

L E A R N O B J E C T
O R I E N T E D P Y T H O N

Python Technologies

I would like to dedicate the book to the students who will be using it. I
wish you future career success and hope you never stop learning.

CONTENTS

Title Page
Dedication
Preface
Introduction
Environment Setup
Data Structures
Building Blocks
Object Oriented Shortcuts
Inheritance and Polymorphism
Python Design Pattern
Advanced Features
Files and Strings
Exception and Exception Classes
Object Serialization
Libraries
Since you're still here....

PREFACE

Python has been an object-oriented language since it existed. In this book we
will try to get in-depth features of OOPS in Python programming.

This book has been prepared for the beginners and intermediate to help them
understand the Python Oops features and concepts through programming.

Understanding on basic of Python programming language will help to
understand and learn quickly. If you are new to programming, it is
recommended to first go through “Python for beginners” books.

INTRODUCTION
Programming languages are emerging constantly, and so are different
methodologies.Object-oriented programming is one such methodology that
has become quite popular over past few years.
This chapter talks about the features of Python programming language that
makes it an object-oriented programming language.

Language Programming Classification Scheme
Python can be characterized under object-oriented programming
methodologies. The following image shows the characteristics of various
programming languages. Observe the features of Python that makes it
object-oriented.

Langauage
Classes Categories Langauages

Programming
Paradigm

Procedural C, C++, C#, Objective-C,
java, Go

Scripting CoffeeScript, JavaScript,
Python, Perl, Php, Ruby

Functional Clojure, Eralang, Haskell,
Scala

Compilation Class Static C, C++, C#, Objective-C,
java, Go, Haskell, Scala

Dynamic CoffeeScript, JavaScript,
Python, Perl, Php, Ruby,
Clojure, Erlang

Type Class Strong C#, java, Go, Python,
Ruby, Clojure, Erlang,
Haskell, Scala

Weak C, C++, C#, Objective-C,
CoffeeScript, JavaScript,
Perl, Php

Memory Class Managed Others

Unmanaged C, C++, C#, Objective-C

What is Object Oriented Programming?
Object Oriented means directed towards objects. In other words, it means
functionally directed towards modelling objects. This is one of the many
techniques used for modelling complex systems by describing a collection of
interacting objects via their data and behavior.

Python, an Object Oriented programming (OOP), is a way of programming
that focuses on using objects and classes to design and build applications..
Major pillars of Object Oriented Programming (OOP) are Inheritance,
Polymorphism, Abstraction, ad Encapsulation.
Object Oriented Analysis(OOA) is the process of examining a problem,
system or task and identifying the objects and interactions between them.

Why to Choose Object Oriented
Programming?
Python was designed with an object-oriented approach. OOP offers the
following advantages −

Provides a clear program structure, which makes it easy to map
real world problems and their solutions.

Facilitates easy maintenance and modification of existing code.
Enhances program modularity because each object exists

independently and new features can be added easily without
disturbing the existing ones.

Presents a good framework for code libraries where supplied
components can be easily adapted and modified by the
programmer.

Imparts code reusability

Procedural vs. Object Oriented Programming
Procedural based programming is derived from structural programming
based on the concepts of functions/procedure/routines. It is easy to access
and change the data in procedural oriented programming. On the other hand,
Object Oriented Programming (OOP) allows decomposition of a problem
into a number of units called objects and then build the data and functions
around these objects. It emphasis more on the data than procedure or
functions. Also in OOP, data is hidden and cannot be accessed by external
procedure.

The table in the following image shows the major differences between POP
and OOP approach.
Difference between Procedural Oriented Programming(POP)vs. Object
Oriented Programming(OOP).

Procedural
Oriented

Programming

ObjectOriented
Programming

Based On
In Pop,entire focus is
on data and functions

Oops is based on a real
world scenario.Whole
program is divided into
small parts called object

Reusability Limited Code reuse Code reuse

Approach Top down Approach Object focused Design

Access specifiers Not any Public, private and
Protected

Data movement

Data can move freely
from functions to
function in the
system

In Oops, data can move
and communicate with
each other through
member functions

In pop, most
functions uses global
data for sharing that

In Oops,data cannot
move freely from
method to method,it

Data Access can be accessed
freely from function
to function in the
system

can be kept in public or
private so we can
control the access of
data

Data Hiding
In pop, so specific
way to hide data, so
little bit less secure

It provides data hiding,
so much more secure

Overloading Not possible Functions and Operator
Overloading

Example-
Languages

C, VB, Fortran,
Pascal C++, Python, Java, C#

Abstraction
Uses abstraction at
procedure level

Uses abstraction at
class and object Level

Principles of Object Oriented Programming
Object Oriented Programming (OOP) is based on the concept
of objects rather than actions, and data rather than logic. In order for a
programming language to be object-oriented, it should have a mechanism to
enable working with classes and objects as well as the implementation and
usage of the fundamental object-oriented principles and concepts namely
inheritance, abstraction, encapsulation and polymorphism.

Let us understand each of the pillars of object-oriented programming in brief
−

Encapsulation
This property hides unnecessary details and makes it easier to manage the
program structure. Each object’s implementation and state are hidden behind
well-defined boundaries and that provides a clean and simple interface for
working with them. One way to accomplish this is by making the data
private.

Inheritance
Inheritance, also called generalization, allows us to capture a hierarchal
relationship between classes and objects. For instance, a ‘fruit’ is a
generalization of ‘orange’. Inheritance is very useful from a code reuse
perspective.

Abstraction

This property allows us to hide the details and expose only the essential
features of a concept or object. For example, a person driving a scooter
knows that on pressing a horn, sound is emitted, but he has no idea about
how the sound is actually generated on pressing the horn.

Polymorphism
Poly-morphism means many forms. That is, a thing or action is present in
different forms or ways. One good example of polymorphism is constructor
overloading in classes.

Object-Oriented Python
The heart of Python programming is object and OOP, however you need
not restrict yourself to use the OOP by organizing your code into classes.
OOP adds to the whole design philosophy of Python and encourages a clean
and pragmatic way to programming. OOP also enables in writing bigger and
complex programs.

Modules vs. Classes and Objects

Modules are like “Dictionaries”
When working on Modules, note the following points −

A Python module is a package to encapsulate reusable code.
Modules reside in a folder with a __init__.py file on it.
Modules contain functions and classes.
Modules are imported using the import keyword.

Recall that a dictionary is a key-value pair. That means if you have a
dictionary with a key EmployeID and you want to retrieve it, then you will
have to use the following lines of code −

employee = {“EmployeID”: “Employee Unique Identity!”}

print (employee [‘EmployeID])

You will have to work on modules with the following process −
A module is a Python file with some functions or variables in it.
Import the file you need.
Now, you can access the functions or variables in that module

with the ‘.’ (dot) Operator.

Consider a module named employee.py with a function in it
called employee. The code of the function is given below −

this goes in employee.py
def EmployeID():

print (“Employee Unique Identity!”)

Now import the module and then access the function EmployeID −

import employee
employee. EmployeID()

You can insert a variable in it named Age, as shown −

def EmployeID():
print (“Employee Unique Identity!”)

just a variable
Age = “Employee age is **”

Now, access that variable in the following way −

import employee
employee.EmployeID()
print(employee.Age)

Now, let’s compare this to dictionary −

Employee[‘EmployeID’] # get EmployeID from employee
Employee.employeID() # get employeID from the module
Employee.Age # get access to variable

Notice that there is common pattern in Python −

Take a key = value style container
Get something out of it by the key’s name

When comparing module with a dictionary, both are similar, except with the
following −

In the case of the dictionary, the key is a string and the syntax
is [key].

In the case of the module, the key is an identifier, and the
syntax is .key.

Classes are like Modules
Module is a specialized dictionary that can store Python code so you can get
to it with the ‘.’ Operator. A class is a way to take a grouping of functions
and data and place them inside a container so you can access them with the
‘.‘operator.
If you have to create a class similar to the employee module, you can do it
using the following code −

class employee(object):
def __init__(self):

self. Age = “Employee Age is ##”
def EmployeID(self):

print (“This is just employee unique identity”)

Note − Classes are preferred over modules because you can reuse them as
they are and without much interference. While with modules, you have only
one with the entire program.

Objects are like Mini-imports
A class is like a mini-module and you can import in a similar way as you do
for classes, using the concept called instantiate. Note that when you
instantiate a class, you get an object.
You can instantiate an object, similar to calling a class like a function, as
shown −

this_obj = employee() # Instantiatethis_obj.EmployeID() # get EmployeId
from the class
print(this_obj.Age) # get variable Age

You can do this in any of the following three ways −

dictionary style
Employee[‘EmployeID’]
module style
Employee.EmployeID()
Print(employee.Age)
Class style
this_obj = employee()
this_obj.employeID()
Print(this_obj.Age)

ENVIRONMENT SETUP
This chapter will explain in detail about setting up the Python environment
on your local computer.

Prerequisites and Toolkits
Before you proceed with learning further on Python, we suggest you to
check whether the following prerequisites are met −

Latest version of Python is installed on your computer
An IDE or text editor is installed
You have basic familiarity to write and debug in Python, that is

you can do the following in Python −
Able to write and run Python programs.
Debug programs and diagnose errors.
Work with basic data types.
Write for loops, while loops, and if statements
Code functions

If you don’t have any programming language experience, you can find lots
of beginner tutorials in Python on
https://www.tutorialpoints.com/

Installing Python
The following steps show you in detail how to install Python on your local
computer −
Step 1 − Go to the official Python website https://www.python.org/, click

on the Downloads menu and choose the latest or any stable version of your
choice.

Step 2 − Save the Python installer exe file that you’re downloading and once
you have downloaded it, open it. Click on Run and choose Next option by
default and finish the installation.

Step 3 − After you have installed, you should now see the Python menu as
shown in the image below. Start the program by choosing IDLE (Python
GUI).

This will start the Python shell. Type in simple commands to check the
installation.

Choosing an IDE
An Integrated Development Environment is a text editor geared towards
software development. You will have to install an IDE to control the flow of
your programming and to group projects together when working on Python.
Here are some of IDEs avaialable online. You can choose one at your
convenience.

Pycharm IDE
Komodo IDE
Eric Python IDE

Note − Eclipse IDE is mostly used in Java, however it has a Python plugin.

Pycharm

Pycharm, the cross-platform IDE is one of the most popular IDE currently
available. It provides coding assistance and analysis with code completion,
project and code navigation, integrated unit testing, version control
integration, debugging and much more

Download link
https://www.jetbrains.com/pycharm/download/#section=windows
Languages Supported − Python, HTML, CSS, JavaScript, Coffee Script,
TypeScript, Cython,AngularJS, Node.js, template languages.

Screenshot

Why to Choose?

PyCharm offers the following features and benefits for its users −
Cross platform IDE compatible with Windows, Linux, and Mac
OS
Includes Django IDE, plus CSS and JavaScript support
Includes thousands of plugins, integrated terminal and version
control
Integrates with Git, SVN and Mercurial
Offers intelligent editing tools for Python
Easy integration with Virtualenv, Docker and Vagrant
Simple navigation and search features
Code analysis and refactoring
Configurable injections
Supports tons of Python libraries
Contains Templates and JavaScript debuggers
Includes Python/Django debuggers
Works with Google App Engine, additional frameworks and
libraries.
Has customizable UI, VIM emulation available

Komodo IDE

It is a polyglot IDE which supports 100+ languages and basically for
dynamic languages such as Python, PHP and Ruby. It is a commercial IDE
available for 21 days free trial with full functionality. ActiveState is the

software company managing the development of the Komodo IDE. It also
offers a trimmed version of Komodo known as Komodo Edit for simple
programming tasks.
This IDE contains all kinds of features from most basic to advanced level. If
you are a student or a freelancer, then you can buy it almost half of the
actual price. However, it’s completely free for teachers and professors from
recognized institutions and universities.
It got all the features you need for web and mobile development, including
support for all your languages and frameworks.

