy is 
attained in 3210.00 ms by SVM. For implementation, MATLAB is used. 
SVM shows highest accuracy as compared to the Naive bayes for liver 
disease prediction. In terms of time execution, Naives bayes takes less time 
as compared to the SVM.

A study on intelligent techniques to classify the liver patients is 
performed by the Gulia et al. [18] . Used data set is picked up from UCI. 
WEKA data mining tool and five intelligent techniques J48, MLP, Random 
Forest, SVM and Bayesian Network classifiers are used in this experiment. 
In first step, all algorithms are applied on the original data set and get 
the percentage of correctness. In second step, feature selection method is 
applied on whole data-set to get the significant subset of liver patients and 
all these algorithms are used to test the subset of whole data-set. In third step 
they take comparison of outcomes before and after feature selection. After 
FS, algorithms provide highest accuracy as J48 presents 70.669% accuracy, 
70.8405% exactness is achieved by the MLP algorithm, SVM provides 
71.3551% accuracy, 71.8696% accuracy is offered by Random forest and 
Bayes Net shows 69.1252% accuracy.
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Rajeswari and Reena [19] used the data mining algorithms of Naive 
Bayes, K star and FT tree to analyze the liver disease. Data set is taken from 
UCI that comprises of 345 instances and 7 attributes. 10 cross validation test 
are applied by using WEKA tool. Naive Bayes provide 96.52% Correctness 
in 0 sec. 97.10% accuracy is achieved by using FT tree in 0.2 sec. K star 
algorithm classify the instances about 83.47% accurately in 0 sec. On the 
basis of outcomes, highest classification accuracy is offered by FT tree on 
liver disease dataset as compared to other data mining algorithms. Table 
3 presents the comprehensive view of algorithms for the detection of liver 
disease.

Analysis:
To diagnose liver disease, FT Tree Algorithm provides the highest result 

as compare to the other algorithms. When FT tree algorithm is applied on 
the dataset of liver disease, time taken for result or building the model is 
fast as compared to other algorithms. According to its attribute, it shows 
the improved performance. This algorithm fully classified the attributes 
and offers 97.10% correctness. From the results, this Algorithm plays an 
important role in determining enhanced classification accuracy of data set. 
Accuracy graph of algorithms are shown in Figure 5.

Advantages and Disadvantages of FT:
Advantage: Easy to interpret and understand; Fast prediction.
Disadvantage: Calculations are complex mainly if values are uncertain 

or if several outcomes are linked.

Dengue Disease
Tarmizi et al. [20] performed a work for Malaysia Dengue Outbreak 
Detection by using the Models of Data Mining.

Table 3: Comprehensive view of machine learning techniques for liver disease 
diagnosis

Machine Learning 
Techniques

Author Year Disease Resource of Data 
Set

Tool Accuracy

SVM Vijayarani and 
Dhayanand

2015 Liver 
Disease

ILPD from UCI MATLAB 79.66%

Naive Bayes 61.28%
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J48 Gulia et al. 2014 Liver 
Disease

UCI WEKA 70.669%

MLP 70.8405%

Random Forest 71.8696%

SVM 71.3551%

Bayesian Network 69.1252%

Naive Bayes Rajeswari and 
Reena

2010 Liver 
Disease

UCI WEKA 96.52%

K Star 83.47%

FT tree 97.10%

Figure 5: Accuracy of machine learning algorithms to detect liver disease.

Dengue is becoming a severe contagious disease. It creates trouble in 
those countries where weather is humid for example Thailand, Indonesia 
and Malaysia. Decision Tree (DT), Artificial Neural Network (ANN), and 
Rough Set Theory (RS) are the classification algorithms that are used in 
this study to predict dengue disease. Data set are taken from Public Health 
Department of Selangor State. WEKA data mining tool with two tests (10 
Cross-fold Validation and Percentage split) is used. By using 10-Cross fold 
validation DT offers 99.95% accuracy, ANN presents 99.98% of Correctness 
and RS shows 100% accuracy. After using PS, Both Decision tree and 
Artificial Neural Network gives 99.92% of correctness. RS achieves 99.72% 
accuracy.

Fathima and Manimeglai [21] performed a work to predict Arbovirus-
Dengue disease. Data mining algorithm that are used by these researchers 
are Support Vector Machine. Data set for analysis is obtained from King 
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Institute of Preventive Medicine and surveys of many hospitals and 
laboratories of Chennai and Tirunelveli from India. It contains 29 attributes 
and 5000 samples. Data is examined by R project version 2.12.2. Accuracy 
that is achieved by SVM is 0.9042.

Ibrahim et al. [22] suggested a system in which Artificial neural network 
is used for forecasting the defervescence day of fever in patients of dengue 
disease. Only clinical signs and symptoms are used by the proposed system 
for detection. The data are gathered from 252 hospitalized patients, in which 
4 patients are having DF (Dengue fever) and 248 patients are having DHF 
(dengue hemorrhagic fever). MATLAB’s neural network toolbox is used. 
Algorithm of Multilayer feed-forward neural network (MFNN) is used in 
this experiment. Day of defervescence of fever is accurately predicted by 
MFNN in DF and DHF with 90% correctness.

Figure 6 shows the accuracy graph of all algorithms for the diagnosis of 
Dengue disease.

Analysis:
Different Machine learning techniques are used to diagnose dengue 

disease. Dengue disease is one of the serious contagious diseases. As 
in Table 4, for detection of dengue disease, RS theory shows the highest 
result as compared to the other algorithms.

Figure 6: Accuracy of machine learning algorithms for dengue disease.
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Table 4: Analysis of machine learning techniques for dengue disease detection

Machine Learning Techniques Author Year Disease Resource of Data Set Tool Accuracy

DT Tarmizi 
et al.

2013 Dengue 
Disease

Public Health Depart-
ment of Selangor State

WEKA 99.95%

ANN 99.98%

RS 100%

SVM Fathima 
and Ma-
nimeg-
lai

2012 Arbovirus-
Dengue 
disease

King Institute of 
Preventive Medicine 
and surveys of many 
hospitals and labora-
tories of Chennai and 
Tirunelveli from India

R project 
Version 
2.12.2

90.42%

MFNN Ibrahim 
et al.

2005 Dengue 
disease

From 252 hospitalized 
patients

MAT-
LAB 
neural 
network 
Tool box

90%

In 2005 and 2012, researchers used different algorithms but did not 
attain highest result and improvements. In 2013, accuracy is improved by 
using RS. It is capable to manage uncertainty, noise and missing data. For 
the purpose of classification, Developed RS classifier is based on the Rough 
set theory. Selection of attribute empowers the classifier to surpass the 
other models. RS is a promising rule based method that offers meaningful 
information. RS is also best from neural network in term of time. NN takes 
much time to build model. DT is complex as well as costly algorithm. RS 
does not need any initial and additional information about data but Decision 
tree needs information.

Advantages and Disadvantages of RS:
Advantages: It is very easy to understand and provides direct 

understanding of attained result. It evaluates data significance. It is 
appropriate for both qualitative and quantitative data. It discovers the hidden 
patterns. It also finds minimal set of data. It can find relationship that cannot 
be identified by statistical methods.

Disadvantages: It has not so many limitations still it is not widely used.

Hepatitis Disease
Ba-Alwi and Hintaya [23] suggested a comparative analysis. Data mining 
algorithms that are used for hepatitis disease diagnosis are Naive Bayes, 
Naive Bayes updatable, FT Tree, K Star, J48, LMT, and NN. Hepatitis disease 
data set was taken from UCI Machine Learning repository. Classification 
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results are measured in terms of accuracy and time. Comparative Analysis 
is taken by using neural connections and WEKA: data mining tool. Results 
that are taken by using neural connection are low than the algorithms used 
in WEKA. In this Analysis of Hepatitis disease diagnosis, second technique 
that is used is rough set theory, by using WEKA. Performance of Rough set 
procedure is better than NN specially in case of medical data analysis. Naive 
Bayes gives the accuracy of 96.52% in 0 sec. 84% Accuracy is attained by 
the Naive Bayes Updateable algorithm in 0 sec. In 0.2 sec FT Tree presents 
the accuracy of 87.10%. K star offers 83.47% Correctness. Time taken for 
K star algorithm is 0 sec. Correctness of 83% is achieved by J48 and time 
that J48 takes to classify is 0.03 sec. LMT provides 83.6% accuracy 0.6 
sec. Neural network shows 70.41% of correctness. Naive Bayes is best 
classification algorithm used in the rough set technique. It offers high 
accuracy in minimum time.

Karlik [24] shows a comparative analysis of Naive Bayes and back 
propagation classifiers to diagnose hepatitis disease. Key advantage of using 
these classifiers is that they require small amount of data for categorization. 
Types of hepatitis are “A, B, C, D and E”. These are generated by different 
viruses of hepatitis. Rapid Miner open source software is used in this 
analysis. Hepatitis data set is taken from UCI. Data set include 20 features 
and 155 instances. 15 attributes are used in this experiment. Naive Bayes 
classifier gives 97% accuracy. Three-layered feed- forward NN are used and 
trained with Back propagation algorithm 155 instances are used for training. 
Correctness of 98% is attained.

Sathyadevi [25] employed C4.5, ID3 and CART algorithms for 
diagnosing the disease of hepatitis. This study uses the UCI hepatitis 
patient data set. WEKA, tool is used in this analysis. CART has offered 
great performance handling of missing values. So, CART algorithm shows 
a highest classification accuracy of 83.2%. ID3 Algorithm offers 64.8% of 
accuracy. 71.4% is attained by C4.5 algorithm. Binary decision tree (DT) 
that is generated by CART algorithm has only two or no child. DT that is 
formed by the C4.5 and ID3 can have two or more children. CART algorithm 
performs well in terms of Accuracy and time complexity.

Analysis:
Many algorithms have been used for diagnosis of different diseases. Table 

5 gives the comprehensive view. For the detection of Hepatitis disease, Feed 
forward neural network with back propagation shows highest accuracy of 
98%. Because in this model, three layered feed forward neural network is 



Survey of Machine Learning Algorithms for Disease Diagnostic 97

trained with error back propagation algorithm. Back propagation training 
with the rule of delta learning is an iterative gradient algorithm planned 
to lessen the RMSE “root mean square error” between the real output of a 
multilayered feed-forward neural networks and a desired output. Every layer 
is connected to preceding layer and having no other connection. Second best 
result is offered by Naive Bayes. But in terms of time to build model, Naive 
Bayes runs fast as compare to neural network. Figurative approach for the 
detection of hepatitis is shown in Figure 7.

Advantages and Disadvantages of NN:
Advantages: Adaptive Learning, Self-Organization, Real Time Operation 

Fault Tolerance via Redundant Information Coding.
Disadvantages: Less over fitting needs great computational effort. 

Sample Size must be large. It’s time consuming. Engineering Judgment 
does not develop the relations between input and output variables so that the 
model behaves like a black box [26] .

DISCUSSIONS AND ANALYSIS OF MACHINE 
LEARNING TECHNIQUES
For diagnosis of Heart, Diabetes, Liver, Dengue and Hepatitis diseases, 
several machine-learning algorithms perform very well. From existing 
literature, it is observed that Naive Bayes Algorithm and SVM are widely 
used algorithms for detection of diseases.

Table 5: Comprehensive view of machine learning techniques for hepatitis dis-
ease

Machine Learning 
Techniques

Author Year Disease Resource 
of Data Set

Tool Accuracy

Naive Bayes Ba-Alwi and 
Hintaya,

2013 Hepatitis Disease UCI WEKA 96.52%

Naive Bayes update-
able

84%

FT 87.10%

K Star 83.47%

J48 83%

LMT 83.6%

NN 70.41%
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Naive Bayes Karlik 2011 Hepatitis Disease UCI Rapid 
Miner

97%

Feed forward NN 
with Back propaga-
tion

98%

C4.5 Sathyadevi 2011 Hepatitis Disease UCI WEKA 71.4%

ID3 64.8%

CART 83.2%

Figure 7: Machine learning algorithm’s accuracy to detect hepatitis disease.

Both algorithms offer the better accuracy as compare to other algorithms. 
Artificial Neural network is also very useful for prediction. It also shows the 
maximum output but it takes more time as compared to other algorithms. 
Trees algorithm are also used but they did not attain wide acceptance due 
to its complexity. They also shows enhanced accuracy when it responded 
correctly to the attributes of data set. RS theory is not widely used but it 
presents maximum output.

CONCLUSION
Statistical models for estimation that are not capable to produce good 
performance results have flooded the assessment area. Statistical models 
are unsuccessful to hold categorical data, deal with missing values and 
large data points. All these reasons arise the importance of MLT. ML 
plays a vital role in many applications, e.g. image detection, data mining, 
natural language processing, and disease diagnostics. In all these domains, 
ML offers possible solutions. This paper provides the survey of different 
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machine learning techniques for diagnosis of different diseases such as heart 
disease, diabetes disease, liver disease, dengue and hepatitis disease. Many 
algorithms have shown good results because they identify the attribute 
accurately. From previous study, it is observed that for the detection of heart 
disease, SVM provides improved accuracy of 94.60%. Diabetes disease is 
accurately diagnosed by Naive Bayes. It offers the highest classification 
accuracy of 95%. FT provides 97.10% of correctness for the liver disease 
diagnosis. For dengue disease detection, 100% accuracy is achieved by 
RS theory. The feed forward neural network correctly classifies hepatitis 
disease as it provides 98% accuracy. Survey highlights the advantages and 
disadvantages of these algorithms. Improvement graphs of machine learning 
algorithms for prediction of diseases are presented in detail. From analysis, 
it can be clearly observed that these algorithms provide enhanced accuracy 
on different diseases. This survey paper also provides a suite of tools that are 
developed in community of AI. These tools are very useful for the analysis 
of such problems and also provide opportunity for the improved decision 
making process.
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ABSTRACT
With improved machine learning models, studies on bankruptcy prediction 
show improved accuracy. This paper proposes three relatively newly-
developed methods for predicting bankruptcy based on real-life data. The 
result shows among the methods (support vector machine, neural network 
with dropout, autoencoder), neural network with added layers with dropout 
has the highest accuracy. And a comparison with the former methods (logistic 
regression, genetic algorithm, inductive learning) shows higher accuracy.
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INTRODUCTION
Machine learning is a subfield of computer science. It allows computers 
to build analytical models of data and find hidden insights automatically, 
without being unequivocally coded. It has been applied to a variety of aspects 
in modern society, ranging from DNA sequences classification, credit card 
fraud detection, robot locomotion, to natural language processing. It can 
be used to solve many types of tasks such as classification. Bankruptcy 
prediction is a typical example of classification problems.

Machine learning was born from pattern recognition. Earlier works 
of the same topic (machine learning in bankruptcy) use models including 
logistic regression, genetic algorithm, and inductive learning.

Logistic regression is a statistical method allowing researchers to 
build predictive function based on a sample. This model is best used for 
understanding how several independent variables influence a single outcome 
variable [1] . Though useful in some ways, logistic regression is also limited.

Genetic algorithm is based on natural selection and evolution. It can be 
used to extract rules in propositional and first-order logic, and to choose the 
appropriate sets of if-then rules for complicated classification problems [2] .

Inductive learning’s main category is decision tree algorithm. It identifies 
training data or earlier knowledge patterns and then extracts generalized 
rules which are then used in problem solving [2] .

To see if the accuracy of bankruptcy prediction can be further improved, 
we propose three latest models―support vector machine (SVM), neural 
network, and autoencoder.

Support vector machine is a supervised learning method which is 
especially effective in cases of high dimensions, and is memory efficient 
because it uses a subset of training points in the decision function. Also, it 
specifies kernel functions according to the decision function [3] . Its nice 
math property guarantees a simple convex optimization problem to converge 
to a single global problem.

Neural networks, unlike conventional computers, are expressive models 
that learn by examples. They contain multiple hidden layers, thus are capable 
of learning very complicated relationships between inputs and outputs. And 
they operate significantly faster than conventional techniques. However, 
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due to limited training data, overfitting will affect the ultimate accuracy. 
To prevent this, a technique called dropout―temporarily and randomly 
removes units (hidden and visible)―to the neural network [4] .

Autoencoder, also known as Diabolo network, is an unsupervised 
learning algorithm that sets the target values to be equal to the inputs. By 
doing this, it suppresses the computation of representing a few functions, 
which improves accuracy. Also, the amount of training data required to learn 
these functions is reduced [5] .

This paper is structured as follows. Section 2 describes the motivation 
for this idea. Section 3 describes relevant previous work. Section 4 formally 
describes the three models. In Section 5 we present our experimental results 
where we do a parallel comparison within the three models we choose and 
a longitudinal comparison with the three older models. Section 6 is the 
conclusion. Section 7 is the reference.

MOTIVATION
The three models we choose (SVM, neural network, autoencoder) are 
relatively newly-developed but have already been applied to many fields.

SVM has been used successfully in many real-world problems such as text 
categorization, object tracking, and bioinformatics (Protein classification, 
Cancer classification). Text categorization is especially helpful in daily 
life―web searching and email filtering provide huge convenience and work 
efficiency.

Neural networks learn by examples instead of algorithms, thus, they 
have been widely applied to problems where it is hard or impossible to apply 
algorithmic methods [6] . For instance, finger print recognition is an exciting 
application. People can now use their unique fingerprints as keys to unlock 
their phones and payment accounts, free from the troubling, long passwords.

Autoencoders are especially successful in solving difficult tasks 
like natural language processing (NLP). They have been used to solve 
the previous seemingly intractable problems in NLP, including word 
embeddings, machine translation, document clustering, sentiment analysis, 
and paraphrase detection.

However, the usage of the three models in economics or finance is 
comparatively hard to find. So, we aim to find out if they still work well 
in economical field by running them with real-life data in a predicting 
bankruptcy task.



Soft Computing and Machine Learning with Python106

Another motivation is finding out if the accuracy of this particular 
problem (bankruptcy prediction) can be improved after reading previous 
works―The discovery of experts’ decision rules from qualitative bankruptcy 
data using genetic algorithms [2] , and Predicting Bankruptcy with Robust 
Logistic Regression [1] ―which uses older models. Thus, a comparison of 
the models and results is included in this paper.

RELATED WORK
Machine learning enables computers to find insights from data automatically. 
The idea of using machine learning to predict bankruptcy has previously 
been used in the context of Predicting Bankruptcy with Robust Logistic 
Regression by Richard P. Hauser and David Booth [1] . This paper uses 
robust logistic regression which finds the maximum trimmed correlation 
between the samples remained after removing the overly large samples 
and the estimated model using logistic regression [1] . This model has its 
limitation. The value of this technique relies heavily on researchers’ abilities 
to include the correct independent variables. In other words, if researchers 
fail to identify all the relevant independent variables, logistic regression will 
have little predictive value [7] . Its overall accuracy is 75.69% in the training 
set and 69.44% in testing set.

Another work, the discovery of experts’ decision rules from qualitative 
bankruptcy data using genetic algorithms, in 2003 by Myoung-Jong Kim 
and Ingoo Han uses the same dataset as we do. They apply older models―
inductive learning algorithms (decision tree), genetic algorithms, and neural 
networks without dropout. Since the length of genomes in GA is fixed, a 
given problem cannot easily be encoded. And GA gives no guarantee of 
finding the global maxima. The problem of inductive learning is with the 
one-step-ahead node splitting without backtracking, which may generate a 
suboptimal tree. Also, decision trees can be unstable because small variations 
in the data might result in a completely different tree being generated [3] 
. And the absence of dropout in the neural network model increases the 
possibility of overfitting which affects accuracy. The overall accuracies are 
89.7%, 94.0%, and 90.3% respectively.

The models we choose either contain a newly developed technique, 
like dropout, or completely new models that have hardly been utilized in 
bankruptcy prediction.
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MODEL DESCRIPTION
This section describes the proposed three models.

Support Vector Machine
Specifically, we use support vector classify (SVC), a subcategory of SVM, 
in this task. It constructs a hyper-plane, as shown in Figure 1, in a high 
dimensional space which is used for classification. Generally, a good 
separation represented by the solid line in Figure 1 means the distance(the 
space between the dotted lines) to the nearest training data points (the red 
and blue dots) of any class (represented by the color red and blue) is the 
largest. This is also known as functional margin [3] .

With training vectors in two classes and a vector,

respectively, SVM aims at solving the problem:

subject to

Its dual is

subject to

where e is a common vector, C>0 is upper bound, Q is n by n positive 
semidefinite matrix,  is the 
kernel.
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Figure 1: SVM model [3] .

Here the function implicitly maps the training vectors into a higher 
dimensional space.

The decision function is:

      [3]

Neural Network with Dropout
Neural networks’ inputs are modelled as layers of neurons. Its structure is 
shown in the following figure.

As shown in Figure 1, the formal neuron uses n inputs x1,x2,⋯,xn to 
classify the signals coming from dendrites, and are then synoptically weighted 
correspondingly with w1,w2,⋯,wn that measure their permeabilities. Then, 
the excitation level of the neuron is calculated as the weighted sum of input 
values:
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f in Figure 2 represents activation function.
When the value of excitation level x reaches the threshold h, the output y 

(state) of the neuron is induced. This simulates the electric impulse generated 
by axon [8] .

Dropout is a technique that further improves neural network’s accuracy. 
In Figure 3, let L be the number of hidden layers, l∈{1,⋯,L}l∈{1,⋯,L} the 
hidden layers of the neural network, z(l)z(l) and y(l)y(l) the vectors of inputs 
and outputs of layer ll , respectively. W(l)W(l) and b(l)b(l) are the weights 
and biases at layer ll . For l∈{0,⋯,L−1}l∈{0,⋯,L−1} and any hidden unit i, 
the network then can be described as:

Figure 2: Neural network model.
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Figure 3: Artificial neural network.

where f is any activation function.
With dropout, the feed-forward operation becomes:

r(l)-Bernoulli(p), j

      [4] .

Autoencoder
Consider an n/p/n autoencoder.

In Figure 4, let F and G denote sets, n and p be positive integers where 
0 < p < n, and B be a class of functions from Fn to Gp.

Define X={x1,⋯,xm} as a set of training vectors in Fn. When there are 
external targets, letY={y1,⋯,ym} denote the corresponding set of target 
vectors in Fn. And ∆ is a distortion function (e.g. Lp norm, Hamming 
distance) defined over Fn.
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For any A  A and B B, the input vector x  Fn becomes output vector 
A ◦ B(x)  Fn through the autoencoder. The goal is to find A  A and B  B 
that minimize the overall distortion function:

   [10] .

Decision Tree

Given training vectors  and a label vector  , a 
decision tree groups the sample according to the same labels.

Let Q represents the data at node m. The tree partitions the data θ=(j,tm)

Figure 4: An n/p/n Autoencoder Architecture [Pierre Baldi, 2012].

The impurity function H( ) is used to calculate the impurity at m, 
the choice of which depends on the task being solved (classification or 
regression)

Choose the parameters that minimises the impurity
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Then recur for subsets  until reaching the maximum 
possible depth,  [3] .

EXPERIMENTAL RESULT
The data we used shown in Table 1, called Qualitative Bankruptcy database, 
is created by Martin. A, Uthayakumar. j, and Nadarajan. m in February 
2014 [10] . The attributes include industrial risk, management risk, financial 
flexibility, credibility, competitiveness, and operating risk.

Parallel Comparison

SVM (Linear Kernel)
As shown in Table 2, the accuracy increases when truncate increases in a 
SVM model.

Neural Network (Activation = Softmax, Num_Classes = 2, Op-
timiser = Adam, Loss = Categorical _Crossentropy, Metrics = 
Accuracy)
As shown in Table 3, when other things in the model hold the same, dropout 
rate of 0.5 yields the highest accuracy.

Table 1: Dataset Description

Data set Dimensionality Instances Training Set Test Set Validation

Bankruptcy 6 times1 250 80% 10% 10%

Table 2: Accuracy of Neural Network Model with Truncate 50 or 100

variation accuracy
truncate = 50 0.9899
truncate = 100 0.9933

Table 3: Accuracy of Neural Network Model with and without Dropout

variation accuracy
without dropout 0.9867 with loss 0.0462
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with dropout (dropout rate = 0.1) 0.9867 with loss 0.0292
with dropout (dropout rate = 0.3) 0.9933 with loss 0.0300
with dropout (dropout rate = 0.4) 0.9933 with loss 0.0401
with dropout (dropout rate = 0.5) 0.9933 with loss 0.0278
with dropout (dropout rate = 0.7) 0.9933 with loss 0.0428
with dropout (dropout rate = 0.8) 0.9867 with loss 0.0318

As shown in Table 4 and Table 5, we can conclude that adding layers 
increases accuracy. Figure 5and Figure 6 depict Table 5.

Autoencoder (Encoding_Dim = 2, Activation = “Relu”, Optimiz-
er = “Adam”, Lose = “Mse”)
As shown in Table 6, autoencoder with decision tree yields higher accuracy.

Longitudinal Comparison
As shown in Table 7, neural network with truncate = 100 with added layers 
with dropout has the highest accuracy. And all the new models have higher 
accuracy than the old ones.

CONCLUSIONS
Support vector machine, neural network with dropout, and autoencoder are 
three relatively new models applied in bankruptcy prediction problems. 
Their accuracies outperform those of the three older models (robust logistic 
regression, inductive learning algorithms, genetic algorithms). The improved 
aspects include the control for overfitting, the improved probability of finding 
the global maxima, and the ability to handle large feature spaces. This paper 
compared and concluded the progress of machine leaning models regarding 
bankruptcy prediction, and checked to see the performance of relatively new 
models in the context of bankruptcy prediction that have rarely been applied 
in that field.

However, the three models also have drawbacks. SVM does not directly 
give probability estimates, but uses an expensive five-fold cross-validation 
instead.
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Table 4: Accuracy of Neural Network Model with Two, Three, and Four Layer

variation accuracy

two layer with dropout (dropout rate = 0.5) 0.9933 with loss 0.0278

three layer (added layer with dense 200) with dropout 
(dropout rate = 0.5)

0.9933 with loss 0.0221

four layer (added layer with dense 16) with dropout 
(dropout rate = 0.5)

1.0000 with loss 0.0004

Table 5: Accuracy of Neural Network Model with Truncate 50 or 100 and With 
Four Layers

variation accuracy

truncate = 50 with four layers (added layer dense 
16,200) with dropout rate 0.5

0.9950 with loss 0.0389

truncate = 100 with four layers (added layer dense 
16,200) with dropout rate 0.5

1.0000 with loss 0.0004

Table 6: Accuracy of Neural Network Model with SVM or With Decision Tree

variation accuracy

with SVM 0.9867

with decision tree 0.9933

Table 7: Accuracy of Neural Network Model with Different models

model accuracy

Robust logistic regression 0.6944

inductive learning algorithms (decision tree) 0.897

genetic algorithms 0.94
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neural networks without dropout 0.903

SVM truncate = 100 0.9933

Truncate = 100 with four layers (added layer dense 
16,200) with dropout rate 0.5

1.0000 with loss 0.0004

autoencoder (with decision tree) 0.9933

Also, if the data sample is not big enough, especially when outnumbered 
by the number of features, SVM is likely to give bad performance [4] . With 
dropout, the time to train the neural network will be 2 to 3 times longer 
than training a standard neural network. An autoencoder captures as much 
information as possible, not necessarily the relevant information. And this 
can be a problem when the most relevant information only makes up a small 
percent of the input.

Figure 5: Neural network-loss.
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Figure 6: Neural network-accuracy.

The solutions to overcome these drawbacks are yet to be found.
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ABSTRACT
Classical machine learning, which is at the intersection of artificial intel-
ligence and statistics, investigates and formulates algorithms which can be 
used to discover patterns in the given data and also make some forecasts 
based on the given data. Classical machine learning has its quantum part, 
which is known as quantum machine learning (QML). QML, which is a 
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field of quantum computing, uses some of the quantum mechanical prin-
ciples and concepts which include superposition, entanglement and quan-
tum adiabatic theorem to assess the data and make some forecasts based on 
the data. At the present moment, research in QML has taken two main ap-
proaches. The first approach involves implementing the computationally ex-
pensive subroutines of classical machine learning algorithms on a quantum 
computer. The second approach concerns using classical machine learning 
algorithms on a quantum information, to speed up performance of the algo-
rithms. The work presented in this manuscript proposes a quantum support 
vector algorithm that can be used to forecast solar irradiation. The novelty 
of this work is in using quantum mechanical principles for application in 
machine learning. Python programming language was used to simulate the 
performance of the proposed algorithm on a classical computer. Simulation 
results that were obtained show the usefulness of this algorithm for predict-
ing solar irradiation.

Keywords: Quantum, Quantum Machine Learning, Machine Learning, 
Support Vector Machine, Quantum Support Vector Machine, Energy, Solar 
Irradiation

INTRODUCTION
Machine learning is a subfield of artificial intelligence. It is a set of 
techniques that are used to analyze and find patterns in input data to make 
predictions/inferences [1] - [10] . It has applications in areas such as image 
recognition, natural language processing, robotics, spam filtering, drug 
discovery, medical diagnosis, financial analysis, bioinformatics, marketing 
and even politics [10] [11] [12] .

There are various classical machine learning algorithms, and these 
include Bayesian networks, artificial neural networks, deep learning, 
clustering and Support Vector Machine (SVM) to name but a few. The main 
focus of this paper is on the quantum version of SVM algorithm, which 
was introduced by Vapnik in the 1990s [13] . Machine learning algorithms 
can be divided into three major categories, namely supervised learning, 
unsupervised learning and reinforcement learning, depending on the type of 
data to be used for predictive analytics [1] [3] [10] [13] .

The field of Quantum Information Processing (QIP) exploits quantum 
mechanical concepts such as superposition, entanglement and tunneling 
for computation and communication tasks [14] . Recently, there has been 
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a concerted effort to explore the benefits of using QIP for machine learning 
applications. This results in the field of Quantum Machine Learning (QML). 
It has also been demonstrated that QML techniques provide a performance 
speedup compared to their classical counterparts [11] [15] . This speedup is 
the major motivation for exploring QML algorithms.

There are two basic approaches to QML [9] . The first approach uses the 
classical data as input, and transforms it into quantum data so that it could 
be processed on a quantum computer. In essence, this approach implements 
classical machine learning algorithms on a quantum computer. The second 
approach involves making use of quantum mechanical principles in order 
to design machine learning algorithms for classical computers. In the work 
reported in this paper, we used the first approach to model solar power using 
quantum SVM.

The remainder of this paper is structured as follows. The next section 
provides background information on machine learning, QIP and QML. This 
is followed by Section 3, which discusses the design and implementation 
of the sun power prediction model reported in this Manuscript. Section 
4 provides the results and discusses the results obtained. Finally, the last 
section concludes this paper.

BACKGROUND INFORMATION
Machine learning, which is used interchangeably with predictive analytics, 
is a sub-field of artificial intelligence which is concerned with building 
algorithms that make use of input data to make predictions [1] [2] [3] [4] . 
There are three main categories of machine learning, and they are [1] [10] :

-Supervised learning: makes use of both training data and data label 
to make predictions about future points. Examples of supervised learning 
algorithms are logistic regression, artificial neural networks and support 
vector machines.

- Unsupervised learning: makes use of training data only to make 
a model that maps inputs to output. As opposed to supervised 
learning, unsupervised learning does not make use of data label. 
Examples of unsupervised learning are clustering and anomaly 
detection algorithms.

- Reinforcement learning: uses reinforcement in the form of reward 
or punishment. If the algorithm succeeds in making correct 
predictions, it is rewarded. However, if it fails, it is punished. 



Soft Computing and Machine Learning with Python122

Reinforcement learning is used mainly in robotics and computer 
games.

Support Vector Machines
Support vector machine learning is the most commonly used “off-the-
shelf” supervised learning algorithm [1] . SVM solves problems in both 
classification and regression. It uses the principle of maximum margin 
classifier to separate data. For a d- dimensional data, SVM uses a d ? 1 
hyperplane for data separation. For instance, if data are supplied on a plane 
(two dimensions), SVM would use a line (one dimension) for classification. 
The principle of maximum margin classification ensures that there is a 
maximum separation between positive results (y = 1) and negative results (y 
= −1). The margin in this case is the distance between the decision boundary 
and the support vectors, where support vectors are data points closest to the 
decision boun- dary.

One of the key advantages of support vector machines is that unlike other 
supervised learning algorithms, its loss function is a global optimization 
problem, hence it is not prone to local optima [4] . Additionally, SVM is 
robust against over-fitting, hence it is suitable for making generalizations 
even with a small dataset. Lastly, by using a technique known as kernel 
trick, SVM can separate data which is not linearly separable in its input 
space. This technique enables SVM to transform input data into higher-
dimen- sional space, where a separating linear hyperplane can be found.

Quantum Information Processing
In stark contrast to classical computers, which use a binary digit (bit) as a 
unit of information, quantum computers use a quantum bit (qubit) as a unit 
of information. Mathematically, a qubit is given as [14] [16]

       (1)
where α and β are probability amplitudes. These amplitudes satisfy the 
condition

       (2)
It is worth noting that a qubit, which is a unit of information for a two-

state system, can be generalized to any arbitrary d-state. Such a generalized 
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unit of information is known as a quantum digit (qudit) [16] . Just like a 
classical computer, which use gates for computation, quantum computers 
also use quantum gates to perform operations on qudits. Essentially, a 

quantum gate operation on a quantum state  (which is represented as 
a column vector) is a linear operation. Therefore, mathematically speaking, 
quantum information processing makes use of vectors, matrices and tensors, 
hence it involves linear transformations.

Quantum Machine Learning
Machine learning generally represents data in vector and matrix form. This 
is also the case with QIP, hence why QIP concepts find applications in 
machine learning. This results in the new field of research called quantum 
machine learning. Quantum machine learning can take two forms: where 
classical machine learning algorithms are transformed into their quantum 
counterparts; to be implemented on a quantum information processor, or 
taking some of the computationally expensive classical machine learning 
sub-routines and implementing them on the quantum computer.

Model Evaluation and Validation
Different measures are used to evaluate and validate models. These measures 
include mean squared error (MSE), Root mean squared error (RMSE), mean 
absolute error (MAE), and R2 error.

Mean Squared Error
Mean squared error is one of the measures of the goodness of fit. It 
measures the closeness of a data line to the data points. For n as the number 

of predictions, as the vector of predicted values, and Y as the vector of 
observations, MSE is given as

      (3)

Root Mean Squared Error
Root mean squared error, which is also a measure of goodness of fit, is the 
average Euclidean distance of the line from the data points. It is given as
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      (4)

where n is the number of predictions, is the vector of predicted values, 
and Y is the vector of observations.

Mean Absolute Error
Mean absolute error measures the closeness of predicted results to the 
observations. It is given as

      (5)

R2 Error
R2 error is also known as coefficient of determination. It is the measure of 
degree of variance. It is given as

       (6)

where, for a mean of observations , SStot is given as

      (7)
and

      (8)

IMPLEMENTATION
In this work, quantum support vector machine was implemented using a 
recorded data from Digital Technology Group (DTG) Weather Station in 
Cambridge University1. The dataset consists of forty nine instances, which 
are the training examples. These instances represent the measurements that 
were recorded at DTG, with a time interval of thirty minutes. Additionally, 
this dataset consists of three features, namely temperature, humidity and 
wind speed.
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The recorded classical information is converted to quantum state such 

that for a training example  and number of training examples N:

      (9)
This is then followed by optimizing the quantum support vector 

hyperplane parameters, as articulated in [17] . The optimization is done by 
reducing this optimization problem into a system of linear equations, and 
then using a quantum algorithm for solving a system of linear equations, 
which uses matrix inversion. This quantum algorithm is known to have an 
exponential speedup over its classical counterpart.

The quantum support vector machine was implemented using Python 
programming language.

Python machine learning package used for this task was Scikit-
learn version 0.18.0 [5] . The graphical user interface (GUI) part of the 
implementation was realized using Orange data mining software package, 
release number 3.3.82. This GUI helped visualize the input dataset and the 
plots for the results obtained from this implementation. It also supports other 
python packages such as scikit-learn.