Download link
The download links for Komodo Edit(free version) and Komodo IDE(paid
version) are as given here −
Komodo Edit (free)
https://www.activestate.com/komodo-edit
Komodo IDE (paid)
https://www.activestate.com/komodo-ide/downloads/ide

Screenshot

Why to Choose?
Powerful IDE with support for Perl, PHP, Python, Ruby and many
more.
Cross-Platform IDE.

It includes basic features like integrated debugger support, auto complete,
Document Object Model(DOM) viewer, code browser, interactive shells,
breakpoint configuration, code profiling, integrated unit testing. In short, it is
a professional IDE with a host of productivity-boosting features.

Eric Python IDE

It is an open-source IDE for Python and Ruby. Eric is a full featured editor

and IDE, written in Python. It is based on the cross platform Qt GUI toolkit,
integrating the highly flexible Scintilla editor control. The IDE is very much
configurable and one can choose what to use and what not. You can
download Eric IDE from below link:
https://eric-ide.python-projects.org/eric-download.html

Why to Choose
Great indentation, error highlighting.
Code assistance
Code completion
Code cleanup with PyLint
Quick search
Integrated Python debugger.

Screenshot

Choosing a Text Editor
You may not always need an IDE. For tasks such as learning to code with
Python or Arduino, or when working on a quick script in shell script to help
you automate some tasks a simple and light weight code-centric text editor
will do. Also many text editors offer features such as syntax highlighting and
in-program script execution, similar to IDEs. Some of the text editors are
given here −

Atom
Sublime Text
Notepad++

Atom Text Editor

Atom is a hackable text editor built by the team of GitHub. It is a free and
open source text and code editor which means that all the code is available
for you to read, modify for your own use and even contribute improvements.
It is a cross-platform text editor compatible for macOS, Linux, and
Microsoft Windows with support for plug-ins written in Node.js and
embedded Git Control.

Download link
https://atom.io/

Screenshot

Languages Supported
C/C++, C#, CSS, CoffeeScript, HTML, JavaScript, Java, JSON, Julia,
Objective-C, PHP, Perl, Python, Ruby on Rails, Ruby, Shell script, Scala,
SQL, XML, YAML and many more.

Sublime Text Editor

Sublime text is a proprietary software and it offers you a free trial version to
test it before you purchase it. According to stackoverflow.com, it’s the
fourth most popular Development Environment.
Some of the advantages it provides is its incredible speed, ease of use and
community support. It also supports many programming languages and

mark-up languages, and functions can be added by users with plugins,
typically community-built and maintained under free-software licenses.

Screenshot

Language supported
Python, Ruby, JavaScript etc.

Why to Choose?
Customize key bindings, menus, snippets, macros, completions

and more.
Auto completion feature

Quickly Insert Text & code with sublime text snippets using
snippets, field markers and place holders

Opens Quickly
Cross Platform support for Mac, Linux and Windows.

Jump the cursor to where you want to go
Select Multiple Lines, Words and Columns

Notepad ++

It’s a free source code editor and Notepad replacement that supports several
languages from Assembly to XML and including Python. Running in the
MS windows environment, its use is governed by GPL license. In addition to
syntax highlighting, Notepad++ has some features that are particularly
useful to coders.

Screenshot

Key Features
Syntax highlighting and syntax folding
PCRE (Perl Compatible Regular Expression) Search/Replace
Entirely customizable GUI
SAuto completion
Tabbed editing
Multi-View
Multi-Language environment
Launchable with different arguments

Language Supported
Almost every language (60+ languages) like Python, C, C++, C#,
Java etc.

DATA STRUCTURES
Python data structures are very intuitive from a syntax point of view and
they offer a large choice of operations. You need to choose Python data
structure depending on what the data involves, if it needs to be modified, or
if it is a fixed data and what access type is required, such as at the
beginning/end/random etc.

Lists
A List represents the most versatile type of data structure in Python. A list is
a container which holds comma-separated values (items or elements)
between square brackets. Lists are helpful when we want to work with
multiple related values. As lists keep data together, we can perform the same
methods and operations on multiple values at once. Lists indices start from
zero and unlike strings, lists are mutable.

Data Structure - List
>>>
>>> # Any Empty List
>>> empty_list = []
>>>
>>> # A list of String
>>> str_list = ['Life', 'Is', 'Beautiful']
>>> # A list of Integers
>>> int_list = [1, 4, 5, 9, 18]
>>>
>>> #Mixed items list
>>> mixed_list = ['This', 9, 'is', 18, 45.9, 'a', 54, 'mixed', 99, 'list']
>>> # To print the list

>>>
>>> print(empty_list)
[]
>>> print(str_list)
['Life', 'Is', 'Beautiful']
>>> print(type(str_list))
<class 'list'>
>>> print(int_list)
[1, 4, 5, 9, 18]
>>> print(mixed_list)
['This', 9, 'is', 18, 45.9, 'a', 54, 'mixed', 99, 'list']

Accessing Items in Python List
Each item of a list is assigned a number – that is the index or position of that
number.Indexing always start from zero, the second index is one and so
forth. To access items in a list, we can use these index numbers within a
square bracket. Observe the following code for example −

>>> mixed_list = ['This', 9, 'is', 18, 45.9, 'a', 54, 'mixed', 99, 'list']
>>>
>>> # To access the First Item of the list
>>> mixed_list[0]
'This'
>>> # To access the 4th item
>>> mixed_list[3]
18
>>> # To access the last item of the list
>>> mixed_list[-1]
'list'

Empty Objects
Empty Objects are the simplest and most basic Python built-in types. We
have used them multiple times without noticing and have extended it to

every class we have created. The main purpose to write an empty class is to
block something for time being and later extend and add a behavior to it.
To add a behavior to a class means to replace a data structure with an object
and change all references to it. So it is important to check the data, whether
it is an object in disguise, before you create anything. Observe the following
code for better understanding:

>>> #Empty objects
>>>
>>> obj = object()
>>> obj.x = 9
Traceback (most recent call last):
File "<pyshell#3>", line 1, in <module>
obj.x = 9
AttributeError: 'object' object has no attribute 'x'

So from above, we can see it’s not possible to set any attributes on an object
that was instantiated directly. When Python allows an object to have
arbitrary attributes, it takes a certain amount of system memory to keep track
of what attributes each object has, for storing both the attribute name and its
value. Even if no attributes are stored, a certain amount of memory is
allocated for potential new attributes.
So Python disables arbitrary properties on object and several other built-ins,
by default.

>>> # Empty Objects
>>>
>>> class EmpObject:

pass
>>> obj = EmpObject()
>>> obj.x = 'Hello, World!'
>>> obj.x
'Hello, World!'

Hence, if we want to group properties together, we could store them in an
empty object as shown in the code above. However, this method is not
always suggested. Remember that classes and objects should only be used
when you want to specify both data and behaviors.

Tuples
Tuples are similar to lists and can store elements. However, they are
immutable, so we cannot add, remove or replace objects. The primary
benefits tuple provides because of its immutability is that we can use them as
keys in dictionaries, or in other locations where an object requires a hash
value.
Tuples are used to store data, and not behavior. In case you require behavior
to manipulate a tuple, you need to pass the tuple into a function(or method
on another object) that performs the action.
As tuple can act as a dictionary key, the stored values are different from each
other. We can create a tuple by separating the values with a comma. Tuples
are wrapped in parentheses but not mandatory. The following code shows
two identical assignments .

>>> stock1 = 'MSFT', 95.00, 97.45, 92.45
>>> stock2 = ('MSFT', 95.00, 97.45, 92.45)
>>> type (stock1)
<class 'tuple'>
>>> type(stock2)
<class 'tuple'>
>>> stock1 == stock2
True
>>>

Defining a Tuple
Tuples are very similar to list except that the whole set of elements are
enclosed in parentheses instead of square brackets.
Just like when you slice a list, you get a new list and when you slice a tuple,
you get a new tuple.

>>> tupl = ('Tuple','is', 'an','IMMUTABLE', 'list')
>>> tupl
('Tuple', 'is', 'an', 'IMMUTABLE', 'list')
>>> tupl[0]

'Tuple'
>>> tupl[-1]
'list'
>>> tupl[1:3]
('is', 'an')

Python Tuple Methods
The following code shows the methods in Python tuples −

>>> tupl
('Tuple', 'is', 'an', 'IMMUTABLE', 'list')
>>> tupl.append('new')
Traceback (most recent call last):

File "<pyshell#148>", line 1, in <module>
tupl.append('new')

AttributeError: 'tuple' object has no attribute 'append'
>>> tupl.remove('is')
Traceback (most recent call last):

File "<pyshell#149>", line 1, in <module>
tupl.remove('is')

AttributeError: 'tuple' object has no attribute 'remove'
>>> tupl.index('list')
4
>>> tupl.index('new')
Traceback (most recent call last):

File "<pyshell#151>", line 1, in <module>
tupl.index('new')

ValueError: tuple.index(x): x not in tuple
>>> "is" in tupl
True
>>> tupl.count('is')
1

From the code shown above, we can understand that tuples are immutable
and hence −

You cannot add elements to a tuple.

You cannot append or extend a method.
You cannot remove elements from a tuple.
Tuples have no remove or pop method.
Count and index are the methods available in a tuple.

Dictionary
Dictionary is one of the Python’s built-in data types and it defines one-to-
one relationships between keys and values.

Defining Dictionaries
Observe the following code to understand about defining a dictionary −

>>> # empty dictionary
>>> my_dict = {}
>>>
>>> # dictionary with integer keys
>>> my_dict = { 1:'msft', 2: 'IT'}
>>>
>>> # dictionary with mixed keys
>>> my_dict = {'name': 'Aarav', 1: [2, 4, 10]}
>>>
>>> # using built-in function dict()
>>> my_dict = dict({1:'msft', 2:'IT'})
>>>
>>> # From sequence having each item as a pair
>>> my_dict = dict([(1,'msft'), (2,'IT')])
>>>
>>> # Accessing elements of a dictionary
>>> my_dict[1]
'msft'
>>> my_dict[2]
'IT'
>>> my_dict['IT']

Traceback (most recent call last):
File "<pyshell#177>", line 1, in <module>
my_dict['IT']

KeyError: 'IT'
>>>

From the above code we can observe that:
First we create a dictionary with two elements and assign it to

the variable my_dict. Each element is a key-value pair, and the
whole set of elements is enclosed in curly braces.

The number 1 is the key and msft is its value. Similarly, 2 is the
key and IT is its value.

You can get values by key, but not vice-versa. Thus when we
try my_dict[‘IT’] , it raises an exception, because IT is not a key.

Modifying Dictionaries
Observe the following code to understand about modifying a dictionary −

>>> # Modifying a Dictionary
>>>
>>> my_dict
{1: 'msft', 2: 'IT'}
>>> my_dict[2] = 'Software'
>>> my_dict
{1: 'msft', 2: 'Software'}
>>>
>>> my_dict[3] = 'Microsoft Technologies'
>>> my_dict
{1: 'msft', 2: 'Software', 3: 'Microsoft Technologies'}

From the above code we can observe that −
You cannot have duplicate keys in a dictionary. Altering the

value of an existing key will delete the old value.
You can add new key-value pairs at any time.
Dictionaries have no concept of order among elements. They

are simple unordered collections.

Mixing Data types in a Dictionary
Observe the following code to understand about mixing data types in a
dictionary −

>>> # Mixing Data Types in a Dictionary
>>>
>>> my_dict
{1: 'msft', 2: 'Software', 3: 'Microsoft Technologies'}
>>> my_dict[4] = 'Operating System'
>>> my_dict
{1: 'msft', 2: 'Software', 3: 'Microsoft Technologies', 4: 'Operating System'}
>>> my_dict['Bill Gates'] = 'Owner'
>>> my_dict
{1: 'msft', 2: 'Software', 3: 'Microsoft Technologies', 4: 'Operating System',
'Bill Gates': 'Owner'}

From the above code we can observe that −
Not just strings but dictionary value can be of any data type

including strings, integers, including the dictionary itself.
Unlike dictionary values, dictionary keys are more restricted,

but can be of any type like strings, integers or any other.

Deleting Items from Dictionaries
Observe the following code to understand about deleting items from a
dictionary −

>>> # Deleting Items from a Dictionary
>>>
>>> my_dict
{1: 'msft', 2: 'Software', 3: 'Microsoft Technologies', 4: 'Operating System',
'Bill Gates': 'Owner'}
>>>
>>> del my_dict['Bill Gates']

>>> my_dict
{1: 'msft', 2: 'Software', 3: 'Microsoft Technologies', 4: 'Operating System'}
>>>
>>> my_dict.clear()
>>> my_dict
{}

From the above code we can observe that −
del − lets you delete individual items from a dictionary by key.
clear − deletes all items from a dictionary.

Sets
Set() is an unordered collection with no duplicate elements. Though
individual items are immutable, set itself is mutable, that is we can add or
remove elements/items from the set. We can perform mathematical
operations like union, intersection etc. with set.
Though sets in general can be implemented using trees, set in Python can be
implemented using a hash table. This allows it a highly optimized method
for checking whether a specific element is contained in the set

Creating a set
A set is created by placing all the items (elements) inside curly braces {},
separated by comma or by using the built-in function set(). Observe the
following lines of code −

>>> #set of integers
>>> my_set = {1,2,4,8}
>>> print(my_set)
{8, 1, 2, 4}
>>>
>>> #set of mixed datatypes
>>> my_set = {1.0, "Hello World!", (2, 4, 6)}
>>> print(my_set)
{1.0, (2, 4, 6), 'Hello World!'}

>>>

Methods for Sets
Observe the following code to understand about methods for sets −

>>> >>> #METHODS FOR SETS
>>>
>>> #add(x) Method
>>> topics = {'Python', 'Java', 'C#'}
>>> topics.add('C++')
>>> topics
{'C#', 'C++', 'Java', 'Python'}
>>>
>>> #union(s) Method, returns a union of two set.
>>> topics
{'C#', 'C++', 'Java', 'Python'}
>>> team = {'Developer', 'Content Writer', 'Editor','Tester'}
>>> group = topics.union(team)
>>> group
{'Tester', 'C#', 'Python', 'Editor', 'Developer', 'C++', 'Java', 'Content
Writer'}
>>> # intersets(s) method, returns an intersection of two sets
>>> inters = topics.intersection(team)
>>> inters
set()
>>>
>>> # difference(s) Method, returns a set containing all the elements of
invoking set but not of the second set.
>>>
>>> safe = topics.difference(team)
>>> safe
{'Python', 'C++', 'Java', 'C#'}
>>>
>>> diff = topics.difference(group)
>>> diff
set()

>>> #clear() Method, Empties the whole set.
>>> group.clear()
>>> group
set()
>>>

Operators for Sets
Observe the following code to understand about operators for sets −

>>> # PYTHON SET OPERATIONS
>>>
>>> #Creating two sets
>>> set1 = set()
>>> set2 = set()
>>>
>>> # Adding elements to set
>>> for i in range(1,5):

set1.add(i)
>>> for j in range(4,9):

set2.add(j)
>>> set1
{1, 2, 3, 4}
>>> set2
{4, 5, 6, 7, 8}
>>>
>>> #Union of set1 and set2
>>> set3 = set1 | set2 # same as set1.union(set2)
>>> print('Union of set1 & set2: set3 = ', set3)
Union of set1 & set2: set3 = {1, 2, 3, 4, 5, 6, 7, 8}
>>>
>>> #Intersection of set1 & set2
>>> set4 = set1 & set2 # same as set1.intersection(set2)
>>> print('Intersection of set1 and set2: set4 = ', set4)
Intersection of set1 and set2: set4 = {4}
>>>
>>> # Checking relation between set3 and set4

>>> if set3 > set4: # set3.issuperset(set4)
print('Set3 is superset of set4')

elif set3 < set4: #set3.issubset(set4)
print('Set3 is subset of set4')

else: #set3 == set4
print('Set 3 is same as set4')

Set3 is superset of set4
>>>
>>> # Difference between set3 and set4
>>> set5 = set3 - set4
>>> print('Elements in set3 and not in set4: set5 = ', set5)
Elements in set3 and not in set4: set5 = {1, 2, 3, 5, 6, 7, 8}
>>>
>>> # Check if set4 and set5 are disjoint sets
>>> if set4.isdisjoint(set5):

print('Set4 and set5 have nothing in common\n')
Set4 and set5 have nothing in common
>>> # Removing all the values of set5
>>> set5.clear()
>>> set5 set()

BUILDING BLOCKS
In this chapter, we will discuss object oriented terms and programming
concepts in detail.Class is a just a factory for an instance. This factory
contains the blueprint which describes how to make the instances. An
instances or object are constructed from the class. In most cases, we can
have more than one instances of a class. Every instance has a set of attribute
and these attributes are defined in a class, so every instance of a particular
class is expected to have the same attributes.

Class Bundles : Behavior and State
A class will let you bundle together the behavior and state of an object.
Observe the following diagram for better understanding −

The following points are worth notable when discussing class bundles −
The word behavior is identical to function – it is a piece of

code that does something (or implements a behavior)
The word state is identical to variables – it is a place to store

values within a class.
When we assert a class behavior and state together, it means

that a class packages functions and variables.

Classes have methods and attributes
In Python, creating a method defines a class behavior. The word method is
the OOP name given to a function that is defined within a class. To sum up −

Class functions − is synonym for methods
Class variables − is synonym for name attributes.
Class − a blueprint for an instance with exact behavior.
Object − one of the instances of the class, perform functionality

defined in the class.
Type − indicates the class the instance belongs to
Attribute − Any object value: object.attribute
Method − a “callable attribute” defined in the class

Observe the following piece of code for example −

var = “Hello, John”
print(type (var)) # < type ‘str’> or <class 'str'>
print(var.upper()) # upper() method is called, HELLO, JOHN

Creation and Instantiation
The following code shows how to create our first class and then its instance.

class MyClass(object):
pass

Create first instance of MyClass
this_obj = MyClass()
print(this_obj)
Another instance of MyClass
that_obj = MyClass()
print (that_obj)

Here we have created a class called MyClass and which does not do any
task. The argument object in MyClass class involves class inheritance and
will be discussed in later chapters. pass in the above code indicates that this
block is empty, that is it is an empty class definition.
Let us create an instance this_obj of MyClass() class and print it as shown −

<__main__.MyClass object at 0x03B08E10>
<__main__.MyClass object at 0x0369D390>

Here, we have created an instance of MyClass. The hex code refers to the
address where the object is being stored. Another instance is pointing to
another address.
Now let us define one variable inside the class MyClass() and get the
variable from the instance of that class as shown in the following code −

class MyClass(object):
var = 9

Create first instance of MyClass
this_obj = MyClass()
print(this_obj.var)

Another instance of MyClass

that_obj = MyClass()
print (that_obj.var)

Output
You can observe the following output when you execute the code given
above −

9
9
As instance knows from which class it is instantiated, so when requested for
an attribute from an instance, the instance looks for the attribute and the
class. This is called the attribute lookup.

Instance Methods
A function defined in a class is called a method. An instance method
requires an instance in order to call it and requires no decorator. When
creating an instance method, the first parameter is always self. Though we
can call it (self) by any other name, it is recommended to use self, as it is a
naming convention.

class MyClass(object):
var = 9
def firstM(self):

print("hello, World")
obj = MyClass()
print(obj.var)
obj.firstM()

Output
You can observe the following output when you execute the code given
above −
9
hello, World
Note that in the above program, we defined a method with self as argument.
But we cannot call the method as we have not declared any argument to it.

class MyClass(object):
def firstM(self):

print("hello, World")
print(self)

obj = MyClass()

obj.firstM()
print(obj)

Output
You can observe the following output when you execute the code given
above −
hello, World
<__main__.MyClass object at 0x036A8E10>
<__main__.MyClass object at 0x036A8E10>

Encapsulation
Encapsulation is one of the fundamentals of OOP. OOP enables us to hide
the complexity of the internal working of the object which is advantageous
to the developer in the following ways −

Simplifies and makes it easy to understand to use an object
without knowing the internals.

Any change can be easily manageable.

Object-oriented programming relies heavily on encapsulation. The terms
encapsulation and abstraction (also called data hiding) are often used as
synonyms. They are nearly synonymous, as abstraction is achieved through
encapsulation.
Encapsulation provides us the mechanism of restricting the access to some
of the object’s components, this means that the internal representation of an
object can’t be seen from outside of the object definition. Access to this data
is typically achieved through special methods − Getters and Setters.
This data is stored in instance attributes and can be manipulated from
anywhere outside the class. To secure it, that data should only be accessed
using instance methods. Direct access should not be permitted.

class MyClass(object):
def setAge(self, num):

self.age = num

def getAge(self):
return self.age

zack = MyClass()
zack.setAge(45)
print(zack.getAge())

zack.setAge("Fourty Five")
print(zack.getAge())

Output
You can observe the following output when you execute the code given
above −
45
Fourty Five
The data should be stored only if it is correct and valid, using Exception
handling constructs. As we can see above, there is no restriction on the user
input to setAge() method. It could be a string, a number, or a list. So we
need to check onto above code to ensure correctness of being stored.

class MyClass(object):
def setAge(self, num):

self.age = num

def getAge(self):
return self.age

zack = MyClass()
zack.setAge(45)
print(zack.getAge())
zack.setAge("Fourty Five")
print(zack.getAge())

Init Constructor
The __init__ method is implicitly called as soon as an object of a class is

instantiated.This will initialize the object.

x = MyClass()

The line of code shown above will create a new instance and assigns this
object to the local variable x.
The instantiation operation, that is calling a class object, creates an empty
object. Many classes like to create objects with instances customized to a
specific initial state. Therefore, a class may define a special method named ‘
__init__() ‘ as shown −

def __init__(self):
self.data = []

Python calls __init__ during the instantiation to define an additional attribute
that should occur when a class is instantiated that may be setting up some
beginning values for that object or running a routine required on
instantiation. So in this example, a new, initialized instance can be obtained
by −

x = MyClass()

The __init__() method can have single or multiple arguments for a greater
flexibility. The init stands for initialization, as it initializes attributes of the
instance. It is called the constructor of a class.

class myclass(object):
def __init__(self,aaa, bbb):

self.a = aaa
self.b = bbb

x = myclass(4.5, 3)
print(x.a, x.b)

Output
4.5 3

Class Attributes
The attribute defined in the class is called “class attributes’ and the attributes
defined in the function is called ‘instance attributes’. While defining, these
attributes are not prefixed by self, as these are the property of the class and
not of a particular instance.
The class attributes can be accessed by the class itself (
className.attributeName) as well as by the instances of the class
(inst.attributeName). So, the instances have access to both the instance
attribute as well as class attributes.

>>> class myclass():
age = 21

>>> myclass.age
21
>>> x = myclass()
>>> x.age
21
>>>

A class attribute can be overridden in an instance, even though it is not a
good method to break encapsulation.
There is a lookup path for attributes in Python. The first being the method
defined within the class, and then the class above it.

>>> class myclass(object):
classy = 'class value'

>>> dd = myclass()
>>> print (dd.classy) # This should return the string 'class value'
class value
>>>
>>> dd.classy = "Instance Value"
>>> print(dd.classy) # Return the string "Instance Value"
Instance Value
>>>
>>> # This will delete the value set for 'dd.classy' in the instance.
>>> del dd.classy

>>> >>> # Since the overriding attribute was deleted, this will print 'class
value'.

>>> print(dd.classy)
class value
>>>

We are overriding the ‘classy’ class attribute in the instance dd. When it’s
overridden, the Python interpreter reads the overridden value. But once the
new value is deleted with ‘del’, the overridden value is no longer present in
the instance, and hence the lookup goes a level above and gets it from the
class.