The results were then recorded and errors calculated. The following 
errors were calculated, for different training sizes:
_mean square error (MSE),
_root mean square error (RMSE),
_mean absolute error (MAE),
_coefficient of determination, R2.

RESULTS AND DISCUSSION
The dataset was broken down into different portions, with some part being 
used for training data, and the other part being used for cross-validation. Table 
1 shows different calculated errors for different training data sizes. From the 
table, it can be observed that the best results are obtained when the training 
size is 70% of the dataset. Therefore, the training size of 70% was chosen 
for this implementation.

The next step was to analyze the correlation of the three features used 
(temperature, humidity and wind speed). Figure 1 and Figure 2 show the 
scatter plots of these correlations. Since the graphs in the figures are not 
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linear, it implies that the features were not correlated, hence they were 
independent. Finally, Sieve diagrams were plotted, and are shown in Figure 
3 and Figure 4. These results underline the robustness of the proposed 
algorithm.

CONCLUSIONS
We have reported an algorithm for solar power prediction using quantum 
support vector machine learning algorithm. The algorithm is a quantum 
counterpart of a classical support vector machine, which is known to have a 
unique solution, and hence it converges to a global optimum.

Table 1: Calculated errors for different dataset training sizes 

Figure 1: This figure shows the relationship between temperature (in degrees 
Celsius) and humidity. The non-linearity of the data points implies that the two 
features are not correlated.
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Figure 2: This figure shows the relationship between temperature (in degrees 
Celsius) and wind speed (in knots). Since the data point portray non-linearity, it 
can be observed that these two features are independent.

Figure 3: A sieve diagram for temperature and humidity attributes.
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Figure 4: A sieve diagram for temperature and wind speed attributes.

This is in contrast to other machine learning algorithms such as neural 
networks, which can converge to local optima, since they may not have 
unique solutions.

In the work reported in this paper, the quantum support vector algorithm 
was simulated using Python programming language. A dataset with forty 
nine instances and three features (temperature, humidity and windspeed) was 
used for this simulation. The results obtained from the simulation underline 
the utility of the proposed quantum support vector algorithm for solar power 
prediction. However, it should be noted that in the implementation, a generic 
optimization algorithm was used for implementing quantum SVM. Future 
work should explore the feasibility.
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the Inductive Reasoning Developmental Test (TDRI), the Metacognitive 
Control Test (TCM) and the Brazilian Learning Approaches Scale (BLAS-
Deep Approach). The first two tests have a self-appraisal scale attached, so 
we have five independent variables. The students’ responses to each test/
scale were analyzed using the Rasch model. A subset of the original sample 
was created in order to separate the students in two balanced classes, high 
achievement (n = 41) and low achievement (n = 47), using grades from nine 
school subjects. In order to predict the class membership a machine learning 
non-linear model named Random Forest was used. The subset with the two 
classes was randomly split into two sets (training and testing) for cross 
validation. The result of the Random Forest showed a general accuracy of 
75%, a specificity of 73.69% and a sensitivity of 68% in the training set. 
In the testing set, the general accuracy was 68.18%, with a specificity of 
63.63% and with a sensitivity of 72.72%. The most important variable in the 
prediction was the TDRI. Finally, implications of the present study to the 
field of educational psychology were discussed.

Keywords: Machine Learning, Assessment, Prediction, Intelligence, Learn-
ing Approaches, Metacognition

INTRODUCTION
Machine learning is a relatively new science field composed by a broad class 
of computational and statistical methods to make predictions, inferences, 
and to discover new relations in data (Flach, 2012; Hastie, Tibshirani, & 
Friedman, 2009) . There are two main areas within the machine learning 
field. The unsupervised learning focuses in the discovery and detection of 
new relationships, patterns and trends in data. The supervised learning area, 
by the other side, focuses in the prediction of an outcome using a given set 
of predictors. If the outcome is categorical, then the task to be accomplished 
is named classification, if it is numeric then the task is called regression.

There are several types of algorithms to perform classification and 
regression (Hastie et al., 2009) . Among these algorithms, the tree based 
models are supervised learning techniques of special interest to the 
psychology and to the education research field. It can be used to discover 
which variable, or combination of variables, better predicts a given outcome, 
e.g. high or low academic achievement. It can identify the cutoff points for 
each variable that maximally predict the outcome, and can also be applied 
to study the non-linear interaction effects of the independent variables 



Predicting Academic Achievement of High-School Students Using ... 133

and its relation to the quality of the prediction (Golino & Gomes, 2014) . 
Within psychology, there are a growing number of applications of the 
tree-based models in different areas, from ADHA diagnosis(Eloyan et al., 
2012; Skogli et al., 2013) to perceived stress (Scott, Jackson, & Bergeman, 
2011) , suicidal behavior (Baca-Garcia et al., 2007; Kuroki & Tilley, 2012) , 
adaptive depression assessment (Gibbons et al., 2013) , emotions (Tian et 
al., 2014; van der Wal & Kowalczyk, 2013)and education (Blanch & Aluja, 
2013; Cortez & Silva, 2008; Golino & Gomes, 2014; Hardman, Paucar-
Caceres, & Fielding, 2013) .

The main benefit of using the tree-based models in psychology is that 
they do not make any assumption regarding normality, linearity of the relation 
between variables, homoscedasticity, collinearity or independency (Geurts, 
Irrthum, & Wehenkel, 2009) . The tree-based models also do not demand a 
high sample-to-predictor ratio and are more suitable to interaction effects 
(especially non-linearity) than the classical techniques, such as linear and 
logistic regression, ANOVA, MANOVA, structural equation modelling and 
so on. Finally, the tree- based models, especially the ensemble techniques, 
can lead to high prediction accuracy, since they are known as the state-of-
the-art methods in terms of prediction accuracy (Flach, 2012; Geurts et 
al., 2009) . The current paper focuses on the methodological aspects of the 
classification tree (Breiman, Friedman, Olshen, & Stone, 1984) and its most 
famous ensemble technique, Random Forest (Breiman, 2001a) . To illustrate 
the use of tree-based models in educational psychology, the Random 
Forest algorithm will be used to predict levels of academic achievement 
of high school students (low vs. high). Finally, we will discuss the limits 
and possibilities of this new predictive method to the field of educational 
psychology.

Recursive Partitioning and Ensemble Techniques
A classification tree partitions the feature space into several distinct mutually 
exclusive regions (non-overlap- ping). Each region is fitted with a specific 
model that designates one of the classes to that particular space. The class is 
assigned to the region of the feature space by identifying the majority class 
in that region. In order to arrive in a solution that best separates the entire 
feature space into more pure nodes (regions), recursive binary partition is 
used. A node is considered pure when 100% of the cases are of the same 
class, for example, low academic achievement. A node with 90% of low 
achievement and 10% of high achievement students is more “pure” then a 
node with 50% of each. Recursive binary partitions work as follows. The 
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feature space is split into two regions using a specific cutoff from the variable 
of the feature space (predictor) that leads to the most purity configuration. 
Then, each region of the tree is modeled accordingly to the majority class. 
One or two original nodes are also split into more nodes, using some of 
the given predictors that provide the best fit possible. This splitting process 
continues until the feature space achieves the most purity configuration 
possible, with Rm regions or nodes classified with a distinct Ck class. If 
more than one predictor is given, then the selection of each variable used to 
split the nodes will be given by the variable that splits the feature space into 
the most purity configuration. In a classification tree, the first split indicates 
the most important variable, or feature, in the prediction. Let’s take a look 
in Figure 1 to see how a classification tree looks like.

Figure 1 shows the classification tree presented by Golino and Gomes 
(2014) with three predictors of the academic achievement (high and low) of 
medicine students: The Metacognitive Control Test (TCM), Deep Learning 
Approach (DeepAp) and the Self-Appraisal of the Inductive Reasoning 
Developmental Test (SA_ TDRI). The most important variable in the 
prediction was TCM, since it was the predictor located at the first split of the 
classification tree.

Figure 1: A classification tree from Golino and Gomes (2014) .

The first split indicates the variable that separates the feature space into 
two purest nodes. In the case shown in Figure 1, 52.50% of the sample 
used to grow the tree had a TCM score smaller than −1.295, and were 
classified as having a low academic achievement. The remaining 47.5% had 
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a TCM score greater than −1.295, and were classified in the low or in the 
high achievement class accordingly their scores on the DeepAp and on the 
SA_TDRI. Those with a TCM score greater than −1.295 and a DeepAp 
score greater than .545 were classified as belonging to the high achievement 
class. The same occurred to those with a TCM score greater than −1.295, 
a DeepAp score lower than .545 and a SA_TDRI score greater than 2.26. 
Finally, the participants with a TCM score greater than −1.295, a DeepAp 
score lower than .545 but with a SA_TDRI score smaller than 2.26 were 
classified as belonging to the low achievement group. This classification 
tree presented a total accuracy of 72.50%, with a sensitivity of 57.89% and 
a specificity of 85.71%(Golino & Gomes, 2014) .

Geurts, Irrthum and Wehenkel (2009) argue that learning trees are among 
the most popular algorithms of machine learning due to its interpretability, 
flexibility and ease of use. Interpretability referrers to its easiness of 
understanding. It means that the model constructed to map the feature space 
(predictors) into the output space (dependent variable) is easy to understand, 
since it is a roadmap of if-then rules. The description of Figure 1 above 
shows exactly that. James, Witten, Hastie and Tibshirani (2013) points that 
the tree models are easier to explain to people than linear regression, since 
it mirrors more the human decision-making then other predictive models. 
Flexibility means that the tree techniques are applicable to a wide range of 
problems, handles different kind of variables (including nominal, ordinal, 
interval and ratio scales), are non-parametric techniques and does not make 
any assumption regarding normality, linearity or independency(Geurts et al., 
2009) . Furthermore, it is sensible to the impact of additional variables to 
the model, being especially relevant to the study of incremental validity. 
It also assesses which variable or combination of them, better predicts a 
given outcome, as well as calculates which cutoff values are maximally 
predictive of it. Finally, the ease of use means that the tree based techniques 
are computationally simple, yet powerful.

In spite of the qualities of the learning trees, it suffers from two related 
limitations. The first one is known as the overfitting issue. Since the feature 
space is linked to the output space by recursive binary partitions, the tree 
models can learn too much from data, modeling it in such a way that may 
turn out a sample dependent model. Being sample dependent, in the sense 
that the partitioning is too suitable to the data set in hand, it will tend to 
behave poorly in new data sets.Golino and Gomes (2014) showed that in 
spite of having a total accuracy of 72.50% in the training sample, the tree 
presented in Figure 1 behaved poorly in a testing set, with a total accuracy 
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of 64.86%. The difference between the two data sets is due to the overfit of 
the tree to the training set.

The second issue is exactly a consequence of the overfitting, and is 
known as the variance issue. The predictive error in a training set, a set 
of features and outputs used to grown a classification tree for the first 
time, may be very different from the predictive error in a new test set. In 
the presence of overfitting, the errors will present a large variance from 
the training set to the test set used, as shown by the results of Golino and 
Gomes (2014) . Additionally, the classification tree does not have the same 
predictive accuracy as other classical machine learning approaches (James 
et al., 2013) . In order to prevent overfitting, the variance issue and also to 
increase the prediction accuracy of the classification trees, a strategy named 
ensemble trees can be used.

The ensemble trees are simply the junction of several models to perform 
the classification task based on the prediction made by every single tree. 
The most famous ensemble tree algorithm is the Random Forest (Breiman, 
2001a) , that is used to increase the prediction accuracy, decrease the variance 
between data sets and to avoid overfitting.

The procedure takes a random subsample of the original data set (with 
replacement) and of the feature space to grow the trees. The number of the 
selected features (variables) is smaller than the number of total elements of 
the feature space. Each tree assigns a single class to the each region of the 
feature space for every observation. Then, each class of each region of every 
tree grown is recorded and the majority vote is taken (Hastie et al., 2009; 
James et al., 2013) . The majority vote is simply the most commonly occurring 
class over all trees. As the Random Forest does not use the entire observations 
(only a subsample of it, usually 2/3), the remaining observations (known as 
out-of-bag, or OOB) is used to verify the accuracy of the prediction. The 
out-of-bag error can be computed as a “valid estimate of the test error for 
the bagged model, since the response for each observation is predicted using 
only the trees that were not fit using that observation” (James et al., 2013: 
p. 323) .

As pointed by Breiman (2001a) , the number of selected variables is 
held constant during the entire procedure for growing the forest, and usually 
is set to square-root of the total number of variables. Since the Random 
Forest subsamples the original sample and the predictors, it is considered 
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an improvement over other ensemble trees, as the bootstrap aggregating 
technique (Breiman, 2001b), or simply bagging. Bagging is similar to 
Random Forest, except for the fact that does not subsample the predictors. 
Thus, bagging creates correlated trees (Hastie et al., 2009) , which may affect 
the quality of the prediction. The Random Forest algorithm decorrelates the 
trees grown, and as a consequence it also decorrelates the errors made by 
each tree, yielding a more accurate prediction.

Why decorrelating the trees is so important? Following the example 
created by James et al. (2013), imagine that we have a very strong predictor 
in our feature space, together with other moderately strong predictors. In the 
bagging procedure, the strong predictor will be in the top split of most of the 
trees, since it is the variable that better separates the classes available in our 
data. By consequence, the bagged trees will be very similar to each other, 
making the predictions and the errors highly correlated. This may not lead to 
a decrease in the variance if compared to a single tree. The Random Forest 
procedure, on the other hand, forces each split to consider only a subset of 
the features, opening chances for the other variables to do their job. The 
strong predictor will be left out of the bag in a number of situations, making 
the trees very different from each other. Therefore, the resulting trees will 
present less variance in the classification error and in the OOB error, leading 
to a more reliable prediction. In sum, the Random Forest is an ensemble of 
trees that improves the prediction accuracy, decreases variance and avoids 
overfitting by using only a subsample of the observations and a subsample 
of predictors. It has two main tuning parameters. The first is the size of the 
subsample of features used in each split (mtry), which is mandatory to be 
smaller than the total number of features, and is usually set as the square 
root of the total number of predictors. The second tuning parameter is the 
number of trees to grow (ntree).

The present paper investigates the prediction of academic achievement 
of high-school students (high achieve- ment vs. low achievement) using 
two psychological tests and one educational scale: the Inductive Reasoning 
Developmental Test (TDRI), the Metacognitive Control Test (TCM) and 
the Brazilian Learning Approaches Scale (BLAS-Deep approach). The first 
two tests have a self-appraisal scale attached, so we have five independent 
variables. In the next section will be presented the participants, instruments 
used and the data analysis procedures.
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METHOD

Participants
The sample is composed by 135 high-school students (10th grade, 50.34% 
boys), aged between 14 and 19 years old (M = 15.44, DP = 1.09), from a 
public high-school from [omitted as required by the review process]. The 
sample was selected by convenience, and represents approximately 90% 
of the students of the 10th grade. The students received a letter inviting 
them to be part of the study. Those who agreed in participating signed a 
inform consent, and confirmed they would be present in the schedule days 
to answer all the instruments.

Measures and Procedures

The Inductive Reasoning Developmental Test (TDRI) and Its 
Self-Appraisal Scale (SA_TDRI)
The Inductive Reasoning Developmental Test (TDRI) was developed 
by Gomes and Golino (2009)and by Golino and Gomes (2012) to assess 
developmental stages of reasoning based on Common’s Hierarchical 
Complexity Model (Commons, 2008; Commons & Pekker, 2008; Commons 
& Richards, 1984) and on Fischer’s Dynamic Skill Theory (Fischer, 1980; 
Fischer & Yan, 2002) . This is a pencil-and-paper test composed by 56 
items, with a time limit of 100 minutes. Each item presents five letters or 
set of letters (see Figure 2), being four with the same rule and one with a 
different rule. The task is to identify which letter or set of letters have the 
different rule.

Golino and Gomes (2012) evaluated the structural validity of the TDRI 
using responses from 1459 Brazilian people (52.5% women) aged between 
5 to 86 years (M = 15.75, SD = 12.21). The results showed a good fit to the 
Rasch model (INFIT mean = .96; SD = .17) with a high separation reliability 
for items (1.00) and a moderately high for people (.82). The item’s difficulty 
distribution formed a seven cluster structure with gaps between them, 
presenting statistically significant differences in the 95% C.I. level (t-test). 
The CFA showed an adequate data fit for a model with seven first-order 
factors and one general factor [χ2 (61) = 8832.594, p = .000, CFI = .96, 
RMSEA = .059]. The latent class analysis showed that the best model is 
the one with seven latent classes (AIC: 263.380; BIC: 303.887; Loglik: 
−111.690). The TDRI test has a self-appraisal scale attached to each one 
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of the 56 items. In this scale, the participants are asked to appraise their 
achievement on the TDRI items, by reporting if he/she passed or failed 
the item. The scoring procedure of the TDRI self-appraisal scale works 
as follows. The participant receive a score of 1 in two situations: 1) if the 
participant passed the ith item and reported that he/she passed the item, and 
2) if the participant failed the ith item and reported that he/she failed the 
item. On the other hand, the participant receives a score of 0 if his appraisal 
does not match his performance on the ith item: 1) he/ she passed the item, 
but reported that failed it, and 2) he/she failed the item, but reported that 
passed it.

The Metacognitive Control Test (TCM) and Its Self-Appraisal 
Scale (SA_TCM)
The Metacognitive Control Test (TCM) was developed by Golino and 
Gomes (2013) to assess the ability of people to control intuitive answers 
to logical-mathematical tasks. The test is based on Shane Frederick’s 
Cognitive Reflection Test (Frederick, 2005) , and is composed by 15 items. 
The structural validity of the test was assessed by Golino and Gomes 
(2013) using responses from 908 Brazilian people (54.8% women) aged 
between 9 to 86 years (M = 27.70, SD = 11.90). The results showed a good 
fit to the Rasch model (INFIT mean = 1.00; SD = .13) with a high separation 
reliability for items (.99) and a moderately high for people (.81). The TCM 
also has a self-appraisal scale attached to each one of its 15 items. The TCM 
self-appraisal scale is scored exactly as the TDRI self-appraisal scale: an 
incorrect appraisal receives a score of 0, and a correct appraisal receives a 
score of 1.

The Brazilian Learning Approaches Scale (EABAP)
The Brazilian Learning Approaches Scale (EABAP) is a self-report 
questionnaire composed by 17 items, developed by Gomes and 
colleagues (Gomes, 2010; Gomes, Golino, Pinheiro, Miranda, & Soares, 
2011) . Nine items were elaborated to measure deep learning approaches, and 
eight items measure surface learning approaches. Each item has a statement 
that refers to a student’s behavior while learning. The student considers how 
much of the behavior described is present in his life, using a Likert-like scale 
ranging from (1) not at all, to (5) entirely present. BLAS presents reliability, 
factorial structure validity, predictive validity and incremental validity as 
good marker of learning approaches. These psychometrical proprieties are 
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described respectively in Gomes et al. (2011), Gomes (2010) , and Gomes 
and Golino (2012) . In the present study only the deep learning approach 
items (DeepAp) were used. We will analyze only the nine deep approach 
items using the partial credit Rasch model.

Figure 2: Example of TDRI’s item 1 (from the first developmental stage as-
sessed).

Data Analysis

Estimating the Students’ Ability in Each Test/Scale
The student’s ability estimates on the inductive reasoning developmental 
test, on the metacognitive control test, on the Brazilian learning approaches 
scale, and on the self-appraisal scales were computed using the original 
data set of each test/scale, through the software Winsteps (Linacre, 2012) . 
This procedure was followed in order to achieve reliable estimates, since 
only 135 students answered the tests. The mixture of the original data set 
from each test to the high-school students’ answers did not significantly 
change the reliability or fit to the models used. A summary of the separation 
reliability and fit of the items, the separation reliability of the sample (after 
adding the data from the high-school students) and the statistical model used 
is provided in Table 1.

Defining the Achievement Classes (High vs. Low)
The final grade in the following nine school subjects was provided by the 
school at the end of the academic year: arts, philosophy, physics, history, 
informatics, math, chemistry, sociology and Brazilian Portuguese. The final 
grades ranged from 0 to 10, and the students were considered approved in 
the academic year in each school subject only if he/she had a grade equal 
to or above seven. Students with grades lower than seven in a particular 
school subject are submitted to an additional assessment. Finally, those with 
an average grade of seven or more are considered able to proceed to the 
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next school grade (11th grade). Otherwise, the students need to re-do the 
current grade (10th grade). From the total sample, only 65.18% (n = 88) 
were considered able to proceed to the next school year and 34.81% (n = 
47) were requested to re-do the 10th grade. These two groups could be used 
to compose the high and the low achievement classes. However, since the 
tree-based models require balanced classes (i.e., classes with approximately 
the same number of cases) we needed to subset the high achievement 
class (those who proceeded to the next school grade) in order to obtain a 
subsample closer to the low achievement class size (those who would need 
to re-do the 10th grade). Therefore, we computed the mean final grade over 
all nine grades for every student, and verified the mean of each group of 
students. Those who passed to the next school grade had a mean final grade 
of 7.69 (SD = .48), while those who would need to re-do the 10th grade had 
a mean final grade of 6.06 (SD = 1.20). We select every student with a mean 
final grade equals to or higher than 7.69 (n = 41) and called them the “high 
achievement” group. The 47 students that would need to re- do the 10th 
grade formed the “low achievement” group. Finally, we had 88 students 
divided in two balanced classes.

Machine Learning Procedures
The sample was randomly split in two sets with equal sizes, training and 
testing, for cross-validation. The training set is used to grow the trees, to 
verify the quality of the prediction in an exploratory fashion, and to adjust 
the tuning parameters. Each model created using the training set is applied 
in the testing set to verify how it performs on a new data set.

Since the single trees usually lead to overiftting and to high variance 
between datasets, we used only the Random Forest algorithm through 
the random Forest package (Liaw & Wiener, 2012) of the R software (R 
Development Core Team, 2011). As pointed in the introduction, the Random 
Forest has two main tuning parameters: the number of trees (ntree) and the 
number of variables used (mtry). We set mtry as two, because is the integer 
closest to the square root of the total number of predictors (5), and ntree as 
10,000. In order to verify the quality of the prediction both in the training 
(modeling phase) and in the testing set (cross-validation phase), the total 
accuracy, the sensitivity and specificity were used.
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Table 1: Item reliability, item fit, person reliability, person fit and model used 
by instrument

Test Item 
reli-
ability

Item INFIT 
(mean, SD)

Person 
reliabil-
ity

Person INFIT 
(mean, SD)

Model

Inductive reasoning develop-
mental test (TDRI)

1.00 .98, .17 .85 .98, .91 Dichotomous Rasch Model

TDRI’s self-appraisal scale 
(SA_TDRI)

.98 .98, .11 .79 .97, .31 Dichotomous Rasch Model

Metacognitive control test 
(TCM)

.99 1.00, .13 .80 .99, .31 Dichotomous Rasch Model

TCM’s self-appraisal scale 
(SA_TCM)

.98 1.02, .26 .74 .98, .20 Dichotomous Rasch Model

Brazilian learning approaches 
scale― Deep learning items 
(DeepAp)

.99 1.00, .08 .80 1.01, .69 Partial Credit Rasch Model

Inductive reasoning develop-
mental test (TDRI)

1.00 .98, .17 .85 .98, .91 Dichotomous Rasch Model

Total accuracy is the proportion of observations correctly classified:

where  is the number of observations in the testing set. In spite of being 
an important indicator of the general prediction’s quality, the total accuracy 
is not an informative measure of the errors in each class. For example, a 
general accuracy of 80% can represent an error-free prediction for the C1 
class, and an error of 40% for the C2 class. In the educational scenario, it 
is preferable to have lower error in the prediction of the low achievement 
class, since students at risk of academic failure compose this class. So, 
the sensitivity will be preferred over general accuracy and specificity. The 
sensitivity is the rate of observations correctly classified in a target class, 
e.g. C1 = low achievement, over the number of observations that belong to 
that class:

Specificity, on the other hand, is the rate of correctly classified 
observations of the non-target class, e.g. C2 = high achievement, over the 
number of observations that belong to that class:
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Finally, the model construct in the training set will be applied in the 
testing set for cross-validation. Since the Random Forest is a black box 
technique―i.e. there is only a prediction based on majority vote and no 
“typical tree” to look at the partitions―to determine which variable is 
important in the prediction one importance measure will be used: the 
mean decrease of accuracy. It indicates how much in average the accuracy 
decreases on the out-of-bag samples when a given variable is excluded from 
the model (James et al., 2013).

Descriptive Analysis Procedures
After estimating the student’s ability in each test or scale the Shapiro-Wilk 
test of normality will be conducted in order to discover which variables 
presented a normal distribution. To verify if there is any statistically 
significant difference between the students’ groups (high achievement vs. 
low achievement) the two-sample T test will be conducted in the normally 
distributed variables and the Wilcoxon Sum-Rank test in the non-normal 
variables, both at the .05 significance level. In order to estimate the effect 
sizes of the differences, the R’s compute.es package (Del Re, 2013) is 
used. This package computes the effect sizes, along with their variances, 
confidence intervals, p-values and the common language effect size (CLES) 
indicator using the p-values of the significance testing. McGraw and Wong 
(1992) developed the CLES indicator as a more intuitive tool than the other 
effect size indicators. It converts an effect into a probability that a score 
taken at random from one distribution will be greater than a score taken at 
random from another distribution(McGraw & Wong, 1992) . In other words, 
it expresses how much (in %) the score from one population is greater than 
the score of the other population if both are randomly selected (Del Re, 
2013) .

RESULTS

Descriptive
The Brazilian Learning Approaches Scale (Deep Learning) presented 
a normal distribution (W = .99, p-value = .64), while all the other four 
variables presented a p-value smaller than .001. There was a statistically 
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significant difference at the 99% level between the high and the low 
achievement groups in the median Rasch score of the Inductive Reasoning 

Developmental ( High = 2.14, σ2 = 5.80, Low = −1.47, σ2
Low = 15.52, W = 

1359, p < .01), in the median Rasch score of the Metacognitive Control Test 

( High = −1.03, σ2 = 7.29, Low = −3.40, σ2
Low = 4.37, W = 928, p < .01), 

in the median Rasch score of the TDRI’s self-appraisal scale ( High = 2.03, 

σ2 = 3.01, Low= 1.16, σ2
Low = 4.66, W = 1152, p < .001), in the median 

Rasch score of the TCM’s self-appraisal scale ( High = 1.07, σ2 = 4.18, 
Low = −1.08, σ2

Low = 2.45, W = 954, p < .01) and in the mean Rasch score of 
the Brazilian learning approaches scale-deep approach ( High = 1.13, σ2 = 
.80, Low = .50, σ2

Low = .61, t(37) = 3.32, p < .01). The effect sizes, its 95% 
confidence intervals, variance, significance and common language effect 
sizes are described in Table 2.

According to Cohen (1988) , the effect size is considered small when 
it is between .20 and .49, moderate between .50 and .79 and large when 
values are over .80. Only the difference in the Rasch score of the inductive 
reasoning developmental test presented a large effect size (d = .88, p < .05).

As pointed before, the common language effect size indicates how often 
a score sampled from one distribution is greater than the score sampled 
from the other distribution if both are randomly selected (McGraw & Wong, 
1992) . Then, considering the common language effect size, the probability 
that a TDRI score taken at random from the high achievement group is 
greater than a TDRI score taken at random of the low achievement group is 
73.41%. It means that out of 100 TDRI scores from the high achievement 
group, 73.41 will be greater than the TDRI scores of the low achievement 
group. The Rasch scores of the other tests have moderate effect sizes. Their 
common language effect size varied from 64.92% to 70.10%, meaning that 
the probability of a score taken at random at the high achievement group be 
greater than a score taken at random in the low achievement group is at least 
64.92% and at most 70.10%. Figure 3 shows the mean score for each test 
and its 95% confidence interval by both classes (low and high).

Machine Learning Results
The result of the Random Forest model with 10,000 trees showed an out-of-
bag error rate of .29, a total accuracy of 75.00%, a sensitivity of 68.00% and 
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a specificity of 73.69%. The mean decrease accuracy showed the inductive 
reasoning developmental stage (TDRI) as the most important variable 
in the prediction, since when it is left out of the prediction the accuracy 
decreases 66.22% in average. The second most important variable is the 
deep learning approach, which is associated with a mean decrease accuracy 
of 28.45% when is not included in the predictive model. In third place is 
the metacognitive control test (19.68%); in the fourth position is the TDRI 
self-appraisal scale (19.50%), followed by the TCM self-appraisal scale 
(5.78%). Figure 4 shows the high achievement prediction error (green line), 
the out-of-bag error (red line) and the low achievement prediction error 
(black line) per tree. The errors become more stable with approximately 
more than 1700 trees.

The predictive model constructed in the training set was applied in the 
testing set for cross-validation. It presented a total accuracy of 68.18%, a 
sensitivity of 72.72% and a specificity of 63.63%. There was a difference 
of 6.82% in the total accuracy, of 2.28% in the sensitivity, and of 10.06% in 
the specificity.

DISCUSSION
The present paper briefly introduced the concept of recursive partitioning 
used in the tree-based models of machine learning. The tree-based models 
are very useful to study the role of psychological and educational constructs 
in the prediction of academic achievement. Unlike the most classical 
approaches, such as linear and logistic regression, as well as the structural 
equation modeling, the tree-based models do not make assumptions about the 
normality of data, the linearity of the relation between the variables, neither 
requires homoscedasticity, collinearity or independence (Geurts, Irrthum, 
& Wehenkel, 2009) . A high predictor-to-sample ratio can be used without 
harm to the quality of the prediction, and missingness is well handled by the 
prediction algorithms.

Table 2: Tests, effect sizes and common language effect size (CLES)

Test Effect size of
the difference 
(d)

95% C.I. (d) σ2 (d) p-value 
(d)

CLES

Inductive reasoning developmental 
test (TDRI)

.88 .43, 1.34 .05 .00 73.41%

Metacognitive control test (TCM) .59 .11, 1.06 .06 .02 66.05%
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TDRI’ self-appraisal scale (SA_
TDRI)

.54 .10, .99 .05 .02 64.92%

TCM’ self-appraisal scale (SA_
TCM)

.65 .17, 1.12 .06 .01 67.62%

EABAP (DeepAp) .75 .27, 1.22 .06 .00 70.10%

Figure 3: Score means and its 95% confidence intervals for each test, by class 
(high vs. low academic achievement).

Figure 4: Random Forest’s out-of-bag error (red), high achievement prediction 
error (green) and low achievement predic- tion error (blue).
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he tree-based models are also more suitable to non-linear interaction 
effects than the classical techniques. When several trees are ensemble to 
perform a prediction it generally leads to a high accuracy (Flach, 2012; 
Geurts et al., 2009) , decreasing the chance of overfitting and diminishing the 
variance between datasets. The focus of the current paper was the application 
of this relatively new predictive method in the educational psychology field.

Psychology is taking advantage of the tree-based models in a broad set 
of applications (Baca-Garcia et al., 2007; Eloyan et al., 2012; Gibbons et 
al., 2013; Kuroki & Tilley, 2012; Scott, Jackson, & Bergeman, 2011; Skogli 
et al., 2013; Tian et al., 2014; van der Wal & Kowalczyk, 2013) . Within 
education, Blanch and Aluja (2013) , Cortes and Silva (2008) and Golino 
and Gomes (2014) applied the tree-based models to predict the academic 
achievement of students from the secondary and tertiary levels using a 
set of psychological and socio-demographic variables as predictors. The 
discussion of their methods and results are beyond the scope of the current 
paper, since we focused on the methodological aspects of machine learning, 
and how it can be applied in the educational psychology field.

In the present paper we showed the Rasch scores of the tests and scales used 
significantly differentiated the high achievement from the low achievement 
10th grade students. Inductive reasoning presented a large effect size, while the 
deep learning approach, metacognitive control and self-appraisals presented 
moderate effect sizes. The random forest prediction lead to a total accuracy 
of 75%, a sensitivity of 68% and a specificity of 73.69% in the training set. 
The testing set result was a little bit worse, with a total accuracy of 68.18%, 
a sensitivity of 72.72% and a specificity of 63.63%. The most important 
variable in the prediction was the inductive reasoning that was associated 
with a mean decrease accuracy of 66.22% when left out of the prediction 
bag. The deep learning approach was the second most important variable 
(mean decrease accuracy of 28.45%), followed by metacognitive control 
(19.68%), TDRI self-appraisal (19.50%) and TCM self-appraisal (5.78%). 
This result reinforces previous findings that showed incremental validity of 
the learning approaches in the explanation of academic performance beyond 
intelligence, using traditional techniques (Chamorro-Premuzic & Furnham; 
2008; Furnham Monsen, & Ahmetoglu, 2009; Gomes & Golino, 2012 ). It 
also reinforces the incremental validity of metacognition, over intelligence, 
in the explanation of academic achievement (van der Stel & Veenman, 2008; 
Veenman & Beishuizen, 2004).
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CONCLUSION
The application of machine learning models in the prediction of academic 
achievement/performance, especially the tree-based models, represents 
an innovative complement to the traditional techniques such as linear 
and logistic regression, as well as structural equation modelling (Blanch 
& Aluja, 2013) . More than the advantages pointed earlier, the tree-based 
models can help us to understand the non-linear interactions between 
psycho- educational variables in the prediction of academic outcomes. 
These machine learning models not only represent an advance in terms of 
prediction accuracy, but also represent an advance in terms of inference. 
Future studies could benefit from employing a larger and broader sample, 
involving students from different schools. It would also be interesting to 
investigate, in the future, the impact of varying the tuning parameters of the 
random forest model in the accuracy, sensitivity, specificity and variability 
of the prediction.
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John W. Shipman

INTRODUCTION
This document contains some tutorials for the Python programming 
language, as of Python version 2.7. These tutorials accompany the free 
Python classes taught by the New Mexico Tech Computer Center. Another 
good tutorial is at the Python website.

Starting Python in Conversational Mode
This tutorial makes heavy use of Python’s conversational mode. When you 
start Python in this way, you will see an initial greeting message, followed 
by the prompt “>>>”.

• On a TCC workstation in Windows, from the Start menu, select 
All Programs → Python 2.7 → IDLE (Python GUI). You will see 
something like this:
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• For Linux or MacOS, from a shell prompt (such as “$” for the 
bash shell), type:

• python
You will see something like this:

$ python
Python 2.7.1 (r271:86832, Apr 12 2011, 16:15:16) 
[GCC 4.6.0 20110331 (Red Hat 4.6.0-2)] on linux2
Type “help”, “copyright”, “credits” or “license” for more information.
>>> 

When you see the “>>>” prompt, you can type a Python expression, and 
Python will show you the result of that expression. This makes Python useful 
as a desk calculator. (That’s why we sometimes refer to conversational mode 
as “calculator mode”.) For example:

>>> 1+1
2
>>>

Each section of this tutorial introduces a group of related Python features.

PYTHON’S NUMERIC TYPES
Pretty much all programs need to do numeric calculations. Python has 
several ways of representing numbers, and an assortment of operators to 
operate on numbers.

Basic Numeric Operations
To do numeric calculations in Python, you can write expressions that look 
more or less like algebraic expressions in many other common languages. 
The “+” operator is addition; “-” is subtraction; use “*” to multiply; and use 
“/” to divide. Here are some examples:
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>>> 99 + 1
100
>>> 1 - 99
-98
>>> 7 * 5
35
>>> 81 / 9
9

The examples in this document will often use a lot of extra space between 
the parts of the expression, just to make things easier to read. However, 
these spaces are not required:
>>> 99+1
100
>>> 1-99
-98

When an expression contains more than one operation, Python defines 
the usual order of operations, so that higher-precedence operations like 
multiplication and division are done before addition and subtraction. In this 
example, even though the multiplication comes after the addition, it is done 
first.

>>> 2 + 3 * 4
14

If you want to override the usual precedence of Python operators, use 
parentheses:

>>> (2+3)*4
20

Here’s a result you may not expect:

>>> 1 / 5
0

You might expect a result of 0.2, not zero. However, Python has different 
kinds of numbers. Any number without a decimal point is considered an 
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integer, a whole number. If any of the numbers involved contain a decimal 
point, the computation is done using floating point type:

>>> 1.0 / 4.0
0.25
>>> 1.0 / 3.0
0.33333333333333331

That second example above may also surprise you. Why is the last digit 
a one? In Python (and in pretty much all other contemporary programming 
languages), many real numbers cannot be represented exactly. The 
representation of 1.0/3.0 has a slight error in the seventeenth decimal place. 
This behavior may be slightly annoying, but in conversational mode, Python 
doesn’t know how much precision you want, so you get a ridiculous amount 
of precision, and this shows up the fact that some values are approximations.

You can use Python’s print statement to display values without quite so 
much precision:

>>> print 1.0/3.0
0.333333333333

It’s okay to mix integer and floating point numbers in the same expression. 
Any integer values are coerced to their floating point equivalents.

>>> print 1.0/5
0.2
>>> print 1/5.0
0.2

Later we will learn about Python’s string format method , which allows 
you to specify exactly how much precision to use when displaying numbers. 
For now, let’s move on to some more of the operators on numbers.

The “%” operator between two numbers gives you the modulo. That is, 
the expression “x % y” returns the remainder when x is divided by y.

>>> 13 % 5
3
>>> 5.72 % 0.5



A Python 2.7 Programming Tutorial 159

0.21999999999999975
>>> print 5.72 % 0.5
0.22

Exponentiation is expressed as “x ** y”, meaning x to the y power.

>>> 2 ** 8
256
>>> 2 ** 30
1073741824
>>> 2.0 ** 0.5
1.4142135623730951
>>> 10.0 ** 5.2
158489.31924611141
>>> 2.0 ** 100
1.2676506002282294e+30

That last number, 1.2676506002282294e+30, is an example of 
exponential or scientific notation. This number is read as “1.26765... times 
ten to the 30th power”. Similarly, a number like 1.66e-24 is read as “1.66 
times ten to the minus 24th power”.

So far we have seen examples of the integer type, which is called int 
in Python, and the floating-point type, called the float type in Python. 
Python guarantees that int type supports values between -2,147,483,648 and 
2,147,483,647 (inclusive).

There is another type called long, that can represent much larger integer 
values. Python automatically switches to this type whenever an expression 
has values outside the range of int values. You will see letter “L” appear at 
the end of such values, but they act just like regular integers.

>>> 2 ** 50
1125899906842624L
>>> 2 ** 100
1267650600228229401496703205376L
>>> 2 ** 1000
107150860718626732094842504906000181056140481170553360744375
038837035105112
493612249319837881569585812759467291755314682518714528569231
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404359845775746
985748039345677748242309854210746050623711418779541821530464
749835819412673
987675591655439460770629145711964776865421676604298316526243
868372056680693
76L

The Assignment Statement
So far we have worked only with numeric constants and operators. You 

can attach a name to a value, and that value will stay around for the rest of 
your conversational Python session.

Python names must start with a letter or the underbar (_) character; the 
rest of the name may consist of letters, underbars, or digits. Names are case-
sensitive: the name Count is a different name than count.

For example, suppose you wanted to answer the question, “how many 
days is a million seconds?” We can start by attaching the name sec to a value 
of a million:
>>> sec = 1e6
>>> sec
1000000.0

A statement of this type is called an assignment statement. To compute 
the number of minutes in a million seconds, we divide by 60. To convert 
minutes to hours, we divide by 60 again. To convert hours to days, divide by 
24, and that is the final answer.
>>> minutes = sec / 60.0
>>> minutes
16666.666666666668
>>> hours=minutes/60
>>> hours
277.77777777777777
>>> days=hours/24.
>>> days
11.574074074074074
>>> print days, hours, minutes, sec



A Python 2.7 Programming Tutorial 161

11.5740740741 277.777777778 16666.6666667 1000000.0
You can attach more than one name to a value. Use a series of names, sepa-
rated by equal signs, like this.
>>> total = remaining = 50
>>> print total, remaining
50 50

The general form of an assignment statement looks like this:
name1 = name2 = ... = expression

Here are the rules for evaluating an assignment statement:
• Each namei is some Python variable name. Variable names 

must start with either a letter or the underbar (_) character, and 
the remaining characters must be letters, digits, or underbar 
characters. Examples: skateKey; _x47; sum_of_all_fears.

• The expression is any Python expression.
• When the statement is evaluated, first the expression is evaluated 

so that it is a single value. For example, if the expression is 
“(2+3)*4”, the resulting single value is the integer 20.

Then all the names namei are bound to that value.
What does it mean for a name to be bound to a value? When you are 

using Python in conversational mode, the names and value you define are 
stored in an area called the global namespace. This area is like a two-column 
table, with names on the left and values on the right.

Here is an example. Suppose you start with a brand new Python session, 
and type this line:
>>> i = 5100

Here is what the global namespace looks like after the execution of this 
assignment statement.
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In this diagram, the value appearing on the right shows its type, int 
(integer), and the value, 5100.

In Python, values have types, but names are not associated with any 
type. A name can be bound to a value of any type at any time. So, a Python 
name is like a luggage tag: it identifies a value, and lets you retrieve it later.

Here is another assignment statement, and a diagram showing how the 
global namespace appears after the statement is executed.
>>> j = foo = i + 1

The expression “i + 1” is equivalent to “5100 + 1”, since variable i is 
bound to the integer 5100. This expression reduces to the integer value 5101, 
and then the names j and foo are both bound to that value. You might think 
of this situation as being like one piece of baggage with two tags tied to it.
Let’s examine the global namespace after the execution of this assignment 
statement:
>>> foo = foo + 1

Because foo starts out bound to the integer value 5101, the expression 
“foo + 1” simplifies to the value 5102. Obviously, foo = foo + 1 doesn’t 
make sense in algebra! However, it is a common way for programmers to 
add one to a value.

Note that name j is still bound to its old value, 5101.
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More Mathematical Operations
Python has a number of built-in functions. To call a function in Python, use 
this general form:
f(arg1, arg2, ... )

That is, use the function name, followed by an open parenthesis “(”, 
followed by zero or more arguments separated by commas, followed by a 
closing parenthesis “)”.

For example, the round function takes one numeric argument, and 
returns the nearest whole number (as a float number). Examples:
>>> round ( 4.1 )
4.0
>>> round(4.9)
5.0
>>> round(4.5)
5.0

The result of that last case is somewhat arbitrary, since 4.5 is equidistant 
from 4.0 and 5.0. However, as in most other modern programming languages, 
the value chosen is the one further from zero. More examples:
>>> round (-4.1)
-4.0
>>> round (-4.9)
-5.0
>>> round (-4.5)
-5.0

For historical reasons, trigonometric and transcendental functions are 
not built-in to Python. If you want to do calculations of those kinds, you will 
need to tell Python that you want to use the math package. Type this line:
>>> from math import *

Once you have done this, you will be able to use a number of mathematical 
functions. For example, sqrt(x) computes the square root of x:
>>> sqrt(4.0)
2.0
>>> sqrt(81)
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9.0
>>> sqrt(100000)
316.22776601683796

Importing the math module also adds two predefined variables, pi (as in 
π) and e, the base of natural logarithms:
>>> print pi, e
3.14159265359 2.71828182846

Here’s an example of a function that takes more than argument. The 
function atan2(dy , dx) returns the arctangent of a line whose slope is dy/dx.
>>> atan2 ( 1.0, 0.0 )
1.5707963267948966
>>> atan2(0.0, 1.0)
0.0
>>> atan2(1.0, 1.0)
0.78539816339744828
>>> print pi/4
0.785398163397

For a complete list of all the facilities in the math module, see the Python 
quick reference. Here are some more examples; log is the natural logarithm, 
and log10 is the common logarithm:
>>> log(e)
1.0
>>> log10(e)
0.43429448190325182
>>> exp ( 1.0 )
2.7182818284590451
>>> sin ( pi / 2 )
1.0
>>> cos(pi/2)
6.1230317691118863e-17
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Mathematically, cos(π/2) should be zero. However, like pretty much all 
other modern programming languages, transcendental functions like this 
use approximations. 6.12×10-17 is, after all, pretty close to zero.

Two math functions that you may find useful in certain situations:
• floor(x) returns the largest whole number that is less than or equal 

to x.
• ceil(x) returns the smallest whole number that is greater than or 

equal to x.
>>> floor(4.9)
4.0
>>> floor(4.1)
4.0
>>> floor(-4.1)
-5.0
>>> floor(-4.9)
-5.0
>>> ceil(4.9)
5.0
>>> ceil(4.1)
5.0
>>> ceil(-4.1)
-4.0
>>> ceil(-4.9)
-4.0

Note that the floor function always moves toward -∞ (minus infinity), 
and ceil always moves toward +∞.

CHARACTER STRING BASICS
Python has extensive features for handling strings of characters. There are 
two types:

• A str value is a string of zero or more 8-bit characters. The 
common characters you see on North American keyboards all 
use 8-bit characters. The official name for this character set is 
ASCII, for American Standard Code for Information Interchange.
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This character set has one surprising property: all capital letters are 
considered less than all lowercase letters, so the string “Z” sorts before 
string “a”.

• A unicode value is a string of zero or more 32-bit Unicode 
characters. The Unicode character set covers just about every 
written language and almost every special character ever invented.

We’ll mainly talk about working with str values, but most unicode 
operations are similar or identical, except that Unicode literals are preceded 
with the letter u: for example, «abc” is type str, but u”abc” is type unicode.

String Literals
In Python, you can enclose string constants in either single-quote (‘...’) or 
double-quote (“...”) characters.
>>> cloneName = ‘Clem’
>>> cloneName
‘Clem’
>>> print cloneName
Clem
>>> fairName = “Future Fair”
>>> print fairName
Future Fair
>>> fairName
‘Future Fair’

When you display a string value in conversational mode, Python will 
usually use single-quote characters. Internally, the values are the same 
regardless of which kind of quotes you use. Note also that the print statement 
shows only the content of a string, without any quotes around it.

To convert an integer (int type) value i to its string equivalent, use the 
function “str(i)”:
>>> str(-497)
‘-497’
>>> str(000)
‘0’
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The inverse operation, converting a string s back into an integer, is 
written as “int(s)”:
>>> 
>>> int(“-497”)
-497
>>> int(“-0”)
0
>>> int ( “012this ain’t no number” )

Traceback (most recent call last):
  File “<stdin>”, line 1, in ?

ValueError: invalid literal for int(): 012this ain’t no number
The last example above shows what happens when you try to convert a 

string that isn’t a valid number.
To convert a string s containing a number in base B, use the form “int(s, 

B)”:
>>> int ( ‘0F’, 16 )
15
>>> int ( “10101”, 2 )
21
>>> int ( “0177776”, 8 )
65534

To obtain the 8-bit integer code contained in a one-character string s, 
use the function “ord(s)”. The inverse function, to convert an integer i to the 
character that has code i, use “chr(i)”. The numeric values of each character 
are defined by the ASCIIcharacter set.
>>> chr( 97 )
‘a’
>>> ord(“a”)
97
>>> chr(65)
‘A’
>>> ord(‘A’)
65
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In addition to the printable characters with codes in the range from 32 
to 127 inclusive, a Python string can contain any of the other unprintable, 
special characters as well. For example, the null character, whose official 
name is NUL, is the character whose code is zero. One way to write such a 
character is to use this form:
‘\xNN’
where NN is the character›s code in hexadecimal (base 16) notation.
>>> chr(0)
‘\x00’
>>> ord(‘\x00’)
0

Another special character you may need to deal with is the newline 
character, whose official name is LF (for “line feed”). Use the special escape 
sequence “\n” to produced this character.
>>> s = “Two-line\nstring.”
>>> s
‘Two-line\nstring.’
>>> print s
Two-line
string.

As you can see, when a newline character is displayed in conversational 
mode, it appears as “\n”, but when you print it, the character that follows it 
will appear on the next line. The code for this character is 10:
>>> ord(‘\n’)
10
>>> chr(10)
‘\n’

Python has several other of these escape sequences. The term “escape 
sequence” refers to a convention where a special character, the “escape 
character”, changes the meaning of the characters after it. Python’s escape 
character is backslash (\).

Input Code Name Meaning
\b 8 BS backspace
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\t 9 HT tab
\” 34 “ Double quote
\’ 39 ‘ Single quote
\\ 92 \ Backslash

There is another handy way to get a string that contains newline 
characters: enclose the string within three pairs of quotes, either single or 
double quotes.
>>> multi = “””This string
...   contains three
...   lines.”””
>>> multi
‘This string\n  contains three\n  lines.’
>>> print multi

This string
  contains three
  lines.
>>> s2 = ‘’’
... xyz
... ‘’’
>>> s2
‘\nxyz\n’
>>> print s2

xyz

>>>
Notice that in Python’s conversational mode, when you press Enter at 

the end of a line, and Python knows that your line is not finished, it displays 
a “...” prompt instead of the usual “>>>” prompt.

Indexing Strings
To extract one or more characters from a string value, you have to know how 
positions in a string are numbered.



Soft Computing and Machine Learning with Python170

Here, for example, is a diagram showing all the positions of the string 
‘ijklm’.

In the diagram above, the numbers show the positions between characters. 
Position 0 is the position before the first character; position 1 is the position 
between the first and characters; and so on.

You may also refer to positions relative to the end of a string. Position -1 
refers to the position before the last character; -2 is the position before the 
next-to-last character; and so on.

To extract from a string s the character that occurs just after position n, 
use an expression of this form:
s[n]
Examples:
>>> stuff = ‘ijklm’
>>> stuff[0]
‘i’
>>> stuff[1]
‘j’
>>> stuff[4]
‘m’
>>> stuff [ -1 ]
‘m’
>>> stuff [-3]
‘k’
>>> stuff[5]
Traceback (most recent call last):
  File “<stdin>”, line 1, in ?

IndexError: string index out of range
The last example shows what happens when you specify a position after 

all the characters in the string.
You can also extract multiple characters from a string; see Section 4.3, 

“Slicing sequences”.
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String Methods
Many of the operations on strings are expressed as methods. A method is 
sort of like a function that lives only inside values of a certain type. To call 
a method, use this syntax:
expr.method(arg1, arg2, ...)
where each argi is an argument to the method, just like an argument to a 
function.

For example, any string value has a method called center that produces 
a new string with the old value centered, using extra spaces to pad the value 
out to a given length. This method takes as an argument the desired new 
length. Here’s an example:
>>> star = “*”
>>> star.center(5)
‘  *  ‘

The following sections describe some of the more common and useful 
string methods.
.center(): Center Some Text

Given some string value s, to produce a new string containing s centered 
in a string of length n, use this method call:

s.center(n)
This method takes one argument n, the size of the result. Examples:

>>> k = “Ni”
>>> k.center(5)
‘  Ni ‘
>>> “<*>”.center(12)
‘    <*>     ‘

Note that in the first example we are asking Python to center the string 
“Ni” in a field of length 5. Clearly we can’t center a 2-character string in 5 
characters, so Python arbitrarily adds the leftover space character before the 
old value.

.ljust() and .rjust(): Pad to Length on the Left or Right
Another useful string method left-justifies a value in a field of a given length. 
The general form:
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s.ljust(n)
For any string expression s, this method returns a new string containing 

the characters from s with enough spaces added after it to make a new string 
of length n.
>>> “Ni”.ljust(4)
‘Ni  ‘
>>> “Too long to fit”.ljust(4)
‘Too long to fit’

Note that the .ljust() method will never return a shorter string. If the 
length isn’t enough, it just returns the original value.

There is a similar method that right-justifies a string value:
s.rjust(n)

This method returns a string with enough spaces added before the value 
to make a string of length n. As with the .ljust() method, it will never return 
a string shorter than the original.
>>> “Ni”.rjust(4)
‘  Ni’
>>> m = “floccinaucinihilipilification”
>>> m.rjust(4)
‘floccinaucinihilipilification’

.strip(), .lstrip(), and .rstrip(): Remove Leading and/or Trailing 
Whitespace
Sometimes you want to remove whitespace (spaces, tabs, and newlines) 
from a string. For a string s, use these methods to remove leading and trailing 
whitespace:

• s.strip() returns s with any leading or trailing whitespace 
characters removed.

• s.lstrip() removes only leading whitespace.
• s.rstrip() removes only trailing whitespace.

>>> spaceCase = ‘ \n \t Moon   \t\t ‘
>>> spaceCase
‘ \n \t Moon   \t\t ‘
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>>> spaceCase.strip()
‘Moon’
>>> spaceCase.lstrip()
‘Moon   \t\t ‘
>>> spaceCase.rstrip()
‘ \n \t Moon’

.count(): How many occurrences?
The method s.count(t) searches string s to see how many times string t 
occurs in it.
>>> chiq = “banana”
>>> chiq
‘banana’
>>> chiq.count(“a”)
3
>>> chiq.count(“b”)
1
>>> chiq.count(“x”)
0
>>> chiq.count(“an”)
2
>>> chiq.count(“ana”)
1

Note that this method does not count overlapping occurrences. Although 
the string “ana” occurs twice in string “banana”, the occurrences overlap, so 
“banana”.count(“ana”) returns only 1.

.find() and .rfind(): Locate a String within a Longer String
Use this method to search for a string t within a string s:
s.find(t)
If t matches any part of s, the method returns the position where the first 
match begins; otherwise, it returns -1.
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>>> chiq
‘banana’
>>> chiq.find ( “b” )
0
>>> chiq.find ( “a” )
1
>>> chiq.find ( “x” )
-1
>>> chiq.find ( “nan” )
2

If you need to find the last occurrence of a substring, use the similar 
method s.rfind(t), which returns the position where the last match starts, or 
-1 if there is no match.
>>> chiq.rfind(“a”)
5
>>> chiq[5]
‘a’
>>> chiq.rfind(“n”)
4
>>> chiq.rfind(“b”)
0
>>> chiq.rfind(“Waldo”)
-1

.startswith() and .endswith()
You can check to see if a string s starts with a string t using a method call 
like this:
s.startswith(t)

This method returns True if s starts with a string that matches t; otherwise 
it returns False.
>>> chiq
‘banana’
>>> chiq.startswith(“b”)
True
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>>> chiq.startswith(“ban”)
True
>>> chiq.startswith ( ‘Waldo’ )
False
There is a similar method s.endswith(t) that tests whether string s ends with 
t:
>>> chiq.endswith(“Waldo”)
False
>>> chiq.endswith(“a”)
True
>>> chiq.endswith(“nana”)
True
The special values True and False are discussed later in Section 6.1, 
“Conditions and the bool type”.

.lower() and .upper(): Change the case of letters
The methods s.lower() and s.upper() are used to convert uppercase characters 
to lowercase, and vice versa, respectively.
>>> poet = ‘E. E. Cummings’
>>> poet.upper()
‘E. E. CUMMINGS’
>>> poet.lower()
‘e. e. cummings’

Predicates for testing for kinds of characters
Use the string methods in this section to test whether a string contains certain 
kinds of characters. Each of these methods is a predicate, that is, it asks a 
question and returns a value of True or False.

• s.isalpha() tests whether all the characters of s are letters.
• s.isupper() tests whether all the letters of s are uppercase. (It 

ignores any non-letter characters.)
• s.islower() tests whether all the letters of s are lowercase letters. 

(This method also ignores non-letter characters.)
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• s.isdigit() tests whether all the characters of s are digits.
>>> mixed = ‘abcDEFghi’
>>> mixed.isalpha()
True
>>> mixed.isupper()
False
>>> mixed.islower()
False
>>> “ABCDGOLDFISH”.isupper()
True
>>> “lmno goldfish”.islower()
True
>>> “abc $%&*(“.islower()
True
>>> “abC $%&*(“.islower()
False
>>> paradise = “87801”
>>> paradise.isalpha()
False
>>> paradise.isdigit()
True
>>> “abc123”.isdigit()
False

.split(): Break fields out of a string
The .split() method is used to break a string up into pieces wherever a certain 
string called the delimiter is found; it returns a list of strings containing the 
text between the delimiters. For example, suppose you have a string that 
contains a series of numbers separated by whitespace. A call to the .split() 
method on that string, with no arguments, returns a list of the parts of the 
string that are surrounded by whitespace.
>>> line = “  1.4   8.6  -23.49   “
>>> line.split()
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[‘1.4’, ‘8.6’, ‘-23.49’]
You can also specify a delimiter as the argument of the .split() method. 

Examples:
>>> s = ‘farcical/aquatic/ceremony’
>>> s.split(‘/’)
[‘farcical’, ‘aquatic’, ‘ceremony’]
>>> “//a/b/”.split(‘/’)
[‘’, ‘’, ‘a’, ‘b’, ‘’]
>>> “Stilton; Wensleydale; Cheddar;Edam”.split(“; “)
[‘Stilton’, ‘Wensleydale’, ‘Cheddar;Edam’]
You may also provide a second argument that limits the number of pieces to 
be split from the string.
>>> t = ‘a/b/c/d/e’
>>> t.split(‘/’)
[‘a’, ‘b’, ‘c’, ‘d’, ‘e’]
>>> t.split(‘/’, 1)
[‘a’, ‘b/c/d/e’]
>>> t.split(‘/’, 3)
[‘a’, ‘b’, ‘c’, ‘d/e’]

The String Format Method
One of the commonest string operations is to combine fixed text and variable 
values into a single string. For example, maybe you have a variable named 
nBananas that contains the number of bananas, and you want to format a 
string something like «We have 27 bananas today». Here›s how you do it:
>>> nBananas = 54
>>> “We have {0} bananas today”.format(nBananas)
‘We have 54 bananas today’

Here is the general form of the string format operation:
S.format(p0, p1, ..., k0=e0, k1=e1, ...)
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In this form:
• S is a format string that specifies the fixed parts of the desired text 

and also tells where the variable parts are to go and how they are 
to look.

• The .format() method takes zero or more positional arguments pi 
followed by and zero or more keyword arguments ki=ei, where 
each ki is any Python name and each ei is any Python expression.

• The format string contains a mixture of ordinary text and format 
codes. Each of the format codes is enclosed in braces {...}. A 
format code containing a number refers to the corresponding 
positional argument, and a format code containing a name refers 
to the corresponding keyword argument.

Examples:
>>> “We have {0} bananas.”.format(27)
‘We have 27 bananas.’
>>> “We have {0} cases of {1} today.”.format(42, ‘peaches’)
‘We have 42 cases of peaches today.’
>>> “You’ll have {count} new {thing}s by {date}”.format(
...     count=27, date=”St. Swithin’s Day”, thing=”cooker”)
“You’ll have 27 new cookers by St. Swithin’s Day”
You can control the formatting of an item by using a format code of the form 
“{N:type}”, where N is the number or name of the argument to the .format() 
method, and type specifies the details of the formatting.
The type may be a single type code like s for string, d for integer, or f for 
float.
>>> “{0:d}”.format(27)
‘27’
>>> “{0:f}”.format(27)
‘27.000000’
>>> “{animal:s}”.format(animal=”sheep”)
‘sheep’

You may also include a field size just before the type code. With float 
values, you can also specify a precision after the field size by using a “.” 
followed by the desired number of digits after the decimal.
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>>> “({bat:8s})”.format(bat=’fruit’)
‘(fruit   )’
>>> “{0:8f}”.format(1.0/7.0)
‘0.142857’
>>> “{n:20.11f}”.format(n=1.0/7.0)
‘       0.14285714286’
>>> “{silly:50.40f}”.format(silly=5.33333)
‘        5.3333300000000001261923898709937930107117’

Notice in the last example above that it is possible for you to produce any 
number of spurious digits beyond the precision used to specify the number 
originally! Beware, because those extra digits are utter garbage.

When you specify a precision, the value is rounded to the nearest value 
with that precision.
>>> “{0:.1f}”.format(0.999)
‘1.0’
>>> “{0:.1f}”.format(0.99)
‘1.0’
>>> “{0:.1f}”.format(0.9)
‘0.9’
>>> “{0:.1f}”.format(0.96)
‘1.0’
>>> “{0:.1f}”.format(0.9501)
‘1.0’
>>> “{0:.1f}”.format(0.9499999)
‘0.9’

The “e” type code forces exponential notation. You may also wish to 
use the “g” (for general) type code, which selects either float or exponential 
notation depending on the value.
>>> avo = 6.022e23
>>> “{0:e}”.format(avo)
‘6.022000e+23’
>>> “{0:.3e}”.format(avo)
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‘6.022e+23’
>>> “{num:g}”.format(num=144)
‘144’
>>> “{num:g}”.format(num=avo)
‘6.022e+23’

By default, strings are left-justified within the field size and numbers are 
right-justified. You can change this by placing an alignment code just after 
the “:”: “<” to left-align the field, “^” to center it, and “>” to right-align it.
>>> “/{0:<6s}/”.format(‘git’)
‘/git   /’
>>> “/{0:^6s}/”.format(‘git’)
‘/ git  /’
>>> “/{0:>6s}/”.format(‘git’)
‘/   git/’
>>> ‘*{count:<8d}*’.format(count=13)
‘*13      *’

Normally, short values are padded to length with spaces. You can specify 
a different padding character by placing it just after the “:”.
>>> “{0:08d}”.format(17)
‘00000017’
“{film:@>20s}”.format(film=’If’)
‘@@@@@@@@@@@@@@@@@@If’
>>> “{film:@^20s}”.format(film=’If’)
‘@@@@@@@@@If@@@@@@@@@’

If you need to produce any “{” or “}” characters in the result, you must 
double them within the format code.
>>> “Set {0}: contents {{red, green, blue}}”.format(‘glory’)
‘Set glory: contents {red, green, blue}’

One thing we sometimes need to is to format something to a size that is 
not known until the program is running. For example, suppose we want to 
format a ticket number from a variable named ticket_no, with left zero fill, 
and the width is given by a variable named how_wide. This would do the 
job:
>>> how_wide = 8
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>>> ticket_no = 147
>>> “Ticket {num:0{w}d}”.format(num=ticket_no, w=how_wide)
‘Ticket 00000147’

Here, where the width is expected, “{w}” appears. Because there is 
a keyword argument that is effectively w=8, the value “8” is used for the 
width.

Note
The string .format() method has been available only since Python 2.6. If 
you are looking at older code, you may see a different technique using the 
“%” operator. For example, ‘Attila the %s’ % ‘Bun’ yields ‘Attila the bun’. 
For an explanation, see the Python library documentation. However, the old 
format operator is deprecated.

SEQUENCE TYPES
Mathematically, a sequence in Python represents an ordered set.

Sequences are an example of container classes: values that contain other 
values inside them.

Type name Contains Examples Mutable?
str 8-bit characters “abc” ‘abc’ “” ‘’ ‘\n’ ‘\

x00’
No

unicode 32-bit characters u’abc’ u’\u000c’ No
list Any values [23, “Ruth”, 69.8] [] Yes
tuple Any values (23, “Ruth”, 69.8) () (44,) No

str and unicode are used to hold text, that is, strings of characters.
• list and tuple are used for sequences of zero or more values of 

any type. Use a list if the contents of the sequence may change; 
use a tuple if the contents will not change, and in certain places 
where tuples are required. For example, the right-hand argument 
of the string format operator (see Section 3.4, “The string format 
method”) must be a tuple if you are formatting more than one 
value.

• To create a list, use an expression of the form
• [ expr1, expr1, ... ]

with a list of zero or more values between square brackets, “[…]”.
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• To create a tuple, use an expression of the form
• ( expr1, expr1, ... )

with a list of zero or more values enclosed in parentheses, “(…”).
To create a tuple with only one element v, use the special syntax “(v,)”. 

For example, (43+1,) is a one-element tuple containing the integer 44. The 
trailing comma is used to distinguish this case from the expression “(43+1)”, 
which yields the integer 44, not a tuple.

• Mutability: You can’t change part of an immutable value. For 
example, you can›t change the first character of a string from ‹a› 
to ‹b›. It is, however, easy to build a new string out of pieces of 
other strings.

Here are some calculator-mode examples. First, we’ll create a string 
named s, a list named L, and a tuple named t:
>>> s = “abcde”
>>> L = [0, 1, 2, 3, 4, 5]
>>> t = (‘x’, ‘y’)
>>> s
‘abcde’
>>> L
[0, 1, 2, 3, 4, 5]
>>> t
(‘x’, ‘y’)

Functions and Operators for Sequences
The built-in function len(S) returns the number of elements in a sequence S.
>>> print len(s), len(L), len(t)
5 6 2

Function max(S) returns the largest value in a sequence S, and function 
min(S) returns the smallest value in a sequence S.
>>> max(L)
5
>>> min(L)
0
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>>> max(s)
‘e’
>>> min(s)
‘a’

To test for set membership, use the “in” operator. For a value v and a 
sequence S, the expression v in S returns the Boolean value True if there is 
at least one element of S that equals v; it returns Falseotherwise.
>>> 2 in L

True
>>> 77 in L
False

There is an inverse operator, v not in S, that returns True if v does not 
equal any element of S, False otherwise.
>>> 2 not in L
False
>>> 77 not in L
True
The “+” operator is used to concatenate two sequences of the same type.
>>> s + “xyz”
‘abcdexyz’
>>> L + L
[0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5]
>>> t + (‘z’,)
(‘x’, ‘y’, ‘z’)
When the “*” operator occurs between a sequence S and an integer n, you 
get a new sequence containing n repetitions of the elements of S.
>>> “x” * 5
‘xxxxx’
>>> “spam” * 8
‘spamspamspamspamspamspamspamspam’
>>> [0, 1] * 3
[0, 1, 0, 1, 0, 1]
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Indexing the Positions in a Sequence
Positions in a sequence refer to locations between the values. Positions are 
numbered from left to right starting at 0. You can also refer to positions in 
a sequence using negative numbers to count from right to left: position -1 
is the position before the last element, position -2 is the position before the 
next-to-last element, and so on.

Here are all the positions of the string “ijklm”.

To extract a single element from a sequence, use an expression of the 
form S[i], where S is a sequence, and i is an integer value that selects the 
element just after that position.
>>> s[0]
‘a’
>>> s[4]
‘e’
>>> s[5]

Traceback (most recent call last):
  File “<stdin>”, line 1, in ?

IndexError: string index out of range
The last line is an error; there is nothing after position 5 in string s.

>>> L[0]
0
>>> t[0]
‘x’

Slicing Sequences
For a sequence S, and two positions B and E within that sequence, the 
expression S [ B : E ] produces a new sequence containing the elements of S 
between those two positions.
>>> L
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[0, 1, 2, 3, 4, 5]
>>> L[2]
2
>>> L[4]
4
>>> L[2:4]
[2, 3]
>>> s = ‘abcde’
>>> s[2]
‘c’
>>> s[4]
‘e’
>>> s[2:4]
‘cd’

Note in the example above that the elements are selected from position 
2 to position 4, which does not include the element L[4].

You may omit the starting position to slice elements from at the 
beginning of the sequence up to the specified position. You may omit the 
ending position to specify a slice that extends to the end of the sequence. 
You may even omit both in order to get a copy of the whole sequence.
>>> L[:4]
[0, 1, 2, 3]
>>> L[4:]
[4, 5]
>>> L[:]
[0, 1, 2, 3, 4, 5]

You can replace part of a list by using a slicing expression on the left-
hand side of the “=” in an assignment statement, and providing a list of 
replacement elements on the right-hand side of the “=”. The elements 
selected by the slice are deleted and replaced by the elements from the right-
hand side.

In slice assignment, it is not necessary that the number of replacement 
elements is the same as the number of replaced elements. In this example, 
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the second and third elements of L are replaced by the five elements from 
the list on the right-hand side.
>>> L
[0, 1, 2, 3, 4, 5]
>>> L[2:4]
[2, 3]
>>> L[2:4] = [93, 94, 95, 96, 97]
>>> L
[0, 1, 93, 94, 95, 96, 97, 4, 5]

You can even delete a slice from a sequence by assigning an an empty 
sequence to a slice.
>>> L
[0, 1, 93, 94, 95, 96, 97, 4, 5]
>>> L[3]
94
>>> L[7]
4
>>> L[3:7] = []
>>> L
[0, 1, 93, 4, 5]

Similarly, you can insert elements into a sequence by using an empty 
slice on the left-hand side.
>>> L
[0, 1, 93, 4, 5]
>>> L[2]
93
>>> L[2:2] = [41, 43, 47, 53]
>>> L
[0, 1, 41, 43, 47, 53, 93, 4, 5]

Another way to delete elements from a sequence is to use Python’s del 
statement.
>>> L



A Python 2.7 Programming Tutorial 187

[0, 1, 41, 43, 47, 53, 93, 4, 5]
>>> L[3:6]
[43, 47, 53]
>>> del L[3:6]
>>> L
[0, 1, 41, 93, 4, 5]

Sequence Methods
To find the position of a value V in a sequence S, use this method:

S.index(V)
This method returns the position of the first element of S that equals V. If 

no elements of S are equal, Python raises a ValueError exception.
>>> menu1
[‘beans’, ‘kale’, ‘tofu’, ‘trifle’, ‘sardines’]
>>> menu1.index(“kale”)
1
>>> menu1.index(“spam”)
Traceback (most recent call last):
  File “<stdin>”, line 1, in ?

ValueError: list.index(x): x not in list
The method S.count(V) method returns the number of elements of S that 

are equal to V.
>>> menu1[2:2] = [‘spam’] * 3
>>> menu1
[‘beans’, ‘kale’, ‘spam’, ‘spam’, ‘spam’, ‘tofu’, ‘trifle’, ‘sardines’]
>>> menu1.count(‘gravy’)
0
>>> menu1.count(‘spam’)
3
>>> “abracadabra”.count(“a”)
5
>>> “abracadabra”.count(“ab”)
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2
>>> (1, 6, 55, 6, 55, 55, 8).count(55)
3

List Methods
All list instances have methods for changing the values in the list. These 
methods work only on lists. They do not work on the other sequence types 
that are not mutable, that is, the values they contain may not be changed, 
added, or deleted.

For example, for any list instance L, the .append(v) method appends a 
new value v to that list.
>>> menu1 = [‘kale’, ‘tofu’]
>>> menu1
[‘kale’, ‘tofu’]
>>> menu1.append ( ‘sardines’ )
>>> menu1
[‘kale’, ‘tofu’, ‘sardines’]
>>> 

To insert a single new value V into a list L at an arbitrary position P, use 
this method:
L.insert(P, V)
To continue the example above:
>>> menu1
[‘kale’, ‘tofu’, ‘sardines’]
>>> menu1.insert(0, ‘beans’)
>>> menu1
[‘beans’, ‘kale’, ‘tofu’, ‘sardines’]
>>> menu1[3]
‘sardines’
>>> menu1.insert(3, ‘trifle’)
>>> menu1
[‘beans’, ‘kale’, ‘tofu’, ‘trifle’, ‘sardines’]
The method L.remove(V) removes the first element of L that equals V, if there 
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is one. If no elements equal V, the method raises a ValueError exception.
>>> menu1
[‘beans’, ‘kale’, ‘spam’, ‘spam’, ‘spam’, ‘tofu’, ‘trifle’, ‘sardines’]
>>> menu1.remove(‘spam’)
>>> menu1
[‘beans’, ‘kale’, ‘spam’, ‘spam’, ‘tofu’, ‘trifle’, ‘sardines’]
>>> menu1.remove(‘spam’)
>>> menu1
[‘beans’, ‘kale’, ‘spam’, ‘tofu’, ‘trifle’, ‘sardines’]
>>> menu1.remove(‘gravy’)
Traceback (most recent call last):
  File “<stdin>”, line 1, in ?
ValueError: list.remove(x): x not in list
The L.sort() method sorts the elements of a list into ascending order.
>>> menu1
[‘beans’, ‘kale’, ‘spam’, ‘tofu’, ‘trifle’, ‘sardines’]
>>> menu1.sort()
>>> menu1
[‘beans’, ‘kale’, ‘sardines’, ‘spam’, ‘tofu’, ‘trifle’]
Note that the .sort() method itself does not return a value; it sorts the values of 
the list in place. A similar method is .reverse(), which reverses the elements 
in place:
>>> menu1
[‘beans’, ‘kale’, ‘sardines’, ‘spam’, ‘tofu’, ‘trifle’]
>>> menu1.reverse()
>>> menu1
[‘trifle’, ‘tofu’, ‘spam’, ‘sardines’, ‘kale’, ‘beans’]

The range() function: Creating Arithmetic Progressions
The term arithmetic progression refers to a sequence of numbers such that 
the difference between any two successive elements is the same. Examples: 
[1, 2, 3, 4, 5]; [10, 20, 30, 40]; [88, 77, 66, 55, 44, 33].