Working with Class and Instance Data
In this section, let us understand how the class data relates to the instance
data. We can store data either in a class or in an instance. When we design a
class, we decide which data belongs to the instance and which data should
be stored into the overall class.
An instance can access the class data. If we create multiple instances, then
these instances can access their individual attribute values as well the overall
class data.
Thus, a class data is the data that is shared among all the instances. Observe
the code given below for better undersanding −

class InstanceCounter(object):
count = 0 # class attribute, will be accessible to all instances
def __init__(self, val):

self.val = val
InstanceCounter.count +=1 # Increment the value of class attribute,

accessible through class name
In above line, class ('InstanceCounter') act as an object

def set_val(self, newval):
self.val = newval

def get_val(self):
return self.val

def get_count(self):
return InstanceCounter.count

a = InstanceCounter(9)
b = InstanceCounter(18)
c = InstanceCounter(27)

for obj in (a, b, c):
print ('val of obj: %s' %(obj.get_val())) # Initialized value (9, 18, 27)
print ('count: %s' %(obj.get_count())) # always 3

Output
val of obj: 9
count: 3
val of obj: 18
count: 3
val of obj: 27
count: 3
In short, class attributes are same for all instances of class whereas instance
attributes is particular for each instance. For two different instances, we will
have two different instance attributes.

class myClass:
class_attribute = 99

def class_method(self):
self.instance_attribute = 'I am instance attribute'

print (myClass.__dict__)

Output
You can observe the following output when you execute the code given
above −
{'__module__': '__main__', 'class_attribute': 99, 'class_method': <function
myClass.class_method at 0x04128D68>, '__dict__': <attribute '__dict__' of
'myClass' objects>, '__weakref__': <attribute '__weakref__' of 'myClass'

objects>, '__doc__': None}
The instance attribute myClass.__dict__ as shown −

>>> a = myClass()
>>> a.class_method()
>>> print(a.__dict__)
{'instance_attribute': 'I am instance attribute'}

OBJECT ORIENTED
SHORTCUTS

This chapter talks in detail about various built-in functions in Python, file
I/O operations and overloading concepts.

Python Built-in Functions
The Python interpreter has a number of functions called built-in functions
that are readily available for use. In its latest version, Python contains 68
built-in functions as listed in the table given below −

BUILT-IN FUNCTIONS

abs() dict() help()

all() dir() hex()

any() divmod() id()

ascii() enumerate() input()

bin() eval() int()

bool() exec() isinstance()

bytearray() filter() issubclass()

bytes() float() iter()

callable() format() len() property()

chr() frozenset() list()

classmethod() getattr() locals()

compile() globals() map() reversed()

complex() hasattr() max()

delattr() hash() memoryview()

This section discusses some of the important functions in brief −

len() function
The len() function gets the length of strings, list or collections. It returns the
length or number of items of an object, where object can be a string, list or a
collection.

>>> len(['hello', 9 , 45.0, 24])
4

len() function internally works like list.__len__() or tuple.__len__(). Thus,
note that len() works only on objects that has a __len__() method.

>>> set1

{1, 2, 3, 4}
>>> set1.__len__()
4

However, in practice, we prefer len() instead of the __len__() function
because of the following reasons −

It is more efficient. And it is not necessary that a particular
method is written to refuse access to special methods such as
__len__.

It is easy to maintain.
It supports backward compatibility.

Reversed(seq)
It returns the reverse iterator. seq must be an object which has
__reversed__() method or supports the sequence protocol (the __len__()
method and the __getitem__() method). It is generally used in for loops
when we want to loop over items from back to front.

>>> normal_list = [2, 4, 5, 7, 9]
>>>
>>> class CustomSequence():

def __len__(self):
return 5

def __getitem__(self,index):
return "x{0}".format(index)

>>> class funkyback():
def __reversed__(self):

return 'backwards!'
>>> for seq in normal_list, CustomSequence(), funkyback():

print('\n{}: '.format(seq.__class__.__name__), end="")
for item in reversed(seq):

print(item, end=", ")

The for loop at the end prints the reversed list of a normal list, and instances
of the two custom sequences. The output shows that reversed() works on all
the three of them, but has a very different results when we

define __reversed__.

Output
You can observe the following output when you execute the code given
above −
list: 9, 7, 5, 4, 2,
CustomSequence: x4, x3, x2, x1, x0,
funkyback: b, a, c, k, w, a, r, d, s, !,

Enumerate
The enumerate () method adds a counter to an iterable and returns the
enumerate object.
The syntax of enumerate () is −
enumerate(iterable, start = 0)
Here the second argument start is optional, and by default index starts with
zero (0).

>>> # Enumerate
>>> names = ['Rajesh', 'Rahul', 'Aarav', 'Sahil', 'Trevor']
>>> enumerate(names)
<enumerate object at 0x031D9F80>
>>> list(enumerate(names))
[(0, 'Rajesh'), (1, 'Rahul'), (2, 'Aarav'), (3, 'Sahil'), (4, 'Trevor')]
>>>

So enumerate() returns an iterator which yields a tuple that keeps count of
the elements in the sequence passed. Since the return value is an iterator,
directly accessing it is not much useful. A better approach for enumerate() is
keeping count within a for loop.

>>> for i, n in enumerate(names):
print('Names number: ' + str(i))
print(n)

Names number: 0

Rajesh
Names number: 1
Rahul
Names number: 2
Aarav
Names number: 3
Sahil
Names number: 4
Trevor

There are many other functions in the standard library, and here is another
list of some more widely used functions −

hasattr, getattr, setattr and delattr, which allows attributes of
an object to be manipulated by their string names.

all and any, which accept an iterable object and return True if
all, or any, of the items evaluate to be true.

nzip, which takes two or more sequences and returns a new
sequence of tuples, where each tuple contains a single value from
each sequence.

File I/O
The concept of files is associated with the term object-oriented
programming. Python has wrapped the interface that operating systems
provided in abstraction that allows us to work with file objects.
The open() built-in function is used to open a file and return a file object. It
is the most commonly used function with two arguments −

open(filename, mode)

The open() function calls two argument, first is the filename and second is
the mode. Here mode can be ‘r’ for read only mode, ‘w’ for only writing (an
existing file with the same name will be erased), and ‘a’ opens the file for
appending, any data written to the file is automatically added to the end. ‘r+’
opens the file for both reading and writing. The default mode is read only.
On windows, ‘b’ appended to the mode opens the file in binary mode, so

there are also modes like ‘rb’, ‘wb’ and ‘r+b’.

>>> text = 'This is the first line'
>>> file = open('datawork','w')
>>> file.write(text)
22
>>> file.close()

In some cases, we just want to append to the existing file rather then over-
writing it, for that we could supply the value ‘a’ as a mode argument, to
append to the end of the file, rather than completely overwriting existing file
contents.

>>> f = open('datawork','a')
>>> text1 = ' This is second line'
>>> f.write(text1)
20
>>> f.close()

Once a file is opened for reading, we can call the read, readline, or readlines
method to get the contents of the file. The read method returns the entire
contents of the file as a str or bytes object, depending on whether the second
argument is ‘b’.
For readability, and to avoid reading a large file in one go, it is often better
to use a for loop directly on a file object. For text files, it will read each line,
one at a time, and we can process it inside the loop body. For binary files
however it’s better to read fixed-sized chunks of data using the read()
method, passing a parameter for the maximum number of bytes to read.

>>> f = open('fileone','r+')
>>> f.readline()
'This is the first line. \n'
>>> f.readline()
'This is the second line. \n'

Writing to a file, through write method on file objects will writes a string
(bytes for binary data) object to the file. The writelines method accepts a
sequence of strings and write each of the iterated values to the file. The
writelines method does not append a new line after each item in the

sequence.
Finally the close() method should be called when we are finished reading or
writing the file, to ensure any buffered writes are written to the disk, that the
file has been properly cleaned up and that all resources tied with the file are
released back to the operating system. It’s a better approach to call the
close() method but technically this will happen automatically when the script
exists.

An alternative to method overloading
Method overloading refers to having multiple methods with the same name
that accept different sets of arguments.
Given a single method or function, we can specify the number of parameters
ourself. Depending on the function definition, it can be called with zero, one,
two or more parameters.

class Human:
def sayHello(self, name = None):

if name is not None:
print('Hello ' + name)

else:
print('Hello ')

#Create Instance
obj = Human()

#Call the method, else part will be executed
obj.sayHello()

#Call the method with a parameter, if part will be executed
obj.sayHello('Rahul')

Output
Hello
Hello Rahul

Default Arguments

Functions Are Objects Too
A callable object is an object can accept some arguments and possibly will
return an object. A function is the simplest callable object in Python, but
there are others too like classes or certain class instances.
Every function in a Python is an object. Objects can contain methods or
functions but object is not necessary a function.

def my_func():
print('My function was called')

my_func.description = 'A silly function'
def second_func():

print('Second function was called')

second_func.description = 'One more sillier function'

def another_func(func):
print("The description:", end=" ")
print(func.description)
print('The name: ', end=' ')
print(func.__name__)
print('The class:', end=' ')
print(func.__class__)
print("Now I'll call the function passed in")
func()

another_func(my_func)
another_func(second_func)

In the above code, we are able to pass two different functions as argument
into our third function, and get different Output for each one −
The description: A silly function
The name: my_func
The class:

Now I'll call the function passed in
My function was called
The description: One more sillier function
The name: second_func
The class:
Now I'll call the function passed in
Second function was called

callable objects
Just as functions are objects that can have attributes set on them, it is
possible to create an object that can be called as though it were a function.
In Python any object with a __call__() method can be called using function-
call syntax.

INHERITANCE AND
POLYMORPHISM

Inheritance and polymorphism – this is a very important concept in Python.
You must understand it better if you want to learn.

Inheritance
One of the major advantages of Object Oriented Programming is re-use.
Inheritance is one of the mechanisms to achieve the same. Inheritance allows
programmer to create a general or a base class first and then later extend it to
more specialized class. It allows programmer to write better code.
Using inheritance you can use or inherit all the data fields and methods
available in your base class. Later you can add you own methods and data
fields, thus inheritance provides a way to organize code, rather than
rewriting it from scratch.
In object-oriented terminology when class X extend class Y, then Y is called
super/parent/base class and X is called subclass/child/derived class. One
point to note here is that only data fields and method which are not private
are accessible by child classes. Private data fields and methods are
accessible only inside the class.
syntax to create a derived class is −
class BaseClass:

Body of base class
class DerivedClass(BaseClass):

Body of derived class

Inheriting Attributes

Now look at the below example −

Output

We first created a class called Date and pass the object as an argument, here-
object is built-in class provided by Python. Later we created another class
called time and called the Date class as an argument. Through this call we
get access to all the data and attributes of Date class into the Time class.
Because of that when we try to get the get_date method from the Time class
object tm we created earlier possible.
Object.Attribute Lookup Hierarchy

The instance
The class
Any class from which this class inherits

Inheritance Examples
Let’s take a closure look into the inheritance example −

Let’s create couple of classes to participate in examples −
Animal − Class simulate an animal
Cat − Subclass of Animal
Dog − Subclass of Animal

In Python, constructor of class used to create an object (instance), and assign
the value for the attributes.
Constructor of subclasses always called to a constructor of parent class to
initialize value for the attributes in the parent class, then it start assign value
for its attributes.

Output

In the above example, we see the command attributes or methods we put in
the parent class so that all subclasses or child classes will inherits that
property from the parent class.
If a subclass try to inherits methods or data from another subclass then it will
through an error as we see when Dog class try to call swatstring() methods
from that cat class, it throws an error(like AttributeError in our case).

Polymorphism (“MANY SHAPES”)
Polymorphism is an important feature of class definition in Python that is
utilized when you have commonly named methods across classes or
subclasses. This permits functions to use entities of different types at
different times. So, it provides flexibility and loose coupling so that code can
be extended and easily maintained over time.
This allows functions to use objects of any of these polymorphic classes
without needing to be aware of distinctions across the classes.
Polymorphism can be carried out through inheritance, with subclasses
making use of base class methods or overriding them.
Let understand the concept of polymorphism with our previous inheritance
example and add one common method called show_affection in both
subclasses −
From the example we can see, it refers to a design in which object of
dissimilar type can be treated in the same manner or more specifically two or
more classes with method of the same name or common interface because
same method(show_affection in below example) is called with either type of
objects.