Soft Computing and Machine Learning with Python190

Python’s built-in range() function returns a list containing an arithmetic 
progression. There are three different ways to call this function.
To generate the sequence [0, 1, 2, ..., n-1], use the form range(n).
>>> range(6)
[0, 1, 2, 3, 4, 5]
>>> range(2)
[0, 1]
>>> range(0)
[]
Note that the sequence will never include the value of the argument n; it 
stops one value short.
To generate a sequence [i, i+1, i+2, ..., n-1], use the form range(i, n):
>>> range(5,11)
[5, 6, 7, 8, 9, 10]
>>> range(1,5)
[1, 2, 3, 4]
To generate an arithmetic progression with a difference d between successive 
values, use the three-argument form range(i, n, d). The resulting sequence 
will be [i, i+d, i+2*d, ...], and will stop before it reaches a value equal to n.
>>> range ( 10, 100, 10 )
[10, 20, 30, 40, 50, 60, 70, 80, 90]
>>> range ( 100, 0, -10 )
[100, 90, 80, 70, 60, 50, 40, 30, 20, 10]
>>> range ( 8, -1, -1 )
[8, 7, 6, 5, 4, 3, 2, 1, 0]

One Value can have Multiple Names
It is necessary to be careful when modifying mutable values such as lists 
because there may be more than one name bound to that value. Here is a 
demonstration.

We start by creating a list of two strings and binding two names to that 
list.
>>> menu1 = menu2 = [‘kale’, ‘tofu’]
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>>> menu1
[‘kale’, ‘tofu’]
>>> menu2
[‘kale’, ‘tofu’]
Then we make a new list using a slice that selects all the elements of menu1:
>>> menu3 = menu1 [ : ]
>>> menu3
[‘kale’, ‘tofu’]
      
Now watch what happens when we modify menu1’s list:
>>> menu1.append ( ‘sardines’ )
>>> menu1
[‘kale’, ‘tofu’, ‘sardines’]
>>> menu2
[‘kale’, ‘tofu’, ‘sardines’]
>>> menu3
[‘kale’, ‘tofu’]
If we appended a third string to menu1, why does that string also appear 
in list menu2? The answer lies in the definition of Python’s assignment 
statement:
To evaluate an assignment statement of the form
V1 = V2 = ... = expr
where each Vi is a variable, and expr is some expression, first reduce expr to 
a single value, then bind each of the names vi to that value.
So let’s follow the example one line at a time, and see what the global 
namespace looks like after each step. First we create a list instance and bind 
two names to it:
>>> menu1=menu2=[‘kale’, ‘tofu’]
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Two different names, menu1 and menu2, point to the same list. Next, we 
create an element-by-element copy of that list and bind the name menu3 to 
the copy.
>>> menu3 = menu1[:]
>>> menu3
[‘kale’, ‘tofu’]

So, when we add a third string to menu1’s list, the name menu2 is still 
bound to that same list.
>>> menu1.append ( ‘sardines’ )
>>> menu1
[‘kale’, ‘tofu’, ‘sardines’]
>>> menu2
[‘kale’, ‘tofu’, ‘sardines’]
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This behavior is seldom a problem in practice, but it is important to keep 
in mind that two or more names can be bound to the same value.

If you are concerned about modifying a list when other names may 
be bound to the same list, you can always make a copy using the slicing 
expression “L[:]”.
>>> L1 = [‘bat’, ‘cat’]
>>> L2 = L1
>>> L3 = L1[:]
>>> L1.append(‘hat’)
>>> L2
[‘bat’, ‘cat’, ‘hat’]
>>> L3
[‘bat’, ‘cat’]

DICTIONARIES
Python’s dictionary type is useful for many applications involving table 
lookups. In mathematical terms:
A Python dictionary is a set of zero or more ordered pairs (key, value) such 
that:

• The value can be any type.
• Each key may occur only once in the dictionary.
• No key may be mutable. In particular, a key may not be a list or 

dictionary, or a tuple containing a list or dictionary, and so on.
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The idea is that you store values in a dictionary associated with some 
key, so that later you can use that key to retrieve the associated value.

Operations on Dictionaries
The general form used to create a new dictionary in Python looks like this:
{k1: v1,  k2: v2,  ...}

To retrieve the value associated with key k from dictionary d, use an 
expression of this form:
d[k]

Here are some conversational examples:
>>> numberNames = {0:’zero’, 1:’one’, 10:’ten’, 5:’five’}
>>> numberNames[10]
‘ten’
>>> numberNames[0]
‘zero’
>>> numberNames[999]
Traceback (most recent call last):
  File “<stdin>”, line 1, in ?
KeyError: 999

Note that when you try to retrieve the value for which no key exists in 
the dictionary, Python raises a KeyError exception.

To add or replace the value for a key k in dictionary d, use an assignment 
statement of this form:
d[k] = v
For example:
>>> numberNames[2] = “two”
>>> numberNames[2]
‘two’
>>> numberNames
{0: ‘zero’, 1: ‘one’, 10: ‘ten’, 2: ‘two’, 5: ‘five’}
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Note
The ordering of the pairs within a dictionary is undefined. Note that in the 
example above, the pairs do not appear in the order they were added.
You can use strings, as well as many other values, as keys:
>>> nameNo={“one”:1, “two”:2, “forty-leven”:4011}
>>> nameNo[“forty-leven”]
4011
You can test to see whether a key k exists in a dictionary d with the “in” 
operator, like this:
k in d
This operation returns True if k is a key in dictionary d, False otherwise.
The construct “k not in d” is the inverse test: it returns True if k is not a key 
in d, False if it is a key.
>>> 1 in numberNames
True
>>> 99 in numberNames
False
>>> “forty-leven” in nameNo
True
>>> “eleventeen” in nameNo
False
>>> “forty-leven” not in nameNo
False
>>> “eleventeen” not in nameNo
True
Python’s del (delete) statement can be used to remove a key-value pair from 
a dictionary.
>>> numberNames
{0: ‘zero’, 1: ‘one’, 10: ‘ten’, 2: ‘two’, 5: ‘five’}
>>> del numberNames[10]
>>> numberNames
{0: ‘zero’, 1: ‘one’, 2: ‘two’, 5: ‘five’}
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>>> numberNames[10]
Traceback (most recent call last):
  File “<stdin>”, line 1, in ?
KeyError: 10

Dictionary Methods
A number of useful methods are defined on any Python dictionary. To test 
whether a key k exists in a dictionary d, use this method:
d.has_key(k)
This is the equivalent of the expression “k in d”: it returns True if the key is 
in the dictionary, False otherwise.
>>> numberNames
{0: ‘zero’, 1: ‘one’, 2: ‘two’, 5: ‘five’}
>>> numberNames.has_key(2)
True
>>> numberNames.has_key(10)
False
To get a list of all the keys in a dictionary d, use this expression:
d.keys()
To get a list of the values in a dictionary d , use this expression:
d.values()
You can get all the keys and all the values at the same time with this 
expression, which returns a list of 2-element tuples, in which each tuple has 
one key and one value as (k, v).
d.items()
Examples:
>>> numberNames
{0: ‘zero’, 1: ‘one’, 2: ‘two’, 5: ‘five’}
>>> numberNames.keys()
[0, 1, 2, 5]
>>> numberNames.values()
[‘zero’, ‘one’, ‘two’, ‘five’]
>>> numberNames.items()
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[(0, ‘zero’), (1, ‘one’), (2, ‘two’), (5, ‘five’)]
>>> nameNo
{‘forty-leven’: 4011, ‘two’: 2, ‘one’: 1}
>>> nameNo.keys()
[‘forty-leven’, ‘two’, ‘one’]
>>> nameNo.values()
[4011, 2, 1]
>>> nameNo.items()
[(‘forty-leven’, 4011), (‘two’, 2), (‘one’, 1)]
Here is another useful method:
d.get(k)
If k is a key in d, this method returns d[k]. However, if k is not a key, the 
method returns the special value None. The advantage of this method is that 
if the k is not a key in d, it is not considered an error.
>>> nameNo.get(“two”)
2
>>> nameNo.get(“eleventeen”)
>>> huh = nameNo.get(“eleventeen”)
>>> print huh
None
Note that when you are in conversational mode, and you type an expression 
that results in the value None, nothing is printed. However, the print statement 
will display the special value None visually as the example above shows.
There is another way to call the .get() method, with two arguments:
d.get(k, default)
In this form, if key k exists, the corresponding value is returned. However, 
if k is not a key in d, it returns the default value.
>>> nameNo.get(“two”, “I have no idea.”)
2
>>> nameNo.get(“eleventeen”, “I have no idea.”)
‘I have no idea.’
Here is another useful dictionary method. This is similar to the two-argument 
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form of the .get() method, but it goes even further: if the key is not found, it 
stores a default value in the dictionary.
d.setdefault(k, default)
If key k exists in dictionary d, this expression returns the value d[k]. If k is 
not a key, it creates a new dictionary entry as if you had said “d[k] = default”.
>>> nameNo.setdefault(“two”, “Unknown”)
2
>>> nameNo[“two”]
2
>>> nameNo.setdefault(“three”, “Unknown”)
‘Unknown’
>>> nameNo[“three”]
‘Unknown’
To merge two dictionaries d1 and d2, use this method:
d1.update(d2)
This method adds all the key-value pairs from d2 to d1. For any keys that 
exist in both dictionaries, the value after this operation will be the value 
from d2.
>>> colors = { 1: “red”, 2: “green”, 3: “blue” }
>>> moreColors = { 3: “puce”, 4: “taupe”, 5: “puce” }
>>> colors.update ( moreColors )
>>> colors
{1: ‘red’, 2: ‘green’, 3: ‘puce’, 4: ‘taupe’, 5: ‘puce’}
Note in the example above that key 3 was in both dictionaries, but after the 
.update() method call, key 3 is related to the value from moreColors.

A Namespace is like a Dictionary
Back in Section 2.2, “The assignment statement”, we first encountered the 
idea of a namespace. When you start up Python in conversational mode, the 
variables and functions you define live in the “global namespace”.

We will see later on that Python has a number of different namespaces 
in addition to the global namespace. Keep in mind that namespaces are very 
similar to dictionaries:
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• The names are like the keys of a dictionary: each one is unique.
• The values bound to those names are like the values in a dictionary. 

They can be any value of any type.
We can even use the same picture for a dictionary that we use to illustrate 

a namespace. Here is a small dictionary and a picture of it:
d = { ‘name’: ‘Ben Jones’, ‘front9’: 33, ‘back9’: 31 }

BRANCHING
By default, statements in Python are executed sequentially. Branching 
statements are used to break this sequential pattern.

• Sometimes you want to perform certain operations only in some 
cases. This is called a conditional branch.

• Sometimes you need to perform some operations repeatedly. This 
is called looping.

Before we look at how Python does conditional branching, we need to 
look at Python’s Boolean type.

Conditions and the bool Type
Boolean algebra is the mathematics of true/false decisions. Python’s bool 
type has only two values: True and False.

A typical use of Boolean algebra is in comparing two values. In Python, 
the expression x < y is True if x is less than y, False otherwise.
>>> 2 < 5
True
>>> 2 < 2
False



Soft Computing and Machine Learning with Python200

>>> 2 < 0
False
Here are the six comparison operators:

Math symbol Python Meaning
< < Less than
≤ <= Less than or equal to
> > Greater than
≥ >= Greater than or equal to
≡ == Equal to
≠ != Not equal to

The operator that compares for equality is “==”. (The “=” symbol is not 
an operator: it is used only in the assignment statement.)

Here are some more examples:
>>> 2 <= 5
True
>>> 2 <= 2
True
>>> 2 <= 0
False
>>> 4.9 > 5
False
>>> 4.9 > 4.8
True
>>> (2-1)==1
True
>>> 4*3 != 12
False

Python has a function cmp(x, y) that compares two values and returns:
• Zero, if x and y are equal.
• A negative number if x < y.
• A positive number if x > y.

>>> cmp(2,5)
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-1
>>> cmp(2,2)
0
>>> cmp(2,0)
1

The function bool(x) converts any value x to a Boolean value. The values 
in this list are considered False; any other value is considered True:

• Any numeric zero: 0, 0L, or 0.0.
• Any empty sequence: “” (an empty string), [] (an empty list), () 

(an empty tuple).
• {} (an empty dictionary).
• The special unique value None.

>>> print bool(0), bool(0L), bool(0.0), bool(‘’), bool([]), bool(())
False False False False False False
>>> print bool({}), bool(None)
False False
>>> print bool(1), bool(98.6), bool(‘Ni!’), bool([43, “hike”])
True True True True

The if Statement
The purpose of an if statement is to perform certain actions only in certain 
cases.

Here is the general form of a simple “one-branch” if statement. In this 
case, if some condition C is true, we want to execute some sequence of 
statements, but if C is not true, we don›t want to execute those statements.

if C:
    statement1

    statement2

    ...
Here is a picture showing the flow of control through a simple if 

statement. Old-timers will recognize this as a flowchart.
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There can be any number of statements after the if, but they must all 
be indented, and all indented the same amount. This group of statements is 
called a block.

When the if statement is executed, the condition C is evaluated, and 
converted to a bool value (if it isn›t already Boolean). If that value is True, 
the block is executed; if the value is False, the block is skipped.

Here’s an example:
>>> half = 0.5
>>> if half > 0:
...     print “Half is better than none.”
...     print “Burma!”
... 

Half is better than none.
Burma!
Sometimes you want to do some action A when C is true, but perform 

some different action B when C is false. The general form of this construct 
is:
if C:
    block A
    ...
else:
    block B
    ...
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As with the single-branch if, the condition C is evaluated and converted 
to Boolean. If the result is True, block A is executed; if False, block B is 
executed instead.
>>> half = 0.5
>>> if half > 0:
...     print “Half is more than none.”
... else:
...     print “Half is not much.”
...     print “Ni!”
... 

Half is more than none.
Some people prefer a more “horizontal” style of coding, where more 

items are put on the same line, so as to take up less vertical space. If you 
prefer, you can put one or more statements on the same line as the if or else, 
instead of placing them in an indented block. Use a semicolon “;” to separate 
multiple statements. For example, the above example could be expressed on 
only two lines:
>>> if half > 0: print “Half is more than none.”
... else: print “Half is not much.”; print “Ni!”
... 

Half is more than none.
Sometimes you want to execute only one out of three or four or more 

blocks, depending on several conditions. For this situation, Python allows 
you to have any number of “elif clauses” after an if, and before the else 
clause if there is one. Here is the most general form of a Python if statement:
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if C1:
    block1

elif C2:
    block2

elif C3:
    block3

...
else:
    blockF

    ...

So, in general, an if statement can have zero or more elif clauses, 
optionally followed by an else clause. Example:
>>> i = 2
>>> if i==1: print “One”
... elif i==2: print “Two”
... elif i==3: print “Three”
... else: print “Many”
... 
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Two
You can have blocks within blocks. Here is an example:

>>> x = 3
>>> if  x >= 0:
...     if (x%2) == 0:
...         print “x is even”
...     else:
...         print “x is odd”
... else:
...     print “x is negative”
... 
x is odd

A Word about Indenting Your Code
One of the most striking innovations of Python is the use of indentation to 
show the structure of the blocks of code, as in the if statement. Not everyone 
is thrilled by this feature. However, it is generally good practice to indent 
subsidiary clauses; it makes the code more readable. Those who argue that 
they should be allowed to violate this indenting practice are, in the author›s 
opinion, arguing against what is generally regarded as a good practice.

The amount by which you indent each level is a matter of personal 
preference. You can use a tab character for each level of indention; tab stops 
are assumed to be every 8th character. Beware mixing tabs with spaces, 
however; the resulting errors can be difficult to diagnose.

The for Statement: Looping
Use Python’s “for” construct to do some repetitive operation for each 
member of a sequence. Here is the general form:
for variable in sequence:
    block
    ...
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• The sequence can be any expression that evaluates to a sequence 
value, such as a list or tuple. The range() function is often used 
here to generate a sequence of integers.

• For each value in the sequence in turn, the variable is set to that 
value, and the block is executed.

As with the if statement, the block consists of one or more statements, 
indented the same amount relative to the if keyword.

This example prints the cubes of all numbers from 1 through 5.
>>> for n in range(1,6):
...     print “The cube of {0} is {1}”.format(n, n**3)
... 

The cube of 1 is 1
The cube of 2 is 8
The cube of 3 is 27
The cube of 4 is 64
The cube of 5 is 125
You may put the body of the loop—that is, the statements that will be 

executed once for each item in the sequence—on the same line as the “for” 
if you like. If there are multiple statements in the body, separate them with 
semicolons.
>>> for n in range(1,6): print “{0}**3={1}”.format(n, n**3),
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... 
1**3=1 2**3=8 3**3=27 4**3=64 5**3=125
>>> if 1 > 0: print “Yes”;print “One is still greater than zero”
... 
Yes

One is still greater than zero
Here is an another example of iteration over a list of specific values.

>>> for  s in (‘a’, ‘e’, ‘i’, ‘o’, ‘u’):
...     word  =  “st” + s + “ck”
...     print  “Pick up the”, word
... 
Pick up the stack
Pick up the steck
Pick up the stick
Pick up the stock
Pick up the stuck

The while Statement
Use this statement when you want to perform a block B as long as a condition 
C is true:
while C:
    B
    ...

Here is how a while statement is executed.
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• Evaluate C. If the result is true, go to step 2. If it is false, the loop 
is done, and control passes to the statement after the end of B.

• Execute block B.
• Go back to step 1.
Here is an example of a simple while loop.

>>> i = 1
>>> while i < 100:
...     print i,
...     i = i * 2
... 
1 2 4 8 16 32 64

This construct has the potential to turn into an infinite loop, that is, one 
that never terminates. Be sure that the body of the loop does something that 
will eventually make the loop terminate.

Special Branch Statements: break and continue
Sometimes you need to exit a for or while loop without waiting for the 
normal termination. There are two special Python branch statements that do 
this:

• If you execute a break statement anywhere inside a for or while 
loop, control passes out of the loop and on to the statement after 
the end of the loop.

• A continue statement inside a for loop transfers control back to 
the top of the loop, and the variable is set to the next value from 
the sequence if there is one. (If the loop was already using the last 
value of the sequence, the effect of continue is the same as break.)

Here are examples of those statements.
>>> i = 0
>>> while  i < 100:
...     i  =  i + 3
...     if  ( i % 5 ) == 0:
...         break
...     print i,
... 
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3 6 9 12
In the example above, when the value of i reaches 15, which has a remainder 
of 0 when divided by 5, the break statement exits the loop.
>>> for  i in range(500, -1, -1):
...     if (i % 100) != 0:
...         continue
...     print i,
... 
500 400 300 200 100 0

HOW TO WRITE A SELF-EXECUTING PYTHON 
SCRIPT
So far we have used Python’s conversational mode to demonstrate all the 
features. Now it’s time to learn how to write a complete program.

Your program will live in a file called a script. To create your script, use 
your favorite text editor (emacs, vi, Notepad, whatever), and just type your 
Python statements into it.

How you make it executable depends on your operating system.
• On Windows platforms, be sure to give your script file a name 

that ends in “.py”. If Python is installed, double-clicking on any 
script with this ending will use Python to run the script.

• Under Linux and MacOS X, the first line of your script must look 
like this:

• #!pythonpath
The pythonpath tells the operating system where to find Python. This 

path will usually be “/usr/local/bin/python”, but you can use the “which” 
shell command to find the path on your computer:
$ which python
/usr/local/bin/python

Once you have created your script, you must also use this command to 
make it executable:
chmod +x your-script-name
Here is a complete script, set up for a typical Linux installation. This script, 
powersof2, prints a table showing the values of 2n and 2-n for n in the range 



Soft Computing and Machine Learning with Python210

1, 2, ..., 12.
#!/usr/local/bin/python
print “Table of powers of two”
print
print “{0:>10s} {1:>2s} {2:s}”.format(“2**n”, “n”, “2**(-n)”)
for n in range(13):
    print “{0:10d} {1:2d} {2:17.15f}”.format(2**n, n, 2.0**(-n))
Here we see the invocation of this script under the bash shell, and the output:
$ ./powersof2
Table of powers of two

      2**n  n 2**(-n)
         1  0 1.000000000000000
         2  1 0.500000000000000
         4  2 0.250000000000000
         8  3 0.125000000000000
        16  4 0.062500000000000
        32  5 0.031250000000000
        64  6 0.015625000000000
       128  7 0.007812500000000
       256  8 0.003906250000000
       512  9 0.001953125000000
      1024 10 0.000976562500000
      2048 11 0.000488281250000
      4096 12 0.000244140625000

def: DEFINING FUNCTIONS
You can define your own functions in Python with the def statement.

• Python functions can act like mathematical functions such as 
len(s), which computes the length of s. In this example, values 
like s that are passed to the function are called parameters to the 
function.

• However, more generally, a Python function is just a container for 
some Python statements that do some task. A function can take 
any number of parameters, even zero.
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Here is the general form of a Python function definition. It consists of a 
def statement, followed by an indented block called the body of the function.
def name ( arg0, arg1, ... ):
    block

The parameters that a function expects are called arguments inside the 
body of the function.

Here’s an example of a function that takes no arguments at all, and does 
nothing but print some text.
>>> def pirateNoises():
...     for arrCount in range(7):
...         print “Arr!”,
... 
>>> 
To call this function:
>>> pirateNoises()
Arr! Arr! Arr! Arr! Arr! Arr! Arr!
>>> 
To call a function in general, use an expression of this form:
name ( param0, param1, ... )

• The name of the function is followed by a left parenthesis “(”, a 
list of zero or more parameter values separated by commas, then 
a right parenthesis “)”.

• The parameter values are substituted for the corresponding 
arguments to the function. The value of parameter param0 is 
substituted for argument arg0; param1 is substituted for arg1 ; and 
so forth.

Here’s a simple example showing argument substitution.
>>> def grocer(nFruits, fruitKind):
...     print “Stock: {0} cases of {1}”.format(nFruits, fruitKind)
... 
>>> grocer ( 37, ‘kale’ )
Stock: 37 cases of kale
>>> grocer(0,”bananas”)
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Stock: 0 cases of bananas

return: Returning Values from a Function
So far we have seen some simple functions that take arguments or don’t take 
arguments. How do we define functions like len() that return a value?

Anywhere in the body of your function, you can write a return statement 
that terminates execution of the function and returns to the statement where 
it was called.

Here is the general form of this statement:
return expression
The expression is evaluated, and its value is returned to the caller.

Here is an example of a function that returns a value:
>>> def square(x):
...     return x**2
... 
>>> square(9)
81
>>> square(2.5)
6.25
>>> 

•	 You can omit the expression, and just use a statement of this form:
•	 return

In this case, the special placeholder value None is returned.
•	 If Python executes your function body and never encounters a return 

statement, the effect is the same as a return with no value: the special 
value None is returned.

Here is another example of a function that returns a value. This function 
computes the factorial of a positive integer:
The factorial of n, denoted n!, is defined as the product of all the integers 
from 1 to n inclusive.
For example, 4! = 1×2×3×4 = 24.
We can define the factorial function recursively like this:

•	 If n is 0 or 1, n! is 1.
•	 If n is greater than 1, n! = n × (n-1)!.

And here is a recursive Python function that computes the factorial, and a 
few examples of its use.
>>> def fact(n):
...     if n <= 1:
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...         return 1

...     else:

...         return n * fact(n-1)

... 
>>> for i in range(5):
...     print i, fact(i)
... 
0 1
1 1
2 2
3 6
4 24
>>> fact(44)
2658271574788448768043625811014615890319638528000000000L
>>> 

Function Argument List Features
The general form of a def shown in Section 8, “def: Defining functions” is 
over-simplified. In general, the argument list of a function is a sequence of 
four kinds of arguments:

1. If the argument is just a name, it is called a positional argument. 
There can be any number of positional arguments, including zero.

2. You can supply a default value for the argument by using the form 
“name=value”. Such arguments are called keyword arguments. See 
Section 8.3, “Keyword arguments”.

A function can have any number of keyword arguments, including zero.
All keyword arguments must follow any positional arguments in the 

argument list.
3. Sometimes it is convenient to write a function that can accept any 

number of positional arguments. To do this, use an argument of this 
form:

4. * name
A function may have only one such argument, and it must follow any 

positional or keyword arguments. For more information about this feature, 
see Section 8.4, “Extra positional arguments”.

5. Sometimes it is also convenient to write a function that can accept 
any number of keyword arguments, not just the specific keyword 
arguments. To do this, use an argument of this form:
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6. ** name
If a function has an argument of this form, it must be the last item in 

the argument list. For more information about this feature, see Section 8.5, 
“Extra keyword arguments”.

Keyword Arguments
If you want to make some of the arguments to your function optional, you must 
supply a default value. In the argument list, this looks like “name=value”.

Here’s an example of a function with one argument that has a default 
value. If you call it with no arguments, the name mood has the string value 
‘bleah’ inside the function. If you call it with an argument, the name mood 
has the value you supply.
>>> def report(mood=’bleah’):
...     print “My mood today is”, mood
... 
>>> report()
My mood today is bleah
>>> report(‘hyper’)
My mood today is hyper
>>> 

If your function has multiple arguments, and the caller supplies multiple 
parameters, here is how they are matched up:

•	 The function call must supply at least as many parameters as the 
function has positional arguments.

•	 If the caller supplies more positional parameters than the function 
has positional arguments, parameters are matched with keyword ar-
guments according to their position.

Here are some examples showing how this works.
>>> def f(a, b=”green”, c=3.5):
...     print a, b, c
... 
>>> f()
Traceback (most recent call last):
  File “<stdin>”, line 1, in ?
TypeError: f() takes at least 1 argument (0 given)
>>> f(47)
47 green 3.5
>>> f(47, 48)
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47 48 3.5
>>> f(47, 48, 49)
47 48 49
>>> f(47, 48, 49, 50)
Traceback (most recent call last):
  File “<stdin>”, line 1, in ?
TypeError: f() takes at most 3 arguments (4 given)
>>> 

Here is another feature: the caller of a function can supply what are 
called keyword parameters of the form “name=value”. If the function has 
an argument with a matching keyword, that argument will be set to value.

•	 If a function’s caller supplies both positional and keyword parame-
ters, all positional parameters must precede all keyword parameters.

•	 Keyword parameters may occur in any order.
Here are some examples of calling a function with keyword parameters.

>>> def g(p0, p1, k0=”K-0”, k1=”K-1”):
...     print p0, p1, k0, k1
... 
>>> g(33,44)
33 44 K-0 K-1
>>> g(33,44,”K-9”,”beep”)
33 44 K-9 beep
>>> g(55,66,k1=”whirr”)
55 66 K-0 whirr
>>> g(7,8,k0=”click”,k1=”clank”)
7 8 click clank
>>> 

Extra Positional Arguments
You can declare your function in such a way that it will accept any number 
of positional parameters. To do this, use an argument of the form “*name” 
in your argument list.

•	 If you use this special argument, it must follow all the positional and 
keyword arguments in the list.

•	 When the function is called, this name will be bound to a tuple con-
taining any positional parameters that the caller supplied, over and 
above parameters that corresponded to other parameters.
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Here is an example of such a function.
>>> def h(i, j=99, *extras):
...     print i, j, extras
... 
>>> h(0)
0 99 ()
>>> h(1,2)
1 2 ()
>>> h(3,4,5,6,7,8,9)
3 4 (5, 6, 7, 8, 9)
>>> 

Extra Keyword Arguments
You can declare your function in such a way that it can accept any number 
of keyword parameters, in addition to any keyword arguments you declare.

To do this, place an argument of the form “**name” last in your argument 
list.

When the function is called, that name is bound to a dictionary that 
contains any keyword-type parameters that are passed in that have names 
that don’t match your function’s keyword-type arguments. In that dictionary, 
the keys are the names used by the caller, and the values are the values that 
the caller passed.

Here’s an example.
>>> def k(p0, p1, nickname=’Noman’, *extras, **extraKeys):
...     print p0, p1, nickname, extras, extraKeys
... 
>>> k(1,2,3)
1 2 3 () {}
>>> k(4,5)
4 5 Noman () {}
>>> k(6, 7, hobby=’sleeping’, nickname=’Sleepy’, hatColor=’green’)
6 7 Sleepy () {‘hatColor’: ‘green’, ‘hobby’: ‘sleeping’}
>>> k(33, 44, 55, 66, 77, hometown=’McDonald’, eyes=’purple’)
33 44 55 (66, 77) {‘hometown’: ‘McDonald’, ‘eyes’: ‘purple’}
>>> 
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Documenting Function Interfaces
Python has a preferred way to document the purpose and usage of your 
functions. If the first line of a function body is a string constant, that string 
constant is saved along with the function as the documentation string. This 
string can be retrieved by using an expression of the form f.__doc__, where 
f is the function name.

Here’s an example of a function with a documentation string.
>>> def pythag(a, b):
...     “””Returns the hypotenuse of a right triangle with sides a and b.
...     “””
...     return (a*a + b*b)**0.5
... 
>>> pythag(3,4)
5.0
>>> pythag(1,1)
1.4142135623730951
>>> print pythag.__doc__

Returns the hypotenuse of a right triangle with sides a and b.
    
>>>

USING PYTHON MODULES
Once you start building programs that are more than a few lines long, it’s 
critical to apply this overarching principle to programming design:

Important
Divide and conquer.

In other words, rather than build your program as one large blob of 
Python statements, divide it into logical pieces, and divide the pieces into 
smaller pieces, until the pieces are each small enough to understand.

Python has many tools to help you divide and conquer. In Section 8, “def: 
Defining functions”, we learned how to package up a group of statements 
into a function, and how to call that function and retrieve the result.
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Way back in Section 2.3, “More mathematical operations”, we got our 
first look at another important tool, Python’s module system. Python does 
not have a built-in function to compute square roots, but there is a built-
in module called math that includes a function sqrt() that computes square 
roots.

In general, a module is a package of functions and variables that you 
can import and use in your programs. Python comes with a large variety of 
modules, and you can also create your own. Let’s look at Python’s module 
system in detail.

• In Section 9.1, “Importing items from modules”, we learn to 
import items from existing modules.

• Section 9.2, “Import entire modules” shows another way to use 
items from modules.

• Section 9.4, “Build your own modules”.

Importing Items from Modules
Back in Section 2.2, “The assignment statement”, we learned that there is 
an area called the “global namespace,” where Python keeps the names and 
values of the variables you define.

The Python dir() function returns a list of all the names that are currently 
defined in the global namespace. Here is a conversational example; suppose 
you have just started up Python in conversational mode.
>>> dir()
[‘__builtins__’, ‘__doc__’, ‘__name__’]
>>> frankness = 0.79
>>> dir()
[‘__builtins__’, ‘__doc__’, ‘__name__’, ‘frankness’]
>>> def oi():
...     print “Oi!”
... 
>>> dir()
[‘__builtins__’, ‘__doc__’, ‘__name__’, ‘frankness’, ‘oi’]
>>> type(frankness)
<type ‘float’>



A Python 2.7 Programming Tutorial 219

>>> type(oi)
<type ‘function’>
>>> 
When Python starts up, three variables are always defined: __builtins__, __
doc__, and __name__. These variables are for advanced work and needn’t 
concern us now.
Note that when we define a variable (frankness), next time we call dir(), that 
name is in the resulting list. When we define a function (oi), its name is also 
added. Note also that you can use the type()function to find the type of any 
currently defined name: frankness has type float, and oi has type function.
Now let’s see what happens when we import the contents of the math module 
into the global namespace:
>>> from math import *
>>> dir()
[‘__builtins__’, ‘__doc__’, ‘__name__’, ‘acos’, ‘asin’, ‘atan’, ‘atan2’, 
‘ceil’, ‘cos’, ‘cosh’, ‘degrees’, ‘e’, ‘exp’, ‘fabs’, ‘floor’, ‘fmod’, ‘frankness’, 
‘frexp’, ‘hypot’, ‘ldexp’, ‘log’, ‘log10’, ‘modf’, ‘oi’, ‘pi’, ‘pow’, ‘radians’, 
‘sin’, ‘sinh’, ‘sqrt’, ‘tan’, ‘tanh’]
>>> sqrt(64)
8.0
>>> pi*10.0
31.415926535897931
>>> cos(0.0)
1.0
>>> 

As you can see, the names we have defined (oi and frankness) are still 
there, but all of the variables and functions from the math module are now in 
the namespace, and we can use its functions and variables like sqrt() and pi.

In general, an import statement of this form copies all the functions and 
variables from the module into the current namespace:
from someModule import *

However, you can also be selective about which items you want to 
import. Use a statement of this form:
from someModule import item1, item2, ...
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where the keyword import is followed by a list of names, separated by 
commas.

Here’s another example. Assume that you have just started a brand new 
Python session, and you want to import only the sqrt() function and the 
constant pi:
>>> dir()
[‘__builtins__’, ‘__doc__’, ‘__name__’]
>>> from math import sqrt, pi
>>> dir()
[‘__builtins__’, ‘__doc__’, ‘__name__’, ‘pi’, ‘sqrt’]
>>> sqrt(25.0)
5.0
>>> cos(0.0)
Traceback (most recent call last):
  File “<stdin>”, line 1, in <module>
NameError: name ‘cos’ is not defined
>>> 

We didn’t ask for the cos() function to be imported, so it is not part of 
the global namespace.

Import Entire Modules
Some modules have hundreds of different items in them. In cases like that, 
you might not want to clutter up your global namespace with all those items. 
There is another way to import a module. Here is the general form:
import moduleName

This statement adds only one name to the current namespace—the name 
of the module itself. You can then refer to any item inside that module using 
an expression of this form:
moduleName.itemName

Here is an example, again using the built-in math module. Assume that 
you have just started up a new Python session and you have added nothing 
to the namespace yet.
>>> dir()
[‘__builtins__’, ‘__doc__’, ‘__name__’]
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>>> import math
>>> dir()
[‘__builtins__’, ‘__doc__’, ‘__name__’, ‘math’]
>>> type(math)
<type ‘module’>
>>> math.sqrt(121.0)
11.0
>>> math.pi
3.1415926535897931
>>> math.cos(0.0)
1.0
>>> 

As you can see, using this form of import adds only one name to the 
namespace, and that name has type module.

There is one more additional feature of import we should mention. If 
you want to import an entire module M1, but you want to refer to its contents 
using a different name M2, use a statement of this form:
import M1 as M2
An example:
>>> dir()
[‘__builtins__’, ‘__doc__’, ‘__name__’]
>>> import math as crunch
>>> dir()
[‘__builtins__’, ‘__doc__’, ‘__name__’, ‘crunch’]
>>> type(crunch)
<type ‘module’>
>>> crunch.pi
3.1415926535897931
>>> crunch.sqrt(888.888)
29.81422479287362
>>> 

You can apply Python’s built-in dir() function to a module object to find 
out what names are defined inside it:
>>> import math
>>> dir()
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[‘__builtins__’, ‘__doc__’, ‘__name__’, ‘math’]
>>> dir(math)
[‘__doc__’, ‘__file__’, ‘__name__’, ‘acos’, ‘asin’, ‘atan’, ‘atan2’, ‘ceil’, 
‘cos’, ‘cosh’, ‘degrees’, ‘e’, ‘exp’, ‘fabs’, ‘floor’, ‘fmod’, ‘frexp’, ‘hypot’, 
‘ldexp’, ‘log’, ‘log10’, ‘modf’, ‘pi’, ‘pow’, ‘radians’, ‘sin’, ‘sinh’, ‘sqrt’, 
‘tan’, ‘tanh’]
>>> 

A Module is a Namespace
Modules are yet another example of a Python namespace, just as we’ve 
discussed in Section 2.2, “The assignment statement” and Section 5.3, “A 
namespace is like a dictionary”.