Output

So, all animals show affections (show_affection), but they do differently.
The “show_affection” behaviors is thus polymorphic in the sense that it
acted differently depending on the animal. So, the abstract “animal” concept
does not actually “show_affection”, but specific animals(like dogs and cats)
have a concrete implementation of the action “show_affection”.
Python itself have classes that are polymorphic. Example, the len() function
can be used with multiple objects and all return the correct output based on
the input parameter.

Overriding
In Python, when a subclass contains a method that overrides a method of the
superclass, you can also call the superclass method by calling
Super(Subclass, self).method instead of self.method.

Example
class Thought(object):

def __init__(self):
pass

def message(self):
print("Thought, always come and go")

class Advice(Thought):
def __init__(self):

super(Advice, self).__init__()
def message(self):

print('Warning: Risk is always involved when you are dealing with
market!')

Inheriting the Constructor
If we see from our previous inheritance example, __init__ was located in the
parent class in the up ‘cause the child class dog or cat didn’t‘ve __init__
method in it. Python used the inheritance attribute lookup to find __init__ in
animal class. When we created the child class, first it will look the __init__
method in the dog class, then it didn’t find it then looked into parent class
Animal and found there and called that there. So as our class design became
complex we may wish to initialize a instance firstly processing it through
parent class constructor and then through child class constructor.

Output

In above example- all animals have a name and all dogs a particular breed.
We called parent class constructor with super. So dog has its own __init__
but the first thing that happen is we call super. Super is built in function and
it is designed to relate a class to its super class or its parent class.
In this case we saying that get the super class of dog and pass the dog
instance to whatever method we say here the constructor __init__. So in
another words we are calling parent class Animal __init__ with the dog
object. You may ask why we won’t just say Animal __init__ with the dog
instance, we could do this but if the name of animal class were to change,
sometime in the future. What if we wanna rearrange the class hierarchy,so
the dog inherited from another class. Using super in this case allows us to

keep things modular and easy to change and maintain.
So in this example we are able to combine general __init__ functionality
with more specific functionality. This gives us opportunity to separate
common functionality from the specific functionality which can eliminate
code duplication and relate class to one another in a way that reflects the
system overall design.

Conclusion
__init__ is like any other method; it can be inherited
If a class does not have a __init__ constructor, Python will

check its parent class to see if it can find one.
As soon as it finds one, Python calls it and stops looking
We can use the super () function to call methods in the parent

class.
We may want to initialize in the parent as well as our own class.

Multiple Inheritance and the Lookup Tree
As its name indicates, multiple inheritance is Python is when a class inherits
from multiple classes.
For example, a child inherits personality traits from both parents (Mother
and Father).

Python Multiple Inheritance Syntax
To make a class inherits from multiple parents classes, we write the the
names of these classes inside the parentheses to the derived class while
defining it. We separate these names with comma.
Below is an example of that −

>>> class Mother:
pass

>>> class Father:
pass

>>> class Child(Mother, Father):
pass

>>> issubclass(Child, Mother) and issubclass(Child, Father)
True

Multiple inheritance refers to the ability of inheriting from two or more than
two class. The complexity arises as child inherits from parent and parents
inherits from the grandparent class. Python climbs an inheriting tree looking
for attributes that is being requested to be read from an object. It will check
the in the instance, within class then parent class and lastly from the
grandparent class. Now the question arises in what order the classes will be
searched - breath-first or depth-first. By default, Python goes with the depth-
first.
That’s is why in the below diagram the Python searches the dothis() method
first in class A. So the method resolution order in the below example will be
Mro- D→B→A→C
Look at the below multiple inheritance diagram −

Let’s go through an example to understand the “mro” feature of an Python.

Output

Example 3
Let’s take another example of “diamond shape” multiple inheritance.

Above diagram will be considered ambiguous. From our previous example
understanding “method resolution order” .i.e. mro will be D→B→A→C→A
but it’s not. On getting the second A from the C, Python will ignore the
previous A. so the mro will be in this case will be D→B→C→A.
Let’s create an example based on above diagram −

Output

Simple rule to understand the above output is- if the same class appear in the
method resolution order, the earlier appearances of this class will be remove
from the method resolution order.
In conclusion −

Any class can inherit from multiple classes
Python normally uses a “depth-first” order when searching

inheriting classes.
But when two classes inherit from the same class, Python

eliminates the first appearances of that class from the mro.

Decorators, Static and Class Methods
Functions(or methods) are created by def statement.
Though methods works in exactly the same way as a function except one
point where method first argument is instance object.
We can classify methods based on how they behave, like

Simple method − defined outside of a class. This function can
access class attributes by feeding instance argument:

def outside_func(():
Instance method −

def func(self,)
Class method − if we need to use class attributes

@classmethod
def cfunc(cls,)

Static method − do not have any info about the class
@staticmethod

def sfoo()
Till now we have seen the instance method, now is the time to get some
insight into the other two methods,

Class Method
The @classmethod decorator, is a builtin function decorator that gets passed
the class it was called on or the class of the instance it was called on as first
argument. The result of that evaluation shadows your function definition.

syntax
class C(object):

@classmethod
def fun(cls, arg1, arg2, ...):

....

fun: function that needs to be converted into a class method
returns: a class method for function
They have the access to this cls argument, it can’t modify object instance
state. That would require access to self.

It is bound to the class and not the object of the class.
Class methods can still modify class state that applies across all

instances of the class.

Static Method
A static method takes neither a self nor a cls(class) parameter but it’s free to
accept an arbitrary number of other parameters.
syntax
class C(object):

@staticmethod
def fun(arg1, arg2, ...):
...

returns: a static method for function funself.
A static method can neither modify object state nor class state.
They are restricted in what data they can access.

When to use what
We generally use class method to create factory methods.

Factory methods return class object (similar to a constructor) for
different use cases.

We generally use static methods to create utility functions.

PYTHON DESIGN
PATTERN

Overview
Modern software development needs to address complex business
requirements. It also needs to take into account factors such as future
extensibility and maintainability. A good design of a software system is vital
to accomplish these goals. Design patterns play an important role in such
systems.
To understand design pattern, let’s consider below example −

Every car’s design follows a basic design pattern, four wheels,
steering wheel, the core drive system like accelerator-break-
clutch, etc.

So, all things repeatedly built/ produced, shall inevitably follow a pattern in
its design.. it cars, bicycle, pizza, atm machines, whatever…even your sofa
bed.
Designs that have almost become standard way of coding some
logic/mechanism/technique in software, hence come to be known as or
studied as, Software Design Patterns.

Why is Design Pattern Important?
Benefits of using Design Patterns are −

Helps you to solve common design problems through a proven
approach.

No ambiguity in the understanding as they are well

documented.
Reduce the overall development time.
Helps you deal with future extensions and modifications with

more ease than otherwise.
May reduce errors in the system since they are proven solutions

to common problems.

Classification of Design Patterns
The GoF (Gang of Four) design patterns are classified into three categories
namely creational, structural and behavioral.

Creational Patterns
Creational design patterns separate the object creation logic from the rest of
the system. Instead of you creating objects, creational patterns creates them
for you. The creational patterns include Abstract Factory, Builder, Factory
Method, Prototype and Singleton.
Creational Patterns are not commonly used in Python because of the
dynamic nature of the language. Also language itself provide us with all the
flexibility we need to create in a sufficient elegant fashion, we rarely need to
implement anything on top, like singleton or Factory.
Also these patterns provide a way to create objects while hiding the creation
logic, rather than instantiating objects directly using a new operator.

Structural Patterns
Sometimes instead of starting from scratch, you need to build larger
structures by using an existing set of classes. That’s where structural class
patterns use inheritance to build a new structure. Structural object patterns
use composition/ aggregation to obtain a new functionality. Adapter, Bridge,
Composite, Decorator, Façade, Flyweight and Proxy are Structural Patterns.
They offers best ways to organize class hierarchy.

Behavioral Patterns
Behavioral patterns offers best ways of handling communication between
objects. Patterns comes under this categories are: Visitor, Chain of
responsibility, Command, Interpreter, Iterator, Mediator, Memento,
Observer, State, Strategy and Template method are Behavioral Patterns.
Because they represent the behavior of a system, they are used generally to
describe the functionality of software systems.

Commonly used Design Patterns

Singleton
It is one of the most controversial and famous of all design patterns. It is
used in overly object-oriented languages, and is a vital part of traditional
object-oriented programming.
The Singleton pattern is used for,

When logging needs to be implemented. The logger instance is
shared by all the components of the system.

The configuration files is using this because cache of
information needs to be maintained and shared by all the various
components in the system.

Managing a connection to a database.

Here is the UML diagram,

class Logger(object):
def __new__(cls, *args, **kwargs):

if not hasattr(cls, '_logger'):
cls._logger = super(Logger, cls).__new__(cls, *args, **kwargs)

return cls._logger

In this example, Logger is a Singleton.
When __new__ is called, it normally constructs a new instance of that class.
When we override it, we first check if our singleton instance has been
created or not. If not, we create it using a super call. Thus, whenever we call
the constructor on Logger, we always get the exact same instance.

>>>
>>> obj1 = Logger()
>>> obj2 = Logger()
>>> obj1 == obj2
True
>>>
>>> obj1
<__main__.Logger object at 0x03224090>
>>> obj2
<__main__.Logger object at 0x03224090>

ADVANCED FEATURES
In this we will look into some of the advanced features which Python
provide

Core Syntax in our Class design
In this we will look onto, how Python allows us to take advantage of
operators in our classes. Python is largely objects and methods call on
objects and this even goes on even when its hidden by some convenient
syntax.
>>> var1 = 'Hello'
>>> var2 = ' World!'
>>> var1 + var2
'Hello World!'
>>>
>>> var1.__add__(var2)
'Hello World!'
>>> num1 = 45
>>> num2 = 60
>>> num1.__add__(num2)
105
>>> var3 = ['a', 'b']
>>> var4 = ['hello', ' John']
>>> var3.__add__(var4)
['a', 'b', 'hello', ' John']
So if we have to add magic method __add__ to our own classes, could we do
that too. Let’s try to do that.
We have a class called Sumlist which has a contructor __init__ which takes
list as an argument called my_list.

class SumList(object):
def __init__(self, my_list):

self.mylist = my_list
def __add__(self, other):

new_list = [x + y for x, y in zip(self.mylist, other.mylist)]

return SumList(new_list)

def __repr__(self):
return str(self.mylist)

aa = SumList([3,6, 9, 12, 15])

bb = SumList([100, 200, 300, 400, 500])
cc = aa + bb # aa.__add__(bb)
print(cc) # should gives us a list ([103, 206, 309, 412, 515])

Output
[103, 206, 309, 412, 515]
But there are many methods which are internally managed by others magic
methods. Below are some of them,

'abc' in var # var.__contains__('abc')
var == 'abc' # var.__eq__('abc')
var[1] # var.__getitem__(1)
var[1:3] # var.__getslice__(1, 3)
len(var) # var.__len__()
print(var) # var.__repr__()

Inheriting From built-in types
Classes can also inherit from built-in types this means inherits from any
built-in and take advantage of all the functionality found there.
In below example we are inheriting from dictionary but then we are
implementing one of its method __setitem__. This (setitem) is invoked when

we set key and value in the dictionary. As this is a magic method, this will
be called implicitly.

class MyDict(dict):

def __setitem__(self, key, val):
print('setting a key and value!')
dict.__setitem__(self, key, val)

dd = MyDict()
dd['a'] = 10
dd['b'] = 20

for key in dd.keys():
print('{0} = {1}'.format(key, dd[key]))

Output
setting a key and value!
setting a key and value!
a = 10
b = 20
Let’s extend our previous example, below we have called two magic
methods called __getitem__ and __setitem__ better invoked when we deal
with list index.

Mylist inherits from 'list' object but indexes from 1 instead for 0!
class Mylist(list): # inherits from list

def __getitem__(self, index):
if index == 0:

raise IndexError
if index > 0:

index = index - 1
return list.__getitem__(self, index) # this method is called when

we access a value with subscript like x[1]
def __setitem__(self, index, value):

if index == 0:

raise IndexError
if index > 0:
index = index - 1
list.__setitem__(self, index, value)

x = Mylist(['a', 'b', 'c']) # __init__() inherited from builtin list

print(x) # __repr__() inherited from builtin list

x.append('HELLO'); # append() inherited from builtin list

print(x[1]) # 'a' (Mylist.__getitem__ cutomizes list superclass
method. index is 1, but reflects 0!

print (x[4]) # 'HELLO' (index is 4 but reflects 3!

Output
['a', 'b', 'c']
a
HELLO
In above example, we set a three item list in Mylist and implicitly __init__
method is called and when we print the element x, we get the three item list
([‘a’,’b’,’c’]). Then we append another element to this list. Later we ask for
index 1 and index 4. But if you see the output, we are getting element from
the (index-1) what we have asked for. As we know list indexing start from 0
but here the indexing start from 1 (that’s why we are getting the first item of
the list).

Naming Conventions
In this we will look into names we’ll used for variables especially private
variables and conventions used by Python programmers worldwide.
Although variables are designated as private but there is not privacy in
Python and this by design. Like any other well documented languages,
Python has naming and style conventions that it promote although it doesn’t
enforce them. There is a style guide written by “Guido van Rossum” the

originator of Python, that describe the best practices and use of name
and is called PEP8. Here is the link for
this, https://www.python.org/dev/peps/pep-0008/
PEP stands for Python enhancement proposal and is a series of
documentation that distributed among the Python community to discuss
proposed changes. For example it is recommended all,

Module names − all_lower_case
Class names and exception names − CamelCase
Global and local names − all_lower_case
Functions and method names − all_lower_case
Constants − ALL_UPPER_CASE

These are just the recommendation, you can vary if you like. But as most of
the developers follows these recommendation so might me your code is less
readable.

Why conform to convention?
We can follow the PEP recommendation we it allows us to get,

More familiar to the vast majority of developers
Clearer to most readers of your code.
Will match style of other contributers who work on same code
base.
Mark of a professional software developers
Everyone will accept you.

Variable Naming − ‘Public’ and ‘Private’
In Python, when we are dealing with modules and classes, we designate
some variables or attribute as private. In Python, there is no existence of
“Private” instance variable which cannot be accessed except inside an
object. Private simply means they are simply not intended to be used by the
users of the code instead they are intended to be used internally. In general, a

convention is being followed by most Python developers i.e. a name
prefixed with an underscore for example. _attrval (example below) should
be treated as a non-public part of the API or any Python code, whether it is a
function, a method or a data member. Below is the naming convention we
follow,

Public attributes or variables (intended to be used by the
importer of this module or user of this class)
−regular_lower_case

Private attributes or variables (internal use by the module or
class) −_single_leading_underscore

Private attributes that shouldn’t be subclassed
−__double_leading_underscore

Magic attributes −__double_underscores__(use them, don’t
create them)

class GetSet(object):

instance_count = 0 # public

__mangled_name = 'no privacy!' # special variable

def __init__(self, value):
self._attrval = value # _attrval is for internal use only
GetSet.instance_count += 1

@property
def var(self):

print('Getting the "var" attribute')
return self._attrval

@var.setter
def var(self, value):

print('setting the "var" attribute')
self._attrval = value

@var.deleter
def var(self):

print('deleting the "var" attribute')

self._attrval = None

cc = GetSet(5)
cc.var = 10 # public name
print(cc._attrval)
print(cc._GetSet__mangled_name)

Output
setting the "var" attribute
10
no privacy!

FILES AND STRINGS

Strings
Strings are the most popular data types used in every programming
language. Why? Because we, understand text better than numbers, so in
writing and talking we use text and words, similarly in programming too we
use strings. In string we parse text, analyse text semantics, and do data
mining – and all this data is human consumed text.The string in Python is
immutable.

String Manipulation
In Python, string can be marked in multiple ways, using single quote (‘),
double quote(“) or even triple quote (‘’’) in case of multiline strings.

>>> # String Examples
>>> a = "hello"
>>> b = ''' A Multi line string,
Simple!'''
>>> e = ('Multiple' 'strings' 'togethers')

String manipulation is very useful and very widely used in every language.
Often, programmers are required to break down strings and examine them
closely.
Strings can be iterated over (character by character), sliced, or concatenated.
The syntax is the same as for lists.
The str class has numerous methods on it to make manipulating strings
easier. The dir and help commands provides guidance in the Python
interpreter how to use them.
Below are some of the commonly used string methods we use.

Sr.No. Method & Description

1 isalpha()
Checks if all characters are Alphabets

2 isdigit()
Checks Digit Characters

3 isdecimal()
Checks decimal Characters

4 isnumeric()
checks Numeric Characters

5 find()
Returns the Highest Index of substrings

6 istitle()
Checks for Titlecased strings

7 join()
Returns a concatenated string

8 lower()

returns lower cased string

9 upper()
returns upper cased string

10 partion()
Returns a tuple

11 bytearray()
Returns array of given byte size

12 enumerate()
Returns an enumerate object

13 isprintable()
Checks printable character

Let’s try to run couple of string methods,

>>> str1 = 'Hello World!'
>>> str1.startswith('h')
False
>>> str1.startswith('H')
True
>>> str1.endswith('d')
False
>>> str1.endswith('d!')
True
>>> str1.find('o')
4

>>> #Above returns the index of the first occurence of the
character/substring.
>>> str1.find('lo')
3
>>> str1.upper()
'HELLO WORLD!'
>>> str1.lower()
'hello world!'
>>> str1.index('b')
Traceback (most recent call last):

File "<pyshell#19>", line 1, in <module>
str1.index('b')

ValueError: substring not found
>>> s = ('hello How Are You')
>>> s.split(' ')
['hello', 'How', 'Are', 'You']
>>> s1 = s.split(' ')
>>> '*'.join(s1)
'hello*How*Are*You'
>>> s.partition(' ')
('hello', ' ', 'How Are You')
>>>

String Formatting
In Python 3.x formatting of strings has changed, now it more logical and is
more flexible. Formatting can be done using the format() method or the %
sign(old style) in format string.
The string can contain literal text or replacement fields delimited by braces
{} and each replacement field may contains either the numeric index of a
positional argument or the name of a keyword argument.

syntax
str.format(*args, **kwargs)

Basic Formatting
>>> '{} {}'.format('Example', 'One')
'Example One'
>>> '{} {}'.format('pie', '3.1415926')
'pie 3.1415926'

Below example allows re-arrange the order of display without changing the
arguments.

>>> '{1} {0}'.format('pie', '3.1415926')
'3.1415926 pie'

Padding and aligning strings
A value can be padded to a specific length.

>>> #Padding Character, can be space or special character
>>> '{:12}'.format('PYTHON')
'PYTHON '
>>> '{:>12}'.format('PYTHON')
' PYTHON'
>>> '{:<{}s}'.format('PYTHON',12)
'PYTHON '
>>> '{:*<12}'.format('PYTHON')
'PYTHON******'
>>> '{:*^12}'.format('PYTHON')
'***PYTHON***'
>>> '{:.15}'.format('PYTHON OBJECT ORIENTED PROGRAMMING')
'PYTHON OBJECT O'
>>> #Above, truncated 15 characters from the left side of a specified string
>>> '{:.{}}'.format('PYTHON OBJECT ORIENTED',15)
'PYTHON OBJECT O'
>>> #Named Placeholders
>>> data = {'Name':'Raghu', 'Place':'Bangalore'}
>>> '{Name} {Place}'.format(**data)
'Raghu Bangalore'
>>> #Datetime
>>> from datetime import datetime

>>> '{:%Y/%m/%d.%H:%M}'.format(datetime(2018,3,26,9,57))
'2018/03/26.09:57'

Strings are Unicode
Strings as collections of immutable Unicode characters. Unicode strings
provide an opportunity to create software or programs that works
everywhere because the Unicode strings can represent any possible character
not just the ASCII characters.
Many IO operations only know how to deal with bytes, even if the bytes
object refers to textual data. It is therefore very important to know how to
interchange between bytes and Unicode.
Converting text to bytes
Converting a strings to byte object is termed as encoding. There are
numerous forms of encoding, most common ones are: PNG; JPEG, MP3,
WAV, ASCII, UTF-8 etc. Also this(encoding) is a format to represent audio,
images, text, etc. in bytes.
This conversion is possible through encode(). It take encoding technique as
argument. By default, we use ‘UTF-8’ technique.

>>> # Python Code to demonstrate string encoding
>>>
>>> # Initialising a String
>>> x = 'TutorialsPoint'
>>>
>>> #Initialising a byte object
>>> y = b'TutorialsPoint'
>>>
>>> # Using encode() to encode the String >>> # encoded version of x is
stored in z using ASCII mapping
>>> z = x.encode('ASCII')
>>>
>>> # Check if x is converted to bytes or not
>>>
>>> if(z==y):

print('Encoding Successful!')
else:

print('Encoding Unsuccessful!')
Encoding Successful!

Converting bytes to text
Converting bytes to text is called the decoding. This is implemented through
decode(). We can convert a byte string to a character string if we know
which encoding is used to encode it.
So Encoding and decoding are inverse processes.

>>>
>>> # Python code to demonstrate Byte Decoding
>>>
>>> #Initialise a String
>>> x = 'TutorialsPoint'
>>>
>>> #Initialising a byte object
>>> y = b'TutorialsPoint'
>>>
>>> #using decode() to decode the Byte object
>>> # decoded version of y is stored in z using ASCII mapping
>>> z = y.decode('ASCII')
>>> #Check if y is converted to String or not
>>> if (z == x):

print('Decoding Successful!')
else:

print('Decoding Unsuccessful!') Decoding Successful!
>>>

File I/O
Operating systems represents files as a sequence of bytes, not text.
A file is a named location on disk to store related information. It is used to
permanently store data in your disk.
In Python, a file operation takes place in the following order.

Open a file
Read or write onto a file (operation).Open a file
Close the file.

Python wraps the incoming (or outgoing) stream of bytes with appropriate
decode (or encode) calls so we can deal directly with str objects.

Opening a file
Python has a built-in function open() to open a file. This will generate a file
object, also called a handle as it is used to read or modify the file
accordingly.

>>> f = open(r'c:\users\rajesh\Desktop\index.webm','rb')
>>> f
<_io.BufferedReader name='c:\\users\\rajesh\\Desktop\\index.webm'>
>>> f.mode
'rb'
>>> f.name
'c:\\users\\rajesh\\Desktop\\index.webm'

For reading text from a file, we only need to pass the filename into the
function. The file will be opened for reading, and the bytes will be converted
to text using the platform default encoding.

EXCEPTION AND
EXCEPTION CLASSES

In general, an exception is any unusual condition. Exception usually
indicates errors but sometimes they intentionally puts in the program, in
cases like terminating a procedure early or recovering from a resource
shortage. There are number of built-in exceptions, which indicate conditions
like reading past the end of a file, or dividing by zero. We can define our
own exceptions called custom exception.
Exception handling enables you handle errors gracefully and do something
meaningful about it. Exception handling has two components: “throwing”
and ‘catching’.

Identifying Exception (Errors)
Every error occurs in Python result an exception which will an error
condition identified by its error type.

>>> #Exception
>>> 1/0
Traceback (most recent call last):

File "<pyshell#2>", line 1, in <module>
1/0

ZeroDivisionError: division by zero
>>>
>>> var = 20
>>> print(ver)
Traceback (most recent call last):

File "<pyshell#5>", line 1, in <module>
print(ver)

NameError: name 'ver' is not defined

>>> #Above as we have misspelled a variable name so we get an
NameError.
>>>
>>> print('hello)

SyntaxError: EOL while scanning string literal
>>> #Above we have not closed the quote in a string, so we get
SyntaxError.
>>>
>>> #Below we are asking for a key, that doen't exists.
>>> mydict = {}
>>> mydict['x']
Traceback (most recent call last):

File "<pyshell#15>", line 1, in <module>
mydict['x']

KeyError: 'x'
>>> #Above keyError
>>>
>>> #Below asking for a index that didn't exist in a list.
>>> mylist = [1,2,3,4]
>>> mylist[5]
Traceback (most recent call last):

File "<pyshell#20>", line 1, in <module>
mylist[5]

IndexError: list index out of range
>>> #Above, index out of range, raised IndexError.