When you import a module using the form “import moduleName”, you 
can refer to some name N inside that module using the period operator: 
“moduleName.N”.

So, like any other namespace, a module is a container for a unique set of 
names, and the values to which each name is connected.

Build Your Own Modules
If you have a common problem to solve, chances are very good that there 
are modules already written that will reduce the amount of code you have 
to write.

• Python comes with a large collection of built-in modules. See the 
Python Library Reference.

• The python.org site also hosts a collection of thousands of third-
party modules: see the Python package index.

You can also build your own modules. A module is similar to a script 
(see Section 7, “How to write a self-executing Python script”): it is basically 
a text file containing the definitions of Python functions and variables.

To build your own module, use a common text editor to create a file with 
a name of the form “moduleName.py”. The moduleName you choose must 
be a valid Python name—it must start with a letter or underbar, and consist 
entirely of letters, underbars, and digits.

Inside that file, place Python function definitions and ordinary assignment 
statements.

Here is a very simple module containing one function and one variable. 
It lives in a file named cuber.py.
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def cube(x):
    return x**3

cubeVersion = “1.9.33”
Here is an example interactive session that uses that module:
>>> dir()
[‘__builtins__’, ‘__doc__’, ‘__name__’]
>>> from cuber import *
>>> dir()
[‘__builtins__’, ‘__doc__’, ‘__name__’, ‘cube’, ‘cubeVersion’]
>>> cube(3)
27
>>> cubeVersion
‘1.9.33’
>>> 

There is one more refinement we suggest for documenting the contents 
of a module. If the first line of the module’s file is a string constant, it is 
saved as the module’s “documentation string.” If you later import such a 
module using the form “import moduleName”, you can retrieve the contents 
of the documentation string using the expression “moduleName.__doc__”.

Here is an expanded version of our cuber.py with a documentation string:
“””cuber.py:  Simple homemade Python module

  Contents:
    cube(x):  Returns the cube of x
    cubeVersion:  Current version number of this module
“””
def cube(x):
    return x**3

cubeVersion = “1.9.33”

Finally, an example of how to retrieve the documentation string:
>>> import cuber
>>> print cuber.__doc__



Soft Computing and Machine Learning with Python224

cuber.py:  Simple homemade Python module

  Contents:
    cube(x):  Returns the cube of x
    cubeVersion:  Current version number of this module

>>> cuber.cube(10)
1000
>>> 

INPUT AND OUTPUT
Python makes it easy to read and write files. To work with a file, you must 
first open it using the built-in open() function. If you are going to read the 
file, use the form “open(filename)”, which returns a file object. Once you 
have a file object, you can use a variety of methods to perform operations 
on the file.

Reading Files
For example, for a file object F, the method F.readline() attempts to read 
and return the next line from that file. If there are no lines remaining, it 
returns an empty string.
Let’s start with a small text file named trees containing just three lines:
yew
oak
alligator juniper
Suppose this file lives in your current directory. Here is how you might read 
it one line at a time:
>>> treeFile = open ( ‘trees’ )
>>> treeFile.readline()
‘yew\n’
>>> treeFile.readline()
‘oak\n’
>>> treeFile.readline()
‘alligator juniper\n’
>>> treeFile.readline()
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‘’
Note that the newline characters (‘\n’) are included in the return value. You 
can use the string .rstrip() method to remove trailing newlines, but beware: 
it also removes any other trailing whitespace.
>>> ‘alligator juniper\n’.rstrip()
‘alligator juniper’
>>> ‘eat all my trailing spaces         \n’.rstrip()
‘eat all my trailing spaces’
To read all the lines in a file at once, use the .readlines() method. This returns 
a list whose elements are strings, one per line.
>>> treeFile=open(“trees”)
>>> treeFile.readlines()
[‘yew\n’, ‘oak\n’, ‘alligator juniper\n’]
A more general method for reading files is the .read() method. Used without 
any arguments, it reads the entire file and returns it to you as one string.
>>> treeFile = open (“trees”)
>>> treeFile.read()
‘yew\noak\nalligator juniper\n’
To read exactly N characters from a file F, use the method F.read(N). If N 
characters remain in the file, you will get them back as an N-character string. 
If fewer than N characters remain, you will get the remaining characters in 
the file (if any).
>>> treeFile = open ( “trees” )
>>> treeFile.read(1)
‘y’
>>> treeFile.read(5)
‘ew\noa’
>>> treeFile.read(50)
‘k\nalligator juniper\n’
>>> treeFile.read(80)
‘’
One of the easiest ways to read the lines from a file is to use a for statement. 
Here is an example:



Soft Computing and Machine Learning with Python226

>>> >>> treeFile=open(‘trees’)
>>> for treeLine in treeFile:
...     print treeLine.rstrip()
... 
yew
oak
alligator juniper

As with the .readline() method, when you iterate over the lines of a 
file in this way, the lines will contain the newline characters. If the above 
example did not trim these lines with .rstrip(), each line of output would be 
followed by a blank line, because the print statement adds a newline.

File Positioning for Random-access Devices
For random-access devices such as disk files, there are methods that let you 
find your current position within a file, and move to a different position.

• F.tell() returns your current position in file F.
• F.seek(N) moves your current position to N, where a position of 

zero is the beginning of the file.
• F.seek(N, 1) moves your current position by a distance of N 

characters, where positive values of N move toward the end of 
the file and negative values move toward the beginning.

For example, F.seek(80, 1) would move the file position 80 characters 
further from the start of the file.

•	 F.seek(N, 2) moves to a position N characters relative to the end of 
the file. For example, F.seek(0, 2) would move to the end of the file; 
F.seek(-200, 2) would move your position to 200 bytes before the 
end of the file.

>>> treeFile = open ( “trees” )
>>> treeFile.tell()
0L
>>> treeFile.read(6)
‘yew\noa’
>>> treeFile.tell()
6L
>>> treeFile.seek(1)
>>> treeFile.tell()
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1L
>>> treeFile.read(5)
‘ew\noa’
>>> treeFile.tell()
6L
>>> treeFile.seek(1, 1)
>>> treeFile.tell()
7L
>>> treeFile.seek(-3, 1)
>>> treeFile.tell()
4L
>>> treeFile.seek(0, 2)
>>> treeFile.tell()
26L
>>> treeFile.seek(-3, 2)
>>> treeFile.tell()
23L
>>> treeFile.read()
‘er\n’

Writing Files
To create a disk file, open the file using a statement of this general form:

F = open ( filename, “w” )
The second argument, “w”, specifies write access. If possible, Python 

will create a new, empty file by that name. If there is an existing file by that 
name, and if you have write permission to it, the existing file will be deleted.

To write some content to the file you are creating, use this method:
F.write(s)
where s is any string expression.

Warning
The data you have sent to a file with the .write() method may not actually 
appear in the disk file until you close it by calling the .close() method on the 
file.

This is due to a mechanism called buffering. Python accumulates the 
data you have sent to the file, until a certain amount is present, and then it 
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“flushes” that data to the physical file by writing it. Python also flushes the 
data to the file when you close it.

If you would like to make sure that the data you have written to the file 
is actually physically present in the file without closing it, call the .flush() 
method on the file object.
>>> sports = open ( “sportfile”, “w” )
>>> sports.write ( “tennis\nrugby\nquoits\n” )
>>> sports.close()
>>> sportFile = open ( “sportfile” )
>>> sportFile.readline()
‘tennis\n’
>>> sportFile.readline()
‘rugby\n’
>>> sportFile.readline()
‘quoits\n’
>>> sportFile.readline()
‘’
Here is a lengthy example demonstrating the action of the .flush() method.
>>> sporting = open(‘sports’, ‘w’)
>>> sporting.write(‘golf\n’)
>>> echo = open(‘sports’)
>>> echo.read()
‘’
>>> echo.close()
>>> sporting.flush()
>>> echo = open(‘sports’)
>>> echo.read()
‘golf\n’
>>> echo.close()
>>> sporting.write(‘soccer’)
>>> sporting.close()
>>> open(‘sports’).read()
‘golf\nsoccer’
Note that you must explicitly provide newline characters in the arguments 
to .write().



A Python 2.7 Programming Tutorial 229

INTRODUCTION TO OBJECT-ORIENTED  
PROGRAMMING
So far we have used a number of Python’s built-in types such as int, float, 
list, and file.

Now it is time to begin exploring some of the more serious power of 
Python: the ability to create your own types.

This is a big step, so let’s start by reviewing some of the historical 
development of computer language features.

A Brief History of Snail Racing Technology
An entrepreneur name Malek Ology would like to develop a service to run 
snail races to help non-profit organizations raise funds. Here is the proposed 
design for Malek’s snail-racing track:

At the start of the race, the snails, with their names written on their backs 
in organic, biodegradable ink, are placed inside the starting line, and Malek 
starts a timer. As each snail crosses the finish line, Malek records their times.

Malek wants to write a Python program to print the race results. We’ll 
look at the evolution of such a program through the history of programming. 
Let’s start around 1960.

Scalar Variables
Back around 1960, the hot language was FORTRAN. A lot of the work 
in this language was done using scalar variables, that is, a set of variable 
names, each of which held one number.
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Suppose we’ve just had a snail race, and Judy finished in 87.3 minutes, 
while Kyle finished in 96.6 minutes. We can create Python variables with 
those values like this:
>>> judy = 87.3
>>> kyle = 96.6
To find the winner, we can use some if statements like this:
>>> if judy < kyle:
...     print “Judy wins with a time of”, judy
... elif judy > kyle:
...     print “Kyle wins with a time of”, kyle
... else:
...     print “Judy and Kyle are tied with a time of”, judy
...
Judy wins with a time of 87.3
>>> 

If Judy and Kyle are the only two snails, this program will work fine. 
Malek puts this all into a script. After each race, he changes the first two 
lines that give the finish times, and then runs the script.

This will work, but there are a number of objections:
• The person who prepares the race results has to know Python so 

they can edit the script.
• It doesn’t really save any time. Any second-grader can look at the 

times and figure out who won.
• The names of the snails are part of the program, so if different 

snails are used, we have to write a new program.
• What if there are three snails? There are a lot more cases: three 

cases where a snail clearly wins; three more possible two-way 
ties; and a three-way tie. What if Malek wants to race ten snails 
at once? Too complicated!

Snail-oriented Data Structures: Lists
Let’s consider the general problem of a race involving any number of 
snails. Malek is considering diversifying into amoeba racing, so there might 
be thousands of competitors in a race. So let’s not limit the number of 
competitors in the program.

Also, to make it possible to use cheaper labor for production runs, let’s 
write a general-purpose script that will read a file with the results for each 
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race, so a relatively less skilled person can prepare that file, and then run a 
script that will review the results.

We’ll use a very simple text file format to encode the race results. Here’s 
an example file for that first race between Judy and Kyle:

87.3 Judy
96.6 Kyle
And here is a script that will process that file and report on the winning 

time. The script is called snailist.py. First, reads a race results file named 
results and stores the times into a list. The .split()method is used to break 
each line into parts, with the first part containing the elapsed time.
#!/usr/local/bin/python
#====================================================
============
# snailist.py:  First snail racing results script.
#----------------------------------------------------------------

#--
# Create an empty list to hold the finish times.
#--
timeList = []

#--
# Open the file containing the results.
#--
resultsFile = open ( ‘results’ )

#--
# Go through the lines of that file, storing each finish time.
#--
for  resultsLine in resultsFile:
    #--
    # Create a list of the fields in the line, e.g., [‘87.3’, ‘Judy\n’].
    #--
    fieldList  =  resultsLine.split()

    #--
    # Convert the finish time into a float and append it to timeList.
    #--
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    timeList.append ( float ( fieldList[0] ) )
At this point, timeList is a list of float values. We use the .sort() method to 
sort the list into ascending order, so that the winning time will be in the first 
element.
#--
# Sort timeList into ascending order, then set ‘winningTime’ to
# the best time.
#--
timeList.sort()
print “The winning time is”, timeList[0]
Try building the results file and the script yourself to verify that they work. 
Try some cases where there are ties.
This script is fine as far as it goes. However, there is one major drawback: it 
doesn’t tell you who won!

Snail-oriented Data Structures: A List of Tuples
To improve on the script above, let’s modify the script so that it keeps each 
snail’s time and name together in a two-element tuple such as (87.3, ‘Judy’).

In the improved script, the timeList list is a list of these tuples, and not 
just a list of times. We can then sort this list, using an interesting property of 
tuples. If you compare two tuples, and their first elements are not equal, the 
result is the same as if you compared their first elements. However, if the 
first elements are equal, Python then compares the second elements of each 
tuple, and so on until it either finds two unequal values, or finds that all the 
elements are equal.

Here’s an example. Recall that the function cmp(a, b), function compares 
two arbitrary values and returns a negative number if a comes before b, or 
a positive number if a comes after b, or zero if they are considered equal:
>>> cmp(50,30)
1
>>> cmp(30,50)
-1
>>> cmp(50,50)
0
>>> 

If you compare two tuples and the first elements are unequal, the result 
is the same as if you compared the first two elements. For example:
>>> cmp ( (50,30,30), (80,10,10) )
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-1
>>> 
If, however, the first elements are equal, Python then compares the second 
elements, or the third elements, until it either finds two unequal elements, or 
finds that all the elements are equal:
>>> cmp ( (50,30,30), (80,10,10) )
-1
>>> cmp ( (50,30,30), (50,10,10) )
1
>>> cmp ( (50,30,30), (50,30,80) )
-1
>>> cmp ( (50,30,30), (50,30,30) )
0
>>> 
So, watch what happens when we sort a list of two-tuples containing snail 
times and names:
>>> timeList = [ (87.3, ‘Judy’), (96.6, ‘Kyle’), (63.0, ‘Lois’) ]
>>> timeList.sort()
>>> timeList
[(63.0, ‘Lois’), (87.299999999999997, ‘Judy’), (96.599999999999994, 
‘Kyle’)]
>>> 
Now we have a list that is ordered the way the snails finished. Here is our 
modified script:
#!/usr/local/bin/python
#====================================================
============
# snailtuples.py:  Second snail racing results script.
#----------------------------------------------------------------

#--
# Create an empty list to hold the result tuples.
#--
timeList = []

#--
# Open the file containing the results.
#--
resultsFile = open ( ‘results’ )
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#--
# Go through the lines of that file, storing each finish time.
# Note that ‘resultsLine’ is set to each line of the file in
# turn, including the terminating newline (‘\n’).
#--
for  resultsLine in resultsFile:
    #--
    # Create a list of the fields in the line, e.g., [‘87.3’, ‘Judy\n’].
    # We use the second argument to .split() to limit the number
    # of fields to two maximum; the first argument (None) means
    # split the line wherever there is any whitespace.
    #--
    fieldList  =  resultsLine.split(None, 1)

    #--
    # Now create a tuple (time,name) and append it to fieldList.
    # Use .rstrip to remove the newline from the second field.
    #--
    snailTuple = (float(fieldList[0]), fieldList[1].rstrip())
    timeList.append ( snailTuple )

#--
# Sort timeList into ascending order.
#--
timeList.sort()

#--
# Print the results.
#--
print “Finish  Time  Name”
print “------ ------ ----”
for  position in range(len(timeList)):
    snailTuple  =  timeList[position]
    print “{0:4d}   {1:6.1f} {2}”.format(position+1, snailTuple[0],
                                         snailTuple[1])
Here is a sample run with our original two-snail results file:
Finish  Time  Name
------ ------ ----
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   1     87.3 Judy
   2     96.6 Kyle
Let’s try a larger results file with some names that have spaces in them, just 
to exercise the script. Here’s the input file:
93.3 Queen Elizabeth I
138.4 Erasmus
88.2 Jim Ryun
And the output for this run:
Finish  Time  Name
------ ------ ----
   1     88.2 Jim Ryun
   2     93.3 Queen Elizabeth I
   3    138.4 Erasmus

Abstract Data Types
The preceding section shows how you can use a Python tuple to combine 
two simple values into a compound value. In this case, we use a 2-element 
tuple whose first element is the snail’s time and the second element is its 
name.

We might say that this tuple is an abstract data type, that is, a way 
of combining Python’s basic types (such as floats and strings) into new 
combinations.

The next step is to combine values and functions into an abstract data 
type. Historically, this is how object-oriented programming arose. The 
“objects” are packages containing simpler values inside them. However, in 
general, these packages can also contain functions.

Before we start looking at how we build abstract data types in Python, 
let’s define some import terms and look at some real-world examples.
class

When we try to represent in our program some items out in the real 
world, we first look to see which items are similar, and group them into 
classes. A class is defined by one or more things that share the same qualities.

For example, we could define the class of fountains by saying that they 
are all permanent man-made structures, that they hold water, that they are 
outdoors in a public place, and that they keep the water in a decorative way.

It should be easy to determine whether any item is a member of the 
class or not, by applying these defining rules. For example, Trevi Fountain 
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in Rome fits all the rules: it is man-made, holds water, is outdoors, and is 
decorative. Lake Geneva has water spraying out of it, but it’s not man-made, 
so it’s not a fountain.
instance
One of the members of a class. For example, the class of airplanes includes 
the Wright Biplane of 1903, and the Spirit of St. Louis that Charles Lindbergh 
flew across the Atlantic.
An instance is always a single item. “Boeing 747” is not an instance, it is 
a class. However, a specific Boeing 747, with a unique tail number like 
N1701, is an instance.
attribute

Since the purpose of most computer applications is in record-keeping, 
within a program, we must often track specific qualities of an instance, 
which we call attributes.

For example, attributes of an airplane include its wingspan, its 
manufacturer, and its current location, direction, and airspeed.

We can classify attributes into static and dynamic attributes, depending 
on whether they change or not. For example, the wingspan and model 
number of an airplane do not change, but its location and velocity can.
operations

Each class has characteristic operations that can be performed on 
instances of the class. For example, operations on airplanes include: 
manufacture; paint; take off; change course; land.

Here is a chart showing some classes, instances, attributes, and 
operations.

Class Instance Attribute Operation
Airplane Wright Flyer Wingspan Take off
Mountain Socorro Peak Altitude Erupt
Clock Skeen Library Clock Amount slow per day Decorate

Important
You have now seen definitions for most of the important terms in object-
oriented programming. Python classes and instances are very similar to 
these real-world classes and instances. Python instances have attributes too.
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For historical reasons, the term method is the object-oriented 
programming equivalent of “operation.”

The term constructor method is the Python name for the operation that 
creates a new instance.

So what is an object? This term is used in two different ways:
• An object is just an instance.
• Object-oriented programming means programming with classes.

Abstract Data Types in Python
We saw how you can use a two-element tuple to group a snail’s time and 
name together. However, in the real world, we might need to track more than 
two attributes of an instance.

Suppose Malek wants to keep track of more attributes of a snail, such as 
its age in days, its weight in grams, its length in millimeters, and its color. 
We could use a six-element tuple like this:

(87.3, ‘Judy’, 34, 1.66, 39, ‘tan’)
The problem with this approach is that we have to remember that for a 

tuple T, the time is in T[0], the name in T[1], the age in T[2], and so on.
A cleaner, more natural way to keep track of attributes is to give them 

names. We might encode those six attributes in a Python dictionary like this:
T = { ‘time’:87.3, ‘name’:’Judy’, ‘age’:34, ‘mass’:1.66,
       ‘length’:39, ‘color’:’tan’}

With this approach, we can retrieve the name as T[‘name] or the weight 
as T[‘mass’]. However, now we have lost the ability to put several of these 
dictionaries into a list and sort the list—how is Python supposed to know 
which dictionary comes first? What we need is something like a dictionary, 
but with more features. What we need is Python’s object-oriented features.

Now we’re to look at actual Python classes and instances in action.

class SnailRun: A Very Small Example Class
Let’s start building a snail-racing application for Malek the object-oriented 
Python way. Let’s assume that all we’re tracking about a particular snail is 
its name and its finishing time. We need to define a class named SnailRun, 
whose instances track just these two attributes.
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Here is the general form of a class declaration in Python:
class ClassName:
    def method1(self, ...):
        block1
    def method2(self, ...):
        block2
    ... etc.

A class declaration starts out with the keyword class, followed by the 
name of the class you are defining, then a colon (:). The methods of the class 
follow; each method starts with “def”, just as you use to define a function.

Before we look at the construction of the class, let’s see how it works in 
practice. To create an instance in Python, you use the name of the class as if 
it were a function call, followed by a list of arguments in parentheses. Our 
SnailRun constructor method will need two arguments: the snail›s name and 
its finish time. Once we have defined the class, we can build a new instance 
like this:
judyRace9 = SnailRun ( ‘judy’, 87.3 )

To get the snail’s name and time attributes from an instance, we use the 
instance name, followed by a dot (.), followed by the attribute name:
>>> judyRace9.name
‘judy’
>>> print judyRace9.time
87.3

Our example class, SnailRun, will have just two methods:
• All classes have a constructor method named “__init__”. This 

method is used to create a new instance.
• We’ll write a .show() method to format the contents of the 

instance for display.
Continuing our example from above, here’s an example of the use of the 

.show() method:
>>> print judyRace9.show()

Snail ‘judy’ finished in 87.3 minutes.
Here is the entire class definition:

class SnailRun:
    def __init__ ( self, snailName, finishTime ):
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        self.name  =  snailName
        self.time  =  finishTime

    def show ( self ):
        return ( “Snail ‘{0}’ finished in {1:.1d} minutes.”.format(
                 self.name, self.time )
Instantiation means the construction of a new instance. Here is how 
instantiation works.

• Somewhere in a Python program, the programmer starts the 
construction of a new instance by using the class’s name followed 
by parentheses and a list of arguments. Let’s call the arguments 
(a1, a2, ...).

• Python creates a new namespace that will hold the instance’s 
attributes. Inside the constructor, this namespace is referred to 
as self.

Important
The instance is basically a namespace, that is, a container for attribute 
names and their definitions. For other examples of Python namespaces, see 
Section 2.2, “The assignment statement”, Section 5.3, “A namespace is like 
a dictionary”, and Section 9.3, “A module is a namespace”.

• The __init__() (constructor) method of the class is executed with 
the argument list (self, a1, a2, ...).

Note that if the constructor takes N arguments, the caller passes only the 
last N-1 arguments to it.

• When the constructor method finishes, the instance is returned to 
the caller. From then one, the caller can refer to some attribute A 
of the instance I as “A.I”.

Let’s look again in more detail at the constructor:
    def __init__ ( self, snailName, finishTime ):
        self.name  =  snailName
        self.time  =  finishTime

All the constructor does is to take the snail’s name and finish time and 
store these values in the instance’s namespace under the names .name and 
.time, respectively.
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Note that the constructor method does not (and cannot) include a return 
statement. The value of self is implicitly returned to the statement that called 
the constructor.

As for the other methods of a class, their definitions also start with the 
special argument self that contains the instance namespace. For any method 
that takes N arguments, the caller passes only the last N-1arguments to it.

In our example class, the def for the .show() method has one argument 
named self, but the caller invokes it with no arguments at all:
>>> kyleRace3=SnailRun(‘Kyle’, 96.6)
>>> kyleRace3.show()
“Snail ‘Kyle’ finished in 96.6 minutes.”

Life Cycle of An Instance
To really understand what is going on inside a running Python program, let’s 
follow the creation of an instance of the SnailRun class from the preceding 
section.
Just for review, let’s assume you are using conversational mode, and you 
create a variable like this:
>>> badPi = 3.00

Whenever you start up Python, it creates the “global namespace” to hold 
the names and values you define. After the statement above, here’s how it 
looks.

Next, suppose you type in the class definition as above. As it happens, 
a class is a namespace too—it is a container for methods. So the global 
namespace now has two names in it: the variable badPi and the class 
SnailRun. Here is a picture of the world after you define the class:
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Next, create an instance of class SnailRun like this:
>>> j1 = SnailRun ( ‘Judy’, 87.3 )

Here is the sequence of operations:
1. Python creates a new instance namespace. This namespace is ini-

tially a copy of the class’s namespace: it contains the two methods 
.__init__() and .show().

2. The constructor method starts execution with these arguments:
•	 The name self is bound to the instance namespace.
•	 The name snailName is bound to the string value ‹Judy›.
•	 The name finishTime is bound to the float value 87.3.

3. This statement in the constructor
4.         self.name  =  snailName

creates a new attribute .name in the instance namespace, and assigns it the 
value ‘Judy’.

5. The next statement in the constructor creates an attribute named 
.time in the instance namespace, and binds it to the value 87.3.

6. The constructor completes, and back in conversational mode, in the 
global namespace, variable j1 is bound to the instance namespace.

Here’s a picture of the world after all this:
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Special Methods: Sorting Snail Race Data
Certain method names have special meaning to Python; each of these special 
method names starts with two underbars, “__”.

A class’s constructor method, __init__(), is an example of a special 
method. Whenever you use the class’s name as if it were a function, in an 
expression like “SnailRun(‘Judy’, 67.3)”, Python executes the constructor 
method to build the new instance.

There is a full list of all the Python special method names in the Python 
quick reference. Next we will look at another special method, __cmp__, that 
Python calls whenever you compare two instances of that class.

Going back to our snail-racing application, an instance of the SnailRun 
class contains everything we need to know about one snail›s performance: 
its name in the .name attribute and its finish time in the .timeattribute.

However, using the tuple representation back in Section 11.4, “Snail-
oriented data structures: A list of tuples”, we were able to put a collection of 
these tuples into a list, and sort the list so that they were ordered by finish 
time, with the winner first. Let’s see what we need to add to class SnailRun 
so that we can sort a list of them into finish order by calling the .sort() 
method on the list.

First, a bit of review. Back in Section 6.1, “Conditions and the bool type”, 
we learned about the built-in Python function cmp(x, y), which returns:

• a negative number if x is less than y;
• a positive number if x is greater than y; or
• zero if x equals y.
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In a Python class, if you define a method named “__cmp__”, that method 
is called whenever Python compares two instances of the class. It must return 
a result using the same conventions as the built-in cmp()function: negative 
for “<”, zero for “==”, positive for “>”.

In the case of “class SnailRun”, we want the snail with the better finishing 
time to be considered less than the slower snail. So here is one way to define 
the __cmp__ method for our class:
    def __cmp__ ( self, other ):
        “””Define how to compare two SnailRun instances.
        “””
        if self.time < other.time:
            return -1
        elif self.time > other.time:
            return 1
        else:
            return 0

When this method is called, self is an instance of class SnailRun, and 
other should also be an instance of SnailRun.

However, this logic exactly duplicates what the built-in cmp() function 
does to compare two float values, so we can simplify it like this:
    def __cmp__ ( self, other ):
        “””Define how to compare two SnailRun instances.
        “””
        return cmp(self.time, other.time)

Let’s look at another special method, __str__(). This one defines how 
Python converts an instance of a class into a string. It is called, for example, 
when you name an instance in a print statement, or when you pass an instance 
to Python’s built-in str() function.

The __str__() method of a class returns a string value. It is up to the writer 
of the class what string value gets returned. As usual for Python methods, 
the self argument contains the instance. In the case of class SnailRun, we’ll 
want to display the snail’s name (.name attribute) and finishing time (.time 
attribute). Here’s one possible version:
    def __str__ ( self ):
        “””Return a string representation of self.
        “””
        return “{0:8.1f} {1}”.format(self.time, self.name)
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This method will format the finishing time into an 8-character string, with 
one digit after the decimal point, followed by one space, then the snail’s 
name.
Let’s assume that the __cmp__() and __str__() methods have been added to 
our snails.py module, and show their use in some conversational examples.
>>> from snails import *
>>> sally4 = SnailRun(‘Sally’, 88.8)
>>> jim4=SnailRun(‘Jim’, 76.5)
>>> 
Now that we have two SnailRun instances, we can show how the __str__() 
method formats them for printing:
>>> print sally4
    88.8 Sally
>>> print jim4
    76.5 Jim
>>> 
We can also show the various ways that Python compares two instances us-
ing our new __cmp__() method.
>>> cmp(sally4,jim4)
1
>>> sally4 > jim4
True
>>> sally4 <= jim4
False
>>> sally4 < jim4
False
>>> 
Now that we have defined how instances are to be ordered, we can sort a 
list of them in order by finish time. First we throw them into the list in any 
old order:
>>> judy4 = SnailRun ( ‘Judy’, 67.3 )
>>> blake4 = SnailRun ( ‘Blake’, 181.4 )
>>> race4 = [sally4, jim4, judy4, blake4]
>>> for run in race4:
...     print run
... 
    88.8 Sally
    76.5 Jim
    67.3 Judy
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   181.4 Blake
>>> 

The .sort() method on a list uses Python’s cmp() function to compare 
items when sorting them, and this in turn will call our class’s __cmp__() 
method to sort them by finishing time.
>>> race4.sort()
>>> for run in race4:
...     print run
... 
    67.3 Judy
    76.5 Jim
    88.8 Sally
   181.4 Blake
>>> 

For an extended example of a class that implements a number of special 
methods, see rational.py: An example Python class. This example shows 
how to define a new kind of numbers, and specify how operators such as “+” 
and “*” operate on instances.
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INTRODUCTION
The World Wide Web is an immense collection of linguistic information 
that has in the last decade gathered attention as a valuable resource for tasks 
such as machine translation, opinion mining and trend detection, that is, 
“Web as Corpus” (Kilgarriff and Grefenstette, 2003). This use of the WWW 
poses a challenge since the Web is interspersed with code (HTML markup) 
and lacks metadata (language identification, part-of-speech tags, semantic 
labels).

“Pattern” (BSD license) is a Python package for web mining, natural 
language processing, machine learning and network analysis, with a focus 
on ease-of-use. It offers a mash-up of tools often used when harnessing 
the Web as a corpus, which usually requires several independent toolkits 
chained together in a practical application. Several such toolkits with a user 
interface exist in the scientific community, for example ORANGE (Demsar 
et al., 2004) for machine learning and ˇ GEPHI (Bastian et al., 2009) for 
graph visualization. By contrast, PATTERN is more related to toolkits 
such as NLTK (Bird et al., 2009), PYBRAIN (Schaul et al., 2010) and 
NETWORKX (Hagberg et al., 2008), in that it is geared towards integration 
in the user’s own programs. Also, it does not specialize in one domain but 
provides general cross-domain functionality.

The package aims to be useful to both a scientific and a non-scientific 
audience. The syntax is straightforward. Function names and parameters were 
so chosen as to make the commands selfexplanatory. The documentation 
assumes no prior knowledge. We believe that PATTERN is valuable as a 
learning environment for students, as a rapid development framework for 
web developers, and in research projects with a short development cycle.

Figure 1: Example workflow. Text is mined from the web and searched by 
syntax and semantics. Sentiment analysis (positive/negative) is performed on 
matching phrases.
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PACKAGE OVERVIEW
PATTERN is organized in separate modules that can be chained together, as 
shown in Figure 1. For example, text from Wikipedia (pattern.web) can be 
parsed for part-of-speech tags (pattern.en), queried by syntax and semantics 
(pattern.search), and used to train a classifier (pattern.vector).
pattern.web Tools for web data mining, using a download mechanism 
that supports caching, proxies, asynchronous requests and redirection. 
A SearchEngine class provides a uniform API to multiple web services: 
Google, Bing, Yahoo!, Twitter, Wikipedia, Flickr and news feeds using 
FEED PARSER (packages.python.org/feedparser). The module includes 
an HTML parser based on BEAUTIFUL SOUP (crummy.com/software/
beautifulsoup), a PDF parser based on PDFMINER (unixuser.org/ euske/
python/pdfminer), a web crawler, and a webmail interface.
pattern.en Fast, regular expressions-based shallow parser for English 
(identifies sentence constituents, e.g., nouns, verbs), using a finite state part-
of-speech tagger (Brill, 1992) extended with a tokenizer, lemmatizer and 
chunker. Accuracy for Brill’s tagger is 95% and up. A parser with higher 
accuracy (MBSP) can be plugged in. The module has a Sentence class for 
parse tree traversal, functions for singularization/pluralization (Conway, 
1998), conjugation, modality and sentiment analysis. It comes bundled with 
WORDNET3 (Fellbaum, 1998) and PYWORDNET.
pattern.nl Lightweight implementation of pattern.en for Dutch, using the 
BRILL-NL language model (Geertzen, 2010). Contributors are encouraged 
to read the developer documentation on how to add support for other 
languages.
pattern.search N-gram pattern matching algorithm for Sentence objects. The 
algorithm uses an approach similar to regular expressions. Search queries 
can include a mixture of words, phrases, part-of-speech-tags, taxonomy 
terms (e.g., pet = dog, cat or goldfish) and control characters (e.g., + = 
multiple, * = any, () = optional) to extract relevant information.
pattern.vector Vector space model using a Document and a Corpus class. 
Documents are lemmatized bag-of-words that can be grouped in a sparse 
corpus to compute TF-IDF, distance metrics (cosine, Euclidean, Manhattan, 
Hamming) and dimension reduction (Latent Semantic Analysis). The module 
includes a hierarchical and a k-means clustering algorithm, optimized with 
the kmeans++ initialization algorithm (Arthur and Vassilvitskii, 2007) and 
triangle inequality (Elkan, 2003). A Naive Bayes, a k-NN, and a SVM 
classifier using LIBSVM (Chang and Li, 2011) are included, with tools for 
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feature selection (information gain) and K-fold cross validation.
pattern.graph Graph data structure using Node, Edge and Graph classes, 
useful (for example) for modeling semantic networks. The module has 
algorithms for shortest path finding, subgraph partitioning, eigenvector 
centrality and betweenness centrality (Brandes, 2001). Centrality algorithms 
were ported from NETWORKX. The module has a force-based layout 
algorithm that positions nodes in 2D space. Visualizations can be exported 
to HTML and manipulated in a browser (using our canvas.js helper module 
for the HTML5 Canvas2D element).
pattern.metrics Descriptive statistics functions. Evaluation metrics including 
a code profiler, functions for accuracy, precision and recall, confusion 
matrix, inter-rater agreement (Fleiss’ kappa), string similarity (Levenshtein, 
Dice) and readability (Flesch).
pattern.db Wrappers for CSV files and SQLITE and MYSQL databases.

EXAMPLE SCRIPT
As an example, we chain together four PATTERN modules to train a k-NN 
classifier on adjectives mined from Twitter. First, we mine 1,500 tweets with 
the hashtag #win or #fail (our classes), for example: “$20 tip off a sweet 
little old lady today #win”. We parse the part-of-speech tags for each tweet, 
keeping adjectives. We group the adjective vectors in a corpus and use it to 
train the classifier. It predicts “sweet” as WIN and “stupid” as FAIL. The 
results may vary depending on what is currently buzzing on Twitter.

The source code is shown in Figure 2. Its size is representative for 
many real-world scenarios, although a real-world classifier may need more 
training data and more rigorous feature selection.
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Figure 2: Example source code for a k-NN classifier trained on Twitter mes-
sages.

CASE STUDY
As a case study, we used PATTERN to create a Dutch sentiment lexicon (De 
Smedt and Daelemans, 2012). We mined online Dutch book reviews and 
extracted the 1,000 most frequent adjectives. These were manually annotated 
with positivity, negativity, and subjectivity scores. We then enlarged the 
lexicon using distributional expansion. From the TWNC corpus (Ordelman 
et al., 2007) we extracted the most frequent nouns and the adjectives 
preceding those nouns. This results in a vector space with approximately 
5,750 adjective vectors with nouns as features. For each annotated adjective 
we then computed k-NN and inherited its scores to neighbor adjectives. The 
lexicon is bundled into PATTERN 2.3.

DOCUMENTATION
PATTERN comes bundled with examples and unit tests. The documentation 
contains a quick overview, installation instructions, and for each module a 
detailed page with the API reference, examples of use and a discussion of 
the scientific principles. The documentation assumes no prior knowledge, 
except for a background in Python programming. The unit test suite includes 
a set of corpora for testing accuracy, for example POLARITY DATA SET 
V2.0 (Pang and Lee, 2004).