Catching/Trapping Exception
When something unusual occurs in your program and you wish to handle it
using the exception mechanism, you ‘throw an exception’. The keywords try
and except are used to catch exceptions. Whenever an error occurs within a
try block, Python looks for a matching except block to handle it. If there is
one, execution jumps there.

syntax

try:
#write some code
#that might throw some exception

except <ExceptionType>:
Exception handler, alert the user

The code within the try clause will be executed statement by statement.
If an exception occurs, the rest of the try block will be skipped and the
except clause will be executed.

try:
some statement here

except:
exception handling

Let’s write some code to see what happens when you not use any error
handling mechanism in your program.

number = int(input('Please enter the number between 1 & 10: '))
print('You have entered number',number)

Above programme will work correctly as long as the user enters a number,
but what happens if the users try to puts some other data type(like a string or
a list).

Please enter the number between 1 > 10: 'Hi'
Traceback (most recent call last):

File "C:/Python/Python361/exception2.py", line 1, in <module>
number = int(input('Please enter the number between 1 & 10: '))

ValueError: invalid literal for int() with base 10: "'Hi'"

Now ValueError is an exception type. Let’s try to rewrite the above code
with exception handling.

import sys

print('Previous code with exception handling')

try:
number = int(input('Enter number between 1 > 10: '))

except(ValueError):
print('Error..numbers only')
sys.exit()

print('You have entered number: ',number)

If we run the program, and enter a string (instead of a number), we can see
that we get a different result.

Previous code with exception handling
Enter number between 1 > 10: 'Hi'
Error..numbers only

Raising Exceptions
To raise your exceptions from your own methods you need to use raise
keyword like this

raise ExceptionClass(‘Some Text Here’)

Let’s take an example

def enterAge(age):
if age<0:

raise ValueError('Only positive integers are allowed')
if age % 2 ==0:

print('Entered Age is even')
else:

print('Entered Age is odd')

try:
num = int(input('Enter your age: '))
enterAge(num)

except ValueError:
print('Only positive integers are allowed')

Run the program and enter positive integer.

Expected Output
Enter your age: 12
Entered Age is even
But when we try to enter a negative number we get,

Expected Output
Enter your age: -2
Only positive integers are allowed

Creating Custom exception class
You can create a custom exception class by Extending BaseException class
or subclass of BaseException.

From above diagram we can see most of the exception classes in Python
extends from the BaseException class. You can derive your own exception
class from BaseException class or from its subclass.
Create a new file called NegativeNumberException.py and write the
following code.

class NegativeNumberException(RuntimeError):
def __init__(self, age):

super().__init__()
self.age = age

Above code creates a new exception class named
NegativeNumberException, which consists of only constructor which call
parent class constructor using super()__init__() and sets the age.

Now to create your own custom exception class, will write some code and
import the new exception class.

from NegativeNumberException import NegativeNumberException
def enterage(age):

if age < 0:
raise NegativeNumberException('Only positive integers are allowed')

if age % 2 == 0:
print('Age is Even')

else:
print('Age is Odd')

try:
num = int(input('Enter your age: '))
enterage(num)

except NegativeNumberException:
print('Only positive integers are allowed')

except:
print('Something is wrong')

Output
Enter your age: -2
Only positive integers are allowed
Another way to create a custom Exception class.

class customException(Exception):
def __init__(self, value):

self.parameter = value

def __str__(self):
return repr(self.parameter)

try:
raise customException('My Useful Error Message!')

except customException as instance:
print('Caught: ' + instance.parameter)

Output
Caught: My Useful Error Message!

Exception hierarchy
The class hierarchy for built-in exceptions is −
+-- SystemExit
+-- KeyboardInterrupt
+-- GeneratorExit
+-- Exception
+-- StopIteration
+-- StopAsyncIteration
+-- ArithmeticError
| +-- FloatingPointError
| +-- OverflowError
| +-- ZeroDivisionError
+-- AssertionError
+-- AttributeError
+-- BufferError
+-- EOFError
+-- ImportError
+-- LookupError
| +-- IndexError
| +-- KeyError
+-- MemoryError
+-- NameError
| +-- UnboundLocalError
+-- OSError
| +-- BlockingIOError
| +-- ChildProcessError
| +-- ConnectionError
| | +-- BrokenPipeError
| | +-- ConnectionAbortedError
| | +-- ConnectionRefusedError
| | +-- ConnectionResetError

| +-- FileExistsError
| +-- FileNotFoundError
| +-- InterruptedError
| +-- IsADirectoryError
| +-- NotADirectoryError
| +-- PermissionError
| +-- ProcessLookupError
| +-- TimeoutError
+-- ReferenceError
+-- RuntimeError
| +-- NotImplementedError
| +-- RecursionError
+-- SyntaxError
| +-- IndentationError
| +-- TabError
+-- SystemError
+-- TypeError
+-- ValueError
| +-- UnicodeError
| +-- UnicodeDecodeError
| +-- UnicodeEncodeError
| +-- UnicodeTranslateError
+-- Warning
+-- DeprecationWarning
+-- PendingDeprecationWarning
+-- RuntimeWarning
+-- SyntaxWarning
+-- UserWarning
+-- FutureWarning
+-- ImportWarning
+-- UnicodeWarning
+-- BytesWarning
+-- ResourceWarning

OBJECT SERIALIZATION
In the context of data storage, serialization is the process of translating data
structures or object state into a format that can be stored (for example, in a
file or memory buffer) or transmitted and reconstructed later.
In serialization, an object is transformed into a format that can be stored, so
as to be able to deserialize it later and recreate the original object from the
serialized format.

Pickle
Pickling is the process whereby a Python object hierarchy is converted into a
byte stream (usually not human readable) to be written to a file, this is also
known as Serialization. Unpickling is the reverse operation, whereby a byte
stream is converted back into a working Python object hierarchy.
Pickle is operationally simplest way to store the object. The Python Pickle
module is an object-oriented way to store objects directly in a special storage
format.

What can it do?
Pickle can store and reproduce dictionaries and lists very easily.
Stores object attributes and restores them back to the same State.

What pickle can’t do?
It does not save an objects code. Only it’s attributes values.
It cannot store file handles or connection sockets.

In short we can say, pickling is a way to store and retrieve data variables into

and out from files where variables can be lists, classes, etc.
To Pickle something you must −

import pickle
Write a variable to file, something like

pickle.dump(mystring, outfile, protocol),
where 3rd argument protocol is optional To unpickling something you must
−
Import pickle
Write a variable to a file, something like
myString = pickle.load(inputfile)

Methods
The pickle interface provides four different methods.

dump() − The dump() method serializes to an open file (file-
like object).

dumps() − Serializes to a string
load() − Deserializes from an open-like object.
loads() − Deserializes from a string.

Based on above procedure, below is an example of “pickling”.

Output

My Cat pussy is White and has 4 legs
Would you like to see her pickled? Here she is!
b'\x80\x03c__main__\nCat\nq\x00)\x81q\x01}q\x02(X\x0e\x00\x00\x00number_of_legsq\x03K\x04X\x05\x00\x00\x00colorq\x04X\x05\x00\x00\x00Whiteq\x05ub.'
So, in the example above, we have created an instance of a Cat class and
then we’ve pickled it, transforming our “Cat” instance into a simple array of
bytes.
This way we can easily store the bytes array on a binary file or in a database
field and restore it back to its original form from our storage support in a
later time.
Also if you want to create a file with a pickled object, you can use the
dump() method (instead of the dumps*()* one) passing also an opened
binary file and the pickling result will be stored in the file automatically.

[….]
binary_file = open(my_pickled_Pussy.bin', mode='wb')
my_pickled_Pussy = pickle.dump(Pussy, binary_file)
binary_file.close()

Unpickling
The process that takes a binary array and converts it to an object hierarchy is
called unpickling.
The unpickling process is done by using the load() function of the pickle
module and returns a complete object hierarchy from a simple bytes array.
Let’s use the load function in our previous example.

Output
MeOw is black
Pussy is white

JSON
JSON(JavaScript Object Notation) has been part of the Python standard
library is a lightweight data-interchange format. It is easy for humans to read
and write. It is easy to parse and generate.
Because of its simplicity, JSON is a way by which we store and exchange
data, which is accomplished through its JSON syntax, and is used in many
web applications. As it is in human readable format, and this may be one of
the reasons for using it in data transmission, in addition to its effectiveness
when working with APIs.
An example of JSON-formatted data is as follow −

{"EmployID": 40203, "Name": "Zack", "Age":54, "isEmployed": True}

Python makes it simple to work with Json files. The module sused for this
purpose is the JSON module. This module should be included (built-in)
within your Python installation.
So let’s see how can we convert Python dictionary to JSON and write it to a

text file.

JSON to Python
Reading JSON means converting JSON into a Python value (object). The
json library parses JSON into a dictionary or list in Python. In order to do
that, we use the loads() function (load from a string), as follow −

Output

Below is one sample json file,

data1.json
{"menu": {

"id": "file",
"value": "File",
"popup": {

"menuitem": [
{"value": "New", "onclick": "CreateNewDoc()"},
{"value": "Open", "onclick": "OpenDoc()"},
{"value": "Close", "onclick": "CloseDoc()"}

]
}

}}

Above content (Data1.json) looks like a conventional dictionary. We can use
pickle to store this file but the output of it is not human readable form.
JSON(Java Script Object Notification) is a very simple format and that’s one
of the reason for its popularity. Now let’s look into json output through
below program.

Output

Above we open the json file (data1.json) for reading, obtain the file handler
and pass on to json.load and getting back the object. When we try to print
the output of the object, its same as the json file. Although the type of the
object is dictionary, it comes out as a Python object. Writing to the json is
simple as we saw this pickle. Above we load the json file, add another key
value pair and writing it back to the same json file. Now if we see out
data1.json, it looks different .i.e. not in the same format as we see
previously.
To make our Output looks same (human readable format), add the couple of
arguments into our last line of the program,

json.dump(conf, fh, indent = 4, separators = (‘,’, ‘: ‘))
Similarly like pickle, we can print the string with dumps and load with loads.
Below is an example of that,

YAML
YAML may be the most human friendly data serialization standard for all
programming languages.
Python yaml module is called pyaml
YAML is an alternative to JSON −

Human readable code − YAML is the most human readable
format so much so that even its front-page content is displayed in
YAML to make this point.

Compact code − In YAML we use whitespace indentation to
denote structure not brackets.

Syntax for relational data − For internal references we use
anchors (&) and aliases (*).

One of the area where it is used widely is for viewing/editing
of data structures − for example configuration files, dumping
during debugging and document headers.

Installing YAML
As yaml is not a built-in module, we need to install it manually. Best way to
install yaml on windows machine is through pip. Run below command on
your windows terminal to install yaml,

pip install pyaml (Windows machine)
sudo pip install pyaml (*nix and Mac)

On running above command, screen will display something like below based
on what’s the current latest version.

Collecting pyaml
Using cached pyaml-17.12.1-py2.py3-none-any.whl
Collecting PyYAML (from pyaml)
Using cached PyYAML-3.12.tar.gz
Installing collected packages: PyYAML, pyaml
Running setup.py install for PyYAML ... done
Successfully installed PyYAML-3.12 pyaml-17.12.1

To test it, go to the Python shell and import the yaml module, import yaml,
if no error is found, then we can say installation is successful.
After installing pyaml, let’s look at below code,

script_yaml1.py

Above we created three different data structure, dictionary, list and tuple. On
each of the structure, we do yaml.dump. Important point is how the output is
displayed on the screen.

Output

Dictionary output looks clean .ie. key: value.
White space to separate different objects.
List is notated with dash (-)
Tuple is indicated first with !!Python/tuple and then in the same format as

lists.
Loading a yaml file
So let’s say I have one yaml file, which contains,

An employee record
name: Raagvendra Joshi
job: Developer
skill: Oracle
employed: True
foods:

- Apple
- Orange
- Strawberry
- Mango

languages:
Oracle: Elite
power_builder: Elite
Full Stack Developer: Lame

education:
4 GCSEs
3 A-Levels
MCA in something called com

Now let’s write a code to load this yaml file through yaml.load function.
Below is code for the same.