SOURCE CODE
PATTERN is written in pure Python, meaning that we sacrifice performance 
for development speed and readability (i.e., slow clustering algorithms). The 
package runs on all platforms and has no dependencies, with the exception 
of NumPy when LSA is used. The source code is annotated with developer 
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comments. It is hosted online on GitHub (github.com) using the Git revision 
control system. Contributions are welcomed.

The source code is released under a BSD license, so it can be incorporated 
into proprietary products or used in combination with other open source 
packages such as SCRAPY (web mining), NLTK (natural language 
processing), PYBRAIN and PYML (machine learning) and NETWORKX 
(network analysis). We provide an interface to MBSP FOR PYTHON (De 
Smedt et al., 2010), a robust, memory-based shallow parser built on the 
TIMBL machine learning software. The API’s for the PATTERN parser and 
MBSP are identical.
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INTRODUCTION
In recent years there has been a wealth of research in methods for learning 
structured prediction, as well as in their application in areas such as 
natural language processing and computer vision. Unfortunately only few 
implementations are publicly available—many applications are based on the 
non-free implementation of Joachims et al. (2009).

PyStruct aims at providing a high-quality implementation with an easy-
to-use interface, in the high-level Python language. This allows practitioners 
to efficiently test a range of models, as well as allowing researchers to 
compare to baseline methods much more easily than this is possible with 
current implementations. PyStruct is BSD-licensed, allowing modification 
and redistribution of the code, as well as use in commercial applications. 
By embracing paradigms established in the scientific Python community 
and reusing the interface of the widely-used scikit-learn library (Pedregosa 
et al., 2011), PyStruct can be used in existing projects, replacing standard 
classifiers. The online documentation and examples help new users 
understand the somewhat abstract ideas behind structured prediction.

STRUCTURED PREDICTION AND CASTING IT 
INTO SOFTWARE
Structured prediction can be defined as making a prediction f(x) by 
maximizing a compatibility function between an input x and the possible 
labels y (Nowozin and Lampert, 2011). Most current approaches use linear 
functions, leading to:

   (1)
Here, y is a structured label, Ψ is a joint feature function of x and y, and θ 
are parameters of the model. Structured means that y is more complicated 
than a single output class, for example a label for each word in a sentence 
or a label for each pixel in an image. Learning structured prediction means 
learning the parameters θ from training data.

Using the above formulation, learning can be broken down into three 
sub-problems:

1.  Optimizing the objective with respect to θ. 
2.  Encoding the structure of the problem in a joint feature function 

Ψ. 
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3. Solving the maximization problem in Equation 1.
The later two problems are usually tightly coupled, as the maximization 

in Equation 1 is usually only feasible by exploiting the structure of Ψ, while 
the first is treated as independent. In fact, when 3. can not be done exactly, 
learning θ strongly depends on the quality of the approximation. However, 
treating approximate inference and learning as a joint optimization problem 
is currently out of the scope of the package, and we implement a more 
modular setup. PyStruct takes an object-oriented approach to decouple the 
task-dependent implementation of 2. and 3. from the general algorithms 
used to solve 1.

Estimating θ is done in learner classes, which currently support cutting 
plane algorithms for structural support vector machines (SSVMs Joachims 
et al. (2009)), subgradient methods for SSVMs Ratliff et al. (2007), Block-
coordinate Frank-Wolfe (BCFW) (LacosteJulien et al., 2012), the structured 
perceptron and latent variable SSVMs (Yu and Joachims, 2009). The cutting 
plane implementation uses the cvxopt package (Andersen et al., 2012) 
for quadratic optimization. Encoding the structure of the problem is done 
using model classes, which compute Ψ and encode the structure of the 
problem. The structure of Ψ determines the hardness of the maximization in 
Equation (1) and is a crucial factor in learning. PyStruct implements models 
(corresponding to particular forms of Ψ) for many common cases, such as 
multi-class and multi-label classification, conditional random fields with 
constant or data-dependent pairwise potentials, and several latent variable 
models. The maximization for finding y in Equation 1 is carried out using 
external libraries, such as OpenGM (Kappes et al., 2013), LibDAI (Mooij, 
2010) and others. This allows the user to choose from a wide range of 
optimization algorithms, including (loopy) belief propagation, graph-cuts, 
QPBO, dual subgradient, MPBP, TRWs, LP and many other algorithms. 
For problems where exact inference is infeasible, PyStruct allows the use 
of linear programming relaxations, and provides modified loss and feature 
functions to work with the continuous labels. This approach, which was 
outlined in Finley and Joachims (2008) allows for principled learning when 
exact inference is intractable. When using approximate integral solvers, 
learning may finish prematurely and results in this case depend on the 
inference scheme and learning algorithm used.

Table 1 lists algorithms and models that are implemented in PyStruct and 
compares them to other public structured prediction libraries: Dlib (King, 
2009), SVMstruct (Joachims et al., 2009) and CRFsuite (Okazaki, 2007). We 
also give the programming language and the project license.
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Table 1: Comparison of structured prediction software packages. CP stands 
for cutting plane optimization of SSVMs, SG for online subgradient optimiza-
tion of SSVMs, LV for latent variable SSVMs, ML for maximum likelihood 
learning, Chain for chain-structured models with pairwise interactions, Graph 
for arbitrary graphs with pairwise interactions, and LDCRF for latent dynamic 
CRF (Morency et al., 2007). 1PyStruct itself is BSD licensed, but uses the GPL-
licensed package cvxopt for cuttingplane learning

USAGE EXAMPLE: SEMANTIC IMAGE SEGMEN-
TATION
Conditional random fields are an important tool for semantic image 
segmentation. We demonstrate how to learn an n-slack support vector 
machine (Tsochantaridis et al., 2006) on a superpixel-based CRF on the 
popular Pascal data set. We use unary potentials generated using TextonBoost 
from Kr¨ahenb¨uhl and Koltun (2012). The superpixels are generated using 
SLIC (Achanta et al., 2012).1 Each sample (corresponding on one entry of 
the list X) is represented as a tuple consisting of input features and a graph 
representation.

Listing 1: Example of defining and learning a CRF model

The source code is shown in Listing 1. Lines 1-3 declare a model using 
parametric edge potentials for arbitrary graphs. Here class weight re-weights 
the hamming loss according to inverse class frequencies. The parametric 
pairwise interactions have three features: a constant feature, color similarity, 
and relative vertical position. The first two are declared to be symmetric with 
respect to the direction of an edge, the last is antisymmetric. The inference 
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method used is QPBO-fusion moves. Line 5 creates a learner object that 
will learn the parameters for the given model using the n-slack cutting plane 
method, and line 6 performs the actual learning. Using this simple setup, 
we achieve an accuracy of 30.3 on the validation set following the protocol 
of Kr¨ahenb¨uhl and Koltun (2012), who report 30.2 using a more complex 
approach. Training the structured model takes approximately 30 minutes 
using a single i7 core.

Figure 1: Runtime comparison of PyStruct and SVMstruct for multi-class clas-
sification.

EXPERIMENTS
While PyStruct focuses on usability and covers a wide range of applications, 
it is also important that the implemented learning algorithms run in acceptable 
time. In this section, we compare our implementation of the 1-slack 
cutting plane algorithm (Joachims et al., 2009) with the implementation 
in SVMstruct. We compare performance of the CrammerSinger multi-class 
SVM with respect to learning time and accuracy on the MNIST data set of 
handwritten digits. While multi-class classification is not very interesting 
from a structured prediction point of view, this problem is well-suited to 
benchmark the cutting plane solvers with respect to accuracy and speed.

Results are shown in Figure 1. We report learning times and accuracy for 
varying regularization parameter C. The MNIST data set has 60 000 training 
examples, 784 features and 10 classes. The figure indicates that PyStruct has 
competitive performance, while using a high-level interface in a dynamic 
programming language.
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CONCLUSION
This paper introduced PyStruct, a modular structured learning and prediction 
library in Python. PyStruct is geared towards ease of use, while providing 
efficient implementations. PyStruct integrates itself into the scientific 
Python eco-system, making it easy to use with existing libraries and 
applications. Currently, PyStruct focuses on max-margin and perceptron-
based approaches. In the future, we plan to integrate other paradigms, 
such as sampling-based learning (Wick et al., 2011), surrogate objectives 
(for example pseudo-likelihood), and approaches that allow for a better 
integration of inference and learning (Meshi et al., 2010).
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ABSTRACT
In this paper, we introduce PEBL, a Python library and application for 
learning Bayesian network structure from data and prior knowledge that 
provides features unmatched by alternative software packages: the ability to 
use interventional data, flexible specification of structural priors, modeling 
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with hidden variables and exploitation of parallel processing. PEBL is 
released under the MIT open-source license, can be installed from the Python 
Package Index and is available at http://pebl-project.googlecode.com.

Keywords: Bayesian networks, python, open source software

INTRODUCTION
Bayesian networks (BN) have become a popular methodology in many fields 
because they can model nonlinear, multimodal relationships using noisy, 
inconsistent data. Although learning the structure of BNs from data is now 
common, there is still a great need for high-quality open-source software 
that can meet the needs of various users. End users require software that is 
easy to use; supports learning with different data types; can accommodate 
missing values and hidden variables; and can take advantage of various 
computational clusters and grids. Researchers require a framework for 
developing and testing new algorithms and translating them into usable 
software. We have developed the Python Environment for Bayesian Learning 
(PEBL) to meet these needs.

PEBL FEATURES
PEBL provides many features for working with data and BNs; some of the 
more notable ones are listed below.

Structure Learning
PEBL can load data from tab-delimited text files with continuous, discrete 
and class variables and can perform maximum entropy discretization. Data 
collected following an intervention is important for determining causality but 
requires an altered scoring procedure (Pe’er et al., 2001; Sachs et al., 2002). 
PEBL uses the BDe metric for scoring networks and handles interventional 
data using the method described by Yoo et al. (2002).
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Figure 1: Two ways of using PEBL: with a Python script and a configuration 
file. Both methods create 10 greedy learners with default parameters and run 
them on an Apple Xgid. The Python script can be typed in an interactive shell, 
run as a script or included as part of a larger application.

PEBL can handle missing values and hidden variables using exact 
marginalization and Gibbs sampling (Heckerman, 1998). The Gibbs sampler 
can be resumed from a previously suspended state, allowing for interactive 
inspection of preliminary results or a manual strategy for determining 
satisfactory convergence.

A key strength of Bayesian analysis is the ability to use prior knowledge. 
PEBL supports structural priors over edges specified as ’hard’ constraints or 
’soft’ energy matrices (Imoto et al., 2003) and arbitrary constraints specified 
as Python functions or lambda expressions.

PEBL includes greedy hill-climbing and simulated annealing learners 
and makes writing custom learners easy. Efficient implementaion of learners 
requires careful programming to eliminate redundant computation. PEBL 
provides components to alter, score and rollback changes to BNs in a simple, 
transactional manner and with these, efficient learners look remarkably 
similar to pseudocode.

Convenience and Scalability
PEBL includes both a library and a command line application. It aims for a 
balance between ease of use, extensibility and performance. The majority of 
PEBL is written in Python, a dynamically-typed programming language that 
runs on all major operating systems. Critical sections use the numpy library 
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(Ascher et al., 2001) for high-performance matrix operations and custom 
extensions written in ANSI C for portability and speed.

PEBL’s use of Python makes it suitable for both programmers and 
domain experts. Python provides interactive shells and notebook interfaces 
and includes an extensive standard library and many third-party packages. 
It has a strong presence in the scientific computing community (Oliphant, 
2007). Figure 1 shows a script and configuration file example that showcase 
the ease of using PEBL.

Table 1: Comparing the features of popular Bayesian network structure learn-
ing software

While many tasks related to Bayesian learning are embarrassingly 
parallel in theory, few software packages take advantage of it. PEBL can 
execute learning tasks in parallel over multiple processors or CPU cores, an 
Apple Xgrid,1 an IPython cluster2 or the Amazon EC2 platform.3 The EC2 
platform is especially attractive for scientists because it allows one to rent 
processing power on an on-demand basis and execute PEBL tasks on them.

With appropriate configuration settings and the use of parallel execution, 
PEBL can be used for large learning tasks. Although PEBL has been tested 
successfully with data sets with 10000 variables and samples, BN structure 
learning is a known NP-Hard problem (Chickering et al., 1994) and analysis 
using data sets with more than a few hundred variables is likely to result in 
poor results due to poor coverage of the search space.
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PEBL DEVELOPMENT
The benefits of open source software derive not just from the freedoms 
afforded by the software license but also from the open and collaborative 
development model. PEBL’s source code repository and issue tracker are 
hosted at Google Code and freely available to all. Additionally, PEBL 
includes over 200 automated unit tests and mandates that every source code 
submission and resolved error be accompanied with tests.

RELATED SOFTWARE
While there are many software tools for working with BNs, most focus on 
parameter learning and inference rather than structure learning. Of the few 
tools for structure learning, few are open-source and none provide the set 
of features included in PEBL. As shown in Table 1, the ability to handle 
interventional data, model with missing values and hidden variables, use 
soft and arbitrary priors and exploit parallel platforms are unique to PEBL. 
PEBL, however, does not currently provide any features for inference or 
learning Dynamic Bayesian Networks (DBN). Despite its use of optimized 
matrix libraries and custom C extension modules, PEBL can be an order of 
magnitude or more slower than software written in Java or C/C++; the ability 
to use a wider range of data and priors, the parallel processing features and 
the ease-of-use, however, should make it an attractive option for many users.

CONCLUSION AND FUTURE WORK
We have developed a library and application for learning BNs from data 
and prior knowledge. The set of features found in PEBL is unmatched by 
alternative packages and we hope that our open development model will 
convince others to use PEBL as a platform for BN algorithms research.
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ABSTRACT
Scikit-learn is a Python module integrating a wide range of state-of-the-art 
machine learning algorithms for medium-scale supervised and unsupervised 
problems. This package focuses on bringing machine learning to non-
specialists using a general-purpose high-level language. Emphasis is put 
on ease of use, performance, documentation, and API consistency. It has 
minimal dependencies and is distributed under the simplified BSD license, 
encouraging its use in both academic and commercial settings. Source code, 
binaries, and documentation can be downloaded from http://scikit-learn.
sourceforge.net.

Keywords: Python, supervised learning, unsupervised learning, model 
selection

INTRODUCTION
The Python programming language is establishing itself as one of the 
most popular languages for scientific computing. Thanks to its high-level 
interactive nature and its maturing ecosystem of scientific libraries, it is an 
appealing choice for algorithmic development and exploratory data analysis 
(Dubois, 2007; Milmann and Avaizis, 2011). Yet, as a general-purpose 
language, it is increasingly used not only in academic settings but also in 
industry.

Scikit-learn harnesses this rich environment to provide state-of-the-art 
implementations of many well known machine learning algorithms, while 
maintaining an easy-to-use interface tightly integrated with the Python 
language. This answers the growing need for statistical data analysis by non-
specialists in the software and web industries, as well as in fields outside of 
computer-science, such as biology or physics. Scikit-learn differs from other 
machine learning toolboxes in Python for various reasons: i) it is distributed 
under the BSD license ii) it incorporates compiled code for efficiency, unlike 
MDP (Zito et al., 2008) and pybrain (Schaul et al., 2010), iii) it depends only 
on numpy and scipy to facilitate easy distribution, unlike pymvpa (Hanke 
et al., 2009) that has optional dependencies such as R and shogun, and iv) it 
focuses on imperative programming, unlike pybrain which uses a data-flow 
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framework. While the package is mostly written in Python, it incorporates 
the C++ libraries LibSVM (Chang and Lin, 2001) and LibLinear (Fan et 
al., 2008) that provide reference implementations of SVMs and generalized 
linear models with compatible licenses. Binary packages are available on a 
rich set of platforms including Windows and any POSIX platforms.

Furthermore, thanks to its liberal license, it has been widely distributed 
as part of major free software distributions such as Ubuntu, Debian, 
Mandriva, NetBSD and Macports and in commercial distributions such as 
the “Enthought Python Distribution”.

PROJECT VISION
Code quality: Rather than providing as many features as possible, the 
project’s goal has been to provide solid implementations. Code quality is 
ensured with unit tests—as of release 0.8, test coverage is 81%—and the use 
of static analysis tools such as pyflakes and pep8. Finally, we strive to use 
consistent naming for the functions and parameters used throughout a strict 
adherence to the Python coding guidelines and numpy style documentation.

BSD licensing: Most of the Python ecosystem is licensed with non-
copyleft licenses. While such policy is beneficial for adoption of these tools 
by commercial projects, it does impose some restrictions: we are unable to 
use some existing scientific code, such as the GSL.

Bare-bone design and API: To lower the barrier of entry, we avoid 
framework code and keep the number of different objects to a minimum, 
relying on numpy arrays for data containers.

Community-driven development: We base our development on 
collaborative tools such as git, github and public mailing lists. External 
contributions are welcome and encouraged.

Documentation: Scikit-learn provides a ∼300 page user guide including 
narrative documentation, class references, a tutorial, installation instructions, 
as well as more than 60 examples, some featuring real-world applications. 
We try to minimize the use of machine-learning jargon, while maintaining 
precision with regards to the algorithms employed.

UNDERLYING TECHNOLOGIES
Numpy: the base data structure used for data and model parameters. Input 
data is presented as numpy arrays, thus integrating seamlessly with other 
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scientific Python libraries. Numpy’s viewbased memory model limits 
copies, even when binding with compiled code (Van der Walt et al., 2011). 
It also provides basic arithmetic operations.

Scipy: efficient algorithms for linear algebra, sparse matrix representation, 
special functions and basic statistical functions. Scipy has bindings for 
many Fortran-based standard numerical packages, such as LAPACK. This 
is important for ease of installation and portability, as providing libraries 
around Fortran code can prove challenging on various platforms.

Cython: a language for combining C in Python. Cython makes it easy to 
reach the performance of compiled languages with Python-like syntax and 
high-level operations. It is also used to bind compiled libraries, eliminating 
the boilerplate code of Python/C extensions.

CODE DESIGN
Objects specified by interface, not by inheritance: To facilitate the use of 
external objects with scikit-learn, inheritance is not enforced; instead, code 
conventions provide a consistent interface. The central object is an estimator, 
that implements a fit method, accepting as arguments an input data array 
and, optionally, an array of labels for supervised problems. Supervised 
estimators, such as SVM classifiers, can implement a predict method. 
Some estimators, that we call transformers, for example, PCA, implement 
a transform method, returning modified input data. Estimators may also 
provide a score method, which is an increasing evaluation of goodness of 
fit: a loglikelihood, or a negated loss function.

Table 1: Time in seconds on the Madelon data set for various machine learning 
libraries exposed in Python: MLPy (Albanese et al., 2008), PyBrain (Schaul et 
al., 2010), pymvpa (Hanke et al., 2009), MDP (Zito et al., 2008) and Shogun 
(Sonnenburg et al., 2010). For more benchmarks see http://github.com/scikit-
learn
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The other important object is the cross-validation iterator, which provides 
pairs of train and test indices to split input data, for example K-fold, leave 
one out, or stratified cross-validation.

Model selection: Scikit-learn can evaluate an estimator’s performance 
or select parameters using cross-validation, optionally distributing the 
computation to several cores. This is accomplished by wrapping an estimator 
in a GridSearchCV object, where the “CV” stands for “cross-validated”. 
During the call to fit, it selects the parameters on a specified parameter 
grid, maximizing a score (the score method of the underlying estimator). 
predict, score, or transform are then delegated to the tuned estimator. This 
object can therefore be used transparently as any other estimator. Cross 
validation can be made more efficient for certain estimators by exploiting 
specific properties, such as warm restarts or regularization paths (Friedman 
et al., 2010). This is supported through special objects, such as the LassoCV. 
Finally, a Pipeline object can combine several transformers and an estimator 
to create a combined estimator to, for example, apply dimension reduction 
before fitting. It behaves as a standard estimator, and GridSearchCV therefore 
tune the parameters of all steps.

HIGH-LEVEL YET EFFICIENT: SOME TRADE 
OFFS
While scikit-learn focuses on ease of use, and is mostly written in a high 
level language, care has been taken to maximize computational efficiency. 
In Table 1, we compare computation time for a few algorithms implemented 
in the major machine learning toolkits accessible in Python. We use the 
Madelon data set (Guyon et al., 2004), 4400 instances and 500 attributes, 
The data set is quite large, but small enough for most algorithms to run.

SVM: While all of the packages compared call libsvm in the background, 
the performance of scikitlearn can be explained by two factors. First, our 
bindings avoid memory copies and have up to 40% less overhead than 
the original libsvm Python bindings. Second, we patch libsvm to improve 
efficiency on dense data, use a smaller memory footprint, and better use 
memory alignment and pipelining capabilities of modern processors. This 
patched version also provides unique features, such as setting weights for 
individual samples.

LARS: Iteratively refining the residuals instead of recomputing them 
gives performance gains of 2–10 times over the reference R implementation 
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(Hastie and Efron, 2004). Pymvpa uses this implementation via the Rpy R 
bindings and pays a heavy price to memory copies.

Elastic Net: We benchmarked the scikit-learn coordinate descent 
implementations of Elastic Net. It achieves the same order of performance 
as the highly optimized Fortran version glmnet (Friedman et al., 2010) on 
medium-scale problems, but performance on very large problems is limited 
since we do not use the KKT conditions to define an active set.

kNN: The k-nearest neighbors classifier implementation constructs a 
ball tree (Omohundro, 1989) of the samples, but uses a more efficient brute 
force search in large dimensions.

PCA: For medium to large data sets, scikit-learn provides an 
implementation of a truncated PCA based on random projections (Rokhlin 
et al., 2009).

k-means: scikit-learn’s k-means algorithm is implemented in pure 
Python. Its performance is limited by the fact that numpy’s array operations 
take multiple passes over data.

CONCLUSION
Scikit-learn exposes a wide variety of machine learning algorithms, both 
supervised and unsupervised, using a consistent, task-oriented interface, 
thus enabling easy comparison of methods for a given application. Since 
it relies on the scientific Python ecosystem, it can easily be integrated 
into applications outside the traditional range of statistical data analysis. 
Importantly, the algorithms, implemented in a high-level language, can be 
used as building blocks for approaches specific to a use case, for example, in 
medical imaging (Michel et al., 2011). Future work includes online learning, 
to scale to large data sets.
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ABSTRACT
Different software tools, such as decompilers, code quality analyzers, 
recognizers of packed executable files, authorship analyzers, and malware 
detectors, search for patterns in binary code. The use of machine learning 
algorithms, trained with programs taken from the huge number of 
applications in the existing open source code repositories, allows finding 
patterns not detected with the manual approach. To this end, we have 
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created a versatile platform for the automatic extraction of patterns from 
native code, capable of processing big binary files. Its implementation has 
been parallelized, providing important runtime performance benefits for 
multicore architectures. Compared to the single-processor execution, the 
average performance improvement obtained with the best configuration is 
3.5 factors over the maximum theoretical gain of 4 factors.

INTRODUCTION
Many software tools analyze programs, looking for specific patterns defined 
beforehand. When a pattern is found, an action is then performed by the tool 
(e.g., improve the quality, security, or performance of the input program). 
Patterns are defined for both high-level and binary code. Different examples 
of tools that analyze high-level patterns are refactoring tools, code quality 
analyzers, or detectors of common programming mistakes. In the case of 
binary code, examples are decompilers, packed executable file recognizers, 
authorship analyzers, or malware detectors.

In the traditional approach, an expert identifies those patterns to be 
found by the software tool. His or her expertise is used to define the code 
patterns that should be searched (e.g., for improving the application). On the 
contrary, a machine learning approach can be used to build models, which 
can then be applied to large repositories of code to effectively search for 
and identify specific patterns. This second approach allows the analysis of 
huge amounts of programs, sometimes detecting patterns not found with 
the traditional approach. Additionally, this approach could automatically 
evaluate the accuracy of the patterns obtained.

An emerging research topic called big code has recently appeared 
[1]. Big code is based on the idea that open source code repositories (e.g., 
GitHub, SourceForge, BitBucket, and CodePlex) can be used to create new 
kinds of programming tools and services to improve software reliability and 
construction, using machine learning and probabilistic reasoning. One of the 
research lines included in big code is finding extrapolated patterns, detecting 
software anomalies, or computing the cooccurrence of different patterns in 
the same program [2].

One example (more real examples can be consulted in [2]) of detecting 
patterns in programs is the vulnerability discovery method proposed by the 
MLSEC research group [3]. It assists the security analyst during auditing 
of source code, by extracting ASTs from the programs and determining 
structural patterns in them. Given a known vulnerability, their patterns are 
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identified and extrapolated to a code base, such that functions potentially 
suffering from the same flaw can be suggested to the analyst. With that 
method, they managed to identify 18 previously unknown vulnerabilities in 
the source code of the Linux kernel.

The research context of finding code patterns using machine learning 
algorithms is based on 3 ideas. First, machine learning techniques can be 
used to build predictive models to identify patterns in data; besides, these 
techniques do not require domain specific knowledge about the problem 
domain [4]. Second, the existing open source code repositories create new 
opportunities for gathering massive program repositories to be analyzed. 
Third, the existing big data technologies and platforms facilitate the analysis 
of large datasets.

When processing native code, a platform to extract binary patterns 
should also be able to use the debug information (if any) generated by the 
compiler. This information would be very valuable to extract those binary 
patterns, which may later be used by a machine learning algorithm to create 
predictive tools. A large number of patterns may be extracted from a small 
binary program, since the number of assembly instructions is much higher 
than in its source high-level program. Therefore, the need of processing 
debug information, plus the potentially huge number of patterns to be 
extracted, makes it critical to use highly parallelized and efficient tools for 
extracting those patterns.

A platform capable of extracting patterns from programs should also 
be highly parameterized. The individuals (rows in the dataset generated) to 
be detected by the platform must be defined by the user. For instance, we 
may be interested in finding patterns for functions, snippets, function entry 
points, or specific regions of binary code. The same parameterization is also 
required to specify the features of each individual (columns in the dataset). 
For example, we may define the feature <mov>  <generic ax>,<any> to 
represent the occurrence of any assembly instruction that moves any value 
to the accumulator register (ah, al, ax, eax or rax). If that pattern (feature or 
column) occurs in one given region of binary code (individual or row), then 
the corresponding value in the dataset (row and column) will be 1.

The traditional method to extract features from binary code is to 
identify a syntactically fixed unit of code, such as functions or basic blocks, 
and extract the binary code inside them [5]. However, pattern extraction 
does not always follow this scheme. Sometimes, nonsequential patterns 
such as subgraphs of control flow and data dependency graphs need to be 
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extracted. In these cases, a binary pattern extraction platform should allow 
the association of patterns to pieces of code outside their basic blocks, 
representing subgraph structures (Section 3.7). Another scenario where the 
traditional method is not sufficient is the analysis of binary code between 
two memory addresses, where the inconsistency overlapping problem 
caused by the variable-length instruction set must be tackled [6]. This kind 
of binary code analysis has been used for different purposes such as function 
entry points detection [6], compiler recognition [7], authorship attribution 
[8], and malware detection [9, 10]. Therefore, a generic platform for pattern 
extraction must be flexible enough to support any binary pattern extraction 
method (not just the traditional one) and reduce development and execution 
times.

The main contribution of this paper is a platform for the automatic 
extraction of patterns in native code. The platform is highly parameterized so 
that it could be used in different scenarios. Its parallel implementation provides 
important runtime performance benefits when multicore architectures are 
used. It also uses the debug information that may be provided by a compiler. 
The extracted patterns may be used by other tools for different purposes. 
We present an evaluation of binary pattern extraction, measuring the 
execution time of different configurations for a large number of programs. 
The parallelization provides significant performance improvements, and its 
efficiency is maintained for big volumes of programs.

The rest of this paper is structured as follows. Section 2 describes a 
motivating example, and the platform is described in Section 3. Section 4 
presents an evaluation of the platform and Section 5 discusses the related 
work. The conclusions and future work are presented in Section 6.

MOTIVATING EXAMPLE
We use a motivating example to explain our platform. The example is the 
extraction of patterns in native code that can be later used to improve the 
information inferred by a decompiler. A decompiler extracts high-level 
information from a native program, aimed at obtaining the original source 
program used to generate the native code. Existing decompilers are able to 
infer part of this information. However, some elements of the original high-
level source programs are not inferred by any decompiler.

Algorithm 1 shows a C function that returns a string (char  in C). The 
function returns a substring from the str parameter, starting in the beginth 
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position of str up to the endth position. The values of begin and end could be 
negative, following the slicing behavior of the Python [] operator.

Algorithm 1: Example high-level C program.

After compiling the str_slice function with Microsoft’s cl compiler, the 
decompiled function generated by Hex-Ray 1.5 has the following signature:
 int __cdec1 sub_401780 (int al, int q2, int a3)

We can see how the original return type of the function (char ) is not the 
same as the one obtained by the decompiler (int). This is because, in native 
machine code, there is no type difference between integers and pointers. The 
difference between both might be obtained by analyzing how the programmer 
uses the value returned by the function. In general, the programmer performs 
indirections with pointers, but not with integers. Since this rule is not always 
fulfilled, the decompiler does not tell the difference between these two types.
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By analyzing the usage patterns of each variable, a decompiler may 
infer the actual high-level type of the variables (and functions). Since this 
is not a deterministic mechanism, the use of machine learning seems to be 
appropriate for this kind of problems [11]. Some recognized limitations of 
most decompilers include the following:(i)Types of variables, including 
function arguments and return types (e.g., the example in Algorithm 1) 
[12].(ii)Functions: the identification of function entry points is a complex 
task, mainly due to indirect function invocations [6]. Similarly, detecting 
the function body is an open challenge because its instructions may not be 
contiguous, have multiple entry points, be in-line, or not be reachable [5].
(iii)Control flow structures: its recognition is commonly based on control 
flow graph (CFG) analysis [12]. However, CFGs might not be completely 
recovered by static analysis if indirect jumps appear, which are typically 
generated for switch structures [13].(iv)Elements of a specific paradigm: 
when another paradigm different to the structured one (e.g., object-
orientation or functional) is used, the specific elements of that paradigm 
are barely recognized. For example, C++ decompilers commonly fail in the 
reconstruction of polymorphic classes, class hierarchies, member functions, 
and exception handling constructs [14].

The platform presented in this paper is being used to extract binary 
patterns from native code, which are later used to improve certain high-
level information gathered by existing decompilers. Particularly, we face 
the problem of detecting the type returned by a function. An excerpt of the 
dataset generated by our platform for this particular case is shown in Table 
2: individuals (rows) are functions in the module; features (columns) are 
sequences of binary patterns found at the end of the function body (return 
patterns) and after invoking the function (call post patterns); the target 
column is the returned type. Please, notice that the work of this paper is the 
platform itself, not in the algorithm for decompilation improvement.

PLATFORM ARCHITECTURE
This platform generates one dataset table to classify fragments of binary 
code (individuals or rows in the dataset) by considering the occurrence of 
a finite set of binary patterns (features or columns in the dataset). All the 
individuals and patterns (features) are obtained from a collection of binary 
programs, which are processed by the platform.

In our motivating example, the individuals in the dataset are functions; 
and the features are the generalized assembly code patterns extracted by 
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the platform. The classification variable (the target) is the return type (we 
consider all the C built-in types; for compound types (structs, unions, 
pointers, and arrays), we only consider the type constructor, e.g., int* and 
char** are classified as pointers) of each function (individual). The generated 
dataset may be used later to build a machine learning model that classifies 
the return type depending on the patterns found in the binary code.

The platform has two working modes. The most versatile is the one 
shown in Figure 1. The system receives the high-level source program that 
will be used to generate the binary application. In this mode, the platform 
allows instrumenting the high-level program and uses the debug information 
produced by the compiler. When the high-level program is not available, we 
provide another configuration to process binary files, described in Section 
3.6.

Figure 1: Platform architecture, receiving high-level code.

Instrumentator
This module allows code instrumentation of the high-level input program. 
The objective is to add information to the input program, so that it will be 
easier to find the patterns in the corresponding binary code generated by the 
compiler. It can also be used to delimitate those sections of the generated 
binary code we want to extract patterns from (Section 3.2), ignoring the 
rest of the program. Notice that once the machine learning model has 
been trained with the dataset generated by the platform, the binary files 
passed to the model will not include that instrumented code. Therefore, the 
instrumentation module should not be used to extract patterns that cannot be 
later recognized from stripped binaries.
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This module traverses the Abstract Syntax Tree (AST) of the Source 
Program and evaluates the Instrumentation Rules provided by the user. 
Traversing the AST, if the precondition of one instrumentation rule is 
fulfilled, its corresponding action is executed. The action will modify 
the AST with the instrumented code, which will be the new input for the 
compiler (next module in Figure 1).

In our motivating example, we have defined the instrumentation rule 
shown in the pseudocode in Algorithm 2 (in Section 4.1 we describe how 
they are implemented). For all the return statements in a program, the 
rule adds a dummy label before the statement. This label has the function 
identifier (𝑖𝑑𝑓𝑢𝑛𝑐) followed by a consecutive number (a function body may 
have different return statements).This label will be searched later in the 
binary code (using the debug information) to know the binary instructions 
generated by the compiler for the return high-level statements. These binary 
instructions will be used to identify the binary patterns (Section 3.2).

Algorithm 2: Instrumentation rule for return statements.

Algorithm 3 shows another example of one instrumentation rule. 
Recall that the previous instrumentation rule was aimed at finding binary 
instructions between a __RETURN_ label and a RET assembly instruction. 
However, C functions returning void usually do not have an ending return 
statement. Therefore, the instrumentation rule in Algorithm 3 adds both the 
expected label and the return statement.
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Algorithm 3: Instrumentation rule for procedures.

Adding labels is an easy way to instrument code. However, more 
sophisticated approaches can be used. For example, expressions may be 
translated into dummy function invocations that are actually used as marks 
to be identified in the pattern extraction phase (Section 3.2). Another typical 
approach is adding innocuous sequences of assembly instructions (e.g., 
NOPs) to be found in the pattern extraction phase. The user must be careful 
when selecting the instrumentation approach, checking that the instrumented 
code does not produce unexpected changes to the generated binaries, or to 
the patterns he/she wants to extract.

With the Instrumentation Rules, the source code is translated into 
instrumented code. The instrumented code is then compiled, producing the 
Instrumented Binary Code.

Binary Pattern Extractor
This module performs 3 tasks. First, it identifies the binary code fragments 
representing the individuals (rows) in the generated dataset. Second, it 
extracts the binary patterns (columns) detected for each individual. These 
patterns are used as features to later classify the individuals. The third task 
is to store the individuals and patterns in an Occurrence Table, which will be 
later used to generate the final dataset. We now detail these 3 tasks.

The Individual Detector initially recognizes each individual in the binary 
code. It must implement a function to collect all the individuals. Algorithm 
4 shows the Individual Detector of our example, recognizing functions as 
individuals. In the figure, is_function returns whether the parameter is the 
first instruction in a function, using the debug information generated by the 
compiler. Once one function is detected, its label is added to the individuals 
list, the returned value.
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Algorithm 4: Individual detector to recognize functions.

After identifying the individuals, we must extract the binary patterns 
we are looking for. To this end, the user should provide a Pattern Detector, 
which comprises a collection of predicate functions. These functions receive 
one instruction of the instrumented binary program. In case that instruction 
is not included in the expected pattern, null must be returned. If the pattern 
is identified, a pair containing the individual and the range of instructions in 
the pattern (another pair) is returned.

Algorithm 5 presents a Pattern Detector of our example. It recognizes 
the return pattern added by theInstrumentator. If the instruction label is __
RETURN, the Pattern Detector recognizes the pattern. The corresponding 
function is returned as the first element of the pair. The second one is the 
range of instructions comprising the pattern: the first one (the one labeled 
__RETURN) and the next instruction after the following RET.

Algorithm 5: Pattern detector rule to recognize RET patterns.
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Algorithm 6 shows another Pattern Detector used in our example. It 
detects as a pattern the instructions after one CALL (we call it call post). In 
this case, the individual associated with the pattern is not the function the 
instruction belongs to, but the function being called. Similarly, we have also 
specified a pattern with the instructions before CALL, called call pre, not 
shown in the algorithm. The idea of these two patterns is that the usage of the 
value returned by a function (call post) and the code to push its parameters 
(call pre) may be valuable to infer the types of the function signature (return 
and parameter types).

Algorithm 6: Pattern detector rule to recognize call post patterns.

At this point, the module has three types of extracted patterns: ret 
patterns, including the assembly code of return statements, and call pre and 
call post patterns, representing the code before and after invoking a function. 
Each of these patterns may include a significant number of contiguous 
binary instructions. However, we could be interested in a small portion 
of contiguous instructions inside the bigger patterns. For this reason, the 
Binary Extractor Pattern has been designed to divide the patterns found into 
a collection of subpatterns (different partitions of the original pattern).

The algorithm to obtain the subpatterns is parameterized by the Max 
Size and Max Offset parameters shown in Figure 1. This algorithm starts 
with one-instruction length subpatterns (𝑠𝑖𝑧𝑒 = 1), increasing this value up 
to Max Size contiguous instructions. Additionally, other subpatterns are 
extracted leaving offset instructions between the instruction detected by the 
Pattern Detector and the subpatterns. The algorithm described above (the 
one that increases size) was for offset = 0. The same algorithm is applied 
for offset = 1 and offset = −1 (i.e., the first instruction before and after the 
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detected instruction, which is not included in the subpattern). The absolute 
value of offset is increased up to Max Offset.

Figure 2 shows 4 example subpatterns. From a call pre pattern the 𝑠𝑖𝑧𝑒 
= 5 and offset = 0 and 𝑠𝑖𝑧𝑒 = 2 and offset = −2 are shown. From another call 
post pattern, Figure 2 displays the 𝑠𝑖𝑧𝑒 = 3 and offset = 2 and 𝑠𝑖𝑧𝑒 = 3 and 
offset = 1 subpatterns.

Figure 2: Example of 4 subpatterns extracted from 2 patterns.

The last task to be undertaken by the Pattern Detector is to associate the 
individuals with their patterns and make this association explicit by writing 
the Occurrences Table. This process is done generating as many table 
rows as individuals found by the Individual Detector (in Algorithm 4), and 
associating them with the rows representing each of the subpatterns found 
for that individual by the Pattern Detector functions (Algorithms 5and 6).

Pattern Generalizator
Sometimes, the subpatterns found are too specific. For example, the MOV 
eax,5 and MOV ax,1 subpatterns are recognized as two different ones. 
However, for detecting whether a function is returning a value or not, they 
may be considered as the same pattern, meaning that a literal has been 
assigned to the accumulator register (i.e., a MOV <generic ax>,<literal> 
pattern). To this end, the objective of the Pattern Generalizator module is to 
allow the user to reduce the number of subpatterns, by generalizing them.

This necessity of generalizing (or normalizing) assembly instructions 
for binary pattern extraction was already detected in previous works. In [6], 
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the * wildcard matches any one instruction, and the absence of an operand 
means any value. In further works, they also identify the necessity of eliding 
memory addresses and literal values [7]. The generalization proposed by 
Bao et al. uses regular expressions to generalize literal values and even 
instruction mnemonics [5]. Another coarser normalization just ignores all 
the operands of assembly instructions [15].

To identify the generalization requirements of a generic platform, we 
analyzed the decompiler case scenario described in Section 2. Some examples 
of those generalizations are shown in Table 1. First, the user should be able to 
generalize instruction operands, including literals, registers, variables, and 
memory addresses. Second, the platform should allow the generalization of 
instructions with the same purpose. Finally, the user may need to generalize 
variable-instruction-length subpatterns, such as function caller and callee 
epilogues.

Table 1: Example generalization of subpatterns

  Example pattern Generalization

Operand mov 5,eax mov  <literal>,<generic ax>
mov [ecx],al mov [ecx],<register>
movsd xmm0,var_0 movsd xmm0,<var>
mov edx,[ebp+var_1] mov edx,[<var>]
call func1493 call <address>

Mnemonic movzx eax,al <mov>  <generic ax>,<any>
movss 
[esp+54h+var_2],xmm0

<mov>[esp+54h+var_2],xmm0

movsd xmm0,var_3 <mov>  xmm0,<var>
mov edx,[ebp+var_4] <mov>  edx,[<var>]
movsx ecx,[ebp+var_5] <mov>  ecx,[<var>]

Instruction group pop esi; mov esp,ebp; pop 
ebp; retn

<callee epilogue>

mov esp,ebp; pop ebp; retn <callee epilogue>
pop ebp; retn <callee epilogue>
call func123; add esp,8 <caller epilogue>
call func123 <caller epilogue>
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Table 2: Example dataset generated to predict the returned type of functions

The analysis of the decompiler use case indicates that a highly expressive 
generalization mechanism should be provided by a generic binary pattern 
extraction platform. For instance, it should allow the generalization of 
variable-length groups of instructions, not supported by the existing 
approaches. Therefore, we propose a programmatic system that takes 
advantage of the expressiveness of a full-fledged programming language to 
describe those generalizations.

In our platform, generalizations are expressed as Pattern Generalization 
Rules. As shown in Algorithm 7, those rules are implemented as functions 
receiving one instruction and returning their generalized pattern (the current 
instruction if no generalization is required) and the following instruction 
to be analyzed. This second value allows the implementation of variable-
instruction-length generalizations. The rule in Algorithm 7generalizes the 
move instructions that save into the accumulator register any value.

Algorithm 7: Pattern generalization rule of move instructions.

The generalized patterns and their associations with the individuals 
are added to the existing Occurrence Tableproduced by the Binary Pattern 
Extractor.
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Classifier
This module is aimed at computing the value of the classifier variable (i.e., 
the target or the dependent variable) for each individual. The input is a 
representation of the high-level program; the output is a mapping between 
each individual and the value of the classifier variable. These associations 
are described by the user with theClassification Rules.

Algorithm 8 shows one Classification Rule for our example. We iterate 
along the statements in the program. For each function, we associate its 
identifier with the returned type, which is the classifier variable for our 
problem (we predict the return type of functions).

Algorithm 8: Classification rule associating each function with its return type.

Dataset Generator
Finally, the Dataset Generator generates the dataset from the Occurrence 
Table (Section 3.3) and the individual classification (Section 3.4): one row 
per individual, one column per subpattern (generalized or not), and another 
row for the classifier variable. Cells in the dataset are Boolean values 
indicating the occurrence of the subpattern in the individual. Classifier or 
target cells may have different values. Table 2 shows an example dataset.

Processing Binary Files
As mentioned, the platform has two working modes. Many times, we do not 
have the high-level source program used to generate the native code, and we 
are interested in finding patterns in binary files. Different examples of this 
scenario include authorship, compiler, and malware detection.
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In order to show this second working mode of our platform, we use 
the research work done by Rosenblum et al. [6] as an example. They 
extract patterns from stripped binary files to detect function entry points 
(FEP), which existing dissemblers do not detect perfectly yet [5]. They 
analyze consecutive bytes in binary files, representing them as 3 grams of 
assembly instructions. Once the 3 grams are extracted, they formulate the 
FEP identification problem as structured classification using Conditional 
Random Fields (CRF) [16]. An initial flat model is later enriched with the 
evidence that a call instruction indicates the existence of a FEP in the callee 
address. The model obtained detects FEPs more accurately than GCC, ICC, 
and MSVS compilers [6].

Figure 3 shows the changes to the platform architecture when we want 
to process binary files, and the high-level program is not available. White 
elements are the same as in the previous architecture. Blue elements are 
modifications of the previous working mode. All the modules related to 
processing high-level programs are not present.

Figure 3: Platform architecture to process binary code.

Although the behavior of the Binary Pattern Extractor is the same, 
the rules for detecting individuals and patterns are different. The main 
difference is that no instrumented code is added, since the source code is 
not available. Depending on the case, debug information is not available 
either (i.e., stripped binaries are used). Regarding the Classifier module, the 
Classification Rules must consider a plain binary file instead of a high-level 
program representation.
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In the example of FEP detection in binary files, this is how the platform 
has been used to generate a dataset valid to create the CRF model. In the 
output dataset, individuals (rows) are instruction offsets in the binary file; 
one feature (column) will be created for each 1, 2, and 3 grams in the binary 
code, indicating the occurrence of that pattern in each individual; another 
call <offset> feature is added, associating that function invocation with 
the <offset> individual. Finally, the classifier variable (target) is 1 if the 
individual is a FEP and 0 otherwise (debug information is available).

In order to create the dataset described above, the Individual Detector 
creates as many individuals as instruction offsets in the binary file. The 
Pattern Detector extracts 1, 2, and 3 grams for each offset and a call feature for 
each different function. In this second case, the feature is not associated with 
the offset where the pattern is detected, but to the offset (memory address) 
being called (as done in Algorithm 6). Pattern Generalization is done as the 
normalization process described in [6]. Finally, the Classification Rules use 
the debug information to set 1 to one individual identified as a FEP and 0 
otherwise.

This platform configuration (and the previous one) to extract datasets 
valid to create the CRF model proposed by Rosenblum et al. is available for 
download at [17].

Representing Nonsequential Patterns
In the analysis of binary applications, it is common to require the detection 
of nonsequential patterns, such as subgraphs of control flow and data 
dependency graphs. The detection of these subgraphs can be used for many 
different purposes, such as the FEP detection problem described in the 
previous subsection.

Although the Binary Pattern Detector module of our platform (Figures 
1 and 3) is aimed at extracting patterns made up of contiguous binary 
instructions, the rest of the modules can be used to represent nonsequential 
structures such as graphs. This functionality is provided by the versatile 
way our platform considers the sequential patterns (features), permitting the 
definition of different criteria to associate these features to the corresponding 
individuals.

One example of this functionality is present in the decompiler scenario. 
Algorithm 5 shows how RET features are associated with the function 
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(individual) where the pattern was detected. In Algorithm 5, this association 
is represented by the first element in the tuple returned, which is the function 
id the RET instruction belongs to. Thus, the output dataset will have 1 in the 
cell corresponding to that function (row or individual) and pattern (column 
or feature). However, CALL patterns are associated with individuals in a 
different way. Algorithm 6shows how this type of feature is not associated 
with the function where the pattern is detected, but to the function being 
invoked. Therefore, a machine learning algorithm trained with the generated 
dataset may associate nonsequential patterns (e.g., there must exist a RET 
pattern inside the function and, in any part of the program, a CALL pattern 
invoking the same function) to identify the type returned by a function.

Another example of this functionality is the FEP identification problem 
described in Section 3.6. The dataset generated by out platform can be used to 
create the proposed CRF model, which uses graphs for structural prediction 
and classification [16]. Those graphs are obtained from the dataset by using 
the versatile association of features to individuals already discussed. Its 
implementation and a sample dataset can be consulted in [17].

EVALUATION

Platform Implementation
We have implemented the proposed platform and it is freely available at 
http://www.reflection.uniovi.es/decompilation/download/2016/sp/. The 
Instrumentator and Classifier modules have been implemented in C++, 
since they use clang [18] to process the high-level representation of C 
programs. The rest of the platform has been implemented in Python. For the 
disassembly services we have used IDAPython [19].

The implementation is highly parallelized, providing important 
performance benefits when multicore architectures are used. The 
parallelization follows a pipeline scheme, where both data and task 
parallelism are used. Figure 4 shows the concrete approach followed. These 
have been the issues tackled to parallelize the platform implementation.
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Figure 4: Parallelization of the platform implementation.

(1)  Data Parallelization. We identify each module in a program 
(obj files in the compiler used) as a different portion of data to 
work in parallel. This obj files can be combined in lib or exe 
files to produce bigger modules. In the example in Figure 4, three 
different modules are processed in parallel.

(2)  Task Identification. The tasks to be parallelized are those identified 
as modules in the platform architecture (Section 3). As shown in 
Figure 4, an additional initialization task was defined to initialize 
the database and create a temporary folder where the input files 
are copied.

(3)  Task Dependency. After identifying the tasks, we defined the 
dependencies among them with a Directed Acyclic Graph (DAG). 
These dependencies define when two tasks can run in parallel, 
and when a task has to wait for others to end. As shown in Figure 
4, the instrumentation, compilation, binary pattern extraction, 
generalization, and classification tasks can run in parallel. For 
the same piece of data, one has to wait for the previous one 
to complete. The initialization (at the beginning) and dataset 
generation (at the end) tasks cannot be parallelized. The last one 
waits for all the classification tasks to process all the data.

(4)  Task Implementation. Tasks should be mapped to threads 
or processes. The current implementation uses the Python 
programming language to combine all the different modules of the 
architecture (implemented in Python itself or C++). Since most 
implementations of Python use the Global Interpreter Lock (GIL) 
to synchronize the execution of threads [20], we implemented 
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tasks as processes to obtain a better runtime performance 
improvement with multicore architectures [21].

(5)  Concurrent Workers. To parameterize the level of parallelization 
of the platform, we configured its implementation to run with a 
different number of worker processes (Section 4.2). A scheduler 
analyzes the task DAG and tells each worker which is the following 
task to be executed. In Figure 4, two workers are running in 
parallel. Tasks 1, 2.1, and 2.2 have already been executed; Tasks 
3.1 and 3.2 are run by Workers 1 and 2, respectively; and Task 2.3 
is the following one to be executed, once one worker is free.

(6)  Communication between Tasks. Since we implemented tasks 
as processes, communication between them is costly. However, 
the dependency between tasks shown in Figure 4 indicates that 
the output of one task is taken as the input of the following one. 
Therefore, this data communication was implemented through a 
database, appropriately configured to obtain the expected runtime 
performance.

(7)  Task Synchronization. Workers should indicate when they 
terminate executing one task, and the scheduler should tell them 
which task should be executed next. To synchronize this process, 
we used a Queue object in the multiprocessing module.

(8)  Tool Parameterization. We configured the IDA disassembler 
to allow the concurrent processing of the same input file. The 
compilation task is represented with a Python class that can be 
parameterized to use different compilers, package managers, 
compiler options, and automating software. The external tools 
used write information in the standard output (e.g., the C compiler). 
We captured those messages and sent them to a concurrent logger, 
adding additional information of the processes.

Methodology
The runtime performance of our platform depends on the following 
variables:(i)Number or independent modules of compilation (or programs). 
We may process different programs in parallel, or different modules of the 
same program, to create a dataset.(ii)Number of workers: as mentioned, the 
platform may run different tasks at the same time. A task is run by a worker. 
Depending on the number of real processors, the number of workers may 
produce an important benefit on runtime performance.(iii)The number of 



An Efficient Platform for the Automatic Extraction of Patterns in ... 299

cores: we have run our platform with different multicore computers.(iv)The 
size of each program (or module), according to the number of individuals it 
may contain.(v)Subpattern extraction: as described in Section 3.2, different 
subpatterns are automatically extracted from the patterns found. The Max 
Size and Max Offset parameters have influence on the execution time.(vi)
The number of patterns: the proposed platform recognizes patterns by means 
of the Pattern Detectorfunctions specified by the user. We analyze runtime 
performance depending on the number of patterns defined.

We evaluate the influence of these variables on the runtime performance 
of the platform, and how they are related to the parallelization level. In order 
to evaluate that, we fix all the variables except one and measure the runtime 
performance for different values of the free variable [22]. This process is 
repeated for all the variables.

We evaluate the platform with the real example of predicting the return 
type in binary programs, using their C source code (the first working scheme 
of our system, shown in Figure 1). We extract return, call pre, and call post 
patterns, divide them into different subpatterns, and perform a generalization 
of the subpatterns found.

The programs used for the experiments were synthetically generated 
by a C program generator. It was very helpful to generate a rich battery 
of programs. Besides, we were able to generate different configurations of 
the same program, changing the number of individuals (functions in our 
example) per module. In this way, we do not introduce the bias of measuring 
different programs.

In order to be able to change the number of cores, all the tests were 
carried out on a Hyper-V virtual machine with 4 processors and 8 GB of 
RAM, running an updated 64-bit version of Windows 8.1. The host computer 
was a 3.60 GHz Intel Core i7-4790 system with 16 GB of RAM, running an 
updated 64-bit version of Windows 10. The tests were executed after system 
reboot, removing the extraneous load, and waiting for the operating system 
to be loaded [23].

Increasing Number of Modules
In this first experiment, we increase the modules in a program from 1 to 8, 
fixing the number of cores and workers to 4. For this experiment and the 
following ones, the value of Max Size is 4 and Max Offset is 0. We also 
extract return, call pre, and call post patterns.
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The program to be analyzed has 10,000 functions (individuals), so we 
have 1 module with 10,000 functions, 2 modules with 5,000 functions, and 
so on, up to 8 modules with 1,250 functions. Therefore, all the configurations 
have the same dataset with 10,000 functions, and the processed program is 
the same.

Figure 5 shows the benefits of parallelization. The execution time of 
processing the same program drops when the number of modules is increased 
until 4 modules (the number of cores and workers). In that point, the platform 
processes the program 3.33 times faster than the same program with one 
module (i.e., the sequential implementation). According to Amdahl’s law, 
the maximum theoretical performance benefit for that configuration is 4 
factors [24].

Figure 5: Execution time for an increasing number of modules.

For more than 4 modules, there is no significant benefit, since there 
are only 4 cores in this configuration. Besides, there is no penalty for 8 
programs, showing that a number of programs higher that the number of 
cores do not cause a significant penalty. The slight worsening for 5, 6, and 7 
programs is caused by the selection of 4 workers and cores. After processing 
4 programs in parallel, the processing of the fifth one makes the rest of the 
workers wait for completion, causing a slight performance drop.

Increasing Number of Workers
In this case, the number of workers goes from 1 to 8, fixing the number of 
cores and modules to 4. Each module has 2,500 functions (10,000 for the 
whole program).

Figure 6 shows how execution time is reduced as the number of workers 
increases. With 4 workers, the platform reaches the lowest value, 3.5 times 
faster than the sequential execution. For 5 workers or more, there is no 
benefit because those extra workers keep waiting for tasks to end.
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Figure 6: Execution time for an increasing number of workers.

Increasing Number of Cores
In this case we change the number of cores of the virtual machine 
configuration. Fixing the configuration to 4 workers and modules, we 
increase the number of cores from 1 to 4. We have not used more cores 
because, in the computer used (see Section 4.2), the virtualization software 
drops its performance with 5 cores or more. The number of individuals per 
module is 2,500.

We can see in Figure 7 how our platform takes advantage of multicore 
architectures. The computer with 4 cores runs 3.7 times faster than the one 
with one single core. The benefit is close to the maximum theoretical one 
[24].

Figure 7: Execution time for an increasing number of cores.
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Increasing Number of Modules and Workers
This experiment increases two variables at the same time. It is intended 
to represent a typical use case scenario. Assuming we have a multicore 
computer (4 cores in our case), we set the number of workers equal to the 
number of modules (or programs) to be processed. The idea is to try to 
obtain the higher level of parallelization with a given computer. Therefore, 
we increase the number of modules and workers from 1 to 16. The number 
of functions is always 10,000, equally distributed over the different modules 
of the program.

Figure 8 shows how execution time keeps reducing until 4 modules and 
workers (3.5 factors of benefit). From 4 to 7, differences among the values 
are lower than 1% (practically the same values). With 8 and beyond, the 
figure displays a slight increase of execution time due to the cost of context 
switching. Therefore, the results of the experiments seem to indicate that the 
optimal value for workers and modules range from the number of cores to 
twice this value.

Figure 8: Execution time for an increasing number of modules and workers.

Increasing Number of Functions
In order to see how the platform behaves for increasing sizes of programs, this 
experiment increases the number of functions in the program from 1,000 to 
15,000. We selected this maximum value because it was the biggest program 
supported by the IDA disassembler. The number of cores and workers is 4.

Figure 9 shows the linear increase of runtime performance depending on 
the number of functions (i.e., the size of the programs). Besides, it supports 
the analysis of really big modules with 15,000 functions.
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Figure 9: Execution time for an increasing number of functions.

Figure 10 presents another view of the same data. That figure displays 
the execution time performance per function, increasing the number of 
functions in the program. For small programs, there is an initialization penalty 
causing a higher execution time to process a low number of functions. When 
the program size grows, this initialization cost becomes negligible. From 
5,000 functions on, the execution time per function converges (the standard 
deviation is lower than 3.4%), showing that the performance of the platform 
is not decreased for big input programs.

Figure 10: Execution time per function, increasing the number of functions.

Increasing Max Offset and Max Size
We now modify the values of the Max Offset and Max Size parameters used 
to obtain the binary subpatterns. We used 4 modules, each one implemented 
with 750. Max Offset is incremented from 0 to 8, fixing Max Size in 4. We 
apply the same method to analyze the influence of Max Size in runtime 
performance, increasing its value from 1 to 8 and fixing Max Offset to 4.

Figure 11 shows both variables. We can see how Max Offset has a linear 
influence on execution time. The regression line shown in Figure 11 has a 
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slope of 51, representing the cost in seconds of increasing one unit inMax 
Offset. For Max Size, the best regression obtained is quadratic (Figure 11). 
The user should be aware of that, meaning that choosing high values for 
Max Size may involve much greater increases of the execution times.

Figure 11: Execution time for an increasing number of Max Offset and Max 
Sizeparameters.

Increasing Types of Patterns
The last variable to be measured is the number of patterns to be recognized. 
The patterns are specified withPattern Detection functions provided by the 
user. In our decompiler example, we identified 3 patterns: return,call pre, and 
call post. We measure runtime performance of the 7 different combinations 
of these 3 patterns. Modules, workers, cores, Max Size, and Max Offset are 
fixed to 4, and each module contains 750 functions (3,000 in total).

Figure 12 shows the results. The 3 first bars show the execution time 
consumed to extract each pattern individually. The 3 next bars display 
the execution time for two patterns in parallel, compared to the costs of 
extracting them individually. We can see how the platform obtains an 
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average benefit of 1.65 factors due to the parallelization. When the platform 
extracts 3 patterns at the same time, this benefit increases to 2.1 factors.

Figure 12: Execution time when extracting different types of patterns.

Execution Time for a Real Case Scenario
We have also measured execution time for the particular scenario of inferring 
the return type of a function. As mentioned, this is an existing problem of 
existing decompilers. The purpose of this section is not to present how this 
problem may be solved with machine learning, but to measure the execution 
time required to extract the binary patterns and to build the model.
To predict the type returned by a function, we extract binary code patterns 
before ret instructions and before and after function invocations. We found 
out that the number of functions required to build an accurate model for this 
problem is very high, so a huge program database would be needed. Instead, 
we implemented a code generation tool that writes synthetic C functions 
considering the language grammar and its type system. This way, we can 
generate any number of random functions (and invocations to them) for all 
the different types in the language (C built-in types plus type constructors 
for compound types (structs, unions, pointers, and arrays)). These functions 
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are then passed to our platform to generate the output dataset. Then, the da-
taset is used to build a J48 classifier using Weka.

As mentioned, we can generate any number of C functions to be passed 
to our platform. Therefore, we must work out the number of functions 
necessary to build an accurate model. For this purpose, we used the following 
method: we create 1000 functions for each C type; we extract the binary 
patterns in that functions with our platform; and we use Weka with the 
generated dataset to compute the accuracy rate using 10-fold stratified cross 
validation. These steps are repeated in a loop, incrementing the number of 
functions in 1000 for each type. We stop when the Coefficient of Variation 
of the last 5 accuracy values is lower than 2%, representing that the increase 
of functions (individuals) does not represent a significant improvement of 
the accuracy. Finally, we build the J48 model with the dataset generated in 
the last iteration.

Following the method described above, we created a dataset with 
160,000 functions and 3,321 binary patterns (the dataset file was 998 MB). 
The platform generated the dataset in 2 hours, 11 minutes, and 56 seconds (4 
workers and CPUs). We also measured the sequential version, taking 7 hours 
41 minutes and 46 seconds to generate the same dataset. For comparison 
purposes, we also evaluated the execution time to build a J48 model with 
the 160,000-function dataset, taking 11 hours, 55 minutes, and 15 seconds to 
build the model. Notice that Weka builds the model sequentially, not taking 
advantage of all the cores in the system.

RELATED WORK
There exist different works aimed at extracting assembly patterns from 
existing applications. To the knowledge of the authors, none of them have 
built a platform to extract those patterns automatically. They define custom 
processes and, some of them, even manual procedures.

Rosenblum et al. extract every combination of 1, 2, and 3 consecutive 
assembly instructions from a big set of executable files [6]. Then, they use 
forward feature selection to filter the most significant patterns and later 
train a Conditional Random Fields to detect the function entry points. The 
same authors use this methodology to detect the compiler used to generate 
the executables [7]. This research work was later extended to consider the 
compiler options and programming language used in the source application 
[8], to identify the programmer that coded the application [25], and to 
identify the functions belonging to the operating system [26].
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BYTEWEIGHT provides another approach to find function entry points 
[5]. They apply machine learning to recognize the patterns, so that different 
compilers and optimization options may be used. Analyzing the training 
binaries, an extraction process generates prefix trees from sequences of bytes 
or normalized instructions. The prefix tree represents possible function start 
sequences. Then, they assign a weight representing the likelihood that the 
path from the root to the node is a function start in the training set. Finally, 
the weighted prefix tree is used to classify the input binary file.

Apart from assembly patterns extraction, there are situations where other 
parts of the binary files need to be processed. One example is the detection 
of packed executable files [27]. To this end, it is necessary to recognize 
not only assembly patterns, but also other types of information existing in 
the binaries, such as header patterns, entropy values, and characteristics of 
the file sections. Ugarte-Pedrero et al. propose a custom collective-learning-
based process to solve this problem, detecting packed executables upon 
structural features, and heuristics [28].

Regarding decompilation, Cifuentes et al. identified the existing 
limitations on recognizing high-level control structures [29]. They later 
define a technique to recover jump tables and their target addresses and 
incorporated it in the DCC decompiler [30]. The Phoenix decompiler uses 
a structuring algorithm to detect control flow structures, being able to 
decompile more structures than Hex-Rays [13]. Regarding decompilation 
of high-level types, Mycroft proposes a constraint-based algorithm to 
infer types from binary code [31]. Another type recovery approach is the 
VSA algorithm based on value propagation [32]. Laika is a system that 
uses Bayesian unsupervised learning to detect high-level data structures, 
analyzing the process memory images [33].

CONCLUSIONS
We propose a platform for the automatic extraction of patterns in binary 
files, capable of analyzing big executable files. The platform is highly 
parameterized to be used in different scenarios. The extracted patterns can 
be used to predict features in native code, when the high-level source code 
and the debug information are not available.

The platform implementation has been parallelized to increase its runtime 
performance on multicore architectures. Both data and task parallelization 
schemes have been followed. We have evaluated its performance, obtaining 
a performance benefit of 3.5 factors over the maximum theoretical value 
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of 4 factors. The evaluation presented also documents how the different 
parameters of the platform should be used to obtain the best performance.

We are currently using the proposed platform to extract patterns that are 
later used to improve the information inferred by existing decompilers. We 
generate patterns of high-level type information to train a classifier using 
different machine learning algorithms. We are currently focused on the 
return types of functions, but we hope to apply it to parameters and local 
and global variables.

We plan to use clustering algorithms to the dataset generated for a big 
battery of programs taken from open source code repositories. The objective 
is to obtain classifications of (sections of) applications depending on the 
patterns found inside them. The classes obtained may be helpful to identify 
the code that performs common input/output, network, and computing 
intensive or multithreaded operations.

The platform implementation, its source code, the 3 different 
configurations used in this article (return type, function or procedure 
identification, and FEPs extraction in binary files), and all the examples used 
in the evaluation are available for download at http://www.reflection.uniovi.
es/decompilation/download/2016/sp/.
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ABSTRACT
Applications used for the analysis of genetic data process large volumes 
of data with complex algorithms. High performance, flexibility, and a user 
interface with a web browser are required by these solutions, which can 
be achieved by using multiple programming languages. In this study, I 
developed a freely available framework for building software to analyze 
genetic data, which uses C++, Python, JavaScript, and several libraries. This 
system was used to build a number of genetic data processing applications 
and it reduced the time and costs of development.
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BACKGROUND
The number of computer programs for the analysis of genetic data is 
increasing significantly, but it still needs to be improved greatly because 
of the importance of result analysis with appropriate methods and the 
exponential growth in the volume of genetic data.

Genetic data are typically represented by a set of strings [1], where 
each string is a sequence of symbols from a given alphabet. The string 
representation, called primary structure, reflects the fact that the molecules 
storing genetic information (DNA and RNA) are biopolymers of nucleotides, 
while proteins are polypeptide chains. The secondary, tertiary, and 
quaternary structures need to be considered to understand the interactions 
among nucleotides or amino acids, but they are used less frequently 
in computer programs. The secondary structure includes the hydrogen 
bonds between nucleotides in DNA and RNA and the hydrogen bonds 
between peptide groups in proteins, where the molecules are represented 
by graphs. The tertiary structure refers to the positions of atoms in three-
dimensional space, and the quaternary structure represents the higher level 
of organization of molecules. The representations of molecules are extended 
based on connections between sequences or subsequences, which denotes 
similarity from various perspectives. Moreover, these data are supplemented 
with human-readable descriptions, which facilitate an understanding of the 
biological meanings of the sequence, that is, its function and/or its structure.

The large number of possible candidate solutions during the analysis of 
genetic data means that the employed algorithms must be selected carefully 
[2]. Exhaustive search algorithms must be supported by heuristics based 
on biological properties of the modeled objects. Of particular importance 
in this field are dynamic programming algorithms, which allow us to find 
the optimal alignment of biological sequences (i.e., arranging the sequences 
by inserting gaps to identify regions of similarity [1]) in polynomial time, 
although the search space grows exponentially. Dynamic programming is 
used to search for similarity (local or global), to generate a multisequence 
representation (profile), and to examine sequences with hidden Markov 
models. In addition, backtracking algorithms are used to search for 
motifs (i.e., identifying meaningful patterns in genetic sequences), greedy 
algorithms to detect genome rearrangements and to sort by reversals, divide-
and-conquer algorithms to perform space-efficient sequence alignments, 
and graph algorithms for DNA assembly.
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A characteristic feature of the computer programs applied to genetic data 
is the necessity to analyze large amounts of data using complex algorithms, 
which means that high performance is crucial. Different user and system 
requirements mean that the flexibility of software is also important. Finally, 
users prefer a graphical interface that is accessible from a web browser and 
applications that update automatically.

Scientists are becoming increasingly involved in software development 
[3]. They should use software engineering practices and tools to avoid 
common mistakes and to speed up the development tasks [4]. The architecture 
of working application with explanation of development decisions could help 
in developing new computer programs. Biological and medical terminology 
is simplified to invite developers to discuss the presented solutions.

In this study, I describe the bioweb framework, including application 
architecture, the programming languages, libraries, and tools, used to develop 
applications for processing genetic data. I propose a multilanguage platform 
using C++, Python, and JavaScript. The use of appropriate and tested 
architectures, libraries, and tools decreases the risk of failure in software 
system development as well as reduces the costs and time requirements. The 
use of appropriate systems also facilitates rapid prototyping, which allows 
us to verify concepts by obtaining the requisite information from end users: 
biologists and doctors.

RESULTS

Deployment Model
A three-layer software architecture was selected where the presentation 
layer, data processing layer, and data storage layer were kept separate. The 
use of a multilayered model makes computer programs flexible and reusable, 
because applications have different responsibilities. Thus, it is beneficial to 
segregate models into layers that communicate via well-defined interfaces. 
Layers help to separate different subsystems, and the code is easier to 
maintain, clean, and well structured.

Four possible deployment models were considered for the three-layer 
architecture: the desktop, the database server, the thin client, and the web 
application, as shown in Figure 1. The desktop architecture (Figure 1(a)) 
was rejected because the framework was designed to support multiuser 
applications. Collaboration features were hard to implement in this 
architecture because of the lack of central data server that could be accessed 
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by multiple users. The offline mode is rarely used because the Internet is 
available almost everywhere and the transmission costs are negligible 
compared with the costs of maintaining the system. Furthermore, sequence 
databases are publicly available via the Internet, so an Internet connection is 
essential for the analysis of genetic data.

Figure 1: Three-layer application deployment models: desktop application 
(a), database server (b), thin client (c), and web application (d). This solution 
supports the creation of applications using a web application architecture.

An application architecture with a shared database and data processing 
modules deployed on client machine (Figure 1(b)) was rejected because of 
the requirement for high client computer performance. Another problem is 
the need to update the software on the client side when changes and additions 
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are made, which is time consuming and requires support for a wide range of 
platforms so the development costs are high.

Deploying the calculation modules on a server machine allows the 
execution of these modules by clients on different platforms, which 
reduces the development costs. The computational power of the server is 
important because it determines the computational time, which means that 
poorly equipped client machines can be used. The optimum solutions are 
a thin client architecture, as shown in Figure 1(c), and a web application 
architecture, as shown in Figure 1(d).

Deploying the calculation modules on a server machine, as shown in 
Figures 1(c) and 1(d), allows the use of many platforms on the client side, 
which reduces the development costs. Importantly, the computational power 
of the server is used, so the computational time can be relatively short, even 
for poorly equipped client machines. These solutions simplify scalability 
if the size of the problem or the number of clients grows, because only the 
servers need to be upgraded.

Web applications have advantages compared with application produced 
with a thin client architecture because the client contains a portion of the data 
processing layer, which can handle activities such as output reformatting, 
graph generation, and user input validation. Client-based processing reduces 
the amount and frequency of client-server traffic, and it reduces the load on 
the server while the reactions to user actions are faster. This solution uses 
web browser plugins (such as Flash) or HTML5/JavaScript programs on the 
client side. The client modules are downloaded during initialization, which 
helps to avoid the issue of updating the software.

Architecture and Programming Languages
The software used by presented framework and the framework itself were 
created with C++, Python, and JavaScript with HTML5. The use of multiple 
languages in a single project is quite common and it is an alternative to 
using PHP, NET, or Java. The set of used languages facilitates high 
performance, versatility, customizable modules, and the production of a web 
browser interface. The modules produced for a typical application based 
on bioweb using these programming languages are shown in Figure 2.
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Figure 2: Modules produced for a typical application based on the proposed 
framework using various programming languages.

The algorithms are implemented in C++. The source code is translated 
(compiled) into machine language, which makes algorithm execution more 
efficient because the code is executed directly by the processor. The language 
has higher-level abstractions missing in other languages translated into 
binary code (C and Fortran). C++ supports object-oriented programming 
by providing virtual functions and multibase inheritance and exceptions 
and facilitates functional and genetic programming, including templates 
and lambda functions. The standard C++ library is compact but it is well 
tested and efficient. It includes support for inputs and outputs, strings and 
string operations such as regular expressions, and sets of collections, such 
as vectors, lists, sets, and associative arrays using trees and/or hash tables. 
It should be mentioned that concurrency support mechanisms are included 
in the C++11 standard (ISO/IEC 14882:2011), so the full capabilities of 
modern computers with multiple processors and/or multiple cores can be 
exploited. If an older C++ compiler that does not support C++11 is used, it 
may be necessary to employ the Boost [5] libraries: Boost.Thread to create 
portable multithread applications, Boost.Regex for regular expressions, and 
Boost.Chrono for time utilities. In addition, vector calculations provided 
by modern graphics processing unit (GPU) are available in C++ and the 
OpenCL [6] standard is applied.
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The server application uses the Python language in presented solution, 
mainly because this type of development is faster compared with C++. 
Modules that do not constitute a bottleneck during calculations should be 
implemented in Python. Python is a scripting language, so it is small and has 
a simple, regular syntax. This language is dynamically type-checked, uses a 
uniform data model, and provides reference counting memory management, 
so there is no problem with memory leaks. The Python repository of 
software (PIP) https://pypi.python.org/pypi contains over 30,000 packages 
and a number of ready-made solutions can be used, particularly the packages 
for exchanging data and packages that support the creation of the web 
applications I used. It should be noted that the Biopython library [7] provides 
a set of tools for biological computation which are written in Python.