As the output doesn’t looks that much readable, I prettify it by using json in

the end. Compare the output we got and the actual yaml file we have.

Output

One of the most important aspect of software development is debugging. In
this section we’ll see different ways of Python debugging either with built-in
debugger or third party debuggers.

PDB – The Python Debugger
The module PDB supports setting breakpoints. A breakpoint is an intentional
pause of the program, where you can get more information about the
programs state.
To set a breakpoint, insert the line

pdb.set_trace()

Example
pdb_example1.py

import pdb
x = 9
y = 7
pdb.set_trace()
total = x + y
pdb.set_trace()

We have inserted a few breakpoints in this program. The program will pause
at each breakpoint (pdb.set_trace()). To view a variables contents simply
type the variable name.

c:\Python\Python361>Python pdb_example1.py
> c:\Python\Python361\pdb_example1.py(8)<module>()
-> total = x + y
(Pdb) x
9
(Pdb) y
7
(Pdb) total
*** NameError: name 'total' is not defined
(Pdb)

Press c or continue to go on with the programs execution until the next
breakpoint.

(Pdb) c
--Return--
> c:\Python\Python361\pdb_example1.py(8)<module>()->None
-> total = x + y
(Pdb) total
16

Eventually, you will need to debug much bigger programs – programs that
use subroutines. And sometimes, the problem that you’re trying to find will
lie inside a subroutine. Consider the following program.

import pdb
def squar(x, y):

out_squared = x^2 + y^2

return out_squared
if __name__ == "__main__":

#pdb.set_trace()
print (squar(4, 5))

Now on running the above program,

c:\Python\Python361>Python pdb_example2.py
> c:\Python\Python361\pdb_example2.py(10)<module>()
-> print (squar(4, 5))
(Pdb)

We can use ? to get help, but the arrow indicates the line that’s about to be
executed. At this point it’s helpful to hit s to s to step into that line.

(Pdb) s
--Call--
>c:\Python\Python361\pdb_example2.py(3)squar()
-> def squar(x, y):

This is a call to a function. If you want an overview of where you are in your
code, try l −

(Pdb) l
1 import pdb
2
3 def squar(x, y):
4 -> out_squared = x^2 + y^2
5
6 return out_squared
7
8 if __name__ == "__main__":
9 pdb.set_trace()
10 print (squar(4, 5))
[EOF]
(Pdb)

You can hit n to advance to the next line. At this point you are inside the
out_squared method and you have access to the variable declared inside the
function .i.e. x and y.

(Pdb) x
4
(Pdb) y
5
(Pdb) x^2
6
(Pdb) y^2
7
(Pdb) x**2
16
(Pdb) y**2
25
(Pdb)

So we can see the ^ operator is not what we wanted instead we need to use
** operator to do squares.
This way we can debug our program inside the functions/methods.

Logging
The logging module has been a part of Python’s Standard Library since
Python version 2.3. As it’s a built-in module all Python module can
participate in logging, so that our application log can include your own
message integrated with messages from third party module. It provides a lot
of flexibility and functionality.

Benefits of Logging
Diagnostic logging − It records events related to the

application’s operation.
Audit logging − It records events for business analysis.

Messages are written and logged at levels of “severity” &minu
DEBUG (debug()) − diagnostic messages for development.
INFO (info()) − standard “progress” messages.

WARNING (warning()) − detected a non-serious issue.
ERROR (error()) − encountered an error, possibly serious.
CRITICAL (critical()) − usually a fatal error (program stops).

Let’s looks into below simple program,

import logging

logging.basicConfig(level=logging.INFO)

logging.debug('this message will be ignored') # This will not print
logging.info('This should be logged') # it'll print
logging.warning('And this, too') # It'll print

Above we are logging messages on severity level. First we import the
module, call basicConfig and set the logging level. Level we set above is
INFO. Then we have three different statement: debug statement, info
statement and a warning statement.

Output of logging1.py
INFO:root:This should be logged
WARNING:root:And this, too
As the info statement is below debug statement, we are not able to see the
debug message. To get the debug statement too in the Output terminal, all
we need to change is the basicConfig level.
logging.basicConfig(level = logging.DEBUG)
And in the Output we can see,
DEBUG:root:this message will be ignored
INFO:root:This should be logged
WARNING:root:And this, too
Also the default behavior means if we don’t set any logging level is warning.
Just comment out the second line from the above program and run the code.

#logging.basicConfig(level = logging.DEBUG)

Output
WARNING:root:And this, too
Python built in logging level are actually integers.

>>> import logging
>>>
>>> logging.DEBUG
10
>>> logging.CRITICAL
50
>>> logging.WARNING
30
>>> logging.INFO
20
>>> logging.ERROR
40
>>>

We can also save the log messages into the file.

logging.basicConfig(level = logging.DEBUG, filename = 'logging.log')

Now all log messages will go the file (logging.log) in your current working
directory instead of the screen. This is a much better approach as it lets us to
do post analysis of the messages we got.
We can also set the date stamp with our log message.

logging.basicConfig(level=logging.DEBUG, format = '%(asctime)s %
(levelname)s:%(message)s')

Output will get something like,
2018-03-08 19:30:00,066 DEBUG:this message will be ignored
2018-03-08 19:30:00,176 INFO:This should be logged
2018-03-08 19:30:00,201 WARNING:And this, too

Benchmarking

Benchmarking or profiling is basically to test how fast is your code executes
and where the bottlenecks are? The main reason to do this is for
optimization.

timeit
Python comes with a in-built module called timeit. You can use it to time
small code snippets. The timeit module uses platform-specific time functions
so that you will get the most accurate timings possible.
So, it allows us to compare two shipment of code taken by each and then
optimize the scripts to given better performance.
The timeit module has a command line interface, but it can also be imported.
There are two ways to call a script. Let’s use the script first, for that run the
below code and see the Output.
import timeit
print ('by index: ', timeit.timeit(stmt = "mydict['c']", setup = "mydict = {'a':5,
'b':10, 'c':15}", number = 1000000))
print ('by get: ', timeit.timeit(stmt = 'mydict.get("c")', setup = 'mydict =
{"a":5, "b":10, "c":15}', number = 1000000))

Output
by index: 0.1809192126703489
by get: 0.6088525265034692
Above we use two different method .i.e. by subscript and get to access the
dictionary key value. We execute statement 1 million times as it executes too
fast for a very small data. Now we can see the index access much faster as
compared to the get. We can run the code multiply times and there will be
slight variation in the time execution to get the better understanding.
Another way is to run the above test in the command line. Let’s do it,

c:\Python\Python361>Python -m timeit -n 1000000 -s "mydict = {'a': 5,
'b':10, 'c':15}" "mydict['c']"
1000000 loops, best of 3: 0.187 usec per loop

c:\Python\Python361>Python -m timeit -n 1000000 -s "mydict = {'a': 5,
'b':10, 'c':15}" "mydict.get('c')"
1000000 loops, best of 3: 0.659 usec per loop

Above output may vary based on your system hardware and what all
applications are running currently in your system.
Below we can use the timeit module, if we want to call to a function. As we
can add multiple statement inside the function to test.

import timeit

def testme(this_dict, key):
return this_dict[key]

print (timeit.timeit("testme(mydict, key)", setup = "from __main__ import
testme; mydict = {'a':9, 'b':18, 'c':27}; key = 'c'", number = 1000000))

Output
0.7713474590139164

LIBRARIES

Requests − Python Requests Module
Requests is a Python module which is an elegant and simple HTTP library
for Python. With this you can send all kinds of HTTP requests. With this
library we can add headers, form data, multipart files and parameters and
access the response data.
As Requests is not a built-in module, so we need to install it first.
You can install it by running the following command in the terminal −

pip install requests

Once you have installed the module, you can verify if the installation is
successful by typing below command in the Python shell.

import requests

If the installation has been successful, you won’t see any error message.

Making a GET Request
As a means of example we’ll be using the “pokeapi”

Output −

Making POST Requests
The requests library methods for all of the HTTP verbs currently in use. If
you wanted to make a simple POST request to an API endpoint then you can
do that like so −

req = requests.post(‘http://api/user’, data = None, json = None)

This would work in exactly the same fashion as our previous GET request,
however it features two additional keyword parameters −

data which can be populated with say a dictionary, a file or
bytes that will be passed in the HTTP body of our POST request.

json which can be populated with a json object that will be
passed in the body of our HTTP request also.

Pandas: Python Library Pandas
Pandas is an open-source Python Library providing high-performance data
manipulation and analysis tool using its powerful data structures. Pandas is
one of the most widely used Python libraries in data science. It is mainly
used for data munging, and with good reason: Powerful and flexible group
of functionality.
Built on Numpy package and the key data structure is called the DataFrame.
These dataframes allows us to store and manipulate tabular data in rows of
observations and columns of variables.
There are several ways to create a DataFrame. One way is to use a
dictionary. For example −

Output

From the output we can see new brics DataFrame, Pandas has assigned a key
for each country as the numerical values 0 through 4.
If instead of giving indexing values from 0 to 4, we would like to have
different index values, say the two letter country code, you can do that easily
as well −
Adding below one lines in the above code, gives

brics.index = ['BR', 'RU', 'IN', 'CH', 'SA']

Output

Indexing DataFrames

Output

Pygame
Pygame is the open source and cross-platform library that is for making
multimedia applications including games. It includes computer graphics and
sound libraries designed to be used with the Python programming language.
You can develop many cool games with Pygame.’

Overview
Pygame is composed of various modules, each dealing with a specific set of
tasks. For example, the display module deals with the display window and
screen, the draw module provides functions to draw shapes and the key
module works with the keyboard. These are just some of the modules of the

library.
The home of the Pygame library is at https://www.pygame.org/news
To make a Pygame application, you follow these steps −
Import the Pygame library

import pygame

Initialize the Pygame library

pygame.init()

Create a window.

screen = Pygame.display.set_mode((560,480))
Pygame.display.set_caption(‘First Pygame Game’)

Initialize game objects
In this step we load images, load sounds, do object positioning, set up some
state variables, etc.
Start the game loop.
It is just a loop where we continuously handle events, checks for input, move
objects, and draw them. Each iteration of the loop is called a frame.
Let’s put all the above logic into one below program,
Pygame_script.py

Output

Beautiful Soup: Web Scraping with Beautiful
Soup
The general idea behind web scraping is to get the data that exists on a
website, and convert it into some format that is usable for analysis.
It’s a Python library for pulling data out of HTML or XML files. With your
favourite parser it provide idiomatic ways of navigating, searching and
modifying the parse tree.
As BeautifulSoup is not a built-in library, we need to install it before we try
to use it. To install BeautifulSoup, run the below command

$ apt-get install Python-bs4 # For Linux and Python2
$ apt-get install Python3-bs4 # for Linux based system and Python3.

$ easy_install beautifulsoup4 # For windows machine,
Or
$ pip instal beatifulsoup4 # For window machine

Once the installation is done, we are ready to run few examples and explores
Beautifulsoup in details,

Output

Below are some simple ways to navigate that data structure −

One common task is extracting all the URLs found within a page’s <a> tags
−

Another common task is extracting all the text from a page −

SINCE YOU'RE STILL
HERE....

Now you know everything you need to know, you're welcome!

Okay…maybe this isn't everything you need to know. But I do believe that
getting started is the first step to success. I sincerely hope you read this book
well worth your time.

Could you do me a favour and take a few moments to leave a review of my
book on Amazon? Your review helps make this book more visible on
Amazon, which in turn enables people to find my book and get on track to
improve their knowledge! All you have to do is leave a short review of what
you think of my book.

Thank you so much, I appreciate it.

	Title Page
	Dedication
	Contents
	Preface
	Introduction
	Environment Setup
	Data Structures
	Building Blocks
	Object Oriented Shortcuts
	Inheritance and Polymorphism
	Python Design Pattern
	Advanced Features
	Files and Strings
	Exception and Exception Classes
	Object Serialization
	Libraries
	Since you're still here....