In bioweb the Boost.Python [5] library enables interoperability between 
the C++ modules and the Python modules. Other solutions, such as using 
C API from Python directly, code generation using Simplified Wrapper and 
Interface Generator (SWIG), Py++, Pyrex, and cython, were considered to 
be less useful because the interface was less convenient and there was a lack 
of support for the techniques used in genetic data software development. 
The Boost.Python uses C Python API and metaprogramming techniques, 
which allows the exposure of C++ classes, functions, and objects to Python 
and vice-versa, thereby supporting the use of Python facilities inside C++ 
code. Boost.Python allows the exposure of elements and the register of 
conversions using a simple syntax and being easy to learn.

The use of a compiler and an interpreter makes the developed software 
more flexible. The application customization requires the use of an 
interpreter in any case, because changing the settings should not demand the 
software rebuilding. The use of Python to store the user settings simplifies 
the customization of applications greatly, because the settings do not need 
to be lists of names and values, and the Python control instructions can be 
used.

A client application request is sent to the standard port using the 
HTTP protocol and it is retransmitted by the web server using interprocess 
communication mechanisms (e.g., sockets and named pipes) to the server 
application. Three web servers were investigated: Apache http://httpd.
apache.org, Lighttpd http://www.lighttpd.net, and Nginx http://nginx.org. 
The Lighttpd configuration is known to be simple and its performance is very 
good, so the presented solution only includes settings for this web server, 
but bioweb is also able to use Apache and Nginx. So scripts available 
on project website only include a setting for this web server. Lighttpd 
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retransmission uses mod_fastcgi and a socket mechanism. Three open source 
Python libraries were considered: Flup from PIP, Web2py http://www.
web2py.com, and Django https://www.djangoproject.com. The libraries 
support the Web Server Gateway Interface (WSGI), the Python standard 
interface between web servers and applications.

Flup is a simple WSGI server but its library is small (256 kB), so the 
facilities are limited to the python function call when an http request is 
received from a client and the function results are sent back to the client 
application using a web server. More advanced libraries are Web2Py (9 MB) 
and Django (22 MB), where the facilities include parameter conversion, 
authentication, authorization, and database support using object-relational 
mapping. All Flup, Web2py, and Django were tested in the present study, 
because the characteristics of Web2py and Django are similar. However, 
Django is recommended because all of the available facilities are written 
explicitly and this library has the best documentation. Django uses Flup 
internally to cooperate with Lighttpd in current version of software; this 
configuration works correctly under all popular modern operating systems 
(Linux, Windows, iOS, etc.).

Bioweb provides two competitive solutions for client modules, where 
the first is based on JavaScript with HTML5, and the second uses Apache 
Flex and the Adobe Flash Player plugin. JavaScript with HTML5 web 
applications uses the Ajax techniques available on modern web browsers, 
mainly XMLHttpRequest objects, so client applications developed in 
JavaScript can send and retrieve data in the background. The data are 
interchanged using the JavaScript Object Notation (JSON), and the Python 
standard library module supports JSON encoders and decoders. The HTML5 
standard includes scalable vector graphics support, which improves the 
graphical user interface. JavaScript is interpreted by a web browser and it 
conforms to international standard ISO/IEC 16262:2011. The current version 
uses Model View ViewModel (MVVM) client-side JavaScript framework 
AngularJS [8].

Apache Flex is a freely available set of software development tools, 
which support the construction of applications that use the Adobe Flash 
Player plugin. This plugin, which is available for most web browsers, 
allows the user to view multimedia, vector graphics, and animations. The 
Apache Flex application is loaded from web server and executed on the 
client side. Communication with the server uses the Action Message Format 
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(AMF), which is supported in Python by the pyAMF library. At present, this 
technology is being replaced by HTML5, which is supported directly by 
web browsers, so HTML5 and JavaScript are recommended for use in new 
applications.

Parallel Service Requests
The framework was designed to create the software that serves multiple 
users at the same time. The users communicate independently with the 
server via the Internet and the framework includes a component with the 
active object pattern [9] implementation to enhance concurrency and to 
exploit the server resources fully. This component, which is part of bioweb, 
is shown in Figure 3.

Figure 3: Active object implementation delivered by the framework. The client 
requests are transformed into commands automatically, which are executed by 
separate threads.

The execution of calculation tasks is decoupled from task invocation to 
enhance concurrency and to simplify multithread usage, as shown in Figure 4. 
Calculation requests sent from the client application are converted into C++ 
objects. These objects are commands (the command design pattern is used) 
which contain specific parameters as well as algorithm and synchronization 
mechanisms. Commands are stored in the task queue and executed by 
separate execution threads from the thread pool. The command handlers are 
accessible from Python, so the user can examine the current command state, 
that is, tasks that are awaiting execution in the queue, executed tasks, and 
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completed tasks. This component uses an observer (from observer design 
pattern), to support the command progress notification. The active object 
module can be used independently of bioweb; it is supplied separately as a 
C++ library, whose sources are available at http://mt4cpp.sourceforge.net.

Figure 4: Cooperation among active object participants. The client request is 
converted into a command managed by the task manager on the Python side 
and by the scheduler in C++. The command is stored in the queue, and it is 
executed when an unoccupied thread is available. The client can request the 
current command status and the command progress.

Testing
Software testing is an integral part of the development process. Thus, testing 
techniques and libraries that support this process are specified in presented 
framework. Three types of tests are considered: unit tests, integration tests, 
and system tests. Unit testing checks individual functions, procedures, 
and classes in isolation. Integration tests examine the communication 
between modules, based on a consideration that they are created in different 
programming languages. System tests examine the functions of a computer 
program as a whole, without the knowledge of the internal structure of the 
software.

Unit testing uses Boost.Test [5] for C++ modules, the standard Python 
unittest package for Python code, and QUnit http://qunitjs.com for modules 
written in JavaScript. C++ unit testing is performed in both environments: 
g++ and msvc. Integration tests are implemented with the same tools and 
libraries as unit tests, but the features of C++ modules exported to Python by 
the Boost.Python library are tested in Python using unittest.
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System testing uses the Python language and splinter http://splinter.
cobrateam.info library. This tool automates browser actions such as visiting 
URLs, navigation, verifying page context, finding elements in the page, 
testing mouse and keyboard events, reading the text properties of elements, 
and other tasks. The system tests allow the automatic evaluation of test 
scenarios, without any requirement for manual testers, which reduces the 
time and the cost of the overall system examination.

The test quality measure is the source code coverage during unit, 
integration, and system testing. This measure provides numerical data related 
to the performance of test procedures, which helps to identify inadequately 
tested parts of the software. The analytic tools used to evaluate coverage 
in bioweb are gcov from the GNU Compiler Collection for C++ modules, 
Coverage.py from Python Package Index (PIP) for Python modules, and 
Blanket.js http://blanketjs.org/ for JavaScript code.

Tools
This section describes the programming tools used to create applications 
in bioweb. It is important that the latest versions of the tools described are 
used.

The C++ modules require a C++ compiler and it is recommended to 
use at least two different compilers, particularly the g++ compiler from 
the GNU Compiler Collection http://gcc.gnu.org and the Microsoft Visual 
C++ Compiler (msvc) http://msdn.microsoft.com. The use of different 
compilers increases the probability of capturing errors in the code and it 
ensures that the code is portable. The C++ modules use the standard C++ 
library and the Boost http://www.boost.org libraries. The server uses the 
Python interpreter, the Python standard library, and packages from the 
Python repository (PIP). The client uses the JavaScript interpreter built-in 
web and the AngularJS [8] framework, jQuery libraries http://jquery.com. 
The Bower [10] automatically manages client-side package dependencies. 
An alternative is to use the Apache Flex software developer’s kit http://flex.
apache.org. The Scons http://www.scons.org is used to create modules, for 
testing, and to consolidate the whole system, while Redmine http://www.
redmine.org is used for project management, and mercurial http://mercurial.
selenic.com is used as the version control system.
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DISCUSSION
To speed up the creation of new software, the developer can use a specialized 
framework. The most popular, freely available frameworks are Bioconductor 
[11], MEGA tool [12], and OpenMS [13]. On the other hand, the programmer 
can use general-purpose programming language and specialized libraries, 
for example, C++ with NCBI C++ Toolkit [14], Python with BioPython 
[7], Java with BioJava [15], and BioWeka [16]. All these solutions impose 
limitations connected with the usage of only one programming language 
[17] and do not support the user interface in a web browser.

The polyglot environment is common among web software, that is, 
software accessible from a web browser, because the client-side software 
(JavaScript, HTML, and CSS) has different responsibilities compared to 
server side. The ubiquity of mobile applications and the advent of big data 
change the software development to use multiple languages [18]. Similar 
trends are evident in the bioinformatics software and the examples are 
GBrowse [19] or GEMBASSY [20]. Bioweb provides a framework for the 
construction of such applications. There are many application development 
frameworks that connect C++ with Python or Python with JavaScript. 
Presented solution is similar but combines three programming languages.

The bioweb is small, but it can be extended, and it can use specialized 
libraries. The heavyweight web-based genome analysis frameworks, such 
as Galaxy [21], have a lot of ready-made modules and meet most of the 
requirements for systems for the genetic data analysis. However, creating 
custom modules and algorithms is not trivial. Presented framework allows 
the user to create smaller and independent solutions, which are easier to 
manage and to customize. It could be easily extended to use GPU and/or 
computing clusters, which is required in production-scale analysis.

CONCLUSION
The bioweb framework is freely available from http://bioweb.sourceforge.
net under GNU Library or Lesser General Public License version 3.0 
(LGPLv3). All of the libraries and applications used in bioweb are available 
for free and they can be used in commercial software.

This framework was used to create several applications to analyze 
genetic data: DNASynth application for synthesizing artificial 
genes (i.e., completely synthetic double-stranded DNA molecules 
coding peptide), theDNAMarkers application for analyzing DNA 
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mixtures, the CodonHmm application for protein back-translation, 
the WebOmicsViewer application for storing and analyzing genomes, 
the PETconn application to create scaffolds using paired-end tags, and 
the DNAAssembler for assembling DNA using next-generation sequencing 
data. The source code for these applications is available on the project 
website. This genetic data analysis software development project was 
performed in academia and it supports students who have a limited amount 
of time available and who also lack experience in design and programming. 
I found that agile methodologies [22] worked well in this project because 
they support the transfer of biological and medical knowledge from the 
users of the application. They let us avoid the duplication of information and 
allowed minimal documentation production, so a task could be completed 
relatively quickly by new users. In particular, the SCRUM [23] and the 
extreme programming (XP) [24] techniques were used, that is, SCRUM roles 
(product owner, development team, and scrum master), SCRUM iterations 
(sprint planning meeting, end meetings), SCRUM task management and 
prioritizing, XP test-driven development, and XP coding and documentation.

Presented framework is still being developed; the Guncorn [25] Python 
HTTP Server is added to the upcoming version. This cancels the Flup on 
Unix platforms and accelerates data transfer between client and server.

Availability and Requirements(i)project homepage: http://bioweb.
sourceforge.net;(ii)operating systems(s): OS Portable;(iii)programming 
language: C++ and Python and JavaScript;(iv)license: GNU Library or Lesser 
General Public License version 3.0 (LGPLv3);(v)getting started: to build a 
“Hello World” application please download the latest version, extract the 
files from the archive, install additional software as described in  README_
EN (text file in main bioweb directory), and run  scons command in the 
directory where you placed the bioweb. To start the client and server locally 
run scons  r=1.
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graph models of secondary structure have been developed to quantify and 
thereby characterize the topological properties of the secondary folds. 
In this work we utilize a multigraph representation of a secondary RNA 
structure to examine the ability of the existing graph-theoretic descriptors to 
classify all possible topologies as either RNA-like or not RNA-like. We use 
more than one hundred descriptors and several different machine learning 
approaches, including nearest neighbor algorithms, one-class classifiers, and 
several clustering techniques. We predict that many more topologies will be 
identified as those representing RNA secondary structures than currently 
predicted in the RAG (RNA-As-Graphs) database. The results also suggest 
which descriptors and which algorithms are more informative in classifying 
and exploring secondary RNA structures.

INTRODUCTION
The need for a more complete understanding of the structural characteristics 
of RNA is evidenced by the increasing awareness of the significance of 
RNA molecules in biological processes such as their role in gene regulatory 
networks which guide the overall expressions of genes. Consequently, the 
number of studies investigating the structure and function of RNA molecules 
continues to rise and the characterization of the structural properties of 
RNA remains a tremendous challenge in computational biology. RNA 
molecules are seemingly more sensitive to their environment and have 
greater degrees of backbone torsional freedom than proteins, resulting in 
even greater structural diversity [1]. Although the tertiary structure is of 
significant importance, it is much more difficult to predict than the tertiary 
structure of proteins. Advances in molecular modeling have resulted in 
accurate predictions of small RNAs. However, the structure prediction for 
large RNAs with complex topologies is beyond the reach of the current ab 
initio methods [2].

A coarse-grained model to refine tertiary RNA structure prediction 
was developed by Ding et al. [2] to produce useful candidate structures 
by integrating biochemical footprinting data with molecular dynamics. 
Although the focus is on tertiary folds, their method uses information about 
RNA base pairings from known secondary structures as a starting point. 
This, coupled with the understanding that the RNA folding mechanisms 
producing tertiary structure are believed to be hierarchical in nature, implies 
that much can be achieved by discovering all possible secondary structural 
RNA topologies.
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Given the primary sequence of an RNA molecule, there are a number 
of algorithms and tools available to predict the most likely set of resulting 
secondary structures. The most widely used algorithms such as Zucker’s 
Mfold [3] and Vienna RNAfold [4] typically base their predictions on the 
minimum free energy paradigm. While these algorithms have been highly 
beneficial, it is not always the case that the predicted structure with minimum 
free energy is the correct one and consequently some suggest that the actual 
RNA secondary structure may not have a minimum global free energy, only 
local ones [5]. Other means of characterizing the topology of secondary 
RNA structures are still an active avenue of pursuit.

The graph representations used in this work can be found in the database 
RAG: RNA-As-Graphs [6]. Secondary RNA structure is modeled by two 
graph-theoretic representations in the database resource RAG (see [6] 
for additional details on the differences between the two). In one of these 
representations, regions of the secondary structure that consist of unpaired 
bases such as junctions, hairpins, and bulges are represented by vertices. The 
connecting stems are represented quite naturally as connecting edges. The 
resulting graph is a connected, acyclic graph, that is, a tree. One advantage 
of this representation is the fact that trees have been highly studied in the 
graph theory thereby providing a wealth of information about the model. 
For instance it is known by the generating function developed by Harary 
and Prins [7] exactly how many distinct trees can be constructed for a 
given number of vertices. This allows the entire space, that is, all possible 
configurations, to be considered. Unfortunately, secondary RNA structures 
containing a pseudoknot cannot be represented as described above by 
the tree model. If, however, the model is reversed and stem regions are 
represented as vertices and connecting strings of unpaired bases as the edges, 
all secondary RNA structures can be now be modeled, including those that 
contain a pseudoknot. This representation is called the dual graph in the 
RAG database. The resulting dual graph however is no longer a simple 
graph; instead this method produces a multigraph. Unlike a simple graph, a 
multigraph can have more than one edge connecting a pair of vertices. And, 
unlike simple graphs, multigraphs have not been as highly studied in the 
theoretical setting. In previous work [8], the authors of this paper, together 
with Koessler et al., capitalize from the knowledge afforded by the graph 
theory and exploit the tree representation of the secondary RNA structure 
to build a predictive model that identifies whether a given tree structure is 
RNA-like or not RNA-like. In this work, we now consider the dual graph 
representation.
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In particular, all possible dual graph representations of orders 2, 3, and 4 
are given in the RAG database and the corresponding structures are classified 
as either (a) representing a known structure or (b) not representing a known 
structure. Those not representing a known structure are further classified 
as either likely to represent a structure in the future, that is, having the 
characteristics of RNA structure making it likely that such a structure will 
be identified at some point, or not RNA-like in structure. For the dual graphs 
of order 5, the database contains 18 structures that have been identified and 
states that there are 108 possible dual graphs of order 5. This number was 
determined by a graph growing algorithm. Eighteen of these 108 graphs 
are verified as representing existing RNA structures and the remaining 90 
structures are classified as either RNA-like or not RNA-like in the most 
recent update for the database by Izzo et al. [9]. This update describes two 
methods by which the unverified structures are classified. The Laplacian 
eigenvalues for each structure were transformed using a linear regression to 
obtain two values for each structure and then these values were applied in 
two clustering algorithms, namely, a partitioning method called PAM and 
a k-nearest neighbor algorithm [9]. They state that 63 are RNA-like and 
36 are not and that 45 are RNA-like and 45 are not RNA-like by the two 
methods, respectively. Since only 18 structures are provided in the database, 
our objectives were to (1) combinatorially analyze the structures of the 90 
dual graphs of order 5 not in the RAGs database and (2) predict which of 
those 90 dual graphs of order 5 are RNA-like in structure via graph-theoretic 
information from chemical graph theory and mathematical graph theory.

Our findings differ significantly from those of Izzo et al. [9]. We find 
by using a combinatorial algorithm to construct all possible graphs with the 
given constraints that there are 118 instead of 108 possible dual graphs of 
order 5. Furthermore, we show that indeed almost all of the structures in 
the database with 5 vertices are RNA-like instead of approximately half as 
indicated in [9]. We feel that this is not too surprising. In the earlier version 
(2004) of the database, for instance, 8 of the 30 possible tree graphs were 
classified as not RNA-like, but in the updated version (2011), only 3 graphs 
are listed as not RNA-like. We expect that the remaining 3 topologies will 
be verified as RNA topologies as more RNA molecules are found. For 
example, genome-wide mapping of conserved RNA secondary structures 
reveals evidence for thousands of functional noncoding RNAs [10]. In the 
following sections, we discuss the dual graph representation and the graph-
theoretic measures that we use. We then discuss the analysis and training 
together with the results.
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The Dual Graph Representation of Secondary RNA Structure
 Gan et al. [6] have used both tree graphs and the corresponding dual graphs 
which results in a multigraph representation of RNA secondary structures. 
Here, however, we will restrict our study to the multigraph representations 
of RNA secondary structures. As mentioned previously, the dual graphs 
can represent all types of RNA secondary structures, including the complex 
pseudoknot structures. When representing an RNA structure with a dual 
graphs, a vertex is used to represent stems (two or more complementary 
base pairs), and circular edges are used to represent the RNA motifs (hairpin 
loops, bulges, internal loops, and junctions). Dual graphs may contain 
multiple edges and loops; however, neither of these structures is required. 
Since a double-stranded RNA stem is connected to at most 2 strands on each 
side, every vertex v must have at most degree four. In fact, all vertices are of 
degree 4 except either (a) one of degree 2 or (b) two of degree 3. It follows 
that dual graphs of order n are of size 2n-1 [6]. Given these constraints, we 
use a constructive graph algorithm to enumerate the number of dual graphs 
of order five. These 118 graphs may be found in Figure 6.

Previous Results for the Dual Graph Model
The dual graph representation with 4 or fewer vertices was used in a 
previous work to train an artificial neural network (ANN) to recognize a 
dual graph as having the structural properties of secondary RNA [11]. In 
particular, we quantified the structures using graph invariants from graph 
theory and molecular descriptors from chemical graph theory and then used 
a multilayer perceptron artificial neural network to verify the findings in the 
RAG database regarding the classification of the dual graphs of order four. 
A set of ten structures that have been verified as RNA-like were chosen 
randomly from the set of 11 RNA-like graphs of order four. These ten graphs, 
in addition to the ten classified as not RNA-like, comprised the training set 
for the ANN. All graphs that were classified to be RNA-like in the database 
were predicted to be RNA-like by the neural network. However, one of the 
graphs whose structure represents a known topology was predicted with 
much lower probability than the other graphs in the set. Since this earlier 
work, the RAG database has been updated and a dual graph considered to be 
not RNA-like has since been changed to RNA verified [9]. This particular 
structure is similar to the structure that the neural network predicted to be 
RNA-like, but with lower probability. Given the updated information in 
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the RAG database, we can now remove the incorrectly predicted structure 
from the training set and expect our results to confirm the new information. 
Thus, even with incorrect information in the training set, the graph-based 
measures were sufficient to characterize the topology of the RNA-like dual 
graphs of order 4.

We extend these findings to the dual graphs of order five. For this work 
we do not use the predicted classifications of the RAG database. We use 
only the verified structures in the database of which there are 18 of order 5 
as well as 17 of order 4. We refer to these verified structures as RNA graphs. 
We consider the remaining 13 graphs of order 4 and 100 graphs of order 5 
as unclassified structures.

GRAPH-THEORETIC MEASURES FOR THE DUAL 
GRAPHS
As stated previously, the dual graph representation method of the RAG 
database results in a multigraph. We began by writing a program in the 
computer language Python which generates the 30 multigraphs of order 4 
and the 118 multigraphs of order 5. This program realized edgeless graphs as 
networkx [12] multigraph structures and then generated edges in accordance 
with the secondary RNA structural constraints. Several algorithms to 
calculate topological indices and graph invariants were also written in 
Python based on the networkx graph object.

In order to draw upon the wealth of graph-theoretic measures to quantify 
the topologies of the RNA model, we note that the majority of such measures 
is defined for simple graphs, and simple graphs do not have multiple edges 
nor do they have loops. Given that the dual graph representation has both, 
we therefore determined the line graph of each of the dual graphs and we 
use the line graph representation to determine the graphical measures of the 
topologies such as the clique number (both edge and vertex), independence 
number, and diameter and domination numbers. The line graph of a 
graph G is defined as the graph whose vertex set is the edge set of G and two 
vertices are adjacent in the line graph if the corresponding edges in G are 
incident. Thus the vertices in the line graph correspond to the regions in 
the RNA molecule with unpaired bases. Using the line graph of the dual 
graph allows quantification of the structural properties of the RNA molecule 
with graph-theoretic descriptors, even those containing pseudoknots. An 
algorithm for generating the line graph of a multigraph was also written in 
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Python, and this algorithm was used to generate the 30 + 118 line graphs 
of the multigraphs of orders 4 and 5. The multigraphs and line graphs were 
verified by the authors via a comparison to the RAG database and by manual 
inspection and reconstruction.

To calculate the graph-based measures, we used the GraphTheory 
package in Maple, the networkx package in Python, and the network 
analysis plugin in Cytoscape 2.8.2 [13]. Many invariants—such as diameter, 
radius, and clique numbers—were calculated either in all 3 or in 2 of the 
3. This allowed us to verify the results of each software tool or to identify 
any variations in the graph invariant and/or topological index techniques. 
Most but not all of the measures we used can be found in at least one of the 
three tools mentioned above. In order to calculate a number of the measures, 
especially the topological indices, we need to determine the distance matrix 
of the graph. In a simple graph, the distance from a vertex u to itself is zero. 
However, with the presence of a loop, we considered three possibilities. 
One is the standard distance matrix with zeros down the diagonal. In the 
second case, we place either a zero or a one, depending on whether the 
vertex has a loop. In the third case, we not only modify the diagonal but 
also if the shortest path traversal includes a vertex with a loop, we include 
the loop in the edge count of edges encountered. Thus we are requiring any 
traversal to include a loop when encountered. We also modified the Balaban 
index, motivated by recent results using random walks on graphs. To find 
the distance between two vertices u and v in a dual graph, observe that if u is 
a vertex with a loop and if there are two edges between u and v, then the 
following options arise:(i)one of the edges from u to v is traversed;(ii)the 
other edge from u to v is traversed;(iii)the loop is traversed followed by a 
traversal of one of the edges.

There are four possibilities, so each traversal is assigned an equal weight 
of 1/4. The shortest route is the traversal of one edge which can happen in 
two ways. Thus the distance from u to v is 1/2.

We subsequently calculated approximately 100 invariants and indices 
of the multigraphs and line graphs using the 3 graph theoretic software 
tools mentioned above, some with slight modifications to account for the 
presence of loops and multiple edges. The invariants were normalized with 
respect to the values of the graphs that are verified as representing a known 
RNA secondary structure.
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ASSESSING THE GRAPH-THEORETIC  
MEASURES AS DESCRIPTORS OF RNA  
TOPOLOGY
The total invariants were divided into 3 categories—topological indices, 
graph-theoretic invariants, and measures on line graphs. In order to compare 
the efficacy of an invariant or index in discriminating between the RNA 
graphs and the remaining graphs, the invariants were normalized with 
respect to the RNA graphs of orders 4 and 5, respectively. In particular, 
for each invariant or index, we calculated the mean and standard deviation 
of the RNA graphs of order 4, after which we used this mean and standard 
deviation to normalize all the values for graphs of order 4 of the given 
invariant or index according to the formula

    (1)
Figure 1 shows the 10% percentile to 90% percentile of each normalized 

index/invariant in the topological indices collection as a rectangle. The mean 
is zero and the standard deviation is one for the given index across the RNA 
graphs of order 4. The values of the unverified graphs of order 4 are shown 
as points, so that a point inside the given rectangle is between the 10% and 
90% percentiles for that index. The dotted lines correspond to the numbers of 
standard deviations from the mean. In general, if the values of the unverified 
graphs are close to the values of the verified graphs (i.e., if the dots are all 
on or inside the rectangle for a given invariant), then this invariant will not 
be useful as a factor in a machine learning classifier. For example, invariants 
12–18 are poor predictors of RNA-like versus not RNA-like simply because 
there is not enough variation among the values for all the multigraphs of 
order 4. A support vector machine, a neural network, and logistic regression 
trained on the multigraphs of order 4 using invariants 12–18 were no better 
classifiers than was the uniformly random assignment to different classes, 
as evidence by the Receiver Operating Characteristic analysis in which the 
area under the curve for each method was approximately 0.5.
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Figure 1: Topological invariants for RNA multigraphs of order 4.

In contrast, invariants 2 through 7 in Figure 2 are variations on the 
Balaban index for the graphs considered as simple graphs, and invariants 
24–32 are variations on the Balaban index for the graphs considered as 
multigraphs. Like invariants 11–19, there is insufficient discrimination in 
each of the remaining topological indices, which includes eigenvalues of 
the Laplacian, the clustering coefficient, variations on the Weiner index, 
variations on the Randic index, variations on the Platt index, various measures 
of centrality, associativity, and connectivity, topological coefficients, and 
stress. Unfortunately, even though the Balaban indices and their variations 
have better discriminatory ability, they alone do not characterize between 
those graphs verified as RNA and those that are unclassified.

Figure 2: Variations on the Balaban index.

First, we find that variations on the clique number yield another factor 
with the ability to discriminate between the RNA graphs and the unclassified 
graphs. Observe invariants 4, 5, and 6 in Figure 2. Second, invariants and 
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indices based on the line graphs retain more of the information contained 
in a multigraph than does a simple graph interpretation of a multigraph, 
while additionally allowing standard algorithms to calculate the invariants. 
For example, in Figure 3, invariants 7 through 12 are the chromatic index, 
the chromatic number, the circular chromatic index, the circular chromatic 
number, and the edge chromatic number, respectively, of line graphs of 
order 4.

Figure 3: Line graph invariants.

Invariants 16 through 18 are variations on the clustering coefficient, and 
invariant 33 is the network centrality of the line graphs. Invariant 21 is the 
diameter, invariant 27 is the independence number, and invariant 28 is the 
maximum degree of the line graphs. It is interesting to note that the Balaban 
index of the line graphs, invariant 4, is not a good discriminator.

RESULTS
There are 18 multigraphs of order 5 that have been verified so far. The 
consensus across several techniques—including clustering, machine 
learning, and nearest neighbor analysis—and across several different 
combinations of invariants and indices indicate that most, if not all, of the 
unverified graphs are RNA-like.

For example, a simple machine learning scheme is that of choosing one 
unverified graph to be in class 0 while the 18 verified are in class 1. The 
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neural network is then trained and the remaining unclassified RNA graphs 
are tested. Overwhelmingly, most if not all were classified as being in the 
same class as the 18 verified—that is, assuming only one non-RNA-like 
graph confirmed that all the graphs are RNA-like independent of which 
unverified graph was chosen to be RNA-like.

Regression, neural network, and support vector machine analysis 
similarly confirm the observation above. Nearly all the graphs of order 5 are 
predicted to be RNA-like in each run, and the ones that are predicted to be 
not RNA-like change from one run to the next.

Subsequently, we applied several different classifier/clustering 
techniques to graphs of order 5. Many different subsets of invariants and 
indices were used, but the invariant set suggested by the analysis above—
as well as the one that produced the best results—was the following:(i)
Four to eight variations of the Balaban index for multigraphs;(ii)Clique 
numbers;(iii)Chromatic numbers of the line graphs;(iv)Edge chromatic 
number of a line graphs;(v)Clique numbers of the line graphs;(vi)Diameters 
of the line graphs;(vii)Independence numbers of the line graphs;(viii)
Maximum degrees of the line graphs.

Likewise, many different partitions of the total data were used, including 
the restriction to order 5 graphs known to be RNA-like. Results were 
consistent across these variations.

In particular, clustering tended to group all unverified graphs of order 5 
with the 18 verified to be RNA-like (see Figure 4). To further investigate, 
we ranked the 100 unverified graphs using nearest neighbor analysis, and 
then we clustered in two groups—the 50 closest to and the 50 furthest 
from the 18 verified structures. The 50 closest to the 18 verified formed 
a single cluster with the 18 (using biclustering and hierarchical clustering 
in the statistical language R). The 50 furthest from those verified likewise 
clustered with the 18, but in a somewhat interesting manner. Having 
determined a 5-cluster scheme to be the best, we found that one cluster 
contained only one of the 18 verified graphs of order 5, and this graph (105 
in our numbering) was both a large distance from the other 17 and had no 
more than an r=0.49645 correlation with any of the other verified graphs.



Soft Computing and Machine Learning with Python340

Figure 4: Clustering of the 50 graphs most distant from the 18 verified as RNA-
like (in red).

Moreover, this was a rather large cluster containing 14 graphs of order 
5, and, likely, if there were any graphs of order 5 that are eventually deemed 
to not be RNA-like, they would come from this cluster. However, the results 
seem to further support an interpretation of all the graphs of order 5 being 
RNA-like.

Data Domain Description
This interpretation motivated us to consider the problem to be a data domain 
description problem, also known as a one-class classification problem. In 
particular, rather than predict whether or not a graph is RNA-like, we instead 
explore the degree to which the 18 verified graphs typify the entire class of 
RNA-like graphs.

To do so, we use a “cognitive learning” approach in association with 
an artificial neural network [14]. While this is typically performed with a 
support vector machine [15, 16], our goal is to examine how the unverified 
RNA multigraphs of order 5 are distributed about the 18 verified multigraphs. 
In particular, the graded response of the neural network can be used to 
implement a genetic algorithm for successively refining the learning set of 
a neural network.

Suppose that we are given a training set P that contains examples from 
only one class of data along with a test set S of unclassified data that may 
or may not contain examples from another class. The method begins with 
a prior assumption: patterns that are many standard deviations away from 
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any pattern in the training set form at least one other class of patterns. This 
assumption is used to generate an initial “negative example set”, N, of large 
σ patterns, after which the algorithm proceeds as follows.

(1)  Train the neural network with P ∪ N. 
(2)  Classify the set S with the neural network. The classifications are 

numbers in [0, 1]. 
(3)  Use the Receiver Operating Characteristic (ROC) or similar 

method to find the optimal threshold for distinguishing between 
patterns in N and patterns in P. 

(4)  Choose some number n of the highest scored patterns in S to be 
moved into P, being careful to stay above the threshold in step 3. 

(5)  Choose some number m of the lowest scored patterns in S to be 
moved into N, being careful to stay below the threshold in step 3.

(6)  Move the q patterns in N and the r patterns in P not correctly 
classified into the set S. 

(7)  Eliminate the large sigma patterns (after the first iteration).
The algorithm proceeds either until S is empty, or through some set 

number of iterations. In practice, changes to N, P, and S are based on upper 
and lower thresholds based on the results of step 3.

Although the process is closely supervised in practice, the goal is to 
mimic the cognitive learning process of regrouping via reinforcement. 
Ideally, if there is more than one class in the initial P ∪ S set of patterns, 
then a two-class classifier will emerge in the process. If there is only one 
class in P ∪ S, then the algorithm will proceed until all (or in practice, most) 
of the patterns initially in S are in P and all the patterns in N are large sigma 
patterns. Moreover, the rate at which a pattern moves into P can be used as a 
measure of how close those patterns are to those in P itself.

The algorithm was tested on several standardized data sets from various 
sources and repositories. When there are two or more distinct classes, which 
is to say that S contains one or more classes distinct from P initially, then the 
algorithm stabilizes to a distinct non-P class containing N in each iteration. 
When there is only one class overall, then the set N is eventually empty. 
Within a domain description problem, the final set of patterns in N,by which 
we denote Nf , is significant in that it differs the most in some sense from 
the initial P class.

The latter was the case with the classification of the RNAlike multigraphs 
of order 5. In each of 10 trials, the set N became empty after a relatively 
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few number of iterations. However, the final set Nf differed only slightly 
between trials and is accurately represented by 9 graphs. The graphs in Nf 
likewise were quite similar, in that each of the graphs contained a triangle 
with at least one vertex of degree 4.

Moreover, as N began to lose graphs in the algorithm above, the graphs 
that tended to remain the longest were those graphs containing triangles 
with at least one vertex having degree 3 or 4, as illustrated in Figure 5. 
Finally, the set Nf had no discernible relationship to the clustering or nearest 
neighbor results discussed earlier, further suggesting that all the multigraphs 
of order 5 are RNA-like.

Figure 5: Two graphs from Nf.
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Figure 6: The 118 multigraphs of order 5.

CONCLUSION
The most reasonable conclusion of this extensive analysis is that all the 
graphs of order 5 are likely to be verified as RNA structures. Indeed, across 
several variations of nearest neighbor analysis, machine learning, and 
clustering techniques using a variety of subsets of different graph invariants 
and topological indices, we consistently found that more than 90% of the 
unclassified graphs were closer to one of the 18 already verified as an RNA 
structure than the 18 were to each other.

This result is not surprising. Initial classification of the graph structures 
in the database RAG classified more than half of the dual graphs of order 4 
as not RNA-like in structure. However, as more secondary RNA structures 
were identified, an update to the RAG database now predicts only a third to 
be not RNA-like in structure [9]. We predict that as the number of new motifs 
continues to increase, eventually almost all structures will be classified as 
RNA-like or verified as an RNA topology. Does this mean that the graph 
model in the database is too coarse to be of value and therefore should not be 
pursued as a model to characterize secondary RNA structure? No, not at all. 
It does suggest however that the model needs to contain more information 
in order to be discriminating. One way this can be achieved is by assigning 
weights to the vertices and edges based on the number of nucleotides, 
bases, and bonds in the respective stems and regions with unpaired bases. 
Karklin et al. [17] developed a labeled dual graph representation and defined 
a similarity measure using marginalized kernels. Using this measure they 
train support vector machine classifiers to identify known families of 
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RNAs from random RNAs with similar statistics. They achieved better 
than seventy percent accuracy using these biologically relevant vertex and 
edge labels. Efforts to synthesize RNA molecules for various purposes such 
as novel drug applications as well as efforts to develop efficient genome-
wide screens for RNA molecules from existing families may be aided by 
the graph representation in the RAG database when coupled with vertex 
and edge weighting schemes. Indeed, the authors have successfully used 
vertex weighted graphs to characterize the residue structure of amino acids 
in order to build a predictive model of binding affinity levels resulting from 
single point mutations [18]. Future work naturally points to using vertex 
weighted graphs for the characterization of a secondary RNA structure. 
Information revealed by the labeled dual graph representation which shows 
that a secondary RNA structure is not consistent with those known to be 
found in nature can be considered a valuable resource for biotechnological 
applications, automated discovery of uncharacterized RNA molecules, and 
computationally efficient algorithms that can be used in conjunction with 
other methods for RNA structure identification.
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